WorldWideScience

Sample records for vibration measurement system

  1. Blade Vibration Measurement System

    Science.gov (United States)

    Platt, Michael J.

    2014-01-01

    The Phase I project successfully demonstrated that an advanced noncontacting stress measurement system (NSMS) could improve classification of blade vibration response in terms of mistuning and closely spaced modes. The Phase II work confirmed the microwave sensor design process, modified the sensor so it is compatible as an upgrade to existing NSMS, and improved and finalized the NSMS software. The result will be stand-alone radar/tip timing radar signal conditioning for current conventional NSMS users (as an upgrade) and new users. The hybrid system will use frequency data and relative mode vibration levels from the radar sensor to provide substantially superior capabilities over current blade-vibration measurement technology. This frequency data, coupled with a reduced number of tip timing probes, will result in a system capable of detecting complex blade vibrations that would confound traditional NSMS systems. The hardware and software package was validated on a compressor rig at Mechanical Solutions, Inc. (MSI). Finally, the hybrid radar/tip timing NSMS software package and associated sensor hardware will be installed for use in the NASA Glenn spin pit test facility.

  2. Blade Vibration Measurement System for Unducted Fans

    Science.gov (United States)

    Marscher, William

    2014-01-01

    With propulsion research programs focused on new levels of efficiency and noise reduction, two avenues for advanced gas turbine technology are emerging: the geared turbofan and ultrahigh bypass ratio fan engines. Both of these candidates are being pursued as collaborative research projects between NASA and the engine manufacturers. The high bypass concept from GE Aviation is an unducted fan that features a bypass ratio of over 30 along with the accompanying benefits in fuel efficiency. This project improved the test and measurement capabilities of the unducted fan blade dynamic response. In the course of this project, Mechanical Solutions, Inc. (MSI) collaborated with GE Aviation to (1) define the requirements for fan blade measurements; (2) leverage MSI's radar-based system for compressor and turbine blade monitoring; and (3) develop, validate, and deliver a noncontacting blade vibration measurement system for unducted fans.

  3. Vibration measurements on the Phalanx electro-optical stabilization system

    OpenAIRE

    Schmidt, James E.

    1996-01-01

    Approved for public release; distribution is unlimited The installation of the new PHALANX Surface Mode (PSUM) upgrade will enable the PHALANX to handle a wider range of threats, such as a small boat approaching the ship. The objective of the research described in this thesis was to measure the vibration of a prototype forward looking infrared (FLIR) camera stabilizer system during live-fire tests to evaluate its performance. Uniaxial, triaxial, and angular accelerometers were mounted at 1...

  4. New System for Measuring Impact Vibration on Floor Decking Sheets

    Directory of Open Access Journals (Sweden)

    Carlos Moron

    2014-12-01

    Full Text Available Currently, there is a narrow range of materials that are used as attenuators of impact noise and building vibrations. Materials used in construction, such as elastic materials, must meet the requirement of having very low elastic modulus values. For the determination of the material’s elastic modulus and the acoustic insulation of the same, costly and difficult to execute testing is required. The present paper exposes an alternative system that is simpler and more economic, consisting of a predefined striking device and a sensor able to determine, once the strike is produced, the energy absorbed by the plate. After the impact is produced, the plate undergoes a deformation, which absorbs part of the energy, the remaining part being transmitted to the slab and, at the same time, causing induced airborne noise in the adjoining room. The plate absorbs the power through its own deformation, which is measured with the help of a capacitive sensor. This way, it would be possible to properly define the geometry of the plates, after the execution of the test, and we will try to establish a relationship between the values proposed in this research and the acoustic behavior demanded by the Spanish standards.

  5. Blade Vibration Measurement System for Characterization of Closely Spaced Modes and Mistuning Project

    Data.gov (United States)

    National Aeronautics and Space Administration — There are several ongoing challenges in non-contacting blade vibration and stress measurement systems that can address closely spaced modes and blade-to-blade...

  6. MODELLING AND VIBRATION ANALYSIS OF A ROAD PROFILE MEASURING SYSTEM

    Directory of Open Access Journals (Sweden)

    C. B. Patel

    2010-06-01

    Full Text Available During a vehicle development program, load data representing severe customer usage is required. The dilemma faced by a design engineer during the design process is that during the initial stage, only predicted loads estimated from historical targets are available, whereas the actual loads are available only at the fag end of the process. At the same time, changes required, if any, are easier and inexpensive during the initial stages of the design process whereas they are extremely costly in the latter stages of the process. The use of road profiles and vehicle models to predict the load acting on the whole vehicle is currently being researched. This work hinges on the ability to accurately measure road profiles. The objective of the work is to develop an algorithm, using MATLAB Simulink software, to convert the input signals into measured road profile. The algorithm is checked by the MATLAB Simulink 4 degrees of freedom half car model. To make the whole Simulink model more realistic, accelerometer and laser sensor properties are introduced. The present work contains the simulation of the mentioned algorithm with a half car model and studies the results in distance, time, and the frequency domain.

  7. IEEE 802.11-Based Wireless Sensor System for Vibration Measurement

    Directory of Open Access Journals (Sweden)

    Yutaka Uchimura

    2010-01-01

    Full Text Available Network-based wireless sensing has become an important area of research and various new applications for remote sensing are expected to emerge. One of the promising applications is structural health monitoring of building or civil engineering structure and it often requires vibration measurement. For the vibration measurement via wireless network, time synchronization is indispensable. In this paper, we introduce a newly developed time synchronized wireless sensor network system. The system employs IEEE 802.11 standard-based TSF-counter and sends the measured data with the counter value. TSF based synchronization enables consistency on common clock among different wireless nodes. We consider the scale effect on synchronization accuracy and evaluated the effect by taking beacon collisions into account. The scalability issue by numerical simulations is also studied. This paper also introduces a newly developed wireless sensing system and the hardware and software specifications are introduced. The experiments were conducted in a reinforced concrete building to evaluate synchronization accuracy. The developed system was also applied for a vibration measurement of a 22-story steel structured high rise building. The experimental results showed that the system performed more than sufficiently.

  8. An approach to compatible multiple nonlinear vibrational spectroscopy measurements using a commercial sum frequency generation system.

    Science.gov (United States)

    Ye, Shuji; Wei, Feng

    2011-06-21

    In this paper, we designed a compatible multiple nonlinear vibrational spectroscopy system that can be used for recording infrared-visible sum frequency generation vibrational spectra (SFG) and infrared-infrared-visible three-pump-field four-wave-mixing (IIV-TPF-FWM) spectra using a commercial EKSPLA SFG system. This is the first time IIV-TPF-FWM signals were obtained using picosecond laser pulses. We have applied this compatible system to study the surface and vibrational structures of riboflavin molecules (also known as vitamin B2). The SFG spectra of eight polarization combinations have non-vanishing signals. The signals with incoming s-polarized IR are relatively weaker than the signals with incoming p-polarized IR. Under the double resonant conditions, the SFG signals of the conjugated tricyclic ring are greatly enhanced. For the IIV-TPF-FWM spectra with incoming p-polarized IR, only the sspp and pppp polarization combinations have non-vanishing signals. The IIV-TPF-FWM spectra show a very strong peak at 1585 cm(-1) that is mainly dominated by the N(5)-C(4a) stretch. The method developed in this study will be helpful for researchers, either using a home-built or commercial (EKSPLA) SFG system, to obtain independent and complementary measurements for SFG spectroscopy and more detailed structural information of interfacial molecules.

  9. Mechanical Vibrations Modeling and Measurement

    CERN Document Server

    Schmitz, Tony L

    2012-01-01

    Mechanical Vibrations:Modeling and Measurement describes essential concepts in vibration analysis of mechanical systems. It incorporates the required mathematics, experimental techniques, fundamentals of modal analysis, and beam theory into a unified framework that is written to be accessible to undergraduate students,researchers, and practicing engineers. To unify the various concepts, a single experimental platform is used throughout the text to provide experimental data and evaluation. Engineering drawings for the platform are included in an appendix. Additionally, MATLAB programming solutions are integrated into the content throughout the text. This book also: Discusses model development using frequency response function measurements Presents a clear connection between continuous beam models and finite degree of freedom models Includes MATLAB code to support numerical examples that are integrated into the text narrative Uses mathematics to support vibrations theory and emphasizes the practical significanc...

  10. Vibration Noise Modeling for Measurement While Drilling System Based on FOGs

    Directory of Open Access Journals (Sweden)

    Chunxi Zhang

    2017-10-01

    Full Text Available Aiming to improve survey accuracy of Measurement While Drilling (MWD based on Fiber Optic Gyroscopes (FOGs in the long period, the external aiding sources are fused into the inertial navigation by the Kalman filter (KF method. The KF method needs to model the inertial sensors’ noise as the system noise model. The system noise is modeled as white Gaussian noise conventionally. However, because of the vibration while drilling, the noise in gyros isn’t white Gaussian noise any more. Moreover, an incorrect noise model will degrade the accuracy of KF. This paper developed a new approach for noise modeling on the basis of dynamic Allan variance (DAVAR. In contrast to conventional white noise models, the new noise model contains both the white noise and the color noise. With this new noise model, the KF for the MWD was designed. Finally, two vibration experiments have been performed. Experimental results showed that the proposed vibration noise modeling approach significantly improved the estimated accuracies of the inertial sensor drifts. Compared the navigation results based on different noise model, with the DAVAR noise model, the position error and the toolface angle error are reduced more than 90%. The velocity error is reduced more than 65%. The azimuth error is reduced more than 50%.

  11. Measurement of Vibrations in Two Tower-Typed Assistant Personal Robot Implementations with and without a Passive Suspension System.

    Science.gov (United States)

    Moreno, Javier; Clotet, Eduard; Tresanchez, Marcel; Martínez, Dani; Casanovas, Jordi; Palacín, Jordi

    2017-05-14

    This paper presents the vibration pattern measurement of two tower-typed holonomic mobile robot prototypes: one based on a rigid mechanical structure, and the other including a passive suspension system. Specific to the tower-typed mobile robots is that the vibrations that originate in the lower part of the structure are transmitted and amplified to the higher areas of the tower, causing an unpleasant visual effect and mechanical stress. This paper assesses the use of a suspension system aimed at minimizing the generation and propagation of vibrations in the upper part of the tower-typed holonomic robots. The two robots analyzed were equipped with onboard accelerometers to register the acceleration over the X, Y, and Z axes in different locations and at different velocities. In all the experiments, the amplitude of the vibrations showed a typical Gaussian pattern which has been modeled with the value of the standard deviation. The results have shown that the measured vibrations in the head of the mobile robots, including a passive suspension system, were reduced by a factor of 16.

  12. Measurement of Vibrations in Two Tower-Typed Assistant Personal Robot Implementations with and without a Passive Suspension System

    Directory of Open Access Journals (Sweden)

    Javier Moreno

    2017-05-01

    Full Text Available This paper presents the vibration pattern measurement of two tower-typed holonomic mobile robot prototypes: one based on a rigid mechanical structure, and the other including a passive suspension system. Specific to the tower-typed mobile robots is that the vibrations that originate in the lower part of the structure are transmitted and amplified to the higher areas of the tower, causing an unpleasant visual effect and mechanical stress. This paper assesses the use of a suspension system aimed at minimizing the generation and propagation of vibrations in the upper part of the tower-typed holonomic robots. The two robots analyzed were equipped with onboard accelerometers to register the acceleration over the X, Y, and Z axes in different locations and at different velocities. In all the experiments, the amplitude of the vibrations showed a typical Gaussian pattern which has been modeled with the value of the standard deviation. The results have shown that the measured vibrations in the head of the mobile robots, including a passive suspension system, were reduced by a factor of 16.

  13. Image-based tracking system for vibration measurement of a rotating object using a laser scanning vibrometer

    Science.gov (United States)

    Kim, Dongkyu; Khalil, Hossam; Jo, Youngjoon; Park, Kyihwan

    2016-06-01

    An image-based tracking system using laser scanning vibrometer is developed for vibration measurement of a rotating object. The proposed system unlike a conventional one can be used where the position or velocity sensor such as an encoder cannot be attached to an object. An image processing algorithm is introduced to detect a landmark and laser beam based on their colors. Then, through using feedback control system, the laser beam can track a rotating object.

  14. Image-based tracking system for vibration measurement of a rotating object using a laser scanning vibrometer

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dongkyu, E-mail: akein@gist.ac.kr; Khalil, Hossam; Jo, Youngjoon; Park, Kyihwan, E-mail: khpark@gist.ac.kr [School of Mechatronics, Gwangju Institute of Science and Technology, Buk-gu, Gwangju, South Korea, 500-712 (Korea, Republic of)

    2016-06-28

    An image-based tracking system using laser scanning vibrometer is developed for vibration measurement of a rotating object. The proposed system unlike a conventional one can be used where the position or velocity sensor such as an encoder cannot be attached to an object. An image processing algorithm is introduced to detect a landmark and laser beam based on their colors. Then, through using feedback control system, the laser beam can track a rotating object.

  15. DOWNHOLE VIBRATION MONITORING & CONTROL SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Martin E. Cobern

    2004-08-31

    The deep hard rock drilling environment induces severe vibrations into the drillstring, which can cause reduced rates of penetration (ROP) and premature failure of the equipment. The only current means of controlling vibration under varying conditions is to change either the rotary speed or the weight-on-bit (WOB). These changes often reduce drilling efficiency. Conventional shock subs are useful in some situations, but often exacerbate the problems. The objective of this project is development of a unique system to monitor and control drilling vibrations in a ''smart'' drilling system. This system has two primary elements: (1) The first is an active vibration damper (AVD) to minimize harmful axial, lateral and torsional vibrations. The hardness of this damper will be continuously adjusted using a robust, fast-acting and reliable unique technology. (2) The second is a real-time system to monitor drillstring vibration, and related parameters. This monitor adjusts the damper according to local conditions. In some configurations, it may also send diagnostic information to the surface via real-time telemetry. The AVD is implemented in a configuration using magnetorheological (MR) fluid. By applying a current to the magnetic coils in the damper, the viscosity of the fluid can be changed rapidly, thereby altering the damping coefficient in response to the measured motion of the tool. Phase I of this program entailed modeling and design of the necessary subsystems and design, manufacture and test of a full laboratory prototype. Phase I of the project was completed by the revised end date of May 31, 2004. The objectives of this phase were met, and all prerequisites for Phase II have been completed.

  16. DOWNHOLE VIBRATION MONITORING & CONTROL SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Martin E. Cobern

    2004-10-13

    The deep hard rock drilling environment induces severe vibrations into the drillstring, which can cause reduced rates of penetration (ROP) and premature failure of the equipment. The only current means of controlling vibration under varying conditions is to change either the rotary speed or the weight-on-bit (WOB). These changes often reduce drilling efficiency. Conventional shock subs are useful in some situations, but often exacerbate the problems. The objective of this project is development of a unique system to monitor and control drilling vibrations in a ''smart'' drilling system. This system has two primary elements: (1) The first is an active vibration damper (AVD) to minimize harmful axial, lateral and torsional vibrations. The hardness of this damper will be continuously adjusted using a robust, fast-acting and reliable unique technology. (2) The second is a real-time system to monitor drillstring vibration, and related parameters. This monitor adjusts the damper according to local conditions. In some configurations, it may also send diagnostic information to the surface via real-time telemetry. The AVD is implemented in a configuration using magnetorheological (MR) fluid. By applying a current to the magnetic coils in the damper, the viscosity of the fluid can be changed rapidly, thereby altering the damping coefficient in response to the measured motion of the tool. Phase I of this program entailed modeling and design of the necessary subsystems and design, manufacture and test of a full laboratory prototype. Phase I of the project was completed by the revised end date of May 31, 2004. The objectives of this phase were met, and all prerequisites for Phase II have been completed. The month of June, 2004 was primarily occupied with the writing of the Phase I Final Report, the sole deliverable of Phase I, which will be submitted in the next quarter. Redesign of the laboratory prototype and design of the downhole (Phase II) prototype was

  17. Simple shearing interferometer suitable for vibration measurements

    Science.gov (United States)

    Mihaylova, Emilia M.; Whelan, Maurice P.; Toal, Vincent

    2004-06-01

    Recently there has been an increasing interest in the application of shearography for modal analysis of vibrating objects. New interferometric systems, which are simple and flexible are of interest for engineering and industrial applications. An electronic speckle pattern shearing interferometer (ESPSI) with a very simple shearing device is used for study of vibrations. The shearing device consists of two partially reflective glass plates. The reflection coefficients of the coatings are 0.3 and 0.7 respectively. The distance between the two glass plates controls the size of the shear. The versatility of this simple shearing interferometer is shown. It is demonstrated that the ESPSI system can be used for vibration measurements and phase-shifting implemented for fringe analysis. The results obtained are promising for future applications of the system for modal analysis.

  18. VIBRATION ISOLATION SYSTEM PROBABILITY ANALYSIS

    Directory of Open Access Journals (Sweden)

    Smirnov Vladimir Alexandrovich

    2012-10-01

    Full Text Available The article deals with the probability analysis for a vibration isolation system of high-precision equipment, which is extremely sensitive to low-frequency oscillations even of submicron amplitude. The external sources of low-frequency vibrations may include the natural city background or internal low-frequency sources inside buildings (pedestrian activity, HVAC. Taking Gauss distribution into account, the author estimates the probability of the relative displacement of the isolated mass being still lower than the vibration criteria. This problem is being solved in the three dimensional space, evolved by the system parameters, including damping and natural frequency. According to this probability distribution, the chance of exceeding the vibration criteria for a vibration isolation system is evaluated. Optimal system parameters - damping and natural frequency - are being developed, thus the possibility of exceeding vibration criteria VC-E and VC-D is assumed to be less than 0.04.

  19. Blade Vibration Measurement System for Characterization of Closely Spaced Modes and Mistuning Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Phase I project successfully demonstrated that the advanced non-contacting stress measurement system (NSMS) was able to address closely spaced modes and...

  20. Ground Vibration Measurements at LHC Point 4

    Energy Technology Data Exchange (ETDEWEB)

    Bertsche, Kirk; /SLAC; Gaddi, Andrea; /CERN

    2012-09-17

    Ground vibration was measured at Large Hadron Collider (LHC) Point 4 during the winter shutdown in February 2012. This report contains the results, including power and coherence spectra. We plan to collect and analyze vibration data from representative collider halls to inform specifications for future linear colliders, such as ILC and CLIC. We are especially interested in vibration correlations between final focus lens locations.

  1. DOWNHOLE VIBRATION MONITORING & CONTROL SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Martin E. Cobern

    2006-01-17

    The objective of this program is to develop a system to both monitor the vibration of a bottomhole assembly, and to adjust the properties of an active damper in response to these measured vibrations. Phase I of this program, which entailed modeling and design of the necessary subsystems and design, manufacture and test of a full laboratory prototype, was completed on May 31, 2004. The principal objectives of Phase II are: more extensive laboratory testing, including the evaluation of different feedback algorithms for control of the damper; design and manufacture of a field prototype system; and, testing of the field prototype in drilling laboratories and test wells. Work during this quarter centered on the testing of the rebuilt laboratory prototype and its conversion into a version that will be operable in the drilling tests at TerraTek Laboratories. In addition, formations for use in these tests were designed and constructed, and a test protocol was developed. The change in scope and no-cost extension of Phase II to January, 2006, described in our last report, were approved. The tests are scheduled to be run during the week of January 23, and should be completed before the end of the month.

  2. Specialized data analysis of SSME and advanced propulsion system vibration measurements

    Science.gov (United States)

    Coffin, Thomas; Swanson, Wayne L.; Jong, Yen-Yi

    1993-01-01

    The basic objectives of this contract were to perform detailed analysis and evaluation of dynamic data obtained during Space Shuttle Main Engine (SSME) test and flight operations, including analytical/statistical assessment of component dynamic performance, and to continue the development and implementation of analytical/statistical models to effectively define nominal component dynamic characteristics, detect anomalous behavior, and assess machinery operational conditions. This study was to provide timely assessment of engine component operational status, identify probable causes of malfunction, and define feasible engineering solutions. The work was performed under three broad tasks: (1) Analysis, Evaluation, and Documentation of SSME Dynamic Test Results; (2) Data Base and Analytical Model Development and Application; and (3) Development and Application of Vibration Signature Analysis Techniques.

  3. Modeling Displacement Measurement using Vibration Transducers

    Directory of Open Access Journals (Sweden)

    AGOSTON Katalin

    2014-05-01

    Full Text Available This paper presents some aspects regarding to small displacement measurement using vibration transducers. Mechanical faults, usages, slackness’s, cause different noises and vibrations with different amplitude and frequency against the normal sound and movement of the equipment. The vibration transducers, accelerometers and microphone are used for noise and/or sound and vibration detection with fault detection purpose. The output signal of the vibration transducers or accelerometers is an acceleration signal and can be converted to either velocity or displacement, depending on the preferred measurement parameter. Displacement characteristics are used to indicate when the machine condition has changed. There are many problems using accelerometers to measure position or displacement. It is important to determine displacement over time. To determinate the movement from acceleration a double integration is needed. A transfer function and Simulink model was determinate for accelerometers with capacitive sensing element. Using these models the displacement was reproduced by low frequency input.

  4. DOWNHOLE VIBRATION MONITORING & CONTROL SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Martin E. Cobern

    2005-04-27

    The objective of this program is to develop a system to both monitor the vibration of a bottomhole assembly, and to adjust the properties of an active damper in response to these measured vibrations. Phase I of this program, which entailed modeling and design of the necessary subsystems and design, manufacture and test of a full laboratory prototype, was completed on May 31, 2004. The principal objectives of Phase II are: more extensive laboratory testing, including the evaluation of different feedback algorithms for control of the damper; design and manufacture of a field prototype system; and, testing of the field prototype in drilling laboratories and test wells. As a result of the lower than expected performance of the MR damper noted last quarter, several additional tests were conducted. These dealt with possible causes of the lack of dynamic range observed in the testing: additional damping from the oil in the Belleville springs; changes in properties of the MR fluid; and, residual magnetization of the valve components. Of these, only the last was found to be significant. By using a laboratory demagnetization apparatus between runs, a dynamic range of 10:1 was achieved for the damper, more than adequate to produce the needed improvements in drilling. Additional modeling was also performed to identify a method of increasing the magnetic field in the damper. As a result of the above, several changes were made in the design. Additional circuitry was added to demagnetize the valve as the field is lowered. The valve was located to above the Belleville springs to reduce the load placed upon it and offer a greater range of materials for its construction. In addition, to further increase the field strength, the coils were relocated from the mandrel to the outer housing. At the end of the quarter, the redesign was complete and new parts were on order. The project is approximately three months behind schedule at this time.

  5. Vibration welding system with thin film sensor

    Science.gov (United States)

    Cai, Wayne W; Abell, Jeffrey A; Li, Xiaochun; Choi, Hongseok; Zhao, Jingzhou

    2014-03-18

    A vibration welding system includes an anvil, a welding horn, a thin film sensor, and a process controller. The anvil and horn include working surfaces that contact a work piece during the welding process. The sensor measures a control value at the working surface. The measured control value is transmitted to the controller, which controls the system in part using the measured control value. The thin film sensor may include a plurality of thermopiles and thermocouples which collectively measure temperature and heat flux at the working surface. A method includes providing a welder device with a slot adjacent to a working surface of the welder device, inserting the thin film sensor into the slot, and using the sensor to measure a control value at the working surface. A process controller then controls the vibration welding system in part using the measured control value.

  6. Vibration transfers to measure the performance of vibration isolated platforms on site using background noise excitation

    Science.gov (United States)

    Segerink, F. B.; Korterik, J. P.; Offerhaus, H. L.

    2011-06-01

    This article demonstrates a quick and easy way of quantifying the performance of a vibration-isolated platform. We measure the vibration transfer from floor to table using background noise excitation from the floor. As no excitation device is needed, our setup only requires two identical sensors (in our case, low noise accelerometers), a data acquisition system, and processing software. Background noise excitation from the floor has the additional advantage that any non-linearity in the suspension system relevant to the actual vibration amplitudes will be taken into account. Measurement time is typically a few minutes, depending on the amount of background noise. The (coherent) transfer of the vibrations in the floor to the platform, as well as the (non-coherent) acoustical noise pick-up by the platform are measured. Since we use calibrated sensors, the absolute value of the vibration levels is established and can be expressed in vibration criterion curves. Transfer measurements are shown and discussed for two pneumatic isolated optical tables, a spring suspension system, and a simple foam suspension system.

  7. Low cost subpixel method for vibration measurement

    Energy Technology Data Exchange (ETDEWEB)

    Ferrer, Belen [Department of Civil Engineering, Univ. Alicante P.O. Box, 99, 03080 Alicante (Spain); Espinosa, Julian; Perez, Jorge; Acevedo, Pablo; Mas, David [Inst. of Physics Applied to the Sciences and Technologies, Univ. Alicante P.O. Box, 99, 03080 Alicante (Spain); Roig, Ana B. [Department of Optics, Univ. Alicante P.O. Box, 99, 03080 Alicante (Spain)

    2014-05-27

    Traditional vibration measurement methods are based on devices that acquire local data by direct contact (accelerometers, GPS) or by laser beams (Doppler vibrometers). Our proposal uses video processing to obtain the vibration frequency directly from the scene, without the need of auxiliary targets or devices. Our video-vibrometer can obtain the vibration frequency at any point in the scene and can be implemented with low-cost devices, such as commercial cameras. Here we present the underlying theory and some experiments that support our technique.

  8. Bevel Gearbox Fault Diagnosis using Vibration Measurements

    Directory of Open Access Journals (Sweden)

    Hartono Dennis

    2016-01-01

    Full Text Available The use of vibration measurementanalysis has been proven to be effective for gearbox fault diagnosis. However, the complexity of vibration signals observed from a gearbox makes it difficult to accurately detectfaults in the gearbox. This work is based on a comparative studyof several time-frequency signal processing methods that can be used to extract information from transient vibration signals containing useful diagnostic information. Experiments were performed on a bevel gearbox test rig using vibration measurements obtained from accelerometers. Initially, thediscrete wavelet transform was implementedfor vibration signal analysis to extract the frequency content of signal from the relevant frequency region. Several time-frequency signal processing methods werethen incorporated to extract the fault features of vibration signals and their diagnostic performances were compared. It was shown thatthe Short Time Fourier Transform (STFT could not offer a good time resolution to detect the periodicity of the faulty gear tooth due the difficulty in choosing an appropriate window length to capture the impulse signal. The Continuous Wavelet Transform (CWT, on the other hand, was suitable to detection of vibration transients generated by localized fault from a gearbox due to its multi-scale property. However, both methods still require a thorough visual inspection. In contrast, it was shown from the experiments that the diagnostic method using the Cepstrumanalysis could provide a direct indication of the faulty tooth without the need of a thorough visual inspection as required by CWT and STFT.

  9. Development, implementation, and characterization of a standalone embedded viscosity measurement system based on the impedance spectroscopy of a vibrating wire sensor

    Science.gov (United States)

    Santos, José; Janeiro, Fernando M.; Ramos, Pedro M.

    2015-10-01

    This paper presents an embedded liquid viscosity measurement system based on a vibrating wire sensor. Although multiple viscometers based on different working principles are commercially available, there is still a market demand for a dedicated measurement system capable of performing accurate, fast measurements and requiring little or no operator training for simple systems and solution monitoring. The developed embedded system is based on a vibrating wire sensor that works by measuring the impedance response of the sensor, which depends on the viscosity and density of the liquid in which the sensor is immersed. The core of the embedded system is a digital signal processor (DSP) which controls the waveform generation and acquisitions for the measurement of the impedance frequency response. The DSP also processes the acquired waveforms and estimates the liquid viscosity. The user can interact with the measurement system through a keypad and an LCD or through a computer with a USB connection for data logging and processing. The presented system is tested on a set of viscosity standards and the estimated values are compared with the standard manufacturer specified viscosity values. A stability study of the measurement system is also performed.

  10. Measuring Spatial Vibration Using Continuous Laser Scanning

    Directory of Open Access Journals (Sweden)

    Izhak Bucher

    2000-01-01

    Full Text Available This paper presents a method, which allows one to use a single point laser vibrometer as a continuous sensor measuring along a line or a 2D surface. The mathematical background of the curve-fitting procedure and the necessary signal processing allowing one to extract the amplitude of sinusoidal vibration are discussed. In the current work, use has been made with an ordinary laser interferometer equipped with glavanometer-based x, y mirros. This system is not designed for continuous scanning therefore some effort needs to be spent in order to overcome the dynamical characteristics of this system. The potential of such an instrument, as demonstrated in this work, may encourage the development of mechanically better scanning devices.

  11. Vibration Measurements on the Frejlev Mast

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Hansen, Lars Pilegaard

    The present report presents full-scale measurements on the Frejlev-mast which is a 200 meter hight guyed steel mast located 10 km. from Aalborg. The goal of the research was to investigate various techniques which could be used to estimate cable forces from vibration measurements. The cables...

  12. Downhole Vibration Monitoring and Control System

    Energy Technology Data Exchange (ETDEWEB)

    Martin E. Cobern

    2007-09-30

    The objective of this program is to develop a system to both monitor the vibration of a bottomhole assembly, and to adjust the properties of an active damper in response to these measured vibrations. The key feature of this system is its use of a magnetorheological fluid (MRF) to allow the damping coefficient to be changed extensively, rapidly and reversibly without the use of mechanical valves, but only by the application of a current. Phase I of this program, which entailed modeling and design of the necessary subsystems and design, manufacture and test of a full laboratory prototype, was completed on May 31, 2004. Much of the effort was devoted to the design and testing of the MRF damper, itself. The principal objectives of Phase II were: more extensive laboratory testing, including the evaluation of different feedback algorithms for control of the damper; design and manufacture of a field prototype system; and, testing of the field prototype in a drilling laboratory. Phase II concluded on January 31, 2006, and a final report was issued. Work on Phase III of the project began during the first quarter, 2006, with the objectives of building precommercial prototypes, testing them in a drilling laboratory and the field; developing and implementing a commercialization plan. All of these have been accomplished. The Downhole Vibration Monitoring & Control System (DVMCS) prototypes have been successfully proven in testing at the TerraTek drilling facility and at the Rocky Mountain Oilfield Test Center (RMOTC.) Based on the results of these tests, we have signed a definitive development and distribution agreement with Smith, and commercial deployment is underway. This current version of the DVMCS monitors and controls axial vibrations. Due to time and budget constraints of this program, it was not possible to complete a system that would also deal with lateral and torsional (stick-slip) vibrations as originally planned; however, this effort is continuing without DOE

  13. Optical Measurement of Cable and String Vibration

    Directory of Open Access Journals (Sweden)

    Y. Achkire

    1998-01-01

    Full Text Available This paper describes a non contacting measurement technique for the transverse vibration of small cables and strings using an analog position sensing detector. On the one hand, the sensor is used to monitor the cable vibrations of a small scale mock-up of a cable structure in order to validate the nonlinear cable dynamics model. On the other hand, the optical sensor is used to evaluate the performance of an active tendon control algorithm with guaranteed stability properties. It is demonstrated experimentally, that a force feedback control law based on a collocated force sensor measuring the tension in the cable is feasible and provides active damping in the cable.

  14. Metrology of vibration measurements by laser techniques

    Science.gov (United States)

    von Martens, Hans-Jürgen

    2008-06-01

    Metrology as the art of careful measurement has been understood as uniform methodology for measurements in natural sciences, covering methods for the consistent assessment of experimental data and a corpus of rules regulating application in technology and in trade and industry. The knowledge, methods and tools available for precision measurements can be exploited for measurements at any level of uncertainty in any field of science and technology. A metrological approach to the preparation, execution and evaluation (including expression of uncertainty) of measurements of translational and rotational motion quantities using laser interferometer methods and techniques will be presented. The realization and dissemination of the SI units of motion quantities (vibration and shock) have been based on laser interferometer methods specified in international documentary standards. New and upgraded ISO standards are reviewed with respect to their suitability for ensuring traceable vibration measurements and calibrations in an extended frequency range of 0.4 Hz to higher than 100 kHz. Using adequate vibration exciters to generate sufficient displacement or velocity amplitudes, the upper frequency limits of the laser interferometer methods specified in ISO 16063-11 for frequencies <= 10 kHz can be expanded to 100 kHz and beyond. A comparison of different methods simultaneously used for vibration measurements at 100 kHz will be demonstrated. A statistical analysis of numerous experimental results proves the highest accuracy achievable currently in vibration measurements by specific laser methods, techniques and procedures (i.e. measurement uncertainty 0.05 % at frequencies <= 10 kHz, <= 1 % up to 100 kHz).

  15. VIBRATION SENSORS AND MICROELECTROMECHANICAL SYSTEM FOR MOBILE DEVICES SUCH AS ANALOGS, FOR EVALUATION OF VIBRATION OF ROTARY MACHINES

    Directory of Open Access Journals (Sweden)

    2016-01-01

    Full Text Available The paper carried out a comparison of vibration sensors used to measure the vibration condition units with gas turbine engines, with motion sensors, microelectromechanical systems used in modern mobile devices (for example, devices on the platform "Android". It provides opinions on the possibility of assessment of vibration, using sensors of mobile devices.

  16. A Vibrating Wire System For Quadrupole Fiducialization

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, Zachary

    2010-12-13

    A vibrating wire system is being developed to fiducialize the quadrupoles between undulator segments in the LCLS. This note provides a detailed analysis of the system. The LCLS will have quadrupoles between the undulator segments to keep the electron beam focused. If the quadrupoles are not centered on the beam axis, the beam will receive transverse kicks, causing it to deviate from the undulator axis. Beam based alignment will be used to move the quadrupoles onto a straight line, but an initial, conventional alignment must place the quadrupole centers on a straight line to 100 {micro}m. In the fiducialization step of the initial alignment, the position of the center of the quadrupole is measured relative to tooling balls on the outside of the quadrupole. The alignment crews then use the tooling balls to place the magnet in the tunnel. The required error on the location of the quadrupole center relative to the tooling balls must be less than 25 {micro}m. In this note, we analyze a system under construction for the quadrupole fiducialization. The system uses the vibrating wire technique to position a wire onto the quadrupole magnetic axis. The wire position is then related to tooling balls using wire position detectors. The tooling balls on the wire position detectors are finally related to tooling balls on the quadrupole to perform the fiducialization. The total 25 {micro}m fiducialization error must be divided between these three steps. The wire must be positioned onto the quadrupole magnetic axis to within 10 {micro}m, the wire position must be measured relative to tooling balls on the wire position detectors to within 15 {micro}m, and tooling balls on the wire position detectors must be related to tooling balls on the quadrupole to within 10 {micro}m. The techniques used in these three steps will be discussed. The note begins by discussing various quadrupole fiducialization techniques used in the past and discusses why the vibrating wire technique is our method

  17. Damage Detection by Laser Vibration Measurement

    Directory of Open Access Journals (Sweden)

    Elena Daniela Birdeanu

    2008-10-01

    Full Text Available The technique based on the vibration analysis by scanning laser Doppler vibrometer is one of the most promising, allowing to extract also small defect and to directly correlate it to local dynamic stiffness and structural integrity. In fact, the measurement capabilities of vibrometers, such as sensitivity, accuracy and reduced intrusively, allow having a very powerful instrument in diagnostic.

  18. Development of a phase-sensitive Fourier domain optical coherence tomography system to measure mouse organ of Corti vibrations in two cochlear turns

    Energy Technology Data Exchange (ETDEWEB)

    Ramamoorthy, Sripriya [Oregon Hearing Research Center, Oregon Health & Science University, Portland, Oregon (United States); Zhang, Yuan; Jacques, Steven [Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon (United States); Petrie, Tracy; Wang, Ruikang [Department of Bioengineering, University of Washington, Seattle, Washington (United States); Nuttall, Alfred L. [Oregon Hearing Research Center, Oregon Health & Science University, Portland, Oregon (United States); Kresge Hearing Research Institute, The University of Michigan, Ann Arbor, Michigan (United States)

    2015-12-31

    In this study, we have developed a phase-sensitive Fourier-domain optical coherence tomography system to simultaneously measure the in vivo inner ear vibrations in the hook area and second turn of the mouse cochlea. This technical development will enable measurement of intra-cochlear distortion products at ideal locations such as the distortion product generation site and reflection site. This information is necessary to un-mix the complex mixture of intra-cochlear waves comprising the DPOAE and thus leads to the non-invasive identification of the local region of cochlear damage.

  19. Noise and Vibration Modeling for Anti-Lock Brake Systems

    Science.gov (United States)

    Zhan, Wei

    A new methodology is proposed for noise and vibration analysis for Anti-Lock Brake Systems (ABS). First, a correlation between noise and vibration measurement data and simulation results need to be established. This relationship allows the engineers to focus on modeling and simulation instead of noise and vibration testing. A comprehensive ABS model is derived for noise and vibration study. The model can be set up to do different types of simulations for noise and vibration analysis. If some data is available from actual testing, then the test data can be easily imported into the model as an input to replace the corresponding part in the model. It is especially useful when the design needs to be modified, or trade-off between ABS performance and noise and vibration is necessary. The model can greatly reduce the time to market for ABS products. It also makes system level optimization possible.

  20. Emitted vibration measurement device and method

    Science.gov (United States)

    Gisler, G. L.

    1986-10-01

    This invention is directed to a method and apparatus for measuring emitted vibrational forces produced by a reaction wheel assembly due to imbalances, misalignment, bearing defects and the like. The apparatus includes a low mass carriage supported on a large mass base. The carriage is in the form of an octagonal frame having an opening which is adapted for receiving the reaction wheel assembly supported thereon by means of a mounting ring. The carriage is supported on the base by means of air bearings which support the carriage in a generally frictionless manner when supplied with compressed air from a source. A plurality of carriage brackets and a plurality of base blocks provided for physical coupling of the base and carriage. The sensing axes of the load cells are arranged generally parallel to the base and connected between the base and carriage such that all of the vibrational forces emitted by the reaction wheel assembly are effectively transmitted through the sensing axes of the load cells. In this manner, a highly reliable and accurate measurment of the vibrational forces of the reaction wheel assembly can be had. The output signals from the load cells are subjected to a dynamical analyzer which analyzes and identifies the rotor and spin bearing components which are causing the vibrational forces.

  1. Enriched vibrational resonance in certain discrete systems

    Indian Academy of Sciences (India)

    system [10], bistable systems [1,11,12], time-delayed system [13] and also in a few low- dimensional maps [14] due to its ... the driving force, has attracted much attention in recent years. The study of vibrational ... odic trigonometric functions, one can expect the recurrence of multiple resonant peaks due to vibrational ...

  2. Reconstruction of Input Excitation Acting on Vibration Isolation System

    Directory of Open Access Journals (Sweden)

    Pan Zhou

    2016-01-01

    Full Text Available Vibration isolation systems are widely employed in automotive, marine, aerospace, and other engineering fields. Accurate input forces are of great significance for mechanical design, vibration prediction, and structure modification and optimization. One-stage vibration isolation system including engine, vibration isolators, and flexible supporting structure is modeled theoretically in this paper. Input excitation acting on the vibration isolation system is reconstructed using dynamic responses measured on engine and supporting structure under in-suit condition. The reconstructed forces reveal that dynamic responses on rigid body are likely to provide more accurate estimation results. Moreover, in order to improve the accuracy of excitation reconstructed by dynamic responses on flexible supporting structure, auto/cross-power spectral density function is utilized to reduce measurement noise.

  3. Novel Non-Intrusive Vibration Monitoring System for Turbopumps Project

    Data.gov (United States)

    National Aeronautics and Space Administration — AI Signal Research, Inc. proposes to develop a Non-Intrusive Vibration Measurement System (NI-VMS) for turbopumps which will provide effective on-board/off-board...

  4. Actively controlled vibration welding system and method

    Science.gov (United States)

    Cai, Wayne W.; Kang, Bongsu; Tan, Chin-An

    2013-04-02

    A vibration welding system includes a controller, welding horn, an active material element, and anvil assembly. The assembly may include an anvil body connected to a back plate and support member. The element, e.g., a piezoelectric stack or shape memory alloy, is positioned with respect to the assembly. The horn vibrates in a desirable first direction to form a weld on a work piece. The element controls any vibrations in a second direction by applying calibrated response to the anvil body in the second direction. A method for controlling undesirable vibrations in the system includes positioning the element with respect to the anvil assembly, connecting the anvil body to the support member through the back plate, vibrating the horn in a desirable first direction, and transmitting an input signal to the element to control vibration in an undesirable second direction.

  5. Enriched vibrational resonance in certain discrete systems

    Indian Academy of Sciences (India)

    We wish to report the occurrence of vibrational resonance in certain discrete systems like sine square map and sine circle map, in a unique fashion, comprising of multiple resonant peaks which pave the way for enrichment. As the systems of our choice are capable of exhibiting vibrational resonance behaviour unlike the ...

  6. Entropy for Mechanically Vibrating Systems

    Science.gov (United States)

    Tufano, Dante

    The research contained within this thesis deals with the subject of entropy as defined for and applied to mechanically vibrating systems. This work begins with an overview of entropy as it is understood in the fields of classical thermodynamics, information theory, statistical mechanics, and statistical vibroacoustics. Khinchin's definition of entropy, which is the primary definition used for the work contained in this thesis, is introduced in the context of vibroacoustic systems. The main goal of this research is to to establish a mathematical framework for the application of Khinchin's entropy in the field of statistical vibroacoustics by examining the entropy context of mechanically vibrating systems. The introduction of this thesis provides an overview of statistical energy analysis (SEA), a modeling approach to vibroacoustics that motivates this work on entropy. The objective of this thesis is given, and followed by a discussion of the intellectual merit of this work as well as a literature review of relevant material. Following the introduction, an entropy analysis of systems of coupled oscillators is performed utilizing Khinchin's definition of entropy. This analysis develops upon the mathematical theory relating to mixing entropy, which is generated by the coupling of vibroacoustic systems. The mixing entropy is shown to provide insight into the qualitative behavior of such systems. Additionally, it is shown that the entropy inequality property of Khinchin's entropy can be reduced to an equality using the mixing entropy concept. This equality can be interpreted as a facet of the second law of thermodynamics for vibroacoustic systems. Following this analysis, an investigation of continuous systems is performed using Khinchin's entropy. It is shown that entropy analyses using Khinchin's entropy are valid for continuous systems that can be decomposed into a finite number of modes. The results are shown to be analogous to those obtained for simple oscillators

  7. Induced Current Measurement of Rod Vibrations

    Science.gov (United States)

    Sawicki, Charles A.

    2003-01-01

    The longitudinal normal modes of vibration of rods are similar to the modes seen in pipes open at both ends. A maximum of particle displacement exists at both ends and an integral number (n) of half wavelengths fit into the rod length. The frequencies fn of the normal modes is given by Eq. (1), where L is the rod length and V is the wave velocity: fn = nV/2L. Many methods have been used to measure the velocity of these waves. The Kundt's tube method commonly used in student labs will not be discussed here. A simpler related method has been described by Nicklin.2 Kluk3 measured velocities in a wide range of materials using a frequency counter and microphone to study sounds produced by impacts. Several earlier methods4,5 used phonograph cartridges complete with needles to detect vibrations in excited rods. A recent interesting experiment6 used wave-induced changes in magnetization produced in an iron rod by striking one end. The travel time, measured as the impulsive wave reflects back and forth, gave the wave velocity for the iron rod. In the method described here, a small magnet is attached to the rod with epoxy, and vibrations are detected using the current induced in a few loops of wire. The experiment is simple and yields very accurate velocity values.

  8. Uncertainty Quantification for Monitoring of Civil Structures from Vibration Measurements

    Science.gov (United States)

    Döhler, Michael; Mevel, Laurent

    2014-05-01

    Health Monitoring of civil structures can be performed by detecting changes in the modal parameters of a structure, or more directly in the measured vibration signals. For a continuous monitoring the excitation of a structure is usually ambient, thus unknown and assumed to be noise. Hence, all estimates from the vibration measurements are realizations of random variables with inherent uncertainty due to (unknown) process and measurement noise and finite data length. In this talk, a strategy for quantifying the uncertainties of modal parameter estimates from a subspace-based system identification approach is presented and the importance of uncertainty quantification in monitoring approaches is shown. Furthermore, a damage detection method is presented, which is based on the direct comparison of the measured vibration signals without estimating modal parameters, while taking the statistical uncertainty in the signals correctly into account. The usefulness of both strategies is illustrated on data from a progressive damage action on a prestressed concrete bridge. References E. Carden and P. Fanning. Vibration based condition monitoring: a review. Structural Health Monitoring, 3(4):355-377, 2004. M. Döhler and L. Mevel. Efficient multi-order uncertainty computation for stochastic subspace identification. Mechanical Systems and Signal Processing, 38(2):346-366, 2013. M. Döhler, L. Mevel, and F. Hille. Subspace-based damage detection under changes in the ambient excitation statistics. Mechanical Systems and Signal Processing, 45(1):207-224, 2014.

  9. Vibration measurement with nonlinear converter in the presence of noise

    Science.gov (United States)

    Mozuras, Almantas

    2017-10-01

    Conventional vibration measurement methods use the linear properties of physical converters. These methods are strongly influenced by nonlinear distortions, because ideal linear converters are not available. Practically, any converter can be considered as a linear one, when an output signal is very small. However, the influence of noise increases significantly and signal-to-noise ratio decreases at lower signals. When the output signal is increasing, the nonlinear distortions are also augmenting. If the wide spectrum vibration is measured, conventional methods face a harmonic distortion as well as intermodulation effects. Purpose of this research is to develop a measurement method of wide spectrum vibration by using a converter described by a nonlinear function of type f(x), where x =x(t) denotes the dependence of coordinate x on time t due to the vibration. Parameter x(t) describing the vibration is expressed as Fourier series. The spectral components of the converter output f(x(t)) are determined by using Fourier transform. The obtained system of nonlinear equations is solved using the least squares technique that permits to find x(t) in the presence of noise. This method allows one to carry out the absolute or relative vibration measurements. High resistance to noise is typical for the absolute vibration measurement, but it is necessary to know the Taylor expansion coefficients of the function f(x). If the Taylor expansion is not known, the relative measurement of vibration parameters is also possible, but with lower resistance to noise. This method allows one to eliminate the influence of nonlinear distortions to the measurement results, and consequently to eliminate harmonic distortion and intermodulation effects. The use of nonlinear properties of the converter for measurement gives some advantages related to an increased frequency range of the output signal (consequently increasing the number of equations) that allows one to decrease the noise influence on

  10. Passively damped vibration welding system and method

    Science.gov (United States)

    Tan, Chin-An; Kang, Bongsu; Cai, Wayne W.; Wu, Tao

    2013-04-02

    A vibration welding system includes a controller, welding horn, an anvil, and a passive damping mechanism (PDM). The controller generates an input signal having a calibrated frequency. The horn vibrates in a desirable first direction at the calibrated frequency in response to the input signal to form a weld in a work piece. The PDM is positioned with respect to the system, and substantially damps or attenuates vibration in an undesirable second direction. A method includes connecting the PDM having calibrated properties and a natural frequency to an anvil of an ultrasonic welding system. Then, an input signal is generated using a weld controller. The method includes vibrating a welding horn in a desirable direction in response to the input signal, and passively damping vibration in an undesirable direction using the PDM.

  11. Testing of Tools for Measurement Vibration in Car

    Directory of Open Access Journals (Sweden)

    Martin JURÁNEK

    2009-06-01

    Full Text Available This work is specialized on testing of several sensors for measurement vibration, that be applicable for measurement on vehicles also behind running. These sensors are connected to PC and universal mobile measuring system cRIO (National Instruments with analog I/O module for measurement vibration, that is described in diploma work: [JURÁNEK 2008]. This system has upped mechanical and heat imunity, small proportions and is therefore acceptable also measurement behind ride vehicles. It compose from two head parts. First is measuring part, composite from instruments cRIO. First part is controlled and monitored by PDA there is connected of wireless (second part hereof system. To system cRIO is possible connect sensors by four BNC connector or after small software change is possible add sensor to other analog modul cRIO. Here will be test several different types of accelerometers (USB sensor company Phidgets, MEMS sensor company Freescale, piezoresistiv and Delta Tron accelerometers company Brüel&Kjær. These sensors is attach to stiff board, board is attach to vibrator and excite by proper signal. Testing will realized with reference to using for measurement in cars. Results will be compared with professional signal analyser LabShop pulse from company Brüel&Kjær.

  12. Decongestion of methylene spectra in biological and non-biological systems using picosecond 2DIR spectroscopy measuring electron-vibration vibration coupling

    Science.gov (United States)

    Donaldson, Paul M.; Guo, Rui; Fournier, Frederic; Gardner, Elizabeth M.; Gould, Ian R.; Klug, David R.

    2008-06-01

    Methylene is found in the repeat units of many polymers including proteins. In some cases it appears to be a useful reporter of variation in local environment whilst in other contexts average behaviour seems to dominate. In this paper we apply a particular 2DIR technique to a range of systems containing methylene groups, showing that mode frequencies, linewidths and splittings can be easily extracted even when the infrared absorption bands are too congested to allow reliable analysis. 2DIR spectra of polyethylene and several liquid alkanes are compared and it is shown for the case of L-arginine that the methylene scissor modes are split and that this can be resolved by tracking the 2DIR spectrum as a function of time. Calculations from first principles reveal that for most of the methylene modes studied, electrical anharmonicity is the dominant contributor to the 2DIR cross-peak intensity, with the mechanical anharmonicity making only a small contribution.

  13. Modal and Vibration Analysis of Filter System in Petrochemical Plant

    Directory of Open Access Journals (Sweden)

    Zhongchi Liu

    2017-01-01

    Full Text Available Filter systems are widely used in petrochemical plants for removing solid impurities from hydrocarbon oils. The backwash is the cleaning process used to remove the impurities on the sieves of the filters without a need to interrupt the operation of the entire system. This paper presents a case study based on the actual project of a filter system in a petrochemical plant, to demonstrate the significant effect of vibration on the structural integrity of piping. The induced vibration had led to the structural fatigue failure of the pipes connecting the filter system. A preliminary assessment suggested that the vibrations are caused by the operation of backwashing of the filter system. A process for solving the vibration problem based on the modal analysis of the filter system using the commercial finite element software for simulation is therefore proposed. The computed natural frequencies of the system and the vibration data measured on site are assessed based on the resonance effect of the complete system including the piping connected to the filters. Several approaches are proposed to adjust the natural frequencies of the system in such a way that an optimal and a reasonable solution for solving the vibration problem is obtained.

  14. Customized DSP-based vibration measurement for wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    LaWhite, N.E.; Cohn, K.E. [Second Wind Inc., Somerville, MA (United States)

    1996-12-31

    As part of its Advanced Distributed Monitoring System (ADMS) project funded by NREL, Second Wind Inc. is developing a new vibration measurement system for use with wind turbines. The system uses low-cost accelerometers originally designed for automobile airbag crash-detection coupled with new software executed on a Digital Signal Processor (DSP) device. The system is envisioned as a means to monitor the mechanical {open_quotes}health{close_quotes} of the wind turbine over its lifetime. In addition the system holds promise as a customized emergency vibration detector. The two goals are very different and it is expected that different software programs will be executed for each function. While a fast Fourier transform (FFT) signature under given operating conditions can yield much information regarding turbine condition, the sampling period and processing requirements make it inappropriate for emergency condition monitoring. This paper briefly reviews the development of prototype DSP and accelerometer hardware. More importantly, it reviews our work to design prototype vibration alarm filters. Two-axis accelerometer test data from the experimental FloWind vertical axis wind turbine is analyzed and used as a development guide. Two levels of signal processing are considered. The first uses narrow band pre-processing filters at key fundamental frequencies such as the 1P, 2P and 3P. The total vibration energy in each frequency band is calculated and evaluated as a possible alarm trigger. In the second level of signal processing, the total vibration energy in each frequency band is further decomposed using the two-axis directional information. Directional statistics are calculated to differentiate between linear translations and circular translations. After analyzing the acceleration statistics for normal and unusual operating conditions, the acceleration processing system described could be used in automatic early detection of fault conditions. 9 figs.

  15. System for automatic recording of vibration parameters

    Science.gov (United States)

    Fedorov, B. I.

    1984-02-01

    A system for automatically recording vibration parameters consists of 20 accelerometer channels with signal transducers followed by low-pass filters, and one frequency-to-voltage conversion channel. A voltmeter is connected to each channel through a commutator switch and so is a timer which feeds the voltmeter readings to a transcriber for printout and alphanumeric documentation. The printer is also connected to the commutator switch through a device which matches recorded data with the corresponding pickup channel. This SAR-21 system was designed with maximum use of series produced components. Its measurement ranges are 0-600 m/sq acceleration and 20 to 2500 Hz frequency. The recording time is 0.04 s for any one parameter and the error of the system does not exceed + or - 2%.

  16. Vibration measurements on timber frame floors

    NARCIS (Netherlands)

    Kuilen, J.W.G. van de; Oosterhout, G.P.C. van; Donkervoort, R.

    1998-01-01

    In the design of lightweight floors vibrational aspects become more and more important. With the foreseen introduction of Eurocode 5 the vibration of timber floors becomes a part of the design for serviceability. Design rules for the vibrational behaviour are given in Eurocode 5. The first rule is

  17. Vibrations and stability of complex beam systems

    CERN Document Server

    Stojanović, Vladimir

    2015-01-01

     This book reports on solved problems concerning vibrations and stability of complex beam systems. The complexity of a system is considered from two points of view: the complexity originating from the nature of the structure, in the case of two or more elastically connected beams; and the complexity derived from the dynamic behavior of the system, in the case of a damaged single beam, resulting from the harm done to its simple structure. Furthermore, the book describes the analytical derivation of equations of two or more elastically connected beams, using four different theories (Euler, Rayleigh, Timoshenko and Reddy-Bickford). It also reports on a new, improved p-version of the finite element method for geometrically nonlinear vibrations. The new method provides more accurate approximations of solutions, while also allowing us to analyze geometrically nonlinear vibrations. The book describes the appearance of longitudinal vibrations of damaged clamped-clamped beams as a result of discontinuity (damage). It...

  18. Field measurement of wind pressure and wind-induced vibration of large-span spatial cable-truss system under strong wind or typhoon

    Directory of Open Access Journals (Sweden)

    ZHANG Zhihong

    2013-10-01

    Full Text Available In order to ensure wind-resistance safety of large-span pre-stressed flexible system in southeast coast area of China,and to prepare something for revising of current codes of practice or technical standards,the present paper conducts field measurement of wind pressure and wind-induced vibration of a practical and typical large-span spatial cable-truss system-lunar stadium in Yueqing city.Wind loading and wind effects on full-scale structure under strong wind or typhoon in real architectural environment can be obtained directly and effectively.Field measurement is the best way to investigate the wind loading property,wind effects,and wind-structure interactions of large-span flexible system.Measured data will be highly valuable for scientific research and practical design.On the other hand,it also provides the basis of wind-resistance safety design of this kind of tension structures.If any creative development,it would dramatically improve the research level of large-span pre-stressed flexible system in our country.

  19. Remote vibration monitoring system using wireless internet data transfer

    Science.gov (United States)

    Lemke, John

    2000-06-01

    Vibrations from construction activities can affect infrastructure projects in several ways. Within the general vicinity of a construction site, vibrations can result in damage to existing structures, disturbance to people, damage to sensitive machinery, and degraded performance of precision instrumentation or motion sensitive equipment. Current practice for monitoring vibrations in the vicinity of construction sites commonly consists of measuring free field or structural motions using velocity transducers connected to a portable data acquisition unit via cables. This paper describes an innovative way to collect, process, transmit, and analyze vibration measurements obtained at construction sites. The system described measures vibration at the sensor location, performs necessary signal conditioning and digitization, and sends data to a Web server using wireless data transmission and Internet protocols. A Servlet program running on the Web server accepts the transmitted data and incorporates it into a project database. Two-way interaction between the Web-client and the Web server is accomplished through the use of a Servlet program and a Java Applet running inside a browser located on the Web client's computer. Advantages of this system over conventional vibration data logging systems include continuous unattended monitoring, reduced costs associated with field data collection, instant access to data files and graphs by project team members, and the ability to remotely modify data sampling schemes.

  20. Interferometer with bismuth silicon oxide crystal for vibration measurement

    Science.gov (United States)

    Zhang, Bin; Feng, Qibo; Liang, Yunfeng

    2016-09-01

    We present a small-amplitude, high-frequency vibration measurement system. This system is based on the reflective holographic grating in a crystal of bismuth silicon oxide without applying an external electric field. A quarter-wave plate is applied in the reference beam path, with a polarizer after the crystal, to fulfill the quadrature condition when no electric field is applied to the crystal. A reflection configuration is used to obtain a good overlapping of the interference beams, which increases the beam coupling. The factors that affect the diffraction efficiency, including the signal-to-reference-beam intensity ratio and the recording angle, has been investigated. The experimental results coincide with the theoretical results, and the optimal conditions are obtained. The results of comparisons of our system with the vibrometer TEMPO show that the nanometer vibrations of a piezoelectric transducer can be reliably detected.

  1. Measurement of Mechatronic Property of Biological Gel with Micro-Vibrating Electrode at Ultrasonic Frequency

    Directory of Open Access Journals (Sweden)

    Shigehiro Hashimoto

    2008-10-01

    Full Text Available A measurement system has been designed with a micro-vibrating electrode at ultrasonic frequency to measure local impedance of biological gel in vitro. The designed system consists of two electrodes, where one of the electrodes vibrates with a piezoelectric actuator. The component of variation at impedance between two electrodes with vibration of one electrode is analyzed at the corresponding spectrum. The manufactured system was applied to measure impedance of a physiological saline solution, a potassium chloride solution, a dextran aqueous solution, and an egg. The experimental results show that the designed system is effective to measure local mechatronic property of biological gel.

  2. High-speed optical measurement for the drumhead vibration

    Science.gov (United States)

    Zhang, Qican; Su, Xianyu

    2005-04-01

    In this paper, a high-speed optical measurement for the vibrating drumhead is presented and verified by experiment. A projected sinusoidal fringe pattern on the measured drumhead is dynamically deformed with the vibration of the membrane and grabbed by a high-speed camera. The shape deformation of the drumhead at each sampling instant can be recovered from this sequence of obtained fringe patterns. The vibration of the membrane of a Chinese drum has been measured with a high speed sampling rate (1,000 fps) and a standard deviation (0.075 mm). The restored vibration of the drumhead is also presented in an animation.

  3. Camera vibration measurement using blinking light-emitting diode array.

    Science.gov (United States)

    Nishi, Kazuki; Matsuda, Yuichi

    2017-01-23

    We present a new method for measuring camera vibrations such as camera shake and shutter shock. This method successfully detects the vibration trajectory and transient waveforms from the camera image itself. We employ a time-varying pattern as the camera test chart over the conventional static pattern. This pattern is implemented using a specially developed blinking light-emitting-diode array. We describe the theoretical framework and pattern analysis of the camera image for measuring camera vibrations. Our verification experiments show that our method has a detection accuracy and sensitivity of 0.1 pixels, and is robust against image distortion. Measurement results of camera vibrations in commercial cameras are also demonstrated.

  4. Vibration transfers to measure the performance of vibration isolated platforms on site using background noise excitation

    NARCIS (Netherlands)

    Segerink, Franciscus B.; Korterik, Jeroen P.; Offerhaus, Herman L.

    2011-01-01

    This article demonstrates a quick and easy way of quantifying the performance of a vibration-isolated platform. We measure the vibration transfer from floor to table using background noise excitation from the floor. As no excitation device is needed, our setup only requires two identical sensors (in

  5. A General Purpose Digital System for Field Vibration Testing

    DEFF Research Database (Denmark)

    Brincker, Rune; Larsen, Jesper Abildgaard; Ventura, Carlos

    2007-01-01

    This paper describes the development and concept implementation of a highly sensitive digital recording system for seismic applications and vibration measurements on large Civil Engineering structures. The system is based on highly sensitive motion transducers that have been used by seismologists...

  6. Lambda-matrices and vibrating systems

    CERN Document Server

    Lancaster, Peter; Stark, M; Kahane, J P

    1966-01-01

    Lambda-Matrices and Vibrating Systems presents aspects and solutions to problems concerned with linear vibrating systems with a finite degrees of freedom and the theory of matrices. The book discusses some parts of the theory of matrices that will account for the solutions of the problems. The text starts with an outline of matrix theory, and some theorems are proved. The Jordan canonical form is also applied to understand the structure of square matrices. Classical theorems are discussed further by applying the Jordan canonical form, the Rayleigh quotient, and simple matrix pencils with late

  7. Design of Wind Turbine Vibration Monitoring System

    Directory of Open Access Journals (Sweden)

    Shoubin Wang

    2013-04-01

    Full Text Available In order to ensure safety of wind turbine operation and to reduce the occurrence of faults as well as to improve the reliability of wind turbine operation, a vibration monitoring for wind turbine is developed. In this paper, it analyses the enlargement of all the parts of the structure and the working mechanism, the research method of wind turbine operation vibration is introduced, with the focus being the use of the sensor principle. Finally the hardware design and software of this system is introduced and the main function of this system is described, which realizes condition monitoring of the work state of wind turbines.

  8. Reliability Analysis of Random Vibration Transmission Path Systems

    Directory of Open Access Journals (Sweden)

    Wei Zhao

    2017-01-01

    Full Text Available The vibration transmission path systems are generally composed of the vibration source, the vibration transfer path, and the vibration receiving structure. The transfer path is the medium of the vibration transmission. Moreover, the randomness of transfer path influences the transfer reliability greatly. In this paper, based on the matrix calculus, the generalized second moment technique, and the stochastic finite element theory, the effective approach for the transfer reliability of vibration transfer path systems was provided. The transfer reliability of vibration transfer path system with uncertain path parameters including path mass and path stiffness was analyzed theoretically and computed numerically, and the correlated mathematical expressions were derived. Thus, it provides the theoretical foundation for the dynamic design of vibration systems in practical project, so that most random path parameters can be considered to solve the random problems for vibration transfer path systems, which can avoid the system resonance failure.

  9. Noise and vibration in friction systems

    CERN Document Server

    Sergienko, Vladimir P

    2015-01-01

    The book analyzes the basic problems of oscillation processes and theoretical aspects of noise and vibration in friction systems. It presents generalized information available in literature data and results of the authors in vibroacoustics of friction joints, including car brakes and transmissions. The authors consider the main approaches to abatement of noise and vibration in non-stationary friction processes. Special attention is paid to materials science aspects, in particular to advanced composite materials used to improve the vibroacoustic characteristics of tribopairs The book is intended for researchers and technicians, students and post-graduates specializing in mechanical engineering, maintenance of machines and transport means, production certification, problems of friction and vibroacoustics.

  10. Vibration-induced PM Noise in Oscillators and Measurements of Correlation with Vibration Sensors

    National Research Council Canada - National Science Library

    Howe, D. A; LanFranchi, J. L; Cutsinger, L; Hati, A; Nelson, C

    2005-01-01

    ...) and acceleration/vibration sensors. We describe the equipment setup and measurement procedure. Data are in the form of scatter plots, which we find to be highly informative compared to usual L(f...

  11. Lambda-matrices and vibrating systems

    CERN Document Server

    Lancaster, Peter

    2002-01-01

    Features aspects and solutions of problems of linear vibrating systems with a finite number of degrees of freedom. Starts with development of necessary tools in matrix theory, followed by numerical procedures for relevant matrix formulations and relevant theory of differential equations. Minimum of mathematical abstraction; assumes a familiarity with matrix theory, elementary calculus. 1966 edition.

