WorldWideScience

Sample records for vibration magnitude increased

  1. Quantification of acute vocal fold epithelial surface damage with increasing time and magnitude doses of vibration exposure.

    Directory of Open Access Journals (Sweden)

    Tsuyoshi Kojima

    Full Text Available Because the vocal folds undergo repeated trauma during continuous cycles of vibration, the epithelium is routinely susceptible to damage during phonation. Excessive and prolonged vibration exposure is considered a significant predisposing factor in the development of vocal fold pathology. The purpose of the present study was to quantify the extent of epithelial surface damage following increased time and magnitude doses of vibration exposure using an in vivo rabbit phonation model. Forty-five New Zealand white breeder rabbits were randomized to nine groups and received varying phonation time-doses (30, 60, or 120 minutes and magnitude-doses (control, modal intensity phonation, or raised intensity phonation of vibration exposure. Scanning electron microscopy and transmission electron microscopy was used to quantify the degree of epithelial surface damage. Results revealed a significant reduction in microprojection density, microprojection height, and depth of the epithelial surface with increasing time and phonation magnitudes doses, signifying increased epithelial surface damage risk with excessive and prolonged vibration exposure. Destruction to the epithelial cell surface may provide significant insight into the disruption of cell function following prolonged vibration exposure. One important goal achieved in the present study was the quantification of epithelial surface damage using objective imaging criteria. These data provide an important foundation for future studies of long-term tissue recovery from excessive and prolonged vibration exposure.

  2. Low-Magnitude, High-Frequency Vibration Fails to Accelerate Ligament Healing but Stimulates Collagen Synthesis in the Achilles Tendon.

    Science.gov (United States)

    Thompson, William R; Keller, Benjamin V; Davis, Matthew L; Dahners, Laurence E; Weinhold, Paul S

    2015-05-01

    Low-magnitude, high-frequency vibration accelerates fracture and wound healing and prevents disuse atrophy in musculoskeletal tissues. To investigate the role of low-magnitude, high-frequency vibration as a treatment to accelerate healing of an acute ligament injury and to examine gene expression in the intact Achilles tendon of the injured limb after low-magnitude, high-frequency vibration. Controlled laboratory study. Complete surgical transection of the medial collateral ligament (MCL) was performed in 32 Sprague-Dawley rats, divided into control and low-magnitude, high-frequency vibration groups. Low-magnitude, high-frequency vibration started on postoperative day 2, and rats received vibration for 30 minutes a day for 12 days. All rats were sacrificed 2 weeks after the operation, and their intact and injured MCLs were biomechanically tested or used for histological analysis. Intact Achilles tendons from the injured limb were evaluated for differences in gene expression. Mechanical testing revealed no differences in the ultimate tensile load or the structural stiffness between the control and vibration groups for either the injured or intact MCL. Vibration exposure increased gene expression of collagen 1 alpha (3-fold), interleukin 6 (7-fold), cyclooxygenase 2 (5-fold), and bone morphogenetic protein 12 (4-fold) in the intact Achilles tendon when compared with control tendons ( P frequency vibration treatment, significant enhancements in gene expression were observed in the intact Achilles tendon. These included collagen, several inflammatory cytokines, and growth factors critical for tendons. As low-magnitude, high-frequency vibration had no negative effects on ligament healing, vibration therapy may be a useful tool to accelerate healing of other tissues (bone) in multitrauma injuries without inhibiting ligament healing. Additionally, the enhanced gene expression in response to low-magnitude, high-frequency vibration in the intact Achilles tendon suggests the

  3. Typical whole body vibration exposure magnitudes encountered in the open pit mining industry.

    Science.gov (United States)

    Howard, Bryan; Sesek, Richard; Bloswick, Don

    2009-01-01

    According to recent research, a causal link has been established between occupational exposure to whole body vibration and an increased occurrence of low back pain. To aid in the further development of an in-house health and safety program for a large open pit mining facility interested in reducing back pain among its operators, whole body vibration magnitudes were characterized for a range of jobs. Specifically, thirty-five individual jobs from five different areas across the facility were evaluated for tri-axial acceleration levels during normal operating conditions. Tri-axial acceleration magnitudes were categorized into thirteen job groups. Job groups were ranked according to exposure and compared to the ISO 2631-1 standard for health risk assessment. Three of the thirteen job groups produced tri-axial acceleration magnitudes below the ISO 2631-1 low/moderate health caution limit for a twelve hour exposure. Six of the thirteen job groups produced exposures within the moderate health risk range. Four job groups were found to subject operators to WBV acceleration magnitudes above the moderate/high health caution limit.

  4. Does hearing in response to soft-tissue stimulation involve skull vibrations? A within-subject comparison between skull vibration magnitudes and hearing thresholds.

    Science.gov (United States)

    Chordekar, Shai; Perez, Ronen; Adelman, Cahtia; Sohmer, Haim; Kishon-Rabin, Liat

    2018-04-03

    Hearing can be elicited in response to bone as well as soft-tissue stimulation. However, the underlying mechanism of soft-tissue stimulation is under debate. It has been hypothesized that if skull vibrations were the underlying mechanism of hearing in response to soft-tissue stimulation, then skull vibrations would be associated with hearing thresholds. However, if skull vibrations were not associated with hearing thresholds, an alternative mechanism is involved. In the present study, both skull vibrations and hearing thresholds were assessed in the same participants in response to bone (mastoid) and soft-tissue (neck) stimulation. The experimental group included five hearing-impaired adults in whom a bone-anchored hearing aid was implanted due to conductive or mixed hearing loss. Because the implant is exposed above the skin and has become an integral part of the temporal bone, vibration of the implant represented skull vibrations. To ensure that middle-ear pathologies of the experimental group did not affect overall results, hearing thresholds were also obtained in 10 participants with normal hearing in response to stimulation at the same sites. We found that the magnitude of the bone vibrations initiated by the stimulation at the two sites (neck and mastoid) detected by the laser Doppler vibrometer on the bone-anchored implant were linearly related to stimulus intensity. It was therefore possible to extrapolate the vibration magnitudes at low-intensity stimulation, where poor signal-to-noise ratio limited actual recordings. It was found that the vibration magnitude differences (between soft-tissue and bone stimulation) were not different than the hearing threshold differences at the tested frequencies. Results of the present study suggest that bone vibration magnitude differences can adequately explain hearing threshold differences and are likely to be responsible for the hearing sensation. Thus, the present results support the idea that bone and soft

  5. High-frequency, low-magnitude vibration does not prevent bone loss resulting from muscle disuse in mice following botulinum toxin injection.

    Science.gov (United States)

    Manske, Sarah L; Good, Craig A; Zernicke, Ronald F; Boyd, Steven K

    2012-01-01

    High-frequency, low-magnitude vibration enhances bone formation ostensibly by mimicking normal postural muscle activity. We tested this hypothesis by examining whether daily exposure to low-magnitude vibration (VIB) would maintain bone in a muscle disuse model with botulinum toxin type A (BTX). Female 16-18 wk old BALB/c mice (N = 36) were assigned to BTX-VIB, BTX-SHAM, VIB, or SHAM. BTX mice were injected with BTX (20 µL; 1 U/100 g body mass) into the left hindlimb posterior musculature. All mice were anaesthetized for 20 min/d, 5 d/wk, for 3 wk, and the left leg mounted to a holder. Through the holder, VIB mice received 45 Hz, ± 0.6 g sinusoidal acceleration without weight bearing. SHAM mice received no vibration. At baseline and 3 wk, muscle cross-sectional area (MCSA) and tibial bone properties (epiphysis, metaphysis and diaphysis) were assessed by in vivo micro-CT. Bone volume fraction in the metaphysis decreased 12 ± 9% and 7 ± 6% in BTX-VIB and BTX-SHAM, but increased in the VIB and SHAM. There were no differences in dynamic histomorphometry outcomes between BTX-VIB and BTX nor between VIB and SHAM. Thus, vibration did not prevent bone loss induced by a rapid decline in muscle activity nor produce an anabolic effect in normal mice. The daily loading duration was shorter than would be expected from postural muscle activity, and may have been insufficient to prevent bone loss. Based on the approach used in this study, vibration does not prevent bone loss in the absence of muscle activity induced by BTX.

  6. High-frequency, low-magnitude vibration does not prevent bone loss resulting from muscle disuse in mice following botulinum toxin injection.

    Directory of Open Access Journals (Sweden)

    Sarah L Manske

    Full Text Available High-frequency, low-magnitude vibration enhances bone formation ostensibly by mimicking normal postural muscle activity. We tested this hypothesis by examining whether daily exposure to low-magnitude vibration (VIB would maintain bone in a muscle disuse model with botulinum toxin type A (BTX. Female 16-18 wk old BALB/c mice (N = 36 were assigned to BTX-VIB, BTX-SHAM, VIB, or SHAM. BTX mice were injected with BTX (20 µL; 1 U/100 g body mass into the left hindlimb posterior musculature. All mice were anaesthetized for 20 min/d, 5 d/wk, for 3 wk, and the left leg mounted to a holder. Through the holder, VIB mice received 45 Hz, ± 0.6 g sinusoidal acceleration without weight bearing. SHAM mice received no vibration. At baseline and 3 wk, muscle cross-sectional area (MCSA and tibial bone properties (epiphysis, metaphysis and diaphysis were assessed by in vivo micro-CT. Bone volume fraction in the metaphysis decreased 12 ± 9% and 7 ± 6% in BTX-VIB and BTX-SHAM, but increased in the VIB and SHAM. There were no differences in dynamic histomorphometry outcomes between BTX-VIB and BTX nor between VIB and SHAM. Thus, vibration did not prevent bone loss induced by a rapid decline in muscle activity nor produce an anabolic effect in normal mice. The daily loading duration was shorter than would be expected from postural muscle activity, and may have been insufficient to prevent bone loss. Based on the approach used in this study, vibration does not prevent bone loss in the absence of muscle activity induced by BTX.

  7. Low-frequency, low-magnitude vibrations (LFLM enhances chondrogenic differentiation potential of human adipose derived mesenchymal stromal stem cells (hASCs

    Directory of Open Access Journals (Sweden)

    Krzysztof Marycz

    2016-02-01

    Full Text Available The aim of this study was to evaluate if low-frequency, low-magnitude vibrations (LFLM could enhance chondrogenic differentiation potential of human adipose derived mesenchymal stem cells (hASCs with simultaneous inhibition of their adipogenic properties for biomedical purposes. We developed a prototype device that induces low-magnitude (0.3 g low-frequency vibrations with the following frequencies: 25, 35 and 45 Hz. Afterwards, we used human adipose derived mesenchymal stem cell (hASCS, to investigate their cellular response to the mechanical signals. We have also evaluated hASCs morphological and proliferative activity changes in response to each frequency. Induction of chondrogenesis in hASCs, under the influence of a 35 Hz signal leads to most effective and stable cartilaginous tissue formation through highest secretion of Bone Morphogenetic Protein 2 (BMP-2, and Collagen type II, with low concentration of Collagen type I. These results correlated well with appropriate gene expression level. Simultaneously, we observed significant up-regulation of α3, α4, β1 and β3 integrins in chondroblast progenitor cells treated with 35 Hz vibrations, as well as Sox-9. Interestingly, we noticed that application of 35 Hz frequencies significantly inhibited adipogenesis of hASCs. The obtained results suggest that application of LFLM vibrations together with stem cell therapy might be a promising tool in cartilage regeneration.

  8. Study for increasing micro-drill reliability by vibrating drilling

    International Nuclear Information System (INIS)

    Yang Zhaojun; Li Wei; Chen Yanhong; Wang Lijiang

    1998-01-01

    A study for increasing micro-drill reliability by vibrating drilling is described. Under the experimental conditions of this study it is observed, from reliability testing and the fitting of a life-distribution function, that the lives of micro-drills under ordinary drilling follow the log-normal distribution and the lives of micro-drills under vibrating drilling follow the Weibull distribution. Calculations for reliability analysis show that vibrating drilling can increase the lives of micro-drills and correspondingly reduce the scatter of drill lives. Therefore, vibrating drilling increases the reliability of micro-drills

  9. The impact of low-magnitude high-frequency vibration on fracture healing is profoundly influenced by the oestrogen status in mice.

    Science.gov (United States)

    Wehrle, Esther; Liedert, Astrid; Heilmann, Aline; Wehner, Tim; Bindl, Ronny; Fischer, Lena; Haffner-Luntzer, Melanie; Jakob, Franz; Schinke, Thorsten; Amling, Michael; Ignatius, Anita

    2015-01-01

    Fracture healing is impaired in aged and osteoporotic individuals. Because adequate mechanical stimuli are able to increase bone formation, one therapeutical approach to treat poorly healing fractures could be the application of whole-body vibration, including low-magnitude high-frequency vibration (LMHFV). We investigated the effects of LMHFV on fracture healing in aged osteoporotic mice. Female C57BL/6NCrl mice (n=96) were either ovariectomised (OVX) or sham operated (non-OVX) at age 41 weeks. When aged to 49 weeks, all mice received a femur osteotomy that was stabilised using an external fixator. The mice received whole-body vibrations (20 minutes/day) with 0.3 G: peak-to-peak acceleration and a frequency of 45 Hz. After 10 and 21 days, the osteotomised femurs and intact bones (contra-lateral femurs, lumbar spine) were evaluated using bending-testing, micro-computed tomography (μCT), histology and gene expression analyses. LMHFV disturbed fracture healing in aged non-OVX mice, with significantly reduced flexural rigidity (-81%) and bone formation (-80%) in the callus. Gene expression analyses demonstrated increased oestrogen receptor β (ERβ, encoded by Esr2) and Sost expression in the callus of the vibrated animals, but decreased β-catenin, suggesting that ERβ might mediate these negative effects through inhibition of osteoanabolic Wnt/β-catenin signalling. In contrast, in OVX mice, LMHFV significantly improved callus properties, with increased flexural rigidity (+1398%) and bone formation (+637%), which could be abolished by subcutaneous oestrogen application (0.025 mg oestrogen administered in a 90-day-release pellet). On a molecular level, we found an upregulation of ERα in the callus of the vibrated OVX mice, whereas ERβ was unaffected, indicating that ERα might mediate the osteoanabolic response. Our results indicate a major role for oestrogen in the mechanostimulation of fracture healing and imply that LMHFV might only be safe and effective in

  10. The impact of low-magnitude high-frequency vibration on fracture healing is profoundly influenced by the oestrogen status in mice

    Directory of Open Access Journals (Sweden)

    Esther Wehrle

    2015-01-01

    Full Text Available Fracture healing is impaired in aged and osteoporotic individuals. Because adequate mechanical stimuli are able to increase bone formation, one therapeutical approach to treat poorly healing fractures could be the application of whole-body vibration, including low-magnitude high-frequency vibration (LMHFV. We investigated the effects of LMHFV on fracture healing in aged osteoporotic mice. Female C57BL/6NCrl mice (n=96 were either ovariectomised (OVX or sham operated (non-OVX at age 41 weeks. When aged to 49 weeks, all mice received a femur osteotomy that was stabilised using an external fixator. The mice received whole-body vibrations (20 minutes/day with 0.3 g peak-to-peak acceleration and a frequency of 45 Hz. After 10 and 21 days, the osteotomised femurs and intact bones (contra-lateral femurs, lumbar spine were evaluated using bending-testing, micro-computed tomography (μCT, histology and gene expression analyses. LMHFV disturbed fracture healing in aged non-OVX mice, with significantly reduced flexural rigidity (−81% and bone formation (−80% in the callus. Gene expression analyses demonstrated increased oestrogen receptor β (ERβ, encoded by Esr2 and Sost expression in the callus of the vibrated animals, but decreased β-catenin, suggesting that ERβ might mediate these negative effects through inhibition of osteoanabolic Wnt/β-catenin signalling. In contrast, in OVX mice, LMHFV significantly improved callus properties, with increased flexural rigidity (+1398% and bone formation (+637%, which could be abolished by subcutaneous oestrogen application (0.025 mg oestrogen administered in a 90-day-release pellet. On a molecular level, we found an upregulation of ERα in the callus of the vibrated OVX mice, whereas ERβ was unaffected, indicating that ERα might mediate the osteoanabolic response. Our results indicate a major role for oestrogen in the mechanostimulation of fracture healing and imply that LMHFV might only be safe and

  11. Zero-point vibrational effects on optical rotation

    DEFF Research Database (Denmark)

    Ruud, K.; Taylor, P.R.; Åstrand, P.-O.

    2001-01-01

    We investigate the effects of molecular vibrations on the optical rotation in two chiral molecules, methyloxirane and trans-2,3-dimethylthiirane. It is shown that the magnitude of zero-point vibrational corrections increases as the electronic contribution to the optical rotation increases....... Vibrational effects thus appear to be important for an overall estimate of the molecular optical rotation, amounting to about 20-30% of the electronic counterpart. We also investigate the special case of chirality introduced in a molecule through isotopic substitution. In this case, the zero-point vibrational...

  12. Low magnitude high frequency vibration promotes adipogenic differentiation of bone marrow stem cells via P38 MAPK signal.

    Directory of Open Access Journals (Sweden)

    Qian Zhao

    Full Text Available Low magnitude high frequency vibration (LMHFV has been mainly reported for its influence on the musculoskeletal system, particularly the bone tissue. In the bone structure, osteogenic activity is the main focus of study with regards to LMHFV. However, adipogenesis, another important mode of differentiation in the bone marrow cavity that might be affected by LMHFV, is much less researched. Furthermore, the molecular mechanism of how LMHFV influences adipogenesis still needs to be understood. Here, we tested the effect of LMHFV (0.3g, 40 Hz, amplitude: 50μm, 15min/d, on multipotent stem cells (MSCs, which are the common progenitors of osteogenic, chondrogenic, adipogenic and myogenic cells. It is previously shown that LMHFV promotes osteogenesis of MSCs. In this study, we further revealed its effect on adipo-differentiation of bone marrow stem cells (BMSCs and studied the underlying signaling pathway. We found that when treated with LMHFV, the cells showed a higher expression of PPARγ, C/EBPα, adiponectin and showed more oil droplets. After vibration, the protein expression of PPARγ increased, and the phosphorylation of p38 MAPK was enhanced. After treating cells with SB203580, a specific p38 inhibitor, both the protein level of PPARγ illustrated by immunofluorescent staining and the oil droplets number, were decreased. Altogether, this indicates that p38 MAPK is activated during adipogenesis of BMSCs, and this is promoted by LMHFV. Our results demonstrating that specific parameters of LMHFV promotes adipogenesis of MSCs and enhances osteogenesis, highlights an unbeneficial side effect of vibration therapy used for preventing obesity and osteoporosis.

  13. Magnitude of Neck-Surface Vibration as an Estimate of Subglottal Pressure during Modulations of Vocal Effort and Intensity in Healthy Speakers

    Science.gov (United States)

    McKenna, Victoria S.; Llico, Andres F.; Mehta, Daryush D.; Perkell, Joseph S.; Stepp, Cara E.

