WorldWideScience

Sample records for vibration measurements performed

  1. Vibration transfers to measure the performance of vibration isolated platforms on site using background noise excitation

    NARCIS (Netherlands)

    Segerink, Franciscus B.; Korterik, Jeroen P.; Offerhaus, Herman L.

    2011-01-01

    This article demonstrates a quick and easy way of quantifying the performance of a vibration-isolated platform. We measure the vibration transfer from floor to table using background noise excitation from the floor. As no excitation device is needed, our setup only requires two identical sensors (in

  2. Noise and Vibrations Measurements. External noise and vibrations measurements for offshore SODAR application

    International Nuclear Information System (INIS)

    Ormel, F.T.; Eecen, P.J.; Herman, S.A.

    2003-10-01

    The partners in the WISE project investigate whether application of the SODAR (sonic detection and ranging) measurement technique in wind energy experimental work is feasible as a replacement for cup anemometers, wind direction sensors and tall meteorological masts. In Work Package 2 of the WISE project extensive controlled experiments with the SODAR are performed. For example SODAR measurements are compared with measurements from nearby masts and different brands of SODARs are compared. Part of the work package is the measurement of vibration and noise on an offshore SODAR system. The results of these measurements are presented in this report. ECN performed measurements at an offshore location to investigate the influence of noise and vibrations on the performance of a MiniSODAR measurement system. The aim of the measurements is to quantify the effect of these external noise and vibrations disturbances on the MiniSODAR's performance. Measurements on an identical SODAR system onshore are carried out to compare the disturbances of offshore and onshore external conditions. The effect of background noise on SODAR operation has clearly been established in literature. Therefore, measurements have been performed only to establish the absolute sound pressure levels. This is done at the Measuring Platform Noordwijk (MPN) located in the North Sea, nine kilometres out of the coast at Noordwijk, The Netherlands, and at two locations onshore. At the MPN-platform, the SODAR has been moved from the middle deck to the upper deck to diminish the influence of the diesel generator needed for the electric powering of the island. Although the absolute sound pressure level became higher at the new location, this level became lower at the most important frequencies inside the SODAR, due to the use of absorbing foam. With regards to the sound pressure level the move improved the situation. The sound pressure levels measured offshore were 6 to 15 dB higher than for the two locations

  3. NIF Ambient Vibration Measurements

    International Nuclear Information System (INIS)

    Noble, C.R.; Hoehler, M.S.; S.C. Sommer

    1999-01-01

    LLNL has an ongoing research and development project that includes developing data acquisition systems with remote wireless communication for monitoring the vibrations of large civil engineering structures. In order to establish the capability of performing remote sensing over an extended period of time, the researchers needed to apply this technology to a real structure. The construction of the National Ignition Facility provided an opportunity to test the data acquisition system on a large structure to monitor whether the facility is remaining within the strict ambient vibration guidelines. This document will briefly discuss the NIF ambient vibration requirements and summarize the vibration measurements performed during the Spring and Summer of 1999. In addition, a brief description of the sensors and the data acquisition systems will be provided in Appendix B

  4. Fingers' vibration transmission and grip strength preservation performance of vibration reducing gloves.

    Science.gov (United States)

    Hamouda, K; Rakheja, S; Dewangan, K N; Marcotte, P

    2018-01-01

    The vibration isolation performances of vibration reducing (VR) gloves are invariably assessed in terms of power tools' handle vibration transmission to the palm of the hand using the method described in ISO 10819 (2013), while the nature of vibration transmitted to the fingers is ignored. Moreover, the VR gloves with relatively low stiffness viscoelastic materials affect the grip strength in an adverse manner. This study is aimed at performance assessments of 12 different VR gloves on the basis of handle vibration transmission to the palm and the fingers of the gloved hand, together with reduction in the grip strength. The gloves included 3 different air bladder, 3 gel, 3 hybrid, and 2 gel-foam gloves in addition to a leather glove. Two Velcro finger adapters, each instrumented with a three-axis accelerometer, were used to measure vibration responses of the index and middle fingers near the mid-phalanges. Vibration transmitted to the palm was measured using the standardized palm adapter. The vibration transmissibility responses of the VR gloves were measured in the laboratory using the instrumented cylindrical handle, also described in the standard, mounted on a vibration exciter. A total of 12 healthy male subjects participated in the study. The instrumented handle was also used to measure grip strength of the subjects with and without the VR gloves. The results of the study showed that the VR gloves, with only a few exceptions, attenuate handle vibration transmitted to the fingers only in the 10-200 Hz and amplify middle finger vibration at frequencies exceeding 200 Hz. Many of the gloves, however, provided considerable reduction in vibration transmitted to the palm, especially at higher frequencies. These suggest that the characteristics of vibration transmitted to fingers differ considerably from those at the palm. Four of the test gloves satisfied the screening criteria of the ISO 10819 (2013) based on the palm vibration alone, even though these caused

  5. Tool-specific performance of vibration-reducing gloves for attenuating fingers-transmitted vibration

    Science.gov (United States)

    Welcome, Daniel E.; Dong, Ren G.; Xu, Xueyan S.; Warren, Christopher; McDowell, Thomas W.

    2016-01-01

    BACKGROUND Fingers-transmitted vibration can cause vibration-induced white finger. The effectiveness of vibration-reducing (VR) gloves for reducing hand transmitted vibration to the fingers has not been sufficiently examined. OBJECTIVE The objective of this study is to examine tool-specific performance of VR gloves for reducing finger-transmitted vibrations in three orthogonal directions (3D) from powered hand tools. METHODS A transfer function method was used to estimate the tool-specific effectiveness of four typical VR gloves. The transfer functions of the VR glove fingers in three directions were either measured in this study or during a previous study using a 3D laser vibrometer. More than seventy vibration spectra of various tools or machines were used in the estimations. RESULTS When assessed based on frequency-weighted acceleration, the gloves provided little vibration reduction. In some cases, the gloves amplified the vibration by more than 10%, especially the neoprene glove. However, the neoprene glove did the best when the assessment was based on unweighted acceleration. The neoprene glove was able to reduce the vibration by 10% or more of the unweighted vibration for 27 out of the 79 tools. If the dominant vibration of a tool handle or workpiece was in the shear direction relative to the fingers, as observed in the operation of needle scalers, hammer chisels, and bucking bars, the gloves did not reduce the vibration but increased it. CONCLUSIONS This study confirmed that the effectiveness for reducing vibration varied with the gloves and the vibration reduction of each glove depended on tool, vibration direction to the fingers, and finger location. VR gloves, including certified anti-vibration gloves do not provide much vibration reduction when judged based on frequency-weighted acceleration. However, some of the VR gloves can provide more than 10% reduction of the unweighted vibration for some tools or workpieces. Tools and gloves can be matched for

  6. Bevel Gearbox Fault Diagnosis using Vibration Measurements

    Directory of Open Access Journals (Sweden)

    Hartono Dennis

    2016-01-01

    Full Text Available The use of vibration measurementanalysis has been proven to be effective for gearbox fault diagnosis. However, the complexity of vibration signals observed from a gearbox makes it difficult to accurately detectfaults in the gearbox. This work is based on a comparative studyof several time-frequency signal processing methods that can be used to extract information from transient vibration signals containing useful diagnostic information. Experiments were performed on a bevel gearbox test rig using vibration measurements obtained from accelerometers. Initially, thediscrete wavelet transform was implementedfor vibration signal analysis to extract the frequency content of signal from the relevant frequency region. Several time-frequency signal processing methods werethen incorporated to extract the fault features of vibration signals and their diagnostic performances were compared. It was shown thatthe Short Time Fourier Transform (STFT could not offer a good time resolution to detect the periodicity of the faulty gear tooth due the difficulty in choosing an appropriate window length to capture the impulse signal. The Continuous Wavelet Transform (CWT, on the other hand, was suitable to detection of vibration transients generated by localized fault from a gearbox due to its multi-scale property. However, both methods still require a thorough visual inspection. In contrast, it was shown from the experiments that the diagnostic method using the Cepstrumanalysis could provide a direct indication of the faulty tooth without the need of a thorough visual inspection as required by CWT and STFT.

  7. Vibration measurements of automobile catalyst

    Science.gov (United States)

    Aatola, Seppo

    1994-09-01

    Vibration of catalyst cell, which is inside the casing of the catalyst, is difficult to measure with usual measuring instrumentation. When catalyst is in use, there is hot exhaust gas flow though the catalyst cell and temperature of the cell is approximately +900 degree(s)C. Therefore non-contact Laser- Doppler-Vibrometer was used to measure vibration velocity of the catalyst cell. The laser beam was directed towards the cell through pipe which was put through and welded to the casing of the catalyst. The outer end of the pipe was screw down with a tempered class to prevent exhaust gas flow from the pipe. The inner end of the pipe was open and few millimeters away from the measuring point. Catalyst was attached to the engine with two ways, rigidly close to the engine and flexible under the engine. The engine was running in test bench under controlled conditions. Vibration measurements were carried out during constant running speeds of the engine. Vibration signals were captured and analyzed with FFT-analyzer. Vibration of catalyst cell was strongest at running speed of 5000 rpm, from 10 to 20 g (1 g equals 9.81 ms-2), when catalyst was attached rigidly close to the engine. At running speed of 3000 rpm, vibration of catalyst cell was from 2 to 3 g in most cases, when catalyst was attached either rigidly or flexible to the engine. It is estimated that in real life, i.e. when catalyst is attached to car with same engine, vibration of catalyst cell at running speed of 5000 rpm is somewhere between 1 and 10 g. At running speed of 3000 rpm, which may be more often used when driving car (car speed approximately 100 kmh-1), vibration of catalyst cell is probably few g's.

  8. Fuel Rod Vibration Measurement Method using a Flap and its Verification

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Joo Young; Park, Nam Gyu; Suh, Jung Min; Jeon, Kyeong Lak [KEPCO NF Co., Daejeon (Korea, Republic of)

    2011-10-15

    signal to test for feasibility. The LDV measured the flap vibration velocity and an accelerometer adjacent to the flap measured fuel rod acceleration. Finally, additional investigations were performed to identify deviation between the two signals which could have been directly affected by the natural frequency of the flap

  9. Time Synchronized Wireless Sensor Network for Vibration Measurement

    Science.gov (United States)

    Uchimura, Yutaka; Nasu, Tadashi; Takahashi, Motoichi

    Network based wireless sensing has become an important area of research and various new applications for remote sensing are expected to emerge. One of the promising applications is structural health monitoring of building or civil engineering structure and it often requires vibration measurement. For the vibration measurement via wireless network, time synchronization is indispensable. In this paper, we introduce a newly developed time synchronized wireless sensor network system. The system employs IEEE 802.11 standard based TSF counter and sends the measured data with the counter value. TSF based synchronization enables consistency on common clock among different wireless nodes. We consider the scale effect on the synchronization accuracy and the effect is evaluated by stochastic analysis and simulation studies. A new wireless sensing system is developed and the hardware and software specifications are shown. The experiments are conducted in a reinforced concrete building and results show good performance enough for vibration measurement purpose.

  10. Enhancing vibration measurements by Mössbauer effect

    Science.gov (United States)

    Pasquevich, G. A.; Veiga, A.; Zélis, P. Mendoza; Martínez, N.; van Raap, M. Fernández; Sánchez, F. H.

    2014-01-01

    The measurement of the Mössbauer effect in a system excited with a periodic perturbation can provide information about it. For that purpose, the Mössbauer absorption of a source-absorber set which hyperfine parameters are well known, is measured at a constant relative velocity (i.e. at a defined spectral energy). The resulting Mössbauer absorption periodic signal provides information of the sample ac perturbation response. This approach has been used time ago to measure small tympanic vibrations (mechanical perturbations). In this work we present an extension of the vibration experiments, by measuring them at various absorber-source relative velocities within a constant-velocity strategy. As a demonstration test, the frequency response of a piezoelectric diaphragm in the 100 Hz-5 kHz range is obtained with a custom electronic counter. The experiments are performed using a 57Co( Rh) source and a 25-m-thick stainless-steel absorber fixed to a piezoelectric diaphragm. Phase shifts and amplitude vibrations with velocities in the range from 1.5 m/s to 20 mm/s are well characterized, extending the linearity limit well beyond the earlier suggested one of 1 mm/s.

  11. Optical Measurement of Cable and String Vibration

    Directory of Open Access Journals (Sweden)

    Y. Achkire

    1998-01-01

    Full Text Available This paper describes a non contacting measurement technique for the transverse vibration of small cables and strings using an analog position sensing detector. On the one hand, the sensor is used to monitor the cable vibrations of a small scale mock-up of a cable structure in order to validate the nonlinear cable dynamics model. On the other hand, the optical sensor is used to evaluate the performance of an active tendon control algorithm with guaranteed stability properties. It is demonstrated experimentally, that a force feedback control law based on a collocated force sensor measuring the tension in the cable is feasible and provides active damping in the cable.

  12. Vibrations on pulse tube based Dry Dilution Refrigerators for low noise measurements

    Energy Technology Data Exchange (ETDEWEB)

    Olivieri, E. [CSNSM, Univ. Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, 91405 Orsay (France); Billard, J.; De Jesus, M.; Juillard, A. [Univ Lyon, Université Lyon 1, CNRS/IN2P3, IPN-Lyon, F-69622 Villeurbanne (France); Leder, A. [Massachussets Institute of Technology, Laboratory for Nuclear Science, 77 Massachusetts Avenue Cambridge, MA 02139-4307 (United States)

    2017-06-21

    Dry Dilution Refrigerators (DDR) based on pulse tube cryo-coolers have started to replace Wet Dilution Refrigerators (WDR) due to the ease and low cost of operation. However these advantages come at the cost of increased vibrations, induced by the pulse tube. In this work, we present the vibration measurements performed on three different commercial DDRs. We describe in detail the vibration measurement system we assembled, based on commercial accelerometers, conditioner and DAQ, and examined the effects of the various damping solutions utilized on three different DDRs, both in the low and high frequency regions. Finally, we ran low temperature, pseudo-massive (30 and 250 g) germanium bolometers in the best vibration-performing system under study and report on the results.

  13. Vibrations measurement at the Embalse nuclear power plant's electrical generator

    International Nuclear Information System (INIS)

    Salomoni, R.C.; Belinco, C.G.; Pastorini, A.J.; Sacchi, M.A.

    1987-01-01

    After the modifications made at the Embalse nuclear power plant's electrical generator to reduce its vibration level produced by electromagnetic phenomena, it was necessary to perform measurements at the new levels, under different areas and power conditions. To this purpose, a work was performed jointly with the 'Vibrations Team' of the ANSALDO Company (the generator constructor) and the Hydrodynamic Assays Division under the coordination and supervision of the plant's electrical maintenance responsible. This paper includes the main results obtained and the instrumentation criteria and analysis performed. (Author)

  14. Development of the method to measure vibrational stress of small-bore piping with contactless displacement sensor. Accuracy confirmation by vibrational experiment using branch pipe

    International Nuclear Information System (INIS)

    Tsuji, Takashi; Maekawa, Akira; Takahashi, Tsuneo

    2013-01-01

    In nuclear power plants, vibrational stress of piping is measured to prevent its fatigue failures. Easier handling and more efficient performance is desirable for the measurement of vibrational stress. The authors have proposed a method to measure vibrational stress using optical contactless displacement sensors, and have developed a device based on the method. In addition, they downsized the device and improved the method to allow its use for measurements even in narrow spaces in the plants. In this study, vibrational experiment using branch pipes and the device was conducted to confirm the measurement accuracy of the improved method. It was found that the improved method have sufficient accuracy for screening to evaluate the vibrational stress. It was also found that this measurement method was thought to be susceptible to the vibration of main pipe. So a technique was proposed to improve the accuracy of the measurement in this paper. (author)

  15. Active Low-frequency Vertical Vibration Isolation System for Precision Measurements

    Institute of Scientific and Technical Information of China (English)

    WU Kang; LI Gang; HU Hua; WANG Lijun

    2017-01-01

    Low-frequency vertical vibration isolation systems play important roles in precision measurements to reduce seismic and environmental vibration noise.Several types of active vibration isolation systems have been developed.However,few researches focus on how to optimize the test mass install position in order to improve the vibration transmissibility.An active low-frequency vertical vibration isolation system based on an earlier instrument,the Super Spring,is designed and implemented.The system,which is simple and compact,consists of two stages:a parallelogram-shaped linkage to ensure vertical motion,and a simple spring-mass system.The theoretical analysis of the vibration isolation system is presented,including terms erroneously ignored before.By carefully choosing the mechanical parameters according to the above analysis and using feedback control,the resonance frequency of the system is reduced from 2.3 to 0.03 Hz,a reduction by a factor of more than 75.The vibration isolation system is installed as an inertial reference in an absolute gravimeter,where it improved the scatter of the absolute gravity values by a factor of 5.The experimental results verifies the improved performance of the isolation system,making it particularly suitable for precision experiments.The improved vertical vibration isolation system can be used as a prototype for designing high-performance active vertical isolation systems.An improved theoretical model of this active vibration isolation system with beam-pivot configuration is proposed,providing fundamental guidelines for vibration isolator design and assembling.

  16. Underground measurements of seismic vibrations at the SSC site

    International Nuclear Information System (INIS)

    Shiltsev, V.D.; Parkhomchuk, V.V.; Weaver, H.J.

    1995-01-01

    The results of underground measurements of seismic vibrations at the tunnel depth of the Superconducting Super Collider (SSC) site are presented. Spectral analysis of the data obtained in the frequency band from 0.05 Hz to 1500 Hz is performed. It is found that amplitudes of ambient ground motion are less than requirements for the Collider, but cultural vibrations are unacceptably large and will cause fast growth of transverse emittance of the SSC beams

  17. Vibration measurements of high-heat-load monochromators for DESY PETRA III extension

    Energy Technology Data Exchange (ETDEWEB)

    Kristiansen, Paw, E-mail: paw.kristiansen@fmb-oxford.com [FMB Oxford Ltd, Unit 1 Ferry Mills, Oxford OX2 0ES (United Kingdom); Horbach, Jan; Döhrmann, Ralph; Heuer, Joachim [DESY, Deutsches Elektronen-Synchrotron Hamburg, Notkestrasse 85, 22607 Hamburg (Germany)

    2015-05-09

    Vibration measurements of a cryocooled double-crystal monochromator are presented. The origins of the vibrations are identified. The minimum achieved vibration of the relative pitch between the two crystals is 48 nrad RMS and the minimum achieved absolute vibration of the second crystal is 82 nrad RMS. The requirement for vibrational stability of beamline optics continues to evolve rapidly to comply with the demands created by the improved brilliance of the third-generation low-emittance storage rings around the world. The challenge is to quantify the performance of the instrument before it is installed at the beamline. In this article, measurement techniques are presented that directly and accurately measure (i) the relative vibration between the two crystals of a double-crystal monochromator (DCM) and (ii) the absolute vibration of the second-crystal cage of a DCM. Excluding a synchrotron beam, the measurements are conducted under in situ conditions, connected to a liquid-nitrogen cryocooler. The investigated DCM utilizes a direct-drive (no gearing) goniometer for the Bragg rotation. The main causes of the DCM vibration are found to be the servoing of the direct-drive goniometer and the flexibility in the crystal cage motion stages. It is found that the investigated DCM can offer relative pitch vibration down to 48 nrad RMS (capacitive sensors, 0–5 kHz bandwidth) and absolute pitch vibration down to 82 nrad RMS (laser interferometer, 0–50 kHz bandwidth), with the Bragg axis brake engaged.

  18. Corneal Vibrations during Intraocular Pressure Measurement with an Air-Puff Method

    Directory of Open Access Journals (Sweden)

    Robert Koprowski

    2018-01-01

    Full Text Available Introduction. The paper presents a commentary on the method of analysis of corneal vibrations occurring during eye pressure measurements with air-puff tonometers, for example, Corvis. The presented definition and measurement method allow for the analysis of image sequences of eye responses—cornea deformation. In particular, the outer corneal contour and sclera fragments are analysed, and 3D reconstruction is performed. Methods. On this basis, well-known parameters such as eyeball reaction or corneal response are determined. The next steps of analysis allow for automatic and reproducible separation of four different corneal vibrations. These vibrations are associated with (1 the location of the maximum of cornea deformation; (2 the cutoff area measured in relation to the cornea in a steady state; (3 the maximum of peaks occurring between applanations; and (4 the other characteristic points of the corneal contour. Results. The results obtained enable (1 automatic determination of the amplitude of vibrations; (2 determination of the frequency of vibrations; and (3 determination of the correlation between the selected types of vibrations. Conclusions. These are diagnostic features that can be directly applied clinically for new and archived data.

  19. Measurement and prediction of cutting forces and vibrations on longwall shearers

    Energy Technology Data Exchange (ETDEWEB)

    Bulent Tiryaki [CRCMining (Australia)

    2006-12-15

    CRCMining has developed the Cutting Head Performance Analysis Software (CPAS) to predict cutter motor power, ranging arm reaction forces, and vibrations for different drum designs, coal seams, and shearer operational conditions. This project describes the work on THE DBT EL3000 shearer at Beltana to validate/update CPAS by measuring the cutter motor power, ranging arm vibrations, and reaction forces through an online data acquisition system called Cutting Head Performance Monitoring System (CPMS). This system records the outputs of six strain gauge bridges, six accelerometers, and two pressure transducers on ranging arms during underground coal production. CPAS2 has then been developed in order to eliminate the needs for performing coal cutting tests for the target coal seam. CPAS2 simulations for cutter motor power, vertical reaction force, and vibrations were also close to those measured in the trials. CRCMining will release the CPAS code including fully functioning software code on CD to Australian coal mining industry.

  20. Measurement of stress strain and vibrational properties of tendons

    Science.gov (United States)

    Revel, Gian Marco; Scalise, Alessandro; Scalise, Lorenzo

    2003-08-01

    The authors present a new non-intrusive experimental procedure based on laser techniques for the measurement of mechanical properties of tendons. The procedure is based on the measurement of the first resonance frequency of the tendon by laser Doppler vibrometry during in vitro tensile experiments, with the final aim of establishing a measurement procedure to perform the mechanical characterization of tendons by extracting parameters such as the resonance frequency, also achievable during in vivo investigation. The experimental procedure is reported, taking into account the need to simulate the physiological conditions of the Achilles tendon, and the measurement technique used for the non-invasive determination of tendon cross-sectional area during tensile vibration tests at different load levels is described. The test procedure is based on a tensile machine, which measures longitudinal tendons undergoing controlled load conditions. Cross-sectional area is measured using a new non-contact procedure for the measurement of tendon perimeter (repeatability of 99% and accuracy of 2%). For each loading condition, vibration resonance frequency and damping, cross-sectional area and tensile force are measured, allowing thus a mechanical characterization of the tendon. Tendon stress-strain curves are reported. Stress-strain curves have been correlated to the first vibration resonance frequency and damping of the tendon measured using a single-point laser Doppler vibrometer. Moreover, experimental results have been compared with a theoretical model of a vibrating cord showing discrepancies. In vitro tests are reported, demonstrating the validity of the method for the comparison of different aged rabbit tendons.

  1. Development of remote vibration measurement technique through turbulent media

    Energy Technology Data Exchange (ETDEWEB)

    Baik, Sung Hoon; Chung, Chin Man; Kim, Min Suk; Park, Seung Kyu; Chung, Heung Jone

    2002-12-01

    The effect of wavefront distortion of laser beam of a LDV(Laser Doppler Vibrometer) in the turbulence media was investigated for application of adaptive optics to LDV. The high-speed tip/tilt adaptive optics system and closed-loop steering algorithm were developed for real-time correction of the direction fluctuation of the laser beam of LDV. The measuring performance of the LDV was improved when the steering system was applied to LDV at the vibration frequency range of 10 Hz - 30 Hz. The high-speed Shack-Hartmann wavefront sensor(400 Hz) was developed to measure the performance of the LDV due to wavefront distortion. The wavefront distortion due to the turbulence media induced low visibility and degraded the performance of the vibrometer. From the experiments, when the wavefront distortion is above 2 wavelengths in the cross section of the laser beam(dia. 20 mm), the vibration signal from laser vibrometer was severely degraded. When the wavefront distortion is smaller than one wave, the vibration signal was good. From the this research, high-speed closed-loop tip/tilt control technique of the laser beam was developed and applied to the laser metrology area. In the future, the adaptive optics system for wavefront correction will be applied to other research area.

  2. Vibration condition measure instrument of motor using MEMS accelerometer

    Science.gov (United States)

    Chen, Jun

    2018-04-01

    In this work, a novel vibration condition measure instrument of motor using a digital micro accelerometer is proposed. In order to reduce the random noise found in the data, the sensor modeling is established and also the Kalman filter (KMF) is developed. According to these data from KMF, the maximum vibration displacement is calculated by the integration algorithm with the DC bias removed. The high performance micro controller unit (MCU) is used in the implementation of controller. By the IIC digital interface port, the data are transmitted from sensor to controller. The hardware circuits of the sensor and micro controller are designed and tested. With the computational formula of maximum displacement and FFT, the high precession results of displacement and frequency are gotten. Finally, the paper presents various experimental results to prove that this instrument is suitable for application in electrical motor vibration measurement.

  3. Spindle vibration and sound field measurement using optical vibrometry

    OpenAIRE

    Tatar, Kourosh

    2008-01-01

    Mechanical systems often produce a considerable amount of vibration and noise. To be able to obtain a complete picture of the dynamic behaviour of these systems, vibration and sound measurements are of significant importance. Optical metrology is well-suited for non-intrusive measurements on complex objects. The development and the use of remote non-contact vibration measurement methods for spindles are described and vibration measurements on thin- walled structures and sound field measuremen...

  4. Design of A Vibration and Stress Measurement System for an Advanced Power Reactor 1400 Reactor Vessel Internals Comprehensive Vibration Assessment Program

    International Nuclear Information System (INIS)

    Ko, Doyoung; Kim, Kyuhyung

    2013-01-01

    In accordance with the US Nuclear Regulatory Commission (US NRC), Regulatory Guide 1.20, the reactor vessel internals comprehensive vibration assessment program (RVI CVAP) has been developed for an Advanced Power Reactor 1400 (APR1400). The purpose of the RVI CVAP is to verify the structural integrity of the reactor internals to flow-induced loads prior to commercial operation. The APR1400 RVI CVAP consists of four programs (analysis, measurement, inspection, and assessment). Thoughtful preparation is essential to the measurement program, because data acquisition must be performed only once. The optimized design of a vibration and stress measurement system for the RVI CVAP is essential to verify the integrity of the APR1400 RVI. We successfully designed a vibration and stress measurement system for the APR1400 RVI CVAP based on the design materials, the hydraulic and structural analysis results, and performance tests of transducers in an extreme environment. The measurement system designed in this paper will be utilized for the APR1400 RVI CVAP as part of the first construction project in Korea

  5. DESIGN OF A VIBRATION AND STRESS MEASUREMENT SYSTEM FOR AN ADVANCED POWER REACTOR 1400 REACTOR VESSEL INTERNALS COMPREHENSIVE VIBRATION ASSESSMENT PROGRAM

    Directory of Open Access Journals (Sweden)

    DO-YOUNG KO

    2013-04-01

    Full Text Available In accordance with the US Nuclear Regulatory Commission (US NRC, Regulatory Guide 1.20, the reactor vessel internals comprehensive vibration assessment program (RVI CVAP has been developed for an Advanced Power Reactor 1400 (APR1400. The purpose of the RVI CVAP is to verify the structural integrity of the reactor internals to flow-induced loads prior to commercial operation. The APR1400 RVI CVAP consists of four programs (analysis, measurement, inspection, and assessment. Thoughtful preparation is essential to the measurement program, because data acquisition must be performed only once. The optimized design of a vibration and stress measurement system for the RVI CVAP is essential to verify the integrity of the APR1400 RVI. We successfully designed a vibration and stress measurement system for the APR1400 RVI CVAP based on the design materials, the hydraulic and structural analysis results, and performance tests of transducers in an extreme environment. The measurement system designed in this paper will be utilized for the APR1400 RVI CVAP as part of the first construction project in Korea.

  6. Optical vibration measurement of mechatronics devices

    Science.gov (United States)

    Yanabe, Shigeo

    1993-09-01

    An optical vibration measuring system which enables to detect both linear and angular displacement of 25 nm and 5 prad was developed. The system is mainly composed of a He-Ne laser, a displacement detecting photo-diode and lenses, and has linear and angular displacement magnification mechanism using two different principles of optical lever. The system was applied to measure vibrational characteristics of magnetic head slider of hard disk drives and to measure stator teeth driving velocities of ultrasonic motor.

  7. Improvement of performance of vibration pump for molten salt at high temperature

    International Nuclear Information System (INIS)

    Watanabe, Hideo; Hashimoto, Hiroyuki; Katagiri, Kazunari; Tang Bomin.

    1996-01-01

    An experimental study was conducted to improve the performance of a vibration pump using a vibrating pipe for conveying the molten salt at 784 K. A new system to measure the pump performance safely at such a high temperature was developed, which was characterized by simplicity in construction and ease of operation. All parts of the system, including a pump, valves and a volume tank to measure the volumetric flow rate, were placed in a cylindrical tank. The pump was driven by an air actuator. Experimental results indicated that the measuring system fulfilled the intended function: the pump worked effectively and its performance was safely evaluated at a high temperature. A few possible improvements related to the construction of the pump were suggested based on the results. (author)

  8. Flextensional fiber Bragg grating-based accelerometer for low frequency vibration measurement

    Institute of Scientific and Technical Information of China (English)

    Jinghua Zhang; Xueguang Qiao; Manli Hu; Zhongyao Feng; Hong Gao; Yang Yang; Rui Zhou

    2011-01-01

    @@ The intelligent structural health monitoring method,which uses a fiber Bragg grating(FBG)sensor,is a new approach in the field of civil engineering.However,it lacks a reliable FBG-based accelerometer for taking structural low frequency vibration measurements.In this letter,a flextensional FBG-based accelerometer is proposed and demonstrated.The experimental results indicate that the natural frequency of the developed accelerometer is 16.7 Hz,with a high sensitivity of 410.7 pm/g.In addition,it has a broad and flat response over low frequencies ranging from 1 to 10 Hz.The natural frequency and sensitivity of the accelerometer can be tuned by adding mass to tailor the sensor performance to specific applications.Experimental results are presented to demonstrate the good performance of the proposed FBG-based accelerometer.These results show that the proposed accelerometer is satisfactory for low frequency vibration measurements.%The intelligent structural health monitoring method, which uses a fiber Bragg grating {FBG} sensor, ie a new approach in the field of civil engineering. However, it lacks a reliable FBG-based accelerometer for taking structural low frequency vibration measurements. In this letter, a flextensional FBG-based accelerometer is proposed and demonstrated. The experimental results indicate that the natural frequency of the developed accelerometer is 16.7 Hz, with a high sensitivity of 410.7 pm/g. In addition, it has a broad and flat response over low frequencies ranging from 1 to 10 Hz. The natural frequency and sensitivity of the accelerometer can be tuned by adding mass to tailor the sensor performance to specific applications. Experimental results are presented to demonstrate the good performance of the proposed FBG-based accelerometer. These results show that the proposed accelerometer is satisfactory for low frequency vibration measurements.

  9. WHOLE BODY VIBRATION IMPROVES ATTENTION AND MOTOR PERFORMANCE IN MICE DEPENDING ON THE DURATION OF THE WHOLE-BODY VIBRATION SESSION.

    Science.gov (United States)

    Keijser, Jan N; van Heuvelen, Marieke J G; Nyakas, Csaba; Tóth, Kata; Schoemaker, Regien G; Zeinstra, Edzard; van der Zee, Eddy A

    2017-01-01

    Whole body vibration (WBV) is a form of physical stimulation via mechanical vibrations transmitted to a subject. It is assumed that WBV induces sensory stimulation in cortical brain regions through the activation of skin and muscle receptors responding to the vibration. The effects of WBV on muscle strength are well described. However, little is known about the impact of WBV on the brain. Recently, it was shown in humans that WBV improves attention in an acute WBV protocol. Preclinical research is needed to unravel the underlying brain mechanism. As a first step, we examined whether chronic WBV improves attention in mice. A custom made vibrating platform for mice with low intensity vibrations was used. Male CD1 mice (3 months of age) received five weeks WBV (30 Hz; 1.9 G), five days a week with sessions of five (n=12) or 30 (n=10) minutes. Control mice (pseudo-WBV; n=12 and 10 for the five and 30 minute sessions, respectively) were treated in a similar way, but did not receive the actual vibration. Object recognition tasks were used as an attention test (novel and spatial object recognition - the primary outcome measure). A Balance beam was used for motor performance, serving as a secondary outcome measure. WBV sessions of five (but not WBV sessions of 30 minutes) improved balance beam performance (mice gained 28% in time needed to cross the beam) and novel object recognition (mice paid significantly more attention to the novel object) as compared to pseudo WBV, but no change was found for spatial object performance (mice did not notice the relocation). Although 30 minutes WBV sessions were not beneficial, it did not impair either attention or motor performance. These results show that brief sessions of WBV improve, next to motor performance, attention for object recognition, but not spatial cues of the objects. The selective improvement of attention in mice opens the avenue to unravel the underlying brain mechanisms.

  10. Measuring the arterial-induced skin vibration by geometrical moiré fringe

    Science.gov (United States)

    Chiu, Shih-Yung; Wang, Chun-Hsiung; Lee, Shu-Sheng; Wu, Wen-Jong; Hsu, Yu-Hsiang; Lee, Chih-Kung

    2018-02-01

    The demand for self-measured blood pressure self-monitoring device has much increased due to cardiovascular diseases have become leading causes of death for aging population. Currently, the primary non-invasive blood pressure monitoring method is cuff-based. It is well developed and accurate. However, the measuring process is not comfortable, and it cannot provide a continuous measurement. To overcome this problem, methods such as tonometry, volume clamp method, photoplethysmography, pulse wave velocity, and pulse transit time are reported. However, the limited accuracy hindered its application for diagnostics. To perform sequential blood pressure measurement with a high accuracy and long-term examination, we apply moiré interferometry to measure wrist skin vibration induced by radial artery. To achieve this goal, we developed a miniaturized device that can perform moiré interferometry around the wrist region. The 0.4-mm-pitched binary grating and tattoo sticker with 0.46 mm-pitched stripe pattern are used to perform geometric moiré. We demonstrated that the sensitivity and accuracy of this integrated system were sufficient to monitor arterialinduced skin vibration non-invasively. Our developed system was validated with ECG signals collected by a commercial system. According to our studies from measurement, the repeatability of wrist pulsation measurement was achieved with an accuracy of 99.1% in heart rate. A good repeatability of wrist pulse measurement was achieved. Simulations and experiments are both conducted in this paper and prove of geometrical moiré method a suitable technique for arterial-induced skin vibration monitoring.

  11. Vibrating wire apparatus for periodic magnetic structure measurement

    International Nuclear Information System (INIS)

    Temnykh, A.B.

    2003-01-01

    Devices with periodic magnetic structures such as wigglers and undulators are often key elements in synchrotron radiation sources. In applications where the coherence of the emitted radiation is important, magnetic field errors distorting the periodicity of the field can significantly reduce the performance of the devices. Thus, the measurement, localization, and correction of the field errors can be a critical issue. This article presents a new method for magnetic field measurements in periodic magnetic structures. The method uses a vibrating taut wire passing through the magnetic structure, and it involves measurements of the amplitudes and phases of the standing waves excited on the wire by the Lorentz force between an AC current in the wire and the surrounding magnetic field. For certain arrangements of the wire, vibrations in the wire will be excited by only non-periodic magnetic field component, i.e., by the error field. By measuring the phase and amplitude of these waves, one can reconstruct the error field distribution and then correct it. The method was tested on a permanent magnet wiggler with 19.8 cm period and a peak field of ∼7000G. It demonstrated ∼0.6G RMS sensitivity, δB rms /B rms ∼1.2x10 -4 and spatial resolution sufficient to identify poles generating the field error. Good agreement was found between field error measurements obtained with the vibrating wire method and with traditional Hall probe field mapping

  12. Vibration Measurement with PULSE and DSPACE Equipment

    Directory of Open Access Journals (Sweden)

    Radim KLEČKA

    2009-06-01

    Full Text Available This contribution describes techniques and results of measurement with TIRA vibration generator. A method of experimental modal analysis allows next restore of vibration data. The goal is check validity of head expanders and screw connection. This process is based to using ME’scope environment. Another goal is check possibilities of dSPACE platform to vibration measurement. This task includes design of connection between dSPACE system and power amplifier, creating of graphical user interface and analyzing main configuration parameters to improve quality of drive signal.

  13. VIBRATIONS MEASUREMENT IN ORDER TO IDENTIFY THE FAULTS TO THE TABLES AND SUPPORTS ON WHICH THE EMBROIDERY MACHINES ARE PLACED

    Directory of Open Access Journals (Sweden)

    ŞUTEU Marius

    2014-05-01

    Full Text Available The aim of this paper is to accurately and quickly identify the faults of the tables and supports on which the embroidery machines are placed through vibrations measuring method. Vibrations measurements on Happy embroidery machine were performed at S.C. CONFIDEX S.R.L Oradea. A FFT spectrum analyzer Impaq was used, made by Benstone Instruments Inc –SUA. The measurements were performed in order to seek the role and importance of the rigidity of embroidery machine supports for a better and more efficient performance of the machine. Before performing these measurements was determined the optimal operating mode of the embroidery machine. The vibration measurements were performed in each measuring point, by installing a vibration sensor on the three directions of the Cartesian coordinates system: axial (X, horizontal (Y, vertical (Z. In the present paper is shown only the measuring direction Z (sensor mounting direction and advance of the material on x direction (the embroidery direction this is the most relevant direction, as on this part the embroidery is executed. After performing these vibration measurements on the HAPPY embroidery machine, previously mounted on a big table, after that mounted on a smaller table and a less rigid base. The same vibrations measurements were performed and it was noticed that it is mandatory to position the machine on a big table and a stable base because it will influence both the reliability and the working regime of the machine.

  14. Autonomous target recognition using remotely sensed surface vibration measurements

    Science.gov (United States)

    Geurts, James; Ruck, Dennis W.; Rogers, Steven K.; Oxley, Mark E.; Barr, Dallas N.

    1993-09-01

    The remotely measured surface vibration signatures of tactical military ground vehicles are investigated for use in target classification and identification friend or foe (IFF) systems. The use of remote surface vibration sensing by a laser radar reduces the effects of partial occlusion, concealment, and camouflage experienced by automatic target recognition systems using traditional imagery in a tactical battlefield environment. Linear Predictive Coding (LPC) efficiently represents the vibration signatures and nearest neighbor classifiers exploit the LPC feature set using a variety of distortion metrics. Nearest neighbor classifiers achieve an 88 percent classification rate in an eight class problem, representing a classification performance increase of thirty percent from previous efforts. A novel confidence figure of merit is implemented to attain a 100 percent classification rate with less than 60 percent rejection. The high classification rates are achieved on a target set which would pose significant problems to traditional image-based recognition systems. The targets are presented to the sensor in a variety of aspects and engine speeds at a range of 1 kilometer. The classification rates achieved demonstrate the benefits of using remote vibration measurement in a ground IFF system. The signature modeling and classification system can also be used to identify rotary and fixed-wing targets.

  15. Uncertainty Quantification for Monitoring of Civil Structures from Vibration Measurements

    Science.gov (United States)

    Döhler, Michael; Mevel, Laurent

    2014-05-01

    Health Monitoring of civil structures can be performed by detecting changes in the modal parameters of a structure, or more directly in the measured vibration signals. For a continuous monitoring the excitation of a structure is usually ambient, thus unknown and assumed to be noise. Hence, all estimates from the vibration measurements are realizations of random variables with inherent uncertainty due to (unknown) process and measurement noise and finite data length. In this talk, a strategy for quantifying the uncertainties of modal parameter estimates from a subspace-based system identification approach is presented and the importance of uncertainty quantification in monitoring approaches is shown. Furthermore, a damage detection method is presented, which is based on the direct comparison of the measured vibration signals without estimating modal parameters, while taking the statistical uncertainty in the signals correctly into account. The usefulness of both strategies is illustrated on data from a progressive damage action on a prestressed concrete bridge. References E. Carden and P. Fanning. Vibration based condition monitoring: a review. Structural Health Monitoring, 3(4):355-377, 2004. M. Döhler and L. Mevel. Efficient multi-order uncertainty computation for stochastic subspace identification. Mechanical Systems and Signal Processing, 38(2):346-366, 2013. M. Döhler, L. Mevel, and F. Hille. Subspace-based damage detection under changes in the ambient excitation statistics. Mechanical Systems and Signal Processing, 45(1):207-224, 2014.

  16. EVALUATION AND MEASUREMENT OF HAND-TRANSMITTED VIBRATIONS

    Directory of Open Access Journals (Sweden)

    Iveta MARKOVÁ

    2017-12-01

    Full Text Available The goal of this work is the effect of vibrations on selected professionals through questionnaire survey and implementation of experimental vibration measurements on a hand of employee. The observation of vibration effects was chosen in a company, where products are being shaped with pneumatic instruments and there is a risk of an exposure of vibrations on the employees. In experimental part are described and evaluated questionnaire surveys conducted on selected risk factors. The reason is the realization of work with vibrating tools for a longer time, where some parts do wear-out and therefore there is a higher exposure to oscillation.

  17. Model-based failure detection for cylindrical shells from noisy vibration measurements.

    Science.gov (United States)

    Candy, J V; Fisher, K A; Guidry, B L; Chambers, D H

    2014-12-01

    Model-based processing is a theoretically sound methodology to address difficult objectives in complex physical problems involving multi-channel sensor measurement systems. It involves the incorporation of analytical models of both physical phenomenology (complex vibrating structures, noisy operating environment, etc.) and the measurement processes (sensor networks and including noise) into the processor to extract the desired information. In this paper, a model-based methodology is developed to accomplish the task of online failure monitoring of a vibrating cylindrical shell externally excited by controlled excitations. A model-based processor is formulated to monitor system performance and detect potential failure conditions. The objective of this paper is to develop a real-time, model-based monitoring scheme for online diagnostics in a representative structural vibrational system based on controlled experimental data.

  18. Vibrational measurements in 3-ID-B

    International Nuclear Information System (INIS)

    Sutter, J.; Alp, E.; Barraza, J.; Shu, D.

    1998-04-01

    The authors have undertaken a series of vibrational measurements in hutch 3-ID-B. Their motivation was to compare two different methods of mounting an interferometer for effectiveness in vibrational isolation and stability. In addition they were able to compare the stability of the optical table with and without its eight large bolts inserted

  19. Time-varying output performances of piezoelectric vibration energy harvesting under nonstationary random vibrations

    Science.gov (United States)

    Yoon, Heonjun; Kim, Miso; Park, Choon-Su; Youn, Byeng D.

    2018-01-01

    Piezoelectric vibration energy harvesting (PVEH) has received much attention as a potential solution that could ultimately realize self-powered wireless sensor networks. Since most ambient vibrations in nature are inherently random and nonstationary, the output performances of PVEH devices also randomly change with time. However, little attention has been paid to investigating the randomly time-varying electroelastic behaviors of PVEH systems both analytically and experimentally. The objective of this study is thus to make a step forward towards a deep understanding of the time-varying performances of PVEH devices under nonstationary random vibrations. Two typical cases of nonstationary random vibration signals are considered: (1) randomly-varying amplitude (amplitude modulation; AM) and (2) randomly-varying amplitude with randomly-varying instantaneous frequency (amplitude and frequency modulation; AM-FM). In both cases, this study pursues well-balanced correlations of analytical predictions and experimental observations to deduce the relationships between the time-varying output performances of the PVEH device and two primary input parameters, such as a central frequency and an external electrical resistance. We introduce three correlation metrics to quantitatively compare analytical prediction and experimental observation, including the normalized root mean square error, the correlation coefficient, and the weighted integrated factor. Analytical predictions are in an excellent agreement with experimental observations both mechanically and electrically. This study provides insightful guidelines for designing PVEH devices to reliably generate electric power under nonstationary random vibrations.

  20. IEEE 802.11-Based Wireless Sensor System for Vibration Measurement

    Directory of Open Access Journals (Sweden)

    Yutaka Uchimura

    2010-01-01

    Full Text Available Network-based wireless sensing has become an important area of research and various new applications for remote sensing are expected to emerge. One of the promising applications is structural health monitoring of building or civil engineering structure and it often requires vibration measurement. For the vibration measurement via wireless network, time synchronization is indispensable. In this paper, we introduce a newly developed time synchronized wireless sensor network system. The system employs IEEE 802.11 standard-based TSF-counter and sends the measured data with the counter value. TSF based synchronization enables consistency on common clock among different wireless nodes. We consider the scale effect on synchronization accuracy and evaluated the effect by taking beacon collisions into account. The scalability issue by numerical simulations is also studied. This paper also introduces a newly developed wireless sensing system and the hardware and software specifications are introduced. The experiments were conducted in a reinforced concrete building to evaluate synchronization accuracy. The developed system was also applied for a vibration measurement of a 22-story steel structured high rise building. The experimental results showed that the system performed more than sufficiently.

  1. The vibration measurements at the photon factory storage ring building

    International Nuclear Information System (INIS)

    Haga, K.; Nakayama, M.; Masuda, K.; Ishizaki, H.; Kura, M.; Meng, L.; Oku, Y.

    1999-01-01

    The Photon Factory is a 2.5 GeV electron storage ring and has been operating since 1982 as a dedicated SR source. At the Photon Factory, we have been pursuing the various sources of the beam instabilities which deteriorated the SR beam quality in the wide frequency range. Some of the sources were the vibrations of magnets and floor of the ring tunnel, temperature change of the cooling water and the elongation of the storage ring building roof due to sunshine that induced the diurnal motion of the SR beam axis. This article presents the results of the vibration measurements that have been performed at the Photon Factory storage ring building. (1) The vibrations of the ring tunnel floor and the experimental hall floor, comparing with the vibration of the ground surrounding the storage ring building, are same order in the 1 ∼ 5 Hz range, and 1/3 ∼ 1/5 in the 5 ∼ 100 Hz range, in the vertical and the horizontal direction. (2) The effects of the vibration arising from the operating eight air-conditioners can be seen in the Fourier spectrum of the vibration of the ring tunnel floor, experimental floor, Q-magnets and BPM vacuum duct. (3) The vibrations of the Q-magnet and girder at frequencies near their fundamental resonant frequencies have been amplified 100 limes in the lateral direction comparing to the floor vibration. (4) Correlation between the vibration of the BPM vacuum duct and the vibration of the electron beam motion is unknown for the lack of the precise data. (authors)

  2. Simulation of vibration-induced effect on plasma current measurement using a fiber optic current sensor.

    Science.gov (United States)

    Descamps, Frédéric; Aerssens, Matthieu; Gusarov, Andrei; Mégret, Patrice; Massaut, Vincent; Wuilpart, Marc

    2014-06-16

    An accurate measurement of the plasma current is of paramount importance for controlling the plasma magnetic equilibrium in tokamaks. Fiber optic current sensor (FOCS) technology is expected to be implemented to perform this task in ITER. However, during ITER operation, the vessel and the sensing fiber will be subject to vibrations and thus to time-dependent parasitic birefringence, which may significantly compromise the FOCS performance. In this paper we investigate the effects of vibrations on the plasma current measurement accuracy under ITER-relevant conditions. The simulation results show that in the case of a FOCS reflection scheme including a spun fiber and a Faraday mirror, the error induced by the vibrations is acceptable regarding the ITER current diagnostics requirements.

  3. Heterodyne Angle Deviation Interferometry in Vibration and Bubble Measurements

    OpenAIRE

    Ming-Hung Chiu; Jia-Ze Shen; Jian-Ming Huang

    2016-01-01

    We proposed heterodyne angle deviation interferometry (HADI) for angle deviation measurements. The phase shift of an angular sensor (which can be a metal film or a surface plasmon resonance (SPR) prism) is proportional to the deviation angle of the test beam. The method has been demonstrated in bubble and speaker’s vibration measurements in this paper. In the speaker’s vibration measurement, the voltage from the phase channel of a lock-in amplifier includes the vibration level and frequency. ...

  4. Application of focus-variation Technique in Measurements of Ultrasonic Vibrations of Grinding pins

    Directory of Open Access Journals (Sweden)

    Wdowik Roman

    2015-01-01

    Full Text Available The paper presents the application of focus-variation technique in measurements of ultrasonic vibrations of grinding pins. Ultrasonic vibrations of tools are applied in ultrasonic assisted grinding. Their measurements are significant for development of this hybrid machining process. Alumina and zirconia ceramic materials in the final fired state were machined in experiments which are known as scratch tests. Diamond grinding pin was used as a tool to machine scratches. Marks of diamond grains, left on the surface of workpieces after machining process, were investigated using The Infinite Focus Real 3D optical microscope. Focus-variation is the principle of operation of this microscope. Investigations concerned possibilities of measurements of an amplitude of axial and radial vibrations in the case of two ceramic materials. Results of performed measurements are presented and discussed for selected machining parameters.

  5. Aerodynamic performance of a vibrating piezoelectric fan under varied operational conditions

    International Nuclear Information System (INIS)

    Stafford, J; Jeffers, N

    2014-01-01

    This paper experimentally examines the bulk aerodynamic performance of a vibrating fan operating in the first mode of vibration. The influence of operating condition on the local velocity field has also been investigated to understand the flow distribution at the exit region and determine the stalling condition for vibrating fans. Fan motion has been generated and controlled using a piezoelectric ceramic attached to a stainless steel cantilever. The frequency and amplitude at resonance were 109.4 Hz and 12.5 mm, respectively. A test facility has been developed to measure the pressure-flow characteristics of the vibrating fan and simultaneously conduct local velocity field measurements using particle image velocimetry. The results demonstrate the impact of system characteristics on the local velocity field. High momentum regions generated due to the oscillating motion exist with a component direction that is tangent to the blade at maximum displacement. These high velocity zones are significantly affected by increasing impedance while flow reversal is a dominant feature at maximum pressure rise. The findings outlined provide useful information for design of thermal management solutions that may incorporate this air cooling approach.

  6. Quantitative measurement of vocal fold vibration in male radio performers and healthy controls using high-speed videoendoscopy.

    Directory of Open Access Journals (Sweden)

    Samantha Warhurst

    Full Text Available Acoustic and perceptual studies show a number of differences between the voices of radio performers and controls. Despite this, the vocal fold kinematics underlying these differences are largely unknown. Using high-speed videoendoscopy, this study sought to determine whether the vocal vibration features of radio performers differed from those of non-performing controls.Using high-speed videoendoscopy, recordings of a mid-phonatory/i/ in 16 male radio performers (aged 25-52 years and 16 age-matched controls (aged 25-52 years were collected. Videos were extracted and analysed semi-automatically using High-Speed Video Program, obtaining measures of fundamental frequency (f0, open quotient and speed quotient. Post-hoc analyses of sound pressure level (SPL were also performed (n = 19. Pearson's correlations were calculated between SPL and both speed and open quotients.Male radio performers had a significantly higher speed quotient than their matched controls (t = 3.308, p = 0.005. No significant differences were found for f0 or open quotient. No significant correlation was found between either open or speed quotient with SPL.A higher speed quotient in male radio performers suggests that their vocal fold vibration was characterised by a higher ratio of glottal opening to closing times than controls. This result may explain findings of better voice quality, higher equivalent sound level and greater spectral tilt seen in previous research. Open quotient was not significantly different between groups, indicating that the durations of complete vocal fold closure were not different between the radio performers and controls. Further validation of these results is required to determine the aetiology of the higher speed quotient result and its implications for voice training and clinical management in performers.

  7. Performance of Different Sensors for Monitoring of the Vibration Generated during Thermosonic Non-destructive Testing

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Bu Byoung [Korea Railroad Research Institute, Uiwang (Korea, Republic of)

    2011-04-15

    Vibration monitoring is required for reliable thermosonic testing to decide whether sufficient vibration is achieved in each test for the detection of cracks. From a practical point of view, a cheaper and convenient monitoring method is better for the application to real tests. Therefore, the performance of different sensors for vibration monitoring was investigated and compared in this study to find a convenient and acceptable measurement method for thermosonics. Velocity measured by a laser vibrometer and strain provide an equivalent HI when measured at the same position. The microphone can provide a cheaper vibration monitoring device than the laser and the heating index calculated by a microphone signal shows similar characteristics to that calculated from velocity measured by the laser vibrometer. The microphone frequency response shows that it underestimates high frequency components but it is applicable to practical tests because it gives a conservative value of HI

  8. Enhancement to Non-Contacting Stress Measurement of Blade Vibration Frequency

    Science.gov (United States)

    Platt, Michael; Jagodnik, John

    2011-01-01

    A system for turbo machinery blade vibration has been developed that combines time-of-arrival sensors for blade vibration amplitude measurement and radar sensors for vibration frequency and mode identification. The enabling technology for this continuous blade monitoring system is the radar sensor, which provides a continuous time series of blade displacement over a portion of a revolution. This allows the data reduction algorithms to directly calculate the blade vibration frequency and to correctly identify the active modes of vibration. The work in this project represents a significant enhancement in the mode identification and stress calculation accuracy in non-contacting stress measurement system (NSMS) technology when compared to time-of-arrival measurements alone.

  9. Real-time vibration measurement by a spatial phase-shifting technique with a tilted holographic interferogram.

    Science.gov (United States)

    Nakadate, S; Isshiki, M

    1997-01-01

    Real-time vibration measurement by a tilted holographic interferogram is presented that utilizes the real-time digital fringe processor of a video signal. Three intensity data sampled at every one-third of the fringe spacing of the tilted fringes are used to calculate the modulation term of the fringe that is a function of a vibration amplitude. A three-dimensional lookup table performs the calculation in a TV repetition rate to give a new fringe profile that contours the vibration amplitude. Vibration modes at the resonant frequencies of a flat speaker were displayed on a monitor as changing the exciting frequency of vibration.

  10. Parameter definition using vibration prediction software leads to significant drilling performance improvements

    Energy Technology Data Exchange (ETDEWEB)

    Amorim, Dalmo; Hanley, Chris Hanley; Fonseca, Isaac; Santos, Juliana [National Oilwell Varco, Houston TX (United States); Leite, Daltro J.; Borella, Augusto; Gozzi, Danilo [Petroleo Brasileiro S.A. (PETROBRAS), Rio de Janeiro, RJ (Brazil)

    2012-07-01

    field monitoring. Vibration prediction diminishes the importance of trial-and-error procedures such as drill-off tests, which are valid only for short sections. It also solves an existing lapse in Mechanical Specific Energy (MSE) real-time drilling control programs applying the theory of Teale, which states that a drilling system is perfectly efficient when it spends the exact energy to overcome the in situ rock strength. Using the proprietary software tool this paper will examine the resonant vibration modes that may be initiated while drilling with different BHA's and drill string designs, showing that the combination of a proper BHA design along with the correct selection of input parameters results in an overall improvement to drilling efficiency. Also, being the BHA predictively analyzed, it will be reduced the potential for vibration or stress fatigue in the drill string components, leading to a safer operation. In the recent years there has been an increased focus on vibration detection, analysis, and mitigation techniques, where new technologies, like the Drilling Dynamics Data Recorders (DDDR), may provide the capability to capture high frequency dynamics data at multiple points along the drilling system. These tools allow the achievement of drilling performance improvements not possible before, opening a whole new array of opportunities for optimization and for verification of predictions calculated by the drill string dynamics modeling software tool. The results of this study will identify how the dynamics from the drilling system, interacting with formation, directly relate to inefficiencies and to the possible solutions to mitigate drilling vibrations in order to improve drilling performance. Software vibration prediction and downhole measurements can be used for non-drilling operations like drilling out casing or reaming, where extremely high vibration levels - devastating to the cutting structure of the bit before it has even touched bottom - have

  11. Measurement of rabbit eardrum vibration through stroboscopic digital holography

    Energy Technology Data Exchange (ETDEWEB)

    De Greef, Daniël; Dirckx, Joris J. J. [University of Antwerp, Laboratory of BioMedical Physics, Groenenborgerlaan 171, B-2020 Antwerp (Belgium)

    2014-05-27

    In this work, we present a setup for high-power single shot stroboscopic digital holography and demonstrate it in an application on rabbit eardrum vibration measurement. The setup is able to make full-field time-resolved measurements of vibrating surfaces with a precision in the nanometer range in a broad frequency range. The height displacement of the measured object is visualized over the entire surface as a function of time. Vibration magnitude and phase maps can be extracted from these data, the latter proving to be very useful to reveal phase delays across the surface. Such deviations from modal motion indicate energy losses due to internal damping, in contrast to purely elastic mechanics. This is of great interest in middle ear mechanics and finite element modelling. In our setup, short laser pulses are fired at selected instants within the surface vibration period and are recorded by a CCD camera. The timing of the pulses and the exposure of the camera are synchronized to the vibration phase by a microprocessor. The high-power frequency-doubled Nd:YAG laser produces pulses containing up to 5 mJ of energy, which is amply sufficient to record single-shot holograms. As the laser pulse length is 8 ns and the smallest time step of the trigger electronics is 1 μs, vibration measurements of frequencies up to 250 kHz are achievable through this method, provided that the maximum vibration amplitude exceeds a few nanometers. In our application, middle ear mechanics, measuring frequencies extend from 5 Hz to 20 kHz. The experimental setup will be presented, as well as results of measurements on a stretched circular rubber membrane and a rabbit's eardrum. Two of the challenges when measuring biological tissues, such as the eardrum, are low reflectivity and fast dehydration. To increase reflectivity, a coating is applied and to counteract the undesirable effects of tissue dehydration, the measurement setup and software have been optimized for speed without

  12. Simultaneous Measurement of Multiple Mechanical Properties of Single Cells Using AFM by Indentation and Vibration.

    Science.gov (United States)

    Zhang, Chuang; Shi, Jialin; Wang, Wenxue; Xi, Ning; Wang, Yuechao; Liu, Lianqing

    2017-12-01

    The mechanical properties of cells, which are the main characteristics determining their physical performance and physiological functions, have been actively studied in the fields of cytobiology and biomedical engineering and for the development of medicines. In this study, an indentation-vibration-based method is proposed to simultaneously measure the mechanical properties of cells in situ, including cellular mass (m), elasticity (k), and viscosity (c). The proposed measurement method is implemented based on the principle of forced vibration stimulated by simple harmonic force using an atomic force microscope (AFM) system integrated with a piezoelectric transducer as the substrate vibrator. The corresponding theoretical model containing the three mechanical properties is derived and used to perform simulations and calculations. Living and fixed human embryonic kidney 293 (HEK 293) cells were subjected to indentation and vibration to measure and compare their mechanical parameters and verify the proposed approach. The results that the fixed sample cells are more viscous and elastic than the living sample cells and the measured mechanical properties of cell are consistent within, but not outside of the central region of the cell, are in accordance with the previous studies. This work provides an approach to simultaneous measurement of the multiple mechanical properties of single cells using an integrated AFM system based on the principle force vibration and thickness-corrected Hertz model. This study should contribute to progress in biomedical engineering, cytobiology, medicine, early diagnosis, specific therapy and cell-powered robots.

  13. Research on the nonintrusive measurement of the turbine blade vibration

    Science.gov (United States)

    Zhang, Shi hai; Li, Lu-ping; Rao, Hong-de

    2008-11-01

    It's one of the important ways to monitor the change of dynamic characteristic of turbine blades for ensuring safety operation of turbine unit. Traditional measurement systems for monitoring blade vibration generally use strain gauges attached to the surface of turbine blades, each strain gauge gives out an analogue signal related to blade deformation, it's maximal defect is only a few blades could be monitored which are attached by strain gauge. But the noncontact vibration measurement will be discussed would solve this problem. This paper deals with noncontact vibration measurement on the rotor blades of turbine through experiments. In this paper, the noncontact vibration measurement - Tip Timing Measurement will be presented, and will be improved. The statistics and DFT will be used in the improved measurement. The main advantage of the improved measurement is that only two sensors over the top of blades and one synchronous sensor of the rotor are used to get the exact vibration characteristics of the each blade in a row. In our experiment, we adopt NI Company's DAQ equipment: SCXI1001 and PCI 6221, three optical sensors, base on the graphics program soft LabVIEW to develop the turbine blade monitor system. At the different rotational speed of the rotor (1000r/m and 1200r/m) we do several experiments on the bench of the Turbine characteristic. Its results indicated that the vibration of turbine blade could be real-time monitored and accurately measured by the improved Tip Timing Measurement.

  14. Experimental measurements of out-of-plane vibrations of a simple blisk design using Blade Tip Timing and Scanning LDV measurement methods

    Science.gov (United States)

    Di Maio, D.; Ewins, D. J.

    2012-04-01

    The study of dynamic properties of rotating structures, such as bladed discs, can be conveniently done using simple bladed discs where the blades do not have staggering angles. Simplified design, although not truly representative of real structures, can be easy and economic to manufacture and, still, very helpful for studying specific dynamic properties. An example of this can be called as mass mistune blisk study. Experimental measurements of vibrations of bladed discs under rotating conditions can be performed using Scanning Laser Doppler Vibrometer (SLDV) systems. However, in the aerospace industry, the vibrations of complex bladed discs must be measured under operating conditions which are more hostile than laboratory simulations. The Blade Tip Timing (BTT) measurement method is a measurement technique, which can be used to measure vibrations of bladed discs of an engine aircraft under operating conditions. However, the BTT technique is ineffective when used with a flat bladed disc whose blade vibrations cannot be measured. This can be detrimental when the use of controlled dynamic parameters, such as those obtained from a simple bladed disc design, can improve the confidence for the validation of post-processing software. This paper presents a work about experimental measurements of a simple bladed disc design whose vibrations were measured synchronously by Scanning LDV and BTT measurement systems. A rotating test rig and its mechanical modifications for the installation of the BTT probes are introduced. Implications of rotating a specimen inconsistently are presented so as solutions to obtained constant revolving speed. The experimental comparisons of forced response vibrations measured synchronously at one blade are presented and explained.

  15. Measurements of ground motion and SSC dipole vibrations

    International Nuclear Information System (INIS)

    Parkhomchuk, V.V.; Shiltsev, V.D.; Weaver, H.J.

    1993-06-01

    The results of seismic ground measurements at the Superconducting Super Collider (SSC) site and investigations of vibrational properties of superconducting dipoles for the SSC are presented. Spectral analysis of the data obtained in the large frequency band from 0.05 Hz to 2000 Hz is done. Resonant behavior and the dipole-to-ground transform ratio are investigated. The influence of measured vibrations on SSC operations is considered

  16. Vibration measurement with nonlinear converter in the presence of noise

    Science.gov (United States)

    Mozuras, Almantas

    2017-10-01

    Conventional vibration measurement methods use the linear properties of physical converters. These methods are strongly influenced by nonlinear distortions, because ideal linear converters are not available. Practically, any converter can be considered as a linear one, when an output signal is very small. However, the influence of noise increases significantly and signal-to-noise ratio decreases at lower signals. When the output signal is increasing, the nonlinear distortions are also augmenting. If the wide spectrum vibration is measured, conventional methods face a harmonic distortion as well as intermodulation effects. Purpose of this research is to develop a measurement method of wide spectrum vibration by using a converter described by a nonlinear function of type f(x), where x =x(t) denotes the dependence of coordinate x on time t due to the vibration. Parameter x(t) describing the vibration is expressed as Fourier series. The spectral components of the converter output f(x(t)) are determined by using Fourier transform. The obtained system of nonlinear equations is solved using the least squares technique that permits to find x(t) in the presence of noise. This method allows one to carry out the absolute or relative vibration measurements. High resistance to noise is typical for the absolute vibration measurement, but it is necessary to know the Taylor expansion coefficients of the function f(x). If the Taylor expansion is not known, the relative measurement of vibration parameters is also possible, but with lower resistance to noise. This method allows one to eliminate the influence of nonlinear distortions to the measurement results, and consequently to eliminate harmonic distortion and intermodulation effects. The use of nonlinear properties of the converter for measurement gives some advantages related to an increased frequency range of the output signal (consequently increasing the number of equations) that allows one to decrease the noise influence on

  17. Frontside-micromachined planar piezoresistive vibration sensor: Evaluating performance in the low frequency test range

    Directory of Open Access Journals (Sweden)

    Lan Zhang

    2014-01-01

    Full Text Available Using a surface piezoresistor diffusion method and front-side only micromachining process, a planar piezoresistive vibration sensor was successfully developed with a simple structure, lower processing cost and fewer packaging difficulties. The vibration sensor had a large sector proof mass attached to a narrow flexure. Optimization of the boron diffusion piezoresistor placed on the edge of the narrow flexure greatly improved the sensitivity. Planar vibration sensors were fabricated and measured in order to analyze the effects of the sensor dimensions on performance, including the values of flexure width and the included angle of the sector. Sensitivities of fabricated planar sensors of 0.09–0.46 mV/V/g were measured up to a test frequency of 60 Hz. The sensor functioned at low voltages (<3 V and currents (<1 mA with a high sensitivity and low drift. At low background noise levels, the sensor had performance comparable to a commercial device.

  18. Frontside-micromachined planar piezoresistive vibration sensor: Evaluating performance in the low frequency test range

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lan; Lu, Jian, E-mail: jian-lu@aist.go.jp; Takagi, Hideki; Maeda, Ryutaro [Research Center for Ubiquitous MEMS and Micro Engineering (UMEMSME), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8564 (Japan)

    2014-01-15

    Using a surface piezoresistor diffusion method and front-side only micromachining process, a planar piezoresistive vibration sensor was successfully developed with a simple structure, lower processing cost and fewer packaging difficulties. The vibration sensor had a large sector proof mass attached to a narrow flexure. Optimization of the boron diffusion piezoresistor placed on the edge of the narrow flexure greatly improved the sensitivity. Planar vibration sensors were fabricated and measured in order to analyze the effects of the sensor dimensions on performance, including the values of flexure width and the included angle of the sector. Sensitivities of fabricated planar sensors of 0.09–0.46 mV/V/g were measured up to a test frequency of 60 Hz. The sensor functioned at low voltages (<3 V) and currents (<1 mA) with a high sensitivity and low drift. At low background noise levels, the sensor had performance comparable to a commercial device.

  19. Vibration measurement of accelerator tube table in ATF

    International Nuclear Information System (INIS)

    Nakayama, Y.; Sugahara, R.; Yamaoka, H.; Masuzawa, M.; Yamashita, S.

    2004-01-01

    Acceleration tube fixed to the table should not be a structure to amplify the vibration. Stability of ground is preferable for accelerator beam operation, and the beam control by extremely high resolution is especially demanded in GLC. Then, we have measured ground motion and table vibration in ATF at KEK. In this paper, some of analyzed results are shown, and we show the characteristics of vibration about the accelerator tube table in ATF. (author)

  20. On the Modeling of a MEMS Based Capacitive Accelerometer for Measurement of Tractor Seat Vibration

    Directory of Open Access Journals (Sweden)

    M. Alidoost

    2010-04-01

    Full Text Available Drivers of heavy vehicles often face with higher amplitudes of frequencies range between 1-80 Hz. Hence, this range of frequency results in temporary or even sometimes permanent damages to the health of drivers. Examples for these problems are damages to the vertebral column and early tiredness, which both reduce the driver’s performance significantly. One solution to this problem is to decrease the imposed vibration to the driver’s seat by developing an active seat system. These systems require an online measuring unit to sense vibrations transferred to the seat. The measuring unit can include a capacitive micro-accelerometer on the basis of MEMS which measure online vibrations on the seat. In this study, the mechanical behavior of a capacitive micro-accelerometer for the vibration range applied to a tractor seat has been simulated. The accelerometer is capable to measure step, impact and harmonic external excitations applied to the system. The results of the study indicate that, with increasing the applied voltage, the system sensitivity also increases, but the measuring range of vibrations decreases and vice versa. The modeled accelerometer, at damping ratio of 0.67 is capable to measure accelerations within the frequency range of lower than 130 Hz.

  1. New technologies for acceleration and vibration measurements inside operating nuclear power reactors

    International Nuclear Information System (INIS)

    Runkel, J.; Stegemann, D.; Fiedler, J.; Heidemann, P.; Blaser, R.; Schmid, F.; Trobitz, M.; Hirsch, L.; Thoma, K.