  12. Vibration and noise measuring instruments built in the RSR

    Science.gov (United States)

    Georgescu, I.

    1974-01-01

    The demands placed upon vibration and noise measuring instruments are discussed. The instruments that are now being manufactured in the RSR are described, as well as those that are being made ready for manufacture, namely: the VP-3 portable vibrometer, the N2103 precision electronic vibrometer, the N2103 B sonometric preamplifier, as well as vibration transducers of the electrodynamic and piezoelectric types.

  13. Reliability Analysis of Random Vibration Transmission Path Systems

    OpenAIRE

    Wei Zhao; Yi-Min Zhang

    2017-01-01

    The vibration transmission path systems are generally composed of the vibration source, the vibration transfer path, and the vibration receiving structure. The transfer path is the medium of the vibration transmission. Moreover, the randomness of transfer path influences the transfer reliability greatly. In this paper, based on the matrix calculus, the generalized second moment technique, and the stochastic finite element theory, the effective approach for the transfer reliability of vibratio...

  14. Mechanical Vibration Measurements on TTF Cryomodules

    CERN Document Server

    Bosotti, Angelo; Ferianis, Mario; Lange, Rolf; Pagani, Carlo; Paparella, Rocco; Pierini, Paolo; Sertore, Daniele

    2005-01-01

    Few of the TTF cryomodules have been equipped with Wire Position Monitors (WPM) for the on line monitoring of cold mass movements during cool-down, warm-up and operation. Each sensor can be used as a detector for mechanical vibrations of the cryostat. A Digital Receiver board is used to sample and analyze with high frequency resolution, the WPM picked up signals, looking to its amplitude modulation in the microphonic frequency range. Here we review and analyze the data and the vibration spectra taken during operation of the TTF cryomodules # 4 and #5.

  15. Measuring ultra-sonic in-plane vibrations with the scanning confocal heterodyne interferometer

    Science.gov (United States)

    Rembe, C.; Ur-Rehman, F.; Heimes, F.; Boedecker, S.; Dräbenstedt, A.

    2010-05-01

    The advanced progress in miniaturization technologies of mechanical systems and structures has led to a growing demand of measurement tools for three-dimensional vibrations at ultra-high frequencies. Particularly radio-frequency, micro-electro-mechanical (RF-MEM) technology is a planar technology and, thus, the resonating structures are much larger in lateral dimensions compared to the height. Consequently, most ultra-high-frequency devices have larger inplane vibration amplitudes than out-of-plane amplitudes. Recently, we have presented a heterodyne interferometer for vibration frequencies up to 1.2 GHz. In this paper we demonstrate a new method to extract broad-bandwidth spectra of in-plane vibrations with our new heterodyne interferometer. To accomplish this goal we have combined heterodyne interferometry, scanning vibrometry, edge-knife technique, amplitude demodulation, and digital-image processing. With our experimental setup we can realize in-plane vibration measurements up to 600 MHz. We will also show our first measurements of a broad-bandwidth, in-plane vibration around 200 MHz. Our in-plane and out-of-plane vibration measurements are phase-correlated and, therefore, our technique is suitable for broad-bandwidth, full-3D vibration measurements of ultrasonic microdevices.

  16. Field measurements and analyses of environmental vibrations induced by high-speed Maglev.

    Science.gov (United States)

    Li, Guo-Qiang; Wang, Zhi-Lu; Chen, Suwen; Xu, You-Lin

    2016-10-15

    Maglev, offers competitive journey-times compared to the railway and subway systems in markets for which distance between the stations is 100-1600km owing to its high acceleration and speed; however, such systems may have excessive vibration. Field measurements of Maglev train-induced vibrations were therefore performed on the world's first commercial Maglev line in Shanghai, China. Seven test sections along the line were selected according to the operating conditions, covering speeds from 150 to 430km/h. Acceleration responses of bridge pier and nearby ground were measured in three directions and analyzed in both the time and frequency domain. The effects of Maglev train speed on vibrations of the bridge pier and ground were studied in terms of their peak accelerations. Attenuation of ground vibration was investigated up to 30m from the track centerline. Effects of guideway configuration were also analyzed based on the measurements through two different test sections with same train speed of 300km/h. The results showed that peak accelerations exhibited a strong correlation with both train speed and distance off the track. Guideway configuration had a significant effect on transverse vibration, but a weak impact on vertical and longitudinal vibrations of both bridge pier and ground. Statistics indicated that, contrary to the commonly accepted theory and experience, vertical vibration is not always dominant: transverse and longitudinal vibrations should also be considered, particularly near turns in the track. Moreover, measurements of ground vibration induced by traditional high-speed railway train were carried out with the same testing devices in Bengbu in the Anhui Province. Results showed that the Maglev train generates significantly different vibration signatures as compared to the traditional high-speed train. The results obtained from this paper can provide good insights on the impact of Maglev system on the urban environment and the quality of human life

  17. Measuring the Amount of Mechanical Vibration During Lathe Processing

    Directory of Open Access Journals (Sweden)

    Štefánia SALOKYOVÁ

    2015-06-01

    Full Text Available The article provides basic information regarding the measurement and evaluation of mechanical vibration during the processing of material by lathe work. The lathe processing can be characterized as removing material by precisely defined tools. The results of the experimental part are values of the vibration acceleration amplitude measured by the piezoelectric sensor on the bearing house of the lathe. A set of new knowledge and conclusions is formulated based on the analysis of the created graphical dependencies.

  18. An Innovative Transponder-Based Interferometric Radar for Vibration Measurements

    Science.gov (United States)

    Coppi, F.; Cerutti, A.; Farina, P.; De Pasquale, G.; Novembrini, G.

    2010-05-01

    Ground-based radar interferometry has recently emerged as an innovative technology of remote sensing, able to accurately measure the static or dynamic displacement of several points of a structure. This technique in the last couple of years has been applied to different types of structures, such as bridges, towers and chimneys. This paper presents a prototype system developed by IDS, originally aimed at measuring the structural vibrations of helicopter rotor blades, based on an interferometric technique and constituted by combination of a radar sensor and a series of transponders installed on the target structure. The main advantages of this solution with respect to conventional interferometric radars, are related to the increased spatial resolution of the system, provided by the possibility to discriminate different transponders installed within the same resolution cell of the radar sensor, and to the reduction of the ambient noise (e.g. multi-path) on the radar measurement. The first feature allows the use of the microwave technology even on target areas with limited dimensions, such as industrial facilities, while the second aspect may extend the use of radar interferometric systems to complex scenarios, where multi-reflections are expected due to the presence of natural targets with high reflectivity to the radar signal. In the paper, the system and its major characteristics are first described; subsequently, application to the measurement of ambient vibration response of a lab set-up is summarized. Then the data acquired on a rotating mock-up are reported and analyzed to identify natural frequencies and mode shapes of the investigated structure.

  19. A General Purpose Digital System for Field Vibration Testing

    OpenAIRE

    Brincker, Rune; Larsen, Jesper Abildgaard; Ventura, Carlos

    2007-01-01

    This paper describes the development and concept implementation of a highly sensitive digital recording system for seismic applications and vibration measurements on large Civil Engineering structures. The system is based on highly sensitive motion transducers that have been used by seismologists and geophysicists for decades. The conventional geophone's ratio of cost to performance, including noise, linearity and dynamic range is unmatched by advanced modern accelerometers. The unit comprise...

  20. Electronic Speckle Pattern Shearing Interferometry using Photopolymer Diffractive Optical Elements for Vibration Measurements

    OpenAIRE

    Mihaylova, Emilia; Naydenova, Izabela; Martin, Suzanne; Toal, Vincent

    2004-01-01

    Electronic speckle pattern shearing interferometry (ESPSI) is superior to Electronic speckle pattern interferometry (ESPI) when strain distribution, arising from object deformation or vibration, need to be measured. This is because shearography provides data directly related to the spatial derivatives of the displacement. Further development of ESPSI systems could be beneficial for wider application to the measurement of mechanical characteristics of vibrating objects. Two electronic speckle ...

  1. Compact holographic optical element-based electronic speckle pattern interferometer for rotation and vibration measurements

    Science.gov (United States)

    Bavigadda, Viswanath; Moothanchery, Mohesh; Pramanik, Manojit; Mihaylova, Emilia; Toal, Vincent

    2017-03-01

    An out-of-plane sensitive electronic speckle pattern interferometer (ESPI) using holographic optical elements (HOEs) for studying rotations and vibrations is presented. Phase stepping is implemented by modulating the wavelength of the laser diode in a path length imbalanced interferometer. The time average ESPI method is used for vibration measurements. Some factors influencing the measurements accuracy are reported. Some advantages and limitations of the system are discussed.

  2. Measuring unbalance-induced vibrations in rotating tools

    Directory of Open Access Journals (Sweden)

    Kimmelmann Martin

    2017-01-01

    Full Text Available Unbalances in a tool cause vibrations of the spindle and the machine itself and lead to a waviness of the machined workpiece surface. This paper presents an experimental and analytical procedure for optically measuring the unbalance-induced displacements of the tool centre point (TCP. Therefore, a new method is introduced to determine the dynamic vibrations of a tool by comparing the geometrical profile of the tool with the dynamical profile at a high rotational speed. The necessary steps for measuring the signals and calculating the underlying dynamic vibrations of the tool are presented here. Afterwards, the unbalance-induced vibrations of a milling tool are shown as well as their influence on the eccentricity of the rotation axis. With this newly introduced method it is possible to directly link the displacements of the tool under rotation to the waviness of the workpiece surface and the dynamic stiffness of machine tools.

  3. Transient full-field vibration measurement using spectroscopical stereo photogrammetry.

    Science.gov (United States)

    Yue, Kaiduan; Li, Zhongke; Zhang, Ming; Chen, Shan

    2010-12-20

    Contrasted with other vibration measurement methods, a novel spectroscopical photogrammetric approach is proposed. Two colored light filters and a CCD color camera are used to achieve the function of two traditional cameras. Then a new calibration method is presented. It focuses on the vibrating object rather than the camera and has the advantage of more accuracy than traditional camera calibration. The test results have shown an accuracy of 0.02 mm.

  4. Application of system concept in vibration and noise reduction

    Directory of Open Access Journals (Sweden)

    SHENG Meiping

    2017-08-01

    Full Text Available Although certain vibration and noise control technologies are maturing, such as vibration absorption, vibration isolation, sound absorption and sound insulation, and new methods for specific frequency bands or special environments have been proposed unceasingly, there is still no guarantee that practical effective vibration and noise reduction can be obtained. An important constraint for vibration and noise reduction is the lack of a system concept, and the integrity and relevance of such practical systems as ship structure have not obtained enough attention. We have tried to use the system engineering theory in guiding vibration and noise reduction, and have already achieved certain effects. Based on the system concept, the noise control of a petroleum pipeline production workshop has been completed satisfactorily, and the abnormal noise source identification of an airplane has been accomplished successfully. We want to share our experience and suggestions to promote the popularization of the system engineering theory in vibration and noise control.

  5. Measurement of rabbit eardrum vibration through stroboscopic digital holography

    Science.gov (United States)

    De Greef, Daniël; Dirckx, Joris J. J.

    2014-05-01

    In this work, we present a setup for high-power single shot stroboscopic digital holography and demonstrate it in an application on rabbit eardrum vibration measurement. The setup is able to make full-field time-resolved measurements of vibrating surfaces with a precision in the nanometer range in a broad frequency range. The height displacement of the measured object is visualized over the entire surface as a function of time. Vibration magnitude and phase maps can be extracted from these data, the latter proving to be very useful to reveal phase delays across the surface. Such deviations from modal motion indicate energy losses due to internal damping, in contrast to purely elastic mechanics. This is of great interest in middle ear mechanics and finite element modelling. In our setup, short laser pulses are fired at selected instants within the surface vibration period and are recorded by a CCD camera. The timing of the pulses and the exposure of the camera are synchronized to the vibration phase by a microprocessor. The high-power frequency-doubled Nd:YAG laser produces pulses containing up to 5 mJ of energy, which is amply sufficient to record single-shot holograms. As the laser pulse length is 8 ns and the smallest time step of the trigger electronics is 1 μs, vibration measurements of frequencies up to 250 kHz are achievable through this method, provided that the maximum vibration amplitude exceeds a few nanometers. In our application, middle ear mechanics, measuring frequencies extend from 5 Hz to 20 kHz. The experimental setup will be presented, as well as results of measurements on a stretched circular rubber membrane and a rabbit's eardrum. Two of the challenges when measuring biological tissues, such as the eardrum, are low reflectivity and fast dehydration. To increase reflectivity, a coating is applied and to counteract the undesirable effects of tissue dehydration, the measurement setup and software have been optimized for speed without compromising

  6. Measurement of rabbit eardrum vibration through stroboscopic digital holography

    Energy Technology Data Exchange (ETDEWEB)

    De Greef, Daniël; Dirckx, Joris J. J. [University of Antwerp, Laboratory of BioMedical Physics, Groenenborgerlaan 171, B-2020 Antwerp (Belgium)

    2014-05-27

    In this work, we present a setup for high-power single shot stroboscopic digital holography and demonstrate it in an application on rabbit eardrum vibration measurement. The setup is able to make full-field time-resolved measurements of vibrating surfaces with a precision in the nanometer range in a broad frequency range. The height displacement of the measured object is visualized over the entire surface as a function of time. Vibration magnitude and phase maps can be extracted from these data, the latter proving to be very useful to reveal phase delays across the surface. Such deviations from modal motion indicate energy losses due to internal damping, in contrast to purely elastic mechanics. This is of great interest in middle ear mechanics and finite element modelling. In our setup, short laser pulses are fired at selected instants within the surface vibration period and are recorded by a CCD camera. The timing of the pulses and the exposure of the camera are synchronized to the vibration phase by a microprocessor. The high-power frequency-doubled Nd:YAG laser produces pulses containing up to 5 mJ of energy, which is amply sufficient to record single-shot holograms. As the laser pulse length is 8 ns and the smallest time step of the trigger electronics is 1 μs, vibration measurements of frequencies up to 250 kHz are achievable through this method, provided that the maximum vibration amplitude exceeds a few nanometers. In our application, middle ear mechanics, measuring frequencies extend from 5 Hz to 20 kHz. The experimental setup will be presented, as well as results of measurements on a stretched circular rubber membrane and a rabbit's eardrum. Two of the challenges when measuring biological tissues, such as the eardrum, are low reflectivity and fast dehydration. To increase reflectivity, a coating is applied and to counteract the undesirable effects of tissue dehydration, the measurement setup and software have been optimized for speed without

  7. Vibrations on pulse tube based Dry Dilution Refrigerators for low noise measurements

    Energy Technology Data Exchange (ETDEWEB)

    Olivieri, E. [CSNSM, Univ. Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, 91405 Orsay (France); Billard, J.; De Jesus, M.; Juillard, A. [Univ Lyon, Université Lyon 1, CNRS/IN2P3, IPN-Lyon, F-69622 Villeurbanne (France); Leder, A. [Massachussets Institute of Technology, Laboratory for Nuclear Science, 77 Massachusetts Avenue Cambridge, MA 02139-4307 (United States)

    2017-06-21

    Dry Dilution Refrigerators (DDR) based on pulse tube cryo-coolers have started to replace Wet Dilution Refrigerators (WDR) due to the ease and low cost of operation. However these advantages come at the cost of increased vibrations, induced by the pulse tube. In this work, we present the vibration measurements performed on three different commercial DDRs. We describe in detail the vibration measurement system we assembled, based on commercial accelerometers, conditioner and DAQ, and examined the effects of the various damping solutions utilized on three different DDRs, both in the low and high frequency regions. Finally, we ran low temperature, pseudo-massive (30 and 250 g) germanium bolometers in the best vibration-performing system under study and report on the results.

  8. Wear Monitoring in Turning Operations Using Vibration and Strain Measurements

    Science.gov (United States)

    Scheffer, C.; Heyns, P. S.

    2001-11-01

    For the efficient and reliable operation of automated machining processes, the implementation of suitable tool condition monitoring (TCM) strategy is required. Various monitoring systems, utilising sophisticated signal processing techniques, have been widely researched for a number of different processes. Most monitoring systems developed up to date employ force, acoustic emission and vibration, or a combination of these and other techniques with a sensor integration strategy. With this work, the implementation of a monitoring system utilising simultaneous vibration and strain measurements on the tool tip, is investigated for the wear of synthetic diamond tools which are specifically used for the manufacturing of aluminium pistons. Contrary to many of the earlier investigations, this work was conducted in a manufacturing environment, with the associated constraints such as the impracticality of direct measurement of the wear. Data from the manufacturing process was recorded with two piezoelectric strain sensors and an accelerometer, each coupled to a DSPT Siglab analyser. A large number of features indicative of tool wear were automatically extracted from different parts of the original signals. These included features from the time and frequency domains, time-series model coefficients (as features) and features extracted from wavelet packet analysis. A correlation coefficient approach was used to automatically select the best features indicative of the progressive wear of the diamond tools. The self-organising map (SOM) was employed to identify the tool state. The SOM is a type of neural network based on unsupervised learning. A near 100% correct classification of the tool wear data was obtained by training the SOM with two independent data sets, and testing it with a third independent data set.

  9. Phase behaviour of transfer functions in vibrating systems

    DEFF Research Database (Denmark)

    Zhu, Jianyuan; Ohlrich, Mogens

    1998-01-01

    This paper investigates the applicabilities of pole-zero models and wave propagation theory in estimating the phase characteristics of vibrating systems. The measured phase spectra are compared with the estimated reverberant phase limit and wave propagation phase. The relations between transfer...... on frequency in this band, but from the transition frequency and onwards the phase increases only with the square root of frequency. This behaviour is characteristic for free propagating waves....

  10. Space Launch System Vibration Analysis Support

    Science.gov (United States)

    Johnson, Katie

    2016-01-01

    The ultimate goal for my efforts during this internship was to help prepare for the Space Launch System (SLS) integrated modal test (IMT) with Rodney Rocha. In 2018, the Structural Engineering Loads and Dynamics Team will have 10 days to perform the IMT on the SLS Integrated Launch Vehicle. After that 10 day period, we will have about two months to analyze the test data and determine whether the integrated vehicle modes/frequencies are adequate for launching the vehicle. Because of the time constraints, NASA must have newly developed post-test analysis methods proven well and with technical confidence before testing. NASA civil servants along with help from rotational interns are working with novel techniques developed and applied external to Johnson Space Center (JSC) to uncover issues in applying this technique to much larger scales than ever before. We intend to use modal decoupling methods to separate the entangled vibrations coming from the SLS and its support structure during the IMT. This new approach is still under development. The primary goal of my internship was to learn the basics of structural dynamics and physical vibrations. I was able to accomplish this by working on two experimental test set ups, the Simple Beam and TAURUS-T, and by doing some light analytical and post-processing work. Within the Simple Beam project, my role involves changing the data acquisition system, reconfiguration of the test set up, transducer calibration, data collection, data file recovery, and post-processing analysis. Within the TAURUS-T project, my duties included cataloging and removing the 30+ triaxial accelerometers, coordinating the removal of the structure from the current rolling cart to a sturdy billet for further testing, preparing the accelerometers for remounting, accurately calibrating, mounting, and mapping of all accelerometer channels, and some testing. Hammer and shaker tests will be performed to easily visualize mode shapes at low frequencies. Short

  11. Experimental measurements and finite element analysis of the coupled vibrational characteristics of piezoelectric shells.

    Science.gov (United States)

    Huang, Yu-Hsi; Ma, Chien-Ching

    2012-04-01

    Piezoelectric plates can provide low-frequency transverse vibrational displacements and high-frequency planar vibrational displacements, which are usually uncoupled. However, piezoelectric shells can induce three-dimensional coupled vibrational displacements over a large frequency range. In this study, three-dimensional coupled vibrational characteristics of piezoelectric shells with free boundary conditions are investigated using three different experimental methods and finite element numerical modeling. For the experimental measurements, amplitude-fluctuation electronic speckle pattern interferometry (AF-ESPI) is used to obtain resonant frequencies and radial, lateral, and angular mode shapes. This optical technique utilizes a real-time, full-field, non-contact optical system that measures both the natural frequency and corresponding vibration mode shape simultaneously. The second experimental technique used, laser Doppler vibrometry (LDV), is a pointwise displacement measurement method that determines the resonant frequencies of the piezoelectric shell. An impedance analyzer is also used to determine the resonant frequencies of the piezoelectric shell. The experimental results of the resonant frequencies and mode shapes for the piezoelectric shell are verified with a numerical finite element model. Excellent agreement between the experimental and numerical results is found for the three-dimensional coupled vibrational characteristics of the piezoelectric shell. It is noted in this study that there is no coupled phenomenon at low frequencies over which radial modes dominate. However, three-dimensional coupled vibrational modes do occur at high resonant frequencies over which lateral or angular modes dominate.

  12. On the Modeling of a MEMS Based Capacitive Accelerometer for Measurement of Tractor Seat Vibration

    Directory of Open Access Journals (Sweden)

    M. Alidoost

    2010-04-01

    Full Text Available Drivers of heavy vehicles often face with higher amplitudes of frequencies range between 1-80 Hz. Hence, this range of frequency results in temporary or even sometimes permanent damages to the health of drivers. Examples for these problems are damages to the vertebral column and early tiredness, which both reduce the driver’s performance significantly. One solution to this problem is to decrease the imposed vibration to the driver’s seat by developing an active seat system. These systems require an online measuring unit to sense vibrations transferred to the seat. The measuring unit can include a capacitive micro-accelerometer on the basis of MEMS which measure online vibrations on the seat. In this study, the mechanical behavior of a capacitive micro-accelerometer for the vibration range applied to a tractor seat has been simulated. The accelerometer is capable to measure step, impact and harmonic external excitations applied to the system. The results of the study indicate that, with increasing the applied voltage, the system sensitivity also increases, but the measuring range of vibrations decreases and vice versa. The modeled accelerometer, at damping ratio of 0.67 is capable to measure accelerations within the frequency range of lower than 130 Hz.

  13. Improvement of the vibration isolation system for TAMA300

    CERN Document Server

    Takahashi, R

    2002-01-01

    The vibration isolation system for TAMA300 has a vibration isolation ratio large enough to achieve the requirement in the observation band around 300 Hz. At a lower frequency range, it is necessary to reduce the large fluctuation of mirrors for stable operation of the interferometer. With this aim, the mirror suspension systems were modified and an active vibration isolation system using pneumatic actuators was installed. These improvements contributed to the realization of a continuous interferometer lock for more than 24 h.

  14. Investigation of three-dimensional vibration measurement by a single scanning laser Doppler vibrometer

    Science.gov (United States)

    Chen, Da-Ming; Zhu, W. D.

    2017-01-01

    A scanning laser Doppler vibrometer (SLDV) has been widely used in non-contact vibration measurement. This paper presents a novel investigation of three-dimensional (3D) vibration measurement by a single SLDV sequentially placed at three different positions, where 3D vibration is defined as three vibration components along axes of a specified measurement coordinate system (MCS), which can give more precise knowledge of structural dynamic characteristics. A geometric model of the SLDV is proposed and a vibrometer coordinate system (VCS) based on the geometric model is defined and fixed on the SLDV. The pose of a SLDV with respect to a MCS is expressed in the form of a translation vector and a direction cosine matrix from the VCS to the MCS, which can be calculated by four or more target points with known coordinates in both the MCS and the VCS. An improved method based on the least squares method and singular value decomposition is proposed to obtain the pose of the SLDV. Compared with an inverse method, the proposed method can yield an orthogonal direction cosine matrix and be applicable to a two-dimensional structure. Effects of the number of target points on the accuracy and stability of the proposed method are investigated. With three direction cosine matrices of three different positions obtained by the proposed method, measured vibration velocities along laser line-of-sight directions can be transformed to vibration components along axes of the MCS. An experiment was conducted to measure 3D vibration of a target point on a beam under sinusoidal excitation by a single SLDV sequentially placed at three different positions. Vibration components along axes of the MCS obtained by the single SLDV were in good agreement with those from a commercial Polytec 3D scanning laser vibrometer PSV-500-3D.

  15. Vibration diagnostic system for evaluation of state interconnected electrical motors mechanical parameters

    Science.gov (United States)

    Vasilevskyi, Oleksandr M.; Kulakov, Pavlo I.; Dudatiev, Igor A.; Didych, Volodymyr M.; Kotyra, Andrzej; Suleimenov, Batyrbek; Assembay, Azat; Kozbekova, Ainur

    2017-08-01

    The paper presents the structural diagram and mathematical model of a vibration diagnostic system to measure angular velocities of two interconnected electric motors. The system is based on vibration signals and the control signals of the motor mechanical parameters. The measurement procedure of the rotor rotational speed is based on vibration signals during synchronization. The procedure presented allows simultaneous measurement and synchronization frequencies of rotation to diagnose of the motors' mechanical parts. The calculated reduced error of synchronizing frequencies of rotation of the rotors, which is 0.45% of the measurement range of frequencies of rotation from 0 to 80Hz.

  16. Hand vibration: non-contact measurement of local transmissibility.

    Science.gov (United States)

    Scalise, Lorenzo; Rossetti, Francesco; Paone, Nicola

    2007-10-01

    Grip and push forces required for the use of vibrating tools are considered important influencing inputs for the assessment of hand-vibration transmissibility (TR). At present TR measurements are usually referred to the palm of the hand The aims of the present paper are: to present an original measurement procedure for non-contact assessment of the transmissibility of fingers; to report TR data measured on six points of the hand of nine subjects; to correlate TR with: grip, push, hand volume and BMI. Tests have been carried out using a cylindrical handle mounted on an shaker. A laser Doppler vibrometer is used to measure the vibration velocity. Push force is measured using a force platform, whereas grip force is measured using a capacitive pressure sensor matrix wrapped around the handle. Tests have been conducted on nine healthy subjects. Proximal and distal regions of the second, fourth and fifth fingers have been investigated. Tests were carried out using a push force of: 25, 50 and 75 N. The excitation signal was a broadband random vibration in the band 16-400 Hz with un-weighted rms acceleration level of 6 m/s(2). Results show how in general TR values measured on distal points are higher respect to the proximal points. A resonance peak is present for all the measured points in the band 55-80 Hz. ANOVA analysis showed that TR is not significantly dependent on: BMI, hand volume and push force alone. While TR is significantly dependent on: grip force alone, measurement positions and grip and push force together. The proposed procedure shows the advantage to allow local vibration measurement directly on the fingers without the necessity to apply any contact sensor. Results demonstrate how the transmissibility is significantly different on the point where the acceleration is measured.

  17. Comparison between Accelerometer and Laser Vibrometer to Measure Traffic Excited Vibrations on Bridges

    Directory of Open Access Journals (Sweden)

    G. Rossi

    2002-01-01

    Full Text Available The use of accelerometer based measurement techniques for evaluating bridge forced vibrations or to perform bridge modal analysis is well established. It is well known to all researchers who have experience in vibration measurements that values of acceleration amplitude can be very low at low frequencies and that a limitation to the use of accelerometer can be due to the threshold parameter of this kind of transducer. Under this conditions the measurement of displacement seems more appropriate. On the other hand laser vibrometer systems detect relative displacements as opposed to the absolute measures of accelerometers. Vibrations have been measured simultaneously by a typical accelerometer for civil structures and by a laser vibrometer equipped with a fringe counter board in terms of velocity and displacements. The accelerations calculated from the laser vibrometer signals and the one directly measured by the accelerometer has been compared.

  18. Compact Active Vibration Control System for a Flexible Panel

    Science.gov (United States)

    Schiller, Noah H. (Inventor); Cabell, Randolph H. (Inventor); Perey, Daniel F. (Inventor)

    2014-01-01

    A diamond-shaped actuator for a flexible panel has an inter-digitated electrode (IDE) and a piezoelectric wafer portion positioned therebetween. The IDE and/or the wafer portion are diamond-shaped. Point sensors are positioned with respect to the actuator and measure vibration. The actuator generates and transmits a cancelling force to the panel in response to an output signal from a controller, which is calculated using a signal describing the vibration. A method for controlling vibration in a flexible panel includes connecting a diamond-shaped actuator to the flexible panel, and then connecting a point sensor to each actuator. Vibration is measured via the point sensor. The controller calculates a proportional output voltage signal from the measured vibration, and transmits the output signal to the actuator to substantially cancel the vibration in proximity to each actuator.

  19. A Method Using Optical Contactless Displacement Sensors to Measure Vibration Stress of Small-Bore Piping.

    Science.gov (United States)

    Maekawa, Akira; Tsuji, Takashi; Takahashi, Tsuneo; Noda, Michiyasu

    2014-02-01

    In nuclear power plants, vibration stress of piping is frequently evaluated to prevent fatigue failure. A simple and fast measurement method is attractive to evaluate many piping systems efficiently. In this study, a method to measure the vibration stress using optical contactless displacement sensors was proposed, the prototype instrument was developed, and the instrument practicality for the method was verified. In the proposed method, light emitting diodes (LEDs) were used as measurement sensors and the vibration stress was estimated by measuring the deformation geometry of the piping caused by oscillation, which was measured as the piping curvature radius. The method provided fast and simple vibration estimates for small-bore piping. Its verification and practicality were confirmed by vibration tests using a test pipe and mock-up piping. The stress measured by both the proposed method and an accurate conventional method using strain gauges were in agreement, and it was concluded that the proposed method could be used for actual plant piping systems.

  20. Vibrating Intrinsic reverberation Chambers for shielding effectiveness measurements

    NARCIS (Netherlands)

    van de Beek, G.S.; Vogt-Ardatjew, R.A.; Schipper, H.; Leferink, Frank Bernardus Johannes

    2012-01-01

    A new technique for shielding effectiveness measurements is the dual VIRC method. In this method two Vibrating Intrinsic Reverberation Chambers (VIRC) are combined together via a common wall with an aperture that forms the interface between them. This particular set-up makes it possible to achieve a

  1. Novel Applications of Laser Doppler Vibration Measurements to Medical Imaging

    Science.gov (United States)

    Tabatabai, Habib; Oliver, David E.; Rohrbaugh, John W.; Papadopoulos, Christopher

    2013-06-01

    Laser Doppler Vibrometry (LDV) has been widely used in engineering applications involving non-contact vibration and sound measurements. This technique has also been used in some biomedical applications including hearing research. The detectable frequencies are in the range of near-DC to 1 GHz or higher. This paper reviews applications of LDV in biomedical engineering and proposes new medical imaging applications based on measuring surface vibrations of tissues and organs. Tests were conducted on human skin using single point and scanning laser vibrometers. These tests suggest that skin vibrations due to the forcing excitation from the heart can be used in imaging of blood flow. The results of these tests illustrate the potential of such vibration measurements in a variety of diagnostic medical imaging applications including blood flow/restrictions, real-time monitoring of blood pressure variations, wound healing, muscle movements, etc. The fact that the measurements can be conducted remotely (non-contact) is an important benefit that adds to the promise of this approach.

  2. Optical measurements of long-range protein vibrations

    Science.gov (United States)

    Acbas, Gheorghe; Niessen, Katherine A.; Snell, Edward H.; Markelz, A. G.

    2014-01-01

    Protein biological function depends on structural flexibility and change. From cellular communication through membrane ion channels to oxygen uptake and delivery by haemoglobin, structural changes are critical. It has been suggested that vibrations that extend through the protein play a crucial role in controlling these structural changes. While nature may utilize such long-range vibrations for optimization of biological processes, bench-top characterization of these extended structural motions for engineered biochemistry has been elusive. Here we show the first optical observation of long-range protein vibrational modes. This is achieved by orientation-sensitive terahertz near-field microscopy measurements of chicken egg white lysozyme single crystals. Underdamped modes are found to exist for frequencies >10 cm-1. The existence of these persisting motions indicates that damping and intermode coupling are weaker than previously assumed. The methodology developed permits protein engineering based on dynamical network optimization.

  3. Surface Acoustic Wave Vibration Sensors for Measuring Aircraft Flutter

    Science.gov (United States)

    Wilson, William C.; Moore, Jason P.; Juarez, Peter D.

    2016-01-01

    Under NASA's Advanced Air Vehicles Program the Advanced Air Transport Technology (AATT) Project is investigating flutter effects on aeroelastic wings. To support that work a new method for measuring vibrations due to flutter has been developed. The method employs low power Surface Acoustic Wave (SAW) sensors. To demonstrate the ability of the SAW sensor to detect flutter vibrations the sensors were attached to a Carbon fiber-reinforced polymer (CFRP) composite panel which was vibrated at six frequencies from 1Hz to 50Hz. The SAW data was compared to accelerometer data and was found to resemble sine waves and match each other closely. The SAW module design and results from the tests are presented here.

  4. An examination of an adapter method for measuring the vibration transmitted to the human arms.

    Science.gov (United States)

    Xu, Xueyan S; Dong, Ren G; Welcome, Daniel E; Warren, Christopher; McDowell, Thomas W

    2015-09-01

    The objective of this study is to evaluate an adapter method for measuring the vibration on the human arms. Four instrumented adapters with different weights were used to measure the vibration transmitted to the wrist, forearm, and upper arm of each subject. Each adapter was attached at each location on the subjects using an elastic cloth wrap. Two laser vibrometers were also used to measure the transmitted vibration at each location to evaluate the validity of the adapter method. The apparent mass at the palm of the hand along the forearm direction was also measured to enhance the evaluation. This study found that the adapter and laser-measured transmissibility spectra were comparable with some systematic differences. While increasing the adapter mass reduced the resonant frequency at the measurement location, increasing the tightness of the adapter attachment increased the resonant frequency. However, the use of lightweight (≤15 g) adapters under medium attachment tightness did not change the basic trends of the transmissibility spectrum. The resonant features observed in the transmissibility spectra were also correlated with those observed in the apparent mass spectra. Because the local coordinate systems of the adapters may be significantly misaligned relative to the global coordinates of the vibration test systems, large errors were observed for the adapter-measured transmissibility in some individual orthogonal directions. This study, however, also demonstrated that the misalignment issue can be resolved by either using the total vibration transmissibility or by measuring the misalignment angles to correct the errors. Therefore, the adapter method is acceptable for understanding the basic characteristics of the vibration transmission in the human arms, and the adapter-measured data are acceptable for approximately modeling the system.

  5. The Effect of a Mechanical Arm System on Portable Grinder Vibration Emissions.

    Science.gov (United States)

    McDowell, Thomas W; Welcome, Daniel E; Warren, Christopher; Xu, Xueyan S; Dong, Ren G

    2016-04-01

    Mechanical arm systems are commonly used to support powered hand tools to alleviate ergonomic stressors related to the development of workplace musculoskeletal disorders. However, the use of these systems can increase exposure times to other potentially harmful agents such as hand-transmitted vibration. To examine how these tool support systems affect tool vibration, the primary objectives of this study were to characterize the vibration emissions of typical portable pneumatic grinders used for surface grinding with and without a mechanical arm support system at a workplace and to estimate the potential risk of the increased vibration exposure time afforded by the use of these mechanical arm systems. This study also developed a laboratory-based simulated grinding task based on the ISO 28927-1 (2009) standard for assessing grinder vibrations; the simulated grinding vibrations were compared with those measured during actual workplace grinder operations. The results of this study demonstrate that use of the mechanical arm may provide a health benefit by reducing the forces required to lift and maneuver the tools and by decreasing hand-transmitted vibration exposure. However, the arm does not substantially change the basic characteristics of grinder vibration spectra. The mechanical arm reduced the average frequency-weighted acceleration by about 24% in the workplace and by about 7% in the laboratory. Because use of the mechanical arm system can increase daily time-on-task by 50% or more, the use of such systems may actually increase daily time-weighted hand-transmitted vibration exposures in some cases. The laboratory acceleration measurements were substantially lower than the workplace measurements, and the laboratory tool rankings based on acceleration were considerably different than those from the workplace. Thus, it is doubtful that ISO 28927-1 is useful for estimating workplace grinder vibration exposures or for predicting workplace grinder acceleration rank

  6. Vibration-based Energy Harvesting Systems Characterization Using Automated Electronic Equipment

    Directory of Open Access Journals (Sweden)

    Ioannis KOSMADAKIS

    2015-04-01

    Full Text Available A measurement bench has been developed to fully automate the procedure for the characterization of a vibration-based energy scavenging system. The measurement system is capable of monitoring all important characteristics of a vibration harvesting system (input and output voltage, current, and other parameters, frequency and acceleration values, etc.. It is composed of a PC, typical digital measuring instruments (oscilloscope, waveform generator, etc., certain sensors and actuators, along with a microcontroller based automation module. The automation of the procedure and the manipulation of the acquired data are performed by LabVIEW software. Typical measurements of a system consisting of a vibrating source, a vibration transducer and an active rectifier are presented.

  7. Analysis of a Mechanical System’s Dynamic Proper-ties by Vibrations Measurements

    Directory of Open Access Journals (Sweden)

    Radu Panaitescu-Liess

    2010-01-01

    Full Text Available This paper aims to present some theoretical notions about the solution of the reverse problem in the dynamic response study of a mechanical system. Thus, by measuring vibration, some dynamic properties of the mechanical system considered can be determined.

  8. Simultaneous Measurement of Multiple Mechanical Properties of Single Cells Using AFM by Indentation and Vibration.

    Science.gov (United States)

    Zhang, Chuang; Shi, Jialin; Wang, Wenxue; Xi, Ning; Wang, Yuechao; Liu, Lianqing

    2017-12-01

    The mechanical properties of cells, which are the main characteristics determining their physical performance and physiological functions, have been actively studied in the fields of cytobiology and biomedical engineering and for the development of medicines. In this study, an indentation-vibration-based method is proposed to simultaneously measure the mechanical properties of cells in situ, including cellular mass (m), elasticity (k), and viscosity (c). The proposed measurement method is implemented based on the principle of forced vibration stimulated by simple harmonic force using an atomic force microscope (AFM) system integrated with a piezoelectric transducer as the substrate vibrator. The corresponding theoretical model containing the three mechanical properties is derived and used to perform simulations and calculations. Living and fixed human embryonic kidney 293 (HEK 293) cells were subjected to indentation and vibration to measure and compare their mechanical parameters and verify the proposed approach. The results that the fixed sample cells are more viscous and elastic than the living sample cells and the measured mechanical properties of cell are consistent within, but not outside of the central region of the cell, are in accordance with the previous studies. This work provides an approach to simultaneous measurement of the multiple mechanical properties of single cells using an integrated AFM system based on the principle force vibration and thickness-corrected Hertz model. This study should contribute to progress in biomedical engineering, cytobiology, medicine, early diagnosis, specific therapy and cell-powered robots.

  9. Random Vibration of Space Shuttle Weather Protection Systems

    Directory of Open Access Journals (Sweden)

    Isaac Elishakoff

    1995-01-01

    Full Text Available The article deals with random vibrations of the space shuttle weather protection systems. The excitation model represents a fit to the measured experimental data. The cross-spectral density is given as a convex combination of three exponential functions. It is shown that for the type of loading considered, the Bernoulli-Euler theory cannot be used as a simplified approach, and the structure will be more properly modeled as a Timoshenko beam. Use of the simple Bernoulli-Euler theory may result in an error of about 50% in determining the mean-square value of the bending moment in the weather protection system.

  10. Sound Power Estimation by Laser Doppler Vibration Measurement Techniques

    Directory of Open Access Journals (Sweden)

    G.M. Revel

    1998-01-01

    Full Text Available The aim of this paper is to propose simple and quick methods for the determination of the sound power emitted by a vibrating surface, by using non-contact vibration measurement techniques. In order to calculate the acoustic power by vibration data processing, two different approaches are presented. The first is based on the method proposed in the Standard ISO/TR 7849, while the second is based on the superposition theorem. A laser-Doppler scanning vibrometer has been employed for vibration measurements. Laser techniques open up new possibilities in this field because of their high spatial resolution and their non-intrusivity. The technique has been applied here to estimate the acoustic power emitted by a loudspeaker diaphragm. Results have been compared with those from a commercial Boundary Element Method (BEM software and experimentally validated by acoustic intensity measurements. Predicted and experimental results seem to be in agreement (differences lower than 1 dB thus showing that the proposed techniques can be employed as rapid solutions for many practical and industrial applications. Uncertainty sources are addressed and their effect is discussed.

  11. Large amplitude forced vibration analysis of cross-beam system ...

    African Journals Online (AJOL)

    Large amplitude forced vibration behaviour of cross-beam system under harmonic excitation is studied, incorporating the effect of geometric non-linearity. The forced vibration analysis is carried out in an indirect way, in which the dynamic system is assumed to satisfy the force equilibrium condition at peak load value, thus ...

  12. Analytical Evaluation of the Nonlinear Vibration of Coupled Oscillator Systems

    DEFF Research Database (Denmark)

    Bayat, M.; Shahidi, M.; Barari, Amin

    2011-01-01

    We consider periodic solutions for nonlinear free vibration of conservative, coupled mass-spring systems with linear and nonlinear stiffnesses. Two practical cases of these systems are explained and introduced. An analytical technique called energy balance method (EBM) was applied to calculate...... accuracy which is valid for a wide range of vibration amplitudes as indicated in the presented examples....

  13. Performance Monitoring of Vibration in Belt Conveyor System

    Directory of Open Access Journals (Sweden)

    S.Ojha

    2014-07-01

    Full Text Available We are always using some kind of machines in our daily life starting from fan, refrigerator and washing machines at home. In case of industries of industrial machinery items condition monitoring is important to know onset impending defects. There are so many types of indicating phenomenon such as vibration, heat, debris in oil, noise and sounds which emanate from these in efficiently running machines. This paper presents the vibration related fault identification and maintenance of belt conveyor systems (BCS. After analyzing the spectrum and vibration readings, it was observed that a combination of parallel and angular misalignment between motor & gear box was present causing high axial and radial vibration. The defect was rectified by mechanical maintenance activities and latter the vibration was found reduced within limit. Also the vibration readings were taken after rectification. The above results are presented in this paper.

  14. System for Monitoring and Analysis of Vibrations at Electric Motors

    Directory of Open Access Journals (Sweden)

    Gabriela Rață

    2014-09-01

    Full Text Available The monitoring of vibration occurring at the electric motors is of paramount importance to ensure their optimal functioning. This paper presents a monitoring system of vibrations occurring at two different types of electric motors, using a piezoelectric accelerometer (ICP 603C11 and a data acquisition board from National Instruments (NI 6009. Vibration signals taken from different parts of electric motors are transferred to computer through the acquisition board. A virtual instrument that allows real-time monitoring and Fourier analysis of signals from the vibration sensor was implemented in LabVIEW.

  15. Control concepts for an active vibration isolation system

    NARCIS (Netherlands)

    Kerber, F.; Hurlebaus, S.; Beadle, B. M.; Stobener, U.

    2007-01-01

    In the fields of high-resolution metrology and manufacturing, effective anti-vibration measures are required to obtain precise and repeatable results. This is particularly true when the amplitudes of ambient vibration and the dimensions of the investigated or manufactured structure are comparable,

  16. Monitoring high-shear granulation using sound and vibration measurements.

    Science.gov (United States)

    Briens, L; Daniher, D; Tallevi, A

    2007-02-22

    Sound and vibration measurements were investigated as monitoring methods for high-shear granulation. Five microphones and one accelerometer were placed at different locations on a 10 and a 25 l granulator and compared to find the optimum location and the effect of scale. The granulation process could be monitored using the mean frequency and root mean square sound pressure levels from acoustic emissions measured using a microphone in the filtered air exhaust of the granulators. These acoustic monitoring methods were successful for both the 10 and the 25 l granulation scales. The granulation phases, however, were more clearly defined for the larger scale granulation. The root mean square acceleration level from vibration measurements was also able to monitor the granulation, but only for the larger 25 l granulator.

  17. Electronic speckle pattern shearing interferometry using photopolymer diffractive optical elements for vibration measurements

    Science.gov (United States)

    Mihaylova, Emilia M.; Naydenova, Izabela; Martin, Suzanne; Toal, Vincent

    2004-06-01

    Electronic speckle pattern shearing interferometry (ESPSI) is superior to Electronic speckle pattern interferometry (ESPI) when strain distribution, arising from object deformation or vibration, need to be measured. This is because shearography provides data directly related to the spatial derivatives of the displacement. Further development of ESPSI systems could be beneficial for wider application to the measurement of mechanical characteristics of vibrating objects. Two electronic speckle pattern shearing interferometers (ESPSI) suitable for vibration measurements are presented. In both ESPSI systems photopolymer holographic gratings are used to shear the images and to control the size of the shear. The holographic gratings are recorded using an acrylamide-based photopolymer material. Since the polymerization process occurs during recording, the holograms are produced without any development or processing. The ESPSI systems with photopolymer holographic gratings are simple and compact. Introducing photopolymer holographic gratings in ESPSI gives the advantage of using high aperture optical elements at relatively low cost. It is demonstrated that both ESPSI system can be used for vibration measurements. The results obtained are promising for future applications of the systems for modal analysis.

  18. Measurement of dynamic surface tension by mechanically vibrated sessile droplets.

    Science.gov (United States)

    Iwata, Shuichi; Yamauchi, Satoko; Yoshitake, Yumiko; Nagumo, Ryo; Mori, Hideki; Kajiya, Tadashi

    2016-04-01

    We developed a novel method for measuring the dynamic surface tension of liquids using mechanically vibrated sessile droplets. Under continuous mechanical vibration, the shape of the deformed droplet was fitted by numerical analysis, taking into account the force balance at the drop surface and the momentum equation. The surface tension was determined by optimizing four parameters: the surface tension, the droplet's height, the radius of the droplet-substrate contact area, and the horizontal symmetrical position of the droplet. The accuracy and repeatability of the proposed method were confirmed using drops of distilled water as well as viscous aqueous glycerol solutions. The vibration frequency had no influence on surface tension in the case of pure liquids. However, for water-soluble surfactant solutions, the dynamic surface tension gradually increased with vibration frequency, which was particularly notable for low surfactant concentrations slightly below the critical micelle concentration. This frequency dependence resulted from the competition of two mechanisms at the drop surface: local surface deformation and surfactant transport towards the newly generated surface.

  19. Research on Vibration Isolation Systems Used in Laser and Nanotechnologies

    Directory of Open Access Journals (Sweden)

    Justinas Kuncė

    2012-12-01

    Full Text Available The paper discusses the efficiency of a vibration isolation system made of the optical table and two negative-stiffness tables and considers excitation referring to harmonic and nonharmonic methods in the frequency range of 0,2–110 Hz. The article reviews the types and sources of vibrations and types of vibration isolation systems, including those of negative-stiffness. The paper also presents the methodology of experimental tests and proposes research on vibration transmissibility. A composite system consisting of two vibration isolation table having negative stiffness and an air table has been tested. The results and conclusions of experimental analysis are suggested at the end of the article.Article in Lithuanian

  20. The Development of Vibration System for Applying Magnetic Resonance Elastography (MRE) to the Supraspinatus Muscle.

    Science.gov (United States)

    Ito, Daiki; Numano, Tomokazu; Mizuhara, Kazuyuki; Takamoto, Kouichi; Onishi, Takaaki; Nishijo, Hisao

    2016-01-01

    Palpation is a standard clinical tool to diagnose abnormal stiffness changes in soft tissues. However, it is difficult to palpate the supraspinatus muscle because it locates under the trapezius muscle. The magnetic resonance elastography (MRE) uses harmonic mechanical excitation to quantitatively measure the stiffness (shear modulus) of both the superficial and deep tissues. The purpose of this study was to build a vibration system for applying the MRE to the supraspinatus muscle. In this study, a power amplifier and a pneumatic pressure generator were used to supply vibrations to a vibration pad. Six healthy volunteers underwent MRE. We investigated the effects of position (the head of the humerus and the trapezius muscle) of the vibration pad on the patterns of wave propagation (wave image). When the vibration pad was placed in the trapezius muscle, the wave images represented clear wave propagation. On the other hand, when the vibration pad was placed in the head of the humerus, the wave images represented unclear wave propagation. This result might be caused by wave interferences resulting from the vibrations from bones and an intramuscular tendon of the supraspinatus muscle. The mean shear modulus also was 8.12 ± 1.83 (mean ± SD) kPa, when the vibration pad was placed in the trapezius muscle. Our results demonstrated that the vibration pad should be placed in the trapezius muscle in the MRE of the supraspinatus muscle.

  1. Transient vibration analytical modeling and suppressing for vibration absorber system under impulse excitation

    Science.gov (United States)

    Wang, Xi; Yang, Bintang; Yu, Hu; Gao, Yulong

    2017-04-01

    The impulse excitation of mechanism causes transient vibration. In order to achieve adaptive transient vibration control, a method which can exactly model the response need to be proposed. This paper presents an analytical model to obtain the response of the primary system attached with dynamic vibration absorber (DVA) under impulse excitation. The impulse excitation which can be divided into single-impulse excitation and multi-impulse excitation is simplified as sinusoidal wave to establish the analytical model. To decouple the differential governing equations, a transform matrix is applied to convert the response from the physical coordinate to model coordinate. Therefore, the analytical response in the physical coordinate can be obtained by inverse transformation. The numerical Runge-Kutta method and experimental tests have demonstrated the effectiveness of the analytical model proposed. The wavelet of the response indicates that the transient vibration consists of components with multiple frequencies, and it shows that the modeling results coincide with the experiments. The optimizing simulations based on genetic algorithm and experimental tests demonstrate that the transient vibration of the primary system can be decreased by changing the stiffness of the DVA. The results presented in this paper are the foundations for us to develop the adaptive transient vibration absorber in the future.

  2. Analysis of In-Flight Vibration Measurements from Helicopter Transmissions

    Science.gov (United States)

    Mosher, Marianne; Huff, Ed; Barszcz

    2004-01-01

    In-flight vibration measurements from the transmission of an OH-58C KIOWA are analyzed. In order to understand the effect of normal flight variation on signal shape, the first gear mesh components of the planetary gear system and bevel gear are studied in detail. Systematic patterns occur in the amplitude and phase of these signal components with implications for making time synchronous averages and interpreting gear metrics in flight. The phase of the signal component increases as the torque increases; limits on the torque range included in a time synchronous average may now be selected to correspond to phase change limits on the underlying signal. For some sensors and components, an increase in phase variation and/or abrupt change in the slope of the phase dependence on torque are observed in regions of very low amplitude of the signal component. A physical mechanism for this deviation is postulated. Time synchronous averages should not be constructed in torque regions with wide phase variation.

  3. [Measurement and analysis of hand-transmitted vibration of vibration tools in workplace for automobile casting and assembly].

    Science.gov (United States)

    Xie, X S; Qi, C; Du, X Y; Shi, W W; Zhang, M

    2016-02-20

    To investigate the features of hand-transmitted vibration of common vibration tools in the workplace for automobile casting and assembly. From September to October, 2014, measurement and spectral analysis were performed for 16 typical hand tools(including percussion drill, pneumatic wrench, grinding machine, internal grinder, and arc welding machine) in 6 workplaces for automobile casting and assembly according to ISO 5349-1-2001 Mechanical vibration-Measurement and evaluation of human exposure to hand-transmitted vibration-part 1: General requirements and ISO 5349-2-2001 Mechanical vibration-Measurement and evaluation of human exposure to hand-transmitted vibration-Part 2: Practical guidance for measurement in the workplace. The vibration acceleration waveforms of shearing machine, arc welding machine, and pneumatic wrench were mainly impact wave and random wave, while those of internal grinder, angle grinder, percussion drill, and grinding machine were mainly long-and short-period waves. The daily exposure duration to vibration of electric wrench, pneumatic wrench, shearing machine, percussion drill, and internal grinder was about 150 minutes, while that of plasma cutting machine, angle grinder, grinding machine, bench grinder, and arc welding machine was about 400 minutes. The range of vibration total value(ahv) was as follows: pneumatic wrench 0.30~11.04 m/s(2), grinding wheel 1.61~8.97 m/s(2), internal grinder 1.46~8.70 m/s(2), percussion drill 11.10~14.50 m/s(2), and arc welding machine 0.21~2.18 m/s(2). The workers engaged in cleaning had the longest daily exposure duration to vibration, and the effective value of 8-hour energy-equivalent frequency-weighted acceleration for them[A(8)] was 8.03 m/s(2), while this value for workers engaged in assembly was 4.78 m/s(2). The frequency spectrogram with an 1/3-time frequency interval showed that grinding machine, angle grinder, and percussion drill had a high vibration acceleration, and the vibration limit curve

  4. Mechanical systems a unified approach to vibrations and controls

    CERN Document Server

    Gans, Roger F

    2015-01-01

    This essential textbook covers analysis and control of engineering mechanisms, which include almost any apparatus with moving parts used in daily life, from musical instruments to robots. The text  presents both vibrations and controls with considerable breadth and depth using a unified notation. It strikes a nice balance between the analytical and the practical.  This text contains enough material for a two semester sequence, but it can also be used in a single semester course combining the two topics. Mechanical Systems: A Unified Approach to Vibrations and Controls presents a common notation and approach to these closely related areas. Examples from the both vibrations and controls components are integrated throughout this text. This book also: ·         Presents a unified approach to vibrations and controls, including an excellent diagram that simultaneously discusses embedding classical vibrations (mechanical systems) in a discussion of models, inverse models, and open and closed loop control ...

  5. Inspection for kissing bonds in composite materials using vibration measurements

    Science.gov (United States)

    Adams, Douglas E.; Sharp, Nathan D.; Myrent, Noah; Sterkenburg, Ronald

    2011-04-01

    Improper bonding of composite structures can result in close contact cracks under compressive stresses, called kissing bonds. These bond defects are very difficult to detect using conventional inspection techniques such as tap testing or local ultrasonic scanning and can lead to local propagation of damage if the structure is subjected to crack opening stresses. A method is investigated for identifying kissing bonds in composite material repairs based on vibration measurements. A damage feature of the kissing bond is extracted from the response of the input-output measurement that is a function of the structural path. This path exhibits local decoupling associated with the close contact cracks. Experimental vibration measurements from sandwich composite materials are presented along with the results of the damage detection algorithm for the healthy sections of the material and the kissing bond sections. A vibration based inspection technique could increase the ability to detect kissing bonds in composite material repairs while decreasing inspection time. Benefits of this method of identification over conventional techniques include its robust, objective damage detection methodology and the reduced requirement for specimen preparation and surface texture when compared to ultrasonic scanning.

  6. Review of sensors for low frequency seismic vibration measurement

    CERN Document Server

    Collette, C; Janssens, S; Artoos, K; Guinchard, M; Hauviller, C

    2011-01-01

    The objective of this report is to review the main different types of sensors used to measure seismic vibrations at low frequencies. After some basic background preliminaries, the main different types of relative measurements are first reviewed. Then, the following inertial sensors are treated: geophones, accelerometers and broadband seismometers. For each of these sensors, the basic working principle is explained, along with the main performances limitations. Each section ends with a tentative comparison of some commercial products, far from being exhaustive, but hopefully representative of the average characteristics of each family of sensors. The report finishes with a brief discussion on the modelling and measurement of the sensor noise

  7. High frequency vibration characteristics of electric wheel system under in-wheel motor torque ripple

    Science.gov (United States)

    Mao, Yu; Zuo, Shuguang; Wu, Xudong; Duan, Xianglei

    2017-07-01

    With the introduction of in-wheel motor, the electric wheel system encounters new vibration problems brought by motor torque ripple excitation. In order to analyze new vibration characteristics of electric wheel system, torque ripple of in-wheel motor based on motor module and vector control system is primarily analyzed, and frequency/order features of the torque ripple are discussed. Then quarter vehicle-electric wheel system (QV-EWS) dynamics model based on the rigid ring tire assumption is established and the main parameters of the model are identified according to tire free modal test. Modal characteristics of the model are further analyzed. The analysis indicates that torque excitation of in-wheel motor is prone to arouse horizontal vibration, in which in-phase rotational, anti-phase rotational and horizontal translational modes of electric wheel system mainly participate. Based on the model, vibration responses of the QV-EWS under torque ripple are simulated. The results show that unlike vertical low frequency (lower than 20 Hz) vibration excited by road roughness, broadband torque ripple will arouse horizontal high frequency (50-100 Hz) vibration of electric wheel system due to participation of the three aforementioned modes. To verify the theoretical analysis, the bench experiment of electric wheel system is conducted and vibration responses are acquired. The experiment demonstrates the high frequency vibration phenomenon of electric wheel system and the measured order features as well as main resonant frequencies agree with simulation results. Through theoretical modeling, analysis and experiments this paper reveals and explains the high frequency vibration characteristics of electric wheel system, providing references for the dynamic analysis, optimal design of QV-EWS.

  8. Vibration characteristics of a cylindrical shell with 25 microm thickness fabricated by the rotating sputtering system.

    Science.gov (United States)

    Sun, Dongming; Wang, Sheng; Hata, Seiichi; Sakurai, Junpei; Shimokohbe, Akira

    2009-03-01

    A thin film rotating sputtering system is presented for fabrication of a circular cylindrical shell (CCS). The length, diameter, and thickness of the CCS are 5.0 mm, 1.5 mm, and 25 mum, respectively. To investigate the vibration characteristics, the CCS is fabricated on the outer surface of a piezoelectric ceramic tube (PCT). The vibration of PCT excited by driving voltage signals causes the vibration of the CCS, and the vibration characteristics can be measured using a laser Doppler vibrometer system. Furthermore, a finite element method (FEM) simulation and 2 analytical calculation methods are proposed for comparison with the measurement results. The frequency factor, the key factor that dominates the effective ranges of the 2 analytical methods, is determined as a value of 0.92 through a series of discussions. Combining the results of the 2 analytical calculation methods, good agreement of the analytical, FEM, and measurement results is obtained.

  9. EVALUATION OF VIBRATION LOAD ON COMMON RAIL FUEL SYSTEM COMPONENTS FOR DIESEL ENGINE

    Directory of Open Access Journals (Sweden)

    G. M. Kuharonak

    2014-01-01

    Full Text Available The objective of the paper is to develop a program, a methodology and execute vibration load tests of Common Rail fuel system components for a diesel engine. The paper contains an analysis of parameters that characterize vibration activity of research object and determine its applicability as a part of the specific mechanical system. A tests program has been developed that includes measurements of general peak values of vibration acceleration in the fuel system components, transformation of the obtained data while taking into account the fact that peak vibration acceleration values depend on crank-shaft rotation frequency and spectrum of vibration frequency, comparison of these dependences with the threshold limit values obtained in the process of component tests with the help of vibration shaker. The investigations have been carried out in one of the most stressed elements of the Common Rail fuel system that is a RDS 4.2-pressure sensor in a fuel accumulator manufactured by Robert Bosch GmbH and mounted on the MMZ D245.7E4-engines.According to the test methodology measurements have been performed on an engine test bench at all fullload engine curves. Vibration measurements have resulted in time history of the peak vibration acceleration values in three directions from every accelerometer and crank-shaft rotation frequency.It has been proposed to increase a diameter of mounting spacers of the fuel accumulator and install a damping clamp on high pressure tubes from a high pressure fuel pump to the fuel accumulator that permits to reduce a maximum peak vibration acceleration value on the pressure sensor in the fuel accumulator by 400 m/s2 and ensure its application in the given engine.

  10. Vibration and noise analysis of a gear transmission system

    Science.gov (United States)

    Choy, F. K.; Qian, W.; Zakrajsek, J. J.; Oswald, F. B.

    1993-01-01

    This paper presents a comprehensive procedure to predict both the vibration and noise generated by a gear transmission system under normal operating conditions. The gearbox vibrations were obtained from both numerical simulation and experimental studies using a gear noise test rig. In addition, the noise generated by the gearbox vibrations was recorded during the experimental testing. A numerical method was used to develop linear relationships between the gearbox vibration and the generated noise. The hypercoherence function is introduced to correlate the nonlinear relationship between the fundamental noise frequency and its harmonics. A numerical procedure was developed using both the linear and nonlinear relationships generated from the experimental data to predict noise resulting from the gearbox vibrations. The application of this methodology is demonstrated by comparing the numerical and experimental results from the gear noise test rig.

  11. An examination of the vibration transmissibility of the hand-arm system in three orthogonal directions

    Science.gov (United States)

    Welcome, Daniel E.; Dong, Ren G.; Xu, Xueyan S.; Warren, Christopher; McDowell, Thomas W.; Wu, John Z.

    2015-01-01

    The objective of this study is to enhance the understanding of the vibration transmission in the hand-arm system in three orthogonal directions (X, Y, and Z). For the first time, the transmitted vibrations distributed on the entire hand-arm system exposed in the three orthogonal directions via a 3-D vibration test system were measured using a 3-D laser vibrometer. Seven adult male subjects participated in the experiment. This study confirms that the vibration transmissibility generally decreased with the increase in distance from the hand and it varied with the vibration direction. Specifically, to the upper arm and shoulder, only moderate vibration transmission was measured in the test frequency range (16 to 500 Hz), and virtually no transmission was measured in the frequency range higher than 50 Hz. The resonance vibration on the forearm was primarily in the range of 16–30 Hz with the peak amplitude of approximately 1.5 times of the input vibration amplitude. The major resonance on the dorsal surfaces of the hand and wrist occurred at around 30–40 Hz and, in the Y direction, with peak amplitude of more than 2.5 times of the input amplitude. At higher than 50 Hz, vibration transmission was effectively limited to the hand and fingers. A major finger resonance was observed at around 100 Hz in the X and Y directions and around 200 Hz in the Z direction. In the fingers, the resonance magnitude in the Z direction was generally the lowest, and the resonance magnitude in the Y direction was generally the highest with the resonance amplitude of 3 times the input vibration, which was similar to the transmissibility at the wrist and hand dorsum. The implications of the results are discussed. Relevance to industry Prolonged, intensive exposure to hand-transmitted vibration could result in hand-arm vibration syndrome. While the syndrome's precise mechanisms remain unclear, the characterization of the vibration transmissibility of the system in the three orthogonal

  12. Modeling and parameter identification of an active anti-vibration system

    Science.gov (United States)

    Beadle, Brad M.; Hurlebaus, Stefan; Stoebener, Uwe; Gaul, Lothar

    2005-05-01

    In the fields of high-resolution metrology and manufacturing, effective anti-vibration measures are required to obtain precise and repeatable results. This is particularly true when the amplitudes of ambient vibration and the dimensions of the investigated or manufactured structure are comparable, e.g. in sub-micron semiconductor chip production, holographic interferometry, confocal optical imaging, and scanning probe microscopy. In the active anti-vibration system examined, signals are acquired by extremely sensitive vibration detectors, and the vibration is reduced using a feedback controller to drive electrodynamic actuators. This paper deals with the modeling of this anti-vibration system. First, a six-degree-of-freedom rigid body model of the system is developed. The unknown parameters of the unloaded system, including actuator transduction constants, spring stiffness, damping, moments of inertia, and the location of the center of mass, are determined by comparing measured transfer functions to those calculated using the updated model. The model is then re-updated for the case of an arbitrarily loaded system. The responses predicted by the final updated model agree well with the experimental measurements, thereby giving confidence in the model and the updating procedure.