    2017-01-01

    Purpose: This study examined the relationship between the magnitude of neck-surface vibration (NSV[subscript Mag]; transduced with an accelerometer) and intraoral estimates of subglottal pressure (P'[subscript sg]) during variations in vocal effort at 3 intensity levels. Method: Twelve vocally healthy adults produced strings of /p?/ syllables in 3…

  14. Induced vibrations increase performance of a winged self-righting robot

    Science.gov (United States)

    Othayoth, Ratan; Xuan, Qihan; Li, Chen

    When upside down, cockroaches can open their wings to dynamically self-right. In this process, an animal often has to perform multiple unsuccessful maneuvers to eventually right, and often flails its legs. Here, we developed a cockroach-inspired winged self-righting robot capable of controlled body vibrations to test the hypothesis that vibrations assist self-righting transitions. Robot body vibrations were induced by an oscillating mass (10% of body mass) and varied by changing oscillation frequency. We discovered that, as the robot's body vibrations increased, righting probability increased, and righting time decreased (P locomotor transitions, but highlights the need for further stochastic modeling to capture the uncertain nature of when righting maneuvers result in successful righting.

  15. Vibration characteristics of dental high-speed turbines and speed-increasing handpieces.

    Science.gov (United States)

    Poole, Ruth L; Lea, Simon C; Dyson, John E; Shortall, Adrian C C; Walmsley, A Damien

    2008-07-01

    Vibrations of dental handpieces may contribute to symptoms of hand-arm vibration syndrome in dental personnel and iatrogenic enamel cracking in teeth. However, methods for measuring dental handpiece vibrations have previously been limited and information about vibration characteristics is sparse. This preliminary study aimed to use a novel approach to assess the vibrations of unloaded high-speed handpieces in vitro. Maximum vibration displacement amplitudes of five air turbines and two speed-increasing handpieces were recorded whilst they were operated with and without a rotary cutting instrument (RCI) using a scanning laser vibrometer (SLV). RCI rotation speeds, calculated from frequency peaks, were consistent with expected values. ANOVA statistical analysis indicated significant differences in vibrations between handpiece models (p0.11). Operating handpieces with a RCI resulted in greater vibrations than with no RCI (pmeasurement exceeded 4 microm for the handpieces in the current test setup (implying that these vibrations may be unlikely to cause adverse effects), this study has formed the basis for future work which will include handpiece vibration measurements whilst cutting under clinically representative loads.

  16. Universality in the dynamical properties of seismic vibrations

    Science.gov (United States)

    Chatterjee, Soumya; Barat, P.; Mukherjee, Indranil

    2018-02-01

    We have studied the statistical properties of the observed magnitudes of seismic vibration data in discrete time in an attempt to understand the underlying complex dynamical processes. The observed magnitude data are taken from six different geographical locations. All possible magnitudes are considered in the analysis including catastrophic vibrations, foreshocks, aftershocks and commonplace daily vibrations. The probability distribution functions of these data sets obey scaling law and display a certain universality characteristic. To investigate the universality features in the observed data generated by a complex process, we applied Random Matrix Theory (RMT) in the framework of Gaussian Orthogonal Ensemble (GOE). For all these six places the observed data show a close fit with the predictions of RMT. This reinforces the idea of universality in the dynamical processes generating seismic vibrations.

  17. The transmission of vertical vibration through seats: Influence of the characteristics of the human body

    Science.gov (United States)

    Toward, Martin G. R.; Griffin, Michael J.

    2011-12-01

    The transmission of vibration through a seat depends on the impedance of the seat and the apparent mass of the seat occupant. This study was designed to determine how factors affecting the apparent mass of the body (age, gender, physical characteristics, backrest contact, and magnitude of vibration) affect seat transmissibility. The transmission of vertical vibration through a car seat was measured with 80 adults (41 males and 39 females aged 18-65) at frequencies between 0.6 and 20 Hz with two backrest conditions (no backrest and backrest), and with three magnitudes of random vibration (0.5, 1.0, and 1.5 m s -2 rms). Linear regression models were used to study the effects of subject physical characteristics (age, gender, and anthropometry) and features of their apparent mass (resonance frequency, apparent mass at resonance and at 12 Hz) on the measured seat transmissibility. The strongest predictor of both the frequency of the principal resonance in seat transmissibility and the seat transmissibility at resonance was subject age, with other factors having only marginal effects. The transmissibility of the seat at 12 Hz depended on subject age, body mass index, and gender. Although subject weight was strongly associated with apparent mass, weight was not strongly associated with seat transmissibility. The resonance frequency of the seat decreased with increases in the magnitude of the vibration excitation and increased when subjects made contact with the backrest. Inter-subject variability in the resonance frequency and transmissibility at resonance was less with greater vibration excitation, but was largely unaffected by backrest contact. A lumped parameter seat-person model showed that changes in seat transmissibility with age can be predicted from changes in apparent mass with age, and that the dynamic stiffness of the seat appeared to increase with increased loading so as to compensate for increases in subject apparent mass associated with increased sitting

  18. What is the most effective posture to conduct vibration from the lower to the upper extremities during whole-body vibration exercise?

    Directory of Open Access Journals (Sweden)

    Tsukahara Y

    2016-01-01

    Full Text Available Yuka Tsukahara, Jun Iwamoto, Kosui Iwashita, Takuma Shinjo, Koichiro Azuma, Hideo MatsumotoInstitute for Integrated Sports Medicine, Keio University School of Medicine, Tokyo, Japan Background: Whole-body vibration (WBV exercise is widely used for training and rehabilitation. However, the optimal posture for training both the upper and lower extremities simultaneously remains to be established. Objectives: The objective of this study was to search for an effective posture to conduct vibration from the lower to the upper extremities while performing WBV exercises without any adverse effects. Methods: Twelve healthy volunteers (age: 22–34 years were enrolled in the study. To measure the magnitude of vibration, four accelerometers were attached to the upper arm, back, thigh, and calf of each subject. Vibrations were produced using a WBV platform (Galileo 900 with an amplitude of 4 mm at two frequencies, 15 and 30 Hz. The following three postures were examined: posture A, standing posture with the knees flexed at 30°; posture B, crouching position with no direct contact between the knees and elbows; and posture C, crouching position with direct contact between the knees and elbows. The ratio of the magnitude of vibration at the thigh, back, and upper arm relative to that at the calf was used as an index of vibration conduction. Results: Posture B was associated with a greater magnitude of vibration to the calf than posture A at 15 Hz, and postures B and C were associated with greater magnitudes of vibration than posture A at 30 Hz. Posture C was associated with a vibration conduction to the upper arm that was 4.62 times and 8.26 times greater than that for posture A at 15 and 30 Hz, respectively. Conclusion: This study revealed that a crouching position on a WBV platform with direct contact between the knees and elbows was effective for conducting vibration from the lower to the upper extremities. Keywords: whole-body vibration exercise, upper

  19. Vibration in car repair work.

    Science.gov (United States)

    Hansson, J E; Eklund, L; Kihlberg, S; Ostergren, C E

    1987-03-01

    The main objective of the study was to find efficient hand tools which caused only minor vibration loading. Vibration measurements were carried out under standardised working conditions. The time during which car body repairers in seven companies were exposed to vibration was determined. Chisel hammers, impact wrenches, sanders and saws were the types of tools which generated the highest vibration accelerations. The average daily exposure at the different garages ranged from 22 to 70 min. The risk of vibration injury is currently rated as high. The difference between the highest and lowest levels of vibration was considerable in most tool categories. Therefore the choice of tool has a major impact on the magnitude of vibration exposure. The importance of choosing the right tools and working methods is discussed and a counselling service on vibration is proposed.

  20. A Survey of Floor Vibration Noise at All Sectors in the APS Experiment Hall

    Energy Technology Data Exchange (ETDEWEB)

    Kearney, Steven [Argonne National Lab. (ANL), Argonne, IL (United States); Shu, Deming [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-01-01

    A vibration survey of the APS experiment hall floor was conducted. It was found that beamlines 10-20 have particularly low levels of vibration when compared to the rest of the facility. The vibration spectrum for each beamline floor can be found in the appendix. Throughout the majority of the 5-100 Hz vibration spectrum beamlines at the APS fall below the most stringent NEST vibration criteria. Lastly, it was concluded that the magnitude of vibrations at a particular beamline is largely dependent upon the magnitude of vibrations present at the nearby mezzanine support column.

  1. Evaluation of hand-arm and whole-body vibrations in construction and property management.

    Science.gov (United States)

    Coggins, Marie A; Van Lente, Eric; McCallig, Margaret; Paddan, Gurmail; Moore, Ken

    2010-11-01

    To identify and measure the magnitude of hand-arm vibration (HAV) and whole-body vibration (WBV) sources (tools, vehicles etc.) in use within a previously unexamined sector: a construction and property management company. To evaluate the effect of factors such as age of tool, materials being worked on, number and location of tool handles, tool weight, and manufacturer brand on HAV magnitude and the effect of factors such as manufacturer machine brand, terrain, and work task on WBV magnitude. This study was carried out in a construction and property management company, employees (n = 469) working in the engineering services and maintenance departments who use vibrating equipment as part of their work were invited to participate. Two hundred and eighty-nine employees working as general operatives, excavator drivers, stone masons, carpenters, labourers, fitters, welders, and gardeners agreed to participate. A total of 20 types of hand tool (n = 264) and 11 types of vehicle (n = 158) in use within the company were selected for inclusion in the study. Five pieces of equipment had never previously been measured. Vibration measurements were carried out in accordance with ISO 5349-1 (Mechanical vibration-measurement and assessment of human exposure to hand transmitted vibration-Part 1: general guidance. 2001) (HAV) and ISO 2631-1 (Mechanical vibration and shock: evaluation of human exposure to WBV in the working environment. Part 1-general requirements. 1997) (WBV). Vibration measurements were made while workers were operating the equipment as part of their normal work activities. A wide range of vibration emission values were recorded for most tool types, e.g. orbital sanders (1.39-10.90 m s⁻²) and angle grinders (0.28-12.25 m s⁻²), and vehicle, e.g. forklifts (0.41-1.00 m s⁻²) and tractors (0.04-0.42 m s⁻²). Vibration magnitudes were largely consistent with those found in previous studies. The highest HAV magnitude was measured on a demolition hammer (13.3 m

  2. Local vibration inhibits H-reflex but does not compromise manual dexterity and does not increase tremor.

    Science.gov (United States)

    Budini, Francesco; Laudani, Luca; Bernardini, Sergio; Macaluso, Andrea

    2017-10-01

    The present work aimed at investigating the effects of local vibration on upper limb postural and kinetic tremor, on manual dexterity and on spinal reflex excitability. Previous studies have demonstrated a decrease in spinal reflex excitability and in force fluctuations in the lower limb but an increase in force fluctuation in the upper limbs. As hand steadiness is of vital importance in many daily-based tasks, and local vibration may also be applied in movement disorders, we decided to further explore this phenomenon. Ten healthy volunteers (26±3years) were tested for H reflex, postural and kinetic tremor and manual dexterity through a Purdue test. EMG was recorded from flexor carpi radialis (FCR) and extensor digitorum communis (EDC). Measurements were repeated at baseline, after a control period during which no vibration was delivered and after vibration. Intervention consisted in holding for two minutes a vibrating handle (frequency 75Hz, displacement∼7mm), control consisted in holding for two minutes the same handle powered off. Reflex excitability decreased after vibration whilst postural tremor and manual dexterity were not affected. Peak kinetic tremor frequency increased from baseline to control measurements (P=0.002). Co-activation EDC/FCR increased from control to vibration (P=0.021). These results show that two minutes local vibration lead to a decrease in spinal excitability, did not compromise manual dexterity and did not increase tremor; however, in contrast with expectations, tremor did not decrease. It is suggested that vibration activated several mechanisms with opposite effects, which resulted in a neutral outcome on postural and kinetic tremor. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Altered Neuromodulatory Drive May Contribute to Exaggerated Tonic Vibration Reflexes in Chronic Hemiparetic Stroke

    Directory of Open Access Journals (Sweden)

    Jacob G. McPherson

    2018-04-01

    Full Text Available Exaggerated stretch-sensitive reflexes are a common finding in elbow flexors of the contralesional arm in chronic hemiparetic stroke, particularly when muscles are not voluntarily activated prior to stretch. Previous investigations have suggested that this exaggeration could arise either from an abnormal tonic ionotropic drive to motoneuron pools innervating the paretic limbs, which could bring additional motor units near firing threshold, or from an increased influence of descending monoaminergic neuromodulatory pathways, which could depolarize motoneurons and amplify their responses to synaptic inputs. However, previous investigations have been unable to differentiate between these explanations, leaving the source(s of this excitability increase unclear. Here, we used tonic vibration reflexes (TVRs during voluntary muscle contractions of increasing magnitude to infer the sources of spinal motor excitability in individuals with chronic hemiparetic stroke. We show that when the paretic and non-paretic elbow flexors are preactivated to the same percentage of maximum prior to vibration, TVRs remain significantly elevated in the paretic arm. We also show that the rate of vibration-induced torque development increases as a function of increasing preactivation in the paretic limb, even though the amplitude of vibration-induced torque remains conspicuously unchanged as preactivation increases. It is highly unlikely that these findings could be explained by a source that is either purely ionotropic or purely neuromodulatory, because matching preactivation should control for the effects of a potential ionotropic drive (and lead to comparable tonic vibration reflex responses between limbs, while a purely monoaminergic mechanism would increase reflex magnitude as a function of preactivation. Thus, our results suggest that increased excitability of motor pools innervating the paretic limb post-stroke is likely to arise from both ionotropic and

  4. Two way assessment of other physical work demands while measuring the whole body vibration magnitude

    Science.gov (United States)

    Tiemessen, Ivo J. H.; Hulshof, Carel T. J.; Frings-Dresen, Monique H. W.

    2008-03-01

    Direct observation, instead of using self-administered questionnaires might give more reliable and specific information about physical work demands at the workplace. This information is of use in a population already at risk of developing low back pain (LBP) due to whole body vibration (WBV) exposure. The aims of this study are to assess the WBV exposure in an exposed population and to assess other physical work demands in two ways, by direct observation and with the use of a self-administered questionnaire. We therefore assessed the WBV magnitude and 5 WBV-related physical work demands by using the PalmTrac system and a self-administered questionnaire in a group of drivers ( N=10). The main findings are 7 out of 10 drivers are exceeding the EU action value. About 50% of the drivers under-estimated the time 'bending', 60% the time 'walking+standing' and 60% over-estimated the time when 'lifting.' We concluded that 7 drivers from this group are at risk of developing LBP and substantial differences exists for the 5 physical work demands comparing the PalmTrac method with the questionnaire. Direct observational assessment in WBV measurements yields extra information. This is useful for preventive activities necessary as drivers are exceeding the EU action value.

  5. Wireless sensing and vibration control with increased redundancy and robustness design.

    Science.gov (United States)

    Li, Peng; Li, Luyu; Song, Gangbing; Yu, Yan

    2014-11-01

    Control systems with long distance sensor and actuator wiring have the problem of high system cost and increased sensor noise. Wireless sensor network (WSN)-based control systems are an alternative solution involving lower setup and maintenance costs and reduced sensor noise. However, WSN-based control systems also encounter problems such as possible data loss, irregular sampling periods (due to the uncertainty of the wireless channel), and the possibility of sensor breakdown (due to the increased complexity of the overall control system). In this paper, a wireless microcontroller-based control system is designed and implemented to wirelessly perform vibration control. The wireless microcontroller-based system is quite different from regular control systems due to its limited speed and computational power. Hardware, software, and control algorithm design are described in detail to demonstrate this prototype. Model and system state compensation is used in the wireless control system to solve the problems of data loss and sensor breakdown. A positive position feedback controller is used as the control law for the task of active vibration suppression. Both wired and wireless controllers are implemented. The results show that the WSN-based control system can be successfully used to suppress the vibration and produces resilient results in the presence of sensor failure.

  6. Novel active vibration absorber with magnetorheological fluid

    Energy Technology Data Exchange (ETDEWEB)

    Gerlach, T; Ehrlich, J; Boese, H [Fraunhofer-Institut fuer Silicatforschung ISC, Neunerplatz 2, D-97082 Wuerzburg (Germany)], E-mail: thomas.gerlach@isc.fraunhofer.de

    2009-02-01

    Disturbing vibrations diminish the performance of technical high precision devices significantly. In search of a suitable solution for reducing these vibrations, a novel concept of active vibration reduction was developed which exploits the special properties of magnetorheological fluids. In order to evaluate the concept of such an active vibration absorber (AVA) a demonstrator was designed and manufactured. This demonstrator generates a force which counteracts the motion of the vibrating body. Since the counterforce is generated by a centrifugal exciter, the AVA provides the capability to compensate vibrations even in two dimensions. To control the strength of the force transmitted to the vibrating body, the exciter is based on a tunable MR coupling. The AVA was integrated in an appropriate testing device to investigate its performance. The recorded results show a significant reduction of the vibration amplitudes by an order of magnitude.

  7. A COMPARATIVE STUDY OF WHOLE-BODY VIBRATION EXPOSURE IN TRAIN AND CAR PASSENGERS: A CASE STUDY IN MALAYSIA

    Directory of Open Access Journals (Sweden)

    M.M. Rahman

    2011-12-01

    Full Text Available Trains and cars are the most important modes of transportation throughout the world. In highly developed countries, trains have become essential for human use as the most well-known form of public transportation, whereas the car plays a significant role in prompt human travel from one place to another. The high magnitude of vibration caused by trains and cars may cause health problems in humans, especially low back pain. The aim of this study was to evaluate and validate the values of daily exposure to vibration A(8 and the vibration dose value (VDV in passengers travelling by train and car and to assess the effects produced by this exposure on the human body. Moreover, this study introduces a newly developed whole-body vibration measurement instrumentation system. One train travelling from the east coast to the south of Malaysia was chosen to conduct the study. Whole-body vibration exposure was measured over 8 hours, which is equal to the duration of normal occupational exposure. One car was chosen randomly and whole-body vibration exposure was measured for 5 min and 10 min. All the data were computed using an IEPE(ICPTM accelerometer sensor connected to a DT9837 device which is capable of effectively measuring and analysing vibration. The vibration results were displayed on a personal computer using a custom graphical user interface (GUI. Matlab software was used to interpret the data. From the results, the whole-body vibration exposure level could be determined. It can be concluded that the whole-body vibration absorbed by the human body is enhanced when the magnitude of the vibration exposure experienced by the passengers increased. This was shown by the increased values of daily exposure to vibration A(8 and VDV calculated in the study.