    2000-01-01

    A miniature bi-axial in-core accelerometer has been inserted temporarily inside the travelling in-core probe (TIP) systems of operating 1300 MW el boiling water reactors (BWR) during full power operation. In-core acceleration measurements can be performed in any position of the TIP system. This provides new features of control technologies to preserve the integrity of reactor internals. The radial and axial position where fretting or impacting of instrumentation string tubes or other structures might occur can be localised inside the reactor pressure vessel. The efficiency and long-term performance of subsequent improvements of the mechanical or operating conditions can be controlled with high local resolution and sensitivity. Low frequency vibrations of the instrumentation tubes were measured inside the core. Neutron-mechanical scale factors were determined from neutron noise, measured by the standard in-core neutron instrumentation and from displacements of the TIP tubes, calculated by integration of the measured in-core acceleration signals. The scale factors contribute to qualitative and quantitative monitoring of BWR internals' vibrations only by the use of neutron signals. (authors)

  2. Simultaneous 3D-vibration measurement using a single laser beam device

    Science.gov (United States)

    Brecher, Christian; Guralnik, Alexander; Baümler, Stephan

    2012-06-01

    Today's commercial solutions for vibration measurement and modal analysis are 3D-scanning laser doppler vibrometers, mainly used for open surfaces in the automotive and aerospace industries and the classic three-axial accelerometers in civil engineering, for most industrial applications in manufacturing environments, and particularly for partially closed structures. This paper presents a novel measurement approach using a single laser beam device and optical reflectors to simultaneously perform 3D-dynamic measurement as well as geometry measurement of the investigated object. We show the application of this so called laser tracker for modal testing of structures on a mechanical manufacturing shop floor. A holistic measurement method is developed containing manual reflector placement, semi-automated geometric modeling of investigated objects and fully automated vibration measurement up to 1000 Hz and down to few microns amplitude. Additionally the fast set up dynamic measurement of moving objects using a tracking technique is presented that only uses the device's own functionalities and does neither require a predefined moving path of the target nor an electronic synchronization to the moving object.

  3. Measurements and analysis of vibrations at Virilla Bridge, national route N° 1

    Directory of Open Access Journals (Sweden)

    Francisco Navarro-Henríquez

    2015-06-01

    The measurements allowed quantifying the vibration magnitudes and deformation in various sections of the bridge, on condition of vehicular traffic service (environmental performance. The experimental results are compared with computational analytical modeling of the structure and also with national and international standards.

  4. Small and inconsistent effects of whole body vibration on athletic performance : a systematic review and meta-analysis

    NARCIS (Netherlands)

    Hortobagyi, Tibor; Lesinski, Melanie; Fernandez-del-Olmo, Miguel; Granacher, Urs

    We quantified the acute and chronic effects of whole body vibration on athletic performance or its proxy measures in competitive and/or elite athletes. Systematic literature review and meta-analysis. Whole body vibration combined with exercise had an overall 0.3 % acute effect on maximal voluntary

  5. Performance evaluation of a vibration desensitized scanning white light interferometer

    International Nuclear Information System (INIS)

    Troutman, J; Evans, C J; Ganguly, V; Schmitz, T L

    2014-01-01

    Surface metrology instruments normally require thermal, seismic and acoustic isolation. Shop-floor metrology solutions offer reduced cost and process time. If they operate on the same principles as laboratory devices, an inherent sensitivity to vibration remains. This paper describes a methodology for evaluating ‘environmental tolerance’ and applying it to characterize a recently introduced ‘environmentally tolerant’ scanning white light interferometer (SWLI). Previously published measurements of replicated nickel reference standards on the new instrument and on a stylus profilometer showed good correlation. Surface topography repeatabilities (per ISO 25178-604:2013) were insignificantly different when evaluated on the SWLI instrument in a metrology laboratory and in a manufacturing area. Measurements of reference standards under forced vibration of the entire instrument show maximum ripple error and data dropout in regions of structural resonance. Measurements were performed with large forced horizontal and vertical sample oscillation beneath the objective, exhibiting maximum ripple error near odd integer multiples of half the instrument detector frequency. Error due to data dropout was also investigated. (paper)

  6. Ground Vibration Attenuation Measurement using Triaxial and Single Axis Accelerometers

    Science.gov (United States)

    Mohammad, A. H.; Yusoff, N. A.; Madun, A.; Tajudin, S. A. A.; Zahari, M. N. H.; Chik, T. N. T.; Rahman, N. A.; Annuar, Y. M. N.

    2018-04-01

    Peak Particle Velocity is one of the important term to show the level of the vibration amplitude especially traveling wave by distance. Vibration measurement using triaxial accelerometer is needed to obtain accurate value of PPV however limited by the size and the available channel of the data acquisition module for detailed measurement. In this paper, an attempt to estimate accurate PPV has been made by using only a triaxial accelerometer together with multiple single axis accelerometer for the ground vibration measurement. A field test was conducted on soft ground using nine single axis accelerometers and a triaxial accelerometer installed at nine receiver location R1 to R9. Based from the obtained result, the method shows convincing similarity between actual PPV with the calculated PPV with error ratio 0.97. With the design method, vibration measurement equipment size can be reduced with fewer channel required.

  7. A Study on the Vibration Measurement and Analysis of Rotating Machine Foundations

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Rim; Jeon, Kyu Sik; Suh, Young Pyo; Cho, Chul Hwan; Kim, Sung Taeg; Lee, Myung Kyu [Korea Electric Power Research Institute, Taejon (Korea, Republic of)

    1996-12-31

    To search for the cause of vibration problem of rotating machine in the power plant, first the rotating machine is classified according to their type and each vibration characteristic is reviewed. The criteria for the evaluation of mechanical vibration effect on the structure and human being during the design of machine foundation is described below. The foundation of rotating machine is classified according to its shape and some factors are described which should be considered during dynamic modeling analysis for its correct result. Also the methods of incorporating foundation vibration into mechanical vibration analysis are reviewed. Type of vibration measurement and analysis which is used to find out the dynamic characteristic of structure is described in accordance with its signal processing and measuring method. Measurement of vibration and its analysis when there occurs real vibration troubles in power plant are compared with the results of numerical modeling as case studies. (author). 16 refs., 23 figs.

  8. A simple optical method for measuring the vibration amplitude of a speaker

    OpenAIRE

    UEDA, Masahiro; YAMAGUCHI, Toshihiko; KAKIUCHI, Hiroki; SUGA, Hiroshi

    1999-01-01

    A simple optical method has been proposed for measuring the vibration amplitude of a speaker vibrating with a frequency of approximately 10 kHz. The method is based on a multiple reflection between a vibrating speaker plane and a mirror parallel to that speaker plane. The multiple reflection can magnify a dispersion of the laser beam caused by the vibration, and easily make a measurement of the amplitude. The measuring sensitivity ranges between sub-microns and 1 mm. A preliminary experim...

  9. Dynamic tire pressure sensor for measuring ground vibration.

    Science.gov (United States)

    Wang, Qi; McDaniel, James Gregory; Wang, Ming L

    2012-11-07

    This work presents a convenient and non-contact acoustic sensing approach for measuring ground vibration. This approach, which uses an instantaneous dynamic tire pressure sensor (DTPS), possesses the capability to replace the accelerometer or directional microphone currently being used for inspecting pavement conditions. By measuring dynamic pressure changes inside the tire, ground vibration can be amplified and isolated from environmental noise. In this work, verifications of the DTPS concept of sensing inside the tire have been carried out. In addition, comparisons between a DTPS, ground-mounted accelerometer, and directional microphone are made. A data analysis algorithm has been developed and optimized to reconstruct ground acceleration from DTPS data. Numerical and experimental studies of this DTPS reveal a strong potential for measuring ground vibration caused by a moving vehicle. A calibration of transfer function between dynamic tire pressure change and ground acceleration may be needed for different tire system or for more accurate application.

  10. Testing of Tools for Measurement Vibration in Car

    Directory of Open Access Journals (Sweden)

    Martin JURÁNEK

    2009-06-01

    Full Text Available This work is specialized on testing of several sensors for measurement vibration, that be applicable for measurement on vehicles also behind running. These sensors are connected to PC and universal mobile measuring system cRIO (National Instruments with analog I/O module for measurement vibration, that is described in diploma work: [JURÁNEK 2008]. This system has upped mechanical and heat imunity, small proportions and is therefore acceptable also measurement behind ride vehicles. It compose from two head parts. First is measuring part, composite from instruments cRIO. First part is controlled and monitored by PDA there is connected of wireless (second part hereof system. To system cRIO is possible connect sensors by four BNC connector or after small software change is possible add sensor to other analog modul cRIO. Here will be test several different types of accelerometers (USB sensor company Phidgets, MEMS sensor company Freescale, piezoresistiv and Delta Tron accelerometers company Brüel&Kjær. These sensors is attach to stiff board, board is attach to vibrator and excite by proper signal. Testing will realized with reference to using for measurement in cars. Results will be compared with professional signal analyser LabShop pulse from company Brüel&Kjær.

  11. Modeling and experimental characterization of a new piezoelectric sensor for low-amplitude vibration measurement

    International Nuclear Information System (INIS)

    Hou, X Y; Koh, C G; Kuang, K S C; Lee, W H

    2017-01-01

    This paper investigates the capability of a novel piezoelectric sensor for low-frequency and low-amplitude vibration measurement. The proposed design effectively amplifies the input acceleration via two amplifying mechanisms and thus eliminates the use of the external charge amplifier or conditioning amplifier typically employed for measurement system. The sensor is also self-powered, i.e. no external power unit is required. Consequently, wiring and electrical insulation for on-site measurement are considerably simpler. In addition, the design also greatly reduces the interference from rotational motion which often accompanies the translational acceleration to be measured. An analytical model is developed based on a set of piezoelectric constitutive equations and beam theory. Closed-form expression is derived to correlate sensor geometry and material properties with its dynamic performance. Experimental calibration is then carried out to validate the analytical model. After calibration, experiments are carried out to check the feasibility of the new sensor in structural vibration detection. From experimental results, it is concluded that the proposed sensor is suitable for measuring low-frequency and low-amplitude vibrations. (paper)

  12. Sound Power Estimation by Laser Doppler Vibration Measurement Techniques

    Directory of Open Access Journals (Sweden)

    G.M. Revel

    1998-01-01

    Full Text Available The aim of this paper is to propose simple and quick methods for the determination of the sound power emitted by a vibrating surface, by using non-contact vibration measurement techniques. In order to calculate the acoustic power by vibration data processing, two different approaches are presented. The first is based on the method proposed in the Standard ISO/TR 7849, while the second is based on the superposition theorem. A laser-Doppler scanning vibrometer has been employed for vibration measurements. Laser techniques open up new possibilities in this field because of their high spatial resolution and their non-intrusivity. The technique has been applied here to estimate the acoustic power emitted by a loudspeaker diaphragm. Results have been compared with those from a commercial Boundary Element Method (BEM software and experimentally validated by acoustic intensity measurements. Predicted and experimental results seem to be in agreement (differences lower than 1 dB thus showing that the proposed techniques can be employed as rapid solutions for many practical and industrial applications. Uncertainty sources are addressed and their effect is discussed.

  13. Methods of performing downhole operations using orbital vibrator energy sources

    Science.gov (United States)

    Cole, Jack H.; Weinberg, David M.; Wilson, Dennis R.

    2004-02-17

    Methods of performing down hole operations in a wellbore. A vibrational source is positioned within a tubular member such that an annulus is formed between the vibrational source and an interior surface of the tubular member. A fluid medium, such as high bulk modulus drilling mud, is disposed within the annulus. The vibrational source forms a fluid coupling with the tubular member through the fluid medium to transfer vibrational energy to the tubular member. The vibrational energy may be used, for example, to free a stuck tubular, consolidate a cement slurry and/or detect voids within a cement slurry prior to the curing thereof.

  14. Establishment of one-axis vibration test system for measurement of biodynamic response of human hand-arm system.

    Science.gov (United States)

    Shibata, Nobuyuki; Hosoya, Naoki; Maeda, Setsuo

    2008-12-01

    Prolonged exposure to hand-arm vibration (HAV) due to use of hand-held power tools leads to an increased occurrence of symptoms of disorders in the vascular, neurological, and osteo-articular systems of the upper limbs called hand-arm vibration syndrome (HAVS). Biodynamic responses of the hand-arm system to vibration can be suggestive parameters that give us better assessment of exposure to HAV and fundamental data for design of low-vibration-exposure power tools. Recently, a single axis hand-arm vibration system has been installed in the Japan National Institute of Occupational Safety and Health (NIOSH). The aims of this study were to obtain the fundamental dynamic characteristics of an instrumented handle and to validate the performance and measurement accuracy of the system applied to dynamic response measurement. A pseudo-random vibration signal with a frequency range of 5-1,250 Hz and a power spectrum density of 1.0 (m/s2)2/Hz was used in this study. First the dynamic response of the instrumented handle without any weight was measured. After this measurement, the dynamic response measurement of the handle with weights mounted on the handle was performed. The apparent mass of a weight itself was obtained by using the mass cancellation method. The mass of the measuring cap on the instrumented handle was well compensated by using the mass cancellation method. Based on the 10% error tolerance, this handle can reliably measure the dynamic response represented by an apparent mass with a minimum weight of 2.0 g in a frequency range of 10.0 to 1,000 Hz. A marked increase in the AM magnitude of the weights of 15 g and 20 g in frequency ranges greater than 800 Hz is attributed not to the fundamental resonance frequency of the handle with weights, but to the fixation of the weight to the measuring cap. In this aspect, the peak of the AM magnitude can be reduced and hence should not be an obstacle to the biodynamic response measurement of the human hand-arm system. On the

  15. Study on viscosity measurement using fiber Bragg grating micro-vibration

    International Nuclear Information System (INIS)

    Song, Le; Fang, Fengzhou; Zhao, Jibo

    2013-01-01

    It is now ascertained that traditional electric sensors are vulnerable to electromagnetic interference when measuring viscosity. Here, we propose a new viscosity-sensitive structure based on the fiber Bragg grating (FBG) sensing principle and a micro-vibration measurement method. The symmetric micro-vibration motivation method is also described, and a mathematical model for compensational voltage and fluid viscosity is established. The probe amplitude, which is produced by reciprocating stimulation, is accessible by means of an FBG sensor mounted on an equal-strength beam. Viscosity can be therefore calculated using a demodulation technique based on linear edge filtering with long period grating. After performing a group of verifying tests, the sensor has been subsequently calibrated with a series of standard fluids to determine uncertain parameters in the mathematical model. The results of the experiment show that the relative measurement error was less than 2% when the viscosity ranged from 200 to 500 mPa s. The proposed architecture utilizes the characteristics of anti-interference, fast response speed, high resolution and compact structure of FBG, thereby offering a novel modality to achieve an online viscosity measurement. (paper)

  16. High-speed digital holographic interferometry for vibration measurement

    International Nuclear Information System (INIS)

    Pedrini, Giancarlo; Osten, Wolfgang; Gusev, Mikhail E.

    2006-01-01

    A system based on digital holographic interferometry for the measurement of vibrations is presented. A high-power continuous laser(10 W) and a high-speed CCD camera are used. Hundreds of holograms of an object that has been subjected to dynamic deformation are recorded. The acquisition speed and the time of exposure of the detector are determined by the vibration frequency. Two methods are presented for triggering the camera in order to acquire at a given phase of the vibration. The phase of the wavefront is calculated from the recorded holograms by use of a two-dimensional digital Fourier-transform method. The deformation of the object is obtained from the phase. By combination of the deformations recorded at different times it is possible to reconstruct the vibration of the object

  17. Noncontact measurement of rotating blade vibrations. Doyoku shindo no hisesshoku keisokuho no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, Yukio; Endo, Masanori; Sugiyama, Nanahisa; Koshinuma, Takeshi

    1989-08-01

    The noncontact measurement method of rotating blade vibrations was developed for fans, compressors and turbines, and applied to turbofan engines and industrial gas turbines. The method required no machining of blades and rotor except sensors attached to a casing to detect blade-tips. The method allowed to measure simultaneously the vibration of all blades, by measuring elapsed times of blade-tips rotating from a measuring start point to a detecting point, and detecting the time differences between a vibration and non-vibration condition. The measuring system was composed of the detectors and subsystems for signal processing, control, calculation and display. The vibration wave forms of a few blades and the maximum vibration amplitudes of all the blades were displayed on a realtime basis in an on-line monitoring mode, and an off-line data processing mode was also available for subsequent analyses and reviews. The results of application to existing engines favorably agreed with those of strain gage measurements. 16 refs., 75 figs., 3 tabs.

  18. Noncontact vibration measurements using magnetoresistive sensing elements

    Science.gov (United States)

    Tomassini, R.; Rossi, G.

    2016-06-01

    Contactless instrumentations is more and more used in turbomachinery testing thanks to the non-intrusive character and the possibility to monitor all the components of the machine at the same time. Performances of blade tip timing (BTT) measurement systems, used for noncontact turbine blade vibration measurements, in terms of uncertainty and resolution are strongly affected by sensor characteristics and processing methods. The sensors used for BTT generate pulses, used for precise measurements of turbine blades time of arrival. Nowadays proximity sensors used in this application are based on optical, capacitive, eddy current and microwave measuring principle. Pressure sensors has been also tried. This paper summarizes the results achieved using a novel instrumentation based on the magnetoresistive sensing elements. The characterization of the novel probe has been already published. The measurement system was validated in test benches and in a real jet-engine comparing different sensor technologies. The whole instrumentation was improved. The work presented in this paper focuses on the current developments. In particular, attention is given to the data processing software and new sensor configurations.

  19. Comparison of whole-body vibration exercise and plyometric exercise to improve isokinetic muscular strength, jumping performance and balance of female volleyball players.

    Science.gov (United States)

    Kim, Yong-Youn; Park, Si-Eun

    2016-11-01

    [Purpose] The purpose of this study was to assess the effect of whole-body vibration exercise and plyometric exercise on female volleyball players. [Subjects and Methods] Subjects were randomly allocated to two exercise groups (whole-body vibration exercise group and plyometric exercise group). The exercise was conducted three times each week for 8 weeks. Isokinetic muscular strength, jumping performance, and balance were measured before starting the exercise and after finishing the 8 weeks of exercise. [Results] Measurements of isokinetic muscular strength revealed that the whole-body vibration exercise group showed significant increase after the exercise. However, the plyometric exercise group had no significant increase in lumbar flexion, extension, and knee flexion. Measurements of vertical jumping revealed that, the whole-body vibration exercise group had no significant increase after the exercise. However, the plyometric exercise group showed significant increase. Measurements of balance revealed that, the whole-body vibration exercise group showed significant increase. However, the plyometric exercise group showed no significant increase. [Conclusion] Although both whole-body vibration and plyometric exercises are effective intervention methods, the two methods have different effects on the improvement of isokinetic muscular strength, jumping performance, and balance of female volleyball players.

  20. Measurements of ground motion and magnet vibrations at the APS

    International Nuclear Information System (INIS)

    Shiltsev, V.

    1996-01-01

    This article presents results of ground motion and magnet vibrations measurements at the Advanced Photon Source. The experiments were done over a wide, frequency range (0-05-100 Hz) with the use of SM-3KV-type seismic probes from the Budker Institute of Nuclear Physics (Russia). Spectral power densities of vertical and horizontal motions of the APS hall floor and quadrupoles on regular supports were obtained. Also investigated were magnet vibrations induced by designed cooling water flow and spectral characteristics of spatial correlation of the quadrupole vibrations at different sectors of the ring. The influence of personnel activity in the hall and traffic under the ring on the slow motion of storage ring elements were observed. Amplitudes of vibrations at the APS are compared with results of seismic measurements at some other accelerators

  1. Space robots with flexible appendages: Dynamic modeling, coupling measurement, and vibration suppression

    Science.gov (United States)

    Meng, Deshan; Wang, Xueqian; Xu, Wenfu; Liang, Bin

    2017-05-01

    For a space robot with flexible appendages, vibrations of flexible structure can be easily excited during both orbit and/or attitude maneuvers of the base and the operation of the manipulators. Hence, the pose (position and attitude) of the manipulator's end-effector will greatly deviate from the desired values, and furthermore, the motion of the manipulator will trigger and exacerbate vibrations of flexible appendages. Given lack of the atmospheric damping in orbit, the vibrations will last for quite a while and cause the on-orbital tasks to fail. We derived the rigid-flexible coupling dynamics of a space robot system with flexible appendages and established a coupling model between the flexible base and the space manipulator. A specific index was defined to measure the coupling degree between the flexible motion of the appendages and the rigid motion of the end-effector. Then, we analyzed the dynamic coupling for different conditions, such as modal displacements, joint angles (manipulator configuration), and mass properties. Moreover, the coupling map was adopted and drawn to represent the coupling motion. Based on this map, a trajectory planning method was addressed to suppress structure vibration. Finally, simulation studies of typical cases were performed, which verified the proposed models and method. This work provides a theoretic basis for the system design, performance evaluation, trajectory planning, and control of such space robots.

  2. Performance evaluation on vibration control of MR landing gear

    Energy Technology Data Exchange (ETDEWEB)

    Lee, D Y; Nam, Y J; Park, M K [Graduate School, Pusan National University, Busan 609-735 (Korea, Republic of); Yamane, R [Kokushikan University, 4-28-1 Setagaya, Setagaya-ku, Tokyo 154-8515 (Japan)], E-mail: ldy5577@yahoo.co.kr, E-mail: mkpark1@pusan.ac.kr

    2009-02-01

    This paper is concerned with the applicability of the developed MR damper to the landing gear system for the attenuating undesired shock and vibration in the landing and taxing phases. First of all, the experimental model of the MR damper is derived based on the results of performance evaluations. Next, a simplified skyhook controller, which is one of the most straightforward, but effective approaches for improving ride comport in vehicles with active suspensions, is formulated. Then, the vibration control performances of the landing gear system using the MR damper are theoretically evaluated in the landing phase of the aircraft. A series of simulation analyses show that the proposed MR damper with the skyhook controller is effective for suppressing undesired vibration of the aircraft body. Finally, the effectiveness of the simulation results are additionally verified via HILS (Hardware-in-the-loop-simulation) method.

  3. Measurements of ground motion and magnets vibrations at the APS

    International Nuclear Information System (INIS)

    Shil'tsev, V.D.

    1994-01-01

    This article presents results of ground motion and magnets vibrations measurements at the Advanced Photon Source. The experiments were done over wide frequency range 0.05-100 Hz with use of SM-3KV type seismic probes from Budker Institute of Nuclear Physics (Russia). Spectral power densities of vertical and horizontal motions of the APS hall floor and quadrupoles on regular supports were obtained. There were also investigated magnets vibrations induced by designed cooling water flow and spectral characteristics of spatial correlation of the quads vibration at different sectors of the ring. Influence of personnel activity in the hall and traffic under the ring on slow motion of storage ring elements were observed. Amplitudes of vibrations at the APS are compared with results of seismic measurements at some other accelerators. 9 refs.; 10 figs.; 1 tab

  4. Measuring the Amount of Mechanical Vibration During Lathe Processing

    Directory of Open Access Journals (Sweden)

    Štefánia SALOKYOVÁ

    2015-06-01

    Full Text Available The article provides basic information regarding the measurement and evaluation of mechanical vibration during the processing of material by lathe work. The lathe processing can be characterized as removing material by precisely defined tools. The results of the experimental part are values of the vibration acceleration amplitude measured by the piezoelectric sensor on the bearing house of the lathe. A set of new knowledge and conclusions is formulated based on the analysis of the created graphical dependencies.

  5. Turbo machine tip clearance and vibration measurements using a fibre optic laser Doppler position sensor

    Science.gov (United States)

    Pfister, T.; Büttner, L.; Czarske, J.; Krain, H.; Schodl, R.

    2006-07-01

    This paper presents a novel fibre optic laser Doppler position sensor for single blade tip clearance and vibration measurements at turbo machines, which offers high temporal resolution and high position resolution simultaneously. The sensor principle is based on the generation of a measurement volume consisting of two superposed fan-like interference fringe systems with contrary fringe spacing gradients using wavelength division multiplexing. A flexible and robust measurement system with an all-passive fibre coupled measurement head has been realized employing diffractive and refractive optics. Measurements of tip clearance and rotor vibrations at a transonic centrifugal compressor performed during operation at up to 50 000 rpm (833 Hz) corresponding to 21.7 kHz blade frequency and 586 m s-1 blade tip velocity are presented. The results are in excellent agreement with those of capacitive probes. The mean uncertainty of the position measurement was around 20 µm and, thus, considerably better than for conventional tip clearance probes. Consequently, this sensor is capable of fulfilling the requirements for future active clearance control systems and has great potential for in situ and online tip clearance and vibration measurements at metallic and non-metallic turbine blades with high precision.

  6. Measurement of food texture by an acoustic vibration method

    Science.gov (United States)

    Sakurai, Naoki; Taniwaki, Mitsuru; Iwatani, Shin-ichiro; Akimoto, Hidemi

    2011-09-01

    Food texture was measured by a new acoustic vibration method. A piezoelectric sensor sandwiched between a probe and piston was inserted into a food sample by delivery of silicon oil to a cylinder by a pump. Vibration emitted from the food sample on insertion of the probe was monitored by voltage outputs of the sensor. The voltage signals were passed through 19 half octave bands to calculate texture index for each band. The texture index was defined as vibration energy of the probe caused by the food rupture and/or breakage per unit time.

  7. A New Approach for Reliability Life Prediction of Rail Vehicle Axle by Considering Vibration Measurement

    Directory of Open Access Journals (Sweden)

    Meral Bayraktar

    2014-01-01

    Full Text Available The effect of vibration on the axle has been considered. Vibration measurements at different speeds have been performed on the axle of a running rail vehicle to figure out displacement, acceleration, time, and frequency response. Based on the experimental works, equivalent stress has been used to find out life of the axles for 90% and 10% reliability. Calculated life values of the rail vehicle axle have been compared with the real life data and it is found that the life of a vehicle axle taking into account the vibration effects is in good agreement with the real life of the axle.

  8. Experimental Study on the Measurement of Water Bottom Vibration Induced by Underwater Drilling Blasting

    Directory of Open Access Journals (Sweden)

    Gu Wenbin

    2015-01-01

    Full Text Available Due to the lack of proper instrumentations and the difficulties in underwater measurements, the studies about water bottom vibration induced by underwater drilling blasting are seldom reported. In order to investigate the propagation and attenuation laws of blasting induced water bottom vibration, a water bottom vibration monitor was developed with consideration of the difficulties in underwater measurements. By means of this equipment, the actual water bottom vibration induced by underwater drilling blasting was measured in a field experiment. It shows that the water bottom vibration monitor could collect vibration signals quite effectively in underwater environments. The followed signal analysis shows that the characteristics of water bottom vibration and land ground vibration induced by the same underwater drilling blasting are quite different due to the different geological environments. The amplitude and frequency band of water bottom vibration both exceed those of land ground vibration. Water bottom vibration is mainly in low-frequency band that induced by blasting impact directly acts on rock. Besides the low-frequency component, land vibration contains another higher frequency band component that induced by followed water hammer wave acts on bank slope.

  9. Performance and Vibration Analyses of Lift-Offset Helicopters

    Directory of Open Access Journals (Sweden)

    Jeong-In Go

    2017-01-01

    Full Text Available A validation study on the performance and vibration analyses of the XH-59A compound helicopter is conducted to establish techniques for the comprehensive analysis of lift-offset compound helicopters. This study considers the XH-59A lift-offset compound helicopter using a rigid coaxial rotor system as a verification model. CAMRAD II (Comprehensive Analytical Method of Rotorcraft Aerodynamics and Dynamics II, a comprehensive analysis code, is used as a tool for the performance, vibration, and loads analyses. A general free wake model, which is a more sophisticated wake model than other wake models, is used to obtain good results for the comprehensive analysis. Performance analyses of the XH-59A helicopter with and without auxiliary propulsion are conducted in various flight conditions. In addition, vibration analyses of the XH-59A compound helicopter configuration are conducted in the forward flight condition. The present comprehensive analysis results are in good agreement with the flight test and previous analyses. Therefore, techniques for the comprehensive analysis of lift-offset compound helicopters are appropriately established. Furthermore, the rotor lifts are calculated for the XH-59A lift-offset compound helicopter in the forward flight condition to investigate the airloads characteristics of the ABC™ (Advancing Blade Concept rotor.

  10. Vibration-induced particle formation during yogurt fermentation - Industrial vibration measurements and development of an experimental setup.

    Science.gov (United States)

    Körzendörfer, Adrian; Temme, Philipp; Nöbel, Stefan; Schlücker, Eberhard; Hinrichs, Jörg

    2016-07-01

    The aim of the study was to investigate the effects of vibrations during yogurt fermentation. Machinery such as pumps and switching valves generate vibrations that may disturb the gelation by inducing large particles. Oscillation measurements on an industrial yogurt production line showed that oscillations are transferred from pumps right up to the fermentation tanks. An experimental setup (20L) was developed to study the effect of vibrations systematically. The fermenters were decoupled with air springs to enable reference fermentations under idle conditions. A vibration exciter was used to stimulate the fermenters. Frequency sweeps (25-1005Hz, periodic time 10s) for 20min from pH5.4 induced large particles. The number of visible particles was significantly increased from 35±4 (reference) to 89±9 particles per 100g yogurt. Rheological parameters of the stirred yogurt samples were not influenced by vibrations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Influence of mechanical vibrations on the field quality measurements of LHC interaction region quadrupole magnets

    CERN Document Server

    Di Marco, J; Schlabach, P; Sylvester, C D; Tompkins, J C; Krzywinski, J

    2000-01-01

    The high gradient quadrupole magnets being developed by the US-LHC Accelerator Project for the LHC Interaction Regions have stringent field quality requirements. The field quality of these magnets will be measured using a rotating coil system presently under development. Mechanical vibrations of the coil during field quality measurements are of concern because such vibrations can introduce systematic errors in measurement results. This paper presents calculations of the expected influence of vibrations on field quality measurements and a technique to measure vibrations present in data acquired with standard "tangential-style" probes. Measured vibrations are reported and compared to simulations. Limits on systematic errors in multipole measurements are discussed along with implications for probe and measurement system design. (3 refs).

  12. Wind turbine blades condition assessment based on vibration measurements and the level of an empirically decomposed feature

    International Nuclear Information System (INIS)

    Abouhnik, Abdelnasser; Albarbar, Alhussein

    2012-01-01

    Highlights: ► We used finite element method to model wind turbine induced vibration characteristics. ► We developed a technique for eliminating wind turbine’s vibration modulation problems. ► We use empirical mode decomposition to decompose the vibration into its fundamental elements. ► We show the area under shaft speed is a good indicator for assessing wind blades condition. ► We validate the technique under different wind turbine speeds and blade (cracks) conditions. - Abstract: Vibration based monitoring techniques are well understood and widely adopted for monitoring the condition of rotating machinery. However, in the case of wind turbines the measured vibration is complex due to the high number of vibration sources and modulation phenomenon. Therefore, extracting condition related information of a specific element e.g. blade condition is very difficult. In the work presented in this paper wind turbine vibration sources are outlined and then a three bladed wind turbine vibration was simulated by building its model in the ANSYS finite element program. Dynamic analysis was performed and the fundamental vibration characteristics were extracted under two healthy blades and one blade with one of four cracks introduced. The cracks were of length (10 mm, 20 mm, 30 mm and 40 mm), all had a consistent 3 mm width and 2 mm depth. The tests were carried out for three rotation speeds; 150, 250 and 360 r/min. The effects of the seeded faults were revealed by using a novel approach called empirically decomposed feature intensity level (EDFIL). The developed EDFIL algorithm is based on decomposing the measured vibration into its fundamental components and then determines the shaft rotational speed amplitude. A real model of the simulated wind turbine was constructed and the simulation outcomes were compared with real-time vibration measurements. The cracks were seeded sequentially in one of the blades and their presence and severity were determined by decomposing

  13. Characterization and calibration of piezoelectric polymers: In situ measurements of body vibrations

    Science.gov (United States)

    Kappel, Marcel; Abel, Markus; Gerhard, Reimund

    2011-07-01

    Piezoelectric polymers are known for their flexibility in applications, mainly due to their bending ability, robustness, and variable sensor geometry. It is an optimal material for minimal-invasive investigations in vibrational systems, e.g., for wood, where acoustical impedance matches particularly well. Many applications may be imagined, e.g., monitoring of buildings, vehicles, machinery, alarm systems, such that our investigations may have a large impact on technology. Longitudinal piezoelectricity converts mechanical vibrations normal to the polymer-film plane into an electrical signal, and the respective piezoelectric coefficient needs to be carefully determined in dependence on the relevant material parameters. In order to evaluate efficiency and durability for piezopolymers, we use polyvinylidene fluoride and measure the piezoelectric coefficient with respect to static pressure, amplitude of the dynamically applied force, and long-term stability. A known problem is the slow relaxation of the material towards equilibrium, if the external pressure changes; here, we demonstrate how to counter this problem with careful calibration. Since our focus is on acoustical measurements, we determine accurately the frequency response curve - for acoustics probably the most important characteristic. Eventually, we show that our piezopolymer transducers can be used as a calibrated acoustical sensors for body vibration measurements on a wooden musical instrument, where it is important to perform minimal-invasive measurements. A comparison with the simultaneously recorded airborne sound yields important insight of the mechanism of sound radiation in comparison with the sound propagating in the material. This is especially important for transient signals, where not only the long-living eigenmodes contribute to the sound radiation. Our analyses support that piezopolymer sensors can be employed as a general tool for the determination of the internal dynamics of vibrating systems.

  14. Induced vibrations increase performance of a winged self-righting robot

    Science.gov (United States)

    Othayoth, Ratan; Xuan, Qihan; Li, Chen

    When upside down, cockroaches can open their wings to dynamically self-right. In this process, an animal often has to perform multiple unsuccessful maneuvers to eventually right, and often flails its legs. Here, we developed a cockroach-inspired winged self-righting robot capable of controlled body vibrations to test the hypothesis that vibrations assist self-righting transitions. Robot body vibrations were induced by an oscillating mass (10% of body mass) and varied by changing oscillation frequency. We discovered that, as the robot's body vibrations increased, righting probability increased, and righting time decreased (P locomotor transitions, but highlights the need for further stochastic modeling to capture the uncertain nature of when righting maneuvers result in successful righting.

  15. A periodic piezoelectric smart structure with the integrated passive/active vibration-reduction performances

    Science.gov (United States)

    Wang, Yuxi; Niu, Shengkai; Hu, Yuantai

    2017-06-01

    The paper proposes a new piezoelectric smart structure with the integrated passive/active vibration-reduction performances, which is made of a series of periodic structural units. Every structural unit is made of two layers, one is an array of piezoelectric bimorphs (PBs) and one is an array of metal beams (MBs), both are connected as a whole by a metal plate. Analyses show that such a periodic smart structure possesses two aspects of vibration-reduction performance: one comes from its phonon crystal characteristics which can isolate those vibrations with the driving frequency inside the band gap(s). The other one comes from the electromechanical conversion of bent PBs, which is actively aimed at those vibrations with the driving frequency outside the band gap(s). By adjusting external inductance, the equivalent circuit of the proposed structure can be forced into parallel resonance such that most of the vibration energy is converted into electrical energy for dissipation by a resistance. Thus, an external circuit under the parallel resonance state is equivalent to a strong damping to the interrelated vibrating structure, which is just the action mechanism of the active vibration reduction performance of the proposed smart structure.

  16. Vibration transducer calibration techniques

    Science.gov (United States)

    Brinkley, D. J.

    1980-09-01

    Techniques for the calibration of vibration transducers used in the Aeronautical Quality Assurance Directorate of the British Ministry of Defence are presented. Following a review of the types of measurements necessary in the calibration of vibration transducers, the performance requirements of vibration transducers, which can be used to measure acceleration, velocity or vibration amplitude, are discussed, with particular attention given to the piezoelectric accelerometer. Techniques for the accurate measurement of sinusoidal vibration amplitude in reference-grade transducers are then considered, including the use of a position sensitive photocell and the use of a Michelson laser interferometer. Means of comparing the output of working-grade accelerometers with that of previously calibrated reference-grade devices are then outlined, with attention given to a method employing a capacitance bridge technique and a method to be used at temperatures between -50 and 200 C. Automatic calibration procedures developed to speed up the calibration process are outlined, and future possible extensions of system software are indicated.

  17. Measuring vibrations in fuel channels CNE

    International Nuclear Information System (INIS)

    Martín Ghiselli, A.; Fiori, J.; Sacchi, M.; Villabrille, G.

    2013-01-01

    This paper present a description of implementation and execution of vibration measurements made at the request of NUCLEOELECTRICA ARGENTINA S.A. on the ends of the reactor fuel channels of Embalse Nuclear Power Plant to explore possible differences between the dynamic behavior of empty fuel channel and with full charge of fuel elements inside. (author)

  18. Measuring frequency of one-dimensional vibration with video camera using electronic rolling shutter

    Science.gov (United States)

    Zhao, Yipeng; Liu, Jinyue; Guo, Shijie; Li, Tiejun

    2018-04-01

    Cameras offer a unique capability of collecting high density spatial data from a distant scene of interest. They can be employed as remote monitoring or inspection sensors to measure vibrating objects because of their commonplace availability, simplicity, and potentially low cost. A defect of vibrating measurement with the camera is to process the massive data generated by camera. In order to reduce the data collected from the camera, the camera using electronic rolling shutter (ERS) is applied to measure the frequency of one-dimensional vibration, whose frequency is much higher than the speed of the camera. Every row in the image captured by the ERS camera records the vibrating displacement at different times. Those displacements that form the vibration could be extracted by local analysis with sliding windows. This methodology is demonstrated on vibrating structures, a cantilever beam, and an air compressor to identify the validity of the proposed algorithm. Suggestions for applications of this methodology and challenges in real-world implementation are given at last.

  19. The effects of vibration-reducing gloves on finger vibration

    Science.gov (United States)

    Welcome, Daniel E.; Dong, Ren G.; Xu, Xueyan S.; Warren, Christopher; McDowell, Thomas W.

    2015-01-01

    Vibration-reducing (VR) gloves have been used to reduce the hand-transmitted vibration exposures from machines and powered hand tools but their effectiveness remains unclear, especially for finger protection. The objectives of this study are to determine whether VR gloves can attenuate the vibration transmitted to the fingers and to enhance the understanding of the mechanisms of how these gloves work. Seven adult male subjects participated in the experiment. The fixed factors evaluated include hand force (four levels), glove condition (gel-filled, air bladder, no gloves), and location of the finger vibration measurement. A 3-D laser vibrometer was used to measure the vibrations on the fingers with and without wearing a glove on a 3-D hand-arm vibration test system. This study finds that the effect of VR gloves on the finger vibration depends on not only the gloves but also their influence on the distribution of the finger contact stiffness and the grip effort. As a result, the gloves increase the vibration in the fingertip area but marginally reduce the vibration in the proximal area at some frequencies below 100 Hz. On average, the gloves reduce the vibration of the entire fingers by less than 3% at frequencies below 80 Hz but increase at frequencies from 80 to 400 Hz. At higher frequencies, the gel-filled glove is more effective at reducing the finger vibration than the air bladder-filled glove. The implications of these findings are discussed. Relevance to industry Prolonged, intensive exposure to hand-transmitted vibration can cause hand-arm vibration syndrome. Vibration-reducing gloves have been used as an alternative approach to reduce the vibration exposure. However, their effectiveness for reducing finger-transmitted vibrations remains unclear. This study enhanced the understanding of the glove effects on finger vibration and provided useful information on the effectiveness of typical VR gloves at reducing the vibration transmitted to the fingers. The new

  20. Real-Time Performance of Mechatronic PZT Module Using Active Vibration Feedback Control.

    Science.gov (United States)

    Aggogeri, Francesco; Borboni, Alberto; Merlo, Angelo; Pellegrini, Nicola; Ricatto, Raffaele

    2016-09-25

    This paper proposes an innovative mechatronic piezo-actuated module to control vibrations in modern machine tools. Vibrations represent one of the main issues that seriously compromise the quality of the workpiece. The active vibration control (AVC) device is composed of a host part integrated with sensors and actuators synchronized by a regulator; it is able to make a self-assessment and adjust to alterations in the environment. In particular, an innovative smart actuator has been designed and developed to satisfy machining requirements during active vibration control. This study presents the mechatronic model based on the kinematic and dynamic analysis of the AVC device. To ensure a real time performance, a H2-LQG controller has been developed and validated by simulations involving a machine tool, PZT actuator and controller models. The Hardware in the Loop (HIL) architecture is adopted to control and attenuate the vibrations. A set of experimental tests has been performed to validate the AVC module on a commercial machine tool. The feasibility of the real time vibration damping is demonstrated and the simulation accuracy is evaluated.

  1. Magnetostrictive patch sensor system for battery-less real-time measurement of torsional vibrations of rotating shafts

    Science.gov (United States)

    Lee, Jun Kyu; Seung, Hong Min; Park, Chung Il; Lee, Joo Kyung; Lim, Do Hyeong; Kim, Yoon Young

    2018-02-01

    Real-time uninterrupted measurement for torsional vibrations of rotating shafts is crucial for permanent health monitoring. So far, strain gauge systems with telemetry units have been used for real-time monitoring. However, they have a critical disadvantage in that shaft operations must be stopped intermittently to replace telemetry unit batteries. To find an alternative method to carry out battery-less real-time measurement for torsional vibrations of rotating shafts, a magnetostrictive patch sensor system was proposed in the present study. Since the proposed sensor does not use any powered telemetry system, no battery is needed and thus there is no need to stop rotating shafts for battery replacement. The proposed sensor consists of magnetostrictive patches and small magnets tightly bonded onto a shaft. A solenoid coil is placed around the shaft to convert magnetostrictive patch deformation by shaft torsional vibration into electric voltage output. For sensor design and characterization, investigations were performed in a laboratory on relatively small-sized stationary solid shaft. A magnetostrictive patch sensor system was then designed and installed on a large rotating propulsion shaft of an LPG carrier ship in operation. Vibration signals were measured using the proposed sensor system and compared to those measured with a telemetry unit-equipped strain gauge system.

  2. Farfield Ion Current Density Measurements before and after the NASA HiVHAc EDU2 Vibration Test

    Science.gov (United States)

    Huang, Wensheng; Kamhawi, Hani; Shastry, Rohit

    2012-01-01

    There is an increasing need to characterize the plasma plume of the NASA HiVHAc thruster in order to better understand the plasma physics and to obtain data for spacecraft interaction studies. To address this need, the HiVHAc research team is in the process of developing a number of plume diagnostic systems. This paper presents the initial results of the farfield current density probe diagnostic system. Farfield current density measurements were carried out before and after a vibration test of the HiVHAc engineering development unit 2 that simulate typical launch conditions. The main purposes of the current density measurements were to evaluate the thruster plume divergence and to investigate any changes in the plasma plume that may occur as a result of the vibration test. Radial sweeps, as opposed to the traditional polar sweeps, were performed during these tests. The charged-weighted divergence angles were found to vary from 16 to 28 degrees. Charge density profiles measured pre- and post-vibration-test were found to be in excellent agreement. This result, alongside thrust measurements reported in a companion paper, confirm that the operation of the HiVHAc engineering development unit 2 were not altered by full-level/random vibration testing.

  3. The obscure factor analysis on the vibration reliability of the internals of nuclear power plant reactor and anti-vibration measures

    International Nuclear Information System (INIS)

    Fu Geyan; Zhu Qirong

    1998-11-01

    It is pointed out that the main reason making nuclear power plants reactors leak is the vibration of internals of reactors. The factors which lead the vibration all have randomness and obscureness. The obscure reliability theory is introduced to the vibration system of internals of nuclear power reactor. Based on a quantity of designing and moving data, the obscure factors effecting the vibration reliability of the internals of nuclear power plant reactor are analyzed and the anti-vibration reliability criteria and the evaluating model are given. And the anti-vibration reliability measures are advanced from different quarters of the machine design and building, the thermohydraulics design, the control of reactivity, etc.. They may benefit the theory and practice for building and perfecting the vibration obscure reliability model of the reactor internals

  4. Experimental Study on the Measurement of Water Bottom Vibration Induced by Underwater Drilling Blasting

    OpenAIRE

    Wenbin, Gu; Jianghai, Chen; Zhenxiong, Wang; Zhihua, Wang; Jianqing, Liu; Ming, Lu

    2015-01-01

    Due to the lack of proper instrumentations and the difficulties in underwater measurements, the studies about water bottom vibration induced by underwater drilling blasting are seldom reported. In order to investigate the propagation and attenuation laws of blasting induced water bottom vibration, a water bottom vibration monitor was developed with consideration of the difficulties in underwater measurements. By means of this equipment, the actual water bottom vibration induced by underwater ...

  5. Development of a distributed polarization-OTDR to measure two vibrations with the same frequency

    Science.gov (United States)

    Pan, Yun; Wang, Feng; Wang, Xiangchuan; Zhang, Mingjiang; Zhou, Ling; Sun, Zhenqing; Zhang, Xuping

    2015-08-01

    A polarization optical time-domain reflectometer (POTDR) can distributedly measure the vibration of fiber by detecting the vibration induced polarization variation only with a polarization analyzer. It has great potential in the monitoring of the border intrusion, structural healthy, anti-stealing of pipeline and so on, because of its simple configuration, fast response speed and distributed measuring ability. However, it is difficult to distinguish two vibrations with the same frequency for POTDR because the signal induced by the first vibration would bury the other vibration induced signal. This paper proposes a simple method to resolve this problem in POTDR by analyzing the phase of the vibration induced signal. The effectiveness of this method in distinguishing two vibrations with the same frequency for POTDR is proved by simulation.

  6. Transient full-field vibration measurement using spectroscopical stereo photogrammetry.

    Science.gov (United States)

    Yue, Kaiduan; Li, Zhongke; Zhang, Ming; Chen, Shan

    2010-12-20

    Contrasted with other vibration measurement methods, a novel spectroscopical photogrammetric approach is proposed. Two colored light filters and a CCD color camera are used to achieve the function of two traditional cameras. Then a new calibration method is presented. It focuses on the vibrating object rather than the camera and has the advantage of more accuracy than traditional camera calibration. The test results have shown an accuracy of 0.02 mm.

  7. Damage assessment in a sandwich panel based on full-field vibration measurements

    Science.gov (United States)

    Seguel, F.; Meruane, V.

    2018-03-01

    Different studies have demonstrated that vibration characteristics are sensitive to debonding in composite structures. Nevertheless, one of the main restrictions of vibration measurements is the number of degrees of freedom that can be acquired simultaneously, which restricts the size of the damage that can be identified. Recent studies have shown that it is possible to use high-speed three-dimensional (3-D) digital image correlation (DIC) techniques for full-field vibration measurements. With this technique, it is possible to take measurements at thousands of points on the surface of a structure with a single snapshot. The present article investigates the application of full-field vibration measurements in the debonding assessment of an aluminium honeycomb sandwich panel. Experimental data from an aluminium honeycomb panel containing different damage scenarios is acquired by a high-speed 3-D DIC system; four methodologies to compute damage indices are evaluated: mode shape curvatures, uniform load surface, modal strain energy and gapped smoothing.

  8. The influence of whole-body vibration on creatine kinase activity and jumping performance in young basketball players.

    Science.gov (United States)

    Fachina, Rafael; da Silva, Antônio; Falcão, William; Montagner, Paulo; Borin, João; Minozzo, Fábio; Falcão, Diego; Vancini, Rodrigo; Poston, Brach; de Lira, Claudio

    2013-12-01

    To quantify creatine kinase (CK) activity changes across time following an acute bout of whole-body vibration (WBV) and determine the association between changes in CK activity and jumping performance. Twenty-six elite young basketball players were assigned to 3 groups: 36-Hz and 46-Hz vibration groups (G36 and G46, respectively) and a control group. The study quantified CK activity and jumping performance following an acute bout of WBV at 2 vibration frequencies. Both WBV groups performed a protocol that consisted of 10 sets of 60 s of WBV while standing on a vibration plate in a quarter-squat position. CK activity, countermovement jumps (CMJ), and squat jumps (SJ) were measured immediately before and 24 hr and 48 hr after WBV. In addition, CMJ and SJ were also measured 5 min after WBV. CK activity was statistically significantly increased 24 hr following WBV in G36 and G46. At 48 hr after WBV, CK activity was similar to baseline levels in G36 but remained statistically significantly above baseline levels in G46. The CMJ and SJ heights were statistically significantly decreased at 5 min following the protocol for both WBV groups. Overall, the changes in CK activity did not present a strong relationship with the changes in jump heights for any of the comparisons. These findings suggest that WBV protocols with such characteristics may not cause excessive muscle damage and may partly explain why many WBV training studies have failed to elicit increases in strength performance.

  9. Damage Detection by Laser Vibration Measurement

    Directory of Open Access Journals (Sweden)

    Elena Daniela Birdeanu

    2008-10-01

    Full Text Available The technique based on the vibration analysis by scanning laser Doppler vibrometer is one of the most promising, allowing to extract also small defect and to directly correlate it to local dynamic stiffness and structural integrity. In fact, the measurement capabilities of vibrometers, such as sensitivity, accuracy and reduced intrusively, allow having a very powerful instrument in diagnostic.

  10. Surface Acoustic Wave Vibration Sensors for Measuring Aircraft Flutter

    Science.gov (United States)

    Wilson, William C.; Moore, Jason P.; Juarez, Peter D.

    2016-01-01

    Under NASA's Advanced Air Vehicles Program the Advanced Air Transport Technology (AATT) Project is investigating flutter effects on aeroelastic wings. To support that work a new method for measuring vibrations due to flutter has been developed. The method employs low power Surface Acoustic Wave (SAW) sensors. To demonstrate the ability of the SAW sensor to detect flutter vibrations the sensors were attached to a Carbon fiber-reinforced polymer (CFRP) composite panel which was vibrated at six frequencies from 1Hz to 50Hz. The SAW data was compared to accelerometer data and was found to resemble sine waves and match each other closely. The SAW module design and results from the tests are presented here.

  11. Nonlinear laser dynamics induced by frequency shifted optical feedback: application to vibration measurements.

    Science.gov (United States)

    Girardeau, Vadim; Goloni, Carolina; Jacquin, Olivier; Hugon, Olivier; Inglebert, Mehdi; Lacot, Eric

    2016-12-01

    In this article, we study the nonlinear dynamics of a laser subjected to frequency shifted optical reinjection coming back from a vibrating target. More specifically, we study the nonlinear dynamical coupling between the carrier and the vibration signal. The present work shows how the nonlinear amplification of the vibration spectrum is related to the strength of the carrier and how it must be compensated to obtain accurate (i.e., without bias) vibration measurements. The theoretical predictions, confirmed by numerical simulations, are in good agreement with the experimental data. The main motivation of this study is the understanding of the nonlinear response of a laser optical feedback imaging sensor for quantitative phase measurements of small vibrations in the case of strong optical feedback.

  12. Laser-Doppler vibrating tube densimeter for measurements at high temperatures and pressures

    International Nuclear Information System (INIS)

    Aida, Tsutomu; Yamazaki, Ai; Akutsu, Makoto; Ono, Takumi; Kanno, Akihiro; Hoshina, Taka-aki; Ota, Masaki; Watanabe, Masaru; Sato, Yoshiyuki; Smith, Richard L. Jr.; Inomata, Hiroshi

    2007-01-01

    A laser-Doppler vibrometer was used to measure the vibration of a vibrating tube densimeter for measuring P-V-T data at high temperatures and pressures. The apparatus developed allowed the control of the residence time of the sample so that decomposition at high temperatures could be minimized. A function generator and piezoelectric crystal was used to excite the U-shaped tube in one of its normal modes of vibration. Densities of methanol-water mixtures are reported for at 673 K and 40 MPa with an uncertainty of 0.009 g/cm 3

  13. Comparative analysis of internal friction and natural frequency measured by free decay and forced vibration

    International Nuclear Information System (INIS)

    Wang, Y. Z.; Ding, X. D.; Xiong, X. M.; Zhang, J. X.

    2007-01-01

    Relations between various values of the internal friction (tgδ, Q -1 , Q -1* , and Λ/π) measured by free decay and forced vibration are analyzed systemically based on a fundamental mechanical model in this paper. Additionally, relations between various natural frequencies, such as vibration frequency of free decay ω FD , displacement-resonant frequency of forced vibration ω d , and velocity-resonant frequency of forced vibration ω 0 are calculated. Moreover, measurement of natural frequencies of a copper specimen of 99.9% purity has been made to demonstrate the relation between the measured natural frequencies of the system by forced vibration and free decay. These results are of importance for not only more accurate measurement of the elastic modulus of materials but also the data conversion between different internal friction measurements

  14. Morphing Wing: Experimental Boundary Layer Transition Determination and Wing Vibrations Measurements and Analysis =

    Science.gov (United States)

    Tondji Chendjou, Yvan Wilfried

    This Master's thesis is written within the framework of the multidisciplinary international research project CRIAQ MDO-505. This global project consists of the design, manufacture and testing of a morphing wing box capable of changing the shape of the flexible upper skin of a wing using an actuator system installed inside the wing. This changing of the shape generates a delay in the occurrence of the laminar to turbulent transition area, which results in an improvement of the aerodynamic performances of the morphed wing. This thesis is focused on the technologies used to gather the pressure data during the wind tunnel tests, as well as on the post processing methodologies used to characterize the wing airflow. The vibration measurements of the wing and their real-time graphical representation are also presented. The vibration data acquisition system is detailed, and the vibration data analysis confirms the predictions of the flutter analysis performed on the wing prior to wind tunnel testing at the IAR-NRC. The pressure data was collected using 32 highly-sensitive piezoelectric sensors for sensing the pressure fluctuations up to 10 KHz. These sensors were installed along two wing chords, and were further connected to a National Instrument PXI real-time acquisition system. The acquired pressure data was high-pass filtered, analyzed and visualized using Fast Fourier Transform (FFT) and Standard Deviation (SD) approaches to quantify the pressure fluctuations in the wing airflow, as these allow the detection of the laminar to turbulent transition area. Around 30% of the cases tested in the IAR-NRC wind tunnel were optimized for drag reduction by the morphing wing procedure. The obtained pressure measurements results were compared with results obtained by infrared thermography visualization, and were used to validate the numerical simulations. Two analog accelerometers able to sense dynamic accelerations up to +/-16g were installed in both the wing and the aileron boxes

  15. Vibration Analysis of Beam and Block Precast Slab System due to Human Vibrations

    Science.gov (United States)

    Chik, T. N. T.; Kamil, M. R. H.; Yusoff, N. A.

    2018-04-01

    Beam and block precast slabs system are very efficient which generally give maximum structural performance where their voids based on the design of the unit soffit block allow a significant reduction of the whole slab self-weight. Initially for some combinations of components or the joint connection of the structural slab, this structural system may be susceptible to excessive vibrations that could effects the performance and also serviceability. Dynamic forces are excited from people walking and jumping which produced vibrations to the slab system in the buildings. Few studies concluded that human induced vibration on precast slabs system may be harmful to structural performance and mitigate the human comfort level. This study will investigate the vibration analysis of beam and block precast slab by using finite element method at the school building. Human activities which are excited from jumping and walking will induce the vibrations signal to the building. Laser Doppler Vibrometer (LDV) was used to measure the dynamic responses of slab towards the vibration sources. Five different points were assigned specifically where each of location will determine the behaviour of the entire slabs. The finite element analyses were developed in ABAQUS software and the data was further processed in MATLAB ModalV to assess the vibration criteria. The results indicated that the beam and block precast systems adequate enough to the vibration serviceability and human comfort criteria. The overall vibration level obtained was fell under VC-E curve which it is generally under the maximum permissible level of vibrations. The vibration level on the slab is acceptable within the limit that have been used by Gordon.

  16. Ground test for vibration control demonstrator

    Science.gov (United States)

    Meyer, C.; Prodigue, J.; Broux, G.; Cantinaud, O.; Poussot-Vassal, C.

    2016-09-01

    In the objective of maximizing comfort in Falcon jets, Dassault Aviation is developing an innovative vibration control technology. Vibrations of the structure are measured at several locations and sent to a dedicated high performance vibration control computer. Control laws are implemented in this computer to analyse the vibrations in real time, and then elaborate orders sent to the existing control surfaces to counteract vibrations. After detailing the technology principles, this paper focuses on the vibration control ground demonstration that was performed by Dassault Aviation in May 2015 on Falcon 7X business jet. The goal of this test was to attenuate vibrations resulting from fixed forced excitation delivered by shakers. The ground test demonstrated the capability to implement an efficient closed-loop vibration control with a significant vibration level reduction and validated the vibration control law design methodology. This successful ground test was a prerequisite before the flight test demonstration that is now being prepared. This study has been partly supported by the JTI CleanSky SFWA-ITD.

  17. Standardization of Laser Methods and Techniques for Vibration Measurements and Calibrations

    International Nuclear Information System (INIS)

    Martens, Hans-Juergen von

    2010-01-01

    The realization and dissemination of the SI units of motion quantities (vibration and shock) have been based on laser interferometer methods specified in international documentary standards. New and refined laser methods and techniques developed by national metrology institutes and by leading manufacturers in the past two decades have been swiftly specified as standard methods for inclusion into in the series ISO 16063 of international documentary standards. A survey of ISO Standards for the calibration of vibration and shock transducers demonstrates the extended ranges and improved accuracy (measurement uncertainty) of laser methods and techniques for vibration and shock measurements and calibrations. The first standard for the calibration of laser vibrometers by laser interferometry or by a reference accelerometer calibrated by laser interferometry (ISO 16063-41) is on the stage of a Draft International Standard (DIS) and may be issued by the end of 2010. The standard methods with refined techniques proved to achieve wider measurement ranges and smaller measurement uncertainties than that specified in the ISO Standards. The applicability of different standardized interferometer methods to vibrations at high frequencies was recently demonstrated up to 347 kHz (acceleration amplitudes up to 350 km/s 2 ). The relative deviations between the amplitude measurement results of the different interferometer methods that were applied simultaneously, differed by less than 1% in all cases.

  18. Vibration mode and vibration shape under excitation of a three phase model transformer core

    Science.gov (United States)

    Okabe, Seiji; Ishigaki, Yusuke; Omura, Takeshi

    2018-04-01

    Structural vibration characteristics and vibration shapes under three-phase excitation of a archetype transformer core were investigated to consider their influences on transformer noise. Acoustic noise and vibration behavior were measured in a three-limb model transformer core. Experimental modal analysis by impact test was performed. The vibration shapes were measured by a laser scanning vibrometer at different exciting frequencies. Vibration amplitude of the core in out-of-plane direction were relatively larger than those in other two in-plane directions. It was consistent with the result that the frequency response function of the core in out-of-plane direction was larger by about 20 dB or more than those in in-plane directions. There were many vibration modes having bending deformation of limbs in out-of-plane direction. The vibration shapes of the core when excited at 50 Hz and 60 Hz were almost the same because the fundamental frequencies of the vibration were not close to the resonance frequencies. When excitation frequency was 69 Hz which was half of one of the resonance frequencies, the vibration shape changed to the one similar to the resonance vibration mode. Existence of many vibration modes in out-of-plane direction of the core was presumed to be a reason why frequency characteristics of magnetostriction and transformer noise do not coincide.

  19. Measurement of dynamic interaction between a vibrating fuel element and its support

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, N.J.; Tromp, J.H.; Smith, B.A.W. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada). Chalk River Labs.

    1996-12-01

    Flow-induced vibration of CANDU{reg_sign} fuel can result in fretting damage of the fuel and its support. A WOrk-Rate Measuring Station (WORMS) was developed to measure the relative motion and contact forces between a vibrating fuel element and its support. The fixture consists of a small piece of support structure mounted on a micrometer stage. This arrangement permits position of the support relative to the fuel element to be controlled to within {+-} {micro}m. A piezoelectric triaxial load washer is positioned between the support and micrometer stage to measure contact forces, and a pair of miniature eddy-current displacement probes are mounted on the stage to measure fuel element-to-support relative motion. WORMS has been utilized to measure dynamic contact forces, relative displacements and work-rates between a vibrating fuel element and its support. For these tests, the fuel element was excited with broadband random force excitation to simulate flow-induced vibration due to axial flow. The relationship between fuel element-to-support gap or preload (i.e., interference or negative gap) and dynamic interaction (i.e., relative motion, contact forces and work-rates) was derived. These measurements confirmed numerical simulations of in-reactor interaction predicted earlier using the VIBIC code.

  20. The correction of vibration in frequency scanning interferometry based absolute distance measurement system for dynamic measurements

    Science.gov (United States)

    Lu, Cheng; Liu, Guodong; Liu, Bingguo; Chen, Fengdong; Zhuang, Zhitao; Xu, Xinke; Gan, Yu

    2015-10-01

    Absolute distance measurement systems are of significant interest in the field of metrology, which could improve the manufacturing efficiency and accuracy of large assemblies in fields such as aircraft construction, automotive engineering, and the production of modern windmill blades. Frequency scanning interferometry demonstrates noticeable advantages as an absolute distance measurement system which has a high precision and doesn't depend on a cooperative target. In this paper , the influence of inevitable vibration in the frequency scanning interferometry based absolute distance measurement system is analyzed. The distance spectrum is broadened as the existence of Doppler effect caused by vibration, which will bring in a measurement error more than 103 times bigger than the changes of optical path difference. In order to decrease the influence of vibration, the changes of the optical path difference are monitored by a frequency stabilized laser, which runs parallel to the frequency scanning interferometry. The experiment has verified the effectiveness of this method.

  1. Performance studies of the vibration wire monitor on the test stand with low energy electron beam

    International Nuclear Information System (INIS)

    Okabe, Kota; Yoshimoto, Masahiro; Kinsho, Michikazu

    2015-01-01

    In the high intensity proton accelerator as the Japan Proton Accelerator Research Complex (J-PARC) accelerators, serious radiation and residual dose is induced by a small beam loss such a beam halo. Therefore, diagnostics of the beam halo formation is one of the most important issues to control the beam loss. For the beam halo monitor, the vibration wire monitor (VWM) has a potential for investigating the beam halo and weak beam scanning. The VWM has a wide dynamic range, high resolution and the VWM is not susceptible to secondary electrons and electric noises. We have studied the VWM features as a new beam-halo monitor on the test stand with low energy electron gun. The frequency shift of the irradiated vibration wire was confirmed about wire material and the electron beam profile measured by using the VWM was consistent with the results of the Faraday cup measurement. Also we calculated a temperature distribution on the vibration wire which is irradiated by the electron beam with the numerical simulation. The simulations have been fairly successful in reproducing the transient of the irradiated vibration wire frequency measured by test stand experiments. In this paper, we will report a result of performance evaluation for the VWM on the test stands and discuss the VWM for beam halo diagnostic. (author)

  2. A Method Using Optical Contactless Displacement Sensors to Measure Vibration Stress of Small-Bore Piping.

    Science.gov (United States)

    Maekawa, Akira; Tsuji, Takashi; Takahashi, Tsuneo; Noda, Michiyasu

    2014-02-01

    In nuclear power plants, vibration stress of piping is frequently evaluated to prevent fatigue failure. A simple and fast measurement method is attractive to evaluate many piping systems efficiently. In this study, a method to measure the vibration stress using optical contactless displacement sensors was proposed, the prototype instrument was developed, and the instrument practicality for the method was verified. In the proposed method, light emitting diodes (LEDs) were used as measurement sensors and the vibration stress was estimated by measuring the deformation geometry of the piping caused by oscillation, which was measured as the piping curvature radius. The method provided fast and simple vibration estimates for small-bore piping. Its verification and practicality were confirmed by vibration tests using a test pipe and mock-up piping. The stress measured by both the proposed method and an accurate conventional method using strain gauges were in agreement, and it was concluded that the proposed method could be used for actual plant piping systems.

  3. Analysis of classical guitars' vibrational behavior based on scanning laser vibrometer measurements

    Science.gov (United States)

    Czajkowska, Marzena

    2012-06-01

    One of the main goals in musical acoustics research is to link measurable, physical properties of a musical instrument with subjective assessments of its tone quality. The aim of the research discussed in this paper was to observe the structural vibrations of different class classical guitars in relation to their quality. This work focuses on mid-low-and low-class classical (nylon-stringed) guitars. The main source of guitar body vibrations come from top and back plate vibrations therefore these were the objects of structural mode measurements and analysis. Sixteen classical guitars have been investigated, nine with cedar and seven with spruce top plate. Structural modes of top and back plates have been measured with the aid of a scanning laser vibrometer and the instruments were excited with a chirp signal transferred by bone vibrator. The issues related to excitor selection have been discussed. Correlation and descriptive statistics of top and back plates measurement results have been investigated in relation to guitar quality. The frequency range of 300 Hz to 5 kHz as well as selected narrowed frequency bands have been analyzed for cedar and spruce guitars. Furthermore, the influence of top plate wood type on vibration characteristics have been observed on three pairs of guitars. The instruments were of the same model but different top plate material. Determination and visualization of both guitar plates' modal patterns in relation to frequency are a significant attainment of the research. Scanning laser vibrometer measurements allow particular mode observation and therefore mode identification, as opposed to sound pressure response measurements. When correlating vibration characteristics of top and back plates it appears that Pearson productmoment correlation coefficient is not a parameter that associates with guitar quality. However, for best instruments with cedar top, top-back correlation coefficient has relatively greater value in 1-2 kHz band and lower in

  4. Vibration Noise Modeling for Measurement While Drilling System Based on FOGs

    Directory of Open Access Journals (Sweden)

    Chunxi Zhang

    2017-10-01

    Full Text Available Aiming to improve survey accuracy of Measurement While Drilling (MWD based on Fiber Optic Gyroscopes (FOGs in the long period, the external aiding sources are fused into the inertial navigation by the Kalman filter (KF method. The KF method needs to model the inertial sensors’ noise as the system noise model. The system noise is modeled as white Gaussian noise conventionally. However, because of the vibration while drilling, the noise in gyros isn’t white Gaussian noise any more. Moreover, an incorrect noise model will degrade the accuracy of KF. This paper developed a new approach for noise modeling on the basis of dynamic Allan variance (DAVAR. In contrast to conventional white noise models, the new noise model contains both the white noise and the color noise. With this new noise model, the KF for the MWD was designed. Finally, two vibration experiments have been performed. Experimental results showed that the proposed vibration noise modeling approach significantly improved the estimated accuracies of the inertial sensor drifts. Compared the navigation results based on different noise model, with the DAVAR noise model, the position error and the toolface angle error are reduced more than 90%. The velocity error is reduced more than 65%. The azimuth error is reduced more than 50%.

  5. Vibration Noise Modeling for Measurement While Drilling System Based on FOGs.

    Science.gov (United States)

    Zhang, Chunxi; Wang, Lu; Gao, Shuang; Lin, Tie; Li, Xianmu

    2017-10-17

    Aiming to improve survey accuracy of Measurement While Drilling (MWD) based on Fiber Optic Gyroscopes (FOGs) in the long period, the external aiding sources are fused into the inertial navigation by the Kalman filter (KF) method. The KF method needs to model the inertial sensors' noise as the system noise model. The system noise is modeled as white Gaussian noise conventionally. However, because of the vibration while drilling, the noise in gyros isn't white Gaussian noise any more. Moreover, an incorrect noise model will degrade the accuracy of KF. This paper developed a new approach for noise modeling on the basis of dynamic Allan variance (DAVAR). In contrast to conventional white noise models, the new noise model contains both the white noise and the color noise. With this new noise model, the KF for the MWD was designed. Finally, two vibration experiments have been performed. Experimental results showed that the proposed vibration noise modeling approach significantly improved the estimated accuracies of the inertial sensor drifts. Compared the navigation results based on different noise model, with the DAVAR noise model, the position error and the toolface angle error are reduced more than 90%. The velocity error is reduced more than 65%. The azimuth error is reduced more than 50%.

  6. Comparing the effects of 3 weeks of upper-body vibration training, vibration and stretching, and stretching alone on shoulder flexibility in college-aged men.

    Science.gov (United States)

    Ferguson, Steven L; Kim, Eonho; Seo, Dong-Il; Bemben, Michael G

    2013-12-01

    This study compared the effects of 3 weeks of upper-body vibration training, vibration and stretching, and stretching alone on shoulder flexibility in college-aged men. Twenty-one men were randomly assigned to vibration-stretching (VS; n = 8), vibration only (VO; n = 6), or stretching only (SO; n = 7) groups that trained 3 times per week for 3 weeks. All 3 groups performed 9 total sets of 30-second stretches. The VS group performed four 30-second upper-body vibration exercises and five 30-second upper-body stretching exercises. The VO group performed nine 30-second upper-body vibration exercises. The SO group performed nine 30-second upper-body stretching exercises. Shoulder flexion (SF), shoulder extension (SE), and shoulder transverse extension (STE) were assessed by a Leighton Flexometer and back scratch tests bilaterally (BSR, BSL) were measured via tape measure. A 1-way analysis of variance (ANOVA) evaluated groups at baseline and a 2-way repeated-measures ANOVA evaluated the interventions over time. At baseline, there were no group differences in age, height, or weight. There was a significant (p alone or combined with stretching, is a viable alternative to a standard stretching routine when attempting to increase shoulder flexibility. Adding vibration training to a flexibility regimen may improve the likelihood of regularly performing flexibility sessions because of increased variety.

