Sample records for vibration magnitude increased

  1. The effects of sound level and vibration magnitude on the relative discomfort of noise and vibration. (United States)

    Huang, Yu; Griffin, Michael J


    The relative discomfort caused by noise and vibration, how this depends on the level of noise and the magnitude of vibration, and whether the noise and vibration are presented simultaneously or sequentially has been investigated in a laboratory study with 20 subjects. Noise and vertical vibration were reproduced with all 49 combinations of 7 levels of noise and 7 magnitudes of vibration to allow the discomfort caused by one of the stimuli to be judged relative to the other stimulus using magnitude estimation. In four sessions, subjects judged noise relative to vibration and vibration relative to noise, with both simultaneous and sequential presentations of the stimuli. The equivalence of noise and vibration was not greatly dependent on whether the stimuli were simultaneous or sequential, but highly dependent on whether noise was judged relative to vibration or vibration was judged relative to noise. When judging noise, higher magnitude vibrations appeared to mask the discomfort caused by low levels of noise. When judging vibration, higher level noises appeared to mask the discomfort caused by low magnitudes of vibration. The judgment of vibration discomfort was more influenced by noise than the judgment of noise discomfort was influenced by vibration.

  2. Magnitude-dependence of equivalent comfort contours for fore-and-aft, lateral, and vertical vibration at the foot for seated persons (United States)

    Morioka, Miyuki; Griffin, Michael J.


    Vibration at the feet can contribute to discomfort in many forms of transport and in some buildings. Knowledge of the frequency-dependence of discomfort caused by foot vibration, and how this varies with vibration magnitude, will assist the prediction of discomfort caused by vibration. With groups of 12 seated subjects, this experimental study determined absolute thresholds for the perception of foot vibration and quantified the discomfort caused by vibration at the foot. The study investigated a wide range of magnitudes (from the threshold of perception to levels associated with severe discomfort) over a wide range of frequencies (from 8 to 315 Hz in one-third octave steps) in each of the three orthogonal translational axes (fore-and-aft, lateral, and vertical). The effects of gender and shoes on absolute thresholds for the perception of vertical vibration at the foot were also investigated. Within each of the three axes, the vibration acceleration corresponding to the absolute thresholds for the perception of vibration, and also all contours showing conditions producing equivalent discomfort, were highly frequency-dependent at frequencies greater than about 40 Hz. The acceleration threshold contours were U-shaped at frequencies greater than 80 Hz in all three axes of excitation, suggesting the involvement of the Pacinian channel in vibration perception. At supra-threshold levels, the frequency-dependence of the equivalent comfort contours in each of the three axes was highly dependent on vibration magnitude. With increasing vibration magnitude, the conditions causing similar discomfort across the frequency range approximated towards constant velocity. Thresholds were not greatly affected by wearing shoes or subject gender. The derived frequency weightings imply that no single linear frequency weighting can provide accurate predictions of discomfort caused by a wide range of magnitudes of foot vibration.

  3. Low magnitude high frequency vibration promotes adipogenic differentiation of bone marrow stem cells via P38 MAPK signal.

    Directory of Open Access Journals (Sweden)

    Qian Zhao

    Full Text Available Low magnitude high frequency vibration (LMHFV has been mainly reported for its influence on the musculoskeletal system, particularly the bone tissue. In the bone structure, osteogenic activity is the main focus of study with regards to LMHFV. However, adipogenesis, another important mode of differentiation in the bone marrow cavity that might be affected by LMHFV, is much less researched. Furthermore, the molecular mechanism of how LMHFV influences adipogenesis still needs to be understood. Here, we tested the effect of LMHFV (0.3g, 40 Hz, amplitude: 50μm, 15min/d, on multipotent stem cells (MSCs, which are the common progenitors of osteogenic, chondrogenic, adipogenic and myogenic cells. It is previously shown that LMHFV promotes osteogenesis of MSCs. In this study, we further revealed its effect on adipo-differentiation of bone marrow stem cells (BMSCs and studied the underlying signaling pathway. We found that when treated with LMHFV, the cells showed a higher expression of PPARγ, C/EBPα, adiponectin and showed more oil droplets. After vibration, the protein expression of PPARγ increased, and the phosphorylation of p38 MAPK was enhanced. After treating cells with SB203580, a specific p38 inhibitor, both the protein level of PPARγ illustrated by immunofluorescent staining and the oil droplets number, were decreased. Altogether, this indicates that p38 MAPK is activated during adipogenesis of BMSCs, and this is promoted by LMHFV. Our results demonstrating that specific parameters of LMHFV promotes adipogenesis of MSCs and enhances osteogenesis, highlights an unbeneficial side effect of vibration therapy used for preventing obesity and osteoporosis.

  4. Low-magnitude whole body vibration does not affect bone mass but does affect weight in ovariectomized rats

    NARCIS (Netherlands)

    O.P. van der Jagt (Olav); J.C. van der Linden (Jacqueline); J.H. Waarsing (Jan); J.A.N. Verhaar (Jan); H.H. Weinans (Harrie)


    textabstractMechanical loading has stimulating effects on bone architecture, which can potentially be used as a therapy for osteoporosis. We investigated the skeletal changes in the tibia of ovariectomized rats during treatment with whole body vibration (WBV). Different low-magnitude WBV treatment

  5. Increases in flood magnitudes in California under warming climates (United States)

    Das, Tapash; Maurer, Edwin P.; Pierce, David W.; Dettinger, Michael D.; Cayah, Daniel R.


    Downscaled and hydrologically modeled projections from an ensemble of 16 Global Climate Models suggest that flooding may become more intense on the western slopes of the Sierra Nevada mountains, the primary source for California’s managed water system. By the end of the 21st century, all 16 climate projections for the high greenhouse-gas emission SRES A2 scenario yield larger floods with return periods ranging 2–50 years for both the Northern Sierra Nevada and Southern Sierra Nevada, regardless of the direction of change in mean precipitation. By end of century, discharges from the Northern Sierra Nevada with 50-year return periods increase by 30–90% depending on climate model, compared to historical values. Corresponding flood flows from the Southern Sierra increase by 50–100%. The increases in simulated 50 year flood flows are larger (at 95% confidence level) than would be expected due to natural variability by as early as 2035 for the SRES A2 scenario.

  6. The effect of low-magnitude whole body vibration on bone density and microstructure in men and women with chronic motor complete paraplegia. (United States)

    Wuermser, Lisa-Ann; Beck, Lisa A; Lamb, Jeffry L; Atkinson, Elizabeth J; Amin, Shreyasee


    To examine the effect of low-magnitude whole body vibration on bone density and microstructure in women and men with chronic motor complete paraplegia. We studied nine subjects (four women and five men) with motor complete paraplegia of 2 years duration or more, age 20-50 years. Subjects were instructed to stand on a low-magnitude vibration plate within a standing frame for 20 minutes per day, 5 days a week, and for 6 months. Bone density at the proximal femur by dual-energy X-ray absorptiometry and bone microstructure at the distal tibia by high-resolution peripheral quantitative computed tomography were assessed at four timepoints over 12 months (baseline, at 3 months and 6 months while on intervention, and after 6 months off intervention). Standing on the low-magnitude vibration plate with a standing frame was well tolerated by participants. However, most subjects did not show an improvement in bone density or microstructure after 6 months of intervention, or any relevant changes 6 months following the discontinuation of the low-magnitude vibration. We were unable to identify an improvement in either bone density or microstructure following 6 months use of a low-magnitude vibration plate in women or men with chronic motor complete paraplegia. Longer duration of use may be necessary, or it is possible that this intervention is of limited benefit following chronic spinal cord injury.

  7. Landslides in Vibrating Sand-Box; Preliminary Results Reporting Types of Slope-Failure and Apparent Frequency Magnitude (Area) Power Law Relations. (United States)

    Aharonov, E.; Katz, O.


    It is recognized that hazardous natural phenomena such as earthquakes, forest fires and landslides often follow a power-law frequency-magnitude relations. Naturally occurring landslides populations, both seismic and hydrologically triggered, show non-cumulative power law frequency-magnitude (area) relations with slope of 2.3-3 for the large landslides part of the population. Numerical simulations of sand pile avalanches obtain a non-cumulative frequency-size distribution which also follows a power-law but with a slope of 1. In this work we study the nature and area distribution of slope failure triggered in a vibrating wet (1%wt) sand box. We used a 28 cubic cm box with sand pile crest resting on the top of one inner face and foot on the opposite face base. Initial slope angle was about 50deg, vibrating frequency 10Hz and individual test duration lasted a few minutes. Three different accelerations directions were tested: vertical, slope perpendicular, and normal horizontal accelerations. Acceleration magnitudes ranged from 0.1 to 1.2g. Slope performance was continuously recorded using a digital video camera. We observed that vertical vibrations larger than 1.0 g, induced mainly a few centimeter wide block-slides and toppling from a step like scarp that migrated up the slope. Block sliding rate was approximately one every few seconds. Final slope cross-section is S shaped with normal faulting at its crest. Final slope angle was about 35deg. Lower accelerations or lower initial slope angles yielded only surface grain flow. Horizontal shaking yielded different behavior: Above a threshold acceleration (0.5g and 0.7g for shaking parallel and normal to slope direction, respectively), surface flow occurred initially. It was followed by a box-wide slump, which first remained coherent and then progressively disintegrated. Lower accelerations or initial slope angle yield only surface grain flow. Finally, the upper surface areas of tens of block-slides induced in the above

  8. Effects of 18-month low-magnitude high-frequency vibration on fall rate and fracture risks in 710 community elderly--a cluster-randomized controlled trial. (United States)

    Leung, K S; Li, C Y; Tse, Y K; Choy, T K; Leung, P C; Hung, V W Y; Chan, S Y; Leung, A H C; Cheung, W H


    This study is a prospective cluster-randomized controlled clinical trial involving 710 elderly subjects to investigate the long-term effects of low-magnitude high-frequency vibration (LMHFV) on fall and fracture rates, muscle performance, and bone quality. The results confirmed that LMHFV is effective in reducing fall incidence and enhancing muscle performance in the elderly. Falls are direct causes of fragility fracture in the elderly. LMHFV has been shown to improve muscle function and bone quality. This study is to investigate the efficacy of LMHFV in preventing fall and fractures among the elderly in the community. A cluster-randomized controlled trial was conducted with 710 postmenopausal females over 60 years. A total of 364 participants received daily 20 min LMHFV (35 Hz, 0.3 g), 5 days/week for 18 months; 346 participants served as control. Fall or fracture rate was taken as the primary outcome. Also, quadriceps muscle strength, balancing abilities, bone mineral density (BMD), and quality of life (QoL) assessments were done at 0, 9, and 18 months. With an average of 66.0% compliance in the vibration group, 18.6% of 334 vibration group subjects reported fall or fracture incidences compared with 28.7% of 327 in the control (adjusted HR = 0.56, p = 0.001). The fracture rate of vibration and control groups were 1.1 and 2.3 % respectively (p = 0.171). Significant improvements were found in reaction time, movement velocity, and maximum excursion of balancing ability assessment, and also the quadriceps muscle strength (p < 0.001). No significant differences were found in the overall change of BMD. Minimal adverse effects were documented. LMHFV is effective in fall prevention with improved muscle strength and balancing ability in the elderly. We recommend its use in the community as an effective fall prevention program and to decrease related injuries.

  9. Low-Magnitude High-Frequency Vibration Accelerated the Foot Wound Healing of n5-streptozotocin-induced Diabetic Rats by Enhancing Glucose Transporter 4 and Blood Microcirculation. (United States)

    Yu, Caroline Oi-Ling; Leung, Kwok-Sui; Jiang, Jonney Lei; Wang, Tina Bai-Yan; Chow, Simon Kwoon-Ho; Cheung, Wing-Hoi


    Delayed wound healing is a Type 2 diabetes mellitus (DM) complication caused by hyperglycemia, systemic inflammation, and decreased blood microcirculation. Skeletal muscles are also affected by hyperglycemia, resulting in reduced blood flow and glucose uptake. Low Magnitude High Frequency Vibration (LMHFV) has been proven to be beneficial to muscle contractility and blood microcirculation. We hypothesized that LMHFV could accelerate the wound healing of n5-streptozotocin (n5-STZ)-induced DM rats by enhancing muscle activity and blood microcirculation. This study investigated the effects of LMHFV in an open foot wound created on the footpad of n5-STZ-induced DM rats (DM_V), compared with no-treatment DM (DM), non-DM vibration (Ctrl_V) and non-DM control rats (Ctrl) on Days 1, 4, 8 and 13. Results showed that the foot wounds of DM_V and Ctrl_V rats were significantly reduced in size compared to DM and Ctrl rats, respectively, at Day 13. The blood glucose level of DM_V rats was significantly reduced, while the glucose transporter 4 (GLUT4) expression and blood microcirculation of DM_V rats were significantly enhanced in comparison to those of DM rats. In conclusion, LMHFV can accelerate the foot wound healing process of n5-STZ rats.

  10. The differential effects of increasing frequency and magnitude of extreme events on coral populations. (United States)

    Fabina, Nicholas S; Baskett, Marissa L; Gross, Kevin


    Extreme events, which have profound ecological consequences, are changing in both frequency and magnitude with climate change. Because extreme temperatures induce coral bleaching, we can explore the relative impacts of changes in frequency and magnitude of high temperature events on coral reefs. Here, we combined climate projections and a dynamic population model to determine how changing bleaching regimes influence coral persistence. We additionally explored how coral traits and competition with macroalgae mediate changes in bleaching regimes. Our results predict that severe bleaching events reduce coral persistence more than frequent bleaching. Corals with low adult mortality and high growth rates are successful when bleaching is mild, but bleaching resistance is necessary to persist when bleaching is severe, regardless of frequency. The existence of macroalgae-dominated stable states reduces coral persistence and changes the relative importance of coral traits. Building on previous studies, our results predict that management efforts may need to prioritize protection of "weaker" corals with high adult mortality when bleaching is mild, and protection of "stronger" corals with high bleaching resistance when bleaching is severe. In summary, future reef projections and conservation targets depend on both local bleaching regimes and biodiversity.

  11. Stimulated angiogenesis for fracture healing augmented by low-magnitude, high-frequency vibration in a rat model-evaluation of pulsed-wave doppler, 3-D power Doppler ultrasonography and micro-CT microangiography. (United States)

    Cheung, Wing-Hoi; Sun, Ming-Hui; Zheng, Yong-Ping; Chu, Winnie Chiu-Wing; Leung, Andraay Hon-Chi; Qin, Ling; Wei, Fang-Yuan; Leung, Kwok-Sui


    This study aimed to investigate the mechanism of low-magnitude high-frequency vibration (LMHFV) treatment on angiogenesis and blood flow for enhancement of fracture healing. Nine-month-old ovariectomized (OVX) and sham-operated (Sham) rats received closed fractures creation at the femora and were randomized into LMHFV treatment (Sham-V, OVX-V) or control (Sham-C, OVX-C) groups. Pulsed-wave Doppler indicated an increase in blood flow velocity of the femoral artery at weeks 2 (OVX pair: p = 0.030) and 4 (OVX pair: p = 0.012; Sham pair: p = 0.020) post-treatment. Significantly enhanced vascular volume (VV) at the fracture site in the vibration groups was demonstrated by 3-D high-frequency power Doppler at week 2 (Sham pair: p = 0.021) and micro-computed tomography (microCT) microangiography at weeks 2 (OVX pair: p = 0.009) and 4 (OVX pair: p = 0.034), which echoed the osteogenesis findings by radiographic and microCT analysis. VV in the OVX groups was inferior to the Sham groups. However, OVX-V showed higher percentages of angiogenic enhancement than Sham-V. Despite impaired neo-angiogenesis in osteoporotic fractures, LMHFV could increase blood flow and angiogenesis in both normal and osteoporotic fractures, thus enhancing fracture healing. Copyright © 2012 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  12. Higher magnitude cash payments improve research follow-up rates without increasing drug use or perceived coercion. (United States)

    Festinger, David S; Marlowe, Douglas B; Dugosh, Karen L; Croft, Jason R; Arabia, Patricia L


    In a prior study [Festinger, D.S., Marlowe, D.B., Croft, J.R., Dugosh, K.L., Mastro, N.K., Lee, P.A., DeMatteo, D.S., Patapis, N.S., 2005. Do research payments precipitate drug use or coerce participation? Drug Alcohol Depend. 78 (3) 275-281] we found that neither the mode (cash vs. gift card) nor magnitude ($10, $40, or $70) of research follow-up payments increased rates of new drug use or perceptions of coercion. However, higher payments and payments in cash were associated with better follow-up attendance, reduced tracking efforts, and improved participant satisfaction with the study. The present study extended those findings to higher payment magnitudes. Participants from an urban outpatient substance abuse treatment program were randomly assigned to receive $70, $100, $130, or $160 in either cash or a gift card for completing a follow-up assessment at 6 months post-admission (n congruent with 50 per cell). Apart from the payment incentives, all participants received a standardized, minimal platform of follow-up efforts. Findings revealed that neither the magnitude nor mode of payment had a significant effect on new drug use or perceived coercion. Consistent with our previous findings, higher payments and cash payments resulted in significantly higher follow-up rates and fewer tracking calls. In addition participants receiving cash vs. gift cards were more likely to use their payments for essential, non-luxury purchases. Follow-up rates for participants receiving cash payments of $100, $130, and $160 approached or exceeded the FDA required minimum of 70% for studies to be considered in evaluations of new medications. This suggests that the use of higher magnitude payments and cash payments may be effective strategies for obtaining more representative follow-up samples without increasing new drug use or perceptions of coercion.

  13. Induced vibrations increase performance of a winged self-righting robot (United States)

    Othayoth, Ratan; Xuan, Qihan; Li, Chen

    When upside down, cockroaches can open their wings to dynamically self-right. In this process, an animal often has to perform multiple unsuccessful maneuvers to eventually right, and often flails its legs. Here, we developed a cockroach-inspired winged self-righting robot capable of controlled body vibrations to test the hypothesis that vibrations assist self-righting transitions. Robot body vibrations were induced by an oscillating mass (10% of body mass) and varied by changing oscillation frequency. We discovered that, as the robot's body vibrations increased, righting probability increased, and righting time decreased (P <0.0001, ANOVA), confirming our hypothesis. To begin to understand the underlying physics, we developed a locomotion energy landscape model. Our model revealed that the kinetic energy fluctuations due to vibrations were comparable to the potential energy barriers required to transition from a metastable overturned orientation to an upright orientation. Our study supports the plausibility of locomotion energy landscapes for understanding locomotor transitions, but highlights the need for further stochastic modeling to capture the uncertain nature of when righting maneuvers result in successful righting.

  14. Profile of refractive errors in European Caucasian children with Autistic Spectrum Disorder; increased prevalence and magnitude of astigmatism. (United States)

    Anketell, Pamela M; Saunders, Kathryn J; Gallagher, Stephen; Bailey, Clare; Little, Julie-Anne


    Autistic Spectrum Disorder (ASD) is a common neurodevelopmental disorder characterised by impairment of communication, social interaction and repetitive behaviours. Only a small number of studies have investigated fundamental clinical measures of vision including refractive error. The aim of this study was to describe the refractive profile of a population of children with ASD compared to typically developing (TD) children. Refractive error was assessed using the Shin-Nippon NVision-K 5001 open-field autorefractor following the instillation of cyclopentolate hydrochloride 1% eye drops. A total of 128 participants with ASD (mean age 10.9 ± 3.3 years) and 206 typically developing participants (11.5 ± 3.1 years) were recruited. There was no significant difference in median refractive error, either by spherical equivalent or most ametropic meridian between the ASD and TD groups (Spherical equivalent, Mann-Whitney U307 = 1.15, p = 0.25; Most Ametropic Meridian, U305 = 0.52, p = 0.60). Median refractive astigmatism was -0.50DC (range 0.00 to -3.50DC) for the ASD group and -0.50DC (Range 0.00 to -2.25DC) for the TD group. Magnitude and prevalence of refractive astigmatism (defined as astigmatism ≥1.00DC) was significantly greater in the ASD group compared to the typically developing group (ASD 26%, TD 8%, magnitude U305 = 3.86, p = 0.0001; prevalence (χ12=17.71 , p < 0.0001). This is the first study to describe the refractive profile of a population of European Caucasian children with ASD compared to a TD population of children. Unlike other neurodevelopmental conditions, there was no increased prevalence of spherical refractive errors in ASD but astigmatic errors were significantly greater in magnitude and prevalence. This highlights the need to examine refractive errors in this population. © 2016 The Authors Ophthalmic & Physiological Optics © 2016 The College of Optometrists.

  15. Whole-body-vibration-induced increase in leg muscle activity during different squat exercises. (United States)

    Roelants, Machteld; Verschueren, Sabine M P; Delecluse, Christophe; Levin, Oron; Stijnen, Valère


    This study analyzed leg muscle activity during whole-body vibration (WBV) training. Subjects performed standard unloaded isometric exercises on a vibrating platform (Power Plate): high squat (HS), low squat (LS), and 1-legged squat (OL). Muscle activity of the rectus femoris, vastus lateralis, vastus medialis, and gastrocnemius was recorded in 15 men (age 21.2 +/- 0.8 years) through use of surface electromyography (EMG). The exercises were performed in 2 conditions: with WBV and without (control [CO]) a vibratory stimulus of 35 Hz. Muscle activation during WBV was compared with CO and with muscle activation during isolated maximal voluntary contractions (MVCs). Whole-body vibration resulted in a significantly higher (p < 0.05) EMG root-mean-square compared with CO in all muscle groups and all exercises (between +39.9 +/- 17.5% and +360.6 +/- 57.5%). The increase in muscle activity caused by WBV was significantly higher (p < 0.05) in OL compared with HS and LS. In conclusion, WBV resulted in an increased activation of the leg muscles. During WBV, leg muscle activity varied between 12.6 and 82.4% of MVC values.

  16. Wireless sensing and vibration control with increased redundancy and robustness design. (United States)

    Li, Peng; Li, Luyu; Song, Gangbing; Yu, Yan


    Control systems with long distance sensor and actuator wiring have the problem of high system cost and increased sensor noise. Wireless sensor network (WSN)-based control systems are an alternative solution involving lower setup and maintenance costs and reduced sensor noise. However, WSN-based control systems also encounter problems such as possible data loss, irregular sampling periods (due to the uncertainty of the wireless channel), and the possibility of sensor breakdown (due to the increased complexity of the overall control system). In this paper, a wireless microcontroller-based control system is designed and implemented to wirelessly perform vibration control. The wireless microcontroller-based system is quite different from regular control systems due to its limited speed and computational power. Hardware, software, and control algorithm design are described in detail to demonstrate this prototype. Model and system state compensation is used in the wireless control system to solve the problems of data loss and sensor breakdown. A positive position feedback controller is used as the control law for the task of active vibration suppression. Both wired and wireless controllers are implemented. The results show that the WSN-based control system can be successfully used to suppress the vibration and produces resilient results in the presence of sensor failure.

  17. Pro-inflammatory cytokines expression increases following low- and high-magnitude cyclic loading of lumbar ligaments (United States)

    D’Ambrosia, Peter; King, Karen; Davidson, Bradley; Zhou, Bing He; Lu, Yun


    Repetitive or overuse disorders of the lumbar spine affect the lives of workers and athletes. We hypothesize that repetitive anterior lumbar flexion–extension under low or high load will result in significantly elevated pro-inflammatory cytokines expression several hours post-activity. High loads will exhibit significantly higher expression than low loads. Lumbar spine of in vivo feline was subjected to cyclic loading at 0.25 Hz for six 10-min periods with 10 min of rest in between. One group was subjected to a low peak load of 20 N, whereas the second group to a high peak load of 60 N. Following a 7-h post-loading rest, the supraspinous ligaments of L-3/4, L-4/5 and L-5/6 and the unstimulated T-10/11 were excised for mRNA analysis and IL-1β, IL-6, IL-8, TNFα and TGFβ1 pro-inflammatory cytokines expression. Creep (laxity) developed in the lumbar spine during the loading and the subsequent 7 h of rest was calculated. A two-way mixed model ANOVA was used to assess difference in each cytokines expression between the two groups and control. Tukey HSD post hoc analysis delineated specific significant effects. Significance was set at 0.05. Low and high-load groups exhibited development of creep throughout the cyclic loading period and gradual recovery throughout the 7-h rest period. Residual creep of 24.8 and 30.2% were present in the low and high-load groups, respectively, 7-h post-loading. Significant increases in expression of all cytokines measured relative to control were obtained for supraspinous ligaments from both low and high-load magnitudes. IL-6, IL-8 and TGFβ1 expression in the high-load group were significantly higher relative to the low-load group. Significant increases in cytokines expression indicating tissue inflammation are observed several hours post-repetitive lumbar flexion–extension regardless of the load magnitude applied. Repetitive occupational and athletic activity, regardless of the load applied, may be associated with the


    Directory of Open Access Journals (Sweden)

    Belhadef RACHID


    Full Text Available Spectral analysis is the key tool for the study of vibration signals in rotating machinery. In this work, the vibration analy-sis applied for conditional preventive maintenance of such machines is proposed, as part of resolved problems related to vibration detection on the organs of these machines. The vibration signal of a centrifugal pump was treated to mount the benefits of the approach proposed. The obtained results present the signal estimation of a pump vibration using Fourier transform technique compared by the spectral analysis methods based on Prony approach.

  19. Magnitude of Increased Infliximab Clearance Imposed by Anti-infliximab Antibodies in Crohn's Disease Is Determined by Their Concentration

    DEFF Research Database (Denmark)

    Edlund, Helena; Steenholdt, Casper; Ainsworth, Mark A


    Antibodies (Abs) against infliximab (IFX) increase IFX clearance and can result in treatment failure and acute hypersensitivity reactions. However, interpretation of their clinical value is complicated by individual differences in Ab responses and methods used for quantification. The increase in ...

  20. An Evaluation of the use of Laser-Vibration Melting to Increase the Surface Roughness of Metal Objects

    Directory of Open Access Journals (Sweden)

    Grabas B.


    Full Text Available This paper presents preliminary, experimental results of a new, hybrid method of increasing the surface roughness of metal objects. In this new approach, metal objects are melted with a mobile laser beam while they are being rotated. A vibration generator provides circular vibrations with an amplitude of 3 mm, and the vibration plane is perpendicular to the moving laser beam. The melting tests were performed using flat carbon steel samples at a predetermined frequency of circular vibrations. The effects of laser power and laser beam scanning velocity on the melted shapes were studied. All laser melting procedures were performed at a vibration frequency of 105 Hz. The melted samples were subjected to microscopic evaluation and the Ra parameter, which characterises mean roughness, was measured using a profilometer. Melting metal samples with physically smooth surfaces (Ra = 0.21 µm resulted in surface structures of varied roughness values, with Ra ranging from 5 µm to approximately 58 µm. The studies were undertaken to employ this technology for the purpose of passive heat exchange intensification of heating surfaces in practical applications.

  1. Flaxseed dietary fibers lower cholesterol and increase fecal fat excretion, but magnitude of effect depend on food type. (United States)

    Kristensen, Mette; Jensen, Morten G; Aarestrup, Julie; Petersen, Kristina En; Søndergaard, Lise; Mikkelsen, Mette S; Astrup, Arne


    Dietary fibers have been proposed to play a role in cardiovascular risk as well as body weight management. Flaxseeds are a good source of dietary fibers, and a large proportion of these are water-soluble viscous fibers. Here, we examine the effect of flaxseed dietary fibers in different food matrices on blood lipids and fecal excretion of fat and energy in a double-blind randomized crossover study with 17 subjects. Three different 7-d diets were tested: a low-fiber control diet (Control), a diet with flaxseed fiber drink (3/day) (Flax drink), and a diet with flaxseed fiber bread (3/day) (Flax bread). Total fat and energy excretion was measured in feces, blood samples were collected before and after each period, and appetite sensation registered 3 times daily before main meals. Compared to control, Flax drink lowered fasting total-cholesterol and LDL-cholesterol by 12 and 15%, respectively, (p < 0.01), whereas Flax bread only produced a reduction of 7 and 9%, respectively (p < 0.05). Fecal fat and energy excretion increased by 50 and 23% with Flax drink consumption compared to control (p < 0.05), but only fecal fat excretion was increased with Flax bread compared to control (p < 0.05). Both Flax drink and Flax bread resulted in decreased plasma total and LDL-cholesterol and increased fat excretion, but the food matrix and/or processing may be of importance. Viscous flaxseed dietary fibers may be a useful tool for lowering blood cholesterol and potentially play a role in energy balance. NCT00953004.

  2. Dual-functioning peptides discovered by phage display increase the magnitude and specificity of BMSC attachment to mineralized biomaterials. (United States)

    Ramaraju, Harsha; Miller, Sharon J; Kohn, David H


    Design of biomaterials for cell-based therapies requires presentation of specific physical and chemical cues to cells, analogous to cues provided by native extracellular matrices (ECM). We previously identified a peptide sequence with high affinity towards apatite (VTKHLNQISQSY, VTK) using phage display. The aims of this study were to identify a human MSC-specific peptide sequence through phage display, combine it with the apatite-specific sequence, and verify the specificity of the combined dual-functioning peptide to both apatite and human bone marrow stromal cells. In this study, a combinatorial phage display identified the cell binding sequence (DPIYALSWSGMA, DPI) which was combined with the mineral binding sequence to generate the dual peptide DPI-VTK. DPI-VTK demonstrated significantly greater binding affinity (1/KD) to apatite surfaces compared to VTK, phosphorylated VTK (VTKphos), DPI-VTKphos, RGD-VTK, and peptide-free apatite surfaces (p display can identify non-obvious cell and material specific peptides to increase human MSC adhesion strength to specific biomaterial surfaces and subsequently increase cell proliferation and differentiation. These new peptides expand biomaterial design methodology for cell-based regeneration of bone defects. This strategy of combining cell and material binding phage display derived peptides is broadly applicable to a variety of systems requiring targeted adhesion of specific cell populations, and may be generalized to the engineering of any adhesion surface. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Order of magnitude increase in photocatalytic rate for hierarchically porous anatase thin films synthesized from zinc titanate coatings. (United States)

    Platt, Nathanya J; Kaye, Karl M; Limburn, Gregory J; Cosham, Samuel D; Kulak, Alexander N; Palgrave, Robert G; Hyett, Geoffrey


    In this paper we report on the use of aerosol assisted chemical vapour deposition (AACVD) to form thin films of the zinc titanate phases using zinc acetate and titanium isopropoxide as precursors in methanol solution. Analysis by XRD and XPS found that through variation in experimental conditions we have been able to synthesize films of zinc titanate with composition of Zn2TiO4 or Zn0.3Ti2.7O4.94, which adopt the spinel and pseudobrookite structure respectively. In addition, we have also formed hybrid films of Zn2TiO4 with either ZnTiO3 or ZnO. Using a technique previously reported with powders, the mixed ZnO and Zn2TiO4 films were treated with acid to produce porous Zn2TiO4 which, through reduction and vapour leaching of zinc, were converted to hierarchically porous thin films of anatase TiO2. This conversion was monitored by XRD. Analysis of photocatalytic activity of the hierarchically porous titania, using dye and stearic acid degradation tests, found a factor of 12 to 14 increase in rates of photocatalysis over conventional TiO2 thin films. Finally we are able to report a maximum formal quantum efficiency for stearic acid degradation of 1.76 × 10-3 molecules per photon.

  4. Flaxseed dietary fibers lower cholesterol and increase fecal fat excretion, but magnitude of effect depend on food type (United States)


    Background Dietary fibers have been proposed to play a role in cardiovascular risk as well as body weight management. Flaxseeds are a good source of dietary fibers, and a large proportion of these are water-soluble viscous fibers. Method Here, we examine the effect of flaxseed dietary fibers in different food matrices on blood lipids and fecal excretion of fat and energy in a double-blind randomized crossover study with 17 subjects. Three different 7-d diets were tested: a low-fiber control diet (Control), a diet with flaxseed fiber drink (3/day) (Flax drink), and a diet with flaxseed fiber bread (3/day) (Flax bread). Total fat and energy excretion was measured in feces, blood samples were collected before and after each period, and appetite sensation registered 3 times daily before main meals. Results Compared to control, Flax drink lowered fasting total-cholesterol and LDL-cholesterol by 12 and 15%, respectively, (p Flax bread only produced a reduction of 7 and 9%, respectively (p Flax drink consumption compared to control (p Flax bread compared to control (p Flax drink and Flax bread resulted in decreased plasma total and LDL-cholesterol and increased fat excretion, but the food matrix and/or processing may be of importance. Viscous flaxseed dietary fibers may be a useful tool for lowering blood cholesterol and potentially play a role in energy balance. Trial Registration NCT00953004 PMID:22305169

  5. Flaxseed dietary fibers lower cholesterol and increase fecal fat excretion, but magnitude of effect depend on food type

    Directory of Open Access Journals (Sweden)

    Kristensen Mette


    Full Text Available Abstract Background Dietary fibers have been proposed to play a role in cardiovascular risk as well as body weight management. Flaxseeds are a good source of dietary fibers, and a large proportion of these are water-soluble viscous fibers. Method Here, we examine the effect of flaxseed dietary fibers in different food matrices on blood lipids and fecal excretion of fat and energy in a double-blind randomized crossover study with 17 subjects. Three different 7-d diets were tested: a low-fiber control diet (Control, a diet with flaxseed fiber drink (3/day (Flax drink, and a diet with flaxseed fiber bread (3/day (Flax bread. Total fat and energy excretion was measured in feces, blood samples were collected before and after each period, and appetite sensation registered 3 times daily before main meals. Results Compared to control, Flax drink lowered fasting total-cholesterol and LDL-cholesterol by 12 and 15%, respectively, (p Conclusion Both Flax drink and Flax bread resulted in decreased plasma total and LDL-cholesterol and increased fat excretion, but the food matrix and/or processing may be of importance. Viscous flaxseed dietary fibers may be a useful tool for lowering blood cholesterol and potentially play a role in energy balance. Trial Registration NCT00953004

  6. Tissue vibration in prolonged running. (United States)

    Friesenbichler, Bernd; Stirling, Lisa M; Federolf, Peter; Nigg, Benno M


    The impact force in heel-toe running initiates vibrations of soft-tissue compartments of the leg that are heavily dampened by muscle activity. This study investigated if the damping and frequency of these soft-tissue vibrations are affected by fatigue, which was categorized by the time into an exhaustive exercise. The hypotheses were tested that (H1) the vibration intensity of the triceps surae increases with increasing fatigue and (H2) the vibration frequency of the triceps surae decreases with increasing fatigue. Tissue vibrations of the triceps surae were measured with tri-axial accelerometers in 10 subjects during a run towards exhaustion. The frequency content was quantified with power spectra and wavelet analysis. Maxima of local vibration intensities were compared between the non-fatigued and fatigued states of all subjects. In axial (i.e. parallel to the tibia) and medio-lateral direction, most local maxima increased with fatigue (supporting the first hypothesis). In anterior-posterior direction no systematic changes were found. Vibration frequency was minimally affected by fatigue and frequency changes did not occur systematically, which requires the rejection of the second hypothesis. Relative to heel-strike, the maximum vibration intensity occurred significantly later in the fatigued condition in all three directions. With fatigue, the soft tissue of the triceps surae oscillated for an extended duration at increased vibration magnitudes, possibly due to the effects of fatigue on type II muscle fibers. Thus, the protective mechanism of muscle tuning seems to be reduced in a fatigued muscle and the risk of potential harm to the tissue may increase. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. Vibration analysis of cryocoolers (United States)

    Tomaru, Takayuki; Suzuki, Toshikazu; Haruyama, Tomiyoshi; Shintomi, Takakazu; Yamamoto, Akira; Koyama, Tomohiro; Li, Rui


    The vibrations of Gifford-McMahon (GM) and pulse-tube (PT) cryocoolers were measured and analyzed. The vibrations of the cold-stage and cold-head were measured separately to investigate their vibration mechanisms. The measurements were performed while maintaining the thermal conditions of the cryocoolers at a steady state. We found that the vibration of the cold-head for the 4 K PT cryocooler was two orders of magnitude smaller than that of the 4 K GM cryocooler. On the other hand, the vibration of the cold-stages for both cryocoolers was of the same order of magnitude. From a spectral analysis of the vibrations and a simulation, we concluded that the vibration of the cold-stage is caused by an elastic deformation of the pulse tubes (or cylinders) due to the pressure oscillation of the working gas.

  8. Vibration analysis of cryocoolers

    Energy Technology Data Exchange (ETDEWEB)

    Tomaru, Takayuki; Suzuki, Toshikazu; Haruyama, Tomiyoshi; Shintomi, Takakazu; Yamamoto, Akira [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki (Japan); Koyama, Tomohiro; Rui Li [Sumitomo Heavy Industries Ltd., Tokyo (Japan)


    The vibrations of Gifford-McMahon (GM) and pulse-tube (PT) cryocoolers were measured and analyzed. The vibrations of the cold-stage and cold-head were measured separately to investigate their vibration mechanisms. The measurements were performed while maintaining the thermal conditions of the cryocoolers at a steady state. We found that the vibration of the cold-head for the 4 K PT cryocooler was two orders of magnitude smaller than that of the 4 K GM cryocooler. On the other hand, the vibration of the cold-stages for both cryocoolers was of the same order of magnitude. From a spectral analysis of the vibrations and a simulation, we concluded that the vibration of the cold-stage is caused by an elastic deformation of the pulse tubes (or cylinders) due to the pressure oscillation of the working gas. (Author)

  9. Zero-point vibrational effects on optical rotation

    DEFF Research Database (Denmark)

    Ruud, K.; Taylor, P.R.; Åstrand, P.-O.


    We investigate the effects of molecular vibrations on the optical rotation in two chiral molecules, methyloxirane and trans-2,3-dimethylthiirane. It is shown that the magnitude of zero-point vibrational corrections increases as the electronic contribution to the optical rotation increases....... Vibrational effects thus appear to be important for an overall estimate of the molecular optical rotation, amounting to about 20-30% of the electronic counterpart. We also investigate the special case of chirality introduced in a molecule through isotopic substitution. In this case, the zero-point vibrational...

  10. Increased arithmetic complexity is associated with domain-general but not domain-specific magnitude processing in children: A simultaneous fNIRS-EEG study. (United States)

    Soltanlou, Mojtaba; Artemenko, Christina; Dresler, Thomas; Haeussinger, Florian B; Fallgatter, Andreas J; Ehlis, Ann-Christine; Nuerk, Hans-Christoph


    The investigation of the neural underpinnings of increased arithmetic complexity in children is essential for developing educational and therapeutic approaches and might provide novel measures to assess the effects of interventions. Although a few studies in adults and children have revealed the activation of bilateral brain regions during more complex calculations, little is known about children. We investigated 24 children undergoing one-digit and two-digit multiplication tasks while simultaneously recording functional near-infrared spectroscopy (fNIRS) and electroencephalography (EEG) data. FNIRS data indicated that one-digit multiplication was associated with brain activity in the left superior parietal lobule (SPL) and intraparietal sulcus (IPS) extending to the left motor area, and two-digit multiplication was associated with activity in bilateral SPL, IPS, middle frontal gyrus (MFG), left inferior parietal lobule (IPL), and motor areas. Oscillatory EEG data indicated theta increase and alpha decrease in parieto-occipital sites for both one-digit and two-digit multiplication. The contrast of two-digit versus one-digit multiplication yielded greater activity in right MFG and greater theta increase in frontocentral sites. Activation in frontal areas and theta band data jointly indicate additional domain-general cognitive control and working memory demands for heightened arithmetic complexity in children. The similarity in parietal activation between conditions suggests that children rely on domain-specific magnitude processing not only for two-digit but-in contrast to adults-also for one-digit multiplication problem solving. We conclude that in children, increased arithmetic complexity tested in an ecologically valid setting is associated with domain-general processes but not with alteration of domain-specific magnitude processing.

  11. The Vibration of a Linear Carbon Chain in Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Dongqing Ding


    Full Text Available An explicit solution for the vibration of a carbon chain inside carbon nanotubes (CNTs was obtained using continuum modeling of the van der Waals (vdW interactions between them. The effect of the initial tensile force and the amplitude of the carbon chain as well as the radii of the CNTs on the vibration frequency were analyzed in detail, respectively. Our analytical results show that the vibration frequency of the carbon chain in a (5,5 CNT could be around two orders of magnitude higher than that of an independent carbon chain without initial tensile force. For a given CNT radius, the vibration frequency nonlinearly increases with increasing amplitude and initial tensile force. The obtained analytical cohesive energy and vibration frequency are reasonable by comparison of present molecular dynamics (MD simulations. These findings will be a great help towards understanding the vibration property of a nanowire in nanotubes, and designing nanoelectromechanical devices.

  12. Profound protection against respiratory challenge with a lethal H7N7 influenza A virus by increasing the magnitude of CD8(+) T-cell memory

    DEFF Research Database (Denmark)

    Christensen, Jan Pravsgaard; Doherty, P C; Branum, K C


    The recall of CD8(+) T-cell memory established by infecting H-2(b) mice with an H1N1 influenza A virus provided a measure of protection against an extremely virulent H7N7 virus. The numbers of CD8(+) effector and memory T cells specific for the shared, immunodominant D(b)NP(366) epitope were......) gave much better protection. Though the H7N7 virus initially grew to equivalent titers in the lungs of naive and double-primed mice, the replicative phase was substantially controlled within 3 days. This tertiary H7N7 challenge caused little increase in the magnitude of the CD8(+) D(b)NP(366)(+) T......-cell pool, and only a portion of the memory population in the lymphoid tissue could be shown to proliferate. The great majority of the CD8(+) D(b)NP(366)(+) set that localized to the infected respiratory tract had, however, cycled at least once, though recent cell division was shown not to be a prerequisite...

  13. Should Astronomy Abolish Magnitudes? (United States)

    Brecher, K.


    Astronomy is riddled with a number of anachronistic and counterintuitive practices. Among these are: plotting increasing stellar temperature from right to left in the H-R diagram; giving the distances to remote astronomical objects in parsecs; and reporting the brightness of astronomical objects in magnitudes. Historical accident and observational technique, respectively, are the bases for the first two practices, and they will undoubtedly persist in the future. However, the use of magnitudes is especially egregious when essentially linear optical detectors like CCDs are used for measuring brightness, which are then reported in a logarithmic (base 2.512 deg!) scale. The use of magnitudes has its origin in three historical artifacts: Ptolemy's method of reporting the brightness of stars in the "Almagest"; the 19th century need for a photographic photometry scale; and the 19th century studies by psychophysicists E. H. Weber and G. T. Fechner on the response of the human eye to light. The latter work sought to uncover the relationship between the subjective response of the human eye and brain to the objective brightness of external optical stimuli. The resulting Fechner-Weber law states that this response is logarithmic: that is, that the eye essentially takes the logarithm of the incoming optical signal. However, after more than a century of perceptual studies, most intensively by S. S. Stevens, it is now well established that this relation is not logarithmic. For naked eye detection of stars from the first to sixth magnitudes, it can be reasonably well fit by a power law with index of about 0.3. Therefore, the modern experimental studies undermine the physiological basis for the use of magnitudes in astronomy. Should the historical origins of magnitudes alone be reason enough for their continued use? Probably not, since astronomical magnitudes are based on outdated studies of human perception; make little sense in an era of linear optical detection; and provide a

  14. Determination of increased mean drag coefficients for a cylinder vibrating at low values of Keulegan-Carpenter number

    Directory of Open Access Journals (Sweden)

    Carlos Alberto Riveros


    Full Text Available There is an increasing demand for the development of a reliable technology for wind turbines in deepwaters.Therefore, offshore wind turbine technology is receiving great amount of attention by the research community. Nevertheless, the dynamic response prediction of the support system for offshore wind turbines is still challenging due to the nonlinear and self-regulated nature of the Vortex Induced Vibration (VIV process. In this paper, the numerical implementation of a computational fluid dynamics-based approach for determination of increased mean drag coefficient is presented. The numerical study is conducted at low values of Keulegan-Carpenter number in order to predict the increment of drag force due to cross-flow motion. The simulation results are then compared with previously developed empirical formulations. Good agreement is observed in these comparisons.

  15. Vibrational Diver (United States)

    Kozlov, Victor; Ivanova, Alevtina; Schipitsyn, Vitalii; Stambouli, Moncef


    The paper is concerned with dynamics of light solid in cavity with liquid subjected to rotational vibration in the external force field. New vibrational phenomenon - diving of a light cylinder to the cavity bottom is found. The experimental investigation of a horizontal annulus with a partition has shown that under vibration a light body situated in the upper part of the layer is displaced in a threshold manner some distance away from the boundary. In this case the body executes symmetric tangential oscillations. An increase of the vibration intensity leads to a tangential displacement of the body near the external boundary. This displacement is caused by the tangential component of the vibrational lift force, which appears as soon as the oscillations lose symmetry. In this case the trajectory of the body oscillatory motion has the form of a loop. The tangential lift force makes stable the position of the body on the inclined section of the layer and even in its lower part. A theoretical interpretation has been proposed, which explains stabilization of a quasi-equilibrium state of a light body near the cavity bottom in the framework of vibrational hydromechanics.

  16. Patellar tendon vibration reduces the increased facilitation from quadriceps to soleus in post-stroke hemiparetic individuals. (United States)

    Maupas, Eric; Dyer, Joseph-Omer; Melo, Sibele de Andrade; Forget, Robert


    Stimulation of the femoral nerve in healthy people can facilitate soleus H-reflex and electromyography (EMG) activity. In stroke patients, such facilitation of transmission in spinal pathways linking the quadriceps and soleus muscles is enhanced and related to co-activation of knee and ankle extensors while sitting and walking. Soleus H-reflex facilitation can be depressed by vibration of the quadriceps in healthy people, but the effects of such vibration have never been studied on the abnormal soleus facilitation observed in people after stroke. To determine whether vibration of the quadriceps can modify the enhanced heteronymous facilitation of the soleus muscle observed in people with spastic stroke after femoral nerve stimulation and compare post-vibration effects on soleus facilitation in control and stroke individuals. Modulation of voluntary soleus EMG activity induced by femoral nerve stimulation (2×motor threshold) was assessed before, during and after vibration of the patellar tendon in 10 healthy controls and 17 stroke participants. Voluntary soleus EMG activity was facilitated by femoral nerve stimulation in 4/10 (40%) controls and 11/17 (65%) stroke participants. The level of facilitation was greater in the stroke than control group. Vibration significantly reduced early heteronymous facilitation in both groups (50% of pre-vibration values). However, the delay in recovery of soleus facilitation after vibration was shorter for the stroke than control group. The control condition with the vibrator turned off had no effect on the modulation. Patellar tendon vibration can reduce the facilitation between knee and ankle extensors, which suggests effective presynaptic inhibition but decreased post-activation depression in the lower limb of people after chronic hemiparetic stroke. Further studies are warranted to determine whether such vibration could be used to reduce the abnormal extension synergy of knee and ankle extensors in people after hemiparetic

  17. Whole-Body Vibration Partially Reverses Aging-Induced Increases in Visceral Adiposity and Hepatic Lipid Storage in Mice.

    Directory of Open Access Journals (Sweden)

    Aaffien C Reijne

    Full Text Available At old age, humans generally have declining muscle mass and increased fat deposition, which can increase the risk of developing cardiometabolic diseases. While regular physical activity postpones these age-related derangements, this is not always possible in the elderly because of disabilities or risk of injury. Whole-body vibration (WBV training may be considered as an alternative to physical activity particularly in the frail population. To explore this possibility, we characterized whole-body and organ-specific metabolic processes in 6-month and 25-month old mice, over a period of 14 weeks of WBV versus sham training. WBV training tended to increase blood glucose turnover rates and stimulated hepatic glycogen utilization during fasting irrespective of age. WBV was effective in reducing white fat mass and hepatic triglyceride content only in old but not in young mice and these reductions were related to upregulation of hepatic mitochondrial uncoupling of metabolism (assessed by high-resolution respirometry and increased expression of uncoupling protein 2. Because these changes occurred independent of changes in food intake and whole-body metabolic rate (assessed by indirect calorimetry, the liver-specific effects of WBV may be a primary mechanism to improve metabolic health during aging, rather than that it is a consequence of alterations in energy balance.

  18. A Practical Method to Increase the Frequency Readability for Vibration Signals

    Directory of Open Access Journals (Sweden)

    Jean Loius Ntakpe


    Full Text Available Damage detection and nondestructive evaluation of mechanical and civil engineering structures are nowadays very important to assess the integrity and ensure the reliability of structures. Thus, frequency evaluation becomes a crucial issue, since this modal parameter is mainly used in structural integrity assessment. The herein presented study highligts the possibility of increasing the frequency readability by involving a simple and cost-effective method.

  19. 1 kHz vibration increases proteoglycan production in ATDC5 chondrocytes (United States)

    Argadine, Heather M.; Kinnick, Randall R.; Greenleaf, James F.; Bolander, Mark E.


    In vitro studies have shown that treatment with 1.5 MHz ultrasound signal (160 mW/cm2) at a 200 μs tone burst repeating at 1 kHz increases proteoglycan synthesis in chondrocytes [J. Parvisi et al., J. Orthop. Res. 17, 488-494 (1999)]. It was hypothesized that a continuous 1 kHz signal would be similar to the pulsed 1.5 MHz signal in stimulating chondrocytes to produce proteoglycan, which may cause accelerated fracture healing. In vitro experiments were performed with ATDC5 cells, a chondrogenic clonal cell line, plated in 6-well plates for 3 to 7 days before receiving ultrasound treatments. Cells were treated with either 1.5 MHz pulsed signal or 1 kHz signal for 20 minutes per day for 9 to 11 days. The signals were calibrated so that the bottom of the 6-well plate moved 10 nm for each condition. After the final treatment, cell layers were stained with Alcian blue, which stains cartilage nodules providing a measure of chondrogenesis. Both 1.5 MHz and 1 kHz led to a highly significant increase in chondrogenesis compared to control. Quantitative image analysis of stained wells showed that treatments with either signal increased number of nodules 2.3-fold (p<0.02) and total area of nodules 3-fold (p<0.02) compared to controls.

  20. Stochastic resonance whole body vibration increases perceived muscle relaxation but not cardiovascular activation: A randomized controlled trial. (United States)

    Elfering, Achim; Burger, Christian; Schade, Volker; Radlinger, Lorenz


    To investigate the acute effects of stochastic resonance whole body vibration (SR-WBV), including muscle relaxation and cardiovascular activation. Sixty-four healthy students participated. The participants were randomly assigned to sham SR-WBV training at a low intensity (1.5 Hz) or a verum SR-WBV training at a higher intensity (5 Hz). Systolic blood pressure (SBP), diastolic blood pressure (DBP), heart rate (HR) and self-reported muscle relaxation were assessed before and immediately after SR-WBV. Two factorial analyses of variance (ANOVA) showed a significant interaction between pre- vs post-SR-WBV measurements and SR-WBV conditions for muscle relaxation in the neck and back [F(1,55) = 3.35, P = 0.048, η2 = 0.07]. Muscle relaxation in the neck and back increased in verum SR-WBV, but not in sham SR-WBV. No significant changes between pre- and post-training levels of SBD, DBD and HR were observed either in sham or verum SR-WBV conditions. With verum SR-WBV, improved muscle relaxation was the most significant in participants who reported the experience of back, neck or shoulder pain more than once a month (P < 0.05). A single session of SR-WBV increased muscle relaxation in young healthy individuals, while cardiovascular load was low. An increase in musculoskeletal relaxation in the neck and back is a potential mediator of pain reduction in preventive worksite SR-WBV trials.

  1. Surface recombination of oxygen atoms in O2 plasma at increased pressure: II. Vibrational temperature and surface production of ozone (United States)

    Lopaev, D. V.; Malykhin, E. M.; Zyryanov, S. M.


    Ozone production in an oxygen glow discharge in a quartz tube was studied in the pressure range of 10-50 Torr. The O3 density distribution along the tube diameter was measured by UV absorption spectroscopy, and ozone vibrational temperature TV was found comparing the calculated ab initio absorption spectra with the experimental ones. It has been shown that the O3 production mainly occurs on a tube surface whereas ozone is lost in the tube centre where in contrast the electron and oxygen atom densities are maximal. Two models were used to analyse the obtained results. The first one is a kinetic 1D model for the processes occurring near the tube walls with the participation of the main particles: O(3P), O2, O2(1Δg) and O3 molecules in different vibrational states. The agreement of O3 and O(3P) density profiles and TV calculated in the model with observed ones was reached by varying the single model parameter—ozone production probability (\\gamma_{O_{3}}) on the quartz tube surface on the assumption that O3 production occurs mainly in the surface recombination of physisorbed O(3P) and O2. The phenomenological model of the surface processes with the participation of oxygen atoms and molecules including singlet oxygen molecules was also considered to analyse \\gamma_{O_{3}} data obtained in the kinetic model. A good agreement between the experimental data and the data of both models—the kinetic 1D model and the phenomenological surface model—was obtained in the full range of the studied conditions that allowed consideration of the ozone surface production mechanism in more detail. The important role of singlet oxygen in ozone surface production was shown. The O3 surface production rate directly depends on the density of physisorbed oxygen atoms and molecules and can be high with increasing pressure and energy inputted into plasma while simultaneously keeping the surface temperature low enough. Using the special discharge cell design, such an approach opens up the

  2. The vibration discomfort of standing people: evaluation of multi-axis vibration. (United States)

    Thuong, Olivier; Griffin, Michael J


    Few studies have investigated discomfort caused by multi-axis vibration and none has explored methods of predicting the discomfort of standing people from simultaneous fore-and-aft, lateral and vertical vibration of a floor. Using the method of magnitude estimation, 16 subjects estimated their discomfort caused by dual-axis and tri-axial motions (octave-bands centred on either 1 or 4 Hz with various magnitudes in the fore-and-aft, lateral and vertical directions) and the discomfort caused by single-axis motions. The method of predicting discomfort assumed in current standards (square-root of the sums of squares of the three components weighted according to their individual contributions to discomfort) provided reasonable predictions of the discomfort caused by multi-axis vibration. Improved predictions can be obtained for specific stimuli, but no single simple method will provide accurate predictions for all stimuli because the rate of growth of discomfort with increasing magnitude of vibration depends on the frequency and direction of vibration.

  3. Gap junctional communication in osteocytes is amplified by low intensity vibrations in vitro.

    Directory of Open Access Journals (Sweden)

    Gunes Uzer

    Full Text Available The physical mechanism by which cells sense high-frequency mechanical signals of small magnitude is unknown. During exposure to vibrations, cell populations within a bone are subjected not only to acceleratory motions but also to fluid shear as a result of fluid-cell interactions. We explored displacements of the cell nucleus during exposure to vibrations with a finite element (FE model and tested in vitro whether vibrations can affect osteocyte communication independent of fluid shear. Osteocyte like MLO-Y4 cells were subjected to vibrations at acceleration magnitudes of 0.15 g and 1 g and frequencies of 30 Hz and 100 Hz. Gap junctional intracellular communication (GJIC in response to these four individual vibration regimes was investigated. The FE model demonstrated that vibration induced dynamic accelerations caused larger relative nuclear displacement than fluid shear. Across the four regimes, vibrations significantly increased GJIC between osteocytes by 25%. Enhanced GJIC was independent of vibration induced fluid shear; there were no differences in GJIC between the four different vibration regimes even though differences in fluid shear generated by the four regimes varied 23-fold. Vibration induced increases in GJIC were not associated with altered connexin 43 (Cx43 mRNA or protein levels, but were dependent on Akt activation. Combined, the in silico and in vitro experiments suggest that externally applied vibrations caused nuclear motions and that large differences in fluid shear did not influence nuclear motion (<1% or GJIC, perhaps indicating that vibration induced nuclear motions may directly increase GJIC. Whether the increase in GJIC is instrumental in modulating anabolic and anti-catabolic processes associated with the application of vibrations remains to be determined.

  4. Teleseismic magnitude relations

    Directory of Open Access Journals (Sweden)

    Markus Båth


    Full Text Available Using available sets of magnitude determinations, primarily from Uppsala seismological bulletin, various extensions are made of the Zurich magnitude recommendations of 1967. Thus, body-wave magnitude (m and surface-wave magnitudes (M are related to each other for 12 different earthquake regions as well as world-wide. Depth corrections for M are derived for all focal depths. Formulas are developed which permit calculation of M also from vertical component long-period seismographs. Body-wave magnitudes from broad-band and narrow-band short-period seismographs are compared and relations deduced. Applications are made both to underground nuclear explosions and to earthquakes. The possibilities of explosion-earthquake discrimination on the basis of magnitudes are examined, as well as the determination of explosive yield from magnitudes. For earthquakes, relations between magnitudes of main earthquakes and largest aftershocks are investigated. A world-wide station network for more homogeneous magnitude determinations is suggested in order to provide the necessary reference system.

  5. Effect of voluntary periodic muscular activity on nonlinearity in the apparent mass of the seated human body during vertical random whole-body vibration (United States)

    Huang, Ya; Griffin, Michael J.


    The principal resonance frequency in the driving-point impedance of the human body decreases with increasing vibration magnitude—a nonlinear response. An understanding of the nonlinearities may advance understanding of the mechanisms controlling body movement and improve anthropodynamic modelling of responses to vibration at various magnitudes. This study investigated the effects of vibration magnitude and voluntary periodic muscle activity on the apparent mass resonance frequency using vertical random vibration in the frequency range 0.5-20 Hz. Each of 14 subjects was exposed to 14 combinations of two vibration magnitudes (0.25 and 2.0 m s -2 root-mean square (rms)) in seven sitting conditions: two without voluntary periodic movement (A: upright; B: upper-body tensed), and five with voluntary periodic movement (C: back-abdomen bending; D: folding-stretching arms from back to front; E: stretching arms from rest to front; F: folding arms from elbow; G: deep breathing). Three conditions with voluntary periodic movement significantly reduced the difference in resonance frequency at the two vibration magnitudes compared with the difference in a static sitting condition. Without voluntary periodic movement (condition A: upright), the median apparent mass resonance frequency was 5.47 Hz at the low vibration magnitude and 4.39 Hz at the high vibration magnitude. With voluntary periodic movement (C: back-abdomen bending), the resonance frequency was 4.69 Hz at the low vibration magnitude and 4.59 Hz at the high vibration magnitude. It is concluded that back muscles, or other muscles or tissues in the upper body, influence biodynamic responses of the human body to vibration and that voluntary muscular activity or involuntary movement of these parts can alter their equivalent stiffness.

  6. Do whole-body vibrations affect spatial hearing? (United States)

    Frissen, Ilja; Guastavino, Catherine


    To assist the human operator, modern auditory interfaces increasingly rely on sound spatialisation to display auditory information and warning signals. However, we often operate in environments that apply vibrations to the whole body, e.g. when driving a vehicle. Here, we report three experiments investigating the effect of sinusoidal vibrations along the vertical axis on spatial hearing. The first was a free-field, narrow-band noise localisation experiment with 5- Hz vibration at 0.88 ms(-2). The other experiments used headphone-based sound lateralisation tasks. Experiment 2 investigated the effect of vibration frequency (4 vs. 8 Hz) at two different magnitudes (0.83 vs. 1.65 ms(-2)) on a left-right discrimination one-interval forced-choice task. Experiment 3 assessed the effect on a two-interval forced-choice location discrimination task with respect to the central and two peripheral reference locations. In spite of the broad range of methods, none of the experiments show a reliable effect of whole-body vibrations on localisation performance. We report three experiments that used both free-field localisation and headphone lateralisation tasks to assess their sensitivity to whole-body vibrations at low frequencies. None of the experiments show a reliable effect of either frequency or magnitude of whole-body vibrations on localisation performance.

  7. Comparative Study of Reducing the Vibration Level of a Cylindrical Gear Transmissions by Increasing the Manufacturing Precision of the Gears, Respective by Applying of Fluoropolymer Coating on the Gear Teeth

    Directory of Open Access Journals (Sweden)

    Zoltan Korka


    Full Text Available The current trend in the construction of gearboxes, regarding the speed increase, favors the increase of the dynamic loads and, consequentially of the vibration level. Therefore, the vibration reduction of gear transmissions finds a growing interest, representing an element of fight against environmental pollution.

  8. The influence of seat backrest angle on human performance during whole-body vibration. (United States)

    Paddan, G S; Holmes, S R; Mansfield, N J; Hutchinson, H; Arrowsmith, C I; King, S K; Jones, R J M; Rimell, A N


    This study investigated the effects of reclined backrest angles on cognitive and psycho-motor tasks during exposure to vertical whole-body vibration. Twenty participants were each exposed to three test stimuli of vertical vibration: 2-8 Hz; 8-14 Hz and 14-20 Hz, plus a stationary control condition whilst seated on a vibration platform at five backrest angles: 0° (recumbent, supine) to 90° (upright). The vibration magnitude was 2.0 ms(-2) root-mean-square. The participants were seated at one of the backrest angles and exposed to each of the three vibration stimuli while performing a tracking and choice reaction time tasks; then they completed the NASA-TLX workload scales. Apart from 22.5° seat backrest angle for the tracking task, backrest angle did not adversely affect the performance during vibration. However, participants required increased effort to maintain performance during vibration relative to the stationary condition. These results suggest that undertaking tasks in an environment with vibration could increase workload and risk earlier onset of fatigue. Current vibration standards provide guidance for assessing exposures for seated, standing and recumbent positions, but not for semi-recumbent postures. This paper reports new experimental data systematically investigating the effect of backrest angle on human performance. It demonstrates how workload is elevated with whole-body vibration, without getting affected by backrest angle.

  9. Composite Struts Would Damp Vibrations (United States)

    Dolgin, Benjamin P.


    New design of composite-material (fiber/matrix laminate) struts increases damping of longitudinal vibrations without decreasing longitudinal stiffness or increasing weight significantly. Plies with opposing chevron patterns of fibers convert longitudinal vibrational stresses into shear stresses in intermediate viscoelastic layer, which dissipate vibrational energy. Composite strut stronger than aluminum strut of same weight and stiffness.

  10. Effect of vibration on visual display terminal work performance. (United States)

    Hsieh, Yao-Hung; Lin, Chiuhsiang Joe; Chen, Hsiao-Ching


    Today electronic visual displays have dramatic use in daily life. Reading these visual displays is subject to their vibration. Using a software-simulation of a vibrated environment, the study investigated the effect of vibration on visual performance and fatigue for several numerical display design characteristics including the font size and the number of digits displayed. Both the frequency and magnitude of vibration had significant effects on the reaction time, accuracy, and visual fatigue. 10 graduate students (23-30 years old; M = 25.6), randomly tested in this experiment, were offered about 25 U.S. dollars for their participation. Numbers in vertical presentation were affected more in vertical vibration than those in horizontal presentation. Analysis showed whenever the display is used in vibration environment, an increased font size may be an effective way to compensate the adverse effect of vibration. The software design of displayed materials must be designed to take the motion effect into consideration to increase the quality of the screen display.