  8. Low-magnitude high-frequency vibration inhibits RANKL-induced osteoclast differentiation of RAW264.7 cells.

    Science.gov (United States)

    Wu, Song-Hui; Zhong, Zhao-Ming; Chen, Jian-Ting

    2012-01-01

    Osteoclasts are the key participants in regulation of bone mass. Low-magnitude high-frequency vibration (LMHFV) has been found to be anabolic to bone in vivo. This study aimed to investigate the effect of LMHFV on osteoclast differentiation in vitro. Murine monocyte cell line RAW264.7 cells in the presence of receptor activator of nuclear factor-kappaB ligand (RANKL) were treated with or without LMHFV at 45 Hz (0.3 g) for 15 min day(-1). Tartrate resistant acid phosphatase (TRAP)-positive multinucleated cells (MNCs) and actin ring formation were evaluated. Expression of the osteoclast-specific genes, such as cathepsin K, matrix metallopeptidase-9 (MMP-9) and TRAP, were analyzed using real time-PCR. c-Fos, an osteoclast-specific transcription factor, was determined using Western blot. We found that LMHFV significantly decreased the number of RANKL-induced TRAP-positive MNCs (P<0.01), and inhibited the actin ring formation. The mRNA expression of the cathepsin K, MMP-9 and TRAP were down-regulated by LMHFV intervention (all P<0.001). Furthermore, LMHFV also inhibited the expression of c-Fos protein in the RANKL-treated RAW264.7 cells (P<0.05). Our results suggest that LMHFV can inhibit the RANKL-induced osteoclast differentiation of RAW264.7 cells, which give some new insight into the anabolic effects of LMHFV on bone.

  9. Effect of Low-Magnitude Whole-Body Vibration Combined with Alendronate in Ovariectomized Rats: A Random Controlled Osteoporosis Prevention Study

    Science.gov (United States)

    Zhong, Zhao-Ming; Wu, Xiu-Hua; Huang, Zhi-Ping; Li, Wei; Ding, Ruo-Ting; Yu, Hui; Chen, Jian-Ting

    2014-01-01

    Background Alendronate (ALE) is a conventional drug used to treat osteoporosis. Low-magnitude whole-body vibration (WBV) exercise has been developed as a potential treatment for osteoporosis. The aim of this study was to investigate whether low-magnitude WBV could enhance the protective effect of ALE on bone properties in ovariectomized rats. Methods A total of 128 Sprague-Dawley rats were randomly divided into five groups (SHAM, OVX+VEH, OVX+WBV, OVX + ALE, OVX+WBV+ALE). The level of WBV applied was 0.3 g at 45–55 Hz for 20 min/day, 5 day/week and for 3 months. ALE was administered in dose of 1 mg/Kg once a week. Every four weeks eight rats from each group were sacrificed and their blood and both tibiae were harvested. The expression of osteocalcin and CTX in serum was measured by enzyme-linked immunosorbent assay (ELISA) and the tibiae were subjected to metaphyseal three-point bending and μCT analysis. Results Osteocalcin rose after ovariectomy and was not appreciably changed by either alendronate or WBV alone or in combination. Alendronate treatment significantly prevented an increase in CTX. WBV alone treatment did not alter this effect. Compared with the OVX+WBV group, nearly all tested indices such as the BV/TV, TV apparent, Tb.N, Tb.Th, and Conn.D were higher in the OVX+ALE group at week 12.Compared with the OVX+WBV group, certain tested indices such as BV/TV, TV apparent, Tb.N, and Con.D, were higher in the OVX+WBV+ALE group at week 12. At week 12, tibiae treated with WBV+ALE exhibited a significantly higher Fmax compared to the OVX+VEH group, and a significant difference was also found in energy absorption between the OVX+WBV+ALE and OVX+VEH groups. Conclusions Compared with the WBV, ALE was more effective at preventing bone loss and improved the trabecular architecture. However, WBV enhanced the effect of alendronate in ovariectomized rats by inducing further improvements in trabecular architecture. PMID:24796785

  10. Pacinian channel mediated vasoconstriction in the fingers during vibration exposure

    OpenAIRE

    Ye, Ying

    2013-01-01

    A review of the literature showed that acute vascular responses to hand-transmitted vibration depend on the magnitude, the frequency, and the duration of the vibration but the mechanisms involved in the immediate vasoconstriction on exposure to vibration are not clear. This research was designed to advance understanding of the relation between the characteristics of vibration and changes in vascular circulation on exposed hands, and to develop a model of the mechanoreceptor channel involved i...

  11. Restoration solution of increased vibrations of the fan plant's support structure

    Directory of Open Access Journals (Sweden)

    Varju Đerđ

    2016-01-01

    Full Text Available This paper presents a restoration solution of increased vibration of the fan plant's support structure. Based on vibrodiagnostic tests and dynamic analysis, a technical solution of the problem is given with additional steel bracing. There is particular emphasis on the diagnosis and forming of a dynamic model.

  12. Hand-arm vibration in orthopaedic surgery: a neglected risk.

    Science.gov (United States)

    Mahmood, F; Ferguson, K B; Clarke, J; Hill, K; Macdonald, E B; Macdonald, D J M

    2017-12-30

    Hand-arm vibration syndrome is an occupational disease caused by exposure to hand-arm transmitted vibration. The Health and Safety Executive has set limits for vibration exposure, including an exposure action value (EAV), where steps should be taken to reduce exposure, and an exposure limit value (ELV), beyond which vibrating equipment must not be used for the rest of the working day. To measure hand-arm transmitted vibration among orthopaedic surgeons, who routinely use hand-operated saws. We undertook a cadaveric study measuring vibration associated with a tibial cut using battery-operated saws. Three surgeons undertook three tibial cuts each on cadaveric tibiae. Measurements were taken using a frequency-weighted root mean square acceleration, with the vibration total value calculated as the root of the sums squared in each of the three axes. A mean (SD) vibration magnitude of 1 (0.2) m/s2 in the X-axis, 10.3 (1.9) m/s2 in the Y-axis and 4.2 (1.3) m/s2 in the Z-axis was observed. The weighted root mean squared magnitude of vibration was 11.3 (1.7) m/s2. These results suggest an EAV of 23 min and ELV of 1 h 33 min using this equipment. Our results demonstrate that use of a battery-operated sagittal saw can transmit levels of hand-arm vibration approaching the EAV or ELV through prolonged use. Further study is necessary to quantify this risk and establish whether surveillance is necessary for orthopaedic surgeons. © The Author 2017. Published by Oxford University Press on behalf of the Society of Occupational Medicine. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  13. Performance Study of Diagonally Segmented Piezoelectric Vibration Energy Harvester

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Eun [Catholic Univ. of Daegu, Daegu (Korea, Republic of)

    2013-08-15

    This study proposes a piezoelectric vibration energy harvester composed of two diagonally segmented energy harvesting units. An auxiliary structural unit is attached to the tip of a host structural unit cantilevered to a vibrating base, where the two components have beam axes in opposite directions from each other and matched short-circuit resonant frequencies. Contrary to the usual observations in two resonant frequency-matched structures, the proposed structure shows little eigenfrequency separation and yields a mode sequence change between the first two modes. These lead to maximum power generation around a specific frequency. By using commercial finite element software, it is shown that the magnitude of the output power from the proposed vibration energy harvester can be substantially improved in comparison with those from conventional cantilevered energy harvesters with the same footprint area and magnitude of a tip mass.

  14. Phosphate vibrations as reporters of DNA hydration

    Science.gov (United States)

    Corcelli, Steven

    The asymmetric phosphate stretch vibrational frequency is extraordinarily sensitive to its local solvent environment. Using density functional theory calculations on the model compound dimethyl phosphate, the asymmetric phosphate stretch vibrational frequency was found to shift linearly with the magnitude of an electric field along the symmetry axis of the PO2 moiety (i.e. the asymmetric phosphate stretch is an excellent linear vibrational Stark effect probe). With this linear relationship established, asymmetric phosphate stretch vibrational frequencies were computed during the course of a molecular dynamics simulation of fully hydrated DNA. Moreover, contributions to shifts in the frequencies from subpopulations of water molecules (e.g. backbone, minor groove, major groove, etc.) were calculated to reveal how phosphate vibrations report the onset of DNA hydration in experiments that vary the relative humidity of non-condensing (dry) DNA samples.

  15. Acute whole-body vibration increases reciprocal inhibition.

    Science.gov (United States)

    Ritzmann, Ramona; Krause, Anne; Freyler, Kathrin; Gollhofer, Albert

    2018-06-26

    Based on previous evidence that whole-body vibration (WBV) affects pathways involved in disynaptic reciprocal inhibition (DRI), the present hypothesis-driven experiment aimed to assess the acute effects of WBV on DRI and co-contraction. DRI from ankle dorsiflexors to plantar flexors was investigated during submaximal dorsiflexion before and after 1 min of WBV. With electromyography, musculus soleus (SOL) H-reflex depression following a conditioning stimulation of the peroneal nerve (1.1x motor threshold for the musculus tibialis anterior, TA) was assessed and co-contraction was calculated. After WBV, DRI was significantly increased (+4%, p < 0.05). SOL (-13%, p < 0.05) and TA (-6%, p < 0.05) activities were significantly reduced; co-contraction tended to be diminished (-8%, p = 0.05). Dorsiflexion torque remained unchanged. After WBV, DRI increased during submaximal isometric contraction in healthy subjects. The simultaneous SOL relaxation and TA contraction indicate that a more economic movement execution is of functional significance for WBV application in clinical and athletic treatment. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Testing and diagnosis of the cause of increased vibration of the fan plant's support structure

    Directory of Open Access Journals (Sweden)

    Varju Đerđ

    2015-01-01

    Full Text Available This paper presents a procedure of determining the causes of increased vibration of a fan plant and its support structure in the PUC 'Subotička toplana'. Excessive vibrations were observed following the installation of the frequency converter, thus a methodological approach of testing-analysis-diagnosis has been applied. Based on the definition of the causes of this problem, the paper also suggests possible repair procedures.

  17. Estradiol-induced increase in the magnitude of long-term potentiation is prevented by blocking NR2B-containing receptors.

    Science.gov (United States)

    Smith, Caroline C; McMahon, Lori L

    2006-08-16

    Estradiol, through activation of genomic estrogen receptors, induces changes in synaptic morphology and function in hippocampus, a brain region important for memory acquisition. Specifically, this hormone increases CA1 pyramidal cell dendritic spine density, NMDA receptor (NMDAR)-mediated transmission, and the magnitude of long-term potentiation (LTP) at CA3-CA1 synapses. We recently reported that the estradiol-induced increase in LTP magnitude occurs only when there is a simultaneous increase in the fractional contribution of NMDAR-mediated transmission relative to AMPA receptor transmission, suggesting a direct role for the increase in NMDAR transmission to the heightened LTP magnitude. Estradiol has been shown to increase expression of the NMDAR subunit NR2B, but whether this translates into an increase in function of NR2B-containing receptors remains to be determined. Here we show that not only is the estradiol-induced increase in NMDAR transmission mediated by NR2B-containing receptors, but blocking these receptors using RO25-6981 [R-(R,S)-alpha-(4-hydroxyphenyl)-beta-methyl-4-(phenylmethyl)-1-piperidine propranol] (0.5 microM), an NR2B selective antagonist, prevents the estradiol-induced increase in LTP magnitude. Thus, our data show a causal link between the estradiol-induced increase in transmission mediated by NR2B-containing NMDARs and the increase in LTP magnitude.

  18. Study of vibration and its effect on health of the motorcycle rider

    Directory of Open Access Journals (Sweden)

    Shivakumara BS

    2010-07-01

    Full Text Available The motorcycle riders are subjected to extreme vibrations due to the vibrations of its engine, improper structural design of the motorcycle and the bad road conditions. The literature review reveals that the vibrations are most hazardous to the health if it exceeds the limit. The experiments were conducted to measure the magnitude of the vibrations acting on the rider during motorcycle riding under various road conditions. Experimental values of accelerations and frequencies which are beyond permissible limits according to the literature confirm that vibration certainly affects health of the motorcycle rider

  19. Corrosion and wear behavior of Ni60CuMoW coatings fabricated by combination of laser cladding and mechanical vibration processing

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hongxi, E-mail: piiiliuhx@sina.com [School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093 (China); Xu, Qian [Faculty of Adult Education, Kunming University of Science and Technology, Kunming 650051 (China); Wang, Chuanqi; Zhang, Xiaowei [School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093 (China)

    2015-02-05

    Highlights: • Ni60CuMoW coatings were fabricated by mechanical vibration assisted laser cladding hybrid process. • The maximum micro-hardness of the coating with mechanical vibration increases by 16%. • The mass loss and friction coefficient of the coating decreases by 17% and 16%, respectively. • The E{sub corr} positive shifts 1134.9 mV and i{sub corr} decreases by nearly one order of magnitude. • The ideal vibration parameters is vibration frequency 200 Hz and vibration amplitude 140 μm. - Abstract: Ni60CuMoW composite coatings were fabricated on 45 medium carbon steel using mechanical vibration assisted laser cladding surface modification processing. The microstructure, element distribution, phase composition, microhardness, wear and corrosion resistance of cladding coatings were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy disperse spectroscopy (EDS), hardness tester, friction and wear apparatus and electrochemical workstation. The results indicate that the microstructure of M{sub 23}C{sub 6} (Cr{sub 23}C{sub 6} or (Fe, Ni){sub 23}C{sub 6}) carbide dispersion strengthening phase is uniformly distributed in eutectic (Ni, Fe) phase. The in-situ BCr and MoC compounds distribute in lamellar structure Fe{sub 3}B and dendrite Fe{sub 3}Ni{sub 3}Si, and some new W{sub 2}C phases also generated in Ni60CuMoW coating. In addition, the coarse dendrite has been replaced by some fine grain structure at the bonding interface. The fine grain hard phase makes the average microhardness of cladding coating increase from 720 to 835 HV{sub 0.5}. Under the condition of 200 Hz mechanical vibration frequency, the wear mass loss and friction coefficient of Ni60CuMoW coating are 7.6 mg and 0.068, 17% and 16% lower than the coating without mechanical vibration, respectively. The corrosion potential of cladding coating with mechanical vibration increases by 1134.9 mV and the corrosion current density decreases by nearly one order of

  20. The effects of vibration-reducing gloves on finger vibration

    Science.gov (United States)

    Welcome, Daniel E.; Dong, Ren G.; Xu, Xueyan S.; Warren, Christopher; McDowell, Thomas W.

    2015-01-01

    Vibration-reducing (VR) gloves have been used to reduce the hand-transmitted vibration exposures from machines and powered hand tools but their effectiveness remains unclear, especially for finger protection. The objectives of this study are to determine whether VR gloves can attenuate the vibration transmitted to the fingers and to enhance the understanding of the mechanisms of how these gloves work. Seven adult male subjects participated in the experiment. The fixed factors evaluated include hand force (four levels), glove condition (gel-filled, air bladder, no gloves), and location of the finger vibration measurement. A 3-D laser vibrometer was used to measure the vibrations on the fingers with and without wearing a glove on a 3-D hand-arm vibration test system. This study finds that the effect of VR gloves on the finger vibration depends on not only the gloves but also their influence on the distribution of the finger contact stiffness and the grip effort. As a result, the gloves increase the vibration in the fingertip area but marginally reduce the vibration in the proximal area at some frequencies below 100 Hz. On average, the gloves reduce the vibration of the entire fingers by less than 3% at frequencies below 80 Hz but increase at frequencies from 80 to 400 Hz. At higher frequencies, the gel-filled glove is more effective at reducing the finger vibration than the air bladder-filled glove. The implications of these findings are discussed. Relevance to industry Prolonged, intensive exposure to hand-transmitted vibration can cause hand-arm vibration syndrome. Vibration-reducing gloves have been used as an alternative approach to reduce the vibration exposure. However, their effectiveness for reducing finger-transmitted vibrations remains unclear. This study enhanced the understanding of the glove effects on finger vibration and provided useful information on the effectiveness of typical VR gloves at reducing the vibration transmitted to the fingers. The new

  1. Climate variability and increase in intensity and magnitude of dengue incidence in Singapore.

    Science.gov (United States)

    Hii, Yien Ling; Rocklöv, Joacim; Ng, Nawi; Tang, Choon Siang; Pang, Fung Yin; Sauerborn, Rainer

    2009-11-11

    Dengue is currently a major public health burden in Asia Pacific Region. This study aims to establish an association between dengue incidence, mean temperature and precipitation, and further discuss how weather predictors influence the increase in intensity and magnitude of dengue in Singapore during the period 2000-2007. Weekly dengue incidence data, daily mean temperature and precipitation and the midyear population data in Singapore during 2000-2007 were retrieved and analysed. We employed a time series Poisson regression model including time factors such as time trends, lagged terms of weather predictors, considered autocorrelation, and accounted for changes in population size by offsetting. The weekly mean temperature and cumulative precipitation were statistically significant related to the increases of dengue incidence in Singapore. Our findings showed that dengue incidence increased linearly at time lag of 5-16 and 5-20 weeks succeeding elevated temperature and precipitation, respectively. However, negative association occurred at lag week 17-20 with low weekly mean temperature as well as lag week 1-4 and 17-20 with low cumulative precipitation. As Singapore experienced higher weekly mean temperature and cumulative precipitation in the years 2004-2007, our results signified hazardous impacts of climate factors on the increase in intensity and magnitude of dengue cases. The ongoing global climate change might potentially increase the burden of dengue fever infection in near future.

  2. Vibrational zero point energy for H-doped silicon

    Science.gov (United States)

    Karazhanov, S. Zh.; Ganchenkova, M.; Marstein, E. S.

    2014-05-01

    Most of the studies addressed to computations of hydrogen parameters in semiconductor systems, such as silicon, are performed at zero temperature T = 0 K and do not account for contribution of vibrational zero point energy (ZPE). For light weight atoms such as hydrogen (H), however, magnitude of this parameter might be not negligible. This Letter is devoted to clarify the importance of accounting the zero-point vibrations when analyzing hydrogen behavior in silicon and its effect on silicon electronic properties. For this, we estimate the ZPE for different locations and charge states of H in Si. We show that the main contribution to the ZPE is coming from vibrations along the Si-H bonds whereas contributions from other Si atoms apart from the direct Si-H bonds play no role. It is demonstrated that accounting the ZPE reduces the hydrogen formation energy by ˜0.17 eV meaning that neglecting ZPE at low temperatures one can underestimate hydrogen solubility by few orders of magnitude. In contrast, the effect of the ZPE on the ionization energy of H in Si is negligible. The results can have important implications for characterization of vibrational properties of Si by inelastic neutron scattering, as well as for theoretical estimations of H concentration in Si.

  3. Wireless vibration monitoring in a US coal-fired plant

    Energy Technology Data Exchange (ETDEWEB)

    Gbur, G.L.; Wier, W.; Bark, T.