  7. Integrating Oil Debris and Vibration Measurements for Intelligent Machine Health Monitoring. Degree awarded by Toledo Univ., May 2002

    Science.gov (United States)

    Dempsey, Paula J.

    2003-01-01

    A diagnostic tool for detecting damage to gears was developed. Two different measurement technologies, oil debris analysis and vibration were integrated into a health monitoring system for detecting surface fatigue pitting damage on gears. This integrated system showed improved detection and decision-making capabilities as compared to using individual measurement technologies. This diagnostic tool was developed and evaluated experimentally by collecting vibration and oil debris data from fatigue tests performed in the NASA Glenn Spur Gear Fatigue Rig. An oil debris sensor and the two vibration algorithms were adapted as the diagnostic tools. An inductance type oil debris sensor was selected for the oil analysis measurement technology. Gear damage data for this type of sensor was limited to data collected in the NASA Glenn test rigs. For this reason, this analysis included development of a parameter for detecting gear pitting damage using this type of sensor. The vibration data was used to calculate two previously available gear vibration diagnostic algorithms. The two vibration algorithms were selected based on their maturity and published success in detecting damage to gears. Oil debris and vibration features were then developed using fuzzy logic analysis techniques, then input into a multi sensor data fusion process. Results show combining the vibration and oil debris measurement technologies improves the detection of pitting damage on spur gears. As a result of this research, this new diagnostic tool has significantly improved detection of gear damage in the NASA Glenn Spur Gear Fatigue Rigs. This research also resulted in several other findings that will improve the development of future health monitoring systems. Oil debris analysis was found to be more reliable than vibration analysis for detecting pitting fatigue failure of gears and is capable of indicating damage progression. Also, some vibration algorithms are as sensitive to operational effects as they

  8. Vibration measurement for evaluating the danger of rock-collapse; Rakuseki kikendo hantei no tame no shindo sokutei

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, T; Harada, H [The Nippon Road Co. Ltd., Tokyo (Japan); Mitsuzuka, T [Chishitsu-Keisoku Co. Ltd., Tokyo (Japan)

    1997-10-22

    Discussions were given on feasibility of a method for investigating a problem of the danger of rock-collapse by applying vibration measurement. The measurement investigation was carried out at a mouth of a tunnel under construction on a highway where the danger of rock-collapse is being investigated according to a qualitative determination criterion. Sixty-four rocks have been evaluated of their danger, with the degree of the danger having been classified to ranks one to three. Vibration measurement was performed on five floating rocks out of the 64 rocks. Vibroscopes were installed on upper portion of the rocks to be investigated and on exposed rocks nearby. The measurement revealed that the vibration has nearly the same amplitude in both of the floating rocks and the settled rocks before and after an automobile has passed, but the floating rocks shake more strongly than the settled rocks while an automobile is passing. This trend appears more noticeably in rocks regarded unstable in the danger determining investigation, indicating presence of close relationship between wave amplitude excited by the automobile and adhesion of the floating rocks. As a result of the discussions, it was made clear that the maximum amplitude ratio and the spectral ratio among the vibration characteristics of the floating rocks can be used as effective determination criteria. 2 refs., 7 figs., 2 tabs.

  9. Research In Diagnosing Bearing Defects From Vibrations

    Science.gov (United States)

    Zoladz, T.; Earhart, E.; Fiorucci, T.

    1995-01-01

    Report describes research in bearing-defect signature analysis - use of vibration-signal analysis to diagnose defects in roller and ball bearings. Experiments performed on bearings in good condition and other bearings in which various parts scratched to provide known defects correlated with vibration signals. Experiments performed on highly instrumented motor-driven rotor assembly at speeds up to 10,050 r/min, using accelerometers, velocity probes, and proximity sensors mounted at various locations on assembly to measure vibrations.

  10. Transverse Beam Halo Measurements at High Intensity Neutrino Source (HINS) using Vibrating Wire Monitor

    Energy Technology Data Exchange (ETDEWEB)

    Chung, M.; Hanna, B.; Scarpine, V.; Shiltsev, V.; Steimel, J.; Artinian, S.; Arutunian, S.

    2015-02-26

    The measurement and control of beam halos will be critical for the applications of future high-intensity hadron linacs. In particular, beam profile monitors require a very high dynamic range when used for the transverse beam halo measurements. In this study, the Vibrating Wire Monitor (VWM) with aperture 60 mm was installed at the High Intensity Neutrino Source (HINS) front-end to measure the transverse beam halo. A vibrating wire is excited at its resonance frequency with the help of a magnetic feedback loop, and the vibrating and sensitive wires are connected through a balanced arm. The sensitive wire is moved into the beam halo region by a stepper motor controlled translational stage. We study the feasibility of the vibrating wire for the transverse beam halo measurements in the low-energy front-end of the proton linac.

  11. Local vibrations and lift performance of low Reynolds number airfoil

    Directory of Open Access Journals (Sweden)

    TariqAmin Khan

    2017-06-01

    Full Text Available The 2D incompressible Navier-Stokes equations are solved based on the finite volume method and dynamic mesh technique is used to carry out partial fluid structure interaction. The local flexible structure (hereinafter termed as flexible structure vibrates in a single mode located on the upper surface of the airfoil. The Influence of vibration frequency and amplitude are examined and the corresponding fluid flow characteristics are investigated which add complexity to the inherent problem in unsteady flow. The study is conducted for flow over NACA0012 airfoil at 600≤Re≤3000 at a low angle of attack. Vibration of flexible structure induces a secondary vortex which modifies the pressure distribution and lift performance of the airfoil. At some moderate vibration amplitude, frequency synchronization or lock-in phenomenon occurs when the vibration frequency is close to the characteristic frequency of rigid airfoil. Evolution and shedding of vortices corresponding to the deformation of flexible structure depends on the Reynolds number. In the case of Re≤1000, the deformation of flexible structure is considered in-phase with the vortex shedding i.e., increasing maximum lift is linked with the positive deformation of flexible structure. At Re=1500 a phase shift of about 1/π exists while they are out-of-phase at Re>1500. Moreover, the oscillation amplitude of lift coefficient increases with increasing vibration amplitude for Re≤1500 while it decreases with increasing vibration amplitude for Re>1500. As a result of frequency lock-in, the average lift coefficient is increased with increasing vibration amplitude for all investigated Reynolds numbers (Re. The maximum increase in the average lift coefficient is 19.72% within the range of investigated parameters.

  12. Magnetostrictive clad steel plates for high-performance vibration energy harvesting

    Science.gov (United States)

    Yang, Zhenjun; Nakajima, Kenya; Onodera, Ryuichi; Tayama, Tsuyoki; Chiba, Daiki; Narita, Fumio

    2018-02-01

    Energy harvesting technology is becoming increasingly important with the appearance of the Internet of things. In this study, a magnetostrictive clad steel plate for harvesting vibration energy was proposed. It comprises a cold-rolled FeCo alloy and cold-rolled steel joined together by thermal diffusion bonding. The performances of the magnetostrictive FeCo clad steel plate and conventional FeCo plate cantilevers were compared under bending vibration; the results indicated that the clad steel plate construct exhibits high voltage and power output compared to a single-plate construct. Finite element analysis of the cantilevers under bending provided insights into the magnetic features of a clad steel plate, which is crucial for its high performance. For comparison, the experimental results of a commercial piezoelectric bimorph cantilever were also reported. In addition, the cold-rolled FeCo and Ni alloys were joined by thermal diffusion bonding, which exhibited outstanding energy harvesting performance. The larger the plate volume, the more the energy generated. The results of this study indicated not only a promising application for the magnetostrictive FeCo clad steel plate as an efficient energy harvester, related to small vibrations, but also the notable feasibility for the formation of integrated units to support high-power trains, automobiles, and electric vehicles.

  13. Vibration-based monitoring for performance evaluation of flexible civil structures in Japan

    Science.gov (United States)

    FUJINO, Yozo

    2018-01-01

    The vibration-based monitoring of flexible civil structures and performance evaluation from this monitoring are reviewed, with an emphasis on research and practice in Japan and the author’s experiences. Some new findings and unexpected vibrations from the monitoring of real bridges and buildings are reported to emphasize the importance of monitoring. Future developments and applications of vibration-based monitoring to civil infrastructure management are also described. Many examples are taken from the author’s past 30 years’ experience of research on bridge dynamics. PMID:29434082

  14. Fault diagnosis and performance monitoring for pumps by means of vibration measurement and pattern recognition

    International Nuclear Information System (INIS)

    Grabner, A.; Weiss, F.P.

    1984-12-01

    In recent years the early detection of malfunctions with noise and vibration analysis techniques has become a more and more important method for increasing availability and safety of various components in technical plants. The possibility of pattern recognition assisted vibration monitoring and its practical realization are demonstrated by failure diagnosis and trend analysis of the condition of large centrifugal pumps in hydraulic circuits. Some problems as, e.g., the finding of dynamic failure models, signal analysis, feature extraction and statistical pattern recognition, which helps automatically to decide whether the pump works normally or not, are discussed in more detail. In the paper it is shown that for various types of machines the chance of success of condition based maintenance can be enhanced by such an automatic vibration monitoring. (author)

  15. Measurement of Mechatronic Property of Biological Gel with Micro-Vibrating Electrode at Ultrasonic Frequency

    Directory of Open Access Journals (Sweden)

    Shigehiro Hashimoto

    2008-10-01

    Full Text Available A measurement system has been designed with a micro-vibrating electrode at ultrasonic frequency to measure local impedance of biological gel in vitro. The designed system consists of two electrodes, where one of the electrodes vibrates with a piezoelectric actuator. The component of variation at impedance between two electrodes with vibration of one electrode is analyzed at the corresponding spectrum. The manufactured system was applied to measure impedance of a physiological saline solution, a potassium chloride solution, a dextran aqueous solution, and an egg. The experimental results show that the designed system is effective to measure local mechatronic property of biological gel.

  16. Vibration measurement on composite material with embedded optical fiber based on phase-OTDR

    Science.gov (United States)

    Franciscangelis, C.; Margulis, W.; Floridia, C.; Rosolem, J. B.; Salgado, F. C.; Nyman, T.; Petersson, M.; Hallander, P.; Hällstrom, S.; Söderquist, I.; Fruett, F.

    2017-04-01

    Distributed sensors based on phase-optical time-domain reflectometry (phase-OTDR) are suitable for aircraft health monitoring due to electromagnetic interference immunity, small dimensions, low weight and flexibility. These features allow the fiber embedment into aircraft structures in a nearly non-intrusive way to measure vibrations along its length. The capability of measuring vibrations on avionics structures is of interest for what concerns the study of material fatigue or the occurrence of undesirable phenomena like flutter. In this work, we employed the phase-OTDR technique to measure vibrations ranging from some dozens of Hz to kHz in two layers of composite material board with embedded polyimide coating 0.24 numerical aperture single-mode optical fiber.

  17. A three-dimensional laser vibration measurement technology realized on five laser beam and its calibration

    Science.gov (United States)

    Li, Lu-Ke; Zhang, Shen-Feng

    2018-03-01

    Put forward a kind of three-dimensional vibration information technology of vibrating object by the mean of five laser beam of He-Ne laser, and with the help of three-way sensor, measure the three-dimensional laser vibration developed by above mentioned technology. The technology based on the Doppler principle of interference and signal demodulation technology, get the vibration information of the object, through the algorithm processing, extract the three-dimensional vibration information of space objects, and can achieve the function of angle calibration of five beam in the space, which avoid the effects of the mechanical installation error, greatly improve the accuracy of measurement. With the help of a & B K4527 contact three axis sensor, measure and calibrate three-dimensional laser vibrometer, which ensure the accuracy of the measurement data. Summarize the advantages and disadvantages of contact and non-contact sensor, and analysis the future development trends of the sensor industry.

  18. Effect of shelf aging on vibration transmissibility of anti-vibration gloves

    Science.gov (United States)

    SHIBATA, Nobuyuki

    2017-01-01

    Anti-vibration gloves have been used in real workplaces to reduce vibration transmitted through hand-held power tools to the hand. Generally materials used for vibration attenuation in gloves are resilient materials composed of certain synthetic and/or composite polymers. The mechanical characteristics of the resilient materials used in anti-vibration gloves are prone to be influenced by environmental conditions such as temperature, humidity, and photo-irradiation, which cause material degradation and aging. This study focused on the influence of shelf aging on the vibration attenuation performance of air-packaged anti-vibration gloves following 2 yr of shelf aging. Effects of shelf aging on the vibration attenuation performance of anti-vibration gloves were examined according to the Japan industrial standard JIS T8114 test protocol. The findings indicate that shelf aging induces the reduction of vibration attenuation performance in air-packaged anti-vibration gloves. PMID:28978817

  19. Vibration measurements at the main gate valves of WWER-440 nuclear power plants

    International Nuclear Information System (INIS)

    Rybak, M.; Matal, O.; Urbanek, M.

    1990-01-01

    The paper summarizes some results of studies concerned with the vibrations of the main gate valves DN 500 during operation of the Dukovany NPP. A diagnostic system for vibration measurements is described. Special attention is paid to the interpretation of the measuring results. Statistical signal analysis is the starting point of deriving parameters for diagostics of impact effects. (author)

  20. Particular aspects regarding the effects of whole body vibration exposure

    Directory of Open Access Journals (Sweden)

    Picu Mihaela

    2018-01-01

    Full Text Available This paper analyses the influence of whole-body vibrations on human performance; for this it was investigated how a group of men (20-29 years of age and a group of woman (21–31 years of age answered to specific requirements after being subjected to vertical vibrations under controlled laboratory conditions for 10-25 min. The vibrations were generated by a vibrant system with known amplitudes and frequencies. Accelerations were measured with NetdB - complex system for measuring and analysing human vibration and they were found in the range 0.4 - 3.1m/s2. The subjects’ performances were determined for each vibration level using specific tests. It can be concluded that exposure to vibrations higher than those recommended by ISO 2631 significantly disrupts how subjects responded to tests requirements.

  1. Clinical studies of the vibration syndrome using a cold stress test measuring finger temperature.

    Science.gov (United States)

    Gautherie, M

    1995-01-01

    Since nine years multicentre, transversal and longitudinal clinical studies on hand-arm, vibration-exposed patients are being performed in cooperation with French occupational medicine centers and social security institutions. These studies are based upon current clinical assessment and standardized, temperature-measuring cooling tests. Data acquisition uses a portable, 10-channel, micro-processor-based temperature recorder and miniature thermal sensors. Temperature is monitored at the ten finger tips continuously, before, during and after a cold stress performed in strictly controlled conditions. Data from examinations performed at outlying sites are transferred through the telephonic network to a central processing unit. Data analysis uses a specific, expert-type software procedure based upon previous clinical studies on (i) 238 "normal" subjects, and (ii) 3,046 patients with vascular disturbances of the upper extremities of various etiologies. This procedure includes a staging process which assigns each finger a class representing the degree of severity of the abnormalities of response to cold ("dysthermia") related to vascular disorders. All data processing is fully automatic and results in a printed examination report. To date, over 1,623 vibration-exposed forestry, building and mechanical workers were examined. Sixty-three per cent of patients had received high dose of vibration (daily use of chain saws, air hammers, ballast tampers over many years). Typical white finger attacks or only neurological symptoms were found in 36% and 23% of patients respectively. The rate of sever dysthermia was much higher in patients with white finger attacks (83%) than in patients without (32%). In 90% of the vibration-exposed patients, the severity of dysthermia has differed greatly from one finger to another and between hands, while in non-exposed patients with primary Raynaud syndrome the dysthermia are generally similar for all fingers but the thumbs. Of 208 forestry

  2. Blind identification of full-field vibration modes of output-only structures from uniformly-sampled, possibly temporally-aliased (sub-Nyquist), video measurements

    Science.gov (United States)

    Yang, Yongchao; Dorn, Charles; Mancini, Tyler; Talken, Zachary; Nagarajaiah, Satish; Kenyon, Garrett; Farrar, Charles; Mascareñas, David

    2017-03-01

    Enhancing the spatial and temporal resolution of vibration measurements and modal analysis could significantly benefit dynamic modelling, analysis, and health monitoring of structures. For example, spatially high-density mode shapes are critical for accurate vibration-based damage localization. In experimental or operational modal analysis, higher (frequency) modes, which may be outside the frequency range of the measurement, contain local structural features that can improve damage localization as well as the construction and updating of the modal-based dynamic model of the structure. In general, the resolution of vibration measurements can be increased by enhanced hardware. Traditional vibration measurement sensors such as accelerometers have high-frequency sampling capacity; however, they are discrete point-wise sensors only providing sparse, low spatial sensing resolution measurements, while dense deployment to achieve high spatial resolution is expensive and results in the mass-loading effect and modification of structure's surface. Non-contact measurement methods such as scanning laser vibrometers provide high spatial and temporal resolution sensing capacity; however, they make measurements sequentially that requires considerable acquisition time. As an alternative non-contact method, digital video cameras are relatively low-cost, agile, and provide high spatial resolution, simultaneous, measurements. Combined with vision based algorithms (e.g., image correlation or template matching, optical flow, etc.), video camera based measurements have been successfully used for experimental and operational vibration measurement and subsequent modal analysis. However, the sampling frequency of most affordable digital cameras is limited to 30-60 Hz, while high-speed cameras for higher frequency vibration measurements are extremely costly. This work develops a computational algorithm capable of performing vibration measurement at a uniform sampling frequency lower than

  3. Researches Concerning to Minimize Vibrations when Processing Normal Lathe

    Directory of Open Access Journals (Sweden)

    Lenuța Cîndea

    2015-09-01

    Full Text Available In the cutting process, vibration is inevitable appearance, and in situations where the amplitude exceeds the limits of precision dimensional and shape of the surfaces generated vibrator phenomenon is detrimental.Field vibration is an issue of increasingly developed, so the futures will a better understanding of them and their use even in other sectors.The paper developed experimental measurement of vibrations at the lathe machining normal. The scheme described kinematical machine tool, cutting tool, cutting conditions, presenting experimental facility for measuring vibration occurring at turning. Experimental results have followed measurement of amplitude, which occurs during interior turning the knife without silencer incorporated. The tests were performed continuously for different speed, feed and depth of cut.

  4. Customized DSP-based vibration measurement for wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    LaWhite, N.E.; Cohn, K.E. [Second Wind Inc., Somerville, MA (United States)

    1996-12-31

    As part of its Advanced Distributed Monitoring System (ADMS) project funded by NREL, Second Wind Inc. is developing a new vibration measurement system for use with wind turbines. The system uses low-cost accelerometers originally designed for automobile airbag crash-detection coupled with new software executed on a Digital Signal Processor (DSP) device. The system is envisioned as a means to monitor the mechanical {open_quotes}health{close_quotes} of the wind turbine over its lifetime. In addition the system holds promise as a customized emergency vibration detector. The two goals are very different and it is expected that different software programs will be executed for each function. While a fast Fourier transform (FFT) signature under given operating conditions can yield much information regarding turbine condition, the sampling period and processing requirements make it inappropriate for emergency condition monitoring. This paper briefly reviews the development of prototype DSP and accelerometer hardware. More importantly, it reviews our work to design prototype vibration alarm filters. Two-axis accelerometer test data from the experimental FloWind vertical axis wind turbine is analyzed and used as a development guide. Two levels of signal processing are considered. The first uses narrow band pre-processing filters at key fundamental frequencies such as the 1P, 2P and 3P. The total vibration energy in each frequency band is calculated and evaluated as a possible alarm trigger. In the second level of signal processing, the total vibration energy in each frequency band is further decomposed using the two-axis directional information. Directional statistics are calculated to differentiate between linear translations and circular translations. After analyzing the acceleration statistics for normal and unusual operating conditions, the acceleration processing system described could be used in automatic early detection of fault conditions. 9 figs.

  5. Low-cost vibration sensor based on dual fiber Bragg gratings and light intensity measurement.

    Science.gov (United States)

    Gao, Xueqing; Wang, Yongjiao; Yuan, Bo; Yuan, Yinquan; Dai, Yawen; Xu, Gang

    2013-09-20

    A vibration monitoring system based on light intensity measurement has been constructed, and the designed accelerometer is based on steel cantilever frame and dual fiber Bragg gratings (FBGs). By using numerical simulations for the dual FBGs, the dependence relationship of the area of main lobes on the difference of initial central wavelengths is obtained and the most optimal choice for the initial value and the vibration amplitude of the difference of central wavelengths of two FBGs is suggested. The vibration monitoring experiments are finished, and the measured data are identical to the simulated results.

  6. A nanogenerator as a self-powered sensor for measuring the vibration spectrum of a drum membrane

    Science.gov (United States)

    Yu, Aifang; Zhao, Yong; Jiang, Peng; Wang, Zhong Lin

    2013-02-01

    A nanogenerator (NG) is a device that converts vibration energy into electricity. Here, a flexible, small size and lightweight NG is successfully demonstrated as an active sensor for detecting the vibration spectrum of a drum membrane without the use of an external power source. The output current/voltage signal of the NG is a direct measure of the strain of the local vibrating drum membrane that contains rich informational content, such as, notably, the vibration frequency, vibration speed and vibration amplitude. In comparison to the laser vibrometer, which is excessively complex and expensive, this kind of small and low cost sensor based on an NG is also capable of detecting the local vibration frequency of a drum membrane accurately. A spatial arrangement of the NGs on the membrane can provide position-dependent vibration information on the surface. The measured frequency spectrum can be understood on the basis of the theoretically calculated vibration modes. This work expands the application of NGs and reveals the potential for developing sound wave detection, environmental/infrastructure monitoring and many more applications.

  7. External vibrations measurement of reactor components

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, S A [Nuclear Electric plc, Barnwood (United Kingdom); Sugden, J [Magnox Electric, Berkeley (United Kingdom)

    1997-12-31

    The paper outlines the use of External Vibration Monitoring for remote vibration assessment of internal reactor components. The main features of the technique are illustrated by a detailed examination of the specific application to the problem of Heysham 2 Fuel Plug Unit monitoring. (author). 6 figs.

  8. The vibration compensation system for ARGOS

    Science.gov (United States)

    Peter, D.; Gaessler, W.; Borelli, J.; Kulas, M.

    2011-09-01

    For every adaptive optics system telescope vibrations can strongly reduce the performance. This is true for the receiver part of the system i.e. the telescope and wave front sensor part as well as for the transmitter part in the case of a laser guide star system. Especially observations in deep fields observed with a laser guide star system without any tip-tilt star will be greatly spoiled by telescope vibrations. The ARGOS GLAO system actually being built for the LBT aims to implement this kind of mode where wave front correction will rely purely on signals from the laser beacons. To remove the vibrations from the uplink path a vibration compensation system will be installed. This system uses accelerometers to measure the vibrations and corrects their effect with a small fast tip-tilt mirror. The controller of the system is built based on the assumption that the vibrations take place at a few distinct frequencies. Here I present a lab set-up of this system and show first results of the performance.

  9. Correlating the vibrational spectra of structurally related molecules: A spectroscopic measure of similarity.

    Science.gov (United States)

    Tao, Yunwen; Zou, Wenli; Cremer, Dieter; Kraka, Elfi

    2018-03-05

    Using catastrophe theory and the concept of a mutation path, an algorithm is developed that leads to the direct correlation of the normal vibrational modes of two structurally related molecules. The mutation path is defined by weighted incremental changes in mass and geometry of the molecules in question, which are successively applied to mutate a molecule into a structurally related molecule and thus continuously converting their normal vibrational spectra from one into the other. Correlation diagrams are generated that accurately relate the normal vibrational modes to each other by utilizing mode-mode overlap criteria and resolving allowed and avoided crossings of vibrational eigenstates. The limitations of normal mode correlation, however, foster the correlation of local vibrational modes, which offer a novel vibrational measure of similarity. It will be shown how this will open new avenues for chemical studies. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  10. Monitoring of Rotor-Stator Interaction in Pump-Turbine Using Vibrations Measured with On-Board Sensors Rotating with Shaft

    Directory of Open Access Journals (Sweden)

    Cristian G. Rodriguez

    2014-01-01

    Full Text Available Current trends in design of pump-turbines have led into higher rotor-stator interaction (RSI loads over impeller-runner. These dynamic loads are of special interest having produced catastrophic failures in pump-turbines. Determining RSI characteristics facilitates the proposal of actions that will prevent these failures. Pressure measurements all around the perimeter of the impeller-runner are appropriate to monitor and detect RSI characteristics. Unfortunately most installed pump-turbines are not manufactured with in-built pressure sensors in appropriate positions to monitor RSI. For this reason, vibration measurements are the preferred method to monitor RSI in industry. Usually vibrations are measured in two perpendicular radial directions in bearings where valuable information could be lost due to bearing response. In this work, in order to avoid the effect of bearing response on measurement, two vibration sensors are installed rotating with the shaft. The RSI characteristics obtained with pressure measurements were compared to those determined using vibration measurements. The RSI characteristics obtained with pressure measurements were also determined using vibrations measured rotating with shaft. These RSI characteristics were not possible to be determined using the vibrations measured in guide bearing. Finally, it is recommended to measure vibrations rotating with shaft to detect RSI characteristics in installed pump-turbines as a more practical and reliable method to monitor RSI characteristics.

  11. Measurement of Piezoelectric Transformer Vibrations by Digital Holography

    Czech Academy of Sciences Publication Activity Database

    Psota, Pavel; Lédl, Vít; Doleček, Roman; Erhart, J.; Kopecký, V.

    2014-01-01

    Roč. 59, č. 9 (2014), s. 1962-1968 ISSN 0885-3010 R&D Projects: GA MŠk(CZ) ED2.1.00/03.0079 Institutional support: RVO:61389021 Keywords : digital holographic * ime-averaged holographic * small amplitude * vibrations amplitude measurement * piezoelectric transformer s Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.512, year: 2014

  12. Handbook Of Noise And Vibration

    International Nuclear Information System (INIS)

    1995-12-01

    This book is about noise and vibration. The first chapter has explanations of noise such as basic of sound, influence of noise, assessment of noise, measurement of prevention of noise and technology, case of noise measurement and soundproof. The second chapter describes vibration with outline, theory of vibration, interpretation of vibration, measurement for reduction of vibration, case of design of protection against vibration. It deals with related regulation and method of measurement.

  13. Prototype vibration measurement program for reactor internals (177-fuel assembly plant). Supplement 1

    International Nuclear Information System (INIS)

    Simonis, J.C.; Post, R.C.; Thoren, D.E.

    1976-08-01

    The surveillance specimen holder tubes installed in the Babcock and Wilcox 177-fuel assembly plants have been redesigned. The structural adequacy of this design has been verified through extensive analysis. The design adequacy will be further confirmed by measuring the vibrational response of the surveillance specimen holder tube during normal and transient flow operation. This report describes the vibration measurement program that will be conducted at Toledo Edison's Davis Besse 1 site

  14. Overhead traveling crane vibration research using experimental wireless measuring system

    Directory of Open Access Journals (Sweden)

    Tomasz HANISZEWSKI

    2013-01-01

    Full Text Available The paper contains an operations and constructions description of theexperimental wireless measuring system for measuring accelerations in bridge cranes,based on PHIDGET 1056 sensors. Developed experimental research and measuringmethodology allows the use of the proposed wireless system on other cranesconstructions. The paper also shows examples of the results of vibration measurementsand FFT spectra, obtained on the basis of accelerations measurements.

  15. Using Euler buckling springs for vibration isolation

    CERN Document Server

    Winterflood, J; Blair, D G

    2002-01-01

    Difficulties in obtaining ideal vertical vibration isolation with mechanical springs are identified as being due to the mass of the elastic element which is in turn due to its energy storage requirement. A new technique to minimize this energy is presented - being an Euler column undergoing elastic buckling. The design of a high performance vertical vibration isolation stage based on this technique is presented together with its measured performance.

  16. Using Euler buckling springs for vibration isolation

    International Nuclear Information System (INIS)

    Winterflood, J; Barber, T; Blair, D G

    2002-01-01

    Difficulties in obtaining ideal vertical vibration isolation with mechanical springs are identified as being due to the mass of the elastic element which is in turn due to its energy storage requirement. A new technique to minimize this energy is presented - being an Euler column undergoing elastic buckling. The design of a high performance vertical vibration isolation stage based on this technique is presented together with its measured performance

  17. Real-time micro-vibration multi-spot synchronous measurement within a region based on heterodyne interference

    Science.gov (United States)

    Lan, Ma; Xiao, Wen; Chen, Zonghui; Hao, Hongliang; Pan, Feng

    2018-01-01

    Real-time micro-vibration measurement is widely used in engineering applications. It is very difficult for traditional optical detection methods to achieve real-time need in a relatively high frequency and multi-spot synchronous measurement of a region at the same time,especially at the nanoscale. Based on the method of heterodyne interference, an experimental system of real-time measurement of micro - vibration is constructed to satisfy the demand in engineering applications. The vibration response signal is measured by combing optical heterodyne interferometry and a high-speed CMOS-DVR image acquisition system. Then, by extracting and processing multiple pixels at the same time, four digital demodulation technique are implemented to simultaneously acquire the vibrating velocity of the target from the recorded sequences of images. Different kinds of demodulation algorithms are analyzed and the results show that these four demodulation algorithms are suitable for different interference signals. Both autocorrelation algorithm and cross-correlation algorithm meet the needs of real-time measurements. The autocorrelation algorithm demodulates the frequency more accurately, while the cross-correlation algorithm is more accurate in solving the amplitude.

  18. Robust, accurate, and non-contacting vibration measurement systems: Summary of comparison measurements of the robust laser interferometer and typical accelerometer systems. Volume 1

    International Nuclear Information System (INIS)

    Goodenow, T.C.; Shipman, R.L.; Holland, H.M.

    1995-06-01

    Epoch Engineering, Incorporated (EEI) has completed a series of vibration measurements comparing their newly-developed Robust Laser Interferometer (RLI) with accelerometer-based instrumentation systems. EEI has successfully demonstrated, on several pieces of commonplace machinery, that non-contact, line-of-sight measurements are practical and yield results equal to or, in some cases, better than customary field implementations of accelerometers. The demonstration included analysis and comparison of such phenomena as nonlinearity, transverse sensitivity, harmonics, and signal-to-noise ratio. Fast Fourier Transformations were performed on the accelerometer and the laser system outputs to provide a comparison basis. The RLI was demonstrated, within the limits of the task, to be a viable, line-of-sight, non-contact alternative to accelerometer systems. Several different kinds of machinery were instrumented and compared, including a small pump, a gear-driven cement mixer, a rotor kit, and two small fans. Known machinery vibration sources were verified and RLI system output file formats were verified to be compatible with commercial computer programs used for vibration monitoring and trend analysis. The RLI was also observed to be less subject to electromagnetic interference (EMI) and more capable at very low frequencies

  19. A novel vibration-based fault diagnostic algorithm for gearboxes under speed fluctuations without rotational speed measurement

    Science.gov (United States)

    Hong, Liu; Qu, Yongzhi; Dhupia, Jaspreet Singh; Sheng, Shuangwen; Tan, Yuegang; Zhou, Zude

    2017-09-01

    The localized failures of gears introduce cyclic-transient impulses in the measured gearbox vibration signals. These impulses are usually identified from the sidebands around gear-mesh harmonics through the spectral analysis of cyclo-stationary signals. However, in practice, several high-powered applications of gearboxes like wind turbines are intrinsically characterized by nonstationary processes that blur the measured vibration spectra of a gearbox and deteriorate the efficacy of spectral diagnostic methods. Although order-tracking techniques have been proposed to improve the performance of spectral diagnosis for nonstationary signals measured in such applications, the required hardware for the measurement of rotational speed of these machines is often unavailable in industrial settings. Moreover, existing tacho-less order-tracking approaches are usually limited by the high time-frequency resolution requirement, which is a prerequisite for the precise estimation of the instantaneous frequency. To address such issues, a novel fault-signature enhancement algorithm is proposed that can alleviate the spectral smearing without the need of rotational speed measurement. This proposed tacho-less diagnostic technique resamples the measured acceleration signal of the gearbox based on the optimal warping path evaluated from the fast dynamic time-warping algorithm, which aligns a filtered shaft rotational harmonic signal with respect to a reference signal assuming a constant shaft rotational speed estimated from the approximation of operational speed. The effectiveness of this method is validated using both simulated signals from a fixed-axis gear pair under nonstationary conditions and experimental measurements from a 750-kW planetary wind turbine gearbox on a dynamometer test rig. The results demonstrate that the proposed algorithm can identify fault information from typical gearbox vibration measurements carried out in a resource-constrained industrial environment.

  20. Whole-body vibration training effects on the physical performance of basketball players.

    Science.gov (United States)

    Colson, Serge S; Pensini, Manuela; Espinosa, Julien; Garrandes, Frederic; Legros, Patrick

    2010-04-01

    The aim of this study was to investigate the influence of 4 weeks of whole-body vibration training added to the conventional training of basketball players. Eighteen competitive basketball players (13 male symbol, 5 female symbol, 18-24 years old) were randomly assigned to a whole-body vibration group (WBVG, n = 10; 7 male symbol and 3 female symbol) or a control group (CG, n = 8; 6 male symbol and 2 female symbol). During the 4-week period, all subjects maintained their conventional basketball training program. The members of WBVG were additionally trained 3 times a week for 20 minutes on a vibration platform (10 unloaded static lower limb exercises, 40-Hz, 4-mm, Silverplate). Testing was performed before and after the 4-week period and comprised strength assessment, vertical jump performance, and a 10-m sprint test. The maximal voluntary isometric strength of the knee extensors significantly increased (p training, as did squat jump (SJ) height (p training program added to the conventional training of basketball players during the preseason is an effective short-term stimulus to enhance knee extensor strength and slightly SJ performance.

  1. Vibration-based Energy Harvesting Systems Characterization Using Automated Electronic Equipment

    Directory of Open Access Journals (Sweden)

    Ioannis KOSMADAKIS

    2015-04-01

    Full Text Available A measurement bench has been developed to fully automate the procedure for the characterization of a vibration-based energy scavenging system. The measurement system is capable of monitoring all important characteristics of a vibration harvesting system (input and output voltage, current, and other parameters, frequency and acceleration values, etc.. It is composed of a PC, typical digital measuring instruments (oscilloscope, waveform generator, etc., certain sensors and actuators, along with a microcontroller based automation module. The automation of the procedure and the manipulation of the acquired data are performed by LabVIEW software. Typical measurements of a system consisting of a vibrating source, a vibration transducer and an active rectifier are presented.

  2. Measurement of 3-D Vibrational Motion by Dynamic Photogrammetry Using Least-Square Image Matching for Sub-Pixel Targeting to Improve Accuracy

    Science.gov (United States)

    Lee, Hyoseong; Rhee, Huinam; Oh, Jae Hong; Park, Jin Ho

    2016-01-01

    This paper deals with an improved methodology to measure three-dimensional dynamic displacements of a structure by digital close-range photogrammetry. A series of stereo images of a vibrating structure installed with targets are taken at specified intervals by using two daily-use cameras. A new methodology is proposed to accurately trace the spatial displacement of each target in three-dimensional space. This method combines the correlation and the least-square image matching so that the sub-pixel targeting can be obtained to increase the measurement accuracy. Collinearity and space resection theory are used to determine the interior and exterior orientation parameters. To verify the proposed method, experiments have been performed to measure displacements of a cantilevered beam excited by an electrodynamic shaker, which is vibrating in a complex configuration with mixed bending and torsional motions simultaneously with multiple frequencies. The results by the present method showed good agreement with the measurement by two laser displacement sensors. The proposed methodology only requires inexpensive daily-use cameras, and can remotely detect the dynamic displacement of a structure vibrating in a complex three-dimensional defection shape up to sub-pixel accuracy. It has abundant potential applications to various fields, e.g., remote vibration monitoring of an inaccessible or dangerous facility. PMID:26978366

  3. Vibration test report on the instrumented capsule for fuel irradiation test

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Jeong Soo; Yoon, D. B.; Wu, J. S.; Oh, J. M.; Park, S. J.; Cho, M. S.; Kim, B. G.; Kang, Y. W

    2003-01-01

    The fluid-induced vibration level of instrumented capsule, which was manufactured for fuel irradiation test at the reactor core of HANARO, was investigated. For this purpose, the instrumented capsule was loaded at the OR site of the HANARO design verification test facility that could simulate identical flow condition as the HANARO core. Then, vibration signals of the instrumented capsule subjected to various flow conditions were measured by using vibration sensors. In time domain analysis, maximum amplitudes and RMS values of the measured acceleration and displacement signals were obtained. By using frequency domain analysis, frequency components of the fluid-induced vibration were analyzed. In addition, natural frequencies of the instrumented capsule were obtained by performing modal test. The frequency analysis results showed that the natural frequency components near 7.5Hz and 17.5Hz were dominant in the fluid-induced vibration signal. The maximum amplitude of the accelerations was measured as 12.04m/s{sup 2} that is within the allowable vibrational limit(18.99m/s{sup 2})of the reactor structure. Also, the maximum displacement amplitude was calculated as 0.191mm. Since these vibration levels are remarkably low, excessive vibration is not expected when the irradiation test of the instrumented capsule is performed at the HANARO core.

  4. Risk assessment of exposure to mechanical vibrations: comparison between field measurements and use of databases

    International Nuclear Information System (INIS)

    Monica, L.; Nataletti, P.; Vignali, G.

    2008-01-01

    Despite continuous technological progress with a view to guaranteeing workers' safety and health, there are still many hazardous situations to workers' health when using industrial equipment; exposure to mechanical vibrations may definitely be included among these situations. Many researches have shown that the widespread use of various vibrating tools in the industrial, agricultural and forestry fields, such as vehicles and machinery in the workplace, are a source of vibration disorders or the worsening of pre-existing symptoms.The aim of this paper is to present a comparison between the two types of risk assessment currently provided for by the law: direct field measurements and database support. We will identify the advantages and operational limitations involved in the use of databases through the results of direct field measurements assessing the risk derived from vibrations in a typical engineering company in the mineral waters and beverages industry. As a result, this research can represent a functional reference for risk assessments of vibration exposure in individual companies

  5. Damage diagnostic of localized impact erosion by measuring acoustic vibration

    International Nuclear Information System (INIS)

    Futakawa, Masatoshi; Kogawa, Hiroyuki; Ikeda, Yujiro

    2004-01-01

    High power spallation targets for neutron sources are being developed in the world. Mercury target will be installed at the material and life science facility in J-PARC, which will promote innovative science. The mercury target is subject to the pressure wave caused by the proton bombarding mercury. The pressure wave propagation induces the cavitation in mercury that imposes localized impact erosion damage on the target vessel. The impact erosion is a critical issue to decide the lifetime of the target. The electric Magnetic IMpact Testing Machine, MIMTM, was developed to produce the localized impact erosion damage and evaluate the damage formation. Acoustic vibration measurement was carried out to investigate the correlation between the erosion damage and the damage potential derived from acoustic vibration. It was confirmed that the damage potential related with acoustic vibration is useful to predict the damage due to the localized impact erosion and to diagnose the structural integrity. (author)

  6. Comparison of whole-body vibration exercise and plyometric exercise to improve isokinetic muscular strength, jumping performance and balance of female volleyball players

    OpenAIRE

    Kim, Yong-Youn; Park, Si-Eun

    2016-01-01

    [Purpose] The purpose of this study was to assess the effect of whole-body vibration exercise and plyometric exercise on female volleyball players. [Subjects and Methods] Subjects were randomly allocated to two exercise groups (whole-body vibration exercise group and plyometric exercise group). The exercise was conducted three times each week for 8 weeks. Isokinetic muscular strength, jumping performance, and balance were measured before starting the exercise and after finishing the 8 weeks o...

  7. Comparing the performance-enhancing effects of squats on a vibration platform with conventional squats in recreationally resistance-trained men.

    Science.gov (United States)

    Rønnestad, Bent R

    2004-11-01

    The purpose of this investigation was to compare the performance-enhancing effects of squats on a vibration platform with conventional squats in recreationally resistance-trained men. The subjects were 14 recreationally resistance-trained men (age, 21-40 years) and the intervention period consisted of 5 weeks. After the initial testing, subjects were randomly assigned to either the "squat whole body vibration" (SWBV) group (n = 7), which performed squats on a vibration platform on a Smith Machine, or the "squat"(S) group (n = 7), which performed conventional squats with no vibrations on a Smith Machine. Testing was performed at the beginning and the end of the study and consisted of 1 repetition maximum (1RM) in squat and maximum jump height in countermovement jump (CMJ). A modified daily undulating periodization program was used during the intervention period in both groups. Both groups trained at the same percentage of 1RM in squats (6-10RM). After the intervention, CMJ performance increased significantly only in the SWBV (p squats (p squats performed on a vibration platform compared with squats without vibrations regarding maximal strength and explosive power as long as the external load is similar in recreationally resistance-trained men.

  8. Videometrics-based Detection of Vibration Linearity in MEMS Gyroscope

    Directory of Open Access Journals (Sweden)

    Yong Zhou

    2011-05-01

    Full Text Available MEMS gyroscope performs as a sort of sensor to detect angular velocity, with diverse applications in engineering including vehicle and intelligent traffic etc. A balanced vibration of driving module excited by electrostatic driving signal is the base MEMS gyroscope's performance. In order to analyze the linear property of vibration in MEMS Gyroscope, a method of computer vision measuring is applied with the help of high-speed vidicon to obtain video of linear vibration of driving module in gyroscope, under the driving voltage signal of inherent frequency and amplitude linearly increasing. By means of image processing, target identifying, and motion parameter extracting from the obtained video, vibration curve with time variation is acquired. And then, linearity of this vibration system can be analyzed by focusing on the amplitude value of vibration responding to the amplitude variation of driving voltage signal.

  9. Measuring body layer vibration of vocal folds by high-frame-rate ultrasound synchronized with a modified electroglottograph.

    Science.gov (United States)

    Tang, Shanshan; Zhang, Yuanyuan; Qin, Xulei; Wang, Supin; Wan, Mingxi

    2013-07-01

    The body-cover concept suggests that the vibration of body layer is an indispensable component of vocal fold vibration. To quantify this vibration, a synchronized system composed of a high-frame-rate ultrasound and a modified electroglottograph (EGG) was employed in this paper to simultaneously image the body layer vibration and record the vocal fold vibration phase information during natural phonations. After data acquisition, the displacements of in vivo body layer vibrations were measured from the ultrasonic radio frequency data, and the temporal reconstruction method was used to enhance the measurement accuracy. Results showed that the modified EGG, the waveform and characteristic points of which were identical to the conventional EGG, resolved the position conflict between the ultrasound transducer and EGG electrodes. The location and range of the vibrating body layer in the estimated displacement image were more clear and discernible than in the ultrasonic B-mode image. Quantitative analysis for vibration features of the body layer demonstrated that the body layer moved as a unit in the superior-inferior direction during the phonation of normal chest registers.

  10. Man-Induced Vibrations

    DEFF Research Database (Denmark)

    Jönsson, Jeppe; Hansen, Lars Pilegaard

    1994-01-01

    work has been done on the measurement of the exact load functions and related reponse analysis. A recent work using a spectral description has been performed by Per-Erik Erikson and includes a good literature survey. Bachmann and Ammann give a good overview of vibrations caused by human activity. Other...

  11. Micro-Vibration Performance Prediction of SEPTA24 Using SMeSim (RUAG Space Mechanism Simulator Tool)

    Science.gov (United States)

    Omiciuolo, Manolo; Lang, Andreas; Wismer, Stefan; Barth, Stephan; Szekely, Gerhard

    2013-09-01

    Scientific space missions are currently challenging the performances of their payloads. The performances can be dramatically restricted by micro-vibration loads generated by any moving parts of the satellites, thus by Solar Array Drive Assemblies too. Micro-vibration prediction of SADAs is therefore very important to support their design and optimization in the early stages of a programme. The Space Mechanism Simulator (SMeSim) tool, developed by RUAG, enhances the capability of analysing the micro-vibration emissivity of a Solar Array Drive Assembly (SADA) under a specified set of boundary conditions. The tool is developed in the Matlab/Simulink® environment throughout a library of blocks simulating the different components a SADA is made of. The modular architecture of the blocks, assembled by the user, and the set up of the boundary conditions allow time-domain and frequency-domain analyses of a rigid multi-body model with concentrated flexibilities and coupled- electronic control of the mechanism. SMeSim is used to model the SEPTA24 Solar Array Drive Mechanism and predict its micro-vibration emissivity. SMeSim and the return of experience earned throughout its development and use can now support activities like verification by analysis of micro-vibration emissivity requirements and/or design optimization to minimize the micro- vibration emissivity of a SADA.

  12. Honeybee Colony Vibrational Measurements to Highlight the Brood Cycle.

    Directory of Open Access Journals (Sweden)

    Martin Bencsik

    Full Text Available Insect pollination is of great importance to crop production worldwide and honey bees are amongst its chief facilitators. Because of the decline of managed colonies, the use of sensor technology is growing in popularity and it is of interest to develop new methods which can more accurately and less invasively assess honey bee colony status. Our approach is to use accelerometers to measure vibrations in order to provide information on colony activity and development. The accelerometers provide amplitude and frequency information which is recorded every three minutes and analysed for night time only. Vibrational data were validated by comparison to visual inspection data, particularly the brood development. We show a strong correlation between vibrational amplitude data and the brood cycle in the vicinity of the sensor. We have further explored the minimum data that is required, when frequency information is also included, to accurately predict the current point in the brood cycle. Such a technique should enable beekeepers to reduce the frequency with which visual inspections are required, reducing the stress this places on the colony and saving the beekeeper time.

  13. Prevalence of Hand-transmitted Vibration Exposure among Grass-cutting Workers using Objective and Subjective Measures

    Science.gov (United States)

    Azmir, N. A.; Yahya, M. N.

    2017-01-01

    Extended exposure to hand-transmitted vibration from vibrating machine is associated with an increased occurrence of symptoms of occupational disease related to hand disorder. The present case study is to determine the prevalence and correlation of significant subjective as well as objective variables that induce to hand arm vibration syndrome (HAVS) among hand-held grass-cutting workers in Malaysia. Thus, recommendations are made for grass-cutting workers and grass maintenance service management based on findings. A cross sectional study using adopted subjective Hand Arm Vibration Exposure Risk Assessment (HAVERA) questionnaire from Vibration Injury Network on hand disorder signs and symptoms was distributed to a sample of one hundred and sixty eight male workers from grass and turf maintenance industry that use vibrating machine as part of their work. For objective measure, hand-transmitted vibration measurement was collected on site during operation by the following ISO 5349-1, 2001. Two groups were identified in this research comprising of high exposure group and low-moderate exposure group. Workers also gave information about their personal identification, social history, workers’ health, occupational history and machine safety inspection. There was positive HAVS symptoms relationship between the low-moderate exposure group and high exposure group among hand-held grass-cutting workers. The prevalence ratio (PR) was considered high for experiencing white colour change at fingers and fingers go numb which are 3.63 (1.41 to 9.39) and 4.24 (2.18 to 8.27), respectively. The estimated daily vibration exposure, A(8) differs between 2.1 to 20.7 ms-2 for right hand while 2.7 to 29.1 ms-2 for left hand. The subjects claimed that the feel of numbness at left hand is much stronger compared to right hand. The results suggest that HAVS is diagnosed in Malaysia especially in agriculture sector. The A(8) indicates that the exposure value is more than exposure limit value

  14. Construction of a Vibration Monitoring System for HANARO's Rotating Machinery and Analysis of Pump Vibration Signals

    International Nuclear Information System (INIS)

    Ryu, Jeong Soo; Yoon, Doo Byung

    2005-01-01

    HANARO is an open-tank-in-pool type research reactor with a thermal power of 30MW. In order to remove the heat generated by the reactor core and the reflector vessel, primary cooling pumps and reflector cooling pumps circulate coolant. These pumps are installed at the RCI(Reactor Concrete Island) which is covered by heavy concrete hatches. For the prevention of an abnormal operation of these pumps in the RCI, it is necessary to construct a vibration monitoring system that provides an alarm signal to the reactor control room when the rotating speed or the vibration level exceeds the allowable limit. The first objective of this work is to construct a vibration monitoring system for HANARO's rotating machinery. The second objective is to verify the possibility of condition monitoring of the rotating machinery. To construct a vibration monitoring system, as a first step, the standards and references related to the vibration monitoring system were investigated. In addition, to determine the number and the location of sensors that can effectively characterize the overall vibration of a pump, the vibration of the primary cooling pumps and the reflector cooling pumps were measured. Based on these results, detailed construction plans for the vibration monitoring system for HANARO were established. Then, in accordance with the construction plans, the vibration monitoring system for HANARO's rotating machinery was manufactured and installed at HANARO. To achieve the second objective, FFT analysis and bearing fault detection of the measured vibration signals were performed. The analysis results demonstrate that the accelerometers mounted at the bearing locations of the pumps can effectively monitor the pump condition

  15. Smartphones as experimental tools to measure acoustical and mechanical properties of vibrating rods

    Science.gov (United States)

    González, Manuel Á.; González, Miguel Á.

    2016-07-01

    Modern smartphones have calculation and sensor capabilities that make them suitable for use as versatile and reliable measurement devices in simple teaching experiments. In this work a smartphone is used, together with low cost materials, in an experiment to measure the frequencies emitted by vibrating rods of different materials, shapes and lengths. The results obtained with the smartphone have been compared with theoretical calculations and the agreement is good. Alternatively, physics students can perform the experiment described here and use their results to determine the dependencies of the obtained frequencies on the rod characteristics. In this way they will also practice research methods that they will probably use in their professional life.

  16. Response of APS storage ring basemat to ambient vibration

    International Nuclear Information System (INIS)

    Jendrzejczyk, J.A.; Wambsganss, M.W.; Smith, R.K.

    1992-08-01

    The storage ring of the Advanced Photon Source (APS) facility at Argonne is very sensitive to vibration. Large vibration amplitudes would result in degraded machine performance. Because the storage ring assembly is supported on the storage ring basemat, the dynamics of the basemat are critical to successful operation. Before construction began, a survey of site ground vibration indicated that the site was acceptable from a vibration standpoint. When construction of the linear accelerator (Linac) floor slab and shielding walls was completed, dynamic-response measurements were conducted. The slab/wall system showed attenuation of soilborne vibrations in the horizontal directions, but an amplification (approximately a factor of 1.5) of vertical vibration at a frequency of 7.7 Hz. Vibration response of the slab/wall system at all other frequencies showed attenuation of soilborne vibrations. Dynamic-response measurements were also conducted on an incomplete section of the storage ring basemat. Although this section was not prototypical, results were similar to those of the Linac floor in the horizontal direction, showing large damping and attenuation of horizontal soilborne vibrations. While the basemat followed the soil vibration in the vertical direction, no large amplification was observed. However, measured vertical amplitudes on the basemat were a function of location, indicating a modal response. A series of vibration response measurements was conducted on a completed section of the storage ring basemat/tunnel adjacent and to the west of the Early Assembly Area (EAA) on May 21, 1992, and is the subject of this report

  17. Discrete time interval measurement system: fundamentals, resolution and errors in the measurement of angular vibrations

    International Nuclear Information System (INIS)

    Gómez de León, F C; Meroño Pérez, P A

    2010-01-01

    The traditional method for measuring the velocity and the angular vibration in the shaft of rotating machines using incremental encoders is based on counting the pulses at given time intervals. This method is generically called the time interval measurement system (TIMS). A variant of this method that we have developed in this work consists of measuring the corresponding time of each pulse from the encoder and sampling the signal by means of an A/D converter as if it were an analog signal, that is to say, in discrete time. For this reason, we have denominated this method as the discrete time interval measurement system (DTIMS). This measurement system provides a substantial improvement in the precision and frequency resolution compared with the traditional method of counting pulses. In addition, this method permits modification of the width of some pulses in order to obtain a mark-phase on every lap. This paper explains the theoretical fundamentals of the DTIMS and its application for measuring the angular vibrations of rotating machines. It also displays the required relationship between the sampling rate of the signal, the number of pulses of the encoder and the rotating velocity in order to obtain the required resolution and to delimit the methodological errors in the measurement

  18. Evaluation of Breaking Performance in Vibration-Assisted Electrostatic Surface Induction Actuator

    DEFF Research Database (Denmark)

    Nemoto, Takeru; Zsurzsan, Tiberiu-Gabriel; Yamamoto, Akio

    2015-01-01

    This paper evaluates breaking performance of an electrostatic surface induction actuator. The actuator is equipped with piezoelectric vibrator such that the friction between the slider and the stator electrodes can be dramatically reduced by squeeze-film effect. In such an actuator, the friction...... conditions. The result clearly shows the effect of friction change in breaking performance of the actuator....

  19. Study of V-OTDR stability for dynamic strain measurement in piezoelectric vibration

    Science.gov (United States)

    Ren, Meiqi; Lu, Ping; Chen, Liang; Bao, Xiaoyi

    2016-09-01

    In a phase-sensitive optical-time domain reflectometry (Φ-OTDR) system, the challenge for dynamic strain measurement lies in large intensity fluctuations from trace to trace. The intensity fluctuation caused by stochastic characteristics of Rayleigh backscattering sets detection limit for the minimum strength of vibration measurement and causes the large measurement uncertainty. Thus, a trace-to-trace correlation coefficient is introduced to quantify intensity fluctuation of Φ-OTDR traces and stability of the sensor system theoretically and experimentally. A novel approach of measuring dynamic strain induced by various driving voltages of lead zirconate titanate (PZT) in Φ-OTDR is also demonstrated. Piezoelectric vibration signals are evaluated through analyzing peak values of fast Fourier transform spectra at the fundamental frequency and high-order harmonics based on Bessel functions. High trace-to-trace correlation coefficients varying from 0.824 to 0.967 among 100 measurements are obtained in experimental results, showing the good stability of our sensor system, as well as small uncertainty of measured peak values.

  20. Rapid density-measurement system with vibrating-tube densimeter

    International Nuclear Information System (INIS)

    Kayukawa, Yohei; Hasumoto, Masaya; Watanabe, Koichi

    2003-01-01

    Concerning an increasing demand for environmentally friendly refrigerants including hydrocarbons, thermodynamic properties of such new refrigerants, especially densities, are essential information for refrigeration engineering. A rapid density-measurement system with vibrating-tube densimeter was developed in the present study with an aim to supply large numbers of high-quality PVT property data in a short period. The present system needs only a few minutes to obtain a single datum, and requires less than 20 cm 3 sample fluid. PVT properties in the entire fluid-phase, vapor-pressures, saturated-liquid densities for pure fluid are available. Liquid densities, bubble-point pressures and saturated-liquid densities for mixture can be obtained. The measurement range is from 240 to 380 K for temperature and up to 7 MPa for pressure. By employing a new calibration function, density can be precisely obtained even at lower densities. The densimeter is calibrated with pure water and iso-octane which is one of the density-standard fluids, and then measurement uncertainty was evaluated to be 0.1 kg m -3 or 0.024% whichever greater in density, 0.26 kPa or 0.022% whichever greater in pressure and 3 mK for temperature, respectively. The performance of the present measurement system was examined by measuring thermodynamic properties for refrigerant R134a. The experimental results were compared with available equation of state and confirmed to agree with it within ±0.05% for liquid densities while ±0.5% in pressure for the gas phase

  1. Measurements of Acoustic Properties of Porous and Granular Materials and Application to Vibration Control

    Science.gov (United States)

    Park, Junhong; Palumbo, Daniel L.

    2004-01-01

    For application of porous and granular materials to vibro-acoustic controls, a finite dynamic strength of the solid component (frame) is an important design factor. The primary goal of this study was to investigate structural vibration damping through this frame wave propagation for various poroelastic materials. A measurement method to investigate the vibration characteristics of the frame was proposed. The measured properties were found to follow closely the characteristics of the viscoelastic materials - the dynamic modulus increased with frequency and the degree of the frequency dependence was determined by its loss factor. The dynamic stiffness of hollow cylindrical beams containing porous and granular materials as damping treatment was measured also. The data were used to extract the damping materials characteristics using the Rayleigh-Ritz method. The results suggested that the acoustic structure interaction between the frame and the structure enhances the dissipation of the vibration energy significantly.

  2. Numerical optimization approach for resonant electromagnetic vibration transducer designed for random vibration

    International Nuclear Information System (INIS)

    Spreemann, Dirk; Hoffmann, Daniel; Folkmer, Bernd; Manoli, Yiannos

    2008-01-01

    This paper presents a design and optimization strategy for resonant electromagnetic vibration energy harvesting devices. An analytic expression for the magnetic field of cylindrical permanent magnets is used to build up an electromagnetic subsystem model. This subsystem is used to find the optimal resting position of the oscillating mass and to optimize the geometrical parameters (shape and size) of the magnet and coil. The objective function to be investigated is thereby the maximum voltage output of the transducer. An additional mechanical subsystem model based on well-known equations describing the dynamics of spring–mass–damper systems is established to simulate both nonlinear spring characteristics and the effect of internal limit stops. The mechanical subsystem enables the identification of optimal spring characteristics for realistic operation conditions such as stochastic vibrations. With the overall transducer model, a combination of both subsystems connected to a simple electrical circuit, a virtual operation of the optimized vibration transducer excited by a measured random acceleration profile can be performed. It is shown that the optimization approach results in an appreciable increase of the converter performance

  3. Blade Vibration Measurement System for Unducted Fans

    Science.gov (United States)

    Marscher, William

    2014-01-01

    With propulsion research programs focused on new levels of efficiency and noise reduction, two avenues for advanced gas turbine technology are emerging: the geared turbofan and ultrahigh bypass ratio fan engines. Both of these candidates are being pursued as collaborative research projects between NASA and the engine manufacturers. The high bypass concept from GE Aviation is an unducted fan that features a bypass ratio of over 30 along with the accompanying benefits in fuel efficiency. This project improved the test and measurement capabilities of the unducted fan blade dynamic response. In the course of this project, Mechanical Solutions, Inc. (MSI) collaborated with GE Aviation to (1) define the requirements for fan blade measurements; (2) leverage MSI's radar-based system for compressor and turbine blade monitoring; and (3) develop, validate, and deliver a noncontacting blade vibration measurement system for unducted fans.

  4. Coagulation measurement from whole blood using vibrating optical fiber in a disposable cartridge.

    Science.gov (United States)

    Yaraş, Yusuf Samet; Gündüz, Ali Bars; Sağlam, Gökhan; Ölçer, Selim; Civitçi, Fehmi; Baris, İbrahim; Yaralioğlu, Göksenin; Urey, Hakan

    2017-11-01

    In clinics, blood coagulation time measurements are performed using mechanical measurements with blood plasma. Such measurements are challenging to do in a lab-on-a-chip (LoC) system using a small volume of whole blood. Existing LoC systems use indirect measurement principles employing optical or electrochemical methods. We developed an LoC system using mechanical measurements with a small volume of whole blood without requiring sample preparation. The measurement is performed in a microfluidic channel where two fibers are placed inline with a small gap in between. The first fiber operates near its mechanical resonance using remote magnetic actuation and immersed in the sample. The second fiber is a pick-up fiber acting as an optical sensor. The microfluidic channel is engineered innovatively such that the blood does not block the gap between the vibrating fiber and the pick-up fiber, resulting in high signal-to-noise ratio optical output. The control plasma test results matched well with the plasma manufacturer's datasheet. Activated-partial-thromboplastin-time tests were successfully performed also with human whole blood samples, and the method is proven to be effective. Simplicity of the cartridge design and cost of readily available materials enable a low-cost point-of-care device for blood coagulation measurements. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  5. Development, implementation, and characterization of a standalone embedded viscosity measurement system based on the impedance spectroscopy of a vibrating wire sensor

    Science.gov (United States)

    Santos, José; Janeiro, Fernando M.; Ramos, Pedro M.

    2015-10-01

    This paper presents an embedded liquid viscosity measurement system based on a vibrating wire sensor. Although multiple viscometers based on different working principles are commercially available, there is still a market demand for a dedicated measurement system capable of performing accurate, fast measurements and requiring little or no operator training for simple systems and solution monitoring. The developed embedded system is based on a vibrating wire sensor that works by measuring the impedance response of the sensor, which depends on the viscosity and density of the liquid in which the sensor is immersed. The core of the embedded system is a digital signal processor (DSP) which controls the waveform generation and acquisitions for the measurement of the impedance frequency response. The DSP also processes the acquired waveforms and estimates the liquid viscosity. The user can interact with the measurement system through a keypad and an LCD or through a computer with a USB connection for data logging and processing. The presented system is tested on a set of viscosity standards and the estimated values are compared with the standard manufacturer specified viscosity values. A stability study of the measurement system is also performed.

  6. Development, implementation, and characterization of a standalone embedded viscosity measurement system based on the impedance spectroscopy of a vibrating wire sensor

    International Nuclear Information System (INIS)

    Santos, José; Ramos, Pedro M; Janeiro, Fernando M

    2015-01-01

    This paper presents an embedded liquid viscosity measurement system based on a vibrating wire sensor. Although multiple viscometers based on different working principles are commercially available, there is still a market demand for a dedicated measurement system capable of performing accurate, fast measurements and requiring little or no operator training for simple systems and solution monitoring. The developed embedded system is based on a vibrating wire sensor that works by measuring the impedance response of the sensor, which depends on the viscosity and density of the liquid in which the sensor is immersed. The core of the embedded system is a digital signal processor (DSP) which controls the waveform generation and acquisitions for the measurement of the impedance frequency response. The DSP also processes the acquired waveforms and estimates the liquid viscosity. The user can interact with the measurement system through a keypad and an LCD or through a computer with a USB connection for data logging and processing. The presented system is tested on a set of viscosity standards and the estimated values are compared with the standard manufacturer specified viscosity values. A stability study of the measurement system is also performed. (paper)

  7. Bridge Condition Assessment based on Vibration Responses of Passenger Vehicle

    International Nuclear Information System (INIS)

    Miyamoto, Ayaho; Yabe, Akito

    2011-01-01

    In this paper, we propose a new method of assessing the condition of existing short- and medium-span reinforced/prestressed concrete bridges based on vibration monitoring data obtained from a public bus. This paper not only describes details of a prototype monitoring system that uses information technology and sensors capable of providing more accurate knowledge of bridge performance than conventional ways but also shows a few specific examples of bridge condition assessment based on vehicle vibrations measured by using an in-service public bus equipped with vibration measurement instrumentation. This paper also describes a sensitivity analysis of deteriorating bridges based on simulation of the acceleration response of buses conducted by the 'substructure method' employing a finite element model to verify the above bridge performance results. The main conclusions obtained in this study can be summarized as follows: (1) Because the vibration responses of passenger vehicles, such as buses, have a good linear relationship with the vibration responses of the target bridges, the proposed system can be used as a practical monitoring system for bridge condition assessment. (2) The results of sensitivity analysis performed by the substructure method show that bus vibration responses are useful for evaluating target bridge performance. (3) The proposed method was applied to a network of real bridges in a local area to evaluate its effectiveness. The results indicate that the proposed method can be used to prioritize the repair/strengthening works of existing bridges based on various vibration information in order to help bridge administrators establish rational maintenance strategies.

  8. Ultra-low-vibration pulse-tube cryocooler system - cooling capacity and vibration

    Science.gov (United States)

    Ikushima, Yuki; Li, Rui; Tomaru, Takayuki; Sato, Nobuaki; Suzuki, Toshikazu; Haruyama, Tomiyoshi; Shintomi, Takakazu; Yamamoto, Akira

    2008-09-01

    This report describes the development of low-vibration cooling systems with pulse-tube (PT) cryocoolers. Generally, PT cryocoolers have the advantage of lower vibrations in comparison to those of GM cryocoolers. However, cooling systems for the cryogenic laser interferometer observatory (CLIO), which is a gravitational wave detector, require an operational vibration that is sufficiently lower than that of a commercial PT cryocooler. The required specification for the vibration amplitude in cold stages is less than ±1 μm. Therefore, during the development of low-vibration cooling systems for the CLIO, we introduced advanced countermeasures for commercial PT cryocoolers. The cooling performance and the vibration amplitude were evaluated. The results revealed that 4 K and 80 K PT cooling systems with a vibration amplitude of less than ±1 μm and cooling performance of 4.5 K and 70 K at heat loads of 0.5 W and 50 W, respectively, were developed successfully.

  9. Fault Diagnosis for Rotating Machinery Using Vibration Measurement Deep Statistical Feature Learning

    Directory of Open Access Journals (Sweden)

    Chuan Li

    2016-06-01

    Full Text Available Fault diagnosis is important for the maintenance of rotating machinery. The detection of faults and fault patterns is a challenging part of machinery fault diagnosis. To tackle this problem, a model for deep statistical feature learning from vibration measurements of rotating machinery is presented in this paper. Vibration sensor signals collected from rotating mechanical systems are represented in the time, frequency, and time-frequency domains, each of which is then used to produce a statistical feature set. For learning statistical features, real-value Gaussian-Bernoulli restricted Boltzmann machines (GRBMs are stacked to develop a Gaussian-Bernoulli deep Boltzmann machine (GDBM. The suggested approach is applied as a deep statistical feature learning tool for both gearbox and bearing systems. The fault classification performances in experiments using this approach are 95.17% for the gearbox, and 91.75% for the bearing system. The proposed approach is compared to such standard methods as a support vector machine, GRBM and a combination model. In experiments, the best fault classification rate was detected using the proposed model. The results show that deep learning with statistical feature extraction has an essential improvement potential for diagnosing rotating machinery faults.

  10. Fault Diagnosis for Rotating Machinery Using Vibration Measurement Deep Statistical Feature Learning.

    Science.gov (United States)

    Li, Chuan; Sánchez, René-Vinicio; Zurita, Grover; Cerrada, Mariela; Cabrera, Diego

    2016-06-17

    Fault diagnosis is important for the maintenance of rotating machinery. The detection of faults and fault patterns is a challenging part of machinery fault diagnosis. To tackle this problem, a model for deep statistical feature learning from vibration measurements of rotating machinery is presented in this paper. Vibration sensor signals collected from rotating mechanical systems are represented in the time, frequency, and time-frequency domains, each of which is then used to produce a statistical feature set. For learning statistical features, real-value Gaussian-Bernoulli restricted Boltzmann machines (GRBMs) are stacked to develop a Gaussian-Bernoulli deep Boltzmann machine (GDBM). The suggested approach is applied as a deep statistical feature learning tool for both gearbox and bearing systems. The fault classification performances in experiments using this approach are 95.17% for the gearbox, and 91.75% for the bearing system. The proposed approach is compared to such standard methods as a support vector machine, GRBM and a combination model. In experiments, the best fault classification rate was detected using the proposed model. The results show that deep learning with statistical feature extraction has an essential improvement potential for diagnosing rotating machinery faults.

  11. THz-SAR Vibrating Target Imaging via the Bayesian Method

    Directory of Open Access Journals (Sweden)

    Bin Deng

    2017-01-01

    Full Text Available Target vibration bears important information for target recognition, and terahertz, due to significant micro-Doppler effects, has strong advantages for remotely sensing vibrations. In this paper, the imaging characteristics of vibrating targets with THz-SAR are at first analyzed. An improved algorithm based on an excellent Bayesian approach, that is, the expansion-compression variance-component (ExCoV method, has been proposed for reconstructing scattering coefficients of vibrating targets, which provides more robust and efficient initialization and overcomes the deficiencies of sidelobes as well as artifacts arising from the traditional correlation method. A real vibration measurement experiment of idle cars was performed to validate the range model. Simulated SAR data of vibrating targets and a tank model in a real background in 220 GHz show good performance at low SNR. Rapidly evolving high-power terahertz devices will offer viable THz-SAR application at a distance of several kilometers.

  12. Whole body vibration improves attention and motor performance in ...

    African Journals Online (AJOL)

    Background: Whole body vibration (WBV) is a form of physical stimulation via mechanical vibrations transmitted to a subject. It is assumed that WBV induces sensory stimulation in cortical brain regions through the activation of skin and muscle receptors responding to the vibration. The effects of WBV on muscle strength are ...

  13. Robust, accurate, and non-contacting vibration measurement systems: Supplemental appendices presenting comparison measurements of the robust laser interferometer and typical accelerometer systems. Volume 2

    International Nuclear Information System (INIS)

    Goodenow, T.C.; Shipman, R.L.; Holland, H.M.