  13. Measurement of Micro Vibration of Car by Piezoelectric Ceramics

    Science.gov (United States)

    Kurihara, Yosuke; Masuyama, Kosuke; Nakamura, Testuo; Bamba, Takeshi; Watanabe, Kajiro

    Recently, there are various accidents and crimes related to the car. In some cases, the accidents and the crimes can be prevented if it is possible to detect a human who is in the car. For example, we can prevent a baby who is left in a car under the hot weather from dehydration or death occurred by heat inside disease. In another case, it is estimated that the United States currently has as many as 12 million illegal immigrants. In order to prevent further influx of illegal immigrants, the police are physically searching incoming vehicles at national boundaries aiming at finding those who are hiding inside. However, the physical inspections require much manpower cost and time. An inspection method to see inside the vehicles through X-ray images has also been used for this end. But the cost and the installation places are the problems of the large-scale X-ray system. Proposed in this paper is a piezoelectric ceramic system to handily measure the micro vibrations of motor vehicles. And applying the algorithm of Support Vector Machine (SVM), the existence of human body inside vehicles can be detected. The experiment was carried out using four types of vehicles: a mini car; an auto mobile; a van; and a truck weighing 1.5 tons. As the results, the correct determination ratio was 91.2% for the experiment with the piezoelectric ceramic under the front wheels and 97.0% under the rear wheels, when the vehicle used for the examination had also been used together with other three types of vehicles to obtain SVM training data. When the vehicle used for the examination had not been used together with the other three to obtain SVM training data, on the other hand, the correct determination ratio was 93.7% for the experiment with the piezoelectric ceramic under the front wheels and 95.7% under the rear wheels.

  14. Inhibiting multiple mode vibration in controlled flexible systems

    Science.gov (United States)

    Hyde, James M.; Chang, Kenneth W.; Seering, Warren P.

    1991-01-01

    Viewgraphs on inhibiting multiple mode vibration in controlled flexible systems are presented. Topics covered include: input pre-shaping background; developing multiple-mode shapers; Middeck Active Control Experiment (MACE) test article; and tests and results.

  15. Optimal Vibration Control for Tracked Vehicle Suspension Systems

    Directory of Open Access Journals (Sweden)

    Yan-Jun Liang

    2013-01-01

    Full Text Available Technique of optimal vibration control with exponential decay rate and simulation for vehicle active suspension systems is developed. Mechanical model and dynamic system for a class of tracked vehicle suspension vibration control is established and the corresponding system of state space form is described. In order to prolong the working life of suspension system and improve ride comfort, based on the active suspension vibration control devices and using optimal control approach, an optimal vibration controller with exponential decay rate is designed. Numerical simulations are carried out, and the control effects of the ordinary optimal controller and the proposed controller are compared. Numerical simulation results illustrate the effectiveness of the proposed technique.

  16. Novel Non-Intrusive Vibration Monitoring System for Turbopumps Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ASRI proposes to develop an advanced and commercially viable Non-Intrusive Vibration Monitoring System (NI-VMS) which can provide effective on-line/off-line engine...

  17. Honeybee Colony Vibrational Measurements to Highlight the Brood Cycle.

    Directory of Open Access Journals (Sweden)

    Martin Bencsik

    Full Text Available Insect pollination is of great importance to crop production worldwide and honey bees are amongst its chief facilitators. Because of the decline of managed colonies, the use of sensor technology is growing in popularity and it is of interest to develop new methods which can more accurately and less invasively assess honey bee colony status. Our approach is to use accelerometers to measure vibrations in order to provide information on colony activity and development. The accelerometers provide amplitude and frequency information which is recorded every three minutes and analysed for night time only. Vibrational data were validated by comparison to visual inspection data, particularly the brood development. We show a strong correlation between vibrational amplitude data and the brood cycle in the vicinity of the sensor. We have further explored the minimum data that is required, when frequency information is also included, to accurately predict the current point in the brood cycle. Such a technique should enable beekeepers to reduce the frequency with which visual inspections are required, reducing the stress this places on the colony and saving the beekeeper time.

  18. Comparison of vibration damping of standard and PDCPD housing of the electric power steering system

    Science.gov (United States)

    Płaczek, M.; Wróbel, A.; Baier, A.

    2017-08-01

    A comparison of two different types of electric power steering system housing is presented. The first considered type of the housing was a standard one that is made of an aluminium alloy. The second one is made of polydicyclopentadiene polymer (PDCPD) and was produced using the RIM technology. Considered elements were analysed in order to verify their properties of vibrations damping. This property is very important taking into account noise generated by elements of a car’s power steering system. During the carried out tests vibrations of analysed power steering housings were measured using Marco Fiber Composite (MFC) piezoelectric transducers. Results obtained for both considered power steering housings in case of the same parameters of vibrations excitations were measured and juxtaposed. Obtained results were analysed in order to verify if the housing made of PDCPD polymer has better properties of vibration damping than the standard one.

  19. A miniaturized ferrule-top optical cantilever for vibration measurement

    Science.gov (United States)

    Li, J.; Xu, S. M.; Sun, J. N.; Tang, Y. Q.; Dong, F. Z.

    2017-04-01

    In this paper, we propose techniques to design and fabricate polymer micro-cantilevers for attachment onto the end of standard single mode fibers using laser machining. The polymer cantilever is fabricated by laser micro-machining a sheet of polymer into the required shape and then bonded onto the top of a ceramic ferrule by photo resist as a flat supporting and bonding layer. The dimension of resulting cantilever is 1.2 mm long, 300 μm wide, and 25 μm thick. In this work we describe the fabrication of single sensors, however the process could be scaled to offer a route towards mass production. Cantilever vibration caused by vibration signal are monitored by a DFB laser based phase interrogation system. Proof-of-concept experiments show that the sensor is capable of detecting vibration signal with a frequency range of 0-800Hz. By using thinner polymer sheet and machining longer cantilever, the frequency response range can be extended up to a few kHz.

  20. Integrated cable vibration control system using wireless sensors

    Science.gov (United States)

    Jeong, Seunghoo; Cho, Soojin; Sim, Sung-Han

    2017-04-01

    As the number of long-span bridges is increasing worldwide, maintaining their structural integrity and safety become an important issue. Because the stay cable is a critical member in most long-span bridges and vulnerable to wind-induced vibrations, vibration mitigation has been of interest both in academia and practice. While active and semi-active control schemes are known to be quite effective in vibration reduction compared to the passive control, requirements for equipment including data acquisition, control devices, and power supply prevent a widespread adoption in real-world applications. This study develops an integrated system for vibration control of stay-cables using wireless sensors implementing a semi-active control. Arduino, a low-cost single board system, is employed with a MEMS digital accelerometer and a Zigbee wireless communication module to build the wireless sensor. The magneto-rheological (MR) damper is selected as a damping device, controlled by an optimal control algorithm implemented on the Arduino sensing system. The developed integrated system is tested in a laboratory environment using a cable to demonstrate the effectiveness of the proposed system on vibration reduction. The proposed system is shown to reduce the vibration of stay-cables with low operating power effectively.

  1. Optical fiber sensors for measurement strain and vibration

    Science.gov (United States)

    Mikel, Bretislav; Helan, Radek; Buchta, Zdenek; Holík, Milan; Jelinek, Michal; Cip, Ondrej

    2015-01-01

    We present optical fiber sensors to measurement strain and vibration. The sensors are based on fiber Bragg gratings (FBG). We prepared construction of strain sensors with respect to its implementation on the outer surface of concrete structures and with compensation of potential temperature drifts. These sensors are projected with look forward to maximal elongation and strength which can be applied to the sensor. Each sensor contains two optical fibers with FBGs. One FBG is glued into the sensor in points of fixation which are in the line with mounting holes. This FBG is prestressed to half of measurement range, than the stretching and pressing can be measured simultaneously by one FBG. The second FBG is placed inside the sensor without fixation to measure temperature drifts. The sensor can be used to structure health monitoring. The sensors to measurement vibration are based on tilted fiber Bragg grating (TFBG) with fiber taper. The sensor uses the TFBG as a cladding modes reflector and fiber taper as a bend-sensitive recoupling member. The lower cladding modes (ghost), reflected from TFBG, is recoupled back into the fiber core via tapered fiber section. We focused on optimization of TFBG tilt angle to reach maximum reflection of the ghost and taper parameters. In this article we present complete set-up, optical and mechanical parameters of both types of sensors.

  2. Non-contact measurement of facial surface vibration patterns during singing by scanning laser Doppler vibrometer.

    Science.gov (United States)

    Kitamura, Tatsuya; Ohtani, Keisuke

    2015-01-01

    This paper presents a method of measuring the vibration patterns on facial surfaces by using a scanning laser Doppler vibrometer (LDV). The surfaces of the face, neck, and body vibrate during phonation and, according to Titze (2001), these vibrations occur when aerodynamic energy is efficiently converted into acoustic energy at the glottis. A vocalist's vibration velocity patterns may therefore indicate his or her phonatory status or singing skills. LDVs enable laser-based non-contact measurement of the vibration velocity and displacement of a certain point on a vibrating object, and scanning LDVs permit multipoint measurements. The benefits of scanning LDVs originate from the facts that they do not affect the vibrations of measured objects and that they can rapidly measure the vibration patterns across planes. A case study is presented herein to demonstrate the method of measuring vibration velocity patterns with a scanning LDV. The objective of the experiment was to measure the vibration velocity differences between the modal and falsetto registers while three professional soprano singers sang sustained vowels at four pitch frequencies. The results suggest that there is a possibility that pitch frequency are correlated with vibration velocity. However, further investigations are necessary to clarify the relationships between vibration velocity patterns and phonation status and singing skills.

  3. Nonlinear spring-less electromagnetic vibration energy harvesting system

    Science.gov (United States)

    Hadas, Z.; Ondrusek, C.

    2015-11-01

    This paper deals with a description and modelling of a spring-less electromagnetic vibration energy harvesting system. The presented unique electromagnetic vibration energy harvester consists of a nonlinear resonance mechanism, magnetic circuit with a coil and an electronic load. The mechanical vibrations excite the nonlinear resonance mechanism and the relative movement of the magnetic circuit against fixed coil induces voltage due to Faraday's Law. When the electronics is connected the current flows through the load and output power is harvested. There are several nonlinearities which affects operations of the presented electromagnetic energy harvesting system. The significant nonlinearity of the system is stiffness of the resonance mechanism and it causes extending of an operation bandwidth. The harvesting of electrical energy from mechanical vibrations provides electromagnetic damping feedbacks of the coil to moving magnetic circuit. The feedback depends on the current flow through the electronic load and coil. The using of modern power management circuit with optimal power point provides other nonlinear operation.

  4. Study on antilock brake system with elastic membrane vibration generated by controlled solenoid excitation

    Science.gov (United States)

    Wibowo, Zakaria, Lambang, Lullus; Triyono, Muhayat, Nurul

    2016-03-01

    The most effective chassis control system for improving vehicle safety during severe braking is anti-lock braking system (ABS). Antilock effect can be gained by vibrate the pad brake at 7 to 20 cycle per second. The aim of this study is to design a new method of antilock braking system with membrane elastic vibrated by solenoid. The influence of the pressure fluctuations of brake fluid is investigated. Vibration data is collected using a small portable accelerometer-slam stick. The experiment results that the vibration of brake pad caused by controlled solenoid excitation at 10 Hz is obtained by our new method. The result of measurements can be altered by varying brake fluid pressure.

  5. Vibrational resonance induced by transition of phase-locking modes in excitable systems.

    Science.gov (United States)

    Yang, Lijian; Liu, Wangheng; Yi, Ming; Wang, Canjun; Zhu, Qiaomu; Zhan, Xuan; Jia, Ya

    2012-07-01

    We study the occurrence of vibrational resonance as well as the underlying mechanism in excitable systems. The single vibration resonance and vibration bi-resonance are observed when tuning the amplitude and frequency of high-frequency force simultaneously. Furthermore, by virtue of the phase diagram of low-frequency-signal-free FitzHugh-Nagumo model, it is found that each maxima of response measure is located exactly at the transition boundary of phase patterns. Therefore, it is the transition between different phase-locking modes that induces vibrational resonance in the excitable systems. Finally, this mechanism is verified in the Hodgkin-Huxley neural model. Our results provide insights into the transmission of weak signals in nonlinear systems, which are valuable in engineering for potential applications.

  6. Study on antilock brake system with elastic membrane vibration generated by controlled solenoid excitation

    Energy Technology Data Exchange (ETDEWEB)

    Wibowo,, E-mail: wibowo-uns@yahoo.com; Zakaria,, E-mail: zakaaria27@gmail.com; Lambang, Lullus, E-mail: lulus-l@yahoo.com; Triyono,, E-mail: tyon-bila@yahoo.co.id; Muhayat, Nurul, E-mail: nurulmuhayat@ymail.com [Mechanical Engineering Department, Sebelas Maret University, Surakarta 57128 (Indonesia)

    2016-03-29

    The most effective chassis control system for improving vehicle safety during severe braking is anti-lock braking system (ABS). Antilock effect can be gained by vibrate the pad brake at 7 to 20 cycle per second. The aim of this study is to design a new method of antilock braking system with membrane elastic vibrated by solenoid. The influence of the pressure fluctuations of brake fluid is investigated. Vibration data is collected using a small portable accelerometer-slam stick. The experiment results that the vibration of brake pad caused by controlled solenoid excitation at 10 Hz is obtained by our new method. The result of measurements can be altered by varying brake fluid pressure.

  7. Human hand-transmitted vibration measurements on pedestrian controlled tractor operators by a laser scanning vibrometer.

    Science.gov (United States)

    Deboli, R; Miccoli, G; Rossi, G L

    1999-06-01

    A first application of a new measurement technique to detect vibration transmitted to the human body in working conditions is presented. The technique is based on the use of a laser scanning vibrometer. It was previously developed, analysed and tested using laboratory test benches with electrodynamical exciters, and comparisons with traditional measurement techniques based on accelerometers were made. First, results of tests performed using a real machine generating vibration are illustrated. The machine used is a pedestrian-controlled tractor working in a fixed position. Reference measurements by using the accelerometer have been simultaneously performed while scanning the hand surface by the laser-based measurement system. Results achieved by means of both measurement techniques have been processed, analysed, compared and used to calculate transmissibility maps of the hands of three subjects.

  8. Wireless alerting system using vibration for vehicles dashboard

    Science.gov (United States)

    Raj, Sweta; Rai, Shweta; Magaramagara, Wilbert; Sivacoumar, R.

    2017-11-01

    This paper aims at improving the engine life of any vehicle through a continuous measurement and monitoring of vital engine operational parameters and providing an effective alerting to drivers for any abnormality. Vehicles currently are using audio and visible alerting signals through alarms and light as a warning to the driver but these are not effective in noisy environments and during daylight. Through the use of the sense of feeling a driver can be alerted effectively. The need to no other vehicle parameter needs to be aided through the mobile display (phone).Thus a system is designed and implements to measure engine temperature, RPM, Oil level and Coolant level using appropriate sensors and a wireless communication (Bluetooth) is established to actuate a portable vibration control device and to read the different vehicle sensor readings through an android application for display and diagnosis.

  9. Preparation and measurement of TFBG based vibration sensor

    Science.gov (United States)

    Helan, Radek; Urban, Frantisek; Mikel, Bretislav; Urban, Frantisek

    2014-08-01

    We present vibration fiber sensor set up based on tilted fiber Bragg grating (TFBG) and fiber taper. The sensor uses the TFBG as a cladding modes reflector and fiber taper as a bend-sensitive recoupling member. The lower cladding modes (ghost), reflected from TFBG, is recoupled back into the fiber core via tapered fiber section. We focused on optimization of TFBG tilt angle to reach maximum reflection of the ghost and taper parameters. Comparative measurements were made using optical spectrum analyzer and superluminiscent diode as broadband light source. We present dependence between intensity of recoupled ghost mode and sensor deflection.

  10. The projected pattern correlation technique for vibration measurements

    Science.gov (United States)

    Konrath, R.; Klinge, F.; Schroeder, A.; Kompenhans, Juergen; Fuellekrug, U.

    2004-06-01

    The objective of this paper is the description of the Projected Pattern Correlation method for measuring surface velocities and to present results of a feasibility study. Similar to the Moire technique the local surface velocities of a large area are determined simultaneously, which replace a time consuming point wise scanning as it is necessary in e.g. Laser Doppler Vibrometry. Furthermore, the dynamics of non-periodic processes can be resolved temporally and spatially. In difference to the Moire or grid projection techniques the evaluation step is fast (real-time measurements are possible) more robust and provides a high spatial resolution. The measurement precision is assessed using a simple test arrangement. Vibration measurements are performed on a satellite model structure and a honeycomb sandwich plate.

  11. Vibrational Probes: From Small Molecule Solvatochromism Theory and Experiments to Applications in Complex Systems.

    Science.gov (United States)

    Błasiak, Bartosz; Londergan, Casey H; Webb, Lauren J; Cho, Minhaeng

    2017-04-18

    The vibrational frequency of a chosen normal mode is one of the most accurately measurable spectroscopic properties of molecules in condensed phases. Accordingly, infrared absorption and Raman scattering spectroscopy have provided valuable information on both distributions and ensemble-average values of molecular vibrational frequencies, and these frequencies are now routinely used to investigate structure, conformation, and even absolute configuration of chemical and biological molecules of interest. Recent advancements in coherent time-domain nonlinear vibrational spectroscopy have allowed the study of heterogeneous distributions of local structures and thermally driven ultrafast fluctuations of vibrational frequencies. To fully utilize IR probe functional groups for quantitative bioassays, a variety of biological and chemical techniques have been developed to site-specifically introduce vibrational probe groups into proteins and nucleic acids. These IR-probe-labeled biomolecules and chemically reactive systems are subject to linear and nonlinear vibrational spectroscopic investigations and provide information on the local electric field, conformational changes, site-site protein contacts, and/or function-defining features of biomolecules. A rapidly expanding library of data from such experiments requires an interpretive method with atom-level chemical accuracy. However, despite prolonged efforts to develop an all-encompassing theory for describing vibrational solvatochromism and electrochromism as well as dynamic fluctuations of instantaneous vibrational frequencies, purely empirical and highly approximate theoretical models have often been used to interpret experimental results. They are, in many cases, based on the simple assumption that the vibrational frequency of an IR reporter is solely dictated by electric potential or field distribution around the vibrational chromophore. Such simplified description of vibrational solvatochromism generally referred to as

  12. VIBRATIONS MEASUREMENT IN ORDER TO IDENTIFY THE FAULTS TO THE TABLES AND SUPPORTS ON WHICH THE EMBROIDERY MACHINES ARE PLACED

    Directory of Open Access Journals (Sweden)

    ŞUTEU Marius

    2014-05-01

    Full Text Available The aim of this paper is to accurately and quickly identify the faults of the tables and supports on which the embroidery machines are placed through vibrations measuring method. Vibrations measurements on Happy embroidery machine were performed at S.C. CONFIDEX S.R.L Oradea. A FFT spectrum analyzer Impaq was used, made by Benstone Instruments Inc –SUA. The measurements were performed in order to seek the role and importance of the rigidity of embroidery machine supports for a better and more efficient performance of the machine. Before performing these measurements was determined the optimal operating mode of the embroidery machine. The vibration measurements were performed in each measuring point, by installing a vibration sensor on the three directions of the Cartesian coordinates system: axial (X, horizontal (Y, vertical (Z. In the present paper is shown only the measuring direction Z (sensor mounting direction and advance of the material on x direction (the embroidery direction this is the most relevant direction, as on this part the embroidery is executed. After performing these vibration measurements on the HAPPY embroidery machine, previously mounted on a big table, after that mounted on a smaller table and a less rigid base. The same vibrations measurements were performed and it was noticed that it is mandatory to position the machine on a big table and a stable base because it will influence both the reliability and the working regime of the machine.

  13. Modal Analysis and Measurement of Water Cooling Induced Vibrations on a CLIC Main Beam Quadrupole Prototype

    CERN Document Server

    Artoos, K; Esposito, M; Fernandez Carmona, P; Guinchard, M; Janssens, S; Leuxe, R; Modena, M; Moron Ballester, R; Struik, M; Deleglise, C; Jeremie, A

    2011-01-01

    To reach the Compact Linear Collider (CLIC) design luminosity, the mechanical jitter of the CLIC main beam quadrupoles should be smaller than 1.5 nm integrated root mean square (r.m.s.) displacement above 1 Hz. A stiff stabilization and nano-positioning system is being developed but the design and effectiveness of such a system will greatly depend on the stiffness of the quadrupole magnet which should be as high as possible. Modal vibration measurements were therefore performed on a first assembled prototype magnet to evaluate the different mechanical modes and their frequencies. The results were then compared with a Finite Element (FE) model. The vibrations induced by water-cooling without stabilization were measured with different flow rates. This paper describes and analyzes the measurement results.

  14. DESIGN OF VIBRATION AND NOISE CONTROL SYSTEM FOR FLEXIBLE STRUCTURES

    Directory of Open Access Journals (Sweden)

    В. Макаренко

    2012-04-01

    Full Text Available In the article the control system is created, which is able to reduce steady-state vibration response of thinwalled flexible structure in the wide band of low frequencies. It is supposed, that the flexible structure is subject to external harmonic force with variable frequencies, and parameters of that force are available for the usage by the control system. The control system is based on pattern search algorithm and suggestion about the dependence of signal, which is formed by the control system, from the steady-state vibration response of the flexible structure. Developed software allows to use pattern search algorithm as the control system for plate vibration in real-time. The influence on control system operation of signal delay of executive device of compensating path and transition process after the change of control signal parameters is done by the usage of the additional idle time. During idle time the control signal is supported. It has parameters that have taken place before the beginning of idle mode. Step reset option for resuming of search after the long-term steady-state vibration of flexible structure do not derange control system operation, because step change take place only after polling cycle termination. The efficiency of proposed system is illustrated experimentally on the example of clamped plate. Experimental results analysis showed the necessity of multiple compensating devices application for vibration reduction in wide frequency range.

  15. Simulations and Measurements of Human Middle Ear Vibrations Using Multi-Body Systems and Laser-Doppler Vibrometry with the Floating Mass Transducer

    Directory of Open Access Journals (Sweden)

    Tobias Strenger

    2013-10-01

    Full Text Available The transfer characteristic of the human middle ear with an applied middle ear implant (floating mass transducer is examined computationally with a Multi-body System approach and compared with experimental results. For this purpose, the geometry of the middle ear was reconstructed from μ-computer tomography slice data and prepared for a Multi-body System simulation. The transfer function of the floating mass transducer, which is the ratio of the input voltage and the generated force, is derived based on a physical context. The numerical results obtained with the Multi-body System approach are compared with experimental results by Laser Doppler measurements of the stapes footplate velocities of five different specimens. Although slightly differing anatomical structures were used for the calculation and the measurement, a high correspondence with respect to the course of stapes footplate displacement along the frequency was found. Notably, a notch at frequencies just below 1 kHz occurred. Additionally, phase courses of stapes footplate displacements were determined computationally if possible and compared with experimental results. The examinations were undertaken to quantify stapes footplate displacements in the clinical practice of middle ear implants and, also, to develop fitting strategies on a physical basis for hearing impaired patients aided with middle ear implants.

  16. Studying the influence of vibration exposures on digestives system of workers in a food processing company

    Directory of Open Access Journals (Sweden)

    2012-12-01

    Full Text Available Introduction: Today’s, defective and faulty equipments lose a large part of them energy as noise and vibration which beside their financial costs can be hazardous to the health of people. Vibration as a physical agent can cause an adverse health effect on human to nervous system. These effects, based on body region can be as specific or general systems. Digestion system has a natural vibration of 3-8Hz frequency. When the digestive system is exposed by such vibration, it can make impairment on that system. This study aimed to study vibration effect on digestion irregularities. . Material and Method: This was a retrospective case-control study conducted in a food industry. The number of 103 workers digestive problem and 431 healthy workers were selected as population study. Exposure to the vibration in the different parts were measured. People with more than 100 dB was considered exposed group. Then, after determining the number of exposed and non exposed groups, data were analyzed using statistical methodologies. .Result: The acceleration level of vibration was 109.8 dB in the packing section, which was less than standard limit (118.8 dB. Study population had a managed of 24-57 years old with 4-15 years of job tenure. In 59.2% of case comparing to 22.7% of control group were exposed to the vibration. The odds ratio (OR of prevalence rate of digestive problem among exposed group was 6.3 times more than non exposed group people, in risk of gastrointestinal complications. .Conclusion: Beside of the other risk factors of digestive problem, vibration can be also an effective cause of adverse health problem: Even by lower level of digestive problem can be seen in the exposed people. So, we suggest in the workplace with vibration risk factor, a digestive health exam be take general medical beside periodic examination. Moreover, it is recommended that researches related to the vibration is widely developed and the vibration standard limits is revised

  17. PROBABILISTIC ESTIMATION OF VIBRATION INFLUENCE ON SENSITIVE SYSTEM ELEMENTS

    Directory of Open Access Journals (Sweden)

    A. A. Lobaty

    2009-01-01

    Full Text Available The paper considers a problem pertaining to an estimation of vibration influence on sensitive system elements. Dependences of intensity and probability of a process exit characterizing a condition of a system element for the preset range that allow to estimate serviceability and no-failure operation of the system have been obtained analytically in the paper

  18. Single-camera high-speed stereo-digital image correlation for full-field vibration measurement

    Science.gov (United States)

    Yu, Liping; Pan, Bing

    2017-09-01

    A low-cost, easy-to-implement single-camera high-speed stereo-digital image correlation (SCHS stereo-DIC) method using a four-mirror adapter is proposed for full-field 3D vibration measurement. With the aid of the four-mirror adapter, surface images of calibration target and test objects can be separately imaged onto two halves of the camera sensor through two different optical paths. These images can be further processed to retrieve the vibration responses on the specimen surface. To validate the effectiveness and accuracy of the proposed approach, dynamic parameters including natural frequencies, damping ratios and mode shapes of a rectangular cantilever plate were extracted from the directly measured vibration responses using the established system. The results reveal that the SCHS stereo-DIC is a simple, practical and effective technique for vibration measurements and dynamic parameters identification.

  19. Space robots with flexible appendages: Dynamic modeling, coupling measurement, and vibration suppression

    Science.gov (United States)

    Meng, Deshan; Wang, Xueqian; Xu, Wenfu; Liang, Bin

    2017-05-01

    For a space robot with flexible appendages, vibrations of flexible structure can be easily excited during both orbit and/or attitude maneuvers of the base and the operation of the manipulators. Hence, the pose (position and attitude) of the manipulator's end-effector will greatly deviate from the desired values, and furthermore, the motion of the manipulator will trigger and exacerbate vibrations of flexible appendages. Given lack of the atmospheric damping in orbit, the vibrations will last for quite a while and cause the on-orbital tasks to fail. We derived the rigid-flexible coupling dynamics of a space robot system with flexible appendages and established a coupling model between the flexible base and the space manipulator. A specific index was defined to measure the coupling degree between the flexible motion of the appendages and the rigid motion of the end-effector. Then, we analyzed the dynamic coupling for different conditions, such as modal displacements, joint angles (manipulator configuration), and mass properties. Moreover, the coupling map was adopted and drawn to represent the coupling motion. Based on this map, a trajectory planning method was addressed to suppress structure vibration. Finally, simulation studies of typical cases were performed, which verified the proposed models and method. This work provides a theoretic basis for the system design, performance evaluation, trajectory planning, and control of such space robots.

  20. Vibration-based SHM System: Application to Wind Turbine Blades

    DEFF Research Database (Denmark)

    Tcherniak, D.; Mølgaard, Lasse Lohilahti

    2015-01-01

    This study presents an vibration-based system designed for structural health monitoring of wind turbine blades. Mechanical energy is introduced by means of an electromechanical actuator mounted inside the blade. The actuator's plunger periodically hits the blade structure; the induced vibrations...... signal-to-noise ratio. Simultaneously, the frequencies are low enough to be able to propagate the entire blade length, so good results can be obtained even using only one actuator. The system is demonstrated on a real 34m blade mounted on a test rig. Using the suggested approach, the system enables...

  1. Impact Analysis of Roller System Stability for Four-High Mill Horizontal Vibration

    Directory of Open Access Journals (Sweden)

    Xiao-bin Fan

    2016-01-01

    Full Text Available In order to study the hot Compact Strip Production (CSP, four-high mill vibration characteristics, and vibration suppression method, the roller system structure stability was analyzed and calculated at first in the paper. And then, the mill stand gap was measured at field and its influence on roll transverse vibration was analyzed. The drum gear coupling effect on the roller system stability and the automatic balance conditions of the coupling transmission torque were studied; the influence of axial force caused by the roller cross on the system stability was analyzed. Finally, the roller transverse friction chatter vibration mechanics model was established; the simulation analysis was carried out with eliminating mill house-bearing clearance and adding floating support for coupling, respectively. And the characteristics of the roller “jump vibration” were studied. We applied copper gaskets to eliminate or reduce mill house-bearing clearance for suppressing the rolling mill vibration on the spot; the test results show that the roller transverse vibration was suppressed after eliminating clearance.

  2. Methods of Identification of Nonlinear Mechanical Vibrating Systems

    Science.gov (United States)

    Plakhtienko, N. P.

    2000-12-01

    Methods for determination of the dynamic characteristics and parameters of mechanical vibrating systems by processing experimental data on controlled vibrations are presented. These methods are intended for construction of mathematical models of objects to be identified and classed as parametric and nonparametric methods. The quadrature formulas of the nonparametric-identification method are derived by inverting the integral parameters of approximate analytical solutions of nonlinear differential equations. The parametric-identification method involves setting up and solving systems of linear algebraic equations in the sought-for inertia, stiffness, and dissipation parameters by integrating experimental processes using special weighting functions. Depending on the type of the nonlinearity of the vibrating system and the method of representing experimental processes, the weighting functions can be oriented toward displacement, velocity, or acceleration gauges. The results of studies made mainly at the Institute of Mechanics of the National Academy of Sciences of Ukraine are presented

  3. Modal analysis of multistage gear systems coupled with gearbox vibrations

    Science.gov (United States)

    Choy, F. K.; Ruan, Y. F.; Tu, Y. K.; Zakrajsek, J. J.; Townsend, D. P.

    1991-01-01

    An analytical procedure to simulate vibrations in gear transmission systems is presented. This procedure couples the dynamics of the rotor-bearing gear system with the vibration in the gear box structure. The model synthesis method is used in solving the overall dynamics of the system, and a variable time-stepping integration scheme is used in evaluating the global transient vibration of the system. Locally each gear stage is modeled as a multimass rotor-bearing system using a discrete model. The modal characteristics are calculated using the matrix-transfer technique. The gearbox structure is represented by a finite element models, and modal parameters are solved by using NASTRAN. The rotor-gear stages are coupled through nonlinear compliance in the gear mesh while the gearbox structure is coupled through the bearing supports of the rotor system. Transient and steady state vibrations of the coupled system are examined in both time and frequency domains. A typical three-geared system is used as an example for demonstration of the developed procedure.

  4. Assessment of Gear Damage Monitoring Techniques Using Vibration Measurements

    Science.gov (United States)

    Wang, Wilson Q.; Ismail, Fathy; Farid Golnaraghi, M.

    2001-09-01

    Each gear damage monitoring technique has its merits and limitations. This paper experimentally investigates the sensitivity and robustness of the currently well-accepted techniques: phase and amplitude demodulation, beta kurtosis and wavelet transform. Four gear test cases were used: healthy gears, cracked, filed and chipped gears. The vibration signal was measured on the gearbox housing and processed, online, under three filtering conditions: general signal average, overall residual and dominant meshing frequency residual. Test results show that beta kurtosis is a very reliable time-domain diagnostic technique. Phase modulation is very sensitive to gear imperfections, but other information should be used to confirm its diagnostic results. Continuous wavelet transform provides a good visual inspection especially when residual signals are used. The diagnosis based only on dominant meshing frequency residual, however, should not be used independently for gear health condition monitoring, it may give false alarms.

  5. [Vibrations of the human tympanic membrane measured with Laser Doppler Vibrometer].

    Science.gov (United States)

    Szymański, Marcin; Rusinek, Rafał; Zadrozniak, Marek; Warmiński, Jerzy; Morshed, Kamal

    2009-01-01

    The knowledge of the physiology of the normal ear is important to understand the function of the ear. It is especially crucial in the reconstruction of the destroyed ear to apply the knowledge of the normal ear. We present results of tympanic membrane vibrations measurements using Laser Doppler Vibrometer in human temporal bone specimens. Six temporal bone specimens were harvested within 48 hours of death and stored cooled until preparation. The preparation included mastoidectomy with posterior tympanotomy and partial resection of the facial nerve to visualize the stapes with its footplate. We measured velocity and displacement of each quadrant of the tympanic membrane and the umbo with the laser Vibrometer equipped with velocity and displacement decoders. The sensor head OFV-534 produced and read the reflected laser beam directed at a measured point with a dedicated micromanipulator attached to an operating microscope. A retro-reflective tape was used to enhance the reflection of the laser beam. Vibrations were induced by a acoustic stimulation at the tympanic membrane. The results of the measurements were corrected to a sound pressure in the external ear canal. Laser Doppler Vibrometer system allows an undisturbed measurement of vibrations in the middle ear. Posterior quadrants of the tympanic membrane have greater velocity and displacement than anterior quadrants in lower frequencies up to 2 kHz.

  6. A 6-DOF vibration isolation system for hydraulic hybrid vehicles

    Science.gov (United States)

    Nguyen, The; Elahinia, Mohammad; Olson, Walter W.; Fontaine, Paul

    2006-03-01

    This paper presents the results of vibration isolation analysis for the pump/motor component of hydraulic hybrid vehicles (HHVs). The HHVs are designed to combine gasoline/diesel engine and hydraulic power in order to improve the fuel efficiency and reduce the pollution. Electric hybrid technology is being applied to passenger cars with small and medium engines to improve the fuel economy. However, for heavy duty vehicles such as large SUVs, trucks, and buses, which require more power, the hydraulic hybridization is a more efficient choice. In function, the hydraulic hybrid subsystem improves the fuel efficiency of the vehicle by recovering some of the energy that is otherwise wasted in friction brakes. Since the operation of the main component of HHVs involves with rotating parts and moving fluid, noise and vibration are an issue that affects both passengers (ride comfort) as well as surrounding people (drive-by noise). This study looks into the possibility of reducing the transmitted noise and vibration from the hydraulic subsystem to the vehicle's chassis by using magnetorheological (MR) fluid mounts. To this end, the hydraulic subsystem is modeled as a six degree of freedom (6-DOF) rigid body. A 6-DOF isolation system, consisting of five mounts connected to the pump/motor at five different locations, is modeled and simulated. The mounts are designed by combining regular elastomer components with MR fluids. In the simulation, the real loading and working conditions of the hydraulic subsystem are considered and the effects of both shock and vibration are analyzed. The transmissibility of the isolation system is monitored in a wide range of frequencies. The geometry of the isolation system is considered in order to sustain the weight of the hydraulic system without affecting the design of the chassis and the effectiveness of the vibration isolating ability. The simulation results shows reduction in the transmitted vibration force for different working cycles of

  7. Vibration measurement on large structures by microwave remote sensing

    Science.gov (United States)

    Gentile, Carmelo

    2012-06-01

    Recent advances in radar techniques and systems have led to the development of microwave interferometers, suitable for the non-contact vibration monitoring of large structures. In the first part of the paper, the main techniques adopted in microwave remote sensing are described, so that advantages and potential issues of these techniques are addressed and discussed. Subsequently, the results of past and recent tests of full-scale structures are presented, in order to demonstrate the reliability and accuracy of microwave remote sensing; furthermore, the simplicity of use of the radar technology is exemplified in practical cases, where the access with conventional techniques is uneasy or even hazardous, such as the stay cables of cable-stayed bridges.

  8. Diesel engine torsional vibration control coupling with speed control system

    Science.gov (United States)

    Guo, Yibin; Li, Wanyou; Yu, Shuwen; Han, Xiao; Yuan, Yunbo; Wang, Zhipeng; Ma, Xiuzhen

    2017-09-01

    The coupling problems between shafting torsional vibration and speed control system of diesel engine are very common. Neglecting the coupling problems sometimes lead to serious oscillation and vibration during the operation of engines. For example, during the propulsion shafting operation of a diesel engine, the oscillation of engine speed and the severe vibration of gear box occur which cause the engine is unable to operate. To find the cause of the malfunctions, a simulation model coupling the speed control system with the torsional vibration of deformable shafting is proposed and investigated. In the coupling model, the shafting is simplified to be a deformable one which consists of several inertias and shaft sections and with characteristics of torsional vibration. The results of instantaneous rotation speed from this proposed model agree with the test results very well and are successful in reflecting the real oscillation state of the engine operation. Furthermore, using the proposed model, the speed control parameters can be tuned up to predict the diesel engine a stable and safe running. The results from the tests on the diesel engine with a set of tuned control parameters are consistent with the simulation results very well.

  9. A Procedure for Accurately Measuring the Shaker Overturning Moment During Random Vibration Tests

    Science.gov (United States)

    Nayeri, Reza D.

    2011-01-01

    Motivation: For large system level random vibration tests, there may be some concerns about the shaker's capability for the overturning moment. It is the test conductor's responsibility to predict and monitor the overturning moment during random vibration tests. If the predicted moment is close to the shaker's capability, test conductor must measure the instantaneous moment at low levels and extrapolate to higher levels. That data will be used to decide whether it is safe to proceed to the next test level. Challenge: Kistler analog formulation for computing the real-time moment is only applicable to very limited cases in which we have 3 or 4 load cells installed at shaker interface with hardware. Approach: To overcome that limitation, a simple procedure was developed for computing the overturning moment time histories using the measured time histories of the individual load cells.

  10. Vibration measurements of high-heat-load monochromators for DESY PETRA III extension

    Energy Technology Data Exchange (ETDEWEB)

    Kristiansen, Paw, E-mail: paw.kristiansen@fmb-oxford.com [FMB Oxford Ltd, Unit 1 Ferry Mills, Oxford OX2 0ES (United Kingdom); Horbach, Jan; Döhrmann, Ralph; Heuer, Joachim [DESY, Deutsches Elektronen-Synchrotron Hamburg, Notkestrasse 85, 22607 Hamburg (Germany)

    2015-05-09

    Vibration measurements of a cryocooled double-crystal monochromator are presented. The origins of the vibrations are identified. The minimum achieved vibration of the relative pitch between the two crystals is 48 nrad RMS and the minimum achieved absolute vibration of the second crystal is 82 nrad RMS. The requirement for vibrational stability of beamline optics continues to evolve rapidly to comply with the demands created by the improved brilliance of the third-generation low-emittance storage rings around the world. The challenge is to quantify the performance of the instrument before it is installed at the beamline. In this article, measurement techniques are presented that directly and accurately measure (i) the relative vibration between the two crystals of a double-crystal monochromator (DCM) and (ii) the absolute vibration of the second-crystal cage of a DCM. Excluding a synchrotron beam, the measurements are conducted under in situ conditions, connected to a liquid-nitrogen cryocooler. The investigated DCM utilizes a direct-drive (no gearing) goniometer for the Bragg rotation. The main causes of the DCM vibration are found to be the servoing of the direct-drive goniometer and the flexibility in the crystal cage motion stages. It is found that the investigated DCM can offer relative pitch vibration down to 48 nrad RMS (capacitive sensors, 0–5 kHz bandwidth) and absolute pitch vibration down to 82 nrad RMS (laser interferometer, 0–50 kHz bandwidth), with the Bragg axis brake engaged.

  11. A MEMS Resonant Sensor to Measure Fluid Density and Viscosity under Flexural and Torsional Vibrating Modes.

    Science.gov (United States)

    Zhao, Libo; Hu, Yingjie; Wang, Tongdong; Ding, Jianjun; Liu, Xixiang; Zhao, Yulong; Jiang, Zhuangde

    2016-06-06

    Methods to calculate fluid density and viscosity using a micro-cantilever and based on the resonance principle were put forward. Their measuring mechanisms were analyzed and the theoretical equations to calculate the density and viscosity were deduced. The fluid-solid coupling simulations were completed for the micro-cantilevers with different shapes. The sensing chips with micro-cantilevers were designed based on the simulation results and fabricated using the micro electromechanical systems (MEMS) technology. Finally, the MEMS resonant sensor was packaged with the sensing chip to measure the densities and viscosities of eight different fluids under the flexural and torsional vibrating modes separately. The relative errors of the measured densities from 600 kg/m³ to 900 kg/m³ and viscosities from 200 μPa·s to 1000 μPa·s were calculated and analyzed with different microcantilevers under various vibrating modes. The experimental results showed that the effects of the shape and vibrating mode of micro-cantilever on the measurement accuracies of fluid density and viscosity were analyzed in detail.

  12. A MEMS Resonant Sensor to Measure Fluid Density and Viscosity under Flexural and Torsional Vibrating Modes

    Directory of Open Access Journals (Sweden)

    Libo Zhao

    2016-06-01

    Full Text Available Methods to calculate fluid density and viscosity using a micro-cantilever and based on the resonance principle were put forward. Their measuring mechanisms were analyzed and the theoretical equations to calculate the density and viscosity were deduced. The fluid-solid coupling simulations were completed for the micro-cantilevers with different shapes. The sensing chips with micro-cantilevers were designed based on the simulation results and fabricated using the micro electromechanical systems (MEMS technology. Finally, the MEMS resonant sensor was packaged with the sensing chip to measure the densities and viscosities of eight different fluids under the flexural and torsional vibrating modes separately. The relative errors of the measured densities from 600 kg/m3 to 900 kg/m3 and viscosities from 200 μPa·s to 1000 μPa·s were calculated and analyzed with different microcantilevers under various vibrating modes. The experimental results showed that the effects of the shape and vibrating mode of micro-cantilever on the measurement accuracies of fluid density and viscosity were analyzed in detail.

  13. ANALYSIS OF METHODS PROVIDING ACCURACY FOR TOOLS AND TECHNIQUES VIBRATION MEASUREMENT IN THE PROCESS OF MAINTAINING AIRWORTHINESS OF AIRCRAFT

    Directory of Open Access Journals (Sweden)

    Anatoliy Alexandrovich Bogoyavlenskiy

    2017-01-01

    Full Text Available On the basis of system approach the structure of the aviation activity areas on air transport related to monitoring and measurements of vibration parameters is presented.The technology analysis of laboratory tests of the onboard equipment control of vibration parameters is carried out. The issues related to ensuring the unity of measurements of vibration parameters are researched and summarized.While dealing with the works on metrological certification described in the article, the risks arising from aviation activity on air transport are taken into account. The certification methods of measuring channels of vibration parametersused on stands for testing GTE at the repairing of aircraft engines are developed. The methods are implemented when con- ducting initial and periodic certifications of test benches for twelve types of aircraft GTE in repair organizations. The reliability of the results of the conducted research due to the fact that they were carried out with the use of certified measure- ment equipment, included in the State register of measuring instruments. The research is conducted for a sufficiently high statistical confidence level with the boundaries 0.95. The studies have shown that running on air transport measurements of vibration parameters are metrologically se- cured, the unity of measurements and their traceability from the national primary reference to special measuring instru- ments, test equipment, and onboard controls of the aircraft is maintained.

  14. Non-contact measurement of facial surface vibration patterns during singing by scanning laser Doppler vibrometer

    Directory of Open Access Journals (Sweden)

    Tatsuya eKitamura

    2015-11-01

    Full Text Available This paper presents a method of measuring the vibration patterns onfacial surfaces by using a scanning laser Doppler vibrometer(LDV. The surfaces of the face, neck, and body vibrate duringphonation and, according to Titze (2001, these vibrations occur whenaerodynamic energy is efficiently converted into acoustic energy atthe glottis. A vocalist's vibration velocity patterns may thereforeindicate his or her phonatory status or singing skills. LDVs enablelaser-based non-contact measurement of the vibration velocity anddisplacement of a certain point on a vibrating object, and scanningLDVs permit multipoint measurements. The benefits of scanning LDVsoriginate from the facts that they do not affect the vibrations ofmeasured objects and that they can rapidly measure the vibrationpatterns across planes. A case study is presented herein todemonstrate the method of measuring vibration velocity patterns with ascanning LDV. The objective of the experiment was to measure thevibration velocity differences between the modal and falsettoregisters while three professional soprano singers sang sustainedvowels at four pitch frequencies. The results suggest that there is apossibility that pitch frequency are correlated with vibrationvelocity. However, further investigations are necessary to clarify therelationships between vibration velocity patterns and phonation statusand singing skills.

  15. Nonlinear Vibration of Oscillation Systems using Frequency-Amplitude Formulation

    Directory of Open Access Journals (Sweden)

    A. Fereidoon

    2012-01-01

    Full Text Available In this paper we study the periodic solutions of free vibration of mechanical systems with third and fifth-order nonlinearity for two examples using He's Frequency-Amplitude Formulation (HFAF.The effectiveness and convenience of the method is illustrated in these examples. It will be shown that the solutions obtained with current method have a fabulous conformity with those achieved from time marching solution. HFAF is easy with powerful concepts and the high accuracy, so it can be found widely applicable in vibrations, especially strong nonlinearity oscillatory problems.

  16. A Novel Control System Design for Vibrational MEMS Gyroscopes

    Directory of Open Access Journals (Sweden)

    Qing Zheng

    2007-04-01

    Full Text Available There are two major control problems associated with vibrational MEMS gyroscopes: to control two vibrating axes (or modes of the gyroscope, and to estimate a time-varying rotation rate. This paper demonstrates how a novel active disturbance rejection control addresses these problems in the presence of the mismatch of natural frequencies between two axes, mechanical-thermal noises, Quadrature errors, and parameter variations. A demodulation approach based on the estimated dynamics of the system by an extended state observer is used to estimate the rotation rate. The simulation results on a Z-axis MEMS gyroscope show that the controller is very effective by driving the output of the drive axis to a desired trajectory, forcing the vibration of the sense axis to zero for a force-to-rebalance operation and precisely estimating the rotation rate.

  17. Non-stationary vibrations of mechanical systems with slowly varying ...

    African Journals Online (AJOL)

    The paper presents an approximate analytical solution for investigation of vibration responses in linear Single-Degree-of-Freedom-Systems (SDOF) with slowly varying natural frequency subjected to a transient excitalion force with constant amplitude. The solution employs the WBKJ-approximation method, the method of ...

  18. Vibrating and shaking soliton pairs in dissipative systems

    Energy Technology Data Exchange (ETDEWEB)

    Akhmediev, N. [Optical Sciences Group, Research School of Physical Sciences and Engineering, the Australian National University, Canberra ACT 0200 (Australia); Soto-Crespo, J.M. [Instituto de Optica, C.S.I.C., Serrano 121, 28006 Madrid (Spain)]. E-mail: iodsc09@io.cfmac.csic.es; Grelu, Ph. [Laboratoire de Physique de l' Universite de Bourgogne, UMR CNRS 5027, Faculte des Sciences Mirande, Avenue Savary BP 47870, 21078 Dijon Cedex (France)

    2007-05-07

    We show that two-soliton solutions in nonlinear dissipative systems can exist in various forms. As with single solitons, they can be stationary, periodic or chaotic. In particular, we find new types of vibrating and shaking soliton pairs. Each type of pair is stable in the sense that the bound state exists in the same form indefinitely.

  19. A finite element analysis of the vibration behaviour of a cementless hip system.

    Science.gov (United States)

    Pérez, M A; Seral-García, B

    2013-01-01

    An early diagnosis of aseptic loosening of a total hip replacement (THR) by plain radiography, scintigraphy or arthography has been shown to be less reliable than using a vibration technique. However, it has been suggested that it may be possible to distinguish between a secure and a loose prosthesis using a vibration technique. In fact, vibration analysis methods have been successfully used to assess dental implant stability, to monitor fracture healing and to measure bone mechanical properties. Several studies have combined the vibration technique with the finite element (FE) method in order to better understand the events involved in the experimental technique. In the present study, the main goal is to simulate the change in the resonance frequency during the osseointegration process of a cementless THR (Zweymüller). The FE method was used and a numerical modal analysis was conducted to obtain the natural frequencies and mode shapes under vibration. The effects were studied of different bone and stem material properties, and different contact conditions at the bone-implant interface. The results were in agreement with previous experimental and computational observations, and differences among the different cases studied were detected. As the osseointegration process at the bone-implant interface evolved, the resonance frequency values of the femur-prosthesis system also increased. In summary, vibration analysis combined with the FE method was able to detect different boundary conditions at the bone-implant interface in cases of both osseointegration and loosening.

  20. Study on the Effect of Reciprocating Pump Pipeline System Vibration on Oil Transportation Stations

    Directory of Open Access Journals (Sweden)

    Hongfang Lu

    2018-01-01

    Full Text Available Due to the periodic movement of the piston in the reciprocating pump, the fluid will cause a pressure pulsation, and the resulting pipeline vibration may lead to instrument distortion, pipe failure and equipment damage. Therefore, it is necessary to study the vibration phenomena of reciprocating pump pipelines based on pressure pulsation theory. This paper starts from the reciprocating pump pipe pressure pulsation caused by a fluid, pressure pulsation in the pipeline and the unbalanced exciting force is calculated under the action of the reciprocating pump. Then, the numerical simulation model is established based on the pipe beam model, and the rationality of the numerical simulation method is verified by indoor experiments. Finally, a case study is taken as an example to analyze the vibration law of the pipeline system, and vibration reduction measures are proposed. The following main conclusions are drawn from the analysis: (1 unbalanced exciting forces are produced in the elbows or tee joints, and it can also influence the straight pipe to different levels; (2 in actual engineering, it should be possible to prevent the simultaneous settlement of multiple places; (3 the vibration amplitude increases with the pipe thermal stress, and when the oil temperature is higher than 85 °C, it had a greater influence on the vertical vibration amplitude of the pipe.

  1. Study of V-OTDR stability for dynamic strain measurement in piezoelectric vibration

    Science.gov (United States)

    Ren, Meiqi; Lu, Ping; Chen, Liang; Bao, Xiaoyi

    2016-09-01

    In a phase-sensitive optical-time domain reflectometry (Φ-OTDR) system, the challenge for dynamic strain measurement lies in large intensity fluctuations from trace to trace. The intensity fluctuation caused by stochastic characteristics of Rayleigh backscattering sets detection limit for the minimum strength of vibration measurement and causes the large measurement uncertainty. Thus, a trace-to-trace correlation coefficient is introduced to quantify intensity fluctuation of Φ-OTDR traces and stability of the sensor system theoretically and experimentally. A novel approach of measuring dynamic strain induced by various driving voltages of lead zirconate titanate (PZT) in Φ-OTDR is also demonstrated. Piezoelectric vibration signals are evaluated through analyzing peak values of fast Fourier transform spectra at the fundamental frequency and high-order harmonics based on Bessel functions. High trace-to-trace correlation coefficients varying from 0.824 to 0.967 among 100 measurements are obtained in experimental results, showing the good stability of our sensor system, as well as small uncertainty of measured peak values.

  2. Distributed measurement of acoustic vibration location with frequency multiplexed phase-OTDR

    Science.gov (United States)

    Iida, Daisuke; Toge, Kunihiro; Manabe, Tetsuya

    2017-07-01

    All-fiber distributed vibration sensing is attracting attention in relation to structural health monitoring because it is cost effective, offers high coverage of the monitored area and can detect various structural problems. And in particular the demand for high-speed vibration sensing operating at more than 10 kHz has increased because high frequency vibration indicates high energy and severe trouble in the monitored object. Optical fiber vibration sensing with phase-sensitive optical time domain reflectometry (phase-OTDR) has long been studied because it can be used for distributed vibration sensing in optical fiber. However, pulse reflectometry such as OTDR cannot measure high-frequency vibration whose cycle is shorter than the repetition time of the OTDR. That is, the maximum detectable frequency depends on fiber length. In this paper, we describe a vibration sensing technique with frequency-multiplexed OTDR that can detect the entire distribution of a high-frequency vibration thus allowing us to locate a high-speed vibration point. We can measure the position, frequency and dynamic change of a high-frequency vibration whose cycle is shorter than the repetition time. Both frequency and position are visualized simultaneously for a 5-km fiber with an 80-kHz frequency response and a 20-m spatial resolution.

  3. The Effect of Rail Fastening System Modifications on Tram Traffic Noise and Vibration

    Directory of Open Access Journals (Sweden)

    Stjepan Lakušić

    2016-01-01

    Full Text Available Tram system is a backbone of public transportation in the City of Zagreb. In the last decade, its fleet has been renewed by 142 new low-floor trams. Shortly after their introduction, it was observed that they have a negative impact on the exploitation behavior of tram infrastructure, primarily on the durability of rail fastening systems. Because of that, it was decided to modify existing rail fastening systems to the new track exploitation conditions. When the (reconstruction of tram infrastructure is carried out by applying new systems and technologies, it is necessary to take into account their impact on the future propagation of noise and vibration in the environment. This paper gives a short overview of the characteristics of the two newly developed rail fastening systems for Zagreb tram tracks, their application in construction of experimental track section, and performance and comparison of noise and vibration measurements results. Measured data on track vibrations and noise occurring during passage of the tram vehicles is analyzed in terms of track decay rates and equivalent noise levels of passing referent vehicle. Vibroacoustic performance of new fastening systems is evaluated and compared to referent fastening system, in order to investigate their ability to absorb vibration energy induced by tram operation and to reduce noise emission.

  4. Integrating Oil Debris and Vibration Measurements for Intelligent Machine Health Monitoring. Degree awarded by Toledo Univ., May 2002

    Science.gov (United States)

    Dempsey, Paula J.

    2003-01-01

    A diagnostic tool for detecting damage to gears was developed. Two different measurement technologies, oil debris analysis and vibration were integrated into a health monitoring system for detecting surface fatigue pitting damage on gears. This integrated system showed improved detection and decision-making capabilities as compared to using individual measurement technologies. This diagnostic tool was developed and evaluated experimentally by collecting vibration and oil debris data from fatigue tests performed in the NASA Glenn Spur Gear Fatigue Rig. An oil debris sensor and the two vibration algorithms were adapted as the diagnostic tools. An inductance type oil debris sensor was selected for the oil analysis measurement technology. Gear damage data for this type of sensor was limited to data collected in the NASA Glenn test rigs. For this reason, this analysis included development of a parameter for detecting gear pitting damage using this type of sensor. The vibration data was used to calculate two previously available gear vibration diagnostic algorithms. The two vibration algorithms were selected based on their maturity and published success in detecting damage to gears. Oil debris and vibration features were then developed using fuzzy logic analysis techniques, then input into a multi sensor data fusion process. Results show combining the vibration and oil debris measurement technologies improves the detection of pitting damage on spur gears. As a result of this research, this new diagnostic tool has significantly improved detection of gear damage in the NASA Glenn Spur Gear Fatigue Rigs. This research also resulted in several other findings that will improve the development of future health monitoring systems. Oil debris analysis was found to be more reliable than vibration analysis for detecting pitting fatigue failure of gears and is capable of indicating damage progression. Also, some vibration algorithms are as sensitive to operational effects as they

  5. Microgravity Active Vibration Isolation System on Parabolic Flights

    Science.gov (United States)

    Dong, Wenbo; Pletser, Vladimir; Yang, Yang

    2016-07-01

    The Microgravity Active Vibration Isolation System (MAIS) aims at reducing on-orbit vibrations, providing a better controlled lower gravity environment for microgravity physical science experiments. The MAIS will be launched on Tianzhou-1, the first cargo ship of the China Manned Space Program. The principle of the MAIS is to suspend with electro-magnetic actuators a scientific payload, isolating it from the vibrating stator. The MAIS's vibration isolation capability is frequency-dependent and a decrease of vibration of about 40dB can be attained. The MAIS can accommodate 20kg of scientific payload or sample unit, and provide 30W of power and 1Mbps of data transmission. The MAIS is developed to support microgravity scientific experiments on manned platforms in low earth orbit, in order to meet the scientific requirements for fluid physics, materials science, and fundamental physics investigations, which usually need a very quiet environment, increasing their chances of success and their scientific outcomes. The results of scientific experiments and technology tests obtained with the MAIS will be used to improve future space based research. As the suspension force acting on the payload is very small, the MAIS can only be operative and tested in a weightless environment. The 'Deutsches Zentrum für Luft- und Raumfahrt e.V.' (DLR, German Aerospace Centre) granted a flight opportunity to the MAIS experiment to be tested during its 27th parabolic flight campaign of September 2015 performed on the A310 ZERO-G aircraft managed by the French company Novespace, a subsidiary of the 'Centre National d'Etudes Spatiales' (CNES, French Space Agency). The experiment results confirmed that the 6 degrees of freedom motion control technique was effective, and that the vibration isolation performance fulfilled perfectly the expectations based on theoretical analyses and simulations. This paper will present the design of the MAIS and the experiment results obtained during the

  6. Lateral vibration behavior analysis and TLD vibration absorption design of the soft yoke single-point mooring system

    Science.gov (United States)

    Lyu, Bai-cheng; Wu, Wen-hua; Yao, Wei-an; Du, Yu

    2017-06-01

    Mooring system is the key equipment of FPSO safe operation. The soft yoke mooring system is regarded as one of the best shallow water mooring strategies and widely applied to the oil exploitation in the Bohai Bay in China and the Gulf of Mexico. Based on the analysis of numerous monitoring data obtained by the prototype monitoring system of one FPSO in the Bohai Bay, the on-site lateral vibration behaviors found on the site of the soft yoke subject to wave load were analyzed. ADAMS simulation and model experiment were utilized to analyze the soft yoke lateral vibration and it was determined that lateral vibration was resonance behaviors caused by wave excitation. On the basis of the soft yoke longitudinal restoring force being guaranteed, a TLD-based vibration damper system was constructed and the vibration reduction experiments with multi-tank space and multi-load conditions were developed. The experimental results demonstrated that the proposed TLD vibration reduction system can effectively reduce lateral vibration of soft yoke structures.

  7. MEASUREMENT OF VIBRATION PARAMETERS OF THE WAVEGUIDE FOR MEDICAL TREATMENT

    Directory of Open Access Journals (Sweden)

    A. Palevicius

    2011-01-01

    Full Text Available Methods allowing investigation of vibrations of the stainless steel waveguide by combining noncontact techniques with the state-of-the-art multiphysics software are developed. The vibrations of the waveguide, used in nowadays surgery are examined by the aids of the holographic interferometry technique, vibrometer based on Doppler shift of backscattered laser light and the virtual model of the waveguide is created by the Comsol Multiphysics software. 

  8. Calculation of characteristics of torsionally vibrating mechatronic system

    OpenAIRE

    A. Buchacz

    2007-01-01

    Purpose: of this paper is the application of the approximate method to solve the task of assigning the frequencymodalanalysis and characteristics of a mechatronic system.Design/methodology/approach: was the formulated and solved as a problem in the form of a set of differentialequations of motion and state equations of the considered mechatronic model of an object. To obtain thesolution, Galerkin’s method was used. The discussed torsionally vibrating mechanical system is a continuousbar of ci...

  9. Development of an Optical Fiber Sensor Interrogation System for Vibration Analysis

    Directory of Open Access Journals (Sweden)

    Alfredo Lamberti

    2016-01-01

    Full Text Available Since the introduction of dynamic optical fiber sensor interrogation systems on the market it has become possible to perform vibration measurements at frequencies up to a few kHz. Nevertheless, the use of these sensors in vibration analysis has not become a standard practice yet. This is mainly caused by the fact that interrogators are stand-alone systems which focus on strain measurements while other types of signals are also required for vibration analysis (e.g., force signals. In this paper, we present a fiber Bragg grating (FBG interrogation system that enables accurate strain measurement simultaneously with other signals (e.g., excitation forces. The system is based on a Vertical Cavity Surface Emitting Laser (VCSEL and can easily be assembled with relatively low-cost off-the-shelf components. Dynamic measurements up to a few tens of kHz with a dynamic precision of around 3 nanostrain per square-root Hz can be performed. We evaluate the proposed system on two measurement examples: a steel beam with FBG sensors glued on top and a composite test specimen with a fiber sensor integrated within the material. We show that in the latter case the results of the interrogation system are superior in quality compared to a state-of-the-art commercially available interrogation system.

  10. Experimental chaotic quantification in bistable vortex induced vibration systems

    Science.gov (United States)

    Huynh, B. H.; Tjahjowidodo, T.

    2017-02-01

    The study of energy harvesting by means of vortex induced vibration systems has been initiated a few years ago and it is considered to be potential as a low water current energy source. The energy harvester is realized by exposing an elastically supported blunt structure under water flow. However, it is realized that the system will only perform at a limited operating range (water flow) that is attributed to the resonance phenomenon that occurs only at a frequency that corresponds to the fluid flow. An introduction of nonlinear elements seems to be a prominent solution to overcome the problem. Among many nonlinear elements, a bistable spring is known to be able to improve the harvested power by a vortex induced vibrations (VIV) based energy converter at the low velocity water flows. However, it is also observed that chaotic vibrations will occur at different operating ranges that will erratically diminish the harvested power and cause a difficulty in controlling the system that is due to the unpredictability in motions of the VIV structure. In order to design a bistable VIV energy converter with improved harvested power and minimum negative effect of chaotic vibrations, the bifurcation map of the system for varying governing parameters is highly on demand. In this study, chaotic vibrations of a VIV energy converter enhanced by a bistable stiffness element are quantified in a wide range of the governing parameters, i.e. damping and bistable gap. Chaotic vibrations of the bistable VIV energy converter are simulated by utilization of a wake oscillator model and quantified based on the calculation of the Lyapunov exponent. Ultimately, a series of experiments of the system in a water tunnel, facilitated by a computer-based force-feedback testing platform, is carried out to validate the existence of chaotic responses. The main challenge in dealing with experimental data is in distinguishing chaotic response from noise-contaminated periodic responses as noise will smear

  11. Comparison of Vocal Vibration-Dose Measures for Potential-Damage Risk Criteria

    Science.gov (United States)

    Titze, Ingo R.; Hunter, Eric J.

    2015-01-01

    Purpose: School-teachers have become a benchmark population for the study of occupational voice use. A decade of vibration-dose studies on the teacher population allows a comparison to be made between specific dose measures for eventual assessment of damage risk. Method: Vibration dosimetry is reformulated with the inclusion of collision stress.…

  12. Measurement of Translational and Angular Vibration Using a Scanning Laser Doppler Vibrometer

    Directory of Open Access Journals (Sweden)

    A.B. Stanbridge

    1996-01-01

    Full Text Available An experimental procedure for obtaining angular and translational vibration in one measurement, using a continuously scanning laser Doppler vibrometer, is described. Sinusoidal scanning, in a straight line, enables one angular vibration component to be measured, but by circular scanning, two principal angular vibrations and their directions can be derived directly from the frequency response sidebands. Examples of measurements on a rigid cube are given. Processes of narrow-band random excitation and modal analysis are illustrated with reference to measurements on a freely suspended beam. Sideband frequency response references are obtained by using multiplied excitation force and mirror-drive signals.

  13. Hydrodynamics of an open vibrated granular system

    Energy Technology Data Exchange (ETDEWEB)

    Brey, J. Javier; Ruiz-Montero, M. J.; Moreno, F.

    2001-06-01

    Using the hydrodynamic description and molecular dynamics simulations, the steady state of a fluidized granular system in the presence of gravity is studied. For an open system, the density profile exhibits a maximum, while the temperature profile goes through a minimum at high altitude, beyond that the temperature increases with the height. The existence of the minimum is explained by the hydrodynamic equations if the presence of a collisionless boundary layer is taken into account. The energy dissipated by interparticle collisions is also computed. A good agreement is found between theory and simulation. The relationship with previous works is discussed.