    2006-07-15

    Choosing a reliable wireless systems able to provide data on vibration magnitudes in a coal pulveriser was never going to be easy, so two systems were tested alongside each other. One was the Wireless MCT System produced by SKF Reliability Systems; the other was from an alternative vendor. A replacement wireless vibration monitor was required at the Baldwin Energy Complex near Decartar, Illinois, USA. A single CE-Raymond model 923.RP pulverizer equipped with eight Wilcox on 786A accelerometers was chosen for monitoring. Five days after installation, the pulverizer experienced a failure. The wireless system provided vibration magnitudes to Dynegy's OSI PI Historian software. Analysis of this data coupled with an unsuccessful attempt to adjust the grinding roll, revealed that the number two grinding roll bearing had failed. The SKF Reliability System proved to detect the fault earlier than the non-SKF system and was chosen for the plant. 10 figs., 1 tab.

  4. Evaluation of Aero Commander sidewall vibration and interior acoustic data: Static operations

    Science.gov (United States)

    Piersol, A. G.; Wilby, E. G.; Wilby, J. F.

    1980-01-01

    Results for the vibration measured at five locations on the fuselage structure during static operations are presented. The analysis was concerned with the magnitude of the vibration and the relative phase between different locations, the frequency response (inertance) functions between the exterior pressure field and the vibration, and the coherent output power functions at interior microphone locations based on sidewall vibration. Fuselage skin panels near the plane of rotation of the propeller accept propeller noise excitation more efficiently than they do exhaust noise.

  5. Vibration acceleration promotes bone formation in rodent models.

    Directory of Open Access Journals (Sweden)

    Ryohei Uchida

    Full Text Available All living tissues and cells on Earth are subject to gravitational acceleration, but no reports have verified whether acceleration mode influences bone formation and healing. Therefore, this study was to compare the effects of two acceleration modes, vibration and constant (centrifugal accelerations, on bone formation and healing in the trunk using BMP 2-induced ectopic bone formation (EBF mouse model and a rib fracture healing (RFH rat model. Additionally, we tried to verify the difference in mechanism of effect on bone formation by accelerations between these two models. Three groups (low- and high-magnitude vibration and control-VA groups were evaluated in the vibration acceleration study, and two groups (centrifuge acceleration and control-CA groups were used in the constant acceleration study. In each model, the intervention was applied for ten minutes per day from three days after surgery for eleven days (EBF model or nine days (RFH model. All animals were sacrificed the day after the intervention ended. In the EBF model, ectopic bone was evaluated by macroscopic and histological observations, wet weight, radiography and microfocus computed tomography (micro-CT. In the RFH model, whole fracture-repaired ribs were excised with removal of soft tissue, and evaluated radiologically and histologically. Ectopic bones in the low-magnitude group (EBF model had significantly greater wet weight and were significantly larger (macroscopically and radiographically than those in the other two groups, whereas the size and wet weight of ectopic bones in the centrifuge acceleration group showed no significant difference compared those in control-CA group. All ectopic bones showed calcified trabeculae and maturated bone marrow. Micro-CT showed that bone volume (BV in the low-magnitude group of EBF model was significantly higher than those in the other two groups (3.1±1.2mm3 v.s. 1.8±1.2mm3 in high-magnitude group and 1.3±0.9mm3 in control-VA group, but

  6. Low-Magnitude High-Frequency Vibration Accelerated the Foot Wound Healing of n5-streptozotocin-induced Diabetic Rats by Enhancing Glucose Transporter 4 and Blood Microcirculation.

    Science.gov (United States)

    Yu, Caroline Oi-Ling; Leung, Kwok-Sui; Jiang, Jonney Lei; Wang, Tina Bai-Yan; Chow, Simon Kwoon-Ho; Cheung, Wing-Hoi

    2017-09-14

    Delayed wound healing is a Type 2 diabetes mellitus (DM) complication caused by hyperglycemia, systemic inflammation, and decreased blood microcirculation. Skeletal muscles are also affected by hyperglycemia, resulting in reduced blood flow and glucose uptake. Low Magnitude High Frequency Vibration (LMHFV) has been proven to be beneficial to muscle contractility and blood microcirculation. We hypothesized that LMHFV could accelerate the wound healing of n5-streptozotocin (n5-STZ)-induced DM rats by enhancing muscle activity and blood microcirculation. This study investigated the effects of LMHFV in an open foot wound created on the footpad of n5-STZ-induced DM rats (DM_V), compared with no-treatment DM (DM), non-DM vibration (Ctrl_V) and non-DM control rats (Ctrl) on Days 1, 4, 8 and 13. Results showed that the foot wounds of DM_V and Ctrl_V rats were significantly reduced in size compared to DM and Ctrl rats, respectively, at Day 13. The blood glucose level of DM_V rats was significantly reduced, while the glucose transporter 4 (GLUT4) expression and blood microcirculation of DM_V rats were significantly enhanced in comparison to those of DM rats. In conclusion, LMHFV can accelerate the foot wound healing process of n5-STZ rats.

  7. VIBRATIONS DETECTION IN INDUSTRIAL PUMPS BASED ON SPECTRAL ANALYSIS TO INCREASE THEIR EFFICIENCY

    Directory of Open Access Journals (Sweden)

    Belhadef RACHID

    2016-01-01

    Full Text Available Spectral analysis is the key tool for the study of vibration signals in rotating machinery. In this work, the vibration analy-sis applied for conditional preventive maintenance of such machines is proposed, as part of resolved problems related to vibration detection on the organs of these machines. The vibration signal of a centrifugal pump was treated to mount the benefits of the approach proposed. The obtained results present the signal estimation of a pump vibration using Fourier transform technique compared by the spectral analysis methods based on Prony approach.

  8. Increased rates of large‐magnitude explosive eruptions in Japan in the late Neogene and Quaternary

    Science.gov (United States)

    Sparks, R. S. J.; Wallace, L. M.; Engwell, S. L.; Scourse, E. M.; Barnard, N. H.; Kandlbauer, J.; Brown, S. K.

    2016-01-01

    Abstract Tephra layers in marine sediment cores from scientific ocean drilling largely record high‐magnitude silicic explosive eruptions in the Japan arc for up to the last 20 million years. Analysis of the thickness variation with distance of 180 tephra layers from a global data set suggests that the majority of the visible tephra layers used in this study are the products of caldera‐forming eruptions with magnitude (M) > 6, considering their distances at the respective drilling sites to their likely volcanic sources. Frequency of visible tephra layers in cores indicates a marked increase in rates of large magnitude explosive eruptions at ∼8 Ma, 6–4 Ma, and further increase after ∼2 Ma. These changes are attributed to major changes in tectonic plate interactions. Lower rates of large magnitude explosive volcanism in the Miocene are related to a strike‐slip‐dominated boundary (and temporary cessation or deceleration of subduction) between the Philippine Sea Plate and southwest Japan, combined with the possibility that much of the arc in northern Japan was submerged beneath sea level partly due to previous tectonic extension of northern Honshu related to formation of the Sea of Japan. Changes in plate motions and subduction dynamics during the ∼8 Ma to present period led to (1) increased arc‐normal subduction in southwest Japan (and resumption of arc volcanism) and (2) shift from extension to compression of the upper plate in northeast Japan, leading to uplift, crustal thickening and favorable conditions for accumulation of the large volumes of silicic magma needed for explosive caldera‐forming eruptions. PMID:27656115

  9. Multiscale investigation on the effects of additional weight bearing in combination with low-magnitude high-frequency vibration on bone quality of growing female rats.

    Science.gov (United States)

    Zhang, Tianlong; Gao, Jiazi; Fang, Juan; Gong, He

    2018-03-01

    This study aimed to explore the effects of additional weight bearing in combination with low-magnitude high-frequency vibration (LMHFV; 45 Hz, 0.3 g) on bone quality. One hundred twenty rats were randomly divided into ten groups; namely, sedentary (SED), additional weight bearing in which the rat wears a backpack whose weight is x% of the body weight (WBx; x = 5, 12, 19, 26), basic vibration (V), and additional weight bearing in combination with LMHFV in which the rat wears a backpack whose weight is x% of the body weight (Vx; x = 5, 12, 19, 26). The experiment was conducted for 12 weeks, 7 days per week, and 15 min per day. A three-point bending mechanical test, micro computed tomography, and a nanoindentation test were used. Serum samples were analyzed chemically. Failure load in V19 rats was significantly lower than that in SED rats (P bearing in combination with LMHFV negatively affected the macromechanical properties and microarchitecture of bone. Heavy additional weight bearing, such as 26% of body weight, in combination with LMHFV was able to improve the nanomechanical properties of growing bone material compared with LMHFV. A combined mechanical stimulation was used, which may provide useful information to understand the mechanism of this mechanical stimulation on bone.

  10. Response of the seated human body to whole-body vertical vibration: biodynamic responses to mechanical shocks.

    Science.gov (United States)

    Zhou, Zhen; Griffin, Michael J

    2017-03-01

    The biodynamic response of the seated human body has been investigated with 20 males exposed to upward and downward shocks at 13 fundamental frequencies (1-16 Hz) and 18 magnitudes (up to ±8.3 ms -2 ). For 1- and 2- degree-of-freedom models, the stiffness and damping coefficients were obtained by fitting seat acceleration waveforms predicted from the measured force to the measured seat acceleration waveform. Stiffness and damping coefficients were also obtained in the frequency domain with random vibration. The optimum stiffness and damping coefficients varied with the magnitude and the frequency of shocks. With both upward and downward shocks, the resonance frequency of the models decreased from 6.3 to 4 Hz as the vibration dose values of the shocks increased from 0.05 to 2.0 ms -1.75 . The stiffness and damping obtained from responses to shocks were correlated with, and similar to, the stiffness and damping obtained with random vibration. Practitioner Summary: When modelling the dynamic response of the seated human body to vertical acceleration less than 1 g, the relation between force and acceleration can be well represented by a single degree-of-freedom model although the optimum stiffness and damping depend on the magnitude and frequency of sinusoidal, random or shock motion.

  11. Monitoring machining conditions by analyzing cutting force vibration

    Energy Technology Data Exchange (ETDEWEB)

    Piao, Chun Guang; Kim, Ju Wan; Kim, Jin Oh; Shin, Yoan [Soongsl University, Seoul (Korea, Republic of)

    2015-09-15

    This paper deals with an experimental technique for monitoring machining conditions by analyzing cutting-force vibration measured at a milling machine. This technique is based on the relationship of the cutting-force vibrations with the feed rate and cutting depth as reported earlier. The measurement system consists of dynamic force transducers and a signal amplifier. The analysis system includes an oscilloscope and a computer with a LabVIEW program. Experiments were carried out at various feed rates and cutting depths, while the rotating speed was kept constant. The magnitude of the cutting force vibration component corresponding to the number of cutting edges multiplied by the frequency of rotation was linearly correlated with the machining conditions. When one condition of machining is known, another condition can be identified by analyzing the cutting-force vibration.

  12. Monitoring machining conditions by analyzing cutting force vibration

    International Nuclear Information System (INIS)

    Piao, Chun Guang; Kim, Ju Wan; Kim, Jin Oh; Shin, Yoan

    2015-01-01

    This paper deals with an experimental technique for monitoring machining conditions by analyzing cutting-force vibration measured at a milling machine. This technique is based on the relationship of the cutting-force vibrations with the feed rate and cutting depth as reported earlier. The measurement system consists of dynamic force transducers and a signal amplifier. The analysis system includes an oscilloscope and a computer with a LabVIEW program. Experiments were carried out at various feed rates and cutting depths, while the rotating speed was kept constant. The magnitude of the cutting force vibration component corresponding to the number of cutting edges multiplied by the frequency of rotation was linearly correlated with the machining conditions. When one condition of machining is known, another condition can be identified by analyzing the cutting-force vibration

  13. Vibration-induced electrical noise in a cryogen-free dilution refrigerator: Characterization, mitigation, and impact on qubit coherence

    Energy Technology Data Exchange (ETDEWEB)

    Kalra, Rachpon; Laucht, Arne; Dehollain, Juan Pablo; Bar, Daniel; Freer, Solomon; Simmons, Stephanie; Muhonen, Juha T.; Morello, Andrea, E-mail: a.morello@unsw.edu.au [Centre for Quantum Computation and Communication Technology, School of Electrical Engineering and Telecommunications, UNSW Australia, Sydney NSW 2052 (Australia)

    2016-07-15

    Cryogen-free low-temperature setups are becoming more prominent in experimental science due to their convenience and reliability, and concern about the increasing scarcity of helium as a natural resource. Despite not having any moving parts at the cold end, pulse tube cryocoolers introduce vibrations that can be detrimental to the experiments. We characterize the coupling of these vibrations to the electrical signal observed on cables installed in a cryogen-free dilution refrigerator. The dominant electrical noise is in the 5–10 kHz range and its magnitude is found to be strongly temperature dependent. We test the performance of different cables designed to diagnose and tackle the noise, and find triboelectrics to be the dominant mechanism coupling the vibrations to the electrical signal. Flattening a semi-rigid cable or jacketing a flexible cable in order to restrict movement within the cable, successfully reduces the noise level by over an order of magnitude. Furthermore, we characterize the effect of the pulse tube vibrations on an electron spin qubit device in this setup. Coherence measurements are used to map out the spectrum of the noise experienced by the qubit, revealing spectral components matching the spectral signature of the pulse tube.

  14. Response of the seated human body to whole-body vertical vibration: discomfort caused by mechanical shocks.

    Science.gov (United States)

    Zhou, Zhen; Griffin, Michael J

    2017-03-01

    The frequency dependence of discomfort caused by vertical mechanical shocks has been investigated with 20 seated males exposed to upward and downward shocks at 13 fundamental frequencies (1-16 Hz) and 18 magnitudes (±0.12 to ±8.3 ms -2 ). The rate of growth of discomfort with increasing shock magnitude depended on the fundamental frequency of the shocks, so the frequency dependence of equivalent comfort contours (for both vertical acceleration and vertical force measured at the seat) varied with shock magnitude. The rate of growth of discomfort was similar for acceleration and force, upward and downward shocks, and lower and higher magnitude shocks. The frequency dependence of discomfort from shocks differs from that of sinusoidal vibrations having the same fundamental frequencies. This arises in part from the frequency content of the shock. Frequency weighting W b in BS 6841:1987 and ISO 2631-1:1997 provided reasonable estimates of the discomfort caused by the shocks investigated in this study. Practitioner Summary: No single frequency weighting can accurately predict the discomfort caused by mechanical shocks over wide ranges of shock magnitude, but vibration dose values with frequency weighting W b provide reasonable estimates of discomfort caused by shocks similar to those investigated in this study with peak accelerations well below 1 g.

  15. Tooling device design for vibration-assisted high speed shaping of PMMA

    International Nuclear Information System (INIS)

    Mostofa, Md. Golam; Noh, J. H.; Kim, H. Y.; Ahn, J. H.; Kang, D. B.

    2010-01-01

    PMMA optical components that are used as one of the most important parts of high precision equipment and machines are increasingly replacing the glass due to the various advantages of PMMA. Especially in Light Guide Panels, the PMMA sheet that is used in Liquid Crystal Displays plays an important role in scattering the incident light and requires very fine machining as the sheet is directly related to the optical characteristics of the panels. The High Speed End milling and High Speed Shaping processes that are widely adopted and applied to the precise machining of Light Incident Plane still have quality problems, such as cracks, breakages, poor waviness, and straightness. This paper presents the tooling device design for machining a Light Incident Plane through vibration-assisted High Speed Shaping for increasing the optical quality by minimizing the above-mentioned problems. The cutting tool and the tool post presented in this paper are designed by the authors to increase the magnitude of the cutting stroke by adopting the resonant frequency without weakening the stiffness and to reduce vibrations during even high speed feeding. The dynamic characteristics of the cutting tool and the tool post are evaluated through simulation and experiment as well. The results reveal very appropriate dynamic characteristics for vibration-assisted High Speed Shaping

  16. Low-magnitude high-frequency vibration enhances gene expression related to callus formation, mineralization and remodeling during osteoporotic fracture healing in rats.

    Science.gov (United States)

    Chung, Shu-Lu; Leung, Kwok-Sui; Cheung, Wing-Hoi

    2014-12-01

    Low magnitude high frequency vibration (LMHFV) has been shown to improve anabolic and osteogenic responses in osteoporotic intact bones and during osteoporotic fracture healing; however, the molecular response of LMHFV during osteoporotic fracture healing has not been investigated. It was hypothesized that LMHFV could enhance osteoporotic fracture healing by regulating the expression of genes related to chondrogenesis (Col-2), osteogenesis (Col-1) and remodeling (receptor activator for nuclear factor- κ B ligand (RANKL) and osteoproteger (OPG)). In this study, the effects of LMHFV on both osteoporotic and normal bone fracture healing were assessed by endpoint gene expressions, weekly radiographs, and histomorphometry at weeks 2, 4 and 8 post-treatment. LMHFV enhanced osteoporotic fracture healing by up-regulating the expression of chondrogenesis-, osteogenesis- and remodeling-related genes (Col-2 at week 4 (p=0.008), Col-1 at week 2 and 8 (p<0.001 and p=0.008) and RANKL/OPG at week 8 (p=0.045)). Osteoporotic bone had a higher response to LMHFV than normal bone and showed significantly better results as reflected by increased expression of Col-2 and Col-1 at week 2 (p<0.001 for all), larger callus width at week 2 (p=0.001), callus area at week 1 and 5(p<0.05 for all) and greater relative area of osseous tissue (p=0.002) at week 8. This study helps to understand how LMHFV regulates gene expression of callus formation, mineralization and remodeling during osteoporotic fracture healing. © 2014 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  17. The Acute Effect of Local Vibration As a Recovery Modality from Exercise-Induced Increased Muscle Stiffness

    Directory of Open Access Journals (Sweden)

    Hervé Pournot, Jérémy Tindel, Rodolphe Testa, Laure Mathevon, Thomas Lapole

    2016-03-01

    Full Text Available Exercise involving eccentric muscle contractions is known to decrease range of motion and increase passive muscle stiffness. This study aimed at using ultrasound shear wave elastography to investigate acute changes in biceps brachii passive stiffness following intense barbell curl exercise involving both concentric and eccentric contractions. The effect of local vibration (LV as a recovery modality from exercise-induced increased stiffness was further investigated. Eleven subjects performed 4 bouts of 10 bilateral barbell curl movements at 70% of the one-rep maximal flexion force. An arm-to-arm comparison model was then used with one arm randomly assigned to the passive recovery condition and the other arm assigned to the LV recovery condition (10 min of 55-Hz vibration frequency and 0.9-mm amplitude. Biceps brachii shear elastic modulus measurements were performed prior to exercise (PRE, immediately after exercise (POST-EX and 5 min after the recovery period (POST-REC. Biceps brachii shear elastic modulus was significantly increased at POST-EX (+53 ± 48%; p < 0.001 and POST-REC (+31 ± 46%; p = 0.025 when compared to PRE. No differences were found between passive and LV recovery (p = 0.210. LV as a recovery strategy from exercise-induced increased muscle stiffness was not beneficial, probably due to an insufficient mechanical action of vibrations.