  11. Individual Impact Magnitude vs. Cumulative Magnitude for Estimating Concussion Odds. (United States)

    O'Connor, Kathryn L; Peeters, Thomas; Szymanski, Stefan; Broglio, Steven P


    Helmeted impact devices have allowed researchers to investigate the biomechanics of head impacts in vivo. While increased impact magnitude has been associated with greater concussion risk, a definitive concussive threshold has not been established. It is likely that concussion risk is not determined by a single impact itself, but a host of predisposing factors. These factors may include genetics, fatigue, and/or prior head impact exposure. The objective of the current paper is to investigate the association between cumulative head impact magnitude and concussion risk. It is hypothesized that increased cumulative magnitudes will be associated with greater concussion risk. This retrospective analysis included participants that were recruited from regional high-schools in Illinois and Michigan from 2007 to 2014 as part of an ongoing study on concussion biomechanics. Across seven seasons, 185 high school football athletes were instrumented with the Head Impact Telemetry system. Out of 185 athletes, 31 (17%) sustained a concussion, with two athletes sustaining two concussions over the study period, yielding 33 concussive events. The system recorded 78,204 impacts for all concussed players. Linear acceleration, rotational acceleration, and head impact telemetry severity profile (HITsp) magnitudes were summed within five timeframes: the day of injury, three days prior to injury, seven days prior to injury, 30 days prior to injury, and prior in-season exposure. Logistic regressions were modeled to explain concussive events based on the singular linear acceleration, rotational acceleration, and HITsp event along with the calculated summations over time. Linear acceleration, rotational acceleration, and HITsp all produced significant models estimating concussion (p concussive impact were the linear acceleration (OR = 1.040, p concussion likelihood. Cumulative magnitude is a simplistic measure of the total exposure sustained by a player over a given period. However, this

  12. Adding whole body vibration to preconditioning exercise increases subsequent on-ice sprint performance in ice-hockey players. (United States)

    Rønnestad, Bent R; Slettaløkken, Gunnar; Ellefsen, Stian


    The phenomenon postactivation potentiation can possibly be used to acutely improve sprint performance. The purpose of this study was to investigate the effect of body-loaded half-squats with added whole body vibration (WBV) on subsequent 20 m on-ice sprint performance. Fifteen male ice-hockey players performed 4 test sessions on separate days and in a randomized order. Two of this test sessions were with WBV and 2 were with noWBV and the best sprint time was used to determine effectiveness. Each test session included preconditioning 30 seconds half-squat exercise, 2 of which were supplemented with 50 Hz WBV at a amplitude of 3 mm. One minute after the cessation of the preconditioning exercise, the 20 m sprint test was performed. Intermediate time was sampled after 10 m. Preconditioning exercise performed with 50 Hz WBV resulted in superior 10 m and 20 m sprint performance compared to preconditioning exercise performed without WBV (1.84 6 0.10 seconds vs. 1.89 6 0.10 seconds and 3.14 6 0.13 vs. 3.17 6 0.13 seconds, respectively, p # 0.01). There was no difference between the protocols in perceived well-being of the legs before the warm-up or after the warm up (p = 0.3). However, there was an improved well-being in the legs immediately after the preconditioning exercise with WBV (p , 0.05). In conclusion, preconditioning exercise performed with WBV at 50 Hz seems to enhance on-ice sprint performance in ice-hockey players. This suggests that coaches can incorporate such exercise into the preparation to specific sprint training to improve the quality of the training.

  13. Quantitative evaluation of distortion in sketching under mono and dual axes whole body vibration. (United States)

    Bhiwapurkar, M K; Saran, V H; Harsha, S P


    Performance of sedentary activities such as reading and writing, in trains is known to be affected by the vibrations. An experimental study was therefore initiated to investigate the interference perceived in sketching task under low frequency random vibration in both mono and dual axes. Thirty healthy male subjects participated in the study. Random vibration stimuli were excited in various axes in frequency range of 1-20 Hz at magnitudes of 0.4, 0.8 and 1.2 m/s(2). The task required the subjects to sketch the given geometric figures such as circle, rectangle and triangle under vibration environment in two subject postures (sketch pad on lap and on table). Three performance methods were used to measure the effect of vibration stimuli and posture. They consisted of two specifically designed objective methods for percentage distortion measurement and one subjective method using Borg CR10 scale. The results revealed that the percentage distortion and difficulty in sketching increased with an increase in vibration magnitude and was found to be higher for vibration in Y- and Z-axis. Similar trend was observed for percentage distortion and difficulty in sketching for dual axes also. The perceived difficulty and impairment in sketching performance was greater while sketching on lap for X-axis, while the effect was just the reverse for other axes.


    Directory of Open Access Journals (Sweden)

    M.M. Rahman


    Full Text Available Trains and cars are the most important modes of transportation throughout the world. In highly developed countries, trains have become essential for human use as the most well-known form of public transportation, whereas the car plays a significant role in prompt human travel from one place to another. The high magnitude of vibration caused by trains and cars may cause health problems in humans, especially low back pain. The aim of this study was to evaluate and validate the values of daily exposure to vibration A(8 and the vibration dose value (VDV in passengers travelling by train and car and to assess the effects produced by this exposure on the human body. Moreover, this study introduces a newly developed whole-body vibration measurement instrumentation system. One train travelling from the east coast to the south of Malaysia was chosen to conduct the study. Whole-body vibration exposure was measured over 8 hours, which is equal to the duration of normal occupational exposure. One car was chosen randomly and whole-body vibration exposure was measured for 5 min and 10 min. All the data were computed using an IEPE(ICPTM accelerometer sensor connected to a DT9837 device which is capable of effectively measuring and analysing vibration. The vibration results were displayed on a personal computer using a custom graphical user interface (GUI. Matlab software was used to interpret the data. From the results, the whole-body vibration exposure level could be determined. It can be concluded that the whole-body vibration absorbed by the human body is enhanced when the magnitude of the vibration exposure experienced by the passengers increased. This was shown by the increased values of daily exposure to vibration A(8 and VDV calculated in the study.

  15. Design of a nonlinear torsional vibration absorber (United States)

    Tahir, Ammaar Bin

    larger than that in the latter. A nonlinear absorber design has been proposed comprising of thin beams as elastic elements. The geometric configuration of the proposed design has been shown to provide cubic stiffness nonlinearity in torsion. The values of design variables, namely the strength of nonlinearity alpha and torsional stiffness kalpha, were obtained by optimizing dimensions and material properties of the beams for a maximum vibration energy dissipation in the nonlinear absorber. A parametric study has also been conducted to analyze the effect of the magnitude of excitation provided to the system on the performance of a nonlinear absorber. It has been shown that the nonlinear absorber turns out to be more effective in terms of energy dissipation as compared to a linear absorber with an increase in the excitation level applied to the system.

  16. The application of SEAT values for predicting how compliant seats with backrests influence vibration discomfort. (United States)

    Basri, Bazil; Griffin, Michael J


    The extent to which a seat can provide useful attenuation of vehicle vibration depends on three factors: the characteristics of the vehicle motion, the vibration transmissibility of the seat, and the sensitivity of the body to vibration. The 'seat effective amplitude transmissibility' (i.e., SEAT value) reflects how these three factors vary with the frequency and the direction of vibration so as to predict the vibration isolation efficiency of a seat. The SEAT value is mostly used to select seat cushions or seat suspensions based on the transmission of vertical vibration to the principal supporting surface of a seat. This study investigated the accuracy of SEAT values in predicting how seats with backrests influence the discomfort caused by multiple-input vibration. Twelve male subjects participated in a four-part experiment to determine equivalent comfort contours, the relative discomfort, the location of discomfort, and seat transmissibility with three foam seats and a rigid reference seat at 14 frequencies of vibration in the range 1-20 Hz at magnitudes of vibration from 0.2 to 1.6 ms(-2) r.m.s. The 'measured seat dynamic discomfort' (MSDD) was calculated for each foam seat from the ratio of the vibration acceleration required to cause similar discomfort with the foam seat and with the rigid reference seat. Using the frequency weightings in current standards, the SEAT values of each seat were calculated from the ratio of overall ride values with the foam seat to the overall ride values with the rigid reference seat, and compared to the corresponding MSDD at each frequency. The SEAT values provided good predictions of how the foam seats increased vibration discomfort at frequencies around the 4-Hz resonance but reduced vibration discomfort at frequencies greater than about 6.3 Hz, with discrepancies explained by a known limitation of the frequency weightings. Copyright © 2014 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  17. Animal Communications Through Seismic Vibrations

    Energy Technology Data Exchange (ETDEWEB)

    Hill, Peggy (University of Tulsa)


    Substrate vibration has been important to animals as a channel of communication for millions of years, but our literature on vibration in this context of biologically relevant information is only decades old. The jaw mechanism of the earliest land vertebrates allowed them to perceive substrate vibrations as their heads lay on the ground long before airborne sounds could be heard. Although the exact mechanism of vibration production and the precise nature of the wave produced are not always understood, recent development of affordable instrumentation to detect and measure vibrations has allowed researchers to answer increasingly sophisticated questions about how animals send and receive vibration signals. We now know that vibration provides information used in predator defense, prey detection, recruitment to food, mate choice, intrasexual competition, and maternal/brood social interactions in a variety of insect orders, spiders, crabs, scorpions, chameleons, frogs, golden moles, mole rats, kangaroos rats, wallabies, elephants and bison.

  18. Amplifying vibrational circular dichroism by manipulation of the electronic manifold. (United States)

    Domingos, Sérgio R; Panman, Matthijs R; Bakker, Bert H; Hartl, Frantisek; Buma, Wybren J; Woutersen, Sander


    Vibrational circular dichroism is a powerful technique to study the stereochemistry of chiral molecules, but often suffers from small signal intensities. Electrochemical modulation of the energies of the electronically excited state manifold is now demonstrated to lead to an order of magnitude enhancement of the differential absorption. Quantum-chemical calculations show that increased mixing between ground and excited states is at the origin of this amplification. This journal is © The Royal Society of Chemistry 2012

  19. Assessment of hand-transmitted vibration exposure from motorized forks used for beach-cleaning operations. (United States)

    McDowell, Thomas W; Welcome, Daniel E; Warren, Christopher; Xu, Xueyan S; Dong, Ren G


    Motorized vibrating manure forks were used in beach-cleaning operations following the massive Deepwater Horizon oil spill in the Gulf of Mexico during the summer of 2010. The objectives of this study were to characterize the vibration emissions of these motorized forks and to provide a first approximation of hand-transmitted vibration exposures to workers using these forks for beach cleaning. Eight operators were recruited to operate the motorized forks during this laboratory study. Four fork configurations were used in the study; two motor speeds and two fork basket options were evaluated. Accelerations were measured near each hand as the operators completed the simulated beach-cleaning task. The dominant vibration frequency for these tools was identified to be around 20 Hz. Because acceleration was found to increase with motor speed, workers should consider operating these tools with just enough speed to get the job done. These forks exhibited considerable acceleration magnitudes when unloaded. The study results suggest that the motor should not be operated with the fork in the unloaded state. Anti-vibration gloves are not effective at attenuating the vibration frequencies produced by these forks, and they may even amplify the transmitted vibration and increase hand/arm fatigue. While regular work gloves are suitable, vibration-reducing gloves may not be appropriate for use with these tools. These considerations may also be generally applicable for the use of motorized forks in other workplace environments.

  20. Monitoring vibrations

    Energy Technology Data Exchange (ETDEWEB)

    Tiryaki, B. [Hacettepe University (Turkey). Dept. of Mining Engineering


    The paper examines the prediction and optimisation of machine vibrations in longwall shearers. Underground studies were carried out at the Middle Anatolian Lignite Mine, between 1993 and 1997. Several shearer drums with different pick lacing arrangements were designed and tested on double-ended ranging longwall shearers employed at the mine. A computer program called the Vibration Analysis Program (VAP) was developed for analysing machine vibrations in longwall shearers. Shearer drums that were tested underground, as well as some provided by leading manufacturers, were analyzed using these programs. The results of the experiments and computer analyses are given in the article. 4 refs., 9 figs.

  1. Vibrations and Stability

    DEFF Research Database (Denmark)

    Thomsen, Jon Juel

    About this textbook An ideal text for students that ties together classical and modern topics of advanced vibration analysis in an interesting and lucid manner. It provides students with a background in elementary vibrations with the tools necessary for understanding and analyzing more complex...... dynamical phenomena that can be encountered in engineering and scientific practice. It progresses steadily from linear vibration theory over various levels of nonlinearity to bifurcation analysis, global dynamics and chaotic vibrations. It trains the student to analyze simple models, recognize nonlinear...... phenomena and work with advanced tools such as perturbation analysis and bifurcation analysis. Explaining theory in terms of relevant examples from real systems, this book is user-friendly and meets the increasing interest in non-linear dynamics in mechanical/structural engineering and applied mathematics...

  2. Experimental evidence of the tonic vibration reflex during whole-body vibration of the loaded and unloaded leg.

    Directory of Open Access Journals (Sweden)

    Lisa N Zaidell

    Full Text Available Increased muscle activation during whole-body vibration (WBV is mainly ascribed to a complex spinal and supraspinal neurophysiological mechanism termed the tonic vibration reflex (TVR. However, TVR has not been experimentally demonstrated during low-frequency WBV, therefore this investigation aimed to determine the expression of TVR during WBV. Whilst seated, eight healthy males were exposed to either vertical WBV applied to the leg via the plantar-surface of the foot, or Achilles tendon vibration (ATV at 25 Hz and 50 Hz for 70s. Ankle plantar-flexion force, tri-axial accelerations at the shank and vibration source, and surface EMG activity of m. soleus (SOL and m. tibialis anterior (TA were recorded from the unloaded and passively loaded leg to simulate body mass supported during standing. Plantar flexion force was similarly augmented by WBV and ATV and increased over time in a load- and frequency dependent fashion. SOL and TA EMG amplitudes increased over time in all conditions independently of vibration mode. 50 Hz WBV and ATV resulted in greater muscle activation than 25 Hz in SOL when the shank was loaded and in TA when the shank was unloaded despite the greater transmission of vertical acceleration from source to shank with 25 Hz and WBV, especially during loading. Low-amplitude WBV of the unloaded and passively loaded leg produced slow tonic muscle contraction and plantar-flexion force increase of similar magnitudes to those induced by Achilles tendon vibration at the same frequencies. This study provides the first experimental evidence supporting the TVR as a plausible mechanism underlying the neuromuscular response to whole-body vibration.

  3. Vibration response of misaligned rotors (United States)

    Patel, Tejas H.; Darpe, Ashish K.


    Misalignment is one of the common faults observed in rotors. Effect of misalignment on vibration response of coupled rotors is investigated in the present study. The coupled rotor system is modelled using Timoshenko beam elements with all six dof. An experimental approach is proposed for the first time for determination of magnitude and harmonic nature of the misalignment excitation. Misalignment effect at coupling location of rotor FE model is simulated using nodal force vector. The force vector is found using misalignment coupling stiffness matrix, derived from experimental data and applied misalignment between the two rotors. Steady-state vibration response is studied for sub-critical speeds. Effect of the types of misalignment (parallel and angular) on the vibration behaviour of the coupled rotor is examined. Along with lateral vibrations, axial and torsional vibrations are also investigated and nature of the vibration response is also examined. It has been found that the misalignment couples vibrations in bending, longitudinal and torsional modes. Some diagnostic features in the fast Fourier transform (FFT) of torsional and longitudinal response related to parallel and angular misalignment have been revealed. Full spectra and orbit plots are effectively used to reveal the unique nature of misalignment fault leading to reliable misalignment diagnostic information, not clearly brought out by earlier studies.

  4. Noninvasive pulsed focused ultrasound allows spatiotemporal control of targeted homing for multiple stem cell types in murine skeletal muscle and the magnitude of cell homing can be increased through repeated applications. (United States)

    Burks, Scott R; Ziadloo, Ali; Kim, Saejeong J; Nguyen, Ben A; Frank, Joseph A


    Stem cells are promising therapeutics for cardiovascular diseases, and i.v. injection is the most desirable route of administration clinically. Subsequent homing of exogenous stem cells to pathological loci is frequently required for therapeutic efficacy and is mediated by chemoattractants (cell adhesion molecules, cytokines, and growth factors). Homing processes are inefficient and depend on short-lived pathological inflammation that limits the window of opportunity for cell injections. Noninvasive pulsed focused ultrasound (pFUS), which emphasizes mechanical ultrasound-tissue interactions, can be precisely targeted in the body and is a promising approach to target and maximize stem cell delivery by stimulating chemoattractant expression in pFUS-treated tissue prior to cell infusions. We demonstrate that pFUS is nondestructive to murine skeletal muscle tissue (no necrosis, hemorrhage, or muscle stem cell activation) and initiates a largely M2-type macrophage response. We also demonstrate that local upregulation of chemoattractants in pFUS-treated skeletal muscle leads to enhance homing, permeability, and retention of human mesenchymal stem cells (MSC) and human endothelial precursor cells (EPC). Furthermore, the magnitude of MSC or EPC homing was increased when pFUS treatments and cell infusions were repeated daily. This study demonstrates that pFUS defines transient "molecular zip codes" of elevated chemoattractants in targeted muscle tissue, which effectively provides spatiotemporal control and tunability of the homing process for multiple stem cell types. pFUS is a clinically translatable modality that may ultimately improve homing efficiency and flexibility of cell therapies for cardiovascular diseases. © AlphaMed Press.

  5. A Survey of Floor Vibration Noise at All Sectors in the APS Experiment Hall

    Energy Technology Data Exchange (ETDEWEB)

    Kearney, Steven [Argonne National Lab. (ANL), Argonne, IL (United States); Shu, Deming [Argonne National Lab. (ANL), Argonne, IL (United States)


    A vibration survey of the APS experiment hall floor was conducted. It was found that beamlines 10-20 have particularly low levels of vibration when compared to the rest of the facility. The vibration spectrum for each beamline floor can be found in the appendix. Throughout the majority of the 5-100 Hz vibration spectrum beamlines at the APS fall below the most stringent NEST vibration criteria. Lastly, it was concluded that the magnitude of vibrations at a particular beamline is largely dependent upon the magnitude of vibrations present at the nearby mezzanine support column.

  6. The transmission of vertical vibration through seats: Influence of the characteristics of the human body (United States)

    Toward, Martin G. R.; Griffin, Michael J.


    The transmission of vibration through a seat depends on the impedance of the seat and the apparent mass of the seat occupant. This study was designed to determine how factors affecting the apparent mass of the body (age, gender, physical characteristics, backrest contact, and magnitude of vibration) affect seat transmissibility. The transmission of vertical vibration through a car seat was measured with 80 adults (41 males and 39 females aged 18-65) at frequencies between 0.6 and 20 Hz with two backrest conditions (no backrest and backrest), and with three magnitudes of random vibration (0.5, 1.0, and 1.5 m s -2 rms). Linear regression models were used to study the effects of subject physical characteristics (age, gender, and anthropometry) and features of their apparent mass (resonance frequency, apparent mass at resonance and at 12 Hz) on the measured seat transmissibility. The strongest predictor of both the frequency of the principal resonance in seat transmissibility and the seat transmissibility at resonance was subject age, with other factors having only marginal effects. The transmissibility of the seat at 12 Hz depended on subject age, body mass index, and gender. Although subject weight was strongly associated with apparent mass, weight was not strongly associated with seat transmissibility. The resonance frequency of the seat decreased with increases in the magnitude of the vibration excitation and increased when subjects made contact with the backrest. Inter-subject variability in the resonance frequency and transmissibility at resonance was less with greater vibration excitation, but was largely unaffected by backrest contact. A lumped parameter seat-person model showed that changes in seat transmissibility with age can be predicted from changes in apparent mass with age, and that the dynamic stiffness of the seat appeared to increase with increased loading so as to compensate for increases in subject apparent mass associated with increased sitting

  7. Integrated Circuit Stellar Magnitude Simulator (United States)

    Blackburn, James A.


    Describes an electronic circuit which can be used to demonstrate the stellar magnitude scale. Six rectangular light-emitting diodes with independently adjustable duty cycles represent stars of magnitudes 1 through 6. Experimentally verifies the logarithmic response of the eye. (Author/GA)

  8. An examination of the vibration transmissibility of the hand-arm system in three orthogonal directions (United States)

    Welcome, Daniel E.; Dong, Ren G.; Xu, Xueyan S.; Warren, Christopher; McDowell, Thomas W.; Wu, John Z.


    The objective of this study is to enhance the understanding of the vibration transmission in the hand-arm system in three orthogonal directions (X, Y, and Z). For the first time, the transmitted vibrations distributed on the entire hand-arm system exposed in the three orthogonal directions via a 3-D vibration test system were measured using a 3-D laser vibrometer. Seven adult male subjects participated in the experiment. This study confirms that the vibration transmissibility generally decreased with the increase in distance from the hand and it varied with the vibration direction. Specifically, to the upper arm and shoulder, only moderate vibration transmission was measured in the test frequency range (16 to 500 Hz), and virtually no transmission was measured in the frequency range higher than 50 Hz. The resonance vibration on the forearm was primarily in the range of 16–30 Hz with the peak amplitude of approximately 1.5 times of the input vibration amplitude. The major resonance on the dorsal surfaces of the hand and wrist occurred at around 30–40 Hz and, in the Y direction, with peak amplitude of more than 2.5 times of the input amplitude. At higher than 50 Hz, vibration transmission was effectively limited to the hand and fingers. A major finger resonance was observed at around 100 Hz in the X and Y directions and around 200 Hz in the Z direction. In the fingers, the resonance magnitude in the Z direction was generally the lowest, and the resonance magnitude in the Y direction was generally the highest with the resonance amplitude of 3 times the input vibration, which was similar to the transmissibility at the wrist and hand dorsum. The implications of the results are discussed. Relevance to industry Prolonged, intensive exposure to hand-transmitted vibration could result in hand-arm vibration syndrome. While the syndrome's precise mechanisms remain unclear, the characterization of the vibration transmissibility of the system in the three orthogonal

  9. Hand-arm vibration syndrome and dose-response relation for vibration induced white finger among quarry drillers and stonecarvers. Italian Study Group on Physical Hazards in the Stone Industry. (United States)

    Bovenzi, M


    To investigate the occurrence of disorders associated with the hand arm vibration syndrome in a large population of stone workers in Italy. The dose-response relation for vibration induced white finger (VWF) was also studied. The study population consisted of 570 quarry drillers and stonecarvers exposed to vibration and 258 control stone workers who performed only manual activity. Each subject was interviewed with health and workplace assessment questionnaires. Sensorineural and VWF disorders were staged according to the Stockholm workshop scales. Vibration was measured on a representative sample of percussive and rotary tools. The 8 h energy equivalent frequency weighted acceleration (A (8)) and lifetime vibration doses were calculated for each of the exposed stone workers. Sensorineural and musculoskeletal symptoms occurred more frequently in the workers exposed to vibration than in the controls, but trend statistics did not show a linear exposure-response relation for these disorders. The prevalence of VWF was found to be 30.2% in the entire group exposed to vibration. Raynaud's phenomenon was discovered in 4.3% of the controls. VWF was strongly associated with exposure to vibration and a monotonic dose-response relation was found. According to the exposure data of this study, the expected percentage of stone workers affected with VWF tends to increase roughly in proportion to the square root of A(8) (for a particular exposure period) or in proportion to the square root of the duration of exposure (for a constant magnitude of vibration). Even although limited to a specific work situation, the dose-response relation for VWF estimated in this study suggests a time dependency such that halving the years of exposure allows a doubling of the energy equivalent vibration. According to these findings, the vibration exposure levels currently under discussion within the European Community seem to represent reasonable exposure limits for the protection of workers against

  10. Vibrating minds

    CERN Document Server


    Ed Witten is one of the leading scientists in the field of string theory, the theory that describes elementary particles as vibrating strings. This week he leaves CERN after having spent a few months here on sabbatical. His wish is that the LHC will unveil supersymmetry.

  11. Predicting the mean Bz magnitude (United States)

    Keating, C. F.; Lawrence, T. L.; Prebble, R. C.


    When a ``boxcar'' average of the Bz magnitude is plotted, a clear cyclic pattern is apparent with an approximate correlation with the sunspot cycle. The Bz cycle minima are seen to occur at nearly the same time as the sunspot cycle minima. The cyclic maxima appear to be characterized by a double peak, with the second peak occurring in the descending phase of the sunspot cycle. This cyclical nature makes it possible to apply the McNish-Lincoln technique to make predictions concerning the future level of Bz magnitude. This method leads to a prediction of the maximum average magnitude in Bz occurring in the year 2003 time frame.

  12. EOP Current Magnitude and Direction (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data contain shipboard current magnitudes and directions collected in the Pacific, both pelagic and near shore environments. Data is collected using an RD...

  13. Vibration Sensitive Keystroke Analysis

    NARCIS (Netherlands)

    Lopatka, M.; Peetz, M.-H.; van Erp, M.; Stehouwer, H.; van Zaanen, M.


    We present a novel method for performing non-invasive biometric analysis on habitual keystroke patterns using a vibration-based feature space. With the increasing availability of 3-D accelerometer chips in laptop computers, conventional methods using time vectors may be augmented using a distinct

  14. Modeling of the interaction between grip force and vibration transmissibility of a finger. (United States)

    Wu, John Z; Welcome, Daniel E; McDowell, Thomas W; Xu, Xueyan S; Dong, Ren G


    It is known that the vibration characteristics of the fingers and hand and the level of grip action interacts when operating a power tool. In the current study, we developed a hybrid finger model to simulate the vibrations of the hand-finger system when gripping a vibrating handle covered with soft materials. The hybrid finger model combines the characteristics of conventional finite element (FE) models, multi-body musculoskeletal models, and lumped mass models. The distal, middle, and proximal finger segments were constructed using FE models, the finger segments were connected via three flexible joint linkages (i.e., distal interphalangeal joint (DIP), proximal interphalangeal joint (PIP), and metacarpophalangeal (MCP) joint), and the MCP joint was connected to the ground and handle via lumped parameter elements. The effects of the active muscle forces were accounted for via the joint moments. The bone, nail, and hard connective tissues were assumed to be linearly elastic whereas the soft tissues, which include the skin and subcutaneous tissues, were considered as hyperelastic and viscoelastic. The general trends of the model predictions agree well with the previous experimental measurements in that the resonant frequency increased from proximal to the middle and to the distal finger segments for the same grip force, that the resonant frequency tends to increase with increasing grip force for the same finger segment, especially for the distal segment, and that the magnitude of vibration transmissibility tends to increase with increasing grip force, especially for the proximal segment. The advantage of the proposed model over the traditional vibration models is that it can predict the local vibration behavior of the finger to a tissue level, while taking into account the effects of the active musculoskeletal force, the effects of the contact conditions on vibrations, the global vibration characteristics. Published by Elsevier Ltd.

  15. Calculating thermal radiation of a vibrational nonequilibrium gas flow using the method of k-distribution (United States)

    Molchanov, A. M.; Bykov, L. V.; Yanyshev, D. S.


    The method has been developed to calculate infrared radiation of vibrational nonequilibrium gas based on k-distribution. A comparison of the data on the calculated nonequilibrium radiation with results of other authors and with experimental data has shown satisfactory agreement. It is shown that the results of calculation of radiation intensity using nonequilibrium and equilibrium methods significantly differ from each other. The discrepancy increases with increasing height (decreasing pressure) and can exceed an order of magnitude.

  16. Rotor position and vibration control for aerospace flywheel energy storage devices and other vibration based devices (United States)

    Alexander, B. X. S.

    Flywheel energy storage has distinct advantages over conventional energy storage methods such as electrochemical batteries. Because the energy density of a flywheel rotor increases quadratically with its speed, the foremost goal in flywheel design is to achieve sustainable high speeds of the rotor. Many issues exist with the flywheel rotor operation at high and varying speeds. A prominent problem is synchronous rotor vibration, which can drastically limit the sustainable rotor speed. In a set of projects, the novel Active Disturbance Rejection Control (ADRC) is applied to various problems of flywheel rotor operation. These applications include rotor levitation, steady state rotation at high speeds and accelerating operation. Several models such as the lumped mass model and distributed three-mass models have been analyzed. In each of these applications, the ADRC has been extended to cope with disturbance, noise, and control effort optimization; it also has been compared to various industry-standard controllers such as PID and PD/observer, and is proven to be superior. The control performance of the PID controller and the PD/observer currently used at NASA Glenn has been improved by as much as an order of magnitude. Due to the universality of the second order system, the results obtained in the rotor vibration problem can be straightforwardly extended to other vibrational systems, particularly, the MEMS gyroscope. Potential uses of a new nonlinear controller, which inherits the ease of use of the traditional PID, are also discussed.

  17. Computational and clinical investigation on the role of mechanical vibration on orthodontic tooth movement. (United States)

    Liao, Zhipeng; Elekdag-Turk, Selma; Turk, Tamer; Grove, Johnathan; Dalci, Oyku; Chen, Junning; Zheng, Keke; Ali Darendeliler, M; Swain, Michael; Li, Qing


    The aim of this study is to investigate the biomechanics for orthodontic tooth movement (OTM) subjected to concurrent single-tooth vibration (50Hz) with conventional orthodontic force application, via a clinical study and computational simulation. Thirteen patients were recruited in the clinical study, which involved distal retraction of maxillary canines with 1.5N (150g) force for 12weeks. In a split mouth study, vibration and non-vibration sides were randomly assigned to each subject. Vibration of 50Hz, of approximately 0.2N (20g) of magnitude, was applied on the buccal surface of maxillary canine for the vibration group. A mode-based steady-state dynamic finite element analysis (FEA) was conducted based on an anatomically detailed model, complying with the clinical protocol. Both the amounts of space closure and canine distalization of the vibration group were significantly higher than those of the control group, as measured intra-orally or on models (pvibration can accelerate maxillary canine retraction. The volume-average hydrostatic stress (VHS) in the periodontal ligament (PDL) was computationally calculated to be higher with vibration compared with the control group for maxillary teeth and for both linguo-buccal and mesial-distal directions. An increase in vibratory frequency further amplified the PDL response before reaching a local natural frequency. An amplification of PDL response was also shown to be induced by vibration based on computational simulation. The vibration-enhanced OTM can be described by mild, vigorous and diminishing zones among which the mild zone is considered to be clinically beneficial. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Understanding Magnitudes to Understand Fractions (United States)

    Gabriel, Florence


    Fractions are known to be difficult to learn and difficult to teach, yet they are vital for students to have access to further mathematical concepts. This article uses evidence to support teachers employing teaching methods that focus on the conceptual understanding of the magnitude of fractions.

  19. Measurement of rabbit eardrum vibration through stroboscopic digital holography (United States)

    De Greef, Daniël; Dirckx, Joris J. J.


    In this work, we present a setup for high-power single shot stroboscopic digital holography and demonstrate it in an application on rabbit eardrum vibration measurement. The setup is able to make full-field time-resolved measurements of vibrating surfaces with a precision in the nanometer range in a broad frequency range. The height displacement of the measured object is visualized over the entire surface as a function of time. Vibration magnitude and phase maps can be extracted from these data, the latter proving to be very useful to reveal phase delays across the surface. Such deviations from modal motion indicate energy losses due to internal damping, in contrast to purely elastic mechanics. This is of great interest in middle ear mechanics and finite element modelling. In our setup, short laser pulses are fired at selected instants within the surface vibration period and are recorded by a CCD camera. The timing of the pulses and the exposure of the camera are synchronized to the vibration phase by a microprocessor. The high-power frequency-doubled Nd:YAG laser produces pulses containing up to 5 mJ of energy, which is amply sufficient to record single-shot holograms. As the laser pulse length is 8 ns and the smallest time step of the trigger electronics is 1 μs, vibration measurements of frequencies up to 250 kHz are achievable through this method, provided that the maximum vibration amplitude exceeds a few nanometers. In our application, middle ear mechanics, measuring frequencies extend from 5 Hz to 20 kHz. The experimental setup will be presented, as well as results of measurements on a stretched circular rubber membrane and a rabbit's eardrum. Two of the challenges when measuring biological tissues, such as the eardrum, are low reflectivity and fast dehydration. To increase reflectivity, a coating is applied and to counteract the undesirable effects of tissue dehydration, the measurement setup and software have been optimized for speed without compromising

  20. Measurement of rabbit eardrum vibration through stroboscopic digital holography

    Energy Technology Data Exchange (ETDEWEB)

    De Greef, Daniël; Dirckx, Joris J. J. [University of Antwerp, Laboratory of BioMedical Physics, Groenenborgerlaan 171, B-2020 Antwerp (Belgium)


    In this work, we present a setup for high-power single shot stroboscopic digital holography and demonstrate it in an application on rabbit eardrum vibration measurement. The setup is able to make full-field time-resolved measurements of vibrating surfaces with a precision in the nanometer range in a broad frequency range. The height displacement of the measured object is visualized over the entire surface as a function of time. Vibration magnitude and phase maps can be extracted from these data, the latter proving to be very useful to reveal phase delays across the surface. Such deviations from modal motion indicate energy losses due to internal damping, in contrast to purely elastic mechanics. This is of great interest in middle ear mechanics and finite element modelling. In our setup, short laser pulses are fired at selected instants within the surface vibration period and are recorded by a CCD camera. The timing of the pulses and the exposure of the camera are synchronized to the vibration phase by a microprocessor. The high-power frequency-doubled Nd:YAG laser produces pulses containing up to 5 mJ of energy, which is amply sufficient to record single-shot holograms. As the laser pulse length is 8 ns and the smallest time step of the trigger electronics is 1 μs, vibration measurements of frequencies up to 250 kHz are achievable through this method, provided that the maximum vibration amplitude exceeds a few nanometers. In our application, middle ear mechanics, measuring frequencies extend from 5 Hz to 20 kHz. The experimental setup will be presented, as well as results of measurements on a stretched circular rubber membrane and a rabbit's eardrum. Two of the challenges when measuring biological tissues, such as the eardrum, are low reflectivity and fast dehydration. To increase reflectivity, a coating is applied and to counteract the undesirable effects of tissue dehydration, the measurement setup and software have been optimized for speed without

  1. Urban vibrations

    DEFF Research Database (Denmark)

    Morrison, Ann; Knudsen, L.; Andersen, Hans Jørgen


      lab   studies   in   that   we   found   a   decreased   detection   rate   in   busy   environments.   Here   we   test   with   a   much   larger   sample   and   age   range,   and   contribute   with   the   first   vibration  sensitivity  testing  outside  the  lab  in  an  urban   public...

  2. Human responses to wave slamming vibration on a polar supply and research vessel. (United States)

    Omer, H; Bekker, A


    A polar supply and research vessel is pre-disposed to wave slamming which has caused complaints among crew and researchers regarding interference with sleep, equipment use and research activities. The present work undertook to survey passenger claims of sleep interference, disturbed motor tasks and equipment damage as a result of wave slamming during normal operations of this vessel. The hypothesis was investigated that whole-body vibration metrics from ISO 2631-1 are potentially suitable for the prediction of human slamming complaints. Full-scale acceleration measurements were performed and wave slamming events were subsequently identified from the human weighted acceleration time histories. A daily diary survey was also conducted to gather the human response. The vibration caused by wave slamming was found to be strongly correlated with sleep disturbances and activity interference. Sleep and equipment use were found to be the most affected parameters by slamming. Daily vibration dose values were determined by accumulating the vibration as a result of slamming over 24 h periods. This metric accounted for increased magnitudes and frequency of slamming incidents and proved to be the best metric to represent human responses to slamming vibration. The greatest percentage of activities affected by slamming related to sleep regardless of daily cumulative VDV magnitude. More than 50% of the recorded responses related to sleep when the daily cumulative VDV ranged between 8.0 m/s1.75-10.0 m/s1.75. The peak vertical vibration levels recorded on the vessel reach magnitudes which are associated with sleep disturbance in environments where acoustic noise is present. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Is there a magnitude effect in tipping? (United States)

    Green, Leonard; Myerson, Joel; Schneider, Rachel


    The present study examined nearly 1,000 tips recorded for two taxicabs, two hair salons, and two restaurants. In each of the six cases, amount of tip increased linearly as a function of the amount of the bill. Contrary to standard microeconomic theory, there was a magnitude effect in that as the amount of the bill increased, the percent tip tended to decrease. The present results extend the findings of Chapman and Winquist (1998), obtained using hypothetical scenarios, to real-world tipping behavior. Chapman and Winquist argued that a magnitude effect in tipping reflects the shape of the utility function for money. We suggest, however, that the magnitude effect may be the mathematical consequence of replotting the fundamental relationship between tip and bill amounts in terms of percent tip, given that the observed linear relation between tip and bill amounts has a positive intercept. We suggest further that the positive intercept arises because a tip represents a judgment as to what constitutes a fair or equitable wage, and part of what constitutes a fair wage is independent of the amount of the bill, reflecting compensation for simply being there when needed. The present account implies that different explanations may be needed for magnitude effects observed in different domains.

  4. Scaling Relations of Local Magnitude versus Moment Magnitude for Sequences of Similar Earthquakes in Switzerland

    KAUST Repository

    Bethmann, F.


    Theoretical considerations and empirical regressions show that, in the magnitude range between 3 and 5, local magnitude, ML, and moment magnitude, Mw, scale 1:1. Previous studies suggest that for smaller magnitudes this 1:1 scaling breaks down. However, the scatter between ML and Mw at small magnitudes is usually large and the resulting scaling relations are therefore uncertain. In an attempt to reduce these uncertainties, we first analyze the ML versus Mw relation based on 195 events, induced by the stimulation of a geothermal reservoir below the city of Basel, Switzerland. Values of ML range from 0.7 to 3.4. From these data we derive a scaling of ML ~ 1:5Mw over the given magnitude range. We then compare peak Wood-Anderson amplitudes to the low-frequency plateau of the displacement spectra for six sequences of similar earthquakes in Switzerland in the range of 0:5 ≤ ML ≤ 4:1. Because effects due to the radiation pattern and to the propagation path between source and receiver are nearly identical at a particular station for all events in a given sequence, the scatter in the data is substantially reduced. Again we obtain a scaling equivalent to ML ~ 1:5Mw. Based on simulations using synthetic source time functions for different magnitudes and Q values estimated from spectral ratios between downhole and surface recordings, we conclude that the observed scaling can be explained by attenuation and scattering along the path. Other effects that could explain the observed magnitude scaling, such as a possible systematic increase of stress drop or rupture velocity with moment magnitude, are masked by attenuation along the path.

  5. Vibrational Damping of Composite Materials


    Biggerstaff, Janet M.


    The purpose of this research was to develop new methods of vibrational damping in polymeric composite materials along with expanding the knowledge of currently used vibrational damping methods. A new barrier layer technique that dramatically increased damping in viscoelastic damping materials that interacted with the composite resin was created. A method for testing the shear strength of damping materials cocured in composites was developed. Directional damping materials, where the loss facto...

  6. Theory of vibration protection

    CERN Document Server

    Karnovsky, Igor A


    This text is an advancement of the theory of vibration protection of mechanical systems with lumped and distributed parameters. The book offers various concepts and methods of solving vibration protection problems, discusses the advantages and disadvantages of different methods, and the fields of their effective applications. Fundamental approaches of vibration protection, which are considered in this book, are the passive, parametric and optimal active vibration protection. The passive vibration protection is based on vibration isolation, vibration damping and dynamic absorbers. Parametric vibration protection theory is based on the Shchipanov-Luzin invariance principle. Optimal active vibration protection theory is based on the Pontryagin principle and the Krein moment method. The book also contains special topics such as suppression of vibrations at the source of their occurrence and the harmful influence of vibrations on humans. Numerous examples, which illustrate the theoretical ideas of each chapter, ar...

  7. Modeling study of vibrational photochemical isotope enrichment. [HBr + Cl/sub 2/; HCl + Br/sub 2/

    Energy Technology Data Exchange (ETDEWEB)

    Badcock, C.C.; Hwang, W.C.; Kalsch, J.F.


    Chemical kinetic modeling studies of vibrational-photochemical isotope enrichment have been performed on two systems: Model (I), H/sup 79/Br(H/sup 81/Br) + Cl/sub 2/ and, Model (II), H/sup 37/Cl(H/sup 35/Cl) + Br. Pulsed laser excitation was modeled to the first excited vibrational level of H/sup 79/Br in Model I and the first and second excited vibrational levels of both HCl isotopes in Model II. These are prototype systems of exoergic (Model I) and endoergic (Model II) reactions. The effects on enrichment of varying the external parameters (pressure, laser intensity) and the internal parameters (rate constants for V-V exchange and excited-state reactions) were examined. Studies of these prototype systems indicate that a favorable reaction for enrichment, with isotopically-specific excitation and a significantly accelerated vibrationally-excited-state reaction should have the following properties: the reaction from v = 0 should be only moderately exoergic, and the most favorable coreactant should be a polyatomic species, such as alkyl radical. Direct excitation of the reacting vibrational level is at least an order of magnitude more favorable for enrichment than is population by energy transfer. Enrichment of the minor isotope by these processes is more effective than is major isotope enrichment. Within limits, increased laser intensity is beneficial. However, for sequential excitation of a second vibrational level, major isotope enrichment can be diminished by high populations of the first vibrational level.

  8. A vibrational analysis of the O2 (A 3Sigma/+/u) Herzberg I system using rocket data (United States)

    Siskind, David E.; Sharp, William E.


    An observation of the UV nightglow between 2670 and 3040 A was conducted over White Sands Missile Range on October 22, 1984. A 1/4-m spectrometer operating at 3.5-A resolution viewed the earth's limb at tangent heights between 90 and 110 km for 120 sec. A total of 41 spectral scans of the nightglow were obtained with the brightest feature being the O2 Herzberg I bands. The data were sorted into two groups, one from the top side of the layer and one containing the emission peak, and compared with synthetic spectra. The deduced vibrational distributions indicate that, at low altitudes, the higher vibrational levels (v-prime greater than 6) were relatively depleted; however, the magnitude of the vibrational shift is much less than that predicted from theories of vibrational relaxation. It is shown that increasing the electronic quenching with respect to the vibrational quenching can reduce the vibrational shift in the model and qualitatively explain the observations; however, several details of the vibrational distribution are not well reproduced.

  9. Analysis of non-linear response of the human body to vertical whole-body vibration. (United States)

    Tarabini, Marco; Solbiati, Stefano; Moschioni, Giovanni; Saggin, Bortolino; Scaccabarozzi, Diego


    The human response to vibration is typically studied using linear estimators of the frequency response function, although different literature works evidenced the presence of non-linear effects in whole-body vibration response. This paper analyses the apparent mass of standing subjects using the conditioned response techniques in order to understand the causes of the non-linear behaviour. The conditioned apparent masses were derived considering models of increasing complexity. The multiple coherence function was used as a figure of merit for the comparison between the linear and the non-linear models. The apparent mass of eight male subjects was studied in six configurations (combinations of three vibration magnitudes and two postures). The contribution of the non-linear terms was negligible and was endorsed to the change of modal parameters during the test. Since the effect of the inter-subject variability was larger than that due to the increase in vibration magnitude, the biodynamic response should be more meaningfully modelled using a linear estimator with uncertainty rather than looking for a non-linear modelling.

  10. Simultaneous passive broadband vibration suppression and energy harvesting with multifunctional metastructures (United States)

    Hobeck, Jared D.; Inman, Daniel J.


    The research presented in this paper focuses on a unique multifunctional structural design that not only absorbs vibration at desired frequency bands, but also extracts significant amounts of electrical energy. This is accomplished by first designing an array of low-frequency resonators to be integrated into a larger host structure. This array of resonators can contribute not only to static requirements, e.g., stiffness, strength, mass, etc., of the host structure but the array also functions as a distributed system of passive vibration absorbers. Structures having these distributed vibration absorber systems are known as metastructures. Here, the authors present a unique absorber design referred to as a zigzag beam, which can have a natural frequency an order of magnitude lower than that of a basic cantilever beam of the same scale. It will be shown that the zigzag beams can be designed with an added layer of piezoelectric material, which allows them to harvest significant amounts of electrical power as they suppress vibration of the host structure. This paper includes details of the fully-coupled electromechanical analytical and numerical models for energy harvesting metastructures. Experimental results used to validate the proposed modeling methods will be discussed. Lastly, results of a multi-objective design optimization will be presented and discussed. Results of the optimization study were able to show that allowing only an 82 % increase in the host structure vibration could yield more than a 1500 % increase in total power output. Other results show that the power output (or absorber motion) could be increased 241% without increasing host structure vibrations due to multiple design solutions existing at fixed host structure vibration levels.

  11. Vibration reduces thermal pain in adjacent dermatomes. (United States)

    Yarnitsky, D; Kunin, M; Brik, R; Sprecher, E


    Spatial summation of thermal pain crosses dermatomal boundaries. In this study we examined whether a vibrational stimulus applied to adjacent or remote dermatomes affects thermal pain perception to the volar forearm. Contact heat at 2 degrees C above thermal pain threshold was applied, and a Visual Analog Scale (VAS) was used for pain assessment. We found a significant decrease in mean VAS rating when simultaneous vibratory stimuli were given to the dermatome adjacent to that receiving thermal stimulation, or to the same dermatome on the contralateral side. There was no change in VAS rating when vibration was given two or more dermatomes away. Vibration within the same dermatome also did not yield a significant change in VAS rating, possibly due to difficulty in magnitude assessment of stimuli given simultaneously within a single dermatome. The finding that vibration can reduce pain across dermatomes may allow for more flexible design of stimulation therapy for pain.

  12. Effect of Attitudinal, Situational and Demographic Factors on Annoyance Due to Environmental Vibration and Noise from Construction of a Light Rapid Transit System (United States)

    Wong-McSweeney, Daniel; Woodcock, James; Waddington, David; Peris, Eulalia; Koziel, Zbigniew; Moorhouse, Andy; Redel-Macías, María Dolores


    The aim of this paper is to determine what non-exposure factors influence the relationship between vibration and noise exposure from the construction of a Light Rapid Transit (LRT) system and the annoyance of nearby residents. Noise and vibration from construction sites are known to annoy residents, with annoyance increasing as a function of the magnitude of the vibration and noise. There is not a strong correlation between exposure and levels of annoyance suggesting that factors not directly related to the exposure may have an influence. A range of attitudinal, situational and demographic factors are investigated with the aim of understanding the wide variation in annoyance for a given vibration exposure. A face-to-face survey of residents (n = 350) near three sites of LRT construction was conducted, and responses were compared to semi-empirical estimates of the internal vibration within the buildings. It was found that annoyance responses due to vibration were strongly influenced by two attitudinal variables, concern about property damage and sensitivity to vibration. Age, ownership of the property and the visibility of the construction site were also important factors. Gender, time at home and expectation of future levels of vibration had much less influence. Due to the measurement methods used, it was not possible to separate out the effects of noise and vibration on annoyance; as such, this paper focusses on annoyance due to vibration exposure. This work concludes that for the most cost-effective reduction of the impact of construction vibration and noise on the annoyance felt by a community, policies should consider attitudinal factors. PMID:27983662

  13. Universality in the dynamical properties of seismic vibrations (United States)

    Chatterjee, Soumya; Barat, P.; Mukherjee, Indranil


    We have studied the statistical properties of the observed magnitudes of seismic vibration data in discrete time in an attempt to understand the underlying complex dynamical processes. The observed magnitude data are taken from six different geographical locations. All possible magnitudes are considered in the analysis including catastrophic vibrations, foreshocks, aftershocks and commonplace daily vibrations. The probability distribution functions of these data sets obey scaling law and display a certain universality characteristic. To investigate the universality features in the observed data generated by a complex process, we applied Random Matrix Theory (RMT) in the framework of Gaussian Orthogonal Ensemble (GOE). For all these six places the observed data show a close fit with the predictions of RMT. This reinforces the idea of universality in the dynamical processes generating seismic vibrations.

  14. Rank distributions: Frequency vs. magnitude. (United States)

    Velarde, Carlos; Robledo, Alberto


    We examine the relationship between two different types of ranked data, frequencies and magnitudes. We consider data that can be sorted out either way, through numbers of occurrences or size of the measures, as it is the case, say, of moon craters, earthquakes, billionaires, etc. We indicate that these two types of distributions are functional inverses of each other, and specify this link, first in terms of the assumed parent probability distribution that generates the data samples, and then in terms of an analog (deterministic) nonlinear iterated map that reproduces them. For the particular case of hyperbolic decay with rank the distributions are identical, that is, the classical Zipf plot, a pure power law. But their difference is largest when one displays logarithmic decay and its counterpart shows the inverse exponential decay, as it is the case of Benford law, or viceversa. For all intermediate decay rates generic differences appear not only between the power-law exponents for the midway rank decline but also for small and large rank. We extend the theoretical framework to include thermodynamic and statistical-mechanical concepts, such as entropies and configuration.

  15. Encapsulation of an EP67-Conjugated CTL Peptide Vaccine in Nanoscale Biodegradable Particles Increases the Efficacy of Respiratory Immunization and Affects the Magnitude and Memory Subsets of Vaccine-Generated Mucosal and Systemic CD8(+) T Cells in a Diameter-Dependent Manner. (United States)

    Karuturi, Bala V K; Tallapaka, Shailendra B; Yeapuri, Pravin; Curran, Stephen M; Sanderson, Sam D; Vetro, Joseph A


    The diameter of biodegradable particles used to coencapsulate immunostimulants and subunit vaccines affects the magnitude of memory CD8(+) T cells generated by systemic immunization. Possible effects on the magnitude of CD8(+) T cells generated by mucosal immunization or memory subsets that potentially correlate more strongly with protection against certain pathogens, however, are unknown. In this study, we conjugated our novel host-derived mucosal immunostimulant, EP67, to the protective MCMV CTL epitope, pp89, through a lysosomal protease-labile double arginine linker (pp89-RR-EP67) and encapsulated in PLGA 50:50 micro- or nanoparticles. We then compared total magnitude, effector/central memory (CD127/KRLG1/CD62L), and IFN-γ/TNF-α/IL-2 secreting subsets of pp89-specific CD8(+) T cells as well as protection of naive female BALB/c mice against primary respiratory infection with MCMV 21 days after respiratory immunization. We found that decreasing the diameter of encapsulating particle from ∼5.4 μm to ∼350 nm (i) increased the magnitude of pp89-specific CD8(+) T cells in the lungs and spleen; (ii) partially changed CD127/KLRG1 effector memory subsets in the lungs but not the spleen; (iii) changed CD127/KRLG1/CD62L effector/central memory subsets in the spleen; (iv) changed pp89-responsive IFN-γ/TNF-α/IL-2 secreting subsets in the lungs and spleen; (v) did not affect the extent to which encapsulation increased efficacy against primary MCMV respiratory infection over unencapsulated pp89-RR-EP67. Thus, although not observed under our current experimental conditions with MCMV, varying the diameter of nanoscale biodegradable particles may increase the efficacy of mucosal immunization with coencapsulated immunostimulant/subunit vaccines against certain pathogens by selectively increasing memory subset(s) of CD8(+) T cells that correlate the strongest with protection.

  16. The maternal plasma soluble vascular endothelial growth factor receptor-1 concentration is elevated in SGA and the magnitude of the increase relates to Doppler abnormalities in the maternal and fetal circulation. (United States)

    Chaiworapongsa, Tinnakorn; Espinoza, Jimmy; Gotsch, Francesca; Kim, Yeon Mee; Kim, Gi Jin; Goncalves, Luis F; Edwin, Samuel; Kusanovic, Juan Pedro; Erez, Offer; Than, Nandor Gabor; Hassan, Sonia S; Romero, Roberto


    concentration significantly higher than normal pregnant women (p SGA fetuses in whom Doppler velocimetry was performed (n = 41), those with abnormalities in both the uterine and umbilical artery velocimetry had the highest mean delta of sVEGFR-1 plasma concentration (mean +/- standard deviation (SD): 0.69 +/- 0.29). Conversely, patients who had normal Doppler velocimetry in both uterine and umbilical arteries had the lowest mean delta (mean +/- SD: 0.09 +/- 0.29) of sVEGFR-1 plasma concentrations (ANOVA; p SGA and those with preeclampsia, there was a relationship (Chi-square for trend p SGA or preeclampsia), Doppler abnormalities, and gestational age at blood sampling were associated with an increase in plasma sVEGFR-1 concentrations (p SGA with abnormal uterine artery Doppler velocimetry and preeclampsia. An excess of sVEGFR-1 is released into the maternal circulation of patients with preeclampsia and those with SGA fetuses, as abnormalities of impedance to blood flow involve uterine and umbilical circulation.

  17. Magnitude of preoperative cervical lordotic compensation and C2-T3 angle are correlated to increased risk of postoperative sagittal spinal pelvic malalignment in adult thoracolumbar deformity patients at 2-year follow-up. (United States)

    Passias, Peter G; Soroceanu, Alexandra; Scheer, Justin; Yang, Sun; Boniello, Anthony; Smith, Justin S; Protopsaltis, Themistocles; Kim, Han J; Schwab, Frank; Gupta, Munish; Klineberg, Eric; Mundis, Gregory; Lafage, Renaud; Hart, Robert; Shaffrey, Christopher; Lafage, Virginie; Ames, Christopher


    70 in the AG and 34 in MG. Preoperative, patients in the MG had a higher CL (11.7 vs. 4.9, p=.03), higher C2-T3 angle (13.59 vs 4.9 p=.01), higher PT (pSVA (p<.0001), and higher PI-LL (p<.0001) compared with the AG. Interestingly, the prevalence of CD at baseline was similar for both groups. There was no statistically significant difference among groups in the amount of improvement more than 2 years on the ODI or the Physical Component Summary of SF-36. Patients with sagittal spinal malalignment associated with significant cervical compensatory lordosis are at increased risk of realignment failure at 2-year follow-up. Assessment of the degree of cervical compensation may be helpful in preop evaluation to assist in realignment outcome prediction. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Communication: creation of molecular vibrational motions via the rotation-vibration coupling

    DEFF Research Database (Denmark)

    Shu, Chuan-Cun; Henriksen, Niels Engholm


    whereas a fast rotational excitation leads to a non-stationary vibrational motion. As a result, under field-free postpulse conditions, either a stretched stationary bond or a vibrating bond can be created due to the coupling between the rotational and vibrational degrees of freedom. The latter corresponds......Building on recent advances in the rotational excitation of molecules, we show how the effect of rotation-vibration coupling can be switched on in a controlled manner and how this coupling unfolds in real time after a pure rotational excitation. We present the first examination of the vibrational...... motions which can be induced via the rotation-vibration coupling after a pulsed rotational excitation. A time-dependent quantum wave packet calculation for the HF molecule shows how a slow (compared to the vibrational period) rotational excitation leads to a smooth increase in the average bond length...

  19. Active vibration isolation of a rigidly mounted turbo pump

    NARCIS (Netherlands)

    Basten, T.G.H.; Doppenberg, E.J.J.


    Manufacturers of precision equipment are constantly aiming at increased accuracy. Elimination of disturbing vibrations is therefore getting more and more important. The technical limitations of passive isolation methods require alternative strategies for vibration reduction, such as active


    Directory of Open Access Journals (Sweden)

    Darryl J. Cochrane


    Full Text Available There is strong evidence to suggest that acute indirect vibration acts on muscle to enhance force, power, flexibility, balance and proprioception suggesting neural enhancement. Nevertheless, the neural mechanism(s of vibration and its potentiating effect have received little attention. One proposal suggests that spinal reflexes enhance muscle contraction through a reflex activity known as tonic vibration stretch reflex (TVR, which increases muscle activation. However, TVR is based on direct, brief, and high frequency vibration (>100 Hz which differs to indirect vibration, which is applied to the whole body or body parts at lower vibration frequency (5-45 Hz. Likewise, muscle tuning and neuromuscular aspects are other candidate mechanisms used to explain the vibration phenomenon. But there is much debate in terms of identifying which neural mechanism(s are responsible for acute vibration; due to a number of studies using various vibration testing protocols. These protocols include: different methods of application, vibration variables, training duration, exercise types and a range of population groups. Therefore, the neural mechanism of acute vibration remain equivocal, but spinal reflexes, muscle tuning and neuromuscular aspects are all viable factors that may contribute in different ways to increasing muscular performance. Additional research is encouraged to determine which neural mechanism(s and their contributions are responsible for acute vibration. Testing variables and vibration applications need to be standardised before reaching a consensus on which neural mechanism(s occur during and post-vibration

  1. Terahertz mechanical vibrations in lysozyme: Raman spectroscopy vs modal analysis (United States)

    Carpinteri, Alberto; Lacidogna, Giuseppe; Piana, Gianfranco; Bassani, Andrea


    The mechanical behaviour of proteins is receiving an increasing attention from the scientific community. Recently it has been suggested that mechanical vibrations play a crucial role in controlling structural configuration changes (folding) which govern proteins biological function. The mechanism behind protein folding is still not completely understood, and many efforts are being made to investigate this phenomenon. Complex molecular dynamics simulations and sophisticated experimental measurements are conducted to investigate protein dynamics and to perform protein structure predictions; however, these are two related, although quite distinct, approaches. Here we investigate mechanical vibrations of lysozyme by Raman spectroscopy and linear normal mode calculations (modal analysis). The input mechanical parameters to the numerical computations are taken from the literature. We first give an estimate of the order of magnitude of protein vibration frequencies by considering both classical wave mechanics and structural dynamics formulas. Afterwards, we perform modal analyses of some relevant chemical groups and of the full lysozyme protein. The numerical results are compared to experimental data, obtained from both in-house and literature Raman measurements. In particular, the attention is focused on a large peak at 0.84 THz (29.3 cm-1) in the Raman spectrum obtained analyzing a lyophilized powder sample.

  2. A Randomized Controlled Trial of Whole Body Vibration Exposure on Markers of Bone Turnover in Postmenopausal Women (United States)

    Turner, Sarah; Torode, Margaret; Climstein, Mike; Naughton, Geraldine; Greene, David; Baker, Michael K.; Fiatarone Singh, Maria A.


    Purpose. To examine the effects of two doses of low-frequency (12 Hz), low-magnitude (0.3 g), whole body vibration on markers of bone formation and resorption in postmenopausal women. Methods. Women were recruited and randomized into a sham vibration control group, one time per week vibration group (1×/week), or three times per week vibration group (3×/week). Vibration exposure consisted of 20 minutes of intermittent vibration for the 1×/week and 3×/week groups, and sham vibration (vibration group but not in the 1×/wk vibration group compared with sham control (P vibration 3×/week for eight weeks in postmenopausal women results in a significant reduction in NTx/Cr, a marker of bone resorption, when compared with sham vibration exposure. PMID:21772975

  3. Paleo-earthquake magnitudes estimation based on multiple observations (United States)

    Hintersberger, E.; Decker, K.


    Paleoearthquake magnitudes play an important role in the assessment of surface rupture hazard, especially in intraplate regions with low seismicity, where paleoearthquake magnitudes are generally larger than those of historical earthquakes. In general, paleoearthquake magnitudes are based either on surface rupture length or on surface displacement observed at trenching sites. Several correlations link observed surface displacement to a certain magnitude, but combining more than one observation is still not well established. We present a method based on a probabilistic approach by Biasi and Weldon (2006) to combine several observations to better constrain the possible paleo-earthquake magnitude range. Assuming the single-observation probability density functions (PDF) independent of each other, the joint PDF for all observed surface displacements is the product of all single-observation PDFs.Using surface displacement data for earthquakes with known magnitudes, we combined the PDFs for randomly selected "observations" into one joint PDF for an increasing number of "observations". The resultant range of most probable magnitudes confirms the instrumentally derived magnitude. In addition, the associated uncertainties decrease rapidly with an optimum of 4 to 6 observation points. The magnitude PDFs are dominated by the largest observed displacement, especially with respect to the lowest possible magnitude.In total, we can show that this approach seems to be a suitable method to combine observations from different locations to one magnitude value accounting for the natural variances of observed along-strike surface displacement. In addition, the resultant PDFs can be used as a direct input for hazard-related probabilistic calculations. Reference: Biasi, G.P. & Weldon, R.J., (2006). Estimating surface rupture length and magnitude of paleoearthquakes from point measurements of rupture displacement. Bulletin of the Seismological Society of America 96, 1612-1623.

  4. Tunable Passive Vibration Suppressor (United States)

    Boechler, Nicholas (Inventor); Dillon, Robert Peter (Inventor); Daraio, Chiara (Inventor); Davis, Gregory L. (Inventor); Shapiro, Andrew A. (Inventor); Borgonia, John Paul C. (Inventor); Kahn, Daniel Louis (Inventor)


    An apparatus and method for vibration suppression using a granular particle chain. The granular particle chain is statically compressed and the end particles of the chain are attached to a payload and vibration source. The properties of the granular particles along with the amount of static compression are chosen to provide desired filtering of vibrations.

  5. Vibrations and Eigenvalues

    Indian Academy of Sciences (India)

    We make music by causing strings, membranes, or air columns to vibrate. Engineers design safe structures by control- ling vibrations. I will describe to you a very simple vibrating system and the mathematics needed to analyse it. The ideas were born in the work of Joseph-Louis Lagrange (1736–1813), and I begin by quot-.


    Directory of Open Access Journals (Sweden)

    Murat Aydın


    Full Text Available Vibration damping and sound insulation are essential for all vehicles. Because moving parts and external factors such as wind, tracks, etc. can cause vibration and noise. Wave which is a dynamic force, drive system and HVAC systems are the main vibration and noise generators in a vessel. These all can affect comfort level on board yachts. Different types of isolators and absorbers such as sylomer®, cork panels, etc. are used to reduce these effects. Comfort level on board yachts can be increased using these types of materials. Otherwise, discomfort of passenger and crew may increase. These materials not only reduce structure-borne and air-borne noise and vibrations from waves, air, engines, pumps, generators and HVAC systems but also protect vibration sensitive interior or fittings. Noise and vibration evaluation is an important issue for this reason. And, measurement tools must be used not only to minimize this problem but also fulfill the regulations such as “comfort class”. Besides, providing quiet and low vibration increases the costs too. From this point of view, this study aims to explain clearly how noise and vibration damping can be done in a yacht.

  7. Estimation of spinal loading in vertical vibrations by numerical simulation

    NARCIS (Netherlands)

    Verver, M.M.; Hoof, J.F.A.M. van; Oomens, C.W.J.; Wouw, N. van de; Wismans, J.S.H.M.


    Objective. This paper describes the prediction of spinal forces in car occupants during vertical vibrations using a numerical multi-body occupant model. Background. An increasing part of the population is exposed to whole body vibrations in vehicles. In literature, vertical vibrations and low back

  8. Vibration of hydraulic machinery

    CERN Document Server

    Wu, Yulin; Liu, Shuhong; Dou, Hua-Shu; Qian, Zhongdong


    Vibration of Hydraulic Machinery deals with the vibration problem which has significant influence on the safety and reliable operation of hydraulic machinery. It provides new achievements and the latest developments in these areas, even in the basic areas of this subject. The present book covers the fundamentals of mechanical vibration and rotordynamics as well as their main numerical models and analysis methods for the vibration prediction. The mechanical and hydraulic excitations to the vibration are analyzed, and the pressure fluctuations induced by the unsteady turbulent flow is predicted in order to obtain the unsteady loads. This book also discusses the loads, constraint conditions and the elastic and damping characters of the mechanical system, the structure dynamic analysis, the rotor dynamic analysis and the system instability of hydraulic machines, including the illustration of monitoring system for the instability and the vibration in hydraulic units. All the problems are necessary for vibration pr...

  9. Colorimetry and magnitudes of asteroids (United States)

    Bowell, E.; Lumme, K.


    In the present paper, 1500 UBV observations are analyzed by a new rather general multiple scattering theory which provided clear insight into previously poorly-recognized optical nature of asteroid surfaces. Thus, phase curves are shown to consist of a surface-texture controlled component, due to singly scattered light, and a component due to multiple scattering. Phase curve shapes can be characterized by a single parameter, the multiple scattering factor, Q. As Q increases, the relative importance of the opposition effect diminishes. Asteroid surfaces are particulate and strikingly similar to texture, being moderately porous and moderately rough on a scale greater than the wavelength of light. In concequence, Q (and also the phase coefficient) correlate well with geometric albedo, and there exists a purely photometric means of determining albedos and diameters.

  10. The effect of vibrations on the density of loose-fill insulations (United States)

    Yarbrough, D. W.; Wright, J. H.