  14. Unbalance vibration suppression for AMBs system using adaptive notch filter

    Science.gov (United States)

    Chen, Qi; Liu, Gang; Han, Bangcheng

    2017-09-01

    The unbalance of rotor levitated by active magnetic bearings (AMBs) will cause synchronous vibration which greatly degrade the performance at high speeds in the rotating machinery. To suppress the unbalance vibration without angular velocity information, a novel modified adaptive notch filter (ANF) with phase shift in the AMBs system is presented in this study. Firstly, a 4-degree-of-freedom (DOF) radial unbalanced AMB rotor system is described and analyzed, and the solution of rotor vibration displacement is compared with the experimental data to verify the preciseness of the dynamic model. Then the principle and structure of the proposed notch filter used for the frequency estimation and online identification of synchronous component are presented. As well, the convergence property of the algorithm is investigated. In addition, the stability analysis of the closed-loop AMB system with the proposed ANF is conducted. Simulation and experiments on an AMB driveline system demonstrate the effectiveness and the adaptive characteristics of the proposed ANF on the elimination of synchronous controlled current in a widely operating speed range.

  15. Analytical and Experimental Vibration Analysis of a Faulty Gear System

    Science.gov (United States)

    Choy, F. K.; Braun, M. J.; Polyshchuk, V.; Zakrajsek, J. J.; Townsend, D. P.; Handschuh, R. F.

    1994-01-01

    A comprehensive analytical procedure was developed for predicting faults in gear transmission systems under normal operating conditions. A gear tooth fault model is developed to simulate the effects of pitting and wear on the vibration signal under normal operating conditions. The model uses changes in the gear mesh stiffness to simulate the effects of gear tooth faults. The overall dynamics of the gear transmission system is evaluated by coupling the dynamics of each individual gear-rotor system through gear mesh forces generated between each gear-rotor system and the bearing forces generated between the rotor and the gearbox structure. The predicted results were compared with experimental results obtained from a spiral bevel gear fatigue test rig at NASA Lewis Research Center. The Wigner-Ville distribution (WVD) was used to give a comprehensive comparison of the predicted and experimental results. The WVD method applied to the experimental results were also compared to other fault detection techniques to verify the WVD's ability to detect the pitting damage, and to determine its relative performance. Overall results show good correlation between the experimental vibration data of the damaged test gear and the predicted vibration from the model with simulated gear tooth pitting damage. Results also verified that the WVD method can successfully detect and locate gear tooth wear and pitting damage.

  16. Verification of the Microgravity Active Vibration Isolation System based on Parabolic Flight

    Science.gov (United States)

    Zhang, Yong-kang; Dong, Wen-bo; Liu, Wei; Li, Zong-feng; Lv, Shi-meng; Sang, Xiao-ru; Yang, Yang

    2017-12-01

    The Microgravity active vibration isolation system (MAIS) is a device to reduce on-orbit vibration and to provide a lower gravity level for certain scientific experiments. MAIS system is made up of a stator and a floater, the stator is fixed on the spacecraft, and the floater is suspended by electromagnetic force so as to reduce the vibration from the stator. The system has 3 position sensors, 3 accelerometers, 8 Lorentz actuators, signal processing circuits and a central controller embedded in the operating software and control algorithms. For the experiments on parabolic flights, a laptop is added to MAIS for monitoring and operation, and a power module is for electric power converting. The principle of MAIS is as follows: the system samples the vibration acceleration of the floater from accelerometers, measures the displacement between stator and floater from position sensitive detectors, and computes Lorentz force current for each actuator so as to eliminate the vibration of the scientific payload, and meanwhile to avoid crashing between the stator and the floater. This is a motion control technic in 6 degrees of freedom (6-DOF) and its function could only be verified in a microgravity environment. Thanks for DLR and Novespace, we get a chance to take the DLR 27th parabolic flight campaign to make experiments to verify the 6-DOF control technic. The experiment results validate that the 6-DOF motion control technique is effective, and vibration isolation performance perfectly matches what we expected based on theoretical analysis and simulation. The MAIS has been planned on Chinese manned spacecraft for many microgravity scientific experiments, and the verification on parabolic flights is very important for its following mission. Additionally, we also test some additional function by microgravity electromagnetic suspension, such as automatic catching and locking and working in fault mode. The parabolic flight produces much useful data for these experiments.

  17. Verification of the Microgravity Active Vibration Isolation System based on Parabolic Flight

    Science.gov (United States)

    Zhang, Yong-kang; Dong, Wen-bo; Liu, Wei; Li, Zong-feng; Lv, Shi-meng; Sang, Xiao-ru; Yang, Yang

    2017-09-01

    The Microgravity active vibration isolation system (MAIS) is a device to reduce on-orbit vibration and to provide a lower gravity level for certain scientific experiments. MAIS system is made up of a stator and a floater, the stator is fixed on the spacecraft, and the floater is suspended by electromagnetic force so as to reduce the vibration from the stator. The system has 3 position sensors, 3 accelerometers, 8 Lorentz actuators, signal processing circuits and a central controller embedded in the operating software and control algorithms. For the experiments on parabolic flights, a laptop is added to MAIS for monitoring and operation, and a power module is for electric power converting. The principle of MAIS is as follows: the system samples the vibration acceleration of the floater from accelerometers, measures the displacement between stator and floater from position sensitive detectors, and computes Lorentz force current for each actuator so as to eliminate the vibration of the scientific payload, and meanwhile to avoid crashing between the stator and the floater. This is a motion control technic in 6 degrees of freedom (6-DOF) and its function could only be verified in a microgravity environment. Thanks for DLR and Novespace, we get a chance to take the DLR 27th parabolic flight campaign to make experiments to verify the 6-DOF control technic. The experiment results validate that the 6-DOF motion control technique is effective, and vibration isolation performance perfectly matches what we expected based on theoretical analysis and simulation. The MAIS has been planned on Chinese manned spacecraft for many microgravity scientific experiments, and the verification on parabolic flights is very important for its following mission. Additionally, we also test some additional function by microgravity electromagnetic suspension, such as automatic catching and locking and working in fault mode. The parabolic flight produces much useful data for these experiments.

  18. ANALYSIS OF VIBRATORY PROTECTION SYSTEM VIBRATION DURING HARMONIC AND POLYHARMONIC EXCITATIONS

    Directory of Open Access Journals (Sweden)

    T. N. Mikulik

    2011-01-01

    Full Text Available The paper considers a mathematical model of local «driver-seat» system and an algorithm for vibratory loading formation at external actions. Results of the investigations on the system vibration according to minimum vibration acceleration depending on transfer force factor acting on the seat and a vibration isolation factor are presented in the paper.

  19. Study on measuring vibration displacement by shear interference based on sinusoidal phase modulation

    Science.gov (United States)

    He, Guotian; Tang, Feng; Song, Li; Jiang, Helun

    2009-05-01

    The semiconductor laser (LD) Taimangelin interferometer based on sinusoidal phase modulation is vulnerable to external vibration, temperature changes, vibration, and other air interference which causes great measurement error. This paper presents a new semiconductor laser sinusoidal phase modulation shear interference technology and anti-jamming wavelet transform algorithm which is not sensitive to environment interference. It changes the original optical technology in the plane mirror to three pyramid-shear, causing a certain amount of displacement of reference light and object light. and partial use of high resolution wavelet transform algorithm solves the problem in measuring the vibration displacement of measured object..Vibration shear interferometry expression is launched, and theoretically discusses the measurement principle. Using MATLAB before and after the improvement of the methods to simulate contrast obtains the impact of shear volume size on measurement accuracy with experimental test. Experimental results show that it effectively reduces the impact of outside interference on measurement accuracy.

  20. Absolute measurement of subnanometer scale vibration of cochlear partition of an excised guinea pig cochlea using spectral-domain phase-sensitive optical coherence tomography

    Science.gov (United States)

    Subhash, Hrebesh M.; Choudhury, Niloy; Jacques, Steven L.; Wang, Ruikang K.; Chen, Fangyi; Zha, Dingjun; Nuttall, Alfred L.

    2012-01-01

    Direct measurement of absolute vibration parameters from different locations within the mammalian organ of Corti is crucial for understanding the hearing mechanics such as how sound propagates through the cochlea and how sound stimulates the vibration of various structures of the cochlea, namely, basilar membrane (BM), recticular lamina, outer hair cells and tectorial membrane (TM). In this study we demonstrate the feasibility a modified phase-sensitive spectral domain optical coherence tomography system to provide subnanometer scale vibration information from multiple angles within the imaging beam. The system has the potential to provide depth resolved absolute vibration measurement of tissue microstructures from each of the delay-encoded vibration images with a noise floor of ~0.3nm at 200Hz.

  1. Acute effects of vibration from a chipping hammer and a grinder on the hand-arm system.

    Science.gov (United States)

    Kihlberg, S; Attebrant, M; Gemne, G; Kjellberg, A

    1995-11-01

    The purpose of this study was to compare various effects on the hand-arm system of vibration exposure from a chipping hammer and a grinder with the same frequency weighted acceleration. Grip and push forces were measured and monitored during the exposure. The various effects were: muscle activity (measured with surface electrodes), discomfort ratings for different parts of the hand-arm system (made during and after exposure), and vibration perception threshold (for 10 minutes before and 10 minutes after the exposure). No increase in muscle activity due to exposure to vibration was found in the hand muscle studied. In the forearm, conversely, there was an increase in both muscle studied. For the upper arm the muscle activity only increased when exposed to impact vibration. Subjective ratings in the hand and shift in vibration perception threshold were effected more by the grinder than the hammer exposure. These results show that the reaction of the hand-arm system to vibration varies with frequency quantitatively as well as qualitatively. They do not support the notion that one single frequency weighted curve would be valid for the different health effects of hand-arm vibration (vascular, musculoskeletal, neurological, and psychophysiological).

  2. Free vibration analysis of spinning structural systems.

    Science.gov (United States)

    Gupta, K. K.

    1973-01-01

    This article presents an efficient digital computer procedure, along with the complete listing of the associated computer program, which may be conveniently utilized for the accurate solution of a wide range of practical eigenvalue problems. Important applications of the present work are envisaged in the natural frequency analysis of spinning structures discretized by the finite element technique, and in the determination of transfer functions associated with the dynamic blocks of control systems of spacecraft utilizing gas jets or reaction wheels for attitude control, as well as of spin-stabilized and dual-spin-stabilized satellites. The validity of the Sturm sequence property is first established for the related matrix formulation involving Hermitian and real symmetric, positive-definite matrices, both being usually of highly banded configuration. A numerically stable algorithm based on the Sturm sequence method is then developed which fully exploits the banded form of the associated matrices.

  3. Symptoms of Nervous System Related Disorders Among Workers Exposed to Occupational Noise and Vibration in Korea.

    Science.gov (United States)

    Lee, Seunghyun; Lee, Wanhyung; Roh, Jaehoon; Won, Jong-Uk; Yoon, Jin-Ha

    2017-02-01

    The aim of this study was to determine the relationship between vibration and noise exposure in the workplace and certain nervous system related symptoms (NSRS) among Korean workers. Using data from the fourth Korean Working Conditions Survey, we investigated the influence of vibration and noise with three categories; none, mild, and severe, on sleep disturbance, overall fatigue, and headache/eye strain using logistic regression analysis with stratification by personal protective equipment (PPE) wearing status. Severe noise/vibration exposure was associated in a dose-response fashion with NSRS; the odds ratios (ORs) for sleep disturbance, headache/eyestrain, and overall fatigue were 1.48/1.06, 1.46/1.26, and 1.56/1.28 for severe and mild noise/vibration exposure, respectively, compared with no exposure. Workers who did not wear PPEs were the most affected. Occupational exposures to vibration and noise are associated with NSRS. Additional longitudinal studies and tightened education and safety measures are warranted.

  4. Comparison between Accelerometer and Laser Vibrometer to Measure Traffic Excited Vibrations on Bridges

    OpenAIRE

    Rossi, G.; Marsili, R.; Gusella, V.; Gioffrè, M.

    2002-01-01

    The use of accelerometer based measurement techniques for evaluating bridge forced vibrations or to perform bridge modal analysis is well established. It is well known to all researchers who have experience in vibration measurements that values of acceleration amplitude can be very low at low frequencies and that a limitation to the use of accelerometer can be due to the threshold parameter of this kind of transducer. Under this conditions the measurement of displacement seems more appropriat...

  5. Vibration isolation measures due to the high sensitive linear accelerator at the Paul Scherrer Institute

    Directory of Open Access Journals (Sweden)

    Trombik Peter

    2015-01-01

    Full Text Available The new 735m long linear accelerator “SwissFEL” at the Paul Scherrer Institute (PSI in Würenlingen is extremely sensitive against vibrations coming from surrounding equipment (pumps, ventilators, transformers, etc.. The manufacturer’s vibration limit for this linear accelerator is 0.1μm displacement amplitude. Therefore, all vibration sources must strictly be isolated to the highest-possible degree from the rest of the structure. This paper discusses the vibration situation in general for this unique construction (ground vibrations, vibration propagations / structural amplifications, vibration limits, etc. and as a case study the isolation of a pump located in the building. Steel springs were used and it was achieved to reduce the vibration transmitted to the floor by more than 99%, to a level where the coherent component of the motion recorded on the floor next to the linear accelerator is non-measurable / below the ground motions. The measurements were found to be in good accordance with the FEM model used.

  6. Vibration Signature Analysis of a Faulted Gear Transmission System

    Science.gov (United States)

    Choy, F. K.; Huang, S.; Zakrajsek, J. J.; Handschuh, R. F.; Townsend, D. P.

    1996-01-01

    A comprehensive procedure in predicting faults in gear transmission systems under normal operating conditions is presented. Experimental data were obtained from a spiral bevel gear fatigue test rig at NASA/Lewis. Time-synchronous-averaged vibration data were recorded throughout the test as the fault progressed from a small single pit to severe pitting over several teeth, and finally tooth fracture. A numerical procedure based on the Wigner-Ville distribution was used to examine the time-averaged vibration data. Results from the Wigner-Ville procedure are compared to results from a variety of signal analysis techniques that include time-domain analysis methods and frequency analysis methods. Using photographs of the gear tooth at various stages of damage, the limitations and accuracy of the various techniques are compared and discussed. Conclusions are drawn from the comparison of the different approaches as well as the applicability of the Wigner-Ville method in predicting gear faults.

  7. Alternative measures to observe and record vocal fold vibrations

    NARCIS (Netherlands)

    Schutte, HK; McCafferty, G; Coman, W; Carroll, R

    1996-01-01

    Vocal fold vibration patterns form the basis for the production of vocal sound. Over the years much effort has been spend to optimize the ways to visualize and give a description of these patterns. Before video possibilities became available the description of the patterns was Very time-consuming.

  8. APPLICATION OF THE SPECTRUM ANALYSIS WITH USING BERG METHOD TO DEVELOPED SPECIAL SOFTWARE TOOLS FOR OPTICAL VIBRATION DIAGNOSTICS SYSTEM

    Directory of Open Access Journals (Sweden)

    E. O. Zaitsev

    2016-01-01

    Full Text Available The objective of this paper is development and experimental verification special software of spectral analysis. Spectral analysis use of controlled vibrations objects. Spectral analysis of vibration based on use maximum-entropy autoregressive method of spectral analysis by the Berg algorithm. For measured signals use preliminary analysis based on regression analysis. This analysis of the signal enables to eliminate uninformative parameters such as – the noise and the trend. For preliminary analysis developed special software tools. Non-contact measurement of mechanical vibrations parameters rotating diffusely-reflecting surfaces used in circumstances where the use of contact sensors difficult or impossible for a number of reasons, including lack of access to the object, the small size of the controlled area controlled portion has a high temperature or is affected by strong electromagnetic fields. For control use offered laser measuring system. This measuring system overcomes the shortcomings interference or Doppler optical measuring systems. Such as measure the large amplitude and inharmonious vibration. On the basis of the proposed methods developed special software tools for use measuring laser system. LabVIEW using for developed special software. Experimental research of the proposed method of vibration signals processing is checked in the analysis of the diagnostic information obtained by measuring the vibration system grinding diamond wheel cold solid tungsten-containing alloy TK8. A result of work special software tools was complex spectrum obtained «purified» from non-informative parameters. Spectrum of the signal corresponding to the vibration process observed object. 

  9. Real-time micro-vibration multi-spot synchronous measurement within a region based on heterodyne interference

    Science.gov (United States)

    Lan, Ma; Xiao, Wen; Chen, Zonghui; Hao, Hongliang; Pan, Feng

    2018-01-01

    Real-time micro-vibration measurement is widely used in engineering applications. It is very difficult for traditional optical detection methods to achieve real-time need in a relatively high frequency and multi-spot synchronous measurement of a region at the same time,especially at the nanoscale. Based on the method of heterodyne interference, an experimental system of real-time measurement of micro - vibration is constructed to satisfy the demand in engineering applications. The vibration response signal is measured by combing optical heterodyne interferometry and a high-speed CMOS-DVR image acquisition system. Then, by extracting and processing multiple pixels at the same time, four digital demodulation technique are implemented to simultaneously acquire the vibrating velocity of the target from the recorded sequences of images. Different kinds of demodulation algorithms are analyzed and the results show that these four demodulation algorithms are suitable for different interference signals. Both autocorrelation algorithm and cross-correlation algorithm meet the needs of real-time measurements. The autocorrelation algorithm demodulates the frequency more accurately, while the cross-correlation algorithm is more accurate in solving the amplitude.

  10. Laser-Doppler vibrating tube densimeter for measurements at high temperatures and pressures.

    Science.gov (United States)

    Aida, Tsutomu; Yamazaki, Ai; Akutsu, Makoto; Ono, Takumi; Kanno, Akihiro; Hoshina, Taka-aki; Ota, Masaki; Watanabe, Masaru; Sato, Yoshiyuki; Smith, Richard L; Inomata, Hiroshi

    2007-11-01

    A laser-Doppler vibrometer was used to measure the vibration of a vibrating tube densimeter for measuring P-V-T data at high temperatures and pressures. The apparatus developed allowed the control of the residence time of the sample so that decomposition at high temperatures could be minimized. A function generator and piezoelectric crystal was used to excite the U-shaped tube in one of its normal modes of vibration. Densities of methanol-water mixtures are reported for at 673 K and 40 MPa with an uncertainty of 0.009 g/cm3.

  11. Transverse Beam Halo Measurements at High Intensity Neutrino Source (HINS) using Vibrating Wire Monitor

    Energy Technology Data Exchange (ETDEWEB)

    Chung, M.; Hanna, B.; Scarpine, V.; Shiltsev, V.; Steimel, J.; Artinian, S.; Arutunian, S.

    2015-02-26

    The measurement and control of beam halos will be critical for the applications of future high-intensity hadron linacs. In particular, beam profile monitors require a very high dynamic range when used for the transverse beam halo measurements. In this study, the Vibrating Wire Monitor (VWM) with aperture 60 mm was installed at the High Intensity Neutrino Source (HINS) front-end to measure the transverse beam halo. A vibrating wire is excited at its resonance frequency with the help of a magnetic feedback loop, and the vibrating and sensitive wires are connected through a balanced arm. The sensitive wire is moved into the beam halo region by a stepper motor controlled translational stage. We study the feasibility of the vibrating wire for the transverse beam halo measurements in the low-energy front-end of the proton linac.

  12. Analyses of electromagnetic and piezoelectric systems for efficient vibration energy harvesting

    Science.gov (United States)

    Hadas, Z.; Smilek, J.; Rubes, O.

    2017-05-01

    The paper deals with analyses and evaluation of vibration energy harvesting systems which are based on electromagnetic and piezoelectric physical principles off electro-mechanical conversion. Energy harvesting systems are associated with wireless sensors and a monitoring of engineering objects. The most of engineering objects operate with unwanted mechanical vibrations. However, vibrations could provide an ambient source of energy which is converted into useful electricity. The use of electromagnetic and piezoelectric vibration energy harvesters is analyzed in this paper. Thee evaluated output power is used for a choice of the efficient system with respect to the character of vibrations and thee required power output.

  13. Analysis of three-component ambient vibration array measurements

    Science.gov (United States)

    Fäh, Donat; Stamm, Gabriela; Havenith, Hans-Balder

    2008-01-01

    Both synthetic and observed ambient vibration array data are analysed using high-resolution beam-forming. In addition to a classical analysis of the vertical component, this paper presents results derived from processing horizontal components. We analyse phase velocities of fundamental and higher mode Rayleigh and Love waves, and particle motions (ellipticity) retrieved from H/V spectral ratios. A combined inversion with a genetic algorithm and a strategy for selecting possible model parameters allow us to define structural models explaining the data. The results from synthetic data for simple models with one or two layers of sediments suggest that, in most cases, the number of layers has to be reduced to a few sediment strata to find the original structure. Generally, reducing the number of soft-sediment layers in the inversion process with genetic algorithms leads to a class of models that are less smooth. They have a stronger impedance contrast between sediments and bedrock. Combining Love and Rayleigh wave dispersion curves with the ellipticity of the fundamental mode Rayleigh waves has some advantages. Scatter is reduced when compared to using structural models obtained only from Rayleigh wave phase velocity curves. By adding information from Love waves some structures can be excluded. Another possibility for constraining inversion results is to include supplementary geological or borehole information. Analysing radial components also can provide segments of Rayleigh wave dispersion curves for modes not seen on the vertical component. Finally, using ellipticity information allows us to confine the total depth of the soft sediments. For real sites, considerable variability in the measured phase velocity curves is observed. This comes from lateral changes in the structure or seismic sources within the array. Constraining the inversion by combining Love and Rayleigh wave information can help reduce such problems. Frequency bands in which the Rayleigh wave

  14. Active Control of Parametric Vibrations in Coupled Rotor-Blade Systems

    DEFF Research Database (Denmark)

    Christensen, Rene Hardam; Santos, Ilmar

    2003-01-01

    In rotor-blade systems basis as well as parametric vibration modes will appear due to the vibration coupling among flexible rotating blades and hub rigid body motion. Parametric vibration will typically occur when the hub operates at a constant angular velocity. Operating at constant velocity...... the model becomes periodic-variant. In order to reduce basis as well as parametric vibrations by means of active control in such systems a time-variant control strategy has to be adopted. This paper presents a methodology for designing an active controller to reduce vibrations in a coupled rotor......-blade system. The main aim is to control blade as well as hub vibrations in such a system by means of active control with focus on reducing the parametric vibration. A periodic state feedback controller is designed by transforming the system into a linear time-invariant form. Using this a controller...

  15. Vibration properties of and power harvested by a system of electromagnetic vibration energy harvesters that have electrical dynamics

    Science.gov (United States)

    Cooley, Christopher G.

    2017-09-01

    This study investigates the vibration and dynamic response of a system of coupled electromagnetic vibration energy harvesting devices that each consist of a proof mass, elastic structure, electromagnetic generator, and energy harvesting circuit with inductance, resistance, and capacitance. The governing equations for the coupled electromechanical system are derived using Newtonian mechanics and Kirchhoff circuit laws for an arbitrary number of these subsystems. The equations are cast in matrix operator form to expose the device's vibration properties. The device's complex-valued eigenvalues and eigenvectors are related to physical characteristics of its vibration. Because the electrical circuit has dynamics, these devices have more natural frequencies than typical electromagnetic vibration energy harvesters that have purely resistive circuits. Closed-form expressions for the steady state dynamic response and average power harvested are derived for devices with a single subsystem. Example numerical results for single and double subsystem devices show that the natural frequencies and vibration modes obtained from the eigenvalue problem agree with the resonance locations and response amplitudes obtained independently from forced response calculations. This agreement demonstrates the usefulness of solving eigenvalue problems for these devices. The average power harvested by the device differs substantially at each resonance. Devices with multiple subsystems have multiple modes where large amounts of power are harvested.

  16. Multiple vibrations measurement using phase-sensitive OTDR merged with Mach-Zehnder interferometer based on frequency division multiplexing.

    Science.gov (United States)

    He, Haijun; Shao, Li-Yang; Luo, Bin; Li, Zonglei; Zou, Xihua; Zhang, Zhiyong; Pan, Wei; Yan, Lianshan

    2016-03-07

    A novel measurement scheme for multiple high-frequency vibrations has been demonstrated by combining phase-sensitive optical time domain reflectometry (Ф-OTDR) and Mach-Zehnder interferometer (MZI) based on frequency division multiplexing. The light source is directly launched into the MZI structure, while it was modulated by an acoustic optical modulator (AOM) with a frequency shift of 200 MHz for the Ф-OTDR part. The vibration frequency is obtained by demodulating the interference signal obtained by the MZI structure, while the vibration position is located by Ф-OTDR system. The spatial resolution of 10m is obtained over 3 km sensing fiber. And the detectable vibration frequency reaches up to 40 kHz. Compared to the previous schemes, this system works without dead zone in the detectable frequency range. Furthermore, the frequency spectrum mapping method has been adopted to determine multiple high-frequency vibrations simultaneously. The experimental results prove the concept and match well with the theoretical analysis.

  17. Measurement of vibrations at different sections of rail through fiber optic sensors

    Science.gov (United States)

    Barreda, A.; Molina-Jiménez, T.; Valero, E.; Recuero, S.

    2012-02-01

    This paper presents the results of an investigation about how the vibration of railway vehicles affects nearby buildings. The overall objective is to study the vibration generated in urban environments by tram, train and subway, its transmission to the ground and how the buildings and constructions of the environment receive them. Vibrations can generate noise and vibrations in buildings. For this reason it is necessary to characterize the level of vibration affecting rail, road infrastructure and sidewalks and nearby buildings, to assess the influence of the train (speed, type, profile wheel ,..), rail (area of rolling) and route of step, and finally define interim corrective measures. In this study measurements of levels of energy and vibration excitation frequencies will be undertaken through optical techniques: optical fiber networks with distributed Bragg sensors. Measuring these vibrations in different configurations allows us to evaluate the suitability of different sections of rail for different types of uses or environments. This study aims to help improve the safety of the built environment in the vicinity of a railway operation, and thus increase the comfort for passengers and to reduce the environmental impact.

  18. Low-frequency vibration measurement by a dual-frequency DBR fiber laser

    Science.gov (United States)

    Zhang, Bing; Cheng, Linghao; Liang, Yizhi; Jin, Long; Guo, Tuan; Guan, Bai-Ou

    2017-09-01

    A dual-frequency distributed Bragg reflector (DBR) fiber laser based sensor is demonstrated for low-frequency vibration measurement through the Doppler effect. The response of the proposed sensor is quite linear and is much higher than that of a conventional accelerometer. The proposed sensor can work down to 1 Hz with high sensitivity. Therefore, the proposed sensor is very efficient in low-frequency vibration measurement.

  19. Fault Diagnosis for Rotating Machinery Using Vibration Measurement Deep Statistical Feature Learning.

    Science.gov (United States)

    Li, Chuan; Sánchez, René-Vinicio; Zurita, Grover; Cerrada, Mariela; Cabrera, Diego

    2016-06-17

    Fault diagnosis is important for the maintenance of rotating machinery. The detection of faults and fault patterns is a challenging part of machinery fault diagnosis. To tackle this problem, a model for deep statistical feature learning from vibration measurements of rotating machinery is presented in this paper. Vibration sensor signals collected from rotating mechanical systems are represented in the time, frequency, and time-frequency domains, each of which is then used to produce a statistical feature set. For learning statistical features, real-value Gaussian-Bernoulli restricted Boltzmann machines (GRBMs) are stacked to develop a Gaussian-Bernoulli deep Boltzmann machine (GDBM). The suggested approach is applied as a deep statistical feature learning tool for both gearbox and bearing systems. The fault classification performances in experiments using this approach are 95.17% for the gearbox, and 91.75% for the bearing system. The proposed approach is compared to such standard methods as a support vector machine, GRBM and a combination model. In experiments, the best fault classification rate was detected using the proposed model. The results show that deep learning with statistical feature extraction has an essential improvement potential for diagnosing rotating machinery faults.

  20. Fault Diagnosis for Rotating Machinery Using Vibration Measurement Deep Statistical Feature Learning

    Science.gov (United States)

    Li, Chuan; Sánchez, René-Vinicio; Zurita, Grover; Cerrada, Mariela; Cabrera, Diego

    2016-01-01

    Fault diagnosis is important for the maintenance of rotating machinery. The detection of faults and fault patterns is a challenging part of machinery fault diagnosis. To tackle this problem, a model for deep statistical feature learning from vibration measurements of rotating machinery is presented in this paper. Vibration sensor signals collected from rotating mechanical systems are represented in the time, frequency, and time-frequency domains, each of which is then used to produce a statistical feature set. For learning statistical features, real-value Gaussian-Bernoulli restricted Boltzmann machines (GRBMs) are stacked to develop a Gaussian-Bernoulli deep Boltzmann machine (GDBM). The suggested approach is applied as a deep statistical feature learning tool for both gearbox and bearing systems. The fault classification performances in experiments using this approach are 95.17% for the gearbox, and 91.75% for the bearing system. The proposed approach is compared to such standard methods as a support vector machine, GRBM and a combination model. In experiments, the best fault classification rate was detected using the proposed model. The results show that deep learning with statistical feature extraction has an essential improvement potential for diagnosing rotating machinery faults. PMID:27322273

  1. Optimized Vibration Chamber for Landslide Sensory and Alarm System

    Science.gov (United States)

    Ismail, Eliza Sabira Binti; Hadi Habaebi, Mohamed; Daoud, Jamal I.; Rafiqul Islam, Md

    2017-11-01

    Landslide is one of natural hazard that is not unfamiliar disaster in Malaysia. Malaysia has experienced this disaster many times since 1969. This natural hazard has become a major research concern for Malaysian government when many people were injured badly and even had been killed. Many previous research works published in the open literature aimed at designing a system that could detect landslide in early stage before the landslide becomes catastrophic. This paper presents the early works on a major work-in-progress landslide early warning system for Malaysian environment. The aim of this system is to develop the most efficiently reliable cost-effective system in which slight earth movements are monitored continuously. The challenge this work aims at is to work with a low budget system that produces efficient performance. Hence, the material used is off-the-shelf. Early design optimization results of the vibration sensor used is quite promising detecting the slightest faint tremors, which are amplified using the best vibration chamber available. It is shown that the choice of proper pipe length and diameter dimensions in combination to a gravel to exaggerate the produced higher sensitivity level noise of 5 dB.

  2. Demonstration of Vibrational Braille Code Display Using Large Displacement Micro-Electro-Mechanical Systems Actuators

    Science.gov (United States)

    Watanabe, Junpei; Ishikawa, Hiroaki; Arouette, Xavier; Matsumoto, Yasuaki; Miki, Norihisa

    2012-06-01

    In this paper, we present a vibrational Braille code display with large-displacement micro-electro-mechanical systems (MEMS) actuator arrays. Tactile receptors are more sensitive to vibrational stimuli than to static ones. Therefore, when each cell of the Braille code vibrates at optimal frequencies, subjects can recognize the codes more efficiently. We fabricated a vibrational Braille code display that used actuators consisting of piezoelectric actuators and a hydraulic displacement amplification mechanism (HDAM) as cells. The HDAM that encapsulated incompressible liquids in microchambers with two flexible polymer membranes could amplify the displacement of the MEMS actuator. We investigated the voltage required for subjects to recognize Braille codes when each cell, i.e., the large-displacement MEMS actuator, vibrated at various frequencies. Lower voltages were required at vibration frequencies higher than 50 Hz than at vibration frequencies lower than 50 Hz, which verified that the proposed vibrational Braille code display is efficient by successfully exploiting the characteristics of human tactile receptors.

  3. Proposal of the Sound Insulating Measures for Vibrational Sorter and Verification of the Effectiveness Measures

    Directory of Open Access Journals (Sweden)

    Pavol Liptai

    2017-09-01

    Full Text Available The paper describes a specific design of the sound insulating enclosure of the vibrating sorter. Recycling aspects have also been taken into account when designing the enclosure, because recycled foam has been applied as a sound-absorbing material. Acoustic camera was used to measure, analyze, evaluate and for sound sources localization and identification. The visualization method was used to locate the critical locations of the device and then quantify them. To evaluate the effectiveness of the proposed enclosure, the measurements of the sound parameters were performed before and after the realization soundproofing measure. The measured results show the requested efficiency of the sound insulating enclosure in terms of noise reduction as well as dust in the vicinity of the sorter.

  4. The Development of Vibration System for Applying Magnetic Resonance Elastography (MRE) to the Supraspinatus Muscle

    OpenAIRE

    伊東, 大輝; 沼野, 智一; 水原, 和行; 高本, 考一; 大西, 孝明; 西条, 寿夫

    2016-01-01

    Palpation is a standard clinical tool to diagnose abnormal stiffness changes in soft tissues. However, it is difficult to palpate the supraspinatus muscle because it locates under the trapezius muscle. The magnetic resonance elastography (MRE) uses harmonic mechanical excitation to quantitatively measure the stiffness (shear modulus) of both the superficial and deep tissues. The purpose of this study was to build a vibration system for applying the MRE to the supraspinatus muscle. In this stu...

  5. Development of a multi-degree-of-freedom micropositioning, vibration isolation and vibration suppression system

    Science.gov (United States)

    Jaensch, M.; Lampérth, M. U.

    2007-04-01

    This paper describes the design and performance testing of a micropositioning, vibration isolation and suppression system, which can be used to position a piece of equipment with sub-micrometre accuracy and stabilize it against various types of external disturbance. The presented demonstrator was designed as part of a novel extremely open pre-polarization magnetic resonance imaging (MRI) scanner. The active control system utilizes six piezoelectric actuators, wide-bandwidth optical fibre displacement sensors and a very fast digital field programmable gate array (FPGA) controller. A PID feedback control algorithm with emphasis on a very high level of integral gain is employed. Due to the high external forces expected, the whole structure is designed to be as stiff as possible, including a novel hard mount approach with parallel passive damping for the suspension of the payload. The performance of the system is studied theoretically and experimentally. The sensitive equipment can be positioned in six degrees of freedom with an accuracy of ± 0.2 µm. External disturbances acting on the support structure or the equipment itself are attenuated in three degrees of freedom by more than -20 dB within a bandwidth of 0-200 Hz. Excellent impulse rejection and input tracking are demonstrated as well.

  6. A New Approach for Reliability Life Prediction of Rail Vehicle Axle by Considering Vibration Measurement

    Directory of Open Access Journals (Sweden)

    Meral Bayraktar

    2014-01-01

    Full Text Available The effect of vibration on the axle has been considered. Vibration measurements at different speeds have been performed on the axle of a running rail vehicle to figure out displacement, acceleration, time, and frequency response. Based on the experimental works, equivalent stress has been used to find out life of the axles for 90% and 10% reliability. Calculated life values of the rail vehicle axle have been compared with the real life data and it is found that the life of a vehicle axle taking into account the vibration effects is in good agreement with the real life of the axle.

  7. Double resonant absorption measurement of acetylene symmetric vibrational states probed with cavity ring down spectroscopy

    CERN Document Server

    Karhu, J; Vainio, M; Metsälä, M; Hoekstra, S; Halonen, L

    2016-01-01

    A novel mid-infrared/near-infrared double resonant absorption setup for studying infrared-inactive vibrational states is presented. A strong vibrational transition in the mid-infrared region is excited using an idler beam from a singly resonant continuous-wave optical parametric oscillator, to populate an intermediate vibrational state. High output power of the optical parametric oscillator and the strength of the mid-infrared transition result in efficient population transfer to the intermediate state, which allows measuring secondary transitions from this state with a high signal-to-noise ratio. A secondary, near-infrared transition from the intermediate state is probed using cavity ring down spectroscopy, which provides high sensitivity in this wavelength region. Due to the narrow linewidths of the excitation sources, the rovibrational lines of the secondary transition are measured with sub-Doppler resolution. The setup is used to access a previously unreported symmetric vibrational state of acetylene, $\

  8. Collaboratively Adaptive Vibration Sensing System for High-fidelity Monitoring of Structural Responses Induced by Pedestrians

    Directory of Open Access Journals (Sweden)

    Shijia Pan

    2017-05-01

    Full Text Available This paper presents a collaboratively adaptive vibration monitoring system that captures high-fidelity structural vibration signals induced by pedestrians. These signals can be used for various human activities’ monitoring by inferring information about the impact sources, such as pedestrian footsteps, door opening and closing, and dragging objects. Such applications often require high-fidelity (high resolution and low distortion signals. Traditionally, expensive high resolution and high dynamic range sensors are adopted to ensure sufficient resolution. However, for sensing systems that use low-cost sensing devices, the resolution and dynamic range are often limited; hence this type of sensing methods is not well explored ubiquitously. We propose a low-cost sensing system that utilizes (1 a heuristic model of the investigating excitations and (2 shared information through networked devices to adapt hardware configurations and obtain high-fidelity structural vibration signals. To further explain the system, we use indoor pedestrian footstep sensing through ambient structural vibration as an example to demonstrate the system performance. We evaluate the application with three metrics that measure the signal quality from different aspects: the sufficient resolution rate to present signal resolution improvement without clipping, the clipping rate to measure the distortion of the footstep signal, and the signal magnitude to quantify the detailed resolution of the detected footstep signal. In experiments conducted in a school building, our system demonstrated up to 2× increase on the sufficient resolution rate and 2× less error rate when used to locate the pedestrians as they walk along the hallway, compared to a fixed sensing setting.

  9. Robust control of novel pendulum-type vibration isolation system

    Science.gov (United States)

    Tsai, Meng-Shiun; Sun, Yann-Shuoh; Liu, Chun-Hsieh

    2011-08-01

    A novel pendulum-type vibration isolation system is proposed consisting of three active cables with embedded piezoelectric actuators and a passive elastomer layer. The dynamic response of the isolation module in the vertical and horizontal directions is modeled using the Lagrangian approach. The validity of the dynamic model is confirmed by comparing the simulation results for the frequency response in the vertical and horizontal directions with the experimental results. An approximate model is proposed to take into account system uncertainties such as payload changes and hysteresis effects. A robust quantitative feedback theory (QFT)-based active controller is then designed to ensure that the active control can achieve a high level of disturbance rejection in the low-frequency range even under variable loading conditions. It is shown that the controller achieves average disturbance rejection of -14 dB in the 2-60 Hz bandwidth range and -35 dB at the resonance frequency. The experimental results confirm that the proposed system achieves a robust vibration isolation performance under the payload in the range of 40-60 kg.

  10. Active Suppression of Drilling System Vibrations For Deep Drilling

    Energy Technology Data Exchange (ETDEWEB)

    Raymond, David W.; Blankenship, Douglas A.; Buerger, Stephen; Mesh, Mikhail; Radigan, William Thomas; Su, Jiann-Cherng

    2015-10-01

    The dynamic stability of deep drillstrings is challenged by an inability to impart controllability with ever-changing conditions introduced by geology, depth, structural dynamic properties and operating conditions. A multi-organizational LDRD project team at Sandia National Laboratories successfully demonstrated advanced technologies for mitigating drillstring vibrations to improve the reliability of drilling systems used for construction of deep, high-value wells. Using computational modeling and dynamic substructuring techniques, the benefit of controllable actuators at discrete locations in the drillstring is determined. Prototype downhole tools were developed and evaluated in laboratory test fixtures simulating the structural dynamic response of a deep drillstring. A laboratory-based drilling applicability demonstration was conducted to demonstrate the benefit available from deployment of an autonomous, downhole tool with self-actuation capabilities in response to the dynamic response of the host drillstring. A concept is presented for a prototype drilling tool based upon the technical advances. The technology described herein is the subject of U.S. Patent Application No. 62219481, entitled "DRILLING SYSTEM VIBRATION SUPPRESSION SYSTEMS AND METHODS", filed September 16, 2015.

  11. Vertical vibrations of composite bridge/track structure/high-speed train systems. Part 3: Deterministic and random vibrations of exemplary system

    National Research Council Canada - National Science Library

    M. Podworna; M. Klasztorny

    2014-01-01

    ...) bridge/track structure/high-speed train system (BTT), developed in Part 2, advanced computer algorithms for the BTT numerical modelling and simulation as well as a computer programme to simulate vertical vibrations of BTT systems are developed...

  12. Turbine gas temperature measurement and control system

    Science.gov (United States)

    Webb, W. L.

    1973-01-01

    A fluidic Turbine Inlet Gas Temperature (TIGIT) Measurement and Control System was developed for use on a Pratt and Whitney Aircraft J58 engine. Based on engine operating requirements, criteria for high temperature materials selection, system design, and system performance were established. To minimize development and operational risk, the TIGT control system was designed to interface with an existing Exhaust Gas Temperature (EGT) Trim System and thereby modulate steady-state fuel flow to maintain a desired TIGT level. Extensive component and system testing was conducted including heated (2300F) vibration tests for the fluidic sensor and gas sampling probe, temperature and vibration tests on the system electronics, burner rig testing of the TIGT measurement system, and in excess of 100 hours of system testing on a J58 engine. (Modified author abstract)

  13. Temperature measurement in the convective and segregated vibrated bed of powder : A numerical study

    OpenAIRE

    Kiyono, Satoru; Taguchi, Y-h.

    2004-01-01

    In numerically simulated vibrated beds of powder, we measure temperature under convection by the generalized Einstein's relation. The spatial temperature distribution turns out to be quite uniform except for the boundary layers. In addition to this, temperature remains uniform even if segregation occurs. This suggests the possibility that there exists some "thermal equilibrium state" even in a vibrated bed of powder. This finding may lead to a unified view of the dynamic steady state of granu...

  14. Vibration Sensitivity of a Wide-Temperature Electronically Scanned Pressure Measurement (ESP) Module

    Science.gov (United States)

    Zuckerwar, Allan J.; Garza, Frederico R.

    2001-01-01

    A vibration sensitivity test was conducted on a Wide-Temperature ESP module. The test object was Module "M4," a 16-channel, 4 psi unit scheduled for installation in the Arc Sector of NTF. The module was installed on a vibration exciter and loaded to positive then negative full-scale pressures (+/-2.5 psid). Test variables were the following: Vibration frequencies: 20, 55, 75 Hz. Vibration level: 1 g. Vibration axes: X, Y, Z. The pressure response was measured on each channel, first without and then with the vibration turned on, and the difference analyzed by means of the statistical t-test. The results show that the vibration sensitivity does not exceed 0.01% Full Scale Output per g (with the exception of one channel on one axis) to a 95 percent confidence level. This specification, limited by the resolution of the pressure source, lies well below the total uncertainty specification of 0.1 percent Full Scale Output.

  15. Spinning optical resonator sensor for torsional vibrational applications measurements

    Science.gov (United States)

    Ali, Amir R.; Gatherer, Andrew; Ibrahim, Mariam S.

    2016-03-01

    Spinning spherical resonators in the torsional vibrational applications could cause a shift in its whispering gallery mode (WGM). The centripetal force acting on the spinning micro sphere resonator will leads to these WGM shifts. An analysis and experiment were carried out in this paper to investigate and demonstrate this effect using different polymeric resonators. In this experiment, centripetal force exerted by the DC-Motor on the sphere induces an elastic deformation of the resonator. This in turn induces a shift in the whispering gallery modes of the sphere resonator. Materials used for the sphere are polydimethylsiloxane (PDMS 60:1 where 60 parts base silicon elastomer to 1 part polymer curing agent by volume) with shear modulus (G≍1kPa), (PDMS 10:1) with shear modulus (G≍300kPa), polymethylmethacrylate (PMMA, G≍2.6×109GPa) and silica (G≍3×1010 GPa). The sphere size was kept constant with 1mm in diameter for all above materials. The optical modes of the sphere exit using a tapered single mode optical fiber that is coupled to a distributed feedback laser. The transmission spectrum through the fiber is monitored to detect WGM shifts. The results showed the resonators with smaller shear modulus G experience larger WGM shift due to the larger mechanical deformation induced by the applied external centripetal force. Also, the results show that angular velocity sensors used in the torsional vibrational applications could be designed using this principle.

  16. Vibration reduction for vision systems on board unmanned aerial vehicles using a neuro-fuzzy controller

    OpenAIRE

    Marichal, N.; Tomas-Rodriguez, M.; Hernandez, A.; Castillo, S; Campoy, P.

    2014-01-01

    In this paper, an intelligent control approach based on neuro-fuzzy systems performance is presented, with the objective of counteracting the vibrations that affect the low-cost vision platform onboard an unmanned aerial system of rotating nature. A scaled dynamical model of a helicopter is used to simulate vibrations on its fuselage. The impact of these vibrations on the low-cost vision system will be assessed and an intelligent control approach will be derived in order to reduce its detrime...

  17. Adaptive Vibration Control System for MR Damper Faults

    Directory of Open Access Journals (Sweden)

    Juan C. Tudón-Martínez

    2015-01-01

    Full Text Available Several methods have been proposed to estimate the force of a semiactive damper, particularly of a magnetorheological damper because of its importance in automotive and civil engineering. Usually, all models have been proposed assuming experimental data in nominal operating conditions and some of them are estimated for control purposes. Because dampers are prone to fail, fault estimation is useful to design adaptive vibration controllers to accommodate the malfunction in the suspension system. This paper deals with the diagnosis and estimation of faults in an automotive magnetorheological damper. A robust LPV observer is proposed to estimate the lack of force caused by a damper leakage in a vehicle corner. Once the faulty damper is isolated in the vehicle and the fault is estimated, an Adaptive Vibration Control System is proposed to reduce the fault effect using compensation forces from the remaining healthy dampers. To fulfill the semiactive damper constraints in the fault adaptation, an LPV controller is designed for vehicle comfort and road holding. Simulation results show that the fault observer has good performance with robustness to noise and road disturbances and the proposed AVCS improves the comfort up to 24% with respect to a controlled suspension without fault tolerance features.

  18. Measurement of ground and nearby building vibration and noise induced by trains in a metro depot.

    Science.gov (United States)

    Zou, Chao; Wang, Yimin; Wang, Peng; Guo, Jixing

    2015-12-01

    Metro depots are where subway trains are parked and where maintenance is carried out. They usually occupy the largest ground areas in metro projects. Due to land utilization problems, Chinese cities have begun to develop over-track buildings above metro depots for people's life and work. The frequently moving trains, when going into and out of metro depots, can cause excessive vibration and noise to over-track buildings and adversely affect the living quality of the building occupants. Considering the current need of reliable experimental data for the construction of metro depots, field measurements of vibration and noise on the ground and inside a nearby 3-story building subjected to moving subway trains were conducted in a metro depot at Guangzhou, China. The amplitudes and frequency contents of velocity levels were quantified and compared. The composite A-weighted equivalent sound levels and maximum sound levels were captured. The predicted models for vibration and noise of metro depot were proposed based on existing models and verified. It was found that the vertical vibrations were significantly greater than the horizontal vibrations on the ground and inside the building near the testing line. While at the throat area, the horizontal vibrations near the curved track were remarkably greater than the vertical vibrations. The attenuation of the vibrations with frequencies above 50 Hz was larger than the ones below 50 Hz, and the frequencies of vibration transmitting to adjacent buildings were mainly within 10-50 Hz. The largest equivalent sound level generated in the throat area was smaller than the testing line one, but the instantaneous maximum sound level induced by wheels squeal, contact between wheels and rail joints as well as turnout was close to or even greater than the testing line one. The predicted models gave a first estimation for design and assessment of newly built metro depots. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Measurement of Vibrational Non-Equilibrium in a Supersonic Freestream Using Dual-Pump CARS

    Science.gov (United States)

    Cutler, Andrew D.; Magnotti, Gaetano; Cantu, Luca M. L.; Gallo, Emanuela C. A.; Danehy, Paul M.; Burle, Rob; Rockwell, Robert; Goyne, Christopher; McDaniel, James

    2012-01-01

    Measurements have been conducted at the University of Virginia Supersonic Combustion Facility of the flow in a constant area duct downstream of a Mach 2 nozzle, where the airflow has first been heated to approximately 1200 K. Dual-pump CARS was used to acquire rotational and vibrational temperatures of N2 and O2 at two planes in the duct at different downstream distances from the nozzle exit. Wall static pressures in the nozzle are also reported. With a flow of clean air, the vibrational temperature of N2 freezes at close to the heater stagnation temperature, while the O2 vibrational temperature is about 1000 K. The results are well predicted by computational fluid mechanics models employing separate "lumped" vibrational and translational/rotational temperatures. Experimental results are also reported for a few percent steam addition to the air and the effect of the steam is to bring the flow to thermal equilibrium.

  20. Report on acoustic and vibration measurements on 250 MVA transformer at St. Vital Station, Winnipeg, Manitoba

    Energy Technology Data Exchange (ETDEWEB)

    Weissman, K. [QuietPower Systems, Inc., New York, NE (United States); McLoughlin, M. [Noise Cancellation Technologies, Inc., Linthicum, MD (United States); Schott, R. [Western Canada Testing, Inc., Portage Laprairie, MB (Canada); Tennese, G. [Manitoba Hydro, Winnipeg, MB (Canada); Daneryd, A. [SECRC ABB Corporate Research, Vasteras (Sweden)

    1998-09-01

    Vibroacoustic behaviour of a power transformer was characterized prior to employing active noise control (ANC) to control transformer noise. The effect of changes in temperature and loading conditions on the vibration pattern of the transformer tank received particular attention. The transformer quieting technology has been developed and implemented by QuietPower Systems of New York and Noise Cancellation Technologies Inc., of Maryland. Results of the study will be used to ensure that actuator placement is appropriate for each of the seasons experienced throughout the year, as well as to build boundary element and finite element models of the tank vibration and the associated radiated noise. Boundary element results show that the first four harmonics are the primary contributors to radiated noise. The finite element model used to examine the modal response of the tank structure showed high modal densities, even around the lower order harmonics (120 Hz). This can be interpreted to mean that statistical techniques normally associated with high frequency noise problems may be applicable here because of the high modal density. Results of the completed summer and winter measurements permit an evaluation of the effects of loading conditions, temperature and other environmental factors on transformer noise. Appendix B contains the results of numerical simulations on a 250 MVA transformer. 3 refs., 72 figs., 2 appendices.

  1. Prediction and measurements of vibrations from a railway track lying on a peaty ground

    Science.gov (United States)

    Picoux, B.; Rotinat, R.; Regoin, J. P.; Le Houédec, D.

    2003-10-01

    This paper introduces a two-dimensional model for the response of the ground surface due to vibrations generated by a railway traffic. A semi-analytical wave propagation model is introduced which is subjected to a set of harmonic moving loads and based on a calculation method of the dynamic stiffness matrix of the ground. In order to model a complete railway system, the effect of a simple track model is taken into account including rails, sleepers and ballast especially designed for the study of low vibration frequencies. The priority has been given to a simple formulation based on the principle of spatial Fourier transforms compatible with good numerical efficiency and yet providing quick solutions. In addition, in situ measurements for a soft soil near a railway track were carried out and will be used to validate the numerical implementation. The numerical and experimental results constitute a significant body of useful data to, on the one hand, characterize the response of the environment of tracks and, on the other hand, appreciate the importance of the speed and weight on the behaviour of the structure.

  2. Measurements of bridges' vibration characteristics using a mobile phone

    Directory of Open Access Journals (Sweden)

    Z. M. C. Pravia

    Full Text Available ABSTRACTThis research presents an alternative way to perform a bridge inspection, which considers the dynamics parameters from the structure. It shows an experimental phase with use of a mobile phone to extract the accelerations answers from two concrete bridges, from those records is feasible to obtain natural frequencies using the Fast Fourier Transform (FFT.Numerical models with uses finite element model (FEM allow to determine the natural frequencies from the two concrete bridges and compare with the experimental phase of each one. The final results shows it's possible to use mobiles phones to extract vibration answers from concrete bridges and define the structural behavior of bridges from natural frequencies, this procedure could be used to evaluate bridges with lower costs.

  3. Development of a semi-active dynamic vibration absorber for longitudinal vibration of propulsion shaft system based on magnetorheological elastomer

    Science.gov (United States)

    Liu, Gaoyu; Lu, Kun; Zou, Donglin; Xie, Zhongliang; Rao, Zhushi; Ta, Na

    2017-07-01

    The control of the longitudinal pulsating force and the vibration generated is very important to improve the stealth performance of a submarine. Magnetorheological elastomer (MRE) is a kind of intelligent composite material, whose mechanical properties can be continuously, rapidly and reversibly controlled by an external magnetic field. It can be used as variable-stiffness components in the design of a semi-active dynamic vibration absorber (SDVA), which is one of the effective means of longitudinal vibration control. In this paper, an SDVA is designed based on the MRE’s magnetic-induced variable stiffness characteristic. Firstly, a mechanical model of the propulsion shaft system with the SDVA is proposed, theoretically discussed and numerically validated. Then, the mechanical performance of the MRE under different magnetic fields is tested. In addition, the magnetic circuit and the overall structure of the SDVA are designed. Furthermore, electromagnetic and thermodynamic simulations are carried out to guarantee the structural design. The frequency shift property of the SDVA is found through dynamic simulations and validated by a frequency shift experiment. Lastly, the vibration absorption capacity of the SDVA is investigated. The results show that the magnetorheological effect of the MRE and the frequency shift of the SDVA are obvious; the SDVA has relatively acceptable vibration absorption capacity.

  4. Power Delivered to Mechanical Systems by Random Vibrations

    Directory of Open Access Journals (Sweden)

    Timothy S. Edwards

    2009-01-01

    Full Text Available This paper develops deformational response power descriptions of multiple degree-of-freedom systems due to stationary random vibration excitation. Two new concepts are developed. The deformational response power density (DRPD can be computed when a structure's natural frequencies and modal masses are available. The DRPD shows the spectral content of the deformational power delivered to a specific structure by the stationary, random excitation. This function can be found through a weighted windowing of the power spectrum of the input acceleration excitation. Deformational response input power spectra (DRIPS, similar to the input energy spectrum and shock response spectrum, give the power delivered to single-degree-of-freedom systems as a function of natural frequency. It is shown that the DRIPS is simply a smoothed version of the power spectrum of the input acceleration excitation. The DRIPS gives rise to a useful power-based data smoothing operation.

  5. Vibrations of Elastic Systems With Applications to MEMS and NEMS

    CERN Document Server

    Magrab, Edward B

    2012-01-01

    This work presents a unified approach to the vibrations of elastic systems as applied to MEMS devices, mechanical components, and civil structures. Applications include atomic force microscopes, energy harvesters, and carbon nanotubes and consider such complicating effects as squeeze film damping, viscous fluid loading, in-plane forces, and proof mass interactions with their elastic supports. These effects are analyzed as single degree-of-freedom models and as more realistic elastic structures. The governing equations and boundary conditions for beams, plates, and shells with interior and boundary attachments are derived by applying variational calculus to an expression describing the energy of the system. The advantages of this approach regarding the generation of orthogonal functions and the Rayleigh-Ritz method are demonstrated. A large number of graphs and tables are given to show the impact of various factors on the systems’ natural frequencies, mode shapes, and responses.

  6. Free vibration analysis of coupled fluid-structure systems

    Science.gov (United States)

    Gupta, K. K.

    1982-01-01

    An efficient numerical technique for the eigenvalue solution in the free vibration analysis of compressible fluid-structure coupled systems is presented. The fluid is assumed to be compressible in nature and the incompressible problem is only a special case of the present generalized algorithm. A natural frequency analysis of the structure in the absence of any fluid is achieved by a combined Sturm sequence and inverse iteration technique that computes only the required eigenvalues and vectors. A special inverse iteration scheme is then developed for the coupled system that uses the computed eigenvalues as starting iteration values for convergence. Numerical results obtained by solving a number of standard test cases indicate the pattern of root convergence corresponding to various simplifying assumptions.

  7. Intelligent failure-proof control system for structural vibration

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Kazuo [Keio Univ., Yokohama (Japan). Faculty of Science and Technology; Oba, Takahiro [Keio Univ., Tokyo (Japan)

    2000-11-01

    With progress of technology in recent years, gigantism and complication such as high-rise buildings, nuclear reactors and so on have brought about new problems. Particularly, the safety and the reliability for damages in abnormal situations have become more important. Intelligent control systems which can judge whether the situation is normal or abnormal at real time and cope with these situations suitably are demanded. In this study, Cubic Neural Network (CNN) is adopted, which consists of the controllers possessing cubically some levels of information abstracting. In addition to the usual quantitative control, the qualitative control is used for the abnormal situations. And, by selecting a suitable controller, CNN can cope with the abnormal situation. In order to confirm the effectiveness of this system, the structural vibration control problems with sensory failure and elasto-plastic response are dealt with. As a result of simulations, it was demonstrated that CNN can cope with unexpected abnormal situations which are not considered in learning. (author)

  8. Impedance Synthesis Based Vibration Analysis of Geared Transmission System

    Directory of Open Access Journals (Sweden)

    Yafeng Ren

    2017-01-01

    Full Text Available The severity of gear noise response depends on the sensitivity of geared rotor system dynamics to the transmission error. As gearbox design trending towards lighter weight and lower noise, the influence of housing compliance on system dynamic characteristics cannot be ignored. In this study, a gear-shaft-bearing-housing coupled impedance model is proposed to account for the effect of housing compliance on the vibration of geared transmission system. This proposed dynamic model offers convenient modeling, efficient computing, and ability to combine computed parameters with experimental ones. The numerical simulations on system dynamic characteristics are performed for both a rigid housing configuration and a flexible one. Natural frequencies, dynamic mesh forces, and dynamic bearing reaction loads are computed, and the housing compliance contribution on system dynamic characteristics is analyzed. Results show that increasing housing compliance will decrease the system natural frequencies and will affect the dynamic bearing reaction loads significantly but have very little influence on the dynamic mesh force. Also, the analysis shows that bearing stiffness has significant influence on the degree of housing contribution on system dynamic characteristics.

  9. Pulsed differential holographic measurements of vibration modes of high temperature panels

    Science.gov (United States)

    Evensen, D. A.; Aprahamian, R.; Overoye, K. R.

    1972-01-01

    Holography is a lensless imaging technique which can be applied to measure static or dynamic displacements of structures. Conventional holography cannot be readily applied to measure vibration modes of high-temperature structures, due to difficulties caused by thermal convection currents. The present report discusses the use of pulsed differential holography, which is a technique for recording structural motions in the presence of random fluctuations such as turbulence. An analysis of the differential method is presented, and demonstration experiments were conducted using heated stainless steel plates. Vibration modes were successfully recorded for the heated plates at temperatures of 1000, 1600, and 2000 F. The technique appears promising for such future measurments as vibrations of the space shuttle TPS panels or recording flutter of aeroelastic models in a wind-tunnel.

  10. Vibration measurement on composite material with embedded optical fiber based on phase-OTDR

    Science.gov (United States)

    Franciscangelis, C.; Margulis, W.; Floridia, C.; Rosolem, J. B.; Salgado, F. C.; Nyman, T.; Petersson, M.; Hallander, P.; Hällstrom, S.; Söderquist, I.; Fruett, F.

    2017-04-01

    Distributed sensors based on phase-optical time-domain reflectometry (phase-OTDR) are suitable for aircraft health monitoring due to electromagnetic interference immunity, small dimensions, low weight and flexibility. These features allow the fiber embedment into aircraft structures in a nearly non-intrusive way to measure vibrations along its length. The capability of measuring vibrations on avionics structures is of interest for what concerns the study of material fatigue or the occurrence of undesirable phenomena like flutter. In this work, we employed the phase-OTDR technique to measure vibrations ranging from some dozens of Hz to kHz in two layers of composite material board with embedded polyimide coating 0.24 numerical aperture single-mode optical fiber.

  11. Optimized design of suspension systems for hand-arm transmitted vibration reduction

    Science.gov (United States)

    Saggin, Bortolino; Scaccabarozzi, Diego; Tarabini, Marco

    2012-05-01

    This paper describes a systematic approach for optimizing suspension systems to reduce the vibrations transmitted to workers by hand-held power tools. The optimization is based on modeling tool-operator interactions using a mobility scheme. The tool is modeled as a vibration generator, and its internal impedance is included. A hand-arm impedance matrix is used to model the operator upper limbs. The mobility model is used to identify the optimal suspension characteristics, which in our study were the set of parameters that minimizes the frequency-weighted acceleration at the hand-tool interface. Different handling conditions (one and two hands) and different working cycles with the same tools can be included in the optimization process. The constraints derived from the limitation on the increase in the tool mass and the static deflection of the mounting system under the working loads are also considered. The proposed method has been applied to the reduction of the vibrations transmitted to the operator by a small pneumatic hammer. The designed system reduced the worker's exposure so that it is within the limits of the EU directive. The agreement between the model predictions and the measured suspension performances validates the effectiveness of this approach.

  12. Vibration measurement of a model wind turbine using high speed photogrammetry

    NARCIS (Netherlands)

    Kalpoe, D.; Khoshelham, K.; Gorte, B.

    2011-01-01

    We investigate the application of the photogrammetric approach to measuring the vibration of a model wind turbine in a sequence of stereo image pairs acquired by high speed cameras. The challenge of the photogrammetric measurement of a highly dynamic phenomenon is the efficiency of the point

  13. Removing damped sinusoidal vibrations in adaptive optics systems using a DFT-based estimation method

    Science.gov (United States)

    Kania, Dariusz

    2017-06-01

    The problem of a vibrations rejection in adaptive optics systems is still present in publications. These undesirable signals emerge because of shaking the system structure, the tracking process, etc., and they usually are damped sinusoidal signals. There are some mechanical solutions to reduce the signals but they are not very effective. One of software solutions are very popular adaptive methods. An AVC (Adaptive Vibration Cancellation) method has been presented and developed in recent years. The method is based on the estimation of three vibrations parameters and values of frequency, amplitude and phase are essential to produce and adjust a proper signal to reduce or eliminate vibrations signals. This paper presents a fast (below 10 ms) and accurate estimation method of frequency, amplitude and phase of a multifrequency signal that can be used in the AVC method to increase the AO system performance. The method accuracy depends on several parameters: CiR - number of signal periods in a measurement window, N - number of samples in the FFT procedure, H - time window order, SNR, THD, b - number of A/D converter bits in a real time system, γ - the damping ratio of the tested signal, φ - the phase of the tested signal. Systematic errors increase when N, CiR, H decrease and when γ increases. The value of systematic error for γ = 0.1%, CiR = 1.1 and N = 32 is approximately 10^-4 Hz/Hz. This paper focuses on systematic errors of and effect of the signal phase and values of γ on the results.

  14. Vibrations of rotating machinery

    CERN Document Server

    Matsushita, Osami; Kanki, Hiroshi; Kobayashi, Masao; Keogh, Patrick

    2017-01-01

    This book opens with an explanation of the vibrations of a single degree-of-freedom (dof) system for all beginners. Subsequently, vibration analysis of multi-dof systems is explained by modal analysis. Mode synthesis modeling is then introduced for system reduction, which aids understanding in a simplified manner of how complicated rotors behave. Rotor balancing techniques are offered for rigid and flexible rotors through several examples. Consideration of gyroscopic influences on the rotordynamics is then provided and vibration evaluation of a rotor-bearing system is emphasized in terms of forward and backward whirl rotor motions through eigenvalue (natural frequency and damping ratio) analysis. In addition to these rotordynamics concerning rotating shaft vibration measured in a stationary reference frame, blade vibrations are analyzed with Coriolis forces expressed in a rotating reference frame. Other phenomena that may be assessed in stationary and rotating reference frames include stability characteristic...