  18. Physical and numerical investigation of the flow induced vibration of the hydrofoil

    Science.gov (United States)

    Wu, Q.; Wang, G. Y.; Huang, B.

    2016-11-01

    The objective of this paper is to investigate the flow induced vibration of a flexible hydrofoil in cavitating flows via combined experimental and numerical studies. The experiments are presented for the modified NACA66 hydrofoil made of POM Polyacetate in the closed-loop cavitation tunnel at Beijing Institute of Technology. The high-speed camera and the single point Laser Doppler Vibrometer are applied to analyze the transient flow structures and the corresponding structural vibration characteristics. The hybrid coupled fluid structure interaction model is conducted to couple the incompressible and unsteady Reynolds Averaged Navier-Stokes solver with a simplified two-degree-of-freedom structural model. The k-ω SST turbulence model with the turbulence viscosity correction and the Zwart cavitation model are introduced to the present simulations. The results showed that with the decreasing of the cavitation number, the cavitating flows display incipient cavitation, sheet cavitation, cloud cavitation and supercavitation. The vibration magnitude increases dramatically for the cloud cavitation and decline for the supercavitation. The cloud cavitation development strongly affects the vibration response, which is corresponding to the periodically developing and shedding of the large-scale cloud cavity. The main frequency of the vibration amplitude is accordance with the cavity shedding frequency and other two frequencies of the vibration amplitude are corresponding to the natural frequencies of the bending and twisting modes.

  19. Effect of Tendon Vibration on Hemiparetic Arm Stability in Unstable Workspaces.

    Directory of Open Access Journals (Sweden)

    Megan O Conrad

    Full Text Available Sensory stimulation of wrist musculature can enhance stability in the proximal arm and may be a useful therapy aimed at improving arm control post-stroke. Specifically, our prior research indicates tendon vibration can enhance stability during point-to-point arm movements and in tracking tasks. The goal of the present study was to investigate the influence of forearm tendon vibration on endpoint stability, measured at the hand, immediately following forward arm movements in an unstable environment. Both proximal and distal workspaces were tested. Ten hemiparetic stroke subjects and 5 healthy controls made forward arm movements while grasping the handle of a two-joint robotic arm. At the end of each movement, the robot applied destabilizing forces. During some trials, 70 Hz vibration was applied to the forearm flexor muscle tendons. 70 Hz was used as the stimulus frequency as it lies within the range of optimal frequencies that activate the muscle spindles at the highest response rate. Endpoint position, velocity, muscle activity and grip force data were compared before, during and after vibration. Stability at the endpoint was quantified as the magnitude of oscillation about the target position, calculated from the power of the tangential velocity data. Prior to vibration, subjects produced unstable, oscillating hand movements about the target location due to the applied force field. Stability increased during vibration, as evidenced by decreased oscillation in hand tangential velocity.

  20. Vibrational relaxation induced population inversions in laser pumped polyatomic molecules

    International Nuclear Information System (INIS)

    Shamah, I.; Flynn, G.; Columbia Univ., New York

    1981-01-01

    Conditions for population inversion in laser pumped polyatomic molecules are described. For systems which exhibit metastable vibrational population distributions, large, long lived inversions are possible even when the vibrational modes are strongly coupled by rapid collisional vibration-vibration (V-V) energy transfer. Overtone states of a hot mode are found to invert with respect to fundamental levels of a cold mode even at V-V steady state. Inversion persists for a V-T/R relaxation time. A gain of 4 m -1 for the 2ν 3 → ν 2 transition in CH 3 F (lambda approx. 15.9 μ) was found assuming a spontaneous emission lifetime of 10 s for this transition. General equations are derived which can be used to determine the magnitude of population inversion in any laser pumped, vibrationally metastable, polyatomic molecule. A discussion of factors controlling the population maxima of different vibrational states in optically pumped, V-V equilibrated metastable polyatomics is also given. (orig./WL)

  1. Nonlinear modeling of tuned liquid dampers (TLDs) in rotating wind turbine blades for damping edgewise vibrations

    DEFF Research Database (Denmark)

    Zhang, Zili; Nielsen, Søren R. K.; Basu, Biswajit

    2015-01-01

    Tuned liquid dampers (TLDs) utilize the sloshing motion of the fluid to suppress structural vibrations and become a natural candidate for damping vibrations in rotating wind turbine blades. The centrifugal acceleration at the tip of a wind turbine blade can reach a magnitude of 7–8g. This facilit......Tuned liquid dampers (TLDs) utilize the sloshing motion of the fluid to suppress structural vibrations and become a natural candidate for damping vibrations in rotating wind turbine blades. The centrifugal acceleration at the tip of a wind turbine blade can reach a magnitude of 7–8g...... free-surface elevation equally well, the one-mode model can still be utilized for the design of TLD. Parametric optimization of the TLD is carried out based on the one-mode model, and the optimized damper effectively improves the dynamic response of wind turbine blades....

  2. Effect on the vibration of the suspension system

    Directory of Open Access Journals (Sweden)

    L. Dahil

    2017-01-01

    Full Text Available In order to determine the damping effect of shock absorbs in vehicles, different vehicles acceleration values were measured while they were passing over speed bumps at different speeds. The vehicles’ vibration magnitudes caused by road roughness were analyzed. In this study the measurements were conducted with two different vehicles, multiple drivers and at different speeds. The vibration valves were determined with a HVM 100 device, in different field conditions and at 20 - 40 and 60 km/h by transferring the results to the system. According to the results of statistical analysis damping effect of the shock absorbers in the vehicles changed in different speed ranges and field conditions and it was seen that driver’s performance was significantly affected due to the vibration.

  3. Climate variability and increase in intensity and magnitude of dengue incidence in Singapore

    OpenAIRE

    Hii, Yien Ling; Rocklöv, Joacim; Ng, Nawi; Tang, Choon Siang; Pang, Fung Yin; Sauerborn, Rainer

    2009-01-01

    Introduction: Dengue is currently a major public health burden in Asia Pacific Region. This study aims to establish an association between dengue incidence, mean temperature and precipitation and further discuss how weather predictors influence the increase in intensity and magnitude of dengue in Singapore during the period 2000-2007. Materials and methods: Weekly dengue incidence data, daily mean temperature and precipitation and the midyear population data in Singapore during 2000-2007 were...

  4. Theoretical study of the changes in the vibrational characteristics arising from the hydrogen bonding between Vitamin C ( L-ascorbic acid) and H 2O

    Science.gov (United States)

    Dimitrova, Yordanka

    2006-02-01

    The vibrational characteristics (vibrational frequencies, infrared intensities and Raman activities) for the hydrogen-bonded system of Vitamin C ( L-ascorbic acid) with five water molecules have been predicted using ab initio SCF/6-31G(d, p) calculations and DFT (BLYP) calculations with 6-31G(d, p) and 6-31++G(d, p) basis sets. The changes in the vibrational characteristics from free monomers to a complex have been calculated. The ab initio and BLYP calculations show that the complexation between Vitamin C and five water molecules leads to large red shifts of the stretching vibrations for the monomer bonds involved in the hydrogen bonding and very strong increase in their IR intensity. The predicted frequency shifts for the stretching vibrations from Vitamin C taking part in the hydrogen bonding are up to -508 cm -1. The magnitude of the wavenumber shifts is indicative of relatively strong OH···H hydrogen-bonded interactions. In the same time the IR intensity and Raman activity of these vibrations increase upon complexation. The IR intensity increases dramatically (up to 12 times) and Raman activity increases up to three times. The ab initio and BLYP calculations show, that the symmetric OH vibrations of water molecules are more sensitive to the complexation. The hydrogen bonding leads to very large red shifts of these vibrations and very strong increase in their IR intensity. The asymmetric OH stretching vibrations of water, free from hydrogen bonding are less sensitive to the complexation than the hydrogen-bonded symmetric O sbnd H stretching vibrations. The increases of the IR intensities for these vibrations are lower and red shifts are negligible.

  5. Investigation of active vibration drilling using acoustic emission and cutting size analysis

    Directory of Open Access Journals (Sweden)

    Yingjian Xiao

    2018-04-01

    Full Text Available This paper describes an investigation of active bit vibration on the penetration mechanisms and bit-rock interaction for drilling with a diamond impregnated coring bit. A series of drill-off tests (DOTs were conducted where the drilling rate-of-penetration (ROP was measured at a series of step-wise increasing static bit thrusts or weight-on-bits (WOBs. Two active DOTs were conducted by applying 60 Hz axial vibration at the bit-rock interface using an electromagnetic vibrating table mounted underneath the drilling samples, and a passive DOT was conducted where the bit was allowed to vibrate naturally with lower amplitude due to the compliance of the drilling sample mountings. During drilling, an acoustic emission (AE system was used to record the AE signals generated by the diamond cutter penetration and the cuttings were collected for grain size analysis. The instrumented drilling system recorded the dynamic motions of the bit-rock interface using a laser displacement sensor, a load cell, and an LVDT (linear variable differential transformer recorded the dynamic WOB and the ROP, respectively. Calibration with the drilling system showed that rotary speed was approximately the same at any given WOB, facilitating comparison of the results at the same WOB. Analysis of the experimental results shows that the ROP of the bit at any given WOB increased with higher amplitude of axial bit-rock vibration, and the drill cuttings increased in size with a higher ROP. Spectral analysis of the AEs indicated that the higher ROP and larger cutting size were correlated with a higher AE energy and a lower AE frequency. This indicated that larger fractures were being created to generate larger cutting size. Overall, these results indicate that a greater magnitude of axial bit-rock vibration produces larger fractures and generates larger cuttings which, at the same rotary speed, results in a higher ROP. Keywords: Active bit vibration, Diamond coring drilling, Drill

  6. Study of flow induce vibration inside 3.5 inch hard disk drives

    Directory of Open Access Journals (Sweden)

    Wichitpon Seepangmon

    2014-06-01

    Full Text Available This study focused on flow induced vibration of head stack assembly (HSA in a 3.5 inch hard disk drive with 5 disks and 10 read/write heads. We studied the effects of air flow on gimbal flex and resonance on arm. The comparison of vibrations on slider between the normal model and the experiment has been done for verifying the model. The peaks of frequency in experiment match the normal model at 1,040 1,320 and 1,400 Hz respectively. After that, the RNG K-ε turbulence model was used to determine the turbulent air flow of 7,200 rpm hard disk drive. The comparison between the normal model and the model with spoiler was investigated by using, computational fluid dynamics software (ANSYS and FLUENT. The results shown velocity magnitudes at the arm were decreased by 0.725 - 57.689 % and pressure dropped by 74.028 - 87.222 %. The velocity magnitudes at the gimbal flex were decreased by 5.522 - 14.291 % and pressure dropped by 48.440 - 82.947 %. The peak of vibrations on arm and gimbal flex was occurred at the frequency 1200 Hz. The model with spoiler could reduce vibration at arm by 2.56 - 95.601 % and reduce vibration at gimbal flex by 4.065 - 95.503 %. In the conclusion, the model with a spoiler could decrease the vibration at all surface of the arm and gimbal flex due to the velocity and pressure reduction[1][4].

  7. Partial admission effect on the performance and vibration of a supersonic impulse turbine

    Science.gov (United States)

    Lee, Hang Gi; Shin, Ju Hyun; Choi, Chang-Ho; Jeong, Eunhwan; Kwon, Sejin

    2018-04-01

    This study experimentally investigates the effects of partial admission on the performance and vibration outcomes of a supersonic impulse turbine with circular nozzles. The turbine of a turbopump for a gas-generator-type liquid rocket engine in the Korea Space Launch Vehicle-II is of the supersonic impulse type with the partial admission configuration for obtaining a high specific power. Partial admission turbines with a low-flow-rate working gas exhibit benefits over turbines with full admission, such as loss reduction, ease of controllability of the turbine power output, and simple turbine configurations with separate starting sections. However, the radial force of the turbine rotor due to the partial admission causes an increase in turbine vibration. Few experimental studies have previously been conducted regarding the partial admission effects on supersonic impulse turbines with circular nozzles. In the present study, performance tests of supersonic impulse turbines with circular nozzles were conducted for various partial admission ratios using a turbine test facility with high-pressure air in order to investigate the resulting aerodynamic performance and vibration. Four types of turbines with partial admission ratios of 0.17, 0.42, 0.75 and 0.83 were tested. Results show that the efficiencies at the design point increase linearly as the partial admission ratios increase. Moreover, as the velocity ratios increase, the difference in efficiency from the reference turbine with a partial admission ratio of 0.83 becomes increasingly significant, and the magnitudes of these differences are proportional to the square of the velocity ratios. Likewise, the decrease in the partial admission ratio results in an increase in the turbine vibration level owing to the increase in the radial force.

  8. Flow induced vibrations of the CLIC X-Band accelerating structures

    CERN Document Server

    Charles, Tessa; Boland, Mark; Riddone, Germana; Samoshkin, Alexandre

    2011-01-01

    Turbulent cooling water in the Compact Linear Collider (CLIC) accelerating structures will inevitably induce some vibrations. The maximum acceptable amplitude of vibrations is small, as vibrations in the accelerating structure could lead to beam jitter and alignment difficulties. A Finite Element Analysis model is needed to identify the conditions under which turbulent instabilities and significant vibrations are induced. Due to the orders of magnitude difference between the fluid motion and the structure’s motion, small vibrations of the structure will not contribute to the turbulence of the cooling fluid. Therefore the resonant conditions of the cooling channels presented in this paper, directly identify the natural frequencies of the accelerating structures to be avoided under normal operating conditions. In this paper a 2D model of the cooling channel is presented finding spots of turbulence being formed from a shear layer instability. This effect is observed through direct visualization and wavelet ana...

  9. Higher Magnitude Cash Payments Improve Research Follow-up Rates Without Increasing Drug Use or Perceived Coercion

    Science.gov (United States)

    Festinger, David S.; Marlowe, Douglas B.; Dugosh, Karen L.; Croft, Jason R.; Arabia, Patricia L.

    2008-01-01

    In a prior study (Festinger et al., 2005) we found that neither the mode (cash vs. gift card) nor magnitude ($10, $40, or $70) of research follow-up payments increased rates of new drug use or perceptions of coercion. However, higher payments and payments in cash were associated with better follow-up attendance, reduced tracking efforts, and improved participant satisfaction with the study. The present study extended those findings to higher payment magnitudes. Participants from an urban outpatient substance abuse treatment program were randomly assigned to receive $70, $100, $130, or $160 in either cash or a gift card for completing a follow-up assessment at 6 months post-admission (n ≅ 50 per cell). Apart from the payment incentives, all participants received a standardized, minimal platform of follow-up efforts. Findings revealed that neither the magnitude nor mode of payment had a significant effect on new drug use or perceived coercion. Consistent with our previous findings, higher payments and cash payments resulted in significantly higher follow-up rates and fewer tracking calls. In addition participants receiving cash vs. gift cards were more likely to use their payments for essential, non-luxury purchases. Follow-up rates for participants receiving cash payments of $100, $130, and $160 approached or exceeded the FDA required minimum of 70% for studies to be considered in evaluations of new medications. This suggests that the use of higher magnitude payments and cash payments may be effective strategies for obtaining more representative follow-up samples without increasing new drug use or perceptions of coercion. PMID:18395365

  10. Establishment of one-axis vibration test system for measurement of biodynamic response of human hand-arm system.

    Science.gov (United States)

    Shibata, Nobuyuki; Hosoya, Naoki; Maeda, Setsuo

    2008-12-01

    Prolonged exposure to hand-arm vibration (HAV) due to use of hand-held power tools leads to an increased occurrence of symptoms of disorders in the vascular, neurological, and osteo-articular systems of the upper limbs called hand-arm vibration syndrome (HAVS). Biodynamic responses of the hand-arm system to vibration can be suggestive parameters that give us better assessment of exposure to HAV and fundamental data for design of low-vibration-exposure power tools. Recently, a single axis hand-arm vibration system has been installed in the Japan National Institute of Occupational Safety and Health (NIOSH). The aims of this study were to obtain the fundamental dynamic characteristics of an instrumented handle and to validate the performance and measurement accuracy of the system applied to dynamic response measurement. A pseudo-random vibration signal with a frequency range of 5-1,250 Hz and a power spectrum density of 1.0 (m/s2)2/Hz was used in this study. First the dynamic response of the instrumented handle without any weight was measured. After this measurement, the dynamic response measurement of the handle with weights mounted on the handle was performed. The apparent mass of a weight itself was obtained by using the mass cancellation method. The mass of the measuring cap on the instrumented handle was well compensated by using the mass cancellation method. Based on the 10% error tolerance, this handle can reliably measure the dynamic response represented by an apparent mass with a minimum weight of 2.0 g in a frequency range of 10.0 to 1,000 Hz. A marked increase in the AM magnitude of the weights of 15 g and 20 g in frequency ranges greater than 800 Hz is attributed not to the fundamental resonance frequency of the handle with weights, but to the fixation of the weight to the measuring cap. In this aspect, the peak of the AM magnitude can be reduced and hence should not be an obstacle to the biodynamic response measurement of the human hand-arm system. On the

  11. Anti-vibration gloves?

    Science.gov (United States)

    Hewitt, Sue; Dong, Ren G; Welcome, Daniel E; McDowell, Thomas W

    2015-03-01

    For exposure to hand-transmitted vibration (HTV), personal protective equipment is sold in the form of anti-vibration (AV) gloves, but it remains unclear how much these gloves actually reduce vibration exposure or prevent the development of hand-arm vibration syndrome in the workplace. This commentary describes some of the issues that surround the classification of AV gloves, the assessment of their effectiveness and their applicability in the workplace. The available information shows that AV gloves are unreliable as devices for controlling HTV exposures. Other means of vibration control, such as using alternative production techniques, low-vibration machinery, routine preventative maintenance regimes, and controlling exposure durations are far more likely to deliver effective vibration reductions and should be implemented. Furthermore, AV gloves may introduce some adverse effects such as increasing grip force and reducing manual dexterity. Therefore, one should balance the benefits of AV gloves and their potential adverse effects if their use is considered. © Crown copyright 2014.