    The three major loose-fill insulation products marketed in this country were subjected to a variety of vibrations and impacts in a laboratory setting to determine the magnitude of the resultant density increases. Repeated drops of 19 mm (.75 inch) and 152 mm (6 inch) produced density increases of up to 75% for fiberglass, 45% for rock wool, and 27% for cellulosic materials. The three insulation products were also subjected to vibrations ranging from 0.1 mm (.004 inch) to 6.35 mm (.25 inch) to obtain ratios of final density over initial density. Under the test conditions studied it was observed that the lighter materials settled more percentagewise than the dense materials.

  11. Vibration-induced electrical noise in a cryogen-free dilution refrigerator: Characterization, mitigation, and impact on qubit coherence

    Energy Technology Data Exchange (ETDEWEB)

    Kalra, Rachpon; Laucht, Arne; Dehollain, Juan Pablo; Bar, Daniel; Freer, Solomon; Simmons, Stephanie; Muhonen, Juha T.; Morello, Andrea, E-mail: [Centre for Quantum Computation and Communication Technology, School of Electrical Engineering and Telecommunications, UNSW Australia, Sydney NSW 2052 (Australia)


    Cryogen-free low-temperature setups are becoming more prominent in experimental science due to their convenience and reliability, and concern about the increasing scarcity of helium as a natural resource. Despite not having any moving parts at the cold end, pulse tube cryocoolers introduce vibrations that can be detrimental to the experiments. We characterize the coupling of these vibrations to the electrical signal observed on cables installed in a cryogen-free dilution refrigerator. The dominant electrical noise is in the 5–10 kHz range and its magnitude is found to be strongly temperature dependent. We test the performance of different cables designed to diagnose and tackle the noise, and find triboelectrics to be the dominant mechanism coupling the vibrations to the electrical signal. Flattening a semi-rigid cable or jacketing a flexible cable in order to restrict movement within the cable, successfully reduces the noise level by over an order of magnitude. Furthermore, we characterize the effect of the pulse tube vibrations on an electron spin qubit device in this setup. Coherence measurements are used to map out the spectrum of the noise experienced by the qubit, revealing spectral components matching the spectral signature of the pulse tube.

  12. Study of vibration and its effect on health of the motorcycle rider

    Directory of Open Access Journals (Sweden)

    Shivakumara BS


    Full Text Available The motorcycle riders are subjected to extreme vibrations due to the vibrations of its engine, improper structural design of the motorcycle and the bad road conditions. The literature review reveals that the vibrations are most hazardous to the health if it exceeds the limit. The experiments were conducted to measure the magnitude of the vibrations acting on the rider during motorcycle riding under various road conditions. Experimental values of accelerations and frequencies which are beyond permissible limits according to the literature confirm that vibration certainly affects health of the motorcycle rider

  13. Adolescents with Developmental Dyscalculia Do Not Have a Generalized Magnitude Deficit – Processing of Discrete and Continuous Magnitudes (United States)

    McCaskey, Ursina; von Aster, Michael; O’Gorman Tuura, Ruth; Kucian, Karin


    The link between number and space has been discussed in the literature for some time, resulting in the theory that number, space and time might be part of a generalized magnitude system. To date, several behavioral and neuroimaging findings support the notion of a generalized magnitude system, although contradictory results showing a partial overlap or separate magnitude systems are also found. The possible existence of a generalized magnitude processing area leads to the question how individuals with developmental dyscalculia (DD), known for deficits in numerical-arithmetical abilities, process magnitudes. By means of neuropsychological tests and functional magnetic resonance imaging (fMRI) we aimed to examine the relationship between number and space in typical and atypical development. Participants were 16 adolescents with DD (14.1 years) and 14 typically developing (TD) peers (13.8 years). In the fMRI paradigm participants had to perform discrete (arrays of dots) and continuous magnitude (angles) comparisons as well as a mental rotation task. In the neuropsychological tests, adolescents with dyscalculia performed significantly worse in numerical and complex visuo-spatial tasks. However, they showed similar results to TD peers when making discrete and continuous magnitude decisions during the neuropsychological tests and the fMRI paradigm. A conjunction analysis of the fMRI data revealed commonly activated higher order visual (inferior and middle occipital gyrus) and parietal (inferior and superior parietal lobe) magnitude areas for the discrete and continuous magnitude tasks. Moreover, no differences were found when contrasting both magnitude processing conditions, favoring the possibility of a generalized magnitude system. Group comparisons further revealed that dyscalculic subjects showed increased activation in domain general regions, whilst TD peers activate domain specific areas to a greater extent. In conclusion, our results point to the existence of a

  14. Adolescents with Developmental Dyscalculia Do Not Have a Generalized Magnitude Deficit - Processing of Discrete and Continuous Magnitudes. (United States)

    McCaskey, Ursina; von Aster, Michael; O'Gorman Tuura, Ruth; Kucian, Karin


    The link between number and space has been discussed in the literature for some time, resulting in the theory that number, space and time might be part of a generalized magnitude system. To date, several behavioral and neuroimaging findings support the notion of a generalized magnitude system, although contradictory results showing a partial overlap or separate magnitude systems are also found. The possible existence of a generalized magnitude processing area leads to the question how individuals with developmental dyscalculia (DD), known for deficits in numerical-arithmetical abilities, process magnitudes. By means of neuropsychological tests and functional magnetic resonance imaging (fMRI) we aimed to examine the relationship between number and space in typical and atypical development. Participants were 16 adolescents with DD (14.1 years) and 14 typically developing (TD) peers (13.8 years). In the fMRI paradigm participants had to perform discrete (arrays of dots) and continuous magnitude (angles) comparisons as well as a mental rotation task. In the neuropsychological tests, adolescents with dyscalculia performed significantly worse in numerical and complex visuo-spatial tasks. However, they showed similar results to TD peers when making discrete and continuous magnitude decisions during the neuropsychological tests and the fMRI paradigm. A conjunction analysis of the fMRI data revealed commonly activated higher order visual (inferior and middle occipital gyrus) and parietal (inferior and superior parietal lobe) magnitude areas for the discrete and continuous magnitude tasks. Moreover, no differences were found when contrasting both magnitude processing conditions, favoring the possibility of a generalized magnitude system. Group comparisons further revealed that dyscalculic subjects showed increased activation in domain general regions, whilst TD peers activate domain specific areas to a greater extent. In conclusion, our results point to the existence of a

  15. Reward Magnitude Effects on Temporal Discrimination (United States)

    Galtress, Tiffany; Kirkpatrick, Kimberly


    Changes in reward magnitude or value have been reported to produce effects on timing behavior, which have been attributed to changes in the speed of an internal pacemaker in some instances and to attentional factors in other cases. The present experiments therefore aimed to clarify the effects of reward magnitude on timing processes. In Experiment…

  16. Discounting Behaviour and the Magnitude Effect

    DEFF Research Database (Denmark)

    Andersen, Steffen; Harrison, Glenn W.; Lau, Morten Igel


    We evaluate the claim that individuals exhibit a magnitude effect in their discounting behaviour, where higher discount rates are inferred from choices made with lower principals, all else being equal. If the magnitude effect is quantitatively significant, it is not appropriate to use one discount...

  17. Experimental characterization of cantilever-type piezoelectric generator operating at resonance for vibration energy harvesting

    Energy Technology Data Exchange (ETDEWEB)

    Montanini, Roberto, E-mail:; Quattrocchi, Antonino, E-mail: [University of Messina, Dept. of Engineering, Contrada di Dio, Messina (Italy)


    A cantilever-type resonant piezoelectric generator (RPG) has been designed by gluing a PZT patch working in d{sub 31} mode onto a glass fibre reinforced composite cantilever beam with a discrete mass applied on its free end. The electrical and dynamic behaviour of the RPG prototype has been investigated by carrying out laboratory tests aimed to assess the effect of definite design parameters, specifically the electric resistance load and the excitation frequency. Results showed that an optimum resistance load exists, at which power generation is maximized. Moreover, it has been showed that power generation is strongly influenced by the vibration frequency highlighting that, at resonance, output power can be increased by more than one order of magnitude. Possible applications include inertial resonant harvester for energy recovery from vibrating machines, sea waves or wind flux and self-powering of wireless sensor nodes.

  18. Model Indepedent Vibration Control


    Yuan, Jing


    A NMIFC system is proposed for broadband vibration control. It has two important features. Feature F1 is that the NMIFC is stable without introducing any invasive effects, such as probing signals or controller perturbations, into the vibration system; feature F2 is

  19. Vibration Theory, Vol. 3

    DEFF Research Database (Denmark)

    Nielsen, Søren R. K.

    The present textbook has been written based on previous lecture notes for a course on stochastic vibration theory that is being given on the 9th semester at Aalborg University for M. Sc. students in structural engineering. The present 4th edition of this textbook on linear stochastic vibration...

  20. Vibration Theory, Vol. 3

    DEFF Research Database (Denmark)

    Nielsen, Søren R. K.

    The present textbook has been written based on previous lecture notes for a course on stochastic vibration theory that is being given on the 9th semester at Aalborg University for M. Sc. students in structural engineering. The present 2nd edition of this textbook on linear stochastic vibration...

  1. Hydroelastic Vibrations of Ships

    DEFF Research Database (Denmark)

    Jensen, Jørgen Juncher; Folsø, Rasmus


    A formula for the necessary hull girder bending stiffness required to avoid serious springing vibrations is derived. The expression takes into account the zero crossing period of the waves, the ship speed and main dimensions. For whipping vibrations the probability of exceedance for the combined...

  2. Gearbox vibration diagnostic analyzer (United States)


    This report describes the Gearbox Vibration Diagnostic Analyzer installed in the NASA Lewis Research Center's 500 HP Helicopter Transmission Test Stand to monitor gearbox testing. The vibration of the gearbox is analyzed using diagnostic algorithms to calculate a parameter indicating damaged components.

  3. Mechanical vibration and shock analysis, sinusoidal vibration

    CERN Document Server

    Lalanne, Christian


    Everything engineers need to know about mechanical vibration and one authoritative reference work! This fully updated and revised 3rd edition addresses the entire field of mechanical vibration and shock as one of the most important types of load and stress applied to structures, machines and components in the real world. Examples include everything from the regular and predictable loads applied to turbines, motors or helicopters by the spinning of their constituent parts to the ability of buildings to withstand damage from wind loads or explosions, and the need for cars to m

  4. Vibration fatigue using modal decomposition (United States)

    Mršnik, Matjaž; Slavič, Janko; Boltežar, Miha


    Vibration-fatigue analysis deals with the material fatigue of flexible structures operating close to natural frequencies. Based on the uniaxial stress response, calculated in the frequency domain, the high-cycle fatigue model using the S-N curve material data and the Palmgren-Miner hypothesis of damage accumulation is applied. The multiaxial criterion is used to obtain the equivalent uniaxial stress response followed by the spectral moment approach to the cycle-amplitude probability density estimation. The vibration-fatigue analysis relates the fatigue analysis in the frequency domain to the structural dynamics. However, once the stress response within a node is obtained, the physical model of the structure dictating that response is discarded and does not propagate through the fatigue-analysis procedure. The structural model can be used to evaluate how specific dynamic properties (e.g., damping, modal shapes) affect the damage intensity. A new approach based on modal decomposition is presented in this research that directly links the fatigue-damage intensity with the dynamic properties of the system. It thus offers a valuable insight into how different modes of vibration contribute to the total damage to the material. A numerical study was performed showing good agreement between results obtained using the newly presented approach with those obtained using the classical method, especially with regards to the distribution of damage intensity and critical point location. The presented approach also offers orders of magnitude faster calculation in comparison with the conventional procedure. Furthermore, it can be applied in a straightforward way to strain experimental modal analysis results, taking advantage of experimentally measured strains.

  5. Chaotic vibrations of heated plates (United States)

    Fermen-Coker, Muge


    In recent years, the investigation of dynamical behavior of plates under thermal loads has become important due to the high temperatures reached on external skin panels of hypersonic vehicles. It has been shown by other researchers that the skin panels may encounter chaotic vibrations about their thermally buckled positions. In this research, the chaotic vibrations of simply supported plates under thermal and sinusoidal excitation is studied in order to predict the vibratory behavior of a representative class of such skin panels. A method for the development of equations of motion, that forms a foundation for further investigation of the response of elastic panels under general thermal, mechanical and aerodynamic loading and various boundary conditions, is presented and discussed. The boundaries of regular and chaotic regions of motion are defined and the sensitivity of these boundaries to changes in design parameters is explored for the purpose of developing useful design criteria. The onset of chaos is predicted through the computation of Lyapunov exponents. The sensitivity of Lyapunov exponent calculations to the choice of numerical method of integration, numerical precision and the magnitude of coefficients as functions of design variables, is discussed. The effects of thermal moment, thermal buckling, amplitude and frequency of excitation, damping, thickness and length to width ratio of panels on the onset of chaos is studied. The results of the research are presented as a contribution to the panel design of hypersonic vehicles.

  6. Study on Structure Property of Cantilever Piezoelectric Vibration Generator

    National Research Council Canada - National Science Library

    Yan Zhen; He Qing; Liu Junfeng


      For increasing generating capacity of cantilever piezoelectric vibration generator with limited volume, influence rule of structure parameter to generating capacity of unimorph, bimorph in series...

  7. Vibrations of rotating machinery

    CERN Document Server

    Matsushita, Osami; Kanki, Hiroshi; Kobayashi, Masao; Keogh, Patrick


    This book opens with an explanation of the vibrations of a single degree-of-freedom (dof) system for all beginners. Subsequently, vibration analysis of multi-dof systems is explained by modal analysis. Mode synthesis modeling is then introduced for system reduction, which aids understanding in a simplified manner of how complicated rotors behave. Rotor balancing techniques are offered for rigid and flexible rotors through several examples. Consideration of gyroscopic influences on the rotordynamics is then provided and vibration evaluation of a rotor-bearing system is emphasized in terms of forward and backward whirl rotor motions through eigenvalue (natural frequency and damping ratio) analysis. In addition to these rotordynamics concerning rotating shaft vibration measured in a stationary reference frame, blade vibrations are analyzed with Coriolis forces expressed in a rotating reference frame. Other phenomena that may be assessed in stationary and rotating reference frames include stability characteristic...

  8. Whole Body Vibration Treatments in Postmenopausal Women Can Improve Bone Mineral Density: Results of a Stimulus Focussed Meta-Analysis. (United States)

    Fratini, Antonio; Bonci, Tecla; Bull, Anthony M J


    Whole body vibration treatment is a non-pharmacological intervention intended to stimulate muscular response and increase bone mineral density, particularly for postmenopausal women. The literature related to this topic is controversial, heterogeneous, and unclear despite the prospect of a major clinical effect.The aim of this study was to identify and systematically review the literature to assess the effect of whole body vibration treatments on bone mineral density (BMD) in postmenopausal women with a specific focus on the experimental factors that influence the stimulus. Nine studies fulfilled the inclusion criteria, including 527 postmenopausal women and different vibration delivery designs. Cumulative dose, amplitudes and frequency of treatments as well as subject posture during treatment vary widely among studies. Some of the studies included an associated exercise training regime. Both randomized and controlled clinical trials were included. Whole body vibration was shown to produce significant BMD improvements on the hip and spine when compared to no intervention. Conversely, treatment associated with exercise training resulted in negligible outcomes when compared to exercise training or to placebo. Moreover, side-alternating platforms were more effective in improving BMD values than synchronous platforms and mechanical oscillations of magnitude higher than 3 g and/or frequency lower than 25 Hz were also found to be effective. Treatments with a cumulative dose over 1000 minutes in the follow-up period were correlated to positive outcomes.Our conclusion is that whole body vibration treatments in elderly women can reduce BMD decline.However, many factors (e.g., amplitude, frequency and subject posture) affect the capacity of the vibrations to propagate to the target site; the adequate level of stimulation required to produce these effects has not yet been defined. Further biomechanical analyses to predict the propagation of the vibration waves along the body

  9. Vibrational damping of composite materials (United States)

    Biggerstaff, Janet M.

    The purpose of this research was to develop new methods of vibrational damping in polymeric composite materials along with expanding the knowledge of currently used vibrational damping methods. A new barrier layer technique that dramatically increased damping in viscoelastic damping materials that interacted with the composite resin was created. A method for testing the shear strength of damping materials cocured in composites was developed. Directional damping materials, where the loss factor and modulus could be tailored by changing the angle, were produced and investigated. The addition of particles between composite prepreg layers to increase damping was studied. Electroviscoelastic materials that drastically changed properties such as loss factor and modulus with an applied voltage were manufactured and tested.

  10. The magnitude of innovation and its evolution in social animals. (United States)

    Arbilly, Michal; Laland, Kevin N


    Innovative behaviour in animals, ranging from invertebrates to humans, is increasingly recognized as an important topic for investigation by behavioural researchers. However, what constitutes an innovation remains controversial, and difficult to quantify. Drawing on a broad definition whereby any behaviour with a new component to it is an innovation, we propose a quantitative measure, which we call the magnitude of innovation, to describe the extent to which an innovative behaviour is novel. This allows us to distinguish between innovations that are a slight change to existing behaviours (low magnitude), and innovations that are substantially different (high magnitude). Using mathematical modelling and evolutionary computer simulations, we explored how aspects of social interaction, cognition and natural selection affect the frequency and magnitude of innovation. We show that high-magnitude innovations are likely to arise regularly even if the frequency of innovation is low, as long as this frequency is relatively constant, and that the selectivity of social learning and the existence of social rewards, such as prestige and royalties, are crucial for innovative behaviour to evolve. We suggest that consideration of the magnitude of innovation may prove a useful tool in the study of the evolution of cognition and of culture. © 2017 The Author(s).

  11. Dynamic forces over the interface between a seated human body and a rigid seat during vertical whole-body vibration. (United States)

    Liu, Chi; Qiu, Yi; Griffin, Michael J


    Biodynamic responses of the seated human body are usually measured and modelled assuming a single point of vibration excitation. With vertical vibration excitation, this study investigated how forces are distributed over the body-seat interface. Vertical and fore-and-aft forces were measured beneath the ischial tuberosities, middle thighs, and front thighs of 14 subjects sitting on a rigid flat seat in three postures with different thigh contact while exposed to random vertical vibration at three magnitudes. Measures of apparent mass were calculated from transfer functions between the vertical acceleration of the seat and the vertical or fore-and-aft forces measured at the three locations, and the sum of these forces. When sitting normally or sitting with a high footrest, vertical forces at the ischial tuberosities dominated the vertical apparent mass. With feet unsupported to give increased thigh contact, vertical forces at the front thighs were dominant around 8Hz. Around 3-7Hz, fore-and-aft forces at the middle thighs dominated the fore-and-aft cross-axis apparent mass. Around 8-10Hz, fore-and-aft forces were dominant at the ischial tuberosities with feet supported but at the front thighs with feet unsupported. All apparent masses were nonlinear: as the vibration magnitude increased the resonance frequencies decreased. With feet unsupported, the nonlinearity in the apparent mass was greater at the front thighs than at the ischial tuberosities. It is concluded that when the thighs are supported on a seat it is not appropriate to assume the body has a single point of vibration excitation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. A Vibrational Circular Dichroism Microsampling Accessory: Mapping Enhanced Vibrational Circular Dichroism in Amyloid Fibril Films. (United States)

    Lu, Xuefang; Li, Honggang; Nafie, Jordan W; Pazderka, Tomáš; Pazderková, Markéta; Dukor, Rina K; Nafie, Laurence A


    We report the first vibrational circular dichroism (VCD) measurement of spatial heterogeneity in a sample using infrared (IR) microsampling. Vibrational circular dichroism spectra are typically measured using a standard IR cell with an IR beam diameter of 10 mm or greater making it impossible to investigate the spatial heterogeneity of a solid film sample. We have constructed a VCD sampling assembly with either 3 mm or 1 mm spatial resolution. An XY-translation stage was used to measure spectra at different spatial locations producing IR and VCD maps of the sample. In addition, a rotating sample stage was employed using a dual photoelastic modulator (PEM) setup to suppress artifacts due to linear birefringence in solid-phase or film samples. Infrared and VCD mapping of an insulin fibril film has been carried out at both 3 and 1 mm spatial resolution, and lysozyme films were mapped at 1 mm resolution. The IR spectra of different spots vary in intensity due primarily to sample thickness. The changes in the VCD intensity across the map largely correlate to corresponding changes in the IR map. Closer inspection of the insulin map revealed changes in the relative intensities of the VCD spectra not present in the parent IR spectra, which indicated differences in the degree of supramolecular chirality of the fibrils in the various spatial regions. For lysozyme films, in addition to different degrees of supramolecular chirality, reversal of the net fibril chirality was observed. The large signal-to-noise ratio observed at 1 mm resolution implies the feasibility of further increasing the spatial resolution by one or two orders of magnitude for protein fibril film samples.

  13. Structural Stability and Vibration

    DEFF Research Database (Denmark)

    Wiggers, Sine Leergaard; Pedersen, Pauli

    This book offers an integrated introduction to the topic of stability and vibration. Strikingly, it describes stability as a function of boundary conditions and eigenfrequency as a function of both boundary conditions and column force. Based on a post graduate course held by the author at the Uni......This book offers an integrated introduction to the topic of stability and vibration. Strikingly, it describes stability as a function of boundary conditions and eigenfrequency as a function of both boundary conditions and column force. Based on a post graduate course held by the author...... and their derivation, thus stimulating them to write interactive and dynamic programs to analyze instability and vibrational modes....

  14. Effect of Space Vehicle Structure Vibration on Control Moment Gyroscope Dynamics (United States)

    Dobrinskaya, Tatiana


    Control Moment Gyroscopes (CMGs) are used for non-propulsive attitude control of satellites and space stations, including the International Space Station (ISS). CMGs could be essential for future long duration space missions due to the fact that they help to save propellant. CMGs were successfully tested on the ground for many years, and have been successfully used on satellites. However, operations have shown that the CMG service life on the ISS is significantly shorter than predicted. Since the dynamic environment of the ISS differs greatly from the nominal environment of satellites, it was important to analyze how operations specific to the station (dockings and undockings, huge solar array motion, crew exercising, robotic operations, etc) can affect the CMG performance. This task became even more important since the first CMG failure onboard the ISS. The CMG failure resulted in the limitation of the attitude control capabilities, more propellant consumption, and additional operational issues. Therefore, the goal of this work was to find out how the vibrations of a space vehicle structure, caused by a variety of onboard operations, can affect the CMG dynamics and performance. The equations of CMG motion were derived and analyzed for the case when the gyro foundation can vibrate in any direction. The analysis was performed for unbalanced CMG gimbals to match the CMG configuration on ISS. The analysis showed that vehicle structure vibrations can amplify and significantly change the CMG motion if the gyro gimbals are unbalanced in flight. The resonance frequencies were found. It was shown that the resonance effect depends on the magnitude of gimbal imbalance, on the direction of a structure vibration, and on gimbal bearing friction. Computer modeling results of CMG dynamics affected by the external vibration are presented. The results can explain some of the CMG vibration telemetry observed on ISS. This work shows that balancing the CMG gimbals decreases the effect

  15. Vibration assisted femtosecond laser machining on metal (United States)

    Park, Jung-Kyu; Yoon, Ji-Wook; Cho, Sung-Hak


    We demonstrate a novel approach to improve laser machining quality on metals by vibrating the optical objective lens with a frequency (of 500 Hz) and various displacements (0-16.5 μm) during a femtosecond laser machining process. The laser used in this experiment is an amplified Ti:sapphire fs laser system that generates 100 fs pulses having an energy of 3.5 mJ/pulse with a 5 kHz repetition rate at a central wavelength of 790 nm. It is found that both the wall surface finish of the machined structures and the aspect ratio obtained using the frequency vibration assisted laser machining are improved, compared to those derived via laser machining without vibration assistance. This is the first report of low frequency vibration of an optical objective lens in the femtosecond laser machining process being exploited to obtain significantly improved surface roughness of machined side walls and increased aspect ratios.

  16. Vibration of imperfect rotating disk

    Directory of Open Access Journals (Sweden)

    Půst L.


    Full Text Available This study is concerned with the theoretical and numerical calculations of the flexural vibrations of a bladed disk. The main focus of this study is to elaborate the basic background for diagnostic and identification methods for ascertaining the main properties of the real structure or an experimental model of turbine disks. The reduction of undesirable vibrations of blades is proposed by using damping heads, which on the experimental model of turbine disk are applied only on a limited number of blades. This partial setting of damping heads introduces imperfection in mass, stiffness and damping distribution on the periphery and leads to more complicated dynamic properties than those of a perfect disk. Calculation of FEM model and analytic—numerical solution of disk behaviour in the limited (two modes frequency range shows the splitting of resonance with an increasing speed of disk rotation. The spectrum of resonance is twice denser than that of a perfect disk.

  17. Vibration Analysis and the Accelerometer (United States)

    Hammer, Paul


    Have you ever put your hand on an electric motor or motor-driven electric appliance and felt it vibrate? Ever wonder why it vibrates? What is there about the operation of the motor, or the object to which it is attached, that causes the vibrations? Is there anything "regular" about the vibrations, or are they the result of random causes? In this…

  18. Adaptations of mouse skeletal muscle to low intensity vibration training (United States)

    McKeehen, James N.; Novotny, Susan A.; Baltgalvis, Kristen A.; Call, Jarrod A.; Nuckley, David J.; Lowe, Dawn A.


    Purpose We tested the hypothesis that low intensity vibration training in mice improves contractile function of hindlimb skeletal muscles and promotes exercise-related cellular adaptations. Methods We subjected C57BL/6J mice to 6 wk, 5 d·wk−1, 15 min·d−1 of sham or low intensity vibration (45 Hz, 1.0 g) while housed in traditional cages (Sham-Active, n=8; Vibrated-Active, n=10) or in small cages to restrict physical activity (Sham-Restricted, n=8; Vibrated-Restricted, n=8). Contractile function and resistance to fatigue were tested in vivo (anterior and posterior crural muscles) and ex vivo on the soleus muscle. Tibialis anterior and soleus muscles were evaluated histologically for alterations in oxidative metabolism, capillarity, and fiber types. Epididymal fat pad and hindlimb muscle masses were measured. Two-way ANOVAs were used to determine effects of vibration and physical inactivity. Results Vibration training resulted in a 10% increase in maximal isometric torque (P=0.038) and 16% faster maximal rate of relaxation (P=0.030) of the anterior crural muscles. Posterior crural muscles were unaffected by vibration, with the exception of greater rates of contraction in Vibrated-Restricted mice compared to Vibrated-Active and Sham-Restricted mice (P=0.022). Soleus muscle maximal isometric tetanic force tended to be greater (P=0.057) and maximal relaxation was 20% faster (P=0.005) in Vibrated compared to Sham mice. Restriction of physical activity induced muscle weakness but was not required for vibration to be effective in improving strength or relaxation. Vibration training did not impact muscle fatigability or any indicator of cellular adaptation investigated (P≥0.431). Fat pad but not hindlimb muscle masses were affected by vibration training. Conclusion Vibration training in mice improved muscle contractility, specifically strength and relaxation rates, with no indication of adverse effects to muscle function or cellular adaptations. PMID:23274599

  19. Local magnitude estimate at Mt. Etna

    Directory of Open Access Journals (Sweden)

    V. Maiolino


    Full Text Available In order to verify the duration magnitude MD we calculated local magnitude ML values of 288 earthquakes occurring from October 2002 to April 2003 at Mt. Etna. The analysis was computed at three digital stations of the permanent seismic network of Istituto Nazionale di Geofisica e Vulcanologia of Catania, using the relationship ML = logA+alog?-b, where A is maximum half-amplitude of the horizontal component of the seismic recording measured in mm and the term «+alog?-b» takes the place of the term «-logA0» of Richter relationship. In particular, a = 0.15 for ?<200 km, b=0.16 for ?<200 km. Duration magnitude MD values, moment magnitude MW values and other local magnitude values were compared. Differences between ML and MD were obtained for the strong seismic swarms occurring on October 27, during the onset of 2002-2003 Mt. Etna eruption, characterized by a high earthquake rate, with very strong events (seismogram results clipped in amplitude on drum recorder trace and high level of volcanic tremor, which not permit us to estimate the duration of the earthquakes correctly. ML and MD relationships were related and therefore a new relationship for MD is proposed. Cumulative strain release calculated after the eruption using ML values is about 1.75E+06 J1/2 higher than the one calculated using MD values.

  20. Leg muscle vibration modulates bodily self-consciousness: integration of proprioceptive, visual, and tactile signals. (United States)

    Palluel, Estelle; Aspell, Jane Elizabeth; Blanke, Olaf


    Behavioral studies have used visuo-tactile conflicts between a participant's body and a visually presented fake or virtual body to investigate the importance of bodily perception for self-consciousness (bodily self-consciousness). Illusory self-identification with a fake body and changes in tactile processing--modulation of visuo-tactile cross-modal congruency effects (CCEs)--were reported in previous findings. Although proprioceptive signals are deemed important for bodily self-consciousness, their contribution to the representation of the full body has not been studied. Here we investigated whether and how self-identification and tactile processing (CCE magnitude) could be modified by altering proprioceptive signals with 80-Hz vibrations at the legs. Participants made elevation judgments of tactile cues (while ignoring nearby lights) during synchronous and asynchronous stroking of a seen fake body. We found that proprioceptive signals during vibrations altered the magnitude of self-identification and mislocalization of touch (CCE) in a synchrony-dependent fashion: we observed an increase of self-identification and CCE magnitude during asynchronous stroking. In a second control experiment we studied whether proprioceptive signals per se, or those from the lower limbs in particular, were essential for these changes. We applied vibrations at the upper limbs (which provide no information about the position of the participant's body in space) and in this case observed no modulation of bodily self-consciousness or tactile perception. These data link proprioceptive signals from the legs that are conveyed through the dorsal column-medial lemniscal pathway to bodily self-consciousness. We discuss their integration with bodily signals from vision and touch for full-body representations.

  1. Magnitude and gender distribution of obesity and abdominal ...

    African Journals Online (AJOL)

    Background: Obesity and abdominal adiposity are associated with increased cardiovascular morbidity in diabetes. This study evaluated their magnitude and gender distribution in Nigerians with Type 2 DM attending a tertiary care clinic. Patients and Methods: 258 consecutive patients with type 2 DM were evaluated.

  2. Magnitude, precision, and realism of depth perception in stereoscopic vision. (United States)

    Hibbard, Paul B; Haines, Alice E; Hornsey, Rebecca L


    Our perception of depth is substantially enhanced by the fact that we have binocular vision. This provides us with more precise and accurate estimates of depth and an improved qualitative appreciation of the three-dimensional (3D) shapes and positions of objects. We assessed the link between these quantitative and qualitative aspects of 3D vision. Specifically, we wished to determine whether the realism of apparent depth from binocular cues is associated with the magnitude or precision of perceived depth and the degree of binocular fusion. We presented participants with stereograms containing randomly positioned circles and measured how the magnitude, realism, and precision of depth perception varied with the size of the disparities presented. We found that as the size of the disparity increased, the magnitude of perceived depth increased, while the precision with which observers could make depth discrimination judgments decreased. Beyond an initial increase, depth realism decreased with increasing disparity magnitude. This decrease occurred well below the disparity limit required to ensure comfortable viewing.

  3. The Magnitude of Obesity and its Relationship to Blood Pressure ...

    African Journals Online (AJOL)

    increased intake of calorie-laden diets, which are common with many fast food centers. Data on the burden of obesity from Africa is beginning to emerge and recent systematic reviews of publications. The Magnitude of Obesity and its Relationship to Blood Pressure Among the Residents of Enugu. Metropolis in South East ...

  4. Stapes Vibration in the Chinchilla Middle Ear: Relation to Behavioral and Auditory-Nerve Thresholds. (United States)

    Robles, Luis; Temchin, Andrei N; Fan, Yun-Hui; Ruggero, Mario A


    The vibratory responses to tones of the stapes and incus were measured in the middle ears of deeply anesthetized chinchillas using a wide-band acoustic-stimulus system and a laser velocimeter coupled to a microscope. With the laser beam at an angle of about 40 ° relative to the axis of stapes piston-like motion, the sensitivity-vs.-frequency curves of vibrations at the head of the stapes and the incus lenticular process were very similar to each other but larger, in the range 15-30 kHz, than the vibrations of the incus just peripheral to the pedicle. With the laser beam aligned with the axis of piston-like stapes motion, vibrations of the incus just peripheral to its pedicle were very similar to the vibrations of the lenticular process or the stapes head measured at the 40 ° angle. Thus, the pedicle prevents transmission to the stapes of components of incus vibration not aligned with the axis of stapes piston-like motion. The mean magnitude curve of stapes velocities is fairly flat over a wide frequency range, with a mean value of about 0.19 mm(.)(s Pa(-1)), has a high-frequency cutoff of 25 kHz (measured at -3 dB re the mean value), and decreases with a slope of about -60 dB/octave at higher frequencies. According to our measurements, the chinchilla middle ear transmits acoustic signals into the cochlea at frequencies exceeding both the bandwidth of responses of auditory-nerve fibers and the upper cutoff of hearing. The phase lags of stapes velocity relative to ear-canal pressure increase approximately linearly, with slopes equivalent to pure delays of about 57-76 μs.

  5. Droplet impact on vibrating superhydrophobic surfaces (United States)

    Weisensee, Patricia B.; Ma, Jingcheng; Shin, Young Hwan; Tian, Junjiao; Chang, Yujin; King, William P.; Miljkovic, Nenad


    Many unanswered questions remain pertaining to droplet dynamics during impact on vibrating surfaces. Using optical high-speed imaging, we investigate the impact dynamics of macroscopic water droplets (≈2.5 mm ) on rigid and elastic superhydrophobic surfaces vibrating at 60-320 Hz and amplitudes of 0.2-2.7 mm. Specifically, we study the influence of the frequency, amplitude, rigidity, and substrate phase at the moment of impact on the contact time of impacting droplets. We show that a critical impact phase exists at which the contact time transitions from a minimum to a maximum greater than the theoretical contact time on a rigid, nonvibrating superhydrophobic surface. For impact at phases higher than the critical phase, contact times decrease until reaching a minimum of half the theoretical contact time just before the critical phase. The frequency of oscillation determines the phase-dependent variability of droplet contact times at different impact phases: higher frequencies (> 120 Hz) show less contact time variability and have overall shorter contact times compared to lower frequencies (60-120 Hz). The amplitude of vibration has little direct effect on the contact time. Through semiempirical modeling and comparison to experiments, we show that phase-averaged contact times can increase or decrease relative to a nonvibrating substrate for low (100 Hz ) vibration frequencies, respectively. This study not only provides new insights into droplet impact physics on vibrating surfaces, but also develops guidelines for the rational design of surfaces to achieve controllable droplet wetting in applications utilizing vibration.

  6. Lateral vibration effects in atomic-scale friction


    Roth, R.; Fajardo, O. Y.; Mazo, J. J.; Meyer, E; Gnecco, E.


    The influence of lateral vibrations on the stick-slip motion of a nanotip elastically pulled on a flat crystal surface is studied by atomic force microscopy measurements on a NaCl(001) surface in ultra-high vacuum. The slippage of the nanotip across the crystal lattice is anticipated at increasing driving amplitude, similarly to what is observed in presence of normal vibrations. This lowers the average friction force, as explained by the Prandtl-Tomlinson model with lateral vibrations superim...

  7. Evolution of microstructure and residual stress under various vibration modes in 304 stainless steel welds. (United States)

    Hsieh, Chih-Chun; Wang, Peng-Shuen; Wang, Jia-Siang; Wu, Weite


    Simultaneous vibration welding of 304 stainless steel was carried out with an eccentric circulating vibrator and a magnetic telescopic vibrator at subresonant (362 Hz and 59.3 Hz) and resonant (376 Hz and 60.9 Hz) frequencies. The experimental results indicate that the temperature gradient can be increased, accelerating nucleation and causing grain refinement during this process. During simultaneous vibration welding primary δ -ferrite can be refined and the morphologies of retained δ-ferrite become discontinuous so that δ-ferrite contents decrease. The smallest content of δ-ferrite (5.5%) occurred using the eccentric circulating vibrator. The diffraction intensities decreased and the FWHM widened with both vibration and no vibration. A residual stress can obviously be increased, producing an excellent effect on stress relief at a resonant frequency. The stress relief effect with an eccentric circulating vibrator was better than that obtained using a magnetic telescopic vibrator.

  8. Sequential dependencies in magnitude scaling of loudness

    DEFF Research Database (Denmark)

    Joshi, Suyash Narendra; Jesteadt, Walt


    Ten normally hearing listeners used a programmable sone-potentiometer knob to adjust the level of a 1000-Hz sinusoid to match the loudness of numbers presented to them in a magnitude production task. Three different power-law exponents (0.15, 0.30, and 0.60) and a log-law with equal steps in d...

  9. Historical revision of the exposure magnitude and the dosimetric magnitudes used in radiological protection; Revision historica de la magnitud exposicion y las magnitudes dosimetricas empleadas en proteccion radiologica

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez J, F. [UNAM, Facultad de Ciencias, Ciudad Universitaria, 04510 Mexico D. F. (Mexico); Alvarez R, J. T., E-mail: [ININ, Departamento de Metrologia de Radiaciones Ionizantes, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)


    In this work a historical revision of the exposure magnitude development and their roentgen unit (1905 - 2011) is made, noting that it had their origin in the electric methods for the detection of the ionizing radiation in the period of 1895 at 1937. However, the ionization is not who better characterizes the physical, chemical and biological effects of the ionizing radiations, but is the energy deposited by this radiation in the interest bodies, which led historically to the development of dosimetric magnitudes in energy terms like they are: the absorbed dose D (1950), the kerma K (1958) and the equivalent dose H (1962). These dosimetric magnitudes culminated with the definition of the effective equivalent dose or effective dose which is not measurable and should be considered with the operative magnitudes ICRU: H environmental equivalent dose and/or H directional equivalent dose, which can be determined by means of a conversion coefficient that is applied to the exposure, kerma in air, fluence, etc. (Author)

  10. Types, Magnitude, Predictors and Controlling Mechanisms of ...

    African Journals Online (AJOL)

    The one sample t test ,however, indicated that the magnitude of each type of aggression was below average. Regarding the predictors of aggression, scores on the measure of perceived parental affection/warm and agreeableness negatively predicted physical aggression whereas scores on neuroticism positively predicted ...

  11. A new vibration mechanism of balancing machine for satellite-borne spinning rotors

    Directory of Open Access Journals (Sweden)

    Wang Qiuxiao


    Full Text Available The centrifugal force and overturning moment generated by satellite-borne rotating payload have a significant impact on the stability of on-orbit satellite attitude, which must be controlled to the qualified range. For the satellite-borne rotors’ low working revs and large centroidal deviation and height, and that the horizontal vibration produced by centrifugal force is not of the same magnitude as the torsional vibration by overturning moment, the balancing machine’s measurement accuracy is low. Analysis shows that the mixture of horizontal vibration and torsional vibration of the vibrational mechanism contribute mainly to the machine’s performance, as well as the instability of vibration center position. A vibrational mechanism was put forward, in which the horizontal and torsional vibration get separated effectively by way of fixing the vibration center. From experimental results, the separation between the weak centrifugal force signal and the strong moment signal was realized, errors caused by unstable vibration center are avoided, and the balancing machine based on this vibration structure is able to meet the requirements of dynamic balancing for the satellite’s rotating payloads in terms of accuracy and stability.

  12. Combined effect of noise and vibration produced by high-speed trains on annoyance in buildings. (United States)

    Lee, Pyoung Jik; Griffin, Michael J


    The effects of noise and vibration on annoyance in buildings during the passage of a nearby high-speed train have been investigated in a laboratory experiment with recorded train noise and 20 Hz vibration. The noises included the effects of two types of façade: windows-open and windows-closed. Subjects were exposed to six levels of noise and six magnitudes of vibration, and asked to rate annoyance using an 11-point numerical scale. The experiment consisted of four sessions: (1) evaluation of noise annoyance in the absence of vibration, (2) evaluation of total annoyance from simultaneous noise and vibration, (3) evaluation of noise annoyance in the presence of vibration, and (4) evaluation of vibration annoyance in the absence of noise. The results show that vibration did not influence ratings of noise annoyance, but that total annoyance caused by combined noise and vibration was considerably greater than the annoyance caused by noise alone. The noise annoyance and the total annoyance caused by combined noise and vibration were associated with subject self-ratings of noise sensitivity. Two classical models of total annoyance due to combined noise sources (maximum of the single source annoyance or the integration of individual annoyance ratings) provided useful predictions of the total annoyance caused by simultaneous noise and vibration.

  13. A hybrid nonlinear vibration energy harvester (United States)

    Yang, Wei; Towfighian, Shahrzad


    Vibration energy harvesting converts mechanical energy from ambient sources to electricity to power remote sensors. Compared to linear resonators that have poor performance away from their natural frequency, nonlinear vibration energy harvesters perform better because they use vibration energy over a broader spectrum. We present a hybrid nonlinear energy harvester that combines bi-stability with internal resonance to increase the frequency bandwidth. A two-fold increase in the frequency bandwidth can be obtained compared to a bi-stable system with fixed magnets. The harvester consists of a piezoelectric cantilever beam carrying a movable magnet facing a fixed magnet. A spring allows the magnet to move along the beam and it provides an extra stored energy to further increase the amplitude of vibration acting as a mechanical amplifier. An electromechanically coupled mathematical model of the system is presented to obtain the dynamic response of the cantilever beam, the movable magnet and the output voltage. The perturbation method of multiple scales is applied to solve these equations and obtain approximate analytical solutions. The effects of various system parameters on the frequency responses are investigated. The numerical approaches of the long time integration (Runge-Kutta method) and the shooting technique are used to verify the analytical results. The results of this study can be used to improve efficiency in converting wasted mechanical vibration to useful electrical energy by broadening the frequency bandwidth.

  14. Modelling of micro vibration energy harvester considering size effect (United States)

    Li, Chuangye; Huo, Rui; Wang, Weike


    Considering increase of stiffness caused by size effect, equivalent Young's modulus was introduced for futher analysis. Experimental platform was established to test vibration characteristics. Dynamic equation for micro piezoelectric cantilever beam considering size effect was studied with finite element analysis and experiment. Results shows it is accurate. Based on that, dynamic model for micro vibration energy harvester was improved, a T-type micro vibration energy harvester was designed and fabricated. Resonant frequency, tip displacement and output voltage of the harvester were obtained. Comparing with macroscopic model for vibration harvester, improved one reduces errors by 13%, 35% and 22%.

  15. Physiology responses of Rhesus monkeys to vibration (United States)

    Hajebrahimi, Zahra; Ebrahimi, Mohammad; Alidoust, Leila; Arabian Hosseinabadi, Maedeh

    Vibration is one of the important environmental factors in space vehicles that it can induce severe physiological responses in most of the body systems such as cardiovascular, respiratory, skeletal, endocrine, and etc. This investigation was to assess the effect of different vibration frequencies on heart rate variability (HRV), electrocardiograms (ECG) and respiratory rate in Rhesus monkeys. Methods: two groups of rhesus monkey (n=16 in each group) was selected as control and intervention groups. Monkeys were held in a sitting position within a specific fixture. The animals of this experiment were vibrated on a table which oscillated right and left with sinusoidal motion. Frequency and acceleration for intervention group were between the range of 1 to 2000 Hz and +0.5 to +3 G during 36 weeks (one per week for 15 min), respectively. All of the animals passed the clinical evaluation (echocardiography, sonography, radiography and blood analysis test) before vibration test and were considered healthy and these tests repeated during and at the end of experiments. Results and discussions: Our results showed that heart and respiratory rates increased significantly in response to increased frequency from 1 to 60 Hz (p <0.05) directly with the +G level reaching a maximum (3G) within a seconds compare to controls. There were no significant differences in heart and respiratory rate from 60 t0 2000 Hz among studied groups. All monkeys passed vibration experiment successfully without any arrhythmic symptoms due to electrocardiography analysis. Conclusion: Our results indicate that vibration in low frequency can effect respiratory and cardiovascular function in rhesus monkey. Keywords: Vibration, rhesus monkey, heart rate, respiratory rate

  16. Floods in Ohio: magnitude and frequency (United States)

    Webber, Earl E.; Bartlett, William P.


    Techniques are presented for estimating the magnitude ant frequency of floods on Ohio streams. .Regression analysis is used to develop equations which relate physical and climatic factors of river basins to peak discharge at stream gaging stations. The equations can be used to estimate flood magnitudes with recurrence intervals from 2 to 100 years on drainage areas between 0.01 and 7,400 square miles (0.03 to 19,200 square kilometers). A summary of flood and watershed data for gaging stations with 10 or more years of record is included. .Records for 215 gaging stations are used to develop the regression equations. Flood records of streams with significant regulation or urbanization are excluded from this analysis.

  17. Vibration-induced extra torque during electrically-evoked contractions of the human calf muscles

    Directory of Open Access Journals (Sweden)

    Kohn André F


    Full Text Available Abstract Background High-frequency trains of electrical stimulation applied over the lower limb muscles can generate forces higher than would be expected from a peripheral mechanism (i.e. by direct activation of motor axons. This phenomenon is presumably originated within the central nervous system by synaptic input from Ia afferents to motoneurons and is consistent with the development of plateau potentials. The first objective of this work was to investigate if vibration (sinusoidal or random applied to the Achilles tendon is also able to generate large magnitude extra torques in the triceps surae muscle group. The second objective was to verify if the extra torques that were found were accompanied by increases in motoneuron excitability. Methods Subjects (n = 6 were seated on a chair and the right foot was strapped to a pedal attached to a torque meter. The isometric ankle torque was measured in response to different patterns of coupled electrical (20-Hz, rectangular 1-ms pulses and mechanical stimuli (either 100-Hz sinusoid or gaussian white noise applied to the triceps surae muscle group. In an additional investigation, Mmax and F-waves were elicited at different times before or after the vibratory stimulation. Results The vibratory bursts could generate substantial self-sustained extra torques, either with or without the background 20-Hz electrical stimulation applied simultaneously with the vibration. The extra torque generation was accompanied by increased motoneuron excitability, since an increase in the peak-to-peak amplitude of soleus F waves was observed. The delivery of electrical stimulation following the vibration was essential to keep the maintained extra torques and increased F-waves. Conclusions These results show that vibratory stimuli applied with a background electrical stimulation generate considerable force levels (up to about 50% MVC due to the spinal recruitment of motoneurons. The association of vibration and electrical

  18. Low-frequency vibration control of floating slab tracks using dynamic vibration absorbers (United States)

    Zhu, Shengyang; Yang, Jizhong; Yan, Hua; Zhang, Longqing; Cai, Chengbiao


    This study aims to effectively and robustly suppress the low-frequency vibrations of floating slab tracks (FSTs) using dynamic vibration absorbers (DVAs). First, the optimal locations where the DVAs are attached are determined by modal analysis with a finite element model of the FST. Further, by identifying the equivalent mass of the concerned modes, the optimal stiffness and damping coefficient of each DVA are obtained to minimise the resonant vibration amplitudes based on fixed-point theory. Finally, a three-dimensional coupled dynamic model of a metro vehicle and the FST with the DVAs is developed based on the nonlinear Hertzian contact theory and the modified Kalker linear creep theory. The track irregularities are included and generated by means of a time-frequency transformation technique. The effect of the DVAs on the vibration absorption of the FST subjected to the vehicle dynamic loads is evaluated with the help of the insertion loss in one-third octave frequency bands. The sensitivities of the mass ratio of DVAs and the damping ratio of steel-springs under the floating slab are discussed as well, which provided engineers with the DVA's adjustable room for vibration mitigation. The numerical results show that the proposed DVAs could effectively suppress low-frequency vibrations of the FST when tuned correctly and attached properly. The insertion loss due to the attachment of DVAs increases as the mass ratio increases, whereas it decreases with the increase in the damping ratio of steel-springs.

  19. The Ml Magnitude Scale In Italy (United States)

    Gasperini, P.; Lolli, B.; Filippucci, M.; de Simoni, B.

    To improve the reliability of Ml magnitude estimates in Italy, we have updated the database of real Wood-Anderson (WA) and of simulated Wood Anderson (SWA) am- plitudes recently revised by Gasperini (2002). This was done by the re-reading of orig- inal WA seismograms, made available by the SISMOS Project of the Istituto Nazionale di Geofisica (INGV), as well as by the analysis of further Very Broad Band (VBB) recordings of the MEDNET network of INGV for the period from 1996 to 1998. The full operability, in the last five years, of a VBB station located exactly at the same site (TRI) of a former WA instrument allowed us to reliably infer a new attenuation function from the joined WA and SWA dataset. We found a significant deviation of the attenuation law from the standard Richter table at distances larger than 400 km where the latter overestimates the magnitude up to about 0.3 units. We also computed regionalized attenuation functions accounting for the differences in the propagation properties of seismic waves between the Adriatic (less attenuating) and Tyrrhenian (more attenuating) sides of the Italian peninsula. Using this improved Ml magnitude database we were also able to further improve the computation of duration (Md) and amplitude (Ma) magnitudes computed from short period vertical seismometers of the INGV as well as to analyze the time variation of the station calibrations. We found that the absolute amplification of INGV stations is underestimated almost exactly by a factor 2 starting from the entering upon in operation of the digital acquisition system at INGV in middle 1984.

  20. mb Bias and Regional Magnitude and Yield (United States)


    events, but may indicate some complexity in bias in this region , perhaps controlled by crustal thickness or the distribution of recent volcanism. The...are relatively negative (Sichuan, Ordos, and Tarim basins). The lithosphere tends to be thick under these basins, possibly resulting in lower...mb BIAS AND REGIONAL MAGNITUDE AND YIELD Richard J. Stead, Hans E. Hartse, W. Scott Phillips, and George E. Randall Los Alamos National Laboratory

  1. Predicting the mean Bz magnitude, revisited (United States)

    Keating, C. F.; Jager, N. O.


    [2001] showed that a boxcar average of the Bz magnitude varied in a cyclic pattern with an approximate correlation to the solar sunspot cycle. They then proposed that the McNish-Lincoln technique, used to forecast sunspot numbers, could also be used to make a forecast of future activity of the mean Bz magnitude. Using this method, they made predictions concerning future mean Bz activity. In this paper, we wish to reexamine these predictions and compare them to actual events. There was a problem with the data in the first paper that we have corrected. We will show that even with this error the observations and premises of the first paper are correct. Applying the McNish-Lincoln technique to the current data indicates the average magnitude of Bz will decline over the next few years as the current solar cycle goes through its declining phase. These results will aid us in anticipating the average interplanetary magnetic field activity over the near-term and assist in making appropriate long-term decisions concerning systems that are vulnerable to solar storms.

  2. Magnitude-frequency of sea cliff instabilities

    Directory of Open Access Journals (Sweden)

    F. M. S. F. Marques


    Full Text Available The magnitude-frequency relationship of sea cliff failures in strong, low retreat rate cliffs, was studied using systematic historical inventories carried out in the coasts of Portugal and Morocco, in different geological and geomorphological settings, covering a wide size scale, from small to comparatively large rockslides, topples and rockfalls, at different time and spatial scales. The magnitude-frequency expressed in terms of volume displaced and of horizontal area lost at the cliff top showed good fit by inverse power laws of the type p=a.x−b, with a values from 0.2 to 0.3, and exponents b close to 1.0, similar to those proposed for rockfall inventories. The proposed power laws address the magnitude-frequency for sea cliff failures, which is an important component of hazard assessment, to be completed with adequate models for space and time hazard components. Maximum local retreat at the cliff top provided acceptable fitting to inverse power laws only for failures wider than 2m, with a = 4.0, and exponent b = 2.3, which may be useful to assess the cliff retreat hazard for the use of areas located near the cliff top.

  3. Vibrational energy flow in substituted benzenes (United States)

    Pein, Brandt C.

    Using ultrafast infrared (IR) Raman spectroscopy, vibrational energy flow was monitored in several liquid-state substituted benzenes at ambient temperature. In a series of mono-halogenated benzenes, X-C6H 5 (X = F, Cl, Br, I), a similar CH-stretch at 3068 cm-1 was excited using picosecond IR pulses and the resulting vibrational relaxation and overall vibrational cooling processes were monitored with anti-Stokes spectroscopy. In the molecules with a heavier halide substituent the CH-stretch decayed slower while midrange vibrations decayed faster. This result was logical if the density of states (DOS) in the first few tiers, which is the DOS composed of vibrations with smaller quantum number, is what primarily determines energy flow. For tiers 1-4, the DOS was nearly identical in the CH-stretch region while it increased in the midrange region for heavier halide mass. Excitation spectroscopy, an extension of 3D IR-Raman spectroscopy, was developed and used to selectively pump vibrations localized to the substituent or the phenyl group in nitrobenzene (NB), o-fluoronitrobenzene (OFNB) and o-nitrotoluene (ONT) and in the alkylbenzene series toluene, isopropylbenzene (IPB), and t-butylbenzene (TBB). Using quantum chemical calculations, each Raman active vibration was sorted, according to their atomic displacements, into three classifications: substituent, phenyl, or global. Using IR pump wavenumbers that initially excited substituent or phenyl vibrations, IR-Raman spectroscopy was used to monitor energy flowing from the substituent to phenyl vibrations and vice versa. In NB nitro-to-phenyl and nitro-to-global energy flow was almost nonexistent while phenyl-to-nitro and phenyl-to-global was weak. When ortho substituents (-CH3, -F) were introduced, energy flow from nitro-to-phenyl and nitro-to-global was activated. In ONT, phenyl-to-nitro energy flow ceased possibly due to the added methyl group diverting energy from entering the nitro vibrations. Energy flow is therefore

  4. Vibrational spectroscopy of resveratrol (United States)

    Billes, Ferenc; Mohammed-Ziegler, Ildikó; Mikosch, Hans; Tyihák, Ernő


    In this article the authors deal with the experimental and theoretical interpretation of the vibrational spectra of trans-resveratrol (3,5,4'-trihydroxy- trans-stilbene) of diverse beneficial biological activity. Infrared and Raman spectra of the compound were recorded; density functional calculations were carried out resulting in the optimized geometry and several properties of the molecule. Based on the calculated force constants, a normal coordinate analysis yielded the character of the vibrational modes and the assignment of the measured spectral bands.

  5. Bumblebee vibration activated foraging


    Su, Dan Kuan-Nien


    The ability use vibrational signals to activate nestmate foraging is found in the highly social bees, stingless bees and honey bees, and has been hypothesized to exist in the closely related, primitively eusocial bumble bees. We provide the first strong and direct evidence that this is correct. Inside the nest, bumble bee foragers produce brief bursts of vibration (foraging activation pulses) at 594.5 Hz for 63±26 ms (velocityRMS=0.46±0.02mm/s, forceRMS=0.8±0.2 mN. Production of these vibrati...

  6. Man-Induced Vibrations

    DEFF Research Database (Denmark)

    Jönsson, Jeppe; Hansen, Lars Pilegaard


    concerned with spectator-induced vertical vibrations on grandstands. The idea is to use impulse response analysis and base the load description on the load impulse. If the method is feasable, it could be used in connection with the formulation of requirements in building codes. During the last two decades...... work has been done on the measurement of the exact load functions and related reponse analysis. A recent work using a spectral description has been performed by Per-Erik Erikson and includes a good literature survey. Bachmann and Ammann give a good overview of vibrations caused by human activity. Other...

  7. Vibrations and waves

    CERN Document Server

    Kaliski, S


    This book gives a comprehensive overview of wave phenomena in different media with interacting mechanical, electromagnetic and other fields. Equations describing wave propagation in linear and non-linear elastic media are followed by equations of rheological models, models with internal rotational degrees of freedom and non-local interactions. Equations for coupled fields: thermal, elastic, electromagnetic, piezoelectric, and magneto-spin with adequate boundary conditions are also included. Together with its companion volume Vibrations and Waves. Part A: Vibrations this work provides a wealth

  8. Experimental Investigations on Effect of Damage on Vibration Characteristics of a Reinforced Concrete Beam (United States)

    Srinivas, V.; Jeyasehar, C. Antony; Ramanjaneyulu, K.; Sasmal, Saptarshi


    Need for developing efficient non-destructive damage assessment procedures for civil engineering structures is growing rapidly towards structural health assessment and management of existing structures. Damage assessment of structures by monitoring changes in the dynamic properties or response of the structure has received considerable attention in recent years. In the present study, damage assessment studies have been carried out on a reinforced concrete beam by evaluating the changes in vibration characteristics with the changes in damage levels. Structural damage is introduced by static load applied through a hydraulic jack. After each stage of damage, vibration testing is performed and system parameters were evaluated from the measured acceleration and displacement responses. Reduction in fundamental frequencies in first three modes is observed for different levels of damage. It is found that a consistent decrease in fundamental frequency with increase in damage magnitude is noted. The beam is numerically simulated and found that the vibration characteristics obtained from the measured data are in close agreement with the numerical data.

  9. Vibration-induced muscle fatigue, a possible contribution to musculoskeletal injury. (United States)

    Adamo, Diane E; Martin, Bernard J; Johnson, Peter W


    Localized muscle fatigue resulting from 30-min sustained and intermittent grip exertions of 5% maximal voluntary contraction (MVC) with and without hand-vibration exposure (10 Hz, 7 mm displacement amplitude) was investigated. Muscle fatigue was quantified by the magnitude of the twitch force elicited in the right flexor digitorum superficialis muscle of the long finger using the low-frequency fatigue (LFF) method. The influence of vibration in the sustained grip exertion condition exacerbates fatigue as seen with the reduction in twitch force 30-60 min post-work task. Intermittent low grip force exertion conditions with and without vibration exposure show negligible fatigue, suggesting the benefit of rest in the work cycle. Perception of muscle fatigue was dissociated from the objective measure of twitch force, suggesting that LFF was not perceived. The presence of LFF and the lack of perception of LFF may increase the risk for the development of musculoskeletal disorders. The findings of this study may apply to the design of the work cycles and tasks that require the use of vibratory tools.

  10. Heterogeneous Dynamics of Coupled Vibrations

    NARCIS (Netherlands)

    Cringus, Dan; Jansen, Thomas I. C.; Pshenichnikov, Maxim S.; Schoenlein, RW; Corkum, P; DeSilvestri, S; Nelson, KA; Riedle, E


    Frequency-dependent dynamics of coupled stretch vibrations of a water molecule are revealed by 2D IR correlation spectroscopy. These are caused by non-Gaussian fluctuations of the environment around the individual OH stretch vibrations.

  11. Sensor fusion for active vibration isolation in precision equipment

    NARCIS (Netherlands)

    Tjepkema, D.; van Dijk, Johannes; Soemers, Herman


    Sensor fusion is a promising control strategy to improve the performance of active vibration isolation systems that are used in precision equipment. Normally, those vibration isolation systems are only capable of realizing a low transmissibility. Additional objectives are to increase the damping

  12. [Chronic fatigue syndrome in patients with vibration disease]. (United States)

    Kir'iakov, V A; Saarkoppel', L M; Krylova, I V; Sukhova, A V


    The article presents study results that demonstrate chronic fatigue syndrome in patients with vibration disease. Clinical manifestations of chronic fatigue syndrome are characterized by changes in the emotional-volitional and cognitive areas. Application of nootropic drug cortexin increases the efficiency of rehabilitation in patients with vibration disease with chronic fatigue syndrome.

  13. Vibration and Deflection Behavior of a Coal Auger Working Mechanism

    Directory of Open Access Journals (Sweden)

    Songyong Liu


    Full Text Available Because coal auger working mechanism faces problems such as excessive vibration, serious deflection, and low drilling efficiency, a new five-bit coal auger working mechanism test model was established to explore the influence factor on vibration and deflection under different conditions. Additionally, a simulation model was built to further research the effect of partial load and stabilizer arrangement, the correctness of which was proved by experiments. The results show that the vibration and deflection increase with drilling depth in the x direction, and they first increase and then gradually become stable in the y direction. In addition, the vibration, deflection, and deflection force increase with the partial load. By arranging the stabilizer every five drill-rod section intervals, the vibration and deflection can be decreased by 30% and 40% in the x direction and by 14.3% and 65.7% in y direction, respectively.

  14. Nonlinear vibration with control for flexible and adaptive structures

    CERN Document Server

    Wagg, David


    This book provides a comprehensive discussion of nonlinear multi-modal structural vibration problems, and shows how vibration suppression can be applied to such systems by considering a sample set of relevant control techniques. It covers the basic principles of nonlinear vibrations that occur in flexible and/or adaptive structures, with an emphasis on engineering analysis and relevant control techniques. Understanding nonlinear vibrations is becoming increasingly important in a range of engineering applications, particularly in the design of flexible structures such as aircraft, satellites, bridges, and sports stadia. There is an increasing trend towards lighter structures, with increased slenderness, often made of new composite materials and requiring some form of deployment and/or active vibration control. There are also applications in the areas of robotics, mechatronics, micro electrical mechanical systems, non-destructive testing and related disciplines such as structural health monitoring. Two broader ...

  15. More Is Meaningful: The Magnitude Effect in Intertemporal Choice Depends on Self-Control. (United States)

    Ballard, Ian C; Kim, Bokyung; Liatsis, Anthony; Aydogan, Gökhan; Cohen, Jonathan D; McClure, Samuel M


    Impulsivity is a variable behavioral trait that depends on numerous factors. For example, increasing the absolute magnitude of available choice options promotes farsighted decisions. We argue that this magnitude effect arises in part from differential exertion of self-control as the perceived importance of the choice increases. First, we demonstrated that frontal executive-control areas were more engaged for more difficult decisions and that this effect was enhanced for high-magnitude rewards. Second, we showed that increased hunger, which is associated with lower self-control, reduced the magnitude effect. Third, we tested an intervention designed to increase self-control and showed that it reduced the magnitude effect. Taken together, our findings challenge existing theories about the magnitude effect and suggest that visceral and cognitive factors affecting choice may do so by influencing self-control.

  16. Impact of magnitude uncertainties on seismic catalogue properties (United States)

    Leptokaropoulos, K. M.; Adamaki, A. K.; Roberts, R. G.; Gkarlaouni, C. G.; Paradisopoulou, P. M.


    Catalogue based studies are of central importance in seismological research, to investigate the temporal, spatial and size distribution of earthquakes in specified study areas. Methods for estimating the fundamental catalogue parameters like the Gutenberg-Richter (G-R) b-value and the completeness magnitude (Mc) are well established and routinely applied. However, the magnitudes reported in seismicity catalogues contain measurement uncertainties which may significantly distort the estimation of the derived parameters. In this study, we use numerical simulations of synthetic data sets to assess the reliability of different methods for determining b-value and Mc, assuming the G-R law validity. After contaminating the synthetic catalogues with Gaussian noise (with selected standard deviations), the analysis is performed for numerous data sets of different sample size (N). The noise introduced to the data generally leads to a systematic overestimation of magnitudes close to and above Mc. This fact causes an increase of the average number of events above Mc, which in turn leads to an apparent decrease of the b-value. This may result to a significant overestimation of seismicity rate even well above the actual completeness level. The b-value can in general be reliably estimated even for relatively small data sets (N value for analysis. In such cases there may be a risk of severe miscalculation of seismicity rate regardless the selected magnitude threshold, unless possible bias is properly assessed.

  17. Reinforcer magnitude and rate dependency: evaluation of resistance-to-change mechanisms. (United States)

    Pinkston, Jonathan W; Ginsburg, Brett C; Lamb, Richard J


    Under many circumstances, reinforcer magnitude appears to modulate the rate-dependent effects of drugs such that when schedules arrange for relatively larger reinforcer magnitudes rate dependency is attenuated compared with behavior maintained by smaller magnitudes. The current literature on resistance to change suggests that increased reinforcer density strengthens operant behavior, and such strengthening effects appear to extend to the temporal control of behavior. As rate dependency may be understood as a loss of temporal control, the effects of reinforcer magnitude on rate dependency may be due to increased resistance to disruption of temporally controlled behavior. In the present experiments, pigeons earned different magnitudes of grain during signaled components of a multiple FI schedule. Three drugs, clonidine, haloperidol, and morphine, were examined. All three decreased overall rates of key pecking; however, only the effects of clonidine were attenuated as reinforcer magnitude increased. An analysis of within-interval performance found rate-dependent effects for clonidine and morphine; however, these effects were not modulated by reinforcer magnitude. In addition, we included prefeeding and extinction conditions, standard tests used to measure resistance to change. In general, rate-decreasing effects of prefeeding and extinction were attenuated by increasing reinforcer magnitudes. Rate-dependent analyses of prefeeding showed rate-dependency following those tests, but in no case were these effects modulated by reinforcer magnitude. The results suggest that a resistance-to-change interpretation of the effects of reinforcer magnitude on rate dependency is not viable.