  15. Wearable Vibration Based Computer Interaction and Communication System for Deaf

    Directory of Open Access Journals (Sweden)

    Mete Yağanoğlu

    2017-12-01

    Full Text Available In individuals with impaired hearing, determining the direction of sound is a significant problem. The direction of sound was determined in this study, which allowed hearing impaired individuals to perceive where sounds originated. This study also determined whether something was being spoken loudly near the hearing impaired individual. In this manner, it was intended that they should be able to recognize panic conditions more quickly. The developed wearable system has four microphone inlets, two vibration motor outlets, and four Light Emitting Diode (LED outlets. The vibration of motors placed on the right and left fingertips permits the indication of the direction of sound through specific vibration frequencies. This study applies the ReliefF feature selection method to evaluate every feature in comparison to other features and determine which features are more effective in the classification phase. This study primarily selects the best feature extraction and classification methods. Then, the prototype device has been tested using these selected methods on themselves. ReliefF feature selection methods are used in the studies; the success of K nearest neighborhood (Knn classification had a 93% success rate and classification with Support Vector Machine (SVM had a 94% success rate. At close range, SVM and two of the best feature methods were used and returned a 98% success rate. When testing our wearable devices on users in real time, we used a classification technique to detect the direction and our wearable devices responded in 0.68 s; this saves power in comparison to traditional direction detection methods. Meanwhile, if there was an echo in an indoor environment, the success rate increased; the echo canceller was disabled in environments without an echo to save power. We also compared our system with the localization algorithm based on the microphone array; the wearable device that we developed had a high success rate and it produced faster

  16. Synchronization of Two Asymmetric Exciters in a Vibrating System

    Directory of Open Access Journals (Sweden)

    Zhaohui Ren

    2011-01-01

    Full Text Available We investigate synchronization of two asymmetric exciters in a vibrating system. Using the modified average method of small parameters, we deduce the non-dimensional coupling differential equations of the two exciters (NDDETE. By using the condition of existence for the zero solutions of the NDDETE, the condition of implementing synchronization is deduced: the torque of frequency capture is equal to or greater than the difference in the output electromagnetic torque between the two motors. Using the Routh-Hurwitz criterion, we deduce the condition of stability of synchronization that the inertia coupling matrix of the two exciters is positive definite. A numeric result shows that the structural parameters can meet the need of synchronization stability.

  17. Instantaneous Purified Orbit: A New Tool for Analysis of Nonstationary Vibration of Rotor System

    Directory of Open Access Journals (Sweden)

    Shi Dongfeng

    2001-01-01

    Full Text Available In some circumstances, vibration signals of large rotating machinery possess time-varying characteristics to some extent. Traditional diagnosis methods, such as FFT spectrum and orbit diagram, are confronted with a huge challenge to deal with this problem. This work aims at studying the four intrinsic drawbacks of conventional vibration signal processing method and instantaneous purified orbit (IPO on the basis of improved Fourier spectrum (IFS to analyze nonstationary vibration. On account of integration, the benefits of short period Fourier transform (SPFT and regular holospectrum, this method can intuitively reflect vibration characteristics of’a rotor system by means of parameter analysis for corresponding frequency ellipses. Practical examples, such as transient vibration in run-up stages and bistable condition of rotor show that IPO is a powerful tool for diagnosis and analysis of the vibration behavior of rotor systems.

  18. A Design Study Of A Wireless Power Transfer System For Use To Transfer Energy From A Vibration Energy Harvester

    Science.gov (United States)

    Grabham, N. J.; Harden, C.; Vincent, D.; Beeby, S. P.

    2016-11-01

    A wirelessly powered remote sensor node is presented along with its design process. The purpose of the node is the further expansion of the sensing capabilities of the commercial Perpetuum system used for condition monitoring on trains and rolling stock which operates using vibration energy harvesting. Surplus harvested vibration energy is transferred wirelessly to a remote satellite sensor to allow measurements over a wider area to be made. This additional data is to be used for long term condition monitoring. Performance measurements made on the prototype remote sensor node are reported and advantages and disadvantages of using the same RF frequency for power and data transfer are identified.

  19. Errors in the estimation method for the rejection of vibrations in adaptive optics systems

    Science.gov (United States)

    Kania, Dariusz

    2017-06-01

    In recent years the problem of the mechanical vibrations impact in adaptive optics (AO) systems has been renewed. These signals are damped sinusoidal signals and have deleterious effect on the system. One of software solutions to reject the vibrations is an adaptive method called AVC (Adaptive Vibration Cancellation) where the procedure has three steps: estimation of perturbation parameters, estimation of the frequency response of the plant, update the reference signal to reject/minimalize the vibration. In the first step a very important problem is the estimation method. A very accurate and fast (below 10 ms) estimation method of these three parameters has been presented in several publications in recent years. The method is based on using the spectrum interpolation and MSD time windows and it can be used to estimate multifrequency signals. In this paper the estimation method is used in the AVC method to increase the system performance. There are several parameters that affect the accuracy of obtained results, e.g. CiR - number of signal periods in a measurement window, N - number of samples in the FFT procedure, H - time window order, SNR, b - number of ADC bits, γ - damping ratio of the tested signal. Systematic errors increase when N, CiR, H decrease and when γ increases. The value for systematic error is approximately 10^-10 Hz/Hz for N = 2048 and CiR = 0.1. This paper presents equations that can used to estimate maximum systematic errors for given values of H, CiR and N before the start of the estimation process.

  20. Modeling in Nonlinear Vibrations of a High-Tc Superconducting Levitation System

    OpenAIRE

    長屋, 幸助; 周東, 俊介

    1996-01-01

    Three dimensional analytical results for the levitation force of a vibrating high-Tc superconducting levitation system were presented. When the levitated superconductor vibrates, the levitation force shows nonlinear relationships with the air gap, amplitude and vibration frequency, so that the convensional models which do not consider dynamic effects cannot be applied. In the model proposed by(Uesaka et al.), dynamic effects are considered, but the critical current is constant. We propose an ...

  1. Dynamic Characteristics of Flow Induced Vibration in a Rotor-Seal System

    Directory of Open Access Journals (Sweden)

    Nan Zhang

    2011-01-01

    Full Text Available Flow induced vibration is an important factor affecting the performance of the rotor-seal system. From the point of view of flow induced vibration, the nonlinear models of the rotor-seal system are presented for the analysis of the fluid force, which is induced by the interaction between the unstable fluid flow in the seal and the vibrating rotor. The nonlinear characteristics of flow induced vibration in the rotor-seal system are analyzed, and the nonlinear phenomena in the unbalanced rotor-seal system are investigated using the nonlinear models. Various nonlinear phenomena of flow induced vibration in the rotor-seal system, such as synchronization phenomenon and amplitude mutation, are reproduced.

  2. Effects of whole-body vibration exercise on the endocrine system of healthy men.

    Science.gov (United States)

    Di Loreto, C; Ranchelli, A; Lucidi, P; Murdolo, G; Parlanti, N; De Cicco, A; Tsarpela, O; Annino, G; Bosco, C; Santeusanio, F; Bolli, G B; De Feo, P

    2004-04-01

    Whole-body vibration is reported to increase muscle performance, bone mineral density and stimulate the secretion of lipolytic and protein anabolic hormones, such as GH and testosterone, that might be used for the treatment of obesity. To date, as no controlled trial has examined the effects of vibration exercise on the human endocrine system, we performed a randomized controlled study, to establish whether the circulating concentrations of glucose and hormones (insulin, glucagon, cortisol, epinephrine, norepinephrine, GH, IGF-1, free and total testosterone) are affected by vibration in 10 healthy men [age 39 +/- 3, body mass index (BMI) of 23.5 +/- 0.5 kg/m2, mean +/- SEM]. Volunteers were studied on two occasions before and after standing for 25 min on a ground plate in the absence (control) or in the presence (vibration) of 30 Hz whole body vibration. Vibration slightly reduced plasma glucose (30 min: vibration 4.59 +/- 0.21, control 4.74 +/- 0.22 mM, p=0.049) and increased plasma norepinephrine concentrations (60 min: vibration 1.29 +/- 0.18, control 1.01 +/- 0.07 nM, p=0.038), but did not change the circulating concentrations of other hormones. These results demonstrate that vibration exercise transiently reduces plasma glucose, possibly by increasing glucose utilization by contracting muscles. Since hormonal responses, with the exception of norepinephrine, are not affected by acute vibration exposure, this type of exercise is not expected to reduce fat mass in obese subjects.

  3. Double resonant absorption measurement of acetylene symmetric vibrational states probed with cavity ring down spectroscopy

    Science.gov (United States)

    Karhu, J.; Nauta, J.; Vainio, M.; Metsälä, M.; Hoekstra, S.; Halonen, L.

    2016-06-01

    A novel mid-infrared/near-infrared double resonant absorption setup for studying infrared-inactive vibrational states is presented. A strong vibrational transition in the mid-infrared region is excited using an idler beam from a singly resonant continuous-wave optical parametric oscillator, to populate an intermediate vibrational state. High output power of the optical parametric oscillator and the strength of the mid-infrared transition result in efficient population transfer to the intermediate state, which allows measuring secondary transitions from this state with a high signal-to-noise ratio. A secondary, near-infrared transition from the intermediate state is probed using cavity ring-down spectroscopy, which provides high sensitivity in this wavelength region. Due to the narrow linewidths of the excitation sources, the rovibrational lines of the secondary transition are measured with sub-Doppler resolution. The setup is used to access a previously unreported symmetric vibrational state of acetylene, ν 1 + ν 2 + ν 3 + ν4 1 + ν5 - 1 in the normal mode notation. Single-photon transitions to this state from the vibrational ground state are forbidden. Ten lines of the newly measured state are observed and fitted with the linear least-squares method to extract the band parameters. The vibrational term value was measured to be at 9775.0018(45) cm-1, the rotational parameter B was 1.162 222(37) cm-1, and the quartic centrifugal distortion parameter D was 3.998(62) × 10-6 cm-1, where the numbers in the parenthesis are one-standard errors in the least significant digits.

  4. Double resonant absorption measurement of acetylene symmetric vibrational states probed with cavity ring down spectroscopy.

    Science.gov (United States)

    Karhu, J; Nauta, J; Vainio, M; Metsälä, M; Hoekstra, S; Halonen, L

    2016-06-28

    A novel mid-infrared/near-infrared double resonant absorption setup for studying infrared-inactive vibrational states is presented. A strong vibrational transition in the mid-infrared region is excited using an idler beam from a singly resonant continuous-wave optical parametric oscillator, to populate an intermediate vibrational state. High output power of the optical parametric oscillator and the strength of the mid-infrared transition result in efficient population transfer to the intermediate state, which allows measuring secondary transitions from this state with a high signal-to-noise ratio. A secondary, near-infrared transition from the intermediate state is probed using cavity ring-down spectroscopy, which provides high sensitivity in this wavelength region. Due to the narrow linewidths of the excitation sources, the rovibrational lines of the secondary transition are measured with sub-Doppler resolution. The setup is used to access a previously unreported symmetric vibrational state of acetylene, ν1+ν2+ν3+ν4 (1)+ν5 (-1) in the normal mode notation. Single-photon transitions to this state from the vibrational ground state are forbidden. Ten lines of the newly measured state are observed and fitted with the linear least-squares method to extract the band parameters. The vibrational term value was measured to be at 9775.0018(45) cm(-1), the rotational parameter B was 1.162 222(37) cm(-1), and the quartic centrifugal distortion parameter D was 3.998(62) × 10(-6) cm(-1), where the numbers in the parenthesis are one-standard errors in the least significant digits.

  5. Neural systemic impairment from whole-body vibration.

    Science.gov (United States)

    Yan, Ji-Geng; Zhang, Lin-ling; Agresti, Michael; LoGiudice, John; Sanger, James R; Matloub, Hani S; Havlik, Robert

    2015-05-01

    Insidious brain microinjury from motor vehicle-induced whole-body vibration (WBV) has not yet been investigated. For a long time we have believed that WBV would cause cumulative brain microinjury and impair cerebral function, which suggests an important risk factor for motor vehicle accidents and secondary cerebral vascular diseases. Fifty-six Sprague-Dawley rats were divided into seven groups (n = 8): 1) 2-week normal control group, 2) 2-week sham control group (restrained in the tube without vibration), 3) 2-week vibration group (exposed to whole-body vibration at 30 Hz and 0.5g acceleration for 4 hr/day, 5 days/week, for 2 weeks), 4) 4-week sham control group, 5) 4-week vibration group, 6) 8-week sham control group, and 7) 8-week vibration group. At the end point, all rats were evaluated in behavior, physiological, and brain histopathological studies. The cerebral injury from WBV is a cumulative process starting with vasospasm squeezing of the endothelial cells, followed by constriction of the cerebral arteries. After the 4-week vibration, brain neuron apoptosis started. After the 8-week vibration, vacuoles increased further in the brain arteries. Brain capillary walls thickened, mean neuron size was obviously reduced, neuron necrosis became prominent, and wide-ranging chronic cerebral edema was seen. These pathological findings are strongly correlated with neural functional impairments. © 2014 Wiley Periodicals, Inc.

  6. Non-traditional vibration mitigation methods for reciprocating compressor system

    NARCIS (Netherlands)

    Eijk, A.; Lange, T.J. de; Vreugd, J. de; Slis, E.J.P.

    2016-01-01

    Reciprocating compressors generate vibrations caused by pulsation-induced forces, mechanical (unbalanced) free forces and moments, crosshead guide forces and cylinder stretch forces. The traditional way of mitigating the vibration and cyclic stress levels to avoid fatigue failure of parts of the

  7. Vibration Propagation of Gear Dynamics in a Gear-Bearing-Housing System Using Mathematical Modeling and Finite Element Analysis

    Science.gov (United States)

    Parker, Robert G.; Guo, Yi; Eritenel, Tugan; Ericson, Tristan M.

    2012-01-01

    Vibration and noise caused by gear dynamics at the meshing teeth propagate through power transmission components to the surrounding environment. This study is devoted to developing computational tools to investigate the vibro-acoustic propagation of gear dynamics through a gearbox using different bearings. Detailed finite element/contact mechanics and boundary element models of the gear/bearing/housing system are established to compute the system vibration and noise propagation. Both vibration and acoustic models are validated by experiments including the vibration modal testing and sound field measurements. The effectiveness of each bearing type to disrupt vibration propagation is speed-dependent. Housing plays an important role in noise radiation .It, however, has limited effects on gear dynamics. Bearings are critical components in drivetrains. Accurate modeling of rolling element bearings is essential to assess vibration and noise of drivetrain systems. This study also seeks to fully describe the vibro-acoustic propagation of gear dynamics through a power-transmission system using rolling element and fluid film wave bearings. Fluid film wave bearings, which have higher damping than rolling element bearings, could offer an energy dissipation mechanism that reduces the gearbox noise. The effectiveness of each bearing type to disrupt vibration propagation in explored using multi-body computational models. These models include gears, shafts, rolling element and fluid film wave bearings, and the housing. Radiated noise is mapped from the gearbox surface to surrounding environment. The effectiveness of rolling element and fluid film wave bearings in breaking the vibro-acoustic propagation path from the gear to the housing is investigated.

  8. Broadband measurement of translational and angular vibrations using a single continuously scanning laser Doppler vibrometer.

    Science.gov (United States)

    Salman, Muhammad; Sabra, Karim G

    2012-09-01

    A continuous scanning laser Doppler velocimetry (CSLDV) technique is used to measure the low frequency broadband vibrations associated with human skeletal muscle vibrations (typically f laser beam over distances that are short compared to the characteristic wavelengths of the vibrations. The high frequency scan (compared to the vibration frequency) enables the detection of broadband translational and angular velocities at a single point using amplitude demodulation of the CSDLV signal. For instance, linear scans allow measurement of the normal surface velocity and one component of angular velocity vector, while circular scans allow measurement of an additional angular velocity component. This CSLDV technique is first validated here using gel samples mimicking soft tissues and then applied to measure multiple degrees of freedom (DOF) of a subject's hand exhibiting fatigue-induced tremor. Hence this CSLDV technique potentially provides a means for measuring multiple DOF of small human body parts (e.g., fingers, tendons, small muscles) for various applications (e.g., haptic technology, remote surgery) when the use of skin-mounted sensors (e.g. accelerometers) can be problematic due to mass-loading artifacts or tethering issues.

  9. Measurements and analysis of vibrations at Virilla Bridge, national route N° 1

    Directory of Open Access Journals (Sweden)

    Francisco Navarro-Henríquez

    2015-06-01

    The measurements allowed quantifying the vibration magnitudes and deformation in various sections of the bridge, on condition of vehicular traffic service (environmental performance. The experimental results are compared with computational analytical modeling of the structure and also with national and international standards.

  10. Nonlinear Vibration Response Measured at Umbo and Stapes in the Rabbit Middle ear.

    Science.gov (United States)

    Peacock, John; Pintelon, Rik; Dirckx, Joris

    2015-10-01

    Using laser vibrometry and a stimulation and signal analysis method based on multisines, we have measured the response and the nonlinearities in the vibration of the rabbit middle ear at the level of the umbo and the stapes. With our method, we were able to detect and quantify nonlinearities starting at sound pressure levels of 93-dB SPL. The current results show that no significant additional nonlinearity is generated as the vibration signal is passed through the middle ear chain. Nonlinearities are most prominent in the lower frequencies (125 Hz to 1 kHz), where their level is about 40 dB below the vibration response. The level of nonlinearities rises with a factor of nearly 2 as a function of sound pressure level, indicating that they may become important at very high sound pressure levels such as those used in high-power hearing aids.

  11. Measurement of Vibration Detection Threshold and Tactile Spatial Acuity in Human Subjects.

    Science.gov (United States)

    Moshourab, Rabih; Frenzel, Henning; Lechner, Stefan; Haseleu, Julia; Bégay, Valérie; Omerbašić, Damir; Lewin, Gary R

    2016-09-01

    Tests that allow the precise determination of psychophysical thresholds for vibration and grating orientation provide valuable information about mechanosensory function that are relevant for clinical diagnosis as well as for basic research. Here, we describe two psychophysical tests designed to determine the vibration detection threshold (automated system) and tactile spatial acuity (handheld device). Both procedures implement a two-interval forced-choice and a transformed-rule up and down experimental paradigm. These tests have been used to obtain mechanosensory profiles for individuals from distinct human cohorts such as twins or people with sensorineural deafness.

  12. On Coulomb and Viscosity damped single-degree-of-freedom vibrating systems

    DEFF Research Database (Denmark)

    Jakobsen, J.; Sivebæk, Ion Marius

    2016-01-01

    Attention on friction damping mechanisms could be of interest for vibration reduction, and appears therefore to be desirable. Presentations of textbook analyses on mechanical vibration of a viscosity damped single degree system [mass, spring and eventually damping] are numerous. Often they begin...

  13. Development of an Anti-Vibration Controller for Magnetic Bearing Cooling Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal outlines a program to develop a vibration-free reverse-Brayton cycle cooling system using specially-tuned magnetic bearings. Such a system is critical...

  14. Harvesting vibrational energy due to intermodal systems via nano coated piezo electric devices.

    Science.gov (United States)

    2015-12-01

    Vibrational energy resulting from intermodal transport systems can be recovered through the use of energy harvesting system consisting of PZT piezo electric material as the primary energy harvesting component. The ability of traditional PZT piezo ele...

  15. Quantification of the influence of external vibrations on the measurement error of a coriolis mass-flow meter

    NARCIS (Netherlands)

    van de Ridder, Bert; Hakvoort, Wouter; van Dijk, Johannes; Lötters, Joost Conrad; de Boer, Andries

    2014-01-01

    In this paper the influence of external vibrations on the measurement value of a Coriolis mass-flow meter (CMFM) for low flows is investigated and quantified. Model results are compared with experimental results to improve the knowledge on how external vibrations affect the mass-flow measurement

  16. A Heterodyne-based Method for Measuring Object Movement Speed and Vibration Parameters

    Directory of Open Access Journals (Sweden)

    M. A. Kostromin

    2015-01-01

    Full Text Available Now, in the industry and science, laser methods and tools are widely used to measure various parameters of objects and environment. Among them is distinguished the method of a heterodyne interferometry allowing real time measurements of fairly high accuracy. However, there is an essential shortcoming in this method. It is rather narrow range of measurements because a period of the wave-interference pattern is commensurable with the light wavelength. Therefore, for measurement of parameters of extended objects this work offers a method, which allows us to form the period wave-interference pattern commensurable with the object sizes using two channels of measurement, i.e. rough and exact, thereby providing a wide range and high accuracy of measurement. The article considers the offered method application to measure a movement speed and vibration parameters of the object and shows its advantage. It describes a structure of the heterodyne-based meter of the cross speed of object movement using the offered method where, as a result of the reflector cross movement, the phase of interfering beams is changed because the wave-interference pattern will be displaced with respect to the optoelectronic sensor slit. The paper defines efficiently working borders of this method for measuring object speed. It is found that to measure the amplitude of vibrations it is determined in this case by calculating the Bessel function transitions through zero. Thus, for disambiguation in determination of the amplitude size rather complicated equipment is demanded. It is shown that the offered method allows us to take absolute measurements of amplitude and frequency of vibrations along with simplified implementation. The calculations show that for the real speeds of the object movement this method, as compared to a known Doppler method, will have the higher sensitivity, which is easily regulated in a wide range by changing the frequency to the cross speeds of the movement

  17. Vibration isolation systems, considered as systems with single degree of freedom

    Directory of Open Access Journals (Sweden)

    Zebilila Mohammed

    2017-01-01

    Full Text Available The research considers and analyzes vibration isolation systems, whose design schemes are single degree of freedom systems, including nonlinear elements - displacement limiter and viscous damper. Presented are calculation formulas in closed form for linear systems in operational modes (for harmonic and impulse loads, algorithms and examples of calculation of linear and nonlinear systems in operational and transient modes. The calculation method and the above dependences are written using the transfer (TF and impulse response functions (IRF of linear dynamical systems and dependencies that determine the relationship between these functions. The effectiveness of 2 options of vibration isolation systems in transient modes is analyzed. There is significant reduction of load from the equipment to the supporting structures in the starting-stopping modes by the use of displacement limiter.

  18. Ground vibration measurements for Fermilab future collider projects

    Directory of Open Access Journals (Sweden)

    B. Baklakov

    1998-07-01

    Full Text Available This article presents results of wideband seismic measurements at the Fermilab site, namely, in the tunnel of the Tevatron and on the surface nearby, as well as in two deep tunnels in the Illinois dolomite, thought to be a possible geological environment of the Fermilab future accelerators.

  19. A novel vibration sensor based on phase grating interferometry

    Science.gov (United States)

    Li, Qian; Liu, Xiaojun; Zhao, Li; Lei, Zili; Lu, Zhen; Guo, Lei

    2017-05-01

    Vibration sensors with high accuracy and reliability are needed urgently for vibration measurement. In this paper a vibration sensor with nanometer resolution is developed. This sensor is based on the principle of phase grating interference for displacement measurement and spatial polarization phase-shift interference technology, and photoelectric counting and A/D signal subdivision are adopted for vibration data output. A vibration measurement system consisting of vibration actuator and displacement adjusting device has been designed to test the vibration sensor. The high resolution and high reliability of the sensor are verified through a series of comparison experiments with Doppler interferometer.

  20. EFRC guidelines for vibrations in reciprocating compressor systems

    NARCIS (Netherlands)

    Eijk, A.

    2008-01-01

    One of the disadvantages of a reciprocating compressor is that it generates pulsations and vibrations, which, without limitation and proper attention during design, manufacturing, installation and operation, can lead to fatigue failures, inefficiency, capacity limitations and unsafe situations. To

  1. Sparse Representation Based Frequency Detection and Uncertainty Reduction in Blade Tip Timing Measurement for Multi-Mode Blade Vibration Monitoring

    Science.gov (United States)

    Pan, Minghao; Yang, Yongmin; Guan, Fengjiao; Hu, Haifeng; Xu, Hailong

    2017-01-01

    The accurate monitoring of blade vibration under operating conditions is essential in turbo-machinery testing. Blade tip timing (BTT) is a promising non-contact technique for the measurement of blade vibrations. However, the BTT sampling data are inherently under-sampled and contaminated with several measurement uncertainties. How to recover frequency spectra of blade vibrations though processing these under-sampled biased signals is a bottleneck problem. A novel method of BTT signal processing for alleviating measurement uncertainties in recovery of multi-mode blade vibration frequency spectrum is proposed in this paper. The method can be divided into four phases. First, a single measurement vector model is built by exploiting that the blade vibration signals are sparse in frequency spectra. Secondly, the uniqueness of the nonnegative sparse solution is studied to achieve the vibration frequency spectrum. Thirdly, typical sources of BTT measurement uncertainties are quantitatively analyzed. Finally, an improved vibration frequency spectra recovery method is proposed to get a guaranteed level of sparse solution when measurement results are biased. Simulations and experiments are performed to prove the feasibility of the proposed method. The most outstanding advantage is that this method can prevent the recovered multi-mode vibration spectra from being affected by BTT measurement uncertainties without increasing the probe number. PMID:28758952

  2. Theoretical analysis and experimental measurement for resonant vibration of piezoceramic circular plates.

    Science.gov (United States)

    Huang, Chi-Hung; Lin, Yu-Chih; Ma, Chien-Ching

    2004-01-01

    Based on the electroelastic theory for piezoelectric plates, the vibration characteristics of piezoceramic disks with free-boundary conditions are investigated in this work by theoretical analysis, numerical simulation, and experimental measurement. The resonance of thin piezoceramic disks is classified into three types of vibration modes: transverse, tangential, and radial extensional modes. All of these modes are investigated in detail. Two optical techniques, amplitude-fluctuation electronic speckle pattern interferometry (AF-ESPI) and laser Doppler vibrometer (LDV), are used to validate the theoretical analysis. Because the clear fringe patterns are shown only at resonant frequencies, both the resonant frequencies and the corresponding mode shapes are obtained experimentally at the same time by the proposed AF-ESPI method. Good quality of the interferometric fringe patterns for both the transverse and extensional vibration mode shapes are demonstrated. The resonant frequencies of the piezoceramic disk also are measured by the conventional impedance analysis. Both theoretical and experimental results indicate that the transverse and tangential vibration modes cannot be measured by the impedance analysis, and only the resonant frequencies of extensional vibration modes can be obtained. Numerical calculations based on the finite element method also are performed, and the results are compared with the theoretical analysis and experimental measurements. It is shown that the finite element method (FEM) calculations and the experimental results agree fairly well for the resonant frequencies and mode shapes. The resonant frequencies and mode shapes predicted by theoretical analysis and calculated by finite element method are in good agreement, and the difference of resonant frequencies for both results with the thickness-to-diameter (h/D) ratios, ranging from 0.01 to 0.1, are presented.

  3. First Experimental Results And Improvements On Profile Measurements With The Vibrating Wire Scanner

    CERN Document Server

    Arutunian, S G; Dobrovolski, N M; Mailian, M R; Soghoyan, H E; Vasiniuk, I E

    2003-01-01

    The paper presents the first experimental results of transverse profile scans using a wire scanner based on a vibrating wire (vibrating wire scanner - VWS). The measurements were performed at the injector electron beam (6 nA) of the Yerevan synchrotron. The beam profile information is obtained by measuring the wire natural oscillations that depend on the wire temperature. This first experiments on weak electron beam proved this new method as a very sensitive tool, even suitable for tail measurements. Additional, improvements were tested to overcome some problems connected with signal conditioning and signal transfer in the presence of electromagnetic noise. As a result the noises were neatly separated and reduced. A mathematical method for rejection of distorted data was developed. Experiments with the scanner at the PETRA accelerator at DESY are planned for measurements of beam tails.

  4. Comparison of Two Conceptions of the Vibration Isolation Systems

    Science.gov (United States)

    Šklíba, Jan; Sivčák, M.; Čižmár, J.

    The sprung stretcher of a ground ambulance litter as the space conducting mechanism with three degrees of freedom. The first degree is determined to compensate the vertical translations of a carriage, the second and third to compensate both horizontal rotations (so called pitching and rolling). The first degree is realized with scissor or with parallelogram, on the upper base on which the double Cardane suspension is placed (as the second and third degree). The second Cardane frame is connected with an own stretcher. The vibration isolation is realized with controlled pneumatic springs. Their control has two sensing units: sensor of the relative position of the upper and lower base and sensor of the absolute angle deflection of the second Cardane frame from an horizontal plane (double electrolytic level). This level is modeled as a spherical pendulum (on the base of its identified characteristics). There was analyzed this dynamic system with five degrees of freedom. The analyze of two conceptions demonstrates that the scissor mechanism is for the complete space mechanism more useful than the parallelogram.

  5. Improved orthogonality check for measured modes. [from ground vibration testing of structures

    Science.gov (United States)

    Berman, A.

    1980-01-01

    A method is proposed for performing an orthogonality check for normal modes derived from ground vibration testing. The method utilizes partitioned mass and stiffness matrices for a linear undamped representation of a structure. The normalization of the modes by the proposed method inherently includes the effects of significant displacements which were not measured; and the method may allow the use of fewer measurement points than would be necessary with the conventional method.

  6. Vibration Control of a Semiactive Vehicle Suspension System Based on Extended State Observer Techniques

    Directory of Open Access Journals (Sweden)

    Ze Zhang

    2014-01-01

    Full Text Available A feedback control method based on an extended state observer (ESO method is implemented to vibration reduction in a typical semiactive suspension (SAS system using a magnetorheological (MR damper as actuator. By considering the dynamic equations of the SAS system and the MR damper model, an active disturbance rejection control (ADRC is designed based on the ESO. Numerical simulation and real-time experiments are carried out with similar vibration disturbances. Both the simulation and experimental results illustrate the effectiveness of the proposed controller in vibration suppression for a SAS system.

  7. Coupled bending and torsional vibration of a rotor system with nonlinear friction

    Energy Technology Data Exchange (ETDEWEB)

    Hua, Chunli; Cao, Guohua; Zhu, Zhencai [China University of Mining and Technology, Xuzhou (China); Rao, Zhushi; Ta, Na [Shanghai Jiao Tong University, Shanghai (China)

    2017-06-15

    Unacceptable vibrations induced by the nonlinear friction in a rotor system seriously affect the health and reliability of the rotating ma- chinery. To find out the basic excitation mechanism and characteristics of the vibrations, a coupled bending and torsional nonlinear dynamic model of rotor system with nonlinear friction is presented. The dynamic friction characteristic is described with a Stribeck curve, which generates nonlinear friction related to relative velocity. The motion equations of unbalance rotor system are established by the Lagrangian approach. Through numerical calculation, the coupled vibration characteristics of a rotor system under nonlinear friction are well investigated. The influence of main system parameters on the behaviors of the system is discussed. The bifurcation diagrams, waterfall plots, the times series, orbit trails, phase plane portraits and Poincaré maps are obtained to analyze dynamic characteristics of the rotor system and the results reveal multiform complex nonlinear dynamic responses of rotor system under rubbing. These analysis results of the present paper can effectively provide a theoretical reference for structural design of rotor systems and be used to diagnose self- excited vibration faults in this kind of rotor systems. The present research could contribute to further understanding on the self-excited vibration and the bending and torsional coupling vibration of the rotor systems with Stribeck friction model.

  8. A concept for semi-active vibration control with a serial-stiffness-switch system

    Science.gov (United States)

    Min, Chaoqing; Dahlmann, Martin; Sattel, Thomas

    2017-09-01

    This work deals with a new semi-active vibration control concept with a serial-stiffness-switch system (SSSS), which can be seen as one and a half degree-of-freedom system. The proposed switched system is mainly composed of two serial elements, each of which consists of one spring and one switch in parallel with each other. This mechanical structure benefits from a specified switching law based on the zero crossing of velocity in order to realize vibration reduction. In contrast with conventional ways, the new system is capable of harvesting vibration energy as potential energy stored in springs, and then applies it to vibration reduction. In this paper, the concept is characterized, simulated, evaluated, and proven to be able to improve the system response. The equivalent stiffness and natural frequency of the switched system are mathematically formulated and verified.

  9. Dynamic characteristics of a cable-stayed bridge measured from traffic-induced vibrations

    Science.gov (United States)

    Wang, Yun-Che; Chen, Chern-Hwa

    2012-09-01

    This paper studies the dynamic characteristics of the Kao-Ping-Hsi cable-stayed bridge under daily traffic conditions. Experimental data were measured from a structural monitoring system, and system-identification techniques, such as the random decrement (RD) technique and Ibrahim time-domain (ITD) method, were adopted. The first five modes of the bridge were identified for their natural frequencies and damping ratios under different traffic loading conditions, in terms of root-mean-square (RMS) deck velocities. The magnitude of the torsion mode of the Kao-Ping-Hsi cable-stayed bridge is found to be one order-of-magnitude less than the transfer mode, and two orders-of-magnitude less than the vertical modes. Out results indicated that vibrations induced by traffic flow can be used as an indicator to monitor the health of the bridge due to their insensitivity to the natural frequencies of the cable-stayed bridge. Furthermore, the damping ratios may be used as a more sensitive indicator to describe the condition of the bridge.

  10. Analysis of classical guitars' vibrational behavior based on scanning laser vibrometer measurements

    Science.gov (United States)

    Czajkowska, Marzena

    2012-06-01

    One of the main goals in musical acoustics research is to link measurable, physical properties of a musical instrument with subjective assessments of its tone quality. The aim of the research discussed in this paper was to observe the structural vibrations of different class classical guitars in relation to their quality. This work focuses on mid-low-and low-class classical (nylon-stringed) guitars. The main source of guitar body vibrations come from top and back plate vibrations therefore these were the objects of structural mode measurements and analysis. Sixteen classical guitars have been investigated, nine with cedar and seven with spruce top plate. Structural modes of top and back plates have been measured with the aid of a scanning laser vibrometer and the instruments were excited with a chirp signal transferred by bone vibrator. The issues related to excitor selection have been discussed. Correlation and descriptive statistics of top and back plates measurement results have been investigated in relation to guitar quality. The frequency range of 300 Hz to 5 kHz as well as selected narrowed frequency bands have been analyzed for cedar and spruce guitars. Furthermore, the influence of top plate wood type on vibration characteristics have been observed on three pairs of guitars. The instruments were of the same model but different top plate material. Determination and visualization of both guitar plates' modal patterns in relation to frequency are a significant attainment of the research. Scanning laser vibrometer measurements allow particular mode observation and therefore mode identification, as opposed to sound pressure response measurements. When correlating vibration characteristics of top and back plates it appears that Pearson productmoment correlation coefficient is not a parameter that associates with guitar quality. However, for best instruments with cedar top, top-back correlation coefficient has relatively greater value in 1-2 kHz band and lower in

  11. Piezoelectric actuators in the active vibration control system of journal bearings

    Science.gov (United States)

    Tůma, J.; Šimek, J.; Mahdal, M.; Pawlenka, M.; Wagnerova, R.

    2017-07-01

    The advantage of journal hydrodynamic bearings is high radial load capacity and operation at high speeds. The disadvantage is the excitation of vibrations, called an oil whirl, after crossing a certain threshold of the rotational speed. The mentioned vibrations can be suppressed using the system of the active vibration control with piezoactuators which move the bearing bushing. The motion of the bearing bushing is controlled by a feedback controller, which responds to the change in position of the bearing journal which is sensed by a pair of capacitive sensors. Two stacked linear piezoactuators are used to actuate the position of the bearing journal. This new bearing enables not only to damp vibrations but also serves to maintain the desired bearing journal position with an accuracy of micrometers. The paper will focus on the effect of active vibration control on the performance characteristics of the journal bearing.

  12. In vivo measurement of basilar membrane vibration in the unopened chinchilla cochlea using high frequency ultrasound.

    Science.gov (United States)

    Landry, Thomas G; Bance, Manohar L; Leadbetter, Jeffrey; Adamson, Robert B; Brown, Jeremy A

    2017-06-01

    The basilar membrane and organ of Corti in the cochlea are essential for sound detection and frequency discrimination in normal hearing. There are currently no methods used for real-time high resolution clinical imaging or vibrometry of these structures. The ability to perform such imaging could aid in the diagnosis of some pathologies and advance understanding of the causes. It is demonstrated that high frequency ultrasound can be used to measure basilar membrane vibrations through the round window of chinchilla cochleas in vivo. The basic vibration characteristics of the basilar membrane agree with previous studies that used other methods, although as expected, the sensitivity of ultrasound was not as high as optical methods. At the best frequency for the recording location, the average vibration velocity amplitude was about 4 mm/s/Pa with stimulus intensity of 50 dB sound pressure level. The displacement noise floor was about 0.4 nm with 256 trial averages (5.12 ms per trial). Although vibration signals were observed, which likely originated from the organ of Corti, the spatial resolution was not adequate to resolve any of the sub-structures. Improvements to the ultrasound probe design may improve resolution and allow the responses of these different structures to be better discriminated.

  13. Robustness of railway rolling stock speed calculation using ground vibration measurements

    Directory of Open Access Journals (Sweden)

    Kouroussis Georges

    2015-01-01

    Full Text Available Evaluating railway vehicle speed is an important task for both railway operators and researchers working in the area of vehicle/track dynamics, noise and vibration assessment. The objective of this paper is to present a new technique capable of automatically calculating train speed from vibration sensors placed at short or long distances from the track structure. The procedure combines three separate signal processing techniques to provide high precision speed estimates. In order to present a complete validation, the robustness of the proposed method is evaluate using synthetic railway vibration time histories generated using a previously validated vibration numerical model. A series of simulations are performed, analysing the effect of vehicle speed, singular wheel and rail surface defects, and soil configuration. Virtual conditions of measurement are also examined, taking into account external sources other than trains, and sensor response. It is concluded that the proposed method offers high performance for several train/track/soil arrangements. It is also used to predict train speeds during field trials performed on operational railway lines in Belgium and in UK.

  14. Quantitative estimation of the influence of external vibrations on the measurement error of a coriolis mass-flow meter

    NARCIS (Netherlands)

    van de Ridder, Bert; Hakvoort, Wouter; van Dijk, Johannes; Lötters, Joost Conrad; de Boer, Andries; Dimitrovova, Z.; de Almeida, J.R.

    2013-01-01

    In this paper the quantitative influence of external vibrations on the measurement value of a Coriolis Mass-Flow Meter for low flows is investigated, with the eventual goal to reduce the influence of vibrations. Model results are compared with experimental results to improve the knowledge on how

  15. Measurement System & Calibration report

    DEFF Research Database (Denmark)

    Gómez Arranz, Paula; Villanueva, Héctor

    This Measurement System & Calibration report is describing DTU’s measurement system installed at a specific wind turbine. A part of the sensors has been installed by others, the rest of the sensors have been installed by DTU. The results of the measurements, described in this report, are only val...

  16. Acute effects of shock-type vibration transmitted to the hand-arm system.

    Science.gov (United States)

    Schäfer, N; Dupuis, H; Hartung, E

    1984-01-01

    The aim of the project was to find out whether shock-type vibration of hand-tools compared to non-impulsive vibration has stronger acute effects on the hand-arm system and therefore needs a stricter evaluation from the occupational health point of view in comparison with the requirements of the Draft International Standard ISO-DIS 5349. Under laboratory conditions, subjects were exposed to simulated vibration of hand-tools (grinder, chain saw, hammer-drill, pneumatic hammer, rivet hammer and nailer). The following evaluation criteria were used: biomechanical transmissibility of the hand-arm system (wrist, elbow joint, shoulder joint); muscle-activity (m. flexor carpi ulnaris, m. biceps, m. triceps); peripheral circulation (skin temperature) and subjective perception (comparison of intensity of standard and test vibrations). The results show no significant difference in acute effects on the hand-arm system between impulsive and non-impulsive type vibrations of the hand-tools tested with respect to the chosen vibration level, short-time exposure (up to 8 min) and evaluation criteria. In summary, therefore, it may be concluded that for the evaluation of shock-type vibration of the hand-tools tested, it is justified to use the existing Draft International Standard ISO-DIS 5349.

  17. Development of a Self-Powered Magnetorheological Damper System for Cable Vibration Control

    Directory of Open Access Journals (Sweden)

    Zhihao Wang

    2018-01-01

    Full Text Available A new self-powered magnetorheological (MR damper control system was developed to mitigate cable vibration. The power source of the MR damper is directly harvested from vibration energy through a rotary permanent magnet direct current (DC generator. The generator itself can also serve as an electromagnetic damper. The proposed smart passive system also incorporates a roller chain and sprocket, transforming the linear motion of the cable into the rotational motion of the DC generator. The vibration mitigation performance of the presented self-powered MR damper system was evaluated by model tests with a 21.6 m long cable. A series of free vibration tests of the cable with a passively operated MR damper with constant voltage, an electromagnetic damper alone, and a self-powered MR damper system were performed. Finally, the vibration control mechanisms of the self-powered MR damper system were investigated. The experimental results indicate that the supplemental modal damping ratios of the cable in the first four modes can be significantly enhanced by the self-powered MR damper system, demonstrating the feasibility and effectiveness of the new smart passive system. The results also show that both the self-powered MR damper and the generator are quite similar to a combination of a traditional linear viscous damper and a negative stiffness device, and the negative stiffness can enhance the mitigation efficiency against cable vibration.

  18. Accurate acoustic power measurement for low-intensity focused ultrasound using focal axial vibration velocity

    Science.gov (United States)

    Tao, Chenyang; Guo, Gepu; Ma, Qingyu; Tu, Juan; Zhang, Dong; Hu, Jimin

    2017-07-01

    Low-intensity focused ultrasound is a form of therapy that can have reversible acoustothermal effects on biological tissue, depending on the exposure parameters. The acoustic power (AP) should be chosen with caution for the sake of safety. To recover the energy of counteracted radial vibrations at the focal point, an accurate AP measurement method using the focal axial vibration velocity (FAVV) is proposed in explicit formulae and is demonstrated experimentally using a laser vibrometer. The experimental APs for two transducers agree well with theoretical calculations and numerical simulations, showing that AP is proportional to the square of the FAVV, with a fixed power gain determined by the physical parameters of the transducers. The favorable results suggest that the FAVV can be used as a valuable parameter for non-contact AP measurement, providing a new strategy for accurate power control for low-intensity focused ultrasound in biomedical engineering.

  19. Effect of Attitudinal, Situational and Demographic Factors on Annoyance Due to Environmental Vibration and Noise from Construction of a Light Rapid Transit System

    Science.gov (United States)

    Wong-McSweeney, Daniel; Woodcock, James; Waddington, David; Peris, Eulalia; Koziel, Zbigniew; Moorhouse, Andy; Redel-Macías, María Dolores

    2016-01-01

    The aim of this paper is to determine what non-exposure factors influence the relationship between vibration and noise exposure from the construction of a Light Rapid Transit (LRT) system and the annoyance of nearby residents. Noise and vibration from construction sites are known to annoy residents, with annoyance increasing as a function of the magnitude of the vibration and noise. There is not a strong correlation between exposure and levels of annoyance suggesting that factors not directly related to the exposure may have an influence. A range of attitudinal, situational and demographic factors are investigated with the aim of understanding the wide variation in annoyance for a given vibration exposure. A face-to-face survey of residents (n = 350) near three sites of LRT construction was conducted, and responses were compared to semi-empirical estimates of the internal vibration within the buildings. It was found that annoyance responses due to vibration were strongly influenced by two attitudinal variables, concern about property damage and sensitivity to vibration. Age, ownership of the property and the visibility of the construction site were also important factors. Gender, time at home and expectation of future levels of vibration had much less influence. Due to the measurement methods used, it was not possible to separate out the effects of noise and vibration on annoyance; as such, this paper focusses on annoyance due to vibration exposure. This work concludes that for the most cost-effective reduction of the impact of construction vibration and noise on the annoyance felt by a community, policies should consider attitudinal factors. PMID:27983662

  20. Detection of directional energy damping in vibrating systems - Indian ...

    Indian Academy of Sciences (India)

    Abstract. The transmission efficiency, frequency and amplitude alteration have been measured by a simple technique of coupled oscillators with a frequency gradient and in a system of non-Newtonian fluid in the form of corn-flour slime. The system of coupled oscillators was found to exhibit preferential energy transfer ...

  1. Detection of directional energy damping in vibrating systems

    Indian Academy of Sciences (India)

    The transmission efficiency, frequency and amplitude alteration have been measured by a simple technique of coupled oscillators with a frequency gradient and in a system of non-Newtonian fluid in the form of corn-flour slime. The system of coupled oscillators was found to exhibit preferential energy transfer towards the ...

  2. High Quality Factor 80 MHz Microelectromechanical Systems Resonator Utilizing Torsional-to-Transverse Vibration Conversion

    Science.gov (United States)

    Kiso, Masaya; Okada, Mitsuhiro; Fujiura, Hideaki; Miyauchi, Hideo; Niki, Kazuya; Tanigawa, Hiroshi; Suzuki, Kenichiro

    2012-06-01

    A silicon microelectromechanical systems (MEMS) resonator utilizing torsional-to-transverse vibration conversion with quarter-wavelength torsional support beams is designed, fabricated, and evaluated. The resonant frequency for torsional modes mostly depends only on beam length, providing a large tolerance in the fabrication process. However, the following have remained critical issues: the increase in the quality factor (Q-factor) and the reduction in the motional resistance. We propose a new beam structure, in which the MEMS resonator utilizing torsional-to-transverse vibration conversion is anchored by four quarter-wavelength torsional support beams. First, the fabricated resonators are measured with a laser-Doppler (LD) vibrometer. The measured resonant frequency of 78.224 MHz has been in good agreement with the simulated one. The Q-factor has also been measured to be as high as 3.0×104 in vacuum. Then, the electrical characteristic is evaluated with an impedance analyzer. The Q-factor has been electrically measured to be as high as 3.1×104 in vacuum, which agrees well with the mechanically measured one of 3.0×104. The Q-factor has also been electrically measured to be as high as 1.3×104 at atmospheric pressure. In the measurement, a spring softening effect has been clearly observed. By increasing the DC bias voltage from 20 to 40 V, the resonant frequency has decreased by 640 Hz. The extracted motional resistance for a 0.1-µm-gap resonator has been greatly reduced to 0.039 MΩ at 5 V DC, owing to the narrow-gap effect, from that of a 0.25-µm-gap resonator. The tolerance in the fabrication process has also been evaluated and successfully verified from the measurement of the fabricated MEMS resonators.

  3. Review on structural damage assessment via transmissibility with vibration based measurements

    Science.gov (United States)

    Zhou, Yun-Lai; Hongyou, Cao; Zhen, Ni; Abdel Wahab, Magd

    2017-05-01

    In this study, transmissibility based damage assessment techniques with vibration measurement are reviewed with highlighting the recent advancements since damage might induce severe changes and cause huge economic losses in both civil and mechanical engineering structures. In recent years, transmissibility underwent booming and divergent application for damage assessment both in experimental model and engineering application, and this review provides a fundamental understanding for transmissibility based damage assessment by summarizing those research outputs, which can serve as useful reference for further investigations.

  4. Contact area affects frequency-dependent responses to vibration in the peripheral vascular and sensorineural systems.

    Science.gov (United States)

    Krajnak, Kristine; Miller, G R; Waugh, Stacey

    2018-01-01

    Repetitive exposure to hand-transmitted vibration is associated with development of peripheral vascular and sensorineural dysfunctions. These disorders and symptoms associated with it are referred to as hand-arm vibration syndrome (HAVS). Although the symptoms of the disorder have been well characterized, the etiology and contribution of various exposure factors to development of the dysfunctions are not well understood. Previous studies performed using a rat-tail model of vibration demonstrated that vascular and peripheral nervous system adverse effects of vibration are frequency-dependent, with vibration frequencies at or near the resonant frequency producing the most severe injury. However, in these investigations, the amplitude of the exposed tissue was greater than amplitude typically noted in human fingers. To determine how contact with vibrating source and amplitude of the biodynamic response of the tissue affects the risk of injury occurring, this study compared the influence of frequency using different levels of restraint to assess how maintaining contact of the tail with vibrating source affects the transmission of vibration. Data demonstrated that for the most part, increasing the contact of the tail with the platform by restraining it with additional straps resulted in an enhancement in transmission of vibration signal and elevation in factors associated with vascular and peripheral nerve injury. In addition, there were also frequency-dependent effects, with exposure at 250 Hz generating greater effects than vibration at 62.5 Hz. These observations are consistent with studies in humans demonstrating that greater contact and exposure to frequencies near the resonant frequency pose the highest risk for generating peripheral vascular and sensorineural dysfunction.

  5. Relaxation of vibrationally excited states in solid "nitrate-nitrite" binary systems

    Science.gov (United States)

    Aliev, A. R.; Akhmedov, I. R.; Kakagasanov, M. G.; Aliev, Z. A.; Gafurov, M. M.; Rabadanov, K. Sh.; Amirov, A. M.

    2017-10-01

    The processes of molecular relaxation in the solid NaNO3-NaNO2 and KNO3-KNO2 "nitrate-nitrite" binary systems have been investigated by Raman spectroscopy. The relaxation time of the vibration ν1(A) of an NO- 3 anion in the binary system is found to be shorter than that in individual nitrate. The increase in the relaxation rate is explained by the existence of an additional mechanism of relaxation of vibrationally excited states of the nitrate ion in the system. This mechanism is related to the excitation of vibration of another anion (NO- 2) and generation of a lattice phonon. It has been established that this relaxation mechanism is implemented provided that the difference between the frequencies of the aforementioned vibrations correspond to the range of sufficiently high density of states in the phonon spectrum.

  6. Active Damping of Vibrations in High-Precision Motion Systems

    NARCIS (Netherlands)

    Babakhani, B.

    2012-01-01

    Technology advancements feed the need for ever faster and more accurate industrial machines. Vibration is a significant source of inaccuracy of such machines. A light-weight design in favor of the speed, and avoiding the use of energy-dissipating materials from the structure to omit any source of

  7. Health System Measurement Project

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Health System Measurement Project tracks government data on critical U.S. health system indicators. The website presents national trend data as well as detailed...

  8. High frequent total station measurements for the monitoring of bridge vibrations

    Science.gov (United States)

    Lienhart, Werner; Ehrhart, Matthias; Grick, Magdalena

    2017-03-01

    Robotic total stations (RTS) are frequently used for the measurement of temperature induced bridge deformations or during load testing of bridges. In experimental setups, total stations have also been used for the measurement of dynamic bridge deformations. However, with standard configurations the measurement rate is not constant and on average an update rate of 7-10Hz can be achieved. This is not sufficient for the vibration monitoring of bridges considering their natural frequencies which are also in the same range. In this paper, we present different approaches to overcome these problems. In the first two approaches we demonstrate how the measurement rate to prisms can be increased to 20Hz to determine vertical deformations of bridges. Critical aspects like the measurement resolution of the automated target tracking and the correct sequence of steering commands are discussed. In another approach we demonstrate how vertical bridge vibrations can be measured using an image assisted total station (IATS) and corresponding processing techniques. The advantage of image-based methods is that structural features of a bridge like bolts can be used as targets. Therefore, no expensive prisms have to be mounted and access to the bridge is not required. All approaches are verified by laboratory investigations and their suitability is proven in a field experiment on a 74m long footbridge. In this field experiment the natural frequencies derived from the total station measurements are compared to the results of accelerometer measurements.

  9. Measurement of mechanical quality factors of polymers in flexural vibration for high-power ultrasonic application.

    Science.gov (United States)

    Wu, Jiang; Mizuno, Yosuke; Tabaru, Marie; Nakamura, Kentaro

    2016-07-01

    A method for measuring the mechanical quality factor (Q factor) of materials in large-amplitude flexural vibrations was devised on the basis of the original definition of the Q factor. The Q factor, the ratio of the reactive energy to the dissipated energy, was calculated from the vibration velocity distribution. The bar thickness was selected considering the effect of the thickness on the estimation error. In the experimental setup, a 1-mm-thick polymer-based bar was used as a sample and fixed on the top of a longitudinal transducer. Using transducers of different lengths, flexural waves in the frequency range of 20-90kHz were generated on the bar. The vibration strain in the experiment reached 0.06%. According to the Bernoulli-Euler model, the reactive energy and dissipated energy were estimated from the vertical velocity distribution on the bar, and the Q factors were measured as the driving frequency and strain were varied. The experimental results showed that the Q factors decrease as the driving frequencies and strains increase. At a frequency of 28.30kHz, the Q factor of poly(phenylene sulfide) (PPS) reached approximately 460 when the strain was smaller than 0.005%. PPS exhibited a much higher Q factor than the other tested polymers, which implies that it is a potentially applicable material as the elastomer for high-power ultrasonic devices. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Geared induction motor fault diagnosis by current, noise and vibration considering measurement environment

    Directory of Open Access Journals (Sweden)

    Ki-Seok Kim

    2017-01-01

    Full Text Available Lots of motors have been being used in industry. Therefore many studies have been carried out about the failure diagnosis of motors. In this paper, a diagnosis of gear fault connected to a motor shaft is studied. The fault diagnosis is executed through the comparison of normal gear and abnormal gear. In the abnormal gearbox, a tooth of the intermediate gear is damaged. The measured FFT data are compared with the normal data and analyzed for q-axis current, noise and vibration. Fault gear was found by comparing the FFT with normal FFT. From these, the difference between the normal and abnormal states can be seen by the frequency characteristic analysis for the current as well as noise and vibration.

  11. Approach for a smart device for active vibration suppression as an add-on for robot-based systems

    Energy Technology Data Exchange (ETDEWEB)

    Perner, Marcus; Krombholz, Christian; Monner, Hans Peter [Institute of Composite Structures and Adaptive Systems, Braunschweig (Germany)

    2014-11-15

    Robot-based systems are defined by the capabilities of links and joints that form the robot arm, the control including drive engines and the end effector. In particular, articulated robots have a serial structure. They have to carry the drive engine of each ongoing axis, which results in higher susceptibility to vibration. To compensate weak precision the German Aerospace Center (DLR) integrates a quality improving sensor system on the robot platform. A vibration monitoring system detects vibrations that affect the precision during motion tasks. Currently, higher precision is achieved by slowing down the speed in production. Therefore, a compromise is given between speed and precision. To push the limits for these two conflicting process properties, we propose an approach for an additional smart device to decouple the process-sensitive unit from disturbances arising through motion of the kinematic structure. The smart device enables active vibration suppression by use of a piezo-based actuator with a lever mechanism connected to a motion platform. The lever mechanism provides the required force and displacement adaption. The platform provides mounting and steering of the process-sensitive components. First, an insight into the automation task is given within this paper. Secondly, the system design is illustrated. Based on simulation results the characteristic of the proposed mechanism is shown. Besides the mechanical properties like stiffness and lever amplification, dynamical issues like the smallest eigenfrequency are discussed. To verify simulation results initial measurements are presented and discussed. The paper sums up with the discussion of an implementation of a closed-loop control system to achieve vibration-free and fast motion.

  12. Design and Test of Semi-Active Vibration-Reducing System for Lathe

    Directory of Open Access Journals (Sweden)

    Hongsheng Hu

    2014-09-01

    Full Text Available In this paper, its theory design, analysis and test system of semi-active vibration controlling system used for precision machine have been done. Firstly, lathe bed and spindle entity were modeled by using UG software; Then modes of the machine bed and the key components of spindle were obtained by using ANSYS software; Finally, harmonic response analysis of lathe spindle under complex load was acquired, which provided a basis of MR damper’s structure optimization design for a certain type of precision machine. In order to prove its effectives, a prototype semi-active vibration controlling lathe with MR damper was developed. Tests have been done, and comparison results between passive vibration isolation equipment and semi-active vibration controlling equipment proved its good performances of MR damper.

  13. Self-excited vibration of the shell-liquid coupled system induced by dry friction

    Science.gov (United States)

    Xijun, Liu; Dajun, Wang; Yushu, Chen

    1995-11-01

    The nonlinear vibration theory and the experimental modal analysis are used in this paper to study the self-excited vibration of the shell-liquid coupled system induced by dry friction. The effect of dry friction stick-slip coefficients and rubbing velocity on self-excited vibration, and the limit cycle and Hopf bifurcation solution of the system are obtained. In particular, it is shown that the phenomenon of 4 point (or 6 point) water droplet spurting of the Chinese cultural relic Dragon Washbasin is the result of the perfect combination of the self-excited vibration induced by dry friction and its special modes, which indicates the significant scientific value of the Chinese cultural relic Dragon Washbasin.

  14. Dynamic modeling and simulation of a two-stage series-parallel vibration isolation system

    Directory of Open Access Journals (Sweden)

    Rong Guo

    2016-07-01

    Full Text Available A two-stage series-parallel vibration isolation system is already widely used in various industrial fields. However, when the researchers analyze the vibration characteristics of a mechanical system, the system is usually regarded as a single-stage one composed of two substructures. The dynamic modeling of a two-stage series-parallel vibration isolation system using frequency response function–based substructuring method has not been studied. Therefore, this article presents the source-path-receiver model and the substructure property identification model of such a system. These two models make up the transfer path model of the system. And the model is programmed by MATLAB. To verify the proposed transfer path model, a finite element model simulating a vehicle system, which is a typical two-stage series-parallel vibration isolation system, is developed. The substructure frequency response functions and system level frequency response functions can be obtained by MSC Patran/Nastran and LMS Virtual.lab based on the finite element model. Next, the system level frequency response functions are substituted into the transfer path model to predict the substructural frequency response functions and the system response of the coupled structure can then be further calculated. By comparing the predicted results and exact value, the model proves to be correct. Finally, the random noise is introduced into several relevant system level frequency response functions for error sensitivity analysis. The system level frequency response functions that are most sensitive to the random error are found. Since a two-stage series-parallel system has not been well studied, the proposed transfer path model improves the dynamic theory of the multi-stage vibration isolation system. Moreover, the validation process of the model here actually provides an example for acoustic and vibration transfer path analysis based on the proposed model. And it is worth noting that the

  15. The influence of whole body vibration on the central and peripheral cardiovascular system.

    Science.gov (United States)

    Robbins, Dan; Yoganathan, Priya; Goss-Sampson, Mark

    2014-09-01

    The purpose of this study was to investigate the physiological changes of the cardiovascular system in response to whole body vibration during quiet standing and identify whether there is a greater influence on the central or peripheral cardiovascular system. Twenty healthy participants (12 male and 8 female) were assessed over two separate testing sessions for changes in peripheral skin temperature, peripheral venous function, blood flow velocity in the dorsalis pedis artery, blood pressure and heart rate during quiet standing with 40 Hz 1·9 mm synchronous vibration. Vibration exposure totalled 5 min in 1 min increments with 5 min recovery during each testing session. There were no significant changes in heart rate, blood pressure or peripheral skin temperature. Significant results were obtained for blood flow velocity with increases from 0·5 + 0·2 cm·s(-1) at baseline to 1 + 0·2 cm·s(-1) during vibration, returning to baseline levels during the recovery period. Due to the absence of changes in heart rate, blood pressure or lower leg and foot temperature, the change in blood flow velocity can be attributed to changes in peripheral vascular function. The results suggest a high level of sensitivity of the peripheral vascular system to vibration exposure; therefore, further studies should be completed to ascertain the physiological mechanisms underlying the effects of vibration on the peripheral vascular system. © 2013 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  16. Comparison of the sound pressure measurement and the speed measurement of the gearbox vibrating surface

    Directory of Open Access Journals (Sweden)

    Tomasz FIGLUS

    2012-01-01

    Full Text Available The paper attempts to assess the utility of sound pressure level registered in the near field of about 0,01 m away from the vibrating surface in the studies of the housing vibroacoustic activity. Based on the studies performed for the four pairs of wheels, with different loads and different speeds of gearbox, have been indicated the usefulness of the noise recorded in near field in vibroacoustic analysis.

  17. Observer Based Optimal Vibration Control of a Full Aircraft System Having Active Landing Gears and Biodynamic Pilot Model

    Directory of Open Access Journals (Sweden)

    Hakan Yazici

    2016-01-01

    Full Text Available This paper deals with the design of an observed based optimal state feedback controller having pole location constraints for an active vibration mitigation problem of an aircraft system. An eleven-degree-of-freedom detailed full aircraft mathematical model having active landing gears and a seated pilot body is developed to control and analyze aircraft vibrations caused by runway excitation, when the aircraft is taxiing. Ground induced vibration can contribute to the reduction of pilot’s capability to control the aircraft and cause the safety problem before take-off and after landing. Since the state variables of the pilot body are not available for measurement in practice, an observed based optimal controller is designed via Linear Matrix Inequalities (LMIs approach. In addition, classical LQR controller is designed to investigate effectiveness of the proposed controller. The system is then simulated against the bump and random runway excitation. The simulation results demonstrate that the proposed controller provides significant improvements in reducing vibration amplitudes of aircraft fuselage and pilot’s head and maintains the safety requirements in terms of suspension stroke and tire deflection.

  18. Study on Forced Torsional Vibration of CFRP Drive-Line System with Internal Damping

    Science.gov (United States)

    Yang, Mo; Hu, Yefa; Zhang, Jinguang; Ding, Guoping; Song, Chunsheng

    2017-12-01

    The use of CFRP transmission shaft has positive effect on the weight and flexural vibration reduction of drive-line system. However, the application of CFRP transmission shaft will greatly reduce the torsional stiffness of the drive-line, and may cause strong transient torsional vibration. Which will seriously affect the performance of CFRP drive-line. In this study, the forced torsional vibration of the CFRP drive-line system is carried out using the lumped parameter model. In addition, the effect of rotary inertia, internal damping, coupling due to the composite laminate, and excitation torque are incorporated in the modified transfer matrix model (TMM). Then, the modified TMM is used to predict the torsional frequency and forced torsional vibration of a CFRP drive-line with three-segment drive shafts. The results of modified TMM shown that the rotational speed difference of the CFRP transmission shaft segment is much larger than metal transmission shaft segment under excitation torque. And compared the results from finite element simulation, modified TMM and torsional vibration experiment respectively, and it has shown that the modified TMM can accurately predict forced torsional vibration behaviors of the CFRP drive-line system.

  19. A Novel Slope Method for Measurement of Fluid Density with a Micro-cantilever under Flexural and Torsional Vibrations.

    Science.gov (United States)

    Zhao, Libo; Hu, Yingjie; Hebibul, Rahman; Ding, Jianjun; Wang, Tongdong; Xu, Tingzhong; Liu, Xixiang; Zhao, Yulong; Jiang, Zhuangde

    2016-09-11

    A novel method, which was called a slope method, has been proposed to measure fluid density by the micro-cantilever sensing chip. The theoretical formulas of the slope method were discussed and established when the micro-cantilever sensing chip was under flexural and torsional vibrations. The slope was calculated based on the fitted curve between the excitation and output voltages of sensing chip under the nonresonant status. This measuring method need not sweep frequency to find the accurate resonant frequency. Therefore, the fluid density was measured easily based on the calculated slope. In addition, the micro-cantilver was drived by double sided excitation and free end excitation to oscillate under flexural and torsional vibrations, respectively. The corresponding experiments were carried out to measure the fluid density by the slope method. The measurement results were also analyzed when the sensing chip was under flexural and torsional nonresonant vibrations separately. The measurement accuracies under these vibrations were all better than 1.5%, and the density measuring sensitivity under torsional nonresonant vibration was about two times higher than that under flexural nonresonant vibration.