  12. Experimental Investigations on Effect of Damage on Vibration Characteristics of a Reinforced Concrete Beam

    Science.gov (United States)

    Srinivas, V.; Jeyasehar, C. Antony; Ramanjaneyulu, K.; Sasmal, Saptarshi

    2012-02-01

    Need for developing efficient non-destructive damage assessment procedures for civil engineering structures is growing rapidly towards structural health assessment and management of existing structures. Damage assessment of structures by monitoring changes in the dynamic properties or response of the structure has received considerable attention in recent years. In the present study, damage assessment studies have been carried out on a reinforced concrete beam by evaluating the changes in vibration characteristics with the changes in damage levels. Structural damage is introduced by static load applied through a hydraulic jack. After each stage of damage, vibration testing is performed and system parameters were evaluated from the measured acceleration and displacement responses. Reduction in fundamental frequencies in first three modes is observed for different levels of damage. It is found that a consistent decrease in fundamental frequency with increase in damage magnitude is noted. The beam is numerically simulated and found that the vibration characteristics obtained from the measured data are in close agreement with the numerical data.

  13. Behavior of ro-vibrationally excited H2 molecules and H atoms in a plasma expansion

    International Nuclear Information System (INIS)

    Vankan, P.; Schram, D.C.; Engeln, R.

    2005-01-01

    The behavior in a supersonic plasma expansion of H atom and H2 molecules, both ground-state and ro-vibrationally excited, is studied using various laser spectroscopic techniques. The ground-state H2 molecules expand like a normal gas. The behavior of H atoms and H 2 rv molecules, on the other hand, is considerably influenced, and to some extend even determined, by their reactivity. The H atoms diffuse out of the expansion due to surface association at the walls of the vacuum vessel. Moreover, by reducing the surface area of the nozzle by a factor of two, the amount of H atoms leaving the source is increased by one order of magnitude, due to a decreased surface association of H atoms in the nozzle. The evolution of the ro-vibrational distributions along the expansion axis shows the relaxation of the molecular hydrogen from the high temperature in the up-stream region to the low ambient temperature in the down-stream region. Whereas the vibrational distribution resembles a Boltzmann distribution, the rotational distribution is a non-equilibrium one, in which the high rotational levels (J > 7) are much more populated than what is expected from the low rotational levels (J <5). We observed overpopulations of up to seven orders of magnitude. The production of the high rotational levels is very probably connected to the surface association in the nozzle

  14. Measurement and Analysis of Horizontal Vibration Response of Pile Foundations

    Directory of Open Access Journals (Sweden)

    A. Boominathan

    2007-01-01

    Full Text Available Pile foundations are frequently used in very loose and weak deposits, in particular soft marine clays deposits to support various industrial structures, power plants, petrochemical complexes, compressor stations and residential multi-storeyed buildings. Under these circumstances, piles are predominantly subjected to horizontal dynamic loads and the pile response to horizontal vibration is very critical due to its low stiffness. Though many analytical methods have been developed to estimate the horizontal vibration response, but they are not well validated with the experimental studies. This paper presents the results of horizontal vibration tests carried out on model aluminium single piles embedded in a simulated Elastic Half Space filled with clay. The influence of various soil and pile parameters such as pile length, modulus of clay, magnitude of dynamic load and frequency of excitation on the horizontal vibration response of single piles was examined. Measurement of various response quantities, such as the load transferred to the pile, pile head displacement and the strain variation along the pile length were done using a Data Acquisition System. It is found that the pile length, modulus of clay and dynamic load, significantly influences the natural frequency and peak amplitude of the soil-pile system. The maximum bending moment occurs at the fundamental frequency of the soil-pile system. The maximum bending moment of long piles is about 2 to 4 times higher than that of short piles and it increases drastically with the increase in the shear modulus of clay for both short and long piles. The active or effective pile length is found to be increasing under dynamic load and empirical equations are proposed to estimate the active pile length under dynamic loads.

  15. High-frequency, low-intensity vibrations increase bone mass and muscle strength in upper limbs, improving autonomy in disabled children.

    Science.gov (United States)

    Reyes, M Loreto; Hernández, Marta; Holmgren, Luz J; Sanhueza, Enrique; Escobar, Raúl G

    2011-08-01

    Disuse osteoporosis in children is a progressive disease that can affect quality of life. High-frequency, low-magnitude vibration (HFLMV) acts as an anabolic signal for bone and muscle. We undertook a prospective, randomized, double-blind, placebo-controlled clinical trial to assess the efficacy and safety of regional HFLMV in disabled children. Sixty-five children 6 to 9 year of age were randomized into three groups: placebo, 60 Hz, and 90 Hz. In the two active groups, a 0.3-g mechanical vibration was delivered to the radii and femurs for 5 minutes each day. After 6 months, the main endpoint was bone mineral density (BMD) at the ultradistal radius (UDR), 33% radii (33%R), and femoral necks (FN). Secondary endpoints were area and bone mineral content (BMC) at the UDR, 33%R, and FN; grip force of the upper and lower limbs; motor function; and PedsQL evaluation. An intention-to-treat analysis was used. Fifty-seven children (88%) completed the protocol. A significant increase was observed in the 60-Hz group relative to the other groups in BMD at the UDR (p = .011), in grip force of the upper limbs (p = .035), and in the "daily activities item" (p = .035). A mixed model to evaluate the response to intervention showed a stronger effect of 60 Hz on patients with cerebral palsy on the UDR and that between-subject variability significantly affected the response. There were no reported side effects of the intervention. This work provides evidence that regional HFLMV is an effective and safe strategy to improve bone mass, muscle strength, and possibly independence in children with motor disabilities. Copyright © 2011 American Society for Bone and Mineral Research.

  16. Effect of Whole-Body Vibration on Speech. Part 2; Effect on Intelligibility

    Science.gov (United States)

    Begault, Durand R.

    2011-01-01

    The effect on speech intelligibility was measured for speech where talkers reading Diagnostic Rhyme Test material were exposed to 0.7 g whole body vibration to simulate space vehicle launch. Across all talkers, the effect of vibration was to degrade the percentage of correctly transcribed words from 83% to 74%. The magnitude of the effect of vibration on speech communication varies between individuals, for both talkers and listeners. A worst case scenario for intelligibility would be the most sensitive listener hearing the most sensitive talker; one participant s intelligibility was reduced by 26% (97% to 71%) for one of the talkers.

  17. Modeling study of vibrational photochemical isotope enrichment. [HBr + Cl/sub 2/; HCl + Br/sub 2/

    Energy Technology Data Exchange (ETDEWEB)

    Badcock, C.C.; Hwang, W.C.; Kalsch, J.F.

    1978-09-29

    Chemical kinetic modeling studies of vibrational-photochemical isotope enrichment have been performed on two systems: Model (I), H/sup 79/Br(H/sup 81/Br) + Cl/sub 2/ and, Model (II), H/sup 37/Cl(H/sup 35/Cl) + Br. Pulsed laser excitation was modeled to the first excited vibrational level of H/sup 79/Br in Model I and the first and second excited vibrational levels of both HCl isotopes in Model II. These are prototype systems of exoergic (Model I) and endoergic (Model II) reactions. The effects on enrichment of varying the external parameters (pressure, laser intensity) and the internal parameters (rate constants for V-V exchange and excited-state reactions) were examined. Studies of these prototype systems indicate that a favorable reaction for enrichment, with isotopically-specific excitation and a significantly accelerated vibrationally-excited-state reaction should have the following properties: the reaction from v = 0 should be only moderately exoergic, and the most favorable coreactant should be a polyatomic species, such as alkyl radical. Direct excitation of the reacting vibrational level is at least an order of magnitude more favorable for enrichment than is population by energy transfer. Enrichment of the minor isotope by these processes is more effective than is major isotope enrichment. Within limits, increased laser intensity is beneficial. However, for sequential excitation of a second vibrational level, major isotope enrichment can be diminished by high populations of the first vibrational level.

  18. Mathematical formulation of temperature fluctuation and control rod vibration in PARR

    International Nuclear Information System (INIS)

    Ansari, S.A.; Ayazuddin, S.K.

    This report describes the mathematical interpretation of experimental neutron noise spectra obtained for PARR core. A one dimensional thermal-hydraulic model of PARR core was developed to calculate the magnitude of neutron noise as a result of fluctuation in the core inlet coolant temperature. The sink structure of the neutron power spectral density as well as the dependence of observed neutron spectra on coolant velocity is also explained by the thermal hydraulic model. An attempt is made to explain the phenomena of control rod vibration by a simple eigen frequency vibration model. The calculated neutron power spectral density due to vibration and temperature noise were added and compared with the experimental power spectra obtained for PARR. (orig./A.B.)

  19. Tool-specific performance of vibration-reducing gloves for attenuating fingers-transmitted vibration

    Science.gov (United States)

    Welcome, Daniel E.; Dong, Ren G.; Xu, Xueyan S.; Warren, Christopher; McDowell, Thomas W.

    2016-01-01

    BACKGROUND Fingers-transmitted vibration can cause vibration-induced white finger. The effectiveness of vibration-reducing (VR) gloves for reducing hand transmitted vibration to the fingers has not been sufficiently examined. OBJECTIVE The objective of this study is to examine tool-specific performance of VR gloves for reducing finger-transmitted vibrations in three orthogonal directions (3D) from powered hand tools. METHODS A transfer function method was used to estimate the tool-specific effectiveness of four typical VR gloves. The transfer functions of the VR glove fingers in three directions were either measured in this study or during a previous study using a 3D laser vibrometer. More than seventy vibration spectra of various tools or machines were used in the estimations. RESULTS When assessed based on frequency-weighted acceleration, the gloves provided little vibration reduction. In some cases, the gloves amplified the vibration by more than 10%, especially the neoprene glove. However, the neoprene glove did the best when the assessment was based on unweighted acceleration. The neoprene glove was able to reduce the vibration by 10% or more of the unweighted vibration for 27 out of the 79 tools. If the dominant vibration of a tool handle or workpiece was in the shear direction relative to the fingers, as observed in the operation of needle scalers, hammer chisels, and bucking bars, the gloves did not reduce the vibration but increased it. CONCLUSIONS This study confirmed that the effectiveness for reducing vibration varied with the gloves and the vibration reduction of each glove depended on tool, vibration direction to the fingers, and finger location. VR gloves, including certified anti-vibration gloves do not provide much vibration reduction when judged based on frequency-weighted acceleration. However, some of the VR gloves can provide more than 10% reduction of the unweighted vibration for some tools or workpieces. Tools and gloves can be matched for

  20. Optimal placement of trailing-edge flaps for helicopter vibration reduction using response surface methods

    Science.gov (United States)

    Viswamurthy, S. R.; Ganguli, Ranjan

    2007-03-01

    This study aims to determine optimal locations of dual trailing-edge flaps to achieve minimum hub vibration levels in a helicopter, while incurring low penalty in terms of required trailing-edge flap control power. An aeroelastic analysis based on finite elements in space and time is used in conjunction with an optimal control algorithm to determine the flap time history for vibration minimization. The reduced hub vibration levels and required flap control power (due to flap motion) are the two objectives considered in this study and the flap locations along the blade are the design variables. It is found that second order polynomial response surfaces based on the central composite design of the theory of design of experiments describe both objectives adequately. Numerical studies for a four-bladed hingeless rotor show that both objectives are more sensitive to outboard flap location compared to the inboard flap location by an order of magnitude. Optimization results show a disjoint Pareto surface between the two objectives. Two interesting design points are obtained. The first design gives 77 percent vibration reduction from baseline conditions (no flap motion) with a 7 percent increase in flap power compared to the initial design. The second design yields 70 percent reduction in hub vibration with a 27 percent reduction in flap power from the initial design.

  1. Evaluation of the Perceptual Characteristics of a Force Induced by Asymmetric Vibrations.

    Science.gov (United States)

    Tanabe, Takeshi; Yano, Hiroaki; Iwata, Hiroo

    2017-08-29

    This paper describes the properties of proprioceptive sensations induced by asymmetric vibration using a vibration speaker-type non-grounded haptic interface. We confirm that the vibration speaker generates a perceived force that pulls or pushes a user's hand in a particular direction when an asymmetric amplitude signal that is generated by inverting a part of a sine wave is input. In this paper, to verify the system with respect to various factors of force perception caused by asymmetric vibration, we conducted six experiments and the following results were obtained. (1) The force vector can be controlled by reversing the asymmetric waves. (2) By investigating the physical characteristics of the vibration, asymmetric vibration was confirmed. (3) The presentation of vibration in the shear direction on the finger pad is effective. (4) The point of subjective equality of the perceived force can be controlled by up to 0.43 N by changing the amplitude voltage of the input signals. (5) The minimum stimulation time required for force perception is 66.7 ms. (6) When the vibration is continuously presented for 40 to 50 s, the perceived force decreases because of adaptation. Hence, we confirmed that we can control both the direction and magnitude of the reaction force by changing the input signal of the vibration speaker.

  2. Interfacial instabilities in vibrated fluids

    Science.gov (United States)

    Porter, Jeff; Laverón-Simavilla, Ana; Tinao Perez-Miravete, Ignacio; Fernandez Fraile, Jose Javier

    2016-07-01

    Vibrations induce a range of different interfacial phenomena in fluid systems depending on the frequency and orientation of the forcing. With gravity, (large) interfaces are approximately flat and there is a qualitative difference between vertical and horizontal forcing. Sufficient vertical forcing produces subharmonic standing waves (Faraday waves) that extend over the whole interface. Horizontal forcing can excite both localized and extended interfacial phenomena. The vibrating solid boundaries act as wavemakers to excite traveling waves (or sloshing modes at low frequencies) but they also drive evanescent bulk modes whose oscillatory pressure gradient can parametrically excite subharmonic surface waves like cross-waves. Depending on the magnitude of the damping and the aspect ratio of the container, these locally generated surfaces waves may interact in the interior resulting in temporal modulation and other complex dynamics. In the case where the interface separates two fluids of different density in, for example, a rectangular container, the mass transfer due to vertical motion near the endwalls requires a counterflow in the interior region that can lead to a Kelvin-Helmholtz type instability and a ``frozen wave" pattern. In microgravity, the dominance of surface forces favors non-flat equilibrium configurations and the distinction between vertical and horizontal applied forcing can be lost. Hysteresis and multiplicity of solutions are more common, especially in non-wetting systems where disconnected (partial) volumes of fluid can be established. Furthermore, the vibrational field contributes a dynamic pressure term that competes with surface tension to select the (time averaged) shape of the surface. These new (quasi-static) surface configurations, known as vibroequilibria, can differ substantially from the hydrostatic state. There is a tendency for the interface to orient perpendicular to the vibrational axis and, in some cases, a bulge or cavity is induced

  3. Monitoring of vibrating machinery using artificial neural networks

    International Nuclear Information System (INIS)

    Alguindigue, I.E.; Loskiewicz-Buczak, A.

    1991-01-01

    The primary source of vibration in complex engineering systems is rotating machinery. Vibration signatures collected from these components render valuable information about the operational state of the system and may be used to perform diagnostics. For example, the low frequency domain contains information about unbalance, misalignment, instability in journal bearing and mechanical looseness; analysis of the medium frequency range can render information about faults in meshing gear teeth; while the high frequency domain will contain information about incipient faults in rolling-element bearings. Trend analysis may be performed by comparing the vibration spectrum for each machine with a reference spectrum and evaluating the vibration magnitude changes at different frequencies. This form of analysis for diagnostics is often performed by maintenance personnel monitoring and recording transducer signals and analyzing the signals to identify the operating condition of the machine. With the advent of portable fast Fourier transform (FFT) analyzers and ''laptop'' computers, it is possible to collect and analyze vibration data an site and detect incipient failures several weeks or months before repair is necessary. It is often possible to estimate the remaining life of certain systems once a fault has been detected. RMS velocity, acceleration, displacements, peak value, and crest factor readings can be collected from vibration sensors. To exploit all the information embedded in these signals, a robust and advanced analysis technique is required. Our goal is to design a diagnostic system using neural network technology, a system such as this would automate the interpretation of vibration data coming from plant-wide machinery and permit efficient on-line monitoring of these components

  4. Design of a nonlinear torsional vibration absorber

    Science.gov (United States)

    Tahir, Ammaar Bin

    larger than that in the latter. A nonlinear absorber design has been proposed comprising of thin beams as elastic elements. The geometric configuration of the proposed design has been shown to provide cubic stiffness nonlinearity in torsion. The values of design variables, namely the strength of nonlinearity alpha and torsional stiffness kalpha, were obtained by optimizing dimensions and material properties of the beams for a maximum vibration energy dissipation in the nonlinear absorber. A parametric study has also been conducted to analyze the effect of the magnitude of excitation provided to the system on the performance of a nonlinear absorber. It has been shown that the nonlinear absorber turns out to be more effective in terms of energy dissipation as compared to a linear absorber with an increase in the excitation level applied to the system.

  5. Bandshapes in vibrational spectroscopy

    International Nuclear Information System (INIS)

    Dijkman, F.G.

    1978-01-01

    A detailed account is given of the development of modern bandshape theories since 1965. An investigation into the relative contributions of statistical irreversible relaxation processes is described, for a series of molecules in which gradually the length of one molecular axis is increased. An investigation into the theoretical and experimental investigation of the broadening brought about by the effect of fluctuating intermolecular potentials on the vibrational frequency is also described. The effect of an intermolecular perturbative potential on anharmonic and Morse oscillators is discussed and the results are presented of a computation on the broadening of the vibrational band of some diatomic molecules in a rigid lattice type solvent. The broadening of the OH-stretching vibration in a number of aliphatic alcohols, the vibrational bandshapes of the acetylenic C-H stretching vibration and of the symmetric methyl stretching vibration are investigated. (Auth./ C.F.)

  6. Dependence of inhomogeneous vibrational linewidth broadening on attractive forces from local liquid number densities

    International Nuclear Information System (INIS)

    George, S.M.; Harris, C.B.

    1982-01-01

    The dependence of inhomogeneous vibrational linewidth broadening on attractive forces form slowly varying local liquid number densities is examined. The recently developed Schweizer--Chandler theory of vibrational dephasing is used to compute absolute inhomogeneous broadening linewidths. The computed linewidths are compared to measured inhomogeneous broadening linewidths determined using picosecond vibrational dephasing experiments. There is a similarity between correlations of the Schweizer--Chandler and George--Auweter--Harris predicted inhomogeneous broadening linewidths and the measured inhomogeneous broadening linewidths. For the methyl stretches under investigation, this correspondence suggests that the width of the number density distribution in the liquid determines the relative inhomogeneous broadening magnitudes

  7. Experimental Study on Piezoelectric Energy Harvesting from Vortex-Induced Vibrations and Wake-Induced Vibrations

    Directory of Open Access Journals (Sweden)

    Min Zhang

    2016-01-01

    Full Text Available A rigid circular cylinder with two piezoelectric beams attached on has been tested through vortex-induced vibrations (VIV and wake-induced vibrations (WIV by installing a big cylinder fixed upstream, in order to study the influence of the different flow-induced vibrations (FIV types. The VIV test shows that the output voltage increases with the increases of load resistance; an optimal load resistance exists for the maximum output power. The WIV test shows that the vibration of the small cylinder is controlled by the vortex frequency of the large one. There is an optimal gap of the cylinders that can obtain the maximum output voltage and power. For a same energy harvesting device, WIV has higher power generation capacity; then the piezoelectric output characteristics can be effectively improved.