    1995-06-01

    Epoch Engineering, Incorporated (EEI) has completed a series of vibration measurements comparing their newly-developed Robust Laser Interferometer (RLI) with accelerometer-based instrumentation systems. EEI has successfully demonstrated, on several pieces of commonplace machinery, that non-contact, line-of-sight measurements are practical and yield results equal to or, in some cases, better than customary field implementations of accelerometers. The demonstration included analysis and comparison of such phenomena as nonlinearity, transverse sensitivity, harmonics, and signal-to-noise ratio. Fast Fourier Transformations were performed on the accelerometer and the laser system outputs to provide a comparison basis. The RLI was demonstrated, within the limits o the task, to be a viable, line-of-sight, non-contact alternative to accelerometer systems. Several different kinds of machinery were instrumented and. compared, including a small pump, a gear-driven cement mixer, a rotor kit, and two small fans. Known machinery vibration sources were verified and RLI system output file formats were verified to be compatible with commercial computer programs used for vibration monitoring and trend analysis. The RLI was also observed to be less subject to electromagnetic interference (EMI) and more capable at very low frequencies. This document, Volume 2, provides the appendices to this report

  14. Low frequency vibration tests on a floating slab track in an underground laboratory

    Institute of Scientific and Technical Information of China (English)

    De-yun DING; Wei-ning LIU; Ke-fei LI; Xiao-jing SUN; Wei-feng LIU

    2011-01-01

    Low frequency vibrations induced by underground railways have attracted increasing attention in recent years. To obtain the characteristics of low frequency vibrations and the low frequency performance of a floating slab track (FST), low frequency vibration tests on an FST in an underground laboratory at Beijing Jiaotong University were carried out. The FST and an unbalanced shaker SBZ30 for dynamic simulation were designed for use in low frequency vibration experiments. Vibration measurements were performed on the bogie of the unbalanced shaker, the rail, the slab, the tunnel invert, the tunnel wall, the tunnel apex, and on the ground surface at distances varying from 0 to 80 m from the track. Measurements were also made on several floors of an adjacent building. Detailed results of low frequency vibration tests were reported. The attenuation of low frequency vibrations with the distance from the track was presented, as well as the responses of different floors of the building. The experimental results could be regarded as a reference for developing methods to control low frequency vibrations and for adopting countermeasures.

  15. Vibration insensitive interferometry

    Science.gov (United States)

    Millerd, James; Brock, Neal; Hayes, John; Kimbrough, Brad; North-Morris, Michael; Wyant, James C.

    2017-11-01

    The largest limitation of phase-shifting interferometry for optical testing is the sensitivity to the environment, both vibration and air turbulence. An interferometer using temporal phase-shifting is very sensitive to vibration because the various phase shifted frames of interferometric data are taken at different times and vibration causes the phase shifts between the data frames to be different from what is desired. Vibration effects can be reduced by taking all the phase shifted frames simultaneously and turbulence effects can be reduced by averaging many measurements. There are several techniques for simultaneously obtaining several phase-shifted interferograms and this paper will discuss two such techniques: 1) Simultaneous phase-shifting interferometry on a single detector array (PhaseCam) and 2) Micropolarizer phase-shifting array. The application of these techniques for the testing of large optical components, measurement of vibrational modes, the phasing of segmented optical components, and the measurement of deformations of large diffuse structures is described.

  16. Effect of detector size and position on measured vibration spectra of strings and rods

    International Nuclear Information System (INIS)

    Lipcsei, S.; Kiss, S.; Por, G.

    1993-04-01

    Weight functions of string and rod vibrations are described by standing and travelling wave models. The effects of detector size and position on the measured vibration spectra was investigated, and the main characteristics of the transfer function were calculated by a simple standing wave model. The theoretical results were compared with data from laboratory rod vibration experiments, and with pressure fluctuation spectra obtained at the Paks Nuclear Power Plant. In addition, some fundamental physical consequences can be made using the theory of superposition of travelling waves and their reflection on clamped rod ends. (R.P.) 5 refs.; 10 figs

  17. Difference frequency generation spectroscopy as a vibrational optical activity measurement tool.

    Science.gov (United States)

    Cheon, Sangheon; Cho, Minhaeng

    2009-03-19

    Vibrational optical activity (VOA) of chiral molecules in condensed phases can be studied by using vibrational circular dichroism and Raman optical activity measurement techniques. Recently, IR-vis sum frequency generation has shown to be an alternative VOA measurement method. Such a three-wave-mixing method employing a polarization modulation technique can be a potentially useful VOA measurement tool. Here, a theoretical description of difference frequency generation (DFG) employing circularly polarized visible radiations is presented. Frequency scanning to obtain a VOA-DFG spectrum is achieved by controlling the difference between the two electronically nonresonant incident radiation frequencies. If the two incident beams are linearly polarized and their polarization directions are perpendicular to each other, one can selectively measure the all-electric-dipole-allowed chiral component of the DFG susceptibility. In addition, by using circularly polarized beams and taking the DFG difference intensity signal, which is defined as the difference between left and right circularly polarized DFG signals, additional chiral susceptibility components originating from the electric quadrupole transition can be measured. The DFG as a novel VOA measurement technique for solution samples containing chiral molecules will therefore be a useful coherent spectroscopic tool for determining absolute configuration of chiral molecules in condensed phases.

  18. Automatic Leak Detection in Buried Plastic Pipes of Water Supply Networks by Means of Vibration Measurements

    Directory of Open Access Journals (Sweden)

    Alberto Martini

    2015-01-01

    Full Text Available The implementation of strategies for controlling water leaks is essential in order to reduce losses affecting distribution networks of drinking water. This paper focuses on leak detection by using vibration monitoring techniques. The long-term goal is the development of a system for automatic early detection of burst leaks in service pipes. An experimental campaign was started to measure vibrations transmitted along water pipes by real burst leaks occurring in actual water supply networks. The first experimental data were used for assessing the leak detection performance of a prototypal algorithm based on the calculation of the standard deviation of acceleration signals. The experimental campaign is here described and discussed. The proposed algorithm, enhanced by means of proper signal filtering techniques, was successfully tested on all monitored leaks, thus proving effective for leak detection purpose.

  19. Piping vibrations measured during FFTF startup

    International Nuclear Information System (INIS)

    Anderson, M.J.

    1981-03-01

    An extensive vibration survey was conducted on the Fast Flux Test Facility piping during the plant acceptance test program. The purpose was to verify that both mechanical and flow induced vibration amplitudes were of sufficiently low level so that pipe and pipe support integrity would not be compromised over the plant design lifetime. Excitation sources included main heat transport sodium pumps, reciprocating auxiliary system pumps, EM pumps, and flow oscillations. Pipe sizes varied from one-inch to twenty-eight-inches in diameter. This paper describes the test plan; the instrumentation and procedures utilized; and the test results

  20. Effectiveness of Different Rest Intervals Following Whole-Body Vibration on Vertical Jump Performance between College Athletes and Recreationally Trained Females

    Directory of Open Access Journals (Sweden)

    Nicole C. Dabbs

    2015-09-01

    Full Text Available The purpose of this study was to evaluate the effect of different rest intervals following whole-body vibration on counter-movement vertical jump performance. Sixteen females, eight recreationally trained and eight varsity athletes volunteered to participate in four testing visits separated by 24 h. Visit one acted as a familiarization visit where subjects were introduced to the counter-movement vertical jump and whole-body vibration protocols. Visits 2–4 contained 2 randomized conditions. Whole-body vibration was administered in four bouts of 30 s with 30 s rest between bouts. During whole-body vibration subjects performed a quarter squat every 5 s, simulating a counter-movement vertical jump. Whole-body vibration was followed by three counter-movement vertical jumps with five different rest intervals between the vibration exposure and jumping. For a control condition, subjects performed squats with no whole-body vibration. There was a significant (p < 0.05 main effect for time for vertical jump height, peak power output, and relative ground reaction forces, where a majority of individuals max jump from all whole-body vibration conditions was greater than the control condition. There were significant (p < 0.05 group differences, showing that varsity athletes had a greater vertical jump height and peak power output compared to recreationally trained females. There were no significant (p > 0.05 group differences for relative ground reaction forces. Practitioners and/or strength and conditioning coaches may utilize whole-body vibration to enhance acute counter-movement vertical jump performance after identifying individuals optimal rest time in order to maximize the potentiating effects.

  1. Nondestructive Evaluation of Railway Bridge by System Identification Using Field Vibration Measurement

    International Nuclear Information System (INIS)

    Ho, Duc Duy; Hong, Dong Soo; Kim, Jeong Tae

    2010-01-01

    This paper presents a nondestructive evaluation approach for system identification (SID) of real railway bridges using field vibration test results. First, a multi-phase SID scheme designed on the basis of eigenvalue sensitivity concept is presented. Next, the proposed multi-phase approach is evaluated from field vibration tests on a real railway bridge (Wondongcheon bridge) located in Yangsan, Korea. On the steel girder bridge, a few natural frequencies and mode shapes are experimentally measured under the ambient vibration condition. The corresponding modal parameters are numerically calculated from a three-dimensional finite element (FE) model established for the target bridge. Eigenvalue sensitivities are analyzed for potential model-updating parameters of the FE model. Then, structural subsystems are identified phase-by-phase using the proposed model-updating procedure. Based on model-updating results, a baseline model and a nondestructive evaluation of test bridge are identified

  2. Measurement of Vibrational Non-Equilibrium in a Supersonic Freestream Using Dual-Pump CARS

    Science.gov (United States)

    Cutler, Andrew D.; Magnotti, Gaetano; Cantu, Luca M. L.; Gallo, Emanuela C. A.; Danehy, Paul M.; Burle, Rob; Rockwell, Robert; Goyne, Christopher; McDaniel, James

    2012-01-01

    Measurements have been conducted at the University of Virginia Supersonic Combustion Facility of the flow in a constant area duct downstream of a Mach 2 nozzle, where the airflow has first been heated to approximately 1200 K. Dual-pump CARS was used to acquire rotational and vibrational temperatures of N2 and O2 at two planes in the duct at different downstream distances from the nozzle exit. Wall static pressures in the nozzle are also reported. With a flow of clean air, the vibrational temperature of N2 freezes at close to the heater stagnation temperature, while the O2 vibrational temperature is about 1000 K. The results are well predicted by computational fluid mechanics models employing separate "lumped" vibrational and translational/rotational temperatures. Experimental results are also reported for a few percent steam addition to the air and the effect of the steam is to bring the flow to thermal equilibrium.

  3. Comprehensive vibration assessment program for Yonggwang nuclear power plant unit 4

    International Nuclear Information System (INIS)

    Rhee, Hui Nam; Hwang, Jong Keun; Kim, Tae Hyung; Kim, Jung Kyu; Song, Heuy Gap; Kim, Beom Shig

    1995-01-01

    A Comprehensive Vibration Assessment Program (CVAP) has been performed for Yonggwang Nuclear Power Plant Unit 4 (YGN 4) in order to verify the structural integrity of the reactor internals for flow induced vibrations prior to commercial operation. The theoretical evidence for the structural integrity of the reactor internals and the basis for measurement and inspection are provided by the analysis. Flow induced hydraulic loads and reactor internals vibration response data were measured during pre-core hot functional testing in YGN 4 site. Also, the critical areas in the reactor internals were inspected visually to check any existence of structural abnormality before and after the pre-core hot functional testing. Then, the measured data have been analyzed and compared with the predicted data by analysis. The measured stresses are less than the predicted values and the allowable limits. It is concluded that the vibration response of the reactor internals due to the flow induced vibration under normal operation is acceptable for long term operation

  4. Vision-based measurement system for structural vibration monitoring using non-projection quasi-interferogram fringe density enhanced by spectrum correction method

    International Nuclear Information System (INIS)

    Zhong, Jianfeng; Zhong, Shuncong; Zhang, Qiukun; Lu, Huancai; Zhuang, Yizhou; Fu, Xinbin

    2017-01-01

    A non-projection fringe vision measurement system suitable for vibration monitoring was proposed by using the concept of a 2D optical coherence vibration tomography (2D-OCVT) technique. An artificial quasi-interferogram fringe pattern (QIFP), similar to the interferogram of the 2D-OCVT system, was pasted onto the surface of a vibrating structure as a sensor. Image sequences of the QIFP were captured by a high-speed CMOS camera that worked as a detector. It was possible to obtain both the in-plane and out-of-plane vibration simultaneously. The in-plane vibration was obtained by tracking the center of the imaged QIFP using an image cross-correlation method, whilst the out-of-plane vibration was obtained from the changes in period density of the imaged QIFP. The influence of the noise sources from the CMOS image sensor, together with the effect of the imaging distance, the period density of the QIFP and also the key parameters of the fringe density enhanced by the spectrum correction method on the accuracy of the displacement measurement, were investigated by numerical simulations and experiments. Compared with the results from a conventional accelerometer-based measurement system, the proposed method was demonstrated to be an effective and accurate technique for measuring structural vibration without introducing any extra mass from the accelerometer. The significant advantages of this method include its simple installation and real-time dynamic response measurement capability, making the measurement system ideal for the low- and high-frequency vibration monitoring of engineering structures. (paper)

  5. Measurements of vibrational excitation of N2, CO, and NO by low energy proton impact

    International Nuclear Information System (INIS)

    Krutein, J.; Linder, F.

    1979-01-01

    Differential scattering experiments are reported for proton impact on N 2 , CO, and NO in the energy range E/sub lab/=30--80 eV. The measurements include the range of very small scattering angles around 0 0 as well as the rainbow region. The vibrationally resolved energy-loss spectra show a relatively low vibrational inelasticity for all three systems. Differential cross sections, transition probabilities, and the mean vibrational energy transfer are presented. Rotational excitation is indicated by the broadening of the energy-loss peaks which is most significant for H + --NO. The small-angle scattering data for vibrational excitation in CO show good agreement with the impact parameter theory using the known long-range interactions for this system

  6. Partial admission effect on the performance and vibration of a supersonic impulse turbine

    Science.gov (United States)

    Lee, Hang Gi; Shin, Ju Hyun; Choi, Chang-Ho; Jeong, Eunhwan; Kwon, Sejin

    2018-04-01

    This study experimentally investigates the effects of partial admission on the performance and vibration outcomes of a supersonic impulse turbine with circular nozzles. The turbine of a turbopump for a gas-generator-type liquid rocket engine in the Korea Space Launch Vehicle-II is of the supersonic impulse type with the partial admission configuration for obtaining a high specific power. Partial admission turbines with a low-flow-rate working gas exhibit benefits over turbines with full admission, such as loss reduction, ease of controllability of the turbine power output, and simple turbine configurations with separate starting sections. However, the radial force of the turbine rotor due to the partial admission causes an increase in turbine vibration. Few experimental studies have previously been conducted regarding the partial admission effects on supersonic impulse turbines with circular nozzles. In the present study, performance tests of supersonic impulse turbines with circular nozzles were conducted for various partial admission ratios using a turbine test facility with high-pressure air in order to investigate the resulting aerodynamic performance and vibration. Four types of turbines with partial admission ratios of 0.17, 0.42, 0.75 and 0.83 were tested. Results show that the efficiencies at the design point increase linearly as the partial admission ratios increase. Moreover, as the velocity ratios increase, the difference in efficiency from the reference turbine with a partial admission ratio of 0.83 becomes increasingly significant, and the magnitudes of these differences are proportional to the square of the velocity ratios. Likewise, the decrease in the partial admission ratio results in an increase in the turbine vibration level owing to the increase in the radial force.

  7. Measurement of unsteady flow forces in inline and staggered tube bundles with fixed and vibrating tubes

    International Nuclear Information System (INIS)

    Michel, A.; Heinecke, E.; Decken, C.B. von der.

    1986-01-01

    Unsteady flow forces arising in heat exchangers with cross-flow may lead to serious vibrations of the tubes. These vibrations can destroy the tubes in the end supports or in the baffles, which would require expensive repairs. The flow forces reach unexpectedly by high values if the vibration of the tube intensifies these forces. To clear up this coupling mechanism the flow forces and the vibration amplitude were measured simultaneously in a staggered and in an inline tube bundle. Considering the tube as a one-mass oscillator excited by the flow force, the main parameters can be derived, i.e. dynamic pressure, reduced mass, eigenfrequency and damping. These parameters form a dimensionless model number describing the coherence of the vibration amplitude and the force coefficient. The validity of this number has been confirmed by varying the test conditions. With the aid of this model number, the expected force coefficient can be calculated and then using a finite-element program information can be obtained about mechanical tensions and the lifetime of the heat exchanger tubes. With this model number the results of other authors, who measured the vibration amplitude only, could be confirmed in good agreement. The experiments were carried out in air with Reynolds numbers 10 4 5 . (orig.) [de

  8. Vibration test report for in-chimney bracket and instrumented fuel assembly

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Jeong Soo; Yoon, D. B.; Cho, Y. G.; Ahn, G. H.; Lee, J. H.; Park, J.H

    2000-10-01

    The vibration levels of in-chimney bracket structure which is installed in reactor chimney and instrumented fuel assembly(Type-B Bundle) are investigated under the steady state normal operating condition of the reactor. For this purpose, 4 acceleration data on the guide tube of the instrumented fuel assembly and in-chimney bracket structures subjected to fluid induced vibration are measured. For the analysis of the vibration data, vibration analysis program which can perform basic time and frequency domain analysis, is prepared, and its reliability is verified by comparing the analysis results with those of commercial analysis program(I-DEAS). In time domain analysis, maximum amplitudes, and RMS values of accelerations and displacements from the measured vibration signal, are obtained. The frequency components of the vibration data are analyzed by using the frequency domain analysis. These analysis results show that the levels of the measured vibrations are within the allowable level, and the low frequency component near 10 Hz is dominant in the vibration signal. For the evaluation of the structural integrity on the in-chimney bracket and related structures including the instrumented fuel assembly, the static analysis for ANSYS finite element model is carried out. These analysis results show that the maximum stresses are within the allowable stresses of the ASME code, and the maximum displacement of the top of the flow tube is within the displacement limit. Therefore any damage on the structural integrity is not expected when the irradiation test is performed using the in-chimney bracket.

  9. Vibration test report for in-chimney bracket and instrumented fuel assembly

    International Nuclear Information System (INIS)

    Ryu, Jeong Soo; Yoon, D. B.; Cho, Y. G.; Ahn, G. H.; Lee, J. H.; Park, J.H.

    2000-10-01

    The vibration levels of in-chimney bracket structure which is installed in reactor chimney and instrumented fuel assembly(Type-B Bundle) are investigated under the steady state normal operating condition of the reactor. For this purpose, 4 acceleration data on the guide tube of the instrumented fuel assembly and in-chimney bracket structures subjected to fluid induced vibration are measured. For the analysis of the vibration data, vibration analysis program which can perform basic time and frequency domain analysis, is prepared, and its reliability is verified by comparing the analysis results with those of commercial analysis program(I-DEAS). In time domain analysis, maximum amplitudes, and RMS values of accelerations and displacements from the measured vibration signal, are obtained. The frequency components of the vibration data are analyzed by using the frequency domain analysis. These analysis results show that the levels of the measured vibrations are within the allowable level, and the low frequency component near 10 Hz is dominant in the vibration signal. For the evaluation of the structural integrity on the in-chimney bracket and related structures including the instrumented fuel assembly, the static analysis for ANSYS finite element model is carried out. These analysis results show that the maximum stresses are within the allowable stresses of the ASME code, and the maximum displacement of the top of the flow tube is within the displacement limit. Therefore any damage on the structural integrity is not expected when the irradiation test is performed using the in-chimney bracket

  10. A vibration correction method for free-fall absolute gravimeters

    Science.gov (United States)

    Qian, J.; Wang, G.; Wu, K.; Wang, L. J.

    2018-02-01

    An accurate determination of gravitational acceleration, usually approximated as 9.8 m s-2, has been playing an important role in the areas of metrology, geophysics, and geodetics. Absolute gravimetry has been experiencing rapid developments in recent years. Most absolute gravimeters today employ a free-fall method to measure gravitational acceleration. Noise from ground vibration has become one of the most serious factors limiting measurement precision. Compared to vibration isolators, the vibration correction method is a simple and feasible way to reduce the influence of ground vibrations. A modified vibration correction method is proposed and demonstrated. A two-dimensional golden section search algorithm is used to search for the best parameters of the hypothetical transfer function. Experiments using a T-1 absolute gravimeter are performed. It is verified that for an identical group of drop data, the modified method proposed in this paper can achieve better correction effects with much less computation than previous methods. Compared to vibration isolators, the correction method applies to more hostile environments and even dynamic platforms, and is expected to be used in a wider range of applications.

  11. Viscoelastic material properties' identification using high speed full field measurements on vibrating plates

    Science.gov (United States)

    Giraudeau, A.; Pierron, F.

    2010-06-01

    The paper presents an experimental application of a method leading to the identification of the elastic and damping material properties of isotropic vibrating plates. The theory assumes that the searched parameters can be extracted from curvature and deflection fields measured on the whole surface of the plate at two particular instants of the vibrating motion. The experimental application consists in an original excitation fixture, a particular adaptation of an optical full-field measurement technique, a data preprocessing giving the curvature and deflection fields and finally in the identification process using the Virtual Fields Method (VFM). The principle of the deflectometry technique used for the measurements is presented. First results of identification on an acrylic plate are presented and compared to reference values. Details about a new experimental arrangement, currently in progress, is presented. It uses a high speed digital camera to over sample the full-field measurements.

  12. Effect on the vibration of the suspension system

    Directory of Open Access Journals (Sweden)

    L. Dahil

    2017-01-01

    Full Text Available In order to determine the damping effect of shock absorbs in vehicles, different vehicles acceleration values were measured while they were passing over speed bumps at different speeds. The vehicles’ vibration magnitudes caused by road roughness were analyzed. In this study the measurements were conducted with two different vehicles, multiple drivers and at different speeds. The vibration valves were determined with a HVM 100 device, in different field conditions and at 20 - 40 and 60 km/h by transferring the results to the system. According to the results of statistical analysis damping effect of the shock absorbers in the vehicles changed in different speed ranges and field conditions and it was seen that driver’s performance was significantly affected due to the vibration.

  13. The impact of accelerometer mounting methods on the level of vibrations recorded at ground surface

    Directory of Open Access Journals (Sweden)

    Krzysztof Czech

    2014-08-01

    Full Text Available The paper presents the results of field research based on the measurements of accelerations recorded at ground surface. The source of the vibration characterized by high repetition rate of pulse parameters was light falling weight deflectometer ZFG-01. Measurements of vibrations have been carried out using top quality high-precision measuring system produced by Brüel&Kiær. Accelerometers were mounted on a sandy soil surface at the measuring points located radially at 5-m and 10-m distances from the source of vibration. The paper analyses the impact that the method of mounting accelerometers on the ground has on the level of the recorded values of accelerations of vibrations. It has been shown that the method of attaching the sensor to the surface of the ground is crucial for the credibility of the performed measurements.[b]Keywords[/b]: geotechnics, surface vibrations, ground, vibration measurement

  14. ANALYSIS OF METHODS PROVIDING ACCURACY FOR TOOLS AND TECHNIQUES VIBRATION MEASUREMENT IN THE PROCESS OF MAINTAINING AIRWORTHINESS OF AIRCRAFT

    Directory of Open Access Journals (Sweden)

    Anatoliy Alexandrovich Bogoyavlenskiy

    2017-01-01

    Full Text Available On the basis of system approach the structure of the aviation activity areas on air transport related to monitoring and measurements of vibration parameters is presented.The technology analysis of laboratory tests of the onboard equipment control of vibration parameters is carried out. The issues related to ensuring the unity of measurements of vibration parameters are researched and summarized.While dealing with the works on metrological certification described in the article, the risks arising from aviation activity on air transport are taken into account. The certification methods of measuring channels of vibration parametersused on stands for testing GTE at the repairing of aircraft engines are developed. The methods are implemented when con- ducting initial and periodic certifications of test benches for twelve types of aircraft GTE in repair organizations. The reliability of the results of the conducted research due to the fact that they were carried out with the use of certified measure- ment equipment, included in the State register of measuring instruments. The research is conducted for a sufficiently high statistical confidence level with the boundaries 0.95. The studies have shown that running on air transport measurements of vibration parameters are metrologically se- cured, the unity of measurements and their traceability from the national primary reference to special measuring instru- ments, test equipment, and onboard controls of the aircraft is maintained.

  15. Return to Flying Duties Following Centrifuge or Vibration Exposures

    Science.gov (United States)

    Scheuring, Richard A.; Clarke, Jonathan; Jones, Jeffrey A.

    2009-01-01

    Introduction: In an effort to determine the human performance limits for vibration in spacecraft being developed by NASA, astronauts were evaluated during a simulated launch profile in a centrifuge/vibration environment and separate vibration-only simulation. Current USAF and Army standards for return to flight following centrifuge exposures require 12-24 hours to pass before a crewmember may return to flying duties. There are no standards on vibration exposures and return to flying duties. Based on direct observation and provocative neurological testing of the astronauts, a new standard for return to flying duties following centrifuge and/or vibration exposures was established. Methods: 13 astronaut participants were exposed to simulated launch profiles in a + 3.5 Gx bias centrifuge/vibration environment and separately on a vibration table at the NASA-Ames Research Center. Each subject had complete neurological evaluations pre- and post-exposure for the centrifuge/vibration runs with the NASA neurological function rating scale (NFRS). Subjects who participated in the vibration-only exposures had video oculography performed with provocative maneuvers in addition to the NFRS. NFRS evaluations occurred immediately following each exposure and at 1 hour post-run. Astronauts who remained symptomatic at 1 hour had repeat NFRS performed at 1 hour intervals until the crewmember was asymptomatic. Results: Astronauts in the centrifuge/vibration study averaged a 3-5 point increase in NFRS scores immediately following exposure but returned to baseline 3 hours post-run. Subjects exposed to the vibration-only simulation had a 1-3 point increase following exposure and returned to baseline within 1-2 hours. Pre- and post- vibration exposure video oculography did not reveal any persistent ocular findings with provocative testing 1 hour post-exposure. Discussion: Based on direct observations and objective measurement of neurological function in astronauts following simulated launch

  16. Off-axis Modal Active Vibration Control Of Rotational Vibrations

    NARCIS (Netherlands)

    Babakhani, B.; de Vries, Theodorus J.A.; van Amerongen, J.

    Collocated active vibration control is an effective and robustly stable way of adding damping to the performance limiting vibrations of a plant. Besides the physical parameters of the Active Damping Unit (ADU) containing the collocated actuator and sensor, its location with respect to the

  17. Development of vibrational analysis for detection of antisymmetric shells

    International Nuclear Information System (INIS)

    Esmailzadeh Khadem, S.; Mahmoodi, M.; Rezaee, M.

    2002-01-01

    In this paper, vibrational behavior of bodies of revolution with different types of structural faults is studied. Since vibrational characteristics of structures are natural properties of system, the existence of any structural faults causes measurable changes in these properties. Here, this matter is demonstrated. In other words, vibrational behavior of a body of revolution with no structural faults is analyzed by two methods of I) numerical analysis using super sap software, II) Experimental model analysis, and natural frequencies and mode shapes are obtained. Then, different types of cracks are introduced in the structure, and analysis is repeated and the results are compared. Based on this study, one may perform crack detection by measuring the natural frequencies and mode shapes of the samples and comparing with reference information obtained from the vibration analysis of the original structure with no fault

  18. Simultaneous measurements of global vibrational spectra and dephasing times of molecular vibrational modes by broadband time-resolved coherent anti-Stokes Raman scattering spectrography

    International Nuclear Information System (INIS)

    Yin Jun; Yu Ling-Yao; Liu Xing; Wan Hui; Lin Zi-Yang; Niu Han-Ben

    2011-01-01

    In broadband coherent anti-Stokes Raman scattering (CARS) spectroscopy with supercontinuum (SC), the simultaneously detectable spectral coverage is limited by the spectral continuity and the simultaneity of various spectral components of SC in an enough bandwidth. By numerical simulations, the optimal experimental conditions for improving the SC are obtained. The broadband time-resolved CARS spectrography based on the SC with required temporal and spectral distributions is realised. The global molecular vibrational spectrum with well suppressed nonresonant background noise can be obtained in a single measurement. At the same time, the measurements of dephasing times of various molecular vibrational modes can be conveniently achieved from intensities of a sequence of time-resolved CARS signals. It will be more helpful to provide a complete picture of molecular vibrations, and to exhibit a potential to understand not only both the solvent dynamics and the solute-solvent interactions, but also the mechanisms of chemical reactions in the fields of biology, chemistry and material science. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  19. Terahertz thickness determination with interferometric vibration correction for industrial applications.

    Science.gov (United States)

    Pfeiffer, Tobias; Weber, Stefan; Klier, Jens; Bachtler, Sebastian; Molter, Daniel; Jonuscheit, Joachim; Von Freymann, Georg

    2018-05-14

    In many industrial fields, like automotive and painting industry, the thickness of thin layers is a crucial parameter for quality control. Hence, the demand for thickness measurement techniques continuously grows. In particular, non-destructive and contact-free terahertz techniques access a wide range of thickness determination applications. However, terahertz time-domain spectroscopy based systems perform the measurement in a sampling manner, requiring fixed distances between measurement head and sample. In harsh industrial environments vibrations of sample and measurement head distort the time-base and decrease measurement accuracy. We present an interferometer-based vibration correction for terahertz time-domain measurements, able to reduce thickness distortion by one order of magnitude for vibrations with frequencies up to 100 Hz and amplitudes up to 100 µm. We further verify the experimental results by numerical calculations and find very good agreement.

  20. Effect of vibration frequency on microstructure and performance of high chromium cast iron prepared by lost foam casting

    Directory of Open Access Journals (Sweden)

    Wen-qi Zou

    2016-07-01

    Full Text Available In the present research, high chromium cast irons (HCCIs were prepared using the lost foam casting (LFC process. To improve the wear resistance of the high chromium cast irons (HCCIs, mechanical vibration was employed during the solidification of the HCCIs. The effects of vibration frequency on the microstructure and performance of the HCCIs under as-cast, as-quenched and as-tempered conditions were investigated. The results indicated that the microstructures of the LFC-produced HCCIs were refined due to the introduction of mechanical vibration, and the hardness was improved compared to that of the alloy without vibration. However, only a slight improvement in hardness was found in spite of the increase of vibration frequency. In contrast, the impact toughness of the as-tempered HCCIs increased with an increase in the vibration frequency. In addition, the wear resistance of the HCCIs was improved as a result of the introduction of vibration and increased with an increase in the vibration frequency.

  1. Re-tuning tuned mass dampers using ambient vibration measurements

    International Nuclear Information System (INIS)

    Hazra, B; Sadhu, A; Narasimhan, S; Lourenco, R

    2010-01-01

    Deterioration, accidental changes in the operating conditions, or incorrect estimates of the structure modal properties lead to de-tuning in tuned mass dampers (TMDs). To restore optimal performance, it is necessary to estimate the modal properties of the system, and re-tune the TMD to its optimal state. The presence of closely spaced modes and a relatively large amount of damping in the dominant modes renders the process of identification difficult. Furthermore, the process of estimating the modal properties of the bare structure using ambient vibration measurements of the structure with the TMD is challenging. In order to overcome these challenges, a novel identification and re-tuning algorithm is proposed. The process of identification consists of empirical mode decomposition to separate the closely spaced modes, followed by the blind identification of the remaining modes. Algorithms for estimating the fundamental frequency and the mode shape of the primary structure necessary for re-tuning the TMD are proposed. Experimental results from the application of the proposed algorithms to identify and re-tune a laboratory structure TMD system are presented

  2. Application of neural networks and neutron noise for diagnostics of reactor internals vibration

    International Nuclear Information System (INIS)

    Garis, N.S.; Pazsit, I.; Gloeckler, O.

    1995-01-01

    It has long been known that vibration of reactor internals, in particular excessive vibrations of control rods, can be detected via the neutron noise they induce. Noise measurements are actually suitable to determine important diagnostic parameters such as the location of the vibrating rod and the vibration amplitude. An algorithm was earlier elaborated for this purpose, which is based on inversion of the expression describing the neutron noise as a function of vibration parameters. This inversion procedure is nevertheless complicated and not always unique. It was investigated whether a properly trained neural network can perform the inversion more effectively. It was found that artificial neural networks can be trained effectively to perform vibration diagnostics from neutron noise data fast, effectively and reliably. The present paper gives a description of the development and use of the neural networks for purposes of vibration diagnostics

  3. Effects Of Whole Body Vibration On Vertical Jump Performance Following Exercise Induced Muscle Damage

    Directory of Open Access Journals (Sweden)

    Nicole C. Dabbs

    2014-01-01

    Full Text Available Enhancing vertical jump performance is critical for many sports. Following high intensity training, individuals often experience exercise induced muscle damage (EIMD. Many recovery modalities have been tested with conflicting results. The purpose of this investigation was to determine the effect of whole-body vibration (WBV on vertical jump performance following EIMD. 27 females volunteered for 7 sessions and were randomly assigned to a treatment or control group and administered each testing day. Vertical jump performance was assessed via vertical jump height (VJH, peak power output (PPO, rate of force development (RFD, relative ground reaction force (GRFz, and peak activation ratio of the vastus medialis (VM via electromyography (EMG before and after 3 days of EIMD via split squats. Two testing sets were collected each day, consisting of pre measures followed by WBV or control, and then post second measures. A 2x8 (group x time mixed factor analysis of variance (ANOVA was conducted for each variable. No significant interactions or group differences were found in any variable. Significant main effects for time were found in any variable, indicating performance declined following muscle damage. These results indicate that WBV does not aid in muscle recovery or vertical jump performance following EIMD.

  4. Fabrication of nano piezoelectric based vibration accelerometer for mechanical sensing

    Science.gov (United States)

    Murugan, S.; Prasad, M. V. N.; Jayakumar, K.

    2016-05-01

    An electromechanical sensor unit has been fabricated using nano PZT embedded in PVDF polymer. Such a polymer nano composite has been used as vibration sensor element and sensitivity, detection of mechanical vibration, and linearity measurements have been investigated. It is found from its performance, that this nano composite sensor is suitable for mechanical sensing applications.

  5. Control of pipe vibrations; Schwingungsminderung bei Rohrleitungen

    Energy Technology Data Exchange (ETDEWEB)

    Sinambari, G.R. [FH Bingen, Fachrichtung Umweltschutz, und IBS Ingenieurbuero fuer Schall- und Schwingungstechnik GmbH, Frankenthal (Germany); Thorn, U. [IBS Ingenieurbuero fuer Schall- und Schwingungstechnik GmbH, Frankenthal (Germany)

    2005-06-01

    Following commissioning of a new vacuum system for the refinery of MiRO Mineraloelraffinerie Oberrhein GmbH and Co. KG, vibrations occurred in the furnace exhaust pipes. As these had to be regarded as critical for the fatigue strength of the pipes, the pipes' vibration response in the critical frequency range was investigated immediately by means of a vibration analysis, and appropriate measures for vibration control were elaborated. All investigations, and the installation of the hydraulic vibration dampers, took place with the system operating. The effectiveness of the measures taken was checked by means of measurements following installation. The measures succeeded in attenuating the vibrations to a level at which, empirically, damage need no longer be expected. This paper illustrates the procedure for developing the vibration control measures and the essential results of the investigations. (orig.)

  6. Laser vibrometry measurements of vibration and sound fields of a bowed violin

    Science.gov (United States)

    Gren, Per; Tatar, Kourosh; Granström, Jan; Molin, N.-E.; Jansson, Erik V.

    2006-04-01

    Laser vibrometry measurements on a bowed violin are performed. A rotating disc apparatus, acting as a violin bow, is developed. It produces a continuous, long, repeatable, multi-frequency sound from the instrument that imitates the real bow-string interaction for a 'very long bow'. What mainly differs is that the back and forward motion of the real bow is replaced by the rotating motion with constant velocity of the disc and constant bowing force (bowing pressure). This procedure is repeatable. It is long lasting and allows laser vibrometry techniques to be used, which measure forced vibrations by bowing at all excited frequencies simultaneously. A chain of interacting parts of the played violin is studied: the string, the bridge and the plates as well as the emitted sound field. A description of the mechanics and the sound production of the bowed violin is given, i.e. the production chain from the bowed string to the produced tone.

  7. Vibrations of Railroad Due to The Passage of The Underground Train

    Science.gov (United States)

    Konowrocki, Robert; Bajer, Czesław

    2010-03-01

    In the paper we present results of vibration measurements in the train and on the base of the railroad in tunnels of Warsaw Underground. Measurements were performed at straight and curved sections of the track. The paper is focused on the influence of the lateral slip in rail/wheel contact zone on the generation of vibrations and a noise. Vibrations were analyzed in terms of accelerations, velocities or displacements as a function of time and frequency. Results ware compared with the experiment of rolling of the wheel with lateral sleep. In both cases we observed double periodic oscillations.

  8. Distribution of base rock depth estimated from Rayleigh wave measurement by forced vibration tests

    International Nuclear Information System (INIS)

    Hiroshi Hibino; Toshiro Maeda; Chiaki Yoshimura; Yasuo Uchiyama

    2005-01-01

    This paper shows an application of Rayleigh wave methods to a real site, which was performed to determine spatial distribution of base rock depth from the ground surface. At a certain site in Sagami Plain in Japan, the base rock depth from surface is assumed to be distributed up to 10 m according to boring investigation. Possible accuracy of the base rock depth distribution has been needed for the pile design and construction. In order to measure Rayleigh wave phase velocity, forced vibration tests were conducted with a 500 N vertical shaker and linear arrays of three vertical sensors situated at several points in two zones around the edges of the site. Then, inversion analysis was carried out for soil profile by genetic algorithm, simulating measured Rayleigh wave phase velocity with the computed counterpart. Distribution of the base rock depth inverted from the analysis was consistent with the roughly estimated inclination of the base rock obtained from the boring tests, that is, the base rock is shallow around edge of the site and gradually inclines towards the center of the site. By the inversion analysis, the depth of base rock was determined as from 5 m to 6 m in the edge of the site, 10 m in the center of the site. The determined distribution of the base rock depth by this method showed good agreement on most of the points where boring investigation were performed. As a result, it was confirmed that the forced vibration tests on the ground by Rayleigh wave methods can be useful as the practical technique for estimating surface soil profiles to a depth of up to 10 m. (authors)

  9. Vibrations measurement in fast and PWR reactor study

    International Nuclear Information System (INIS)

    Tigeot, Y.; Epstein, A.; Hareux, F.

    1975-01-01

    In the past severe damages have occured in several nuclear reactors, by structural vibrations induced by the primary cooling flow. To avoid this kind of troubles, the SEMT makes studies for two different types of reactors. For the light pressurized water reactors, some tests have been made on the SAFRAN test loop which is a three loop 1/8 scale internal model of a 900 MWe reactor. This study is actually undertaken jointly with Framatome. Elsewhere, measurements have been made on the Phenix fast breeder sodium reactor, and studies are planned for the Super Phenix reactor [fr

  10. Improvement on vibration measurement performance of laser self-mixing interference by using a pre-feedback mirror

    Science.gov (United States)

    Zhu, Wei; Chen, Qianghua; Wang, Yanghong; Luo, Huifu; Wu, Huan; Ma, Binwu

    2018-06-01

    In the laser self-mixing interference vibration measurement system, the self mixing interference signal is usually weak so that it can be hardly distinguished from the environmental noise. In order to solve this problem, we present a self-mixing interference optical path with a pre-feedback mirror, a pre-feedback mirror is added between the object and the collimator lens, corresponding feedback light enters into the inner cavity of the laser and the interference by the pre-feedback mirror occurs. The pre-feedback system is established after that. The self-mixing interference theoretical model with a pre-feedback based on the F-P model is derived. The theoretical analysis shows that the amplitude of the intensity of the interference signal can be improved by 2-4 times. The influence factors of system are also discussed. The experiment results show that the amplitude of the signal is greatly improved, which agrees with the theoretical analysis.

  11. An exploratory study of using external fluid loading on a vibrating tube for measuring suspended sediment concentration in water

    International Nuclear Information System (INIS)

    Hsu, Y-S; Hwang, Y-F; Huang, J H

    2008-01-01

    This paper presents an exploratory study of using external fluid loading on a vibrating tube for measuring the suspended sediment concentration (SSC) in bodies of water such as rivers and reservoirs. This new measuring concept provides an opportunity for an automated on-site monitoring of the conditions in a body of water by taking the fluid sample instantaneously in the area surrounding the vibrating tube. The physical properties of the fluid sample are those of the fluid that naturally flows around the tube, and are more representative of those of the water with SSC to be measured. The theoretical analysis presented in this paper shows that the resonance frequencies of an immersed vibrating tube change significantly with mass density variations that normally occur in bodies of water with suspended sediment. These changes are sensitive enough to have a possible 1% resolution of the measured fluid density. The signal processing issues are discussed, and a schematic of a conceptual measuring setup is proposed. Based on the theoretical analyses and other measurement issues presented in the paper, using the loading by external fluid on a vibrating tube is feasible for measuring the SSC in water bodies

  12. a Study of Radial Vibrations of a Rolling Tyre for TYRE-ROAD Noise Characterisation

    Science.gov (United States)

    Périsse, J.

    2002-11-01

    Because tyre-road noise represents the main noise source for light vehicles with driving speed above 60 km/h, comprehension of generation mechanism of tyre-road noise has become a subject of major importance. In this paper, tyre-road interaction and radial tyre vibrations are investigated for tyre-road noise characterisation. Experimental measurements are performed on a rolling smooth tyre with test laboratory facilities. Both tread band and sidewall responses of the tyre are measured and compared to each other. High concentration of vibrations is observed in the vicinity of the contact area. Stationary radial deformation and non-stationary vibrations due to road rugosity are studied. Frequency analyses have been performed on the acceleration time signals showing the influence of the rotating speed on the vibrations level and frequency content. Finally, by integrating acceleration signal of the tyre tread over one revolution, stationary radial displacement can be calculated and the true contact length can be estimated. This study provides us with new measurement data for comparison with mathematical modelling. It also gives a physical insight on generation mechanism of tyre radial vibrations.

  13. Performance of field measuring probes for SSC magnets

    International Nuclear Information System (INIS)

    Thomas, R.; Ganetis, G.; Herrera, J.; Hogue, R.; Jain, A.; Louie, W.; Marone, A.; Wanderer, P.

    1993-01-01

    Several years of experience have been acquired on the operation of probes (''moles'') constructed for the measurement of the multipole components of the magnetic fields of SSC magnets. The field is measured by rotating coils contained in a 2.4-m long tube that is pulled through the aperture of the magnet by an external device-the transporter. In addition to the measuring coils, the tube contains motors for rotating the coil and a system for sensing local vertical using gravity sensors to provide an absolute reference for the field measurements. We describe the steps that must be taken in order to ensure accurate, repeatable measurements; the design changes that have been motivated by difficulties encountered (noise, vibration, variations in temperature); and other performance issues. The mechanical interface between the probe and the hewn tube of the magnet is also described

  14. A MEMS Resonant Sensor to Measure Fluid Density and Viscosity under Flexural and Torsional Vibrating Modes

    Directory of Open Access Journals (Sweden)

    Libo Zhao

    2016-06-01

    Full Text Available Methods to calculate fluid density and viscosity using a micro-cantilever and based on the resonance principle were put forward. Their measuring mechanisms were analyzed and the theoretical equations to calculate the density and viscosity were deduced. The fluid-solid coupling simulations were completed for the micro-cantilevers with different shapes. The sensing chips with micro-cantilevers were designed based on the simulation results and fabricated using the micro electromechanical systems (MEMS technology. Finally, the MEMS resonant sensor was packaged with the sensing chip to measure the densities and viscosities of eight different fluids under the flexural and torsional vibrating modes separately. The relative errors of the measured densities from 600 kg/m3 to 900 kg/m3 and viscosities from 200 μPa·s to 1000 μPa·s were calculated and analyzed with different microcantilevers under various vibrating modes. The experimental results showed that the effects of the shape and vibrating mode of micro-cantilever on the measurement accuracies of fluid density and viscosity were analyzed in detail.

  15. Vibration analysis and vibration damage assessment in nuclear and process equipment

    International Nuclear Information System (INIS)

    Pettigrew, M.J.; Taylor, C.E.; Fisher, N.J.; Yetisir, M.; Smith, B.A.W.

    1997-01-01

    Component failures due to excessive flow-induced vibration are still affecting the performance and reliability of process and nuclear components. The purpose of this paper is to discuss flow-induced vibration analysis and vibration damage prediction. Vibration excitation mechanisms are described with particular emphasis on fluid elastic instability. The dynamic characteristics of process and power equipment are explained. The statistical nature of some parameters, in particular support conditions, is discussed. The prediction of fretting-wear damage is approached from several points-of-view. An energy approach to formulate fretting-wear damage is proposed. (author)

  16. In-situ position and vibration measurement of rough surfaces using laser Doppler distance sensors

    Science.gov (United States)

    Czarske, J.; Pfister, T.; Günther, P.; Büttner, L.

    2009-06-01

    In-situ measurement of distances and shapes as well as dynamic deformations and vibrations of fast moving and especially rotating objects, such as gear shafts and turbine blades, is an important task at process control. We recently developed a laser Doppler distance frequency sensor, employing two superposed fan-shaped interference fringe systems with contrary fringe spacing gradients. Via two Doppler frequency evaluations the non-incremental position (i.e. distance) and the tangential velocity of rotating bodies are determined simultaneously. The distance uncertainty is in contrast to e.g. triangulation in principle independent of the object velocity. This unique feature allows micrometer resolutions of fast moved rough surfaces. The novel sensor was applied at turbo machines in order to control the tip clearance. The measurements at a transonic centrifugal compressor were performed during operation at up to 50,000 rpm, i.e. 586 m/s velocity of the blade tips. Due to the operational conditions such as temperatures of up to 300 °C, a flexible and robust measurement system with a passive fiber-coupled sensor, using diffractive optics, has been realized. Since the tip clearance of individual blades could be temporally resolved an analysis of blade vibrations was possible. A Fourier transformation of the blade distances results in an average period of 3 revolutions corresponding to a frequency of 1/3 of the rotary frequency. Additionally, a laser Doppler distance sensor using two tilted fringe systems and phase evaluation will be presented. This phase sensor exhibits a minimum position resolution of σz = 140 nm. It allows precise in-situ shape measurements at grinding and turning processes.

  17. Investigation of Concrete Floor Vibration Using Heel-Drop Test

    Science.gov (United States)

    Azaman, N. A. Mohd; Ghafar, N. H. Abd; Azhar, A. F.; Fauzi, A. A.; Ismail, H. A.; Syed Idrus, S. S.; Mokhjar, S. S.; Hamid, F. F. Abd

    2018-04-01

    In recent years, there is an increased in floor vibration problems of structures like residential and commercial building. Vibration is defined as a serviceability issue related to the comfort of the occupant or damage equipment. Human activities are the main source of vibration in the building and it could affect the human comfort and annoyance of residents in the building when the vibration exceed the recommend level. A new building, Madrasah Tahfiz located at Yong Peng have vibration problem when load subjected on the first floor of the building. However, the limitation of vibration occurs on building is unknown. Therefore, testing is needed to determine the vibration behaviour (frequency, damping ratio and mode shape) of the building. Heel-drop with pace 2Hz was used in field measurement to obtain the vibration response. Since, the heel-drop test results would vary in light of person performance, test are carried out three time to reduce uncertainty. Natural frequency from Frequency Response Function analysis (FRF) is 17.4Hz, 16.8, 17.4Hz respectively for each test.

  18. Measurement and Analysis of Horizontal Vibration Response of Pile Foundations

    Directory of Open Access Journals (Sweden)

    A. Boominathan

    2007-01-01

    Full Text Available Pile foundations are frequently used in very loose and weak deposits, in particular soft marine clays deposits to support various industrial structures, power plants, petrochemical complexes, compressor stations and residential multi-storeyed buildings. Under these circumstances, piles are predominantly subjected to horizontal dynamic loads and the pile response to horizontal vibration is very critical due to its low stiffness. Though many analytical methods have been developed to estimate the horizontal vibration response, but they are not well validated with the experimental studies. This paper presents the results of horizontal vibration tests carried out on model aluminium single piles embedded in a simulated Elastic Half Space filled with clay. The influence of various soil and pile parameters such as pile length, modulus of clay, magnitude of dynamic load and frequency of excitation on the horizontal vibration response of single piles was examined. Measurement of various response quantities, such as the load transferred to the pile, pile head displacement and the strain variation along the pile length were done using a Data Acquisition System. It is found that the pile length, modulus of clay and dynamic load, significantly influences the natural frequency and peak amplitude of the soil-pile system. The maximum bending moment occurs at the fundamental frequency of the soil-pile system. The maximum bending moment of long piles is about 2 to 4 times higher than that of short piles and it increases drastically with the increase in the shear modulus of clay for both short and long piles. The active or effective pile length is found to be increasing under dynamic load and empirical equations are proposed to estimate the active pile length under dynamic loads.

  19. Measurement and analysis of vibrational behaviour of an SNR-fuel element in sodium flow

    International Nuclear Information System (INIS)

    Hess, B.F.H.; Ruppert, E.; Schmidt, H.; Vinzens, K.

    1975-01-01

    Within the framework of SNR-300 fuel element development programme a complete full size fuel element dummy has been tested thoroughly for nearly 3000 hours at 650 0 C system temperature in the AKB sodium loop at Interatom, Bensberg. Investigations of the hydraulic characteristics by measurements of specific pressure losses, flow velocities, leakage flow through the piston rings and investigations of its vibrational behaviour were part of this endurance test at elevated temperatures. The pressure drop versus flow and the leakage measurement are mentioned briefly to confirm the correctness of the test hydraulics. The vibrational behaviour of the element and the approach to analysis is the main object of this report. (Auth.)

  20. Quantitative assessment of corneal vibrations during intraocular pressure measurement with the air-puff method in patients with keratoconus.

    Science.gov (United States)

    Koprowski, Robert; Ambrósio, Renato

    2015-11-01

    One of the current methods for measuring intraocular pressure is the air-puff method. A tonometer which uses this method is the Corvis device. With the ultra-high-speed (UHS) Scheimpflug camera, it is also possible to observe corneal deformation during measurement. The use of modern image analysis and processing methods allows for analysis of higher harmonics of corneal deflection above 100 Hz. 493 eyes of healthy subjects and 279 eyes of patients with keratoconus were used in the measurements. For each eye, 140 corneal deformation images were recorded during intraocular pressure measurement. Each image was recorded every 230 µs and had a resolution of 200 × 576 pixels. A new, original algorithm for image analysis and processing has been proposed. It enables to separate the eyeball reaction as well as low-frequency and high-frequency corneal deformations from the eye response to an air puff. Furthermore, a method for classification of healthy subjects and patients with keratoconus based on decision trees has been proposed. The obtained results confirm the possibility to distinguish between patients with keratoconus and healthy subjects. The features used in this classification are directly related to corneal vibrations. They are only available in the proposed software and provide specificity of 98%, sensitivity-85%, and accuracy-92%. This confirms the usefulness of the proposed method in this type of classification that uses corneal vibrations during intraocular pressure measurement with the Corvis tonometer. With the new proposed algorithm for image analysis and processing allowing for the separation of individual features from a corneal deformation image, it is possible to: automatically measure corneal vibrations in a few characteristic points of the cornea, obtain fully repeatable measurement of vibrations for the same registered sequence of images and measure vibration parameters for large inter-individual variability in patients. Copyright © 2015 Elsevier

  1. Identification and reduction of piping-vibrations in plants

    International Nuclear Information System (INIS)

    Kerkhof, K.

    2012-01-01

    Safe operation, availability and lifetime assessment of piping systems are of utmost concern for plant operators. The use of tuned mass dampers is a rather new approach for reducing vibrations to avoid high cycle fatigue in a large chemical piping system. The investigated piping system is supported by a tall structure fixed at the base. As a result, the steel building stiffness decreases with height. Furthermore large piping-elbow forces act at the top of the building, which lead to large vibration amplitudes. Since both piping system and supporting structure exhibited these large vibration amplitudes, dampers or shock absorbers placed between them would prove ineffective. Therefore, special vibration absorbers were developed for such piping systems. The paper presents the design process, starting with an extensive system investigation up to the passive multi-axial vibration absorber design parameters. This includes: Laboratory tests with a mock-up pipe system, where the first design ideas for new passive vibration absorbers were investigated. Vibration measurements were carried out to investigate the current state of the vibration behaviour. The piping system was inspected; strain gauges were used to identify stress concentrations at welds and other notches due to ovalization. Finite element calculations were performed, first as a combined beam and shell model for the pipe without the support structure. A detailed model for the combined steel construction and pipe system was created. Model-updating was done to fit the calculated model to the experimental modal analysis data. Loading assumptions describing excitation forces from the mass flow were checked. Harmonic frequency analysis was performed. On the basis of these calculations design parameters for the passive vibration absorber were determined. Finally, a solution for the design of two passive vibration absorbers will be presented.

  2. Identification and reduction of piping-vibrations in plants

    Energy Technology Data Exchange (ETDEWEB)

    Kerkhof, K. [Stuttgart Univ. (Germany). MPA

    2012-07-01

    Safe operation, availability and lifetime assessment of piping systems are of utmost concern for plant operators. The use of tuned mass dampers is a rather new approach for reducing vibrations to avoid high cycle fatigue in a large chemical piping system. The investigated piping system is supported by a tall structure fixed at the base. As a result, the steel building stiffness decreases with height. Furthermore large piping-elbow forces act at the top of the building, which lead to large vibration amplitudes. Since both piping system and supporting structure exhibited these large vibration amplitudes, dampers or shock absorbers placed between them would prove ineffective. Therefore, special vibration absorbers were developed for such piping systems. The paper presents the design process, starting with an extensive system investigation up to the passive multi-axial vibration absorber design parameters. This includes: Laboratory tests with a mock-up pipe system, where the first design ideas for new passive vibration absorbers were investigated. Vibration measurements were carried out to investigate the current state of the vibration behaviour. The piping system was inspected; strain gauges were used to identify stress concentrations at welds and other notches due to ovalization. Finite element calculations were performed, first as a combined beam and shell model for the pipe without the support structure. A detailed model for the combined steel construction and pipe system was created. Model-updating was done to fit the calculated model to the experimental modal analysis data. Loading assumptions describing excitation forces from the mass flow were checked. Harmonic frequency analysis was performed. On the basis of these calculations design parameters for the passive vibration absorber were determined. Finally, a solution for the design of two passive vibration absorbers will be presented.

  3. A wireless vibrating wire sensor node for continuous structural health monitoring

    International Nuclear Information System (INIS)

    Lee, H M; Park, H S; Kim, J M; Sho, K

    2010-01-01

    Vibrating wire sensors (VWS) are generally used for strain measurements of structures in buildings and civil infrastructures. In this paper, a wireless vibrating wire sensor node is developed which can measure resonance frequencies from vibrating wire sensors and can remotely communicate the frequencies by wireless. The wireless sensor node consists of a sensor module, which excites the vibrating wire and reads the resonance frequencies, a wireless communication module, which transmits the wire's resonance frequencies to the user or administrator, and a processor that controls the two modules. The wireless sensor node has the following characteristics: it has multiple channels to enable measurement of multiple vibrating wire sensors (up to four) using a single sensor node; it has a power-saving feature that enables operation for up to one year; and lastly, the wireless unit uses the 424 MHz UHF (ultra-high frequency) band with good diffraction that has an effect on minimizing the influence of impediments such as structural or nonstructural elements. The wireless sensor node is tested in terms of its measurement precision and its wireless communication performance. As a result, it is confirmed that the node enables the long-term structural health monitoring of buildings and infrastructures

  4. The Influence of Whole-Body Vibration on Creatine Kinase Activity and Jumping Performance in Young Basketball Players

    Science.gov (United States)

    Fachina, Rafael; da Silva, Antônio; Falcão, William; Montagner, Paulo; Borin, João; Minozzo, Fábio; Falcão, Diego; Vancini, Rodrigo; Poston, Brach; de Lira, Claudio

    2013-01-01

    Purpose: To quantify creatine kinase (CK) activity changes across time following an acute bout of whole-body vibration (WBV) and determine the association between changes in CK activity and jumping performance. Method: Twenty-six elite young basketball players were assigned to 3 groups: 36-Hz and 46-Hz vibration groups (G36 and G46, respectively)…

  5. Vibration control for the ARGOS laser launch path

    Science.gov (United States)

    Peter, Diethard; Gässler, Wolfgang; Borelli, Jose; Barl, Lothar; Rabien, S.

    2012-07-01

    Present and future adaptive optics systems aim for the correction of the atmospheric turbulence over a large field of view combined with large sky coverage. To achieve this goal the telescope is equipped with multiple laser beacons. Still, to measure tip-tilt aberrations a natural guide star is used. For some fields such a tilt-star is not available and a correction on the laser beacons alone is applied. For this method to work well the laser beacons must not be affected by telescope vibrations on their up-link path. For the ARGOS system the jitter of the beacons is specified to be below 0.05. To achieve this goal a vibration compensation system is necessary to mitigate the mechanical disturbances. The ARGOS vibration compensation system is an accelerometer based feed forward system. The accelerometer measurements are fed into a real time controller. To achieve high performance the controller of the system is model based. The output is applied to a fast steering mirror. This paper presents the concept of the ARGOS vibration compensation, the hardware, and laboratory results.

  6. Electronic and vibrational spectroscopy and vibrationally mediated photodissociation of V+(OCO).

    Science.gov (United States)

    Citir, Murat; Altinay, Gokhan; Metz, Ricardo B

    2006-04-20

    Electronic spectra of gas-phase V+(OCO) are measured in the near-infrared from 6050 to 7420 cm(-1) and in the visible from 15,500 to 16,560 cm(-1), using photofragment spectroscopy. The near-IR band is complex, with a 107 cm(-1) progression in the metal-ligand stretch. The visible band shows clearly resolved vibrational progressions in the metal-ligand stretch and rock, and in the OCO bend, as observed by Brucat and co-workers. A vibrational hot band gives the metal-ligand stretch frequency in the ground electronic state nu3'' = 210 cm(-1). The OCO antisymmetric stretch frequency in the ground electronic state (nu1'') is measured by using vibrationally mediated photodissociation. An IR laser vibrationally excites ions to nu1'' = 1. Vibrationally excited ions selectively dissociate following absorption of a second, visible photon at the nu1' = 1 CO2, due to interaction with the metal. Larger blue shifts observed for complexes with fewer ligands agree with trends seen for larger V+(OCO)n clusters.

  7. Performance of field measuring probes for SSC magnets

    International Nuclear Information System (INIS)

    Thomas, R.; Ganetis, G.; Herrera, J.; Hogue, R.; Jain, A.; Louie, W.; Marone, A.; Wanderer, P.

    1994-01-01

    Several years of experience have been acquired on the operation of probes (open-quotes molesclose quotes) constructed for the measurement of the multipole components of the magnetic fields of SSC magnets. The field is measured by rotating coils contained in a 2.4-m long tube that is pulled through the aperture of the magnet by an external device - the transporter. In addition to the measuring coils, the tube contains motors for rotating the coil and a system for sensing local vertical using gravity sensors to provide an absolute reference for the field measurements. The authors describe the steps that must be taken in order to ensure accurate, repeatable measurements; the design changes that have been motivated by difficulties encountered (noise, vibration, variations in temperature); and other performance issues. The mechanical interface between the probe and the beam tube of the magnet is also described

  8. Blade Vibration Measurement System for Characterization of Closely Spaced Modes and Mistuning, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — There are several ongoing challenges in non-contacting blade vibration and stress measurement systems that can address closely spaced modes and blade-to-blade...

  9. Railway testing using a portable ride quality and vibration measurement system with GPS

    Science.gov (United States)

    Mee, Brian; Whitten, Brian; Neijikovsky, Boris

    1995-06-01

    To conduct the testing and evaluation of railway and railway vehicles, the Federal Railroad Administration developed a protable system that consists of accelerometers oriented in the vertical and horizontal directions, a Global Positioning System (GPS) receiver, data collection and power systems, and a portable computer. Commercial software was used to collect and display the data, while software, developed by ENSCO, was used to analyze and display results. The GPS provided dynamic location to an accuracy of 30 meters or better, and vehicle speed to within one mile per hour. The system was used in the demonstration tests of several advanced high-speed trains on Amtrak's Northeast Corrider and on other tracks in the US. The portable measurement system proved to be a simple and effective device to characterize the vibration environment of any transportation system. It is ideal for use in the assessment of the safe performance of high-speed trains operating at high cant deficiency. The system has also been used for other field tests, including braking performance and bridge monitoring. This report discusses the portable measurement system, the test applications that the system has been used for, the results of thoses tests, and the potential for improvements.

  10. Investigation of the performances of PZT vs rare earth (BaLaTiO3 vibration based energy harvester

    Directory of Open Access Journals (Sweden)

    Pak Nehemiah

    2017-01-01

    Full Text Available This study proposes the investigation of two piezoelectric material namely PZT and Lanthanum Doped Barium Titanate (BaLaTiO3 performance as a vibration based energy harvester. The piezoelectric material when applied mechanical stress or strain produces electricity through the piezoelectric effect. The vibration energy would exude mechanical energy and thus apply mechanical force on the energy harvester. The energy harvester would be designed and simulated using the piezoelectric material individually. The studied outputs are divided to frequency response, the load dependence, and the acceleration dependence whereby measurement are observed and taken at maximum power output. The simulation is done using the cantilevers design which employs d31 type of constants. Three different simulations to study the dependence of output power on the resonant frequency response, load and acceleration have found that material that exhibit highest power generation was the BaLaTiO3.

  11. Investigation of the performances of PZT vs rare earth (BaLaTiO3) vibration based energy harvester

    Science.gov (United States)

    Pak, Nehemiah; Aris, Hasnizah; Nadia Taib, Bibi

    2017-11-01

    This study proposes the investigation of two piezoelectric material namely PZT and Lanthanum Doped Barium Titanate (BaLaTiO3) performance as a vibration based energy harvester. The piezoelectric material when applied mechanical stress or strain produces electricity through the piezoelectric effect. The vibration energy would exude mechanical energy and thus apply mechanical force on the energy harvester. The energy harvester would be designed and simulated using the piezoelectric material individually. The studied outputs are divided to frequency response, the load dependence, and the acceleration dependence whereby measurement are observed and taken at maximum power output. The simulation is done using the cantilevers design which employs d31 type of constants. Three different simulations to study the dependence of output power on the resonant frequency response, load and acceleration have found that material that exhibit highest power generation was the BaLaTiO3.

  12. Integrating Oil Debris and Vibration Gear Damage Detection Technologies Using Fuzzy Logic

    Science.gov (United States)

    Dempsey, Paula J.; Afjeh, Abdollah A.

    2002-01-01

    A diagnostic tool for detecting damage to spur gears was developed. Two different measurement technologies, wear debris analysis and vibration, were integrated into a health monitoring system for detecting surface fatigue pitting damage on gears. This integrated system showed improved detection and decision-making capabilities as compared to using individual measurement technologies. This diagnostic tool was developed and evaluated experimentally by collecting vibration and oil debris data from fatigue tests performed in the NASA Glenn Spur Gear Fatigue Test Rig. Experimental data were collected during experiments performed in this test rig with and without pitting. Results show combining the two measurement technologies improves the detection of pitting damage on spur gears.

  13. Vibrational lifetimes of protein amide modes

    International Nuclear Information System (INIS)

    Peterson, K.A.; Rella, C.A.

    1995-01-01

    Measurement of the lifetimes of vibrational modes in proteins has been achieved with a single frequency infrared pump-probe technique using the Stanford Picosecond Free-electron Laser, These are the first direct measurements of vibrational dynamics in the polyamide structure of proteins. In this study, modes associated with the protein backbone are investigated. Results for the amide I band, which consists mainly of the stretching motion of the carbonyl unit of the amide linkage, show that relaxation from the first vibrational excited level (v=1) to the vibrational ground state (v=0) occurs within 1.5 picoseconds with apparent first order kinetics. Comparison of lifetimes for myoglobin and azurin, which have differing secondary structures, show a small but significant difference. The lifetime for the amide I band of myoglobin is 300 femtoseconds shorter than for azurin. Further measurements are in progress on other backbone vibrational modes and on the temperature dependence of the lifetimes. Comparison of vibrational dynamics for proteins with differing secondary structure and for different vibrational modes within a protein will lead to a greater understanding of energy transfer and dissipation in biological systems. In addition, these results have relevance to tissue ablation studies which have been conducted with pulsed infrared lasers. Vibrational lifetimes are necessary for calculating the rate at which the energy from absorbed infrared photons is converted to equilibrium thermal energy within the irradiated volume. The very fast vibrational lifetimes measured here indicate that mechanisms which involve direct vibrational up-pumping of the amide modes with consecutive laser pulses, leading to bond breakage or weakening, are not valid

  14. Calculations on the vibrational level density in highly excited formaldehyde

    International Nuclear Information System (INIS)

    Rashev, Svetoslav; Moule, David C.

    2003-01-01

    The object of the present work is to develop a model that provides realistic estimates of the vibrational level density in polyatomic molecules in a given electronic state, at very high (chemically relevant) vibrational excitation energies. For S 0 formaldehyde (D 2 CO), acetylene, and a number of triatomics, the estimates using conventional spectroscopic formulas have yielded densities at the dissociation threshold, very much lower than the experimentally measured values. In the present work we have derived a general formula for the vibrational energy levels of a polyatomic molecule, which is a generalization of the conventional Dunham spectroscopic expansion. Calculations were performed on the vibrational level density in S 0 D 2 CO, H 2 C 2 , and NO 2 at excitation energies in the vicinity of the dissociation limit, using the newly derived formula. The results from the calculations are in reasonable agreement with the experimentally measured data

  15. Surface vibrational spectroscopy

    International Nuclear Information System (INIS)

    Erskine, J.L.

    1984-01-01

    A brief review of recent studies which combine measurements of surface vibrational energies with lattice dynamical calculations is presented. These results suggest that surface vibrational spectroscopy offers interesting prospects for use as a molecular-level probe of surface geometry, adsorbate bond distances and molecular orientations

  16. Calculation of acoustic field based on laser-measured vibration velocities on ultrasonic transducer surface

    Science.gov (United States)

    Hu, Liang; Zhao, Nannan; Gao, Zhijian; Mao, Kai; Chen, Wenyu; Fu, Xin

    2018-05-01

    Determination of the distribution of a generated acoustic field is valuable for studying ultrasonic transducers, including providing the guidance for transducer design and the basis for analyzing their performance, etc. A method calculating the acoustic field based on laser-measured vibration velocities on the ultrasonic transducer surface is proposed in this paper. Without knowing the inner structure of the transducer, the acoustic field outside it can be calculated by solving the governing partial differential equation (PDE) of the field based on the specified boundary conditions (BCs). In our study, the BC on the transducer surface, i.e. the distribution of the vibration velocity on the surface, is accurately determined by laser scanning measurement of discrete points and follows a data fitting computation. In addition, to ensure the calculation accuracy for the whole field even in an inhomogeneous medium, a finite element method is used to solve the governing PDE based on the mixed BCs, including the discretely measured velocity data and other specified BCs. The method is firstly validated on numerical piezoelectric transducer models. The acoustic pressure distributions generated by a transducer operating in an homogeneous and inhomogeneous medium, respectively, are both calculated by the proposed method and compared with the results from other existing methods. Then, the method is further experimentally validated with two actual ultrasonic transducers used for flow measurement in our lab. The amplitude change of the output voltage signal from the receiver transducer due to changing the relative position of the two transducers is calculated by the proposed method and compared with the experimental data. This method can also provide the basis for complex multi-physical coupling computations where the effect of the acoustic field should be taken into account.

  17. The Effects of Local Vibration on Balance, Power, and Self-Reported Pain After Exercise.

    Science.gov (United States)

    Custer, Lisa; Peer, Kimberly S; Miller, Lauren

    2017-05-01

    Muscle fatigue and acute muscle soreness occur after exercise. Application of a local vibration intervention may reduce the consequences of fatigue and soreness. To examine the effects of a local vibration intervention after a bout of exercise on balance, power, and self-reported pain. Single-blind crossover study. Laboratory. 19 healthy, moderately active subjects. After a 30-min bout of full-body exercise, subjects received either an active or a sham vibration intervention. The active vibration intervention was performed bilaterally over the muscle bellies of the triceps surae, quadriceps, hamstrings, and gluteals. At least 1 wk later, subjects repeated the bout, receiving the other vibration intervention. Static balance, dynamic balance, power, and self-reported pain were measured at baseline, after the vibration intervention, and 24 h postexercise. After the bout of exercise, subjects had reduced static and dynamic balance and increased self-reported pain regardless of vibration intervention. There were no differences between outcome measures between the active and sham vibration conditions. The local vibration intervention did not affect balance, power, or self-reported pain.