  18. Ship Vibration Design Guide (United States)


    Frachtschiffen," Werft Reederie Hafen, 1925. 4-21 Noonan, E. F. "Vibration Considerations for 120,000 CM LNG Ships," NKF: Preliminary Report No. 7107, 25...Ship Response to Ice - A Second Season by C. Daley, J. W. St. John, R. Brown, J. Meyer , and I. Glen 1990 SSC-340 Ice Forces and Ship Response to Ice

  19. Compact Vibration Damper (United States)

    Ivanco, Thomas G. (Inventor)


    A vibration damper includes a rigid base with a mass coupled thereto for linear movement thereon. Springs coupled to the mass compress in response to the linear movement along either of two opposing directions. A converter coupled to the mass converts the linear movement to a corresponding rotational movement. A rotary damper coupled to the converter damps the rotational movement.

  20. Vibrations and Eigenvalues

    Indian Academy of Sciences (India)

    The vibrating string problem is the source of much mathematicsand physics. This article describes Lagrange's formulationof a discretised version of the problem and its solution.This is also the first instance of an eigenvalue problem. Author Affiliations. Rajendra Bhatia1. Ashoka University, Rai, Haryana 131 029, India.

  1. Blade Vibration Measurement System (United States)

    Platt, Michael J.


    The Phase I project successfully demonstrated that an advanced noncontacting stress measurement system (NSMS) could improve classification of blade vibration response in terms of mistuning and closely spaced modes. The Phase II work confirmed the microwave sensor design process, modified the sensor so it is compatible as an upgrade to existing NSMS, and improved and finalized the NSMS software. The result will be stand-alone radar/tip timing radar signal conditioning for current conventional NSMS users (as an upgrade) and new users. The hybrid system will use frequency data and relative mode vibration levels from the radar sensor to provide substantially superior capabilities over current blade-vibration measurement technology. This frequency data, coupled with a reduced number of tip timing probes, will result in a system capable of detecting complex blade vibrations that would confound traditional NSMS systems. The hardware and software package was validated on a compressor rig at Mechanical Solutions, Inc. (MSI). Finally, the hybrid radar/tip timing NSMS software package and associated sensor hardware will be installed for use in the NASA Glenn spin pit test facility.

  2. Estimación de magnitudes

    Directory of Open Access Journals (Sweden)

    David Díaz Gutiérrez


    Full Text Available Tener una referencia para medidas cotidianas basadas en la experiencia personal o profesional, o en datos conocidos por estudios previos, permite aproximar soluciones a problemas complejos y facilita la previsión de los recursos necesarios. Los órdenes de magnitud parecen adecuados como referencia, pues se estudian en la educación obligatoria y dan una idea inicial válida de dichas medidas, otorgando ciertamente una competencia básica que debe incluirse en el catálogo de las universidades.

  3. Postural instability caused by extended bed rest is alleviated by brief daily exposure to low magnitude mechanical signals. (United States)

    Muir, Jesse; Judex, Stefan; Qin, Yi-Xian; Rubin, Clinton


    Loss of postural stability, as exacerbated by chronic bed rest, aging, neuromuscular injury or disease, results in a marked increase in the risk of falls, potentiating severe injury and even death. To investigate the capacity of low magnitude mechanical signals (LMMS) to retain postural stability under conditions conducive to its decline, 29 healthy adult subjects underwent 90 days of 6-degree head down tilt bed-rest. Treated subjects underwent a daily 10 min regimen of 30 Hz LMMS at either a 0.3g-force (n=12) or a 0.5g-force (n=5), introduced by Low Intensity Vibration (LIV). Control subjects (n=13) received no LMMS treatment. Postural stability, quantified by dispersions of the plantar-based center of pressure, deteriorated significantly from baseline in control subjects, with displacement and velocity at 60 days increasing 98.7% and 193%, respectively, while the LMMS group increased only 26.7% and 6.4%, reflecting a 73% and 97% relative retention in stability as compared to control. Increasing LMMS magnitude from 0.3 to 0.5 g had no significant influence on outcomes. LMMS failed to spare loss of muscle extension strength, but helped to retain flexion strength (e.g., 46.2% improved retention of baseline concentric flexion strength vs. untreated controls; p=0.01). These data suggest the potential of extremely small mechanical signals as a non-invasive means of preserving postural control under the challenge of chronic bed rest, and may ultimately represent non-pharmacologic means of reducing the risk of debilitating falls in elderly and infirm. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. Acoustic vibration can enhance bacterial biofilm formation. (United States)

    Murphy, Mark F; Edwards, Thomas; Hobbs, Glyn; Shepherd, Joanna; Bezombes, Frederic


    This paper explores the use of low-frequency-low-amplitude acoustic vibration on biofilm formation. Biofilm development is thought to be governed by a diverse range of environmental signals and much effort has gone into researching the effects of environmental factors including; nutrient availability, pH and temperature on the growth of biofilms. Many biofilm-forming organisms have evolved to thrive in mechanically challenging environments, for example soil yet, the effects of the physical environment on biofilm formation has been largely ignored. Exposure of Pseudomonas aeruginosa to vibration at 100, 800 and 1600 Hz for 48 h, resulted in a significant increase in biofilm formation compared with the control, with the greatest growth seen at 800 Hz vibration. The results also show that this increase in biofilm formation is accompanied with an increase in P. aeruginosa cell number. Acoustic vibration was also found to regulate the spatial distribution of biofilm formation in a frequency-dependent manner. Exposure of Staphylococcus aureus to acoustic vibration also resulted in enhanced biofilm formation with the greatest level of biofilm being formed following 48 h exposure at 1600 Hz. These results show that acoustic vibration can be used to control biofilm formation and therefore presents a novel and potentially cost effective means to manipulate the development and yield of biofilms in a range of important industrial and medical processes. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  5. Nanoscale piezoelectric vibration energy harvester design (United States)

    Foruzande, Hamid Reza; Hajnayeb, Ali; Yaghootian, Amin


    Development of new nanoscale devices has increased the demand for new types of small-scale energy resources such as ambient vibrations energy harvesters. Among the vibration energy harvesters, piezoelectric energy harvesters (PEHs) can be easily miniaturized and fabricated in micro and nano scales. This change in the dimensions of a PEH leads to a change in its governing equations of motion, and consequently, the predicted harvested energy comparing to a macroscale PEH. In this research, effects of small scale dimensions on the nonlinear vibration and harvested voltage of a nanoscale PEH is studied. The PEH is modeled as a cantilever piezoelectric bimorph nanobeam with a tip mass, using the Euler-Bernoulli beam theory in conjunction with Hamilton's principle. A harmonic base excitation is applied as a model of the ambient vibrations. The nonlocal elasticity theory is used to consider the size effects in the developed model. The derived equations of motion are discretized using the assumed-modes method and solved using the method of multiple scales. Sensitivity analysis for the effect of different parameters of the system in addition to size effects is conducted. The results show the significance of nonlocal elasticity theory in the prediction of system dynamic nonlinear behavior. It is also observed that neglecting the size effects results in lower estimates of the PEH vibration amplitudes. The results pave the way for designing new nanoscale sensors in addition to PEHs.

  6. Nanoscale piezoelectric vibration energy harvester design

    Directory of Open Access Journals (Sweden)

    Hamid Reza Foruzande


    Full Text Available Development of new nanoscale devices has increased the demand for new types of small-scale energy resources such as ambient vibrations energy harvesters. Among the vibration energy harvesters, piezoelectric energy harvesters (PEHs can be easily miniaturized and fabricated in micro and nano scales. This change in the dimensions of a PEH leads to a change in its governing equations of motion, and consequently, the predicted harvested energy comparing to a macroscale PEH. In this research, effects of small scale dimensions on the nonlinear vibration and harvested voltage of a nanoscale PEH is studied. The PEH is modeled as a cantilever piezoelectric bimorph nanobeam with a tip mass, using the Euler-Bernoulli beam theory in conjunction with Hamilton’s principle. A harmonic base excitation is applied as a model of the ambient vibrations. The nonlocal elasticity theory is used to consider the size effects in the developed model. The derived equations of motion are discretized using the assumed-modes method and solved using the method of multiple scales. Sensitivity analysis for the effect of different parameters of the system in addition to size effects is conducted. The results show the significance of nonlocal elasticity theory in the prediction of system dynamic nonlinear behavior. It is also observed that neglecting the size effects results in lower estimates of the PEH vibration amplitudes. The results pave the way for designing new nanoscale sensors in addition to PEHs.

  7. Classical electricity analysis of the coupling mechanisms between admolecule vibrations and localized surface plasmons in STM for vibration detectability (United States)

    Inaoka, Takeshi; Uehara, Yoich


    The presence of a dynamic dipole moment in the gap between the tip of a scanning tunneling microscope (STM) and a substrate, both of which are made of metal, produces a large dynamic dipole moment via the creation of localized surface plasmons (LSPLs). With regard to the vibration-induced structures that have been experimentally observed in STM light emission spectra, we have incorporated the effect of the phonon vibrations of an admolecule below the STM tip into the local response theory, and we have evaluated the enhancement of the dynamic dipole involving phonon vibrations. Our analysis shows how effectively this vibration becomes coupled with the LSPLs. This was shown using three mechanisms that considered the vibrations of a dipole-active molecule and the vibrations of a charged molecule emitting and receiving tunneling electrons. In each of the mechanisms, phonon vibrations with angular frequency ωp shifted each LSPL resonance by ℏωp or by a multiple of ℏωp . The phonon effect was negligibly small when the position of the dipole-active molecule vibrated with ωp, but it was largest and most detectable when the point charge corresponding to the admolecule at the surface of the tip vibrated with ωp. It was found that a series of LSPL resonances with or without phonon-energy shifts can be characterized by a few dominant orders of multipole excitations, and these orders become higher as the resonance energy increases.

  8. Extreme Magnitude Earthquakes and their Economical Consequences (United States)

    Chavez, M.; Cabrera, E.; Ashworth, M.; Perea, N.; Emerson, D.; Salazar, A.; Moulinec, C.


    The frequency of occurrence of extreme magnitude earthquakes varies from tens to thousands of years, depending on the considered seismotectonic region of the world. However, the human and economic losses when their hypocenters are located in the neighborhood of heavily populated and/or industrialized regions, can be very large, as recently observed for the 1985 Mw 8.01 Michoacan, Mexico and the 2011 Mw 9 Tohoku, Japan, earthquakes. Herewith, a methodology is proposed in order to estimate the probability of exceedance of: the intensities of extreme magnitude earthquakes, PEI and of their direct economical consequences PEDEC. The PEI are obtained by using supercomputing facilities to generate samples of the 3D propagation of extreme earthquake plausible scenarios, and enlarge those samples by Monte Carlo simulation. The PEDEC are computed by using appropriate vulnerability functions combined with the scenario intensity samples, and Monte Carlo simulation. An example of the application of the methodology due to the potential occurrence of extreme Mw 8.5 subduction earthquakes on Mexico City is presented.

  9. Strong motion duration and earthquake magnitude relationships

    Energy Technology Data Exchange (ETDEWEB)

    Salmon, M.W.; Short, S.A. [EQE International, Inc., San Francisco, CA (United States); Kennedy, R.P. [RPK Structural Mechanics Consulting, Yorba Linda, CA (United States)


    Earthquake duration is the total time of ground shaking from the arrival of seismic waves until the return to ambient conditions. Much of this time is at relatively low shaking levels which have little effect on seismic structural response and on earthquake damage potential. As a result, a parameter termed ``strong motion duration`` has been defined by a number of investigators to be used for the purpose of evaluating seismic response and assessing the potential for structural damage due to earthquakes. This report presents methods for determining strong motion duration and a time history envelope function appropriate for various evaluation purposes, for earthquake magnitude and distance, and for site soil properties. There are numerous definitions of strong motion duration. For most of these definitions, empirical studies have been completed which relate duration to earthquake magnitude and distance and to site soil properties. Each of these definitions recognizes that only the portion of an earthquake record which has sufficiently high acceleration amplitude, energy content, or some other parameters significantly affects seismic response. Studies have been performed which indicate that the portion of an earthquake record in which the power (average rate of energy input) is maximum correlates most closely with potential damage to stiff nuclear power plant structures. Hence, this report will concentrate on energy based strong motion duration definitions.

  10. Postural sway under muscle vibration and muscle fatigue in humans. (United States)

    Vuillerme, Nicolas; Danion, Frédéric; Forestier, Nicolas; Nougier, Vincent


    Separate studies have demonstrated that vibration and fatigue of ankle muscles alter postural control. The purpose of the present experiment was to investigate the effect of ankle muscle vibration on the regulation of postural sway in bipedal stance following ankle muscle fatigue. Center of foot pressure displacements were recorded using a force platform. Results showed a similar increase in postural sway under muscle fatigue as well as under muscle vibration. Interestingly, under muscle fatigue muscle vibration did not induce a further increase in postural sway. Two hypotheses could, at least, account for this observation: (1). fatigued muscles are less sensitive to muscle vibration and (2). the central nervous system relies less upon proprioceptive information originating from fatigued muscles for regulating postural sway.

  11. Simple shearing interferometer suitable for vibration measurements (United States)

    Mihaylova, Emilia M.; Whelan, Maurice P.; Toal, Vincent


    Recently there has been an increasing interest in the application of shearography for modal analysis of vibrating objects. New interferometric systems, which are simple and flexible are of interest for engineering and industrial applications. An electronic speckle pattern shearing interferometer (ESPSI) with a very simple shearing device is used for study of vibrations. The shearing device consists of two partially reflective glass plates. The reflection coefficients of the coatings are 0.3 and 0.7 respectively. The distance between the two glass plates controls the size of the shear. The versatility of this simple shearing interferometer is shown. It is demonstrated that the ESPSI system can be used for vibration measurements and phase-shifting implemented for fringe analysis. The results obtained are promising for future applications of the system for modal analysis.

  12. Granular dampers for the reduction of vibrations of an oscillatory saw (United States)

    Heckel, Michael; Sack, Achim; Kollmer, Jonathan E.; Pöschel, Thorsten


    Instruments for surgical and dental application based on oscillatory mechanics submit unwanted vibrations to the operator's hand. Frequently the weight of the instrument's body is increased to dampen its vibration. Based on recent research regarding the optimization of granular damping we developed a prototype granular damper that attenuates the vibrations of an oscillatory saw twice as efficiently as a comparable solid mass.

  13. Effects of Hand Vibration on Motor Output in Chronic Hemiparesis

    Directory of Open Access Journals (Sweden)

    Sibele de Andrade Melo


    Full Text Available Background. Muscle vibration has been shown to increase the corticospinal excitability assessed by transcranial magnetic stimulation (TMS and to change voluntary force production in healthy subjects. Objectives. To evaluate the effect of vibration on corticospinal excitability using TMS and on maximal motor output using maximal voluntary contraction (MVC in individuals with chronic hemiparesis. Methodology. Nineteen hemiparetic and 17 healthy control subjects participated in this study. Motor evoked potentials (MEPs and MVC during lateral pinch grip were recorded at first dorsal interosseous muscle in a single session before, during, and after one-minute trials of 80 Hz vibration of the thenar eminence. Results. In hemiparetic subjects, vibration increased MEP amplitudes to a level comparable to that of control subjects and triggered a MEP response in 4 of 7 patients who did not have a MEP at rest. Also, vibration increased the maximal rate of force production (dF/dtmax⁡ in both control and hemiparetic subjects but it did not increase MVC. Conclusion. Motor response generated with a descending cortical drive in chronic hemiparetic subjects can be increased during vibration. Vibration could be used when additional input is needed to reveal motor responses and to increase rate of force generation.

  14. Proposed method of reducing ground vibration from delay blasting

    Energy Technology Data Exchange (ETDEWEB)

    Coursen, D.L. [Dynatec Explosives Consultants, Inc., Espanola, NM (United States)


    In the proposed method, the charges are elongated and arranged in one or more arrays. The orientation of each charge in an array, its velocity of propagation of explosion, and the velocity of propagation of vibration in the formation are such that, at an outlying location where vibration is to be reduced, the onset of vibration from the explosion of the first negligibly small increment of each charge arrives a finite time before that from the explosion of the last negligibly small increment of that charge. The charges of each array are fired in accurately-timed sequence, with the times between initiations chosen so that, at the outlying location, the onset of vibration from the explosion of the last small increment of each charge, except the last charge, arrives a negligibly small increment of time before the onset of vibration from the explosion of the first negligibly small increment of the succeeding charge. With such timing, vibration may be reduced at the widest range of locations by tilting the boreholes so that the terminal end of each charge is directly above or below the terminal end of the succeeding charge. With the proposed method, vibration can be expected to decrease with increasing charge length, decreasing velocity of propagation of explosion, increasing number of charges per array, decreasing reverberation time, increasing precision of initiation timing, and increasing homogeneity of the rock. Computer modeling of the resulting vibration from single arrays having a total duration of explosion longer than the reverberation time shows a starting transient and an ending transient with little or no vibration between them. For patterns containing more than one array, the modeling indicates that the recommended timing between arrays can largely eliminate the vibration from the starting and ending transients as well when they are dominated by a single frequency.

  15. Parameter definition using vibration prediction software leads to significant drilling performance improvements

    Energy Technology Data Exchange (ETDEWEB)

    Amorim, Dalmo; Hanley, Chris Hanley; Fonseca, Isaac; Santos, Juliana [National Oilwell Varco, Houston TX (United States); Leite, Daltro J.; Borella, Augusto; Gozzi, Danilo [Petroleo Brasileiro S.A. (PETROBRAS), Rio de Janeiro, RJ (Brazil)


    The understanding and mitigation of downhole vibration has been a heavily researched subject in the oil industry as it results in more expensive drilling operations, as vibrations significantly diminish the amount of effective drilling energy available to the bit and generate forces that can push the bit or the Bottom Hole Assembly (BHA) off its concentric axis of rotation, producing high magnitude impacts with the borehole wall. In order to drill ahead, a sufficient amount of energy must be supplied by the rig to overcome the resistance of the drilling system, including the reactive torque of the system, drag forces, fluid pressure losses and energy dissipated by downhole vibrations, then providing the bit with the energy required to fail the rock. If the drill string enters resonant modes of vibration, not only does it decreases the amount of available energy to drill, but increases the potential for catastrophic downhole equipment and drilling bit failures. In this sense, the mitigation of downhole vibrations will result in faster, smoother, and cheaper drilling operations. A software tool using Finite Element Analysis (FEA) has been developed to provide better understanding of downhole vibration phenomena in drilling environments. The software tool calculates the response of the drilling system at various input conditions, based on the design of the wellbore along with the geometry of the Bottom Hole Assembly (BHA) and the drill string. It identifies where undesired levels of resonant vibration will be driven by certain combinations of specific drilling parameters, and also which combinations of drilling parameters will result in lower levels of vibration, so the least shocks, the highest penetration rate and the lowest cost per foot can be achieved. With the growing performance of personal computers, complex software systems modeling the drilling vibrations using FEA has been accessible to a wider audience of field users, further complimenting with real time

  16. Vibration Attenuation of Plate Using Multiple Vibration Absorbers

    Directory of Open Access Journals (Sweden)

    Zaman Izzuddin


    Full Text Available Vibrations are undesired phenomenon and it can cause harm, distress and unsettling influence to the systems or structures, for example, aircraft, automobile, machinery and building. One of the approach to limit this vibration by introducing passive vibration absorber attached to the structure. In this paper, the adequacy of utilizing passive vibration absorbers are investigated. The vibration absorber system is designed to minimize the vibration of a thin plate fixed along edges. The plate’s vibration characteristics, such as, natural frequency and mode shape are determined using three techniques: theoretical equations, finite element (FE analysis and experiment. The results demonstrate that the first four natural frequencies of fixed-fixed ends plate are 48, 121, 193 and 242 Hz, and these results are corroborated well with theoretical, FE simulation and experiment. The experiment work is further carried out with attached single and multiple vibration absorbers onto plate by tuning the absorber’s frequency to match with the excitation frequency. The outcomes depict that multiple vibration absorbers are more viable in lessening the global structural vibration.

  17. Collaboratively Adaptive Vibration Sensing System for High-fidelity Monitoring of Structural Responses Induced by Pedestrians

    Directory of Open Access Journals (Sweden)

    Shijia Pan


    Full Text Available This paper presents a collaboratively adaptive vibration monitoring system that captures high-fidelity structural vibration signals induced by pedestrians. These signals can be used for various human activities’ monitoring by inferring information about the impact sources, such as pedestrian footsteps, door opening and closing, and dragging objects. Such applications often require high-fidelity (high resolution and low distortion signals. Traditionally, expensive high resolution and high dynamic range sensors are adopted to ensure sufficient resolution. However, for sensing systems that use low-cost sensing devices, the resolution and dynamic range are often limited; hence this type of sensing methods is not well explored ubiquitously. We propose a low-cost sensing system that utilizes (1 a heuristic model of the investigating excitations and (2 shared information through networked devices to adapt hardware configurations and obtain high-fidelity structural vibration signals. To further explain the system, we use indoor pedestrian footstep sensing through ambient structural vibration as an example to demonstrate the system performance. We evaluate the application with three metrics that measure the signal quality from different aspects: the sufficient resolution rate to present signal resolution improvement without clipping, the clipping rate to measure the distortion of the footstep signal, and the signal magnitude to quantify the detailed resolution of the detected footstep signal. In experiments conducted in a school building, our system demonstrated up to 2× increase on the sufficient resolution rate and 2× less error rate when used to locate the pedestrians as they walk along the hallway, compared to a fixed sensing setting.

  18. Magnitude and Prevention of College Drinking and Related Problems


    Hingson, Ralph W.


    In 2002, the National Institute on Alcohol Abuse and Alcoholism (NIAAA) issued a report entitled A Call to Action: Changing the Culture of Drinking at U.S. Colleges. Data on the magnitude of college drinking problems in 1998 to 1999 were reported. From 1999 to 2005, the proportion of college students aged 18–24 who drank five or more drinks on a single occasion in the past month increased from 41.7 percent to 45.2 percent. The proportion who drove under the influence of alcohol increased from...

  19. Good vibrations. [Hydraulic turbines

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, P.


    The latest developments in the Voith Turbine Control and Automation System (VTLS), which couples digital control technology to hydropower plant equipment, are described. Prominent among these is the vibration diagnostics module for hydraulic turbines. It provides machine-specific diagnostic logic for a vibration monitoring and analysis system. Of the two other VTLS modules described, the operation module optimizes the control of a power plant with three or more turbines by considering the individual properties of each in turn, recommending which should be run, and how, in order to partition the load for a required power output. The cavitation module is a diagnostic system which enables the limits of operation of the turbines to be extended to bands just outside those determined by cavitation calculations. (3 figures). (UK)

  20. Comparison of a Vibrating Foam Roller and a Non-vibrating Foam Roller Intervention on Knee Range of Motion and Pressure Pain Threshold: A Randomized Controlled Trial. (United States)

    Cheatham, Scott W; Stull, Kyle R; Kolber, Morey J


    The use of foam rollers to provide soft-tissue massage has become a common intervention among health and fitness professionals. Recently, manufacturers have merged the science of vibration therapy and foam rolling with the development of vibrating foam rollers. To date, no peer reviewed investigations have been published on this technology. The purpose of this study was to compare the effects of a vibrating roller and non-vibrating roller intervention on prone knee flexion passive range of motion (ROM) and pressure pain thresholds (PPT) of the quadriceps musculature. Forty-five recreationally active adults were randomly allocated to one of three groups: vibrating roller, non-vibrating roller, and control. Each roll intervention lasted a total of 2 minutes. The control group did not roll. Dependent variables included prone knee flexion ROM and PPT measures. Statistical analysis included parametric and non-parametric tests to measure changes among groups. The vibrating roller demonstrated the greatest increase in PPT (180kPa, p< 0.001), followed by the non-vibrating roller (112kPa, p< 0.001), and control (61kPa, p<0.001). For knee ROM, the vibrating roller demonstrated the greatest increase in ROM (7 degrees, p< 0.001), followed by the non-vibrating roller (5 degrees, p< 0.001), and control (2 degrees, p<0.001). Between groups, there was significant difference in PPT between the vibrating and non-vibrating roller (p=.03) and vibrating roller and control (p<.001). There was also a significant difference between the non-vibrating roller and control (p<.001). For knee ROM, there was no significant difference between the vibrating and non-vibrating roller (p=.31). A significant difference was found between the vibrating roller and control group (p<.001) and non-vibrating roller and control (p<.001). The results suggest that a vibrating roller may increase an individual's tolerance to pain greater than a non-vibrating roller. This investigation should be considered

  1. How configuration of supersonic nozzle section affects rate of molecule rearrangement by vibrational levels in gasdynamic carbon monoxide laser active medium

    Energy Technology Data Exchange (ETDEWEB)

    Vasilik, N.Ya., Margolin, A.D.; Shmelev, V.M.


    Steady adiabatic quasi-one-dimensional flow of a CO+ Ar mixture through a flat supersonic nozzle is analyzed, assuming equilibrium with respect to all translational and rotational degrees of freedom in the critical nozzle section. The equations of vibrational relaxation kinetics are solved by numerical integration, giving estimates of gain for vibrational-rotational transitions and the populations of vibrational levels in CO molecules in various sections of the supersonic nozzle segment. As such a gas flows through an expanding nozzle, the maximum of the amplification factor is found to shift monotonically toward lower vibrational levels. At a fixed vibrational level or with an increasing gas expansion ratio, on the other hand, the path along which the population of a given level builds up to a quasi-steady magnitude in a channel of uniform cross section is found to become longer. The results of calculations as well as experimental data on 20% CO+ 80% Ar and 5% CO+ 15% N/sub 2/+ 80% Ar mixtures with gas expansion to temperatures of 30 to 200/sup 0/K and with temperatures in the critical nozzle section ranging from 1000 to 3000/sup 0/K indicate how the redistribution of CO molecules by vibrational levels depends on the nozzle profile, particularly on the distance from the critical section. In pure carbon monoxide or in mixtures with a low concentration of the inert component, gain will increase as the temperature of the active medium drops due to expansion, but a slowdown of V-V exchange processes due to lower density and temperature can decrease gain.

  2. Pickin’ up good vibrations

    CERN Multimedia

    Katarina Anthony


    In preparation for the civil engineering work on the HL-LHC, vibration measurements were carried out at the LHC’s Point 1 last month. These measurements will help evaluate how civil engineering work could impact the beam, and will provide crucial details about the site’s geological make-up before construction begins.   A seismic truck at Point 1 generated wave-like vibrations measured by EN/MME. From carrying out R&D to produce state-of-the-art magnets to developing innovative, robust materials capable of withstanding beam impact, the HL-LHC is a multi-faceted project involving many groups and teams across CERN’s departments. It was in this framework that the project management mandated CERN's Mechanical and Materials Engineering (EN/MME) group to measure the propagation of vibrations around Point 1. Their question: can civil engineering work for the HL-LHC – the bulk of which is scheduled for LS2 – begin while the LHC is running? Alth...

  3. Vibrational stability of graphene

    Directory of Open Access Journals (Sweden)

    Yangfan Hu


    Full Text Available The mechanical stability of graphene as temperature rises is analyzed based on three different self-consistent phonon (SCP models. Compared with three-dimensional (3-D materials, the critical temperature Ti at which instability occurs for graphene is much closer to its melting temperature Tm obtained from Monte Carlo simulation (Ti ≃ 2Tm, K. V. Zakharchenko, A. Fasolino, J. H. Los, and M. I. Katsnelson, J. Phys. Condens. Matter 23, 202202. This suggests that thermal vibration plays a significant role in melting of graphene while melting for 3-D materials is often dominated by topologic defects. This peculiar property of graphene derives from its high structural anisotropy, which is characterized by the vibrational anisotropic coefficient (VAC, defined upon its Lindermann ratios in different directions. For any carbon based material with a graphene-like structure, the VAC value must be smaller than 5.4 to maintain its stability. It is also found that the high VAC value of graphene is responsible for its negative thermal expansion coefficient at low temperature range. We believe that the VAC can be regarded as a new criterion concerning the vibrational stability of any low-dimensional (low-D materials.

  4. The effect of vibration on bed voidage behaviors in fluidized beds with large particles

    Directory of Open Access Journals (Sweden)

    H. Jin


    Full Text Available The effects of vibration parameters, operating conditions and material properties on bed voidage were investigated using an optical fiber probe approach in a vibrating fluidized bed with a diameter of 148 mm. Variables studied included frequency (0-282 s-1, amplitude (0 mm-1 mm, bed height (0.1 m-0.4 m as well as four kinds of particles (belonging to Geldart's B and D groups. The axial and radial voidage distribution with vibration is compared with that without vibration, which shows vibration can aid in the fluidization behaviors of particles. For a larger vibration amplitude, the vibration seriously affects bed voidage. The vibration energy can damp out for particle layers with increasing the bed height. According to analysis of experimental data, an empirical correlation for predicting bed voidage, giving good agreement with the experimental data and a deviation within ±15%, was proposed.

  5. [Vibrational physical exercises as the rehabilitation in gerontology]. (United States)

    Piatin, V F; Shirolapov, I V; Nikitin, O L


    Vibration biomechanical stimulation as the physiological basis of vibration physical exercises (whole body vibration) causes reflecting muscle contractions like tonic vibration reflex. This type of intervention leads to high intensive stimulation of proprioceptors as called muscle spindles which result in alteration in parameters of activity and developments of human physiological functions. This type of training has broad positive influence on organism. Acceleration physical exercises improve muscle performance, flexibility, nervous function, significantly increase bone mineral density, physiological secretion of anabolic hormones, growth and anti-aging factors; normalize/decrease cortisol as anti-stress effect and are beneficial for balance and mobility as well. It is showed acceleration training caused by vibration stimulus is beneficial for people suffering from osteoporosis and obesity, for rehabilitation of nervous and motor function in patients with Parkinson's disease, multiple sclerosis and stroke.

  6. Researches Concerning to Minimize Vibrations when Processing Normal Lathe

    Directory of Open Access Journals (Sweden)

    Lenuța Cîndea


    Full Text Available In the cutting process, vibration is inevitable appearance, and in situations where the amplitude exceeds the limits of precision dimensional and shape of the surfaces generated vibrator phenomenon is detrimental.Field vibration is an issue of increasingly developed, so the futures will a better understanding of them and their use even in other sectors.The paper developed experimental measurement of vibrations at the lathe machining normal. The scheme described kinematical machine tool, cutting tool, cutting conditions, presenting experimental facility for measuring vibration occurring at turning. Experimental results have followed measurement of amplitude, which occurs during interior turning the knife without silencer incorporated. The tests were performed continuously for different speed, feed and depth of cut.

  7. Nonlinear modeling of tuned liquid dampers (TLDs) in rotating wind turbine blades for damping edgewise vibrations

    DEFF Research Database (Denmark)

    Zhang, Zili; Nielsen, Søren R. K.; Basu, Biswajit


    Tuned liquid dampers (TLDs) utilize the sloshing motion of the fluid to suppress structural vibrations and become a natural candidate for damping vibrations in rotating wind turbine blades. The centrifugal acceleration at the tip of a wind turbine blade can reach a magnitude of 7–8g. This facilit......Tuned liquid dampers (TLDs) utilize the sloshing motion of the fluid to suppress structural vibrations and become a natural candidate for damping vibrations in rotating wind turbine blades. The centrifugal acceleration at the tip of a wind turbine blade can reach a magnitude of 7–8g...... free-surface elevation equally well, the one-mode model can still be utilized for the design of TLD. Parametric optimization of the TLD is carried out based on the one-mode model, and the optimized damper effectively improves the dynamic response of wind turbine blades....

  8. Neural systemic impairment from whole-body vibration. (United States)

    Yan, Ji-Geng; Zhang, Lin-ling; Agresti, Michael; LoGiudice, John; Sanger, James R; Matloub, Hani S; Havlik, Robert


    Insidious brain microinjury from motor vehicle-induced whole-body vibration (WBV) has not yet been investigated. For a long time we have believed that WBV would cause cumulative brain microinjury and impair cerebral function, which suggests an important risk factor for motor vehicle accidents and secondary cerebral vascular diseases. Fifty-six Sprague-Dawley rats were divided into seven groups (n = 8): 1) 2-week normal control group, 2) 2-week sham control group (restrained in the tube without vibration), 3) 2-week vibration group (exposed to whole-body vibration at 30 Hz and 0.5g acceleration for 4 hr/day, 5 days/week, for 2 weeks), 4) 4-week sham control group, 5) 4-week vibration group, 6) 8-week sham control group, and 7) 8-week vibration group. At the end point, all rats were evaluated in behavior, physiological, and brain histopathological studies. The cerebral injury from WBV is a cumulative process starting with vasospasm squeezing of the endothelial cells, followed by constriction of the cerebral arteries. After the 4-week vibration, brain neuron apoptosis started. After the 8-week vibration, vacuoles increased further in the brain arteries. Brain capillary walls thickened, mean neuron size was obviously reduced, neuron necrosis became prominent, and wide-ranging chronic cerebral edema was seen. These pathological findings are strongly correlated with neural functional impairments. © 2014 Wiley Periodicals, Inc.

  9. Vibration Penalty Estimates for Indoor Annoyance Caused by Sonic Boom (United States)

    Rathsam, Jonathan; Klos, Jacob


    Commercial supersonic flight is currently forbidden over land because sonic booms have historically caused unacceptable annoyance levels in overflown communities. NASA is providing data and expertise to noise regulators as they consider relaxing the ban for future quiet supersonic aircraft. One key objective is a predictive model for indoor annoyance based on factors such as noise and indoor vibration levels. The current study quantified the increment in indoor sonic boom annoyance when sonic booms can be felt directly through structural vibrations in addition to being heard. A shaker mounted below each chair in the sonic boom simulator emulated vibrations transmitting through the structure to that chair. The vibration amplitudes were determined from numeric models of a large range of residential structures excited by the same sonic boom waveforms used in the experiment. The analysis yielded vibration penalties, which are the increments in sound level needed to increase annoyance as much as the vibration does. For sonic booms at acoustic levels from 75 to 84 dB Perceived Level, vibration signals with lower amplitudes (+1 sigma) yielded penalties from 0 to 5 dB, and vibration signals with higher amplitudes (+3 sigma) yielded penalties from 6 to 10 dB.

  10. Experimental study on titanium wire drawing with ultrasonic vibration. (United States)

    Liu, Shen; Shan, Xiaobiao; Guo, Kai; Yang, Yuancai; Xie, Tao


    Titanium and its alloys have been widely used in aerospace and biomedical industries, however, they are classified as difficult-to-machine materials. In this paper, ultrasonic vibration is imposed on the die to overcome the difficulties during conventional titanium wire drawing processes at the room temperature. Numerical simulations were performed to investigate the variation of axial stress within the contacting region and study the change of the drawing stress with several factors in terms of the longitudinal amplitude and frequency of the applied ultrasonic vibration, the diameter reduction ratio, and the drawing force. An experimental testing equipment was established to measure the drawing torque and rotational velocity of the coiler drum during the wire drawing process. The result indicates the drawing force increases with the growth of the drawing velocity and the reduction ratio, whether with or without vibrations. Application of either form of ultrasonic vibrations contributes to the further decrease of the drawing force, especially the longitudinal vibration with larger amplitude. SEM was employed to detect the surface morphology of the processed wires drawn under the three circumstances. The surface quality of the drawn wires with ultrasonic vibrations was apparently improved compared with those using conventional method. In addition, the longitudinal and torsional composite vibration was more effective for surface quality improvement than pure longitudinal vibration, however, at the cost of weakened drawing force reduction effect. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Typical magnitude and spatial extent of crowding in autism (United States)

    Freyberg, Jan; Robertson, Caroline E.; Baron-Cohen, Simon


    Enhanced spatial processing of local visual details has been reported in individuals with autism spectrum conditions (ASC), and crowding is postulated to be a mechanism that may produce this ability. However, evidence for atypical crowding in ASC is mixed, with some studies reporting a complete lack of crowding in autism and others reporting a typical magnitude of crowding between individuals with and without ASC. Here, we aim to disambiguate these conflicting results by testing both the magnitude and the spatial extent of crowding in individuals with ASC (N = 25) and age- and IQ-matched controls (N = 23) during an orientation discrimination task. We find a strong crowding effect in individuals with and without ASC, which falls off as the distance between target and flanker is increased. Both the magnitude and the spatial range of this effect were comparable between individuals with and without ASC. We also find typical (uncrowded) orientation discrimination thresholds in individuals with ASC. These findings suggest that the spatial extent of crowding is unremarkable in ASC, and is therefore unlikely to account for the visual symptoms reported in individuals with the diagnosis. PMID:26998801

  12. Correlating precursory declines in groundwater radon with earthquake magnitude. (United States)

    Kuo, T


    Both studies at the Antung hot spring in eastern Taiwan and at the Paihe spring in southern Taiwan confirm that groundwater radon can be a consistent tracer for strain changes in the crust preceding an earthquake when observed in a low-porosity fractured aquifer surrounded by a ductile formation. Recurrent anomalous declines in groundwater radon were observed at the Antung D1 monitoring well in eastern Taiwan prior to the five earthquakes of magnitude (Mw ): 6.8, 6.1, 5.9, 5.4, and 5.0 that occurred on December 10, 2003; April 1, 2006; April 15, 2006; February 17, 2008; and July 12, 2011, respectively. For earthquakes occurring on the longitudinal valley fault in eastern Taiwan, the observed radon minima decrease as the earthquake magnitude increases. The above correlation has been proven to be useful for early warning local large earthquakes. In southern Taiwan, radon anomalous declines prior to the 2010 Mw 6.3 Jiasian, 2012 Mw 5.9 Wutai, and 2012 ML 5.4 Kaohsiung earthquakes were also recorded at the Paihe spring. For earthquakes occurring on different faults in southern Taiwan, the correlation between the observed radon minima and the earthquake magnitude is not yet possible. © 2013, National Ground Water Association.

  13. Vs30 from site response and local magnitude corrections (United States)

    Pratt, T.; Hartog, R.; Gomberg, J.; Frankel, A.; Williams, R.; Wong, I.; Haugerud, R.


    We used site response amplifications and local magnitude (ML) station corrections to derive Vs30 estimates (S- wave velocity in the upper 30 m) in the U. S. Pacific Northwest. To obtain Vs30 from site response amplifications, we used the average of the amplifications at 1, 2, 3 and 5 Hz to estimate an impedance ratio, which we assumed represents the ratio between bedrock (Vs=760 m/s) and the shallow, 30-m thick layer (Vs30). We used the velocity and density relations in Brocher (2005, BSSA) to convert this impedance ratio into a velocity and density for each layer. Comparing these Vs30 estimates with nearby (<300 m distance) velocity measurements generally shows agreement within about 30%. To estimate Vs30 from ML station corrections, we show that the station correction is proportional to the logarithm of the site amplification. The magnitude corrections are relative to the average of the network, so they first needed to be adjusted so that a bedrock reference site (Vs=760 m/s) has a correction of 0. We used the adjusted magnitude corrections to compute the site amplification that would be required to cause the ML correction, and from this the impedance ratio and Vs30 as before. The Vs30 estimates made from the magnitude corrections again show agreement to within 30% of nearby measured Vs30 values. The resulting Vs30 values correlate with the age of surface geologic units, showing a progressive increase in Vs30 from ~280 m/s for Quaternary alluvial deposits and artificial fill, to ~1300 m/s for Oligocene volcanic rocks. The Pleistocene glacial tills that cover much of the Puget Lowland region show an average velocity of 512 m/s.

  14. Vibration Analysis of AN Induction Motor (United States)

    WANG, C.; LAI, J. C. S.


    With the advent of power electronics, variable speed induction motors are finding increasing use in industries because of their low cost and potential savings in energy consumption. However, the acoustic noise emitted by the motor increases due to switching harmonics introduced by the electronic inverters. Consequently, the vibro-acoustic behaviour of the motor structure has attracted more attention. In this paper, considerations given to modelling the vibration behaviour of a 2·2 kW induction motor are discussed. By comparing the calculated natural frequencies and the mode shapes with the results obtained from experimental modal testing, the effects of the teeth of the stator, windings, outer casing, slots, end-shields and support on the overall vibration behaviour are analyzed. The results show that when modelling the vibration behaviour of a motor structure, the laminated stator should be treated as an orthotropic structure, and the teeth of the stator could be neglected. As the outer casing, end-shields and the support all affect the vibration properties of the whole structure, these substructures should be incorporated in the model to improve the accuracy.

  15. Experimental Investigation on the Material Removal of the Ultrasonic Vibration Assisted Abrasive Water Jet Machining Ceramics

    Directory of Open Access Journals (Sweden)

    Tao Wang


    Full Text Available The ultrasonic vibration activated in the abrasive water jet nozzle is used to enhance the capability of the abrasive water jet machinery. The experiment devices of the ultrasonic vibration assisted abrasive water jet are established; they are composed of the ultrasonic vibration producing device, the abrasive supplying device, the abrasive water jet nozzle, the water jet intensifier pump, and so on. And the effect of process parameters such as the vibration amplitude, the system working pressure, the stand-off, and the abrasive diameter on the ceramics material removal is studied. The experimental result indicates that the depth and the volume removal are increased when the ultrasonic vibration is added on abrasive water jet. With the increase of vibration amplitude, the depth and the volume of material removal are also increased. The other parameters of the ultrasonic vibration assisted abrasive water jet also have an important role in the improvement of ceramic material erosion efficiency.

  16. Note: fast, small, and low vibration mechanical laser shutters. (United States)

    Martínez, S; Hernández, L; Reyes, D; Gomez, E; Ivory, M; Davison, C; Aubin, S


    We present three novel mechanical laser shutter designs based, respectively, on a stepper motor, a relay, and a piezoelectric actuator. Each shutter type is ideally suited to a specific shuttering application. The stepper motor is well suited for applications requiring low vibrations, the relay is compact and capable of rapid bursts, and the piezoelectric is 2 orders of magnitude faster than other available mechanical shutters. © 2011 American Institute of Physics

  17. Magnitude-based scaling of tsunami propagation (United States)

    Simanjuntak, M. Arthur; Greenslade, Diana J. M.


    Most current operational tsunami prediction systems are based upon databases of precomputed tsunami scenarios, where some form of linear scaling is applied to the precomputed model runs in order to represent specific earthquake magnitudes. This can introduce errors due to assumptions made about the rupture width and possible effects on dispersion. In this paper, we perform a series of numerical experiments on uniform depth domains, using the Method of Splitting Tsunamis (MOST) model, and develop estimates of the maximum error that an assumed discrepancy in the width of a rupture will produce in the resulting field of maximum tsunami amplitude. This estimate was produced from fitting the decay of maximum amplitude with normalized distance for various resolutions of the source widths to the grid size, resulting in a simple power law whose coefficients effectively vary with wavelength resolution. This provides a quantification of the effect that linear scaling of precomputed scenarios will have on forecasts of tsunami amplitude. This estimate of scaling bias is investigated in relation to the scenario database that is currently in use within the Joint Australian Tsunami Warning Centre.


    Directory of Open Access Journals (Sweden)

    Smirnov Vladimir Alexandrovich


    Full Text Available The article deals with the probability analysis for a vibration isolation system of high-precision equipment, which is extremely sensitive to low-frequency oscillations even of submicron amplitude. The external sources of low-frequency vibrations may include the natural city background or internal low-frequency sources inside buildings (pedestrian activity, HVAC. Taking Gauss distribution into account, the author estimates the probability of the relative displacement of the isolated mass being still lower than the vibration criteria. This problem is being solved in the three dimensional space, evolved by the system parameters, including damping and natural frequency. According to this probability distribution, the chance of exceeding the vibration criteria for a vibration isolation system is evaluated. Optimal system parameters - damping and natural frequency - are being developed, thus the possibility of exceeding vibration criteria VC-E and VC-D is assumed to be less than 0.04.

  19. Random vibrations theory and practice

    CERN Document Server

    Wirsching, Paul H; Ortiz, Keith


    Random Vibrations: Theory and Practice covers the theory and analysis of mechanical and structural systems undergoing random oscillations due to any number of phenomena— from engine noise, turbulent flow, and acoustic noise to wind, ocean waves, earthquakes, and rough pavement. For systems operating in such environments, a random vibration analysis is essential to the safety and reliability of the system. By far the most comprehensive text available on random vibrations, Random Vibrations: Theory and Practice is designed for readers who are new to the subject as well as those who are familiar with the fundamentals and wish to study a particular topic or use the text as an authoritative reference. It is divided into three major sections: fundamental background, random vibration development and applications to design, and random signal analysis. Introductory chapters cover topics in probability, statistics, and random processes that prepare the reader for the development of the theory of random vibrations a...

  20. Whole-body vibration and the risk of low back pain and sciatica: a systematic review and meta-analysis. (United States)

    Burström, Lage; Nilsson, Tohr; Wahlström, Jens


    The aim of this systematic literature review was to evaluate the association between whole-body vibration (WBV) and low back pain (LBP) and sciatica with special attention given to exposure estimates. Moreover, the aim was to estimate the magnitude of such an association using meta-analysis and to compare our findings with previous reviews. The authors systematically searched the PubMed (National Library of Medicine, Bethesda), Nioshtic2 (National Institute for Occupational Safety and Health (NIOSH, Morgantown), and ScienceDirect (Elsevier, Amsterdam) databases for records up to December 31, 2013. Two of the authors independently assessed studies to determine their eligibility, validity, and possible risk of bias. The literature search gave a total of 306 references out of which 28 studies were reviewed and 20 were included in the meta-analysis. Exposure to WBV was associated with increased prevalence of LBP and sciatica [pooled odds ratio (OR) = 2.17, 95% confidence interval (CI) 1.61-2.91 and OR 1.92, 95% CI 1.38-2.67, respectively]. Workers exposed to high vibration levels had a pooled risk estimate of 1.5 for both outcomes when compared with workers exposed to low levels of vibration. The results also indicate that some publication bias could have occurred especially for sciatica. This review shows that there is scientific evidence that exposure to WBV increases the risk of LBP and sciatica.

  1. Research on Effects of Blast Casting Vibration and Vibration Absorption of Presplitting Blasting in Open Cast Mine

    Directory of Open Access Journals (Sweden)

    Li Ma


    Full Text Available The impact energy produced by blast casting is able to break and cast rocks, yet the strong vibration effects caused at the same time would threaten the safety of mines. Based on the theory of Janbu’s Limit Equilibrium Method (LEM, pseudo-static method has been incorporated to analyze the influence of dynamic loads of blasting on slope stability. The horizontal loads produced by blast vibrations cause an increase in sliding forces, and this leads to a lower slope stability coefficient. When the tensile stresses of the two adjacent blast holes are greater than the tensile strength of rock mass, the radical oriented cracks are formed, which is the precondition for the formation of presplit face. Thus, the formula for calculating the blast hole spacing of presplit blasting can be obtained. Based on the analysis of the principles of vibration tester and vibration pick-up in detecting blast vibrations, a detection scheme of blast vibration is worked out by taking the blast area with precrack rear and non-precrack side of the detection object. The detection and research results of blast vibration show that presplit blasting can reduce the attenuation coefficient of stress wave by half, and the vibration absorption ratio could reach 50.2%; the impact of dynamic loads on the end-wall slope stability coefficient is 1.98%, which proves that presplit blasting plays an important role in shock absorption of blast casting.

  2. Fatigue and soft tissue vibration during prolonged running. (United States)

    Khassetarash, Arash; Hassannejad, Reza; Ettefagh, Mir Mohammad; Sari-Sarraf, Vahid


    Muscle tuning paradigm proposes that the mechanical properties of soft tissues are tuned in such a way that its vibration amplitude become minimized. Therefore, the vibrations of soft tissue are heavily damped. However, it has been hypothesized that the ability of muscle tuning decreases with fatigue. This study investigated the changes in vibration characteristics of soft tissue with fatigue. Vibrations of the gastrocnemius muscle of 8 runners during a prolonged run protocol on a treadmill at constant velocity (4 ms(-1)) were measured using a tri-axial accelerometer. The vibration amplitude is calculated using the Fourier transform and a wavelet-based method was used to calculate the damping coefficient. The results showed that: (1) the vibration amplitude in longitudinal direction increased with fatigue, which may be interpreted as the decreased muscle function with fatigue. (2) The amplitude increase percent strongly depended on the vibration frequency. (3) The damping coefficient of the gastrocnemius increased with fatigue. A 1-DOF mass-spring-damper model was used in order to validate the wavelet based method and simulate the observed phenomena. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Flow induced vibrations of the CLIC X-Band accelerating structures

    CERN Document Server

    Charles, Tessa; Boland, Mark; Riddone, Germana; Samoshkin, Alexandre


    Turbulent cooling water in the Compact Linear Collider (CLIC) accelerating structures will inevitably induce some vibrations. The maximum acceptable amplitude of vibrations is small, as vibrations in the accelerating structure could lead to beam jitter and alignment difficulties. A Finite Element Analysis model is needed to identify the conditions under which turbulent instabilities and significant vibrations are induced. Due to the orders of magnitude difference between the fluid motion and the structure’s motion, small vibrations of the structure will not contribute to the turbulence of the cooling fluid. Therefore the resonant conditions of the cooling channels presented in this paper, directly identify the natural frequencies of the accelerating structures to be avoided under normal operating conditions. In this paper a 2D model of the cooling channel is presented finding spots of turbulence being formed from a shear layer instability. This effect is observed through direct visualization and wavelet ana...

  4. Chaotic vortex induced vibrations

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, J.; Sheridan, J. [Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, Victoria 3800 (Australia); Leontini, J. S. [Department of Mechanical and Product Design Engineering, Swinburne University of Technology, Hawthorn, Victoria 3122 (Australia); Lo Jacono, D. [Institut de Mécanique des Fluides de Toulouse (IMFT), CNRS, UPS and Université de Toulouse, 31400 Toulouse (France)


    This study investigates the nature of the dynamic response of an elastically mounted cylinder immersed in a free stream. A novel method is utilized, where the motion of the body during a free vibration experiment is accurately recorded, and then a second experiment is conducted where the cylinder is externally forced to follow this recorded trajectory. Generally, the flow response during both experiments is identical. However, particular regimes exist where the flow response is significantly different. This is taken as evidence of chaos in these regimes.

  5. Lattice Vibrations in Chlorobenzenes:

    DEFF Research Database (Denmark)

    Reynolds, P. A.; Kjems, Jørgen; White, J. W.


    Lattice vibrational dispersion curves for the ``intermolecular'' modes in the triclinic, one molecule per unit cell β phase of p‐C6D4Cl2 and p‐C6H4Cl2 have been obtained by inelastic neutron scattering. The deuterated sample was investigated at 295 and at 90°K and a linear extrapolation to 0°K...... was applied in order to correct for anharmonic effects. Calculations based on the atom‐atom model for van der Waals' interaction and on general potential parameters for the aromatic compounds agree reasonably well with the experimental observations. There is no substantial improvement in fit obtained either...

  6. Evaluation of hand-arm and whole-body vibrations in construction and property management. (United States)

    Coggins, Marie A; Van Lente, Eric; McCallig, Margaret; Paddan, Gurmail; Moore, Ken


    To identify and measure the magnitude of hand-arm vibration (HAV) and whole-body vibration (WBV) sources (tools, vehicles etc.) in use within a previously unexamined sector: a construction and property management company. To evaluate the effect of factors such as age of tool, materials being worked on, number and location of tool handles, tool weight, and manufacturer brand on HAV magnitude and the effect of factors such as manufacturer machine brand, terrain, and work task on WBV magnitude. This study was carried out in a construction and property management company, employees (n = 469) working in the engineering services and maintenance departments who use vibrating equipment as part of their work were invited to participate. Two hundred and eighty-nine employees working as general operatives, excavator drivers, stone masons, carpenters, labourers, fitters, welders, and gardeners agreed to participate. A total of 20 types of hand tool (n = 264) and 11 types of vehicle (n = 158) in use within the company were selected for inclusion in the study. Five pieces of equipment had never previously been measured. Vibration measurements were carried out in accordance with ISO 5349-1 (Mechanical vibration-measurement and assessment of human exposure to hand transmitted vibration-Part 1: general guidance. 2001) (HAV) and ISO 2631-1 (Mechanical vibration and shock: evaluation of human exposure to WBV in the working environment. Part 1-general requirements. 1997) (WBV). Vibration measurements were made while workers were operating the equipment as part of their normal work activities. A wide range of vibration emission values were recorded for most tool types, e.g. orbital sanders (1.39-10.90 m s⁻²) and angle grinders (0.28-12.25 m s⁻²), and vehicle, e.g. forklifts (0.41-1.00 m s⁻²) and tractors (0.04-0.42 m s⁻²). Vibration magnitudes were largely consistent with those found in previous studies. The highest HAV magnitude was measured on a demolition hammer (13.3 m


    Energy Technology Data Exchange (ETDEWEB)

    Martin E. Cobern


    The objective of this program is to develop a system to both monitor the vibration of a bottomhole assembly, and to adjust the properties of an active damper in response to these measured vibrations. Phase I of this program, which entailed modeling and design of the necessary subsystems and design, manufacture and test of a full laboratory prototype, was completed on May 31, 2004. The principal objectives of Phase II are: more extensive laboratory testing, including the evaluation of different feedback algorithms for control of the damper; design and manufacture of a field prototype system; and, testing of the field prototype in drilling laboratories and test wells. As a result of the lower than expected performance of the MR damper noted last quarter, several additional tests were conducted. These dealt with possible causes of the lack of dynamic range observed in the testing: additional damping from the oil in the Belleville springs; changes in properties of the MR fluid; and, residual magnetization of the valve components. Of these, only the last was found to be significant. By using a laboratory demagnetization apparatus between runs, a dynamic range of 10:1 was achieved for the damper, more than adequate to produce the needed improvements in drilling. Additional modeling was also performed to identify a method of increasing the magnetic field in the damper. As a result of the above, several changes were made in the design. Additional circuitry was added to demagnetize the valve as the field is lowered. The valve was located to above the Belleville springs to reduce the load placed upon it and offer a greater range of materials for its construction. In addition, to further increase the field strength, the coils were relocated from the mandrel to the outer housing. At the end of the quarter, the redesign was complete and new parts were on order. The project is approximately three months behind schedule at this time.

  8. ERP correlates of the magnitude of pitch errors detected in the human voice. (United States)

    Scheerer, N E; Behich, J; Liu, H; Jones, J A


    Auditory event-related potentials (ERP)s of the P1-N1-P2 complex are modulated when participants hear frequency-altered feedback (FAF) regarding their ongoing vocal productions. However, the relationship between feedback perturbation magnitudes and the resultant neural responses is at present unclear. In the present study, we exposed speakers to FAF of different magnitudes ranging from 0 to 400 cents. Vocal responses and P1-N1-P2-N2 ERPs were examined in an attempt to relate variation in the magnitude of the imposed feedback perturbation with variation in vocal and neural responses. Overall, vocal response magnitudes remained relatively consistent in response to smaller feedback perturbations (300 cents) resulted in decreased vocal response magnitudes. P1 amplitudes were found to increase in a non-specific manner in response to FAF. Conversely, N1 amplitudes displayed increased specificity: small feedback perturbations evoked one size of response, while larger feedback perturbations resulted in larger responses. The P2 component showed the most systematic amplitude modulation as feedback perturbation magnitude increased. A regression analysis highlighted the relationship between vocal response magnitude and P2 amplitude, with both vocal response magnitude and P2 amplitude increasing in response to perturbations between 50 and 250 cents, and then decreasing in response to larger perturbations. Although not generally observed in FAF studies, a robust N2 was also found; N2 amplitudes increased as stimulus magnitudes increased. The pattern of P1-N1-P2-N2 amplitude modulation in response to different magnitudes of FAF indicates that these components reflect processes involved in the detection and correction of unintended changes in auditory feedback during speech. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  9. Local vibrations and lift performance of low Reynolds number airfoil

    Directory of Open Access Journals (Sweden)

    TariqAmin Khan


    Full Text Available The 2D incompressible Navier-Stokes equations are solved based on the finite volume method and dynamic mesh technique is used to carry out partial fluid structure interaction. The local flexible structure (hereinafter termed as flexible structure vibrates in a single mode located on the upper surface of the airfoil. The Influence of vibration frequency and amplitude are examined and the corresponding fluid flow characteristics are investigated which add complexity to the inherent problem in unsteady flow. The study is conducted for flow over NACA0012 airfoil at 600≤Re≤3000 at a low angle of attack. Vibration of flexible structure induces a secondary vortex which modifies the pressure distribution and lift performance of the airfoil. At some moderate vibration amplitude, frequency synchronization or lock-in phenomenon occurs when the vibration frequency is close to the characteristic frequency of rigid airfoil. Evolution and shedding of vortices corresponding to the deformation of flexible structure depends on the Reynolds number. In the case of Re≤1000, the deformation of flexible structure is considered in-phase with the vortex shedding i.e., increasing maximum lift is linked with the positive deformation of flexible structure. At Re=1500 a phase shift of about 1/π exists while they are out-of-phase at Re>1500. Moreover, the oscillation amplitude of lift coefficient increases with increasing vibration amplitude for Re≤1500 while it decreases with increasing vibration amplitude for Re>1500. As a result of frequency lock-in, the average lift coefficient is increased with increasing vibration amplitude for all investigated Reynolds numbers (Re. The maximum increase in the average lift coefficient is 19.72% within the range of investigated parameters.

  10. Quantum dynamics of vibrational excitations and vibrational charge ...

    Indian Academy of Sciences (India)

    Quantum dynamics of vibrational excitations and vibrational charge transfer processes in H+ + O2 collisions at collision energy 23 eV ... The Fritz Haber Research Centre and The Department of Physical Chemisry, Hebrew University of Jerusalem, Jerusalem, Israel 91904; Department of Chemistry, Indian Institute of ...

  11. Tuneable vibration absorber design to suppress vibrations: An application in boring manufacturing process (United States)

    Moradi, H.; Bakhtiari-Nejad, F.; Movahhedy, M. R.


    Dynamic vibration absorbers are used to reduce the undesirable vibrations in many applications such as electrical transmission lines, helicopters, gas turbines, engines, bridges, etc. Tuneable vibration absorbers (TVA) are also used as semi-active controllers. In this paper, the application of a TVA for suppression of chatter vibrations in the boring manufacturing process is presented. The boring bar is modeled as a cantilever Euler-Bernoulli beam and the TVA is composed of mass, spring and dashpot elements. In addition, the effect of spring mass is considered in this analysis. After formulation of the problem, the optimum specifications of the absorber such as spring stiffness, absorber mass and its position are determined using an algorithm based on the mode summation method. The analog-simulated block diagram of the system is developed and the effects of various excitations such as step, ramp, etc. on the absorbed system are simulated. In addition, chatter stability is analyzed in dominant modes of boring bar. Results show that at higher modes, larger critical widths of cut and consequently more material removal rate (MRR) can be achieved. In the case of self-excited vibration, which is associated with a delay differential equation, the optimum absorber suppresses the chatter and increases the limit of stability.

  12. Force illusions and drifts observed during muscle vibration. (United States)

    Reschechtko, Sasha; Cuadra, Cristian; Latash, Mark L


    We explored predictions of a scheme that views position and force perception as a result of measuring proprioceptive signals within a reference frame set by ongoing efferent process. In particular, this hypothesis predicts force illusions caused by muscle vibration and mediated via changes in both afferent and efferent components of kinesthesia. Healthy subjects performed accurate steady force production tasks by pressing with the four fingers of one hand (the task hand) on individual force sensors with and without visual feedback. At various times during the trials, subjects matched the perceived force using the other hand. High-frequency vibration was applied to one or both of the forearms (over the hand and finger extensors). Without visual feedback, subjects showed a drop in the task hand force, which was significantly smaller under the vibration of that forearm. Force production by the matching hand was consistently higher than that of the task hand. Vibrating one of the forearms affected the matching hand in a manner consistent with the perception of higher magnitude of force produced by the vibrated hand. The findings were consistent between the dominant and nondominant hands. The effects of vibration on both force drift and force mismatching suggest that vibration led to shifts in both signals from proprioceptors and the efferent component of perception, the referent coordinate and/or coactivation command. The observations fit the hypothesis on combined perception of kinematic-kinetic variables with little specificity of different groups of peripheral receptors that all contribute to perception of forces and coordinates. NEW & NOTEWORTHY We show that vibration of hand/finger extensors produces consistent errors in finger force perception. Without visual feedback, finger force drifted to lower values without a drift in the matching force produced by the other hand; hand extensor vibration led to smaller finger force drift. The findings fit the scheme with

  13. Literature survey on anti-vibration gloves

    CSIR Research Space (South Africa)

    Sampson, E


    Full Text Available ............................................................................................................... 1 2. HAND ARM VIBRATION SYNDROME (HAVS).......................................................... 2 2.1 Hand-arm vibration................................................. Error! Bookmark not defined. 2.2 Human Response to vibration...

  14. Design for Vibration Monitoring: A Methodology for Reliable and Cost-Effective Vibration Monitoring (United States)

    Tumer, Irem Y.; Koga, Dennis (Technical Monitor)


    The purpose of health monitoring systems is to detect failures or defects for increased safety and performance and to provide on-condition maintenance with reduced costs. The problems associated with health monitoring systems include high rates of false alarms and missed failures, which make monitoring an unreliable and costly task. The reason for this is that unaccounted variations invalidate signal modeling assumptions. Our approach was to focus on vibration monitoring of rotating components. We analyzed baseline signals to determine statistical variations, identify and model factors that influence vibrations (pre-production vs. post-production variations), determine hit and false alarm rates with baseline flight data, model and predict effects of defects and variations on vibrations, and develop algorithms and metrics for failure and anomaly detection in the presence of variations.

  15. Sighting ocular dominance magnitude varies with test distance. (United States)

    Ho, Raymond; Thompson, Benjamin; Babu, Raiju J; Dalton, Kristine


    Ocular dominance can be defined as the preference of an individual for viewing with one eye over the other for particular visual tasks. It is relevant to monovision contact lens wear, cataract surgery and sports vision. Clinically, the measurement of ocular dominance is typically done at an arbitrary distance using a sighting test, such as the hole-in-card method that has a binary outcome. We investigated the effect of test distance on ocular dominance measured using a binocular sighting test that provided a continuous measurement of dominance. Ten participants with normal binocular vision took part in this study. Their binocular sighting ocular dominance and phorias were measured at one, two, four, eight and 10 metres. During the dominance tests participants made a binocular alignment judgment and then were asked to indicate the relative alignment of each eye using a visual analogue scale as a reference. Eight participants had strong ocular dominance (five right, three left). For these participants, there was a significant increase in the magnitude of dominance with increasing test distance (p  0.05), despite changes in convergence demand. When ocular dominance is present, its magnitude varies significantly with test distance. This has significant implications for the accurate measurement of ocular dominance in the clinic and may reflect the neural processes that influence eye preference. © 2017 Optometry Australia.