  8. Experimental characterization of cantilever-type piezoelectric generator operating at resonance for vibration energy harvesting

    Energy Technology Data Exchange (ETDEWEB)

    Montanini, Roberto, E-mail: rmontanini@unime.it; Quattrocchi, Antonino, E-mail: aquattrocchi@unime.it [University of Messina, Dept. of Engineering, Contrada di Dio, Messina (Italy)

    2016-06-28

    A cantilever-type resonant piezoelectric generator (RPG) has been designed by gluing a PZT patch working in d{sub 31} mode onto a glass fibre reinforced composite cantilever beam with a discrete mass applied on its free end. The electrical and dynamic behaviour of the RPG prototype has been investigated by carrying out laboratory tests aimed to assess the effect of definite design parameters, specifically the electric resistance load and the excitation frequency. Results showed that an optimum resistance load exists, at which power generation is maximized. Moreover, it has been showed that power generation is strongly influenced by the vibration frequency highlighting that, at resonance, output power can be increased by more than one order of magnitude. Possible applications include inertial resonant harvester for energy recovery from vibrating machines, sea waves or wind flux and self-powering of wireless sensor nodes.

  9. Force illusions and drifts observed during muscle vibration.

    Science.gov (United States)

    Reschechtko, Sasha; Cuadra, Cristian; Latash, Mark L

    2018-01-01

    We explored predictions of a scheme that views position and force perception as a result of measuring proprioceptive signals within a reference frame set by ongoing efferent process. In particular, this hypothesis predicts force illusions caused by muscle vibration and mediated via changes in both afferent and efferent components of kinesthesia. Healthy subjects performed accurate steady force production tasks by pressing with the four fingers of one hand (the task hand) on individual force sensors with and without visual feedback. At various times during the trials, subjects matched the perceived force using the other hand. High-frequency vibration was applied to one or both of the forearms (over the hand and finger extensors). Without visual feedback, subjects showed a drop in the task hand force, which was significantly smaller under the vibration of that forearm. Force production by the matching hand was consistently higher than that of the task hand. Vibrating one of the forearms affected the matching hand in a manner consistent with the perception of higher magnitude of force produced by the vibrated hand. The findings were consistent between the dominant and nondominant hands. The effects of vibration on both force drift and force mismatching suggest that vibration led to shifts in both signals from proprioceptors and the efferent component of perception, the referent coordinate and/or coactivation command. The observations fit the hypothesis on combined perception of kinematic-kinetic variables with little specificity of different groups of peripheral receptors that all contribute to perception of forces and coordinates. NEW & NOTEWORTHY We show that vibration of hand/finger extensors produces consistent errors in finger force perception. Without visual feedback, finger force drifted to lower values without a drift in the matching force produced by the other hand; hand extensor vibration led to smaller finger force drift. The findings fit the scheme with

  10. Simulation of fuel rods vibration in power reactors by vibration of tape coated with cadmium

    International Nuclear Information System (INIS)

    Holland, L.

    1982-01-01

    The circulation of cooling water in light water power reactor makes a vibration in internal components. The monitoring of those vibrations is necessary aiming to the safety use of reactors. Aiming at study those vibrations a neutron absorber, type vibratory tape was introduced in the core of a research reactor type Pulstar, operating at 80 W of power. The induced power variations were measured with an ionization chamber put besides the reactor core. The detector signal was recorded and analysed in a PDP-11 computer. The analysis of the results show that the power density of the detector signal, and thus, the power reactor, increase in the O-25 Hz range with an increase in the pulse height vibration. (E.G.) [pt

  11. An experimental and analytical investigation into the effects of process vibrations on material removal rates during polishing

    Science.gov (United States)

    Mullany, B.; Mainuddin, M.; Williams, W.; Keanini, R.

    2013-06-01

    Experimental testing, using both commercially available polishing machines and a specially built test platform, demonstrates that material removal rates (MRRs) observed during polishing of fused silica are strongly affected by nanometer-scale vibration amplitudes. Specifically, a nanometer level increase in system vibrations can produce MRRs approximately 150% higher than on an inherently smoother running machine. Moreover the higher spatial frequency surface roughness values are little-effected by the spectral content of the polishing machine. Polishing under controlled conditions, using the test platform, shows that for vibration amplitudes, A ≲ 1.6 μm, and over a fairly wide range of vibration frequencies, MRR increases almost linearly with increasing input power. By contrast, for A ≳ 10 μm, MRR exhibits a rapid decay with increasing A. Order of magnitude analyses and physical arguments are presented in order to explain the qualitatively distinct MRR trends observed. In the small-amplitude limit, A ≲ 1.6 μm, two arguments are presented which suggest that the total observed removal rate, MRRtot, reflects the superposed action of chemical-mechanical removal, MRRcm, and vibration-driven, flow-induced removal, MRRflow, i.e., MRRtot=MRRcm+MRRflow. The analyses further indicate that MRRflow primarily reflects cyclic viscous shears and pressure gradients extant within the thin, non-Newtonian slurry film that exists between the polishing tool and workpiece. Shears and pressure gradients, and corresponding flow-induced MRRs, are, in turn, found to scale as √A /do ω, where A is the vibration amplitude, do is the characteristic gap thickness between the tool and workpiece, and ω is the vibration frequency. In the large-amplitude limit, A ≳ 5 μm, experimental measurements and a simple scaling argument show that the polishing slurry film becomes thick enough that the workpiece and polishing tool lose direct contact. In this limit, observed MRRs thus reflect

  12. Terahertz thickness determination with interferometric vibration correction for industrial applications.

    Science.gov (United States)

    Pfeiffer, Tobias; Weber, Stefan; Klier, Jens; Bachtler, Sebastian; Molter, Daniel; Jonuscheit, Joachim; Von Freymann, Georg

    2018-05-14

    In many industrial fields, like automotive and painting industry, the thickness of thin layers is a crucial parameter for quality control. Hence, the demand for thickness measurement techniques continuously grows. In particular, non-destructive and contact-free terahertz techniques access a wide range of thickness determination applications. However, terahertz time-domain spectroscopy based systems perform the measurement in a sampling manner, requiring fixed distances between measurement head and sample. In harsh industrial environments vibrations of sample and measurement head distort the time-base and decrease measurement accuracy. We present an interferometer-based vibration correction for terahertz time-domain measurements, able to reduce thickness distortion by one order of magnitude for vibrations with frequencies up to 100 Hz and amplitudes up to 100 µm. We further verify the experimental results by numerical calculations and find very good agreement.

  13. Measurements and analysis of vibrations at Virilla Bridge, national route N° 1

    Directory of Open Access Journals (Sweden)

    Francisco Navarro-Henríquez

    2015-06-01

    The measurements allowed quantifying the vibration magnitudes and deformation in various sections of the bridge, on condition of vehicular traffic service (environmental performance. The experimental results are compared with computational analytical modeling of the structure and also with national and international standards.

  14. An Enhanced Random Vibration and Fatigue Model for Printed Circuit Boards

    Directory of Open Access Journals (Sweden)

    Bruno de Castro Braz

    Full Text Available Abstract Aerospace vehicles are mostly exposed to random vibration loads during its operational lifetime. These harsh conditions excites vibration responses in the vehicles printed circuit boards, what can cause failure on mission functionality due to fatigue damage of electronic components. A novel analytical model to evaluate the useful life of embedded electronic components (capacitors, chips, oscillators etc. mounted on Printed Circuit Boards (PCB is presented. The fatigue damage predictions are calculated by the relative displacement between the PCB and the component, the lead stiffness, as well the natural vibration modes of the PCB and the component itself. Statistical methods are used for fatigue cycle counting. The model is applied to experimental fatigue tests of PCBs available on literature. The analytical results are of the same magnitude order of the experimental findings.

  15. Review of leakage-flow-induced vibrations of reactor components

    International Nuclear Information System (INIS)

    Mulcahy, T.M.

    1983-05-01

    The primary-coolant flow paths of a reactor system are usually subject to close scrutiny in a design review to identify potential flow-induced vibration sources. However, secondary-flow paths through narrow gaps in component supports, which parallel the primary-flow path, occasionally are the excitation source for significant vibrations even though the secondary-flow rates are orders of magnitude smaller than the primary-flow rate. These so-called leakage flow problems are reviewed here to identify design features and excitation sources that should be avoided. Also, design rules of thumb are formulated that can be employed to guide a design, but quantitative prediction of component response is found to require scale-model testing

  16. Measurement of rabbit eardrum vibration through stroboscopic digital holography

    Energy Technology Data Exchange (ETDEWEB)

    De Greef, Daniël; Dirckx, Joris J. J. [University of Antwerp, Laboratory of BioMedical Physics, Groenenborgerlaan 171, B-2020 Antwerp (Belgium)

    2014-05-27

    In this work, we present a setup for high-power single shot stroboscopic digital holography and demonstrate it in an application on rabbit eardrum vibration measurement. The setup is able to make full-field time-resolved measurements of vibrating surfaces with a precision in the nanometer range in a broad frequency range. The height displacement of the measured object is visualized over the entire surface as a function of time. Vibration magnitude and phase maps can be extracted from these data, the latter proving to be very useful to reveal phase delays across the surface. Such deviations from modal motion indicate energy losses due to internal damping, in contrast to purely elastic mechanics. This is of great interest in middle ear mechanics and finite element modelling. In our setup, short laser pulses are fired at selected instants within the surface vibration period and are recorded by a CCD camera. The timing of the pulses and the exposure of the camera are synchronized to the vibration phase by a microprocessor. The high-power frequency-doubled Nd:YAG laser produces pulses containing up to 5 mJ of energy, which is amply sufficient to record single-shot holograms. As the laser pulse length is 8 ns and the smallest time step of the trigger electronics is 1 μs, vibration measurements of frequencies up to 250 kHz are achievable through this method, provided that the maximum vibration amplitude exceeds a few nanometers. In our application, middle ear mechanics, measuring frequencies extend from 5 Hz to 20 kHz. The experimental setup will be presented, as well as results of measurements on a stretched circular rubber membrane and a rabbit's eardrum. Two of the challenges when measuring biological tissues, such as the eardrum, are low reflectivity and fast dehydration. To increase reflectivity, a coating is applied and to counteract the undesirable effects of tissue dehydration, the measurement setup and software have been optimized for speed without

  17. Combined effect of noise and vibration produced by high-speed trains on annoyance in buildings.

    Science.gov (United States)

    Lee, Pyoung Jik; Griffin, Michael J

    2013-04-01

    The effects of noise and vibration on annoyance in buildings during the passage of a nearby high-speed train have been investigated in a laboratory experiment with recorded train noise and 20 Hz vibration. The noises included the effects of two types of façade: windows-open and windows-closed. Subjects were exposed to six levels of noise and six magnitudes of vibration, and asked to rate annoyance using an 11-point numerical scale. The experiment consisted of four sessions: (1) evaluation of noise annoyance in the absence of vibration, (2) evaluation of total annoyance from simultaneous noise and vibration, (3) evaluation of noise annoyance in the presence of vibration, and (4) evaluation of vibration annoyance in the absence of noise. The results show that vibration did not influence ratings of noise annoyance, but that total annoyance caused by combined noise and vibration was considerably greater than the annoyance caused by noise alone. The noise annoyance and the total annoyance caused by combined noise and vibration were associated with subject self-ratings of noise sensitivity. Two classical models of total annoyance due to combined noise sources (maximum of the single source annoyance or the integration of individual annoyance ratings) provided useful predictions of the total annoyance caused by simultaneous noise and vibration.

  18. Enhanced vibration diagnostics using vibration signature analysis

    International Nuclear Information System (INIS)

    Ahmed, S.; Shehzad, K.; Zahoor, Y.; Mahmood, A.; Bibi, A.

    2001-01-01

    Symptoms will appear in equipment, as well as in human beings. when 'suffering from sickness. Symptoms of abnormality in equipment are vibration, noise, deformation, temperature, pressure, electric current, crack, wearing, leakage etc. these are called modes of failure. If the mode of failure is vibration then the vibration signature analysis can be effectively used in order to diagnose the machinery problems. Much valuable information is contained within these vibration 'Spectra' or 'Signatures' but is only of use if the analyst can unlock its 'Secrets'. This paper documents a vibration problem in the motor of a centrifugal pump (Type ETA). It focuses mainly on the roll of modern vibration monitoring system in problem analysis. The problem experienced was the motor unstability and noise due to high vibration. Using enhanced vibration signature data, the problem was analyzed. which suggested that the rotor eccentricity was the cause of excessive noise and vibration in the motor. In conclusion, advanced electronic monitoring and diagnostic systems provide powerful information for machine's condition assessment and problem analysis. Appropriate interpretation and use of this information is important for accurate and effective vibration analysis. (author)

  19. Effect of Space Vehicle Structure Vibration on Control Moment Gyroscope Dynamics

    Science.gov (United States)

    Dobrinskaya, Tatiana

    2008-01-01

    Control Moment Gyroscopes (CMGs) are used for non-propulsive attitude control of satellites and space stations, including the International Space Station (ISS). CMGs could be essential for future long duration space missions due to the fact that they help to save propellant. CMGs were successfully tested on the ground for many years, and have been successfully used on satellites. However, operations have shown that the CMG service life on the ISS is significantly shorter than predicted. Since the dynamic environment of the ISS differs greatly from the nominal environment of satellites, it was important to analyze how operations specific to the station (dockings and undockings, huge solar array motion, crew exercising, robotic operations, etc) can affect the CMG performance. This task became even more important since the first CMG failure onboard the ISS. The CMG failure resulted in the limitation of the attitude control capabilities, more propellant consumption, and additional operational issues. Therefore, the goal of this work was to find out how the vibrations of a space vehicle structure, caused by a variety of onboard operations, can affect the CMG dynamics and performance. The equations of CMG motion were derived and analyzed for the case when the gyro foundation can vibrate in any direction. The analysis was performed for unbalanced CMG gimbals to match the CMG configuration on ISS. The analysis showed that vehicle structure vibrations can amplify and significantly change the CMG motion if the gyro gimbals are unbalanced in flight. The resonance frequencies were found. It was shown that the resonance effect depends on the magnitude of gimbal imbalance, on the direction of a structure vibration, and on gimbal bearing friction. Computer modeling results of CMG dynamics affected by the external vibration are presented. The results can explain some of the CMG vibration telemetry observed on ISS. This work shows that balancing the CMG gimbals decreases the effect

  20. Combined whole-body vibration, resistance exercise, and sustained vascular occlusion increases PGC-1α and VEGF mRNA abundances.

    Science.gov (United States)

    Item, Flurin; Nocito, Antonio; Thöny, Sandra; Bächler, Thomas; Boutellier, Urs; Wenger, Roland H; Toigo, Marco

    2013-04-01

    We previously reported that high load resistance exercise with superimposed whole-body vibration and sustained vascular occlusion (vibroX) markedly improves cycling endurance capacity, increases capillary-to-fibre ratio and skeletal muscle oxidative enzyme activity in untrained young women. These findings are intriguing, since increases in oxidative muscle phenotype and endurance capacity are typically induced by endurance but not heavy resistance exercise. Here, we tested the hypothesis that vibroX activates genes associated with mitochondrial biogenesis and angiogenesis. Eight healthy, recreationally resistance-trained young men performed either vibroX or resistance exercise (RES) in a randomised, cross-over design. Needle biopsies (M. vastus lateralis) were obtained at rest and 3 h post-exercise. Changes in relative gene expression levels were assessed by real-time quantitative PCR. After vibroX, vascular endothelial growth factor and peroxisome proliferator-activated receptor-γ coactivator 1α mRNA abundances increased to 2- and 4.4-fold, respectively, but did not significantly change above resting values after RES. Other genes involved in mitochondrial biogenesis were not affected by either exercise modality. While vibroX increased the expression of hexokinase II, xanthine dehydrogenase, and manganese superoxide dismutase mRNA, there were no changes in these transcripts after RES. This study demonstrates that high load resistance exercise with superimposed whole-body vibration and sustained vascular occlusion activates metabolic and angiogenic gene programs, which are usually activated after endurance but not resistance exercise. Thus, targeted modification of high load resistance exercise by vibration and vascular occlusion might represent a novel strategy to induce endurance-type muscle adaptations.

  1. Control Application of Piezoelectric Materials to Aeroelastic Self-Excited Vibrations

    Directory of Open Access Journals (Sweden)

    Mohammad Amin Rashidifar

    2014-01-01

    Full Text Available A method for application of piezoelectric materials to aeroelasticity of turbomachinery blades is presented. The governing differential equations of an overhung beam are established. The induced voltage in attached piezoelectric sensors due to the strain of the beam is calculated. In aeroelastic self-excited vibrations, the aerodynamic generalized force of a specified mode can be described as a linear function of the generalized coordinate and its derivatives. This simplifies the closed loop system designed for vibration control of the corresponding structure. On the other hand, there is an industrial interest in measurement of displacement, velocity, acceleration, or a contribution of them for machinery condition monitoring. Considering this criterion in quadratic optimal control systems, a special style of performance index is configured. Utilizing the current relations in an aeroelastic case with proper attachment of piezoelectric elements can provide higher margin of instability and lead to lower vibration magnitude.

  2. Magnitude of Anemia at Discharge Increases 30-Day Hospital Readmissions.

    Science.gov (United States)

    Koch, Colleen G; Li, Liang; Sun, Zhiyuan; Hixson, Eric D; Tang, Anne; Chagin, Kevin; Kattan, Michael; Phillips, Shannon C; Blackstone, Eugene H; Henderson, J Michael

    2017-12-01

    Anemia during hospitalization is associated with poor health outcomes. Does anemia at discharge place patients at risk for hospital readmission within 30 days of discharge? Our objectives were to examine the prevalence and magnitude of anemia at hospital discharge and determine whether anemia at discharge was associated with 30-day readmissions among a cohort of hospitalizations in a single health care system. From January 1, 2009, to August 31, 2011, there were 152,757 eligible hospitalizations within a single health care system. The endpoint was any hospitalization within 30 days of discharge. The University HealthSystem Consortium's clinical database was used for demographics and comorbidities; hemoglobin values are from the hospitals' electronic medical records, and readmission status was obtained from the University HealthSystem Consortium administrative data systems. Mild anemia was defined as hemoglobin of greater than 11 to less than 12 g/dl in women and greater than 11 to less than 13 g/dl in men; moderate, greater than 9 to less than or equal to 11 g/dl; and severe, less than or equal to 9 g/dl. Logistic regression was used to assess the association of anemia and 30-day readmissions adjusted for demographics, comorbidity, and hospitalization type. Among 152,757 hospitalizations, 72% of patients were discharged with anemia: 31,903 (21%), mild; 52,971 (35%), moderate; and 25,522 (17%), severe. Discharge anemia was associated with severity-dependent increased odds for 30-day hospital readmission compared with those without anemia: for mild anemia, 1.74 (1.65-1.82); moderate anemia, 2.76 (2.64-2.89); and severe anemia, 3.47 (3.30-3.65), P < 0.001. Anemia at discharge is associated with a severity-dependent increased risk for 30-day readmission. A strategy focusing on anemia treatment care paths during index hospitalization offers an opportunity to influence subsequent readmissions.