  18. APPLICATION OF SMART MOBILE PHONES IN VIBRATION MONITORING

    Directory of Open Access Journals (Sweden)

    Ljubomir Vračar

    2015-08-01

    Full Text Available The purpose of the research presented in this paper is the development of the smart mobile phone application for vibration monitoring of pumping aggregate, based on Microchip’s microcontroller (MC. Hardware used is based on Bluetooth connection between smart sensor and smart mobile phone. Software for acquisition and data analysis is optimized for imbedded application in smart sensors. Smart acceleration sensor in conjunction with Bluetooth connection to smart mobile phone creates one touch mobile vibration monitoring system. The authors have performed numerous measurements on a wide range of aggregates for establishing the operating functionality of the newly created system. The possibility of system application I rail vehicle vibration monitoring is also analyzed.

  19. Effects of focal vibration on bone mineral density and motor performance of postmenopausal osteoporotic women.

    Science.gov (United States)

    Brunetti, O; Botti, F M; Brunetti, A; Biscarini, A; Scarponi, A M; Filippi, G M; Pettorossi, V E

    2015-01-01

    This randomized double blind controlled study is aimed at determining the effect of repeated vibratory stimuli focally applied to the contracted quadriceps muscles (repeated muscle vibration=rMV) on bone mineral density, leg power and balance of postmenopausal osteoporotic women. The study has been conducted on 40 voluntary postmenopausal osteoporotic women, randomised at 2 groups for rMV treatment and for control. The treatment group underwent rMV (100Hz, 300-500 μm; three applications per day, each lasting 10-minutes, for 3 consecutive days) applied to voluntary contracted quadriceps (VC=vibrated and contracted group). The control group, received a sham stimulation on contracted quadriceps (NV=non vibrated group). Bone mineral density T-score of proximal femur of the participants, was evaluated in two weeks before and 360 days after intervention; body balance and explosive leg power were measured 1 day before, 30 days and 360 days after treatment. VC group T-score at one year didn't change significantly relative to baseline values (pretreatment: -2.61±0.11, post-treatment -2.62±0.13); conversely in NV subjects T-score decreased significantly from -2.64 ± 0.15 SD down to -2.99 ± 0.28 SD. A significant improvement of balance and explosive leg power was observed only in VC group at 30 and 360 days after the intervention. We conclude that rMV is a safe, short-lasting and non-invasive treatment that can significantly and persistently improve muscle performance and can effectively counteract progressive demineralisation in postmenopausal and osteoporotic women.

  20. The approximation function of bridge deck vibration derived from the measured eigenmodes

    Directory of Open Access Journals (Sweden)

    Sokol Milan

    2017-12-01

    Full Text Available This article deals with a method of how to acquire approximate displacement vibration functions. Input values are discrete, experimentally obtained mode shapes. A new improved approximation method based on the modal vibrations of the deck is derived using the least-squares method. An alternative approach to be employed in this paper is to approximate the displacement vibration function by a sum of sine functions whose periodicity is determined by spectral analysis adapted for non-uniformly sampled data and where the parameters of scale and phase are estimated as usual by the least-squares method. Moreover, this periodic component is supplemented by a cubic regression spline (fitted on its residuals that captures individual displacements between piers. The statistical evaluation of the stiffness parameter is performed using more vertical modes obtained from experimental results. The previous method (Sokol and Flesch, 2005, which was derived for near the pier areas, has been enhanced to the whole length of the bridge. The experimental data describing the mode shapes are not appropriate for direct use. Especially the higher derivatives calculated from these data are very sensitive to data precision.

  1. Optimal deployment schedule of an active twist rotor for performance enhancement and vibration reduction in high-speed flights

    Directory of Open Access Journals (Sweden)

    Young H. YOU

    2017-08-01

    Full Text Available The best active twist schedules exploiting various waveform types are sought taking advantage of the global search algorithm for the reduction of hub vibration and/or power required of a rotor in high-speed conditions. The active twist schedules include two non-harmonic inputs formed based on segmented step functions as well as the simple harmonic waveform input. An advanced Particle Swarm assisted Genetic Algorithm (PSGA is employed for the optimizer. A rotorcraft Computational Structural Dynamics (CSD code CAMRAD II is used to perform the rotor aeromechanics analysis. A Computation Fluid Dynamics (CFD code is coupled with CSD for verification and some physical insights. The PSGA optimization results are verified against the parameter sweep study performed using the harmonic actuation. The optimum twist schedules according to the performance and/or vibration reduction strategy are obtained and their optimization gains are compared between the actuation cases. A two-phase non-harmonic actuation schedule demonstrates the best outcome in decreasing the power required while a four-phase non-harmonic schedule results in the best vibration reduction as well as the simultaneous reductions in the power required and vibration. The mechanism of reduction to the performance gains is identified illustrating the section airloads, angle-of-attack distribution, and elastic twist deformation predicted by the present approaches.

  2. An adjoint method of sensitivity analysis for residual vibrations of structures subject to impacts

    Science.gov (United States)

    Yan, Kun; Cheng, Gengdong

    2018-03-01

    For structures subject to impact loads, the residual vibration reduction is more and more important as the machines become faster and lighter. An efficient sensitivity analysis of residual vibration with respect to structural or operational parameters is indispensable for using a gradient based optimization algorithm, which reduces the residual vibration in either active or passive way. In this paper, an integrated quadratic performance index is used as the measure of the residual vibration, since it globally measures the residual vibration response and its calculation can be simplified greatly with Lyapunov equation. Several sensitivity analysis approaches for performance index were developed based on the assumption that the initial excitations of residual vibration were given and independent of structural design. Since the resulting excitations by the impact load often depend on structural design, this paper aims to propose a new efficient sensitivity analysis method for residual vibration of structures subject to impacts to consider the dependence. The new method is developed by combining two existing methods and using adjoint variable approach. Three numerical examples are carried out and demonstrate the accuracy of the proposed method. The numerical results show that the dependence of initial excitations on structural design variables may strongly affects the accuracy of sensitivities.

  3. Quantitative estimation of the influence of external vibrations on the measurement error of a coriolis mass-flow meter

    NARCIS (Netherlands)

    van de Ridder, Bert; Hakvoort, Wouter; van Dijk, Johannes; Lötters, Joost Conrad; de Boer, Andries; Dimitrovova, Z.; de Almeida, J.R.

    2013-01-01

    In this paper the quantitative influence of external vibrations on the measurement value of a Coriolis Mass-Flow Meter for low flows is investigated, with the eventual goal to reduce the influence of vibrations. Model results are compared with experimental results to improve the knowledge on how

  4. On the neutron noise diagnostics of pressurized water reactor control rod vibrations II. Stochastic vibrations

    International Nuclear Information System (INIS)

    Pazsit, I.; Glockler, O.

    1984-01-01

    In an earlier publication, using the theory of neutron fluctuations induced by a vibrating control rod, a complete formal solution of rod vibration diagnostics based on neutron noise measurements was given in terms of Fourier-transformed neutron detector time signals. The suggested procedure was checked in numerical simulation tests where only periodic vibrations could be considered. The procedure and its numerical testing are elaborated for stochastic two-dimensional vibrations. A simple stochastic theory of two-dimensional flow-induced vibrations is given; then the diagnostic method is formulated in the stochastic case, that is, in terms of neutron detector auto- and crosspower spectra. A previously suggested approximate rod localization technique is also formulated in the stochastic case. Applicability of the methods is then investigated in numerical simulation tests, using the proposed model of stochastic two-dimensional vibrations when generating neutron detector spectra that simulate measured data

  5. Features of measurement and processing of vibration signals registered on the moving parts of electrical machines

    OpenAIRE

    Gyzhko, Yuri

    2011-01-01

    Measurement and processing of vibration signals registered on the moving parts of the electrical machines using the diagnostic information-measuring system that uses Bluetooth wireless standard for the transmission of the measured data from moving parts of electrical machine is discussed.

  6. Large scale vibration tests on pile-group effects using blast-induced ground motion

    International Nuclear Information System (INIS)

    Katsuichirou Hijikata; Hideo Tanaka; Takayuki Hashimoto; Kazushige Fujiwara; Yuji Miyamoto; Osamu Kontani

    2005-01-01

    Extensive vibration tests have been performed on pile-supported structures at a large-scale mining site. Ground motions induced by large-scale blasting operations were used as excitation forces for vibration tests. The main objective of this research is to investigate the dynamic behavior of pile-supported structures, in particular, pile-group effects. Two test structures were constructed in an excavated 4 m deep pit. Their test-structures were exactly the same. One structure had 25 steel piles and the other had 4 piles. The test pit was backfilled with sand of appropriate grain size distributions to obtain good compaction, especially between the 25 piles. Accelerations were measured at the structures, in the test pit and in the adjacent free field, and pile strains were measured. Dynamic modal tests of the pile-supported structures and PS measurements of the test pit were performed before and after the vibration tests to detect changes in the natural frequencies of the soil-pile-structure systems and the soil stiffness. The vibration tests were performed six times with different levels of input motions. The maximum horizontal acceleration recorded at the adjacent ground surface varied from 57 cm/s 2 to 1,683 cm/s 2 according to the distances between the test site and the blast areas. (authors)

  7. Translational, rotational and vibrational temperatures of a gliding arc discharge at atmospheric pressure air

    DEFF Research Database (Denmark)

    Zhu, Jiajian; Gao, Jinlong; Ehn, Andreas

    2014-01-01

    and vibrational temperatures of a gliding arc generated at atmospheric pressure air are investigated. Translational temperatures (about 1100 K) were measured by laser-induced Rayleigh scattering, and two-dimensional temperature imaging was performed. Rotational and vibrational temperatures (about 3600 K and 6700...

  8. Field measurement of the piping system vibration of Ko-Ri unit 4 during the load-following operation

    International Nuclear Information System (INIS)

    Chung, Tae-Young; Hong, Sung-Yull; Kim, Bum-Nyun.

    1989-01-01

    During the load-following operation of nuclear power plants, flow rate, temperature, and pressure in the piping system can be varied by changing the electric power output level, and these variations can cause different vibration phenomena in the piping system. The piping system vibration is important because it is directly related to the dynamic stress of the piping system and can affect the life of the piping system through structural fatigue. An assessment of vibration levels for the classes II and III piping systems of the Ko-Ri Unit 4950-MW nuclear power plant was performed according to the given pattern of the load-following operation to study its feasibility from the viewpoint of piping system vibration. The classes II and III piping system vibration of the Ko-Ri Unit 4 may not cause any potential problem under the given pattern of the load-following operation; however, it is recommended that long-term operation in the 85 to 95% power range be avoided as much as possible

  9. General vibration monitoring: Experimental hall

    International Nuclear Information System (INIS)

    Jendrzejczyk, J.A.; Wambsganss, M.W.; Smith, R.K.

    1993-01-01

    The reported vibration data were generated from measurements made on the experimental hall floor on December 2, 1992. At the time of the measurements, the ESRF hydrolevel was set-up in the Early Assembly Area (EAA) of the experimental hall and was being used to measure static displacement (settlement) of the floor. The vibration measurement area was on and adjacent to the EAA, in the vicinity of the ESRF hydrolevel test which was in progress. This report summarizes the objectives, instrumentation, measurement locations, observations, and conclusions, and provides selected results in the form of RMS vs. time plots, and power spectral densities from which frequency information can be derived. Measured response amplitudes were within the vibration criteria established for the APS

  10. Criteria for accepting piping vibrations measured during FFTF plant startup

    International Nuclear Information System (INIS)

    Huang, S.N.

    1981-03-01

    Piping in the Fast Flux Test Facility is subjected to low-amplitude, high cycle vibration over the plant lifetime. Excitation sources include the mechanical vibration induced by main centrifugal pumps, auxiliary reciprocating pumps, EM pumps and possible flow oscillations. Vibration acceptance criteria must be established which will prevent excessive pipe and support fatigue damage when satified. This paper describes the preparation of such criteria against pipe failure used for acceptance testing of the Fast Flux Test Facility main heat transport piping

  11. A method of measuring and correcting tilt of anti - vibration wind turbines based on screening algorithm

    Science.gov (United States)

    Xiao, Zhongxiu

    2018-04-01

    A Method of Measuring and Correcting Tilt of Anti - vibration Wind Turbines Based on Screening Algorithm is proposed in this paper. First of all, we design a device which the core is the acceleration sensor ADXL203, the inclination is measured by installing it on the tower of the wind turbine as well as the engine room. Next using the Kalman filter algorithm to filter effectively by establishing a state space model for signal and noise. Then we use matlab for simulation. Considering the impact of the tower and nacelle vibration on the collected data, the original data and the filtering data are classified and stored by the Screening algorithm, then filter the filtering data to make the output data more accurate. Finally, we eliminate installation errors by using algorithm to achieve the tilt correction. The device based on this method has high precision, low cost and anti-vibration advantages. It has a wide range of application and promotion value.

  12. Vibrations in orthopedics.

    Science.gov (United States)

    Nokes, L D; Thorne, G C

    1988-01-01

    Measurements of various mechanical properties of skeletal material using vibration techniques have been reported. The purposes of such investigations include the monitoring of pathogenic disorders such as osteoporosis, the rate and extent of fracture healing, and the status of internal fixations. Early investigations pioneered the application of conventional vibration measurement equipment to biological systems. The more recent advent of the microcomputer has made available to research groups more sophisticated techniques for data acquisition and analysis. The economical advantages of such equipment has led to the development of portable research instrumentation which lends itself to use in a clinical environment. This review article reports on the developments and progression of the various vibrational techniques and theories as applied to musculoskeletal systems.

  13. Novel active vibration absorber with magnetorheological fluid

    Energy Technology Data Exchange (ETDEWEB)

    Gerlach, T; Ehrlich, J; Boese, H [Fraunhofer-Institut fuer Silicatforschung ISC, Neunerplatz 2, D-97082 Wuerzburg (Germany)], E-mail: thomas.gerlach@isc.fraunhofer.de

    2009-02-01

    Disturbing vibrations diminish the performance of technical high precision devices significantly. In search of a suitable solution for reducing these vibrations, a novel concept of active vibration reduction was developed which exploits the special properties of magnetorheological fluids. In order to evaluate the concept of such an active vibration absorber (AVA) a demonstrator was designed and manufactured. This demonstrator generates a force which counteracts the motion of the vibrating body. Since the counterforce is generated by a centrifugal exciter, the AVA provides the capability to compensate vibrations even in two dimensions. To control the strength of the force transmitted to the vibrating body, the exciter is based on a tunable MR coupling. The AVA was integrated in an appropriate testing device to investigate its performance. The recorded results show a significant reduction of the vibration amplitudes by an order of magnitude.

  14. Study of the Mechanical Properties and Vibration Isolation Performance of a Molecular Spring Isolator

    Directory of Open Access Journals (Sweden)

    Muchun Yu

    2016-01-01

    Full Text Available Molecular Spring Isolator (MSI is a novel passive vibration isolation technique, providing High-Static-Low-Dynamic (HSLD stiffness based on the use of molecular spring material. The molecular spring material is a solid-liquid mixture consisting of water and hydrophobic nanoporous materials. Under a certain level of external pressure, water molecules can intrude into the hydrophobic pores of nanoporous materials, developing an additional solid-liquid interface. Such interfaces are able to store, release, and transform mechanical energy, providing properties like mechanical spring. Having been only recently developed, the basic mechanic properties of a MSI have not been studied in depth. This paper focuses on the stiffness influence factors, the dynamic frequency response, and the vibration isolation performance of a MSI; these properties help engineers to design MSIs for different engineering applications. First, the working mechanism of a MSI is introduced from a three-dimensional general view of the water infiltration massive hydrophobic nanoporous pores. Next, a wide range of influence factors on the stiffness properties of MSI are studied. In addition, the frequency response functions (FRFs of the MSI vibration isolation system are studied utilizing the matching method based on equivalent piecewise linear (EPL system. Finally, the vibration isolation properties of MSI are evaluated by force transmissibility.

  15. Gearbox tooth cut fault diagnostics using acoustic emission and vibration sensors--a comparative study.

    Science.gov (United States)

    Qu, Yongzhi; He, David; Yoon, Jae; Van Hecke, Brandon; Bechhoefer, Eric; Zhu, Junda

    2014-01-14

    In recent years, acoustic emission (AE) sensors and AE-based techniques have been developed and tested for gearbox fault diagnosis. In general, AE-based techniques require much higher sampling rates than vibration analysis-based techniques for gearbox fault diagnosis. Therefore, it is questionable whether an AE-based technique would give a better or at least the same performance as the vibration analysis-based techniques using the same sampling rate. To answer the question, this paper presents a comparative study for gearbox tooth damage level diagnostics using AE and vibration measurements, the first known attempt to compare the gearbox fault diagnostic performance of AE- and vibration analysis-based approaches using the same sampling rate. Partial tooth cut faults are seeded in a gearbox test rig and experimentally tested in a laboratory. Results have shown that the AE-based approach has the potential to differentiate gear tooth damage levels in comparison with the vibration-based approach. While vibration signals are easily affected by mechanical resonance, the AE signals show more stable performance.

  16. Detection of Ballast Damage by In-Situ Vibration Measurement of Sleepers

    Science.gov (United States)

    Lam, H. F.; Wong, M. T.; Keefe, R. M.

    2010-05-01

    Ballasted track is one of the most important elements of railway transportation systems worldwide. Owing to its importance in railway safety, many monitoring and evaluation methods have been developed. Current railway track monitoring systems are comprehensive, fast and efficient in testing railway track level and alignment, rail gauge, rail corrugation, etc. However, the monitoring of ballast condition still relies very much on visual inspection and core tests. Although extensive research has been carried out in the development of non-destructive methods for ballast condition evaluation, a commonly accepted and cost-effective method is still in demand. In Hong Kong practice, if abnormal train vibration is reported by the train operator or passengers, permanent way inspectors will locate the problem area by track geometry measurement. It must be pointed out that visual inspection can only identify ballast damage on the track surface, the track geometry deficiencies and rail twists can be detected using a track gauge. Ballast damage under the sleeper loading area and the ballast shoulder, which are the main factors affecting track stability and ride quality, are extremely difficult if not impossible to be detected by visual inspection. Core test is a destructive test, which is expensive, time consuming and may be disruptive to traffic. A fast real-time ballast damage detection method that can be implemented by permanent way inspectors with simple equipment can certainly provide valuable information for engineers in assessing the safety and riding quality of ballasted track systems. The main objective of this paper is to study the feasibility in using the vibration characteristics of sleepers in quantifying the ballast condition under the sleepers, and so as to explore the possibility in developing a handy method for the detection of ballast damage based on the measured vibration of sleepers.

  17. Atomic vibration amplitudes in fcc and hcp 4He through x-ray diffraction measurements

    International Nuclear Information System (INIS)

    Venkataraman, C.T.; Simmons, R.O.

    2003-01-01

    Atomic vibration amplitudes in dense fcc and hcp 4 He crystals have been measured using synchrotron x rays from the dependence of integrated Bragg intensities up to wave vectors of 91 nm -1 . Observed raw Bragg x-ray integrated intensities cover an extraordinary range, greater than 10 5 , due to the combined effect of the Debye-Waller factor and electronic form factor. From analysis of these intensities mean-square atomic vibration amplitudes Q 2 > and Lindemann ratios are determined. Path-integral Monte Carlo (PIMC) computations of Draeger and Ceperley, extrapolated to the thermodynamic limit, provide excellent agreement with these experimental results. For both present measurements and the PIMC results, one finds both a predominantly Gaussian distribution in Q 2 > and an extraordinarily large Lindemann ratio. In contrast, these directly measured x-ray values are significantly larger than published values inferred from Born-von Karman fitting to phonon dispersion measured by neutron scattering. Mildly anharmonic neon, which is fairly well described by self-consistent phonon theories, is contrasted with present results on fcc 4 He at corresponding densities

  18. Study on the application of ambient vibration tests to evaluate the effectiveness of seismic retrofitting

    Science.gov (United States)

    Liang, Li; Takaaki, Ohkubo; Guang-hui, Li

    2018-03-01

    In recent years, earthquakes have occurred frequently, and the seismic performance of existing school buildings has become particularly important. The main method for improving the seismic resistance of existing buildings is reinforcement. However, there are few effective methods to evaluate the effect of reinforcement. Ambient vibration measurement experiments were conducted before and after seismic retrofitting using wireless measurement system and the changes of vibration characteristics were compared. The changes of acceleration response spectrum, natural periods and vibration modes indicate that the wireless vibration measurement system can be effectively applied to evaluate the effect of seismic retrofitting. The method can evaluate the effect of seismic retrofitting qualitatively, it is difficult to evaluate the effect of seismic retrofitting quantitatively at this stage.

  19. Fractional order absolute vibration suppression (AVS) controllers

    Science.gov (United States)

    Halevi, Yoram

    2017-04-01

    Absolute vibration suppression (AVS) is a control method for flexible structures. The first step is an accurate, infinite dimension, transfer function (TF), from actuation to measurement. This leads to the collocated, rate feedback AVS controller that in some cases completely eliminates the vibration. In case of the 1D wave equation, the TF consists of pure time delays and low order rational terms, and the AVS controller is rational. In all other cases, the TF and consequently the controller are fractional order in both the delays and the "rational parts". The paper considers stability, performance and actual implementation in such cases.

  20. Vibration reduction at the engine-pumps assembly of the main moderator system

    International Nuclear Information System (INIS)

    Holostencu, Adriana; Dinu, Marius

    2005-01-01

    Problem of decreasing vibrations in the main moderator motor at Cernavoda NPP - Unit 1 is presented. The moderator pumps are of centrifugal, vertical, single stage and double suction type. Each pump is provided with a main motor (690 Kw, 50 Hz, 6 KV) capable of full rotative speed and a secondary motor, also known as 'pony motor' (15 Kw, 50 Hz, 380 V) capable of a quarter of the full speed. At starting-commissioning stage of Cernavoda NPP, the vibration level in the moderator pump - motor assembly had an average value of 6 mm/s with spurious peaks up to 8 mm/s. It has to be mentioned that operation with a high vibration level may lead to: - a premature wear of the motor bearings; - extra stresses and fatigue in the material of pump and associated pipes. In order to maintain vibration speed to the design limit, the NPP personnel have started investigations since 1997. The main activities were: - verification of the vibration measuring loops; - checking the torque of the bolts that hold the motor's case; - measuring the start-up and nominal currents of the motors in order to determine any phase unbalance; - adjusting the spring hangers from the pumps discharge with simultaneous monitoring of the motor vibration level; - installation of rubber pads in the gap between the motor lugs and the existing seismic supports. None of these actions revealed deviations from the installation requirements or operating parameters. In 1999, a contract with EUROTEST S. A and Stevenson was signed, in order to find a solution to reduce the vibration level. The EUROTEST/ Stevenson action plan contains de following main activities: 1. Creating a calculus model of the moderator system, based on the design drawings provided by Cernavoda NPP; 2. Preparing and performing the vibration measurements in various points of the system; 3. Analyzing the measurements results; 4. Calibrating the calculus model created in step 1, according with the field measurements; 5. Propose a solution to reduce

  1. Vibrational spectra of nanowires measured using laser doppler vibrometry and STM studies of epitaxial graphene : an LDRD fellowship report.

    Energy Technology Data Exchange (ETDEWEB)

    Biedermann, Laura Butler

    2009-09-01

    A few of the many applications for nanowires are high-aspect ratio conductive atomic force microscope (AFM) cantilever tips, force and mass sensors, and high-frequency resonators. Reliable estimates for the elastic modulus of nanowires and the quality factor of their oscillations are of interest to help enable these applications. Furthermore, a real-time, non-destructive technique to measure the vibrational spectra of nanowires will help enable sensor applications based on nanowires and the use of nanowires as AFM cantilevers (rather than as tips for AFM cantilevers). Laser Doppler vibrometry is used to measure the vibration spectra of individual cantilevered nanowires, specifically multiwalled carbon nanotubes (MWNTs) and silver gallium nanoneedles. Since the entire vibration spectrum is measured with high frequency resolution (100 Hz for a 10 MHz frequency scan), the resonant frequencies and quality factors of the nanowires are accurately determined. Using Euler-Bernoulli beam theory, the elastic modulus and spring constant can be calculated from the resonance frequencies of the oscillation spectrum and the dimensions of the nanowires, which are obtained from parallel SEM studies. Because the diameters of the nanowires studied are smaller than the wavelength of the vibrometer's laser, Mie scattering is used to estimate the lower diameter limit for nanowires whose vibration can be measured in this way. The techniques developed in this thesis can be used to measure the vibrational spectra of any suspended nanowire with high frequency resolution Two different nanowires were measured - MWNTs and Ag{sub 2}Ga nanoneedles. Measurements of the thermal vibration spectra of MWNTs under ambient conditions showed that the elastic modulus, E, of plasma-enhanced chemical vapor deposition (PECVD) MWNTs is 37 {+-} 26 GPa, well within the range of E previously reported for CVD-grown MWNTs. Since the Ag{sub 2}Ga nanoneedles have a greater optical scattering efficiency than

  2. Automatic Leak Detection in Buried Plastic Pipes of Water Supply Networks by Means of Vibration Measurements

    OpenAIRE

    Martini, Alberto; Troncossi, Marco; Rivola, Alessandro

    2015-01-01

    The implementation of strategies for controlling water leaks is essential in order to reduce losses affecting distribution networks of drinking water. This paper focuses on leak detection by using vibration monitoring techniques. The long-term goal is the development of a system for automatic early detection of burst leaks in service pipes. An experimental campaign was started to measure vibrations transmitted along water pipes by real burst leaks occurring in actual water supply networks. Th...

  3. Full-field vibration measurements of the violin using digital stroboscopic holographic interferometry and electromagnetic stimulation of the strings

    Science.gov (United States)

    Keersmaekers, Lissa; Keustermans, William; De Greef, Daniël; Dirckx, Joris J. J.

    2016-06-01

    We developed a setup in which the strings of the violin are driven electromagnetically, and the resulting vibration of the instrument is measured with digital stroboscopic holography. A 250mW single mode green laser beam is chopped using an acousto-optic modulator, generating illumination pulses of 2% of the vibration period. The phase of the illumination pulse is controlled by a programmable function generator so that digital holograms can be recorded on a number of subsequent time positions within the vibration phase. From these recordings, the out of plane motion as a function of time is reconstructed in full field. We show results of full-field vibration amplitude and vibration phase maps, and time resolved full-field deformations of the violin back plane. Time resolved measurements show in detail how the deformation of the violin plane changes as a function of time at different frequencies. We found very different behavior under acoustic stimulation of the instrument and when using electromagnetic stimulation of a string. The aim of the work it to gather data which can be used in power flow calculations to study how the energy of the strings is conducted to the body of the violin and eventually is radiated as sound.

  4. Full-field vibration measurements of the violin using digital stroboscopic holographic interferometry and electromagnetic stimulation of the strings

    International Nuclear Information System (INIS)

    Keersmaekers, Lissa; Keustermans, William; De Greef, Daniël; Dirckx, Joris J. J.

    2016-01-01

    We developed a setup in which the strings of the violin are driven electromagnetically, and the resulting vibration of the instrument is measured with digital stroboscopic holography. A 250 mW single mode green laser beam is chopped using an acousto-optic modulator, generating illumination pulses of 2% of the vibration period. The phase of the illumination pulse is controlled by a programmable function generator so that digital holograms can be recorded on a number of subsequent time positions within the vibration phase. From these recordings, the out of plane motion as a function of time is reconstructed in full field. We show results of full-field vibration amplitude and vibration phase maps, and time resolved full-field deformations of the violin back plane. Time resolved measurements show in detail how the deformation of the violin plane changes as a function of time at different frequencies. We found very different behavior under acoustic stimulation of the instrument and when using electromagnetic stimulation of a string. The aim of the work it to gather data which can be used in power flow calculations to study how the energy of the strings is conducted to the body of the violin and eventually is radiated as sound.

  5. Full-field vibration measurements of the violin using digital stroboscopic holographic interferometry and electromagnetic stimulation of the strings

    Energy Technology Data Exchange (ETDEWEB)

    Keersmaekers, Lissa; Keustermans, William, E-mail: william.keustermans@uantwerpen.be; De Greef, Daniël; Dirckx, Joris J. J. [University of Antwerp, Laboratory of Biophysics and Biomedical Physics, Groenenborgerlaan 171, 2020 Antwerp (Belgium)

    2016-06-28

    We developed a setup in which the strings of the violin are driven electromagnetically, and the resulting vibration of the instrument is measured with digital stroboscopic holography. A 250 mW single mode green laser beam is chopped using an acousto-optic modulator, generating illumination pulses of 2% of the vibration period. The phase of the illumination pulse is controlled by a programmable function generator so that digital holograms can be recorded on a number of subsequent time positions within the vibration phase. From these recordings, the out of plane motion as a function of time is reconstructed in full field. We show results of full-field vibration amplitude and vibration phase maps, and time resolved full-field deformations of the violin back plane. Time resolved measurements show in detail how the deformation of the violin plane changes as a function of time at different frequencies. We found very different behavior under acoustic stimulation of the instrument and when using electromagnetic stimulation of a string. The aim of the work it to gather data which can be used in power flow calculations to study how the energy of the strings is conducted to the body of the violin and eventually is radiated as sound.

  6. Performance Study of Diagonally Segmented Piezoelectric Vibration Energy Harvester

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Eun [Catholic Univ. of Daegu, Daegu (Korea, Republic of)

    2013-08-15

    This study proposes a piezoelectric vibration energy harvester composed of two diagonally segmented energy harvesting units. An auxiliary structural unit is attached to the tip of a host structural unit cantilevered to a vibrating base, where the two components have beam axes in opposite directions from each other and matched short-circuit resonant frequencies. Contrary to the usual observations in two resonant frequency-matched structures, the proposed structure shows little eigenfrequency separation and yields a mode sequence change between the first two modes. These lead to maximum power generation around a specific frequency. By using commercial finite element software, it is shown that the magnitude of the output power from the proposed vibration energy harvester can be substantially improved in comparison with those from conventional cantilevered energy harvesters with the same footprint area and magnitude of a tip mass.

  7. Viscoelastic material properties’ identification using high speed full field measurements on vibrating plates

    Directory of Open Access Journals (Sweden)

    Pierron F.

    2010-06-01

    Full Text Available The paper presents an experimental application of a method leading to the identification of the elastic and damping material properties of isotropic vibrating plates. The theory assumes that the searched parameters can be extracted from curvature and deflection fields measured on the whole surface of the plate at two particular instants of the vibrating motion. The experimental application consists in an original excitation fixture, a particular adaptation of an optical full-field measurement technique, a data preprocessing giving the curvature and deflection fields and finally in the identification process using the Virtual Fields Method (VFM. The principle of the deflectometry technique used for the measurements is presented. First results of identification on an acrylic plate are presented and compared to reference values. Details about a new experimental arrangement, currently in progress, is presented. It uses a high speed digital camera to over sample the full-field measurements.

  8. Absolute measurement of subnanometer scale vibration of cochlear partition of an excised guinea pig cochlea using spectral-domain phase-sensitive optical coherence tomography

    Science.gov (United States)

    Subhash, Hrebesh M.; Choudhury, Niloy; Jacques, Steven L.; Wang, Ruikang K.; Chen, Fangyi; Zha, Dingjun; Nuttall, Alfred L.

    2012-01-01

    Direct measurement of absolute vibration parameters from different locations within the mammalian organ of Corti is crucial for understanding the hearing mechanics such as how sound propagates through the cochlea and how sound stimulates the vibration of various structures of the cochlea, namely, basilar membrane (BM), recticular lamina, outer hair cells and tectorial membrane (TM). In this study we demonstrate the feasibility a modified phase-sensitive spectral domain optical coherence tomography system to provide subnanometer scale vibration information from multiple angles within the imaging beam. The system has the potential to provide depth resolved absolute vibration measurement of tissue microstructures from each of the delay-encoded vibration images with a noise floor of ~0.3nm at 200Hz.

  9. Real-time vibration compensation for large telescopes

    Science.gov (United States)

    Böhm, M.; Pott, J.-U.; Sawodny, O.; Herbst, T.; Kürster, M.

    2014-08-01

    We compare different strategies for minimizing the effects of telescope vibrations to the differential piston (optical pathway difference) for the Near-InfraRed/Visible Adaptive Camera and INterferometer for Astronomy (LINC-NIRVANA) at the Large Binocular Telescope (LBT) using an accelerometer feedforward compensation approach. We summarize, why this technology is important for LINC-NIRVANA, and also for future telescopes and already existing instruments. The main objective is outlining a solution for the estimation problem in general and its specifics at the LBT. Emphasis is put on realistic evaluation of the used algorithms in the laboratory, such that predictions for the expected performance at the LBT can be made. Model-based estimation and broad-band filtering techniques can be used to solve the estimation task, and the differences are discussed. Simulation results and measurements are shown to motivate our choice of the estimation algorithm for LINC-NIRVANA. The laboratory setup is aimed at imitating the vibration behaviour at the LBT in general, and the M2 as main contributor in particular. For our measurements, we introduce a disturbance time series which has a frequency spectrum comparable to what can be measured at the LBT on a typical night. The controllers' ability to suppress vibrations in the critical frequency range of 8-60 Hz is demonstrated. The experimental results are promising, indicating the ability to suppress differential piston induced by telescope vibrations by a factor of about 5 (rms), which is significantly better than any currently commissioned system.

  10. The Impact of Traffic-Induced Bridge Vibration on Rapid Repairing High-Performance Concrete for Bridge Deck Pavement Repairs

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2014-01-01

    Full Text Available Based on forced vibration tests for high-performance concrete (HPC, the influence of bridge vibration induced by traveling vehicle on compressive strength and durability of HPC has been studied. It is concluded that 1 d and 2 d compressive strength of HPC decreased significantly, and the maximum reduction rate is 9.1%, while 28 d compressive strength of HPC had a slight lower with a 3% maximal drop under the action of two simple harmonic vibrations with 2 Hz, 3 mm amplitude, and 4 Hz, 3 mm amplitude. Moreover, the vibration had a slight effect on the compressive strength of HPC when the simple harmonic vibration had 4 Hz and 1 mm amplitude; it is indicated that the amplitude exerts a more prominent influence on the earlier compressive strength with the comparison of the frequency. In addition, the impact of simple harmonic vibration on durability of HPC can be ignored; this shows the self-healing function of concrete resulting from later hydration reaction. Thus, the research achievements mentioned above can contribute to learning the laws by which bridge vibration affects the properties of concrete and provide technical support for the design and construction of the bridge deck pavement maintenance.

  11. Blast damage predictions from vibration measurements at the SKB underground laboratories at Aespoe in Sweden

    International Nuclear Information System (INIS)

    Ouchterlony, F.; Sjoeberg, C.; Jonsson, B.A.

    1993-01-01

    This contribution reports an investigation of the blasting damage in the contour of an access ramp to a Swedish underground laboratory for nuclear waste related studies. Near zone vibration measurements were made for 7 rounds and the results converted to a site specific scaling law. A simple engineering correction for the influence of the charge length was developed and the resulting equations used to predict the damage zone depths of three different drilling and charging patterns. These predictions were then compared with actual blast damage measurements. The agreement with geophysical borehole logging results is remarkably good. This gives good support to the engineering method in which a critical vibration velocity is used to predict the zones of blast damage around bore holes

  12. The comparison between the acquisition vibration data obtained by different types of transducers for hydraulic turbine head cover

    Science.gov (United States)

    Li, Youping; Lu, Jinsong; Cheng, Jian; Yin, Yongzhen; Wang, Jianlan

    2017-04-01

    Based on the summaries of the rules about the vibration measurement for hydro-generator sets with respect to relevant standards, the key issues of the vibration measurement, such as measurement modes, the transducer selection are illustrated. In addition, the problems existing in vibration measurement are pointed out. The actual acquisition data of head cover vertical vibration respectively obtained by seismic transducer and eddy current transducer in site hydraulic turbine performance tests during the rising of the reservoir upstream level in a certain hydraulic power plant are compared. The difference of the data obtained by the two types of transducers and the potential reasons are presented. The application conditions of seismic transducer and eddy current transducer for hydro-generator set vibration measurement are given based on the analysis. Research subjects that should be focused on about the topic discussed in this paper are suggested.

  13. The performance of a piezoelectric-sensor-based SHM system under a combined cryogenic temperature and vibration environment

    International Nuclear Information System (INIS)

    Qing, Xinlin P; Beard, Shawn J; Kumar, Amrita; Sullivan, Kevin; Aguilar, Robert; Merchant, Munir; Taniguchi, Mike

    2008-01-01

    A series of tests have been conducted to determine the survivability and functionality of a piezoelectric-sensor-based active structural health monitoring (SHM) SMART Tape system under the operating conditions of typical liquid rocket engines such as cryogenic temperature and vibration loads. The performance of different piezoelectric sensors and a low temperature adhesive under cryogenic temperature was first investigated. The active SHM system for liquid rocket engines was exposed to flight vibration and shock environments on a simulated large booster LOX-H 2 engine propellant duct conditioned to cryogenic temperatures to evaluate the physical robustness of the built-in sensor network as well as operational survivability and functionality. Test results demonstrated that the developed SMART Tape system can withstand operational levels of vibration and shock energy on a representative rocket engine duct assembly, and is functional under the combined cryogenic temperature and vibration environment

  14. Vibration in car repair work.

    Science.gov (United States)

    Hansson, J E; Eklund, L; Kihlberg, S; Ostergren, C E

    1987-03-01

    The main objective of the study was to find efficient hand tools which caused only minor vibration loading. Vibration measurements were carried out under standardised working conditions. The time during which car body repairers in seven companies were exposed to vibration was determined. Chisel hammers, impact wrenches, sanders and saws were the types of tools which generated the highest vibration accelerations. The average daily exposure at the different garages ranged from 22 to 70 min. The risk of vibration injury is currently rated as high. The difference between the highest and lowest levels of vibration was considerable in most tool categories. Therefore the choice of tool has a major impact on the magnitude of vibration exposure. The importance of choosing the right tools and working methods is discussed and a counselling service on vibration is proposed.

  15. Improvement Performance of the Filling Step in Injection Mold through Vibration

    Directory of Open Access Journals (Sweden)

    Trejo-Hernández M.

    2012-10-01

    Full Text Available This paper shows the flow improvement in the filling step of the polymer injection process due to the polymer excitation though vibration. This process can be split up into three main steps: filling, pocking and cooling. Several mechanical and aesthetic properties of the finished product can be changed in the filling step. The objective of this investigation is to demonstrate the improvement in the filling mold under vibration without adding chemical products. To reach this result, an experimental mold was designed and manufactured in which a vibration device was coupled; it was possible to demonstrate the vibration advantage through this process. Moreover, a heuristic methodology was proposed for the experiment which shows an improvement in the filling process with frequencies close to 3 Hz.

  16. Vibration and Acoustic Testing for Mars Micromission Spacecraft

    Science.gov (United States)

    Kern, Dennis L.; Scharton, Terry D.

    1999-01-01

    The objective of the Mars Micromission program being managed by the Jet Propulsion Laboratory (JPL) for NASA is to develop a common spacecraft that can carry telecommunications equipment and a variety of science payloads for exploration of Mars. The spacecraft will be capable of carrying robot landers and rovers, cameras, probes, balloons, gliders or aircraft, and telecommunications equipment to Mars at much lower cost than recent NASA Mars missions. The lightweight spacecraft (about 220 Kg mass) will be launched in a cooperative venture with CNES as a TWIN auxiliary payload on the Ariane 5 launch vehicle. Two or more Mars Micromission launches are planned for each Mars launch opportunity, which occur every 26 months. The Mars launch window for the first mission is November 1, 2002 through April 2003, which is planned to be a Mars airplane technology demonstration mission to coincide with the 100 year anniversary of the Kittyhawk flight. Several subsequent launches will create a telecommunications network orbiting Mars, which will provide for continuous communication with lenders and rovers on the Martian surface. Dedicated science payload flights to Mars are slated to start in 2005. This new cheaper and faster approach to Mars exploration calls for innovative approaches to the qualification of the Mars Micromission spacecraft for the Ariane 5 launch vibration and acoustic environments. JPL has in recent years implemented new approaches to spacecraft testing that may be effectively applied to the Mars Micromission. These include 1) force limited vibration testing, 2) combined loads, vibration and modal testing, and 3) direct acoustic testing. JPL has performed nearly 200 force limited vibration tests in the past 9 years; several of the tests were on spacecraft and large instruments, including the Cassini and Deep Space One spacecraft. Force limiting, which measures and limits the spacecraft base reaction force using triaxial force gages sandwiched between the

  17. Gearbox Tooth Cut Fault Diagnostics Using Acoustic Emission and Vibration Sensors — A Comparative Study

    Directory of Open Access Journals (Sweden)

    Yongzhi Qu

    2014-01-01

    Full Text Available In recent years, acoustic emission (AE sensors and AE-based techniques have been developed and tested for gearbox fault diagnosis. In general, AE-based techniques require much higher sampling rates than vibration analysis-based techniques for gearbox fault diagnosis. Therefore, it is questionable whether an AE-based technique would give a better or at least the same performance as the vibration analysis-based techniques using the same sampling rate. To answer the question, this paper presents a comparative study for gearbox tooth damage level diagnostics using AE and vibration measurements, the first known attempt to compare the gearbox fault diagnostic performance of AE- and vibration analysis-based approaches using the same sampling rate. Partial tooth cut faults are seeded in a gearbox test rig and experimentally tested in a laboratory. Results have shown that the AE-based approach has the potential to differentiate gear tooth damage levels in comparison with the vibration-based approach. While vibration signals are easily affected by mechanical resonance, the AE signals show more stable performance.

  18. Gearbox Tooth Cut Fault Diagnostics Using Acoustic Emission and Vibration Sensors — A Comparative Study

    Science.gov (United States)

    Qu, Yongzhi; He, David; Yoon, Jae; Van Hecke, Brandon; Bechhoefer, Eric; Zhu, Junda

    2014-01-01

    In recent years, acoustic emission (AE) sensors and AE-based techniques have been developed and tested for gearbox fault diagnosis. In general, AE-based techniques require much higher sampling rates than vibration analysis-based techniques for gearbox fault diagnosis. Therefore, it is questionable whether an AE-based technique would give a better or at least the same performance as the vibration analysis-based techniques using the same sampling rate. To answer the question, this paper presents a comparative study for gearbox tooth damage level diagnostics using AE and vibration measurements, the first known attempt to compare the gearbox fault diagnostic performance of AE- and vibration analysis-based approaches using the same sampling rate. Partial tooth cut faults are seeded in a gearbox test rig and experimentally tested in a laboratory. Results have shown that the AE-based approach has the potential to differentiate gear tooth damage levels in comparison with the vibration-based approach. While vibration signals are easily affected by mechanical resonance, the AE signals show more stable performance. PMID:24424467

  19. Vibration noise control in laser satellite communication

    Science.gov (United States)

    Saksonov, Avigdor; Shlomi, Arnon; Kopeika, Norman S.

    2001-08-01

    Laser satellite communication has become especially attractive in recent years. Because the laser beam width is narrow than in the RF or microwave range, the transmitted optical power may be significantly reduced. This leads to development of miniature communication systems with extremely low power consumption. On the other hand, the laser communication channel is very sensitive to vibrations of the optical platform. These vibrations cause angular noise in laser beam pointing, comparable to the laser beam width. As result, as significant portion of the optical power between transmitter and receiver is lost and the bit error rate is increased. Consequently, vibration noise control is a critical problem in laser satellite communication. The direction of the laser beam is corrected with a fast steering mirror (FSM). In this paper are presented two approaches for the FSM control. One is the feedback control that uses an LQG algorithm. The second is the direct feed- forward control when vibration noise is measured by three orthogonal accelerometers and drives directly the F SM. The performances of each approach are evaluated using MATLAB simulations.

  20. Evaluation methods of vibration stress of small bore piping

    Energy Technology Data Exchange (ETDEWEB)

    Hiramatsu, Miki; Sasaki, Toru [Institute of Nuclear Safety System Inc., Mihama, Fukui (Japan)

    2001-09-01

    Fatigue fracture by vibration stress is one of the main causes of troubles which occur at small bore piping in nuclear power plants. Therefore at the plants they manage small bore piping using a method in which their vibration accelerations are measured and the vibration stresses are calculated. In this work, vibration tests for two sets of mock-ups simulating actual piping in the plants by sinusoidal oscillation and by that obtained at an actual plant were carried out, and then an evaluation method was developed to obtain proper value of vibration stress from the measured data by the vibration tests. In comparison of the vibration stress obtained from the measured acceleration with that directly measured using strain gauges, it is confirmed that accurate vibration stress can be evaluated by a formula in which the real center of gravity of small bore piping and the acceleration of main (system) piping are considered. (author)

  1. Analysis of the vibration of the vehicle body with the elimination of the influence of tires

    Directory of Open Access Journals (Sweden)

    Łukasz KONIECZNY

    2015-09-01

    Full Text Available The article presented the results of vibration measurements of selected elements of the vehicle during the test vibration carried out on a bench with a harmonic kinematic extortion. The results of research carried out for the car when replacing tire and wheels steel tripod eliminating the influence of elasticity and damping tires. The tests were performed at various values of the shock absorber fluid filling (from 100% to 50% of the shock absorber fluid. For registered vibration acceleration STFT analysis was performed.

  2. Evaluation of vibration and vibration fatigue life for small bore pipe in nuclear power plants

    International Nuclear Information System (INIS)

    Wang Zhaoxi; Xue Fei; Gong Mingxiang; Ti Wenxin; Lin Lei; Liu Peng

    2011-01-01

    The assessment method of the steady state vibration and vibration fatigue life of the small bore pipe in the supporting system of the nuclear power plants is proposed according to the ASME-OM3 and EDF evaluation methods. The GGR supporting pipe system vibration is evaluated with this method. The evaluation process includes the filtration of inborn sensitivity, visual inspection, vibration tests, allowable vibration effective velocity calculation and vibration stress calculation. With the allowable vibration effective velocity calculated and the vibration velocity calculated according to the acceleration data tested, the filtrations are performed. The vibration stress at the welding coat is calculated with the spectrum method and compared with the allowable value. The response of the stress is calculated with the transient dynamic method, with which the fatigue life is evaluated with the Miners linear accumulation model. The vibration stress calculated with the spectrum method exceeds the allowable value, while the fatigue life calculated from the transient dynamic method is larger than the designed life with a big safety margin. (authors)

  3. Low-frequency characteristics extension for vibration sensors

    Institute of Scientific and Technical Information of China (English)

    杨学山; 高峰; 候兴民

    2004-01-01

    Traditional magneto-electric vibration sensors and servo accelerometers have severe shortcomings when used to measure vibration where low frequency components predominate. A low frequency characteristic extension for velocity vibration sensors is presented in this paper. The passive circuit technology, active compensation technology and the closedcycle pole compensation technology are used to extend the measurable range and to improve low frequency characteristics of sensors. Thses three types of low frequency velocity vibration sensors have been developed and widely adopted in China.

  4. Vibration measurements of the Daniel K. Inouye Solar Telescope mount, Coudé rotator, and enclosure assemblies

    Science.gov (United States)

    McBride, William R.; McBride, Daniel R.

    2016-08-01

    The Daniel K. Inouye Solar Telescope (DKIST) will be the largest solar telescope in the world, with a 4-meter off-axis primary mirror and 16 meter rotating Coudé laboratory within the telescope pier. The off-axis design requires a mount similar to an 8-meter on-axis telescope. Both the telescope mount and the Coudé laboratory utilize a roller bearing technology in place of the more commonly used hydrostatic bearings. The telescope enclosure utilizes a crawler mechanism for the altitude axis. As these mechanisms have not previously been used in a telescope, understanding the vibration characteristics and the potential impact on the telescope image is important. This paper presents the methodology used to perform jitter measurements of the enclosure and the mount bearings and servo system in a high-noise environment utilizing seismic accelerometers and high dynamic-range data acquisition equipment, along with digital signal processing (DSP) techniques. Data acquisition and signal processing were implemented in MATLAB. In the factory acceptance testing of the telescope mount, multiple accelerometers were strategically located to capture the six axes-of-motion of the primary and secondary mirror dummies. The optical sensitivity analysis was used to map these mirror mount displacements and rotations into units of image motion on the focal plane. Similarly, tests were done with the Coudé rotator, treating the entire rotating instrument lab as a rigid body. Testing was performed by recording accelerometer data while the telescope control system performed tracking operations typical of various observing scenarios. The analysis of the accelerometer data utilized noise-averaging fast Fourier transform (FFT) routines, spectrograms, and periodograms. To achieve adequate dynamic range at frequencies as low as 3Hz, the use of special filters and advanced windowing functions were necessary. Numerous identical automated tests were compared to identify and select the data sets

  5. Prototype fiber Bragg Grattings (FBG) sensor based on intensity modulation of the laser diode low frequency vibrations measurement

    Science.gov (United States)

    Setiono, Andi; Ula, Rini Khamimatul; Hanto, Dwi; Widiyatmoko, Bambang; Purnamaningsih, Retno Wigajatri

    2016-02-01

    In general, Fiber Bragg Grating (FBG) sensor works based on observation of spectral response characteristic to detect the desired parameter. In this research, we studied intensity response characteristic of FBG to detect the dynamic strain. Experiment result show that the reflected intensity had linier relationships with dynamic strain. Based on these characteristics, we developed the FBG sensor to detect low frequency vibration. This sensor is designed by attaching the FBG on the bronze cantilever with dimensions of 85×3×0.5 mm. Measurement results showed that the sensor was able to detect vibrations in the frequency range of 7-10 Hz at temperature range of 25-45 ˚C. The measured frequency range is still within the frequency range of digging activity, therefore this vibration sensor can be applied for oil pipelines vandalisation detection system.

  6. Measurement of ground and nearby building vibration and noise induced by trains in a metro depot.

    Science.gov (United States)

    Zou, Chao; Wang, Yimin; Wang, Peng; Guo, Jixing

    2015-12-01

    Metro depots are where subway trains are parked and where maintenance is carried out. They usually occupy the largest ground areas in metro projects. Due to land utilization problems, Chinese cities have begun to develop over-track buildings above metro depots for people's life and work. The frequently moving trains, when going into and out of metro depots, can cause excessive vibration and noise to over-track buildings and adversely affect the living quality of the building occupants. Considering the current need of reliable experimental data for the construction of metro depots, field measurements of vibration and noise on the ground and inside a nearby 3-story building subjected to moving subway trains were conducted in a metro depot at Guangzhou, China. The amplitudes and frequency contents of velocity levels were quantified and compared. The composite A-weighted equivalent sound levels and maximum sound levels were captured. The predicted models for vibration and noise of metro depot were proposed based on existing models and verified. It was found that the vertical vibrations were significantly greater than the horizontal vibrations on the ground and inside the building near the testing line. While at the throat area, the horizontal vibrations near the curved track were remarkably greater than the vertical vibrations. The attenuation of the vibrations with frequencies above 50 Hz was larger than the ones below 50 Hz, and the frequencies of vibration transmitting to adjacent buildings were mainly within 10-50 Hz. The largest equivalent sound level generated in the throat area was smaller than the testing line one, but the instantaneous maximum sound level induced by wheels squeal, contact between wheels and rail joints as well as turnout was close to or even greater than the testing line one. The predicted models gave a first estimation for design and assessment of newly built metro depots. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Influence of Cable Vibrations on Connectors Used in Automotive Applications

    Directory of Open Access Journals (Sweden)

    AMEL Bouzera

    2012-10-01

    Full Text Available In order to determine the influence of cable vibrations on the contact resistance of connectors, the cable resonant frequency and the resulting movement of both parts of the connector have been studied. The increase of contact voltage, followed by rapidfluctuations generated by wear particles, has been analysed. A test bench designed to monitor wire vibrations was used while the transferred amplitude was measured by a high sensitivity displacement sensor. The contact interface was made of copper alloy and tin coated. The connector was connected to a resistive power supplytransmitting different currents and voltage values. Two investigations were performed on the contact voltage measured with a fast sampling oscilloscope which enabled histograms and a Fast FourierTransform analysis to be obtained. The appearance of contact fluctuations observed during the fretting generated by cable vibrations, and depending upon the wear effect, is attributed toelectromechanical phenomena. Some slow fluctuations are well correlated to the vibration period while the rapid ones are linked to an electrical conduction perturbation in the granular interface caused by the connector movement.

  8. ESR measurement of the concentration of vibrationally excited hydrogen and deuterium molecules

    International Nuclear Information System (INIS)

    Gershenzon, Yu.M.; Ivanov, A.V.; Il'in, S.D.; Kucheryavyi, S.I.; Rozenshtein, V.B.

    1988-01-01

    A method is described for measuring the concentration of vibrationally excited H 2 and D 2 molecules using an ESR microwave spectrometer. The essence of the method is the titration of H 2 (v = 1) and D 2 (v = 1) with D and H atoms and measurement of the concentrations of the titration products H and D, respectively. Stoichiometric titration coefficients were determined in the form of proportionality coefficients between the titration signals Δ[H], Δ[D] and the concentrations of H 2 (v = 1), D 2 (v = 1)

  9. Pickin’ up good vibrations

    CERN Multimedia

    Katarina Anthony

    2015-01-01

    In preparation for the civil engineering work on the HL-LHC, vibration measurements were carried out at the LHC’s Point 1 last month. These measurements will help evaluate how civil engineering work could impact the beam, and will provide crucial details about the site’s geological make-up before construction begins.   A seismic truck at Point 1 generated wave-like vibrations measured by EN/MME. From carrying out R&D to produce state-of-the-art magnets to developing innovative, robust materials capable of withstanding beam impact, the HL-LHC is a multi-faceted project involving many groups and teams across CERN’s departments. It was in this framework that the project management mandated CERN's Mechanical and Materials Engineering (EN/MME) group to measure the propagation of vibrations around Point 1. Their question: can civil engineering work for the HL-LHC – the bulk of which is scheduled for LS2 – begin while the LHC is running? Alth...

  10. Laser Doppler velocimetry for measurement of nonlinearity in the vibrations of the middle ear

    Science.gov (United States)

    Peacock, John; Dirckx, Joris

    2014-05-01

    At audible Frequencies and at sound pressure below 96 dB SPL the mammalian middle ear is known to behave as an almost entirely linear system. However, as we go to higher sound pressure levels, smaller nonlinear distortions begin to appear, and increase with increasing pressure level. Some modern hearing aids seek to remedy hearing impairment by amplifying sounds to sound pressure levels as high as 130 or 140 dB SPL. Thus at these levels the small nonlinear distortions can become significant, and understanding their behaviour could help us to improve the design of these hearing aids. In order to measure the tiny vibration amplitudes of the middle ear, and to detect the even smaller nonlinear distortions, a very sensitive measurement and analysis method is needed. The tiny vibration amplitudes of the middle ear can easily be measured with laser vibrometry. Thanks to the highly linear response of LDV, the technique is also able to measure small nonlinearities. To detect the nonlinear distortions we developed a sophisticated measurement and analysis method based on the use of multisine excitation signals. These signals are specially designed to measure nonlinear systems. We will describe our set up and our stimulation and analysis method in detail, we will then go on to present some results of measurements at different points along the ossicular chain.

  11. An Intelligent Optimization Method for Vortex-Induced Vibration Reducing and Performance Improving in a Large Francis Turbine

    Directory of Open Access Journals (Sweden)

    Xuanlin Peng

    2017-11-01

    Full Text Available In this paper, a new methodology is proposed to reduce the vortex-induced vibration (VIV and improve the performance of the stay vane in a 200-MW Francis turbine. The process can be divided into two parts. Firstly, a diagnosis method for stay vane vibration based on field experiments and a finite element method (FEM is presented. It is found that the resonance between the Kármán vortex and the stay vane is the main cause for the undesired vibration. Then, we focus on establishing an intelligent optimization model of the stay vane’s trailing edge profile. To this end, an approach combining factorial experiments, extreme learning machine (ELM and particle swarm optimization (PSO is implemented. Three kinds of improved profiles of the stay vane are proposed and compared. Finally, the profile with a Donaldson trailing edge is adopted as the best solution for the stay vane, and verifications such as computational fluid dynamics (CFD simulations, structural analysis and fatigue analysis are performed to validate the optimized geometry.

  12. Vibration and noise analysis in nuclear power plants

    International Nuclear Information System (INIS)

    1974-12-01

    Results of the investigations on noise and vibration analysis are presented as a follow-up study of the work published in ''On-load Surveillance of Nuclear Power Plant Components by Noise and Vibration Analysis'' EUR 5036 e. The state of the art in on-load surveillance techniques of light water reactors is given by extending the preceding studies to investigations of boiling water reactors and by summarizing the latest results of pressurized water reactors, the basis being experimental and theoretical work performed by the different organizations involved in preparing this report. Finally, some developments with respect to measurement and identification methods are discussed

  13. Flow-Induced Vibration Measurement of an Inner Cladding Tube in a Simulated Dual-Cooled Fuel Rod

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kang Hee; Kim, Hyung Kyu; Yoon, Kyung Ho; Lee, Young Ho; Kim, Jae Yong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2009-05-15

    To create an internal coolant flow passage in a dual cooled fuel rod, an inner cladding tube cannot have intermediate supports enough to relieve its vibration. Thus it can be suffered from a flow-induced vibration (FIV) more severely than an outer cladding tube which will be supported by series of spacer grids. It may cause a fatigue failure at welding joints on the cladding's end plug or fluid elastic instability of long, slender inner cladding due to decrease of a critical flow velocity. This is one of the challenging technical issues when a dual cooled fuel assembly is to be realized into a conventional reactor core To study an actual vibration phenomenon of a dual cooled fuel rod, FIV tests using a small-scale test bundle are being carried out. Measurement results of inner cladding tube of two typically simulated rods are presented. Causes of the differences in the vibration amplitude and response spectrum of the inner cladding tube in terms of intermediate support condition and pellet stacking are discussed.

  14. On-line vibration monitoring for submerged vertical shaft pumps: Final report

    International Nuclear Information System (INIS)

    Walter, T.J.; Marchione, M.M.

    1988-03-01

    The overall goal of this project was to extend to vertical pumps the capability that presently exists to monitor and diagnose vibration problems in horizontal pumps. Specific objectives included the development of analytical techniques to interpret vibration measurements, the verification of these techniqeus by in-plant tests, and the development of recommendations for procuring submergible vibration sensors. A concurrent analytical and experimental approach was used to accomplish these objectives. Rotordynamic analyses of selected pumps were accomplished, and each pump was instrumented and monitored for extended periods of time. The models were used to determine important frequencies and optimum sensor locations and to predict the effect that wear, imbalance, misalighment, and other mechanical changes would have on measured vibration. The predictive ability of the models was confirmed by making changes to instrumented pumps and observing actual changes in pump vibration. Simplified guidelines have been developed to assist the interested user to develop a computer model that realistically predicts the rotordynamic performance of the installed pump. Based on the work accomplished, typical sensor locations have been established. Experience gained in application of commercially available submergible sensors is also related. 11 refs., 11 figs

  15. Surprising performance for vibrational frequencies of the distinguishable clusters with singles and doubles (DCSD) and MP2.5 approximations

    Science.gov (United States)

    Kesharwani, Manoj K.; Sylvetsky, Nitai; Martin, Jan M. L.

    2017-11-01

    We show that the DCSD (distinguishable clusters with all singles and doubles) correlation method permits the calculation of vibrational spectra at near-CCSD(T) quality but at no more than CCSD cost, and with comparatively inexpensive analytical gradients. For systems dominated by a single reference configuration, even MP2.5 is a viable alternative, at MP3 cost. MP2.5 performance for vibrational frequencies is comparable to double hybrids such as DSD-PBEP86-D3BJ, but without resorting to empirical parameters. DCSD is also quite suitable for computing zero-point vibrational energies in computational thermochemistry.

  16. AVM branch vibration test equipment

    International Nuclear Information System (INIS)

    Anne, J.P.

    1995-01-01

    An inventory of the test equipment of the AVM Branch ''Acoustic and Vibratory Mechanics Analysis Methods'' group has been undertaken. The purpose of this inventory is to enable better acquaintance with the technical characteristics of the equipment, providing an accurate definition of their functionalities, ad to inform potential users of the possibilities and equipment available in this field. The report first summarizes the various experimental surveys conduced. Then, using the AVM equipment database to draw up an exhaustive list of available equipment, it provides a full-scope picture of the vibration measurement systems (sensors, conditioners and exciters) and data processing resources commonly used on industrial sites and in laboratories. A definition is also given of a mobile test unit, called 'shelter', and a test bench used for the testing and performance rating of the experimental analysis methods developed by the group. The report concludes with a description of two fixed installations: - the calibration bench ensuring the requisite quality level for the vibration measurement systems ; - the training bench, whereby know-how acquired in the field in the field of measurement and experimental analysis processes is made available to others. (author). 27 refs., 15 figs., 2 appends

  17. Modal mass estimation from ambient vibrations measurement: A method for civil buildings

    Science.gov (United States)

    Acunzo, G.; Fiorini, N.; Mori, F.; Spina, D.

    2018-01-01

    A new method for estimating the modal mass ratios of buildings from unscaled mode shapes identified from ambient vibrations is presented. The method is based on the Multi Rigid Polygons (MRP) model in which each floor of the building is ideally divided in several non-deformable polygons that move independent of each other. The whole mass of the building is concentrated in the centroid of the polygons and the experimental mode shapes are expressed in term of rigid translations and of rotations. In this way, the mass matrix of the building can be easily computed on the basis of simple information about the geometry and the materials of the structure. The modal mass ratios can be then obtained through the classical equation of structural dynamics. Ambient vibrations measurement must be performed according to this MRP models, using at least two biaxial accelerometers per polygon. After a brief illustration of the theoretical background of the method, numerical validations are presented analysing the method sensitivity for possible different source of errors. Quality indexes are defined for evaluating the approximation of the modal mass ratios obtained from a certain MRP model. The capability of the proposed model to be applied to real buildings is illustrated through two experimental applications. In the first one, a geometrically irregular reinforced concrete building is considered, using a calibrated Finite Element Model for validating the results of the method. The second application refers to a historical monumental masonry building, with a more complex geometry and with less information available. In both cases, MRP models with a different number of rigid polygons per floor are compared.

  18. Modelling of magnetostriction of transformer magnetic core for vibration analysis

    Science.gov (United States)

    Marks, Janis; Vitolina, Sandra

    2017-12-01

    Magnetostriction is a phenomenon occurring in transformer core in normal operation mode. Yet in time, it can cause the delamination of magnetic core resulting in higher level of vibrations that are measured on the surface of transformer tank during diagnostic tests. The aim of this paper is to create a model for evaluating elastic deformations in magnetic core that can be used for power transformers with intensive vibrations in order to eliminate magnetostriction as a their cause. Description of the developed model in Matlab and COMSOL software is provided including restrictions concerning geometry and properties of materials, and the results of performed research on magnetic core anisotropy are provided. As a case study modelling of magnetostriction for 5-legged 200 MVA power transformer with the rated voltage of 13.8/137kV is conducted, based on which comparative analysis of vibration levels and elastic deformations is performed.

  19. Modelling of magnetostriction of transformer magnetic core for vibration analysis

    Directory of Open Access Journals (Sweden)

    Marks Janis

    2017-12-01

    Full Text Available Magnetostriction is a phenomenon occurring in transformer core in normal operation mode. Yet in time, it can cause the delamination of magnetic core resulting in higher level of vibrations that are measured on the surface of transformer tank during diagnostic tests. The aim of this paper is to create a model for evaluating elastic deformations in magnetic core that can be used for power transformers with intensive vibrations in order to eliminate magnetostriction as a their cause. Description of the developed model in Matlab and COMSOL software is provided including restrictions concerning geometry and properties of materials, and the results of performed research on magnetic core anisotropy are provided. As a case study modelling of magnetostriction for 5-legged 200 MVA power transformer with the rated voltage of 13.8/137kV is conducted, based on which comparative analysis of vibration levels and elastic deformations is performed.

  20. Vibrational dynamics of amorphous metals by inelastic neutron and raman scattering

    International Nuclear Information System (INIS)

    Lustig, N.E.

    1986-01-01

    Time-of-flight inelastic neutron scattering and Raman measurements were performed on amorphous (a-) metals. The neutron-weighted vibrational density of states, G(E), obtained for a-Fe 78 P 22 , a-Ni 82 B 18 and a-Ni 67 B 33 transition metal metalloid alloys (TM-m), indicated two major vibrational bands: a low frequency acoustic-like band and a high frequency optic-like band, derived from TM-TM and TM-m interactions, respectively. Similar neutron measurements were performed on the corresponding polycrystalline (c-) alloys, c-Fe 3 P and c-Ni 2 B. A comparison of the amorphous and crystalline densities of states indicates the elimination of sharp features and the addition of vibrational states at low and high frequencies upon amorphization. The experimental G(E) results for a-Fe 78 P 22 are in good agreement with the theoretically predicted spectrum. A comparison between the a-Ni 67 B 33 and the phenomenologically broadened c-Ni 2 B spectrum indicates a change in the short-range order. This finding is consistent with structural measurements on this alloy. Raman measurements were carried out using interference enhanced Raman spectroscopy (IERS) on thin film Ni-B alloys. The measured spectra provide information about the weighted phonon density of states, and is in good agreement with the neutron results

  1. FIVPET Flow-Induced Vibration Test Report (1) - Candidate Spacer Grid Type I (Optimized H Type)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kang Hee; Kang, Heung Seok; Yoon, Kyung Ho; Song, Kee Nam; Kim, Jae Yong

    2006-03-15

    The flow-induced vibration (FIV) test using a 5x5 partial fuel assembly was performed to evaluate mechanical/structural performance of the candidate spacer grid type I (Optimized H shape). From the measured vibration response of the test bundle and the flow parameters, design features of the spacer strap can be analyzed in the point of vibration and hydraulic aspect, and also compared with other spacer strap in simple comparative manner. Furthermore, the FIV test will contributes to understand behaviors of nuclear fuel in operating reactor. The FIV test results will be used to verify the theoretical model of fuel rod and assembly vibration. The aim of this report is to present the results of the FIV test of partial fuel assembly and to introduce the detailed test methodology and analysis procedure. In chapter 2, the overall configuration of test bundle and instrumented tube is remarked and chapter 3 will introduce the test facility (FIVPET) and test section. Chapter 4 deals with overall test condition and procedure, measurement and data acquisition devices, instrumentation equipment and calibration, and error analysis. Finally, test result of vibration and pressure fluctuation is presented and discussed in chapter 5.

  2. Dependence of steam generator vibrations on feedwater pressure

    International Nuclear Information System (INIS)

    Sadilek, J.

    1989-01-01

    Vibration sensors are attached to the bottom of the steam generator jacket between the input and output primary circuit collectors. The effective vibration value is recorded daily. Several times higher vibrations were observed at irregular intervals; their causes were sought, and the relation between the steam generator vibrations measured at the bottom of its vessel and the feedwater pressure was established. The source of the vibrations was found to be in the feedwater tract of the steam generator. The feedwater tract is described and its hydraulic characteristics are given. Vibrations were measured on the S02 valve. It is concluded that vibrations can be eliminated by reducing the water pressure before the control valves and by replacing the control valves with ones with more suitable control characteristics. (E.J.). 3 figs., 1 tab., 3 refs

  3. On the neutron noise diagnostics of pressurized water reactor control rod vibrations. 1. periodic vibrations

    International Nuclear Information System (INIS)

    Pazsit, I.; Glockler, O.

    1983-01-01

    Based on the theory of neutron noise arising from the vibration of a localized absorber, the possibility of rod vibration diagnostics is investigated. It is found that noise source characteristics, namely rod position and vibration trajectory and spectra, can be unfolded from measured neutron noise signals. For the localization process, the first and more difficult part of the diagnostics, a procedure is suggested whose novelty is that it is applicable in case of arbitrary vibration trajectories. Applicability of the method is investigated in numerical experiments where effects of background noise are also accounted for

  4. Putting a damper on drilling's bad vibrations

    Energy Technology Data Exchange (ETDEWEB)

    Jardine, S [Sedco forex, Montrouge (France); Malone, D [Anadrill, Sugar Land, TX (United States); Sheppard, M [Schlumberger Cambridge Research, Cambridge (United Kingdom)

    1994-01-01

    Harmful drilling vibrations are costing the industry dearly. Three main vibration types (axial, torsional and transverse) are explained and its causes discussed. Technology exists to eliminate most vibrations, but requires more systematic deployment than is usual. Hardware that eliminates vibrations is reviewed, including downhole shock measurement, torque feedback shock guards and antiwhirl bits. 9 figs., 11 refs.

  5. Low Cost Digital Vibration Meter.

    Science.gov (United States)

    Payne, W Vance; Geist, Jon

    2007-01-01

    This report describes the development of a low cost, digital Micro Electro Mechanical System (MEMS) vibration meter that reports an approximation to the RMS acceleration of the vibration to which the vibration meter is subjected. The major mechanical element of this vibration meter is a cantilever beam, which is on the order of 500 µm in length, with a piezoresistor deposited at its base. Vibration of the device in the plane perpendicular to the cantilever beam causes it to bend, which produces a measurable change in the resistance of a piezoresistor. These changes in resistance along with a unique signal-processing scheme are used to determine an approximation to the RMS acceleration sensed by the device.