  16. High-magnitude flooding across Britain since AD 1750 (United States)

    Macdonald, Neil; Sangster, Heather


    The last decade has witnessed severe flooding across much of the globe, but have these floods really been exceptional? Globally, relatively few instrumental river flow series extend beyond 50 years, with short records presenting significant challenges in determining flood risk from high-magnitude floods. A perceived increase in extreme floods in recent years has decreased public confidence in conventional flood risk estimates; the results affect society (insurance costs), individuals (personal vulnerability) and companies (e.g. water resource managers). Here, we show how historical records from Britain have improved understanding of high-magnitude floods, by examining past spatial and temporal variability. The findings identify that whilst recent floods are notable, several comparable periods of increased flooding are identifiable historically, with periods of greater frequency (flood-rich periods). Statistically significant relationships between the British flood index, the Atlantic Meridional Oscillation and the North Atlantic Oscillation Index are identified. The use of historical records identifies that the largest floods often transcend single catchments affecting regions and that the current flood-rich period is not unprecedented.

  17. Hummingbird feather sounds are produced by aeroelastic flutter, not vortex-induced vibration. (United States)

    Clark, Christopher J; Elias, Damian O; Prum, Richard O


    Males in the 'bee' hummingbird clade produce distinctive, species-specific sounds with fluttering tail feathers during courtship displays. Flutter may be the result of vortex shedding or aeroelastic interactions. We investigated the underlying mechanics of flutter and sound production of a series of different feathers in a wind tunnel. All feathers tested were capable of fluttering at frequencies varying from 0.3 to 10 kHz. At low airspeeds (Uair) feather flutter was highly damped, but at a threshold airspeed (U*) the feathers abruptly entered a limit-cycle vibration and produced sound. Loudness increased with airspeed in most but not all feathers. Reduced frequency of flutter varied by an order of magnitude, and declined with increasing Uair in all feathers. This, along with the presence of strong harmonics, multiple modes of flutter and several other non-linear effects indicates that flutter is not simply a vortex-induced vibration, and that the accompanying sounds are not vortex whistles. Flutter is instead aeroelastic, in which structural (inertial/elastic) properties of the feather interact variably with aerodynamic forces, producing diverse acoustic results.

  18. Vibrational Sensing in Marine Invertebrates (United States)


    VIBRATIONAL SENSING IN MARINE INVERTEBRATES Peter A. Jumars School of Oceanography University of Washington Box 357940 Seattle, WA 98195-7940 (206...DATES COVERED 00-00-1997 to 00-00-1997 4. TITLE AND SUBTITLE Vibrational Sensing in Marine Invertebrates 5a. CONTRACT NUMBER 5b. GRANT NUMBER

  19. Vibrations and Stability: Solved Problems

    DEFF Research Database (Denmark)

    Thomsen, Jon Juel

    Worked out solutions for exercise problems in J. J. Thomsen 'Vibrations and Stability: Advanced Theory, Analysis, and Tools', Springer, Berlin - Heidelberg, 2003.......Worked out solutions for exercise problems in J. J. Thomsen 'Vibrations and Stability: Advanced Theory, Analysis, and Tools', Springer, Berlin - Heidelberg, 2003....

  20. Super-multiplex vibrational imaging (United States)

    Wei, Lu; Chen, Zhixing; Shi, Lixue; Long, Rong; Anzalone, Andrew V.; Zhang, Luyuan; Hu, Fanghao; Yuste, Rafael; Cornish, Virginia W.; Min, Wei


    The ability to visualize directly a large number of distinct molecular species inside cells is increasingly essential for understanding complex systems and processes. Even though existing methods have successfully been used to explore structure-function relationships in nervous systems, to profile RNA in situ, to reveal the heterogeneity of tumour microenvironments and to study dynamic macromolecular assembly, it remains challenging to image many species with high selectivity and sensitivity under biological conditions. For instance, fluorescence microscopy faces a ‘colour barrier’, owing to the intrinsically broad (about 1,500 inverse centimetres) and featureless nature of fluorescence spectra that limits the number of resolvable colours to two to five (or seven to nine if using complicated instrumentation and analysis). Spontaneous Raman microscopy probes vibrational transitions with much narrower resonances (peak width of about 10 inverse centimetres) and so does not suffer from this problem, but weak signals make many bio-imaging applications impossible. Although surface-enhanced Raman scattering offers high sensitivity and multiplicity, it cannot be readily used to image specific molecular targets quantitatively inside live cells. Here we use stimulated Raman scattering under electronic pre-resonance conditions to image target molecules inside living cells with very high vibrational selectivity and sensitivity (down to 250 nanomolar with a time constant of 1 millisecond). We create a palette of triple-bond-conjugated near-infrared dyes that each displays a single peak in the cell-silent Raman spectral window; when combined with available fluorescent probes, this palette provides 24 resolvable colours, with the potential for further expansion. Proof-of-principle experiments on neuronal co-cultures and brain tissues reveal cell-type-dependent heterogeneities in DNA and protein metabolism under physiological and pathological conditions, underscoring the

  1. Characterization of Train-Induced Vibration and its Effect on Fecal Corticosterone Metabolites in Mice. (United States)

    Atanasov, Nicholas A; Sargent, Jennifer L; Parmigiani, John P; Palme, Rupert; Diggs, Helen E


    Excessive environmental vibrations can have deleterious effects on animal health and experimental results, but they remain poorly understood in the animal laboratory setting. The aims of this study were to characterize train-associated vibration in a rodent vivarium and to assess the effects of this vibration on the reproductive success and fecal corticosterone metabolite levels of mice. An instrumented cage, featuring a high-sensitivity microphone and accelerometer, was used to characterize the vibrations and sound in a vivarium that is near an active railroad. The vibrations caused by the passing trains are 3 times larger in amplitude than are the ambient facility vibrations, whereas most of the associated sound was below the audible range for mice. Mice housed in the room closest to the railroad tracks had pregnancy rates that were 50% to 60% lower than those of mice of the same strains but bred in other parts of the facility. To verify the effect of the train vibrations, we used a custom-built electromagnetic shaker to simulate the train-induced vibrations in a controlled environment. Fecal pellets were collected from male and female mice that were exposed to the simulated vibrations and from unexposed control animals. Analysis of the fecal samples revealed that vibrations similar to those produced by a passing train can increase the levels of fecal corticosterone metabolites in female mice. These increases warrant attention to the effects of vibration on mice and, consequently, on reproduction and experimental outcomes.

  2. The origins of vibration theory (United States)

    Dimarogonas, A. D.


    The Ionian School of natural philosophy introduced the scientific method of dealing with natural phenomena and the rigorous proofs for abstract propositions. Vibration theory was initiated by the Pythagoreans in the fifth century BC, in association with the theory of music and the theory of acoustics. They observed the natural frequency of vibrating systems and proved that it is a system property and that it does not depend on the excitation. Pythagoreans determined the fundamental natural frequencies of several simple systems, such as vibrating strings, pipes, vessels and circular plates. Aristoteles and the Peripatetic School founded mechanics and developed a fundamental understanding of statics and dynamics. In Alexandrian times there were substantial engineering developments in the field of vibration. The pendulum as a vibration, and probably time, measuring device was known in antiquity, and was further developed by the end of the first millennium AD.

  3. Flow-Induced Vibration of Circular Cylindrical Structures

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Shoei-Sheng [Argonne National Lab. (ANL), Argonne, IL (United States). Components Technology Division


    of heat exchanger tube banks are typical examples. Recently, flow-induced vibration has been studied extensively for several reasons. First, with the use of high-strength materials, structures become more slender and more susceptible to vibration. Second, the development of advanced nuclear power reactors requires high-velocity fluid flowing through components, which can cause detrimental vibrations. Third, the dynamic interaction of structure and fluid is one of the most fascinating problems in engineering mechanics. The increasing study is evidenced by many conferences directed to this subject and numerous publications, including reviews and books. In a broad sense, flow-induced vibration encompasses all topics on the dynamic responses of structures submerged in fluid, containing fluid, or subjected to external flow. In this report, discussions focus on circular cylindrical structures with emphasis on nuclear reactor system components.

  4. sEMG during Whole-Body Vibration Contains Motion Artifacts and Reflex Activity. (United States)

    Lienhard, Karin; Cabasson, Aline; Meste, Olivier; Colson, Serge S


    The purpose of this study was to determine whether the excessive spikes observed in the surface electromyography (sEMG) spectrum recorded during whole-body vibration (WBV) exercises contain motion artifacts and/or reflex activity. The occurrence of motion artifacts was tested by electrical recordings of the patella. The involvement of reflex activity was investigated by analyzing the magnitude of the isolated spikes during changes in voluntary background muscle activity. Eighteen physically active volunteers performed static squats while the sEMG was measured of five lower limb muscles during vertical WBV using no load and an additional load of 33 kg. In order to record motion artifacts during WBV, a pair of electrodes was positioned on the patella with several layers of tape between skin and electrodes. Spectral analysis of the patella signal revealed recordings of motion artifacts as high peaks at the vibration frequency (fundamental) and marginal peaks at the multiple harmonics were observed. For the sEMG recordings, the root mean square of the spikes increased with increasing additional loads (p activity might be contained in the isolated spikes, as identical behavior has been found for stretch reflex responses evoked during direct vibration. In conclusion, the spikes visible in the sEMG spectrum during WBV exercises contain motion artifacts and possibly reflex activity. Key pointsThe spikes observed in the sEMG spectrum during WBV exercises contain motion artifacts and possibly reflex activityThe motion artifacts are more pronounced in the first spike than the following spikes in the sEMG spectrumReflex activity during WBV exercises is enhanced with an additional load of approximately 50% of the body mass.

  5. sEMG during Whole-Body Vibration Contains Motion Artifacts and Reflex Activity

    Directory of Open Access Journals (Sweden)

    Karin Lienhard


    Full Text Available The purpose of this study was to determine whether the excessive spikes observed in the surface electromyography (sEMG spectrum recorded during whole-body vibration (WBV exercises contain motion artifacts and/or reflex activity. The occurrence of motion artifacts was tested by electrical recordings of the patella. The involvement of reflex activity was investigated by analyzing the magnitude of the isolated spikes during changes in voluntary background muscle activity. Eighteen physically active volunteers performed static squats while the sEMG was measured of five lower limb muscles during vertical WBV using no load and an additional load of 33 kg. In order to record motion artifacts during WBV, a pair of electrodes was positioned on the patella with several layers of tape between skin and electrodes. Spectral analysis of the patella signal revealed recordings of motion artifacts as high peaks at the vibration frequency (fundamental and marginal peaks at the multiple harmonics were observed. For the sEMG recordings, the root mean square of the spikes increased with increasing additional loads (p < 0.05, and was significantly correlated to the sEMG signal without the spikes of the respective muscle (r range: 0.54 - 0.92, p < 0.05. This finding indicates that reflex activity might be contained in the isolated spikes, as identical behavior has been found for stretch reflex responses evoked during direct vibration. In conclusion, the spikes visible in the sEMG spectrum during WBV exercises contain motion artifacts and possibly reflex activity.

  6. Vibrations in lightweight structures - Efficiency and reduction of numerical models


    Flodén, Ola


    Multi-storey wood buildings have been increasing in popularity since a century-old ban on the construction of such buildings was lifted in 1994. Compared to conventional concrete structures, it is more difficult to build lightweight structures in such a way that noise and disturbing vibrations is avoided. To design buildings of high performance regarding sound and vibrations, it is desirable to have tools for predicting the effects of structural modifications prior to construction. The long-t...

  7. Electrostatic MEMS vibration energy harvester for HVAC applications with impact-based frequency up-conversion (United States)

    Oxaal, J.; Hella, M.; Borca-Tasciuc, D.-A.


    This paper reports on electrostatic MEMS vibration energy harvesters with gap-closing interdigitated electrodes, designed for and tested on HVAC air ducts. The harvesters were fabricated on SOI wafers with 200 µm device layer using a custom microfabrication process. Designs with aspects ratio (electrodes’ gap versus depth) of 10 and 20 were implemented, while the overall footprint was approximately 1 cm  ×  1 cm in both cases. In order to enhance the power output, a dual-level physical stopper system was designed to control the minimum gap between the electrodes, which is a key parameter in the conversion process. The dual-level stopper utilizes cantilever beams to absorb a portion of the impact energy as the electrodes approach the impact point, and a film of parylene with nanometer thickness deposited on the electrode sidewalls. The parylene layer defines the absolute minimum gap and provides electrical insulation. The fabricated devices were first tested on a vibration shaker to characterize the resonant behavior. Devices with aspect ratio 10 were found to exhibit frequency up-conversion, which enhances the amount of converted power. Devices with both aspect ratios were found to exhibits spring hardening due to impact with the stoppers and spring softening behavior at increasing voltage bias. The highest power measured on shaker table for sinusoidal vibrations was 3.13 µW (includes enhancement due to frequency up-conversion driven by impact) for aspect ratio 10, and 0.166 µW for aspect ratio 20. The corresponding dimensional figure-of-merit, defined as the power output normalized to vibration acceleration and frequency, squared voltage and device mass, was in the range of 10 · 10-8 m V-2 for both devices, about an order of magnitude higher than state-of-the-art. Testing was carried out on HVAC air duct vibrating with an RMS acceleration of 155 mg RMS, a primary frequency of 60 Hz and a PSD of 7.15 · 10-2 g2 Hz-1. The peak power measured was

  8. Vibration-related extrusion of capillary blood from the calf musculature depends upon directions of vibration of the leg and of the gravity vector. (United States)

    Çakar, Halil Ibrahim; Doğan, Serfiraz; Kara, Sadık; Rittweger, Jörn; Rawer, Rainer; Zange, Jochen


    In this study, we investigated the effects of vibration of the whole lower leg on the content and the oxygenation of hemoglobin in the unloaded relaxed lateral gastrocnemius muscle. Vibration was applied orthogonal to and in parallel with leg axis to examine whether the extrusion of blood depends on an alignment of main vessel direction, axis of vibration and gravity. The blood volume in the muscles was altered by horizontal and 30° upright body posture. Fifteen male subjects were exposed to 4 sets of experiments with both vibration directions and both tilt angles applied in permutated order. The absence of voluntary muscular activity and the potential occurrence of compound action potentials by stretch reflexes were monitored using electromyography. Total hemoglobin and tissue saturation index were measured with near infrared spectroscopy. Changes of lower leg circumference were measured with strain gauge system placed around the calf. Vibration caused decrease in tHb and increase in TSI indicating extrusion of predominantly venous blood from the muscle. In 30° tilted position, muscles contained more blood at baseline and vibration ejected more blood from the muscle compared with horizontal posture (p vibration was applied in parallel with the length axis of muscle. It is concluded that the vibration extrudes more blood in 30° head up posture and the vibration applied in parallel with the length axis of the muscle is more effective than orthogonal vibration.

  9. Vibrations transmitted from human hands to upper arm, shoulder, back, neck, and head. (United States)

    Xu, Xueyan S; Dong, Ren G; Welcome, Daniel E; Warren, Christopher; McDowell, Thomas W; Wu, John Z


    Some powered hand tools can generate significant vibration at frequencies below 25 Hz. It is not clear whether such vibration can be effectively transmitted to the upper arm, shoulder, neck, and head and cause adverse effects in these substructures. The objective of this study is to investigate the vibration transmission from the human hands to these substructures. Eight human subjects participated in the experiment, which was conducted on a 1-D vibration test system. Unlike many vibration transmission studies, both the right and left hand-arm systems were simultaneously exposed to the vibration to simulate a working posture in the experiment. A laser vibrometer and three accelerometers were used to measure the vibration transmitted to the substructures. The apparent mass at the palm of each hand was also measured to help in understanding the transmitted vibration and biodynamic response. This study found that the upper arm resonance frequency was 7-12 Hz, the shoulder resonance was 7-9 Hz, and the back and neck resonances were 6-7 Hz. The responses were affected by the hand-arm posture, applied hand force, and vibration magnitude. The transmissibility measured on the upper arm had a trend similar to that of the apparent mass measured at the palm in their major resonant frequency ranges. The implications of the results are discussed. Musculoskeletal disorders (MSDs) of the shoulder and neck are important issues among many workers. Many of these workers use heavy-duty powered hand tools. The combined mechanical loads and vibration exposures are among the major factors contributing to the development of MSDs. The vibration characteristics of the body segments examined in this study can be used to help understand MSDs and to help develop more effective intervention methods.

  10. The incidence and magnitude of fibrinolytic activation in trauma patients. (United States)

    Raza, I; Davenport, R; Rourke, C; Platton, S; Manson, J; Spoors, C; Khan, S; De'Ath, H D; Allard, S; Hart, D P; Pasi, K J; Hunt, B J; Stanworth, S; MacCallum, P K; Brohi, K


    Trauma is a global disease, with over 2.5 million deaths annually from hemorrhage and coagulopathy. Overt hyperfibrinolysis is rare in trauma, and is associated with massive fatal injuries. Paradoxically, clinical trials suggest a much broader indication for antifibrinolytics. To determine the incidence and magnitude of fibrinolytic activation in trauma patients and its relationship to clot lysis as measured by thromboelastometry. A prospective cohort study of 303 consecutive trauma patients admitted between January 2007 and June 2009 was performed. Blood was drawn on arrival for thromboelastometry (TEM) and coagulation assays. Follow-up was until hospital discharge or death. TEM hyperfibrinolysis was defined as maximum clot lysis of > 15%. Fibrinolytic activation (FA) was determined according to plasmin-antiplasmin (PAP) complex and D-dimer levels. Data were collected on demographics, mechanism, severity of injury, and baseline vital signs. The primary outcome measure was 28-day mortality. The secondary outcome measures were 28-day ventilator-free days and 24-h transfusion requirement. Only 5% of patients had severe fibrinolysis on TEM, but 57% of patients had evidence of 'moderate' fibrinolysis, with PAP complex levels elevated to over twice normal (> 1500 μg L(-1)) without lysis on TEM. TEM detected clot lysis only when PAP complex levels were increased to 30 times normal (P trauma patients, and the magnitude of FA correlates with poor clinical outcome. This was not detected by conventional TEM, which is an insensitive measure of endogenous fibrinolytic activity. © 2012 International Society on Thrombosis and Haemostasis.

  11. Whole-body vibration exercise in postmenopausal osteoporosis

    Directory of Open Access Journals (Sweden)

    Magdalena Weber-Rajek


    Full Text Available The report of the World Health Organization (WHO of 2008 defines osteoporosis as a disease characterized by low bone mass and an increased risk of fracture. Postmenopausal osteoporosis is connected to the decrease in estrogens concentration as a result of malfunction of endocrine ovarian function. Low estrogens concentration causes increase in bone demineralization and results in osteoporosis. Physical activity, as a component of therapy of patients with osteoporosis, has been used for a long time now. One of the forms of safe physical activity is the vibration training. Training is to maintain a static position or execution of specific exercises involving the appropriate muscles on a vibrating platform, the mechanical vibrations are transmitted to the body of the patient. According to the piezoelectric theory, pressure induces bone formation in the electrical potential difference, which acts as a stimulant of the process of bone formation. Whole body vibration increases the level of growth hormone and testosterone in serum, preventing sarcopenia and osteoporosis. The aim of this study was to review the literature on vibration exercise in patients with postmenopausal osteoporosis based on the PubMed and Medline database. While searching the database, the following key words were used ‘postmenopausal osteoporosis’ and ‘whole-body vibration exercise’.

  12. Changes in EMG activity in the upper trapezius muscle due to local vibration exposure. (United States)

    Aström, Charlotte; Lindkvist, Markus; Burström, Lage; Sundelin, Gunnevi; Karlsson, J Stefan


    Exposure to vibration is suggested as a risk factor for developing neck and shoulder disorders in working life. Mechanical vibration applied to a muscle belly or a tendon can elicit a reflex muscle contraction, also called tonic vibration reflex, but the mechanisms behind how vibration could cause musculoskeletal disorders has not yet been described. One suggestion has been that the vibration causes muscular fatigue. This study investigates whether vibration exposure changes the development of muscular fatigue in the trapezius muscle. Thirty-seven volunteers (men and women) performed a sub-maximal isometric shoulder elevation for 3 min. This was repeated four times, two times with induced vibration and two times without. Muscle activity was measured before and after each 3-min period to look at changes in the electromyography parameters. The result showed a significantly smaller mean frequency decrease when performing the shoulder elevation with vibration (-2.51 Hz) compared to without vibration (-4.04 Hz). There was also a slightly higher increase in the root mean square when exposed to vibration (5.7% of maximal voluntary contraction) compared to without (3.8% of maximal voluntary contraction); however, this was not statistically significant. The results of the present study indicate that short-time exposure to vibration has no negative acute effects on the fatiguing of upper trapezius muscle.

  13. Multifractal detrended fluctuation analysis of magnitude series of seismicity of Kachchh region, Western India (United States)

    Aggarwal, S. K.; Lovallo, Michele; Khan, P. K.; Rastogi, B. K.; Telesca, Luciano


    The sequence of magnitudes of the earthquakes occurred in Kachchh area (Gujarat, Western India) from 2003 to 2012, has been analysed by using the multifractal detrended fluctuation analysis. The complete and the aftershock-depleted catalogues with minimum magnitude M3 were investigated. Both seismic catalogues show multifractal characteristics. The aftershock-depleted catalogue is more multifractal and also more persistent than the whole catalogue; this indicates that aftershock magnitudes contribute to increase the homogeneity and the randomness of the magnitude sequence of the whole seismicity. The singularity spectrum of the whole catalogue, however, is more left-skewed than that of the aftershock-depleted one, indicating a stronger dependence of the multifractality on the large magnitude fluctuations.

  14. Effects of whole-body vibration exercise on the endocrine system of healthy men. (United States)

    Di Loreto, C; Ranchelli, A; Lucidi, P; Murdolo, G; Parlanti, N; De Cicco, A; Tsarpela, O; Annino, G; Bosco, C; Santeusanio, F; Bolli, G B; De Feo, P


    Whole-body vibration is reported to increase muscle performance, bone mineral density and stimulate the secretion of lipolytic and protein anabolic hormones, such as GH and testosterone, that might be used for the treatment of obesity. To date, as no controlled trial has examined the effects of vibration exercise on the human endocrine system, we performed a randomized controlled study, to establish whether the circulating concentrations of glucose and hormones (insulin, glucagon, cortisol, epinephrine, norepinephrine, GH, IGF-1, free and total testosterone) are affected by vibration in 10 healthy men [age 39 +/- 3, body mass index (BMI) of 23.5 +/- 0.5 kg/m2, mean +/- SEM]. Volunteers were studied on two occasions before and after standing for 25 min on a ground plate in the absence (control) or in the presence (vibration) of 30 Hz whole body vibration. Vibration slightly reduced plasma glucose (30 min: vibration 4.59 +/- 0.21, control 4.74 +/- 0.22 mM, p=0.049) and increased plasma norepinephrine concentrations (60 min: vibration 1.29 +/- 0.18, control 1.01 +/- 0.07 nM, p=0.038), but did not change the circulating concentrations of other hormones. These results demonstrate that vibration exercise transiently reduces plasma glucose, possibly by increasing glucose utilization by contracting muscles. Since hormonal responses, with the exception of norepinephrine, are not affected by acute vibration exposure, this type of exercise is not expected to reduce fat mass in obese subjects.

  15. Kinetic changes in gait during low magnitude military load carriage. (United States)

    Majumdar, Deepti; Pal, Madhu Sudan; Pramanik, Anilendu; Majumdar, Dhurjati


    Indian infantry soldiers carry smaller magnitudes of loads for operational requirements. The ground reaction forces (GRFs) and impulse responses of 10 healthy male Indian infantry soldiers were collected while they walked carrying operational loads between 4.2 and 17.5 kg (6.5-27.2% of mean body weight (BW)) and a control condition of no external load (NL). The GRF and impulse components were normalised for BW, and data for each load condition were compared with NL in each side applying one-way analysis of variance followed by Dunnett's post hoc test. Right foot data were compared with corresponding left foot GRF data for all load conditions and NL. There were significant increases in vertical and anteroposterior GRFs with increase in load. Left and right feet GRF data in corresponding load conditions were significantly different in anteroposterior plane. No significant change was observed in the temporal components of support phase of gait. Changes in impulse parameter were observed in the anteroposterior and vertical planes while carrying load greater than 23 and 16.6% of BW for the right foot and left foot, respectively. Result indicates that smaller magnitudes of loads produced kinetic changes proportional to system weight, similar to heavier loads with the possibility of increased injury risk. Observed smaller asymmetric changes in gait may be considered as postural adjustment due to load. Unique physical characteristics of Indian soldiers and the probable design shortcomings of the existing backpack might have caused significant changes in GRF and peak impulse during smaller load carriage.

  16. Molecular vibrations the theory of infrared and Raman vibrational spectra

    CERN Document Server

    Wilson, E Bright; Cross, Paul C


    Pedagogical classic and essential reference focuses on mathematics of detailed vibrational analyses of polyatomic molecules, advancing from application of wave mechanics to potential functions and methods of solving secular determinant.

  17. Avoid heat transfer equipment vibration

    Energy Technology Data Exchange (ETDEWEB)

    Ganapathy, V.


    Tube bundles in heat exchangers, boilers, superheaters and heaters are often subject to vibration and noise problems. Vibration can lead to tube thinning and wear, resulting in tube failures. Excessive noise can be a problem to plant operating personnel. Large gas pressure drop across the equipment is also a side effect, which results in large operating costs. With the design checks presented in this paper, one can predict during design if problems associated with noise and vibration are likely to occur in petroleum refineries.

  18. Effect of reclining a seat on the discomfort from vibration and shock on fast boats. (United States)

    Howarth, Henrietta V C; Griffin, Michael J


    Passengers and crew on fast boats can experience high magnitudes of whole-body vibration and mechanical shocks that may present risks to health and cause discomfort. This study investigated the influence of reclining a seat on the discomfort caused by fast-boat motion and whether discomfort can be predicted by overall ride values according to current standards. Subjects judged the discomfort of simulations of a recorded fast boat motion in a seat reclined by 0°, 15°, 30°, 45°, or 60°. Reclining the seat caused no significant change in overall discomfort, suggesting that if a reclined seat can be shown to reduce risks of injury it may be acceptable in respect of comfort. The findings are inconsistent with the predictions of standards and show that revised frequency weightings are required to account for seat pan or seat back inclination. Contrary to predictions of current standards, reclining a seat may not increase discomfort during fast-boat motion. Revised frequency weightings for evaluating the severity of whole-body vibration are required to account for seat pan or seat back inclination.

  19. A Novel Ropes-DrivenWideband Piezoelectric Vibration Energy Harvester

    Directory of Open Access Journals (Sweden)

    Jinhui Zhang


    Full Text Available This paper presents a novel piezoelectric vibration energy harvester (PVEH in which a high-frequency generating beam (HFGB is driven by an array of low-frequency driving beams (LFDBs using ropes. Two mechanisms based on frequency upconversion and multimodal harvesting work together to broaden the frequency bandwidth of the proposed vibration energy harvester (VEH. The experimental results show that the output power of generating beam (GB remains unchanged with the increasing number of driving beams (DBs, compared with the traditional arrays of beams vibration energy harvester (AB-VEH, and the output power and bandwidth behavior can be adjusted by parameters such as acceleration, rope margin, and stiffness of LFDBs, which shows the potential to achieve unlimited wideband vibration energy-harvesting for a variable environment.

  20. Patterns of granular convection and separation in narrow vibration bed

    Directory of Open Access Journals (Sweden)

    Liu Chuanping


    Full Text Available Granular convection/separation of single and binary component particles are studied in a narrow vibration bed, respectively. With filling the single light particles (molecular sieve beads, the bed exhibits five different states successively by increasing the vibration frequency f from 15Hz to 70 Hz (vibration strength Γ>3, as the global convection, symmetrical heap, unsymmetrical heap, local convection and pseudo solid. Comparatively, the granular bed of the single heavy particles (steel beads is only in pseudo solid state at the above vibration condition. By filling binary component particles (molecular sieve and same size steel beads instead of the single component, the bed shows similar convection state with that of the single molecular sieve beads, and the heavy steel beads are aggregated in the centre of convention roll as a core. Varying the initial distribution of binary component particles, the final convection and separation are not influenced, although the aggregation process of steel beads changes.

  1. Active isolation of vibrations with adaptive structures (United States)

    Guigou, C.; Fuller, C. R.; Wagstaff, P. R.


    Vibration transmission in structures is controlled by means of a technique which employs distributed arrays of piezoelectric transducers bonded to the supporting structure. Distributed PVDF piezoelectric strips are employed as error sensors, and a two-channel feedforward adaptive LMS algorithm is used for minimizing error signals and thereby controlling the structure. A harmonic force input excites a thick plate, and a receiving plate is configured with three pairs of piezoelectric actuators. Modal analyses are performed to determine the resonant frequencies of the system, and a scanning laser vibrometer is used to study the shape of the response of the receiving plate during excitation with and without the control algorithm. Efficient active isolation of the vibrations is achieved with modal suppression, and good control is noted in the on-resonance cases in which increased numbers of PVDF sensors and piezoelectric actuators are employed.

  2. Induced vibrations facilitate traversal of cluttered obstacles (United States)

    Thoms, George; Yu, Siyuan; Kang, Yucheng; Li, Chen

    When negotiating cluttered terrains such as grass-like beams, cockroaches and legged robots with rounded body shapes most often rolled their bodies to traverse narrow gaps between beams. Recent locomotion energy landscape modeling suggests that this locomotor pathway overcomes the lowest potential energy barriers. Here, we tested the hypothesis that body vibrations induced by intermittent leg-ground contact facilitate obstacle traversal by allowing exploration of locomotion energy landscape to find this lowest barrier pathway. To mimic a cockroach / legged robot pushing against two adjacent blades of grass, we developed an automated robotic system to move an ellipsoidal body into two adjacent beams, and varied body vibrations by controlling an oscillation actuator. A novel gyroscope mechanism allowed the body to freely rotate in response to interaction with the beams, and an IMU and cameras recorded the motion of the body and beams. We discovered that body vibrations facilitated body rolling, significantly increasing traversal probability and reducing traversal time (P probability increased with and traversal time decreased with beam separation. These results confirmed our hypothesis and support the plausibility of locomotion energy landscapes for understanding the formation of locomotor pathways in complex 3-D terrains.

  3. Vibration acceleration promotes bone formation in rodent models. (United States)

    Uchida, Ryohei; Nakata, Ken; Kawano, Fuminori; Yonetani, Yasukazu; Ogasawara, Issei; Nakai, Naoya; Mae, Tatsuo; Matsuo, Tomohiko; Tachibana, Yuta; Yokoi, Hiroyuki; Yoshikawa, Hideki


    All living tissues and cells on Earth are subject to gravitational acceleration, but no reports have verified whether acceleration mode influences bone formation and healing. Therefore, this study was to compare the effects of two acceleration modes, vibration and constant (centrifugal) accelerations, on bone formation and healing in the trunk using BMP 2-induced ectopic bone formation (EBF) mouse model and a rib fracture healing (RFH) rat model. Additionally, we tried to verify the difference in mechanism of effect on bone formation by accelerations between these two models. Three groups (low- and high-magnitude vibration and control-VA groups) were evaluated in the vibration acceleration study, and two groups (centrifuge acceleration and control-CA groups) were used in the constant acceleration study. In each model, the intervention was applied for ten minutes per day from three days after surgery for eleven days (EBF model) or nine days (RFH model). All animals were sacrificed the day after the intervention ended. In the EBF model, ectopic bone was evaluated by macroscopic and histological observations, wet weight, radiography and microfocus computed tomography (micro-CT). In the RFH model, whole fracture-repaired ribs were excised with removal of soft tissue, and evaluated radiologically and histologically. Ectopic bones in the low-magnitude group (EBF model) had significantly greater wet weight and were significantly larger (macroscopically and radiographically) than those in the other two groups, whereas the size and wet weight of ectopic bones in the centrifuge acceleration group showed no significant difference compared those in control-CA group. All ectopic bones showed calcified trabeculae and maturated bone marrow. Micro-CT showed that bone volume (BV) in the low-magnitude group of EBF model was significantly higher than those in the other two groups (3.1±1.2mm3 v.s. 1.8±1.2mm3 in high-magnitude group and 1.3±0.9mm3 in control-VA group), but BV in the

  4. 14 CFR 33.63 - Vibration. (United States)


    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Vibration. 33.63 Section 33.63 Aeronautics... STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.63 Vibration. Each engine... because of vibration and without imparting excessive vibration forces to the aircraft structure. ...

  5. 14 CFR 33.83 - Vibration test. (United States)


    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Vibration test. 33.83 Section 33.83... STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.83 Vibration test. (a) Each engine must undergo vibration surveys to establish that the vibration characteristics of those components that...

  6. 14 CFR 33.33 - Vibration. (United States)


    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Vibration. 33.33 Section 33.33 Aeronautics... STANDARDS: AIRCRAFT ENGINES Design and Construction; Reciprocating Aircraft Engines § 33.33 Vibration. The... vibration and without imparting excessive vibration forces to the aircraft structure. ...

  7. 14 CFR 33.43 - Vibration test. (United States)


    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Vibration test. 33.43 Section 33.43... STANDARDS: AIRCRAFT ENGINES Block Tests; Reciprocating Aircraft Engines § 33.43 Vibration test. (a) Each engine must undergo a vibration survey to establish the torsional and bending vibration characteristics...

  8. 49 CFR 178.819 - Vibration test. (United States)


    ... 49 Transportation 2 2010-10-01 2010-10-01 false Vibration test. 178.819 Section 178.819... Testing of IBCs § 178.819 Vibration test. (a) General. The vibration test must be conducted for the... vibration test. (b) Test method. (1) A sample IBC, selected at random, must be filled and closed as for...

  9. Rectangular Parallelepiped Vibration in Plane Strain State


    Hanckowiak, Jerzy


    In this paper we present a vibration spectrum of a homogenous parallelepiped (HP) under the action of volume and surface forces resulting from the exponent displacements entering the Fourier transforms. Vibration under the action of axial surface tractions and the free vibration are described separately. A relationship between the high frequency vibration and boundary conditions (BC) is also considered.

  10. Stress magnitudes in the crust: constraints from stress orientation and relative magnitude data (United States)

    Zoback, M.L.; Magee, M.


    The World Stress Map Project is a global cooperative effort to compile and interpret data on the orientation and relative magnitudes of the contemporary in situ tectonic stress field in the Earth's lithosphere. The intraplate stress field in both the oceans and continents is largely compressional with one or both of the horizontal stresses greater than the vertical stress. The regionally uniform horizontal intraplate stress orientations are generally consistent with either relative or absolute plate motions indicating that plate-boundary forces dominate the stress distribution within the plates. Current models of stresses due to whole mantle flow inferred from seismic topography models predict a general compressional stress state within continents but do not match the broad-scale horizontal stress orientations. The broad regionally uniform intraplate stress orientations are best correlated with compressional plate-boundary forces and the geometry of the plate boundaries. -from Authors

  11. Prototype observation and influencing factors of environmental vibration induced by flood discharge

    Directory of Open Access Journals (Sweden)

    Xin Wang


    Full Text Available Due to a wide range of field vibration problems caused by flood discharge at the Xiangjiaba Hydropower Station, vibration characteristics and influencing factors were investigated based on prototype observation. The results indicate that field vibrations caused by flood discharge have distinctive characteristics of constancy, low frequency, small amplitude, and randomness with impact, which significantly differ from the common high-frequency vibration characteristics. Field vibrations have a main frequency of about 0.5–3.0 Hz and the characteristics of long propagation distance and large-scale impact. The vibration of a stilling basin slab runs mainly in the vertical direction. The vibration response of the guide wall perpendicular to the flow is significantly stronger than it is in other directions and decreases linearly downstream along the guide wall. The vibration response of the underground turbine floor is mainly caused by the load of unit operation. Urban environmental vibration has particular distribution characteristics and change patterns, and is greatly affected by discharge, scheduling modes, and geological conditions. Along with the increase of the height of residential buildings, vibration responses show a significant amplification effect. The horizontal and vertical vibrations of the 7th floor are, respectively, about 6 times and 1.5 times stronger than the corresponding vibrations of the 1st floor. The vibration of a large-scale chemical plant presents the combined action of flood discharge and working machines. Meanwhile, it is very difficult to reduce the low-frequency environmental vibrations. Optimization of the discharge scheduling mode is one of the effective measures of reducing the flow impact loads at present. Choosing reasonable dam sites is crucial.

  12. Adaptations of mouse skeletal muscle to low-intensity vibration training. (United States)

    McKeehen, James N; Novotny, Susan A; Baltgalvis, Kristen A; Call, Jarrod A; Nuckley, David J; Lowe, Dawn A


    We tested the hypothesis that low-intensity vibration training in mice improves contractile function of hindlimb skeletal muscles and promotes exercise-related cellular adaptations. We subjected C57BL/6J mice to 6 wk, 5 d·wk, 15 min·d of sham or low-intensity vibration (45 Hz, 1.0g) while housed in traditional cages (Sham-Active, n = 8; Vibrated-Active, n = 10) or in small cages to restrict physical activity (Sham-Restricted, n = 8; Vibrated-Restricted, n = 8). Contractile function and resistance to fatigue were tested in vivo (anterior and posterior crural muscles) and ex vivo on the soleus muscle. Tibialis anterior and soleus muscles were evaluated histologically for alterations in oxidative metabolism, capillarity, and fiber types. Epididymal fat pad and hindlimb muscle masses were measured. Two-way ANOVAs were used to determine the effects of vibration and physical inactivity. Vibration training resulted in a 10% increase in maximal isometric torque (P = 0.038) and 16% faster maximal rate of relaxation (P = 0.030) of the anterior crural muscles. Posterior crural muscles were unaffected by vibration, except greater rates of contraction in Vibrated-Restricted mice compared with Vibrated-Active and Sham-Restricted mice (P = 0.022). Soleus muscle maximal isometric tetanic force tended to be greater (P = 0.057), and maximal relaxation was 20% faster (P = 0.005) in vibrated compared with sham mice. The restriction of physical activity induced muscle weakness but was not required for vibration to be effective in improving strength or relaxation. Vibration training did not affect muscle fatigability or any indicator of cellular adaptation investigated (P ≥ 0.431). Fat pad but not hindlimb muscle masses were affected by vibration training. Vibration training in mice improved muscle contractility, specifically strength and relaxation rates, with no indication of adverse effects to muscle function or cellular adaptations.

  13. Vector Analysis of Ionic Collision on CaCO3 Precipitation Based on Vibration Time History (United States)

    Mangestiyono, W.; Muryanto, S.; Jamari, J.; Bayuseno, A. P.


    Vibration effects on the piping system can result from the internal factor of fluid or the external factor of the mechanical equipment operation. As the pipe vibrated, the precipitation process of CaCO3 on the inner pipe could be affected. In the previous research, the effect of vibration on CaCO3 precipitation in piping system was clearly verified. This increased the deposition rate and decreased the induction time. However, the mechanism of vibration control in CaCO3 precipitation process as the presence of vibration has not been recognized yet. In the present research, the mechanism of vibration affecting the CaCO3 precipitation was investigated through vector analysis of ionic collision. The ionic vector force was calculated based on the amount of the activation energy and the vibration force was calculated based on the vibration sensor data. The vector resultant of ionic collision based on the vibration time history was analyzed to prove that vibration brings ionic collision randomly to the planar horizontal direction and its collision model was suspected as the cause of the increasing deposition rate.

  14. Experimental Study on Interfacial Area Transport of Two-Phase Flow under Vibration Conditions

    Directory of Open Access Journals (Sweden)

    Xiu Xiao


    Full Text Available An experimental study on air-water two-phase flow under vibration condition has been conducted using double-sensor conductivity probe. The test section is an annular geometry with hydraulic diameter of 19.1 mm. The vibration frequency ranges from 0.47 Hz to 2.47 Hz. Local measurements of void fraction, interfacial area concentration (IAC, and Sauter mean diameter have been performed along one radius in the vibration direction. The result shows that local parameters fluctuate continuously around the base values in the vibration cycle. Additional bubble force due to inertia is used to explain lateral bubble motions. The fluctuation amplitudes of local void fraction and IAC increase significantly with vibration frequency. The radial distribution of local parameters at the maximum vibration displacement is specifically analyzed. In the void fraction and IAC profiles, the peak near the inner wall is weakened or even disappearing and a strong peak skewed to outer wall is gradually observed with the increase of vibration frequency. The nondimensional peak void fraction can reach a maximum of 49% and the mean relative variation of local void fraction can increase to more than 29% as the vibration frequency increases to 2.47 Hz. But the increase of vibration frequency does not bring significant change to bubble diameter.

  15. Influence of foundation and axial force on the vibration of thin beam ...

    African Journals Online (AJOL)

    The influence of foundation and axial force on the vibration of a simply supported thin (Bernoulli Euler) beam, resting on a uniform foundation, under the action of a variable magnitude harmonic load moving with variable velocity is investigated in this paper. The governing equation is a fourth order partial differential ...

  16. Measurements and analysis of vibrations at Virilla Bridge, national route N° 1

    Directory of Open Access Journals (Sweden)

    Francisco Navarro-Henríquez


    The measurements allowed quantifying the vibration magnitudes and deformation in various sections of the bridge, on condition of vehicular traffic service (environmental performance. The experimental results are compared with computational analytical modeling of the structure and also with national and international standards.

  17. Tire stiffness and damping determined from static and free-vibration tests. [aircraft tires (United States)

    Sleeper, R. K.; Dreher, R. C.


    Stiffness and damping of a nonrolling tire were determined experimentally from both static force-displacement relations and the free-vibration behavior of a cable-suspended platen pressed against the tire periphery. Lateral and force-and-aft spring constants and damping factors of a 49 x 17 size aircraft tire for different tire pressure and vertical loads were measured assuming a rate-independent damping form. In addition, a technique was applied for estimating the magnitude of the tire mass which participates in the vibratory motion of the dynamic tests. Results show that both the lateral and force-and-aft spring constants generally increase with tire pressure but only the latter increased significantly with vertical tire loading. The fore-and-aft spring constants were greater than those in the lateral direction. The static-spring-constant variations were similar to the dynamic variations but exhibited lower magnitudes. Damping was small and insensitive to tire loading. Furthermore, static damping accounted for a significant portion of that found dynamically. Effective tire masses were also small.

  18. Vibration Theory, Vol. 1B

    DEFF Research Database (Denmark)

    Asmussen, J. C.; Nielsen, Søren R. K.

    The present collection of MATLAB exercises has been published as a supplement to the textbook, Svingningsteori, Bind 1 and the collection of exercises in Vibration theory, Vol. 1A, Solved Problems. Throughout the exercise references are made to these books. The purpose of the MATLAB exercises...... is to give a better understanding of the physical problems in linear vibration theory and to surpress the mathematical analysis used to solve the problems. For this purpose the MATLAB environment is excellent....

  19. Harmonic vibrations of multispan beams

    DEFF Research Database (Denmark)

    Dyrbye, Claes


    Free and forced harmonic vibrations of multispan beams are determined by a method which implies 1 equation regardless of the configuration. The necessary formulas are given in the paper. For beams with simple supports and the same length of all (n) spans, there is a rather big difference between...... the n´th and the (n+1)´th eigenfrequency. The reason for this phenomenon is explained.Keywords: Vibrations, Eigenfrequencies, Beams....

  20. Smart accelerometer. [vibration damage detection (United States)

    Bozeman, Richard J., Jr. (Inventor)


    The invention discloses methods and apparatus for detecting vibrations from machines which indicate an impending malfunction for the purpose of preventing additional damage and allowing for an orderly shutdown or a change in mode of operation. The method and apparatus is especially suited for reliable operation in providing thruster control data concerning unstable vibration in an electrical environment which is typically noisy and in which unrecognized ground loops may exist.

  1. Improved Predictions for Geotechnical Vibrations


    Macijauskas, Darius


    In urban areas where the infrastructure is dense and construction of new structures is near existing and sensitive buildings, frequently vibrations, caused by human activities, occur. Generated waves in the soil may adversely affect surrounding buildings. These vibrations have to be predicted a priori by using currently available knowledge of the soil dynamics. Current research, conducted by Deltares research institute, showed that the reliability of methods for prediction of m...

  2. Stress analysis of vibrating pipelines (United States)

    Zachwieja, Janusz


    The pipelines are subject to various constraints variable in time. Those vibrations, if not monitored for amplitude and frequency, may result in both the fatigue damage in the pipeline profile at high stress concentration and the damage to the pipeline supports. If the constraint forces are known, the system response may be determined with high accuracy using analytical or numerical methods. In most cases, it may be difficult to determine the constraint parameters, since the industrial pipeline vibrations occur due to the dynamic effects of the medium in the pipeline. In that case, a vibration analysis is a suitable alternative method to determine the stress strain state in the pipeline profile. Monitoring the pipeline vibration levels involves a comparison between the measured vibration parameters and the permissible values as depicted in the graphs for a specific pipeline type. Unfortunately, in most cases, the studies relate to the petrochemical industry and thus large diameter, long and straight pipelines. For a pipeline section supported on both ends, the response in any profile at the entire section length can be determined by measuring the vibration parameters at two different profiles between the pipeline supports. For a straight pipeline section, the bending moments, variable in time, at the ends of the analysed section are a source of the pipe excitation. If a straight pipe section supported on both ends is excited by the bending moments in the support profile, the starting point for the stress analysis are the strains, determined from the Euler-Bernoulli equation. In practice, it is easier to determine the displacement using the experimental methods, since the factors causing vibrations are unknown. The industrial system pipelines, unlike the transfer pipelines, are straight sections at some points only, which makes it more difficult to formulate the equation of motion. In those cases, numerical methods can be used to determine stresses using the

  3. Vibrational modes of nanolines (United States)

    Heyliger, Paul R.; Flannery, Colm M.; Johnson, Ward L.


    Brillouin-light-scattering spectra previously have been shown to provide information on acoustic modes of polymeric lines fabricated by nanoimprint lithography. Finite-element methods for modeling such modes are presented here. These methods provide a theoretical framework for determining elastic constants and dimensions of nanolines from measured spectra in the low gigahertz range. To make the calculations feasible for future incorporation in inversion algorithms, two approximations of the boundary conditions are employed in the calculations: the rigidity of the nanoline/substrate interface and sinusoidal variation of displacements along the nanoline length. The accuracy of these approximations is evaluated as a function of wavenumber and frequency. The great advantage of finite-element methods over other methods previously employed for nanolines is the ability to model any cross-sectional geometry. Dispersion curves and displacement patterns are calculated for modes of polymethyl methacrylate nanolines with cross-sectional dimensions of 65 nm × 140 nm and rectangular or semicircular tops. The vibrational displacements and dispersion curves are qualitatively similar for the two geometries and include a series of flexural, Rayleigh-like, and Sezawa-like modes. This paper is a contribution of the National Institute of Standards and Technology and is not subject to copyright in the United States.

  4. Developmental Dyscalculia in Adults: Beyond Numerical Magnitude Impairment. (United States)

    De Visscher, Alice; Noël, Marie-Pascale; Pesenti, Mauro; Dormal, Valérie


    Numerous studies have tried to identify the core deficit of developmental dyscalculia (DD), mainly by assessing a possible deficit of the mental representation of numerical magnitude. Research in healthy adults has shown that numerosity, duration, and space share a partly common system of magnitude processing and representation. However, in DD, numerosity processing has until now received much more attention than the processing of other non-numerical magnitudes. To assess whether or not the processing of non-numerical magnitudes is impaired in DD, the performance of 15 adults with DD and 15 control participants was compared in four categorization tasks using numerosities, lengths, durations, and faces (as non-magnitude-based control stimuli). Results showed that adults with DD were impaired in processing numerosity and duration, while their performance in length and face categorization did not differ from controls' performance. Our findings support the idea of a nonsymbolic magnitude deficit in DD, affecting numerosity and duration processing but not length processing.

  5. Vibration modes of injured spine at resonant frequencies under vertical vibration. (United States)

    Guo, Li-Xin; Zhang, Ming; Zhang, Yi-Min; Teo, Ee-Chon


    A detailed three-dimensional finite element model of the spine segment T12-Pelvis was developed to investigate dynamic characteristics of whole lumbar spine with injured cases. This study investigates the motion mechanism of the human lumbar spine and the effect of component injuries on adjacent spinal components under whole body vibration. Several investigations have analyzed the influence of injured spines on adjacent spinal components under static loadings. However, it is not clear how the spine injury affects dynamic characteristics of whole lumbar spine and adjacent components of the injured segment under vibration. The T12-Pelvis model was used to obtain the modal vibration modes of the spine at resonant frequencies. Injury conditions of the spine were simulated and tested, including denucleation and/or facetectomy with removal of capsular ligaments. The results indicate the first-order vertical resonant frequency of the intact model is 7.21 Hz. After the denucleation at L4-L5, it decreases by more than 4% compared with the intact condition. All the injured conditions including disc injury and ligament injury decrease the resonant frequency of the spine. Due to the denucleation at L4-L5 the anteroposterior displacements of the vertebrae from L2 to L5 decrease and the vertical displacements of the vertebrae from L1 to L4 increase under vibration. The denucleation also decreases the rotational deformations of the vertebrae from L1 to L5. The material property sensitivity analysis shows intervertebral discs have a dominating effect on variation of vertical resonant frequency of the spine. The denucleation may decrease cushioning effects of adjacent motion segments at the injured level under vibration. The injured condition may increase the vertical displacement amplitudes of the spine above the injured level. All the injured conditions may decrease the resonant frequency of the spine system.

  6. Has the magnitude of floods across the USA changed with global CO2 levels? (United States)

    Hirsch, Robert M.; Ryberg, Karen R.


    Statistical relationships between annual floods at 200 long-term (85–127 years of record) streamgauges in the coterminous United States and the global mean carbon dioxide concentration (GMCO2) record are explored. The streamgauge locations are limited to those with little or no regulation or urban development. The coterminous US is divided into four large regions and stationary bootstrapping is used to evaluate if the patterns of these statistical associations are significantly different from what would be expected under the null hypothesis that flood magnitudes are independent of GMCO2. In none of the four regions defined in this study is there strong statistical evidence for flood magnitudes increasing with increasing GMCO2. One region, the southwest, showed a statistically significant negative relationship between GMCO2 and flood magnitudes. The statistical methods applied compensate both for the inter-site correlation of flood magnitudes and the shorter-term (up to a few decades) serial correlation of floods.

  7. Se busca una magnitud para la unidad mol


    Julio José Andrade-Gamboa; Hugo Luis Corso; Fabiana Cristina Gennari


    En este trabajo se analiza la frecuente discusión acerca de cuál es la magnitud de la que el mol es su unidad. Se cuestiona la definición de cantidad de sustancia dada por la IUPAC como magnitud fundamental del SI. Se presenta como ciertamente inútil la búsqueda de una magnitud que mida una porción de materia en unidades mol y que no haga referencia a la cantidad de entidades elementales que la componen. Se considera aceptable denominar Cantidad Química a la magnitud que expresa el número de...

  8. Comparing apples and pears in studies on magnitude estimations. (United States)

    Ebersbach, Mirjam; Luwel, Koen; Verschaffel, Lieven


    The present article is concerned with studies on magnitude estimations that strived to uncover the underlying mental representation(s) of magnitudes. We point out a number of methodological differences and shortcomings that make it difficult drawing general conclusions. To solve this problem, we propose a taxonomy by which those studies could be classified, taking into account central methodological aspects of magnitude estimation tasks. Finally, we suggest perspectives for future research on magnitude estimations, which might abandon the hunt for the mathematical model that explains estimations best and turn, instead, to investigate the underlying principles of estimations (e.g., strategies) and ways of their improvement.

  9. Comparing apples and pears in studies on magnitude estimations

    Directory of Open Access Journals (Sweden)

    Mirjam eEbersbach


    Full Text Available The present article is concerned with studies on magnitude estimations that strived to uncover the underlying mental representation(s of magnitudes. We point out a number of methodological differences and shortcomings that make it difficult drawing general conclusions. To solve this problem, we propose a taxonomy by which those studies could be classified, taking into account central methodological aspects of magnitude estimation tasks. Finally, we suggest perspectives for future research on magnitude estimations, which might abandon the hunt for the mathematical model that explains estimations best and turn, instead, to investigate the underlying principles of estimations (e.g., strategies and ways of their improvement.

  10. Effect of Bio Ethanol and Diesel Blend on Small Diesel Engine Vibration

    Directory of Open Access Journals (Sweden)

    S.H Hashemi Fard


    Full Text Available The use of Bio-ethanol as an alternative diesel engine fuel is rapidly increasing. Bio-ethanol is mixed with diesel fuel at different ratios and used in CI and SI engines. Since vibrations have direct effects on users and engine components, for this reason analysis of vibration resulting from combustion in CI engines is very important. In this study, evaluation of vibration was performed for both diesel and ethanol blends. Commercial diesel fuel (D100, E2 (2% ethanol and 98% diesel fuel, E5, E10, E15 and E20 were used in a two-wheel MITSUBISHI tractor. The engine was tested in 1200, 1600, 2000 and 2400 rpm for all fuel blends, and also the effect of load was investigated for D100 and E10. Results showed that vibration is significantly affected by fuel blend. It was observed that E10 had the lowest vibration while E20 had the highest value. It was also observed that vibration increased as engine speed increased for all fuel blends. It was found that both axial and lateral vibrations affected significantly by load. The lateral vibrations decreased continuously with load rise , but the axial vibrations increased initially but started to follow a reverse trend.

  11. Stiffness control of magnetorheological gels for adaptive tunable vibration absorber (United States)

    Kim, Hyun Kee; Kim, Hye Shin; Kim, Young-Keun


    In this study, a stiffness feedback control system for magnetorheological (MR) gel—a smart material of variable stiffness—is proposed, toward the design of a tunable vibration absorber that can adaptively tune to a time varying disturbance in real time. A PID controller was designed to track the required stiffness of the MR gel by controlling the magnitude of the target external magnetic field pervading the MR gel. This paper proposes a novel magnetic field generator that could produce a variable magnetic field with low energy consumption. The performance of the MR gel stiffness control was validated through experiments that showed the MR gel absorber system could be automatically tuned from 56 Hz to 67 Hz under a field of 100 mT to minimize the vibration of the primary system.

  12. Geometric Filtering Effect of Vertical Vibrations in Railway Vehicles

    Directory of Open Access Journals (Sweden)

    Mădălina Dumitriu


    Full Text Available The paper herein examines the geometric filtering effect coming from the axle base of a railway vehicle upon the vertical vibrations behavior, due to the random irregularities of the track. For this purpose, the complete model of a two-level suspension and flexible carbody vehicle has been taken into account. Following the modal analysis, the movement equations have been treated in an original manner and brought to a structure that points out at the symmetrical and anti-symmetrical decoupled movements of vehicle and their excitation modes. There has been shown that the geometric filtering has a selective behavior in decreasing the level of vibrations, and its contribution is affected by the axle base magnitude, rolling speed and frequency range.

  13. Estimating earthquake magnitudes from reported intensities in the central and eastern United States (United States)

    Boyd, Oliver; Cramer, Chris H.


    A new macroseismic intensity prediction equation is derived for the central and eastern United States and is used to estimate the magnitudes of the 1811–1812 New Madrid, Missouri, and 1886 Charleston, South Carolina, earthquakes. This work improves upon previous derivations of intensity prediction equations by including additional intensity data, correcting magnitudes in the intensity datasets to moment magnitude, and accounting for the spatial and temporal population distributions. The new relation leads to moment magnitude estimates for the New Madrid earthquakes that are toward the lower range of previous studies. Depending on the intensity dataset to which the new macroseismic intensity prediction equation is applied, mean estimates for the 16 December 1811, 23 January 1812, and 7 February 1812 mainshocks, and 16 December 1811 dawn aftershock range from 6.9 to 7.1, 6.8 to 7.1, 7.3 to 7.6, and 6.3 to 6.5, respectively. One‐sigma uncertainties on any given estimate could be as high as 0.3–0.4 magnitude units. We also estimate a magnitude of 6.9±0.3 for the 1886 Charleston, South Carolina, earthquake. We find a greater range of magnitude estimates when also accounting for multiple macroseismic intensity prediction equations. The inability to accurately and precisely ascertain magnitude from intensities increases the uncertainty of the central United States earthquake hazard by nearly a factor of two. Relative to the 2008 national seismic hazard maps, our range of possible 1811–1812 New Madrid earthquake magnitudes increases the coefficient of variation of seismic hazard estimates for Memphis, Tennessee, by 35%–42% for ground motions expected to be exceeded with a 2% probability in 50 years and by 27%–35% for ground motions expected to be exceeded with a 10% probability in 50 years.

  14. Vibration analysis of the synchronous motor of a propane compressor

    Energy Technology Data Exchange (ETDEWEB)

    Nogueira, D.; Rangel Junior, J. de S. [Petroleo Brasileiro S.A. - PETROBRAS, Rio de Janeiro, RJ (Brazil)], Emails:,; Moreira, R.G. [Petroleo Brasileiro S.A. - PETROBRAS, Cabiunas, RJ (Brazil)], E-mail:


    This paper aims at describing the Analysis of a synchronous electric motor which presented high vibration levels (shaft displacement and bearing housing vibration) during the commissioning process, as well as propose the best practices for the solution of vibration problems in similar situations. This motor belongs to the propane centrifugal compressor installed at a Gas Compression Station. The methodology used in this study conducted an investigation of the problems presented in the motor through the execution of many types of tests and the analysis of the results. The main evaluations were performed, such as the vibration analysis and the rotor dynamic analysis. The electric motor was shipped back to the manufacturer's shop, where the manufacturer made certain modifications to the motor structure so as to improve the structure stiffness, such as the improvement of the support and the increase of the thickness of the structural plates. In addition to that, the dynamic balancing of the rotating set was checked. Finally, the excitation at a critical speed close to the rated speed was found after Rotor Dynamics Analysis was performed again, because of the increase in bearing clearances. The bearing shells were replaced so as to increase the separation margin between these frequencies. In order to verify the final condition of the motor, the manufacturer repeated the standard tests - FAT (Factory Acceptance Tests) - according to internal procedure and international standards. As a result of this work, it was possible to conclude that there was a significant increase in the vibration levels due to unbalance conditions. It was also possible to conclude that there are close relationships between high vibration levels and unbalance conditions, as well as between high vibration levels and the stiffness of the system and its support. Certain points of attention related to the manufacturing process of the motor compressor are described at the end of this paper, based

  15. Tiltrotor Vibration Reduction Through Higher Harmonic Control (United States)

    Nixon, Mark W.; Kvaternik, Raymond G.; Settle, T. Ben


    The results of a joint NASA/Army/Bell Helicopter Textron wind-tunnel test to assess the potential of higher harmonic control (HHC) for reducing vibrations in tiltrotor aircraft operating in the airplane mode of flight, and to evaluate the effectiveness of a Bell-developed HHC algorithm called MAVSS (Multipoint Adaptive Vibration Suppression System) are presented. The test was conducted in the Langley Transonic Dynamics Tunnel using an unpowered 1/5-scale semispan aeroelastic model of the V-22 which was modified to incorporate an HHC system employing both the rotor swashplate and the wing flaperon. The effectiveness of the swashplate and the flaperon acting either singly or in combination in reducing IP and 3P wing vibrations over a wide range of tunnel airspeeds and rotor rotational speeds was demonstrated. The MAVSS algorithm was found to be robust to variations in tunnel airspeed and rotor speed, requiring only occasional on-line recalculations of the system transfer matrix. HHC had only a small (usually beneficial) effect on blade loads but increased pitch link loads by 25%. No degradation in aeroelastic stability was noted for any of the conditions tested.

  16. Tndon vibration does not alter recovery time following fatigue. (United States)

    Christie, Anita D; Miller, Nick R


    Tendon vibration has been shown to enhance muscle activity and to increase muscular endurance times. The impact of vibration on recovery from fatigue, however, is not known. This study aims to determine whether tendon vibration reduces recovery time following fatiguing contractions. Eight sedentary males (22 ± 2.8 yr) performed a fatiguing protocol of ankle dorsiflexor muscles on two separate days, with a minimum of 48 h between visits. Surface EMG was recorded from the tibialis anterior muscle while participants were performing 25 maximal voluntary contractions (MVCs), each lasting 5 s and separated by 2 s. Following the fatiguing protocol, recovery was assessed with 3-s MVC each minute over a 10-min period. Recovery time was defined as the time at which force had returned to 90% of baseline values. At one visit, vibration was applied to the distal tendon of the tibialis anterior muscle between MVCs (throughout recovery). The alternate visit involved a sham condition in which no vibration was applied. MVC force (P = 0.48) and EMG amplitude (P = 0.26) were not significantly different across testing days. Both MVC force (P fatigue protocol. However, there were no significant interaction effects for MVC force (P = 0.82) or EMG amplitude (P = 0.09), indicating similar levels of fatigue across days. With tendon vibration, MVC force recovered within 4.0 ± 2.5 min, which was not different from the sham condition (5.3 ± 1.8 min; P = 0.42). Similarly, EMG recovery time was not different between vibration condition (3.9 ± 3.8 min) and sham condition (4.9 ± 2.5 min) (P = 0.41). These results suggest that activation of excitatory group Ia afferents through tendon vibration does not substantially alter recovery time following fatigue.

  17. Modeling of Axial Spring Stiffness in Active Vibration Controlled Drilling

    Directory of Open Access Journals (Sweden)

    Pao William


    Full Text Available During drilling process, substantial amount of vibration and shock are induced to the drill string. Active vibration controlled drilling is introduced to reduce the vibration and increase the efficiency of drilling process. In this system, two main components that determine the damping coefficient are magnetorheological (MR damper and spring assembly. Performance of vibration damping system is depending on the viscosity of MR fluid in the damper and spring constant of spring assembly. One of the key issues that are unclear from the design is the correlation between the axial spring stiffness configuration and the damping force which needs to be tuned actively. There has been lack of studies on how the viscosity of MR fluid on the active vibration damper affects the damping stiffness of the whole system. The objective of the project is to extract the correlations for the viscous damping coefficient, equivalent spring stiffness and power input to the system. Simplified vibration model is thus created using Simulink, together with experimental data fed from APS Technology’s in-house team. Inputs of the simulation such as force exerted, mass of mandrel, spring constant and step time are based on the experimental data and can be adjusted to suit different experiments. By having the model, behavior of the system can be studied and analyzed. From the simulation, it is also observed that the relationship between damping coefficient and power input of the system is linear.

  18. Piezoelectric Vibration Damping Study for Rotating Composite Fan Blades (United States)

    Min, James B.; Duffy, Kirsten P.; Choi, Benjamin B.; Provenza, Andrew J.; Kray, Nicholas


    Resonant vibrations of aircraft engine blades cause blade fatigue problems in engines, which can lead to thicker and aerodynamically lower performing blade designs, increasing engine weight, fuel burn, and maintenance costs. In order to mitigate undesirable blade vibration levels, active piezoelectric vibration control has been investigated, potentially enabling thinner blade designs for higher performing blades and minimizing blade fatigue problems. While the piezoelectric damping idea has been investigated by other researchers over the years, very little study has been done including rotational effects. The present study attempts to fill this void. The particular objectives of this study were: (a) to develop and analyze a multiphysics piezoelectric finite element composite blade model for harmonic forced vibration response analysis coupled with a tuned RLC circuit for rotating engine blade conditions, (b) to validate a numerical model with experimental test data, and (c) to achieve a cost-effective numerical modeling capability which enables simulation of rotating blades within the NASA Glenn Research Center (GRC) Dynamic Spin Rig Facility. A numerical and experimental study for rotating piezoelectric composite subscale fan blades was performed. It was also proved that the proposed numerical method is feasible and effective when applied to the rotating blade base excitation model. The experimental test and multiphysics finite element modeling technique described in this paper show that piezoelectric vibration damping can significantly reduce vibrations of aircraft engine composite fan blades.