  20. Effect of self-vibration on accuracy of free-fall absolute gravity measurement with laser interferometer

    Science.gov (United States)

    Feng, Jin-yang; Wu, Shu-qing; Li, Chun-jian; Su, Duo-wu; Yu, Mei

    2015-02-01

    A free-fall absolute gravimeter was used to measure the gravity acceleration of a corner-cube released in high vacuum, and the gravity acceleration was determined by fitting the free-falling trajectories obtained through optical interferometry. During the measurement, the self-vibration of an absolute gravimeter caused ground vibration and the change in optical path length due to vibration of vacuum-air interface, which resulted in a measurement error. Numerical simulation was run by introducing vibration disturbance to the trajectories of free-fall. The effect of disturbance under different instrumental self-vibration conditions was analyzed. Simulation results indicated that the deviation of calculated gravity acceleration from the preset value and residuals amplitude after fitting depended on the amplitude and initial phase of the vibration disturbance. The deviation value and fitting residuals amplitude increased with the increasing of amplitude and there was a one-to-one correspondence between the two. The deviation of calculated gravity acceleration decreases by properly setting the initial phase difference of vibration disturbance with respect to the interference fringe signal.

  1. The High Precision Vibration Signal Data Acquisition System Based on the STM32

    Directory of Open Access Journals (Sweden)

    Zhu Hui-Ling

    2014-06-01

    Full Text Available Vibrating wire sensors are a class of sensors that are very popular used for strain measurements of structures in buildings and civil infrastructures. The use of frequency, rather than amplitude, to convey the signal means that vibrating wire sensors are relatively resistant signal degradation from electrical noise, long cable runs, and other changes in cable resistance. This paper proposed a high precision vibration signal acquisition with storage function based on STM32 microcontroller in order to promote safety in engineering construction. The instrument designed in this paper not only can directly collect vibrating signals, but also store data into SD card and communicate with computer so as to realize the real-time monitoring from point to point.

  2. Vibration Measurements of the Wire Scanner for the SwissFEL

    Science.gov (United States)

    Mohanmurthy, Prajwal; Orlandi, Gian Luca; Ischebeck, Rasmus

    2012-10-01

    The SwissFEL is an X-Ray (0.1nm-7nm) Free Electron Laser user facility which is being planned for the Paul Scherrer Institute in Switzerland. At the SwissFEL, view screens will be used to monitor the transverse profile of the electron beam. Wire scanners are also to be employed as the high beam densities of the electron beam will hamper the standard diagnostics. Wire scanners will be tested on the 250MeV SwissFEL Injector Test Facility with a 200pC electron beam whose transverse diameter is typically about 100 μm. The portion of the electron beam that is unscattered from the wire will be measured to determine the beam loss. The wire scanner is driven by a stepper motor and the wire position is obtained using a digital encoder. The wire scanner may be susceptible to vibrations which may lead to erroneous encoder positions. The variation in position of the wire, with the motor being driven at a number of different speeds, was studied using a concentrator back-light and a 1MPixel high speed camera. The camera was triggered using the 10Hz SwissFEL Injector Test Facility timing signal. A typical vibration with an amplitude of about 0.5μm was observed. Dependence of vibration of the wire on the motor driving speed and ways of optimizing the operational parameters.

  3. Micro electro-mechanical system piezoelectric cantilever array for a broadband vibration energy harvester.

    Science.gov (United States)

    Chun, Inwoo; Lee, Hyun-Woo; Kwon, Kwang-Ho

    2014-12-01

    Limited energy sources of ubiquitous sensor networks (USNs) such as fuel cells and batteries have grave drawbacks such as the need for replacements and re-charging owing to their short durability and environmental pollution. Energy harvesting which is converting environmental mechanical vibration into electrical energy has been researched with some piezoelectric materials and various cantilever designs to increase the efficiency of energy-harvesting devices. In this study, we focused on an energy-harvesting cantilever with a broadband vibration frequency. We fabricated a lead zirconate titanate (PZT) cantilever array with various Si proof masses on small beams (5.5 mm x 0.5 mm x 0.5 mm). We obtained broadband resonant frequencies ranging between 127 Hz and 136 Hz using a micro electro-mechanical system (MEMS) process. In order to obtain broadband resonant characteristics, the cantilever array was comprised of six cantilevers with different resonant frequencies. We obtained an output power of about 2.461 μW at an acceleration of 0.23 g and a resistance of 4 kΩ. The measured bandwidth of the resonant frequency was approximately 9 Hz (127-136 Hz), which is about six times wider than the bandwidth of a single cantilever.

  4. Intelligent Diagnosis Method for Centrifugal Pump System Using Vibration Signal and Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Hongtao Xue

    2014-01-01

    Full Text Available This paper proposed an intelligent diagnosis method for a centrifugal pump system using statistic filter, support vector machine (SVM, possibility theory, and Dempster-Shafer theory (DST on the basis of the vibration signals, to diagnose frequent faults in the centrifugal pump at an early stage, such as cavitation, impeller unbalance, and shaft misalignment. Firstly, statistic filter is used to extract the feature signals of pump faults from the measured vibration signals across an optimum frequency region, and nondimensional symptom parameters (NSPs are defined to represent the feature signals for distinguishing fault types. Secondly, the optimal classification hyperplane for distinguishing two states is obtained by SVM and NSPs, and its function is defined as synthetic symptom parameter (SSP in order to increase the diagnosis’ sensitivity. Finally, the possibility functions of the SSP are used to construct a sequential fuzzy diagnosis for fault detection and fault-type identification by possibility theory and DST. The proposed method has been applied to detect the faults of the centrifugal pump, and the efficiency of the method has been verified using practical examples.

  5. Transformation of ground vibration signal for debris-flow monitoring and detection in alarm systems.

    Science.gov (United States)

    Abancó, Clàudia; Hürlimann, Marcel; Fritschi, Bruno; Graf, Christoph; Moya, José

    2012-01-01

    Debris flows are fast mass movements formed by a mix of water and solid materials, which occur in steep torrents, and are a source of high risks for human settlements. Geophones are widely used to detect the ground vibration induced by passing debris flows. However, the recording of geophone signals usually requires storing a huge amount of data, which leads to problems in storage capacity and power consumption. This paper presents a method to transform and simplify the signals measured by geophones. The key input parameter is the ground velocity threshold, which removes the seismic noise that is not related to debris flows. A signal conditioner was developed to implement the transformation and the ground velocity threshold was set by electrical resistors. The signal conditioner was installed at various European monitoring sites to test the method. Results show that data amount and power consumption can be greatly reduced without losing much information on the main features of the debris flows. However, the outcome stresses the importance of choosing a ground vibration threshold, which must be accurately calibrated. The transformation is also suitable to detect other rapid mass movements and to distinguish among different processes, which points to a possible implementation in alarm systems.

  6. Vibroacoustic system for monitoring vibrations of heavy equipment with rotary elements

    Energy Technology Data Exchange (ETDEWEB)

    Lipowczan, A.; Rabsztyn, T.

    1983-03-01

    A system for continuous monitoring of mechanical vibrations of blowers for ventilation of underground coal mines is presented. Use of the system prevents damage to bearings and other damage caused by excessive mechanical vibrations of a blower wheel. The monitoring system uses the PPWa converter (developed by the Central Mining Institute in Poland) which transforms mechanical signals which characterize vibration intensity into electrical signals. The PPWa converters are used with amplifiers and other auxiliary equipment. Design of the continuous monitoring equipment is shown. The following types of converter systems are characterized: the PPWa-1, the PPWa-2, the PPWa-3, the PPWa-4, the PPWa-5 and the PPWa-6. Specifications of the 6 converters are shown in a table. Performance of the continuous monitoring systems for ventilation blowers in coal mines is evaluated. 4 references

  7. Somatosensory Nerve Function, Measured by Vibration Thresholds in Asymptomatic Tennis Players: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Sarah Harrisson

    2015-06-01

    Full Text Available Tennis players are vulnerable to injury in their upper limbs due to the repetitive exposure to racket vibrations and torsional forces during play, leading to musculoskeletal adaptations in the dominant arm including some evidence of changes in nerve function (Colak et al., 2004. Vibration is a sensitive technique for diagnosing mild pathology in clinically asymptomatic participant groups. It has been used in participants with various musculoskeletal disorders (Laursen et al., 2006 (Tucker et al., 2007 showing widespread and bilateral increases in vibration threshold. Tests of somatosensory function by vibration will be abnormal prior to changes in nerve conduction velocity. Thus vibration testing in a sub-clinical group of participants may a more sensitive measure of nerve function compared to nerve conduction by electrodiagnostic testing. The aim of this pilot study was to conduct an exploratory investigation to establish whether tennis players have a reduction in their somatosensory nerve function compared to non- tennis playing controls. It also set out to compare the somatosensory nerve function of the dominant compared to the non-dominant upper limb in tennis players. Healthy tennis players (males, n = 8, females, n = 2, mean age 22 years and control non- tennis playing volunteers (males, n = 6, females, n = 4, mean age 22 years were recruited on an opportunistic basis from a tennis centre in London UK. Participants were excluded if they had any history of neurological impairment, serious injury or fracture or any arthritic condition affecting the upper limbs, cervical or thoracic spine. Control participants were excluded if it was deemed that they played a sport where there was exposure to repetitive use of the upper body. Ethical approval was obtained from the University College London Ethics Committee and all participants gave written informed consent. A preliminary clinical examination was carried out on all participants followed by

  8. Random Vibration Analysis of the Tip-tilt System in the GMT Fast Steering Secondary Mirror

    Science.gov (United States)

    Lee, Kyoung-Don; Kim, Young-Soo; Kim, Ho-Sang; Lee, Chan-Hee; Lee, Won Gi

    2017-09-01

    A random vibration analysis was accomplished on the tip-tilt system of the fast steering secondary mirror (FSM) for the Giant Magellan Telescope (GMT). As the FSM was to be mounted on the top end of the secondary truss and disturbed by the winds, dynamic effects of the FSM disturbances on the tip-tilt correction performance was studied. The coupled dynamic responses of the FSM segments were evaluated with a suggested tip-tilt correction modeling. Dynamic equations for the tip-tilt system were derived from the force and moment equilibrium on the segment mirror and the geometric compatibility conditions with four design parameters. Statically stationary responses for the tip-tilt actuations to correct the wind-induced disturbances were studied with two design parameters based on the spectral density function of the star image errors in the frequency domain. Frequency response functions and root mean square values of the dynamic responses and the residual star image errors were numerically calculated for the off-axis and on-axis segments of the FSM. A prototype of on-axis segment of the FSM was developed for tip-tilt actuation tests to confirm the ratio of tip-tilt force to tip-tilt angle calculated from the suggested dynamic equations of the tip-tilt system. Tip-tilt actuation tests were executed at 4, 8 and 12 Hz by measuring displacements of piezoelectric actuators and reaction forces acting on the axial supports. The derived ratios of rms tip-tilt force to rms tip-tilt angle from tests showed a good correlation with the numerical results. The suggested process of random vibration analysis on the tip-tilt system to correct the wind-induced disturbances of the FSM segments would be useful to advance the FSM design and upgrade the capability to achieve the least residual star image errors by understanding the details of dynamics.

  9. Electrochemical thermodynamic measurement system

    Science.gov (United States)

    Reynier, Yvan [Meylan, FR; Yazami, Rachid [Los Angeles, CA; Fultz, Brent T [Pasadena, CA

    2009-09-29

    The present invention provides systems and methods for accurately characterizing thermodynamic and materials properties of electrodes and electrochemical energy storage and conversion systems. Systems and methods of the present invention are configured for simultaneously collecting a suite of measurements characterizing a plurality of interconnected electrochemical and thermodynamic parameters relating to the electrode reaction state of advancement, voltage and temperature. Enhanced sensitivity provided by the present methods and systems combined with measurement conditions that reflect thermodynamically stabilized electrode conditions allow very accurate measurement of thermodynamic parameters, including state functions such as the Gibbs free energy, enthalpy and entropy of electrode/electrochemical cell reactions, that enable prediction of important performance attributes of electrode materials and electrochemical systems, such as the energy, power density, current rate and the cycle life of an electrochemical cell.

  10. Vibration analysis of multi-span beam system under arbitrary boundary and coupling conditions

    Directory of Open Access Journals (Sweden)

    ZHENG Chaofan

    2017-08-01

    Full Text Available In order to overcome the difficulties of studying the vibration analysis model of a multi-span beam system under various boundary and coupling conditions, this paper constructs a free vibration analysis model of a multi-span beam system on the basis of the Bernoulli-Euler beam theory. The vibration characteristics of a multi-span beam system under arbitrary boundary supports and elastic coupling conditions are investigated using the current analysis model. Unlike most existing techniques, the beam displacement function is generally sought as an improved Fourier cosine series, and four sine terms are introduced to overcome all the relevant discontinuities or jumps of elastic boundary conditions. On this basis, the unknown series coefficients of the displacement function are treated as the generalized coordinates and solved using the Rayleigh-Ritz method, and the vibration problem of multi-span bean systems is converted into a standard eigenvalue problem concerning the unknown displacement expansion coefficient. By comparing the free vibration characteristics of the proposed method with those of the FEA method, the efficiency and accuracy of the present method are validated, providing a reliable and theoretical basis for multi-span beam system structure in engineering applications.

  11. Self-powered wireless vibration-sensing system for machining monitoring

    Science.gov (United States)

    Chung, Tien-Kan; Lee, Hao; Tseng, Chia-Yung; Lo, Wen-Tuan; Wang, Chieh-Min; Wang, Wen-Chin; Tu, Chi-Jen; Tasi, Pei-Yuan; Chang, Jui-Wen

    2013-04-01

    In this paper, we demonstrate an attachable energy-harvester-powered wireless vibration-sensing module for milling-process monitoring. The system consists of an electromagnetic energy harvester, MEMS accelerometer, and wireless module. The harvester consisting of an inductance and magnets utilizes the electromagnetic-induction approach to harvest the mechanical energy from the milling process and subsequently convert the mechanical energy to an electrical energy. Furthermore, through an energy-storage/rectification circuit, the harvested energy is capable of steadily powering both the accelerometer and wireless module. Through integrating the harvester, accelerometer, and wireless module, a self-powered wireless vibration-sensing system is achieved. The test result of the system monitoring the milling process shows the system successfully senses the vibration produced from the milling and subsequently transmits the vibration signals to the terminal computer. Through analyzing the vibration data received by the terminal computer, we establish a criterion for reconstructing the status, condition, and operating-sequence of the milling process. The reconstructed status precisely matches the real status of the milling process. That is, the system is capable of demonstrating a real-time monitoring of the milling process.

  12. Vibration test on KMRR reactor structure and primary cooling system piping

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Seung Hoh; Kim, Tae Ryong; Park, Jin Hoh; Park, Jin Suk; Ryoo, Jung Soo [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1994-10-01

    Most equipments, piping systems and reactor structures in nuclear power plants are subjected to flow induced vibration due to high temperature and high pressure coolant flowing inside or outside of the equipments, systems and structures. Because the flow induced vibration sometimes causes significant damage to reactor structures and piping systems, it is important and necessary to evaluate the vibration effect on them and to prove their structural integrity. Korea Multipurpose Research Reactor (KMRR) being constructed by KAERI is 30 MWt pool type research reactor. Since its main structures and piping systems were designed and manufactured in accordance with the standards and guidelines for commercial nuclear power plant, it was decided to evaluate their vibratory response in accordance with the standards and guidelines for commercial NPP. The objective of this vibration test is the assessment of vibration levels of KMRR reactor structure and primary cooling piping system for their structural integrity under the steady-state or transient operating condition. 38 figs, 14 tabs, 2 refs. (Author).

  13. Design and Experimental Characterization of a Vibration Energy Harvesting Device for Rotational Systems

    Directory of Open Access Journals (Sweden)

    Lutao Yan

    2013-01-01

    Full Text Available This paper presents a new vibration based electromagnetic power generator to transfer energy from stationary to rotating equipment, which can be a new attempt to substitute slip ring in rotational systems. The natural frequencies and modes are simulated in order to have a maximum and steady power output from the device. Parameters such as piezoelectric disk location and relative motion direction of the magnet are theoretically and experimentally analyzed. The results show that the position that is close to the fixed end of the cantilever and the relative motion along the long side gives higher power output. Moreover, the capability of the energy harvester to extract power from lower energy environment is experimentally validated. The voltage and power output are measured at different excitation frequencies.

  14. Case study of system effects on high frequency vibration isolation in aircraft structure

    Science.gov (United States)

    Simmons, William E.; Marshall, Steven E.

    In an attempt to improve isolator selection criteria for use in commercial airplanes, a modeling technique was developed. This technique was used to map the vibrational energy transfer from a resiliently mounted electric motor-driven hydraulic pump (or ACMP) to its foundation, a keel beam in the main wheelwell of a large airplane. The system level parameters that strongly influence mount transmissibility were investigated. Using common elastomeric material properties model, predictions were found to compare favorably to measured transmissibility data. The present study discusses the modeling technique and test data comparison, Potential improvements in isolator performance are evaluated. Isolator properties are then identified whch, when combined with transmissibility data, would enhance the isolator selection process.

  15. Vibration measurement-based simple technique for damage detection of truss bridges: A case study

    Directory of Open Access Journals (Sweden)

    Sudath C. Siriwardane

    2015-10-01

    Full Text Available The bridges experience increasing traffic volume and weight, deteriorating of components and large number of stress cycles. Therefore, assessment of the current condition of steel railway bridges becomes necessary. Most of the commonly available approaches for structural health monitoring are based on visual inspection and non-destructive testing methods. The visual inspection is unreliable as those depend on uncertainty behind inspectors and their experience. Also, the non-destructive testing methods are found to be expensive. Therefore, recent researches have noticed that dynamic modal parameters or vibration measurement-based structural health monitoring methods are economical and may also provide more realistic predictions to damage state of civil infrastructure. Therefore this paper proposes a simple technique to locate the damage region of railway truss bridges based on measured modal parameters. The technique is discussed with a case study. Initially paper describes the details of considered railway bridge. Then observations of visual inspection, material testing and in situ load testing are discussed under separate sections. Development of validated finite element model of the considered bridge is comprehensively discussed. Hence, variations of modal parameters versus position of the damage are plotted. These plots are considered as the main reference for locating the damage of the railway bridge in future periodical inspection by comparing the measured corresponding modal parameters. Finally the procedure of periodical vibration measurement and damage locating technique are clearly illustrated.

  16. Full-field Measurement of Deformation and Vibration using Digital Image Correlation

    Directory of Open Access Journals (Sweden)

    Liang-Chih Chen

    2015-05-01

    Full Text Available The main intention of this study was to investigate the full-field measurement of de-formation and vibration using a program we developed for digital image correlation. Digital image correlation is a measuring method that can calculate the displacement of each point on an object by using recorded images. By capturing continuous images of the object in deformation or in motion, the displacements of feature points on the object can be tracked and used in calculations to determine the full-field deformation, strain and vibration of the object. We used the fast and simple algorithm in our program as the core, and conducted non-contact full-field displacement measurement by tracking feature points from images taken after motion. The measuring accuracy can be up to 0.1 pixel. Our experimental results show the technique to be very accurate and useful. We also applied this technique under conditions where an ordinary sensor could not be used.

  17. Experimental evidence of vibrational resonance in a multistable system

    Science.gov (United States)

    Chizhevsky, V. N.

    2014-06-01

    Experimental evidence of vibrational resonance in a multistable vertical-cavity surface-emitting laser (VCSEL) is reported. The VCSEL is characterized by a coexistence of four polarization states and driven by low-frequency (LF) and high-frequency (HF) periodic signals. In these conditions a series of resonances on the low frequency depending on the HF amplitude is observed. The location of resonances in a parameter space (dc current, amplitude of HF signal) is experimentally studied. For a fixed value of the dc current an evolution of the resonance curves with an increase of the LF amplitude is experimentally investigated.

  18. Real-Time Spatial Monitoring of Vehicle Vibration Data as a Model for TeleGeoMonitoring Systems

    OpenAIRE

    Robidoux, Jeff

    2005-01-01

    This research presents the development and proof of concept of a TeleGeoMonitoring (TGM) system for spatially monitoring and analyzing, in real-time, data derived from vehicle-mounted sensors. In response to the concern for vibration related injuries experienced by equipment operators in surface mining and construction operations, the prototype TGM system focuses on spatially monitoring vehicle vibration in real-time. The TGM vibration system consists of 3 components: (1) Data Acquisition ...

  19. System Modeling and Operational Characteristic Analysis for an Orbital Friction Vibration Actuator Used in Orbital Vibration Welding

    Directory of Open Access Journals (Sweden)

    XU, F.

    2013-05-01

    Full Text Available Orbital Friction Vibration Actuator (OFVA is a core component of Orbital Friction Welding (OFW, which is a novel apertureless welding technology utilizing friction heat to implement solid-state joining. In this paper, topology and operational principle of OFVA are introduced, the analytical formulas of the electromagnetic force for the x and y directions, which can drive the mover to generate a circular motion trajectory, are derived, and the characteristic of static electromagnetic force is predicted by analytical method and 2-D (two-dimensional FEM (finite element method, 3-D and measurement. The coupled magnetic field-circuit-motion simulation models which are driven by current and voltage source are established, respectively, and some of its operational characteristics are analyzed. Simulation and experiment validate theoretical analysis and the feasibility of the fabricated prototype, demonstrate the good performance of the OFVA, and provide valuable reference for engineering applications.

  20. Measurement of flexoelectric response in polyvinylidene fluoride films for piezoelectric vibration energy harvesters

    Science.gov (United States)

    Choi, Seung-Bok; Kim, Gi-Woo

    2017-02-01

    This study presents an investigation on the measurement of flexoelectric response in β-phase polyvinylidene fluoride (PVDF) films attached on cantilever beam-based flexible piezoelectric vibration energy harvesters (PVEHs). The flexoelectric response associated with negative strain gradients was simulated through harmonic response analysis by using the finite element method (FEM). The polarization frequency response functions (FRFs) modified by direct flexoelectric effect of PVDF films was experimentally validated by multi-mode FRFs. From quantitative comparisons between experimental observations and simulated estimation of FRFs, it is demonstrated that the direct flexoelectric response can be observed in PVDF films attached on PVEHs.

  1. Measuring Systemic Risk

    DEFF Research Database (Denmark)

    Acharya, Viral V.; Heje Pedersen, Lasse; Philippon, Thomas

    We present a simple model of systemic risk and we show that each financial institution's contribution to systemic risk can be measured as its systemic expected shortfall (SES), i.e., its propensity to be undercapitalized when the system as a whole is undercapitalized. SES increases...... with the institution's leverage and with its expected loss in the tail of the system's loss distribution. Institutions internalize their externality if they are ‘taxed’ based on their SES. We demonstrate empirically the ability of SES to predict emerging risks during the financial crisis of 2007-2009, in particular...

  2. Measurement System Reliability Assessment

    Directory of Open Access Journals (Sweden)

    Kłos Ryszard

    2015-06-01

    Full Text Available Decision-making in problem situations is based on up-to-date and reliable information. A great deal of information is subject to rapid changes, hence it may be outdated or manipulated and enforce erroneous decisions. It is crucial to have the possibility to assess the obtained information. In order to ensure its reliability it is best to obtain it with an own measurement process. In such a case, conducting assessment of measurement system reliability seems to be crucial. The article describes general approach to assessing reliability of measurement systems.

  3. Positioning and Microvibration Control by Electromagnets of an Air Spring Vibration Isolation System

    Science.gov (United States)

    Watanabe, Katsuhide; Cui, Weimin; Haga, Takahide; Kanemitsu, Yoichi; Yano, Kenichi

    1996-01-01

    Active positioning and microvibration control has been attempted by electromagnets equipped in a bellows-type, air-spring vibration isolation system. Performance tests have been carried out to study the effects. The main components of the system's isolation table were four electromagnetic actuators and controllers. The vibration isolation table was also equipped with six acceleration sensors for detecting microvibration of the table. The electromagnetic actuators were equipped with bellows-type air springs for passive support of the weight of the item placed on the table, with electromagnets for active positioning, as well as for microvibration control, and relative displacement sensors. The controller constituted a relative feedback system for positioning control and an absolute feedback system for vibration isolation control. In the performance test, a 1,490 kg load (net weight of 1,820 kg) was placed on the vibration isolation table, and both the positioning and microvibration control were carried out electromagnetically. Test results revealed that the vibration transmission was reduced by 95%.

  4. New Facility For Micro-Vibration Measurements ESA Reaction Wheel Characterisation Facility

    Science.gov (United States)

    Decobert, Francois; Wagner, Mark; Airey, Stephen

    2012-07-01

    A micro-vibration measurement table has been developed by ESA and SEREME for the measurement of micro forces at high frequencies. The motivation for the Research and Development of this new equipment was the characterisation of reaction wheel dynamic behavior which may influence the pointing stability of observation satellites. There was the need to have an improved test equipment being able to quantify very low level forces and moments in 6 degrees of freedom. The measured data can be used as input to numerical analysis and simulation to derive a prediction of the dynamic disturbances induced by the operation of a reaction wheel. The new facility combines higher frequency capability i.e. first bare table resonance modes higher than 1250 Hz with high measurement sensitivity and low force threshold (20mN respectively 2mNm).

  5. Multiple mode analysis of the self-excited vibrations of rotary drilling systems

    Science.gov (United States)

    Germay, Christophe; Denoël, Vincent; Detournay, Emmanuel

    2009-08-01

    This paper extends the analysis of the self-excitated vibrations of a drilling structure presented in an earlier paper [T. Richard, C. Germay, E. Detournay, A simplified model to explore the root cause of stick-slip vibrations in drilling systems with drag bits, Journal of Sound and Vibration 305 (3) (2007) 432-456] by basing the formulation of the model on a continuum representation of the drillstring rather than on a characterization of the drilling structure by a 2 degree of freedom system. The particular boundary conditions at the bit-rock interface, which according to this model are responsible for the self-excited vibrations, account for both cutting and frictional contact processes. The cutting process combined with the quasi-helical motion of the bit leads to a regenerative effect that introduces a coupling between the axial and torsional modes of vibrations and a state-dependent delay in the governing equations, while the frictional contact process is associated with discontinuities in the boundary conditions when the bit sticks in its axial and angular motion. The dynamic response of the drilling structure is computed using the finite element method. While the general tendencies of the system response predicted by the discrete model are confirmed by this computational model (for example that the occurrence of stick-slip vibrations as well as the risk of bit bouncing are enhanced with an increase of the weight-on-bit or a decrease of the rotational speed), new features in the self-excited response of the drillstring can be detected. In particular, stick-slip vibrations are predicted to occur at natural frequencies of the drillstring different from the fundamental one (as sometimes observed in field operations), depending on the operating parameters.

  6. The Influence of Vibration on CaCO3 Scale Formation in Piping System

    Directory of Open Access Journals (Sweden)

    Mangestiyono W.

    2016-01-01

    Full Text Available Carbonate scale is a common problem found in a piping system of industrial process. The presence of mechanical equipment such as turbine, compressor, blower, mixer and extruder produce a mechanical vibration on the piping system which is placed near these equipments. The influence of vibration on the CaCO3 scale formation in the piping system was experimentally investigated in the present study. The aim of the research was to understand the effect of vibration on the kinetics, deposition rates and the crystals formation in the synthetic solution. The solution was prepared using CaCl2 and Na2CO3 for concentration of calcium of 3.500 ppm, while the induction time, deposition rate, crystal growth were investigated at temperature of 25°C. In generating the vibration force, the mechanical equipment consisting of electrical motor, crankshaft, connecting rod and a vibration table were employed, including four coupons inside the pipe for investigating the scale formed. Frequency of the vibration was set at 0.00, 1.00 Hz and 2.00 Hz, respectively. A dosing pump with two inlets and two outlets was used to circulate the solutions at flowrate of 30 ml/min from each vessel to the coupons. After running for three hours, the induction time was recorded at 17; 10 and 8 minute with vibration frequency of 0.00; 1.00 and 2.00 Hz, respectively. The scale formed was then characterized using SEM/EDX for crystal morphology and elemental analysis. The results show that the deposition rates were 0.9457 and 3.3441 gram/h for the frequency of 1.00 and 2.00 Hz. The carbonate crystals found in coupon and filter were vaterite.

  7. The origins of vibration theory

    Science.gov (United States)

    Dimarogonas, A. D.

    1990-07-01

    The Ionian School of natural philosophy introduced the scientific method of dealing with natural phenomena and the rigorous proofs for abstract propositions. Vibration theory was initiated by the Pythagoreans in the fifth century BC, in association with the theory of music and the theory of acoustics. They observed the natural frequency of vibrating systems and proved that it is a system property and that it does not depend on the excitation. Pythagoreans determined the fundamental natural frequencies of several simple systems, such as vibrating strings, pipes, vessels and circular plates. Aristoteles and the Peripatetic School founded mechanics and developed a fundamental understanding of statics and dynamics. In Alexandrian times there were substantial engineering developments in the field of vibration. The pendulum as a vibration, and probably time, measuring device was known in antiquity, and was further developed by the end of the first millennium AD.

  8. Measuring Systemic Risk

    DEFF Research Database (Denmark)

    Heje Pedersen, Lasse

    We present a simple model of systemic risk and we show that each financial institution’s contribution to systemic risk can be measured as its systemic expected shortfall (SES), i.e., its propensity to be undercapitalized when the system as a whole is undercapitalized. SES increases...... with the institution’s leverage and with its expected loss in the tail of the system’s loss distribution. Institutions internalize their externality if they are “taxed” based on their SES. We demonstrate empirically the ability of SES to predict emerging risks during the financial crisis of 2007-2009, in particular...

  9. Active vibration-based SHM system: demonstration on an operating Vestas V27 wind turbine

    DEFF Research Database (Denmark)

    Tcherniak, Dmitri; Mølgaard, Lasse Lohilahti

    2016-01-01

    This study presents a system that is able to detect defects like cracks, leading/trailing edge opening or delamination of at least 15 cm size, remotely, without stopping the wind turbine. The system is vibration-based: mechanical energy is artificially introduced by means of an electromechanical ...

  10. A small-scale study of magneto-rheological track vibration isolation system

    Science.gov (United States)

    Li, Rui; Mu, Wenjun; Zhang, Luyang; Wang, Xiaojie

    2016-04-01

    A magneto-rheological bearing (MRB) is proposed to improve the vibration isolation performance of a floating slab track system. However, it's difficult to carry out the test for the full-scale track vibration isolation system in the laboratory. In this paper, the research is based on scale analysis of the floating slab track system, from the point view of the dimensionless of the dynamic characteristics of physical quantity, to establish a small scale test bench system for the MRBs. A small scale MRB with squeeze mode using magneto-rheological grease is designed and its performance is tested. The major parameters of a small scale test bench are obtained according to the similarity theory. The force transmissibility ratio and the relative acceleration transmissibility ratio are selected as evaluation index of system similarity. Dynamics of these two similarity systems are calculated by MATLAB experiment. Simulation results show that the dynamics of the prototype and scale models have good similarity. Further, a test bench is built according to the small-scale model parameter analysis. The experiment shows that the bench testing results are consistency with that of theoretical model in evaluating the vibration force and acceleration. Therefore, the small-scale study of magneto-rheological track vibration isolation system based on similarity theory reveals the isolation performance of a real slab track prototype system.

  11. Metal sheet thickness profile measurement method based on two-side line triangulation and continuous vibration compensation

    Science.gov (United States)

    Lehtonen, Petri; Miettinen, Jari; Keränen, Heimo; Vaarala, Tapio

    2008-04-01

    Dimension measurements in metal production are getting increasingly important to improve quality and yield. One important measurement is thickness profile, in this case of copper strip. Knowing the strip profile in entrance and exit side of milling line helps optimizing the milling depth and give information about tool wearing. In this study a comparative measurement method was traversing point measurement system. It gives profile as a series of points which take a relatively long time to measure. Now presented method is based on two-side optical triangulation formed by line illuminators and CMOS-cameras and enables instantaneous thickness profile measurement. Results from both sides are fixed together using reference plates on both ends of the measurement area. From 1.3 m stand-off distance, 1.4 m wide measurement area is achieved. This paper presents the measurement method and results of laboratory and on-line tests. Using laser line illumination the accuracy of thickness was 150 μm when measuring 9 mm thick test plate. Accuracy was limited by laser speckle during static calibration. Other illumination method based on white light was therefore tested and the accuracy was 12 μm correspondingly. Measurement time for one profile was 1 second and resolution in cross machine direction 50 mm after averaging. Now presented method enables thickness profile measurement of copper and other metal sheets. Using white light the accuracy is at same level as the present traversing point measurement. Method has also continuous reference measurement to compensate errors caused by vibration; therefore the system can be realized at reasonable cost.

  12. Vibration-based structural health monitoring using output-only measurements under changing environment

    Science.gov (United States)

    Deraemaeker, A.; Reynders, E.; De Roeck, G.; Kullaa, J.

    2008-01-01

    This paper deals with the problem of damage detection using output-only vibration measurements under changing environmental conditions. Two types of features are extracted from the measurements: eigenproperties of the structure using an automated stochastic subspace identification procedure and peak indicators computed on the Fourier transform of modal filters. The effects of environment are treated using factor analysis and damage is detected using statistical process control with the multivariate Shewhart- T control charts. A numerical example of a bridge subject to environmental changes and damage is presented. The sensitivity of the damage detection procedure to noise on the measurements, environment and damage is studied. An estimation of the computational time needed to extract the different features is given, and a table is provided to summarize the advantages and drawbacks of each of the features studied.

  13. Synthesis of polyaluminum chloride using alternative and simple ultrasonic vibration system

    Energy Technology Data Exchange (ETDEWEB)

    Trivedi, Kunal N.; Boricha, Arvind B.; Bajaj, Hari C.; Jasra, Raksh V. [Discipline of Inorganic Materials and Catalysis, Central Salt and Marine Chemicals Research Institute (Council of Scientific and Industrial Research, CSIR), Gujarat (India)

    2010-06-15

    Advantage of ultrasonic vibrating system over usual method (under simply rapid stirring) for the synthesis of polyaluminum chloride (PACl) is illustrated here. Ultrasonication helps in dispersion of NaOH into the aluminum solution. Coagulants were synthesized at two different OH/Al ratios (1.0 and 2.4). Aluminum present in the coagulants as monomeric, oligomeric and colloidal form was analyzed by Al-Ferron timed spectroscopy; and {sup 27}Al-NMR spectroscopy. PACls synthesized under ultrasonic vibrating system generated more oligomeric Al species compared to the PACls prepared by usual method, and gave better coagulation/flocculation efficiency. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  14. STOCHASTIC PARAMETRIC VIBRATIONS OF ELASTIC SYSTEMS WITH REGARD TO THEIR PREVIOUS STATES

    Directory of Open Access Journals (Sweden)

    Vorona Y.V.

    2014-06-01

    Full Text Available Reduced models of stochastic parametric vibrations of elastic systems with regard to their previous states were constructed on the base of the finite element method, generalized coordinates method, asymptotic method and functional approach. Stochastic stability problem was formulated in the average for the moment functions of the first order phase coordinates. The stability of stochastic parametric vibrations of the single degree of freedom system with regard to its previous states was investigated by the 7-stages 5-order continuous Runge-Kutta method and nested formulas Dormand-Prince.

  15. Gearbox Fault Features Extraction Using Vibration Measurements and Novel Adaptive Filtering Scheme

    Directory of Open Access Journals (Sweden)

    Ghalib R. Ibrahim

    2012-01-01

    Full Text Available Vibration signals measured from a gearbox are complex multicomponent signals, generated by tooth meshing, gear shaft rotation, gearbox resonance vibration signatures, and a substantial amount of noise. This paper presents a novel scheme for extracting gearbox fault features using adaptive filtering techniques for enhancing condition features, meshing frequency sidebands. A modified least mean square (LMS algorithm is examined and validated using only one accelerometer, instead of using two accelerometers in traditional arrangement, as the main signal and a desired signal is artificially generated from the measured shaft speed and gear meshing frequencies. The proposed scheme is applied to a signal simulated from gearbox frequencies with a numerous values of step size. Findings confirm that 10−5 step size invariably produces more accurate results and there has been a substantial improvement in signal clarity (better signal-to-noise ratio, which makes meshing frequency sidebands more discernible. The developed scheme is validated via a number of experiments carried out using two-stage helical gearbox for a healthy pair of gears and a pair suffering from a tooth breakage with severity fault 1 (25% tooth removal and fault 2 (50% tooth removal under loads (0%, and 80% of the total load. The experimental results show remarkable improvements and enhance gear condition features. This paper illustrates that the new approach offers a more effective way to detect early faults.

  16. Measurement of Dynamic Viscoelasticity of Full-Size Wood Composite Panels Using a Vibration Testing Method

    Science.gov (United States)

    Cheng Guan; Houjiang Zhang; John F. Hunt; Lujing Zhou; Dan Feng

    2016-01-01

    The dynamic viscoelasticity of full-size wood composite panels (WCPs) under the free-free vibrational state were determined by a vibration testing method. Vibration detection tests were performed on 194 pieces of three types of full-size WCPs (particleboard, medium density fiberboard, and plywood (PW)). The dynamic viscoelasticity from smaller specimens cut from the...

  17. Vibration control of uncertain multiple launch rocket system using radial basis function neural network

    Science.gov (United States)

    Li, Bo; Rui, Xiaoting

    2018-01-01

    Poor dispersion characteristics of rockets due to the vibration of Multiple Launch Rocket System (MLRS) have always restricted the MLRS development for several decades. Vibration control is a key technique to improve the dispersion characteristics of rockets. For a mechanical system such as MLRS, the major difficulty in designing an appropriate control strategy that can achieve the desired vibration control performance is to guarantee the robustness and stability of the control system under the occurrence of uncertainties and nonlinearities. To approach this problem, a computed torque controller integrated with a radial basis function neural network is proposed to achieve the high-precision vibration control for MLRS. In this paper, the vibration response of a computed torque controlled MLRS is described. The azimuth and elevation mechanisms of the MLRS are driven by permanent magnet synchronous motors and supposed to be rigid. First, the dynamic model of motor-mechanism coupling system is established using Lagrange method and field-oriented control theory. Then, in order to deal with the nonlinearities, a computed torque controller is designed to control the vibration of the MLRS when it is firing a salvo of rockets. Furthermore, to compensate for the lumped uncertainty due to parametric variations and un-modeled dynamics in the design of the computed torque controller, a radial basis function neural network estimator is developed to adapt the uncertainty based on Lyapunov stability theory. Finally, the simulated results demonstrate the effectiveness of the proposed control system and show that the proposed controller is robust with regard to the uncertainty.

  18. Measuring Systemic Risk

    DEFF Research Database (Denmark)

    Acharya, Viral V.; Heje Pedersen, Lasse; Philippon, Thomas

    2017-01-01

    We present an economic model of systemic risk in which undercapitalization of the financial sector as a whole is assumed to harm the real economy, leading to a systemic risk externality. Each financial institution’s contribution to systemic risk can be measured as its systemic expected shortfall...... (SES), that is, its propensity to be undercapitalized when the system as a whole is undercapitalized. SES increases in the institution’s leverage and its marginal expected shortfall (MES), that is, its losses in the tail of the system’s loss distribution. We demonstrate empirically the ability...... of components of SES to predict emerging systemic risk during the financial crisis of 2007–2009....

  19. Transient Vibration of Gyroscopic Systems with Unsteady Superposed Motion

    Science.gov (United States)

    Wickert, J. A.

    1996-09-01

    The equation of motion for a gyroscopic system with unsteady superposed motion is derived for the prototypical problem in which motion of an oscillating particle is measured relative to a non-inertial frame. The resulting coefficient matrices are time-dependent, and skew-symmetric acceleration terms are present both as Coriolis acceleration and as a component of net stiffness. Such mathematical structure is also demonstrated in the context of other unsteady gyroscopic systems, including flexible media that translate with time-dependent speed. Following the asymptotic approach of Krylov, Bogoliubov, and Mitropolsky, a perturbation method is developed for the case in which the superposed motion varies slowly when viewed on the time scale of the system's natural periods of oscillation. First-order approximations for the modal amplitude and phase are obtained in closed form. The method is illustrated through two examples of technical interest: a two-degree-of-freedom model of a rotating shaft, and a distributed parameter model of a moving tape or web.

  20. N Vibrational Temperatures and OH Number Density Measurements in a NS Pulse Discharge Hydrogen-Air Plasmas

    Science.gov (United States)

    Hung, Yichen; Winters, Caroline; Jans, Elijah R.; Frederickson, Kraig; Adamovich, Igor V.

    2017-06-01

    This work presents time-resolved measurements of nitrogen vibrational temperature, translational-rotational temperature, and absolute OH number density in lean hydrogen-air mixtures excited in a diffuse filament nanosecond pulse discharge, at a pressure of 100 Torr and high specific energy loading. The main objective of these measurements is to study a possible effect of nitrogen vibrational excitation on low-temperature kinetics of HO2 and OH radicals. N2 vibrational temperature and gas temperature in the discharge and the afterglow are measured by ns broadband Coherent Anti-Stokes Scattering (CARS). Hydroxyl radical number density is measured by Laser Induced Fluorescence (LIF) calibrated by Rayleigh scattering. The results show that the discharge generates strong vibrational nonequilibrium in air and H2-air mixtures for delay times after the discharge pulse of up to 1 ms, with peak vibrational temperature of Tv ≈ 2000 K at T ≈ 500 K. Nitrogen vibrational temperature peaks ≈ 200 μs after the discharge pulse, before decreasing due to vibrational-translational relaxation by O atoms (on the time scale of a few hundred μs) and diffusion (on ms time scale). OH number density increases gradually after the discharge pulse, peaking at t 100-300 μs and decaying on a longer time scale, until t 1 ms. Both OH rise time and decay time decrease as H2 fraction in the mixture is increased from 1% to 5%. OH number density in a 1% H2-air mixture peaks at approximately the same time as vibrational temperature in air, suggesting that OH kinetics may be affected by N2 vibrational excitation. However, preliminary kinetic modeling calculations demonstrate that OH number density overshoot is controlled by known reactions of H and O radicals generated in the plasma, rather than by dissociation by HO2 radical in collisions with vibrationally excited N2 molecules, as has been suggested earlier. Additional measurements at higher specific energy loadings and kinetic modeling

  1. Monitoring Vibration of A Model of Rotating Machine

    Directory of Open Access Journals (Sweden)

    Arko Djajadi

    2012-03-01

    Full Text Available Mechanical movement or motion of a rotating machine normally causes additional vibration. A vibration sensing device must be added to constantly monitor vibration level of the system having a rotating machine, since the vibration frequency and amplitude cannot be measured quantitatively by only sight or touch. If the vibration signals from the machine have a lot of noise, there are possibilities that the rotating machine has defects that can lead to failure. In this experimental research project, a vibration structure is constructed in a scaled model to simulate vibration and to monitor system performance in term of vibration level in case of rotation with balanced and unbalanced condition. In this scaled model, the output signal of the vibration sensor is processed in a microcontroller and then transferred to a computer via a serial communication medium, and plotted on the screen with data plotter software developed using C language. The signal waveform of the vibration is displayed to allow further analysis of the vibration. Vibration level monitor can be set in the microcontroller to allow shutdown of the rotating machine in case of excessive vibration to protect the rotating machine from further damage. Experiment results show the agreement with theory that unbalance condition on a rotating machine can lead to larger vibration amplitude compared to balance condition. Adding and reducing the mass for balancing can be performed to obtain lower vibration level. 

  2. Theory of vibration protection

    CERN Document Server

    Karnovsky, Igor A

    2016-01-01

    This text is an advancement of the theory of vibration protection of mechanical systems with lumped and distributed parameters. The book offers various concepts and methods of solving vibration protection problems, discusses the advantages and disadvantages of different methods, and the fields of their effective applications. Fundamental approaches of vibration protection, which are considered in this book, are the passive, parametric and optimal active vibration protection. The passive vibration protection is based on vibration isolation, vibration damping and dynamic absorbers. Parametric vibration protection theory is based on the Shchipanov-Luzin invariance principle. Optimal active vibration protection theory is based on the Pontryagin principle and the Krein moment method. The book also contains special topics such as suppression of vibrations at the source of their occurrence and the harmful influence of vibrations on humans. Numerous examples, which illustrate the theoretical ideas of each chapter, ar...

  3. Measurement of higher harmonics in periodic vibrations using phase-modulated TV holography with digital image processing.

    Science.gov (United States)

    Løkberg, O J; Pedersen, H M; Valø, H; Wang, G

    1994-08-01

    We separately measure the higher harmonics vibration patterns of a periodic vibrating object by using time-average TV holography and phase modulation. During measurements the frequency of the phase modulation is adjusted to each harmonic component while the excitation of the object is set low enough to record all components on the linear part of the fringe function. Using acoustical phase stepping and calibration of the fringe function, we compute the amplitude and phase distributions of the frequency component. We measure components up to the 65th harmonic by using square-wave excitation.

  4. Vacuum-packaged piezoelectric vibration energy harvesters: Damping contributions and autonomy for a wireless sensor system

    NARCIS (Netherlands)

    Elfrink, R.; Renaud, M.; Kamel, T.M.; Nooijer, C. de; Jambunathan, M.; Goedbloed, M.; Hohlfeld, D.; Matova, S.; Pop, V.; Caballero, L.; Schaijk, R. van

    2010-01-01

    This paper describes the characterization of thin-film MEMS vibration energy harvesters based on aluminum nitride as piezoelectric material. A record output power of 85 μW is measured. The parasitic-damping and the energy-harvesting performances of unpackaged and packaged devices are investigated.

  5. An Efficient Approach for Determining Forced Vibration Response Amplitudes of a MDOF System with Various Attachments

    Directory of Open Access Journals (Sweden)

    J.S. Wu

    2012-01-01

    of the same vibrating system are calculated by using a relationship between |Y(x|t and |Y(x|s obtained from the single-degree-of-freedom (SDOF vibrating system. It is noted that, near resonance (i.e., we/w≈ 1.0, the entire MDOF system (with natural frequency w will vibrate synchronously in a certain mode and can be modeled by a SDOF system. Finally, the conventional finite element method (FEM incorporated with the Newmark's direct integration method is also used to determine the "total" response amplitudes |Y(x|t of the same forced vibrating system from the time histories of dynamic responses at each specified exciting frequency we. It has been found that the numerical results of the presented approach are in good agreement with those of FEM, this confirms the reliability of the presented theory. Because the CPU time required by the presented approach is less than 1% of that required by the conventional FEM, the presented approach should be an efficient technique for the title problem.

  6. In situ measurement system

    Science.gov (United States)

    Lord, D.E.

    1980-11-24

    A multipurpose in situ underground measurement system comprising a plurality of long electrical resistance elements in the form of rigid reinforcing bars, each having an open loop hairpin configuration of shorter length than the other resistance elements. The resistance elements are arranged in pairs in a unitized structure, and grouted in place in the underground volume. Measurement means are provided for obtaining for each pair the electrical resistance of each element and the difference in electrical resistance of the paired elements, which difference values may be used in analytical methods involving resistance as a function of temperature. A scanner means sequentially connects the resistance-measuring apparatus to each individual pair of elements. A source of heating current is also selectively connectable for heating the elements to an initial predetermined temperature prior to electrical resistance measurements when used as an anemometer.

  7. Modelling and Analysis of Automobile Vibration System Based on Fuzzy Theory under Different Road Excitation Information

    Directory of Open Access Journals (Sweden)

    Xue-wen Chen

    2018-01-01

    Full Text Available A fuzzy increment controller is designed aimed at the vibration system of automobile active suspension with seven degrees of freedom (DOF. For decreasing vibration, an active control force is acquired by created Proportion-Integration-Differentiation (PID controller. The controller’s parameters are adjusted by a fuzzy increment controller with self-modifying parameters functions, which adopts the deviation and its rate of change of the body’s vertical vibration velocity and the desired value in the position of the front and rear suspension as the input variables based on 49 fuzzy control rules. Adopting Simulink, the fuzzy increment controller is validated under different road excitation, such as the white noise input with four-wheel correlation in time-domain, the sinusoidal input, and the pulse input of C-grade road surface. The simulation results show that the proposed controller can reduce obviously the vehicle vibration compared to other independent control types in performance indexes, such as, the root mean square value of the body’s vertical vibration acceleration, pitching, and rolling angular acceleration.

  8. Theoretical analysis based on fundamental functions of thin plate and experimental measurement for vibration characteristics of a plate coupled with liquid

    Science.gov (United States)

    Liao, Chan-Yi; Wu, Yi-Chuang; Chang, Ching-Yuan; Ma, Chien-Ching

    2017-04-01

    This study combined theoretical, experimental, and numerical analysis to investigate the vibration characteristics of a thin rectangular plate positioned horizontally at the bottom of a rectangular container filled with liquid. Flow field pressure was derived using an equation governing the behavior of incompressible fluids. Analytic solutions to vibrations in a thin plate in air served as the fundamental function of the thin plate coupled with liquid. We then used liquid pressure, and the out-of-plane deflection of the thin plate for the construction of frequency response functions for the analysis of vibration characteristics in the liquid-plate coupling system. Two experimental methods were employed to measure the vibration characteristics of the thin plate immersed in water. The first involved using sensors of polyvinylidene difluoride (PVDF) to measure transient signals of fluid-plate system subjected an impact at the thin plate. These were then converted to the frequency domain in order to obtain the resonant frequencies of the fluid-plate coupling system. The second method was amplitude-fluctuation electronic speckle pattern interferometry (AF-ESPI), which was used to measure the dynamic characteristics of the thin plate in the flow field. This method was paired with the image processing techniques, temporal speckle pattern interferometry (TSPI) and temporal standard deviation (TSTD), to obtain clear mode shapes of the thin plate and resonant frequencies. Comparison of the results from theoretical analysis, finite element method, and experimental measurements confirmed the accuracy of our theoretical analysis, which was superior to the conventional approach based on beam mode shape functions. The experimental methods proposed in this study can be used to measure the resonant frequencies of underwater thin plates, and clear mode shapes can be obtained using AF-ESPI. Our results indicate that the resonant frequencies of thin plates underwater are lower than

  9. Non-linear Vibration of Oscillation Systems using Frequency-Amplitude Formulation

    DEFF Research Database (Denmark)

    Fereidoon, A.; Ghadimi, M.; Barari, Amin

    2012-01-01

    In this paper we study the periodic solutions of free vibration of mechanical systems with third and fifthorder nonlinearity for two examples using He’s Frequency Amplitude Formulation (HFAF).The effectiveness and convenience of the method is illustrated in these examples. It will be shown...... that the solutions obtained with current method have a fabulous conformity with those achieved from time marching solution. HFAF is easy with powerful concepts and the high accuracy, so it can be found widely applicable in vibrations, especially strong nonlinearity oscillatory problems....

  10. Viability Analysis of Waste Tires as Material for Rail Vibration and Noise Control in Modern Tram Track Systems

    Directory of Open Access Journals (Sweden)

    Caiyou Zhao

    2015-01-01

    Full Text Available This research study focused on the effect of using damping chamber elements made from waste tires on railway noise reduction. First, the energy absorption characteristics of damping chamber elements with various gradation combinations and compaction indices were measured in the laboratory using compression testing. The laboratory compression results demonstrated that the optimal gradation combination of damping chamber elements is as follows: the content of fine rubber particles is 10%, the content of coarse granules is 90%, and the optimal compaction index is 0.98. Next, the findings from the laboratory compression-test studies were used to produce damping chamber elements that were applied to a full-scale modern track model in the laboratory. The measurements of the dynamic properties indicated that the damping chamber elements could significantly reduce the vibration levels of the rail head. Finally, the damping chamber elements, which had been proven effective through laboratory dynamic tests, were widely applied to test rail sections in the field. The field tests demonstrated that damping chamber elements can significantly increase the track vibration decay rate in the frequency range of 200–10000 Hz. Therefore, damping chamber elements made from waste tires are able to control rail vibration and noise in modern tram track systems.

  11. A feedback control system for vibration of magnetostrictive plate subjected to follower force using sinusoidal shear

    Directory of Open Access Journals (Sweden)

    A. Ghorbanpour Arani

    2016-03-01

    Full Text Available In this research, the vibrational behavior of magnetostrictive plate (MsP as a smart component is studied. The plate is subjected to an external follower force and a magnetic field in which the vibration response of MsP has been investigated for both loading combinations. The velocity feedback gain parameter is evaluated to study the effect of magnetic field which is generated by the coil. Sinusoidal shear deformation theory is utilized due to its accuracy of polynomial function with respect to other plate theories. Equations of motion are derived using Hamilton’s principle and solved by differential quadrature method (DQM considering general boundary conditions. The effects of aspect ratio, thickness ratio, follower force and velocity feedback gain are investigated on the frequency response of MsP. Results indicate that magneto-mechanical coupling in MsM helps to control vibrational behaviors of systems such as electro-hydraulic actuator, wireless linear Motors and sensors.

  12. Synchronization of three homodromy coupled exciters in a non-resonant vibrating system of plane motion

    Science.gov (United States)

    Zhang, Xue-Liang; Wen, Bang-Chun; Zhao, Chun-Yu

    2012-10-01

    In this paper, the synchronization problem of three homodromy coupled exciters in a non-resonant vibrating system of plane motion is studied. By introducing the average method of modified small parameters, we deduced dimensionless coupling equation of three exciters, which converted the problem of synchronization into that of the existence and stability of zero solutions for the average differential equations of the small parameters. Based on the dimensionless coupling torques and characteristics of the corresponding limited functions, the synchronization criterion for three exciters was derived as the absolute value of dimensionless residual torque difference between arbitrary two motors being less than the maximum of their dimensionless coupling torques. The stability criterion of its synchronous state lies in the double-condition that the inertia coupling matrix is positive definite and all its elements are positive as well. The synchronization determinants are the coefficients of synchronization ability, also called as the general dynamical symmetry coefficients. The double-equilibrium state of the vibrating system is manifested by numeric method, and the numeric and simulation results derived thereof indicate the indispensable and crucial role the structural parameters of the vibrating system play in the stability criterion of synchronous operation. Besides, by adjusting its structural parameters, the elliptical motion of the vibrating system successfully met the requirements in engineering applications.

  13. Flow induced vibration of subsea gas production systems caused by choke valves

    NARCIS (Netherlands)

    Ligterink, N.E.; Groot, R. de; Gharaibah, E.; Slot, H.J.

    2012-01-01

    In the design of subsea flow systems the integrity and reliability is paramount. As the equipment must be designed to operate at a large variety of conditions, inherent to the many processes, evaluation of the integrity is complex. . Flow induced pulsations and vibrations can cause serious design

  14. Flow induced vibration of subsea gas production system caused by choke valves

    NARCIS (Netherlands)

    Ligterink, N.E.; Groot, R. de; Gharaibah, E.; Slot, H.J.

    2012-01-01

    In the design of subsea flow systems the integrity and reliability is paramount. As the equipment must be designed to operate at a large variety of conditions, inherent to the many processes, evaluation of the integrity is complex. . Flow induced pulsations and vibrations can cause serious design

  15. Vibration Pattern Imager (VPI): A control and data acquisition system for scanning laser vibrometers

    Science.gov (United States)

    Rizzi, Stephen A.; Brown, Donald E.; Shaffer, Thomas A.

    1993-01-01

    The Vibration Pattern Imager (VPI) system was designed to control and acquire data from scanning laser vibrometer sensors. The PC computer based system uses a digital signal processing (DSP) board and an analog I/O board to control the sensor and to process the data. The VPI system was originally developed for use with the Ometron VPI Sensor, but can be readily adapted to any commercially available sensor which provides an analog output signal and requires analog inputs for control of mirror positioning. The sensor itself is not part of the VPI system. A graphical interface program, which runs on a PC under the MS-DOS operating system, functions in an interactive mode and communicates with the DSP and I/O boards in a user-friendly fashion through the aid of pop-up menus. Two types of data may be acquired with the VPI system: single point or 'full field.' In the single point mode, time series data is sampled by the A/D converter on the I/O board (at a user-defined sampling rate for a selectable number of samples) and is stored by the PC. The position of the measuring point (adjusted by mirrors in the sensor) is controlled via a mouse input. The mouse input is translated to output voltages by the D/A converter on the I/O board to control the mirror servos. In the 'full field' mode, the measurement point is moved over a user-selectable rectangular area. The time series data is sampled by the A/D converter on the I/O board (at a user-defined sampling rate for a selectable number of samples) and converted to a root-mean-square (rms) value by the DSP board. The rms 'full field' velocity distribution is then uploaded for display and storage on the PC.

  16. Analytical design and evaluation of an active control system for helicopter vibration reduction and gust response alleviation

    Science.gov (United States)

    Taylor, R. B.; Zwicke, P. E.; Gold, P.; Miao, W.

    1980-01-01

    An analytical study was conducted to define the basic configuration of an active control system for helicopter vibration and gust response alleviation. The study culminated in a control system design which has two separate systems: narrow band loop for vibration reduction and wider band loop for gust response alleviation. The narrow band vibration loop utilizes the standard swashplate control configuration to input controller for the vibration loop is based on adaptive optimal control theory and is designed to adapt to any flight condition including maneuvers and transients. The prime characteristics of the vibration control system is its real time capability. The gust alleviation control system studied consists of optimal sampled data feedback gains together with an optimal one-step-ahead prediction. The prediction permits the estimation of the gust disturbance which can then be used to minimize the gust effects on the helicopter.

  17. Optical absorption measurement system

    Science.gov (United States)

    Draggoo, Vaughn G.; Morton, Richard G.; Sawicki, Richard H.; Bissinger, Horst D.

    1989-01-01

    The system of the present invention contemplates a non-intrusive method for measuring the temperature rise of optical elements under high laser power optical loading to determine the absorption coefficient. The method comprises irradiating the optical element with a high average power laser beam, viewing the optical element with an infrared camera to determine the temperature across the optical element and calculating the absorption of the optical element from the temperature.

  18. Multiple Rabi Splittings under Ultrastrong Vibrational Coupling.

    Science.gov (United States)

    George, Jino; Chervy, Thibault; Shalabney, Atef; Devaux, Eloïse; Hiura, Hidefumi; Genet, Cyriaque; Ebbesen, Thomas W

    2016-10-07

    From the high vibrational dipolar strength offered by molecular liquids, we demonstrate that a molecular vibration can be ultrastrongly coupled to multiple IR cavity modes, with Rabi splittings reaching 24% of the vibration frequencies. As a proof of the ultrastrong coupling regime, our experimental data unambiguously reveal the contributions to the polaritonic dynamics coming from the antiresonant terms in the interaction energy and from the dipolar self-energy of the molecular vibrations themselves. In particular, we measure the opening of a genuine vibrational polaritonic band gap of ca. 60 meV. We also demonstrate that the multimode splitting effect defines a whole vibrational ladder of heavy polaritonic states perfectly resolved. These findings reveal the broad possibilities in the vibrational ultrastrong coupling regime which impact both the optical and the molecular properties of such coupled systems, in particular, in the context of mode-selective chemistry.

  19. The choice of boundary conditions and mesh for scaffolding FEM model on the basis of natural vibrations measurements

    Science.gov (United States)

    Cyniak, Patrycja; Błazik-Borowa, Ewa; Szer, Jacek; Lipecki, Tomasz; Szer, Iwona

    2018-01-01

    Scaffolding is a specific construction with high susceptibility to low frequency vibrations. The numerical model of scaffolding presented in this paper contains real imperfections received from geodetic measurements of real construction. Boundary conditions were verified on the basis of measured free vibrations. A simulation of a man walking on penultimate working level as a dynamic load variable in time was made for verified model. The paper presents procedure for a choice of selected parameters of the scaffolding FEM model. The main aim of analysis is the best projection of the real construction and correct modeling of worker walking on the scaffolding. Different boundary conditions are considered, because of their impact on construction vibrations. Natural vibrations obtained from FEM calculations are compared with free vibrations measured during in-situ tests. Structure accelerations caused by walking human are then considered in this paper. Methodology of creating numerical models of scaffoldings and analysis of dynamic effects during human walking are starting points for further considerations about dynamic loads acting on such structures and effects of these loads to construction and workers, whose workplaces are situated on the scaffolding.

  20. Calorimetric measuring systems

    DEFF Research Database (Denmark)

    Ritchie, Andrew Ewen; Pedersen, John Kim; Blaabjerg, Frede

    2004-01-01

    Power Electronics remains an emerging technology. New materials, new devices, and new circuit topologies reduce the cost, weight, and volume for important applications [1]. Two important factors in power electronic circuits are the switching speed of the devices and the total power losses in the ...... of increasing the switching frequency electrically because the system efficiency is high and a pure input-output measurement gives an unsatisfactory resolution and accuracy....... in the system. If the switching speed can be increased, improvements may be possible (e.g., current ripple in an electrical machine or physical size of passive components may be reduced). On the other hand, increased switching speed may cause additional losses in a power electronic system and increase...

  1. An international review of laser Doppler vibrometry: Making light work of vibration measurement

    Science.gov (United States)

    Rothberg, S. J.; Allen, M. S.; Castellini, P.; Di Maio, D.; Dirckx, J. J. J.; Ewins, D. J.; Halkon, B. J.; Muyshondt, P.; Paone, N.; Ryan, T.; Steger, H.; Tomasini, E. P.; Vanlanduit, S.; Vignola, J. F.

    2017-12-01

    In 1964, just a few years after the invention of the laser, a fluid velocity measurement based on the frequency shift of scattered light was made and the laser Doppler technique was born. This comprehensive review paper charts advances in the development and applications of laser Doppler vibrometry (LDV) since those first pioneering experiments. Consideration is first given to the challenges that continue to be posed by laser speckle. Scanning LDV is introduced and its significant influence in the field of experimental modal analysis described. Applications in structural health monitoring and MEMS serve to demonstrate LDV's applicability on structures of all sizes. Rotor vibrations and hearing are explored as examples of the classic applications. Applications in acoustics recognise the versatility of LDV as demonstrated by visualisation of sound fields. The paper concludes with thoughts on future developments, using examples of new multi-component and multi-channel instruments.

  2. Effect Of Vibration On Occupant Driving Performances Measured By Simulated Driving

    Directory of Open Access Journals (Sweden)

    Amzar Azizan

    2015-08-01

    Full Text Available Although the performance of vehicle driver has been well investigated in many types of environments however drowsy driving caused by vibration has received far less attention. Experiment procedures comprised of two 10-minutes simulated driving sessions in no-vibration condition and with-vibration condition. In with-vibration condition volunteers were exposed to a Gaussian random vibration with 1-15 Hz frequency bandwidth at 0.2 ms-2 r.m.s. for 30-minutes. A deviation in lane position and vehicle speed were recorded and analyzed. Volunteers have also rated their subjective drowsiness by giving score using Karolinska Sleepiness Scale KSS every 5-minutes interval. Strong evidence of driving impairment following 30-minutes exposure to vibration were found significant in all volunteers p 0.05.

  3. Active Vibration Control in a Rotor System by an Active Suspension with Linear Actuators

    Directory of Open Access Journals (Sweden)

    M. Arias-Montiel

    2014-10-01

    Full Text Available In this paper the problem of modeling, analysis and unbalance response control of a rotor system with two disks in an asymmetrical configuration is treated. The Finite Element Method (FEM is used to get the system model including the gyroscopic effects and then, the obtained model is experimentally validated. Rotordynamic analysis is carried out using the finite element model obtaining the Campbell diagram, the natural frequencies and the critical speeds of the rotor system. An asymptotic observer is designed to estimate the full state vector which is used to synthesize a Linear Quadratic Regulator (LQR to reduce the vibration amplitudes when the system passes through the first critical speed. Some numerical simulations are carried out to verify the closed-loop system behavior. The active vibration control scheme is experimentally validated using an active suspension with electromechanical linear actuators, obtaining significant reductions in the resonant peak.

  4. Piezoelectric vibration-driven locomotion systems - Exploiting resonance and bistable dynamics

    Science.gov (United States)

    Fang, Hongbin; Wang, K. W.