  6. The Shock and Vibration Bulletin. Part 2. Measurement Techniques and Data Analysis, Dynamic Measurements, Vibration and Acoustics

    Science.gov (United States)

    1980-09-01

    Smallwood and D. L. Gregory, Sandia Laboratories, Albuquerque, NM A NEW METHOD OF IMPROVING SPECTRA SHAPING IN REVERBERANT CHAMBERS...DAMPING M. M. Wallace and C. W. Bert, The University of Oklahoma, Norman , OK CONTRIBUTIONS TO THE DYNAMIC ANALYSIS OF MAGLEV VEHICLES ON ELEVATED GUIDEWAYS...RANDOM VIBRATION EXTRENAL CONTROL STRATEGY D. 0. Smallwood D. L. Gregory Sandia Laboratories Albuquerque, NM This paper discusses the theoretical basis for

  7. Silicon micromachined vibrating gyroscopes

    Science.gov (United States)

    Voss, Ralf

    1997-09-01

    This work gives an overview of silicon micromachined vibrating gyroscopes. Market perspectives and fields of application are pointed out. The advantage of using silicon micromachining is discussed and estimations of the desired performance, especially for automobiles are given. The general principle of vibrating gyroscopes is explained. Vibrating silicon gyroscopes can be divided into seven classes. for each class the characteristic principle is presented and examples are given. Finally a specific sensor, based on a tuning fork for automotive applications with a sensitivity of 250(mu) V/degrees is described in detail.

  8. Implementation of a robust hybrid rotary-translational vibration energy harvester for autonomous self-powered acceleration measurement

    Science.gov (United States)

    Payne, Owen R.; Vandewater, Luke A.; Ung, Chandarin; Moss, Scott D.

    2015-04-01

    In this paper, a self-powered wireless sensor node utilising ambient vibrations for power is described. The device consists of a vibration energy harvester, power management system, microcontroller, accelerometer, RF transmitter/receiver and external LED indicators. The vibration energy harvester is adapted from a previously reported hybrid rotary-translational device and uses a pair of copper coil transducers to convert the mechanical energy of a magnetic sphere into usable electricity. The device requires less than 0.8 mW of power to operate continuously in its present setup (with LED indicators off) while measuring acceleration at a sample rate of 200 Hz, with the power source providing 39.7 mW of power from 500 mg excitations at 5.5 Hz. When usable input energy is removed, the device will continue to transmit data for more than 5 minutes.

  9. Effects of ship's vibration and motion on plant parameters

    International Nuclear Information System (INIS)

    Kakuta, Tsunemi; Kitamura, Toshikatsu; Mizushima, Toshihiko; Yamazaki, Hiroshi; Nakahara, Takeshi; Kamiya, Eisei; Kudou, Takahiro; Naitoh, Akira; Tominaga, Mineo.

    1992-03-01

    Present report was written about the study of the effects of ship's vibration and motion on reactor plant performances measured and analyzed to confirm the total balance for control systems of reactor to propulsion. On July 10, 1990, or on the first day of the first voyage for the power up test, the sea trials of MUTSU, nuclear ship made first in Japan, started from the anchoring test. The trial tests had finished through the third voyage between October 30 and November 9 to the fourth voyage between 7 and 14 of December. The trial tests had been conducted over ten items or so containing in-house tests of the measurements of ship's vibration and motion in order to research the effects on reactor performance. We here call the in-house tests the plant correlation tests. In regard to the correlation with ship's vibration, we confirmed that the inherent vibrations of hull and reactor containment arisen from ship structure had precisely been measured and that the plant correlations due to the hull and local vibrations arising from propeller revolutions are very small. Concerning the correlation with ship's motion, it was shown that her rolling motion strongly had affected on the propulsion system such as shaft power and shaft revolutions. About the correlation with reactor systems it was found that her pitching motion had given effect on the water level in pressurizer, primary coolant average temperature, ε-signal of the auto-control of reactor power and primary coolant pressure etc, particularly, most-strongly on the water level in pressurizer; her rolling and pitching motions had given effect on nuclear characteristics such as reactivity and startup rate; in addition the fluctuation of 0.06 Hz, we think the response inherent in (MUTSU) reactor systems, had been observed on her reactor parameters like reactivity and startup rate, and her propulsion systems like shaft horse power. (author)

  10. Distributed Weak Fiber Bragg Grating Vibration Sensing System Based on 3 × 3 Fiber Coupler

    Science.gov (United States)

    Li, Wei; Zhang, Jian

    2018-06-01

    A novel distributed weak fiber Bragg gratings (FBGs) vibration sensing system has been designed to overcome the disadvantages of the conventional methods for optical fiber sensing networking, which are: low signal intensity in the usually adopted time-division multiplexing (TDM) technology, insufficient quantity of multiplexed FBGs in the wavelength-division multiplexing (WDM) technology, and that the mixed WDM/TDM technology measures only the physical parameters of the FBG locations but cannot perform distributed measurement over the whole optical fiber. This novel system determines vibration events in the optical fiber line according to the intensity variation of the interference signals between the adjacent weak FBG reflected signals and locates the vibration points accurately using the TDM technology. It has been proven by tests that this system performs vibration signal detection and demodulation in a way more convenient than the conventional methods for the optical fiber sensing system. It also measures over the whole optical fiber, therefore, distributed measurement is fulfilled, and the system locating accuracy is up to 20 m, capable of detecting any signals of whose drive signals lower limit voltage is 0.2 V while the frequency range is 3 Hz‒1 000 Hz. The system has the great practical significance and application value for perimeter surveillance systems.

  11. Neck muscle vibration can improve sensorimotor function in patients with neck pain.

    Science.gov (United States)

    Beinert, Konstantin; Keller, Martin; Taube, Wolfgang

    2015-03-01

    People with neck pain display a diminished joint position sense and disturbed postural control, which is thought to be a result of impaired somatosensory afferent activity and/or integration. Afferent processing can be artificially manipulated by vibration and was shown to reduce motor performance in healthy subjects. However, the effect of vibration on sensorimotor function in neck pain patients is scarcely investigated. To assess the effect of neck muscle vibration on joint position sense and postural control in neck pain subjects and healthy controls. Case control study. Thirteen neck pain patients and 10 healthy controls participated in the present study. Cervical joint position sense and dynamic and static postural stability. Short-term, targeted neck muscle vibration with 100 Hz was applied after baseline measurement. Vibration had opposite effects in patients and healthy subjects. Patients showed improved joint position sense (pneck pain. Thus, vibration may be used to counteract sensorimotor impairment of the cervical spine. Potential underlying mechanisms are discussed. Copyright © 2015. Published by Elsevier Inc.

  12. Fractional-order positive position feedback compensator for active vibration control of a smart composite plate

    Science.gov (United States)

    Marinangeli, L.; Alijani, F.; HosseinNia, S. Hassan

    2018-01-01

    In this paper, Active Vibration Control (AVC) of a rectangular carbon fibre composite plate with free edges is presented. The plate is subjected to out-of-plane excitation by a modal vibration exciter and controlled by Macro Fibre Composite (MFC) transducers. Vibration measurements are performed by using a Laser Doppler Vibrometer (LDV) system. A fractional-order Positive Position Feedback (PPF) compensator is proposed, implemented and compared to the standard integer-order PPF. MFC actuator and sensor are positioned on the plate based on maximal modal strain criterion, so as to control the second natural mode of the plate. Both integer and fractional-order PPF allowed for the effective control of the second mode of vibration. However, the newly proposed fractional-order controller is found to be more efficient in achieving the same performance with less actuation voltage. Moreover, it shows promising performance in reducing spillover effect due to uncontrolled modes.

  13. [Hand-arm vibration syndrome in caisson miners].

    Science.gov (United States)

    Kákosy, T; Németh, L; Hazay, B; Posgay, M; Diner, J

    1997-07-06

    Authors examined 43 caisson-miners with symptoms of the upper extremities because of suspicion of hand-arm vibration syndrome. Also vibration measurements were performed on the pneumatic hammer used by the workers. The acceleration of the vibration exceeded 2.5-3.5 times the maximum allowable level according to the ISO 5349. Symptoms and signs of hand-arm vibration syndrome were found in 39 cases (90.7%). The vascular, peripheral neurological and locomotor system of the upper extremities were affected in similar frequency: 54.8; 51.6 and 51.2%, respectively. The most common angiological alteration was the Raynaud's phenomenon. Neurologically predominated the tunnel syndromes. Among the osteoarticular lesions the degenerative phenomena were the most frequent. In most cases more than one pathological alteration occurred. Fatigue fracture of the spinous process of vertebra D. I. appeared in one single case, degenerative changes of cervical spine in 34 patients (79.1%). The very common occurrence of the locomotor alterations and tunnel syndromes respectively can be explained probably also by the high physical stress required by this profession. The detailed examination of the locomotor system is very important by the periodical screening of the caisson-miners.

  14. A Data-Driven Response Virtual Sensor Technique with Partial Vibration Measurements Using Convolutional Neural Network

    Science.gov (United States)

    Sun, Shan-Bin; He, Yuan-Yuan; Zhou, Si-Da; Yue, Zhen-Jiang

    2017-01-01

    Measurement of dynamic responses plays an important role in structural health monitoring, damage detection and other fields of research. However, in aerospace engineering, the physical sensors are limited in the operational conditions of spacecraft, due to the severe environment in outer space. This paper proposes a virtual sensor model with partial vibration measurements using a convolutional neural network. The transmissibility function is employed as prior knowledge. A four-layer neural network with two convolutional layers, one fully connected layer, and an output layer is proposed as the predicting model. Numerical examples of two different structural dynamic systems demonstrate the performance of the proposed approach. The excellence of the novel technique is further indicated using a simply supported beam experiment comparing to a modal-model-based virtual sensor, which uses modal parameters, such as mode shapes, for estimating the responses of the faulty sensors. The results show that the presented data-driven response virtual sensor technique can predict structural response with high accuracy. PMID:29231868

  15. A Data-Driven Response Virtual Sensor Technique with Partial Vibration Measurements Using Convolutional Neural Network.

    Science.gov (United States)

    Sun, Shan-Bin; He, Yuan-Yuan; Zhou, Si-Da; Yue, Zhen-Jiang

    2017-12-12

    Measurement of dynamic responses plays an important role in structural health monitoring, damage detection and other fields of research. However, in aerospace engineering, the physical sensors are limited in the operational conditions of spacecraft, due to the severe environment in outer space. This paper proposes a virtual sensor model with partial vibration measurements using a convolutional neural network. The transmissibility function is employed as prior knowledge. A four-layer neural network with two convolutional layers, one fully connected layer, and an output layer is proposed as the predicting model. Numerical examples of two different structural dynamic systems demonstrate the performance of the proposed approach. The excellence of the novel technique is further indicated using a simply supported beam experiment comparing to a modal-model-based virtual sensor, which uses modal parameters, such as mode shapes, for estimating the responses of the faulty sensors. The results show that the presented data-driven response virtual sensor technique can predict structural response with high accuracy.

  16. Proprioceptive impairments in high fall risk older adults: the effect of mechanical calf vibration on postural balance.

    Science.gov (United States)

    Toosizadeh, Nima; Ehsani, Hossein; Miramonte, Marco; Mohler, Jane

    2018-05-02

    Impairments in proprioceptive mechanism with aging has been observed and associated with fall risk. The purpose of the current study was to assess proprioceptive deficits among high fall risk individuals in comparison with healthy participants, when postural performance was disturbed using low-frequency mechanical gastrocnemius vibratory stimulation. Three groups of participants were recruited: healthy young (n = 10; age = 23 ± 2 years), healthy elders (n = 10; age = 73 ± 3 years), and high fall risk elders (n = 10; age = 84 ± 9 years). Eyes-open and eyes-closed upright standing balance performance was measured with no vibration, and 30 and 40 Hz vibration of both calves. Vibration-induced changes in balance behaviors, compared to baseline (no vibratory stimulation) were compared between three groups using multivariable repeated measures analysis of variance models. Overall, similar results were observed for two vibration frequencies. However, changes in body sway due to vibration were more obvious within the eyes-closed condition, and in the medial-lateral direction. Within the eyes-closed condition high fall risk participants showed 83% less vibration-induced change in medial-lateral body sway, and 58% less sway velocity, when compared to healthy participants (p balance performance may be explained by reduced sensitivity in peripheral nervous system among older adults with impaired balance.

  17. Vibrational relaxation in OCS mixtures

    International Nuclear Information System (INIS)

    Simpson, C.J.S.M.; Gait, P.D.; Simmie, J.M.

    1976-01-01

    Experimental measurements are reported of vibrational relaxation times which may be used to show whether there is near resonant vibration-rotation energy transfer between OCS and H 2 , D 2 or HD. Vibrational relaxation times have been measured in OCS and OCS mixtures over the temperature range 360 to 1000 K using a shock tube and a laser schlieren system. The effectiveness of the additives in reducing the relaxation time of OCS is in the order 4 He 3 He 2 2 and HD. Along this series the effect of an increase in temperature changes from the case of speeding up the rate with 4 He to retarding it with D 2 , HD and H 2 . There is no measurable difference in the effectiveness of n-D 2 and o-D 2 and little, or no, difference between n-H 2 and p-H 2 . Thus the experimental results do not give clear evidence for rotational-vibration energy transfer between hydrogen and OCS. This contrasts with the situation for CO 2 + H 2 mixtures. (author)

  18. Depth-kymography of vocal fold vibrations: part II. Simulations and direct comparisons with 3D profile measurements

    Energy Technology Data Exchange (ETDEWEB)

    Mul, Frits F M de; George, Nibu A; Qiu Qingjun; Rakhorst, Gerhard; Schutte, Harm K [Department of Biomedical Engineering BMSA, Faculty of Medicine, University Medical Center Groningen UMCG, University of Groningen, PO Box 196, 9700 AD Groningen (Netherlands)], E-mail: ffm@demul.net

    2009-07-07

    We report novel direct quantitative comparisons between 3D profiling measurements and simulations of human vocal fold vibrations. Until now, in human vocal folds research, only imaging in a horizontal plane was possible. However, for the investigation of several diseases, depth information is needed, especially when the two folds act differently, e.g. in the case of tumour growth. Recently, with our novel depth-kymographic laryngoscope, we obtained calibrated data about the horizontal and vertical positions of the visible surface of the vibrating vocal folds. In order to find relations with physical parameters such as elasticity and damping constants, we numerically simulated the horizontal and vertical positions and movements of the human vocal folds while vibrating and investigated the effect of varying several parameters on the characteristics of the phonation: the masses and their dimensions, the respective forces and pressures, and the details of the vocal tract compartments. Direct one-to-one comparison with measured 3D positions presents-for the first time-a direct means of validation of these calculations. This may start a new field in vocal folds research.

  19. Depth-kymography of vocal fold vibrations: part II. Simulations and direct comparisons with 3D profile measurements

    International Nuclear Information System (INIS)

    Mul, Frits F M de; George, Nibu A; Qiu Qingjun; Rakhorst, Gerhard; Schutte, Harm K

    2009-01-01

    We report novel direct quantitative comparisons between 3D profiling measurements and simulations of human vocal fold vibrations. Until now, in human vocal folds research, only imaging in a horizontal plane was possible. However, for the investigation of several diseases, depth information is needed, especially when the two folds act differently, e.g. in the case of tumour growth. Recently, with our novel depth-kymographic laryngoscope, we obtained calibrated data about the horizontal and vertical positions of the visible surface of the vibrating vocal folds. In order to find relations with physical parameters such as elasticity and damping constants, we numerically simulated the horizontal and vertical positions and movements of the human vocal folds while vibrating and investigated the effect of varying several parameters on the characteristics of the phonation: the masses and their dimensions, the respective forces and pressures, and the details of the vocal tract compartments. Direct one-to-one comparison with measured 3D positions presents-for the first time-a direct means of validation of these calculations. This may start a new field in vocal folds research.

  20. General vibration monitoring: Utility Building, August 1992

    International Nuclear Information System (INIS)

    Jendrzejczyk, J.A.; Wambsganss, M.W.; Smith, R.K.

    1993-01-01

    This vibration data was generated from measurements made on 8/12/92. The contents are self explanatory. They are baseline measurements and no exceptionally large vibration amplitude or response was observed. These measurements represent baseline measurements, i.e., measurements with no driving forces active, made on the utility building, a service building for the Advanced Photon Source at Argonne National Laboratory

  1. Experimental study on titanium wire drawing with ultrasonic vibration.

    Science.gov (United States)

    Liu, Shen; Shan, Xiaobiao; Guo, Kai; Yang, Yuancai; Xie, Tao

    2018-02-01

    Titanium and its alloys have been widely used in aerospace and biomedical industries, however, they are classified as difficult-to-machine materials. In this paper, ultrasonic vibration is imposed on the die to overcome the difficulties during conventional titanium wire drawing processes at the room temperature. Numerical simulations were performed to investigate the variation of axial stress within the contacting region and study the change of the drawing stress with several factors in terms of the longitudinal amplitude and frequency of the applied ultrasonic vibration, the diameter reduction ratio, and the drawing force. An experimental testing equipment was established to measure the drawing torque and rotational velocity of the coiler drum during the wire drawing process. The result indicates the drawing force increases with the growth of the drawing velocity and the reduction ratio, whether with or without vibrations. Application of either form of ultrasonic vibrations contributes to the further decrease of the drawing force, especially the longitudinal vibration with larger amplitude. SEM was employed to detect the surface morphology of the processed wires drawn under the three circumstances. The surface quality of the drawn wires with ultrasonic vibrations was apparently improved compared with those using conventional method. In addition, the longitudinal and torsional composite vibration was more effective for surface quality improvement than pure longitudinal vibration, however, at the cost of weakened drawing force reduction effect. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Vibrations of rotating machinery

    CERN Document Server

    Matsushita, Osami; Kanki, Hiroshi; Kobayashi, Masao; Keogh, Patrick

    2017-01-01

    This book opens with an explanation of the vibrations of a single degree-of-freedom (dof) system for all beginners. Subsequently, vibration analysis of multi-dof systems is explained by modal analysis. Mode synthesis modeling is then introduced for system reduction, which aids understanding in a simplified manner of how complicated rotors behave. Rotor balancing techniques are offered for rigid and flexible rotors through several examples. Consideration of gyroscopic influences on the rotordynamics is then provided and vibration evaluation of a rotor-bearing system is emphasized in terms of forward and backward whirl rotor motions through eigenvalue (natural frequency and damping ratio) analysis. In addition to these rotordynamics concerning rotating shaft vibration measured in a stationary reference frame, blade vibrations are analyzed with Coriolis forces expressed in a rotating reference frame. Other phenomena that may be assessed in stationary and rotating reference frames include stability characteristic...

  3. Measurements of bridges' vibration characteristics using a mobile phone

    Directory of Open Access Journals (Sweden)

    Z. M. C. Pravia

    Full Text Available ABSTRACTThis research presents an alternative way to perform a bridge inspection, which considers the dynamics parameters from the structure. It shows an experimental phase with use of a mobile phone to extract the accelerations answers from two concrete bridges, from those records is feasible to obtain natural frequencies using the Fast Fourier Transform (FFT.Numerical models with uses finite element model (FEM allow to determine the natural frequencies from the two concrete bridges and compare with the experimental phase of each one. The final results shows it's possible to use mobiles phones to extract vibration answers from concrete bridges and define the structural behavior of bridges from natural frequencies, this procedure could be used to evaluate bridges with lower costs.

  4. Influence of vibration on structure rheological properties of a highly concentrated suspension

    Science.gov (United States)

    Ouriev Uriev, Boris N.; Uriev, Naum B.

    2005-08-01

    The influence of mechanical vibration on the flow properties of a highly concentrated multiphase food system is explored in this work. An experimental set-up was designed and adapted to a conventional rotational rheometer with precise rheological characterization capability. A number of calibration tests were performed prior to fundamental experiments with a highly concentrated chocolate suspension. Also, the prediction of wall slippage in shear flow under vibration was evaluated. Analysis of the boundary conditions shows that no side effects such as wall slippage or the Taylor effect were present during the shear experiment under vibration. It was found that superposition of mechanical vibration and shear flow radically decreases the shear viscosity. Comparison between reference shear viscosities at specified shear rates and those measured under vibration shows considerable differences in flow properties. Conversion of the behaviour of the concentrated suspension from strongly shear-thinning to Newtonian flow is reported. Also, the appearance of vibration-induced dilatancy as a new phenomenon is described. It is suggested to relate such phenomena to the non-equilibrium between structure formation and disintegration under vibration and hydrodynamic forces of shear flow. The influence of vibration on structure formation can be well observed during measurement of the yield value of the chocolate suspension under vibration. Comparison with reference data shows how sensitive the structure of the concentrated suspension is to vibration in general. The effects and observations revealed provide a solid basis for further fundamental investigations of structure formation regularities in the flow of any highly concentrated system. The results also show the technological potential for non-conventional treatment of concentrated, multiphase systems.

  5. Simultaneous measurements of disk vibration and pressure fluctuation in turbulent flow developing in a model hard disk drive

    Energy Technology Data Exchange (ETDEWEB)

    Kurashima, D.; Naka, Y.; Fukagata, K. [Department of Mechanical Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan); Obi, S., E-mail: obsn@mech.keio.ac.jp [Department of Mechanical Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan)

    2011-06-15

    The complex flow features inside hard disk drive models are investigated in an axisymmetric and a semi-open shroud configurations. For the axisymmetric case, we have employed both experimental and computational approaches. The experiment focuses on both flow dynamics and the disk vibration, where measurements of the fluctuating pressure and velocity are undertaken at some representative points. The correlation between the disk vibration and the fluctuating pressure in the turbulent flow between disks is evident from the spectral analysis. The experimentally observed fluctuating pressure and velocity are partly due to the disk vibration and its contribution could be estimated by comparing the experiment with the results of a large eddy simulation. For the semi-open shroud case, although the characteristic peaks attributable to the large-scale vortical structure are still observed in the power spectra, the pressure fluctuation and the disk vibration are suppressed when the arm is inserted.

  6. DESIGN OF A VIBRATION AND STRESS MEASUREMENT SYSTEM FOR AN ADVANCED POWER REACTOR 1400 REACTOR VESSEL INTERNALS COMPREHENSIVE VIBRATION ASSESSMENT PROGRAM

    OpenAIRE

    KO, DO-YOUNG; KIM, KYU-HYUNG

    2013-01-01

    In accordance with the US Nuclear Regulatory Commission (US NRC), Regulatory Guide 1.20, the reactor vessel internals comprehensive vibration assessment program (RVI CVAP) has been developed for an Advanced Power Reactor 1400 (APR1400). The purpose of the RVI CVAP is to verify the structural integrity of the reactor internals to flow-induced loads prior to commercial operation. The APR1400 RVI CVAP consists of four programs (analysis, measurement, inspection, and assessment). Thoughtful prepa...

  7. Measurement and analysis of vibrational behavior of an SNR-fuel element in sodium flow

    International Nuclear Information System (INIS)

    Hess, B.F.H.; Ruppert, E.; Schmidt, H.; Vinzens, K.

    1975-01-01

    Within the framework of SNR-300 fuel element development programme a complete full size fuel element dummy has been tested thoroughly for nearly 3000 hours at 650 deg C system temperature in the AKB sodium loop at Interatom, Bensberg. It is known that the coolant flow through a subassembly can induce flutter or vibrations of structural parts such as single pins, the wrapper and the total pin bundle all of which have been of interest during this test. To detect these vibrations of different structural parts simultaneously with a minimum of instrumentation only 3 weldable high temperature strain gauges were employed. These strain gauges were especially prepared and bent in such a way as to form a bridge between the inner wrapper and a fuel pin top and spot-welded to both the wrapper and the fuel pin. Although this arrangement seems to be a rather unusual one, the simultaneous-measurement of bundle, wrapper and pin vibrations was possible and periodic flow fluctuations were also detected. The presented results are only relative due to calibration difficulties with these deformed strain gauges which were first used during this test. It is, however, believed that this arrangement, in connection with the proposed anlytical approach, leads to a simple and technical representation of the vibrational behavior of core elements during sodium tests. Detailed information needed for check and calibration of computer codes are however displayed by the respective power spectral density functions

  8. Perceptual Space of Superimposed Dual-Frequency Vibrations in the Hands.

    Science.gov (United States)

    Hwang, Inwook; Seo, Jeongil; Choi, Seungmoon

    2017-01-01

    The use of distinguishable complex vibrations that have multiple spectral components can improve the transfer of information by vibrotactile interfaces. We investigated the qualitative characteristics of dual-frequency vibrations as the simplest complex vibrations compared to single-frequency vibrations. Two psychophysical experiments were conducted to elucidate the perceptual characteristics of these vibrations by measuring the perceptual distances among single-frequency and dual-frequency vibrations. The perceptual distances of dual-frequency vibrations between their two frequency components along their relative intensity ratio were measured in Experiment I. The estimated perceptual spaces for three frequency conditions showed non-linear perceptual differences between the dual-frequency and single-frequency vibrations. A perceptual space was estimated from the measured perceptual distances among ten dual-frequency compositions and five single-frequency vibrations in Experiment II. The effect of the component frequency and the frequency ratio was revealed in the perceptual space. In a percept of dual-frequency vibration, the lower frequency component showed a dominant effect. Additionally, the perceptual difference among single-frequency and dual-frequency vibrations were increased with a low relative difference between two frequencies of a dual-frequency vibration. These results are expected to provide a fundamental understanding about the perception of complex vibrations to enrich the transfer of information using vibrotactile stimuli.

  9. Kinetics of highly vibrationally excited O2(X) molecules in inductively-coupled oxygen plasmas

    Science.gov (United States)

    Annušová, Adriana; Marinov, Daniil; Booth, Jean-Paul; Sirse, Nishant; Lino da Silva, Mário; Lopez, Bruno; Guerra, Vasco

    2018-04-01

    The high degree of vibrational excitation of O2 ground state molecules recently observed in inductively coupled plasma discharges is investigated experimentally in more detail and interpreted using a detailed self-consistent 0D global kinetic model for oxygen plasmas. Additional experimental results are presented and used to validate the model. The vibrational kinetics considers vibrational levels up to v = 41 and accounts for electron impact excitation and de-excitation (e-V), vibration-to-translation relaxation (V-T) in collisions with O2 molecules and O atoms, vibration-to-vibration energy exchanges (V-V), excitation of electronically excited states, dissociative electron attachment, and electron impact dissociation. Measurements were performed at pressures of 10–80 mTorr (1.33 and 10.67 Pa) and radio frequency (13.56 MHz) powers up to 500 W. The simulation results are compared with the absolute densities in each O2 vibrational level obtained by high sensitivity absorption spectroscopy measurements of the Schumann–Runge bands for O2(X, v = 4–18), O(3 P) atom density measurements by two-photon absorption laser induced fluorescence (TALIF) calibrated against Xe, and laser photodetachment measurements of the O‑ negative ions. The highly excited O2(X, v) distribution exhibits a shape similar to a Treanor-Gordiets distribution, but its origin lies in electron impact e-V collisions and not in V-V up-pumping, in contrast to what happens in all other molecular gases known to date. The relaxation of vibrational quanta is mainly due to V-T energy-transfer collisions with O atoms and to electron impact dissociation of vibrationally excited molecules, e+O2(X, v)→O(3P)+O(3P).

  10. Blind identification of full-field vibration modes from video measurements with phase-based video motion magnification

    Science.gov (United States)

    Yang, Yongchao; Dorn, Charles; Mancini, Tyler; Talken, Zachary; Kenyon, Garrett; Farrar, Charles; Mascareñas, David

    2017-02-01

    Experimental or operational modal analysis traditionally requires physically-attached wired or wireless sensors for vibration measurement of structures. This instrumentation can result in mass-loading on lightweight structures, and is costly and time-consuming to install and maintain on large civil structures, especially for long-term applications (e.g., structural health monitoring) that require significant maintenance for cabling (wired sensors) or periodic replacement of the energy supply (wireless sensors). Moreover, these sensors are typically placed at a limited number of discrete locations, providing low spatial sensing resolution that is hardly sufficient for modal-based damage localization, or model correlation and updating for larger-scale structures. Non-contact measurement methods such as scanning laser vibrometers provide high-resolution sensing capacity without the mass-loading effect; however, they make sequential measurements that require considerable acquisition time. As an alternative non-contact method, digital video cameras are relatively low-cost, agile, and provide high spatial resolution, simultaneous, measurements. Combined with vision based algorithms (e.g., image correlation, optical flow), video camera based measurements have been successfully used for vibration measurements and subsequent modal analysis, based on techniques such as the digital image correlation (DIC) and the point-tracking. However, they typically require speckle pattern or high-contrast markers to be placed on the surface of structures, which poses challenges when the measurement area is large or inaccessible. This work explores advanced computer vision and video processing algorithms to develop a novel video measurement and vision-based operational (output-only) modal analysis method that alleviate the need of structural surface preparation associated with existing vision-based methods and can be implemented in a relatively efficient and autonomous manner with little

  11. Some problems of control of dynamical conditions of technological vibrating machines

    Science.gov (United States)

    Kuznetsov, N. K.; Lapshin, V. L.; Eliseev, A. V.

    2017-10-01

    The possibility of control of dynamical condition of the shakers that are designed for vibration treatment of parts interacting with granular media is discussed. The aim of this article is to develop the methodological basis of technology of creation of mathematical models of shake tables and the development of principles of formation of vibrational fields, estimation of their parameters and control of the structure vibration fields. Approaches to build mathematical models that take into account unilateral constraints, the relationships between elements, with the vibrating surface are developed. Methods intended to construct mathematical model of linear mechanical oscillation systems are used. Small oscillations about the position of static equilibrium are performed. The original method of correction of vibration fields by introduction of the oscillating system additional ties to the structure are proposed. Additional ties are implemented in the form of a mass-inertial device for changing the inertial parameters of the working body of the vibration table by moving the mass-inertial elements. The concept of monitoring the dynamic state of the vibration table based on the original measuring devices is proposed. Estimation for possible changes in dynamic properties is produced. The article is of interest for specialists in the field of creation of vibration technology machines and equipment.

  12. High-Performance Pressure Sensor for Monitoring Mechanical Vibration and Air Pressure

    Directory of Open Access Journals (Sweden)

    Yancheng Meng

    2018-05-01

    Full Text Available To realize the practical applications of flexible pressure sensors, the high performance (sensitivity and response time as well as more functionalities are highly desired. In this work, we fabricated a piezoresistive pressure sensor based on the micro-structured composites films of multi-walled carbon nanotubes (MWCNTs and poly (dimethylsiloxane (PDMS. In addition, we establish efficient strategies to improve key performance of our pressure sensor. Its sensitivity is improved up to 474.13 kPa−1 by minimizing pressure independent resistance of sensor, and response time is shorten as small as 2 μs by enhancing the elastic modulus of polymer elastomer. Benefiting from the high performance, the functionalities of sensors are successfully extended to the accurate detection of high frequency mechanical vibration (~300 Hz and large range of air pressure (6–101 kPa, both of which are not achieved before.

  13. Vibration control of a cluster of buildings through the Vibrating Barrier

    Science.gov (United States)

    Tombari, A.; Garcia Espinosa, M.; Alexander, N. A.; Cacciola, P.

    2018-02-01

    A novel device, called Vibrating Barrier (ViBa), that aims to reduce the vibrations of adjacent structures subjected to ground motion waves has been recently proposed. The ViBa is a structure buried in the soil and detached from surrounding buildings that is able to absorb a significant portion of the dynamic energy arising from the ground motion. The working principle exploits the dynamic interaction among vibrating structures due to the propagation of waves through the soil, namely the structure-soil-structure interaction. In this paper the efficiency of the ViBa is investigated to control the vibrations of a cluster of buildings. To this aim, a discrete model of structures-site interaction involving multiple buildings and the ViBa is developed where the effects of the soil on the structures, i.e. the soil-structure interaction (SSI), the structure-soil-structure interaction (SSSI) as well as the ViBa-soil-structures interaction are taken into account by means of linear elastic springs. Closed-form solutions are derived to design the ViBa in the case of harmonic excitation from the analysis of the discrete model. Advanced finite element numerical simulations are performed in order to assess the efficiency of the ViBa for protecting more than a single building. Parametric studies are also conducted to identify beneficial/adverse effects in the use of the proposed vibration control strategy to protect cluster of buildings. Finally, experimental shake table tests are performed to a prototype of a cluster of two buildings protected by the ViBa device for validating the proposed numerical models.

  14. Performance of active vibration control technology: the ACTEX flight experiments

    Science.gov (United States)

    Nye, T. W.; Manning, R. A.; Qassim, K.

    1999-12-01

    This paper discusses the development and results of two intelligent structures space-flight experiments, each of which could affect architecture designs of future spacecraft. The first, the advanced controls technology experiment I (ACTEX I), is a variable stiffness tripod structure riding as a secondary payload on a classified spacecraft. It has been operating well past its expected life since becoming operational in 1996. Over 60 on-orbit experiments have been run on the ACTEX I flight experiment. These experiments form the basis for in-space controller design problems and for concluding lifetime/reliability data on the active control components. Transfer functions taken during the life of ACTEX I have shown consistent predictability and stability in structural behavior, including consistency with those measurements taken on the ground prior to a three year storage period and the launch event. ACTEX I can change its modal characteristics by employing its dynamic change mechanism that varies preloads in portions of its structure. Active control experiments have demonstrated maximum vibration reductions of 29 dB and 16 dB in the first two variable modes of the system, while operating over a remarkable on-orbit temperature range of -80 °C to 129 °C. The second experiment, ACTEX II, was successfully designed, ground-tested, and integrated on an experimental Department of Defense satellite prior to its loss during a launch vehicle failure in 1995. ACTEX II also had variable modal behavior by virtue of a two-axis gimbal and added challenges of structural flexibility by being a large deployable appendage. Although the loss of ACTEX II did not provide space environment experience, ground testing resulted in space qualifying the hardware and demonstrated 21 dB, 14 dB, and 8 dB reductions in amplitude of the first three primary structural modes. ACTEX II could use either active and/or passive techniques to affect vibration suppression. Both experiments trailblazed

  15. Ergonomic Evaluation of Vibrations of a Rototiller with New Blade

    Directory of Open Access Journals (Sweden)

    H Gholami

    2017-10-01

    Full Text Available Introduction One of the most important problems arising with operation of the conventional rototillers is severe vibration of the machine handle which is transmitted to the user’s hands, arms and shoulders. Long period exposure of the hand-transmitted vibration may cause various diseases such as white finger syndrome. Therefore in this study, vibrations of a new type of rototiller with ridged blades were investigated at the position of handle/hand interface in different working conditions. Finally, the maximum allowable exposure time to the rototiller users in continuous tillage operation was obtained according to ISO 5349-1. Materials and Methods Experiments were carried out in one of the farms with silty clay soil texture, located in Sari city, Mazandaran province, Iran. Vibration measurements were performed according to ISO 5349-1 and ISO 5349-2 standards in two different modes, including in situ mode and tillage mode. Vibrational parameters were obtained in three blade rotational speeds, i.e., low speed (140-170 rpm, medium speed (170-200, and high speed (200-230. Blade rotational speed varied by changing engine speed using the throttle control lever. In each experiment, different vibrational values were individually recorded in three directions (x, y, and z. Experimental design and data analysis were performed in a Randomized Complete Block Design with three replications using the SPSS16 software. Results and Discussion Based on the obtained results in this study, the RMS of acceleration increased by increasing in rotational speed for all of the conducted experiments. The reason is that number of cutting per unit of time and consequently the frequency of changing in the dynamic forces exerting on the blades dramatically increases with increasing the rotational speed of the blades. Noteworthy is that in most cases the variation of acceleration in the tillage mode showed similar trend with vibrational values in the idling mode. This

  16. EVALUATION OF VIBRATION LOAD ON COMMON RAIL FUEL SYSTEM COMPONENTS FOR DIESEL ENGINE

    Directory of Open Access Journals (Sweden)

    G. M. Kuharonak

    2014-01-01

    Full Text Available The objective of the paper is to develop a program, a methodology and execute vibration load tests of Common Rail fuel system components for a diesel engine. The paper contains an analysis of parameters that characterize vibration activity of research object and determine its applicability as a part of the specific mechanical system. A tests program has been developed that includes measurements of general peak values of vibration acceleration in the fuel system components, transformation of the obtained data while taking into account the fact that peak vibration acceleration values depend on crank-shaft rotation frequency and spectrum of vibration frequency, comparison of these dependences with the threshold limit values obtained in the process of component tests with the help of vibration shaker. The investigations have been carried out in one of the most stressed elements of the Common Rail fuel system that is a RDS 4.2-pressure sensor in a fuel accumulator manufactured by Robert Bosch GmbH and mounted on the MMZ D245.7E4-engines.According to the test methodology measurements have been performed on an engine test bench at all fullload engine curves. Vibration measurements have resulted in time history of the peak vibration acceleration values in three directions from every accelerometer and crank-shaft rotation frequency.It has been proposed to increase a diameter of mounting spacers of the fuel accumulator and install a damping clamp on high pressure tubes from a high pressure fuel pump to the fuel accumulator that permits to reduce a maximum peak vibration acceleration value on the pressure sensor in the fuel accumulator by 400 m/s2 and ensure its application in the given engine.

  17. Vibration analysis of 1 MW gearbox for the Avedoere wind turbine. Test bed measurements

    International Nuclear Information System (INIS)

    Crone, A.

    1995-03-01

    The investigations had several purposes: Firstly, to determine and evaluate the structure-borne noise source strength of the gearbox, which is relevant for the final gear noise emission from the wind turbine. Secondly, to select the potentially least noisy gear set out of two, which have been made for the output gear stage. And Thirdly, to obtain the natural vibration modes of the gearbox structure, in order to determine if the structure-borne noise, transmitted to the wind turbine structure, will be amplified due to resonance conditions. Additional vibration tests were carried out. Among these, trials of 'in situ' measurement of the Transmission Error of the output gear stage, and measurements of the torsional vibrations of the input and output shaft. The test of the two output gear sets (from Flender AG and ELKRAFT A.m.b.A.) had the aim to determine the least noisy one of two different tooth profiles. Both gear sets were intended for the Avedoere Wind Turbine when it, in its first period of operation, is going to operate as a stall regulated turbine. After the first mesurements and the exchange of the Flender-designed gear set with the ELKRAFT-designed gear set, troubles with the backmost bearing of the intermediate shaft arose. The evaluation of the structure-borne noise source strength (expressed as the vibration velocity level), has in general been made at load conditions which correspond to the conditions in the wind turibne at a wind speed of 8 m/s, 10 m above terrain (v 10 ). This condition, is the one normally used when the noise emission from wind turbines is evaluated. At the comparison of the two gear sets against each other, the influence of the torque load on the source strength has also been considered. This comparison may indicate the load at which the profile correction is most effective, and may determine the noise potential of the gearbox at wind speeds lower than 8 m/s, which could also be of interest

  18. What is the most effective posture to conduct vibration from the lower to the upper extremities during whole-body vibration exercise?

    Directory of Open Access Journals (Sweden)

    Tsukahara Y

    2016-01-01

    Full Text Available Yuka Tsukahara, Jun Iwamoto, Kosui Iwashita, Takuma Shinjo, Koichiro Azuma, Hideo MatsumotoInstitute for Integrated Sports Medicine, Keio University School of Medicine, Tokyo, Japan Background: Whole-body vibration (WBV exercise is widely used for training and rehabilitation. However, the optimal posture for training both the upper and lower extremities simultaneously remains to be established. Objectives: The objective of this study was to search for an effective posture to conduct vibration from the lower to the upper extremities while performing WBV exercises without any adverse effects. Methods: Twelve healthy volunteers (age: 22–34 years were enrolled in the study. To measure the magnitude of vibration, four accelerometers were attached to the upper arm, back, thigh, and calf of each subject. Vibrations were produced using a WBV platform (Galileo 900 with an amplitude of 4 mm at two frequencies, 15 and 30 Hz. The following three postures were examined: posture A, standing posture with the knees flexed at 30°; posture B, crouching position with no direct contact between the knees and elbows; and posture C, crouching position with direct contact between the knees and elbows. The ratio of the magnitude of vibration at the thigh, back, and upper arm relative to that at the calf was used as an index of vibration conduction. Results: Posture B was associated with a greater magnitude of vibration to the calf than posture A at 15 Hz, and postures B and C were associated with greater magnitudes of vibration than posture A at 30 Hz. Posture C was associated with a vibration conduction to the upper arm that was 4.62 times and 8.26 times greater than that for posture A at 15 and 30 Hz, respectively. Conclusion: This study revealed that a crouching position on a WBV platform with direct contact between the knees and elbows was effective for conducting vibration from the lower to the upper extremities. Keywords: whole-body vibration exercise, upper

  19. Development of Dual-Axis MEMS Accelerometers for Machine Tools Vibration Monitoring

    Directory of Open Access Journals (Sweden)

    Chih-Yung Huang

    2016-07-01

    Full Text Available With the development of intelligent machine tools, monitoring the vibration by the accelerometer is an important issue. Accelerometers used for measuring vibration signals during milling processes require the characteristics of high sensitivity, high resolution, and high bandwidth. A commonly used accelerometer is the lead zirconate titanate (PZT type; however, integrating it into intelligent modules is excessively expensive and difficult. Therefore, the micro electro mechanical systems (MEMS accelerometer is an alternative with the advantages of lower price and superior integration. In the present study, we integrated two MEMS accelerometer chips into a low-pass filter and housing to develop a low-cost dual-axis accelerometer with a bandwidth of 5 kHz and a full scale range of ±50 g for measuring machine tool vibration. In addition, a platform for measuring the linearity, cross-axis sensitivity and frequency response of the MEMS accelerometer by using the back-to-back calibration method was also developed. Finally, cutting experiments with steady and chatter cutting were performed to verify the results of comparing the MEMS accelerometer with the PZT accelerometer in the time and frequency domains. The results demonstrated that the dual-axis MEMS accelerometer is suitable for monitoring the vibration of machine tools at low cost.

  20. Large-amplitude and narrow-band vibration phenomenon of a foursquare fix-supported flexible plate in a rigid narrow channel

    Energy Technology Data Exchange (ETDEWEB)

    Liu Lifang, E-mail: liu_lifang1106@yahoo.cn [School of Nuclear Science and Engineering, North China Electric Power University, Zhuxinzhuang, Dewai, Beijing 102206 (China); Lu Daogang, E-mail: ludaogang@ncepu.edu.cn [School of Nuclear Science and Engineering, North China Electric Power University, Zhuxinzhuang, Dewai, Beijing 102206 (China); Li Yang, E-mail: qinxiuyi@sina.com [School of Nuclear Science and Engineering, North China Electric Power University, Zhuxinzhuang, Dewai, Beijing 102206 (China); Zhang Pan, E-mail: zhangpan@ncepu.edu.cn [School of Nuclear Science and Engineering, North China Electric Power University, Zhuxinzhuang, Dewai, Beijing 102206 (China); Niu Fenglei, E-mail: niufenglei@ncepu.edu.cn [School of Nuclear Science and Engineering, North China Electric Power University, Zhuxinzhuang, Dewai, Beijing 102206 (China)

    2011-08-15

    Highlights: > FIV of a foursquare fix-supported flexible plate exposed to axial flow was studied. > Special designed test section and advanced measuring equipments were adopted. > The narrow-band vibration phenomenon with large amplitude was observed. > Line of plate's vibration amplitude and flow rate was investigated. > The phenomenon and the measurement error were analyzed. - Abstract: An experiment was performed to analyze the flow-induced vibration behavior of a foursquare fix-supported flexible plate exposed to the axial flow within a rigid narrow channel. The large-amplitude and narrow-band vibration phenomenon was observed in the experiment when the flow velocity varied with the range of 0-5 m/s. The occurring condition and some characteristics of the large-amplitude and narrow-band vibrations were investigated.

  1. Experimental investigation on low-frequency vibration assisted micro-WEDM of Inconel 718

    Directory of Open Access Journals (Sweden)

    Deepak Rajendra Unune

    2017-02-01

    Full Text Available The micro-wire electric discharge machining (micro-WEDM has emerged as the popular micromachining processes for fabrication of micro-features. However, the low machining rate and poor surface finish are restricting wide applications of this process. Therefore, in this study, an attempt was made to improve machining rate of micro-WEDM with low-frequency workpiece vibration assistance. The gap voltage, capacitance, feed rate and vibrational frequency were chosen as control factors, whereas, the material removal rate (MRR and kerf width were selected as performance measures while fabricating microchannels in Inconel 718. It was observed that in micro-WEDM, the capacitance is the most significant factor affecting both MRR and kerf width. It was witnessed that the low-frequency workpiece vibration improves the performance of micro-WEDM by improving the MRR due to enhanced flushing conditions and reduced electrode-workpiece adhesion.

  2. VIBRATION SENSORS AND MICROELECTROMECHANICAL SYSTEM FOR MOBILE DEVICES SUCH AS ANALOGS, FOR EVALUATION OF VIBRATION OF ROTARY MACHINES

    Directory of Open Access Journals (Sweden)

    2016-01-01

    Full Text Available The paper carried out a comparison of vibration sensors used to measure the vibration condition units with gas turbine engines, with motion sensors, microelectromechanical systems used in modern mobile devices (for example, devices on the platform "Android". It provides opinions on the possibility of assessment of vibration, using sensors of mobile devices.

  3. RISK ASSESSMENT BY STRUCTURAL ANALYSIS AND VIBRATION MEASUREMENT EQUIPMENT OPERATING AT OIL FACILITIES

    OpenAIRE

    Marius STAN

    2013-01-01

    Vibration analysis applications in operation is one of the diagnostic methods ofoperation of the facility. Analysis of these types of failures indicated the existence of specificfeatures prints and related equipment vibration spectra. Modeling and identification of theseparticular aspects in the spectrum of vibration machines help to control the operation of oilfacilities built safely.

  4. Vibration Analysis of a Residential Building

    Directory of Open Access Journals (Sweden)

    Sampaio Regina Augusta

    2015-01-01

    Full Text Available The aim of this paper is to present the results of a study regarding vibration problems in a 17 storey residential building during pile driving in its vicinity. The structural design of the building was checked according to the Brazilian standards NBR6118 and NBR6123, and using commercial finite element software. An experimental analysis was also carried out using low frequency piezo-accelerometers attached to the building structure. Structure vibrations were recorded under ambient conditions. Four monitoring tests were performed on different days. The objective of the first monitoring test was an experimental modal analysis. To obtain de modal parameters, data was processed in the commercial software ARTEMIS employing two methods: the Stochastic Subspace Identification and the Frequency Domain Decomposition. Human comfort was investigated considering the International Standard ISO 2631. The Portuguese standard, NP2074, was also used as a reference, since it aims to limit the adverse effects of vibrations in structures caused by pile driving in the vicinity of the structure. The carried out experimental tests have shown that, according to ISO2301, the measure vibration levels are above the acceptance limits. However, velocity peaks are below the limits established by NP2074. It was concluded that, although the structure has adequate capacity to resist internal forces according to normative criteria, it has low horizontal stiffness, which could be verified by observing the vibration frequencies and mode shapes obtained with the finite element models, and its similarity with the experimental results. Thus, the analyses indicate the occurrence of discomfort by the residents.

  5. Two dimensional vibrations of the guinea pig apex organ of Corti measured in vivo using phase sensitive Fourier domain optical coherence tomography

    Science.gov (United States)

    Ramamoorthy, Sripriya; Zhang, Yuan; Petrie, Tracy; Fridberger, Anders; Ren, Tianying; Wang, Ruikang; Jacques, Steven L.; Nuttall, Alfred L.

    2015-02-01

    In this study, we measure the in vivo apical-turn vibrations of the guinea pig organ of Corti in both axial and radial directions using phase-sensitive Fourier domain optical coherence tomography. The apical turn in guinea pig cochlea has best frequencies around 100 - 500 Hz which are relevant for human speech. Prior measurements of vibrations in the guinea pig apex involved opening the otic capsule, which has been questioned on the basis of the resulting changes to cochlear hydrodynamics. Here this limitation is overcome by measuring the vibrations through bone without opening the otic capsule. Furthermore, we have significantly reduced the surgery needed to access the guinea pig apex in the axial direction by introducing a miniature mirror inside the bulla. The method and preliminary data are discussed in this article.

  6. Gearbox Fault Features Extraction Using Vibration Measurements and Novel Adaptive Filtering Scheme

    Directory of Open Access Journals (Sweden)

    Ghalib R. Ibrahim

    2012-01-01

    Full Text Available Vibration signals measured from a gearbox are complex multicomponent signals, generated by tooth meshing, gear shaft rotation, gearbox resonance vibration signatures, and a substantial amount of noise. This paper presents a novel scheme for extracting gearbox fault features using adaptive filtering techniques for enhancing condition features, meshing frequency sidebands. A modified least mean square (LMS algorithm is examined and validated using only one accelerometer, instead of using two accelerometers in traditional arrangement, as the main signal and a desired signal is artificially generated from the measured shaft speed and gear meshing frequencies. The proposed scheme is applied to a signal simulated from gearbox frequencies with a numerous values of step size. Findings confirm that 10−5 step size invariably produces more accurate results and there has been a substantial improvement in signal clarity (better signal-to-noise ratio, which makes meshing frequency sidebands more discernible. The developed scheme is validated via a number of experiments carried out using two-stage helical gearbox for a healthy pair of gears and a pair suffering from a tooth breakage with severity fault 1 (25% tooth removal and fault 2 (50% tooth removal under loads (0%, and 80% of the total load. The experimental results show remarkable improvements and enhance gear condition features. This paper illustrates that the new approach offers a more effective way to detect early faults.

  7. Vibration measurement-based simple technique for damage detection of truss bridges: A case study

    Directory of Open Access Journals (Sweden)

    Sudath C. Siriwardane

    2015-10-01

    Full Text Available The bridges experience increasing traffic volume and weight, deteriorating of components and large number of stress cycles. Therefore, assessment of the current condition of steel railway bridges becomes necessary. Most of the commonly available approaches for structural health monitoring are based on visual inspection and non-destructive testing methods. The visual inspection is unreliable as those depend on uncertainty behind inspectors and their experience. Also, the non-destructive testing methods are found to be expensive. Therefore, recent researches have noticed that dynamic modal parameters or vibration measurement-based structural health monitoring methods are economical and may also provide more realistic predictions to damage state of civil infrastructure. Therefore this paper proposes a simple technique to locate the damage region of railway truss bridges based on measured modal parameters. The technique is discussed with a case study. Initially paper describes the details of considered railway bridge. Then observations of visual inspection, material testing and in situ load testing are discussed under separate sections. Development of validated finite element model of the considered bridge is comprehensively discussed. Hence, variations of modal parameters versus position of the damage are plotted. These plots are considered as the main reference for locating the damage of the railway bridge in future periodical inspection by comparing the measured corresponding modal parameters. Finally the procedure of periodical vibration measurement and damage locating technique are clearly illustrated.

  8. A Method for Vibration-Based Structural Interrogation and Health Monitoring Based on Signal Cross-Correlation

    International Nuclear Information System (INIS)

    Trendafilova, I

    2011-01-01

    Vibration-based structural interrogation and health monitoring is a field which is concerned with the estimation of the current state of a structure or a component from its vibration response with regards to its ability to perform its intended function appropriately. One way to approach this problem is through damage features extracted from the measured structural vibration response. This paper suggests to use a new concept for the purposes of vibration-based health monitoring. The correlation between two signals, an input and an output, measured on the structure is used to develop a damage indicator. The paper investigates the applicability of the signal cross-correlation and a nonlinear alternative, the average mutual information between the two signals, for the purposes of structural health monitoring and damage assessment. The suggested methodology is applied and demonstrated for delamination detection in a composite beam.

  9. Effects of different vibration exercises on bench press.

    Science.gov (United States)

    Marín, P J; Torres-Luque, G; Hernández-García, R; García-López, D; Garatachea, N

    2011-10-01

    This study was undertaken to analyze the effects of different vibration recovery strategies via feet or hands on the number of repetitions performed and on mean velocity, peak velocity and blood lactate concentration during consecutive bench-press sets. 9 elite judo athletes performed 3 sets of bench press at 60% of one-repetition maximum (1RM), leading to failure and allowing a 180 s rest period between sets. During the rest period, 1 of the 3 following procedures was performed: 150 s rest plus 30 s push-up vibration exercise (Push-up), 150 s rest plus 30 s squat vibration exercise (Squat) or 180 s only rest (Passive). Statistical analysis revealed that the Squat condition resulted in a significant increase in the number of repetitions achieved, in comparison with all other rest strategies. However, kinematic parameters and blood lactate concentration were not affected by vibration. These data suggest that a vibration stimulus applied to the feet, between sets, can result in positive improvements in upper body resistance exercise performance. Although the mechanisms are not fully understood, this positive effect of vibration could be due to an increased motor cortex excitability and voluntary drive. © Georg Thieme Verlag KG Stuttgart · New York.

  10. Enhanced vibration diagnostics using vibration signature analysis

    International Nuclear Information System (INIS)

    Ahmed, S.; Shehzad, K.; Zahoor, Y.; Mahmood, A.; Bibi, A.

    2001-01-01

    Symptoms will appear in equipment, as well as in human beings. when 'suffering from sickness. Symptoms of abnormality in equipment are vibration, noise, deformation, temperature, pressure, electric current, crack, wearing, leakage etc. these are called modes of failure. If the mode of failure is vibration then the vibration signature analysis can be effectively used in order to diagnose the machinery problems. Much valuable information is contained within these vibration 'Spectra' or 'Signatures' but is only of use if the analyst can unlock its 'Secrets'. This paper documents a vibration problem in the motor of a centrifugal pump (Type ETA). It focuses mainly on the roll of modern vibration monitoring system in problem analysis. The problem experienced was the motor unstability and noise due to high vibration. Using enhanced vibration signature data, the problem was analyzed. which suggested that the rotor eccentricity was the cause of excessive noise and vibration in the motor. In conclusion, advanced electronic monitoring and diagnostic systems provide powerful information for machine's condition assessment and problem analysis. Appropriate interpretation and use of this information is important for accurate and effective vibration analysis. (author)

  11. Some developments in core-barrel vibration diagnostics

    International Nuclear Information System (INIS)

    Pazsit, I.; Karlsson, J.; Garis, N.S.

    1998-01-01

    Diagnostics of core-barrel motion, and notably that of beam mode vibrations, has been usually performed by two distinct concepts. One strategy is to perform a qualitative analysis in the time domain, using descriptors such as vibration trajectory, probability distributions etc. This approach is rather realistic in the sense that it allows for general anisotropic pendular vibrations. The other strategy is to use frequency analysis with the goal of quantifying certain vibration properties. However, this second approach could so far handle only isotropic and unidirectional vibrations. In this paper we propose a unification of these two approaches by introducing a model by which general anisotropic vibrations can be quantified in the frequency domain. However, when separating the noise components prior to the frequency analysis, we suggest the use of symmetry properties of the noise in the time domain, based on reactor physics assumptions, as opposed to the earlier methods that use statistical independence of the components. Due to the unified approach, a combination of time and frequency domain analysis methods can be used for presentation and maximum information extraction

  12. Review of magnetostrictive vibration energy harvesters

    Science.gov (United States)

    Deng, Zhangxian; Dapino, Marcelo J.

    2017-10-01

    The field of energy harvesting has grown concurrently with the rapid development of portable and wireless electronics in which reliable and long-lasting power sources are required. Electrochemical batteries have a limited lifespan and require periodic recharging. In contrast, vibration energy harvesters can supply uninterrupted power by scavenging useful electrical energy from ambient structural vibrations. This article reviews the current state of vibration energy harvesters based on magnetostrictive materials, especially Terfenol-D and Galfenol. Existing magnetostrictive harvester designs are compared in terms of various performance metrics. Advanced techniques that can reduce device size and improve performance are presented. Models for magnetostrictive devices are summarized to guide future harvester designs.

  13. RISK ASSESSMENT BY STRUCTURAL ANALYSIS AND VIBRATION MEASUREMENT EQUIPMENT OPERATING AT OIL FACILITIES

    Directory of Open Access Journals (Sweden)

    Marius STAN

    2013-05-01

    Full Text Available Vibration analysis applications in operation is one of the diagnostic methods ofoperation of the facility. Analysis of these types of failures indicated the existence of specificfeatures prints and related equipment vibration spectra. Modeling and identification of theseparticular aspects in the spectrum of vibration machines help to control the operation of oilfacilities built safely.

  14. Identification of aeroelastic forces and static drag coefficients of a twin cable bridge stay from full-scale ambient vibration measurements

    DEFF Research Database (Denmark)

    Acampora, Antonio; Georgakis, Christos T.; Macdonald, J.H.G.

    2014-01-01

    Despite much research in recent years, large amplitude vibrations of inclined cables continue to be of concern for cable-stayed bridges. Various excitation mechanisms have been suggested, including rain-wind excitation, dry inclined cable galloping, high reduced velocity vortex shedding...... and excitation from the deck and/or towers. Although there have been many observations of large cable vibrations on bridges, there are relatively few cases of direct full-scale cable vibration and wind measurements, and most research has been based on wind tunnel tests and theoretical modelling.This paper...... presents results from full-scale measurements on the special arrangement of twin cables adopted for the Øresund Bridge. The monitoring system records wind and weather conditions, as well as accelerations of certain cables and a few locations on the deck and tower. Using the Eigenvalue Realization Algorithm...

  15. A Medical Wireless Measurement System for Hip Prosthesis Loosening Detection Based on Vibration Analysis

    Directory of Open Access Journals (Sweden)

    Sebastian Sauer

    2013-01-01

    Full Text Available Vibration analysis is a promising approach in order to detect early hip prosthesis loosening, with the potential to extend the range of diagnostic tools currently available in clinical routine. Ongoing research efforts and developments in the area of multi-functional implants, which integrate sensors, wireless power supply, communication and signal processing, provide means to obtain valuable in vivo information otherwise not available. In the current work a medical wireless measurement system is presented, which is integrated in the femoral head of a hip prosthesis. The passive miniaturized system includes a 3-axis acceleration sensor and signal pre-processing based on a lock-in amplifier circuit. Bidirectional data communication and power supply is reached through inductive coupling with an operating frequency of 125 kHz in accordance with the ISO 18000-2 protocol standard. The system allows the acquisition of the acceleration frequency response of the femur-prosthesis system between 500 to 2500 Hz. Applied laboratory measurements with system prototypes on artificial bones and integrated prostheses demonstrate the feasibility of the measurement system approach, clearly showing differences in the vibration behavior due to an implant loosening. In addition a possibility to evaluate the non-linear mechanic system behavior is presented.

  16. High-precision and low-cost vibration generator for low-frequency calibration system

    Science.gov (United States)

    Li, Rui-Jun; Lei, Ying-Jun; Zhang, Lian-Sheng; Chang, Zhen-Xin; Fan, Kuang-Chao; Cheng, Zhen-Ying; Hu, Peng-Hao

    2018-03-01

    Low-frequency vibration is one of the harmful factors that affect the accuracy of micro-/nano-measuring machines because its amplitude is significantly small and it is very difficult to avoid. In this paper, a low-cost and high-precision vibration generator was developed to calibrate an optical accelerometer, which is self-designed to detect low-frequency vibration. A piezoelectric actuator is used as vibration exciter, a leaf spring made of beryllium copper is used as an elastic component, and a high-resolution, low-thermal-drift eddy current sensor is applied to investigate the vibrator’s performance. Experimental results demonstrate that the vibration generator can achieve steady output displacement with frequency range from 0.6 Hz to 50 Hz, an analytical displacement resolution of 3.1 nm and an acceleration range from 3.72 mm s-2 to 1935.41 mm s-2 with a relative standard deviation less than 1.79%. The effectiveness of the high-precision and low-cost vibration generator was verified by calibrating our optical accelerometer.

  17. EMBEDDED SYSTEMS FOR VIBRATION MONITORING

    Directory of Open Access Journals (Sweden)

    Miloš Milovančević

    2014-08-01

    Full Text Available The purpose of the research presented in this paper is the development of the optimal micro configuration for vibration monitoring of pumping aggregate, based on Microchip’s microcontroller (MC. Hardware used is 10-bit MC, upgraded with 12/bit A/D converter. Software for acquisition and data analysis is optimized for testing turbo pumps with rotation speed up to 2000 rpm. This software limitation is set for automatic diagnostics and for individual and manual vibro-diagnostic; the only limitation is set by accelerometer performance. The authors have performed numerous measurements on a wide range of turbo aggregates for establishing the operational condition of pumping aggregates.

  18. Flow induced vibrations in liquid metal fast breeder reactors

    International Nuclear Information System (INIS)

    1989-01-01

    Flow induced vibrations are well known phenomena in industry. Engineers have to estimate their destructive effects on structures. In the nuclear industry, flow induced vibrations are assessed early in the design process, and the results are incorporated in the design procedures. In many cases, model testing is used to supplement the design process to ensure that detrimental behaviour due to flow induced vibrations will not occur in the component in question. While these procedures attempt to minimize the probability of adverse performance of the various components, there is a problem in the extrapolation of analytical design techniques and/or model testing to actual plant operation. Therefore, sodium tests or vibrational measurements of components in the reactor system are used to provide additional assurance. This report is a general survey of experimental and calculational methods in this area of structural mechanics. The report is addressed to specialists and institutions in industrialized and developing countries who are responsible for the design and operation of liquid metal fast breeder reactors. 92 refs, 90 figs, 8 tabs

  19. Vibrationally averaged dipole moments of methane and benzene isotopologues

    Energy Technology Data Exchange (ETDEWEB)

    Arapiraca, A. F. C. [Laboratório de Átomos e Moléculas Especiais, Departamento de Física, ICEx, Universidade Federal de Minas Gerais, P. O. Box 702, 30123-970 Belo Horizonte, MG (Brazil); Centro Federal de Educação Tecnológica de Minas Gerais, Coordenação de Ciências, CEFET-MG, Campus I, 30.421-169 Belo Horizonte, MG (Brazil); Mohallem, J. R., E-mail: rachid@fisica.ufmg.br [Laboratório de Átomos e Moléculas Especiais, Departamento de Física, ICEx, Universidade Federal de Minas Gerais, P. O. Box 702, 30123-970 Belo Horizonte, MG (Brazil)

    2016-04-14

    DFT-B3LYP post-Born-Oppenheimer (finite-nuclear-mass-correction (FNMC)) calculations of vibrationally averaged isotopic dipole moments of methane and benzene, which compare well with experimental values, are reported. For methane, in addition to the principal vibrational contribution to the molecular asymmetry, FNMC accounts for the surprisingly large Born-Oppenheimer error of about 34% to the dipole moments. This unexpected result is explained in terms of concurrent electronic and vibrational contributions. The calculated dipole moment of C{sub 6}H{sub 3}D{sub 3} is about twice as large as the measured dipole moment of C{sub 6}H{sub 5}D. Computational progress is advanced concerning applications to larger systems and the choice of appropriate basis sets. The simpler procedure of performing vibrational averaging on the Born-Oppenheimer level and then adding the FNMC contribution evaluated at the equilibrium distance is shown to be appropriate. Also, the basis set choice is made by heuristic analysis of the physical behavior of the systems, instead of by comparison with experiments.

  20. Improvement of stance control and muscle performance induced by focal muscle vibration in young-elderly women: a randomized controlled trial.

    Science.gov (United States)

    Filippi, Guido M; Brunetti, Orazio; Botti, Fabio M; Panichi, Roberto; Roscini, Mauro; Camerota, Filippo; Cesari, Matteo; Pettorossi, Vito E

    2009-12-01

    Filippi GM, Brunetti O, Botti FM, Panichi R, Roscini M, Camerota F, Cesari M, Pettorossi VE. Improvement of stance control and muscle performance induced by focal muscle vibration in young-elderly women: a randomized controlled trial. To determine the effect of a particular protocol of mechanical vibration, applied focally and repeatedly (repeated muscle vibration [rMV]) on the quadriceps muscles, on stance and lower-extremity muscle power of young-elderly women. Double-blind randomized controlled trial; 3-month follow-up after intervention. Human Physiology Laboratories, University of Perugia, Italy. Sedentary women volunteers (N=60), randomized in 3 groups (mean age +/- SD, 65.3+/-4.2y; range, 60-72). rMV (100Hz, 300-500microm, in three 10-minute sessions a day for 3 consecutive days) was applied to voluntary contracted quadriceps (vibrated and contracted group) and relaxed quadriceps (vibrated and relaxed group). A third group received placebo stimulation (nonvibrated group). Area of sway of the center of pressure, vertical jump height, and leg power. Twenty-four hours after the end of the complete series of applications, the area of sway of the center of pressure decreased significantly by approximately 20%, vertical jump increased by approximately 55%, and leg power increased by approximately 35%. These effects were maintained for at least 90 days after treatment. rMV is a short-lasting and noninvasive protocol that can significantly and persistently improve muscle performance in sedentary young-elderly women.

  1. Force illusions and drifts observed during muscle vibration.

    Science.gov (United States)

    Reschechtko, Sasha; Cuadra, Cristian; Latash, Mark L

    2018-01-01

    We explored predictions of a scheme that views position and force perception as a result of measuring proprioceptive signals within a reference frame set by ongoing efferent process. In particular, this hypothesis predicts force illusions caused by muscle vibration and mediated via changes in both afferent and efferent components of kinesthesia. Healthy subjects performed accurate steady force production tasks by pressing with the four fingers of one hand (the task hand) on individual force sensors with and without visual feedback. At various times during the trials, subjects matched the perceived force using the other hand. High-frequency vibration was applied to one or both of the forearms (over the hand and finger extensors). Without visual feedback, subjects showed a drop in the task hand force, which was significantly smaller under the vibration of that forearm. Force production by the matching hand was consistently higher than that of the task hand. Vibrating one of the forearms affected the matching hand in a manner consistent with the perception of higher magnitude of force produced by the vibrated hand. The findings were consistent between the dominant and nondominant hands. The effects of vibration on both force drift and force mismatching suggest that vibration led to shifts in both signals from proprioceptors and the efferent component of perception, the referent coordinate and/or coactivation command. The observations fit the hypothesis on combined perception of kinematic-kinetic variables with little specificity of different groups of peripheral receptors that all contribute to perception of forces and coordinates. NEW & NOTEWORTHY We show that vibration of hand/finger extensors produces consistent errors in finger force perception. Without visual feedback, finger force drifted to lower values without a drift in the matching force produced by the other hand; hand extensor vibration led to smaller finger force drift. The findings fit the scheme with

  2. Electro-Mechanical Modeling and Performance Analysis of Floating Wave Energy Converters Utilizing Yo-Yo Vibrating System

    International Nuclear Information System (INIS)

    Sim, Kyuho; Park, Jisu; Jang, Seon-Jun

    2015-01-01

    This paper proposes a floating-type wave energy conversion system that consists of a mechanical part (yo-yo vibrating system, motion rectifying system, and power transmission system) and electrical part (power generation system). The yo-yo vibrating system, which converts translational input to rotational motion, is modeled as a single degree-of-freedom system. It can amplify the wave input via the resonance phenomenon and enhance the energy conversion efficiency. The electromechanical model is established from impedance matching of the mechanical part to the electrical system. The performance was analyzed at various wave frequencies and damping ratios for a wave input acceleration of 0.14 g. The maximum output occurred at the resonance frequency and optimal load resistance, where the power conversion efficiency and electrical output power reached 48% and 290 W, respectively. Utilizing the resonance phenomenon was found to greatly enhance the performance of the wave energy converter, and there exists a maximum power point at the optimum load resistance

  3. Electro-Mechanical Modeling and Performance Analysis of Floating Wave Energy Converters Utilizing Yo-Yo Vibrating System

    Energy Technology Data Exchange (ETDEWEB)

    Sim, Kyuho; Park, Jisu [Seoul National University, Seoul (Korea, Republic of); Jang, Seon-Jun [Innovation KR, Seoul (Korea, Republic of)

    2015-01-15

    This paper proposes a floating-type wave energy conversion system that consists of a mechanical part (yo-yo vibrating system, motion rectifying system, and power transmission system) and electrical part (power generation system). The yo-yo vibrating system, which converts translational input to rotational motion, is modeled as a single degree-of-freedom system. It can amplify the wave input via the resonance phenomenon and enhance the energy conversion efficiency. The electromechanical model is established from impedance matching of the mechanical part to the electrical system. The performance was analyzed at various wave frequencies and damping ratios for a wave input acceleration of 0.14 g. The maximum output occurred at the resonance frequency and optimal load resistance, where the power conversion efficiency and electrical output power reached 48% and 290 W, respectively. Utilizing the resonance phenomenon was found to greatly enhance the performance of the wave energy converter, and there exists a maximum power point at the optimum load resistance.