  19. Integrated cable vibration control system using wireless sensors (United States)

    Jeong, Seunghoo; Cho, Soojin; Sim, Sung-Han


    As the number of long-span bridges is increasing worldwide, maintaining their structural integrity and safety become an important issue. Because the stay cable is a critical member in most long-span bridges and vulnerable to wind-induced vibrations, vibration mitigation has been of interest both in academia and practice. While active and semi-active control schemes are known to be quite effective in vibration reduction compared to the passive control, requirements for equipment including data acquisition, control devices, and power supply prevent a widespread adoption in real-world applications. This study develops an integrated system for vibration control of stay-cables using wireless sensors implementing a semi-active control. Arduino, a low-cost single board system, is employed with a MEMS digital accelerometer and a Zigbee wireless communication module to build the wireless sensor. The magneto-rheological (MR) damper is selected as a damping device, controlled by an optimal control algorithm implemented on the Arduino sensing system. The developed integrated system is tested in a laboratory environment using a cable to demonstrate the effectiveness of the proposed system on vibration reduction. The proposed system is shown to reduce the vibration of stay-cables with low operating power effectively.

  20. The vibrational spectrum of the atoms in the grain boundaries of nanocrystalline Pd

    Energy Technology Data Exchange (ETDEWEB)

    Stuhr, U. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Wipf, H.; Hahn, H. [Technische Hochschule Darmstadt (Germany); Natter, H.; Hemperlmann, R. [Universitaet des Saarlandes, Saarbruecken (Germany); Andersen, K. [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)


    The vibrational excitations of the atoms in nanocrystalline Pd was investigated by neutron-time-of-flight spectroscopy. Hydrogen was used as a probe for the vibrations in the grain boundaries. The separation between the H and Pd vibrations was done by spin analysis. The results show that in the grain boundary the density of states of low energy excitations ({<=}5 meV) is drastically increased. (author) 3 figs., 3 refs.

  1. SDBI 1904: Human Factors Assessment of Vibration Effects on Visual Performance during Launch (United States)

    Thompson, Shelby G.; Holden, Kritina; Root, Phillip; Ebert, Douglas; Jones, Jeffery; Adelstein, Bernard


    The primary objective of the of Human Factors Short Duration Bioastronautics Investigation (SDBI) 1904 is to determine visual performance limits during operational vibration and g-loads, specifically through the determination of minimal usable font sized using Orion-type display formats. Currently there is little to no data available to quantify human visual performance under these extreme conditions. Existing data on shuttle vibration magnitude and frequency is incomplete, does not address sear and crew vibration in the current configuration, and does not address human visual performance. There have been anecdotal reports of performance decrements from shuttle crews, but no structured data has been collected. The SDBI is a companion effort to the Detailed Test Objective (DTO) 695, which will measure shuttle seat accelerations (vibration) during ascent. Data fro the SDBI will serve an important role in interpreting the DTO vibration data. This data will be collected during the ascent phase of three shuttle missions (STS-119, 127, and 128). Both SDBI1904 and DTO 695 are low impact with respect to flight resources, and combined they represent an efficient and focused problem solving approach. The SDBI and DTO data will be correlated to determine the nature of perceived visual performance under varying vibrations and g-loads. This project will provide: 1) Immediate data for developing preliminary human performance vibration requirements; 2) Flight validated inputs for ongoing and future ground-based research; and 3) Information of functional needs that will drive Orion display format design decisions.

  2. Tennis Racket Vibrations and Shock Transmission to the Wrist during Forehand Drive. (United States)

    Rogowski, Isabelle; Creveaux, Thomas; Triquigneaux, Sylvain; Macé, Pierre; Gauthier, Fabien; Sevrez, Violaine


    This study aimed to investigate the effects of two different racket models and two different forehand drive velocities on the three-dimensional vibration behavior of the racket and shock transmission to the player's wrist under real playing conditions. Nine tennis players performed a series of crosscourt flat forehand drives at two velocities, using a lightly and a highly vibrant racket. Two accelerometers were fixed on the racket frame and the player's wrist. The analysis of vibration signals in both time and frequency domains showed no interaction effect of velocity and racket conditions either on the racket vibration behavior or on shock transmission. An increase in playing velocity enlarged the amount of vibrations at the racket and wrist, but weakly altered their frequency content. As compared to a racket perceived as highly vibrating, a racket perceived as lightly vibrating damped longer in the out-of-plane axis of the racket and shorter on the other axis of the racket and on the wrist, and displayed a lower amount of energy in the high frequency of the vibration signal at the racket and wrist. These findings indicated that the playing velocity must be controlled when investigating the vibration loads due to the racket under real playing conditions. Similarly, a reduced perception of vibration by the tennis player would be linked to decreased amplitude of the racket vibration signal, which may concentrate the signal energy in the low frequencies.

  3. Distributed measurement of acoustic vibration location with frequency multiplexed phase-OTDR (United States)

    Iida, Daisuke; Toge, Kunihiro; Manabe, Tetsuya


    All-fiber distributed vibration sensing is attracting attention in relation to structural health monitoring because it is cost effective, offers high coverage of the monitored area and can detect various structural problems. And in particular the demand for high-speed vibration sensing operating at more than 10 kHz has increased because high frequency vibration indicates high energy and severe trouble in the monitored object. Optical fiber vibration sensing with phase-sensitive optical time domain reflectometry (phase-OTDR) has long been studied because it can be used for distributed vibration sensing in optical fiber. However, pulse reflectometry such as OTDR cannot measure high-frequency vibration whose cycle is shorter than the repetition time of the OTDR. That is, the maximum detectable frequency depends on fiber length. In this paper, we describe a vibration sensing technique with frequency-multiplexed OTDR that can detect the entire distribution of a high-frequency vibration thus allowing us to locate a high-speed vibration point. We can measure the position, frequency and dynamic change of a high-frequency vibration whose cycle is shorter than the repetition time. Both frequency and position are visualized simultaneously for a 5-km fiber with an 80-kHz frequency response and a 20-m spatial resolution.

  4. Effects of perturbation magnitude and voice F0 level on the pitch-shift reflex. (United States)

    Liu, Hanjun; Larson, Charles R


    The purpose of the present study was to investigate the responsiveness of the pitch-shift reflex to small magnitude stimuli and voice fundamental frequency (F(0)) level. English speakers received pitch-shifted voice feedback (+/-10, 20, 30, 40, and 50 cents, 200 ms duration) during vowel phonations at a high and a low F(0) level. Mean pitch-shift response magnitude increased as a function of pitch-shift stimulus magnitude, but when expressed as a percent of stimulus magnitude, declined from 100% with +/-10 cents to 37% with +/-50 cents stimuli. Response magnitudes were larger and latencies were shorter with a high F(0) level (16 cents;130 ms) compared to a low F(0) level (13 cents;152 ms). Data from the present study demonstrate that vocal response magnitudes are equal to small perturbation magnitudes, and they are larger and faster with a high F(0) voice. These results suggest that the audio-vocal system is optimally suited for compensating for small pitch rather than larger perturbations. Data also suggest the sensitivity of the audio-vocal system to voice perturbation may vary with F(0) level.

  5. Evaluation of hand-arm vibration reducing effect of anti-vibration glove


    樹野, 淳也; 前田, 節雄; 横田, 和樹; 平, 雄一郎


    Many kinds of the anti-vibration glove have been developed for reducing hand-arm vibration during the operation with vibration tools. International standard ISO 10819 evaluates the physical effect of gloves' vibration transmissibility but not evaluates the physiological effect of human hands. Thus, in this paper, we proposed the evaluation using the temporary threshold shift of vibrotactile perception threshold to evaluate the hand-arm vibration reducing effect of anti-vibration glove. We per...

  6. Magnitude and frequency in proglacial rivers: a geomorphological and sedimentological perspective (United States)

    Marren, Philip M.


    Proglacial fluvial sedimentary systems receive water from a variety of sources and have variable discharges with a range of magnitudes and frequencies. Little attention has been paid to how these various magnitude and frequency regimes interact to produce a distinctive sedimentary record in modern and ancient proglacial environments. This paper reviews the concept of magnitude and frequency in relation to proglacial fluvial systems from a geomorphic and sedimentary perspective rather than a hydrological or statistical perspective. The nature of the meltwater inputs can be characterised as low-magnitude-high-frequency, primarily controlled by ablation inputs from the source glacier, or high-magnitude-low-frequency, primarily controlled by 'exceptional' inputs. The most important high-magnitude-low-frequency inputs are catastrophic outburst floods, often referred to by the term jökulhlaup (Icelandic for glacier-burst). Glacier surges are an additional form of cyclical variation impacting the proglacial environment, which briefly alter the volumes and patterns of meltwater input. The sedimentary consequences of low-magnitude-high-frequency discharges are related to frequent variations in stage, the greater directional variability that sediment will record, and the increased significance of channel confluence sedimentation. In contrast, the most significant characteristics of high-magnitude-low-frequency flooding include the presence of large flood bars and mid-channel 'jökulhlaup' bars, hyperconcentrated flows, large gravel dunes, and the formation of ice-block kettle hole structures and rip-up clasts. Glacier surges result in a redistribution of low-magnitude-high-frequency processes and products across the glacier margin, and small floods may occur at the surge termination. Criteria for distinguishing magnitude and frequency regimes in the proglacial environment are identified based on these major characteristics. Studies of Quaternary proglacial fluvial sediments

  7. Experimental Study on the Vibration of an Overhung Rotor with a Propagating Transverse Crack

    Directory of Open Access Journals (Sweden)

    S.A. Adewusi


    Full Text Available This paper presents an experimental study on the dynamic response of an overhung rotor with a propagating transverse crack. The effects of a propagating transverse crack and side load on the dynamic response of an overhung rotor are investigated in order to identify vibration signatures of a propagating crack in rotating shafts. Startup and steady state vibration signatures were analyzed and presented in the form of Bode plots, Frequency Spectrum Cascades, Frequency Spectrum Waterfalls and orbits. The startup results showed that crack reduces the critical speed and increases the vibration amplitude of the rotor system. It also excites 2X vibration in the startup vibration signatures. The steady state results showed that the propagating crack produces changes in vibration amplitudes of 1X and 2X vibration harmonics and excites 3X harmonic just before fracture. During crack propagation, 1X amplitude may increase or decrease depending on the location of the crack and the direction of vibration measurement while 2X amplitude always increases. The steady state vibration signal of a propagating crack also produces a two-loop orbit.

  8. How to assess magnitudes of paleo-earthquakes from multiple observations (United States)

    Hintersberger, Esther; Decker, Kurt


    An important aspect of fault characterisation regarding seismic hazard assessment are paleo-earthquake magnitudes. Especially in regions with low or moderate seismicity, paleo-magnitudes are normally much larger than those of historical earthquakes and therefore provide essential information about seismic potential and expected maximum magnitudes of a certain region. In general, these paleo-earthquake magnitudes are based either on surface rupture length or on surface displacement observed at trenching sites. Several well-established correlations provide the possibility to link the observed surface displacement to a certain magnitude. However, the combination of more than one observation is still rare and not well established. We present here a method based on a probabilistic approach proposed by Biasi and Weldon (2006) to combine several observations to better constrain the possible magnitude range of a paleo-earthquake. Extrapolating the approach of Biasi and Weldon (2006), the single-observation probability density functions (PDF) are assumed to be independent of each other. Following this line, the common PDF for all observed surface displacements generated by one earthquake is the product of all single-displacement PDFs. In order to test our method, we use surface displacement data for modern earthquakes, where magnitudes have been determined by instrumental records. For randomly selected "observations", we calculated the associated PDFs for each "observation point". We then combined the PDFs into one common PDF for an increasing number of "observations". Plotting the most probable magnitudes against the number of combined "observations", the resultant range of most probable magnitudes is very close to the magnitude derived by instrumental methods. Testing our method with real trenching observations, we used the results of a paleoseismological investigation within the Vienna Pull-Apart Basin (Austria), where three trenches were opened along the normal

  9. MR Damper Controlled Vibration Absorber for Enhanced Mitigation of Harmonic Vibrations

    Directory of Open Access Journals (Sweden)

    Felix Weber


    Full Text Available This paper describes a semi-active vibration absorber (SVA concept based on a real-time controlled magnetorheological damper (MR-SVA for the enhanced mitigation of structural vibrations due to harmonic disturbing forces. The force of the MR damper is controlled in real-time to generate the frequency and damping controls according to the behaviour of the undamped vibration absorber for the actual frequency of vibration. As stiffness and damping emulations in semi-active actuators are coupled quantities the control is formulated to prioritize the frequency control by the controlled stiffness. The control algorithm is augmented by a stiffness correction method ensuring precise frequency control when the desired control force is constrained by the semi-active restriction and residual force of the MR damper. The force tracking task is solved by a model-based feed forward with feedback correction. The MR-SVA is numerically and experimentally validated for the primary structure with nominal eigenfrequency and when de-tuning of −10%, −5%, +5% and +10% is present. Both validations demonstrate that the MR-SVA improves the vibration reduction in the primary structure by up to 55% compared to the passive tuned mass damper (TMD. Furthermore, it is shown that the MR-SVA with only 80% of tuned mass leads to approximately the same enhanced performance while the associated increased relative motion amplitude of the tuned mass is more than compensated be the reduced dimensions of the mass. Therefore, the MR-SVA is an appropriate solution for the mitigation of tall buildings where the pendulum mass can be up to several thousands of metric tonnes and space for the pendulum damper is limited.

  10. Magnitude and Frequency of Floods on Nontidal Streams in Delaware (United States)

    Ries, Kernell G.; Dillow, Jonathan J.A.


    Reliable estimates of the magnitude and frequency of annual peak flows are required for the economical and safe design of transportation and water-conveyance structures. This report, done in cooperation with the Delaware Department of Transportation (DelDOT) and the Delaware Geological Survey (DGS), presents methods for estimating the magnitude and frequency of floods on nontidal streams in Delaware at locations where streamgaging stations monitor streamflow continuously and at ungaged sites. Methods are presented for estimating the magnitude of floods for return frequencies ranging from 2 through 500 years. These methods are applicable to watersheds exhibiting a full range of urban development conditions. The report also describes StreamStats, a web application that makes it easy to obtain flood-frequency estimates for user-selected locations on Delaware streams. Flood-frequency estimates for ungaged sites are obtained through a process known as regionalization, using statistical regression analysis, where information determined for a group of streamgaging stations within a region forms the basis for estimates for ungaged sites within the region. One hundred and sixteen streamgaging stations in and near Delaware with at least 10 years of non-regulated annual peak-flow data available were used in the regional analysis. Estimates for gaged sites are obtained by combining the station peak-flow statistics (mean, standard deviation, and skew) and peak-flow estimates with regional estimates of skew and flood-frequency magnitudes. Example flood-frequency estimate calculations using the methods presented in the report are given for: (1) ungaged sites, (2) gaged locations, (3) sites upstream or downstream from a gaged location, and (4) sites between gaged locations. Regional regression equations applicable to ungaged sites in the Piedmont and Coastal Plain Physiographic Provinces of Delaware are presented. The equations incorporate drainage area, forest cover, impervious

  11. The distribution and magnitude of malaria in Oromia, Ethiopia

    African Journals Online (AJOL)

    Objective: To assess the importance of health facility data and determine the distribution and; magnitude of malaria on the services of health ... Strengthening the surveillance systems for generating reliable data would also help in reflecting the magnitude of specific diseases ..... scale-up plan for Oromia: 2001-205. Malaria.

  12. Effect of population structure and underlying magnitude of ...

    African Journals Online (AJOL)

    David Norris

    For each population, three combinations of additive and dominance genetic variances of different relative magnitudes ... detecting the magnitude of dominance genetic variance depends on the density and size of full-sib families in the data. ..... nonadditive genetic variance components and inbreeding depression. J. Dairy ...

  13. Assessment of Magnitude of Sexually Transmitted Infections, Sexual ...

    African Journals Online (AJOL)

    Assessment of Magnitude of Sexually Transmitted Infections, Sexual and Reproductive Health Status among Prisoners Aged Between 18-49 Years in Tabor Prison, Hawassa, Ethiopia. ... The magnitude of STIs was found as 5.1% among the respondents and 30 (14.5%) respondents were HIV positive. Keywords: Sexual ...

  14. Whole-body vibration therapy in intensive care patients: A feasibility and safety study. (United States)

    Boeselt, Tobias; Nell, Christoph; Kehr, Katahrina; Holland, Angélique; Dresel, Marc; Greulich, Timm; Tackenberg, Björn; Kenn, Klaus; Boeder, Johannes; Klapdor, Benjamin; Kirschbaum, Andreas; Vogelmeier, Claus; Alter, Peter; Koczulla, Andreas Rembert


    Admission to the intensive care unit is associated with sustained loss of muscle mass, reduced quality of life and increased mortality. Early rehabilitation measures may counteract this process. New approaches to rehabilitation while the patient remains in bed are whole-body vibration alone and whole-body vibration with a dumbbell. The aims of this study are to determine the safety of whole-body vibration for patients admitted to the intensive care unit, and to compare the effects of these techniques in intensive care unit patients and healthy subjects. Twelve intensive care unit patients and 12 healthy subjects using whole-body vibration for the first time were examined while lying in bed. First both groups performed whole body vibration over 3 min. In a second step whole body vibration with dumbbell was performed. In order to determine the safety of the training intensity, heart rate, oxygen saturation and blood pressure were measured. The study was approved by the Marburg ethics committee. There were minor reversible and transient increases in diastolic blood pressure (p = 0.005) and heart rate (p = 0.001) in the control group with whole-body vibration with a dumbbell. In intensive care patients receiving whole-body vibration alone, there were increases in diastolic blood pressure (p = 0.011) and heart rate (p vibration and whole-body vibration with a dumbbell for intensive care unit in-bed patients. No clinically significant safety problems were found. Whole-body vibration and whole-body vibration with a dumbbell might therefore be alternative methods for use in early in-bed rehabilitation, not only for hospitalized patients.

  15. Rapid Earthquake Magnitude Estimation for Early Warning Applications (United States)

    Goldberg, Dara; Bock, Yehuda; Melgar, Diego


    Earthquake magnitude is a concise metric that provides invaluable information about the destructive potential of a seismic event. Rapid estimation of magnitude for earthquake and tsunami early warning purposes requires reliance on near-field instrumentation. For large magnitude events, ground motions can exceed the dynamic range of near-field broadband seismic instrumentation (clipping). Strong motion accelerometers are designed with low gains to better capture strong shaking. Estimating earthquake magnitude rapidly from near-source strong-motion data requires integration of acceleration waveforms to displacement. However, integration amplifies small errors, creating unphysical drift that must be eliminated with a high pass filter. The loss of the long period information due to filtering is an impediment to magnitude estimation in real-time; the relation between ground motion measured with strong-motion instrumentation and magnitude saturates, leading to underestimation of earthquake magnitude. Using station displacements from Global Navigation Satellite System (GNSS) observations, we can supplement the high frequency information recorded by traditional seismic systems with long-period observations to better inform rapid response. Unlike seismic-only instrumentation, ground motions measured with GNSS scale with magnitude without saturation [Crowell et al., 2013; Melgar et al., 2015]. We refine the current magnitude scaling relations using peak ground displacement (PGD) by adding a large GNSS dataset of earthquakes in Japan. Because it does not suffer from saturation, GNSS alone has significant advantages over seismic-only instrumentation for rapid magnitude estimation of large events. The earthquake's magnitude can be estimated within 2-3 minutes of earthquake onset time [Melgar et al., 2013]. We demonstrate that seismogeodesy, the optimal combination of GNSS and seismic data at collocated stations, provides the added benefit of improving the sensitivity of

  16. Localised Muscle Tissue Oxygenation During Dynamic Exercise With Whole Body Vibration (United States)

    Robbins, Daniel; Elwell, Clare; Jimenez, Alfonso; Goss-Sampson, Mark


    Despite increasing use of whole body vibration during exercise an understanding of the exact role of vibration and the supporting physiological mechanisms is still limited. An important aspect of exercise analysis is the utilisation of oxygen, however, there have been limited studies considering tissue oxygenation parameters, particularly during dynamic whole body vibration (WBV) exercise. The aim of this study was to determine the effect of adding WBV during heel raise exercises and assessing changes in tissue oxygenation parameters of the lateral gastrocnemius using Near Infra Red Spectroscopy (NIRS). Twenty healthy subjects completed ten alternating sets of 15 heel raises (vibration vs. no vibration). Synchronous oxygenation and motion data were captured prior to exercise to determine baseline levels, for the duration of the exercise and 20 sec post exercise for the recovery period. Both vibration and no vibration conditions elicited a characteristic increase in deoxyhaemoglobin and decreases in oxyhaemoglobin, total haemoglobin, tissue oxygenation index and normalised tissue haemoglobin index which are indicative of local tissue hypoxia. However, the addition of vibration elicited significantly lower (p < 0. 001) depletions in oxyhaemoglobin, total haemoglobin, normalised tissue haemoglobin index but no significant differences in deoxyhaemoglobin. These findings suggest that addition of vibration to exercise does not increase the cost of the exercise for the lateral gastrocnemius muscle, but does decrease the reduction in local muscle oxygenation parameters, potentially resulting from increased blood flow to the calf or a vasospastic response in the feet. However, further studies are needed to establish the mechanisms underlying these findings. Key pointsWhole body vibration affects tissue oxygenation of the lateral gastrocnemius.The underlying mechanism could be either increased blood flow or a vasospastic response in the feet.The local metabolic cost of heel

  17. Comparison enhances size sensitivity: neural correlates of outcome magnitude processing.

    Directory of Open Access Journals (Sweden)

    Qiuling Luo

    Full Text Available Magnitude is a critical feature of outcomes. In the present study, two event-related potential (ERP experiments were implemented to explore the neural substrates of outcome magnitude processing. In Experiment 1, we used an adapted gambling paradigm where physical area symbols were set to represent potential relative outcome magnitudes in order to exclude the possibility that the participants would be ignorant of the magnitudes. The context was manipulated as total monetary amount: ¥4 and ¥40. In these two contexts, the relative outcome magnitudes were ¥1 versus ¥3, and ¥10 versus ¥30, respectively. Experiment 2, which provided two area symbols with similar outcome magnitudes, was conducted to exclude the possible interpretation of physical area symbol for magnitude effect of feedback-related negativity (FRN in Experiment 1. Our results showed that FRN responded to the relative outcome magnitude but not to the context or area symbol, with larger amplitudes for relatively small outcomes. A larger FRN effect (the difference between losses and wins was found for relatively large outcomes than relatively small outcomes. Relatively large outcomes evoked greater positive ERP waves (P300 than relatively small outcomes. Furthermore, relatively large outcomes in a high amount context elicited a larger P300 than those in a low amount context. The current study indicated that FRN is sensitive to variations in magnitude. Moreover, relative magnitude was integrated in both the early and late stages of feedback processing, while the monetary amount context was processed only in the late stage of feedback processing.

  18. Interaction between Uneven Cavity Length and Shaft Vibration at the Inception of Synchronous Rotating Cavitation

    Directory of Open Access Journals (Sweden)

    Y. Yoshida


    Full Text Available Asymmetric cavitation is known as one type of the sources of cavitation induced vibration in turbomachinery. Cavity lengths are unequal on each blade under condition of synchronous rotating cavitation, which causes synchronous shaft vibration. To investigate the relationship of the cavity length, fluid force, and shaft vibration in a cavitating inducer with three blades, we observed the unevenness of cavity length at the inception of synchronous rotating cavitation. The fluid force generated by the unevenness of the cavity length was found to grow exponentially, and the amplitude of shaft vibration was observed to increase exponentially. These experimental results indicate that the synchronous shaft vibration due to synchronous rotating cavitation is like selfexcited vibrations arising from the coupling between cavitation instability and rotordynamics.

  19. Effect of vibration frequency on biopsy needle insertion force. (United States)

    Tan, Lei; Qin, Xuemei; Zhang, Qinhe; Zhang, Hongcai; Dong, Hongjian; Guo, Tuodang; Liu, Guowei


    Needle insertion is critical in many clinical medicine procedures, such as biopsy, brachytherapy, and injection therapy. A platform with two degrees of freedom was set up to study the effect of vibration frequency on needle insertion force. The gel phantom deformation at the needle cutting edge and the Voigt model are utilized to develop a dynamic model to explain the relationship between the insertion force and needle-tip velocity. The accuracy of this model was verified by performing needle insertions into phantom gel. The effect of vibration on insertion force can be explained as the vibration increasing the needle-tip velocity and subsequently increasing the insertion force. In a series of needle insertion experiments with different vibration frequencies, the peak forces were selected for comparison to explore the effect of vibration frequency on needle insertion force. The experimental results indicate that the insertion force at 500Hz increases up to 17.9% compared with the force at 50Hz. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  20. The Development of the Mental Representations of the Magnitude of Fractions (United States)

    Gabriel, Florence C.; Szucs, Denes; Content, Alain


    We investigated the development of the mental representation of the magnitude of fractions during the initial stages of fraction learning in grade 5, 6 and 7 children as well as in adults. We examined the activation of global fraction magnitude in a numerical comparison task and a matching task. There were global distance effects in the comparison task, but not in the matching task. This suggests that the activation of the global magnitude representation of fractions is not automatic in all tasks involving magnitude judgments. The slope of the global distance effect increased during early fraction learning and declined by adulthood, demonstrating that the development of the fraction global distance effect differs from that of the integer distance effect. PMID:24236169

  1. Bone strain magnitude is correlated with bone strain rate in tetrapods: implications for models of mechanotransduction. (United States)

    Aiello, B R; Iriarte-Diaz, J; Blob, R W; Butcher, M T; Carrano, M T; Espinoza, N R; Main, R P; Ross, C F


    Hypotheses suggest that structural integrity of vertebrate bones is maintained by controlling bone strain magnitude via adaptive modelling in response to mechanical stimuli. Increased tissue-level strain magnitude and rate have both been identified as potent stimuli leading to increased bone formation. Mechanotransduction models hypothesize that osteocytes sense bone deformation by detecting fluid flow-induced drag in the bone's lacunar-canalicular porosity. This model suggests that the osteocyte's intracellular response depends on fluid-flow rate, a product of bone strain rate and gradient, but does not provide a mechanism for detection of strain magnitude. Such a mechanism is necessary for bone modelling to adapt to loads, because strain magnitude is an important determinant of skeletal fracture. Using strain gauge data from the limb bones of amphibians, reptiles, birds and mammals, we identified strong correlations between strain rate and magnitude across clades employing diverse locomotor styles and degrees of rhythmicity. The breadth of our sample suggests that this pattern is likely to be a common feature of tetrapod bone loading. Moreover, finding that bone strain magnitude is encoded in strain rate at the tissue level is consistent with the hypothesis that it might be encoded in fluid-flow rate at the cellular level, facilitating bone adaptation via mechanotransduction. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  2. Reinforcer magnitude affects delay discounting and influences effects of d-amphetamine in rats. (United States)

    Krebs, Christopher A; Reilly, William J; Anderson, Karen G


    Impulsive choice in humans can be altered by changing reinforcer magnitude; however, this effect has not been found in rats. Current levels of impulsive choice can also influence effects of d-amphetamine. This study used a within-subject assessment to determine if impulsive choice is sensitive to changes in reinforcer magnitude, and whether effects of d-amphetamine are related to current levels of impulsive choice. A discounting procedure in which choice was for a smaller reinforcer available immediately or a larger reinforcer available after a delay that increased within session was used. Reinforcer magnitude was manipulated between conditions and impulsive choice was quantified using area under the curve (AUC). In the Smaller-Magnitude (SM) Condition, choice was between one food pellet and three food pellets. In the Larger-Magnitude (LM) Condition, choice was between two food pellets and six food pellets. Impulsive choice was greater in the SM Condition compared to the LM Condition. Further, effects of d-amphetamine (0.1-1.8mg/kg) were related to differences in impulsive choice. d-Amphetamine increased impulsive choice in the LM Condition, but had no effect on impulsive choice in the SM Condition. Overall, these results show that impulsive choice in rats is sensitive to changes in reinforcer magnitude, and that effects of d-amphetamine are influenced by current levels of impulsive choice. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Is Fish Response related to Velocity and Turbulence Magnitudes? (Invited) (United States)

    Wilson, C. A.; Hockley, F. A.; Cable, J.


    Riverine fish are subject to heterogeneous velocities and turbulence, and may use this to their advantage by selecting regions which balance energy expenditure for station holding whilst maximising energy gain through feeding opportunities. This study investigated microhabitat selection by guppies (Poecilia reticulata) in terms of the three-dimensional velocity structure generated by idealised boulders in an experimental flume. Velocity and turbulence influenced intra-species variation in swimming behaviour with respect to size, sex and parasite intensity. With increasing body length, fish swam further and more frequently between boulder regions. Larger guppies spent more time in the high velocity and low turbulence region, whereas smaller guppies preferred the low velocity and high shear stress region directly behind the boulders. Male guppies selected the region of low velocity, indicating a possible reduced swimming ability due to hydrodynamic drag imposed by their fins. With increasing parasite (Gyrodactylus turnbulli) burden, fish preferentially selected the region of moderate velocity which had the lowest bulk measure of turbulence of all regions and was also the most spatially homogeneous velocity and turbulence region. Overall the least amount of time was spent in the recirculation zone which had the highest magnitude of shear stresses and mean vertical turbulent length scale to fish length ratio. Shear stresses were a factor of two greater than in the most frequented moderate velocity region, while mean vertical turbulent length scale to fish length ratio were six times greater. Indeed the mean longitudinal turbulent scale was 2-6 times greater than the fish length in all regions. While it is impossible to discriminate between these two turbulence parameters (shear stress and turbulent length to fish length ratio) in influencing the fish preference, our study infers that there is a bias towards fish spending more time in a region where both the bulk

  4. Ultrasonic metal welding with a vibration source using longitudinal and torsional vibration transducers (United States)

    Asami, Takuya; Tamada, Yosuke; Higuchi, Yusuke; Miura, Hikaru


    Conventional ultrasonic metal welding for joining dissimilar metals uses a linear vibration locus, although this method suffers from problems such as low overall weld strength. Our previous studies have shown that ultrasonic welding with a planar vibration locus improves the weld strength. However, the vibration source in our previous studies had problems in longitudinal-torsional vibration controllability and small welding tip. Therefore, the study of the optimal shape of the vibration locus was difficult. Furthermore, improvement of weld strength cannot be expected. We have developed a new ultrasonic vibration source that can control the longitudinal-torsional vibration and can connect to a large welding tip. In this study, we clarified the longitudinal-torsional vibration controllability of the developed ultrasonic vibration source. Moreover, we clarified that using the planar locus of the developed vibration source produced a higher weld strength than our previous studies, and clarified the optimal shape of the vibration locus.

  5. The Influence of Tractor-Seat Height above the Ground on Lateral Vibrations (United States)

    Gomez-Gil, Jaime; Gomez-Gil, Francisco Javier; Martin-de-Leon, Rebeca


    Farmers experience whole-body vibrations when they drive tractors. Among the various factors that influence the vibrations to which the driver is exposed are terrain roughness, tractor speed, tire type and pressure, rear axle width, and tractor seat height above the ground. In this paper the influence of tractor seat height above the ground on the lateral vibrations to which the tractor driver is exposed is studied by means of a geometrical and an experimental analysis. Both analyses show that: (i) lateral vibrations experienced by a tractor driver increase linearly with tractor-seat height above the ground; (ii) lateral vibrations to which the tractor driver is exposed can equal or exceed vertical vibrations; (iii) in medium-size tractors, a feasible 30 cm reduction in the height of the tractor seat, which represents only 15% of its current height, will reduce the lateral vibrations by around 20%; and (iv) vertical vibrations are scarcely influenced by tractor-seat height above the ground. The results suggest that manufacturers could increase the comfort of tractors by lowering tractor-seat height above the ground, which will reduce lateral vibrations. PMID:25340448

  6. The Influence of Tractor-Seat Height above the Ground on Lateral Vibrations

    Directory of Open Access Journals (Sweden)

    Jaime Gomez-Gil


    Full Text Available Farmers experience whole-body vibrations when they drive tractors. Among the various factors that influence the vibrations to which the driver is exposed are terrain roughness, tractor speed, tire type and pressure, rear axle width, and tractor seat height above the ground. In this paper the influence of tractor seat height above the ground on the lateral vibrations to which the tractor driver is exposed is studied by means of a geometrical and an experimental analysis. Both analyses show that: (i lateral vibrations experienced by a tractor driver increase linearly with tractor-seat height above the ground; (ii lateral vibrations to which the tractor driver is exposed can equal or exceed vertical vibrations; (iii in medium-size tractors, a feasible 30 cm reduction in the height of the tractor seat, which represents only 15% of its current height, will reduce the lateral vibrations by around 20%; and (iv vertical vibrations are scarcely influenced by tractor-seat height above the ground. The results suggest that manufacturers could increase the comfort of tractors by lowering tractor-seat height above the ground, which will reduce lateral vibrations.

  7. Numerical Analysis of the Influence of Low Frequency Vibration on Bubble Growth. (United States)

    Han, D; Kedzierski, Mark A


    Numerical simulation of bubble growth during pool boiling under the influence of low frequency vibration was performed to understand the influence of common vibrations such as those induced by wind, highway transportation, and nearby mechanical devices on the performance of thermal systems that rely on boiling. The simulations were done for saturated R123 boiling at 277.6 K with a 15 K wall superheat. The numerical volume-of-fluid method (fixed grid) was used to define the liquid-vapor interface. The basic bubble growth characteristics including the bubble departure diameter and the bubble departure time were determined as a function of the bubble contact angle (20°-80°), the vibration displacement (10 µm-50 µm), the vibration frequency (5 Hz-25 Hz), and the initial vibration direction (positive or negative). The bubble parameters were shown to be strongly dependent on the bubble contact angle at the surface. For example, both the bubble departure diameter and the bubble departure time increased with the contact angle. At the same vibration frequency and the initial vibration direction, the bubble departure diameter and the bubble departure time both decreased with increasing vibration displacement. In addition, the vibration frequency had a greater effect on the bubble growth characteristics than did the vibration displacement. The vibration frequency effect was strongly influenced by the initial vibration direction. The pressure contour, the volume fraction of vapor phase, the temperature profile, and the velocity vector were investigated to understand these dynamic bubble behaviors. The limitation of the computational fluid dynamics approach was also described.

  8. Whole-body vibration slows the acquisition of fat in mature female rats (United States)

    Maddalozzo, GF; Iwaniec, UT; Turner, RT; Rosen, CJ; Widrick, JJ


    Objective To evaluate the effects of whole-body vibration on fat, bone, leptin and muscle mass. Methods/Design Thirty 7-month-old female 344 Fischer rats were randomized by weight into three groups (baseline, vibration or control; n=7–10 per group). Rats in the vibration group were placed inside individual compartments attached to a Pneu-Vibe vibration platform (Pneumex, Sandpoint, ID, USA) and vibrated at 30–50 Hz (6mm peak to peak) for 30 min per day, 5 days per week, for 12 weeks. The vibration intervention consisted of six 5-min cycles with a 1-min break between cycles. Results There were significant body composition differences between the whole-body vibration and the control groups. The whole-body vibration group weighed approximately 10% less (mean ± s.d.; 207 ± 10 vs 222 ± 15 g, Pbody fat (20.8 ± 3.8 vs 26.8 ± 5.9 g, Pbody fat (10.2 ± 1.7 vs 12 ± 2.0%, Pbody vibration group had significantly greater BMC (0.33 ± 0.05 vs 0.26 ± 0.03 g, Pbody vibration reduced body fat accumulation and serum leptin without affecting whole body BMC, BMD or lean mass. However, the increase in vertebral BMC and BMD suggests that vibration may have resulted in local increases in bone mass and density. Also, whole-body vibration did not affect muscle function or food consumption. PMID:18663370

  9. Elastic scattering and vibrational excitation for electron impact on para-benzoquinone (United States)

    Jones, D. B.; Blanco, F.; García, G.; da Costa, R. F.; Kossoski, F.; Varella, M. T. do N.; Bettega, M. H. F.; Lima, M. A. P.; White, R. D.; Brunger, M. J.


    We report on theoretical elastic and experimental vibrational-excitation differential cross sections (DCSs) for electron scattering from para-benzoquinone (C6H4O2), in the intermediate energy range 15-50 eV. The calculations were conducted with two different theoretical methodologies, the Schwinger multichannel method with pseudopotentials (SMCPP) and the independent atom method with screening corrected additivity rule (IAM-SCAR) that also now incorporates a further interference (I) term. The SMCPP with N energetically open electronic states (Nopen) at the static-exchange-plus-polarisation (Nopench-SEP) level was used to calculate the scattering amplitudes using a channel coupling scheme that ranges from 1ch-SE up to the 89ch-SEP level of approximation. We found that in going from the 38ch-SEP to the 89ch-SEP, at all energies considered here, the elastic DCSs did not change significantly in terms of both their shapes and magnitudes. This is a good indication that our SMCPP 89ch-SEP elastic DCSs are converged with respect to the multichannel coupling effect for the investigated intermediate energies. While agreement between our IAM-SCAR+I and SMCPP 89ch-SEP computations improves as the incident electron energy increases from 15 eV, overall the level of accord is only marginal. This is particularly true at middle scattering angles, suggesting that our SCAR and interference corrections are failing somewhat for this molecule below 50 eV. We also report experimental DCS results, using a crossed-beam apparatus, for excitation of some of the unresolved ("hybrid") vibrational quanta (bands I-III) of para-benzoquinone. Those data were derived from electron energy loss spectra that were measured over a scattered electron angular range of 10°-90° and put on an absolute scale using our elastic SMCPP 89ch-SEP DCS results. The energy resolution of our measurements was ˜80 meV, which is why, at least in part, the observed vibrational features were only partially resolved. To

  10. Mechanical Vibrations Modeling and Measurement

    CERN Document Server

    Schmitz, Tony L


    Mechanical Vibrations:Modeling and Measurement describes essential concepts in vibration analysis of mechanical systems. It incorporates the required mathematics, experimental techniques, fundamentals of modal analysis, and beam theory into a unified framework that is written to be accessible to undergraduate students,researchers, and practicing engineers. To unify the various concepts, a single experimental platform is used throughout the text to provide experimental data and evaluation. Engineering drawings for the platform are included in an appendix. Additionally, MATLAB programming solutions are integrated into the content throughout the text. This book also: Discusses model development using frequency response function measurements Presents a clear connection between continuous beam models and finite degree of freedom models Includes MATLAB code to support numerical examples that are integrated into the text narrative Uses mathematics to support vibrations theory and emphasizes the practical significanc...


    Energy Technology Data Exchange (ETDEWEB)

    Martin E. Cobern


    The deep hard rock drilling environment induces severe vibrations into the drillstring, which can cause reduced rates of penetration (ROP) and premature failure of the equipment. The only current means of controlling vibration under varying conditions is to change either the rotary speed or the weight-on-bit (WOB). These changes often reduce drilling efficiency. Conventional shock subs are useful in some situations, but often exacerbate the problems. The objective of this project is development of a unique system to monitor and control drilling vibrations in a ''smart'' drilling system. This system has two primary elements: (1) The first is an active vibration damper (AVD) to minimize harmful axial, lateral and torsional vibrations. The hardness of this damper will be continuously adjusted using a robust, fast-acting and reliable unique technology. (2) The second is a real-time system to monitor drillstring vibration, and related parameters. This monitor adjusts the damper according to local conditions. In some configurations, it may also send diagnostic information to the surface via real-time telemetry. The AVD is implemented in a configuration using magnetorheological (MR) fluid. By applying a current to the magnetic coils in the damper, the viscosity of the fluid can be changed rapidly, thereby altering the damping coefficient in response to the measured motion of the tool. Phase I of this program entailed modeling and design of the necessary subsystems and design, manufacture and test of a full laboratory prototype. Phase I of the project was completed by the revised end date of May 31, 2004. The objectives of this phase were met, and all prerequisites for Phase II have been completed.


    Energy Technology Data Exchange (ETDEWEB)

    Martin E. Cobern


    The deep hard rock drilling environment induces severe vibrations into the drillstring, which can cause reduced rates of penetration (ROP) and premature failure of the equipment. The only current means of controlling vibration under varying conditions is to change either the rotary speed or the weight-on-bit (WOB). These changes often reduce drilling efficiency. Conventional shock subs are useful in some situations, but often exacerbate the problems. The objective of this project is development of a unique system to monitor and control drilling vibrations in a ''smart'' drilling system. This system has two primary elements: (1) The first is an active vibration damper (AVD) to minimize harmful axial, lateral and torsional vibrations. The hardness of this damper will be continuously adjusted using a robust, fast-acting and reliable unique technology. (2) The second is a real-time system to monitor drillstring vibration, and related parameters. This monitor adjusts the damper according to local conditions. In some configurations, it may also send diagnostic information to the surface via real-time telemetry. The AVD is implemented in a configuration using magnetorheological (MR) fluid. By applying a current to the magnetic coils in the damper, the viscosity of the fluid can be changed rapidly, thereby altering the damping coefficient in response to the measured motion of the tool. Phase I of this program entailed modeling and design of the necessary subsystems and design, manufacture and test of a full laboratory prototype. Phase I of the project was completed by the revised end date of May 31, 2004. The objectives of this phase were met, and all prerequisites for Phase II have been completed. The month of June, 2004 was primarily occupied with the writing of the Phase I Final Report, the sole deliverable of Phase I, which will be submitted in the next quarter. Redesign of the laboratory prototype and design of the downhole (Phase II) prototype was


    Directory of Open Access Journals (Sweden)

    E. A. Danilova


    Full Text Available The article gives an approach to a solution of the problem of improvement the avionic equipment vibration resistance. It is shown that the use of the tests, which are provided by the state standards do not insure the required level of the failures caused by mechanical damages. Due to the fact that the tests are carried out restrictedly they do not completely reveal the main resonant phenomena, which define the structure vibrational strength. It is shown that the main challenges of the improvement are to increase the adequacy of test and real modes of vibration, to increase the accuracy of reproduction of the test modes on shake tables and also to increase the reliability of measuring information about the modes of vibration and dynamic responses of an object of researches and to increase the information capacity of the vibrational tests. To ensure the equivalence of the test modes to the modes of maintenance the modes of tests are provided, they are not created by in-phase submission of a test signal in points of fixing the printed circuit boards. It is shown that with the help of control over the amplitudes and phases of affecting signals on resonance frequencies the displacement of maxima deflection in the area of the printed circuit board is possible and, thereby, it is enable to increase the reliability. The received results of mathematical simulation and their correlation with the results of full-scale tests specified on the limitation of vibration tests by means of standard techniques. The conclusion about the necessity of full-scale tests modifications is drawn.

  14. Vibrational optical activity principles and applications

    CERN Document Server

    Nafie, Laurence A


    This unique book stands as the only comprehensive introduction to vibrational optical activity (VOA) and is the first single book that serves as a complete reference for this relatively new, but increasingly important area of molecular spectroscopy. Key features:A single-source reference on this topic that introduces, describes the background and foundation of this area of spectroscopy.Serves as a guide on how to use it to carry out applications with relevant problem solving.Depth and breadth of the subject is presented in a logical, complete and progressive fashion. A

  15. The influence of resin flexural modulus on the magnitude of ceramic strengthening.

    LENUS (Irish Health Repository)

    Fleming, Garry J P


    The aim was to determine the magnitude of ceramic resin-strengthening with resin-based materials with varying flexural moduli using a regression technique to assess the theoretical strengthening at a \\'zero\\' resin-coating thickness. The hypothesis tested was that experimentally, increasing resin flexural modulus results in increased resin-strengthening observed at a theoretical \\'zero\\' resin-coating thickness.

  16. Stroboscopic shearography for vibration analysis (United States)

    Steinchen, Wolfgang; Kupfer, Gerhard; Maeckel, Peter; Voessing, Frank


    Digital Shearography, a laser interferometric technique in conjunction with the digital image processing, has the potential for vibration analysis due to its simple optical system and insensitivity against small rigid body motions. This paper will focus on its recent developments for vibration analysis and for nondestructive testing (NDT) by dynamic (harmonical) excitation. With the introduction of real time observation using automatically refreshing reference frame, both small and large rigid body motions are greatly suppressed. The development of a smaller and more mobile measuring device in conjunction with a user guided comfortable program Shearwin enables the digital shearography to be applied easily as an industrial online testing tool.

  17. Vibrational Collapse of Hexapod Packings (United States)

    Zhao, Yuchen; Ding, Jingqiu; Barés, Jonathan; Zheng, Hu; Dierichs, Karola; Menges, Achim; Behringer, Robert


    Columns made of convex noncohesive grains like sand collapse after being released from a confining container. However, structures built from non-convex grains can be stable without external support. In the current experiments, we investigate the effect of vibration on destroying such columns. The change of column height during vertical vibration, can be well characterized by stretched exponential relaxation when the column is short, which is in agreement with previous work, while a faster collapse happens when the column is tall. We investigate the collapse after the fast process including its dependence on column geometry, and on interparticle and basal friction.

  18. Innovative Techniques Simplify Vibration Analysis (United States)


    In the early years of development, Marshall Space Flight Center engineers encountered challenges related to components in the space shuttle main engine. To assess the problems, they evaluated the effects of vibration and oscillation. To enhance the method of vibration signal analysis, Marshall awarded Small Business Innovation Research (SBIR) contracts to AI Signal Research, Inc. (ASRI), in Huntsville, Alabama. ASRI developed a software package called PC-SIGNAL that NASA now employs on a daily basis, and in 2009, the PKP-Module won Marshall s Software of the Year award. The technology is also used in many industries: aircraft and helicopter, rocket engine manufacturing, transportation, and nuclear power."

  19. Combined Euler column vibration isolation and energy harvesting (United States)

    Davis, R. B.; McDowell, M. D.


    A new device that combines vibration isolation and energy harvesting is modeled, simulated, and tested. The vibration isolating portion of the device uses post-buckled beams as its spring elements. Piezoelectric film is applied to the beams to harvest energy from their dynamic flexure. The entire device operates passively on applied base excitation and requires no external power or control system. The structural system is modeled using the elastica, and the structural response is applied as forcing on the electric circuit equation to predict the output voltage and the corresponding harvested power. The vibration isolation and energy harvesting performance is simulated across a large parameter space and the modeling approach is validated with experimental results. Experimental transmissibilities of 2% and harvested power levels of 0.36 μW are simultaneously demonstrated. Both theoretical and experimental data suggest that there is not necessarily a trade-off between vibration isolation and harvested power. That is, within the practical operational range of the device, improved vibration isolation will be accompanied by an increase in the harvested power as the forcing frequency is increased.

  20. Gender differences in illhealth in Finland: patterns, magnitude and change. (United States)

    Lahelma, E; Martikainen, P; Rahkonen, O; Silventoinen, K


    The common wisdom about gender differences in illhealth has been encapsulated in the phrase "women are sicker, but men die quicker". Recently this wisdom has been increasingly questioned. The purpose of this study is first to analyse the patterns and magnitude of gender differences across various indicators of illhealth; second to examine changes over time in these differences and third to assess whether sociodemographic and socioeconomic, family status and social network determinants have any bearing on the differences. The data derive from nationally representative 1986 and 1994 Surveys on Living Conditions in Finland. Women showed poorer health for five out of eight indicators analysed; that is somatic symptoms, mental symptoms, disability among those 50 years or older, long-standing illness and limiting long-standing illness were more prevalent among women than men. Male excess was found for perceived health below good and extremely limiting long-standing illness among those 50 years or older. However, the male excess was statistically significant only for poor perceived health among those 50 years or older. Adjusting for a number of suggested determinants of health had a negligible effect on gender differences. Further analyses showed that gender differences in illhealth remained largely stable over the eight year study period which saw a steep increase of unemployment for both genders. Only in the case of mental and somatic symptoms have gender differences declined, with a simultaneous increase in the prevalence of such symptoms. Otherwise gender differences in illhealth turned out to be resistant to the deep labour market crisis over this relatively short period of time. Although women had poorer health than men for a number of health indicators, we also find gender equality and even male excess for some indicators. Furthermore, the results suggest that a male excess in illhealth is likely to be found with more severe domains of illhealth among elderly

  1. Intensification of flotation treatment by exposure to vibration. (United States)

    Ivanov, M V; Ksenofontov, B S


    In this paper, an intensification of wastewater flotation treatment by exposure to vibration is studied. Exposure to vibration results in the decrease of air bubble size, increase of air flow through the aerator and more even dispersion of air bubbles in water. This intensifies the aeration process, thus significantly improving the treatment efficiency. A multistage model of flotation kinetics has been applied in order to take into consideration the effects of vibration. The model gives a thorough explanation of the flotation process with consideration of 'air bubble - contaminant particle' aggregate formation. A large series of experiments was conducted with paint and varnish industry wastewaters. It is shown that vibroflotation results in an increase of treatment efficiency by up to three times. A comparison of the experimental data with the results of mathematical modeling is presented, showing a good correlation of theoretical and experimental results.

  2. Vibrational relaxation of matrix-isolated CH/sub 3/F and HCl

    Energy Technology Data Exchange (ETDEWEB)

    Young, L.


    Kinetic and spectroscopic studies have been performed on CH/sub 3/F and HCl as a function of host matrix and temperature. Temporally and spectrally resolved infrared fluorescence was used to monitor the populations of both the initially excited state and the lower lying levels which participate in the relaxation process. For CH/sub 3/F, relaxation from any of the levels near 3.5, i.e. the CH stretching fundamentals or bend overtones, occurs via rapid (< 5 ns) V ..-->.. V transfer to 3/ with subsequent relaxation of the 3/ (CF stretch) manifold. Lifetimes of 3/ and 3/ were determined through overtone, = 2, and fundamental fluorescence. These lifetimes show a dramatic dependence on host lattice, an increase of two orders of magnitude in going from Xe and Ar matrices. Lifetimes depend only weakly on temperature. The relaxation of 3/ and 3/ is consistent with a model in which production of a highly rotationally excited guest via collisions with the repulsive wall of the host is the rate limiting step. For HCl, lifetimes of v = 1,2,3 have been determined. In all hosts, the relaxation is non-radiative. For a given vibrational state, v, the relaxation rate increases in the series k(Ar) < k(Kr) < k(Xe). The dependence of the relaxation rate; on v is superlinear in all matrices, the deviation from linearity increasng in the order Ar < Kr < Xe. The relaxation rates become more strongly temperature dependent with increasing vibrational excitation. The results are consistent with a mechanism in which complex formation introduces the anisotropy necessary to induce a near resonant V ..-->.. R transition in the rate limiting step.

  3. The 1946 magnitude 6.1 earthquake in the Valais: site-effects as contributor to the damage

    Energy Technology Data Exchange (ETDEWEB)

    Fritsche, S.; Faeh, D.


    On January 25th, 1946 earthquake in the central Valais region in southwest Switzerland was the strongest for the last 150 years. It reached an epicentral intensity I{sub o} of VIII in the area of Sierre. The Swiss Earthquake Catalogue (ECOS 2002) assigns a moment magnitude of M{sub w} = 6.1 to the event. Assessment of recordings from European stations resulted in a moment magnitude of 5.8 (Bernardi et al., 2005). The earthquake caused moderate to high damage within a circle of about a 25 kilometer radius. Slight damage occurred up to a distance of 200 kilometers from the epicenter. The goal of this study was to reconstruct the damage field and consider its possible site-effects. We used an approach combining historical research with seismo-/geological investigation including a large number of experiments measuring the fundamental frequency of resonance and the shear-wave velocities of the sedimentary layers, using the characteristics of ambient vibration. This kind of research is relevant, since a huge alpine valley characterizes the Valais region, showing ground conditions that make site-effects likely for earthquakes. While we searched for damage in an unlimited area, our investigation of site-effects was limited to the Rhone valley and to Sion and Sierre in the central Valais region in particular. Since a contemporary damage assessment has survived in fragments only, the results of our historical investigation are incomplete. Nevertheless, it was possible to describe the losses within the epicentral region adequately enough to discuss possible site-effects. Our results show that Valaisan districts with a high percentage of settlement on the lacustrine and fluviatile deposits of the Rhone valley show higher losses than other districts. The cities of Sierre and Sion were investigated in more detail. Sion is located on compacted sediments with relatively high shear-wave velocities. The city suffered only moderate damage, rather regularly distributed. In Sierre, on

  4. Severity of depression and magnitude of productivity loss. (United States)

    Beck, Arne; Crain, A Lauren; Solberg, Leif I; Unützer, Jürgen; Glasgow, Russell E; Maciosek, Michael V; Whitebird, Robin


    Depression is associated with lowered work functioning, including absences, impaired productivity, and decreased job retention. Few studies have examined depression symptoms across a continuum of severity in relationship to the magnitude of work impairment in a large and heterogeneous patient population, however. We assessed the relationship between depression symptom severity and productivity loss among patients initiating treatment for depression. Data were obtained from patients participating in the DIAMOND (Depression Improvement Across Minnesota: Offering a New Direction) initiative, a statewide quality improvement collaborative to provide enhanced depression care. Patients newly started on antidepressants were surveyed with the Patient Health Questionnaire 9-item screen (PHQ-9), a measure of depression symptom severity; the Work Productivity and Activity Impairment (WPAI) questionnaire, a measure of loss in productivity; and items on health status and demographics. We analyzed data from the 771 patients who reported being currently employed. General linear models adjusting for demographics and health status showed a significant linear, monotonic relationship between depression symptom severity and productivity loss: with every 1-point increase in PHQ-9 score, patients experienced an additional mean productivity loss of 1.65% (P productivity (P productivity. Employers may find it beneficial to invest in effective treatments for depressed employees across the continuum of depression severity.

  5. Active vibration control for underwater signature reduction of a navy ship

    NARCIS (Netherlands)

    Basten, T.G.H.; Berkhoff, Arthur P.; Vermeulen, Ruud


    Dutch navy ships are designed and built to have a low underwater signature. For low frequencies however, tonal vibrations of a gearbox can occur, which might lead to increased acoustic signatures. These vibrations are hard to reduce by passive means. To investigate the possibilities of active

  6. Vibration survey of topsides piping on a producing FPSO in the Gulf of Guinea

    NARCIS (Netherlands)

    Ochonogor, C.; Madawaki, I.; Anaturk, A.; Eijk, A.; Slis, E.J.P.; Schoonewille, H.


    Visible mechanical vibrations were noticed on two topsides piping systems on a producing FPSO, in the Gulf of Guinea following increased production in 2008 and 2009. A field survey was undertaken on the piping of the FPSO to investigate the actual pulsation and vibration levels followed by a

  7. Evaluation of Breaking Performance in Vibration-Assisted Electrostatic Surface Induction Actuator

    DEFF Research Database (Denmark)

    Nemoto, Takeru; Zsurzsan, Tiberiu-Gabriel; Yamamoto, Akio


    force can be changed by turning on and off the vibrator. The friction change can be utilized for high-performance slider motion control; for example, friction can be increased by switching off the vibrator when the slider needs to stop. In this paper, we evaluated how fast the slider can stop in several...

  8. Energetics, structures, vibrational frequencies, vibrational absorption, vibrational circular dichroism and Raman intensities of Leu-enkephalin

    DEFF Research Database (Denmark)

    Jalkanen, Karl J.


    Here we present several low energy conformers of Leu-enkephalin (LeuE) calculated with the density functional theory using the Becke 3LYP hybrid functional and the 6-31G* basis set. The structures, conformational energies, vibrational frequencies, vibrational absorption (VA) intensities......, vibrational circular dichroism (VCD) intensities and Raman scattering intensities are reported for the conformers of LeuE which are expected to be populated at room temperature. The species of LeuE-present in non-polar solvents is the neutral non-ionic species with the NH2 and CO2H groups, in contrast...... to the zwitterionic neutral species with the NH3+ and CO2- groups which predominates in aqueous solution and in the crystal. All of our attempts to find the zwitterionic species in the isolated state failed, with the result that a hydrogen atom from the positively charged N-terminus ammonium group transferred either...

  9. Reduction of personnel vibration hazards in underground coal mines

    Energy Technology Data Exchange (ETDEWEB)

    Oh, X.; Middlin, A. (Vipac Engineers and Scientists Ltd. (Australia))


    Whole-Body Vibration (WBV) due to the 'rough ride' in vehicles is a major source of back and neck injury in underground coal mines. Hand-Arm Vibration (HAV) from hand held equipment can also cause long term health damage. Surveys in three collieries in NSW have been conducted to measure the vibration levels to which miners are being exposed and to assess them according to the two relevant Australian Standards namely AS2670 and AS2763. WBV results indicated that shock loadings must be the source of back and neck injuries that are occurring due to 'rough ride'. Existing off-the-shelf seat suspensions were demonstrated to be inadequate for providing effective shock isolation, due to them being prone to bottoming out under rough conditions, and due their scissor action mechanism becoming rapidly jammed by dirt to the point where they become rigid. Commercially available seats were evaluated and tested on a hydraulic shaker, but none proved able to provide the required vibration isolation. A prototype seat suspension was developed by Vipac. This suspension was shaker tested and trialled in low loaders at two collieries. The seat proved capable of cushioning shock loads without bottoming out, as well as attenuating the dominant vibration at 2.5 Hz and higher. This suspension with encapsulated mechanism could be readily adapted to suit a wide range of underground vehicles. The HAV survey results identified the Wombat roof-bolter as the major item requiring vibration level reductions. Extensive investigations resulted in the design of a prototype vibration isolated handle. During field tests this prototype handle reduced the HAV level such that the Exposure Time (10th percentile) was increased from 7 to 11.5 years. Guidelines are presented for additional developments which would further improve this performance and result in a handle design suitable for retrofitting to existing roof bolters.

  10. Selective interference of grasp and space representations with number magnitude and serial order processing. (United States)

    van Dijck, Jean-Philippe; Fias, Wim; Andres, Michael


    It has been proposed that the metrics of space, time and other magnitudes relevant for action are coupled through a generalized magnitude system that also contribute to number representation. Several studies capitalized on stimulus-response compatibility effects to show that numbers map onto left-right representations and grasp representations as a function of their magnitude. However, the tasks typically used do not allow disentangling magnitude from serial order processing. Here, we devised a working memory (WM) task where participants had to remember random sequences of numbers and perform a precision/whole-hand grip (Experiment 1) or a uni-manual left/right button press (Experiment 2) in response to numbers presented during the retention interval. This task does allow differentiating the interference of number magnitude and serial order with each set of responses. Experiment 1 showed that precision grips were initiated faster than whole-hand grips in response to small numbers, irrespective of their serial position in WM. In contrast, Experiment 2 revealed an advantage of right over left button presses as serial position increased, without any influence of number magnitude. These findings demonstrate that grasping and left-right movements overlap with distinct dimensions of number processing. These findings are discussed in the light of different theories explaining the interactions between numbers, space and action.

  11. Prevalent hallucinations during medical internships: phantom vibration and ringing syndromes.

    Directory of Open Access Journals (Sweden)

    Yu-Hsuan Lin

    Full Text Available BACKGROUND: Phantom vibration syndrome is a type of hallucination reported among mobile phone users in the general population. Another similar perception, phantom ringing syndrome, has not been previously described in the medical literature. METHODS: A prospective longitudinal study of 74 medical interns (46 males, 28 females; mean age, 24.8±1.2 years was conducted using repeated investigations of the prevalence and associated factors of phantom vibration and ringing. The accompanying symptoms of anxiety and depression were evaluated with the Beck Anxiety and Depression Inventories before the internship began, and again at the third, sixth, and twelfth internship months, and two weeks after the internship ended. RESULTS: The baseline prevalence of phantom vibration was 78.1%, which increased to 95.9% and 93.2% in the third and sixth internship months. The prevalence returned to 80.8% at the twelfth month and decreased to 50.0% 2 weeks after the internship ended. The baseline prevalence of phantom ringing was 27.4%, which increased to 84.9%, 87.7%, and 86.3% in the third, sixth, and twelfth internship months, respectively. This returned to 54.2% two weeks after the internship ended. The anxiety and depression scores also increased during the internship, and returned to baseline two weeks after the internship. There was no significant correlation between phantom vibration/ringing and symptoms of anxiety or depression. The incidence of both phantom vibration and ringing syndromes significantly increased during the internship, and subsequent recovery. CONCLUSION: This study suggests that phantom vibration and ringing might be entities that are independent of anxiety or depression during evaluation of stress-associated experiences during medical internships.


    National Aeronautics and Space Administration — This data set presents the photometric magnitude measurements of 1P/Halley submitted to the International Halley Watch (IHW) Photometry and Polarimetry Network...


    National Aeronautics and Space Administration — A database of asteroid magnitude-phase relations compiled at the Institute of Astronomy of Kharkiv Kharazin University by Shevchenko et al., including observations...

  14. Se busca una magnitud para la unidad mol

    Directory of Open Access Journals (Sweden)

    Julio José Andrade-Gamboa


    Full Text Available En este trabajo se analiza la frecuente discusión acerca de cuál es la magnitud de la que el mol es su unidad. Se cuestiona la definición de cantidad de sustancia dada por la IUPAC como magnitud fundamental del SI. Se presenta como ciertamente inútil la búsqueda de una magnitud que mida una porción de materia en unidades mol y que no haga referencia a la cantidad de entidades elementales que la componen. Se considera aceptable denominar Cantidad Química a la magnitud que expresa el número de entidades elementales constitutivas de cualquier sistema material, siendo el mol = 6,02214 × 1023 entidades, su unidad. Se propone que el mol sea incluido como una unidad suplementaria (no fundamental del SI.

  15. Se busca una magnitud para la unidad mol

    Directory of Open Access Journals (Sweden)

    Andrade Gamboa, J.J.


    Full Text Available En este trabajo se analiza la frecuente discusión acerca de cuál es la magnitud de la que el mol es su unidad. Se cuestiona la definición de cantidad de sustancia dada por la IUPAC como magnitud fundamental del SI. Se presenta como ciertamente inútil la búsqueda de una magnitud que mida una porción de materia en unidades mol y que no haga referencia a la cantidad de entidades elementales que la componen. Se considera aceptable denominar Cantidad Química a la magnitud que expresa el número de entidades elementales constitutivas de cualquier sistema material, siendo el mol = 6,02214 × 1023 entidades, su unidad. Se propone que el mol sea incluido como una unidad suplementaria (no fundamental del SI.

  16. Resonant vibration control of rotating beams

    DEFF Research Database (Denmark)

    Svendsen, Martin Nymann; Krenk, Steen; Høgsberg, Jan Becker


    Rotatingstructures,like e.g.wind turbine blades, may be prone to vibrations associated with particular modes of vibration. It is demonstrated, how this type of vibrations can be reduced by using a collocated sensor–actuator system, governed by a resonant controller. The theory is here demonstrated...... modal connectivity, only very limited modal spill-over is generated. The controller acts by resonance and therefore has only a moderate energy consumption, and successfully reduces modal vibrations at the resonance frequency....

  17. I love my baffling, backward, counterintuitive, overly complicated magnitudes (United States)

    Sirola, Christopher


    All professions have their jargon. But astronomy goes the extra parsec. Here's an example. Vega, one of the brighter stars in the night sky, has an apparent magnitude (i.e., an apparent brightness) of approximately zero. Polaris, the North Star, has an apparent magnitude of about +2. Despite this, Vega appears brighter than Polaris, and not by two, but by a factor of about six times.