    2017-03-01

    While a piezoelectric-based vibration-driven system is an excellent candidate for actuating small-size crawling-type locomotion robots, it has the major drawback of limited stroke output that would severely constraint the system's locomotion performance. In this paper, to advance the state of the art, we propose two novel designs of piezoelectric vibration-driven locomotion systems. The first utilizes the resonant amplification concept, and the second explores the design of a bistable device. While these two ideas have been explored for piezoelectric actuation amplification in general, they have never been exploited for crawling-type robotic locomotion. Numerical analyses on both systems reveal that resonance and bistability can substantially increase the systems' average locomotion speed. Moreover, this research shows that with bistability, the system is able to output high average locomotion speed in a wider frequency band, possess multiple locomotion modes, and achieve fast switches among them. Through proof-of-concept prototypes, the predicted locomotion performance improvements brought by resonance and bistability are verified. Finally, the basin stability is evaluated to systematically describe the occurring probability of certain locomotion behavior of the bistable system, which would provide useful guideline to the design and control of bistable vibration-driven locomotion systems.

  5. Full-field vibration measurements of the violin using digital stroboscopic holographic interferometry and electromagnetic stimulation of the strings

    Science.gov (United States)

    Keersmaekers, Lissa; Keustermans, William; De Greef, Daniël; Dirckx, Joris J. J.

    2016-06-01

    We developed a setup in which the strings of the violin are driven electromagnetically, and the resulting vibration of the instrument is measured with digital stroboscopic holography. A 250mW single mode green laser beam is chopped using an acousto-optic modulator, generating illumination pulses of 2% of the vibration period. The phase of the illumination pulse is controlled by a programmable function generator so that digital holograms can be recorded on a number of subsequent time positions within the vibration phase. From these recordings, the out of plane motion as a function of time is reconstructed in full field. We show results of full-field vibration amplitude and vibration phase maps, and time resolved full-field deformations of the violin back plane. Time resolved measurements show in detail how the deformation of the violin plane changes as a function of time at different frequencies. We found very different behavior under acoustic stimulation of the instrument and when using electromagnetic stimulation of a string. The aim of the work it to gather data which can be used in power flow calculations to study how the energy of the strings is conducted to the body of the violin and eventually is radiated as sound.

  6. Full-field vibration measurements of the violin using digital stroboscopic holographic interferometry and electromagnetic stimulation of the strings

    Energy Technology Data Exchange (ETDEWEB)

    Keersmaekers, Lissa; Keustermans, William, E-mail: william.keustermans@uantwerpen.be; De Greef, Daniël; Dirckx, Joris J. J. [University of Antwerp, Laboratory of Biophysics and Biomedical Physics, Groenenborgerlaan 171, 2020 Antwerp (Belgium)

    2016-06-28

    We developed a setup in which the strings of the violin are driven electromagnetically, and the resulting vibration of the instrument is measured with digital stroboscopic holography. A 250 mW single mode green laser beam is chopped using an acousto-optic modulator, generating illumination pulses of 2% of the vibration period. The phase of the illumination pulse is controlled by a programmable function generator so that digital holograms can be recorded on a number of subsequent time positions within the vibration phase. From these recordings, the out of plane motion as a function of time is reconstructed in full field. We show results of full-field vibration amplitude and vibration phase maps, and time resolved full-field deformations of the violin back plane. Time resolved measurements show in detail how the deformation of the violin plane changes as a function of time at different frequencies. We found very different behavior under acoustic stimulation of the instrument and when using electromagnetic stimulation of a string. The aim of the work it to gather data which can be used in power flow calculations to study how the energy of the strings is conducted to the body of the violin and eventually is radiated as sound.

  7. Prevalence of Hand-transmitted Vibration Exposure among Grass-cutting Workers using Objective and Subjective Measures

    Science.gov (United States)

    Azmir, N. A.; Yahya, M. N.

    2017-01-01

    Extended exposure to hand-transmitted vibration from vibrating machine is associated with an increased occurrence of symptoms of occupational disease related to hand disorder. The present case study is to determine the prevalence and correlation of significant subjective as well as objective variables that induce to hand arm vibration syndrome (HAVS) among hand-held grass-cutting workers in Malaysia. Thus, recommendations are made for grass-cutting workers and grass maintenance service management based on findings. A cross sectional study using adopted subjective Hand Arm Vibration Exposure Risk Assessment (HAVERA) questionnaire from Vibration Injury Network on hand disorder signs and symptoms was distributed to a sample of one hundred and sixty eight male workers from grass and turf maintenance industry that use vibrating machine as part of their work. For objective measure, hand-transmitted vibration measurement was collected on site during operation by the following ISO 5349-1, 2001. Two groups were identified in this research comprising of high exposure group and low-moderate exposure group. Workers also gave information about their personal identification, social history, workers’ health, occupational history and machine safety inspection. There was positive HAVS symptoms relationship between the low-moderate exposure group and high exposure group among hand-held grass-cutting workers. The prevalence ratio (PR) was considered high for experiencing white colour change at fingers and fingers go numb which are 3.63 (1.41 to 9.39) and 4.24 (2.18 to 8.27), respectively. The estimated daily vibration exposure, A(8) differs between 2.1 to 20.7 ms-2 for right hand while 2.7 to 29.1 ms-2 for left hand. The subjects claimed that the feel of numbness at left hand is much stronger compared to right hand. The results suggest that HAVS is diagnosed in Malaysia especially in agriculture sector. The A(8) indicates that the exposure value is more than exposure limit value

  8. A resonant electromagnetic vibration energy harvester for intelligent wireless sensor systems

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Jing, E-mail: jingqiu@cqu.edu.cn; Wen, Yumei; Li, Ping; Liu, Xin; Chen, Hengjia; Yang, Jin [Sensors and Instruments Research Center, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044 (China)

    2015-05-07

    Vibration energy harvesting is now receiving more interest as a means for powering intelligent wireless sensor systems. In this paper, a resonant electromagnetic vibration energy harvester (VEH) employing double cantilever to convert low-frequency vibration energy into electrical energy is presented. The VEH is made up of two cantilever beams, a coil, and magnetic circuits. The electric output performances of the proposed electromagnetic VEH have been investigated. With the enhancement of turns number N, the optimum peak power of electromagnetic VEH increases sharply and the resonance frequency deceases gradually. When the vibration acceleration is 0.5 g, we obtain the optimum output voltage and power of 9.04 V and 50.8 mW at frequency of 14.9 Hz, respectively. In a word, the prototype device was successfully developed and the experimental results exhibit a great enhancement in the output power and bandwidth compared with other traditional electromagnetic VEHs. Remarkably, the proposed resonant electromagnetic VEH have great potential for applying in intelligent wireless sensor systems.

  9. Research on signal demodulation technology of Mach-Zehnder optical fiber sensor vibration system

    Science.gov (United States)

    Liu, Juncheng; Cheng, Pengshen; Hu, Tong

    2017-08-01

    Mach-Zehnder (M-Z) interferometer is frequently used in optical fiber vibration system. And signal demodulation technology plays an important role in the signal processing of M-Z optical fiber vibration system. In order to accurately get the phase information of the vibration signals, the signal demodulation technique based on M-Z interference principle is studied. In this paper, by analyzing the principles of 3 × 3 fiber coupler homodyne demodulation method and phase-generating carrier (PGC) technology, the advantages and disadvantages of the two demodulation methods for different vibration signal are presented. Then the method of judging signal strength is proposed. The correlation between the demodulation effects and strength of the perturbation signals is analyzed. Finally, the simulation experiments are carried out to compare the demodulation effects of the two demodulation methods, the results demonstrate that PGC demodulation technology has great advantages in weak signals, and the 3 × 3 fiber coupler is more suitable for strong signals.

  10. Vibration Damping Materials and Their Applications in Nano/Micro-Electro-Mechanical Systems: A Review.

    Science.gov (United States)

    Choudhary, Nitin; Kaur, Davinder

    2015-03-01

    The present review explores an overall view of the vibration damping materials ranging from traditionally used viscoelastic materials for macroscale damping to hybrid thin film heterostructures for micro-electro-mechanical systems (MEMS). Vibration damping materials like rubbers, polymers, metals, metal-matrix composites and smart materials are reviewed in terms of damping capacity, stiffness, mechanical strength and figure of merit. Nanoscale shape memory alloys, piezoelectric materials, carbon nanotubes, their composites and thin films are promising materials for future nanoscale damping devices. The main focus of this article is on our development of new vibration damping approach for MEMS structures comprising of ferroelastic/ferroelastic thin film heterostructures. For the first time, nanoindentation has been explored as an alternative tool to evaluate the damping capability of actual components (e.g., thin films for MEMS) where production of dynamic mechanical analyzer (DMA) test samples is not feasible. A comprehensive insight on the existing vibration damping materials and our new approach would definitely trigger some important applications in nano- and micro-electro-mechanical systems.

  11. Jerk Control for Vibration Suppression of an Uncertain Mechanical Transfer System with a Flexible Beam

    Science.gov (United States)

    Miura, Takahiro; Ikeda, Masao; Hoshijima, Kohta

    High productivity is commonly required in manufacturing processes. For this purpose, we need to run machines at high speed. However, high-speed motion usually generates vibration in positioning and then makes the settling time long. For this reason, various control strategies have been proposed for high-speed motion and vibration suppression at the same time. In this paper, we deal with a mechanical transfer system with a loading beam, which is widely used in manufacturing processes. We represent the system as composed of three rigid bodies, that is, a driving unit, a hand, and a work. The driving unit and the hand are connected by an elastic link, and slide on a smooth floor. The work is loaded on a flexible beam which is connected rigidly to the hand. When the driving unit moves on the floor, the work is vibrated not only in the translational motion but also in the bending motion because of the flexibility of the beam. Under polytopic uncertainties of the stiffness and damping parameters in the link and the beam, we apply the idea of jerk reduction control to the hand for vibration suppression of the work and shortening the settling time in positioning. We show the effectiveness of jerk reduction of the hand by numerical simulations for a finite element model.

  12. Utilization of old vibro-acoustic measuring equipment to grasp basic concepts of vibration measurements

    DEFF Research Database (Denmark)

    Darula, Radoslav

    2013-01-01

    The aim of the paper is to show that even old vibro-acoustic (analog) equipment can be used as a very suitable teaching equipment to grasp basic principles of measurements in an era, when measurement equipments are more-or-less treated as ‘black-boxes’, i.e. the user cannot see directly how...

  13. A novel vision-based mold monitoring system in an environment of intense vibration

    Science.gov (United States)

    Hu, Fen; He, Zaixing; Zhao, Xinyue; Zhang, Shuyou

    2017-10-01

    Mold monitoring has been more and more widely used in the modern manufacturing industry, especially when based on machine vision, but these systems cannot meet the detection speed and accuracy requirements for mold monitoring because they must operate in environments that exhibit intense vibration during production. To ensure that the system runs accurately and efficiently, we propose a new descriptor that combines the geometric relationship-based global context feature and the local scale-invariant feature transform for the image registration step of the mold monitoring system. The experimental results of four types of molds showed that the detection accuracy of the mold monitoring system is improved in the environment with intense vibration.

  14. Design and Implementation of a Digital Controller for a Vibration Isolation and Vernier Pointing System

    Science.gov (United States)

    Neff, Daniel J.; Britcher, Colin P.

    1996-01-01

    This paper discusses the recommissioning of the Annular Suspension and Pointing System (ASPS), originally developed in the mid 1970's for pointing and vibration isolation of space experiments. The hardware was developed for NASA Langley Research Center by Sperry Flight Systems (now Honeywell Satellite Systems), was delivered to NASA in 1983. Recently, the hardware was loaned to Old Dominion University (ODU). The ASPS includes coarse gimbal assemblies and a Vernier Pointing Assembly (VPA) that utilize magnetic suspension to provide noncontacting vibration isolation and vernier pointing of the payload. The VPA is the main focus of this research. At ODU, the system has been modified such that it can now be operated in a l-g environment without a gravity offload. Suspension of the annular iron rotor in five degrees-of-freedom has been achieved with the use of modern switching power amplifiers and a digital controller implemented on a 486-class PC.

  15. Comparison of analysis and vibration test results for a multiple supported piping system

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, B.J.; Kot, C.A.; Srinivasan, M.G.

    1989-01-01

    The behavior of a nuclear power plant piping system subjected to high level vibrational excitation is investigated experimentally and analytically. The objective is to evaluate the piping analysis method employed in the SMACS computer code. Experimental data are obtained from the Large Shaker Experiments (SHAG) conducted at the HDR Test Facility in Kahl/Main, FRG, in which the dynamic behavior of an in-plant piping system with various support configurations was investigated. Comparisons of calculational results with measured data indicate that the adequacy of the prediction depends primarily on the modeling of boundary conditions and dynamic supports. Treating the latter as rigid and using building motion as input, in general, results in under prediction of piping response. On the other hand when accelerations on the pipe side of the dynamic support attachment are used as input, piping response is highly overpredicted. Also modeling wall/floor component attachments as fixed usually leads to underprediction of amplitude as well as differences in the frequency content of response. 9 refs., 18 figs., 1 tab.

  16. Measurement Model and Precision Analysis of Accelerometers for Maglev Vibration Isolation Platforms.

    Science.gov (United States)

    Wu, Qianqian; Yue, Honghao; Liu, Rongqiang; Zhang, Xiaoyou; Ding, Liang; Liang, Tian; Deng, Zongquan

    2015-08-14

    High precision measurement of acceleration levels is required to allow active control for vibration isolation platforms. It is necessary to propose an accelerometer configuration measurement model that yields such a high measuring precision. In this paper, an accelerometer configuration to improve measurement accuracy is proposed. The corresponding calculation formulas of the angular acceleration were derived through theoretical analysis. A method is presented to minimize angular acceleration noise based on analysis of the root mean square noise of the angular acceleration. Moreover, the influence of installation position errors and accelerometer orientation errors on the calculation precision of the angular acceleration is studied. Comparisons of the output differences between the proposed configuration and the previous planar triangle configuration under the same installation errors are conducted by simulation. The simulation results show that installation errors have a relatively small impact on the calculation accuracy of the proposed configuration. To further verify the high calculation precision of the proposed configuration, experiments are carried out for both the proposed configuration and the planar triangle configuration. On the basis of the results of simulations and experiments, it can be concluded that the proposed configuration has higher angular acceleration calculation precision and can be applied to different platforms.

  17. Measurement Model and Precision Analysis of Accelerometers for Maglev Vibration Isolation Platforms

    Directory of Open Access Journals (Sweden)

    Qianqian Wu

    2015-08-01

    Full Text Available High precision measurement of acceleration levels is required to allow active control for vibration isolation platforms. It is necessary to propose an accelerometer configuration measurement model that yields such a high measuring precision. In this paper, an accelerometer configuration to improve measurement accuracy is proposed. The corresponding calculation formulas of the angular acceleration were derived through theoretical analysis. A method is presented to minimize angular acceleration noise based on analysis of the root mean square noise of the angular acceleration. Moreover, the influence of installation position errors and accelerometer orientation errors on the calculation precision of the angular acceleration is studied. Comparisons of the output differences between the proposed configuration and the previous planar triangle configuration under the same installation errors are conducted by simulation. The simulation results show that installation errors have a relatively small impact on the calculation accuracy of the proposed configuration. To further verify the high calculation precision of the proposed configuration, experiments are carried out for both the proposed configuration and the planar triangle configuration. On the basis of the results of simulations and experiments, it can be concluded that the proposed configuration has higher angular acceleration calculation precision and can be applied to different platforms.

  18. Nonlocal vibration and biaxial buckling of double-viscoelastic-FGM-nanoplate system with viscoelastic Pasternak medium in between

    Energy Technology Data Exchange (ETDEWEB)

    Liu, J.C. [College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058 (China); Zhang, Y.Q., E-mail: cyqzhang@zju.edu.cn [College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058 (China); State Key Laboratory of Mechanical Structural Strength and Vibration, Xi' an Jiaotong University, Xi' an 710049 (China); Fan, L.F. [College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100084 (China)

    2017-04-11

    The general equation for transverse vibration of double-viscoelastic-FGM-nanoplate system with viscoelastic Pasternak medium in between and each nanoplate subjected to in-plane edge loads is formulated on the basis of the Eringen's nonlocal elastic theory and the Kelvin model. The factors of the structural damping, medium damping, small size effect, loading ratio, and Winkler modulus and shear modulus of the medium are incorporated in the formulation. Based on the Navier's method, the analytical solutions for vibrational frequency and buckling load of the system with simply supported boundary conditions are obtained. The influences of these factors on vibrational frequency and buckling load of the system are discussed. It is demonstrated that the vibrational frequency of the system for the out-of-phase vibration is dependent upon the structural damping, small size effect and viscoelastic Pasternak medium, whereas the vibrational frequency for the in-phase vibration is independent of the viscoelastic Pasternak medium. While the buckling load of the system for the in-phase buckling case has nothing to do with the viscoelastic Pasternak medium, the buckling load for the out-of-phase case is related to the small size effect, loading ratio and Pasternak medium. - Highlights: • Vibration of double-viscoelastic-FGM-nanoplate system under in-plane edge loads is investigated. • Biaxial buckling of the system with simply supported boundary conditions is analyzed. • Explicit expression for the vibrational frequency and buckling load is obtained. • Impacts of viscoelastic Pasternak medium on vibrational frequency and buckling load are discussed. • Influences of structural damping, small size effect and loading ratio are also considered.

  19. Merenje torzionih oscilacija pomoću mernih traka / Measurement of torsional vibrations by using strain gages

    Directory of Open Access Journals (Sweden)

    Dragan Trifković

    2005-05-01

    Full Text Available U ovom radu prikazan je metod merenja torzionih oscilacija mehaničkih sistema na osnovu merenja torzionog napona pomoću mernih traka. Ovaj metod naročito je pogodan za proveru nivoa naprezanja elemenata sistema, koji prenose promenljive obrtne momente i torziono osciluju. Osim toga, mogu se određivati i kritične brzine obrtanja elemenata sistema, pri kojima se javljaju rezonantna naprezanja i otkazi sistema, kao što su: pojačana buka, trošenje zupčanika, zamor materijala, oštećenja i lomovi vratila, spojnica i si. Predložen je merni lanac u kojem centralno mesto zauzima suvremeni mobilni merni sistem Spider 8, koji omogućava merenje, obradu i prikaz rezultata pomoću računara. / In this work the measuring method of torsion vibrations is presented according to the measurement of torsion stress using strain gages. This method is particularly suitable in checking the system elements strain level that transfers changeable torsion moments and oscillate torsionally. Besides that, the system elements critical velocity rotation can be estimated, folio-wed by the resonant strain and problems in the function of that system such as: amplified noise, -wearing-out of gears, fatigue crack, damage and break of shafts and junctions etc. The measuring chain is proposed in -which the central part is a contemporary mobile system Spider 8, -which enables measurement, processing and displays measured results on a computer.

  20. Vibration Control of Double-Beam System with Multiple Smart Damping Members

    OpenAIRE

    Dominik Pisarski; Tomasz Szmidt; Czesław I. Bajer; Bartłomiej Dyniewicz; Jacek M. Bajkowski

    2016-01-01

    A control method to stabilize vibration of a double cantilever system with a set of smart damping blocks is designed and numerically evaluated. The externally controlled magnetorheological sheared elastomer damping block is considered, but other smart materials can be used as well. The robust bang-bang control law for stabilization the bilinear system is elaborated. The key feature of the closed loop controller is the efficiency for different types of initial excitement. By employing the fini...

  1. Modal mass estimation from ambient vibrations measurement: A method for civil buildings

    Science.gov (United States)

    Acunzo, G.; Fiorini, N.; Mori, F.; Spina, D.

    2018-01-01

    A new method for estimating the modal mass ratios of buildings from unscaled mode shapes identified from ambient vibrations is presented. The method is based on the Multi Rigid Polygons (MRP) model in which each floor of the building is ideally divided in several non-deformable polygons that move independent of each other. The whole mass of the building is concentrated in the centroid of the polygons and the experimental mode shapes are expressed in term of rigid translations and of rotations. In this way, the mass matrix of the building can be easily computed on the basis of simple information about the geometry and the materials of the structure. The modal mass ratios can be then obtained through the classical equation of structural dynamics. Ambient vibrations measurement must be performed according to this MRP models, using at least two biaxial accelerometers per polygon. After a brief illustration of the theoretical background of the method, numerical validations are presented analysing the method sensitivity for possible different source of errors. Quality indexes are defined for evaluating the approximation of the modal mass ratios obtained from a certain MRP model. The capability of the proposed model to be applied to real buildings is illustrated through two experimental applications. In the first one, a geometrically irregular reinforced concrete building is considered, using a calibrated Finite Element Model for validating the results of the method. The second application refers to a historical monumental masonry building, with a more complex geometry and with less information available. In both cases, MRP models with a different number of rigid polygons per floor are compared.

  2. Non-linear system identification in flow-induced vibration

    Energy Technology Data Exchange (ETDEWEB)

    Spanos, P.D.; Zeldin, B.A. [Rice Univ., Houston, TX (United States); Lu, R. [Hudson Engineering Corp., Houston, TX (United States)

    1996-12-31

    The paper introduces a method of identification of non-linear systems encountered in marine engineering applications. The non-linearity is accounted for by a combination of linear subsystems and known zero-memory non-linear transformations; an equivalent linear multi-input-single-output (MISO) system is developed for the identification problem. The unknown transfer functions of the MISO system are identified by assembling a system of linear equations in the frequency domain. This system is solved by performing the Cholesky decomposition of a related matrix. It is shown that the proposed identification method can be interpreted as a {open_quotes}Gram-Schmidt{close_quotes} type of orthogonal decomposition of the input-output quantities of the equivalent MISO system. A numerical example involving the identification of unknown parameters of flow (ocean wave) induced forces on offshore structures elucidates the applicability of the proposed method.

  3. Development of Approaches to Creation of Active Vibration Control System in Problems of the Dynamics for Granular Media

    Directory of Open Access Journals (Sweden)

    Khomenko Andrei P.

    2018-01-01

    Full Text Available The article deals with the development of mathematical models and evaluation criteria of the vibration field in the dynamic interactions of the elements of the vibrational technological machines for the processes of vibrational strengthening of long-length parts with help of a steel balls working medium. The study forms a theoretical understanding of the modes of motions of material particles in interaction with a vibrating surface of the working body of the vibration machine. The generalized approach to the assessment of the dynamic quality of the work of vibrating machines in multiple modes of tossing, when the period of free flight of particles is a multiple of the period of the surface oscillations of the working body, is developed in the article. For the correction of vibration field of the working body, the characteristics of dynamic interactions of granular elements of the medium are taken into account using original sensors. The sensors that can detect different particularities of interaction of the granular medium elements at different points of the working body are proposed to evaluate the deviation from a homogeneous and one-dimensional mode of vibration field. Specially developed sensors are able to register interactions between a single granule, a system of granules in filamentous structures, and multipoint interactions of the elements in a close-spaced cylindrical structure. The system of regularization of the structure of vibration fields based on the introduction of motion translation devices is proposed using the multi-point sensor locations on the working body. The article refers to analytical approaches of the theory of vibration displacements. For the experimental data assessment, the methods of statistical analysis are applied. It is shown that the peculiar features of the motion of granular medium registered by the sensors can be used to build active control systems of field vibration.

  4. Circus, software for computation of flow induced vibrations in piping system. General purpose; Code circus, logiciel pour la prediction des vibrations sous ecoulement. Une presentation generale

    Energy Technology Data Exchange (ETDEWEB)

    Seligmann, D.

    1996-11-01

    This paper is a presentation of the code CIRCUS version 2. CIRCUS deals with the hydraulic, acoustic and vibratory behaviour of piping systems under acoustic loads. CIRCUS first computes permanent mean-flow, and associated acoustic loads. It then determines the acoustic and vibration response along the piping system. The CIRCUS software is used at EDF to check the design of piping system and to investigate solutions in case of damage or troubleshooting. (author). 10 refs.

  5. A new fuzzy sliding mode controller for vibration control systems using integrated-structure smart dampers

    Science.gov (United States)

    Dzung Nguyen, Sy; Kim, Wanho; Park, Jhinha; Choi, Seung-Bok

    2017-04-01

    Vibration control systems using smart dampers (SmDs) such as magnetorheological and electrorheological dampers (MRD and ERD), which are classified as the integrated structure-SmD control systems (ISSmDCSs), have been actively researched and widely used. This work proposes a new controller for a class of ISSmDCSs in which high accuracy of SmD models as well as increment of control ability to deal with uncertainty and time delay are to be expected. In order to achieve this goal, two formualtion steps are required; a non-parametric SmD model based on an adaptive neuro-fuzzy inference system (ANFIS) and a novel fuzzy sliding mode controller (FSMC) which can weaken the model error of the ISSmDCSs and hence provide enhanced vibration control performances. As for the formulation of the proposed controller, first, an ANFIS controller is desgned to identify SmDs using the improved control algorithm named improved establishing neuro-fuzzy system (establishing neuro-fuzzy system). Second, a new control law for the FSMC is designed via Lyapunov stability analysis. An application to a semi-active MRD vehicle suspension system is then undertaken to illustrate and evaluate the effectiveness of the proposed control method. It is demonstrated through an experimental realization that the FSMC proposed in this work shows superior vibration control performance of the vehicle suspension compared to other surveyed controller which have similar structures to the FSMC, such as fuzzy logic and sliding mode control.

  6. Vibration suppression in a flexible gyroscopic system using modal coupling strategies

    Directory of Open Access Journals (Sweden)

    Sultan A. Q. Siddiqui

    1996-01-01

    Full Text Available Several recent studies have shown that vibrations in a two-degree-of-freedom system can be suppressed by using modal coupling based control techniques. This involves making the first two natural frequencies commensurable (e.g, in a ratio of 1:1 or 1:2 to establish a state of Internal Resonance (IR. When the system exhibits IR, vibrations in the two directions are strongly coupled resulting in a beat phenomenon. Upon introducing damping in one direction, oscillations in both directions can be quickly suppressed. In this paper we consider vibration suppression of a flexible two-degree-of-freedom gyroscopic system using 1:1 and 1:2 IR. The possibility of using 1:1 and 1:2 IR to enhance the coupling in the system is established analytically using the perturbation method of multiple scales. The results of IR based control strategy are compared with a new method, which is based on tuning the system parameters to make the mode shapes identical. Results indicate that this new technique is more efficient and easy to implement than IR based control strategies. Another advantage of this method is that there is no restriction on the frequencies as in the case of IR. Finally, a control torque is obtained which on application automatically tunes the system parameters to establish modal coupling.

  7. Double resonant absorption measurement of acetylene symmetric vibrational states probed with cavity ring down spectroscopy

    NARCIS (Netherlands)

    Karhu, J.; Nauta, J.; Vainio, M.; Metsala, M.; Hoekstra, S.; Halonen, L.

    2016-01-01

    A novel mid-infrared/near-infrared double resonant absorption setup for studying infrared-inactive vibrational states is presented. A strong vibrational transition in the mid-infrared region is excited using an idler beam from a singly resonant continuous-wave optical parametric oscillator, to

  8. Response of the Cardiovascular System to Vibration and Combined Stresses

    Science.gov (United States)

    1975-08-31

    pressures than increased ,hi,, but the va-iability A-12 was extensive and several animals showed both i;•creases and decreases in the same day to the same...thoracic) space, thus enab’ing the simultaneous measurement of intravascular aortic pressure and intrathoracic pressure from which transmural aortic...intrathoracic, and transmural pressures were measured, perturbations that were evident in aortic pressure appeared to be a direct result of

  9. Vibrational spectra of nanowires measured using laser doppler vibrometry and STM studies of epitaxial graphene : an LDRD fellowship report.

    Energy Technology Data Exchange (ETDEWEB)

    Biedermann, Laura Butler

    2009-09-01

    A few of the many applications for nanowires are high-aspect ratio conductive atomic force microscope (AFM) cantilever tips, force and mass sensors, and high-frequency resonators. Reliable estimates for the elastic modulus of nanowires and the quality factor of their oscillations are of interest to help enable these applications. Furthermore, a real-time, non-destructive technique to measure the vibrational spectra of nanowires will help enable sensor applications based on nanowires and the use of nanowires as AFM cantilevers (rather than as tips for AFM cantilevers). Laser Doppler vibrometry is used to measure the vibration spectra of individual cantilevered nanowires, specifically multiwalled carbon nanotubes (MWNTs) and silver gallium nanoneedles. Since the entire vibration spectrum is measured with high frequency resolution (100 Hz for a 10 MHz frequency scan), the resonant frequencies and quality factors of the nanowires are accurately determined. Using Euler-Bernoulli beam theory, the elastic modulus and spring constant can be calculated from the resonance frequencies of the oscillation spectrum and the dimensions of the nanowires, which are obtained from parallel SEM studies. Because the diameters of the nanowires studied are smaller than the wavelength of the vibrometer's laser, Mie scattering is used to estimate the lower diameter limit for nanowires whose vibration can be measured in this way. The techniques developed in this thesis can be used to measure the vibrational spectra of any suspended nanowire with high frequency resolution Two different nanowires were measured - MWNTs and Ag{sub 2}Ga nanoneedles. Measurements of the thermal vibration spectra of MWNTs under ambient conditions showed that the elastic modulus, E, of plasma-enhanced chemical vapor deposition (PECVD) MWNTs is 37 {+-} 26 GPa, well within the range of E previously reported for CVD-grown MWNTs. Since the Ag{sub 2}Ga nanoneedles have a greater optical scattering efficiency than

  10. Fundamental Frequencies of Vibration of Footbridges in Portugal: From In Situ Measurements to Numerical Modelling

    Directory of Open Access Journals (Sweden)

    C. S. Oliveira

    2014-01-01

    Full Text Available Since 1995, we have been measuring the in situ dynamic characteristics of different types of footbridges built in Portugal (essentially steel and precast reinforced concrete decks with single spans running from 11 to 110 m long, using expedite exciting and measuring techniques. A database has been created, containing not only the fundamental dynamic characteristics of those structures (transversal, longitudinal, and vertical frequencies but also their most important geometric and mechanical properties. This database, with 79 structures organized into 5 main typologies, allows the setting of correlations of fundamental frequencies as a negative power function of span lengths L  (L-0.6 to L-1.4. For 63 footbridges of more simple geometry, it was possible to obtain these correlations by typology. A few illustrative cases representing the most common typologies show that linear numerical models can reproduce the in situ measurements with great accuracy, not only matching the frequencies of vibration but also the amplitudes of motion caused by several pedestrian load patterns.

  11. Quantitative IR Spectrum and Vibrational Assignments for Glycolaldehyde Vapor: Glycolaldehyde Measurements in Biomass Burning Plumes

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Timothy J.; Sams, Robert L.; Profeta, Luisa T.; Akagi, Sheryl; Burling, Ian R.; Yokelson, Robert J.; Williams, Stephen D.

    2013-04-15

    Glycolaldehyde (GA, 2-hydroxyethanal, C2H4O2) is a semi-volatile molecule of atmospheric importance, recently proposed as a precursor in the formation of aqueous-phase secondary organic aerosol (SOA). There are few methods to measure glycolaldehyde vapor, but infrared spectroscopy has been used successfully. Using vetted protocols we have completed the first assignment of all fundamental vibrational modes and derived quantitative IR absorption band strengths using both neat and pressure-broadened GA vapor. Even though GA is problematic due to its propensity to both dimerize and condense, our intensities agree well with the few previously published values. Using the reference ν10 band Q-branch at 860.51 cm-1, we have also determined GA mixing ratios in biomass burning plumes generated by field and laboratory burns of fuels from the southeastern and southwestern United States, including the first field measurements of glycolaldehyde in smoke. The GA emission factors were anti-correlated with modified combustion efficiency confirming release of GA from smoldering combustion. The GA emission factors (g of GA emitted per kg dry biomass burned on a dry mass basis) had a low dependence on fuel type consistent with the production mechanism being pyrolysis of cellulose. GA was emitted at 0.23 ± 0.13% of CO from field fires and we calculate that it accounts for ~18% of the aqueous-phase SOA precursors that we were able to measure.

  12. Investigation for Synchronization of a Rotor-Pendulum System considering the Multi-DOF Vibration

    Directory of Open Access Journals (Sweden)

    Yongjun Hou

    2016-01-01

    Full Text Available This work is a continuation for our published literature for vibration synchronization. A new mechanism, two rotors coupled with a pendulum rod in a multi-DOF vibration system, is proposed to implement coupling synchronization, and the dynamics equation of mechanism is derived by Lagrange equation. In addition, the coupling relationship between the vibrobody and the pendulum rod is ascertained with the Laplace transformation method, based on the dimensionless equation of the dynamics system. The Poincare method is employed to study the synchronization state between the two unbalanced rotors, which is converted into that of existence and the stability of solutions for synchronization-balance equations. The obtained results are supported by computer simulations. It is demonstrated that the values of the spring stiffness coefficient, the length of the pendulum, and the angular installation of the pendulum are important parameters with respect to the synchronous behavior in the rotor-pendulum system.

  13. Magnetic suspension motorized spindle-cutting system dynamics analysis and vibration control review

    Directory of Open Access Journals (Sweden)

    Xiaoli QIAO

    2016-10-01

    Full Text Available The performance of high-speed spindle directly determines the development of high-end machine tools. The cutting system's dynamic characteristics and vibration control effect are inseparable with the performance of the spindle,which influence each other, synergistic effect together the cutting efficiency, the surface quality of the workpiece and tool life in machining process. So, the review status on magnetic suspension motorized spindle, magnetic suspension bearing-flexible rotor system dynamics modeling theory and status of active control technology of flexible magnetic suspension motorized spindle rotor vibration are studied, and the problems which present in the magnetic suspension flexible motorized spindle rotor systems are refined, and the development trend of magnetic levitation motorized spindle and the application prospect is forecasted.

  14. High Accuracy ab Initio Calculations of Rotational-Vibrational Levels of the HCN/HNC System.

    Science.gov (United States)

    Makhnev, Vladimir Yu; Kyuberis, Aleksandra A; Zobov, Nikolai F; Lodi, Lorenzo; Tennyson, Jonathan; Polyansky, Oleg L

    2018-02-08

    Highly accurate ab initio calculations of vibrational and rotational-vibrational energy levels of the HCN/HNC (hydrogen cyanide/hydrogen isocyanide) isomerising system are presented for several isotopologues. All-electron multireference configuration interaction (MRCI) electronic structure calculations were performed using basis sets up to aug-cc-pCV6Z on a grid of 1541 geometries. The ab initio energies were used to produce an analytical potential energy surface (PES) describing the two minima simultaneously. An adiabatic Born-Oppenheimer diagonal correction (BODC) correction surface as well as a relativistic correction surface were also calculated. These surfaces were used to compute vibrational and rotational-vibrational energy levels up to 25 000 cm -1 which reproduce the extensive set of experimentally known HCN/HNC levels with a root-mean-square deviation σ = 1.5 cm -1 . We studied the effect of nonadiabatic effects by introducing opportune radial and angular corrections to the nuclear kinetic energy operator. Empirical determination of two nonadiabatic parameters results in observed energies up to 7000 cm -1 for four HCN isotopologues (HCN, DCN, H 13 CN, and HC 15 N) being reproduced with σ = 0.37 cm -1 . The height of the isomerization barrier, the isomerization energy and the dissociation energy were computed using a number of models; our best results are 16 809.4, 5312.8, and 43 729 cm -1 , respectively.

  15. Direct measurement of additional Ar-H2O vibration-rotation-tunneling bands in the millimeter-submillimeter range

    Science.gov (United States)

    Zou, Luyao; Widicus Weaver, Susanna L.

    2016-06-01

    Three new weak bands of the Ar-H2O vibration-rotation-tunneling spectrum have been measured in the millimeter wavelength range. These bands were predicted from combination differences based on previously measured bands in the submillimeter region. Two previously reported submillimeter bands were also remeasured with higher frequency resolution. These new measurements allow us to obtain accurate information on the Coriolis interaction between the 101 and 110 states. Here we report these results and the associated improved molecular constants.

  16. Minimum variance control for mitigation of vibrations in adaptive optics systems.

    Science.gov (United States)

    Escárate, Pedro; Carvajal, Rodrigo; Close, Laird; Males, Jared; Morzinski, Katie; Agüero, Juan C

    2017-07-01

    In this paper, we address the design of a minimum variance controller (MVC) for the mitigation of vibrations in modern telescope adaptive optics (AO) systems. It is widely accepted that a main source of non-turbulent perturbations is the mechanical resonance induced by the wind or the instrumentation systems, such as fans and cooling pumps. To adequately mitigate vibrations, the application of frequency-based controllers has been considered in the past decade. In this work, we express the system model in terms of the tracking of a zero-input signal via the MVC. We show that the MVC is an equivalent representation of the linear quadratic Gaussian (LQG) controller for the AO system. We also show that by developing the MVC, we can obtain different expressions, in terms of transfer functions, that offer insights into the behavior and expected performance of the controller in the frequency domain. In addition, we analyze the impact of the accuracy of the system and perturbations model on the mitigation of vibrations.

  17. Analysis on machine tool systems using spindle vibration monitoring for automatic tool changer

    Directory of Open Access Journals (Sweden)

    Shang-Liang Chen

    2015-12-01

    Full Text Available Recently, the intelligent systems of technology have become one of the major items in the development of machine tools. One crucial technology is the machinery status monitoring function, which is required for abnormal warnings and the improvement of cutting efficiency. During processing, the mobility act of the spindle unit determines the most frequent and important part such as automatic tool changer. The vibration detection system includes the development of hardware and software, such as vibration meter, signal acquisition card, data processing platform, and machine control program. Meanwhile, based on the difference between the mechanical configuration and the desired characteristics, it is difficult for a vibration detection system to directly choose the commercially available kits. For this reason, it was also selected as an item for self-development research, along with the exploration of a significant parametric study that is sufficient to represent the machine characteristics and states. However, we also launched the development of functional parts of the system simultaneously. Finally, we entered the conditions and the parameters generated from both the states and the characteristics into the developed system to verify its feasibility.

  18. Vibration measurements of the Daniel K. Inouye Solar Telescope mount, Coudé rotator, and enclosure assemblies

    Science.gov (United States)

    McBride, William R.; McBride, Daniel R.

    2016-08-01

    The Daniel K. Inouye Solar Telescope (DKIST) will be the largest solar telescope in the world, with a 4-meter off-axis primary mirror and 16 meter rotating Coudé laboratory within the telescope pier. The off-axis design requires a mount similar to an 8-meter on-axis telescope. Both the telescope mount and the Coudé laboratory utilize a roller bearing technology in place of the more commonly used hydrostatic bearings. The telescope enclosure utilizes a crawler mechanism for the altitude axis. As these mechanisms have not previously been used in a telescope, understanding the vibration characteristics and the potential impact on the telescope image is important. This paper presents the methodology used to perform jitter measurements of the enclosure and the mount bearings and servo system in a high-noise environment utilizing seismic accelerometers and high dynamic-range data acquisition equipment, along with digital signal processing (DSP) techniques. Data acquisition and signal processing were implemented in MATLAB. In the factory acceptance testing of the telescope mount, multiple accelerometers were strategically located to capture the six axes-of-motion of the primary and secondary mirror dummies. The optical sensitivity analysis was used to map these mirror mount displacements and rotations into units of image motion on the focal plane. Similarly, tests were done with the Coudé rotator, treating the entire rotating instrument lab as a rigid body. Testing was performed by recording accelerometer data while the telescope control system performed tracking operations typical of various observing scenarios. The analysis of the accelerometer data utilized noise-averaging fast Fourier transform (FFT) routines, spectrograms, and periodograms. To achieve adequate dynamic range at frequencies as low as 3Hz, the use of special filters and advanced windowing functions were necessary. Numerous identical automated tests were compared to identify and select the data sets

  19. Correlating electronic and vibrational motions in charge transfer systems

    Energy Technology Data Exchange (ETDEWEB)

    Khalil, Munira [Univ. of Washington, Seattle, WA (United States)

    2014-06-27

    The goal of this research program was to measure coupled electronic and nuclear motions during photoinduced charge transfer processes in transition metal complexes by developing and using novel femtosecond spectroscopies. The scientific highlights and the resulting scientific publications from the DOE supported work are outlined in the technical report.

  20. Application of a commercially-manufactured Doppler-shift laser velocimeter to the measurement of basilar-membrane vibration*

    Science.gov (United States)

    Ruggero, Mario A.; Rich, Nola C.

    2013-01-01

    A commercially-available laser Doppler-shift velocimeter has been coupled to a compound microscope equipped with ultra-long-working-distance objectives for the purpose of measuring basilar membrane vibrations in the chinchilla. The animal preparation is nearly identical to that used in our laboratory for similar measurements using the Mössbauer technique. The vibrometer head is mounted on the third tube of the microscope’s trinocular head and its laser beam is focused on high-refractive-index glass microbeads (10–30 µm) previously dropped, through the perilymph of Scala tympani, on the basilar membrane. For equal sampling times, overall sensitivity of the laser velocimetry system is at least one order of magnitude greater than usually attained using the Mössbauer technique. However, the most important advantage of laser velocimetry vis-à-vis the Mössbauer technique is its linearity, which permits undistorted recording of signals over a wide velocity range. Thus, for example, we have measured basilar-membrane responses to clicks whose waveforms have dynamic ranges exceeding 60 dB. PMID:1827787

  1. Study on hydraulic exciting vibration due to flexible valve in pump system with method of characteristics in the time domain

    Science.gov (United States)

    Yu, Y. H.; Liu, D.; Yang, X. F.; Si, J.

    2017-08-01

    To analyse the flow characteristics of leakage as well as the mechanism of selfexcited vibration in valves, the method of characteristics was used to assess the effect of flexible valve leakage on the self-excited vibration in water-supply pump system. Piezometric head in upstream of the valve as a function of time was obtained. Two comparative schemes were proposed to simulate the process of self-excited vibration by changing the length, the material of the pipeline and the leakage of valves in the above pump system. It is shown that the length and material of the pipe significantly affect the amplitude and cycle of self-excited vibration as well as the increasing rate of the vibration amplitude. In addition, the leakage of the valve has little influence on the amplitude and cycle of self-excited vibration, but has a significant effect on the increasing rate of vibration amplitude. A pipe explosion accident may occur without the inhibiting of self-excited vibration.

  2. Active vibration and noise control of vibro-acoustic system by using PID controller

    Science.gov (United States)

    Li, Yunlong; Wang, Xiaojun; Huang, Ren; Qiu, Zhiping

    2015-07-01

    Active control simulation of the acoustic and vibration response of a vibro-acoustic cavity of an airplane based on a PID controller is presented. A full numerical vibro-acoustic model is developed by using an Eulerian model, which is a coupled model based on the finite element formulation. The reduced order model, which is used to design the closed-loop control system, is obtained by the combination of modal expansion and variable substitution. Some physical experiments are made to validate and update the full-order and the reduced-order numerical models. Optimization of the actuator placement is employed in order to get an effective closed-loop control system. For the controller design, an iterative method is used to determine the optimal parameters of the PID controller. The process is illustrated by the design of an active noise and vibration control system for a cavity structure. The numerical and experimental results show that a PID-based active control system can effectively suppress the noise inside the cavity using a sound pressure signal as the controller input. It is also possible to control the noise by suppressing the vibration of the structure using the structural displacement signal as the controller input. For an airplane cavity structure, considering the issue of space-saving, the latter is more suitable.

  3. Model-independent quantitative measurement of nanomechanical oscillator vibrations using electron-microscope linescans

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Huan; Fenton, J. C.; Chiatti, O. [London Centre for Nanotechnology, University College London, 17–19 Gordon Street, London WC1H 0AH (United Kingdom); Warburton, P. A. [London Centre for Nanotechnology, University College London, 17–19 Gordon Street, London WC1H 0AH (United Kingdom); Department of Electronic and Electrical Engineering, University College London, Torrington Place, London WC1E 7JE (United Kingdom)

    2013-07-15

    Nanoscale mechanical resonators are highly sensitive devices and, therefore, for application as highly sensitive mass balances, they are potentially superior to micromachined cantilevers. The absolute measurement of nanoscale displacements of such resonators remains a challenge, however, since the optical signal reflected from a cantilever whose dimensions are sub-wavelength is at best very weak. We describe a technique for quantitative analysis and fitting of scanning-electron microscope (SEM) linescans across a cantilever resonator, involving deconvolution from the vibrating resonator profile using the stationary resonator profile. This enables determination of the absolute amplitude of nanomechanical cantilever oscillations even when the oscillation amplitude is much smaller than the cantilever width. This technique is independent of any model of secondary-electron emission from the resonator and is, therefore, applicable to resonators with arbitrary geometry and material inhomogeneity. We demonstrate the technique using focussed-ion-beam–deposited tungsten cantilevers of radius ∼60–170 nm inside a field-emission SEM, with excitation of the cantilever by a piezoelectric actuator allowing measurement of the full frequency response. Oscillation amplitudes approaching the size of the primary electron-beam can be resolved. We further show that the optimum electron-beam scan speed is determined by a compromise between deflection of the cantilever at low scan speeds and limited spatial resolution at high scan speeds. Our technique will be an important tool for use in precise characterization of nanomechanical resonator devices.

  4. Spectral Analysis of Pressure, Noise and Vibration Velocity Measurement in Cavitation

    Science.gov (United States)

    Jablonská, Jana; Mahdal, Miroslav; Kozubková, Milada

    2017-12-01

    The article deals with experimental investigation of water cavitation in the convergent-divergent nozzle of rectangular cross-section. In practice, a quick and simple determination of cavitation is essential, especially if it is basic cavitation or cavitation generated additionally by the air being sucked. Air influences the formation, development and size of the cavity area in hydraulic elements. Removal or reduction of the cavity area is possible by structural changes of the element. In case of the cavitation with the suction air, it is necessary to find the source of the air and seal it. The pressure gradient, the flow, the oxygen content in the tank, and hence the air dissolved in the water, the air flow rate, the noise intensity and the vibration velocity on the nozzle wall were measured on laboratory equipment. From the selected measurements the frequency spectrum of the variation of the water flow of the cavity with cavitation without air saturation and with air saturation was compared and evaluated.

  5. Analysis of the Acoustic and Vibration Measurement in the Disintegration Process

    Directory of Open Access Journals (Sweden)

    Ľudmila Ušalová

    2004-12-01

    Full Text Available In the last thirty years there have been many developments in the use of acoustical and vibration measurement and their analysis for monitoring the condition of rotating machinery. These have been in three areas of interest the: detection of machinery pieces faults, the diagnosis and the prognosis. Of these areas, the diagnosis and prognosis still require an expert to determine what analyses to perform and to interpret the results. Currently much effort is being put into the automated fault diagnosis and prognosis. Major benefits come from the ability to predict with a reasonable accuracy how long a machine can safely operate (often a matter of several months from incipient faults are first detected. This article briefly summarizes selected signal processing methods, which are possible to be suggested for the vibroacoustical measurements evalution. These techniques are presented with a reference to their use in the rock disintegration process. Simultaneously, several cases are discussed where a great care must be taken in setting up input parameters or very misleading data would be produced.

  6. Response of the Cardiovascular System to Vibration and Combined Stresses

    Science.gov (United States)

    1983-11-30

    such as endurance training or cardiovascular deconditioning or as a result of the onset of disease states like diabetes. IN 14 REFERENCES 1. Knapp, C. F...limit of 60 to 8) K mm. ag is usually imposed by physical discomfort. In addition, head-up tilt may provoke an involuntary increase in skeletal muscle...minute stage. Recovery measure- ments were made at one, three, and six minutes post- exercise. Training Program. The physical training program employed

  7. Identification of aeroelastic forces and static drag coefficients of a twin cable bridge stay from full-scale ambient vibration measurements

    DEFF Research Database (Denmark)

    Acampora, Antonio; Georgakis, Christos T.; Macdonald, J.H.G.

    2014-01-01

    rather than reduced velocity, indicating that Reynolds number governs the aeroelastic effects in these conditions. There is a significant drop in the aerodynamic damping in the critical Reynolds number range, which is believed to be related to the large amplitude cable vibrations observed on some bridges...... presents results from full-scale measurements on the special arrangement of twin cables adopted for the Øresund Bridge. The monitoring system records wind and weather conditions, as well as accelerations of certain cables and a few locations on the deck and tower. Using the Eigenvalue Realization Algorithm...... (ERA), the damping and stiffness matrices are identified for different vibration modes of the cables, with sufficient accuracy to identify changes in the total effective damping and stiffness matrices due to the aeroelastic forces acting on the cables. The damping matrices identified from the full...

  8. Prevention strategy for vibration hazards by portable power tools, national forest model of comprehensive prevention system in Japan.

    Science.gov (United States)

    Yamada, S; Sakakibara, H

    1998-04-01

    In the 1950s, the introduction of portable power tools into the production process of many industries began on a large scale around the world and resulted in many cases of occupational vibration syndrome after the 1960s. There was an urgent world wide need to undertake preventive steps, medical assessment and therapy. At the end of 1964, our investigation began in Japanese national forests, and then in mines and stone quarries. The Japanese Association of Industrial Hygiene established a "Committee for Local Vibration Hazards" (1965), and many researchers in the medical and technological fields joined this Committee. After 10 years, a comprehensive system for the prevention of vibration syndrome was established in the national forestry. It consists of 1) improvements in vibrating tools, 2) hygienic regulation of operation time with an alternative working system, 3) health care system involving early medical checks, early therapy and age limitations in operation of vibrating tools, 4) protection against cold in the workplace and while commuting, and 5) education and training for health and safety. The prevention strategy for vibration syndrome in our national forests is to establish a comprehensive prevention system in cooperation among researchers in the medical and technological fields, workers and administration. The Ministry of Labor presented that strategy as good model of prevention for other industries (1976). New designs for this model were developed and adapted according to the special conditions of each industry. Thus comprehensive system for prevention of vibration syndrome developed successfully from the late 1970s to 1980s in Japan.

  9. Vibratory synchronization transmission of a cylindrical roller in a vibrating mechanical system excited by two exciters

    Science.gov (United States)

    Zhang, Xueliang; Wen, Bangchun; Zhao, Chunyu

    2017-11-01

    In present work vibratory synchronization transmission (VST) of a cylindrical roller with dry friction in a vibrating mechanical system excited by two exciters, is studied. Using the average method, the criterion of implementing synchronization of two exciters and that of ensuring VST of a roller, are achieved. The criterion of stability of the synchronous states satisfies the Routh-Hurwitz principle. The influences of the structural parameters of the system to synchronization and stability, are discussed numerically, which can be served as the theoretical foundation for engineering designs. An experiment is carried out, which approximately verify the validity of the theoretical and numerical results, as well as the feasibility of the method used. Utilizing the VST theory of a roller, some types of vibrating crushing or grinding equipments, etc., can be designed.

  10. Investigations on Elastic and Damping Characteristics of Vibration Isolation Systems While Using Factor Experiment

    Directory of Open Access Journals (Sweden)

    G. N. Reysina

    2014-01-01

    Full Text Available The paper presents results of the investigations on elastic and damping characteristics of a vibration isolation system. Adequate mathematical models of relative root-mean-square values for acceleration of antivibration mass have been obtained depending on elastic and viscous constituents. The paper  reveals  that the proposed method of multiple correlation is the most rational one for the analysis of power  fluids used in the electro-rheological dampers.

  11. Blade Vibration Measurement System for Unducted Fans Project

    Data.gov (United States)

    National Aeronautics and Space Administration — With propulsion research programs focused on new levels of efficiency and noise, there are two emerging avenues for advanced gas turbine technology: the geared...

  12. A fuzzy robust control scheme for vibration suppression of a nonlinear electromagnetic-actuated flexible system

    Science.gov (United States)

    Tavakolpour-Saleh, A. R.; Haddad, M. A.

    2017-03-01

    In this paper, a novel robust vibration control scheme, namely, one degree-of-freedom fuzzy active force control (1DOF-FAFC) is applied to a nonlinear electromagnetic-actuated flexible plate system. First, the flexible plate with clamped-free-clamped-free (CFCF) boundary conditions is modeled and simulated. Then, the validity of the simulation platform is evaluated through experiment. A nonlinear electromagnetic actuator is developed and experimentally modeled through a parametric system identification scheme. Next, the obtained nonlinear model of the actuator is applied to the simulation platform and performance of the proposed control technique in suppressing unwanted vibrations is investigated via simulation. A fuzzy controller is applied to the robust 1DOF control scheme to tune the controller gain using acceleration feedback. Consequently, an intelligent self-tuning vibration control strategy based on an inexpensive acceleration sensor is proposed in the paper. Furthermore, it is demonstrated that the proposed acceleration-based control technique owns the benefits of the conventional velocity feedback controllers. Finally, an experimental rig is developed to investigate the effectiveness of the 1DOF-FAFC scheme. It is found that the first, second, and third resonant modes of the flexible system are attenuated up to 74%, 81%, and 90% respectively through which the effectiveness of the proposed control scheme is affirmed.

  13. Bifurcations and chaos of a vibration isolation system with magneto-rheological damper

    Directory of Open Access Journals (Sweden)

    Hailong Zhang

    2016-03-01

    Full Text Available Magneto-rheological (MR damper possesses inherent hysteretic characteristics. We investigate the resulting nonlinear behaviors of a two degree-of-freedom (2-DoF MR vibration isolation system under harmonic external excitation. A MR damper is identified by employing the modified Bouc-wen hysteresis model. By numerical simulation, we characterize the nonlinear dynamic evolution of period-doubling, saddle node bifurcating and inverse period-doubling using bifurcation diagrams of variations in frequency with a fixed amplitude of the harmonic excitation. The strength of chaos is determined by the Lyapunov exponent (LE spectrum. Semi-physical experiment on the 2-DoF MR vibration isolation system is proposed. We trace the time history and phase trajectory under certain values of frequency of the harmonic excitation to verify the nonlinear dynamical evolution of period-doubling bifurcations to chaos. The largest LEs computed with the experimental data are also presented, confirming the chaotic motion in the experiment. We validate the chaotic motion caused by the hysteresis of the MR damper, and show the transitions between distinct regimes of stable motion and chaotic motion of the 2-DoF MR vibration isolation system for variations in frequency of external excitation.

  14. A synergistic method for vibration suppression of an elevator mechatronic system

    Science.gov (United States)

    Knezevic, Bojan Z.; Blanusa, Branko; Marcetic, Darko P.

    2017-10-01

    Modern elevators are complex mechatronic systems which have to satisfy high performance in precision, safety and ride comfort. Each elevator mechatronic system (EMS) contains a mechanical subsystem which is characterized by its resonant frequency. In order to achieve high performance of the whole system, the control part of the EMS inevitably excites resonant circuits causing the occurrence of vibration. This paper proposes a synergistic solution based on the jerk control and the upgrade of the speed controller with a band-stop filter to restore lost ride comfort and speed control caused by vibration. The band-stop filter eliminates the resonant component from the speed controller spectra and jerk control provides operating of the speed controller in a linear mode as well as increased ride comfort. The original method for band-stop filter tuning based on Goertzel algorithm and Kiefer search algorithm is proposed in this paper. In order to generate the speed reference trajectory which can be defined by different shapes and amplitudes of jerk, a unique generalized model is proposed. The proposed algorithm is integrated in the power drive control algorithm and implemented on the digital signal processor. Through experimental verifications on a scale down prototype of the EMS it has been verified that only synergistic effect of controlling jerk and filtrating the reference torque can completely eliminate vibrations.

  15. Elimination of flow-induced pulsations and vibrations in a process installation: a combination of on site measurements, calculations and scale modeling

    NARCIS (Netherlands)

    Bokhorst, E. van; Peters, M.C.A.M.

    2008-01-01

    The aim of the work described in this paper was to trace and eliminate vibration sources in a low pressure system with high flow velocities. Considerable vibration on the pipe system between a flashing vessel (6.5 m diameter) and heat-exchangers resulted in fatigue failure, leakage and subsequent

  16. Long-range vibration sensor based on correlation analysis of optical frequency-domain reflectometry signals.

    Science.gov (United States)

    Ding, Zhenyang; Yao, X Steve; Liu, Tiegen; Du, Yang; Liu, Kun; Han, Qun; Meng, Zhuo; Chen, Hongxin

    2012-12-17

    We present a novel method to achieve a space-resolved long- range vibration detection system based on the correlation analysis of the optical frequency-domain reflectometry (OFDR) signals. By performing two separate measurements of the vibrated and non-vibrated states on a test fiber, the vibration frequency and position of a vibration event can be obtained by analyzing the cross-correlation between beat signals of the vibrated and non-vibrated states in a spatial domain, where the beat signals are generated from interferences between local Rayleigh backscattering signals of the test fiber and local light oscillator. Using the proposed technique, we constructed a standard single-mode fiber based vibration sensor that can have a dynamic range of 12 km and a measurable vibration frequency up to 2 kHz with a spatial resolution of 5 m. Moreover, preliminarily investigation results of two vibration events located at different positions along the test fiber are also reported.

  17. Dynamics of coupled nonlinear oscillators: The formation of long-lived vibrational states in the case of molecular systems

    Science.gov (United States)

    Koval'skaya, G. A.; Petrov, A. K.

    2016-01-01

    Nonlinear vibrations in a closed system of coupled nonlinear oscillators are studied using acetylene type molecules as an example. A criterion for the stable existence of long-lived vibrational states—local modes—in one of the oscillators is obtained. It is shown that the disappearance of a local mode, as well as its appearance, proceeds abruptly, and the mechanism of stabilization of these excitations is due to the presence or absence of internal resonances of an oscillatory system such as any polyatomic molecule. Energy values needed to excite vibrations in which local modes can appear are determined. It is shown that calculation results agree with experimental data.

  18. Theoretical and Numerical Experiences on a Test Rig for Active Vibration Control of Mechanical Systems with Moving Constraints

    Directory of Open Access Journals (Sweden)

    M. Rinchi

    2004-01-01

    Full Text Available Active control of vibrations in mechanical systems has recently benefited of the remarkable development of robust control techniques. These control techniques are able to guarantee performances in spite of unavoidable modeling errors. They have been successfully codified and implemented for vibrating structures whose uncertain parameters could be assumed to be time-invariant. Unfortunately a wide class of mechanical systems, such as machine tools with carriage motion realized by a ball-screw, are characterized by time varying modal parameters. The focus of this paper is on modeling and controlling the vibrations of such systems. A test rig for active vibration control is presented. An analytical model of the test rig is synthesized starting by design data. Through experimental modal analysis, parametric identification and updating procedures, the model has been refined and a control system has been synthesized.

  19. Development of Vibration-Based Piezoelectric Raindrop Energy Harvesting System

    Science.gov (United States)

    Wong, Chin Hong; Dahari, Zuraini

    2017-03-01

    The trend of finding new means to harvest energy has triggered numerous researches to explore the potential of raindrop energy harvesting. This paper presents an investigation on raindrop energy harvesting which compares the performance of polyvinylidene fluoride (PVDF) cantilever and bridge structure transducers and the development of a raindrop energy harvesting system. The parameters which contribute to the output voltage such as droplet size, droplets released at specific heights and dimensions of PVDF transducers are analyzed. Based on the experimental results, the outcomes have shown that the bridge structure transducer generated a higher voltage than the cantilever. Several dimensions have been tested and it was found that the 30 mm × 4 mm × 25 μm bridge structure transducer generated a relatively high AC open-circuit voltage, which is 4.22 V. The power generated by the bridge transducer is 18 μW across a load of 330 kΩ. The transducer is able to drive up a standard alternative current (AC) to direct current (DC) converter (full-wave bridge rectifier). It generated a DC voltage, V DC of 8.7 mV and 229 pW across a 330 kΩ resistor per drop. It is also capable to generate 9.3 nJ in 20 s from an actual rain event.

  20. Flexible Helicoids, Atomic Force Microscopy (AFM Cantilevers in High Mode Vibration, and Concave Notch Hinges in Precision Measurements and Research

    Directory of Open Access Journals (Sweden)

    Yakov Tseytlin

    2012-05-01

    Full Text Available Flexible structures are the main components in many precision measuring and research systems. They provide miniaturization, repeatability, minimal damping, low measuring forces, and very high resolution. This article focuses on the modeling, development, and comparison of three typical flexible micro- nano-structures: flexible helicoids, atomic force microscopy (AFM cantilevers, and concave notch hinges. Our theory yields results which allow us to increase the accuracy and functionality of these structures in new fields of application such as the modeling of helicoidal DNA molecules’ mechanics, the definition of instantaneous center of rotation in concave flexure notch hinges, and the estimation of the increase of spring constants and resolution at higher mode vibration in AFM cantilevers with an additional concentrated and end extended mass. We developed the original kinetostatic, reverse conformal mapping of approximating contours, and non-linear thermomechanical fluctuation methods for calculation, comparison, and research of the micromechanical structures. These methods simplify complicated solutions in micro elasticity but provide them with necessary accuracy. All our calculation results in this article and in all corresponding referenced author’s publications are in a good agreement with experimental and finite element modeling data within 10% or less.

  1. Preparation and measurement of FBG-based length, temperature, and vibration sensors

    Science.gov (United States)

    Mikel, Bretislav; Helan, Radek; Buchta, Zdenek; Jelinek, Michal; Cip, Ondrej

    2016-12-01

    We present system of structure health measurement by optical fiber sensors based on fiber Bragg gratings. Our system is focused to additionally install to existing buildings. We prepared first set-up of the system to monitoring of the nuclear power plant containment shape deformation. The presented system can measure up to several tens of sensors simultaneously. Each sensor contains optical fiber grating to measurement of change of length and the other independed fiber grating to monitor the temperature and the other ineligible effects.

  2. Vibration reduction using autoparametric resonance in a high-Tc superconducting levitation system

    Science.gov (United States)

    Yamasaki, Hiroshi; Takazakura, Toyoki; Sakaguchi, Ryunosuke; Sugiura, Toshihiko

    2014-05-01

    High-Tc superconducting levitation systems have very small damping and enable stable levitation without control. Therefore, they can be applied to various kinds of application. However, there are some problems that small damping produces large vibration and nonlinearity of magnetic force can generate complicated phenomena. Accordingly, analysis of these phenomena and reduction of vibration occurring in the system are important. In this study, we examined reduction of vibration without using any absorbers, but utilizing autoparametric resonance caused by nonlinear coupling between vertical oscillation and horizontal oscillation. We conducted numerical analysis and experiments in order to investigate motions of a rigid bar levitated by the electromagnetic force from high-Tc superconductors. As a result, if the ratio of the natural frequency of vertical oscillation and that of horizontal oscillation is two to one, the vertical oscillation decreases while the horizontal oscillation is excited. Thus, it was confirmed that the amplitude of a primary resonance can be reduced by occurrence of autoparametric resonance without using any absorbers.

  3. Dynamic vibrations in wind energy systems: Application to vertical axis wind turbine

    Science.gov (United States)

    Mabrouk, Imen Bel; El Hami, Abdelkhalak; Walha, Lassâad; Zghal, Bacem; Haddar, Mohamed

    2017-02-01

    Dynamic analysis of Darrieus turbine bevel spur gear subjected to transient aerodynamic loads is carried out in the present study. The aerodynamic torque is obtained by solving the two dimensional unsteady incompressible Navies Stocks equation with the k-ω shear stress transport turbulence model. The results are presented for several values of tip speed ratio. The two-dimensional Computational Fluid Dynamics model is validated with experimental results. The optimum tip speed ratio is achieved, giving the best overall performance. In this study, we developed a lamped mass dynamic model with 14 degrees of freedom. This model is excited by external and internal issues sources. The main factors of these excitations are the periodic fluctuations of the gear meshes' stiffness and the unsteady aerodynamic torque oscillations. The vibration responses are obtained in time and frequency domains. The originality of our work is the correlation between the complexity of the aerodynamic phenomenon and the non-stationary dynamics vibration of the mechanical gearing system. The effect of the rotational speed on the dynamic behavior of the Darrieus turbine is also discussed. The present study shows that the variation of rotor rotational speed directly affects the torque production. However, there is a small change in the dynamic vibration of the studied gearing system.