  4. A High-Speed Target-Free Vision-Based Sensor for Bus Rapid Transit Viaduct Vibration Measurements Using CMT and ORB Algorithms

    Directory of Open Access Journals (Sweden)

    Qijun Hu

    2017-06-01

    Full Text Available Bus Rapid Transit (BRT has become an increasing source of concern for public transportation of modern cities. Traditional contact sensing techniques during the process of health monitoring of BRT viaducts cannot overcome the deficiency that the normal free-flow of traffic would be blocked. Advances in computer vision technology provide a new line of thought for solving this problem. In this study, a high-speed target-free vision-based sensor is proposed to measure the vibration of structures without interrupting traffic. An improved keypoints matching algorithm based on consensus-based matching and tracking (CMT object tracking algorithm is adopted and further developed together with oriented brief (ORB keypoints detection algorithm for practicable and effective tracking of objects. Moreover, by synthesizing the existing scaling factor calculation methods, more rational approaches to reducing errors are implemented. The performance of the vision-based sensor is evaluated through a series of laboratory tests. Experimental tests with different target types, frequencies, amplitudes and motion patterns are conducted. The performance of the method is satisfactory, which indicates that the vision sensor can extract accurate structure vibration signals by tracking either artificial or natural targets. Field tests further demonstrate that the vision sensor is both practicable and reliable.

  5. Preventive measures against vibration of FBR reactor vessel cooling structure

    International Nuclear Information System (INIS)

    Eguchi, Yuzuru; Tanaka, Nobukazu

    1989-01-01

    The present paper describes the fundamental feature of the fluid-elastic vibration of flexible overflow weir, as observed in the French demonstration fast breeder reactor, Super Phenix-1. In the experimental study, the instability criterion of the fluid-elastic vibration was studied by using a simple experimental apparatus of a rectangular tank separated by a flexible weir. A spring-mass model was developed to clarify the mechanism of the instability. The instability condition was analytically derived from the equations of the spring-mass model. The equations of the spring-mass model was also computationally integrated in time to simulate the temporal evolution of the fluid-elastic vibration. The comparison between the experimental and theoretical results indicates that the present theoretical model is capable of predicting most of the physical tendencies observed in the experiment. The present study revealed that the lag time of waterfall at the weir is the most influential parameter among other hydro-elastic parameters. (author)

  6. The High Level Vibration Test Program

    International Nuclear Information System (INIS)

    Hofmayer, C.H.; Curreri, J.R.; Park, Y.J.; Kato, W.Y.; Kawakami, S.

    1989-01-01

    As part of cooperative agreements between the United States and Japan, tests have been performed on the seismic vibration table at the Tadotsu Engineering Laboratory of Nuclear Power Engineering Test Center (NUPEC) in Japan. The objective of the test program was to use the NUPEC vibration table to drive large diameter nuclear power piping to substantial plastic strain with an earthquake excitation and to compare the results with state-of-the-art analysis of the problem. The test model was designed by modifying the 1/2.5 scale model of the PWR primary coolant loop. Elastic and inelastic seismic response behavior of the test model was measured in a number of test runs with an increasing excitation input level up to the limit of the vibration table. In the maximum input condition, large dynamic plastic strains were obtained in the piping. Crack initiation was detected following the second maximum excitation run. The test model was subjected to a maximum acceleration well beyond what nuclear power plants are designed to withstand. This paper describes the overall plan, input motion development, test procedure, test results and comparisons with pre-test analysis. 4 refs., 16 figs., 2 tabs

  7. The High Level Vibration Test program

    International Nuclear Information System (INIS)

    Hofmayer, C.H.; Curreri, J.R.; Park, Y.J.; Kato, W.Y.; Kawakami, S.

    1990-01-01

    As part of cooperative agreements between the United States and Japan, tests have been performed on the seismic vibration table at the Tadotsu Engineering Laboratory of Nuclear Power Engineering Test Center (NUPEC) in Japan. The objective of the test program was to use the NUPEC vibration table to drive large diameter nuclear power piping to substantial plastic strain with an earthquake excitation and to compare the results with state-of-the-art analysis of the problem. The test model was designed by modifying the 1/2.5 scale model of the pressurized water reactor primary coolant loop. Elastic and inelastic seismic response behavior of the test model was measured in a number of test runs with an increasing excitation input level up to the limit of the vibration table. In the maximum input condition, large dynamic plastic strains were obtained in the piping. Crack initiation was detected following the second maximum excitation run. The test model was subjected to a maximum acceleration well beyond what nuclear power plants are designed to withstand. This paper describes the overall plan, input motion development, test procedure, test results and comparisons with pre-test analysis

  8. Whole body vibration improves cognition in healthy young adults.

    Directory of Open Access Journals (Sweden)

    G Ruben H Regterschot

    Full Text Available This study investigated the acute effects of passive whole body vibration (WBV on executive functions in healthy young adults. Participants (112 females, 21 males; age: 20.5±2.2 years underwent six passive WBV sessions (frequency 30 Hz, amplitude approximately 0.5 mm and six non-vibration control sessions of two minutes each while sitting on a chair mounted on a vibrating platform. A passive WBV session was alternated with a control session. Directly after each session, performance on the Stroop Color-Block Test (CBT, Stroop Color-Word Interference Test (CWIT, Stroop Difference Score (SDS and Digit Span Backward task (DSBT was measured. In half of the passive WBV and control sessions the test order was CBT-CWIT-DSBT, and DSBT-CBT-CWIT in the other half. Passive WBV improved CWIT (p = 0.009; effect size r = 0.20 and SDS (p = 0.034; r = 0.16 performance, but only when the CBT and CWIT preceded the DSBT. CBT and DSBT performance did not change. This study shows that two minutes passive WBV has positive acute effects on attention and inhibition in young adults, notwithstanding their high cognitive functioning which could have hampered improvement. This finding indicates the potential of passive WBV as a cognition-enhancing therapy worth further evaluation, especially in persons unable to perform active forms of exercise.

  9. Whole body vibration improves cognition in healthy young adults.

    Science.gov (United States)

    Regterschot, G Ruben H; Van Heuvelen, Marieke J G; Zeinstra, Edzard B; Fuermaier, Anselm B M; Tucha, Lara; Koerts, Janneke; Tucha, Oliver; Van Der Zee, Eddy A

    2014-01-01

    This study investigated the acute effects of passive whole body vibration (WBV) on executive functions in healthy young adults. Participants (112 females, 21 males; age: 20.5±2.2 years) underwent six passive WBV sessions (frequency 30 Hz, amplitude approximately 0.5 mm) and six non-vibration control sessions of two minutes each while sitting on a chair mounted on a vibrating platform. A passive WBV session was alternated with a control session. Directly after each session, performance on the Stroop Color-Block Test (CBT), Stroop Color-Word Interference Test (CWIT), Stroop Difference Score (SDS) and Digit Span Backward task (DSBT) was measured. In half of the passive WBV and control sessions the test order was CBT-CWIT-DSBT, and DSBT-CBT-CWIT in the other half. Passive WBV improved CWIT (p = 0.009; effect size r = 0.20) and SDS (p = 0.034; r = 0.16) performance, but only when the CBT and CWIT preceded the DSBT. CBT and DSBT performance did not change. This study shows that two minutes passive WBV has positive acute effects on attention and inhibition in young adults, notwithstanding their high cognitive functioning which could have hampered improvement. This finding indicates the potential of passive WBV as a cognition-enhancing therapy worth further evaluation, especially in persons unable to perform active forms of exercise.

  10. Prediction of vibration characteristics of a planar mechanism having imperfect joints using neural network

    International Nuclear Information System (INIS)

    Erkaya, Selcuk

    2012-01-01

    Clearance is inevitable in the joints of mechanisms due primarily to the design, manufacturing and assembly processes or a wear effect. Excessive value of joint clearance plays a crucial role and has a significant effect on the kinematic and dynamic performances of the mechanism. In this study, effects of joint clearances on bearing vibrations of mechanism are investigated. An experimental test rig is set up, and a planar slider-crank mechanism having two imperfect joints with radial clearance is used as a model mechanism. Three accelerometers are positioned at different points to measure the bearing vibrations during the mechanism motion. For the different running speeds and clearance sizes, this work provides a neural model to predict and estimate the bearing vibrations of the mechanical systems having imperfect joints. The results show that radial basis function (RBF) neural network has a superior performance for predicting and estimating the vibration characteristics of the mechanical system

  11. Vibration measurements by pulsed digital holographic endoscopy

    Science.gov (United States)

    Schedin, Staffan; Pedrini, Giancarlo; Perez-Lopez, Carlos; Mendoza Santoyo, Fernando

    2005-02-01

    Digital holographic interferometry in combination with a flexible fiber endoscope allows high precision measurements of deformations on hidden objects surfaces, inside cavities and objects with small access apertures. A digital holographic endoscopy system is described with a frequency-doubled, twin oscillator Q-switched pulsed Nd:YAG laser as light source. A sequence of digital hologram pairs are recorded with a maximum repetition rate of 260 ms. Each digital hologram is captured at separate video frames of a CCD-camera. The time separation between the laser pulses from each cavity can be set in the range from 50 to 500 μs. The digital holograms are transferred to a PC via a frame grabber and evaluated quantitatively by the Fourier transform method. The resulting phase fringe pattern has the information needed to evaluate quantitatively the amount of the deformation. Experimental results of vibration measurements of hidden mechanical and biological object surfaces are presented. The quality of the results obtained by mechanical object surfaces is usually higher than for biological surfaces. This can be explained easily by the fact that a biological surface is much more complex than a mechanical surface in the sense that some parts of the surface may reflect the light well whereas other parts may absorb the light. Also, biological surfaces are translucent, which means that part of the light may enter inside the sample where it may be absorbed or reflected.

  12. Investigation on active vibration isolation of a Stewart platform with piezoelectric actuators

    Science.gov (United States)

    Wang, Chaoxin; Xie, Xiling; Chen, Yanhao; Zhang, Zhiyi

    2016-11-01

    A Stewart platform with piezoelectric actuators is presented for micro-vibration isolation. The Jacobi matrix of the Stewart platform, which reveals the relationship between the position/pointing of the payload and the extensions of the six struts, is derived by kinematic analysis. The dynamic model of the Stewart platform is established by the FRF (frequency response function) synthesis method. In the active control loop, the direct feedback of integrated forces is combined with the FxLMS based adaptive feedback to dampen vibration of inherent modes and suppress transmission of periodic vibrations. Numerical simulations were conducted to prove vibration isolation performance of the Stewart platform under random and periodical disturbances, respectively. In the experiment, the output consistencies of the six piezoelectric actuators were measured at first and the theoretical Jacobi matrix as well as the feedback gain of each piezoelectric actuator was subsequently modified according to the measured consistencies. The direct feedback loop was adjusted to achieve sufficient active damping and the FxLMS based adaptive feedback control was adopted to suppress vibration transmission in the six struts. Experimental results have demonstrated that the Stewart platform can achieve 30 dB attenuation of periodical disturbances and 10-20 dB attenuation of random disturbances in the frequency range of 5-200 Hz.

  13. Linear and nonlinear piezoelectric shunting strategies for vibration mitigation

    Directory of Open Access Journals (Sweden)

    Soltani P.

    2014-01-01

    Full Text Available This paper studies linear and nonlinear piezoelectric vibration absorbers that are designed based on the equal-peak method. A comparison between the performance of linear mechanical and electrical tuned vibration absorbers coupled to a linear oscillator is first performed. Nonlinearity is then introduced in the primary oscillator to which a new nonlinear electrical tuned vibration absorber is attached. Despite the frequency-energy dependence of nonlinear oscillations, we show that the nonlinear absorber is capable of effectively mitigating the vibrations of the nonlinear primary system in a large range of forcing amplitudes.

  14. Vibration survey of internal combustion engines for use on unmanned air vehicles

    International Nuclear Information System (INIS)

    Duanis, B.

    1998-01-01

    This paper describes the method, the procedure and data results of engine vibration test which is carried out on engines for use on unmanned air vehicles. The paper focuses on the testing of rotating propulsion systems powered by an internal combustion engine which is composed of main rotating components such as the alternator, gearbox, propeller , dampers and couplings. Three measurement methods for measuring torsional and lateral vibrations are presented: a. Gear tooth pulse signal. b. Shaft Strain Gage. c. Laser Displacement Sensors The paper also presents data from tests which were performed using each method and discusses the applications, the advantages and disadvantages of each method

  15. Combined isometric and vibration training does not enhance strength beyond that of isometric training alone.

    Science.gov (United States)

    Fisher, J; Van-Dongen, M; Sutherland, R

    2015-09-01

    Research considering combined vibration and strength training is extensive yet results are equivocal. However, to date there appears no research which has considered the combination of both direct vibration and whole-body vibration when used in an isometric deadlift position. The aim of this study was to compare groups performing isometric training with and without direct and whole-body vibration. Twenty four participants (19-24 years) were randomly divided into: isometric training with vibration (ST+VT: N.=8), isometric training without vibration (ST: N.=8), and control (CON: N.=8). Within the training groups participants trained twice per week, for 6 weeks, performing 6-sets of maximal isometric deadlift contractions, increasing in duration from 30 seconds to 40 seconds (weeks 1-6). Hip and knee angle was maintained at 60° and 110°, respectively for both testing and training. Training sessions for ST+VT were identical to ST with the addition of a direct vibratory stimulus through hand-held straps and whole-body vibration via standing on vibration a platform. The amplitude remained constant (2 mm) throughout the intervention whilst the frequency increased from 35Hz to 50Hz. Pre- and post-test isometric strength was measured using an isometric deadlift dynamometer. Results revealed significant increases in isometric strength for both ST+VT (Pstrength training.

  16. Comparison of sEMG processing methods during whole-body vibration exercise.

    Science.gov (United States)

    Lienhard, Karin; Cabasson, Aline; Meste, Olivier; Colson, Serge S

    2015-12-01

    The objective was to investigate the influence of surface electromyography (sEMG) processing methods on the quantification of muscle activity during whole-body vibration (WBV) exercises. sEMG activity was recorded while the participants performed squats on the platform with and without WBV. The spikes observed in the sEMG spectrum at the vibration frequency and its harmonics were deleted using state-of-the-art methods, i.e. (1) a band-stop filter, (2) a band-pass filter, and (3) spectral linear interpolation. The same filtering methods were applied on the sEMG during the no-vibration trial. The linear interpolation method showed the highest intraclass correlation coefficients (no vibration: 0.999, WBV: 0.757-0.979) with the comparison measure (unfiltered sEMG during the no-vibration trial), followed by the band-stop filter (no vibration: 0.929-0.975, WBV: 0.661-0.938). While both methods introduced a systematic bias (P interpolation method and the band-stop filter was comparable. The band-pass filter was in poor agreement with the other methods (ICC: 0.207-0.697), unless the sEMG(RMS) was corrected for the bias (ICC ⩾ 0.931, %LOA ⩽ 32.3). In conclusion, spectral linear interpolation or a band-stop filter centered at the vibration frequency and its multiple harmonics should be applied to delete the artifacts in the sEMG signals during WBV. With the use of a band-stop filter it is recommended to correct the sEMG(RMS) for the bias as this procedure improved its performance. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Surprising Performance for Vibrational Frequencies of the Distinguishable Clusters with Singles and Doubles (DCSD) and MP2.5 Approximations

    OpenAIRE

    Kesharwani, Manoj K.; Sylvetsky, Nitai; Martin, Jan M. L.

    2017-01-01

    We show that the DCSD (distinguishable clusters with all singles and doubles) correlation method permits the calculation of vibrational spectra at near-CCSD(T) quality but at no more than CCSD cost, and with comparatively inexpensive analytical gradients. For systems dominated by a single reference configuration, even MP2.5 is a viable alternative, at MP3 cost. MP2.5 performance for vibrational frequencies is comparable to double hybrids such as DSD-PBEP86-D3BJ, but without resorting to empir...

  18. Fast Bayesian approach for modal identification using forced vibration data considering the ambient effect

    Science.gov (United States)

    Ni, Yan-Chun; Zhang, Feng-Liang

    2018-05-01

    Modal identification based on vibration response measured from real structures is becoming more popular, especially after benefiting from the great improvement of the measurement technology. The results are reliable to estimate the dynamic performance, which fits the increasing requirement of different design configurations of the new structures. However, the high-quality vibration data collection technology calls for a more accurate modal identification method to improve the accuracy of the results. Through the whole measurement process of dynamic testing, there are many aspects that will cause the rise of uncertainty, such as measurement noise, alignment error and modeling error, since the test conditions are not directly controlled. Depending on these demands, a Bayesian statistical approach is developed in this work to estimate the modal parameters using the forced vibration response of structures, simultaneously considering the effect of the ambient vibration. This method makes use of the Fast Fourier Transform (FFT) of the data in a selected frequency band to identify the modal parameters of the mode dominating this frequency band and estimate the remaining uncertainty of the parameters correspondingly. In the existing modal identification methods for forced vibration, it is generally assumed that the forced vibration response dominates the measurement data and the influence of the ambient vibration response is ignored. However, ambient vibration will cause modeling error and affect the accuracy of the identified results. The influence is shown in the spectra as some phenomena that are difficult to explain and irrelevant to the mode to be identified. These issues all mean that careful choice of assumptions in the identification model and fundamental formulation to account for uncertainty are necessary. During the calculation, computational difficulties associated with calculating the posterior statistics are addressed. Finally, a fast computational algorithm

  19. Modeling and experimental verification of proof mass effects on vibration energy harvester performance

    International Nuclear Information System (INIS)

    Kim, Miso; Hoegen, Mathias; Dugundji, John; Wardle, Brian L

    2010-01-01

    An electromechanically coupled model for a cantilevered piezoelectric energy harvester with a proof mass is presented. Proof masses are essential in microscale devices to move device resonances towards optimal frequency points for harvesting. Such devices with proof masses have not been rigorously modeled previously; instead, lumped mass or concentrated point masses at arbitrary points on the beam have been used. Thus, this work focuses on the exact vibration analysis of cantilevered energy harvester devices including a tip proof mass. The model is based not only on a detailed modal analysis, but also on a thorough investigation of damping ratios that can significantly affect device performance. A model with multiple degrees of freedom is developed and then reduced to a single-mode model, yielding convenient closed-form normalized predictions of device performance. In order to verify the analytical model, experimental tests are undertaken on a macroscale, symmetric, bimorph, piezoelectric energy harvester with proof masses of different geometries. The model accurately captures all aspects of the measured response, including the location of peak-power operating points at resonance and anti-resonance, and trends such as the dependence of the maximal power harvested on the frequency. It is observed that even a small change in proof mass geometry results in a substantial change of device performance due not only to the frequency shift, but also to the effect on the strain distribution along the device length. Future work will include the optimal design of devices for various applications, and quantification of the importance of nonlinearities (structural and piezoelectric coupling) for device performance

  20. METHOD FOR DETERMINATION OF ROTATION CENTER IN VIBRATING OBJECT

    Directory of Open Access Journals (Sweden)

    I. P. Kauryha

    2016-01-01

    Full Text Available Linear piezoelectric gauges, eddy current transducers and other control and measuring devices have been widely applied for vibration diagnostics of objects in industry. Methods based on such gauges and used for measuring angular and linear vibrations do not provide the possibility to assess a rotation center or point angle of an object. Parasitic oscillations may occur during rotor rotation and in some cases the oscillations are caused by dis-balance. The known methods for measuring angular and linear vibrations make it possible to detect the phenomenon and they do not provide information for balancing of the given object. For this very reason the paper describes a method for obtaining instantaneous rotation center in the vibrating object. It allows to improve informational content of the measurements owing to obtaining additional data on position of object rotation center. The obtained data can be used for balancing of a control object. Essence of the given method is shown by an example of piezoelectric gauges of linear vibrations. Two three-axial gauges are fixed to the investigated object. Then gauge output signals are recalculated in angular vibrations of the object (for this purpose it is necessary to know a distance between gauges. Further projection positions of the object rotation center are determined on three orthogonal planes. Instantaneous rotation center is calculated according to the position of one of the gauges. The proposed method permits to obtain data on linear and angular vibrations and rotation center position of the vibrating object using one system of linear gauge. Possibilities of object diagnostics are expanded due to increase in number of determined parameters pertaining to object moving. The method also makes it possible to reduce material and time expenses for measurement of an angular vibration component. 

  1. Vibrationally Excited Carbon Monoxide Produced via a Chemical Reaction Between Carbon Vapor and Oxygen

    Science.gov (United States)

    Jans, Elijah R.; Eckert, Zakari; Frederickson, Kraig; Rich, Bill; Adamovich, Igor V.

    2017-06-01

    Measurements of the vibrational distribution function of carbon monoxide produced via a reaction between carbon vapor and molecular oxygen has shown a total population inversion on vibrational levels 4-7. Carbon vapor, produced using an arc discharge to sublimate graphite, is mixed with an argon oxygen flow. The excited carbon monoxide is vibrationally populated up to level v=14, at low temperatures, T=400-450 K, in a collision-dominated environment, 15-20 Torr, with total population inversions between v=4-7. The average vibrational energy per CO molecule formed by the reaction is 0.6-1.2 eV/molecule, which corresponds to 10-20% of the reaction enthalpy. Kinetic modeling of the flow reactor, including state specific vibrational processes, was performed to infer the vibrational distribution of the products of the reaction. The results show viability of developing of a new chemical CO laser from the reaction of carbon vapor and oxygen.

  2. Cross transfer acute effects of foam rolling with vibration on ankle dorsiflexion range of motion.

    Science.gov (United States)

    García-Gutiérrez, María Teresa; Guillén-Rogel, Paloma; Cochrane, Darryl J; Marín, Pedro J

    2018-06-01

    Foam roller is a device used as a massage intervention for rehabilitation and fitness performance. To examine the effects on the ankle dorsiflexion mobility of the foam roller as well as the combination of foam roller and vibration applied to the ankle plantarflexors muscles, and to observe the possible cross-effect. Thirty-eight undergraduate students participated in the study (19 males and 19 females). This study investigated. Three conditions (3 sets of 20 s) were performed in a randomized order (independent variables): 1) foam roller (Roller), 2) foam roller and vibration (Roller+VIB), and 3) no foam roller or vibration (Control). to determine whether of foam roller with or without vibration would benefit ankle dorsiflexion mobility. Ankle dorsiflexion ROM and plantar flexor were measured in both legs before and immediately after the treatment. A cross-effect was found in the non-stimulated leg. There was a significant effect on ankle mobility of Roller and Roller+VIB conditions (6% and 7%, pFoam roller massage and vibration stimulus' foam roller massage increase ankle mobility producing a cross-effect.

  3. Estimation of the mechanical properties of the eye through the study of its vibrational modes.

    Directory of Open Access Journals (Sweden)

    M Á Aloy

    Full Text Available Measuring the eye's mechanical properties in vivo and with minimally invasive techniques can be the key for individualized solutions to a number of eye pathologies. The development of such techniques largely relies on a computational modelling of the eyeball and, it optimally requires the synergic interplay between experimentation and numerical simulation. In Astrophysics and Geophysics the remote measurement of structural properties of the systems of their realm is performed on the basis of (helio-seismic techniques. As a biomechanical system, the eyeball possesses normal vibrational modes encompassing rich information about its structure and mechanical properties. However, the integral analysis of the eyeball vibrational modes has not been performed yet. Here we develop a new finite difference method to compute both the spheroidal and, specially, the toroidal eigenfrequencies of the human eye. Using this numerical model, we show that the vibrational eigenfrequencies of the human eye fall in the interval 100 Hz-10 MHz. We find that compressible vibrational modes may release a trace on high frequency changes of the intraocular pressure, while incompressible normal modes could be registered analyzing the scattering pattern that the motions of the vitreous humour leave on the retina. Existing contact lenses with embebed devices operating at high sampling frequency could be used to register the microfluctuations of the eyeball shape we obtain. We advance that an inverse problem to obtain the mechanical properties of a given eye (e.g., Young's modulus, Poisson ratio measuring its normal frequencies is doable. These measurements can be done using non-invasive techniques, opening very interesting perspectives to estimate the mechanical properties of eyes in vivo. Future research might relate various ocular pathologies with anomalies in measured vibrational frequencies of the eye.

  4. Precision gravity measurement utilizing Accelerex vibrating beam accelerometer technology

    Science.gov (United States)

    Norling, Brian L.

    Tests run using Sundstrand vibrating beam accelerometers to sense microgravity are described. Lunar-solar tidal effects were used as a highly predictable signal which varies by approximately 200 billionths of the full-scale gravitation level. Test runs of 48-h duration were used to evaluate stability, resolution, and noise. Test results on the Accelerex accelerometer show accuracies suitable for precision applications such as gravity mapping and gravity density logging. The test results indicate that Accelerex technology, even with an instrument design and signal processing approach not optimized for microgravity measurement, can achieve 48-nano-g (1 sigma) or better accuracy over a 48-h period. This value includes contributions from instrument noise and random walk, combined bias and scale factor drift, and thermal modeling errors as well as external contributions from sampling noise, test equipment inaccuracies, electrical noise, and cultural noise induced acceleration.

  5. Vibration Disturbance Damping System Design to Protect Payload of the Rocket

    Directory of Open Access Journals (Sweden)

    Sutisno Sutisno

    2012-12-01

    Full Text Available Rocket motor generates vibrations acting on whole rocket body including its contents. Part of the body which is sensitive to disturbance is the rocket payload. The payload consists of various electronic instruments including: transmitter, various sensors, accelerometer, gyro, the embedded controller system, and others. This paper presents research on rocket vibration influence to the payload and the method to avoid disturbance. Avoiding influence of vibration disturbance can be done using silicone gel material whose typical damping factors are relatively high. The rocket vibration was simulated using electromagnetic motor, and the vibrations were measured using an accelerometer sensor. The measurement results were displayed in the form of curve, indicating the vibration level on some parts of the tested material. Some measurement results can be applied to determine the good material to attenuate vibration disturbance on the instruments of the payload.

  6. Flow measurement and thrust estimation of a vibrating ionic polymer metal composite

    International Nuclear Information System (INIS)

    Chae, Woojin; Cha, Youngsu; Peterson, Sean D; Porfiri, Maurizio

    2015-01-01

    Ionic polymer metal composites (IPMCs) are an emerging class of soft active materials that are finding growing application as underwater propulsors for miniature biomimetic swimmers. Understanding the hydrodynamics generated by an IPMC vibrating under water is central to the design of such biomimetic swimmers. In this paper, we propose the use of time-resolved particle image velocimetry to detail the fluid kinematics and kinetics in the vicinity of an IPMC vibrating along its fundamental structural mode. The reconstructed pressure field is ultimately used to estimate the thrust produced by the IPMC. The vibration frequency is systematically varied to elucidate the role of the Reynolds number on the flow physics and the thrust production. Experimental results indicate the formation and shedding of vortical structures from the IPMC tip during its vibration. Vorticity shedding is sustained by the pressure gradients along each side of the IPMC, which are most severe in the vicinity of the tip. The mean thrust is found to robustly increase with the Reynolds number, closely following a power law that has been derived from direct three-dimensional numerical simulations. A reduced order distributed model is proposed to describe IPMC underwater vibration and estimate thrust production, offering insight into the physics of underwater propulsion and aiding in the design of IPMC-based propulsors. (paper)

  7. Structural Characteristics of Rotate Vector Reducer Free Vibration

    Directory of Open Access Journals (Sweden)

    Chuan Chen

    2017-01-01

    Full Text Available For RV reducer widely used in robots, vibration significantly affects its performance. A lumped parameter model is developed to investigate free vibration characteristics without and with gyroscopic effects. The dynamic model considers key factors affecting vibration such as involute and cycloid gear mesh stiffness, crankshaft bending stiffness, and bearing stiffness. For both nongyroscopic and gyroscopic systems, free vibrations are examined and compared with each other. Results reveal the specific structure of vibration modes for both systems, which results from symmetry structure of RV reducer. According to vibration of the central components, vibration modes of two systems can be classified into three types, rotational, translational, and planetary component modes. Different from nongyroscopic system, the eigenvalues with gyroscopic effects are complex-valued and speed-dependent. The eigenvalue for a range of carrier speeds is obtained by numerical simulation. Divergence and flutter instability is observed at speeds adjacent to critical speeds. Furthermore, the work studies effects of key factors, which include crankshaft eccentricity and the number of pins, on eigenvalues. Finally, experiment is performed to verify the effectiveness of the dynamic model. The research of this paper is helpful for the analysis on free vibration and dynamic design of RV reducer.

  8. Quantifying the Performances of DFT for Predicting Vibrationally Resolved Optical Spectra: Asymmetric Fluoroborate Dyes as Working Examples.

    Science.gov (United States)

    Bednarska, Joanna; Zaleśny, Robert; Bartkowiak, Wojciech; Ośmiałowski, Borys; Medved', Miroslav; Jacquemin, Denis

    2017-09-12

    This article aims at a quantitative assessment of the performances of a panel of exchange-correlation functionals, including semilocal (BLYP and PBE), global hybrids (B3LYP, PBE0, M06, BHandHLYP, M06-2X, and M06-HF), and range-separated hybrids (CAM-B3LYP, LC-ωPBE, LC-BLYP, ωB97X, and ωB97X-D), in predicting the vibrationally resolved absorption spectra of BF 2 -carrying compounds. To this end, for 19 difluoroborates as examples, we use, as a metric, the vibrational reorganization energy (λ vib ) that can be determined based on the computationally efficient linear coupling model (a.k.a. vertical gradient method). The reference values of λ vib were determined by employing the CC2 method combined with the cc-pVTZ basis set for a representative subset of molecules. To validate the performances of CC2, comparisons with experimental data have been carried out as well. This study shows that the vibrational reorganization energy, involving Huang-Rhys factors and normal-mode frequencies, can indeed be used to quantify the reliability of functionals in the calculations of the vibrational fine structure of absorption bands, i.e., an accurate prediction of the vibrational reorganization energy leads to absorption band shapes better fitting the selected reference. The CAM-B3LYP, M06-2X, ωB97X-D, ωB97X, and BHandHLYP functionals all deliver vibrational reorganization energies with absolute relative errors smaller than 20% compared to CC2, whereas 10% accuracy can be achieved with the first three functionals. Indeed, the set of examined exchange-correlation functionals can be divided into three groups: (i) BLYP, B3LYP, PBE, PBE0, and M06 yield inaccurate band shapes (λ vib,TDDFT poor band topologies (λ vib,TDDFT > λ vib,CC2 ). This study also demonstrates that λ vib can be reliably estimated using the CC2 model and the relatively small cc-pVDZ basis set. Therefore, the linear coupling model combined with the CC2/cc-pVDZ level of theory can be used as a very efficient

  9. The Efficacy of Anti-vibration Gloves

    Science.gov (United States)

    Hewitt, Sue; Dong, Ren; McDowell, Tom; Welcome, Daniel

    2016-01-01

    Anyone seeking to control the risks from vibration transmitted to the hands and arms may contemplate the use of anti-vibration gloves. To make an informed decision about any type of personal protective equipment, it is necessary to have performance data that allow the degree of protection to be estimated. The information provided with an anti-vibration glove may not be easy to understand without some background knowledge of how gloves are tested and does not provide any clear route for estimating likely protection. Some of the factors that influence the potential efficacy of an anti-vibration glove include how risks from hand–arm vibration exposure are assessed, how the standard test for a glove is carried out, the frequency range and direction of the vibration for which protection is sought, how much hand contact force or pressure is applied and the physical limitations due to glove material and construction. This paper reviews some of the background issues that are useful for potential purchasers of anti-vibration gloves. Ultimately, anti-vibration gloves cannot be relied on to provide sufficient and consistent protection to the wearer and before their use is contemplated all other available means of vibration control ought first to be implemented. PMID:27582615

  10. Recent advances in micro-vibration isolation

    Science.gov (United States)

    Liu, Chunchuan; Jing, Xingjian; Daley, Steve; Li, Fengming

    2015-05-01

    Micro-vibration caused by disturbance sources onboard spacecraft can severely degrade the working environment of sensitive payloads. Some notable vibration control methods have been developed particularly for the suppression or isolation of micro-vibration over recent decades. Usually, passive isolation techniques are deployed in aerospace engineering. Active isolators, however, are often proposed to deal with the low frequency vibration that is common in spacecraft. Active/passive hybrid isolation has also been effectively used in some spacecraft structures for a number of years. In semi-active isolation systems, the inherent structural performance can be adjusted to deal with variation in the aerospace environment. This latter approach is potentially one of the most practical isolation techniques for micro-vibration isolation tasks. Some emerging advanced vibration isolation methods that exploit the benefits of nonlinearity have also been reported in the literature. This represents an interesting and highly promising approach for solving some challenging problems in the area. This paper serves as a state-of-the-art review of the vibration isolation theory and/or methods which were developed, mainly over the last decade, specifically for or potentially could be used for, micro-vibration control.

  11. Vibration monitoring with artificial neural networks

    International Nuclear Information System (INIS)

    Alguindigue, I.

    1991-01-01

    Vibration monitoring of components in nuclear power plants has been used for a number of years. This technique involves the analysis of vibration data coming from vital components of the plant to detect features which reflect the operational state of machinery. The analysis leads to the identification of potential failures and their causes, and makes it possible to perform efficient preventive maintenance. Earlydetection is important because it can decrease the probability of catastrophic failures, reduce forced outgage, maximize utilization of available assets, increase the life of the plant, and reduce maintenance costs. This paper documents our work on the design of a vibration monitoring methodology based on neural network technology. This technology provides an attractive complement to traditional vibration analysis because of the potential of neural network to operate in real-time mode and to handle data which may be distorted or noisy. Our efforts have been concentrated on the analysis and classification of vibration signatures collected from operating machinery. Two neural networks algorithms were used in our project: the Recirculation algorithm for data compression and the Backpropagation algorithm to perform the actual classification of the patterns. Although this project is in the early stages of development it indicates that neural networks may provide a viable methodology for monitoring and diagnostics of vibrating components. Our results to date are very encouraging

  12. Simulation of fuel rods vibration in power reactors by vibration of tape coated with cadmium

    International Nuclear Information System (INIS)

    Holland, L.

    1982-01-01

    The circulation of cooling water in light water power reactor makes a vibration in internal components. The monitoring of those vibrations is necessary aiming to the safety use of reactors. Aiming at study those vibrations a neutron absorber, type vibratory tape was introduced in the core of a research reactor type Pulstar, operating at 80 W of power. The induced power variations were measured with an ionization chamber put besides the reactor core. The detector signal was recorded and analysed in a PDP-11 computer. The analysis of the results show that the power density of the detector signal, and thus, the power reactor, increase in the O-25 Hz range with an increase in the pulse height vibration. (E.G.) [pt

  13. Natural vibration experimental analysis of Novovoronezhskaya NPP main building

    International Nuclear Information System (INIS)

    Zoubkov, D.; Isaikin, A.; Shablinsky, G.; Lopanchuk, A.; Nefedov, S.

    2005-01-01

    1. Natural vibration frequencies are main characteristics of buildings and structures which allow to give integral estimation of their in-service state. Even relatively small changes of these frequencies as compared to the initially registered values point to serious defects of building structures. In this paper we analyzed natural vibration frequencies and natural modes of the main building (MB) of Novovoronezhskaya NPP operating nuclear unit with WWER-440 type reactor. The MB consists of a reactor compartment (RC), a machine room (MR) and an electric device (ED) unit positioned in between. 2. Natural vibration frequencies and natural modes of the MB were determined experimentally by analyzing its microvibrations caused by operation of basic equipment (turbines, pumps, etc.). Microvibrations of the main building were measured at 12 points. At each point measurements were carried out along two or three mutually perpendicular vibration directions. Spectral analysis of vibration records has been conducted. Identification of natural vibration frequencies was carried out on the basis of the spectral peaks and plotted vibration modes (taking into account operating frequencies of the basic equipment of the power generating unit). On the basis of the measurement results three transverse modes and corresponding natural vibration frequencies of the MB, one longitudinal mode and corresponding natural vibration frequency of the MB and two natural frequencies of vertical vibrations of RC and MR floor trusses (1st and 2nd symmetric forms) were determined. Dynamic characteristics of the main building of NV NPP resulting from full scale researches are supposed to be used as one of building structure stability criteria. (authors)

  14. FLOW-INDUCED VIBRATION IN PIPES: CHALLENGESS AND SOLUTIONS - A REVIEW

    Directory of Open Access Journals (Sweden)

    M. SIBA

    2016-03-01

    Full Text Available The Flow-induced vibration has recently been the topic of experimental, numerical, and theoretical studies. It was intended to implement better applications for controlling the flow using orifice technique. Having the flow under control, the orifice becomes an instrument for measuring the flow. The flow of all fluid such as water, oil, gas and vapours through an orifice was tested and mathematical models were developed adequately. The basic theme for these enormous studies was the need for the very accurate flow measurements through orifices. All experimental, theoretical, numerical, and analytical studies have agreed that there is more than one avenue to develop, modify, and enhance such measurements. However, one factor that affects the flow measurements is the vibration which was not treated as required until the mid-20th century due to enormous discoveries that damages could be rooted to vibration. Researchers have studied vibration and then proposed mathematical models in conjunction with the pressure and velocity measurements of the flowing fluids and then the effect of the vibration, induced or not induced, has been under continuous investigation. This paper is an attempt to review the previous studies regarding understanding the nature of the vibration and the possible effects of vibration on the flow and on the piping structure in order to limit the damage caused by the vibration. This study shows that the need for more experimental studies and more comprehensive analytical approaches are, in particular, very essential to develop better results.

  15. Electromagnetic Vibration Energy Harvesting for Railway Applications

    Directory of Open Access Journals (Sweden)

    Bradai S.

    2018-01-01

    Full Text Available Safe localization of trains via GPS and wireless sensors is essential for railway traffic supervision. Especially for freight trains and because normally no power source is available on the wagons, special solutions for energy supply have to be developed based on energy harvesting techniques. Since vibration is available in this case, it provides an interesting source of energy. Nevertheless, in order to have an efficient design of the harvesting system, the existing vibration needs to be investigated. In this paper, we focus on the characterization of vibration parameters in railway application. We propose an electromagnetic vibration converter especially developed to this application. Vibration profiles from a train traveling between two German cities were measured using a data acquisition system installed on the train’s wagon. Results show that the measured profiles present multiple frequency signals in the range of 10 to 50 Hz and an acceleration of up to 2 g. A prototype for a vibration converter is designed taking into account the real vibration parameters, robustness and integrability requirements. It is based on a moving coil attached to a mechanical spring. For the experimental emulation of the train vibrations, a shaker is used as an external artificial vibration source controlled by a laser sensor in feedback. A maximum voltage of 1.7 V peak to peak which corresponds to a maximum of 10 mW output power where the applied excitation frequency is close to the resonant frequency of the converter which corresponds to 27 Hz.

  16. Vibration tests on pile-group foundations using large-scale blast excitation

    International Nuclear Information System (INIS)

    Tanaka, Hideo; Hijikata, Katsuichirou; Hashimoto, Takayuki; Fujiwara, Kazushige; Kontani, Osamu; Miyamoto, Yuji; Suzuki, Atsushi

    2005-01-01

    Extensive vibration tests have been performed on pile-supported structures at a large-scale mining site. Ground motions induced by large-scale blasting operations were used as excitation forces for vibration tests. The main objective of this research is to investigate the dynamic behavior of pile-supported structures, in particular, pile-group effects. Two test structures were constructed in an excavated 4 m deep pit. One structure had 25 steel tubular piles and the other had 4 piles. The super-structures were exactly the same. The test pit was backfilled with sand of appropriate grain size distributions in order to obtain good compaction, especially between the 25 piles. Accelerations were measured at the structures, in the test pit and in the adjacent free field, and pile strains were measured. The vibration tests were performed six times with different levels of input motions. The maximum horizontal acceleration recorded at the adjacent ground surface varied from 57 cm/s 2 to 1683 cm/s 2 according to the distances between the test site and the blast areas. Maximum strains were 13,400 micro-strains were recorded at the pile top of the 4-pile structure, which means that these piles were subjected to yielding

  17. Vibration mitigation in J-TEXT far-infrared diagnostic systems

    International Nuclear Information System (INIS)

    Li, Q.; Chen, J.; Zhuang, G.; Wang, Z. J.; Gao, L.; Chen, W.

    2012-01-01

    Optical structure stability is an important issue for far-infrared (FIR) phase measurements. To ensure good signal quality, influence of vibration should be minimized. Mechanical amelioration and optical optimization can be taken in turn to decrease vibration's influence and ensure acceptable measurement. J-TEXT (Joint Texal Experiment Tokamak, formerly TEXT-U) has two FIR diagnostic systems: a HCN interferometer system for electron density measurement and a three-wave polarimeter-interferometer system (POLARIS) for electron density and Faraday effect measurements. All use phase detection techniques. HCN interferometer system has almost eliminated the influence of vibration after mechanical amelioration and optical optimization. POLARIS also obtained first experimental results after mechanical stability improvements and is expected to further reduce vibration's influence on Faraday angle to 0.1° after optical optimization.

  18. Putting a damper on drilling's bad vibrations

    Energy Technology Data Exchange (ETDEWEB)

    Jardine, S. (Sedco forex, Montrouge (France)); Malone, D. (Anadrill, Sugar Land, TX (United States)); Sheppard, M. (Schlumberger Cambridge Research, Cambridge (United Kingdom))

    1994-01-01

    Harmful drilling vibrations are costing the industry dearly. Three main vibration types (axial, torsional and transverse) are explained and its causes discussed. Technology exists to eliminate most vibrations, but requires more systematic deployment than is usual. Hardware that eliminates vibrations is reviewed, including downhole shock measurement, torque feedback shock guards and antiwhirl bits. 9 figs., 11 refs.

  19. Vibration control of a camera mount system for an unmanned aerial vehicle using piezostack actuators

    International Nuclear Information System (INIS)

    Oh, Jong-Seok; Choi, Seung-Bok; Han, Young-Min

    2011-01-01

    This work proposes an active mount for the camera systems of unmanned aerial vehicles (UAV) in order to control unwanted vibrations. An active actuator of the proposed mount is devised as an inertial type, in which a piezostack actuator is directly connected to the inertial mass. After evaluating the actuating force of the actuator, it is combined with the rubber element of the mount, whose natural frequency is determined based on the measured vibration characteristics of UAV. Based on the governing equations of motion of the active camera mount, a robust sliding mode controller (SMC) is then formulated with consideration of parameter uncertainties and hysteresis behavior of the actuator. Subsequently, vibration control performances of the proposed active mount are experimentally evaluated in the time and frequency domains. In addition, a full camera mount system of UAVs that is supported by four active mounts is considered and its vibration control performance is evaluated in the frequency domain using a hardware-in-the-loop simulation (HILS) method

  20. Magnetostrictive device for high-temperature sound and vibration measurement in nuclear power stations

    International Nuclear Information System (INIS)

    Hans, R.; Podgorski, J.

    1977-01-01

    The demands on the monitoring systems in nuclear power stations are increasing continuously, not only because of more stringent safety requirements but also for reasons of plant availability and thus economic efficiency. The noise and vibration measurements which therefore have to be taken make it necessary to provide measuring devices with a high degree of efficiency, adequate sensitivity and resistance to high temperatures, radiation and corrosion. Probes using the magnetostrictive effect, whereby a ferromagnetic core changes its length in a magnetic field - a phenomenon which has been known for approximately fifty years - fulfill all the conditions for application in nuclear power stations. (orig.) [de

  1. Somatosensory Nerve Function, Measured by Vibration Thresholds in Asymptomatic Tennis Players: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Sarah Harrisson

    2015-06-01

    Full Text Available Tennis players are vulnerable to injury in their upper limbs due to the repetitive exposure to racket vibrations and torsional forces during play, leading to musculoskeletal adaptations in the dominant arm including some evidence of changes in nerve function (Colak et al., 2004. Vibration is a sensitive technique for diagnosing mild pathology in clinically asymptomatic participant groups. It has been used in participants with various musculoskeletal disorders (Laursen et al., 2006 (Tucker et al., 2007 showing widespread and bilateral increases in vibration threshold. Tests of somatosensory function by vibration will be abnormal prior to changes in nerve conduction velocity. Thus vibration testing in a sub-clinical group of participants may a more sensitive measure of nerve function compared to nerve conduction by electrodiagnostic testing. The aim of this pilot study was to conduct an exploratory investigation to establish whether tennis players have a reduction in their somatosensory nerve function compared to non- tennis playing controls. It also set out to compare the somatosensory nerve function of the dominant compared to the non-dominant upper limb in tennis players. Healthy tennis players (males, n = 8, females, n = 2, mean age 22 years and control non- tennis playing volunteers (males, n = 6, females, n = 4, mean age 22 years were recruited on an opportunistic basis from a tennis centre in London UK. Participants were excluded if they had any history of neurological impairment, serious injury or fracture or any arthritic condition affecting the upper limbs, cervical or thoracic spine. Control participants were excluded if it was deemed that they played a sport where there was exposure to repetitive use of the upper body. Ethical approval was obtained from the University College London Ethics Committee and all participants gave written informed consent. A preliminary clinical examination was carried out on all participants followed by

  2. Analysis and wafer-level design of a high-order silicon vibration isolator for resonating MEMS devices

    International Nuclear Information System (INIS)

    Yoon, Sang Won; Lee, Sangwoo; Najafi, Khalil; Perkins, Noel C

    2011-01-01

    This paper presents the analysis and preliminary design, fabrication, and measurement for mechanical vibration-isolation platforms especially designed for resonating MEMS devices including gyroscopes. Important parameters for designing isolation platforms are specified and the first platform (in designs with cascaded multiple platforms) is crucial for improving vibration-isolation performance and minimizing side-effects on integrated gyroscopes. This isolation platform, made from a thick silicon wafer substrate for an environment-resistant MEMS package, incorporates the functionalities of a previous design including vacuum packaging and thermal resistance with no additional resources. This platform consists of platform mass, isolation beams, vertical feedthroughs, and bonding pads. Two isolation platform designs follow from two isolation beam designs: lateral clamped–clamped beams and vertical torsion beams. The beams function simultaneously as mechanical springs and electrical interconnects. The vibration-isolation platform can yield a multi-dimensional, high-order mechanical low pass filter. The isolation platform possesses eight interconnects within a 12.2 × 12.2 mm 2 footprint. The contact resistance ranges from 4–11 Ω depending on the beam design. Vibration measurements using a laser-Doppler vibrometer demonstrate that the lateral vibration-isolation platform suppresses external vibration having frequencies exceeding 2.1 kHz.

  3. Hand-Arm vibration assessment among tiller operator

    Directory of Open Access Journals (Sweden)

    P. Nassiri

    2013-08-01

    Result: Results of the present study indicated that in all measured situations, exposure to hand arm vibration was higher than the standard limit suggested by Iranian occupational health committee and there was risk of vibration-induced disorders. The maximum exposure to vibration is in plowing ground. Exposure to hand arm vibration in three modes of plowing, transmission and natural, were respectively 16.95, 14.16 and 8.65 meters per second squared. Additionally, in all situations, vibration exposure was highest in the X-axis in comparison with Z- and Y-axes. .Conclusion: This study emphasizes on the need to provide intervention and controlling and managing strategies in order to eliminate or reduce vibration transmitted from tiller to operators hand and arm and also prevent to serious problems including neurovascular disorders, discomfort and white finger syndrome. Meanwhile, more studies are necessary to identify the sources of vibration on different models of tiller.

  4. AN ENHANCED EQUATION FOR VIBRATION PREDICTION OF NEW TYPES OF SHIPS

    Directory of Open Access Journals (Sweden)

    Valer Cergol

    2015-09-01

    Full Text Available AA simplified approach developed to evaluate the vibration levels of complex structures such as passenger and similar ships with large shell and deck openings and extended superstructures is here presented. The final objective is to give an useful tool to ship designers, to establish since the first design stage the dynamic response of the ship with sufficient precision. This approach is based on the assumption that the ship hull can be represented as a non uniform section beam. The propeller excitations in terms of pressure pulses and shaft line moments and forces are introduced. To take into account this exciting source in the early design stage a statistical formula for dynamic excitation of propeller was developed. Furthermore the superimposition of local effects has been performed with the use of an analytical formula. The local effect due to the different space topologies such as cabins, public spaces, technical and machinery areas has been taken into account. The transversal beams, longitudinal girders, stiffeners and pillars as supported structural elements are considered in the vibration local response. The reliability of the results obtained using the formula has been improved with more precise results obtained by FEM analysis. The calculated vibration response has been verified and compared to vibration measurements performed on board of ships.

  5. Spectral composition of a measuring signal during measurements of vibration rates of a moving body

    Science.gov (United States)

    Daynauskas, I. A. I.; Slepov, N. N.

    1973-01-01

    Cybernetics diagnostics of machines and mechanisms using the spectral approach is discussed. The problem of establishing the accuracy of determination of the spectral composition is investigated. In systems with rectilinear or rotary movement, the vibrations appear in the form of movement rate vibrations, which are equivalent to frequency modulation of the signal, in proportion to the mean movement rate of the body. The case of a harmonic signal which reproduces and analyzes the characteristics of the frequency modulated signal is discussed. Mathematical models are developed to show the relationships of the parameters.

  6. Resolution of torsional vibration issue for large turbine generators

    International Nuclear Information System (INIS)

    Evans, D.G.; Giesecke, H.D.; Willman, E.C.; Moffitt, S.P.

    1995-01-01

    The excitation of turbine generator torsional natural frequencies in the region near 120 Hz by electrical transients in the power system has resulted in blade failures for several large 1,800 rpm nuclear turbines. At Cleveland Electric's Perry Nuclear Power plant a combination of advanced measurement techniques and analyses were used to identify and resolve a potential torsional vibration problem without adverse impact on the plant availability. The Perry turbine generator consists of a high pressure turbine, three low pressure turbines with 43 inch last stage blades, and a 1,250 MWe four pole generator operating at 1,800 rpm. Torsional vibration measurements obtained from random vibration during operation were acquired just prior to the 1994 refueling outage. The measurements indicated that the 26th torsional mode of vibration was just under 120 Hz and within the range of frequencies for which the manufacturer recommends modifying the unit to shift the problem torsional natural frequency. Extensive analytical modeling was used to design a modification to shift the torsional natural frequencies away from 120 Hertz and the modification was implemented during the refueling outage without affecting outage critical path. An off-line ramp test and additional on-line monitoring performed at the conclusion of the outage confirmed that the on-line method provided accurate measurements of the torsional natural frequencies and demonstrated that, with the modification, the torsional natural frequencies were sufficiently removed from 120 Hertz to allow turbine generator operation. The modification, which involved brazing of the tie wires on all last stage blades, also significantly reduces the stress on the last stage blades that result from negative sequence currents, further increasing the operating margin of the turbine generator with respect to electrical transients and faults

  7. PREFACE: Vibrations at surfaces Vibrations at surfaces

    Science.gov (United States)

    Rahman, Talat S.

    2011-12-01

    This special issue is dedicated to the phenomenon of vibrations at surfaces—a topic that was indispensible a couple of decades ago, since it was one of the few phenomena capable of revealing the nature of binding at solid surfaces. For clean surfaces, the frequencies of modes with characteristic displacement patterns revealed how surface geometry, as well as the nature of binding between atoms in the surface layers, could be different from that in the bulk solid. Dispersion of the surface phonons provided further measures of interatomic interactions. For chemisorbed molecules on surfaces, frequencies and dispersion of the vibrational modes were also critical for determining adsorption sites. In other words, vibrations at surfaces served as a reliable means of extracting information about surface structure, chemisorption and overlayer formation. Experimental techniques, such as electron energy loss spectroscopy and helium-atom-surface scattering, coupled with infra-red spectroscopy, were continually refined and their resolutions enhanced to capture subtleties in the dynamics of atoms and molecules at surfaces. Theoretical methods, whether based on empirical and semi-empirical interatomic potential or on ab initio electronic structure calculations, helped decipher experimental observations and provide deeper insights into the nature of the bond between atoms and molecules in regions of reduced symmetry, as encountered on solid surfaces. Vibrations at surfaces were thus an integral part of the set of phenomena that characterized surface science. Dedicated workshops and conferences were held to explore the variety of interesting and puzzling features revealed in experimental and theoretical investigations of surface vibrational modes and their dispersion. One such conference, Vibrations at Surfaces, first organized by Harald Ibach in Juelich in 1980, continues to this day. The 13th International Conference on Vibrations at Surfaces was held at the University of

  8. Determining the static electronic and vibrational energy correlations via two-dimensional electronic-vibrational spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Hui; Lewis, Nicholas H. C.; Oliver, Thomas A. A.; Fleming, Graham R., E-mail: grfleming@lbl.gov [Department of Chemistry, University of California, Berkeley, California 94720 (United States); Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, Californial 94720 (United States); Kavli Energy NanoSciences Institute at Berkeley, Berkeley, California 94720 (United States)

    2015-05-07

    Changes in the electronic structure of pigments in protein environments and of polar molecules in solution inevitably induce a re-adaption of molecular nuclear structure. Both changes of electronic and vibrational energies can be probed with visible or infrared lasers, such as two-dimensional electronic spectroscopy or vibrational spectroscopy. The extent to which the two changes are correlated remains elusive. The recent demonstration of two-dimensional electronic-vibrational (2DEV) spectroscopy potentially enables a direct measurement of this correlation experimentally. However, it has hitherto been unclear how to characterize the correlation from the spectra. In this paper, we present a theoretical formalism to demonstrate the slope of the nodal line between the excited state absorption and ground state bleach peaks in the spectra as a characterization of the correlation between electronic and vibrational transition energies. We also show the dynamics of the nodal line slope is correlated to the vibrational spectral dynamics. Additionally, we demonstrate the fundamental 2DEV spectral line-shape of a monomer with newly developed response functions.

  9. Vibration compensated high-resolution scanning white-light Linnik-interferometer

    Science.gov (United States)

    Tereschenko, Stanislav; Lehmann, Peter; Gollor, Pascal; Kuehnhold, Peter

    2017-06-01

    We present a high-resolution Linnik scanning white-light interferometer (SWLI) with integrated distance measuring interferometer (DMI) for close-to-machine applications in the presence of environmental vibrations. The distance, measured by DMI during the depth-scan, is used for vibration compensation of SWLI signals. The reconstruction of the white-light interference signals takes place after measurement by reordering the captured images in accordance with their real positions obtained by the DMI and subsequent trigonometrical approximation. This system is the further development of our previously presented Michelson-interferometer. We are able to compensate for arbitrary vibrations with frequencies up to several kilohertz and amplitudes in the lower micrometer range. Completely distorted SWLI signals can be reconstructed and the surface topography can be obtained with high accuracy. We demonstrate the feasibility of the method by examples of practical measurements with and without vibrational disturbances.

  10. Hand-arm vibration in orthopaedic surgery: a neglected risk.

    Science.gov (United States)

    Mahmood, F; Ferguson, K B; Clarke, J; Hill, K; Macdonald, E B; Macdonald, D J M

    2017-12-30

    Hand-arm vibration syndrome is an occupational disease caused by exposure to hand-arm transmitted vibration. The Health and Safety Executive has set limits for vibration exposure, including an exposure action value (EAV), where steps should be taken to reduce exposure, and an exposure limit value (ELV), beyond which vibrating equipment must not be used for the rest of the working day. To measure hand-arm transmitted vibration among orthopaedic surgeons, who routinely use hand-operated saws. We undertook a cadaveric study measuring vibration associated with a tibial cut using battery-operated saws. Three surgeons undertook three tibial cuts each on cadaveric tibiae. Measurements were taken using a frequency-weighted root mean square acceleration, with the vibration total value calculated as the root of the sums squared in each of the three axes. A mean (SD) vibration magnitude of 1 (0.2) m/s2 in the X-axis, 10.3 (1.9) m/s2 in the Y-axis and 4.2 (1.3) m/s2 in the Z-axis was observed. The weighted root mean squared magnitude of vibration was 11.3 (1.7) m/s2. These results suggest an EAV of 23 min and ELV of 1 h 33 min using this equipment. Our results demonstrate that use of a battery-operated sagittal saw can transmit levels of hand-arm vibration approaching the EAV or ELV through prolonged use. Further study is necessary to quantify this risk and establish whether surveillance is necessary for orthopaedic surgeons. © The Author 2017. Published by Oxford University Press on behalf of the Society of Occupational Medicine. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  11. Evaluation of the vibration attenuation properties of an air-inflated cushion with two different heavy machinery seats in multi-axis vibration environments including jolts.

    Science.gov (United States)

    Ji, Xiaoxu; Eger, Tammy R; Dickey, James P

    2017-03-01

    Seats and cushions can attenuate whole-body vibration (WBV) exposures and minimize health risks for heavy machine operators. We successfully developed neural network (NN) algorithms to identify the vibration attenuation properties for four different seating conditions (seat/cushion combinations), and implemented each of the NN models to predict the equivalent daily exposure A(8) values for various vehicles in the forestry and mining environments. We also evaluated the performance of the new prototype No-Jolt™ air-inflated cushion and the original cushion of each seat with jolt exposures. We observed that the air cushion significantly improved the vibration attenuation properties of the seat that initially had good performance, but not for the seat that had relatively poor vibration attenuation properties. In addition, operator's anthropometrics and sex influenced the performance of the air-inflated cushion when the vibration environment included jolt exposures. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Parametric analysis of protective grid flow induced vibration

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Jooyoung; Eom, Kyongbo; Jeon, Sangyoun; Suh, Jungmin [KEPCO NF Co., Daejeon (Korea, Republic of)

    2012-10-15

    Protective grid (P-grid) flow-induced vibration in a nuclear power reactor is one of the critical factors for the mechanical integrity of a nuclear fuel. The P-grid is located at the lower most position above the bottom nozzle of the nuclear fuel as shown in Fig. 1, and it is required for not only filtering debris, but also supporting fuel rods. On the other hand, P-grid working conditions installed in a nuclear fuel in a reactor are severe in terms of flow speed, temperature and pressure. Considering such a severe condition of P-grid's functional performance in working environment, excessive vibration could be developed. Furthermore, if the P-grid is exposed to high levels of excessive vibration over a long period of time, fatigue failure could be unavoidable. Therefore, it is important to reduce excessive vibration while maintaining P-grid's own functional performance. KEPCO Nuclear Fuel has developed a test facility - Investigation Flow-induced Vibration (INFINIT) - to study flow-induced vibration caused by flowing coolant at various flow rates. To investigate specific relationships between configuration of P-grid and flow-induced vibration characteristics, several types of the P-grids were tested in INFINIT facility. And, based on the test results through parametric studies, the flow-induced vibration characteristics could be analyzed, and critical design parameters were found.

  13. Vibration-free stirling cryocooler for high definition microscopy

    Science.gov (United States)

    Riabzev, S. V.; Veprik, A. M.; Vilenchik, H. S.; Pundak, N.; Castiel, E.

    2009-12-01

    The normal operation of high definition Scanning Electronic and Helium Ion microscope tools often relies on maintaining particular components at cryogenic temperatures. This has traditionally been accomplished by using liquid coolants such as liquid Nitrogen. This inherently limits the useful temperature range to above 77 K, produces various operational hazards and typically involves elevated ownership costs, inconvenient logistics and maintenance. Mechanical coolers, over-performing the above traditional method and capable of delivering required (even below 77 K) cooling to the above cooled components, have been well-known elsewhere for many years, but their typical drawbacks, such as high purchasing cost, cooler size, low reliability and high power consumption have so far prevented their wide-spreading. Additional critical drawback is inevitable degradation of imagery performance originated from the wideband vibration export as typical for the operation of the mechanical cooler incorporating numerous movable components. Recent advances in the development of reliable, compact, reasonably priced and dynamically quiet linear cryogenic coolers gave rise to so-called "dry cooling" technologies aimed at eventually replacing the traditional use of outdated liquid Nitrogen cooling facilities. Although much improved these newer cryogenic coolers still produce relatively high vibration export which makes them incompatible with modern high definition microscopy tools. This has motivated further research activity towards developing a vibration free closed-cycle mechanical cryocooler. The authors have successfully adapted the standard low vibration Stirling cryogenic refrigerator (Ricor model K535-LV) delivering 5 W@40 K heat lift for use in vibration-sensitive high definition microscopy. This has been achieved by using passive mechanical counterbalancing of the main portion of the low frequency vibration export in combination with an active feed-forward multi

  14. Fluid flow measurements by means of vibration monitoring

    International Nuclear Information System (INIS)

    Campagna, Mauro M; Dinardo, Giuseppe; Fabbiano, Laura; Vacca, Gaetano

    2015-01-01

    The achievement of accurate fluid flow measurements is fundamental whenever the control and the monitoring of certain physical quantities governing an industrial process are required. In that case, non-intrusive devices are preferable, but these are often more sophisticated and expensive than those which are more common (such as nozzles, diaphrams, Coriolis flowmeters and so on). In this paper, a novel, non-intrusive, simple and inexpensive methodology is presented to measure the fluid flow rate (in a turbulent regime) whose physical principle is based on the acquisition of transversal vibrational signals induced by the fluid itself onto the pipe walls it is flowing through. Such a principle of operation would permit the use of micro-accelerometers capable of acquiring and transmitting the signals, even by means of wireless technology, to a control room for the monitoring of the process under control. A possible application (whose feasibility will be investigated by the authors in a further study) of this introduced technology is related to the employment of a net of micro-accelerometers to be installed on pipeline networks of aqueducts. This apparatus could lead to the faster and easier detection and location of possible leaks of fluid affecting the pipeline network with more affordable costs. The authors, who have previously proven the linear dependency of the acceleration harmonics amplitude on the flow rate, here discuss an experimental analysis of this functional relation with the variation in the physical properties of the pipe in terms of its diameter and constituent material, to find the eventual limits to the practical application of the measurement methodology. (paper)

  15. Fluid flow measurements by means of vibration monitoring

    Science.gov (United States)

    Campagna, Mauro M.; Dinardo, Giuseppe; Fabbiano, Laura; Vacca, Gaetano

    2015-11-01

    The achievement of accurate fluid flow measurements is fundamental whenever the control and the monitoring of certain physical quantities governing an industrial process are required. In that case, non-intrusive devices are preferable, but these are often more sophisticated and expensive than those which are more common (such as nozzles, diaphrams, Coriolis flowmeters and so on). In this paper, a novel, non-intrusive, simple and inexpensive methodology is presented to measure the fluid flow rate (in a turbulent regime) whose physical principle is based on the acquisition of transversal vibrational signals induced by the fluid itself onto the pipe walls it is flowing through. Such a principle of operation would permit the use of micro-accelerometers capable of acquiring and transmitting the signals, even by means of wireless technology, to a control room for the monitoring of the process under control. A possible application (whose feasibility will be investigated by the authors in a further study) of this introduced technology is related to the employment of a net of micro-accelerometers to be installed on pipeline networks of aqueducts. This apparatus could lead to the faster and easier detection and location of possible leaks of fluid affecting the pipeline network with more affordable costs. The authors, who have previously proven the linear dependency of the acceleration harmonics amplitude on the flow rate, here discuss an experimental analysis of this functional relation with the variation in the physical properties of the pipe in terms of its diameter and constituent material, to find the eventual limits to the practical application of the measurement methodology.

  16. Tensor-decomposed vibrational coupled-cluster theory: Enabling large-scale, highly accurate vibrational-structure calculations

    Science.gov (United States)

    Madsen, Niels Kristian; Godtliebsen, Ian H.; Losilla, Sergio A.; Christiansen, Ove

    2018-01-01

    A new implementation of vibrational coupled-cluster (VCC) theory is presented, where all amplitude tensors are represented in the canonical polyadic (CP) format. The CP-VCC algorithm solves the non-linear VCC equations without ever constructing the amplitudes or error vectors in full dimension but still formally includes the full parameter space of the VCC[n] model in question resulting in the same vibrational energies as the conventional method. In a previous publication, we have described the non-linear-equation solver for CP-VCC calculations. In this work, we discuss the general algorithm for evaluating VCC error vectors in CP format including the rank-reduction methods used during the summation of the many terms in the VCC amplitude equations. Benchmark calculations for studying the computational scaling and memory usage of the CP-VCC algorithm are performed on a set of molecules including thiadiazole and an array of polycyclic aromatic hydrocarbons. The results show that the reduced scaling and memory requirements of the CP-VCC algorithm allows for performing high-order VCC calculations on systems with up to 66 vibrational modes (anthracene), which indeed are not possible using the conventional VCC method. This paves the way for obtaining highly accurate vibrational spectra and properties of larger molecules.

  17. Depth-kymography of vocal fold vibrations : part II. Simulations and direct comparisons with 3D profile measurements

    NARCIS (Netherlands)

    de Mul, Frits F. M.; George, Nibu A.; Qiu, Qingjun; Rakhorst, Gerhard; Schutte, Harm K.

    2009-01-01

    We report novel direct quantitative comparisons between 3D profiling measurements and simulations of human vocal fold vibrations. Until now, in human vocal folds research, only imaging in a horizontal plane was possible. However, for the investigation of several diseases, depth information is

  18. Are water simulation models consistent with steady-state and ultrafast vibrational spectroscopy experiments?

    International Nuclear Information System (INIS)

    Schmidt, J.R.; Roberts, S.T.; Loparo, J.J.; Tokmakoff, A.; Fayer, M.D.; Skinner, J.L.

    2007-01-01

    Vibrational spectroscopy can provide important information about structure and dynamics in liquids. In the case of liquid water, this is particularly true for isotopically dilute HOD/D 2 O and HOD/H 2 O systems. Infrared and Raman line shapes for these systems were measured some time ago. Very recently, ultrafast three-pulse vibrational echo experiments have been performed on these systems, which provide new, exciting, and important dynamical benchmarks for liquid water. There has been tremendous theoretical effort expended on the development of classical simulation models for liquid water. These models have been parameterized from experimental structural and thermodynamic measurements. The goal of this paper is to determine if representative simulation models are consistent with steady-state, and especially with these new ultrafast, experiments. Such a comparison provides information about the accuracy of the dynamics of these simulation models. We perform this comparison using theoretical methods developed in previous papers, and calculate the experimental observables directly, without making the Condon and cumulant approximations, and taking into account molecular rotation, vibrational relaxation, and finite excitation pulses. On the whole, the simulation models do remarkably well; perhaps the best overall agreement with experiment comes from the SPC/E model

  19. A Review of Hybrid Fiber-Optic Distributed Simultaneous Vibration and Temperature Sensing Technology and Its Geophysical Applications

    Directory of Open Access Journals (Sweden)

    Khalid Miah

    2017-11-01

    Full Text Available Distributed sensing systems can transform an optical fiber cable into an array of sensors, allowing users to detect and monitor multiple physical parameters such as temperature, vibration and strain with fine spatial and temporal resolution over a long distance. Fiber-optic distributed acoustic sensing (DAS and distributed temperature sensing (DTS systems have been developed for various applications with varied spatial resolution, and spectral and sensing range. Rayleigh scattering-based phase optical time domain reflectometry (OTDR for vibration and Raman/Brillouin scattering-based OTDR for temperature and strain measurements have been developed over the past two decades. The key challenge has been to find a methodology that would enable the physical parameters to be determined at any point along the sensing fiber with high sensitivity and spatial resolution, yet within acceptable frequency range for dynamic vibration, and temperature detection. There are many applications, especially in geophysical and mining engineering where simultaneous measurements of vibration and temperature are essential. In this article, recent developments of different hybrid systems for simultaneous vibration, temperature and strain measurements are analyzed based on their operation principles and performance. Then, challenges and limitations of the systems are highlighted for geophysical applications.

  20. A Review of Hybrid Fiber-Optic Distributed Simultaneous Vibration and Temperature Sensing Technology and Its Geophysical Applications.

    Science.gov (United States)

    Miah, Khalid; Potter, David K

    2017-11-01

    Distributed sensing systems can transform an optical fiber cable into an array of sensors, allowing users to detect and monitor multiple physical parameters such as temperature, vibration and strain with fine spatial and temporal resolution over a long distance. Fiber-optic distributed acoustic sensing (DAS) and distributed temperature sensing (DTS) systems have been developed for various applications with varied spatial resolution, and spectral and sensing range. Rayleigh scattering-based phase optical time domain reflectometry (OTDR) for vibration and Raman/Brillouin scattering-based OTDR for temperature and strain measurements have been developed over the past two decades. The key challenge has been to find a methodology that would enable the physical parameters to be determined at any point along the sensing fiber with high sensitivity and spatial resolution, yet within acceptable frequency range for dynamic vibration, and temperature detection. There are many applications, especially in geophysical and mining engineering where simultaneous measurements of vibration and temperature are essential. In this article, recent developments of different hybrid systems for simultaneous vibration, temperature and strain measurements are analyzed based on their operation principles and performance. Then, challenges and limitations of the systems are highlighted for geophysical applications.