  18. Dynamic Response of Airfield Pavement to Large Magnitude Loads. (United States)


    creep speed taxi tests. Heukelom and Klomp (Reference 6) states the Road Research Laboratory concluded that flexible roads behave elastically under...high speed or high frequency dynamic loads would cause inertia effects to influence dynamic pavement response. Heukelom , Klomp, and Foster have...However, Heukelom and Foster (Reference 11) have shown that the modulus measured from sustained vibrations is equal to the modulus associated with

  19. Near-field infrared vibrational dynamics and tip-enhanced decoherence. (United States)

    Xu, Xiaoji G; Raschke, Markus B


    Ultrafast infrared spectroscopy can reveal the dynamics of vibrational excitations in matter. In its conventional far-field implementation, however, it provides only limited insight into nanoscale sample volumes due to insufficient spatial resolution and sensitivity. Here, we combine scattering-scanning near-field optical microscopy (s-SNOM) with femtosecond infrared vibrational spectroscopy to characterize the coherent vibrational dynamics of a nanoscopic ensemble of C-F vibrational oscillators of polytetrafluoroethylene (PTFE). The near-field mode transfer between the induced vibrational molecular coherence and the metallic scanning probe tip gives rise to a tip-mediated radiative IR emission of the vibrational free-induction decay (FID). By increasing the tip–sample coupling, we can enhance the vibrational dephasing of the induced coherent vibrational polarization and associated IR emission, with dephasing times up to T2(NF) is approximately equal to 370 fs in competition against the intrinsic far-field lifetime of T2(FF) is approximately equal to 680 fs as dominated by nonradiative damping. Near-field antenna-coupling thus provides for a new way to modify vibrational decoherence. This approach of ultrafast s-SNOM enables the investigation of spatiotemporal dynamics and correlations with nanometer spatial and femtosecond temporal resolution.

  20. The Effects of Local Vibration on Balance, Power, and Self-Reported Pain After Exercise. (United States)

    Custer, Lisa; Peer, Kimberly S; Miller, Lauren


    Muscle fatigue and acute muscle soreness occur after exercise. Application of a local vibration intervention may reduce the consequences of fatigue and soreness. To examine the effects of a local vibration intervention after a bout of exercise on balance, power, and self-reported pain. Single-blind crossover study. Laboratory. 19 healthy, moderately active subjects. After a 30-min bout of full-body exercise, subjects received either an active or a sham vibration intervention. The active vibration intervention was performed bilaterally over the muscle bellies of the triceps surae, quadriceps, hamstrings, and gluteals. At least 1 wk later, subjects repeated the bout, receiving the other vibration intervention. Static balance, dynamic balance, power, and self-reported pain were measured at baseline, after the vibration intervention, and 24 h postexercise. After the bout of exercise, subjects had reduced static and dynamic balance and increased self-reported pain regardless of vibration intervention. There were no differences between outcome measures between the active and sham vibration conditions. The local vibration intervention did not affect balance, power, or self-reported pain.

  1. A probabilistic neural network for earthquake magnitude prediction. (United States)

    Adeli, Hojjat; Panakkat, Ashif


    A probabilistic neural network (PNN) is presented for predicting the magnitude of the largest earthquake in a pre-defined future time period in a seismic region using eight mathematically computed parameters known as seismicity indicators. The indicators considered are the time elapsed during a particular number (n) of significant seismic events before the month in question, the slope of the Gutenberg-Richter inverse power law curve for the n events, the mean square deviation about the regression line based on the Gutenberg-Richter inverse power law for the n events, the average magnitude of the last n events, the difference between the observed maximum magnitude among the last n events and that expected through the Gutenberg-Richter relationship known as the magnitude deficit, the rate of square root of seismic energy released during the n events, the mean time or period between characteristic events, and the coefficient of variation of the mean time. Prediction accuracies of the model are evaluated using three different statistical measures: the probability of detection, the false alarm ratio, and the true skill score or R score. The PNN model is trained and tested using data for the Southern California region. The model yields good prediction accuracies for earthquakes of magnitude between 4.5 and 6.0. The PNN model presented in this paper complements the recurrent neural network model developed by the authors previously, where good results were reported for predicting earthquakes with magnitude greater than 6.0.

  2. Low-energy isovector quadrupole vibrations

    Energy Technology Data Exchange (ETDEWEB)

    Faessler, A.; Nojarov, R.


    The low-lying isovector quadrupole vibrations are described by an extension of the vibrational model allowing independent proton and neutron vibrations coupled by the symmetry energy. The recently detected low-lying isovector states in nearly spherical nuclei with N=84 are described well concerning their energies and E2/M1 mixing ratios. (orig.).

  3. Ground Vibration Measurements at LHC Point 4

    Energy Technology Data Exchange (ETDEWEB)

    Bertsche, Kirk; /SLAC; Gaddi, Andrea; /CERN


    Ground vibration was measured at Large Hadron Collider (LHC) Point 4 during the winter shutdown in February 2012. This report contains the results, including power and coherence spectra. We plan to collect and analyze vibration data from representative collider halls to inform specifications for future linear colliders, such as ILC and CLIC. We are especially interested in vibration correlations between final focus lens locations.

  4. Rotor Vibration Reduction via Active Hybrid Bearings

    DEFF Research Database (Denmark)

    Nicoletti, Rodrigo; Santos, Ilmar


    The use of fluid power to reduce and control rotor vibration in rotating machines is investigated. An active hybrid bearing is studied, whose main objective is to reduce wear and vibration between rotating and stationary machinery parts. By injecting pressurised oil into the oil film, through...... with experiment, and simulations show the feasibility of controlling shaft vibration through this active device....

  5. 33 CFR 159.103 - Vibration test. (United States)


    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Vibration test. 159.103 Section...) POLLUTION MARINE SANITATION DEVICES Design, Construction, and Testing § 159.103 Vibration test. The device... subjected to a sinusoidal vibration for a period of 12 hours, 4 hours in each of the x, y, and z planes, at...

  6. 14 CFR 27.907 - Engine vibration. (United States)


    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Engine vibration. 27.907 Section 27.907... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant General § 27.907 Engine vibration. (a) Each engine must be installed to prevent the harmful vibration of any part of the engine or rotorcraft. (b) The addition of the...

  7. 14 CFR 29.251 - Vibration. (United States)


    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Vibration. 29.251 Section 29.251... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Flight Miscellaneous Flight Requirements § 29.251 Vibration. Each part of the rotorcraft must be free from excessive vibration under each appropriate speed and power...

  8. 14 CFR 29.907 - Engine vibration. (United States)


    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Engine vibration. 29.907 Section 29.907... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant General § 29.907 Engine vibration. (a) Each engine must be installed to prevent the harmful vibration of any part of the engine or rotorcraft. (b) The...

  9. 14 CFR 27.251 - Vibration. (United States)


    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Vibration. 27.251 Section 27.251... STANDARDS: NORMAL CATEGORY ROTORCRAFT Flight Miscellaneous Flight Requirements § 27.251 Vibration. Each part of the rotorcraft must be free from excessive vibration under each appropriate speed and power...

  10. 49 CFR 178.608 - Vibration standard. (United States)


    ... 49 Transportation 2 2010-10-01 2010-10-01 false Vibration standard. 178.608 Section 178.608... Testing of Non-bulk Packagings and Packages § 178.608 Vibration standard. (a) Each packaging must be capable of withstanding, without rupture or leakage, the vibration test procedure outlined in this section...

  11. 49 CFR 178.985 - Vibration test. (United States)


    ... 49 Transportation 2 2010-10-01 2010-10-01 false Vibration test. 178.985 Section 178.985... Testing of Large Packagings § 178.985 Vibration test. (a) General. All rigid Large Packaging and flexible Large Packaging design types must be capable of withstanding the vibration test. (b) Test method. (1) A...

  12. Vibration measurements on timber frame floors

    NARCIS (Netherlands)

    Kuilen, J.W.G. van de; Oosterhout, G.P.C. van; Donkervoort, R.


    In the design of lightweight floors vibrational aspects become more and more important. With the foreseen introduction of Eurocode 5 the vibration of timber floors becomes a part of the design for serviceability. Design rules for the vibrational behaviour are given in Eurocode 5. The first rule is

  13. Vibrations in a moving flexible robot arm (United States)

    Wang, P. K. C.; Wei, Jin-Duo


    The vibration in a flexible robot arm modeled by a moving slender prismatic beam is considered. It is found that the extending and contracting motions have destabilizing and stabilizing effects on the vibratory motions, respectively. The vibration analysis is based on a Galerkin approximation with time-dependent basis functions. Typical numerical results are presented to illustrate the qualitative features of vibrations.

  14. Vibrationally coupled electron transport through single-molecule junctions

    Energy Technology Data Exchange (ETDEWEB)

    Haertle, Rainer


    Single-molecule junctions are among the smallest electric circuits. They consist of a molecule that is bound to a left and a right electrode. With such a molecular nanocontact, the flow of electrical currents through a single molecule can be studied and controlled. Experiments on single-molecule junctions show that a single molecule carries electrical currents that can even be in the microampere regime. Thereby, a number of transport phenomena have been observed, such as, for example, diode- or transistor-like behavior, negative differential resistance and conductance switching. An objective of this field, which is commonly referred to as molecular electronics, is to relate these transport phenomena to the properties of the molecule in the contact. To this end, theoretical model calculations are employed, which facilitate an understanding of the underlying transport processes and mechanisms. Thereby, one has to take into account that molecules are flexible structures, which respond to a change of their charge state by a profound reorganization of their geometrical structure or may even dissociate. It is thus important to understand the interrelation between the vibrational degrees of freedom of a singlemolecule junction and the electrical current flowing through the contact. In this thesis, we investigate vibrational effects in electron transport through singlemolecule junctions. For these studies, we calculate and analyze transport characteristics of both generic and first-principles based model systems of a molecular contact. To this end, we employ a master equation and a nonequilibrium Green's function approach. Both methods are suitable to describe this nonequilibrium transport problem and treat the interactions of the tunneling electrons on the molecular bridge non-perturbatively. This is particularly important with respect to the vibrational degrees of freedom, which may strongly interact with the tunneling electrons. We show in detail that the resulting

  15. Vibration Theory, Vol. 1A

    DEFF Research Database (Denmark)

    Nielsen, Søren R. K.

    The present collection of solved problems has been published as a supplement to the textbook Svingningsteori. Bind 1. Lineær svingningsteori,Aalborg tekniske Universitetsforlag, 1991, whicj is used in the introductory course on linear vibration theory that is being given on th e8th semester...

  16. Vibration Damping Circuit Card Assembly (United States)

    Hunt, Ronald Allen (Inventor)


    A vibration damping circuit card assembly includes a populated circuit card having a mass M. A closed metal container is coupled to a surface of the populated circuit card at approximately a geometric center of the populated circuit card. Tungsten balls fill approximately 90% of the metal container with a collective mass of the tungsten balls being approximately (0.07) M.

  17. Wideband Piezomagnetoelastic Vibration Energy Harvesting

    DEFF Research Database (Denmark)

    Lei, Anders; Thomsen, Erik Vilain


    This work presents a small-scale wideband piezomagnetoelastic vibration energy harvester (VEH) aimed for operation at frequencies of a few hundred Hz. The VEH consists of a tape-casted PZT cantilever with thin sheets of iron foil attached on each side of the free tip. The wideband operation...

  18. Ultrafast vibrations of gold nanorings

    DEFF Research Database (Denmark)

    Kelf, T; Tanaka, Y; Matsuda, O


    We investigate the vibrational modes of gold nanorings on a silica substrate with an ultrafast optical technique. By comparison with numerical simulations, we identify several resonances in the gigahertz range associated with axially symmetric deformations of the nanoring and substrate. We...

  19. Effect of shelf aging on vibration transmissibility of anti-vibration gloves. (United States)

    Shibata, Nobuyuki


    Anti-vibration gloves have been used in real workplaces to reduce vibration transmitted through hand-held power tools to the hand. Generally materials used for vibration attenuation in gloves are resilient materials composed of certain synthetic and/or composite polymers. The mechanical characteristics of the resilient materials used in anti-vibration gloves are prone to be influenced by environmental conditions such as temperature, humidity, and photo-irradiation, which cause material degradation and aging. This study focused on the influence of shelf aging on the vibration attenuation performance of air-packaged anti-vibration gloves following 2 years of shelf aging. Effects of shelf aging on the vibration attenuation performance of anti-vibration gloves were examined according to the Japan industrial standard JIS T8114 test protocol. The findings indicate that shelf aging induces the reduction of vibration attenuation performance in air-packaged anti-vibration gloves.

  20. Attention bias modification training under working memory load increases the magnitude of change in attentional bias

    NARCIS (Netherlands)

    Clarke, P.J.F.; Branson, S.; Chen, N.T.M.; Van Bockstaele, B.; Salemink, E.; MacLeod, C.; Notebaert, L.


    BACKGROUND AND OBJECTIVES: Attention bias modification (ABM) procedures have shown promise as a therapeutic intervention, however current ABM procedures have proven inconsistent in their ability to reliably achieve the requisite change in attentional bias needed to produce emotional benefits. This

  1. Attention bias modification training under working memory load increases the magnitude of change in attentional bias. (United States)

    Clarke, Patrick J F; Branson, Sonya; Chen, Nigel T M; Van Bockstaele, Bram; Salemink, Elske; MacLeod, Colin; Notebaert, Lies


    Attention bias modification (ABM) procedures have shown promise as a therapeutic intervention, however current ABM procedures have proven inconsistent in their ability to reliably achieve the requisite change in attentional bias needed to produce emotional benefits. This highlights the need to better understand the precise task conditions that facilitate the intended change in attention bias in order to realise the therapeutic potential of ABM procedures. Based on the observation that change in attentional bias occurs largely outside conscious awareness, the aim of the current study was to determine if an ABM procedure delivered under conditions likely to preclude explicit awareness of the experimental contingency, via the addition of a working memory load, would contribute to greater change in attentional bias. Bias change was assessed among 122 participants in response to one of four ABM tasks given by the two experimental factors of ABM training procedure delivered either with or without working memory load, and training direction of either attend-negative or avoid-negative. Findings revealed that avoid-negative ABM procedure under working memory load resulted in significantly greater reductions in attentional bias compared to the equivalent no-load condition. The current findings will require replication with clinical samples to determine the utility of the current task for achieving emotional benefits. These present findings are consistent with the position that the addition of a working memory load may facilitate change in attentional bias in response to an ABM training procedure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Analytical calculation of vibrations of electromagnetic origin in electrical machines (United States)

    McCloskey, Alex; Arrasate, Xabier; Hernández, Xabier; Gómez, Iratxo; Almandoz, Gaizka


    Electrical motors are widely used and are often required to satisfy comfort specifications. Thus, vibration response estimations are necessary to reach optimum machine designs. This work presents an improved analytical model to calculate vibration response of an electrical machine. The stator and windings are modelled as a double circular cylindrical shell. As the stator is a laminated structure, orthotropic properties are applied to it. The values of those material properties are calculated according to the characteristics of the motor and the known material properties taken from previous works. Therefore, the model proposed takes into account the axial direction, so that length is considered, and also the contribution of windings, which differs from one machine to another. These aspects make the model valuable for a wide range of electrical motor types. In order to validate the analytical calculation, natural frequencies are calculated and compared to those obtained by Finite Element Method (FEM), giving relative errors below 10% for several circumferential and axial mode order combinations. It is also validated the analytical vibration calculation with acceleration measurements in a real machine. The comparison shows good agreement for the proposed model, being the most important frequency components in the same magnitude order. A simplified two dimensional model is also applied and the results obtained are not so satisfactory.

  3. Dissecting Protein Configurational Entropy into Conformational and Vibrational Contributions. (United States)

    Chong, Song-Ho; Ham, Sihyun


    Quantifying how the rugged nature of the underlying free-energy landscape determines the entropic cost a protein must incur upon folding and ligand binding is a challenging problem. Here, we present a novel computational approach that dissects the protein configurational entropy on the basis of the classification of protein dynamics on the landscape into two separate components: short-term vibrational dynamics related to individual free-energy wells and long-term conformational dynamics associated with transitions between wells. We apply this method to separate the configurational entropy of the protein villin headpiece subdomain into its conformational and vibrational components. We find that the change in configurational entropy upon folding is dominated by the conformational entropy despite the fact that the magnitude of the vibrational entropy is the significantly larger component in each of the folded and unfolded states, which is in accord with the previous empirical estimations. The straightforward applicability of our method to unfolded proteins promises a wide range of applications, including those related to intrinsically disordered proteins.

  4. Energy expenditure and substrate utilization during whole body vibration

    Directory of Open Access Journals (Sweden)

    Ravena Santos Raulino


    Full Text Available INTRODUCTION AND OBJECTIVE: the aim of this study was to investigate whether the addition of vibration during interval training would raise oxygen consumption VO2 to the extent necessary for weight management and to evaluate the influence of the intensity of the vibratory stimulus for prescribing the exercise program in question. METHODS: VO2, measured breath by breath, was evaluated at rest and during the four experimental conditions to determine energy expenditure, metabolic equivalent MET, respiratory exchange ratio RER, % Kcal from fat, and rate of fat oxidation. Eight young sedentary females age 22±1 years, height 163.88± 7.62 cm, body mass 58.35±10.96 kg, and VO2 max 32.75±3.55 mLO2.Kg-1.min-1 performed interval training duration = 13.3 min to the upper and lower limbs both with vibration 35 Hz and 2 mm, 40 Hz and 2 mm, 45 Hz and 2 mm and without vibration. The experimental conditions were randomized and balanced at an interval of 48 hours. RESULTS: the addition of vibration to exercise at 45 Hz and 2 mm resulted in an additional increase of 17.77±12.38% of VO2 compared with exercise without vibration. However, this increase did not change the fat oxidation rate p=0.42 because intensity of exercise 29.1±3.3 %VO2max, 2.7 MET was classified as mild to young subjects. CONCLUSION: despite the influence of vibration on VO2 during exercise, the increase was insufficient to reduce body weight and did not reach the minimum recommendation of exercise prescription for weight management for the studied population.

  5. Development of Absorbed Blasting Vibration Energy Index for the Evaluation of Human Comfort in Multistorey Buildings

    Directory of Open Access Journals (Sweden)

    Qiang Yao


    Full Text Available There have been civil disputes and complaints regarding the negative effects of blasting vibration on buildings around the blasting site. By considering the effect of blasting vibration on a human body as a process of energy transfer and conversion, the human body absorbed blasting vibration energy (ABVE index has been developed for comfort evaluation. Using dynamic monitoring and theoretical analysis, the elevation amplification effect and selective amplification effect on different frequency components of the ABVE have been investigated. The elevation amplification factor and selective amplification coefficients on different frequency components of the ABVE index for a typical 4-storey brick and concrete building have been determined. Based on the results, the magnitude and frequency components of the ABVE index in different parts especially in different storeys for the typical building have been determined. According to the characteristics of human body’s response to vibrations of different frequencies, the frequency-based weighting method of ABVE index has been simplified. By calculating the combined effect of vibrations from all directions, the total human body ABVE and its frequency components at different floors of the building can be determined accurately. This can be used to evaluate the human body comfort against blasting vibration at different floors.

  6. Human annoyance, acceptability and concern as responses to vibration from the construction of Light Rapid Transit lines in residential environments

    Energy Technology Data Exchange (ETDEWEB)

    Wong-McSweeney, D., E-mail: [Acoustics Research Centre, University of Salford, Salford M5 4TW (United Kingdom); Woodcock, J.S.; Peris, E.; Waddington, D.C.; Moorhouse, A.T. [Acoustics Research Centre, University of Salford, Salford M5 4TW (United Kingdom); Redel-Macías, M.D. [Dep. Rural Engineering Campus de Rabanales, University of Córdoba, Córdoba (Spain)


    The aim of this paper is to investigate the use of different self-reported measures for assessing the human response to environmental vibration from the construction of an urban LRT (Light Rapid Transit) system. The human response to environmental stressors such as vibration and noise is often expressed in terms of exposure–response relationships that describe annoyance as a function of the magnitude of the vibration. These relationships are often the basis of noise and vibration policy and the setting of limit values. This paper examines measures other than annoyance by expressing exposure–response relationships for vibration in terms of self-reported concern about property damage and acceptability. The exposure–response relationships for concern about property damage and for acceptability are then compared with those for annoyance. It is shown that concern about property damage occurs at vibration levels well below those where there is any risk of damage. Earlier research indicated that concern for damage is an important moderator of the annoyance induced. Acceptability, on the other hand, might be influenced by both annoyance and concern, as well as by other considerations. It is concluded that exposure–response relationships expressing acceptability as a function of vibration exposure could usefully complement existing relationships for annoyance in future policy decisions regarding environmental vibration. The results presented in this paper are derived from data collected through a socio-vibration survey (N = 321) conducted for the construction of an urban LRT in the United Kingdom. - Highlights: • The human response to construction vibration is assessed in residential environments. • Exposure–response relationships are generated based on survey and semi-empirical vibration estimation. • Annoyance, concern and acceptability are compared as response measures. • Concern and acceptability are viable measures complementing annoyance.

  7. Deformation mechanisms of bent Si nanowires governed by the sign and magnitude of strain

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lihua, E-mail:, E-mail:, E-mail: [Beijing Key Lab of Microstructure and Property of Advanced Material, Institute of Microstructure and Properties of Advanced Materials, Beijing University of Technology, Beijing 100124 (China); Materials Engineering, The University of Queensland, Brisbane, QLD 4072 (Australia); Kong, Deli; Xin, Tianjiao; Shu, Xinyu; Zheng, Kun; Xiao, Lirong; Sha, Xuechao; Lu, Yan; Han, Xiaodong, E-mail:, E-mail:, E-mail: [Beijing Key Lab of Microstructure and Property of Advanced Material, Institute of Microstructure and Properties of Advanced Materials, Beijing University of Technology, Beijing 100124 (China); Zhang, Ze [Department of Materials Science, Zhejiang University, Hangzhou 310008 (China); Zou, Jin, E-mail:, E-mail:, E-mail: [Materials Engineering, The University of Queensland, Brisbane, QLD 4072 (Australia); Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, QLD 4072 (Australia)


    In this study, the deformation mechanisms of bent Si nanowires are investigated at the atomic scale with bending strain up to 12.8%. The sign and magnitude of the applied strain are found to govern their deformation mechanisms, in which the dislocation types (full or partial dislocations) can be affected by the sign (tensile or compressive) and magnitude of the applied strain. In the early stages of bending, plastic deformation is controlled by 60° full dislocations. As the bending increases, Lomer dislocations can be frequently observed. When the strain increases to a significant level, 90° partial dislocations induced from the tensile surfaces of the bent nanowires are observed. This study provides a deeper understanding of the effect of the sign and magnitude of the bending strain on the deformation mechanisms in bent Si nanowires.

  8. Outcome Probability versus Magnitude: When Waiting Benefits One at the Cost of the Other (United States)

    Young, Michael E.; Webb, Tara L.; Rung, Jillian M.; McCoy, Anthony W.


    Using a continuous impulsivity and risk platform (CIRP) that was constructed using a video game engine, choice was assessed under conditions in which waiting produced a continuously increasing probability of an outcome with a continuously decreasing magnitude (Experiment 1) or a continuously increasing magnitude of an outcome with a continuously decreasing probability (Experiment 2). Performance in both experiments reflected a greater desire for a higher probability even though the corresponding wait times produced substantive decreases in overall performance. These tendencies are considered to principally reflect hyperbolic discounting of probability, power discounting of magnitude, and the mathematical consequences of different response rates. Behavior in the CIRP is compared and contrasted with that in the Balloon Analogue Risk Task (BART). PMID:24892657

  9. Outcome probability versus magnitude: when waiting benefits one at the cost of the other.

    Directory of Open Access Journals (Sweden)

    Michael E Young

    Full Text Available Using a continuous impulsivity and risk platform (CIRP that was constructed using a video game engine, choice was assessed under conditions in which waiting produced a continuously increasing probability of an outcome with a continuously decreasing magnitude (Experiment 1 or a continuously increasing magnitude of an outcome with a continuously decreasing probability (Experiment 2. Performance in both experiments reflected a greater desire for a higher probability even though the corresponding wait times produced substantive decreases in overall performance. These tendencies are considered to principally reflect hyperbolic discounting of probability, power discounting of magnitude, and the mathematical consequences of different response rates. Behavior in the CIRP is compared and contrasted with that in the Balloon Analogue Risk Task (BART.

  10. Outcome probability versus magnitude: when waiting benefits one at the cost of the other. (United States)

    Young, Michael E; Webb, Tara L; Rung, Jillian M; McCoy, Anthony W


    Using a continuous impulsivity and risk platform (CIRP) that was constructed using a video game engine, choice was assessed under conditions in which waiting produced a continuously increasing probability of an outcome with a continuously decreasing magnitude (Experiment 1) or a continuously increasing magnitude of an outcome with a continuously decreasing probability (Experiment 2). Performance in both experiments reflected a greater desire for a higher probability even though the corresponding wait times produced substantive decreases in overall performance. These tendencies are considered to principally reflect hyperbolic discounting of probability, power discounting of magnitude, and the mathematical consequences of different response rates. Behavior in the CIRP is compared and contrasted with that in the Balloon Analogue Risk Task (BART).

  11. Exploring Perception of Vibrations from Rail: An Interview Study. (United States)

    Maclachlan, Laura; Waye, Kerstin Persson; Pedersen, Eja


    Rail transport is an environmentally responsible approach and traffic is expected to increase in the coming decades. Little is known about the implications for quality of life of populations living close to railways. This study explores the way in which vibrations from rail are perceived and described by these populations. The study took place in the Västra Götaland and Värmland regions of Sweden. A qualitative study approach was undertaken using semi-structured interviews within a framework of predetermined questions in participants' homes. A 26.3% response rate was achieved and 17 participants were interviewed. The experience of vibrations was described in tangible terms through different senses. Important emerging themes included habituation to and acceptance of vibrations, worry about property damage, worry about family members and general safety. Participants did not reflect on health effects, however, chronic exposure to vibrations through multimodal senses in individual living environments may reduce the possibility for restoration in the home. Lack of empowerment to reduce exposure to vibrations was important. This may alter individual coping strategies, as taking actions to avoid the stressor is not possible. The adoption of other strategies, such as avoidance, may negatively affect an individual's ability to cope with the stressor and their health.

  12. Vibrational Förster transfer to hydrated protons. (United States)

    Timmer, R L A; Tielrooij, K J; Bakker, H J


    We have studied the influence of excess protons on the vibrational energy relaxation of the O-H and O-D stretching modes in water using femtosecond pump-probe spectroscopy. Without excess protons, we observe exponential decays with time constants of 1.7 and 4.3 ps for the bulk and anion bound O-D stretch vibrations. The addition of protons introduces a new energy relaxation pathway, which leads to an increasingly nonexponential decay of the O-D stretch vibration. This new pathway is attributed to a distance-dependent long range dipole-dipole (Forster) interaction between the O-D stretching vibration and modes associated with dissolved protons. The high efficiency of hydrated protons as receptors of vibrational energy follows from the very large absorption cross section and broad bandwidth of protons in water. For a proton concentration of 1M we find that Forster energy transfer occurs over an average distance of 4.5 A, which corresponds to a separation of about two water molecules.

  13. Adaptive control of an active seat for occupant vibration reduction (United States)

    Gan, Zengkang; Hillis, Andrew J.; Darling, Jocelyn


    The harmful effects on human performance and health caused by unwanted vibration from vehicle seats are of increasing concern. This paper presents an active seat system to reduce the vibration level transmitted to the seat pan and the occupants' body under low frequency periodic excitation. Firstly, the detail of the mechanical structure is given and the active seat dynamics without external load are characterized by vibration transmissibility and frequency responses under different excitation forces. Owing the nonlinear and time-varying behaviour of the proposed system, a Filtered-x least-mean-square (FXLMS) adaptive control algorithm with on-line Fast-block LMS (FBLMS) identification process is employed to manage the system operation for high vibration cancellation performance. The effectiveness of the active seat system is assessed through real-time experimental tests using different excitation profiles. The system identification results show that an accurate estimation of the secondary path is achieved by using the FBLMS on-line technique. Substantial reduction is found for cancelling periodic vibration containing single and multiple frequencies. Additionally, the robustness and stability of the control system are validated through transient switching frequency tests.

  14. Damping and energy dissipation in soft tissue vibrations during running. (United States)

    Khassetarash, Arash; Hassannejad, Reza; Enders, Hendrik; Ettefagh, Mir Mohammad


    It has been well accepted that the vibrations of soft tissue cannot be simulated by a single sinusoidal function. In fact, these vibrations are a combination of several vibration modes. In this study, these modes are extracted applying a recently developed method namely, partly ensemble empirical mode decomposition (PEEMD). Then, a methodology for estimating the damping properties and energy dissipation caused by damping for each mode is used. Applying this methodology on simulated signals demonstrates high accuracy. This methodology is applied to the acceleration signals of the gastrocnemius muscle during sprinting and the differences between the damping properties of different vibration modes were identified. The results were 1) the damping property of high-frequency mode was higher than that for low-frequency modes. 2) All identified modes were in under damped condition, therefore, the vibrations had an oscillatory nature. 3) The damping ratios of lower modes are about 100% increased compared to higher modes. 4) The energy dissipation occurred in lower modes were much more than that for higher mode; According to the power spectrum of the ground reaction force (GRF), which is the input force into the body, the recent finding supports the muscle tuning paradigm. It is suggested that the damping properties and energy dissipation can be used to distinguish between different running conditions (surface, fatigue, etc.). Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Ambient vibration characterization and monitoring of a rock slope close to collapse (United States)

    Burjánek, Jan; Gischig, Valentin; Moore, Jeffrey R.; Fäh, Donat


    We analyse the ambient vibration response of Alpe di Roscioro (AdR), an incipient rock slope failure located above the village Preonzo in southern Switzerland. Following a major failure in May 2012 (volume ˜210 000 m3), the remaining unstable rock mass (˜140 000 m3) remains highly fractured and disrupted, and has been the subject of intensive monitoring. We deployed a small-aperture seismic array at the site shortly after the 2012 failure. The measured seismic response exhibited strong directional amplification (factors up to 35 at 3.5 Hz), higher than previously recorded on rock slopes. The dominant direction of ground motion was found to be parallel to the predominant direction of deformation and perpendicular to open fractures, reflecting subsurface structure of the slope. We then equipped the site with two semi-permanent seismic stations to monitor the seismic response with the goal of identifying changes caused by internal damage that may precede subsequent failure. Although failure has not yet occurred, our data reveal important variations in the seismic response. Amplification factors and resonant frequencies exhibit seasonal trends related (both directly and inversely) to temperature changes and are sensitive to freezing periods (resonant frequencies increase with temperature and during freezing). We attribute these effects to thermal expansion driving microcrack closure, in addition to ice formation, which increase fracture and bulk rock stiffness. We find the site response at AdR is linear over the measured range of weak input motions spanning two orders of magnitude. Our results further develop and refine ambient vibration methods used in rock slope hazard assessment.

  16. Sensory Integration during Vibration of Postural Muscle Tendons When Pointing to a Memorized Target. (United States)

    Teasdale, Normand; Furmanek, Mariusz P; Germain Robitaille, Mathieu; de Oliveira, Fabio Carlos Lucas; Simoneau, Martin


    Vibrating ankle muscles in freely standing persons elicits a spatially oriented postural response. For instance, vibrating the Achilles tendons induces a backward displacement of the body while vibrating the tibialis anterior muscle tendons induces a forward displacement. These displacements have been called vibration induced falling (VIF) responses and they presumably are automatic. Because of the long delay between the onset of the vibration and the onset of the VIF (about 700 ms), and the widespread cortical activation following vibration, there is a possibility that the sensory signals available before the VIF can be used by the central nervous system to plan a hand pointing action. This study examined this suggestion. Ten healthy young participants stood on a force platform and initially were trained to point with and without vision to a target located in front of them. Then, they were exposed to conditions with vibration of the Achilles tendons or tibialis anterior muscle tendons and pointed at the target without vision. The vibration stopped between each trial. Trials with vision (without vibration) were given every five trials to maintain an accurate perception of the target's spatial location. Ankle vibrations did not have an effect on the position of the center of foot pressure (COP) before the onset of the pointing actions. Furthermore, reaction and movement times of the pointing actions were unaffected by the vibration. The hypotheses were that if proprioceptive information evoked by ankle vibrations alters the planning of a pointing action, the amplitude of the movement should scale according to the muscle tendons that are vibrated. For Achilles tendon vibration, participants undershot the target indicating the planning of the pointing action was influenced by the vibration-evoked proprioceptive information (forward displacement of the body). When the tibialis anterior were vibrated (backward displacement of the body), however, shorter movements were


    Directory of Open Access Journals (Sweden)

    Sujit Kumar Jha


    Full Text Available The muffler is the main part of the Automobile Exhaust System, consisting of fibrous and porous materials to absorb noise and vibrations. The exhaust gas mass coming from the engine can produce resonance, which may be the source of fatigue failure in the exhaust pipe due to the presence of continuous resonance. The modes on the muffler should be located away from the engine’s operating frequencies in order to minimise the resonance. The objective of this paper is to determine the frequencies that appear at the modes, which have the more adverse effect during the operation of the automobile. An impact test has been conducted by applying the force using a hard head hammer, and data generated have been used for plotting a graph of the transfer functions using MATLAB. Six points have been selected, namely 1, 2, 3, 4, 7, and 11 on the muffler for the impact test. The collected data from theses six points have been analysed for the addition of damping. Results suggests that increasing the mass increases the damping and lowers the modes of the transfer function. Further research will identify higher strength materials that can withstand the higher gas temperatures as well as the corrosion and erosion by the gas emitted from the engine. muffler, noise, vibration,modal analysis,


    Directory of Open Access Journals (Sweden)

    S. T. Antipov


    Full Text Available The currently used system of preventive maintenance is not effective enough. Vibration diagnostics is one of the modern methods of non-destructive testing equipment components, allowing to define the appearance of defects in the early stages. The paper identifies the main areas of research, as well as selected research object, selected non-destructive testing method for efficiently determining the actual state of dynamically operating equipment. Is a schematic of vibration sensors. Measuring point vibration parameters were determined experimentally based on the conditions for obtaining the most informative vibroacoustic signal. Determine the behavior of the cutter under which minimizes the occurrence of a wide range of fluctuations that affects the accuracy of the measurements. For vibration analysis method was chosen direct spectral analysis, which involves the detection of repetitive vibrations. Presented graphically vibration spectra and spectra of vibration signals. Analysis of a wide range of vibration spectrum allowed to allocate land on which showed a significant increase in the values of vibration. Processing of the selected portion of the spectrum has led to the conclusion that in the bearing, shock pulses are in contact with each rolling body shell, and as a result, a number of harmonics in the individual frequencies. Was made a comparative analysis of the spectra of working with a defective bearing bearing on the same frequencies and determine the average increase in the values of vibration. Spectral analysis is an effective method to determine not only the extent of the defect and its location, but also allows you to effectively predict its development. The results may be useful for specialists involved in vibration diagnostics, calculation and design of rotary machines.

  19. Vibrational anomalies and marginal stability of glasses

    KAUST Repository

    Marruzzo, Alessia


    The experimentally measured vibrational spectrum of glasses strongly deviates from that expected in Debye\\'s elasticity theory: The density of states deviates from Debye\\'s ω2 law ("boson peak"), the sound velocity shows a negative dispersion in the boson-peak frequency regime, and there is a strong increase in the sound attenuation near the boson-peak frequency. A generalized elasticity theory is presented, based on the model assumption that the shear modulus of the disordered medium fluctuates randomly in space. The fluctuations are assumed to be uncorrelated and have a certain distribution (Gaussian or otherwise). Using field-theoretical techniques one is able to derive mean-field theories for the vibrational spectrum of a disordered system. The theory based on a Gaussian distribution uses a self-consistent Born approximation (SCBA),while the theory for non-Gaussian distributions is based on a coherent-potential approximation (CPA). Both approximate theories appear to be saddle-point approximations of effective replica field theories. The theory gives a satisfactory explanation of the vibrational anomalies in glasses. Excellent agreement of the SCBA theory with simulation data on a soft-sphere glass is reached. Since the SCBA is based on a Gaussian distribution of local shear moduli, including negative values, this theory describes a shear instability as a function of the variance of shear fluctuations. In the vicinity of this instability, a fractal frequency dependence of the density of states and the sound attenuation ∝ ω1+a is predicted with a ≲ 1/2. Such a frequency dependence is indeed observed both in simulations and in experimental data. We argue that the observed frequency dependence stems from marginally stable regions in a glass and discuss these findings in terms of rigidity percolation. © 2013 EDP Sciences and Springer.

  20. Effect of Maturation of the Magnitude of Mechanosensitive and Chemosensitive Reflexes in the Premature Human Esophagus (United States)

    Jadcherla, Sudarshan Rao; Hoffmann, Raymond G.; Shaker, Reza


    Objectives To investigate the effect of esophageal mechanosensitive and chemosensitive stimulation on the magnitude and recruitment of peristaltic reflexes and upper esophageal sphincter (UES)-contractile reflex in premature infants. Study design Esophageal manometry and provocation testing were performed in the same 18 neonates at 33 and 36 weeks postmenstrual age (PMA). Mechanoreceptor and chemoreceptor stimulation were performed using graded volumes of air, water, and apple juice (pH 3.7), respectively. The frequency and magnitude of the resulting esophago-deglutition response (EDR) or secondary peristalsis (SP), and esophago-UES-contractile reflex (EUCR) were quantified. Results Threshold volumes to evoke EDR, SP, or EUCR were similar. The recruitment and magnitude of SP and EUCR increased with volume increments of air and water in either study (P < .05). However, apple juice infusions resulted in increased recruitment of EDR in the 33 weeks group (P < .05), and SP in the 36 weeks group (P < .05). The magnitude of EUCR was also volume responsive (all media, P < .05), and significant differences between media were noted (P < .05). At maximal stimulation (1 mL, all media), sensory-motor characteristics of peristaltic and EUCR reflexes were different (P < .05) between media and groups. Conclusions Mechano- and chemosensitive stimuli evoke volume-dependent specific peristaltic and UES reflexes at 33 and 36 weeks PMA. The recruitment and magnitude of these reflexes are dependent on the physicochemical properties of the stimuli in healthy premature infants. PMID:16860132

  1. Vibration measurement with nonlinear converter in the presence of noise (United States)

    Mozuras, Almantas


    Conventional vibration measurement methods use the linear properties of physical converters. These methods are strongly influenced by nonlinear distortions, because ideal linear converters are not available. Practically, any converter can be considered as a linear one, when an output signal is very small. However, the influence of noise increases significantly and signal-to-noise ratio decreases at lower signals. When the output signal is increasing, the nonlinear distortions are also augmenting. If the wide spectrum vibration is measured, conventional methods face a harmonic distortion as well as intermodulation effects. Purpose of this research is to develop a measurement method of wide spectrum vibration by using a converter described by a nonlinear function of type f(x), where x =x(t) denotes the dependence of coordinate x on time t due to the vibration. Parameter x(t) describing the vibration is expressed as Fourier series. The spectral components of the converter output f(x(t)) are determined by using Fourier transform. The obtained system of nonlinear equations is solved using the least squares technique that permits to find x(t) in the presence of noise. This method allows one to carry out the absolute or relative vibration measurements. High resistance to noise is typical for the absolute vibration measurement, but it is necessary to know the Taylor expansion coefficients of the function f(x). If the Taylor expansion is not known, the relative measurement of vibration parameters is also possible, but with lower resistance to noise. This method allows one to eliminate the influence of nonlinear distortions to the measurement results, and consequently to eliminate harmonic distortion and intermodulation effects. The use of nonlinear properties of the converter for measurement gives some advantages related to an increased frequency range of the output signal (consequently increasing the number of equations) that allows one to decrease the noise influence on

  2. Stretching vibrational overtone and combination states in silicon tetrafluoride (United States)

    Halonen, Lauri


    A simple three-parameter model is shown to account for the observed SiF stretching vibrational states of silicon tetrafluoride. A symmetrized anharmonic bond oscillator basis set is used to calculate stretching overtone and combination eigen values, all of which are given up to v1 + v3 = 5. The results show that the highest levels of the nν3 manifold move gradually out of resonances with n quanta of ν3 as n increases, which indicates that anharmonic resonances between the ν3 ladder and some other vibrational ladders and (or) multiphoton resonances are needed to explain the observed multiphoton processes.

  3. Vibration Performance Comparison Study on Current Fiber Optic Connector Technologies (United States)

    Ott, Melanie N.; Thomes Jr., William J.; LaRocca, Frank V.; Switzer, Robert C.; Chuska, Rick F.; Macmurphy, Shawn L.


    Fiber optic cables are increasingly being used in harsh environments where they are subjected to vibration. Understanding the degradation in performance under these conditions is essential for integration of the fibers into the given application. System constraints oftentimes require fiber optic connectors so subsystems can be removed or assembled as needed. In the present work, various types of fiber optic connectors were monitored in-situ during vibration testing to examine the transient change in optical transmission and the steady-state variation following the event. Inspection of the fiber endfaces and connectors was performed at chosen intervals throughout the testing.

  4. Train induced vibrations in geosynthetic reinforced railway embankments

    DEFF Research Database (Denmark)

    Zania, Varvara; Hededal, Ole; Krogsbøll, Anette


    High–speed trains may generate ground vibrations which cause undesirable environmental and economical impacts such as nuisance of the passengers, deflections along the rail, and possibly impairment of the stability of the embankments. The increase of the velocity of a moving load on homogeneous...... includes usually the application of stabilization techniques like geosynthetic reinforcement. Hence, in the current study the ground vibration, which is induced by a train passage in geosynthetic reinforced embankments, is investigated. In addition the impact of the soil conditions is examined. In order...

  5. Analysis of whole-body vibration on rheological models for tissues (United States)

    Neamţu, A.; Simoiu, D.; Nyaguly, E.; Crastiu, I.; Bereteu, L.


    Whole body vibrations have become a very popular method in recent years, both in physical therapy and in sports. This popularity is due to the fact that, as a result of analyzing the groups of subjects, the effects of small amplitude vibration and low frequency vibration, it was found an increase in the force developed by the feet, a hardening of bone strength or an increase in bone density. In this paper we propose to give a possible explanation of the stress relieving in muscle and/or bone after whole body vibration treatment. To do this we consider some rheological models which after whole body vibrations and after the analysis of their response lead to various experiments.

  6. Analysis and Modelling of Muscles Motion during Whole Body Vibration

    Directory of Open Access Journals (Sweden)

    La Gatta A


    Full Text Available The aim of the study is to characterize the local muscles motion in individuals undergoing whole body mechanical stimulation. In this study we aim also to evaluate how subject positioning modifies vibration dumping, altering local mechanical stimulus. Vibrations were delivered to subjects by the use of a vibrating platform, while stimulation frequency was increased linearly from 15 to 60 Hz. Two different subject postures were here analysed. Platform and muscles motion were monitored using tiny MEMS accelerometers; a contra lateral analysis was also presented. Muscle motion analysis revealed typical displacement trajectories: motion components were found not to be purely sinusoidal neither in phase to each other. Results also revealed a mechanical resonant-like behaviour at some muscles, similar to a second-order system response. Resonance frequencies and dumping factors depended on subject and his positioning. Proper mechanical stimulation can maximize muscle spindle solicitation, which may produce a more effective muscle activation.

  7. Vehicle Vibration Analysis in Changeable Speeds Solved by Pseudoexcitation Method

    Directory of Open Access Journals (Sweden)

    Li-Xin Guo


    Full Text Available The vehicle driving comfort has become one of the important factors of vehicle quality and receives increasing attention. In this paper, the mechanical and mathematical models of the half-car, five degrees of freedom (DOF of a vehicle were established, as well as the pseudoexcitation model of road conditions for the front wheel and the rear wheel. By the pseudoexcitation method, the equations of transient response and power spectrum density were established. After numerical simulation to vehicle vibration response of changeable driving, the results show that the pseudoexcitation method is more convenient than the traditional method and effectively solves the smoothness computation problems of vehicles while the pseudoexcitation method is used to analyze vehicle vibration under nonstationary random vibration environments.

  8. Transient vibration of wind turbine blades (United States)

    Li, Yuanzhe; Li, Minghai; Jiang, Feng


    This article aims to the transient vibration of wind turbine blades. We firstly introduce transient vibration and previous studies in this area. The report then shows the fundamental equations and derivation of Euler Equation. A 3-D beam are created to compare the analytical and numerical result. In addition we operate the existing result and Patran result of a truncation wedge beam, especially the frequencies of free vibration and transient vibration. Transient vibration cannot be vanished but in some case it can be reduced.

  9. Ergonomic Evaluation of Vibrations of a Rototiller with New Blade

    Directory of Open Access Journals (Sweden)

    H Gholami


    Full Text Available Introduction One of the most important problems arising with operation of the conventional rototillers is severe vibration of the machine handle which is transmitted to the user’s hands, arms and shoulders. Long period exposure of the hand-transmitted vibration may cause various diseases such as white finger syndrome. Therefore in this study, vibrations of a new type of rototiller with ridged blades were investigated at the position of handle/hand interface in different working conditions. Finally, the maximum allowable exposure time to the rototiller users in continuous tillage operation was obtained according to ISO 5349-1. Materials and Methods Experiments were carried out in one of the farms with silty clay soil texture, located in Sari city, Mazandaran province, Iran. Vibration measurements were performed according to ISO 5349-1 and ISO 5349-2 standards in two different modes, including in situ mode and tillage mode. Vibrational parameters were obtained in three blade rotational speeds, i.e., low speed (140-170 rpm, medium speed (170-200, and high speed (200-230. Blade rotational speed varied by changing engine speed using the throttle control lever. In each experiment, different vibrational values were individually recorded in three directions (x, y, and z. Experimental design and data analysis were performed in a Randomized Complete Block Design with three replications using the SPSS16 software. Results and Discussion Based on the obtained results in this study, the RMS of acceleration increased by increasing in rotational speed for all of the conducted experiments. The reason is that number of cutting per unit of time and consequently the frequency of changing in the dynamic forces exerting on the blades dramatically increases with increasing the rotational speed of the blades. Noteworthy is that in most cases the variation of acceleration in the tillage mode showed similar trend with vibrational values in the idling mode. This

  10. Magnitude Characterization Using Complex Networks in Central Chile (United States)

    Pasten, D.; Comte, D.; Munoz, V.


    Studies using complex networks are applied to many systems, like traffic, social networks, internet and earth science. In this work we make an analysis using complex networks applied to magnitude of seismicity in the central zone of Chile, we use the preferential attachment in order to construct a seismic network using local magnitudes and the hypocenters of a seismic data set in central Chile. In order to work with a complete catalogue in magnitude, the data associated with the linear part of the Gutenberg-Richter law, with magnitudes greater than 2.7, were taken. We then make a grid in space, so that each seismic event falls into a certain cell, depending on the location of its hypocenter. Now the network is constructed: the first node corresponds to the cell where the first seismic event occurs. The node has an associated number which is the magnitude of the event which occured in it, and a probability is assigned to the node. The probability is a nonlinear mapping of the magnitude (a Gaussian function was taken), so that nodes with lower magnitude events are more likely to be attached to. Each time a new node is added to the network, it is attached to the previous node which has the larger probability; the link is directed from the previous node to the new node. In this way, a directed network is constructed, with a ``preferential attachment''-like growth model, using the magnitudes as the parameter to determine the probability of attachment to future nodes. Several events could occur in the same node. In this case, the probability is calculated using the average of the magnitudes of the events occuring in that node. Once the directed network is finished, the corresponding undirected network is constructed, by making all links symmetric, and eliminating the loops which may appear when two events occur in the same cell. The resulting directed network is found to be scale free (with very low values of the power-law distribution exponent), whereas the undirected

  11. Effect of Frequency and Vibration Time on Shaker Performance for Mechanized Harvesting of Orange (Thomson cultivar

    Directory of Open Access Journals (Sweden)

    H Ghorbanpour


    Full Text Available Manual citrus harvesting is commonly performing hard, expensive and time consuming. In this study, a factorial experiment with a completely randomized design in three replications was performed to find out the effect of frequency (three levels of 5, 7.5 and 10 Hz, vibration time (three levels of 10, 15 and 20 seconds on harvesting capacity and losses of Thomson cultivar of orange. The results indicated that the effect of frequency and vibration time was significant (P≤0.01 on the harvesting capacity and losses, but their interaction effects weren’t significant. The harvesting capacity significantly increased by increasing frequency, and the highest harvesting capacity was 62.8 % at 10 Hz frequency. Although the harvesting capacity increased by increasing the vibration time, but there was no significant difference in vibration times between 15 and 20 seconds at 10 Hz frequency. Also the fruit loss was increased by increasing the vibration time. Due to these reasons, frequency of 10 Hz and vibration time of 15 seconds were selected as the most suitable condition for mechanized harvesting of this cultivar of orange. Finally a linear mathematical model was developed based on the frequency and vibration time for the harvesting capacity and fruit loss of Thomson cultivar of orange.

  12. Vibrational spectroscopy--a powerful tool for the rapid identification of microbial cells at the single-cell level. (United States)

    Harz, M; Rösch, P; Popp, J


    Rapid microbial detection and identification with a high grade of sensitivity and selectivity is a great and challenging issue in many fields, primarily in clinical diagnosis, pharmaceutical, or food processing technology. The tedious and time-consuming processes of current microbiological approaches call for faster ideally on-line identification techniques. The vibrational spectroscopic techniques IR absorption and Raman spectroscopy are noninvasive methods yielding molecular fingerprint information; thus, allowing for a fast and reliable analysis of complex biological systems such as bacterial or yeast cells. In this short review, we discuss recent vibrational spectroscopic advances in microbial identification of yeast and bacterial cells for bulk environment and single-cell analysis. IR absorption spectroscopy enables a bulk analysis whereas micro-Raman-spectroscopy with excitation in the near infrared or visible range has the potential for the analysis of single bacterial and yeast cells. The inherently weak Raman signal can be increased up to several orders of magnitude by applying Raman signal enhancement methods such as UV-resonance Raman spectroscopy with excitation in the deep UV region, surface enhanced Raman scattering, or tip-enhanced Raman scattering. Copyright 2008 International Society for Advancement of Cytometry

  13. Finite Element Modeling of Vibrations in Canvas Paintings

    NARCIS (Netherlands)

    Chiriboga Arroyo, P.G.


    Preventing vibration damage from occurring to valuable and sensitive canvas paintings is of main concern for museums and art conservation institutions. This concern has grown in recent years due to the increasing demand of paintings for exhibitions worldwide and the concomitant need for their

  14. Prediction of Milk Quality Parameters Using Vibrational Spectroscopy and Chemometrics

    DEFF Research Database (Denmark)

    Eskildsen, Carl Emil Aae

    Vibrational spectroscopic techniques are widely used throughout all stages of food production. The analysis of raw materials, real-time process control, and end-product quality evaluation are all crucial steps in food production. In order to increase production throughput there is a need for speed...

  15. On the resonant behavior of longitudinally vibrating accreting rods

    CSIR Research Space (South Africa)

    Shatalov, M


    Full Text Available subjected to longitudinal vibrations. This problem is described it terms of the linear classical, Rayleigh-Love and Rayleigh-Bishop models. It is assumed that the rod is fixed at one end and free at the other end and its length is increasing. For solution...

  16. Effect of different mechanical vibration on blood parameters of one ...

    African Journals Online (AJOL)

    Mechanical vibrations are congenital to any system of transportation. In poultry industry, the higher or lower intensity of this agent during the transportation of eggs and chickens can increase the production losses and decrease the efficiency of the system as a whole. This study was carried out to investigate the effects of ...

  17. Analytical approximations for stick-slip vibration amplitudes

    DEFF Research Database (Denmark)

    Thomsen, Jon Juel; Fidlin, A.


    The classical "mass-on-moving-belt" model for describing friction-induced vibrations is considered, with a friction law describing friction forces that first decreases and then increases smoothly with relative interface speed. Approximate analytical expressions are derived for the conditions...

  18. Exact Vibration Solution for initially stressed Beams resting on ...

    African Journals Online (AJOL)

    It is observed that, as the values of these structural parameters increase, the transverse deflections of the finite elastic beam under the actions of moving masses decreases. Furthermore, the conditions under which the vibrating systems will experience resonance phenomenon are highlighted. Results presented in this paper ...

  19. Order of magnitude reduction of fluoroscopic x-ray dose (United States)

    Bal, Abhinav; Robert, Normand; Machan, Lindsay; Deutsch, Meir; Kisselgoff, David; Babyn, Paul; Rowlands, John A.


    The role of fluoroscopic imaging is critical for diagnostic and image guided therapy. However, fluoroscopic imaging can require significant radiation leading to increased cancer risk and non-stochastic effects such as radiation burns. Our purpose is to reduce the exposure and dose to the patient by an order of magnitude in these procedures by use of the region of interest method. Method and Materials: Region of interest fluoroscopy (ROIF) uses a partial attenuator. The central region of the image has full exposure while the image periphery, there to provide context only, has a reduced exposure rate. ROIF using a static partial attenuator has been shown in our previous studies to reduce the dose area product (DAP) to the patient by at least 2.5 times. Significantly greater reductions in DAP would require improvements in flat panel detectors performance at low x-ray exposures or a different x-ray attenuation strategy. Thus we have investigated a second, dynamic, approach. We have constructed an x-ray shutter system allowing a normal x-ray exposure in the region of interest while reducing the number of x-ray exposures in the periphery through the rapid introduction, positioning and removal of an x-ray attenuating shutter to block radiation only for selected frames. This dynamic approach eliminates the DQE(0) loss associated with the use of static partial attenuator applied to every frame thus permitting a greater reduction in DAP. Results: We have compared the two methods by modeling and determined their fundamental limits.

  20. Denitrification in upland of China: Magnitude and influencing factors (United States)

    Wang, Jinyang; Yan, Xiaoyuan


    A better understanding of influencing factors and accurate estimate of soil denitrification is a global concern. Here we present a synthesis of 300 observations of denitrification in Chinese upland soils from 39 field and laboratory studies using the acetylene inhibition technique. The results of a linear mixed model analysis showed that the rates of soil denitrification were significantly affected by crop type, soil organic carbon, soil pH, the measurement period, and the rate of N application. The emission factor (EF) and N2O/(N2O + N2) ratio for soil denitrification were on average 2.11 ± 0.17% and 0.508 ± 0.020, respectively. Our meta-analysis indicated that N fertilization increased soil denitrification by 311% (95% CI: 279-346%) and 112% (95% CI: 66-171%) in the field and laboratory studies, respectively. Substantial interactive effects between soil properties and N fertilization on soil denitrification were found. Although the highest values of both the rate of denitrification and the EF were found in vegetable fields, the size of the stimulating effect of N fertilization on soil denitrification was lower in vegetable fields than in maize and wheat fields. These results suggest that the crop-specific effect is important and that vegetable fields are potential hot spots of denitrification in Chinese uplands. Based on either the EF or the N2O/(N2O + N2) ratio obtained, the estimated amount of total denitrification from the upland soils was an order of magnitude lower than that from budget calculations, suggesting that the acetylene inhibition technique may significantly underestimate denitrification in Chinese upland soils.

  1. Multiple Rabi Splittings under Ultrastrong Vibrational Coupling. (United States)

    George, Jino; Chervy, Thibault; Shalabney, Atef; Devaux, Eloïse; Hiura, Hidefumi; Genet, Cyriaque; Ebbesen, Thomas W


    From the high vibrational dipolar strength offered by molecular liquids, we demonstrate that a molecular vibration can be ultrastrongly coupled to multiple IR cavity modes, with Rabi splittings reaching 24% of the vibration frequencies. As a proof of the ultrastrong coupling regime, our experimental data unambiguously reveal the contributions to the polaritonic dynamics coming from the antiresonant terms in the interaction energy and from the dipolar self-energy of the molecular vibrations themselves. In particular, we measure the opening of a genuine vibrational polaritonic band gap of ca. 60 meV. We also demonstrate that the multimode splitting effect defines a whole vibrational ladder of heavy polaritonic states perfectly resolved. These findings reveal the broad possibilities in the vibrational ultrastrong coupling regime which impact both the optical and the molecular properties of such coupled systems, in particular, in the context of mode-selective chemistry.

  2. Vibrations on board and health effects

    DEFF Research Database (Denmark)

    Jensen, Anker; Jepsen, Jørgen Riis


    for such relation among seafarers except for fishermen, who, however, are also exposed to additional recognised physical risk factors at work. The assessment and reduction of vibrations by naval architects relates to technical implications of this impact for the ships’ construction, but has limited value......There is only limited knowledge of the exposure to vibrations of ships’ crews and their risk of vibration-induced health effects. Exposure to hand-arm vibrations from the use of vibrating tools at sea does not differ from that in the land-based trades. However, in contrast to most other work places...... of the health consequences of whole body vibrations in land-transportation, such exposure at sea may affect ships’ passengers and crews. While the relation of back disorders to high levels of whole body vibration has been demonstrated among e.g. tractor drivers, there are no reported epidemiological evidence...

  3. The Effect of a Mechanical Arm System on Portable Grinder Vibration Emissions. (United States)

    McDowell, Thomas W; Welcome, Daniel E; Warren, Christopher; Xu, Xueyan S; Dong, Ren G


    Mechanical arm systems are commonly used to support powered hand tools to alleviate ergonomic stressors related to the development of workplace musculoskeletal disorders. However, the use of these systems can increase exposure times to other potentially harmful agents such as hand-transmitted vibration. To examine how these tool support systems affect tool vibration, the primary objectives of this study were to characterize the vibration emissions of typical portable pneumatic grinders used for surface grinding with and without a mechanical arm support system at a workplace and to estimate the potential risk of the increased vibration exposure time afforded by the use of these mechanical arm systems. This study also developed a laboratory-based simulated grinding task based on the ISO 28927-1 (2009) standard for assessing grinder vibrations; the simulated grinding vibrations were compared with those measured during actual workplace grinder operations. The results of this study demonstrate that use of the mechanical arm may provide a health benefit by reducing the forces required to lift and maneuver the tools and by decreasing hand-transmitted vibration exposure. However, the arm does not substantially change the basic characteristics of grinder vibration spectra. The mechanical arm reduced the average frequency-weighted acceleration by about 24% in the workplace and by about 7% in the laboratory. Because use of the mechanical arm system can increase daily time-on-task by 50% or more, the use of such systems may actually increase daily time-weighted hand-transmitted vibration exposures in some cases. The laboratory acceleration measurements were substantially lower than the workplace measurements, and the laboratory tool rankings based on acceleration were considerably different than those from the workplace. Thus, it is doubtful that ISO 28927-1 is useful for estimating workplace grinder vibration exposures or for predicting workplace grinder acceleration rank

  4. Robust Computation of Error Vector Magnitude for Wireless Standards

    DEFF Research Database (Denmark)

    Jensen, Tobias Lindstrøm; Larsen, Torben


    The modulation accuracy described by an error vector magnitude is a critical parameter in modern communication systems — defined originally as a performance metric for transmitters but now also used in receiver design and for more general signal analysis. The modulation accuracy is a measure of how...... far a test signal is from a reference signal at the symbol values when some parameters in a reconstruction model are optimized for best agreement. This paper provides an approach to computation of error vector magnitude as described in several standards from measured or simulated data. It is shown...... that the error vector magnitude optimization problem is generally non-convex. Robust estimation of the initial conditions for the optimizer is suggested, which is particularly important for a non-convex problem. A Bender decomposition approach is used to separate convex and non-convex parts of the problem...

  5. Executive function and magnitude skills in preschool children. (United States)

    Prager, Emily O; Sera, Maria D; Carlson, Stephanie M


    Executive function (EF) has been highlighted as a potentially important factor for mathematical understanding. The relation has been well established in school-aged children but has been less explored at younger ages. The current study investigated the relation between EF and mathematics in preschool-aged children. Participants were 142 typically developing 3- and 4-year-olds. Controlling for verbal ability, a significant positive correlation was found between EF and general math abilities in this age group. Importantly, we further examined this relation causally by varying the EF load on a magnitude comparison task. Results suggested a developmental pattern where 3-year-olds' performance on the magnitude comparison task was worst when EF was taxed the most. Conversely, 4-year-olds performed well on the magnitude task despite varying EF demands, suggesting that EF might play a critical role in the development of math concepts. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Determinants of the Magnitude of Interaction Between Tacrolimus and Voriconazole/Posaconazole in Solid Organ Recipients

    NARCIS (Netherlands)

    Vanhove, T.; Bouwsma, H.; Hilbrands, L.B.; Swen, J.J.; Spriet, I.; Annaert, P.; Vanaudenaerde, B.; Verleden, G.; Vos, R.; Kuypers, D.R.


    Administration of azole antifungals to tacrolimus-treated solid organ recipients results in a major drug-drug interaction characterized by increased exposure to tacrolimus. The magnitude of this interaction is highly variable but cannot currently be predicted. We performed a retrospective analysis

  7. Functional Communication Training without Extinction Using Concurrent Schedules of Differing Magnitudes of Reinforcement in Classrooms (United States)

    Davis, Dawn H.; Fredrick, Laura D.; Alberto, Paul A.; Gama, Roberto


    This study investigated the effects of functional communication training (FCT) implemented with concurrent schedules of differing magnitudes of reinforcement in lieu of extinction to reduce inappropriate behaviors and increase alternative mands. Participants were four adolescent students diagnosed with severe emotional and behavior disorders…

  8. Land management and land-cover change have impacts of similar magnitude on surface temperature

    DEFF Research Database (Denmark)

    Luyssaert, Sebastiaan; Jammet, Mathilde; Stoy, Paul C.


    revealed that, in the temperate zone, potential surface cooling from increased albedo is typically offset by warming from decreased sensible heat fluxes, with the net effect being a warming of the surface. Temperature changes from LMC and LCC were of the same magnitude, and averaged 2 K at the vegetation...

  9. Does the Measurement or Magnitude of Academic Entitlement Change over Time? (United States)

    Sessoms, John; Finney, Sara J.; Kopp, Jason P.


    Academic entitlement (AE) characterizes students who believe they deserve positive academic outcomes independent of performance. Using the Academic Entitlement Questionnaire, we evaluated the longitudinal stability of the measurement and magnitude of AE. Results indicated partial measurement invariance, slight average increase in AE, and…

  10. A catalog of observed nuclear magnitudes of Jupiter family comets (United States)

    Tancredi, G.; Fernández, J. A.; Rickman, H.; Licandro, J.


    A catalog of a sample of 105 Jupiter family (JF) comets (defined as those with Tisserand constants T > 2 and orbital periods P nuclear magnitudes H_N = V(1,0,0). The catalog includes all the nuclear magnitudes reported after 1950 until August 1998 that appear in the International Comet Quarterly Archive of Cometary Photometric Data, the Minor Planet Center (MPC) data base, IAU Circulars, International Comet Quarterly, and a few papers devoted to some particular comets, together with our own observations. Photometric data previous to 1990 have mainly been taken from the Comet Light Curve Catalogue (CLICC) compiled by Kamél (\\cite{kamel}). We discuss the reliability of the reported nuclear magnitudes in relation to the inherent sources of errors and uncertainties, in particular the coma contamination often present even at large heliocentric distances. A large fraction of the JF comets of our sample indeed shows various degrees of activity at large heliocentric distances, which is correlated with recent downward jumps in their perihelion distances. The reliability of coma subtraction methods to compute the nuclear magnitude is also discussed. Most absolute nuclear magnitudes are found in the range 15 - 18, with no magnitudes fainter than H_N ~ 19.5. The catalog can be found at: ~ gonzalo/catalog/. Table 2 and Appendix B are only available in electronic form at Table 5 is also available in electronic form at the CDS via anonymous ftp to ( or via

  11. Neonatal head and torso vibration exposure during inter-hospital transfer. (United States)

    Blaxter, Laurence; Yeo, Mildrid; McNally, Donal; Crowe, John; Henry, Caroline; Hill, Sarah; Mansfield, Neil; Leslie, Andrew; Sharkey, Don


    Inter-hospital transport of premature infants is increasingly common, given the centralisation of neonatal intensive care. However, it is known to be associated with anomalously increased morbidity, most notably brain injury, and with increased mortality from multifactorial causes. Surprisingly, there have been relatively few previous studies investigating the levels of mechanical shock and vibration hazard present during this vehicular transport pathway. Using a custom inertial datalogger, and analysis software, we quantify vibration and linear head acceleration. Mounting multiple inertial sensing units on the forehead and torso of neonatal patients and a preterm manikin, and on the chassis of transport incubators over the duration of inter-site transfers, we find that the resonant frequency of the mattress and harness system currently used to secure neonates inside incubators is [Formula: see text]. This couples to vehicle chassis vibration, increasing vibration exposure to the neonate. The vibration exposure per journey (A(8) using the ISO 2631 standard) was at least 20% of the action point value of current European Union regulations over all 12 neonatal transports studied, reaching 70% in two cases. Direct injury risk from linear head acceleration (HIC15) was negligible. Although the overall hazard was similar, vibration isolation differed substantially between sponge and air mattresses, with a manikin. Using a Global Positioning System datalogger alongside inertial sensors, vibration increased with vehicle speed only above 60 km/h. These preliminary findings suggest there is scope to engineer better systems for transferring sick infants, thus potentially improving their outcomes.