  4. Experimental Active Vibration Control in Truss Structures Considering Uncertainties in System Parameters

    Directory of Open Access Journals (Sweden)

    Douglas Domingues Bueno

    2008-01-01

    Full Text Available This paper deals with the study of algorithms for robust active vibration control in flexible structures considering uncertainties in system parameters. It became an area of enormous interest, mainly due to the countless demands of optimal performance in mechanical systems as aircraft, aerospace, and automotive structures. An important and difficult problem for designing active vibration control is to get a representative dynamic model. Generally, this model can be obtained using finite element method (FEM or an identification method using experimental data. Actuators and sensors may affect the dynamics properties of the structure, for instance, electromechanical coupling of piezoelectric material must be considered in FEM formulation for flexible and lightly damping structure. The nonlinearities and uncertainties involved in these structures make it a difficult task, mainly for complex structures as spatial truss structures. On the other hand, by using an identification method, it is possible to obtain the dynamic model represented through a state space realization considering this coupling. This paper proposes an experimental methodology for vibration control in a 3D truss structure using PZT wafer stacks and a robust control algorithm solved by linear matrix inequalities.

  5. Coupled rotor/airframe vibration analysis

    Science.gov (United States)

    Sopher, R.; Studwell, R. E.; Cassarino, S.; Kottapalli, S. B. R.

    1982-01-01

    A coupled rotor/airframe vibration analysis developed as a design tool for predicting helicopter vibrations and a research tool to quantify the effects of structural properties, aerodynamic interactions, and vibration reduction devices on vehicle vibration levels is described. The analysis consists of a base program utilizing an impedance matching technique to represent the coupled rotor/airframe dynamics of the system supported by inputs from several external programs supplying sophisticated rotor and airframe aerodynamic and structural dynamic representation. The theoretical background, computer program capabilities and limited correlation results are presented in this report. Correlation results using scale model wind tunnel results show that the analysis can adequately predict trends of vibration variations with airspeed and higher harmonic control effects. Predictions of absolute values of vibration levels were found to be very sensitive to modal characteristics and results were not representative of measured values.

  6. Investigation of an energy harvesting MR damper in a vibration control system

    Science.gov (United States)

    Sapiński, Bogdan; Rosół, Maciej; Węgrzynowski, Marcin

    2016-12-01

    In this paper the authors investigate the performance of an energy harvesting MR damper (EH-MRD) employed in a semi-active vibration control system (SVCS) and used in a single DOF mechanical structure configuration. Main components of the newly proposed SCVS include the MR damper and an electromagnetic vibration energy harvester based on the Faraday’s law (EVEH) that converts vibration energy into electrical energy and delivers electrical power supplying the MR damper. The main objective of the study is to indicate that the SVCS, controlled by the specially designed embedded system, is feasible and presents good performance at the present stage of the research. The work describes investigation the unique features of the EH-MRD, i.e. its self-powering and self-sensing capabilities. Two cases were considered and the testing was done accordingly. In the case 1, only the self-powered capability was investigated. It was found out that harvested energy is sufficient to power the EH-MRD damper and to adjust it to structural vibration. The results confirmed the adequacy of the SVCS and demonstrated a significant reduction of the resonance peak. In the case 2, both the self-powering and self-sensing capabilities were investigated. Due to the self-sensing capability, the SCVS does not require any sensor. It appeared that thus harvested energy is sufficient to power the EH-MRD and enables self-sensing action since the signal of voltage induced by EVEH agrees with the relative velocity signal across the device. Similar to case 1, the resonance peak is significantly reduced.

  7. Vibration Effects of Nonclassically Damped Building-Piping Systems Subjected to Extreme Loads

    Directory of Open Access Journals (Sweden)

    YongHee Ryu

    2016-01-01

    Full Text Available Piping leakage can occur at T-joint, elbows, valves, or nozzles in nuclear power plants and nonnuclear power plants such as petrochemical plants when subjected to extreme loads and such leakage of piping systems can also lead to fire or explosion. For example, leakage of sodium, toxic gases, or nitrogen in hospitals can cause man-made hazards. The primary objective of this research is to understand the vibration effects due to classical/nonclassical damping with building-piping systems under extreme loads. The current evaluation employed finite-element analysis to calculate the effects of the responses of classically and nonclassically damped building-piping systems. Classical and nonclassical damping matrices for a coupled primary-secondary system were developed based on the Rayleigh equation. A total of 10 selected ground motions were applied to single degree of freedom (SDOF primary-SDOF secondary (2-DOF coupled systems in which the ratios of the natural frequencies between the primary and secondary systems ranged between 0.9 and 1.1. It revealed that the vibration effect of nonclassical damping was significant where the natural frequencies of the two systems were nearly tuned. For piping-material nonlinearity, the effects of nonclassical damping on the result forces of piping systems were not significantly different from those of classical damping.

  8. Vibration attenuation of a continuous rotor-blisk-journal bearing system employing smooth nonlinear energy sinks

    Science.gov (United States)

    Bab, Saeed; Khadem, S. E.; Shahgholi, Majid; Abbasi, Amirhassan

    2017-02-01

    The current paper investigates the effects of a number of smooth nonlinear energy sinks (NESs) located on the disk and bearings on the vibration attenuation of a rotor-blisk-journal bearing system under excitation of a mass eccentricity force. The blade and rotor are modeled using the Euler-Bernoulli beam theory. The nonlinear energy sinks on the bearing have a linear damping and an essentially nonlinear stiffness. The nonlinear energy sinks on the disk have a linear damping, linear stiffness, and an essentially nonlinear stiffness. It can be seen that the linear stiffness of the NESs on the disk is eliminated by the negative stiffness induced by the centrifugal force, and the collection of the NESs can be tuned to a required rotational speed of the rotor by varying the linear stiffness of the NESs. Furthermore, the remained stiffness of the NESs on the disk after elimination of their linear stiffness, would be essentially a nonlinear (nonlinearizable) one. Two nonlinear energy sinks in the vertical axes are positioned on the bearing housing and nnd NESs are located on the perimeter of the disk. The equations of motion are extracted using the extended Hamilton principle. The modal coordinates and complex transformations are employed to decrease the number of equations of motion. A genetic algorithm is used to optimize the parameters of the nonlinear energy sinks and its objective function is considered as minimizing the vibration of the rotating system within an operating speed range. In order to examine the periodic and non-periodic solutions of the system, time history, bifurcation diagram, Poincaré map, phase portrait, Lyapunov exponent, and power spectra analyses are performed. System shows periodic and quasi-periodic motions for different values of the system parameters. It is shown that the NESs on the disk and bearings have almost local effects on vibration reduction of rotating system. In addition, the optimum NESs remove the instability region from the

  9. Nonlinear dynamic analysis of single-sided and single-mass crushing system under impact and vibration

    Directory of Open Access Journals (Sweden)

    Suhuan NI

    2017-10-01

    Full Text Available To research and develop efficient vibrating type crusher, a single-sided dynamic model is established for the impact and vibration crushing system, and the differential equation of vibration is set up with Newton's law for dynamic analysis. By making amplitude frequency curve, hysteretic impact force curve and energy absorption curve, the influence of which on the system response is analyzed. Based on the conclusion and using numerical method, the primary forced resonance of the system is calculated, and the time history of displacement, velocity and acceleration is obtained, showing that the motion mass movement is not a simple harmonic motion, the nonlinear impact force is one of the factors that influences the vibration system, and the influence rules of clearance, vibration frequency on the amplitude frequency curve, impact force and energy absorption are also obtained. The gap between the material and the broken head should be kept as small as possible so as to achieve a better crushing effect with a smaller excitation force, and the system is best to work in the main resonant area to get a big impact. The research result provides reference for further study of rules and mechanism of the vibration systems.

  10. Vibrations and Eigenvalues

    Indian Academy of Sciences (India)

    We make music by causing strings, membranes, or air columns to vibrate. Engineers design safe structures by control- ling vibrations. I will describe to you a very simple vibrating system and the mathematics needed to analyse it. The ideas were born in the work of Joseph-Louis Lagrange (1736–1813), and I begin by quot-.

  11. Real-time observation of vibrational revival in the fastest molecular system

    Science.gov (United States)

    Rudenko, A.; Ergler, Th.; Feuerstein, B.; Zrost, K.; Schröter, C. D.; Moshammer, R.; Ullrich, J.

    2006-10-01

    After preparing a coherent vibrational wave packet in the hydrogen molecular ion by ionizing neutral H 2 molecules with a 6.5 fs, 760 nm laser pulse at 3 × 10 14 W/cm 2, we map its spatio-temporal evolution by the fragmentation induced with a second 6.5 fs laser pulse of doubled intensity. In this proof-of-principle experiment, we visualize the oscillations of this most fundamental molecular system, observe a dephasing of the vibrational wave packet and its subsequent revival. Whereas the experimental data exhibit an overall qualitative agreement with the results of a simple numerical simulation, noticeable discrepancy is found in the characteristic revival time. The most likely reasons for this disagreement originate from the simplifications used in the theoretical model, which assumes a Franck-Condon transition induced by the pump pulse with subsequent field-free propagation of the H2+ vibrational wave packet, and neglects the influence of the rotational motion.

  12. Vehicle Tracking and Counting System in Dusty Weather with Vibrating Camera Conditions

    Directory of Open Access Journals (Sweden)

    Nastaran Yaghoobi Ershadi

    2017-01-01

    Full Text Available Traffic surveillance systems are interesting to many researchers to improve the traffic control and reduce the risk caused by accidents. In this area, many published works are only concerned about vehicle detection in normal conditions. The camera may vibrate due to wind or bridge movement. Detection and tracking of vehicles are a very difficult task when we have bad weather conditions in winter (snowy, rainy, windy, etc. or dusty weather in arid and semiarid regions or at night, among others. In this paper, we proposed a method to track and count vehicles in dusty weather with a vibrating camera. For this purpose, we used a background subtraction based strategy mixed with extra processing to segment vehicles. In this paper, the extra processing included the analysis of the headlight size, location, and area. In our work, tracking was done between consecutive frames via a particle filter to detect the vehicle and pair the headlights using the connected component analysis. So, vehicle counting was performed based on the pairing result. Our proposed method was tested on several video surveillance records in different conditions such as in dusty or foggy weather, with a vibrating camera, and on roads with medium-level traffic volumes. The results showed that the proposed method performed better than other previously published methods, including the Kalman filter or Gaussian model, in different traffic conditions.

  13. Characteristics of steady vibration in a rotating hub-beam system

    Science.gov (United States)

    Zhao, Zhen; Liu, Caishan; Ma, Wei

    2016-02-01

    A rotating beam features a puzzling character in which its frequencies and modal shapes may vary with the hub's inertia and its rotating speed. To highlight the essential nature behind the vibration phenomena, we analyze the steady vibration of a rotating Euler-Bernoulli beam with a quasi-steady-state stretch. Newton's law is used to derive the equations governing the beam's elastic motion and the hub's rotation. A combination of these equations results in a nonlinear partial differential equation (PDE) that fully reflects the mutual interaction between the two kinds of motion. Via the Fourier series expansion within a finite interval of time, we reduce the PDE into an infinite system of a nonlinear ordinary differential equation (ODE) in spatial domain. We further nondimensionalize the ODE and discretize it via a difference method. The frequencies and modal shapes of a general rotating beam are then determined numerically. For a low-speed beam where the ignorance of geometric stiffening is feasible, the beam's vibration characteristics are solved analytically. We validate our numerical method and the analytical solutions by comparing with either the past experiments or the past numerical findings reported in existing literature. Finally, systematic simulations are performed to demonstrate how the beam's eigenfrequencies vary with the hub's inertia and rotating speed.

  14. Vibration absorption in systems with a nonlinear energy sink: Nonlinear damping

    Science.gov (United States)

    Starosvetsky, Y.; Gendelman, O. V.

    2009-07-01

    In this work, response regimes are investigated in a system comprising of a linear oscillator (subject to harmonic excitation) and a nonlinear energy sink (NES) with nonlinear damping characteristics. An analytical technique for the treatment of certain class of nonlinear damping functions is developed. Special attention is paid to the case of piecewise-quadratic damping, motivated by possible applications. It is demonstrated that the NES with a properly tuned piecewise-quadratic damping element allows complete elimination of undesirable periodic regimes. In this way, an efficient system of vibration absorption is obtained, and its performance can overcome that of a tuned mass damper (TMD). Numerical results agree satisfactorily with the analytical predictions.

  15. Coupled transverse and torsional vibrations in a mechanical system with two identical beams

    Science.gov (United States)

    Vlase, S.; Marin, M.; Scutaru, M. L.; Munteanu, R.

    2017-06-01

    The paper aims to study a plane system with bars, with certain symmetries. Such problems can be encountered frequently in industry and civil engineering. Considerations related to the economy of the design process, constructive simplicity, cost and logistics make the use of identical parts a frequent procedure. The paper aims to determine the properties of the eigenvalues and eigenmodes for transverse and torsional vibrations of a mechanical system where two of the three component bars are identical. The determination of these properties allows the calculus effort and the computation time and thus increases the accuracy of the results in such matters.

  16. A Case with Systemic Sclerosis Following Exposure To Silica and Vibration

    Directory of Open Access Journals (Sweden)

    Aslı Ürkmez

    2012-06-01

    Full Text Available Systemic sclerosis is an autoimmune disease characterized by inflammatory, vascular and sclerotic changes in the internal organs. Although the etiology is not known with certainty; silica dust, which is one of the environmental risk factors, can lead to scleroderma by some immunological changes. In this case, a mine worker, who worked in a mercury mine during a 15-year period, developed systemic sclerosis due to exposure to chronic silica and vibration, is presented. (Turk J Dermatol 2012; 6: 45-7

  17. Uncertainty modeling in vibration, control and fuzzy analysis of structural systems

    CERN Document Server

    Halder, Achintya; Ayyub, Bilal M

    1997-01-01

    This book gives an overview of the current state of uncertainty modeling in vibration, control, and fuzzy analysis of structural and mechanical systems. It is a coherent compendium written by leading experts and offers the reader a sampling of exciting research areas in several fast-growing branches in this field. Uncertainty modeling and analysis are becoming an integral part of system definition and modeling in many fields. The book consists of ten chapters that report the work of researchers, scientists and engineers on theoretical developments and diversified applications in engineering sy

  18. Vibration control of rotor-bearing system by controlled squeeze-film damper bearings

    Science.gov (United States)

    He, Erming; Gu, Jialiu

    1992-07-01

    A new vibration control scheme for rotor-bearing systems is presented which offers many advantages over the scheme proposed by Gu (1990). Due to the nonlinear state feedback, closed-loop control becomes possible. Thus control can be readily adjusted in accordance with transient state information. Optimal structure parameters are determined by the optimal control law. The control force is applied on line; by merely adjusting CSFDB structure parameters, control forces can be applied to the system. The feasibility of the present design is confirmed by simulation, which is performed for a flexible Jeffcott rotor elastically supported at both ends on identical CSFDBs.

  19. The Design of Vibration Sensing System Used for the Internet of Things

    Science.gov (United States)

    Ji, Wei; Ma, Xuejie

    2016-06-01

    A vibration sensing system used for the Internet of Things is presented in this paper. Using the distributed feedback fiber lasers (DFB-FL) collects external sound signals and digital phase generated carrier (PGC) method realizes wavelength demodulation. The platform is designed based on an open architecture and B/S (Browser/Server) technology which makes it an ideal platform to be operated under a network environment. The sensing system is no power supply and could be monitored anytime and anywhere which is the requirement of Internet of things.

  20. Selective confinement of vibrations in composite systems with alternate quasi-regular sequences

    Energy Technology Data Exchange (ETDEWEB)

    Montalban, A. [Departamento de Ciencia y Tecnologia de Materiales, Division de Optica, Universidad Miguel Hernandez, 03202 Elche (Spain); Velasco, V.R. [Instituto de Ciencia de Materiales de Madrid, CSIC, Sor Juana Ines de la Cruz 3, 28049 Madrid (Spain)]. E-mail: vrvr@icmm.csic.es; Tutor, J. [Departamento de Fisica Aplicada, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Fernandez-Velicia, F.J. [Departamento de Fisica de los Materiales, Facultad de Ciencias, Universidad Nacional de Educacion a Distancia, Senda del Rey 9, 28080 Madrid (Spain)

    2007-01-01

    We have studied the atom displacements and the vibrational frequencies of 1D systems formed by combinations of Fibonacci, Thue-Morse and Rudin-Shapiro quasi-regular stacks and their alternate ones. The materials are described by nearest-neighbor force constants and the corresponding atom masses, particularized to the Al, Ag systems. These structures exhibit differences in the frequency spectrum as compared to the original simple quasi-regular generations but the most important feature is the presence of separate confinement of the atom displacements in one of the sequences forming the total composite structure for different frequency ranges.

  1. Coupled transverse and torsional vibrations in a mechanical system with two identical beams

    Directory of Open Access Journals (Sweden)

    S. Vlase

    2017-06-01

    Full Text Available The paper aims to study a plane system with bars, with certain symmetries. Such problems can be encountered frequently in industry and civil engineering. Considerations related to the economy of the design process, constructive simplicity, cost and logistics make the use of identical parts a frequent procedure. The paper aims to determine the properties of the eigenvalues and eigenmodes for transverse and torsional vibrations of a mechanical system where two of the three component bars are identical. The determination of these properties allows the calculus effort and the computation time and thus increases the accuracy of the results in such matters.

  2. SHAPE EFFECT OF ANNULAR CONCENTRATOR IN ULTRASONIC SYSTEM ON AMPLIFICATION FACTOR OF VIBRATIONS AMPLITUDE

    Directory of Open Access Journals (Sweden)

    D. A. Stepanenko

    2016-01-01

    Full Text Available The paper contains a theoretical underpinning on creation of ultrasonic vibration concentrators based on annular elastic elements with non-circular (ellipse-like eccentric shape of internal contour. Shape of internal contour in polar coordinates is described by Fourier series relative to angular coordinate that consists of a constant term and first and second harmonics. An effect of geometric parameters of the concentrator on amplification factor and natural vibration frequencies has been investigated with the help of a finite element method. The paper reveals the possibility to control an amplification factor of annular concentrators while varying eccentricity of internal contour and mean value of cross-section thickness. The amplification factor satisfies a condition K < N, where N is thickness ratio of amplifier input and output sections, and it is decreasing with increase of vibration mode order. The similar condition has been satisfied for conical bar concentrator with the difference that in the case of bar concentrators an amplification is ensured due to variation of diameter and N will represent ratio of diameters. It has been proved that modification of internal contour shape makes it possible to carry out a wide-band tuning of natural frequencies of concentrator vibrations without alteration of its overall dimensions and substantial change of amplification factor, which is important for frequency matching of the concentrator and ultrasonic vibratory system. Advantages of the proposed concentrators include simplicity of design and manufacturing, small overall dimensions, possibility for natural frequency tuning by means of static load variation. The developed concentrators can find their application in ultrasonic devices and instruments for technological and medical purposes.

  3. Force Limiting Vibration Tests Evaluated from both Ground Acoustic Tests and FEM Simulations of a Flight Like Vehicle System Assembly

    Science.gov (United States)

    Smith, Andrew; LaVerde, Bruce; Waldon, James; Hunt, Ron

    2014-01-01

    Marshall Space Flight Center has conducted a series of ground acoustic tests with the dual goals of informing analytical judgment, and validating analytical methods when estimating vibroacoustic responses of launch vehicle subsystems. The process of repeatedly correlating finite element-simulated responses with test-measured responses has assisted in the development of best practices for modeling and post-processing. In recent work, force transducers were integrated to measure interface forces at the base of avionics box equipment. Other force data was indirectly measured using strain gauges. The combination of these direct and indirect force measurements has been used to support and illustrate the advantages of implementing the Force Limiting approach for equipment qualification tests. The comparison of force response from integrated system level tests to measurements at the same locations during component level vibration tests provides an excellent illustration. A second comparison of the measured response cases from the system level acoustic tests to finite element simulations has also produced some principles for assessing the suitability of Finite Element Models (FEMs) for making vibroacoustics estimates. The results indicate that when FEM models are employed to guide force limiting choices, they should include sufficient detail to represent the apparent mass of the system in the frequency range of interest.

  4. Design and experiment of controlled bistable vortex induced vibration energy harvesting systems operating in chaotic regions

    Science.gov (United States)

    Huynh, B. H.; Tjahjowidodo, T.; Zhong, Z.-W.; Wang, Y.; Srikanth, N.

    2018-01-01

    Vortex induced vibration based energy harvesting systems have gained interests in these recent years due to its potential as a low water current energy source. However, the effectiveness of the system is limited only at a certain water current due to the resonance principle that governs the concept. In order to extend the working range, a bistable spring to support the structure is introduced on the system. The improvement on the performance is essentially dependent on the bistable gap as one of the main parameters of the nonlinear spring. A sufficiently large bistable gap will result in a significant performance improvement. Unfortunately, a large bistable gap might also increase a chance of chaotic responses, which in turn will result in diminutive harvested power. To mitigate the problem, an appropriate control structure is required to stabilize the chaotic vibrations of a VIV energy converter with the bistable supporting structure. Based on the nature of the double-well potential energy in a bistable spring, the ideal control structure will attempt to drive the responses to inter-well periodic vibrations in order to maximize the harvested power. In this paper, the OGY control algorithm is designed and implemented to the system. The control strategy is selected since it requires only a small perturbation in a structural parameter to execute the control effort, thus, minimum power is needed to drive the control input. Facilitated by a wake oscillator model, the bistable VIV system is modelled as a 4-dimensional autonomous continuous-time dynamical system. To implement the controller strategy, the system is discretized at a period estimated from the subspace hyperplane intersecting to the chaotic trajectory, whereas the fixed points that correspond to the desired periodic orbits are estimated by the recurrence method. Simultaneously, the Jacobian and sensitivity matrices are estimated by the least square regression method. Based on the defined fixed point and the

  5. Decay Rate Measurement of the First Vibrationally Excited State of MgH+ in a Cryogenic Paul Trap

    DEFF Research Database (Denmark)

    Versolato, O.O.; Schwarz, M.; Hansen, A.K.

    2013-01-01

    We present a method to measure the decay rate of the first excited vibrational state of polar molecular ions that are part of a Coulomb crystal in a cryogenic linear Paul trap. Specifically, we have monitored the decay of the |ν=1,J=1⟩X towards the |ν=0,J=0⟩X level in MgH+ by saturated laser exci...

  6. Vibration Isolation System for Cryocoolers of Soft X-Ray Spectrometer (SXS) Onboard ASTRO-H (Hitomi)

    Science.gov (United States)

    Takei, Yoh; Yasuda, Susumu; Ishimura, Kosei; Iwata, Naoko; Okamoto, Atsushi; Sato, Yoichi; Ogawa, Mina; Sawada, Makoto; Kawano, Taro; Obara, Shingo; hide

    2016-01-01

    Soft X-ray Spectrometer (SXS) onboard ASTRO-H (named Hitomi after launch) is a micro-calorimeter-type spectrometer, installed in a dewar to be cooled at 50 mK. The energy resolution of the SXS engineering model suffered from micro-vibration from cryocoolers mounted on the dewar. This is mitigated for the flight model by introducing vibration isolation systems between the cryocoolers and the dewar. The detector performance of the flight model was verified before launch of the spacecraft in both ambient condition and thermal-vac condition, showing no detectable degradation in energy resolution. The in-orbit performance was also consistent with that on ground, indicating that the cryocoolers were not damaged by launch environment. The design and performance of the vibration isolation system along with the mechanism of how the micro-vibration could degrade the cryogenic detector is shown.

  7. Investigations into the Uncertainties of Interferometric Measurements of Linear and Circular Vibrations

    Directory of Open Access Journals (Sweden)

    Hans-Jürgen von Martens

    1997-01-01

    Full Text Available A uniform description is given of a method of measurement using a Michelson interferometer for measuring the linear motion quantities acceleration, velocity and displacement, and a diffraction grating interferometer for measuring the circular motion quantities angular acceleration, angular velocity and rotation angle. The paper focusses on an analysis of the dynamic behaviour of an interferometric measurement system based on the counting technique with regard to the measurement errors due to deterministic and stochastic disturbing quantities. The error analysis and description presented are aimed at giving some rules, mathematical expressions and graphical presentations that have proved to be helpful in recognizing the errors in interferometric measurements of motion quantities, optimizing the measurement conditions (e.g., filter settings, obtaining corrections and estimating the uncertainty of measurement.

  8. Analysis of the detection materials as resonant pads for attaching the measuring arm of the interferometer when sensing mechanical vibrations

    Science.gov (United States)

    Nedoma, Jan; Fajkus, Marcel; Martinek, Radek; Zboril, Ondrej; Bednarek, Lukas; Novak, Martin; Witas, Karel; Vasinek, Vladimir

    2017-05-01

    Fiber-optic sensors (FOS), today among the most widespread measuring sensors and during various types of measuring, are irreplaceable. Among the distinctive features include immunity to electromagnetic interference, passivity regarding power supply and high sensitivity. One of the representatives FOS is the interferometric sensors working on the principle of interference of light. Authors of this article focused on the analysis of the detection material as resonant pads for attaching the measuring arm of the interferometer when sensing mechanical vibrations (low frequencies). A typical example is the use of interferometer sensors in automobile traffic while sensing a vibration response from the roadway while passing the cars. For analysis was used sensor with Mach-Zehnder interferometer. Defined were different detection materials about different size and thickness. We analyzed the influence on the sensitivity (amplitude response) of the interferometer. Based on the results we have defined the best material for sensing mechanical vibrations. The signal was processed by applications created in LabView development environment. The results were verified by repeated testing in laboratory conditions.

  9. Vibration analysis of cryocoolers

    Science.gov (United States)

    Tomaru, Takayuki; Suzuki, Toshikazu; Haruyama, Tomiyoshi; Shintomi, Takakazu; Yamamoto, Akira; Koyama, Tomohiro; Li, Rui

    2004-05-01

    The vibrations of Gifford-McMahon (GM) and pulse-tube (PT) cryocoolers were measured and analyzed. The vibrations of the cold-stage and cold-head were measured separately to investigate their vibration mechanisms. The measurements were performed while maintaining the thermal conditions of the cryocoolers at a steady state. We found that the vibration of the cold-head for the 4 K PT cryocooler was two orders of magnitude smaller than that of the 4 K GM cryocooler. On the other hand, the vibration of the cold-stages for both cryocoolers was of the same order of magnitude. From a spectral analysis of the vibrations and a simulation, we concluded that the vibration of the cold-stage is caused by an elastic deformation of the pulse tubes (or cylinders) due to the pressure oscillation of the working gas.

  10. Vibration analysis of cryocoolers

    Energy Technology Data Exchange (ETDEWEB)

    Tomaru, Takayuki; Suzuki, Toshikazu; Haruyama, Tomiyoshi; Shintomi, Takakazu; Yamamoto, Akira [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki (Japan); Koyama, Tomohiro; Rui Li [Sumitomo Heavy Industries Ltd., Tokyo (Japan)

    2004-05-01

    The vibrations of Gifford-McMahon (GM) and pulse-tube (PT) cryocoolers were measured and analyzed. The vibrations of the cold-stage and cold-head were measured separately to investigate their vibration mechanisms. The measurements were performed while maintaining the thermal conditions of the cryocoolers at a steady state. We found that the vibration of the cold-head for the 4 K PT cryocooler was two orders of magnitude smaller than that of the 4 K GM cryocooler. On the other hand, the vibration of the cold-stages for both cryocoolers was of the same order of magnitude. From a spectral analysis of the vibrations and a simulation, we concluded that the vibration of the cold-stage is caused by an elastic deformation of the pulse tubes (or cylinders) due to the pressure oscillation of the working gas. (Author)

  11. Study on Frame Vibration Suppression Control Method for Position Sensorless drive System of Permanent Magnet Synchronous Motor

    OpenAIRE

    Supharat, Suthep

    2016-01-01

    Permanent magnet synchronous motor has been widely used in variable speed drive system for various fields, such as industry, household applications, etc., The merits of PMSM are rugged construction, high efficiency, high torque to current ratio, low inertia, etc. Recently, PMSM driven air-conditioners and refrigerators are obviously increased. However, the compressors used in the air-conditioners have the problem that vibration occurs due to the torque pulsation. The frame vibration results i...

  12. Systems Measures of Water Distribution System Resilience

    Energy Technology Data Exchange (ETDEWEB)

    Klise, Katherine A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Murray, Regan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Walker, La Tonya Nicole [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-01-01

    Resilience is a concept that is being used increasingly to refer to the capacity of infrastructure systems to be prepared for and able to respond effectively and rapidly to hazardous events. In Section 2 of this report, drinking water hazards, resilience literature, and available resilience tools are presented. Broader definitions, attributes and methods for measuring resilience are presented in Section 3. In Section 4, quantitative systems performance measures for water distribution systems are presented. Finally, in Section 5, the performance measures and their relevance to measuring the resilience of water systems to hazards is discussed along with needed improvements to water distribution system modeling tools.

  13. Stress analysis of vibrating pipelines

    Science.gov (United States)

    Zachwieja, Janusz

    2017-03-01

    The pipelines are subject to various constraints variable in time. Those vibrations, if not monitored for amplitude and frequency, may result in both the fatigue damage in the pipeline profile at high stress concentration and the damage to the pipeline supports. If the constraint forces are known, the system response may be determined with high accuracy using analytical or numerical methods. In most cases, it may be difficult to determine the constraint parameters, since the industrial pipeline vibrations occur due to the dynamic effects of the medium in the pipeline. In that case, a vibration analysis is a suitable alternative method to determine the stress strain state in the pipeline profile. Monitoring the pipeline vibration levels involves a comparison between the measured vibration parameters and the permissible values as depicted in the graphs for a specific pipeline type. Unfortunately, in most cases, the studies relate to the petrochemical industry and thus large diameter, long and straight pipelines. For a pipeline section supported on both ends, the response in any profile at the entire section length can be determined by measuring the vibration parameters at two different profiles between the pipeline supports. For a straight pipeline section, the bending moments, variable in time, at the ends of the analysed section are a source of the pipe excitation. If a straight pipe section supported on both ends is excited by the bending moments in the support profile, the starting point for the stress analysis are the strains, determined from the Euler-Bernoulli equation. In practice, it is easier to determine the displacement using the experimental methods, since the factors causing vibrations are unknown. The industrial system pipelines, unlike the transfer pipelines, are straight sections at some points only, which makes it more difficult to formulate the equation of motion. In those cases, numerical methods can be used to determine stresses using the

  14. Relaxation dynamics in quantum dissipative systems: The microscopic effect of intramolecular vibrational energy redistribution

    Energy Technology Data Exchange (ETDEWEB)

    Uranga-Piña, L. [Facultad de Física, Universidad de la Habana, San Lázaro y L, Vedado, 10400 Havana (Cuba); Institute for Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, D-14195 Berlin (Germany); Tremblay, J. C., E-mail: jean.c.tremblay@gmail.com [Institute for Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, D-14195 Berlin (Germany)

    2014-08-21

    We investigate the effect of inter-mode coupling on the vibrational relaxation dynamics of molecules in weak dissipative environments. The simulations are performed within the reduced density matrix formalism in the Markovian regime, assuming a Lindblad form for the system-bath interaction. The prototypical two-dimensional model system representing two CO molecules approaching a Cu(100) surface is adapted from an ab initio potential, while the diatom-diatom vibrational coupling strength is systematically varied. In the weak system-bath coupling limit and at low temperatures, only first order non-adiabatic uni-modal coupling terms contribute to surface-mediated vibrational relaxation. Since dissipative dynamics is non-unitary, the choice of representation will affect the evolution of the reduced density matrix. Two alternative representations for computing the relaxation rates and the associated operators are thus compared: the fully coupled spectral basis, and a factorizable ansatz. The former is well-established and serves as a benchmark for the solution of Liouville-von Neumann equation. In the latter, a contracted grid basis of potential-optimized discrete variable representation is tailored to incorporate most of the inter-mode coupling, while the Lindblad operators are represented as tensor products of one-dimensional operators, for consistency. This procedure results in a marked reduction of the grid size and in a much more advantageous scaling of the computational cost with respect to the increase of the dimensionality of the system. The factorizable method is found to provide an accurate description of the dissipative quantum dynamics of the model system, specifically of the time evolution of the state populations and of the probability density distribution of the molecular wave packet. The influence of intra-molecular vibrational energy redistribution appears to be properly taken into account by the new model on the whole range of coupling strengths. It

  15. The Influence of Amplitude- and Frequency-Dependent Stiffness of Rail Pads on the Random Vibration of a Vehicle-Track Coupled System

    Directory of Open Access Journals (Sweden)

    Kai Wei

    2016-01-01

    Full Text Available The nonlinear curves between the external static loads of Thermoplastic Polyurethane Elastomer (TPE rail pads and their compressive deformations were measured. A finite element model (FEM for a rail-fastener system was produced to determine the nonlinear compressive deformations of TPE rail pads and their nonlinear static stiffness under the static vehicle weight and the preload of rail fastener. Next, the vertical vehicle-track coupled model was employed to investigate the influence of the amplitude- and frequency-dependent stiffness of TPE rail pads on the vehicle-track random vibration. It is found that the static stiffness of TPE rail pads ranges from 19.1 to 37.9 kN/mm, apparently different from the classical secant stiffness of 26.7 kN/mm. Additionally, compared with the nonlinear amplitude- and frequency-dependent stiffness of rail pads, the classical secant stiffness would not only severely underestimate the random vibration acceleration levels of wheel-track coupled system at frequencies of 65–150 Hz but also alter the dominant frequency-distribution of vehicle wheel and steel rail. Considering that these frequencies of 65–150 Hz are the dominant frequencies of ground vibration accelerations caused by low-speed railway, the nonlinear amplitude- and frequency-dependent stiffness of rail pads should be taken into account in prediction of environment vibrations due to low-speed railway.

  16. A novel vibration-based fault diagnostic algorithm for gearboxes under speed fluctuations without rotational speed measurement

    Science.gov (United States)

    Hong, Liu; Qu, Yongzhi; Dhupia, Jaspreet Singh; Sheng, Shuangwen; Tan, Yuegang; Zhou, Zude

    2017-09-01

    The localized failures of gears introduce cyclic-transient impulses in the measured gearbox vibration signals. These impulses are usually identified from the sidebands around gear-mesh harmonics through the spectral analysis of cyclo-stationary signals. However, in practice, several high-powered applications of gearboxes like wind turbines are intrinsically characterized by nonstationary processes that blur the measured vibration spectra of a gearbox and deteriorate the efficacy of spectral diagnostic methods. Although order-tracking techniques have been proposed to improve the performance of spectral diagnosis for nonstationary signals measured in such applications, the required hardware for the measurement of rotational speed of these machines is often unavailable in industrial settings. Moreover, existing tacho-less order-tracking approaches are usually limited by the high time-frequency resolution requirement, which is a prerequisite for the precise estimation of the instantaneous frequency. To address such issues, a novel fault-signature enhancement algorithm is proposed that can alleviate the spectral smearing without the need of rotational speed measurement. This proposed tacho-less diagnostic technique resamples the measured acceleration signal of the gearbox based on the optimal warping path evaluated from the fast dynamic time-warping algorithm, which aligns a filtered shaft rotational harmonic signal with respect to a reference signal assuming a constant shaft rotational speed estimated from the approximation of operational speed. The effectiveness of this method is validated using both simulated signals from a fixed-axis gear pair under nonstationary conditions and experimental measurements from a 750-kW planetary wind turbine gearbox on a dynamometer test rig. The results demonstrate that the proposed algorithm can identify fault information from typical gearbox vibration measurements carried out in a resource-constrained industrial environment.

  17. Measuring name system health

    NARCIS (Netherlands)

    Casalicchio, Emiliano; Caselli, M.; Coletta, Alessio; Di Blasi, Salvatore; Fovino, Igor Nai; Butts, Jonathan; Shenoi, Sujeet

    2012-01-01

    Modern critical infrastructure assets are exposed to security threats arising from their use of IP networks and the Domain Name System (DNS). This paper focuses on the health of DNS. Indeed, due to the increased reliance on the Internet, the degradation of DNS could have significant consequences for

  18. Measurement System and Calibration report

    DEFF Research Database (Denmark)

    Gómez Arranz, Paula; Villanueva, Héctor

    This Measurement System & Calibration report is describing DTU’s measurement system installed at a specific wind turbine. A major part of the sensors has been installed by others (see [1]) the rest of the sensors have been installed by DTU. The results of the measurements, described in this repor...

  19. Charging power optimization for nonlinear vibration energy harvesting systems subjected to arbitrary, persistent base excitations

    Science.gov (United States)

    Dai, Quanqi; Harne, Ryan L.

    2018-01-01

    The vibrations of mechanical systems and structures are often a combination of periodic and random motions. Emerging interest to exploit nonlinearities in vibration energy harvesting systems for charging microelectronics may be challenged by such reality due to the potential to transition between favorable and unfavorable dynamic regimes for DC power delivery. Therefore, a need exists to devise an optimization method whereby charging power from nonlinear energy harvesters remains maximized when excitation conditions are neither purely harmonic nor purely random, which have been the attention of past research. This study meets the need by building from an analytical approach that characterizes the dynamic response of nonlinear energy harvesting platforms subjected to combined harmonic and stochastic base accelerations. Here, analytical expressions are formulated and validated to optimize charging power while the influences of the relative proportions of excitation types are concurrently assessed. It is found that about a 2 times deviation in optimal resistive loads can reduce the charging power by 20% when the system is more prominently driven by harmonic base accelerations, whereas a greater proportion of stochastic excitation results in a 11% reduction in power for the same resistance deviation. In addition, the results reveal that when the frequency of a predominantly harmonic excitation deviates by 50% from optimal conditions the charging power reduces by 70%, whereas the same frequency deviation for a more stochastically dominated excitation reduce total DC power by only 20%. These results underscore the need for maximizing direct current power delivery for nonlinear energy harvesting systems in practical operating environments.

  20. Acoustic determination of cracks in welded joints. [by resonant structural vibration measurements

    Science.gov (United States)

    Baltanoiu, M.; Criciotoiu, E.

    1974-01-01

    The acoustic analysis method permits detection of any cracks that might take place and their manner of propagation. The study deals with the cracks produced in experiments to determine the welding technology for a welded gray cast iron workpiece by using piezoelectric transducers to determine vibration acceleration.

  1. Vibration of hydraulic machinery

    CERN Document Server

    Wu, Yulin; Liu, Shuhong; Dou, Hua-Shu; Qian, Zhongdong

    2013-01-01

    Vibration of Hydraulic Machinery deals with the vibration problem which has significant influence on the safety and reliable operation of hydraulic machinery. It provides new achievements and the latest developments in these areas, even in the basic areas of this subject. The present book covers the fundamentals of mechanical vibration and rotordynamics as well as their main numerical models and analysis methods for the vibration prediction. The mechanical and hydraulic excitations to the vibration are analyzed, and the pressure fluctuations induced by the unsteady turbulent flow is predicted in order to obtain the unsteady loads. This book also discusses the loads, constraint conditions and the elastic and damping characters of the mechanical system, the structure dynamic analysis, the rotor dynamic analysis and the system instability of hydraulic machines, including the illustration of monitoring system for the instability and the vibration in hydraulic units. All the problems are necessary for vibration pr...

  2. Development of a sine-dwell ground vibration test (GVT) system

    CSIR Research Space (South Africa)

    Van Zyl, Lourens H

    2006-02-27

    Full Text Available Vibration Test (GVT) System Presented at CSIR Research and Innovation Conference: 27 - 28 February 2006 DPSS Mr Louw van Zyl Mr Erik Wegman 27 February 2006 Slide 2 © CSIR 2006 www.csir.co.za Agenda • Introduction Why ground... stream_source_info VanZyl_2006.pdf.txt stream_content_type text/plain stream_size 9765 Content-Encoding UTF-8 stream_name VanZyl_2006.pdf.txt Content-Type text/plain; charset=UTF-8 Development of a Sine-Dwell Ground...

  3. Microbial ecology measurement system

    Science.gov (United States)

    1972-01-01

    The sensitivity and potential rapidity of the PIA test that was demonstrated during the feasibility study warranted continuing the effort to examine the possibility of adapting this test to an automated procedure that could be used during manned missions. The effort during this program has optimized the test conditions for two important respiratory pathogens, influenza virus and Mycoplasma pneumoniae, developed a laboratory model automated detection system, and investigated a group antigen concept for virus detection. Preliminary tests on the handling of oropharygeal clinical samples for PIA testing were performed using the adenovirus system. The results obtained indicated that the PIA signal is reduced in positive samples and is increased in negative samples. Treatment with cysteine appeared to reduce nonspecific agglutination in negative samples but did not maintain the signal in positive samples.

  4. Influence of high-frequency vibrations on the onset of convection in a two-layer system

    Science.gov (United States)

    Zenkovskaya, Svetlana M.; Novosiadliy, Vasili A.

    2008-03-01

    This Note deals with the influence of high-frequency translational oscillations on the onset of convection in a two-layer system of weakly heterogeneous immiscible fluids with deformable interface. The averaging method is applied to the generalized Oberbeck-Boussinesq equations. Vibration-generated forces and tensions appear as the result. A transition to the Oberbeck-Boussinesq approximation is made in the averaged equations. Analysis of averaged equations leads to the following conclusions. Horizontal vibrations are obtained not influencing the onset of convection, and in the cases of other directions the influence of vibration is determined by a single parameter, depending on velocity amplitude and direction. Vibration is shown to generate effective surface tension, smoothing the interface. Critical parameters are calculated for the case of homogeneous fluids. To cite this article: S.M. Zenkovskaya, V.A. Novosiadliy, C. R. Mecanique 336 (2008).

  5. Model-free fuzzy control of a magnetorheological elastomer vibration isolation system: analysis and experimental evaluation

    Science.gov (United States)

    Fu, Jie; Li, Peidong; Wang, Yuan; Liao, Guanyao; Yu, Miao

    2016-03-01

    This paper addresses the problem of micro-vibration control of a precision vibration isolation system with a magnetorheological elastomer (MRE) isolator and fuzzy control strategy. Firstly, a polyurethane matrix MRE isolator working in the shear-compression mixed mode is introduced. The dynamic characteristic is experimentally tested, and the range of the frequency shift and the model parameters of the MRE isolator are obtained from experimental results. Secondly, a new semi-active control law is proposed, which uses isolation structure displacement and relative displacement between the isolation structure and base as the inputs. Considering the nonlinearity of the MRE isolator and the excitation uncertainty of an isolation system, the designed semi-active fuzzy logic controller (FLC) is independent of a system model and is robust. Finally, the numerical simulations and experiments are conducted to evaluate the performance of the FLC with single-frequency and multiple-frequency excitation, respectively, and the experimental results show that the acceleration transmissibility is reduced by 54.04% at most, which verifies the effectiveness of the designed semi-active FLC. Moreover, the advantages of the approach are demonstrated in comparison to the passive control and ON-OFF control.

  6. Multi-level Simulation of a Real Time Vibration Monitoring System Component

    Science.gov (United States)

    Robertson, Bryan A.; Wilkerson, Delisa

    2005-01-01

    This paper describes the development of a custom built Digital Signal Processing (DSP) printed circuit board designed to implement the Advanced Real Time Vibration Monitoring Subsystem proposed by Marshall Space Flight Center (MSFC) Transportation Directorate in 2000 for the Space Shuttle Main Engine Advanced Health Management System (AHMS). This Real Time Vibration Monitoring System (RTVMS) is being developed for ground use as part of the AHMS Health Management Computer-Integrated Rack Assembly (HMC-IRA). The HMC-IRA RTVMS design contains five DSPs which are highly interconnected through individual communication ports, shared memory, and a unique communication router that allows all the DSPs to receive digitized data fiom two multi-channel analog boards simultaneously. This paper will briefly cover the overall board design but will focus primarily on the state-of-the-art simulation environment within which this board was developed. This 16-layer board with over 1800 components and an additional mezzanine card has been an extremely challenging design. Utilization of a Mentor Graphics simulation environment provided the unique board and system level simulation capability to ascertain any timing or functional concerns before production. By combining VHDL, Synopsys Software and Hardware Models, and the Mentor Design Capture Environment, multiple simulations were developed to verify the RTVMS design. This multi-level simulation allowed the designers to achieve complete operability without error the first time the RTVMS printed circuit board was powered. The HMC-IRA design has completed all engineering and deliverable unit testing. P

  7. Running interfacial waves in a two-layer fluid system subject to longitudinal vibrations.

    Science.gov (United States)

    Goldobin, D S; Pimenova, A V; Kovalevskaya, K V; Lyubimov, D V; Lyubimova, T P

    2015-05-01

    We study the waves at the interface between two thin horizontal layers of immiscible fluids subject to high-frequency horizontal vibrations. Previously, the variational principle for energy functional, which can be adopted for treatment of quasistationary states of free interface in fluid dynamical systems subject to vibrations, revealed the existence of standing periodic waves and solitons in this system. However, this approach does not provide regular means for dealing with evolutionary problems: neither stability problems nor ones associated with propagating waves. In this work, we rigorously derive the evolution equations for long waves in the system, which turn out to be identical to the plus (or good) Boussinesq equation. With these equations one can find all the time-independent-profile solitary waves (standing solitons are a specific case of these propagating waves), which exist below the linear instability threshold; the standing and slow solitons are always unstable while fast solitons are stable. Depending on initial perturbations, unstable solitons either grow in an explosive manner, which means layer rupture in a finite time, or falls apart into stable solitons. The results are derived within the long-wave approximation as the linear stability analysis for the flat-interface state [D.V. Lyubimov and A.A. Cherepanov, Fluid Dynamics 21, 849 (1986)] reveals the instabilities of thin layers to be long wavelength.

  8. On the Free Vibration Modeling of Spindle Systems: A Calibrated Dynamic Stiffness Matrix

    Directory of Open Access Journals (Sweden)

    Omar Gaber

    2014-01-01

    Full Text Available The effect of bearings on the vibrational behavior of machine tool spindles is investigated. This is done through the development of a calibrated dynamic stiffness matrix (CDSM method, where the bearings flexibility is represented by massless linear spring elements with tuneable stiffness. A dedicated MATLAB code is written to develop and to assemble the element stiffness matrices for the system’s multiple components and to apply the boundary conditions. The developed method is applied to an illustrative example of spindle system. When the spindle bearings are modeled as simply supported boundary conditions, the DSM model results in a fundamental frequency much higher than the system’s nominal value. The simply supported boundary conditions are then replaced by linear spring elements, and the spring constants are adjusted such that the resulting calibrated CDSM model leads to the nominal fundamental frequency of the spindle system. The spindle frequency results are also validated against the experimental data. The proposed method can be effectively applied to predict the vibration characteristics of spindle systems supported by bearings.

  9. Free Vibration Characteristic of Multilevel Beam Based on Transfer Matrix Method of Linear Multibody Systems

    Directory of Open Access Journals (Sweden)

    Laith K. Abbas

    2014-01-01

    Full Text Available In this paper, an approach based on transfer matrix method of linear multibody systems (MS-TMM is developed to analyze the free vibration of a multilevel beam, coupled by spring/dashpot systems attached to them in-span. The Euler-Bernoulli model is used for the transverse vibration of the beams, and the spring/dashpot system represents a simplified model of a viscoelastic material. MS-TMM reduces the dynamic problem to an overall transfer equation which only involves boundary state vectors. The state vectors at the boundaries are composed of displacements, rotation angles, bending moments, and shear forces, which are partly known and partly unknown, and end up with reduced overall transfer matrix. Nontrivial solution requires the coefficient matrix to be singular to yield the required natural frequencies. This paper implements two novel algorithms based on the methodology by reducing the zero search of the reduced overall transfer matrix's determinate to a minimization problem and demonstrates a simple and robust algorithm being much more efficient than direct enumeration. The proposal method is easy to formulate, systematic to apply, and simple to code and can be extended to complex structures with any boundary conditions. Numerical results are presented to show the validity of the proposal method against the published literature.

  10. Study of the influences of rotary table speed on stick-slip vibration of the drilling system

    Directory of Open Access Journals (Sweden)

    Liping Tang

    2015-12-01

    Full Text Available Stick-slip vibration presents one of the major causes of drilling problems, such as premature tool failures, low drilling efficiency and poor wellbore quality. The objective of this work is to investigate the influences of rotary table speed (RTS on stick-slip phenomenon of the drilling system. In this study, the drilling system is treated as a lumped torsional pendulum model of which the bit/rock interaction is regarded as Coulomb friction. By analyzing cases with different RTS, two types of vibrations on the bit are found: stick-slip vibration and uniform motion. With an increase in the RTS, the stick-slip vibration on the drill bit disappears once the RTS arrives at its critical value. For the cases that stick-slip vibrations occur, the phase trajectories converge toward a limit cycle. For the cases that stick-slip vibration does not appear, the drill bit tends to stabilize at a uniform motion and the phase trajectories correspond to contracting spirals observed in the phase plane.

  11. Guidelines for numerical vibration and acoustic analysis of disc brake squeal using simple models of brake systems

    Science.gov (United States)

    Oberst, S.; Lai, J. C. S.; Marburg, S.

    2013-04-01

    Brake squeal has become of increasing concern to the automotive industry but guidelines on how to confidently predict squeal propensity are yet to be established. While it is standard practice to use the complex eigenvalue analysis to predict unstable vibration modes, there have been few attempts to calculate their acoustic radiation. Here guidelines are developed for numerical vibration and acoustic analysis of brake squeal using models of simplified brake systems with friction contact by considering (1) the selection of appropriate elements, contact and mesh; (2) the extraction of surface velocities via forced response; and (3) the calculation of the acoustic response itself. Results indicate that quadratic tetrahedral elements offer the best option for meshing more realistic geometry. A mesh has to be sufficiently fine especially in the contact region to predict mesh-independent unstable vibration modes. Regarding the vibration response, only the direct, steady-state method with a pressurised pad and finite sliding formulation (allowing contact separation) should be used. Comparison of different numerical methods suggest that a obroadband fast multi-pole boundary element method with the Burton-Miller formulation would efficiently solve the acoustic radiation of a full brake system. Results also suggest that a pad lift-off can amplify the acoustic radiation similar to a horn effect. A horn effect is also observed for chamfered pads which are used in practice to reduce the number and strength of unstable vibration modes. These results highlight the importance of optimising the pad shape to reduce acoustic radiation of unstable vibration modes.

  12. The impact of vibrational Raman scattering of air on DOAS measurements of atmospheric trace gases

    Science.gov (United States)

    Lampel, J.; Frieß, U.; Platt, U.

    2015-09-01

    In remote sensing applications, such as differential optical absorption spectroscopy (DOAS), atmospheric scattering processes need to be considered. After inelastic scattering on N2 and O2 molecules, the scattered photons occur as additional intensity at a different wavelength, effectively leading to "filling-in" of both solar Fraunhofer lines and absorptions of atmospheric constituents, if the inelastic scattering happens after the absorption. Measured spectra in passive DOAS applications are typically corrected for rotational Raman scattering (RRS), also called Ring effect, which represents the main contribution to inelastic scattering. Inelastic scattering can also occur in liquid water, and its influence on DOAS measurements has been observed over clear ocean water. In contrast to that, vibrational Raman scattering (VRS) of N2 and O2 has often been thought to be negligible, but it also contributes. Consequences of VRS are red-shifted Fraunhofer structures in scattered light spectra and filling-in of Fraunhofer lines, additional to RRS. At 393 nm, the spectral shift is 25 and 40 nm for VRS of O2 and N2, respectively. We describe how to calculate VRS correction spectra according to the Ring spectrum. We use the VRS correction spectra in the spectral range of 420-440 nm to determine the relative magnitude of the cross-sections of VRS of O2 and N2 and RRS of air. The effect of VRS is shown for the first time in spectral evaluations of Multi-Axis DOAS data from the SOPRAN M91 campaign and the MAD-CAT MAX-DOAS intercomparison campaign. The measurements yield in agreement with calculated scattering cross-sections that the observed VRS(N2) cross-section at 393 nm amounts to 2.3 ± 0.4 % of the cross-section of RRS at 433 nm under tropospheric conditions. The contribution of VRS(O2) is also found to be in agreement with calculated scattering cross-sections. It is concluded, that this phenomenon has to be included in the spectral evaluation of weak absorbers as it

  13. Measurement of intravenously administered γ-Fe2O3 particle amount in mice tissues using vibrating sample magnetometer.

    Science.gov (United States)

    Kishimoto, Mikio; Miyamoto, Ryoichi; Oda, Tatsuya; Ohara, Yusuke; Yanagihara, Hideto; Ohkohchi, Nobuhiro; Kita, Eiji

    2014-12-01

    Dispersions of platelet γ-Fe2O3 particles 30-50nm in size were intravenously administered to mice and the amount of particles accumulated in each tissue was obtained by magnetization measurement using a vibrating sample magnetometer. Background noise was greatly reduced by measuring dried tissues under a magnetic field of 500 Oe so that the effect of diamagnetism was slight. Remarkable particle accumulation was observed in the liver and spleen. Considerable particle accumulation was observed in the lung when a large quantity of γ-Fe2 O3 particles was administered. There was no significant particle accumulation in the kidney and heart.

  14. NOISE AND VIBRATION DAMPING FOR YACHT INTERIOR

    Directory of Open Access Journals (Sweden)

    Murat Aydın

    2016-12-01

    Full Text Available Vibration damping and sound insulation are essential for all vehicles. Because moving parts and external factors such as wind, tracks, etc. can cause vibration and noise. Wave which is a dynamic force, drive system and HVAC systems are the main vibration and noise generators in a vessel. These all can affect comfort level on board yachts. Different types of isolators and absorbers such as sylomer®, cork panels, etc. are used to reduce these effects. Comfort level on board yachts can be increased using these types of materials. Otherwise, discomfort of passenger and crew may increase. These materials not only reduce structure-borne and air-borne noise and vibrations from waves, air, engines, pumps, generators and HVAC systems but also protect vibration sensitive interior or fittings. Noise and vibration evaluation is an important issue for this reason. And, measurement tools must be used not only to minimize this problem but also fulfill the regulations such as “comfort class”. Besides, providing quiet and low vibration increases the costs too. From this point of view, this study aims to explain clearly how noise and vibration damping can be done in a yacht.

  15. GPR measurements and estimation for road subgrade damage caused by neighboring train vibration load

    Science.gov (United States)

    Zhao, Yonghui; Lu, Gang; Ge, Shuangcheng

    2015-04-01

    Generally, road can be simplified as a three-layer structure, including subgrade, subbase and pavement. Subgrade is the native material underneath a constructed road. It is commonly compacted before the road construction, and sometimes stabilized by the addition of asphalt, lime or other modifiers. As the mainly supporting structure, subgrade damage would lead in pavement settlement, displacement and crack. Assessment and monitoring of the subgrade condition currently involves trial pitting and subgrade sampling. However there is a practical limit on spatial density at which trail pits and cores can be taken. Ground penetrating radar (GPR) has been widely used to characterize highway pavement profiling, concrete structure inspection and railroad track ballast estimation. GPR can improve the economics of road maintenance. Long-term train vibration load might seriously influence the stability of the subgrade of neighboring road. Pavement settlement and obvious cracks have been found at a municipal road cross-under a railway with culvert box method. GPR test was conducted to estimate the subgrade and soil within 2.0 m depth for the further road maintenance. Two survey lines were designed in each lane, and total 12 GPR sections have been implemented. Considering both the penetrating range and the resolution, a antenna with a 500 MHz central frequency was chosen for on-site GPR data collection. For data acquisition, we used the default operating environment and scanning parameters for the RAMAC system: 60kHz transmission rate, 50 ns time window, 1024 samples per scan and 0.1 m step-size. Continuous operation was used; the antenna was placed on the road surface and slowly moved along the road. The strong surrounding disturbance related to railroad and attachments, might decrease the reliability of interpretation results. Some routine process methods (including the background removing, filtering) have been applied to suppress the background noise. Additionally, attribute

  16. A method for the direct measurement of electronic site populations in a molecular aggregate using two-dimensional electronic-vibrational spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Nicholas H. C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Dong, Hui [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Oliver, Thomas A. A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Fleming, Graham R. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-09-28

    Two dimensional electronic spectroscopy has proven to be a valuable experimental technique to reveal electronic excitation dynamics in photosynthetic pigment-protein complexes, nanoscale semiconductors, organic photovoltaic materials, and many other types of systems. It does not, however, provide direct information concerning the spatial structure and dynamics of excitons. 2D infrared spectroscopy has become a widely used tool for studying structural dynamics but is incapable of directly providing information concerning electronic excited states. 2D electronic-vibrational (2DEV) spectroscopy provides a link between these domains, directly connecting the electronic excitation with the vibrational structure of the system under study. In this work, we derive response functions for the 2DEV spectrum of a molecular dimer and propose a method by which 2DEV spectra could be used to directly measure the electronic site populations as a function of time following the initial electronic excitation. We present results from the response function simulations which show that our proposed approach is substantially valid. This method provides, to our knowledge, the first direct experimental method for measuring the electronic excited state dynamics in the spatial domain, on the molecular scale.

  17. A method for the direct measurement of electronic site populations in a molecular aggregate using two-dimensional electronic-vibrational spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Nicholas H. C.; Dong, Hui; Oliver, Thomas A. A.; Fleming, Graham R., E-mail: grfleming@lbl.gov [Department of Chemistry, University of California, Berkeley, California 94720 (United States); Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Kavli Energy Nanosciences Institute at Berkeley, Berkeley, California 94720 (United States)

    2015-09-28

    Two dimensional electronic spectroscopy has proved to be a valuable experimental technique to reveal electronic excitation dynamics in photosynthetic pigment-protein complexes, nanoscale semiconductors, organic photovoltaic materials, and many other types of systems. It does not, however, provide direct information concerning the spatial structure and dynamics of excitons. 2D infrared spectroscopy has become a widely used tool for studying structural dynamics but is incapable of directly providing information concerning electronic excited states. 2D electronic-vibrational (2DEV) spectroscopy provides a link between these domains, directly connecting the electronic excitation with the vibrational structure of the system under study. In this work, we derive response functions for the 2DEV spectrum of a molecular dimer and propose a method by which 2DEV spectra could be used to directly measure the electronic site populations as a function of time following the initial electronic excitation. We present results from the response function simulations which show that our proposed approach is substantially valid. This method provides, to our knowledge, the first direct experimental method for measuring the electronic excited state dynamics in the spatial domain, on the molecular scale.

  18. Prediction des vibrations eoliennes d'un systeme conducteur-amortisseur avec une methode temporelle non lineaire

    Science.gov (United States)

    Langlois, Sebastien

    Les vibrations eoliennes sont la cause principale de bris de conducteurs en fatigue des lignes aeriennes de transport d'energie electrique. Ces vibrations sont dues a des detachements tourbillonnaires produits dans le sillage du conducteur. Une methode commune de reduction des vibrations est l'ajout d'amortisseurs de vibrations pres des pinces de suspension. Contrairement aux essais en ligne experimentale, la modelisation numerique permet d'evaluer rapidement et a faible cout la performance d'un amortisseur de vibration sur une portee de ligne aerienne. La technologie la plus frequemment utilisee fait appel au principe de balance d'energie (PBE) en evaluant le niveau de vibrations pour lequel la puissance injectee par le vent est egale a la puissance dissipee par le conducteur et l'amortisseur. Les methodes actuelles pour la prediction des vibrations reposent sur des hypotheses simplificatrices quant a la modelisation de l'interaction conducteur-amortisseur. Une approche prometteuse pour la prediction des vibrations est l'utilisation d'un modele numerique temporel non lineaire qui permet de mieux representer la masse, la geometrie, la rigidite et l'amortissement du systeme. L'objectif principal de ce projet de recherche est de developper un modele numerique avec integration temporelle directe d'un conducteur et d'un amortisseur en vibration permettant de reproduire le comportement dynamique du systeme pour la gamme de frequence et d'amplitude typique des vibrations eoliennes des conducteurs. Un modele par elements finis d'un conducteur seul en vibration resolu par integration temporelle directe a d'abord ete developpe en considerant une rigidite de flexion variable. Comme une rigidite de flexion constante et egale a 50% de la rigidite de flexion maximale theorique ( EImax) est jugee adequate pour la modelisation du conducteur, c'est cette valeur qui a ete utilisee pour la suite du projet. Ensuite, des modeles non-lineaires pour deux types d'amortisseur de

  19. Low-wavenumber turbulent boundary layer wall-pressure measurements from vibration data on a cylinder in pipe flow

    Science.gov (United States)

    Bonness, William K.; Capone, Dean E.; Hambric, Stephen A.

    2010-09-01

    The response of a structure to turbulent boundary layer (TBL) excitation has been an area of research for roughly 50 years, although uncertainties persist surrounding the low-wavenumber levels of the TBL surface pressure spectrum. In this experimental investigation, a cylindrical shell with a smooth internal surface is subjected to TBL excitation from water in fully developed pipe flow. The cylinder's vibration response to this excitation is used to determine low-wavenumber TBL surface pressure levels at lower streamwise wavenumbers than previously reported ( k1/ k cJournal of Sound and Vibration 112(1) (1987) 125-147] and is roughly 23 dB lower than an early TBL model by Corcos [ Journal of the Acoustical Society of America 35(2) (1963) 192-198]. The current data is a few decibels below the lower bound of related measurements in air by Farabee and Geib [ ICIASF '75 Record, 1975, pp. 311-319] and Martin and Leehey [ Journal of Sound and Vibration 52(1) (1977) 95-120]. A simple wavenumber white form for the TBL surface pressure spectrum at low-wavenumber is suggested.

  20. Analytical Kinematics and Coupled Vibrations Analysis of Mechanical System Operated by Solar Array Drive Assembly

    Science.gov (United States)

    Sattar, M.; Wei, C.; Jalali, A.; Sattar, R.

    2017-07-01

    To address the impact of solar array (SA) anomalies and vibrations on performance of precision space-based operations, it is important to complete its accurate jitter analysis. This work provides mathematical modelling scheme to approximate kinematics and coupled micro disturbance dynamics of rigid load supported and operated by solar array drive assembly (SADA). SADA employed in analysis provides a step wave excitation torque to activate the system. Analytical investigations into kinematics is accomplished by using generalized linear and Euler angle coordinates, applying multi-body dynamics concepts and transformations principles. Theoretical model is extended, to develop equations of motion (EoM), through energy method (Lagrange equation). The main emphasis is to research coupled frequency response by determining energies dissipated and observing dynamic behaviour of internal vibratory systems of SADA. The disturbance model captures discrete active harmonics of SADA, natural modes and vibration amplifications caused by interactions between active harmonics and structural modes of mechanical assembly. The proposed methodology can help to predict true micro disturbance nature of SADA operating rigid load. Moreover, performance outputs may be compared against actual mission requirements to assess precise spacecraft controller design to meet next space generation stringent accuracy goals.