  1. Hydride transport vessel vibration and shock test report

    Energy Technology Data Exchange (ETDEWEB)

    Tipton, D.G.

    1998-06-01

    Sandia National Laboratories performed vibration and shock testing on a Savannah River Hydride Transport Vessel (HTV) which is used for bulk shipments of tritium. This testing is required to qualify the HTV for transport in the H1616 shipping container. The main requirement for shipment in the H1616 is that the contents (in this case the HTV) have a tritium leak rate of less than 1x10{sup {minus}7} cc/sec after being subjected to shock and vibration normally incident to transport. Helium leak tests performed before and after the vibration and shock testing showed that the HTV remained leaktight under the specified conditions. This report documents the tests performed and the test results.

  2. Hydride transport vessel vibration and shock test report

    International Nuclear Information System (INIS)

    Tipton, D.G.

    1998-06-01

    Sandia National Laboratories performed vibration and shock testing on a Savannah River Hydride Transport Vessel (HTV) which is used for bulk shipments of tritium. This testing is required to qualify the HTV for transport in the H1616 shipping container. The main requirement for shipment in the H1616 is that the contents (in this case the HTV) have a tritium leak rate of less than 1x10 -7 cc/sec after being subjected to shock and vibration normally incident to transport. Helium leak tests performed before and after the vibration and shock testing showed that the HTV remained leaktight under the specified conditions. This report documents the tests performed and the test results

  3. Evaluation of dynamic properties of soft ground using an S-wave vibrator and seismic cones. Part 2. Vs change during the vibration; S ha vibrator oyobi seismic cone wo mochiita gen`ichi jiban no doteki bussei hyoka. 2. Kashinchu no Vs no henka

    Energy Technology Data Exchange (ETDEWEB)

    Inazaki, T [Public Works Research Institute, Tsukuba (Japan)

    1997-05-27

    With an objective to measure a behavior of the surface ground during a strong earthquake directly on the actual ground and make evaluation thereon, a proposal was made on an original location measuring and analyzing method using an S-wave vibrator and seismic cones. This system consists of an S-wave vibrator and a static cone penetrating machine, and different types of measuring cones. A large number of measuring cones are inserted initially in the object bed of the ground, and variation in the vibration generated by the vibrator is measured. This method can derive decrease in rigidity rate of the actual ground according to dynamic strain levels, or in other words, the dynamic nonlinearity. The strain levels can be controlled with a range from 10 {sup -5} to 10 {sup -3} by varying the distance from the S-wave vibrator. Furthermore, the decrease in the rigidity rate can be derived by measuring variations in the S-wave velocity by using the plank hammering method during the vibration. Field measurement is as easy as it can be completed in about half a day including preparatory works, and the data analysis is also simple. The method is superior in mobility and workability. 9 figs.

  4. Control Application of Piezoelectric Materials to Aeroelastic Self-Excited Vibrations

    Directory of Open Access Journals (Sweden)

    Mohammad Amin Rashidifar

    2014-01-01

    Full Text Available A method for application of piezoelectric materials to aeroelasticity of turbomachinery blades is presented. The governing differential equations of an overhung beam are established. The induced voltage in attached piezoelectric sensors due to the strain of the beam is calculated. In aeroelastic self-excited vibrations, the aerodynamic generalized force of a specified mode can be described as a linear function of the generalized coordinate and its derivatives. This simplifies the closed loop system designed for vibration control of the corresponding structure. On the other hand, there is an industrial interest in measurement of displacement, velocity, acceleration, or a contribution of them for machinery condition monitoring. Considering this criterion in quadratic optimal control systems, a special style of performance index is configured. Utilizing the current relations in an aeroelastic case with proper attachment of piezoelectric elements can provide higher margin of instability and lead to lower vibration magnitude.

  5. Identification of Bearing Failure Using Signal Vibrations

    Science.gov (United States)

    Yani, Irsyadi; Resti, Yulia; Burlian, Firmansyah

    2018-04-01

    Vibration analysis can be used to identify damage to mechanical systems such as journal bearings. Identification of failure can be done by observing the resulting vibration spectrum by measuring the vibration signal occurring in a mechanical system Bearing is one of the engine elements commonly used in mechanical systems. The main purpose of this research is to monitor the bearing condition and to identify bearing failure on a mechanical system by observing the resulting vibration. Data collection techniques based on recordings of sound caused by the vibration of the mechanical system were used in this study, then created a database system based bearing failure due to vibration signal recording sounds on a mechanical system The next step is to group the bearing damage by type based on the databases obtained. The results show the percentage of success in identifying bearing damage is 98 %.

  6. Monitoring of vibrating machinery using artificial neural networks

    International Nuclear Information System (INIS)

    Alguindigue, I.E.; Loskiewicz-Buczak, A.

    1991-01-01

    The primary source of vibration in complex engineering systems is rotating machinery. Vibration signatures collected from these components render valuable information about the operational state of the system and may be used to perform diagnostics. For example, the low frequency domain contains information about unbalance, misalignment, instability in journal bearing and mechanical looseness; analysis of the medium frequency range can render information about faults in meshing gear teeth; while the high frequency domain will contain information about incipient faults in rolling-element bearings. Trend analysis may be performed by comparing the vibration spectrum for each machine with a reference spectrum and evaluating the vibration magnitude changes at different frequencies. This form of analysis for diagnostics is often performed by maintenance personnel monitoring and recording transducer signals and analyzing the signals to identify the operating condition of the machine. With the advent of portable fast Fourier transform (FFT) analyzers and ''laptop'' computers, it is possible to collect and analyze vibration data an site and detect incipient failures several weeks or months before repair is necessary. It is often possible to estimate the remaining life of certain systems once a fault has been detected. RMS velocity, acceleration, displacements, peak value, and crest factor readings can be collected from vibration sensors. To exploit all the information embedded in these signals, a robust and advanced analysis technique is required. Our goal is to design a diagnostic system using neural network technology, a system such as this would automate the interpretation of vibration data coming from plant-wide machinery and permit efficient on-line monitoring of these components

  7. Experience with vibration monitoring in German PWRs Obrigheim, Grohnde, Brokdorf and Emsland

    International Nuclear Information System (INIS)

    Stegemann, D.; Runkel, J.

    1996-01-01

    Without any interference to the normal operation of a nuclear power plant useful informations about the vibrational behaviour and the operation conditions in the primary circuit can be obtained by noise analysis of the signals of the standard reactor instrumentation. The purpose is to detect incipient changes of mechanical and operating conditions in order to enable early failure detection and preventive maintenance. This contributes not only to the safety but also to higher availability and economic efficiency of the plant. Routine measurements and noise analysis of the signals of the reactor and primary loop instrumentation are performed in all German nuclear power plants with pressurized water reactor. This paper deals with experiences of vibration monitoring by use of noise analysis ion four utilities. The typical vibration behaviour of reactor components of the different PWRs is compared and the particular vibration behaviour of a core support flow distribution stool, of a steam generator and a main circulation pump shaft is discussed. (authors)

  8. Enhancement of Energy Harvesting Performance by a Coupled Bluff Splitter Body and PVEH Plate through Vortex Induced Vibration near Resonance

    Directory of Open Access Journals (Sweden)

    Wei Ken Chin

    2017-09-01

    Full Text Available Inspired by vortex induced vibration energy harvesting development as a new source of renewable energy, a T-shaped design vibration energy harvester is introduced with the aim of enhancing its performance through vortex induced vibration at near resonance conditions. The T-shaped structural model designed consists of a fixed boundary aluminum bluff splitter body coupled with a cantilever piezoelectric vibration energy harvesters (PVEH plate model which is a piezoelectric bimorph plate made of a brass plate sandwiched between 2 lead zirconate titanate (PZT plates. A 3-dimensional Fluid-Structure Interaction simulation analysis is carried out with Reynolds Stress Turbulence Model under wind speed of 7, 10, 12, 14, 16, 18, 19, 20, 22.5, and 25 m/s. The results showed that with 19 m/s wind speed, the model generates 75.758 Hz of vortex frequency near to the structural model’s natural frequency of 76.9 Hz. Resonance lock-in therefore occurred, generating a maximum displacement amplitude of 2.09 mm or a 49.76% increment relatively in vibrational amplitude. Under the effect of resonance at the PVEH plate’s fundamental natural frequency, it is able to generate the largest normalized power of 13.44 mW/cm3g2.

  9. Vibration-Induced Climbing of Drops

    Science.gov (United States)

    Brunet, P.; Eggers, J.; Deegan, R. D.

    2007-10-01

    We report an experimental study of liquid drops moving against gravity, when placed on a vertically vibrating inclined plate, which is partially wetted by the drop. The frequency of vibrations ranges from 30 to 200 Hz, and, above a threshold in vibration acceleration, drops experience an upward motion. We attribute this surprising motion to the deformations of the drop, as a consequence of an up or down symmetry breaking induced by the presence of the substrate. We relate the direction of motion to contact angle measurements. This phenomenon can be used to move a drop along an arbitrary path in a plane, without special surface treatments or localized forcing.

  10. Maximizing semi-active vibration isolation utilizing a magnetorheological damper with an inner bypass configuration

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Xian-Xu, E-mail: bai@hfut.edu.cn [Department of Vehicle Engineering, Hefei University of Technology, Hefei 230009 (China); Wereley, Norman M.; Hu, Wei [Department of Aerospace Engineering, University of Maryland, College Park, Maryland 20742 (United States)

    2015-05-07

    A single-degree-of-freedom (SDOF) semi-active vibration control system based on a magnetorheological (MR) damper with an inner bypass is investigated in this paper. The MR damper employing a pair of concentric tubes, between which the key structure, i.e., the inner bypass, is formed and MR fluids are energized, is designed to provide large dynamic range (i.e., ratio of field-on damping force to field-off damping force) and damping force range. The damping force performance of the MR damper is modeled using phenomenological model and verified by the experimental tests. In order to assess its feasibility and capability in vibration control systems, the mathematical model of a SDOF semi-active vibration control system based on the MR damper and skyhook control strategy is established. Using an MTS 244 hydraulic vibration exciter system and a dSPACE DS1103 real-time simulation system, experimental study for the SDOF semi-active vibration control system is also conducted. Simulation results are compared to experimental measurements.

  11. Femtosecond investigation of electronic and vibrational dynamics of metal nano-objects and local order in glasses

    International Nuclear Information System (INIS)

    Burgin, Julien

    2007-01-01

    In this Ph.D. work we have investigated the electronic and vibrational properties of metallic nano objects as a function of their size, shape and composition, and studied the vibrational modes in glasses, using femtosecond time-resolved spectroscopy. In mono-metallic copper clusters, acceleration of the electron-lattice energy exchanges for sizes smaller than 10 nm has been demonstrated, confirming previous results in gold and silver clusters. The small size regime, i.e., nanoparticles smaller than 2 nm, has been addressed. The results show the limit of the classical confined material approach. In bi-metallic clusters, electron-lattice interaction has been shown to reflect their composition for gold-silver materials, but exhibits a more complex behavior in the case of segregated nickel-silver particles. The impact of shape, structure and environment on the acoustic vibrations of metallic nano-objects has also been studied. Measurements performed in ensemble or pairs of prisms yielded evidence for local fluctuations of their coupling with the substrate. Nano-structuration effects have been demonstrated in nano-columns and segregated components. The vibrational modes associated to local order in glasses have been investigated using a high sensitivity impulsive stimulated Raman scattering technique. The 'defect modes' of normal and densified silica, associated to vibrations of ring structures, have been observed and characterized, yielding information on the evolution of the ring density. Performing similar measurements in germania, we have demonstrated the existence of a vibrational mode due to a similar ring structure and determined its characteristics [fr

  12. Vibration characteristics of dental high-speed turbines and speed-increasing handpieces.

    Science.gov (United States)

    Poole, Ruth L; Lea, Simon C; Dyson, John E; Shortall, Adrian C C; Walmsley, A Damien

    2008-07-01

    Vibrations of dental handpieces may contribute to symptoms of hand-arm vibration syndrome in dental personnel and iatrogenic enamel cracking in teeth. However, methods for measuring dental handpiece vibrations have previously been limited and information about vibration characteristics is sparse. This preliminary study aimed to use a novel approach to assess the vibrations of unloaded high-speed handpieces in vitro. Maximum vibration displacement amplitudes of five air turbines and two speed-increasing handpieces were recorded whilst they were operated with and without a rotary cutting instrument (RCI) using a scanning laser vibrometer (SLV). RCI rotation speeds, calculated from frequency peaks, were consistent with expected values. ANOVA statistical analysis indicated significant differences in vibrations between handpiece models (p0.11). Operating handpieces with a RCI resulted in greater vibrations than with no RCI (pmeasurement exceeded 4 microm for the handpieces in the current test setup (implying that these vibrations may be unlikely to cause adverse effects), this study has formed the basis for future work which will include handpiece vibration measurements whilst cutting under clinically representative loads.

  13. Comparison of electrochemical skin conductance and vibration perception threshold measurement in the detection of early diabetic neuropathy.

    Directory of Open Access Journals (Sweden)

    Amit Goel

    Full Text Available The early diagnosis of diabetic peripheral neuropathy (DPN is challenging. Sudomotor dysfunction is one of the earliest detectable abnormalities in DPN. The present study aimed to determine the diagnostic performance of the electrochemical skin conductance (ESC test in detecting early DPN, compared with the vibration perception threshold (VPT test and diabetic neuropathy symptom (DNS score, using the modified neuropathy disability score (NDS as the reference standard. Five hundred and twenty-three patients with type 2 diabetes underwent an NDS-based clinical assessment for neuropathy. Participants were classified into the DPN and non-DPN groups based on the NDS (≥ 6. Both groups were evaluated further using the DNS, and VPT and ESC testing. A receiver-operator characteristic (ROC curve analysis was performed to compare the efficacy of ESC measurements with those of DNS and VPT testing in detecting DPN. The DPN group (n = 110, 21% had significantly higher HbA1c levels and longer diabetes durations compared with the non-DPN group (n = 413. The sensitivity of feet ESC 15 V, and DNS ≥ 1, were 16.4, 10.9 and 1.8, respectively. ESC measurement is an objective and sensitive technique for the early detection of DPN. Feet ESC measurement was superior to VPT testing for identifying patients with early DPN.

  14. Coherence Length and Vibrations of the Coherence Beamline I13 at the Diamond Light Source

    International Nuclear Information System (INIS)

    Wagner, U.H.; Parson, A.; Rau, C.

    2017-01-01

    I13 is a 250 m long hard x-ray beamline for imaging and coherent diffraction at the Diamond Light Source. The beamline (6 keV to 35 keV) comprises two independent experimental endstations: one for imaging in direct space using x-ray microscopy and one for imaging in reciprocal space using coherent diffraction based imaging techniques [1]. In particular the coherence experiments pose very high demands on the performance on the beamline instrumentation, requiring extensive testing and optimisation of each component, even during the assembly phase. Various aspects like the quality of optical components, the mechanical design concept, vibrations, drifts, thermal influences and the performance of motion systems are of particular importance. In this paper we study the impact of the front-end slit size (FE slit size), which determines the horizontal source size, onto the coherence length and the detrimental impact of monochromator vibrations using in-situ x-ray metrology in conjunction with fringe visibility measurements and vibration measurements, based on centroid tracking of an x-ray pencil beam with a photon-counting detector. (paper)

  15. Coherence Length and Vibrations of the Coherence Beamline I13 at the Diamond Light Source

    Science.gov (United States)

    Wagner, U. H.; Parson, A.; Rau, C.

    2017-06-01

    I13 is a 250 m long hard x-ray beamline for imaging and coherent diffraction at the Diamond Light Source. The beamline (6 keV to 35 keV) comprises two independent experimental endstations: one for imaging in direct space using x-ray microscopy and one for imaging in reciprocal space using coherent diffraction based imaging techniques [1]. In particular the coherence experiments pose very high demands on the performance on the beamline instrumentation, requiring extensive testing and optimisation of each component, even during the assembly phase. Various aspects like the quality of optical components, the mechanical design concept, vibrations, drifts, thermal influences and the performance of motion systems are of particular importance. In this paper we study the impact of the front-end slit size (FE slit size), which determines the horizontal source size, onto the coherence length and the detrimental impact of monochromator vibrations using in-situ x-ray metrology in conjunction with fringe visibility measurements and vibration measurements, based on centroid tracking of an x-ray pencil beam with a photon-counting detector.

  16. Vibrations of bioionic liquids by ab initio molecular dynamics and vibrational spectroscopy.

    Science.gov (United States)

    Tanzi, Luana; Benassi, Paola; Nardone, Michele; Ramondo, Fabio

    2014-12-26

    Density functional theory and vibrational spectroscopy are used to investigate a class of bioionic liquids consisting of a choline cation and carboxylate anions. Through quantum mechanical studies of motionless ion pairs and molecular dynamics of small portions of the liquid, we have characterized important structural features of the ionic liquid. Hydrogen bonding produces stable ion pairs in the liquid and induces vibrational features of the carboxylate groups comparable with experimental results. Infrared and Raman spectra of liquids have been measured, and main bands have been assigned on the basis of theoretical spectra.

  17. The vibrational behaviour of a cracked turbine rotor

    International Nuclear Information System (INIS)

    Grabowski, B.

    1978-01-01

    In order to detect an incipient crack on a turbine rotor with the aid of measurement of the shaft vibrations, these must be known in the first place the effects of a crack on the vibrational behavior of a rotor. For this purpose a method using the modal analysis is presented here. The rigidity depending on the angle of rotation at the position of the crack is accounted for by means of a model. Because of the composition of the computer code there may also be worked with measured values for the rigidity. The results of the calculations show that within the range of speeds, in which for many turbines the operating speed lies, a crack will cause distinct variations of the shaft vibrations. The crack stimulates vibrations with frequencies of rotation and frequencies of double-rotation. Both may be used for crack detection. Because of the strong dependence of the size of the amplitudes of vibration on the design of the rotor and the position of the crack each rotor should be subject to a detailed crack calculation for a better judgement of the measured values. (orig.) [de

  18. Design of Hydraulic Bushing and Vehicle Testing for Reducing the Judder Vibration

    Directory of Open Access Journals (Sweden)

    Kim Youngman

    2018-01-01

    Full Text Available Generally, judder vibration is a low-frequency vibration phenomenon caused by a braking force imbalance that occurs when a vehicle is lightly decelerated within a range of 0.1 to 0.2g at a speed of 120 to 60 km/h. This comes from the change in the brake disk thickness (DTV, which is mainly caused by the side run-out (SRO and thermal deformation. The adoption of hydro-bushing in the low arm G bushings of the vehicle front suspension has been done in order to provide great damping in a particular frequency range (<20Hz in order to prevent this judder vibration from being transmitted to the body. The hydro bushing was formulated using a lumped parameter model. The fluid passage between the two chambers was modelled as a nonlinear element such as an orifice, and its important parameters (resistance, compliance were measured using a simplified experimental setup. The main design parameters are the ratio of the cross-sectional area of the chamber to the fluid passage, the length of the fluid passage, etc., and their optimal design is such that the loss angle is greater than 45 ° in the target frequency range of 10 to 20 Hz. The hydro bushing designed for reducing the judder vibration was prepared for the actual vehicle application test and applied to the actual vehicle test. In this study, the proposed hydro bushing was applied to the G bushing of the low arm of the front suspension system of the vehicle. The loss angle of the manufactured hydro bushing was measured using acceleration signals before and after passing through the bushing. The actual vehicle test was performed on the noise dynamometer for the performance analysis of the judder vibration reduction.

  19. Frequency-varying synchronous micro-vibration suppression for a MSFW with application of small-gain theorem

    Science.gov (United States)

    Peng, Cong; Fan, Yahong; Huang, Ziyuan; Han, Bangcheng; Fang, Jiancheng

    2017-01-01

    This paper presents a novel synchronous micro-vibration suppression method on the basis of the small gain theorem to reduce the frequency-varying synchronous micro-vibration forces for a magnetically suspended flywheel (MSFW). The proposed synchronous micro-vibration suppression method not only eliminates the synchronous current fluctuations to force the rotor spinning around the inertia axis, but also considers the compensation caused by the displacement stiffness in the permanent-magnet (PM)-biased magnetic bearings. Moreover, the stability of the proposed control system is exactly analyzed by using small gain theorem. The effectiveness of the proposed micro-vibration suppression method is demonstrated via the direct measurement of the disturbance forces for a MSFW. The main merit of the proposed method is that it provides a simple and practical method in suppressing the frequency varying micro-vibration forces and preserving the nominal performance of the baseline control system.

  20. Compact vibration isolation and suspension for Australian International Gravitational Observatory: Performance in a 72 m Fabry Perot cavity

    Science.gov (United States)

    Barriga, P.; Dumas, J. C.; Woolley, A. A.; Zhao, C.; Blair, D. G.

    2009-11-01

    This paper describes the first demonstration of vibration isolation and suspension systems, which have been developed with view to application in the proposed Australian International Gravitational Observatory. In order to achieve optimal performance at low frequencies new components and techniques have been combined to create a compact advanced vibration isolator structure. The design includes two stages of horizontal preisolation and one stage of vertical preisolation with resonant frequencies ˜100 mHz. The nested structure facilitates a compact design and enables horizontal preisolation stages to be configured to create a superspring configuration, where active feedback can enable performance close to the limit set by seismic tilt coupling. The preisolation stages are combined with multistage three-dimensional (3D) pendulums. Two isolators suspending mirror test masses have been developed to form a 72 m optical cavity with finesse ˜700 in order to test their performance. The suitability of the isolators for use in suspended optical cavities is demonstrated through their ease of locking, long term stability, and low residual motion. An accompanying paper presents the local control system and shows how simple upgrades can substantially improve residual motion performance.

  1. Measurement of correlations between low-frequency vibrational modes and particle rearrangements in quasi-two-dimensional colloidal glasses.

    Science.gov (United States)

    Chen, Ke; Manning, M L; Yunker, Peter J; Ellenbroek, Wouter G; Zhang, Zexin; Liu, Andrea J; Yodh, A G

    2011-09-02

    We investigate correlations between low-frequency vibrational modes and rearrangements in two-dimensional colloidal glasses composed of thermosensitive microgel particles, which readily permit variation of the sample packing fraction. At each packing fraction, the particle displacement covariance matrix is measured and used to extract the vibrational spectrum of the "shadow" colloidal glass (i.e., the particle network with the same geometry and interactions as the sample colloid but absent damping). Rearrangements are induced by successive, small reductions in the packing fraction. The experimental results suggest that low-frequency quasilocalized phonon modes in colloidal glasses, i.e., modes that present low energy barriers for system rearrangements, are spatially correlated with rearrangements in this thermal system.

  2. Experimental vibration level analysis of a Francis turbine

    International Nuclear Information System (INIS)

    Bucur, D M; Dunca, G; Calinoiu, C

    2012-01-01

    In this study the vibration level of a Francis turbine is investigated by experimental work in site. Measurements are carried out for different power output values, in order to highlight the influence of the operation regimes on the turbine behavior. The study focuses on the turbine shaft to identify the mechanical vibration sources and on the draft tube in order to identify the hydraulic vibration sources. Analyzing the vibration results, recommendations regarding the operation of the turbine, at partial load close to minimum values, in the middle of the operating domain or close to maximum values of electric power, can be made in order to keep relatively low levels of vibration. Finally, conclusions are drawn in order to present the real sources of the vibrations.

  3. Investigation and analysis the vibration of handles of chainsaw without cutting

    Directory of Open Access Journals (Sweden)

    M Feyzi

    2016-04-01

    Full Text Available Introduction: Nowadays most of the agricultural and industrial tasks are performed using different machines and almost any people are exposed to the vibration of these machines. Just as sound can be either music to the ear or irritating noise, human vibrations can either be pleasant or unpleasant. Whole-body vibration and hand-arm vibration are two main types of unpleasant vibration. The hand-arm transmitted vibration can cause complex vascular, neurological and musculoskeletal disorder, collectively named as hand-arm vibration syndrome. The chainsaw is a portable machine, powered by a two-stroke engine. This machine is used by tree surgeons to fell trees, remove branches, and other activities such as prune trees. The chainsaw exposes own operators to high level of hand-arm vibration which can lead to problems such as vibration white finger syndrome and Raynaud's phenomenon. White finger syndrome affects the nerves, blood vessels, muscles, and joints of the hand, wrist and arm. It is clear that before trying to control the vibrations, the level of vibrations should be identified. Therefore, an investigation on the vibration level of this machine is crucial. Materials and Methods: The Stihl-MS230 chainsaw was selected in this study. The size of this type of chainsaw is middle and it is equipped with anti-vibration system. According to the ISO-7505 standard, vibration must be measured at three speed level of engine. First at idling speed, second at nominal speed and third at 133% of the nominal speed or maximum speed of engine whichever is less (Racing. So 2800, 10000, and 13300 RPM Engine speed were selected. One of the employed accessories was ARMA ETI-TACHO tachometer which had been fabricated in Taiwan. The vibrations were measured and analyzed using the portable data acquisition system (Easy Viber. During the measurements, data acquisition system was powered by internal batteries. The vibrations were sensed by the piezoelectric accelerometer

  4. Combination of Ultrasonic Vibration and Cryogenic Cooling for Cutting Performance Improvement of Inconel 718 Turning

    Science.gov (United States)

    Lin, S. Y.; Chung, C. T.; Cheng, Y. Y.

    2011-01-01

    The main objective of this study is to develop a thermo-elastic-plastic coupling model, based on a combination skill of ultrasonically assisted cutting and cryogenic cooling, under large deformation for Inconel 718 alloy machining process. The improvement extent on cutting performance and tool life promotion may be examined from this investigation. The critical value of the strain energy density of the workpiece will be utilized as the chip separation and the discontinuous chip segmentation criteria. The forced convection cooling and a hydrodynamic lubrication model will be considered and formulated in the model. Finite element method will be applied to create a complete numerical solution for this ultrasonic vibration cutting model. During the analysis, the cutting tool is incrementally advanced forward with superimposed ultrasonic vibration in a back and forth step-by-step manner, from an incipient stage of tool-workpiece engagement to a steady state of chip formation, a whole simulation of orthogonal cutting process under plane strain deformation is thus undertaken. High shear strength induces a fluctuation phenomenon of shear angle, high shear strain rate, variation of chip types and chip morphology, tool-chip contact length variation, the temperature distributions within the workpiece, chip and tool, periodic fluctuation in cutting forces can be determined from the developed model. A complete comparison of machining characteristics between some different combinations of ultrasonically assisted cutting and cryogenic cooling with conventional cutting operation can be acquired. Finally, the high-speed turning experiment for Inconel 718 alloy will be taken in the laboratory to validate the accuracy of the model, and the progressive flank wear, crater wear, notching and chipping of the tool edge can also be measured in the experiments.

  5. Monitoring machining conditions by analyzing cutting force vibration

    Energy Technology Data Exchange (ETDEWEB)

    Piao, Chun Guang; Kim, Ju Wan; Kim, Jin Oh; Shin, Yoan [Soongsl University, Seoul (Korea, Republic of)

    2015-09-15

    This paper deals with an experimental technique for monitoring machining conditions by analyzing cutting-force vibration measured at a milling machine. This technique is based on the relationship of the cutting-force vibrations with the feed rate and cutting depth as reported earlier. The measurement system consists of dynamic force transducers and a signal amplifier. The analysis system includes an oscilloscope and a computer with a LabVIEW program. Experiments were carried out at various feed rates and cutting depths, while the rotating speed was kept constant. The magnitude of the cutting force vibration component corresponding to the number of cutting edges multiplied by the frequency of rotation was linearly correlated with the machining conditions. When one condition of machining is known, another condition can be identified by analyzing the cutting-force vibration.

  6. Monitoring machining conditions by analyzing cutting force vibration

    International Nuclear Information System (INIS)

    Piao, Chun Guang; Kim, Ju Wan; Kim, Jin Oh; Shin, Yoan

    2015-01-01

    This paper deals with an experimental technique for monitoring machining conditions by analyzing cutting-force vibration measured at a milling machine. This technique is based on the relationship of the cutting-force vibrations with the feed rate and cutting depth as reported earlier. The measurement system consists of dynamic force transducers and a signal amplifier. The analysis system includes an oscilloscope and a computer with a LabVIEW program. Experiments were carried out at various feed rates and cutting depths, while the rotating speed was kept constant. The magnitude of the cutting force vibration component corresponding to the number of cutting edges multiplied by the frequency of rotation was linearly correlated with the machining conditions. When one condition of machining is known, another condition can be identified by analyzing the cutting-force vibration

  7. A Method to Assess Transverse Vibration Energy of Ship Propeller Shaft for Diagnostic Purposes

    Directory of Open Access Journals (Sweden)

    Korczewski Zbigniew

    2017-12-01

    Full Text Available The article discusses a key problem of ship propulsion system vibration diagnostics, which concerns assessing this part of mechanical energy transmitted from the main engine to the ship propeller which is dissipated due to propeller shaft vibration. A simplified calculation model is proposed which allows the total energy of the generated torsional vibration to be assessed from the shaft deflection amplitude measured at the mind-span point between the supports. To verify the developed model, pilot tests were performed on the laboratory rotational mechanical system test rig. In those tests, cyclic bending moment was applied to a unified (cylindrical material sample, which modelled, at an appropriate scale, structural and functional properties of a real propeller shaft.

  8. Multivariate Analysis of Ladle Vibration

    Science.gov (United States)

    Yenus, Jaefer; Brooks, Geoffrey; Dunn, Michelle

    2016-08-01

    The homogeneity of composition and uniformity of temperature of the steel melt before it is transferred to the tundish are crucial in making high-quality steel product. The homogenization process is performed by stirring the melt using inert gas in ladles. Continuous monitoring of this process is important to make sure the action of stirring is constant throughout the ladle. Currently, the stirring process is monitored by process operators who largely rely on visual and acoustic phenomena from the ladle. However, due to lack of measurable signals, the accuracy and suitability of this manual monitoring are problematic. The actual flow of argon gas to the ladle may not be same as the flow gage reading due to leakage along the gas line components. As a result, the actual degree of stirring may not be correctly known. Various researchers have used one-dimensional vibration, and sound and image signals measured from the ladle to predict the degree of stirring inside. They developed online sensors which are indeed to monitor the online stirring phenomena. In this investigation, triaxial vibration signals have been measured from a cold water model which is a model of an industrial ladle. Three flow rate ranges and varying bath heights were used to collect vibration signals. The Fast Fourier Transform was applied to the dataset before it has been analyzed using principal component analysis (PCA) and partial least squares (PLS). PCA was used to unveil the structure in the experimental data. PLS was mainly applied to predict the stirring from the vibration response. It was found that for each flow rate range considered in this study, the informative signals reside in different frequency ranges. The first latent variables in these frequency ranges explain more than 95 pct of the variation in the stirring process for the entire single layer and the double layer data collected from the cold model. PLS analysis in these identified frequency ranges demonstrated that the latent

  9. [Occupational standing vibration rate and vibrational diseases].

    Science.gov (United States)

    Karnaukh, N G; Vyshchipan, V F; Haumenko, B S

    2003-12-01

    Occupational standing vibration rate is proposed in evaluating a degree of impairment of an organism activity. It will allow more widely to introduce specification of quality and quantity in assessment of the development of vibrational disease. According out-patient and inpatient obtained data we have established criterial values of functional changes in accordance with accumulated occupational standing vibration rate. The nomogram was worked out for defining a risk of the development of vibrational disease in mine workers. This nomogram more objectively can help in diagnostics of the disease.

  10. Experiment studies of fuel rod vibration in coolant flow for substantiation of vibration stability of fuel rods with no fretting-wear

    International Nuclear Information System (INIS)

    Egorov, Yu. V.; Afanasiev, A. V.; Makarov, V. V.; Matvienko, I. V.

    2013-01-01

    wear absence. 2) Within the framework of the first stage of work on substantiation of vibration stability studies were performed of vibration of the full-scale model TVS-KVADRAT of LiV design in the coolant flow with thermal-hydraulic parameters close to the parameters of PWR reactor normal operation. 3) Parameters of fuel rod vibrations at the second stage of tests – life vibration tests of TVS-KVADRAT models – were determined by the results of the performed studies

  11. Fiber optic vibration sensor using bifurcated plastic optical fiber

    Science.gov (United States)

    Abdullah, M.; Bidin, N.; Yasin, M.

    2016-11-01

    An extrinsic fiber optic vibration sensor is demonstrated for a fiber optic displacement sensor based on a bundled multimode fiber to measure a vibration frequency ranging from 100 until 3000 Hz. The front slope has a sensitivity of 0.1938mV/mm and linearity of 99.7% within a measurement range between 0.15-3.00 mm. By placing the diaphragm of the concave load-speaker within the linear range from the probe, the frequency of the vibration can be measured with error percentage of less than 1.54%. The graph of input against output frequency for low, medium and high frequency range show very high linearity up to 99%. Slope for low, medium, and high frequency range are calculated as 1.0026, 0.9934, and 1.0007 respectively. Simplicity, long term stability, low power consumption, wide dynamic and frequency ranges, noise reduction, ruggedness, linearity and light weight make it promising alternative to other well-establish methods for vibration frequency measurement.

  12. Using frequency response functions to manage image degradation from equipment vibration in the Daniel K. Inouye Solar Telescope

    Science.gov (United States)

    McBride, William R.; McBride, Daniel R.

    2016-08-01

    The Daniel K Inouye Solar Telescope (DKIST) will be the largest solar telescope in the world, providing a significant increase in the resolution of solar data available to the scientific community. Vibration mitigation is critical in long focal-length telescopes such as the Inouye Solar Telescope, especially when adaptive optics are employed to correct for atmospheric seeing. For this reason, a vibration error budget has been implemented. Initially, the FRFs for the various mounting points of ancillary equipment were estimated using the finite element analysis (FEA) of the telescope structures. FEA analysis is well documented and understood; the focus of this paper is on the methods involved in estimating a set of experimental (measured) transfer functions of the as-built telescope structure for the purpose of vibration management. Techniques to measure low-frequency single-input-single-output (SISO) frequency response functions (FRF) between vibration source locations and image motion on the focal plane are described. The measurement equipment includes an instrumented inertial-mass shaker capable of operation down to 4 Hz along with seismic accelerometers. The measurement of vibration at frequencies below 10 Hz with good signal-to-noise ratio (SNR) requires several noise reduction techniques including high-performance windows, noise-averaging, tracking filters, and spectral estimation. These signal-processing techniques are described in detail.

  13. Modeling and Analysis of a Combined Stress-Vibration Fiber Bragg Grating Sensor.

    Science.gov (United States)

    Yao, Kun; Lin, Qijing; Jiang, Zhuangde; Zhao, Na; Tian, Bian; Shi, Peng; Peng, Gang-Ding

    2018-03-01

    A combined stress-vibration sensor was developed to measure stress and vibration simultaneously based on fiber Bragg grating (FBG) technology. The sensor is composed of two FBGs and a stainless steel plate with a special design. The two FBGs sense vibration and stress and the sensor can realize temperature compensation by itself. The stainless steel plate can significantly increase sensitivity of vibration measurement. Theoretical analysis and Finite Element Method (FEM) were used to analyze the sensor's working mechanism. As demonstrated with analysis, the obtained sensor has working range of 0-6000 Hz for vibration sensing and 0-100 MPa for stress sensing, respectively. The corresponding sensitivity for vibration is 0.46 pm/g and the resulted stress sensitivity is 5.94 pm/MPa, while the nonlinearity error for vibration and stress measurement is 0.77% and 1.02%, respectively. Compared to general FBGs, the vibration sensitivity of this sensor is 26.2 times higher. Therefore, the developed sensor can be used to concurrently detect vibration and stress. As this sensor has height of 1 mm and weight of 1.15 g, it is beneficial for minimization and integration.

  14. Input Shaping to Reduce Solar Array Structural Vibrations

    Science.gov (United States)

    Doherty, Michael J.; Tolson, Robert J.

    1998-01-01

    Structural vibrations induced by actuators can be minimized using input shaping. Input shaping is a feedforward method in which actuator commands are convolved with shaping functions to yield a shaped set of commands. These commands are designed to perform the maneuver while minimizing the residual structural vibration. In this report, input shaping is extended to stepper motor actuators. As a demonstration, an input-shaping technique based on pole-zero cancellation was used to modify the Solar Array Drive Assembly (SADA) actuator commands for the Lewis satellite. A series of impulses were calculated as the ideal SADA output for vibration control. These impulses were then discretized for use by the SADA stepper motor actuator and simulated actuator outputs were used to calculate the structural response. The effectiveness of input shaping is limited by the accuracy of the knowledge of the modal frequencies. Assuming perfect knowledge resulted in significant vibration reduction. Errors of 10% in the modal frequencies caused notably higher levels of vibration. Controller robustness was improved by incorporating additional zeros in the shaping function. The additional zeros did not require increased performance from the actuator. Despite the identification errors, the resulting feedforward controller reduced residual vibrations to the level of the exactly modeled input shaper and well below the baseline cases. These results could be easily applied to many other vibration-sensitive applications involving stepper motor actuators.

  15. Laser diagnostics of high vibrational and rotational H2-states

    International Nuclear Information System (INIS)

    Mosbach, Th.; Schulz-von der Gathen, V.; Doebele, H.F.

    2002-01-01

    We report on measurements of vibrational and rotational excited electronic-ground-state hydrogen molecules in a magnetic multipole plasma source by LIF with VUV radiation. The measurements are taken after rapid shut-off of the discharge current. Absolute level populations are obtained using Rayleigh scattering calibration with Krypton. The theoretically predicted suprathermal population of the vibrational distribution is clearly identified. We found also non-Boltzmann rotational distributions for the high vibrational states. The addition of noble gases (Argon and Xenon) to hydrogen leads to a decrease of the vibrational population. (Abstract Copyright [2002], Wiley Periodicals, Inc.)

  16. Vibration features of an 180 kW maglev circulator test rig

    International Nuclear Information System (INIS)

    Su Jiageng; Li Hongwei; Shi Qian; Sha Honglei; Yu Suyuan

    2015-01-01

    The helium circulator is the key equipment to drive the helium gas flowing in the primary loop for energy exchange in HTGR. Active magnetic bearings (AMB) have been considered as an alternative to replace traditional mechanical bearings in the helium circulator. Such contactless bearings do not have frictional wear and can be used to suppress vibration in rotor-dynamic applications. It is necessary to study the vibration characteristics of the maglev helium circulator to guarantee the reactor safety. Therefore, a maglev circulator test rig was built. The power of the circulator is 180 kW and the maximum speed is 17000 rpm. For the time being, the test atmosphere is air. In this paper the test rig was introduced. Vibration test work of the maglev circulator was also carried out. The measuring points were arranged at the seat because the seat vibration level is important to evaluate the machine noise. The measuring points were also arranged at the base of the circulator housing to better study the vibration characteristics. The vibrations were measured by the LC-8024 multichannel machinery diagnoses system. At each measuring point the vibrations were detected in three directions (X, Y and Z) with the vibration acceleration sensors. The test speeds varied from 1000 rpm to 17000 rpm with an increase of 1000 rpm each time. The vibration values of the seat are from 89.5 dB at 1000 rpm to 113.3 dB at 17000 rpm. The test results showed that the maglev circulator exhibits good vibration properties. This work will offer important theoretical base and engineering experience to explore the high-speed helium circulator in HTGR. (author)

  17. A study on the flow induced vibration in two phase flow under heating and non-heating conditions

    International Nuclear Information System (INIS)

    Kim, Dae Hun

    2007-02-01

    Critical heat flux (CHF) enhancement devices, like a spacer grid with mixing vane, cause flow-induced vibration (FIV) due to turbulence made by structural resistance. CHF enhancement and FIV reduction are usually studied separately. The main purpose of this article is to investigate the relationship between CHF and FIV. Information of flow-induced vibration due to wire coil design, is experimentally presented in this study by detecting flow-induced vibration under the two-phase flow condition with wire coil inserts. CHF experiments were performed in an upward vertical annulus tube under controlled vibration conditions to determine the effect of vibration on CHF. FIV was measured in an upward vertical tube with various wire coil inserts using air-water as flow material. CHF experiments were performed at one atmosphere with mechanically controlled vibration. A quartz tube (inner diameter of 17 mm, thickness of 2mm and length of 0.72 m) was used for outer tube and a SUS-304 tube (outer diameter of 6.35 mm, thickness of 0.89 mm and length of 0.7 m) was used for the inner heater. Vibration of the heater tube with an amplitude range of 0.1 mm to 0.5 mm and a frequency range of 10 Hz to 50 Hz was carried out at a mass flux of 115 kg/m 2 s and 215 kg/m 2 s. CHF was enhanced by vibration with a maximum ratio of 16.4 %. CHF was increased with increased amplitude and quality. The CHF correlation was developed with R (coefficient of correlation) of 0.903. FIV measuring experiments were performed at one atmosphere by changing the inserted wire coil type. An acrylic tube was used for the test section with inner diameter of 25 mm, thickness of 10 mm and length of 0.5 m. Four types of wire coil, which have a thickness of between 2 mm and 3 mm and pitch length of between 25 mm and 50 mm, were used. FIV and dynamic pressure were detected in water mass flux range of 100 ∼ 3060 kg/m 2 s and air mass flux range of 5.02 ∼ 60.3 kg/m 2 s. Vibration increased along with mass flux and

  18. The influence of mechanical vibration on local and central balance control.

    Science.gov (United States)

    Ehsani, Hossein; Mohler, Jane; Marlinski, Vladimir; Rashedi, Ehsan; Toosizadeh, Nima

    2018-04-11

    Fall prevention has an indispensable role in enhancing life expectancy and quality of life among older adults. The first step to prevent falls is to devise reliable methods to identify individuals at high fall risk. The purpose of the current study was to assess alterations in local postural muscle and central sensory balance control mechanisms due to low-frequency externally applied vibration among elders at high fall risk, in comparison with healthy controls, as a potential tool for assessing fall risk. Three groups of participants were recruited: healthy young (n = 10; age = 23 ± 2 years), healthy elders (n = 10; age = 73 ± 3 years), and elders at high fall risk (n = 10; age = 84 ± 9 years). Eyes-open and eyes-closed upright standing balance performance was measured with no vibration, 30 Hz, and 40 Hz vibration of Gastrocnemius muscles. When vibratory stimulation was applied, changes in local-control performance manifested significant differences among the groups (p fall risk participants when compared to healthy young and older adults, respectively. On the other hand, vibration-induced changes in the central-control performance were not significant between groups (p ≥ 0.19). Results suggest that local-control deficits are responsible for balance behavior alterations among elders at high fall risk and healthy individuals. This observation may be attributable to deterioration of short-latency reflexive loop in elders at high fall risk. On the other hand, we could not ascribe the balance alterations to problems related to central nervous system performance or long-latency responses. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Sound and vibration sensitivity of VIIIth nerve fibers in the grassfrog, Rana temporaria

    DEFF Research Database (Denmark)

    Christensen-Dalsgaard, J; Jørgensen, M B

    1996-01-01

    thresholds from 0.02 cm/s2. The sound and vibration sensitivity was compared for each fiber using the offset between the rate-level curves for sound and vibration stimulation as a measure of relative vibration sensitivity. When measured in this way relative vibration sensitivity decreases with frequency from......We have studied the sound and vibration sensitivity of 164 amphibian papilla fibers in the VIIIth nerve of the grassfrog, Rana temporaria. The VIIIth nerve was exposed using a dorsal approach. The frogs were placed in a natural sitting posture and stimulated by free-field sound. Furthermore......, the animals were stimulated with dorso-ventral vibrations, and the sound-induced vertical vibrations in the setup could be canceled by emitting vibrations in antiphase from the vibration exciter. All low-frequency fibers responded to both sound and vibration with sound thresholds from 23 dB SPL and vibration...

  20. Recovering Intrinsic Fragmental Vibrations Using the Generalized Subsystem Vibrational Analysis.

    Science.gov (United States)

    Tao, Yunwen; Tian, Chuan; Verma, Niraj; Zou, Wenli; Wang, Chao; Cremer, Dieter; Kraka, Elfi

    2018-05-08

    Normal vibrational modes are generally delocalized over the molecular system, which makes it difficult to assign certain vibrations to specific fragments or functional groups. We introduce a new approach, the Generalized Subsystem Vibrational Analysis (GSVA), to extract the intrinsic fragmental vibrations of any fragment/subsystem from the whole system via the evaluation of the corresponding effective Hessian matrix. The retention of the curvature information with regard to the potential energy surface for the effective Hessian matrix endows our approach with a concrete physical basis and enables the normal vibrational modes of different molecular systems to be legitimately comparable. Furthermore, the intrinsic fragmental vibrations act as a new link between the Konkoli-Cremer local vibrational modes and the normal vibrational modes.

  1. Analysis of annual exposure of private farmers to noise and whole body vibration

    Directory of Open Access Journals (Sweden)

    Leszek Solecki

    2012-06-01

    Full Text Available Based on a literature review for the period of 1982– 2011, an analysis was performed of studies by various researchers concerning the exposure of private farmers to noise and vibration of the whole body with particular consideration of the annual exposure to these factors. The main sources of noise occurring in agriculture are: agricultural tractors mounted with a set of farm machinery, self-propelled machines, machinery for the production of fodder and workshop equipment. The review of literature showed that the highest values of equivalent exposure to noise (EA, T or noise doses (d were noted during the summer-autumn season and in spring. Mean noise levels for the entire year (of over 90 dB-A, considerably exceeded permissible values.The primary sources of the whole body vibration are agricultural vehicles including agricultural tractors of various types and self-propelled agricultural vehicles. In these vehicles vibration transmitted from the seat to the whole body is of basic importance. The measurements of vibration acceleration indicated that mechanical vibration on seats was produced while performing following activities: hay tedding and raking, sowing of fertilizers, aggregation of soil, grass mowing and cultivation. All of them may create a considerable health risk. These work activities are performed at elevated working speeds of tractors, most often along with hardened or uneven surfaces. In relation to the standard values (A(840.8 m/s2, the mean daily vibration acceleration values remain below the permissible levels during all months of the year. However, considering the occurrence of mechanical shocks of high values (above the Maximum Acceptable Intensity on agricultural vehicles there is a high risk for the spine problems among operators of agricultural vehicles.

  2. Design specifications to ensure flow-induced vibration and fretting-wear performance in CANDU steam generators and heat exchangers

    International Nuclear Information System (INIS)

    Janzen, V.P.; Han, Y.; Pettigrew, M.J.

    2009-01-01

    Preventing flow-induced vibration and fretting-wear problems in steam generators and heat exchangers requires design specifications that bring together specific guidelines, analysis methods, requirements and appropriate performance criteria. This paper outlines the steps required to generate and support such design specifications for CANDU nuclear steam generators and heat exchangers, and relates them to typical steam-generator design features and computer modeling capabilities. It also describes current issues that are driving changes to flow-induced vibration and fretting-wear specifications that can be applied to the design process for component refurbishment, replacement or new designs. These issues include recent experimental or field evidence for new excitation mechanisms, e.g., the possibility of in-plane fluidelastic instability of U-tubes, the demand for longer reactor and component lifetimes, the need for better predictions of dynamic properties and vibration response, e.g., two-phase random-turbulence excitation, and requirements to consider system 'excursions' or abnormal scenarios, e.g., a main steam line break in the case of steam generators. The paper describes steps being taken to resolve these issues. (author)

  3. Theory And Working Of Noise And Vibration

    International Nuclear Information System (INIS)

    Jeong, Il Rok

    1988-09-01

    This book deals with theory of noise including physical property of noise like term and characteristic of sound, occurrence of sound, characteristic of noise pollution and main cause of occurrence of noise, technique of prevention of noise with noise reduction, construction guide for prevention of noise, and measure of interior noise. It also has the theory of vibration such as an introduction of vibration, and technology of prevention of vibration, official test method of environmental pollution, and summary of protection of the environment.

  4. Two-dimensional vibrational-electronic spectroscopy

    Science.gov (United States)

    Courtney, Trevor L.; Fox, Zachary W.; Slenkamp, Karla M.; Khalil, Munira

    2015-10-01

    Two-dimensional vibrational-electronic (2D VE) spectroscopy is a femtosecond Fourier transform (FT) third-order nonlinear technique that creates a link between existing 2D FT spectroscopies in the vibrational and electronic regions of the spectrum. 2D VE spectroscopy enables a direct measurement of infrared (IR) and electronic dipole moment cross terms by utilizing mid-IR pump and optical probe fields that are resonant with vibrational and electronic transitions, respectively, in a sample of interest. We detail this newly developed 2D VE spectroscopy experiment and outline the information contained in a 2D VE spectrum. We then use this technique and its single-pump counterpart (1D VE) to probe the vibrational-electronic couplings between high frequency cyanide stretching vibrations (νCN) and either a ligand-to-metal charge transfer transition ([FeIII(CN)6]3- dissolved in formamide) or a metal-to-metal charge transfer (MMCT) transition ([(CN)5FeIICNRuIII(NH3)5]- dissolved in formamide). The 2D VE spectra of both molecules reveal peaks resulting from coupled high- and low-frequency vibrational modes to the charge transfer transition. The time-evolving amplitudes and positions of the peaks in the 2D VE spectra report on coherent and incoherent vibrational energy transfer dynamics among the coupled vibrational modes and the charge transfer transition. The selectivity of 2D VE spectroscopy to vibronic processes is evidenced from the selective coupling of specific νCN modes to the MMCT transition in the mixed valence complex. The lineshapes in 2D VE spectra report on the correlation of the frequency fluctuations between the coupled vibrational and electronic frequencies in the mixed valence complex which has a time scale of 1 ps. The details and results of this study confirm the versatility of 2D VE spectroscopy and its applicability to probe how vibrations modulate charge and energy transfer in a wide range of complex molecular, material, and biological systems.

  5. Two-dimensional vibrational-electronic spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Courtney, Trevor L.; Fox, Zachary W.; Slenkamp, Karla M.; Khalil, Munira, E-mail: mkhalil@uw.edu [Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195 (United States)

    2015-10-21

    Two-dimensional vibrational-electronic (2D VE) spectroscopy is a femtosecond Fourier transform (FT) third-order nonlinear technique that creates a link between existing 2D FT spectroscopies in the vibrational and electronic regions of the spectrum. 2D VE spectroscopy enables a direct measurement of infrared (IR) and electronic dipole moment cross terms by utilizing mid-IR pump and optical probe fields that are resonant with vibrational and electronic transitions, respectively, in a sample of interest. We detail this newly developed 2D VE spectroscopy experiment and outline the information contained in a 2D VE spectrum. We then use this technique and its single-pump counterpart (1D VE) to probe the vibrational-electronic couplings between high frequency cyanide stretching vibrations (ν{sub CN}) and either a ligand-to-metal charge transfer transition ([Fe{sup III}(CN){sub 6}]{sup 3−} dissolved in formamide) or a metal-to-metal charge transfer (MMCT) transition ([(CN){sub 5}Fe{sup II}CNRu{sup III}(NH{sub 3}){sub 5}]{sup −} dissolved in formamide). The 2D VE spectra of both molecules reveal peaks resulting from coupled high- and low-frequency vibrational modes to the charge transfer transition. The time-evolving amplitudes and positions of the peaks in the 2D VE spectra report on coherent and incoherent vibrational energy transfer dynamics among the coupled vibrational modes and the charge transfer transition. The selectivity of 2D VE spectroscopy to vibronic processes is evidenced from the selective coupling of specific ν{sub CN} modes to the MMCT transition in the mixed valence complex. The lineshapes in 2D VE spectra report on the correlation of the frequency fluctuations between the coupled vibrational and electronic frequencies in the mixed valence complex which has a time scale of 1 ps. The details and results of this study confirm the versatility of 2D VE spectroscopy and its applicability to probe how vibrations modulate charge and energy transfer in a

  6. Lightening performance investigation of conformal coating in light emitting diode packaging fabricated using a piezoelectric ultrasonic vibrator

    International Nuclear Information System (INIS)

    Han, Young-Min; Son, Byeong-Ho; Hong, Seung-Min; Choi, Seung-Bok

    2011-01-01

    This study presents a new ultrasonic vibrator which can be applicable to high viscosity conformal coating in the light emitting diode (LED) packaging process. In order to achieve this goal, an ultrasonic vibrator is devised utilizing piezoelectric actuators so as to have a longitudinal motion. After analyzing the standing wave of the proposed ultrasonic vibrator, the design parameters of the concentrator horn are optimally determined to maximize the tip displacement amplitude of the ultrasonic vibrator. The size and flow of droplets sprayed from the proposed ultrasonic vibrator are evaluated by a fluid dynamics analysis. In order to evaluate the effectiveness of the proposed ultrasonic vibrator, the designed vibrator is manufactured and applied to conformal coating of an LED. The manufactured LED is then evaluated by the lighting uniformity and the correlated color temperature (CCT). (technical note)

  7. A vacuum microgripping tool with integrated vibration releasing capability

    Energy Technology Data Exchange (ETDEWEB)

    Rong, Weibin; Fan, Zenghua, E-mail: zenghua-fan@163.com; Wang, Lefeng; Xie, Hui; Sun, Lining [State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, Heilongjiang (China)

    2014-08-01

    Pick-and-place of micro-objects is a basic task in various micromanipulation demands. Reliable releasing of micro-objects is usually disturbed due to strong scale effects. This paper focuses on a vacuum micro-gripper with vibration releasing functionality, which was designed and assembled for reliable micromanipulation tasks. Accordingly, a vibration releasing strategy of implementing a piezoelectric actuator on the vacuum microgripping tool is presented to address the releasing problem. The releasing mechanism was illustrated using a dynamic micro contact model. This model was developed via theoretical analysis, simulations and pull-off force measurement using atomic force microscopy. Micromanipulation experiments were conducted to verify the performance of the vacuum micro-gripper. The results show that, with the assistance of the vibration releasing, the vacuum microgripping tool can achieve reliable release of micro-objects. A releasing location accuracy of 4.5±0.5 μm and a successful releasing rate of around 100% (which is based on 110 trials) were achieved for manipulating polystyrene microspheres with radius of 35–100 μm.

  8. A vacuum microgripping tool with integrated vibration releasing capability

    International Nuclear Information System (INIS)

    Rong, Weibin; Fan, Zenghua; Wang, Lefeng; Xie, Hui; Sun, Lining

    2014-01-01

    Pick-and-place of micro-objects is a basic task in various micromanipulation demands. Reliable releasing of micro-objects is usually disturbed due to strong scale effects. This paper focuses on a vacuum micro-gripper with vibration releasing functionality, which was designed and assembled for reliable micromanipulation tasks. Accordingly, a vibration releasing strategy of implementing a piezoelectric actuator on the vacuum microgripping tool is presented to address the releasing problem. The releasing mechanism was illustrated using a dynamic micro contact model. This model was developed via theoretical analysis, simulations and pull-off force measurement using atomic force microscopy. Micromanipulation experiments were conducted to verify the performance of the vacuum micro-gripper. The results show that, with the assistance of the vibration releasing, the vacuum microgripping tool can achieve reliable release of micro-objects. A releasing location accuracy of 4.5±0.5 μm and a successful releasing rate of around 100% (which is based on 110 trials) were achieved for manipulating polystyrene microspheres with radius of 35–100 μm

  9. [The influence of vibration training in combination with general magnetotherapy on dynamics of performance efficiency in athletes].

    Science.gov (United States)

    Mikheev, A A; Volchkova, O A; Voronitskiĭ, N E

    2010-01-01

    The objective of this study was to evaluate effects of a combined treatment including vibrostimulation and magnetotherapy on the working capacity of athletes. Participants of the study were 8 male judo wrestlers. It was shown that implementation of a specialized training program comprising seances of vibration loading and general magnetotherapy 40 and 60 min in duration respectively during 3 consecutive days produced marked beneficial effect on the hormonal status of the athletes. Specifically, the three-day long treatment resulted in a significant increase of blood cortisol and testosterone levels considered to be an objective sign of improved performance parameters in athletes engaged in strength and speed sports. The optimal length of vibration training during 3 days of specialized training is estimated at 20 to 40 minutes supplemented by general magnetotherapy for 60 minutes.

  10. 46 CFR 162.050-37 - Vibration test.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 6 2010-10-01 2010-10-01 false Vibration test. 162.050-37 Section 162.050-37 Shipping...: SPECIFICATIONS AND APPROVAL ENGINEERING EQUIPMENT Pollution Prevention Equipment § 162.050-37 Vibration test. (a... paragraph (b) of this section. The test must be performed at an independent laboratory that has the...

  11. Piezoelectric Vibration Damping Study for Rotating Composite Fan Blades

    Science.gov (United States)

    Min, James B.; Duffy, Kirsten P.; Choi, Benjamin B.; Provenza, Andrew J.; Kray, Nicholas

    2012-01-01

    Resonant vibrations of aircraft engine blades cause blade fatigue problems in engines, which can lead to thicker and aerodynamically lower performing blade designs, increasing engine weight, fuel burn, and maintenance costs. In order to mitigate undesirable blade vibration levels, active piezoelectric vibration control has been investigated, potentially enabling thinner blade designs for higher performing blades and minimizing blade fatigue problems. While the piezoelectric damping idea has been investigated by other researchers over the years, very little study has been done including rotational effects. The present study attempts to fill this void. The particular objectives of this study were: (a) to develop and analyze a multiphysics piezoelectric finite element composite blade model for harmonic forced vibration response analysis coupled with a tuned RLC circuit for rotating engine blade conditions, (b) to validate a numerical model with experimental test data, and (c) to achieve a cost-effective numerical modeling capability which enables simulation of rotating blades within the NASA Glenn Research Center (GRC) Dynamic Spin Rig Facility. A numerical and experimental study for rotating piezoelectric composite subscale fan blades was performed. It was also proved that the proposed numerical method is feasible and effective when applied to the rotating blade base excitation model. The experimental test and multiphysics finite element modeling technique described in this paper show that piezoelectric vibration damping can significantly reduce vibrations of aircraft engine composite fan blades.

  12. Performance of a reduced-order FSI model for flow-induced vocal fold vibration

    Science.gov (United States)

    Luo, Haoxiang; Chang, Siyuan; Chen, Ye; Rousseau, Bernard; PhonoSim Team

    2017-11-01

    Vocal fold vibration during speech production involves a three-dimensional unsteady glottal jet flow and three-dimensional nonlinear tissue mechanics. A full 3D fluid-structure interaction (FSI) model is computationally expensive even though it provides most accurate information about the system. On the other hand, an efficient reduced-order FSI model is useful for fast simulation and analysis of the vocal fold dynamics, which can be applied in procedures such as optimization and parameter estimation. In this work, we study performance of a reduced-order model as compared with the corresponding full 3D model in terms of its accuracy in predicting the vibration frequency and deformation mode. In the reduced-order model, we use a 1D flow model coupled with a 3D tissue model that is the same as in the full 3D model. Two different hyperelastic tissue behaviors are assumed. In addition, the vocal fold thickness and subglottal pressure are varied for systematic comparison. The result shows that the reduced-order model provides consistent predictions as the full 3D model across different tissue material assumptions and subglottal pressures. However, the vocal fold thickness has most effect on the model accuracy, especially when the vocal fold is thin.

  13. Vibration-related extrusion of capillary blood from the calf musculature depends upon directions of vibration of the leg and of the gravity vector.

    Science.gov (United States)

    Çakar, Halil Ibrahim; Doğan, Serfiraz; Kara, Sadık; Rittweger, Jörn; Rawer, Rainer; Zange, Jochen

    2017-06-01

    In this study, we investigated the effects of vibration of the whole lower leg on the content and the oxygenation of hemoglobin in the unloaded relaxed lateral gastrocnemius muscle. Vibration was applied orthogonal to and in parallel with leg axis to examine whether the extrusion of blood depends on an alignment of main vessel direction, axis of vibration and gravity. The blood volume in the muscles was altered by horizontal and 30° upright body posture. Fifteen male subjects were exposed to 4 sets of experiments with both vibration directions and both tilt angles applied in permutated order. The absence of voluntary muscular activity and the potential occurrence of compound action potentials by stretch reflexes were monitored using electromyography. Total hemoglobin and tissue saturation index were measured with near infrared spectroscopy. Changes of lower leg circumference were measured with strain gauge system placed around the calf. Vibration caused decrease in tHb and increase in TSI indicating extrusion of predominantly venous blood from the muscle. In 30° tilted position, muscles contained more blood at baseline and vibration ejected more blood from the muscle compared with horizontal posture (p < 0.01). At 30° tilting deeper drop in tHb and steeper increase in TSI (p < 0.01) were observed when vibration was applied in parallel with the length axis of muscle. It is concluded that the vibration extrudes more blood in 30° head up posture and the vibration applied in parallel with the length axis of the muscle is more effective than orthogonal vibration.

  14. The high level vibration test program

    International Nuclear Information System (INIS)

    Hofmayer, C.H.; Curreri, J.R.; Park, Y.J.; Kato, W.Y.; Kawakami, S.

    1989-01-01

    As part of cooperative agreements between the US and Japan, tests have been performed on the seismic vibration table at the Tadotsu Engineering Laboratory of Nuclear Power Engineering Test Center (NUPEC) in Japan. The objective of the test program was to use the NUPEC vibration table to drive large diameter nuclear power piping to substantial plastic strain with an earthquake excitation and to compare the results with state-of-the-art analysis of the problem. The test model was subjected to a maximum acceleration well beyond what nuclear power plants are designed to withstand. A modified earthquake excitation was applied and the excitation level was increased carefully to minimize the cumulative fatigue damage due to the intermediate level excitations. Since the piping was pressurized, and the high level earthquake excitation was repeated several times, it was possible to investigate the effects of ratchetting and fatigue as well. Elastic and inelastic seismic response behavior of the test model was measured in a number of test runs with an increasing excitation input level up to the limit of the vibration table. In the maximum input condition, large dynamic plastic strains were obtained in the piping. Crack initiation was detected following the second maximum excitation run. Crack growth was carefully monitored during the next two additional maximum excitation runs. The final test resulted in a maximum crack depth of approximately 94% of the wall thickness. The HLVT (high level vibration test) program has enhanced understanding of the behavior of piping systems under severe earthquake loading. As in other tests to failure of piping components, it has demonstrated significant seismic margin in nuclear power plant piping

  15. Alternative measures to observe and record vocal fold vibrations

    NARCIS (Netherlands)

    Schutte, HK; McCafferty, G; Coman, W; Carroll, R

    1996-01-01

    Vocal fold vibration patterns form the basis for the production of vocal sound. Over the years much effort has been spend to optimize the ways to visualize and give a description of these patterns. Before video possibilities became available the description of the patterns was Very time-consuming.

  16. Effects of Whole-Body Vibration Therapy in Patients with Fibromyalgia: A Systematic Literature Review

    Directory of Open Access Journals (Sweden)

    Daniel Collado-Mateo

    2015-01-01

    Full Text Available Objective. To review the literature on the effects of whole-body vibration therapy in patients with fibromyalgia. Design. Systematic literature review. Patients. Patients with fibromyalgia. Methods. An electronic search of the literature in four medical databases was performed to identify studies on whole-body vibration therapy that were published up to the 15th of January 2015. Results. Eight articles satisfied the inclusion and exclusion criteria and were analysed. According to the Dutch CBO guidelines, all selected trials had a B level of evidence. The main outcomes that were measured were balance, fatigue, disability index, health-related quality of life, and pain. Whole-body vibration appeared to improve the outcomes, especially balance and disability index. Conclusion. Whole-body vibration could be an adequate treatment for fibromyalgia as a main therapy or added to a physical exercise programme as it could improve balance, disability index, health-related quality of life, fatigue, and pain. However, this conclusion must be treated with caution because the paucity of trials and the marked differences between existing trials in terms of protocol, intervention, and measurement tools hampered the comparison of the trials.

  17. Remote monitoring of vibrational information in spider webs

    Science.gov (United States)

    Mortimer, B.; Soler, A.; Siviour, C. R.; Vollrath, F.

    2018-06-01

    Spiders are fascinating model species to study information-acquisition strategies, with the web acting as an extension of the animal's body. Here, we compare the strategies of two orb-weaving spiders that acquire information through vibrations transmitted and filtered in the web. Whereas Araneus diadematus monitors web vibration directly on the web, Zygiella x-notata uses a signal thread to remotely monitor web vibration from a retreat, which gives added protection. We assess the implications of these two information-acquisition strategies on the quality of vibration information transfer, using laser Doppler vibrometry to measure vibrations of real webs and finite element analysis in computer models of webs. We observed that the signal thread imposed no biologically relevant time penalty for vibration propagation. However, loss of energy (attenuation) was a cost associated with remote monitoring via a signal thread. The findings have implications for the biological use of vibrations by spiders, including the mechanisms to locate and discriminate between vibration sources. We show that orb-weaver spiders are fascinating examples of organisms that modify their physical environment to shape their information-acquisition strategy.

  18. Vibration analysis of a hydro generator for different operating regimes

    Science.gov (United States)

    Haţiegan, C.; Pădureanu, I.; Jurcu, M.; Nedeloni, M. D.; Hamat, C. O.; Chioncel, C. P.; Trocaru, S.; Vasile, O.; Bădescu, O.; Micliuc, D.; (Filip Nedeloni, L.; Băra, A.; (Barboni Haţiegan, L.

    2017-01-01

    Based on experimental measurements, this paper presents the vibration analysis of a hydro generator that equips a Kaplan hydraulic turbine of a Hydropower plant in Romania. This analysis means vibrations measurement to different operating regimes of the hydro generator respectively before installing it and into operation, namely putting off load mode (unexcited and excited) respectively putting on load mode. By comparing, through the experimental results obtained before and after the operation of hydro aggregates are observed vibrations improvements.

  19. Shunted Piezoelectric Vibration Damping Analysis Including Centrifugal Loading Effects

    Science.gov (United States)

    Min, James B.; Duffy, Kirsten P.; Provenza, Andrew J.

    2011-01-01

    Excessive vibration of turbomachinery blades causes high cycle fatigue problems which require damping treatments to mitigate vibration levels. One method is the use of piezoelectric materials as passive or active dampers. Based on the technical challenges and requirements learned from previous turbomachinery rotor blades research, an effort has been made to investigate the effectiveness of a shunted piezoelectric for the turbomachinery rotor blades vibration control, specifically for a condition with centrifugal rotation. While ample research has been performed on the use of a piezoelectric material with electric circuits to attempt to control the structural vibration damping, very little study has been done regarding rotational effects. The present study attempts to fill this void. Specifically, the objectives of this study are: (a) to create and analyze finite element models for harmonic forced response vibration analysis coupled with shunted piezoelectric circuits for engine blade operational conditions, (b) to validate the experimental test approaches with numerical results and vice versa, and (c) to establish a numerical modeling capability for vibration control using shunted piezoelectric circuits under rotation. Study has focused on a resonant damping control using shunted piezoelectric patches on plate specimens. Tests and analyses were performed for both non-spinning and spinning conditions. The finite element (FE) shunted piezoelectric circuit damping simulations were performed using the ANSYS Multiphysics code for the resistive and inductive circuit piezoelectric simulations of both conditions. The FE results showed a good correlation with experimental test results. Tests and analyses of shunted piezoelectric damping control, demonstrating with plate specimens, show a great potential to reduce blade vibrations under centrifugal loading.

  20. A new vibration isolation bed stage with magnetorheological dampers for ambulance vehicles

    International Nuclear Information System (INIS)

    Chae, Hee Dong; Choi, Seung-Bok

    2015-01-01

    The vibration experienced in an ambulance can lead to secondary injury to a patient and discourage a paramedic from providing emergency care. In this study, with the goal of resolving this problem, a new vibration isolation bed stage associated with magnetorheological (MR) dampers is proposed to ensure ride quality as well as better care for the patient while he/she is being transported. The bed stage proposed in this work can isolate vibrations in the vertical, rolling and pitching directions to reflect the reality that occurs in the ambulance. Firstly, an appropriate-sized MR damper is designed based on the field-dependent rheological properties of MR fluid, and the damping force characteristics of a MR damper are evaluated as a function of the current. A mechanical model of the proposed vibration isolation bed stage is then established to derive the governing equations of motion. Subsequently, a sliding mode controller is formulated to control the vibrations caused from the imposed excitation signals; those signals are directly measured using a real ambulance subjected to bump-and-curve road conditions. Using the controller based on the dynamic motion of the bed stage, the vibration control performance is evaluated in both the vertical and pitch directions. It is demonstrated that the magnitude of the vibration in the patient compartment of the ambulance can be significantly reduced by applying an input current to the MR dampers installed for the new bed stage. (technical note)