  12. Vibration characteristics of casing string under the exciting force of an electric vibrator

    Directory of Open Access Journals (Sweden)

    Yiyong Yin


    Full Text Available Vibration cementing is a new technique that can significantly improve the bond strength of cementing interface. To popularize this technique, it is necessary to solve the key problem of how to make cementing string generate downhole radial vibration in the WOC stage. For this purpose, an electric vibrator was developed. With this vibrator, electric energy is converted into mechanical energy by means of a high-temperature motor vibration unit. The motor vibration unit rotates the eccentric block through an output shaft to generate an exciting source, which produces an axial-rotating exciting force at the bottom of the casing string. Then, the vibration characteristics of vertical well casing string under the exciting force were analyzed by using the principal coordinate analysis method, and the response model of casing string to an electric vibrator was developed. Finally, the effects of casing string length, exciting force and vibration frequency on the vibration amplitude at the lowermost of the casing string were analyzed based on a certain casing program. It is indicated that the casing string length and the square of vibration frequency are inversely proportional to the vibration amplitude at the lowermost of the casing string, and the exciting force is proportional to the vibration amplitude at the lowermost of the casing string. These research results provide a theoretical support for the application of vibration cementing technology to the cementing sites with different requirements on well depth and amplitude.

  13. High-magnitude head impact exposure in youth football (United States)

    Campolettano, Eamon T.; Gellner, Ryan A.; Rowson, Steven


    OBJECTIVE Even in the absence of a clinically diagnosed concussion, research suggests that neurocognitive changes may develop in football players as a result of frequent head impacts that occur during football games and practices. The objectives of this study were to determine the specific situations in which high-magnitude impacts (accelerations exceeding 40g) occur in youth football games and practices and to assess how representative practice activities are of games with regard to high-magnitude head impact exposure. METHODS A total of 45 players (mean age 10.7 ± 1.1 years) on 2 youth teams (Juniors [mean age 9.9 ± 0.6 years; mean body mass 38.9 ± 9.9 kg] and Seniors [mean age 11.9 ± 0.6 years; mean body mass 51.4 ± 11.8 kg]) wore helmets instrumented with accelerometer arrays to record head impact accelerations for all practices and games. Video recordings from practices and games were used to verify all high-magnitude head impacts, identify specific impact characteristics, and determine the amount of time spent in each activity. RESULTS A total of 7590 impacts were recorded, of which 571 resulted in high-magnitude head impact accelerations exceeding 40g (8%). Impacts were characterized based on the position played by the team member who received the impact, the part of the field where the impact occurred, whether the impact occurred during a game or practice play, and the cause of the impact. High-magnitude impacts occurred most frequently in the open field in both games (59.4%) and practices (67.5%). “Back” position players experienced a greater proportion of high-magnitude head impacts than players at other positions. The 2 teams in this study structured their practice sessions similarly with respect to time spent in each drill, but impact rates differed for each drill between the teams. CONCLUSIONS High-magnitude head impact exposure in games and practice drills was quantified and used as the basis for comparison of exposure in the 2 settings. In

  14. The effect of whole-body resonance vibration in a porcine model of spinal cord injury. (United States)

    Streijger, Femke; Lee, Jae H T; Chak, Jason; Dressler, Dan; Manouchehri, Neda; Okon, Elena B; Anderson, Lisa M; Melnyk, Angela D; Cripton, Peter A; Kwon, Brian K


    Whole-body vibration has been identified as a potential stressor to spinal cord injury (SCI) patients during pre-hospital transportation. However, the effect that such vibration has on the acutely injured spinal cord is largely unknown, particularly in the frequency domain of 5 Hz in which resonance of the spine occurs. The objective of the study was to investigate the consequences of resonance vibration on the injured spinal cord. Using our previously characterized porcine model of SCI, we subjected animals to resonance vibration (5.7±0.46 Hz) or no vibration for a period of 1.5 or 3.0 h. Locomotor function was assessed weekly and cerebrospinal fluid (CSF) samples were collected to assess different inflammatory and injury severity markers. Spinal cords were evaluated histologically to quantify preserved white and gray matter. No significant differences were found between groups for CSF levels of monocyte chemotactic protein-1, interleukin 6 (IL-6) and lL-8. Glial fibrillary acidic protein levels were lower in the resonance vibration group, compared with the non-vibrated control group. Spared white matter tissue was increased within the vibrated group at 7 d post-injury but this difference was not apparent at the 12-week time-point. No significant difference was observed in locomotor recovery following resonance vibration of the spine. Here, we demonstrate that exposure to resonance vibration for 1.5 or 3 h following SCI in our porcine model is not detrimental to the functional or histological outcomes. Our observation that a 3.0-h period of vibration at resonance frequency induces modest histological improvement at one week post-injury warrants further study.

  15. Dynamical response of vibrating ferromagnets

    CERN Document Server

    Gaganidze, E; Ziese, M


    The resonance frequency of vibrating ferromagnetic reeds in a homogeneous magnetic field can be substantially modified by intrinsic and extrinsic field-related contributions. Searching for the physical reasons of the field-induced resonance frequency change and to study the influence of the spin glass state on it, we have measured the low-temperature magnetoelastic behavior and the dynamical response of vibrating amorphous and polycrystalline ferromagnetic ribbons. We show that the magnetoelastic properties depend strongly on the direction of the applied magnetic field. The influence of the re-entrant spin glass transition on these properties is discussed. We present clear experimental evidence that for applied fields perpendicular to the main area of the samples the behavior of ferromagnetic reeds is rather independent of the material composition and magnetic state, exhibiting a large decrease of the resonance frequency. This effect can be very well explained with a model based on the dynamical response of t...

  16. Vibrational coupling in plasmonic molecules. (United States)

    Yi, Chongyue; Dongare, Pratiksha D; Su, Man-Nung; Wang, Wenxiao; Chakraborty, Debadi; Wen, Fangfang; Chang, Wei-Shun; Sader, John E; Nordlander, Peter; Halas, Naomi J; Link, Stephan


    Plasmon hybridization theory, inspired by molecular orbital theory, has been extremely successful in describing the near-field coupling in clusters of plasmonic nanoparticles, also known as plasmonic molecules. However, the vibrational modes of plasmonic molecules have been virtually unexplored. By designing precisely configured plasmonic molecules of varying complexity and probing them at the individual plasmonic molecule level, intramolecular coupling of acoustic modes, mediated by the underlying substrate, is observed. The strength of this coupling can be manipulated through the configuration of the plasmonic molecules. Surprisingly, classical continuum elastic theory fails to account for the experimental trends, which are well described by a simple coupled oscillator picture that assumes the vibrational coupling is mediated by coherent phonons with low energies. These findings provide a route to the systematic optical control of the gigahertz response of metallic nanostructures, opening the door to new optomechanical device strategies. Published under the PNAS license.

  17. A night with good vibrations

    CERN Multimedia


    Next week-end, the Geneva Science History Museum invites you to a Science Night under the banner of waves and vibrations. Scientists, artists and storytellers from more than forty institutes and local or regional associations will show that waves and vibrations form an integral part of our environment. You will be able to get in contact with the nature of waves through interactive exhibitions on sound and light and through hands-on demonstrations arranged in the Park of the Perle du Lac. On the CERN stand, you will be able to measure the speed of light with a bar of chocolate, and understand the scattering of waves with plastic ducks. Amazing, no? In addition to the stands, the Night will offer many other activities: reconstructions of experiments, a play, a concert of crystal glasses, an illuminated fountain, a house of spirits. More information Science Night, 6 and 7 July, Park of the Perle du Lac, Geneva


    Directory of Open Access Journals (Sweden)

    Mathieu LADONNE


    Full Text Available The number of multi-materials staking configurations for aeronautical structures is increasing, with the evolution of composite and metallic materials. For drilling the fastening holes, the processes of Vibration Assisted Drilling (VAD expand rapidly, as it permits to improve reliability of drilling operations on multilayer structures. Among these processes of VAD, the solution with forced vibrations added to conventional feed to create a discontinuous cutting is the more developed in industry. The back and forth movement allows to improve the evacuation of chips by breaking it. This technology introduces two new operating parameters, the frequency and the amplitude of the oscillation. To optimize the process, the choice of those parameters requires first to model precisely the operation cutting and dynamics. In this paper, a kinematic modelling of the process is firstly proposed. The limits of the model are analysed through comparison between simulations and measurements. The proposed model is used to develop a cutting force model that allows foreseeing the operating conditions which ensure good chips breaking and tool life improvement.

  19. Focal muscle vibration: evaluation of physical properties and his applications

    Directory of Open Access Journals (Sweden)

    Filippo Camerota


    Full Text Available Vibration is the sensation produced by sinusoidal oscillation of objects placed against the skin. The vibratory frequency is signaled bythe frequency of action potentials fired by the sensory nerves and the total number of active sensory nerves is linearly related to theamplitude of vibration. In the last years many works were done evaluating the different clinical applications of the focal musclevibration; the aim of this work is to analyze the interaction between the vibratory application and the skin. For this study theapparatus of focal muscle vibration analyzed was firstly calibrated by measuring the actual peak to peak displacement of the tip as afunction of the power supplied to the shaker; then were measured the Direct Component (DC of the force by which the shaker ispushed against the patient’s skin and the Alternate Component (AC. We observed that from displacements imposed by the tipranging from 0 to about 200 micrometers, the applied load increases monotonically, but non linearly, with the displacement; abovethis value, any further increase of the peak to peak displacements actually does not lead to an effective increase of the amplitude of themechanical stimulation. We can conclude that with this focal muscle vibration applied to the muscle we are able to stimulate thespindles that respond to 200 micrometers amplitude that are probably ones able to generate a proprioceptive signal.

  20. Energy Dissipation from Vibrating Floor Slabs due to Human-Structure Interaction

    Directory of Open Access Journals (Sweden)

    James M.W. Brownjohn


    Full Text Available Lightweight pre-cast flooring systems using post-tensioning to increase strength but not stiffness are increasingly popular, and vibration serviceability problems tend to govern design of such floors where human occupants are increasingly concerned with vibrations. At the same time as inducing response, stationary human observers can also participate in the response as mitigating influence and it is clear that a human behaves as a highly effective damper, even when seated.

  1. Vibration of mechanically-assembled 3D microstructures formed by compressive buckling (United States)

    Wang, Heling; Ning, Xin; Li, Haibo; Luan, Haiwen; Xue, Yeguang; Yu, Xinge; Fan, Zhichao; Li, Luming; Rogers, John A.; Zhang, Yihui; Huang, Yonggang


    Micro-electromechanical systems (MEMS) that rely on structural vibrations have many important applications, ranging from oscillators and actuators, to energy harvesters and vehicles for measurement of mechanical properties. Conventional MEMS, however, mostly utilize two-dimensional (2D) vibrational modes, thereby imposing certain limitations that are not present in 3D designs (e.g., multi-directional energy harvesting). 3D vibrational micro-platforms assembled through the techniques of controlled compressive buckling are promising because of their complex 3D architectures and the ability to tune their vibrational behavior (e.g., natural frequencies and modes) by reversibly changing their dimensions by deforming their soft, elastomeric substrates. A clear understanding of such strain-dependent vibration behavior is essential for their practical applications. Here, we present a study on the linear and nonlinear vibration of such 3D mesostructures through analytical modeling, finite element analysis (FEA) and experiment. An analytical solution is obtained for the vibration mode and linear natural frequency of a buckled ribbon, indicating a mode change as the static deflection amplitude increases. The model also yields a scaling law for linear natural frequency that can be extended to general, complex 3D geometries, as validated by FEA and experiment. In the regime of nonlinear vibration, FEA suggests that an increase of amplitude of external loading represents an effective means to enhance the bandwidth. The results also uncover a reduced nonlinearity of vibration as the static deflection amplitude of the 3D structures increases. The developed analytical model can be used in the development of new 3D vibrational micro-platforms, for example, to enable simultaneous measurement of diverse mechanical properties (density, modulus, viscosity etc.) of thin films and biomaterials.

  2. Vibration Control in Periodic Structures

    DEFF Research Database (Denmark)

    Høgsberg, Jan Becker


    Within the framework of periodic structures, the calibration of RL shunted piezoelectric inclusions is investigated with respect to maximum damping of a particular wave form. A finite element setting is assumed, with local shunted inclusions inside the unit cell. The effect of the shunts is repre....... The presentation contains dispersion diagrams and vibration amplitude curves for the optimally calibrated RL shunt system in a 1-D periodic structure with local piezoelectric inclusions....

  3. Effect of combining traction and vibration on back muscles, heart rate and blood pressure. (United States)

    Wang, Lizhen; Zhao, Meiya; Ma, Jian; Tian, Shan; Xiang, Pin; Yao, Wei; Fan, Yubo


    Eighty-five percent of the population has experienced low back pain (LBP), which may result in decreasing muscle strength and endurance, functional capacity of the spine, and so on. Traction and vibration are commonly used to relieve the low back pain. The effect of the combing traction and vibration on back muscles, heart rate (HR) and blood pressure (BP) was investigated in this study. Thirty healthy subjects participated in 12 trials lying supine on the spine-combing bed with different tilt angle (0°, 10°, 20° and 30°) and vibration modes (along with the sagittal and coronal axis with 0 Hz, 2 Hz and 12 Hz separately). EMG was recorded during each trial. Power spectral frequency analysis was applied to evaluate muscle fatigue by the shift of median power frequency (MPF). Pulse pressure (PP) was calculated from BP. HR and PP were used to estimate the effect of the combination of traction and vibration on the cardio-vascular system. It was shown that vibration could increase HR and decrease PP. The combination of traction and vibration (2 Hz vibration along Z-axis and 12 Hz vibration along Y-axis) had no significant effect on the cardio-vascular system. The MPF of lumbar erector spinae (LES) and upper trapezius (UT) decreased significantly when the angle reached 20° under the condition of 2 Hz vibration along Z-axis compared with it of 0°. Furthermore, the MPF also decreased significantly compared with it of static mode at 20° for LES and at 30° for UT. However at 12 Hz vibration along Y-axis, the MPF had significant increase when the angle reached 20° in LES and 30° in UT compared to 0°. For LES, the MPF also had significant difference when the angle was increased from 10° to 20°. Therefore, combining 2 Hz vibration along Z-axis and traction (tilt angles that less than 20°) may to reduce muscle fatigue both for LES and UT compared with either vibration or traction alone. The combination of 12 Hz vibration along Y-axis and traction (tilt angles

  4. Control Application of Piezoelectric Materials to Aeroelastic Self-Excited Vibrations

    Directory of Open Access Journals (Sweden)

    Mohammad Amin Rashidifar


    Full Text Available A method for application of piezoelectric materials to aeroelasticity of turbomachinery blades is presented. The governing differential equations of an overhung beam are established. The induced voltage in attached piezoelectric sensors due to the strain of the beam is calculated. In aeroelastic self-excited vibrations, the aerodynamic generalized force of a specified mode can be described as a linear function of the generalized coordinate and its derivatives. This simplifies the closed loop system designed for vibration control of the corresponding structure. On the other hand, there is an industrial interest in measurement of displacement, velocity, acceleration, or a contribution of them for machinery condition monitoring. Considering this criterion in quadratic optimal control systems, a special style of performance index is configured. Utilizing the current relations in an aeroelastic case with proper attachment of piezoelectric elements can provide higher margin of instability and lead to lower vibration magnitude.

  5. Modeling of forced vibration phenomenon by making an electrical analogy with ANSYS finite element software

    Directory of Open Access Journals (Sweden)

    Myriam Rocío Pallares Muñoz


    Full Text Available Designing mechanical systems which are submitted to vibration requires calculation methods which are very different to those u-sed in other disciplines because, when this occurs, the magnitude of the forces becomes secondary and the frequency with which the force is repeated becomes the most important aspect. It must be taken care of, given that smaller periodic forces can prompt disasters than greater static forces. The article presents a representative problem regarding systems having forced vibration, the mathematical treatment of differential equations from an electrical and mechanical viewpoint, an electrical analogy, numerical modeling of circuits using ANSYS finite element software, analysis and comparison of numerical modeling results compared to test values, the post-processing of results and conclusions regarding electrical analogy methodology when analysing forced vibra-tion systems.

  6. Modeling of forced vibration phenomenon by making an electrical analogy with ANSYS finite element software

    Directory of Open Access Journals (Sweden)

    Myriam Rocío Pallares Muñoz


    Full Text Available Designing mechanical systems which are submitted to vibration requires calculation methods which are very different to those u-sed in other disciplines because, when this occurs, the magnitude of the forces becomes secondary and the frequency with which the force is repeated becomes the most important aspect. It must be taken care of, given that smaller periodic forces can prompt disasters than greater static forces. The article presents a representative problem regarding systems having forced vibration, the mathematical treatment of differential equations from an electrical and mechanical viewpoint, an electrical analogy, numerical modeling of circuits using ANSYS finite element software, analysis and comparison of numerical modeling results compared to test values, the post-processing of results and conclusions regarding electrical analogy methodology when analysing forced vibra-tion systems.

  7. Package security recorder of vibration (United States)

    Wang, Xiao-na; Hu, Jin-liang; Song, Shi-de


    This paper introduces a new kind of electronic product — Package Security Recorder of Vibration. It utilizes STC89C54RD+ LQFP-44 MCU as its main controller. At the same time, it also utilizes Freescale MMA845A 3-Axis 8-bit/12-bit Digital Accelerometer and Maxim DS1302 Trickle Charge Timekeeping Chip. It utilizes the MCU to read the value of the accelerometer and the value of the timekeeping chip, and records the data into the inner E2PROM of MCU. The whole device achieves measuring, reading and recording the time of the vibration and the intensity of the vibration. When we need the data, we can read them out. The data can be used in analyzing the condition of the cargo when it transported. The device can be applied to monitor the security of package. It solves the problem of responsibility affirming, when the valuable cargo are damaged while it transported. It offers powerful safeguard for the package. It's very value for application.

  8. Short Duration Small Sided Football and to a Lesser Extent Whole Body Vibration Exercise Induce Acute Changes in Markers of Bone Turnover

    Directory of Open Access Journals (Sweden)

    J. L. Bowtell


    Full Text Available We aimed to study whether short-duration vibration exercise or football sessions of two different durations acutely changed plasma markers of bone turnover and muscle strain. Inactive premenopausal women (n=56 were randomized to complete a single bout of short (FG15 or long duration (FG60 small sided football or low magnitude whole body vibration training (VIB. Procollagen type 1 amino-terminal propeptide (P1NP was increased during exercise for FG15 (51.6±23.0 to 56.5±22.5 μg·L−1, mean ± SD, P0.05. An increase in osteocalcin was observed 48 h after exercise (P<0.05, which did not differ between exercise groups. C-terminal telopeptide of type 1 collagen was not affected by exercise. Blood lactate concentration increased during exercise for FG15 (0.6±0.2 to 3.4±1.2 mM and FG60 (0.6±0.2 to 3.3±2.0 mM, but not for VIB (0.6±0.2 to 0.8±0.4 mM (P<0.05. Plasma creatine kinase increased by 55±63% and 137±119% 48 h after FG15 and FG60 (P<0.05, but not after VIB (26±54%, NS. In contrast to the minor elevation in osteocalcin in response to a single session of vibration exercise, both short and longer durations of small sided football acutely increased plasma P1NP, osteocalcin, and creatine kinase. This may contribute to favorable effects of chronic training on musculoskeletal health.

  9. A study on the reduction of nitric oxide molecule (NO) to nitroxyl anion (NO{sup -}) by vibrational energy

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Seon Woog [Silla Univ., Pusan (Korea, Republic of)


    It is shown that one-electron reduction of nitric oxide (NO) to nitroxyl anion (NO{sup -}) can be accelerated by vibrational energy. Potential energy surfaces of NO and NO{sup -} reveal that the vertical transition between them has favorable energetics for vibrationally excited molecule. Also, Franck-Condon factors between NO and NO{sup -} vibrational wave functions are calculated. It shows that the number of open channels increases with increased vibrational energy. These results mean that we can control the rate of reduction of NO to NO{sup -} by radiating an appropriate light.

  10. Microgravity Active Vibration Isolation System on Parabolic Flights (United States)

    Dong, Wenbo; Pletser, Vladimir; Yang, Yang


    The Microgravity Active Vibration Isolation System (MAIS) aims at reducing on-orbit vibrations, providing a better controlled lower gravity environment for microgravity physical science experiments. The MAIS will be launched on Tianzhou-1, the first cargo ship of the China Manned Space Program. The principle of the MAIS is to suspend with electro-magnetic actuators a scientific payload, isolating it from the vibrating stator. The MAIS's vibration isolation capability is frequency-dependent and a decrease of vibration of about 40dB can be attained. The MAIS can accommodate 20kg of scientific payload or sample unit, and provide 30W of power and 1Mbps of data transmission. The MAIS is developed to support microgravity scientific experiments on manned platforms in low earth orbit, in order to meet the scientific requirements for fluid physics, materials science, and fundamental physics investigations, which usually need a very quiet environment, increasing their chances of success and their scientific outcomes. The results of scientific experiments and technology tests obtained with the MAIS will be used to improve future space based research. As the suspension force acting on the payload is very small, the MAIS can only be operative and tested in a weightless environment. The 'Deutsches Zentrum für Luft- und Raumfahrt e.V.' (DLR, German Aerospace Centre) granted a flight opportunity to the MAIS experiment to be tested during its 27th parabolic flight campaign of September 2015 performed on the A310 ZERO-G aircraft managed by the French company Novespace, a subsidiary of the 'Centre National d'Etudes Spatiales' (CNES, French Space Agency). The experiment results confirmed that the 6 degrees of freedom motion control technique was effective, and that the vibration isolation performance fulfilled perfectly the expectations based on theoretical analyses and simulations. This paper will present the design of the MAIS and the experiment results obtained during the

  11. Noise and vibration analysis for automotive radiator cooling fan (United States)

    Razak, N. F. D.; Sani, M. S. M.; Azmi, W. H.; Zhang, B.


    This paper aims to analyse the noise and vibration of the automotive radiator specifically focused on its cooling fan for different fan conditions and different coolants used namely Ethylene Glycol (EG) water-based and Titanium Oxide (TiO2) nanofluid. Noise source identification is carried out by utilizing the sound intensity mapping method while an accelerometer is used to measure the vibration results. Both of these experiments are conducted when the fan was both in static and working conditions. The maximum cooling fan speed for the working fan detected by a tachometer for EG water-based is 1990 rpm while TiO2 nanofluid is 2030 rpm. The difference in speed is due to the different physical properties such viscosity of each coolant has where TiO2 nanofluid has lower viscosity than EG water-based. The maximum sound power level produced by EG water-based is 53.73 dB while TiO2 nanofluid is 101.94 dB. Meanwhile, the vibration frequencies of EG water-based are higher than TiO2 nanofluid. The noise level increases with the cooling fan speed but decreases with the vibration frequency. Apart from studying the noise and vibration of the automotive radiator, this research also analysed the potential application using nanofluid due to its great properties according to its major use in the heat transfer enhancement. As a conclusion, nanofluid as a radiator coolant could improve heat transfer rate, and could also reduce the presence of vibration in the automotive cooling system.

  12. Vibrationally Driven Hydrogen Abstraction Reaction by Bromine Radical in Solution (United States)

    Shin, Jae Yoon; Shalowski, Michael A.; Crim, F. Fleming


    Previously, we have shown that preparing reactants in specific vibrational states can affect the product state distribution and branching ratios in gas phase reactions. In the solution phase, however, no vibrational mediation study has been reported to date. In this work, we present our first attempt of vibrationally mediated bimolecular reaction in solution. Hydrogen abstraction from a solvent by a bromine radical can be a good candidate to test the effect of vibrational excitation on reaction dynamics because this reaction is highly endothermic and thus we can suppress any thermally initiated reaction in our experiment. Br radical quickly forms CT (charge transfer) complex with solvent molecule once it is generated from photolysis of a bromine source. The CT complex strongly absorbs visible light, which allows us to use electronic transient absorption for tracking Br radical population. For this experiment, we photolyze bromoform solution in dimethyl sulfoxide (DMSO) solvent with 267 nm to generate Br radical and excite the C-H stretch overtone of DMSO with 1700 nm a few hundred femtoseconds after the photolysis. Then, we monitor the population of Br-DMSO complex with 400 nm as a function of delay time between two pump beams and probe beam. As a preliminary result, we observed the enhancement of loss of Br-DMSO complex population due to the vibrational excitation. We think that increased loss of Br-DMSO complex is attributed to more loss of Br radical that abstracts hydrogen from DMSO and it is the vibrational excitation that promotes the reaction. To make a clear conclusion, we will next utilize infrared probing to directly detect HBr product formation.

  13. Coupling between flexural modes in free vibration of single-walled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Rumeng; Wang, Lifeng, E-mail: [State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, 210016 Nanjing (China)


    The nonlinear thermal vibration behavior of a single-walled carbon nanotube (SWCNT) is investigated by molecular dynamics simulation and a nonlinear, nonplanar beam model. Whirling motion with energy transfer between flexural motions is found in the free vibration of the SWCNT excited by the thermal motion of atoms where the geometric nonlinearity is significant. A nonlinear, nonplanar beam model considering the coupling in two vertical vibrational directions is presented to explain the whirling motion of the SWCNT. Energy in different vibrational modes is not equal even over a time scale of tens of nanoseconds, which is much larger than the period of fundamental natural vibration of the SWCNT at equilibrium state. The energy of different modes becomes equal when the time scale increases to the microsecond range.

  14. Coupling between flexural modes in free vibration of single-walled carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Rumeng Liu


    Full Text Available The nonlinear thermal vibration behavior of a single-walled carbon nanotube (SWCNT is investigated by molecular dynamics simulation and a nonlinear, nonplanar beam model. Whirling motion with energy transfer between flexural motions is found in the free vibration of the SWCNT excited by the thermal motion of atoms where the geometric nonlinearity is significant. A nonlinear, nonplanar beam model considering the coupling in two vertical vibrational directions is presented to explain the whirling motion of the SWCNT. Energy in different vibrational modes is not equal even over a time scale of tens of nanoseconds, which is much larger than the period of fundamental natural vibration of the SWCNT at equilibrium state. The energy of different modes becomes equal when the time scale increases to the microsecond range.

  15. Advances in structural vibration control application of magneto-rheological visco-elastomer

    Directory of Open Access Journals (Sweden)

    Zuguang Ying


    Full Text Available Magneto-rheological visco-elastomer (MRVE as a new smart material developed in recent years has several significant advantages over magneto-rheological liquid. The adjustability of structural dynamics to random environmental excitations is required in vibration control. MRVE can supply considerably adjustable damping and stiffness for structures, and the adjustment of dynamic properties is achieved only by applied magnetic fields with changeless structure design. Increasing researches on MRVE dynamic properties, modeling, and vibration control application are presented. Recent advances in MRVE dynamic properties and structural vibration control application including composite structural vibration mitigation under uniform magnetic fields, vibration response characteristics improvement through harmonic parameter distribution, and optimal bounded parametric control design based on the dynamical programming principle are reviewed. Relevant main methods and results introduced are beneficial to understanding and researches on MRVE application and development.

  16. Active Vibration Control of a Railway Vehicle Carbody Using Piezoelectric Elements (United States)

    Molatefi, Habibollah; Ayoubi, Pejman; Mozafari, Hozhabr


    In recent years and according to modern transportation development, rail vehicles are manufactured lighter to achieve higher speed and lower transportation costs. On the other hand, weight reduction of rail vehicles leads to increase the structural vibration. In this study, Active Vibration Control of a rail vehicle using piezoelectric elements is investigated. The optimal control employed as the control approach regard to the first two modes of vibration. A simplified Car body structure is modeled in Matlab using the finite element theory by considering six DOF beam element and then the Eigen functions and mode shapes are derived. The surface roughness of different classes of rail tracks have been obtained using random vibration theory and applied to the secondary suspension as the excitation of the structure; Then piezoelectric mounted where the greatest moments were captured. The effectiveness of Piezoelectric in structural vibrations attenuation of car body is demonstrated through the state space equations and its effect on modal coefficient.

  17. Experimental Study of the Ultrasonic Vibration-Assisted Abrasive Waterjet Micromachining the Quartz Glass

    Directory of Open Access Journals (Sweden)

    Rongguo Hou


    Full Text Available The ultrasonic vibration is used to enhance the capability of the abrasive water micromachining glass. And, the ultrasonic vibration is activated on the abrasive waterjet nozzle. The quality of the flow is improved, and the velocity of the abrasive is increased because of the addition of the ultrasonic energy. The relevant experimental results indicate that the erosion depth and the material volume removal of the glass are obviously increased when ultrasonic vibration is working. As for the influence of process parameters on the material removal of the glass such as vibration amplitude, system pressure, distance of the standoff, and abrasive size, the experimental results indicate that the system pressure and vibration contribute greatly to the glass material removal. Also, the erosion depth and the volume of material removal are increased with the increase in the vibration amplitude and system pressure. There are some uplifts found at the edge of erosion pit. Then, it can be inferred that the plastic method is an important material removal method during the machining process of ultrasonic vibration-assisted abrasive waterjet.

  18. Passive seismic monitoring at the ketzin CCS site -Magnitude estimation

    NARCIS (Netherlands)

    Paap, B.F.; Steeghs, T.P.H.


    In order to allow quantification of the strength of local micro-seismic events recorded at the CCS pilot site in Ketzin in terms of local magnitude, earthquake data recorded by standardized seismometers were used. Earthquakes were selected that occurred in Poland and Czech Republic and that were

  19. Abstract: Magnitude and Outcome of Resuscitation Activities at ...

    African Journals Online (AJOL)

    Abstract: Magnitude and Outcome of Resuscitation Activities at Rwanda Military Hospital for the Period of April 2013-September 2013. ... Lack of compliance with drug administration guidelines was noted, particularly in the lack of initiating administration of specific drugs, despite the drug being available (59%). Conclusion

  20. Development of a mathematical model for managing magnitude and ...

    African Journals Online (AJOL)

    Development of a mathematical model for managing magnitude and risk factors of injuries. ... a helpful Frequently Asked Questions about PDFs. Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.

  1. Common magnitude representation of fractions and decimals is task dependent. (United States)

    Zhang, Li; Fang, Qiaochu; Gabriel, Florence C; Szűcs, Denes


    Although several studies have compared the representation of fractions and decimals, no study has investigated whether fractions and decimals, as two types of rational numbers, share a common representation of magnitude. The current study aimed to answer the question of whether fractions and decimals share a common representation of magnitude and whether the answer is influenced by task paradigms. We included two different number pairs, which were presented sequentially: fraction-decimal mixed pairs and decimal-fraction mixed pairs in all four experiments. Results showed that when the mixed pairs were very close numerically with the distance 0.1 or 0.3, there was a significant distance effect in the comparison task but not in the matching task. However, when the mixed pairs were further apart numerically with the distance 0.3 or 1.3, the distance effect appeared in the matching task regardless of the specific stimuli. We conclude that magnitudes of fractions and decimals can be represented in a common manner, but how they are represented is dependent on the given task. Fractions and decimals could be translated into a common representation of magnitude in the numerical comparison task. In the numerical matching task, fractions and decimals also shared a common representation. However, both of them were represented coarsely, leading to a weak distance effect. Specifically, fractions and decimals produced a significant distance effect only when the numerical distance was larger.

  2. Magnitude estimation with noisy integrators linked by an adaptive reference

    Directory of Open Access Journals (Sweden)

    Kay eThurley


    Full Text Available Judgments of physical stimuli show characteristic biases; relatively small stimuli are overestimated whereas relatively large stimuli are underestimated (regression effect. Such biases likely result from a strategy that seeks to minimize errors given noisy estimates about stimuli that itself are drawn from a distribution, i.e., the statistics of the environment. While being conceptually well described, it is unclear how such a strategy could be implemented neurally. The present paper aims towards answering this question. A theoretical approach is introduced that describes magnitude estimation as two successive stages of noisy (neural integration. Both stages are linked by a reference memory that is updated with every new stimulus. The model reproduces the behavioral characteristics of magnitude estimation and makes several experimentally testable predictions. Moreover, the model identifies the regression effect as a means of minimizing estimation errors and explains how this optimality strategy depends on the subject's discrimination abilities and on the stimulus statistics. The latter influence predicts another property of magnitude estimation, the so-called range effect. Beyond being successful in describing decision-making, the present work suggests that noisy integration may also be important in processing magnitudes.

  3. Arm load magnitude affects selective shoulder muscle activation

    NARCIS (Netherlands)

    Steenbrink, F.; Meskers, C.G.; van Vliet, B.; Slaman, J.; Veeger, H.E.J.; Groot, J.H.


    For isometric tasks, shoulder muscle forces are assumed to scale linearly with the external arm load magnitude, i.e., muscle force ratios are constant. Inverse dynamic modeling generally predicts such linear scaling behavior, with a critical role for the arbitrary load sharing criteria, i.e., the

  4. Magnitude and factors associated with delayed initiation of ...

    African Journals Online (AJOL)

    Background: Breastfeeding as a determinant of infant health and nutrition saves up to 1.5 million infant lives annually. Though breastfeeding is mostly universal in sub-Saharan Africa, early initiation of breastfeeding is rarely practiced. Objective: To determine magnitude and factors associated with delayed initiation of ...

  5. Validity of electrical stimulus magnitude matching in chronic pain. (United States)

    Persson, Ann L; Westermark, Sofia; Merrick, Daniel; Sjölund, Bengt H


    To examine the validity of the PainMatcher in chronic pain. Comparison of parallel pain estimates from visual analogue scales with electrical stimulus magnitude matching. Thirty-one patients with chronic musculoskeletal pain. Twice a day ongoing pain was rated on a standard 100-mm visual analogue scale, and thereafter magnitude matching was performed using a PainMatcher. The sensory threshold to electrical stimulation was tested twice on separate occasions. In 438 observations visual analogue scale ranged from 3 to 95 (median 41) mm, and PainMatcher magnitudes from 2.67 to 27.67 (median 6.67; mean 7.78) steps. There was little correlation between visual analogue scale and magnitude data (r = 0.29; p visual analogue scale estimates covered the whole range of the instrument, the PainMatcher readings utilized only a small part of the instrument range and, importantly, had little or no relation to the visual analogue scale estimates. The validity of the PainMatcher procedure is doubtful.

  6. A kinematic model for calculating the magnitude of angular ...

    African Journals Online (AJOL)

    Here we have formulated a model for calculating the magnitude of angular momentum transfer in a steady-state accretion disk using only two parameters; the transport coefficient of vorticity,w and the rate of change of angular velocity with radial distance, dW/ dR . With this model, the mass accretion rate in an accretion disk ...

  7. Magnitude and correlates of moderate to severe anemia among ...

    African Journals Online (AJOL)

    Introduction: Moderate to severe anemia is an important clinical problem in HIV patients on Highly Active Antiretroviral Therapy. The rate of progression and mortality in this sub group of patients is high compared to non anemic patients. In sub Saharan Africa with scale up of Anti retroviral therapy, the magnitude of this ...

  8. Head Impact Magnitude in American High School Football. (United States)

    Schmidt, Julianne D; Guskiewicz, Kevin M; Mihalik, Jason P; Blackburn, J Troy; Siegmund, Gunter P; Marshall, Stephen W


    To describe determinants of head impact magnitudes between various play aspects in high school football. Thirty-two high school American football players wore Head Impact Telemetry System instrumented helmets to capture head impact magnitude (linear acceleration, rotational acceleration, and Head Impact Technology severity profile [HITsp]). We captured and analyzed video from 13 games (n = 3888 viewable head impacts) to determine the following play aspects: quarter, impact cause, play type, closing distance, double head impact, player's stance, player's action, direction of gaze, athletic readiness, level of anticipation, player stationary, ball possession, receiving ball, and snapping ball. We conducted random intercepts general linear mixed models to assess the differences in head impact magnitude between play aspects (α = 0.05). The following aspects resulted in greater head impact magnitude: impacts during the second quarter (HITsp: P = .03); contact with another player (linear, rotational, HITsp: P high school football. Rule or coaching changes that reduce collisions after long closing distances, especially when combined with the 3-point stance or when a player is being struck in the head, should be considered. Copyright © 2016 by the American Academy of Pediatrics.

  9. Milli-Magnitude Time-Resolved Photometry with BEST

    DEFF Research Database (Denmark)

    Karoff, Christoffer; Rauer, H.; Erikson, E.


    We present a comparative test of different photometry algorithms. The test has been made in order to optimize the number of stars for which light curves with milli-magnitude precision can be achieved in observations made by the Berlin Exoplanet Search Telescope (BEST), a small wide-angle telescop...

  10. Variation in the relative magnitude of intraspecific and interspecific ...

    Indian Academy of Sciences (India)


    competitive coevolution in one familiar and two novel environments, to specifically look for any evidence of a negative ... actions. [Joshi, A. 2004 Variation in the relative magnitude of intraspecific and interspecific competitive effects in novel versus familiar ...... in part by the Department of Science and Technology, Govt. of.

  11. Optimum force magnitude for orthodontic tooth movement: a mathematic model.

    NARCIS (Netherlands)

    Ren, Y.; Maltha, J.C.; Hof, M.A. van 't; Kuijpers-Jagtman, A.M.


    The aim of this study was to develop a mathematic model to describe the relationship between magnitude of applied force and rate of orthodontic tooth movement. Initially, data were extracted from experimental studies in dogs (beagles), in which controlled, standardized forces were used to move

  12. On the order of magnitude of some arithmetical functions under ...

    Indian Academy of Sciences (India)

    125, No. 4, November 2015, pp. 457–476. c Indian Academy of Sciences. On the order of magnitude of some arithmetical functions under digital constraint I. KARAM ALOUI. Université d'Aix-Marseille, Institut de Mathématiques de Marseille UMR 7373. CNRS, Campus de Luminy, Case 907, 13288 Marseille cedex 9, France.

  13. Influence of storm magnitude and watershed size on runoff ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 125; Issue 4. Influence of storm magnitude and ... The first type of nonlinearity is referred to rainfallrunoffdynamic process and the second type is with respect to a Power-law relation between peakdischarge and upstream drainage area. The dynamic nonlinearity ...

  14. Working Memory Strategies during Rational Number Magnitude Processing (United States)

    Hurst, Michelle; Cordes, Sara


    Rational number understanding is a critical building block for success in more advanced mathematics; however, how rational number magnitudes are conceptualized is not fully understood. In the current study, we used a dual-task working memory (WM) interference paradigm to investigate the dominant type of strategy (i.e., requiring verbal WM…

  15. Magnitude of stress and academic achievement of female students ...

    African Journals Online (AJOL)

    Stress is a universal phenomenon which no human being is free from. This paper examined the magnitude of stress and academic achievement of female students of the University of Ilorin. It was a description survey type. The target population comprised the 400 level female students from the four randomly selected ...

  16. Approximate number sense theory or approximate theory of magnitude? (United States)

    Content, Alain; Velde, Michael Vande; Adriano, Andrea


    Leibovich et al. argue that the evidence in favor of a perceptual mechanism devoted to the extraction of numerosity from visual collections is unsatisfactory and propose to replace it with an unspecific mechanism capturing approximate magnitudes from continuous dimensions. We argue that their representation of the evidence is incomplete and that their theoretical proposal is too vague to be useful.

  17. Disparities in the Magnitude of Human Immunodeficiency Virus ...

    African Journals Online (AJOL)

    Disparities in the Magnitude of Human Immunodeficiency Virus-related Opportunistic Infections Between High and Low/Middle-income Countries: Is Highly Active Antiretroviral Therapy Changing the ... Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader.

  18. Sequential sampling, magnitude estimation, and the wisdom of crowds

    DEFF Research Database (Denmark)

    Nash, Ulrik W.


    Sir Francis Galton (Galton, 1907) conjectured the psychological process of magnitude estimation caused the curious distribution of judgments he observed at Plymouth in 1906. However, after he published Vox Populi, researchers narrowed their attention to the first moment of judgment distributions ...

  19. Leishmaniases survey in the Awash Valley: The magnitude of ...

    African Journals Online (AJOL)

    Background: Both visceral and cutaneous leishmaniasis are reckoned to be endemic in Ethiopia in magnitudes of undetermined prevalence and distribution. There is considerable information pertaining to the public health importance of leishmaniases in the lower course of the Rift Valley of Ethiopia. Nevertheless, there is ...

  20. Strategy Use and Strategy Choice in Fraction Magnitude Comparison (United States)

    Fazio, Lisa K.; DeWolf, Melissa; Siegler, Robert S.


    We examined, on a trial-by-trial basis, fraction magnitude comparison strategies of adults with more and less mathematical knowledge. College students with high mathematical proficiency used a large variety of strategies that were well tailored to the characteristics of the problems and that were guaranteed to yield correct performance if executed…

  1. The Role of Executive Functions in Numerical Magnitude Skills (United States)

    Kolkman, Meijke E.; Hoijtink, Herbert J. A.; Kroesbergen, Evelyn H.; Leseman, Paul P. M.


    Executive functions (EF) are closely related to math performance. Little is known, however, about the role of EF in numerical magnitude skills (NS), although these skills are widely acknowledged to be important precursors of math learning. The current study focuses on the different roles of updating, shifting, and inhibition in NS. EF and NS were…

  2. Magnitude of knee osteoarthritis and associated risk factors among ...

    African Journals Online (AJOL)

    Background: Knee osteoarthritis is a chronic medical condition of public health importance in this setting. It is mostly diagnosed when preventive measures are no longer practicable due to reliance on the radiological diagnosis. Objectives: To determine the magnitude and risk factors associated with knee osteoarthritis ...

  3. Neural processing of reward magnitude under varying attentional demands. (United States)

    Stoppel, Christian Michael; Boehler, Carsten Nicolas; Strumpf, Hendrik; Heinze, Hans-Jochen; Hopf, Jens-Max; Schoenfeld, Mircea Ariel


    Central to the organization of behavior is the ability to represent the magnitude of a prospective reward and the costs related to obtaining it. Therein, reward-related neural activations are discounted in dependence of the effort required to resolve a given task. Varying attentional demands of the task might however affect reward-related neural activations. Here we employed fMRI to investigate the neural representation of expected values during a monetary incentive delay task with varying attentional demands. Following a cue, indicating at the same time the difficulty (hard/easy) and the reward magnitude (high/low) of the upcoming trial, subjects performed an attention task and subsequently received feedback about their monetary reward. Consistent with previous results, activity in anterior-cingulate, insular/orbitofrontal and mesolimbic regions co-varied with the anticipated reward-magnitude, but also with the attentional requirements of the task. These activations occurred contingent on action-execution and resembled the response time pattern of the subjects. In contrast, cue-related activations, signaling the forthcoming task-requirements, were only observed within attentional control structures. These results suggest that anticipated reward-magnitude and task-related attentional demands are concurrently processed in partially overlapping neural networks of anterior-cingulate, insular/orbitofrontal, and mesolimbic regions. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Magnitude of genotype x environment interaction for bacterial leaf ...

    African Journals Online (AJOL)

    Magnitude of genotype x environment interaction for bacterial leaf blight resistance in rice growing areas of Uganda. ... Low attack was observed on pyramided genotypes in all locations and two with single gene, i.e. IRBB8 and IRBB21, respectively. Interestingly, IR24 was as resistant as any of the pyramided combinations.

  5. The Magnitude of Obesity and its Relationship to Blood Pressure ...

    African Journals Online (AJOL)

    Background: Obesity in developing nations is no longer as uncommon as it was thought to be decades ago however paucity of data on the burden of obesity from urban communities was observed by previous workers. Aim: To determine the magnitude of obesity and its relationship to blood pressure among urban adult ...

  6. Severity of Depression and Magnitude of Productivity Loss


    Beck, Arne; Crain, A. Lauren; Solberg, Leif I.; Unützer, Jürgen; Glasgow, Russell E.; Maciosek, Michael V.; Whitebird, Robin


    PURPOSE Depression is associated with lowered work functioning, including absences, impaired productivity, and decreased job retention. Few studies have examined depression symptoms across a continuum of severity in relationship to the magnitude of work impairment in a large and heterogeneous patient population, however. We assessed the relationship between depression symptom severity and productivity loss among patients initiating treatment for depression.

  7. Determining on-fault earthquake magnitude distributions from integer programming (United States)

    Geist, Eric L.; Parsons, Tom


    Earthquake magnitude distributions among faults within a fault system are determined from regional seismicity and fault slip rates using binary integer programming. A synthetic earthquake catalog (i.e., list of randomly sampled magnitudes) that spans millennia is first formed, assuming that regional seismicity follows a Gutenberg-Richter relation. Each earthquake in the synthetic catalog can occur on any fault and at any location. The objective is to minimize misfits in the target slip rate for each fault, where slip for each earthquake is scaled from its magnitude. The decision vector consists of binary variables indicating which locations are optimal among all possibilities. Uncertainty estimates in fault slip rates provide explicit upper and lower bounding constraints to the problem. An implicit constraint is that an earthquake can only be located on a fault if it is long enough to contain that earthquake. A general mixed-integer programming solver, consisting of a number of different algorithms, is used to determine the optimal decision vector. A case study is presented for the State of California, where a 4 kyr synthetic earthquake catalog is created and faults with slip ≥3 mm/yr are considered, resulting in >106 variables. The optimal magnitude distributions for each of the faults in the system span a rich diversity of shapes, ranging from characteristic to power-law distributions.

  8. The influence of high-frequency vibrations on derailment stability coefficient of cars at wheel flange climbing on the rail

    Directory of Open Access Journals (Sweden)

    N. Bezrukavyy


    Full Text Available Purpose. Taking into account the traffic safety priority on the railway transport the search of factors promoting increase of derailment stability coefficient is an actual task. Purpose of the paper is the influence researches of the high-frequency vibrations on the train traffic safety parameter. In this case the special form of the wheel rim, at which its rigidity changes according to the harmonious law, was considered as a source of vibrations. Methodology. For the analysis of the vibration influence on the change of friction coefficient values the methods of so called vibrational mechanics were used. For determination of vibration amplitudes through moving the wheel flange points the finite-elements method was also used in the paper. Findings. During calculations it was established that the derailment stability coefficient to a great extent depends on the friction coefficient between wheel and rail. The paper shows that the friction coefficient in turn is influenced by the high-frequency vibrations. The form of the wheel rim was considered as a vibration source and the parameters characterizing vibration were calculated. It was given the quantitative estimation of the friction coefficient change under the vibration influence. It was also scientifically based the high-frequency vibration influence on the derailment stability coefficient. Originality. The paper proved the possibility of high-frequency vibration influence on the derailment stability coefficient. The studies theoretically substantiated the traffic safety increase in the presence of vibrations in the contact area of the wheel flange with the rail caused by special form of the wheel disc. Practical value. It is shown that the use of undulating wheel disc form do not constitute a threat to the traffic safety, and the availability of high-frequency vibration can reduce the derailment probability.

  9. Study of flow induce vibration inside 3.5 inch hard disk drives

    Directory of Open Access Journals (Sweden)

    Wichitpon Seepangmon


    Full Text Available This study focused on flow induced vibration of head stack assembly (HSA in a 3.5 inch hard disk drive with 5 disks and 10 read/write heads. We studied the effects of air flow on gimbal flex and resonance on arm. The comparison of vibrations on slider between the normal model and the experiment has been done for verifying the model. The peaks of frequency in experiment match the normal model at 1,040 1,320 and 1,400 Hz respectively. After that, the RNG K-ε turbulence model was used to determine the turbulent air flow of 7,200 rpm hard disk drive. The comparison between the normal model and the model with spoiler was investigated by using, computational fluid dynamics software (ANSYS and FLUENT. The results shown velocity magnitudes at the arm were decreased by 0.725 - 57.689 % and pressure dropped by 74.028 - 87.222 %. The velocity magnitudes at the gimbal flex were decreased by 5.522 - 14.291 % and pressure dropped by 48.440 - 82.947 %. The peak of vibrations on arm and gimbal flex was occurred at the frequency 1200 Hz. The model with spoiler could reduce vibration at arm by 2.56 - 95.601 % and reduce vibration at gimbal flex by 4.065 - 95.503 %. In the conclusion, the model with a spoiler could decrease the vibration at all surface of the arm and gimbal flex due to the velocity and pressure reduction[1][4].

  10. Effects of vibration on occupant driving performance under simulated driving conditions. (United States)

    Azizan, Amzar; Fard, M; Azari, Michael F; Jazar, Reza


    Although much research has been devoted to the characterization of the effects of whole-body vibration on seated occupants' comfort, drowsiness induced by vibration has received less attention to date. There are also little validated measurement methods available to quantify whole body vibration-induced drowsiness. Here, the effects of vibration on drowsiness were investigated. Twenty male volunteers were recruited for this experiment. Drowsiness was measured in a driving simulator, before and after 30-min exposure to vibration. Gaussian random vibration, with 1-15 Hz frequency bandwidth was used for excitation. During the driving session, volunteers were required to obey the speed limit of 100 kph and maintain a steady position on the left-hand lane. A deviation in lane position, steering angle variability, and speed deviation were recorded and analysed. Alternatively, volunteers rated their subjective drowsiness by Karolinska Sleepiness Scale (KSS) scores every 5-min. Following 30-min of exposure to vibration, a significant increase of lane deviation, steering angle variability, and KSS scores were observed in all volunteers suggesting the adverse effects of vibration on human alertness level. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Analysis of muscle fatigue induced by isometric vibration exercise at varying frequencies. (United States)

    Mischi, M; Rabotti, C; Cardinale, M


    An increase in neuromuscular activity, measured by electromyography (EMG), is usually observed during vibration exercise. The underlying mechanisms are however unclear, limiting the possibilities to introduce and exploit vibration training in rehabilitation programs. In this study, a new training device is used to perform vibration exercise at varying frequency and force, therefore enabling the analysis of the relationship between vibration frequency and muscle fatigue. Fatigue is estimated by maximum voluntary contraction measurement, as well as by EMG mean-frequency and conduction-velocity analysis. Seven volunteers performed five isometric contractions of the biceps brachii with a load consisting of a baseline of 80% of their maximum voluntary contraction (MVC), with no vibration and with a superimposed 20, 30, 40, and 50 Hz vibrational force of 40 N. Myoelectric and mechanical fatigue were estimated by EMG analysis and by assessment of the MVC decay, respectively. A dedicated motion artifact canceler, making use of accelerometry, is proposed to enable accurate EMG analysis. Use of this canceler leads to better interpolation of myoelectric fatigue trends and to better correlation between mechanical and myoelectric fatigue. In general, our results suggest vibration at 30 Hz to be the most fatiguing exercise. These results contribute to the analysis of vibration exercise and motivate further research aiming at improved training protocols.

  12. Combined Effects of High-Speed Railway Noise and Ground Vibrations on Annoyance (United States)

    Yokoshima, Shigenori; Morihara, Takashi; Sato, Tetsumi; Yano, Takashi


    The Shinkansen super-express railway system in Japan has greatly increased its capacity and has expanded nationwide. However, many inhabitants in areas along the railways have been disturbed by noise and ground vibration from the trains. Additionally, the Shinkansen railway emits a higher level of ground vibration than conventional railways at the same noise level. These findings imply that building vibrations affect living environments as significantly as the associated noise. Therefore, it is imperative to quantify the effects of noise and vibration exposures on each annoyance under simultaneous exposure. We performed a secondary analysis using individual datasets of exposure and community response associated with Shinkansen railway noise and vibration. The data consisted of six socio-acoustic surveys, which were conducted separately over the last 20 years in Japan. Applying a logistic regression analysis to the datasets, we confirmed the combined effects of vibration/noise exposure on noise/vibration annoyance. Moreover, we proposed a representative relationship between noise and vibration exposures, and the prevalence of each annoyance associated with the Shinkansen railway. PMID:28749452

  13. Combined Effects of High-Speed Railway Noise and Ground Vibrations on Annoyance. (United States)

    Yokoshima, Shigenori; Morihara, Takashi; Sato, Tetsumi; Yano, Takashi


    The Shinkansen super-express railway system in Japan has greatly increased its capacity and has expanded nationwide. However, many inhabitants in areas along the railways have been disturbed by noise and ground vibration from the trains. Additionally, the Shinkansen railway emits a higher level of ground vibration than conventional railways at the same noise level. These findings imply that building vibrations affect living environments as significantly as the associated noise. Therefore, it is imperative to quantify the effects of noise and vibration exposures on each annoyance under simultaneous exposure. We performed a secondary analysis using individual datasets of exposure and community response associated with Shinkansen railway noise and vibration. The data consisted of six socio-acoustic surveys, which were conducted separately over the last 20 years in Japan. Applying a logistic regression analysis to the datasets, we confirmed the combined effects of vibration/noise exposure on noise/vibration annoyance. Moreover, we proposed a representative relationship between noise and vibration exposures, and the prevalence of each annoyance associated with the Shinkansen railway.

  14. Effect of Slot Combination and Skewed Slot on Electromagnetic Vibration of Capacitor Motor under Load (United States)

    Hirotsuka, Isao; Tsuboi, Kazuo

    The capacitor motor (CRM) is widely used to drive industrial equipments and electric home appliances. Recently, the reduction in the vibration and noise of the CRM has become increasingly important from the standpoint of environmental improvement. However, the electromagnetic vibration of the CRM under load has not been analyzed sufficiently. Therefore, we have studied the electromagnetic vibration of CRM for the purpose of reducing it. In a previous paper, the relationships for a backward magnetic field, the equivalent circuit current, and the vibration of the CRM were clarified. The present paper theoretically and experimentally discusses the effect of the slot combination and skewed slot on the electromagnetic vibration of CRM under load. The primary conclusions are as follows: (1) In the case of 4-pole and 6-pole CRMs, the dominant electromagnetic vibration of CRMs was theoretically attributed to three types of electromagnetic force waves. Two types of electromagnetic force waves are generated: one wave is generated by the interaction of two forward magnetic fluxes, such as those of a three-phase squirrel-cage induction motor, and the other wave is generated under the influence of a backward magnetic flux. (2) The characteristics of dominant electromagnetic vibration depending on load and running capacitor were classified theoretically and experimentally into three types based on the characteristics of the electromagnetic force wave and equivalent circuit current. (3) The influences of magnetic saturation in dominant electromagnetic vibration were verified experimentally and their causes were clarified theoretically in relation to electromagnetic force waves.

  15. Short Duration Bioastronautics Investigation 1904: Human Factors Assessment of Vibration Effects on Visual Performance during Launch (United States)

    Thompson, Shelby; Holden, Kritina; Ebert, Douglas; Root, Phillip; Adelstein, Bernard; Jones, Jeffery


    The primary objective of the Short Duration Bioastronautics Investigation (SDBI) 1904 was to determine visual performance limits during Shuttle operational vibration and g-loads, specifically through the determination of minimal usable font sizes using Orion-type display formats. Currently there is little to no data available to quantify human visual performance under the extreme g- and vibration conditions of launch. Existing data on shuttle vibration magnitude and frequency is incomplete and does not address human visual performance. There have been anecdotal reports of performance decrements from shuttle crews, but no structured data have been collected. Previous work by NASA on the effects of vibration and linear g-loads on human performance was conducted during the Gemini era, but these experiments were performed using displays and controls that are dramatically different than current concepts being considered by the Constellation Program. Recently, three investigations of visual performance under vibration have been completed at NASA Ames Research Center: the first examining whole-body vibration, the second employing whole-body vibration coupled with a sustained g-load, and a third examining the effects of peak versus extended duration vibration. However, all of these studies were conducted using only a single x-axis direction (eyeballs in/out). Estimates of thrust oscillations from the Constellation Ares-I first stage are driving the need for realistic human performance requirements. SDBI 1904 was an opportunity to address the need for requirements by conducting a highly focused and applied evaluation in a relevant spaceflight environment. The SDBI was a companion effort to Detailed Test Objective (DTO) 695, which measured shuttle seat accelerations (vibration) during ascent. Data from the SDBI will serve an important role in interpreting the DTO vibration data. Both SDBI 1904 and DTO 695 were low impact with respect to flight resources, and combined, they

  16. Earthquake Early Warning with Seismogeodesy: Detection, Location, and Magnitude Estimation (United States)

    Goldberg, D.; Bock, Y.; Melgar, D.


    Earthquake early warning is critical to reducing injuries and casualties in case of a large magnitude earthquake. The system must rely on near-source data to minimize the time between event onset and issuance of a warning. Early warning systems typically use seismic instruments (seismometers and accelerometers), but these instruments experience difficulty maintaining reliable data in the near-source region and undergo magnitude saturation for large events. Global Navigation Satellite System (GNSS) instruments capture the long period motions and have been shown to produce robust estimates of the true size of the earthquake source. However, GNSS is often overlooked in this context in part because it is not precise enough to record the first seismic wave arrivals (P-wave detection), an important consideration for issuing an early warning. GNSS instruments are becoming integrated into early warning, but are not yet fully exploited. Our approach involves the combination of direct measurements from collocated GNSS and accelerometer stations to estimate broadband coseismic displacement and velocity waveforms [Bock et al., 2011], a method known as seismogeodesy. We present the prototype seismogeodetic early warning system developed at Scripps and demonstrate that the seismogeodetic dataset can be used for P-wave detection, hypocenter location, and shaking onset determination. We discuss uncertainties in each of these estimates and include discussion of the sensitivity of our estimates as a function of the azimuthal distribution of monitoring stations. The seismogeodetic combination has previously been shown to be immune to magnitude saturation [Crowell et al., 2013; Melgar et al., 2015]. Rapid magnitude estimation is an important product in earthquake early warning, and is the critical metric in current tsunami hazard warnings. Using the seismogeodetic approach, we refine earthquake magnitude scaling using P-wave amplitudes (Pd) and peak ground displacements (PGD) for a

  17. Arm load magnitude affects selective shoulder muscle activation. (United States)

    Steenbrink, Frans; Meskers, Carel G M; van Vliet, Bart; Slaman, Jorrit; Veeger, H E J; De Groot, Jurriaan H


    For isometric tasks, shoulder muscle forces are assumed to scale linearly with the external arm load magnitude, i.e., muscle force ratios are constant. Inverse dynamic modeling generally predicts such linear scaling behavior, with a critical role for the arbitrary load sharing criteria, i.e., the "cost function". We tested the linearity of the relation between external load magnitude exerted on the humerus and shoulder muscle activation. Six isometric force levels ranging from 17 to 100% of maximal arm force were exerted in 24 directions in a plane perpendicular to the longitudinal axis of the humerus. The direction of maximum muscle activation, the experimentally observed so called Principal Action (PA), was determined for each force magnitude in 12 healthy subjects. This experiment was also simulated with the Delft Shoulder and Elbow Model (DSEM) using two cost functions: (1) minimizing muscle stress and (2) a compound, energy related cost function. PA, both experimental (PA(exp)) and simulated (PA(sim)), was expected not to change with arm forces magnitudes. PA(exp) of the mm. trapezius pars descendens, deltoideus pars medialis and teres major changed substantially as a function of external force magnitude, indicating external load dependency of shoulder muscle activation. In DSEM simulations, using the stress cost function, small non-linearities in the muscle force-external load dependency were observed, originating from gravitational forces working on clavicular and scapular bone masses. More pronounced non-linearities were introduced by using the compound energy related cost function, but no similarity was observed between PA(exp) and PA(sim).

  18. PREFACE: International Conference on Vibration Problems (ICOVP-2015) (United States)


    Vibrations produced by operating machine cause deleterious effect including excessive stresses in mechanical components and reduce the machine performance. Hence, it is important to minimize the vibrations to improve the machine performance. Machines need the materials wherein vibration characteristics such as frequency and amplitude are lower. The vibration characteristics depend on strength and other elastic constants. Therefore, study of the relation between vibration characteristics and the elastic constants of the material is very much important. In the domain of seismology, the knowledge of vibrations associated with an earthquake is needed for the mitigation plans. With the increased use of strong and light weight structures especially in defence and aero-space engineering applications, wherein, precision is very important, problems of vibrations arise. The knowledge of quality (mechanical properties) of bones comes from the study of vibrations in it. This knowledge may, for exmple, help to answer bone tissue remodelling problems. Unfortunately, vibrations mostly deal with destructive areas such as manufacturing industry, seismology, and bonemechanics. These days, mathematics has become a very important tool for Non- Destructive Evaluation (NDE) in the destructive areas. A very common issue in the said domains is that the pertinent problems result in non-linear coupled differential equations which are not easily solvable. Keeping the above facts in mind, the Department of Mathematics, Kakatiya University has organized the International Conference on Vibration Problems (ICOVP-2015) from February, 18-20, 2015 in collaboration with the Department of Mechanical Engineering, Kakatiya University, and Von-Karman Society, West Bengal. This association has already succeeded in organizing the Wave Mechanics and Vibration Conference (WMVC) in the year 2010. In the Conference, new research results were presented by the experts from eight countries. There were more than

  19. Efficient vibration mode analysis of aircraft with multiple external store configurations (United States)

    Karpel, M.


    A coupling method for efficient vibration mode analysis of aircraft with multiple external store configurations is presented. A set of low-frequency vibration modes, including rigid-body modes, represent the aircraft. Each external store is represented by its vibration modes with clamped boundary conditions, and by its rigid-body inertial properties. The aircraft modes are obtained from a finite-element model loaded by dummy rigid external stores with fictitious masses. The coupling procedure unloads the dummy stores and loads the actual stores instead. The analytical development is presented, the effects of the fictitious mass magnitudes are discussed, and a numerical example is given for a combat aircraft with external wing stores. Comparison with vibration modes obtained by a direct (full-size) eigensolution shows very accurate coupling results. Once the aircraft and stores data bases are constructed, the computer time for analyzing any external store configuration is two to three orders of magnitude less than that of a direct solution.

  20. Empirical improvements for estimating earthquake response spectra with random‐vibration theory (United States)

    Boore, David; Thompson, Eric M.


    The stochastic method of ground‐motion simulation is often used in combination with the random‐vibration theory to directly compute ground‐motion intensity measures, thereby bypassing the more computationally intensive time‐domain simulations. Key to the application of random‐vibration theory to simulate response spectra is determining the duration (Drms) used in computing the root‐mean‐square oscillator response. Boore and Joyner (1984) originally proposed an equation for Drms , which was improved upon by Liu and Pezeshk (1999). Though these equations are both substantial improvements over using the duration of the ground‐motion excitation for Drms , we document systematic differences between the ground‐motion intensity measures derived from the random‐vibration and time‐domain methods for both of these Drms equations. These differences are generally less than 10% for most magnitudes, distances, and periods of engineering interest. Given the systematic nature of the differences, however, we feel that improved equations are warranted. We empirically derive new equations from time‐domain simulations for eastern and western North America seismological models. The new equations improve the random‐vibration simulations over a wide range of magnitudes, distances, and oscillator periods.