  3. A vibration sieve

    Energy Technology Data Exchange (ETDEWEB)

    Alekhin, S.A.; Denisenko, V.V.; Dzhalalov, M.G.; Kirichek, F.P.; Pitatel, Yu.A.; Prokopov, L.I.; Tikhonov, Yu.P.

    1982-01-01

    A vibration sieve is proposed which includes a vibration drive, a body and a screen installed on shock absorbers, a device for washing out the screen, and a subassembly for loading the material. To increase the operational reliability and effectiveness of the vibration sieve by improving the cleaning of the screen, the loading subassembly is equipped with a baffle with a lever which is hinged to it. The device for washing out the screen is made in the form of an electromagnet with a connecting rod, a switch and an eccentric, a friction ratchet mechanism and sprinkling systems. Here, the latter are interconnected, using a connecting rod, while the sprinkling system is installed on rollers under the screen. The electromagnetic switch is installed under the lever. The body is made with grooves for installing the sprinkling system. The vibration sieve is equipped with a switch which interacts with the connecting rod. The friction ratchet mechanism is equipped with a lug.

  4. Observation of an energy threshold for large ΔE collisional relaxation of highly vibrationally excited pyrazine (Evib=31 000-41 000 cm-1) by CO2

    Science.gov (United States)

    Elioff, Michael S.; Wall, Mark C.; Lemoff, Andrew S.; Mullin, Amy S.

    1999-03-01

    Energy dependent studies of the collisional relaxation of highly vibrationally excited pyrazine through collisions with CO2 were performed for initial pyrazine energies Evib=31 000-35 000 cm-1. These studies are presented along with earlier results for pyrazine with Evib=36 000-41 000 cm-1. High-resolution transient IR laser absorption of individual CO2 (0000) rotational states (J=56-80) was used to investigate the magnitude and partitioning of energy gain into CO2 rotation and translation, which comprises the high energy tail of the energy transfer distribution function. Highly vibrationally excited pyrazine was prepared by absorption of pulsed UV light at seven wavelengths in the range λ=281-324 nm, followed by radiationless decay to pyrazine's ground electronic state. Nascent CO2 (0000) rotational populations were measured for each UV excitation wavelength and distributions of nascent recoil velocities for individual rotational states of CO2 (0000) were obtained from Doppler-broadened transient linewidth measurements. Measurements of energy transfer rate constants at each UV wavelength yield energy-dependent probabilities for collisions involving large ΔE values. These results reveal that the magnitude of large ΔE collisional energy gain in CO2 (0000) is fairly insensitive to the amount of vibrational energy in pyrazine for Evib=31 000-35 000 cm-1. A comparison with earlier studies on pyrazine with Evib=36 000-41 000 cm-1 indicates that the V→RT energy transfer increases both in magnitude and probability for Evib>36 000 cm-1. Implications of incomplete intramolecular vibrational relaxation, electronic state coupling, and isomerization barriers are discussed in light of these results.

  5. Unjamming a granular hopper by vibration

    Science.gov (United States)

    Janda, A.; Maza, D.; Garcimartín, A.; Kolb, E.; Lanuza, J.; Clément, E.

    2009-07-01

    We present an experimental study of the outflow of a hopper continuously vibrated by a piezoelectric device. Outpouring of grains can be achieved for apertures much below the usual jamming limit observed for non-vibrated hoppers. Granular flow persists down to the physical limit of one grain diameter, a limit reached for a finite vibration amplitude. For the smaller orifices, we observe an intermittent regime characterized by alternated periods of flow and blockage. Vibrations do not significantly modify the flow rates both in the continuous and the intermittent regime. The analysis of the statistical features of the flowing regime shows that the flow time significantly increases with the vibration amplitude. However, at low vibration amplitude and small orifice sizes, the jamming time distribution displays an anomalous statistics.

  6. New moment magnitude scale, evidence of stress drop magnitude scaling and stochastic ground motion model for the French West Indies

    Science.gov (United States)

    Drouet, Stéphane; Bouin, Marie-Paule; Cotton, Fabrice

    2011-12-01

    In this study we analyse records from the 'Les Saintes' seismic sequence following the Mw= 6.3 earthquake of 2004 November 11, which occurred close to Guadeloupe (French West Indies). 485 earthquakes with magnitudes from 2 to 6, recorded at distances between 5 and 150 km are used. S-waves Fourier spectra are analysed to simultaneously determine source, path and site terms. The results show that the duration magnitude routinely estimated for the events that occurred in the region underestimate moment magnitude by 0.5 magnitude units over the whole magnitude range. From the inverted seismic moments and corner frequencies, we compute Brune's stress drops. We show that stress drops increase with increasing magnitude. The same pattern is observed on apparent stresses (i.e. the seismic energy-to-moment ratio). However, the rate of increase diminishes at high magnitudes, which is consistent with a constant stress drop model for large events. Using the results of the inversions, we perform ground motion simulations for the entire data set using the SMSIM stochastic simulation tool. The results show that a good fit (σ= 0.25) with observed data is achieved when the source is properly described by its moment magnitude and stress drop, and when site effects are taken into account. Although the magnitude-dependent stress drop model is giving better results than the constant stress drop model, the interevent variability remains high, which could suggest that stress drop depends on other parameters such as the depth of the hypocentre. In any case, the overall variability is of the same order of magnitude as usually observed in empirical ground motion prediction equations.

  7. Study of low vibration 4 K pulse tube cryocoolers

    Science.gov (United States)

    Xu, Mingyao; Nakano, Kyosuke; Saito, Motokazu; Takayama, Hirokazu; Tsuchiya, Akihiro; Maruyama, Hiroki

    2012-06-01

    Sumitomo Heavy Industries, Ltd. (SHI) has been continuously improving the efficiency and reducing the vibration of a 4 K pulse tube cryocooler. One advantage of a pulse tube cryocooler over a GM cryocooler is low vibration. In order to reduce vibration, both the displacement and the acceleration have to be reduced. The vibration acceleration can be reduced by splitting the valve unit from the cold head. One simple way to reduce vibration displacement is to increase the wall thickness of the tubes on the cylinder. However, heat conduction loss increases while the wall thickness increases. To overcome this dilemma, a novel concept, a tube with non-uniform wall thickness, is proposed. Theoretical analysis of this concept, and the measured vibration results of an SHI lowvibration pulse tube cryocooler, will be introduced in this paper.

  8. Magnetoelectric coupling of a magnetoelectric flux gate sensor in vibration noise circumstance

    Directory of Open Access Journals (Sweden)

    Zhaoqiang Chu

    2018-01-01

    Full Text Available A magnetoelectric (ME flux gate sensor (MEFGS consisting of piezoelectric PMN-PT single crystals and ferromagnetic amorphous alloy ribbon in a self-differential configuration is featured with the ability of weak magnetic anomaly detection. Here, we further investigated its ME coupling and magnetic field detection performance in vibration noise circumstance, including constant frequency, impact, and random vibration noise. Experimental results show that the ME coupling coefficient of MEFGS is as high as 5700 V/cm*Oe at resonant frequency, which is several orders magnitude higher than previously reported differential ME sensors. It was also found that under constant and impact vibration noise circumstance, the noise reduction and attenuation factor of MEFGS are over 17 and 85.7%, respectively. This work is important for practical application of MEFGS in real environment.

  9. Geometric Filtering Effect of Vertical Vibrations in Railway Vehicles

    Directory of Open Access Journals (Sweden)

    Mădălina Dumitriu

    2012-09-01

    Full Text Available The paper herein examines the geometric filtering effect coming from the axle base of a railway vehicle upon the vertical vibrations behavior, due to the random irregularities of the track. For this purpose, the complete model of a two-level suspension and flexible carbody vehicle has been taken into account. Following the modal analysis, the movement equations have been treated in an original manner and brought to a structure that points out at the symmetrical and anti-symmetrical decoupled movements of vehicle and their excitation modes. There has been shown that the geometric filtering has a selective behavior in decreasing the level of vibrations, and its contribution is affected by the axle base magnitude, rolling speed and frequency range.

  10. Understanding the magnitude dependence of PGA and PGV in NGA-West 2 data

    Science.gov (United States)

    Baltay, Annemarie S.; Hanks, Thomas C.

    2014-01-01

    The Next Generation Attenuation‐West 2 (NGA‐West 2) 2014 ground‐motion prediction equations (GMPEs) model ground motions as a function of magnitude and distance, using empirically derived coefficients (e.g., Bozorgniaet al., 2014); as such, these GMPEs do not clearly employ earthquake source parameters beyond moment magnitude (M) and focal mechanism. To better understand the magnitude‐dependent trends in the GMPEs, we build a comprehensive earthquake source‐based model to explain the magnitude dependence of peak ground acceleration and peak ground velocity in the NGA‐West 2 ground‐motion databases and GMPEs. Our model employs existing models (Hanks and McGuire, 1981; Boore, 1983, 1986; Anderson and Hough, 1984) that incorporate a point‐source Brune model, including a constant stress drop and the high‐frequency attenuation parameter κ0, random vibration theory, and a finite‐fault assumption at the large magnitudes to describe the data from magnitudes 3 to 8. We partition this range into four different magnitude regions, each of which has different functional dependences on M. Use of the four magnitude partitions separately allows greater understanding of what happens in any one subrange, as well as the limiting conditions between the subranges. This model provides a remarkably good fit to the NGA data for magnitudes from 3magnitude data, for which the corner frequency is masked by the attenuation of high frequencies. That this simple, source‐based model matches the NGA‐West 2 GMPEs and data so well suggests that considerable simplicity underlies the parametrically complex NGA GMPEs.

  11. Multiple scattering approach to the vibrational excitation of molecules by slow electrons

    International Nuclear Information System (INIS)

    Drukarev, G.

    1976-01-01

    Another approach to the problem of vibrational excitation of homonuclear two-atomic molecules by slow electrons possibly accompanied by rotational transitions is presented based on the picture of multiple scattering of an electron inside the molecule. The scattering of two fixed centers in the zero range potential model is considered. The results indicate that the multiple scattering determines the order of magnitude of the vibrational excitation cross sections in the energy region under consideration even if the zero range potential model is used. Also the connection between the multiple scattering approach and quasi-stationary molecular ion picture is established. 9 refs

  12. Effect of Attitudinal, Situational and Demographic Factors on Annoyance Due to Environmental Vibration and Noise from Construction of a Light Rapid Transit System

    Directory of Open Access Journals (Sweden)

    Daniel Wong-McSweeney

    2016-12-01

    Full Text Available The aim of this paper is to determine what non-exposure factors influence the relationship between vibration and noise exposure from the construction of a Light Rapid Transit (LRT system and the annoyance of nearby residents. Noise and vibration from construction sites are known to annoy residents, with annoyance increasing as a function of the magnitude of the vibration and noise. There is not a strong correlation between exposure and levels of annoyance suggesting that factors not directly related to the exposure may have an influence. A range of attitudinal, situational and demographic factors are investigated with the aim of understanding the wide variation in annoyance for a given vibration exposure. A face-to-face survey of residents (n = 350 near three sites of LRT construction was conducted, and responses were compared to semi-empirical estimates of the internal vibration within the buildings. It was found that annoyance responses due to vibration were strongly influenced by two attitudinal variables, concern about property damage and sensitivity to vibration. Age, ownership of the property and the visibility of the construction site were also important factors. Gender, time at home and expectation of future levels of vibration had much less influence. Due to the measurement methods used, it was not possible to separate out the effects of noise and vibration on annoyance; as such, this paper focusses on annoyance due to vibration exposure. This work concludes that for the most cost-effective reduction of the impact of construction vibration and noise on the annoyance felt by a community, policies should consider attitudinal factors.

  13. Laser-induced breakdown spectroscopy with laser irradiation resonant with vibrational transitions

    International Nuclear Information System (INIS)

    Khachatrian, Ani; Dagdigian, Paul J.

    2010-01-01

    An investigation of laser-induced breakdown spectroscopy (LIBS) of polymers, both in bulk form and spin coated on Si wafers, with laser irradiation in the mid-infrared spectral region is presented. Of particular interest is whether the LIBS signals are enhanced when the laser wavelength is resonant with a fundamental vibrational transition of the polymer. Significant increases in the LIBS signals were observed for irradiation on hydride stretch fundamental transitions, and the magnitude of the enhancement showed a strong dependence on the mode excited. The role of the substrate was investigated by comparison of results for bulk and spin-coated samples. The polymers investigated were Nylon 12 and poly(vinyl alcohol-co-ethylene).

  14. Influence of foundation and axial force on the vibration of thin beam ...

    African Journals Online (AJOL)

    The influence of foundation and axial force on the vibration of a simply supported thin (Bernoulli Euler) beam, resting on a uniform foundation, under the action of a variable magnitude harmonic load moving with variable velocity is investigated in this paper. The governing equation is a fourth order partial differential ...

  15. sEMG during Whole-Body Vibration Contains Motion Artifacts and Reflex Activity

    Directory of Open Access Journals (Sweden)

    Karin Lienhard

    2015-01-01

    Full Text Available The purpose of this study was to determine whether the excessive spikes observed in the surface electromyography (sEMG spectrum recorded during whole-body vibration (WBV exercises contain motion artifacts and/or reflex activity. The occurrence of motion artifacts was tested by electrical recordings of the patella. The involvement of reflex activity was investigated by analyzing the magnitude of the isolated spikes during changes in voluntary background muscle activity. Eighteen physically active volunteers performed static squats while the sEMG was measured of five lower limb muscles during vertical WBV using no load and an additional load of 33 kg. In order to record motion artifacts during WBV, a pair of electrodes was positioned on the patella with several layers of tape between skin and electrodes. Spectral analysis of the patella signal revealed recordings of motion artifacts as high peaks at the vibration frequency (fundamental and marginal peaks at the multiple harmonics were observed. For the sEMG recordings, the root mean square of the spikes increased with increasing additional loads (p < 0.05, and was significantly correlated to the sEMG signal without the spikes of the respective muscle (r range: 0.54 - 0.92, p < 0.05. This finding indicates that reflex activity might be contained in the isolated spikes, as identical behavior has been found for stretch reflex responses evoked during direct vibration. In conclusion, the spikes visible in the sEMG spectrum during WBV exercises contain motion artifacts and possibly reflex activity.

  16. Vibrational frequencies and dephasing times in excited electronic states by femtosecond time-resolved four-wave mixing

    Science.gov (United States)

    Joo, Taiha; Albrecht, A. C.

    1993-06-01

    Time-resolved degenerate four-wave mixing (TRDFWM) for an electronically resonant system in a phase-matching configuration that measures population decay is reported. Because the spectral width of input light exceeds the vibrational Bohr frequency of a strong Raman active mode, the vibrational coherence produces strong oscillations in the TRDFWM signal together with the usual population decay from the excited electronic state. The data are analyzed in terms of a four-level system: ground and excited electronic states each split by a vibrational quantum of a Raman active mode. Absolute frequencies and their dephasing times of the vibrational modes at ≈590 cm -1 are obtained for the excited as well as the ground electronic state. The vibrational dephasing rate in the excited electronic state is about an order of magnitude faster than that in the ground state, the origin of which is speculated upon.

  17. Petroleum Pumps’ Current and Vibration Signatures Analysis Using Wavelet Coherence Technique

    Directory of Open Access Journals (Sweden)

    Rmdan Shnibha

    2013-01-01

    Full Text Available Vibration analysis is widely used for rotating machinery diagnostics; however measuring vibration of operational oil well pumps is not possible. The pump’s driver’s current signatures may provide condition-related information without the need for an access to the pump itself. This paper investigates the degree of relationship between the pump’s driver’s current signatures and its induced vibration. This relationship between the driver’s current signatures (DCS and its vibration signatures (DVS is studied by calculating magnitude-squared coherence and phase coherence parameters at a certain frequency band using continuous wavelet transform (CWT. The CWT coherence-based technique allows better analysis of temporal evolution of the frequency content of dynamic signals and areas in the time-frequency plane where the two signals exhibit common power or consistent phase behaviour indicating a relationship between the signals. This novel approach is validated by experimental data acquired from 3 kW petroleum pump’s driver. Both vibration and current signatures were acquired under different speed and load conditions. The outcomes of this research suggest the use of DCS analysis as reliable and inexpensive condition monitoring tool, which could be implemented for oil pumps, real-time monitoring associated with condition-based maintenance (CBM program.

  18. Scaling Relations of Local Magnitude versus Moment Magnitude for Sequences of Similar Earthquakes in Switzerland

    KAUST Repository

    Bethmann, F.

    2011-03-22

    Theoretical considerations and empirical regressions show that, in the magnitude range between 3 and 5, local magnitude, ML, and moment magnitude, Mw, scale 1:1. Previous studies suggest that for smaller magnitudes this 1:1 scaling breaks down. However, the scatter between ML and Mw at small magnitudes is usually large and the resulting scaling relations are therefore uncertain. In an attempt to reduce these uncertainties, we first analyze the ML versus Mw relation based on 195 events, induced by the stimulation of a geothermal reservoir below the city of Basel, Switzerland. Values of ML range from 0.7 to 3.4. From these data we derive a scaling of ML ~ 1:5Mw over the given magnitude range. We then compare peak Wood-Anderson amplitudes to the low-frequency plateau of the displacement spectra for six sequences of similar earthquakes in Switzerland in the range of 0:5 ≤ ML ≤ 4:1. Because effects due to the radiation pattern and to the propagation path between source and receiver are nearly identical at a particular station for all events in a given sequence, the scatter in the data is substantially reduced. Again we obtain a scaling equivalent to ML ~ 1:5Mw. Based on simulations using synthetic source time functions for different magnitudes and Q values estimated from spectral ratios between downhole and surface recordings, we conclude that the observed scaling can be explained by attenuation and scattering along the path. Other effects that could explain the observed magnitude scaling, such as a possible systematic increase of stress drop or rupture velocity with moment magnitude, are masked by attenuation along the path.

  19. Dissecting Protein Configurational Entropy into Conformational and Vibrational Contributions.

    Science.gov (United States)

    Chong, Song-Ho; Ham, Sihyun

    2015-10-01

    Quantifying how the rugged nature of the underlying free-energy landscape determines the entropic cost a protein must incur upon folding and ligand binding is a challenging problem. Here, we present a novel computational approach that dissects the protein configurational entropy on the basis of the classification of protein dynamics on the landscape into two separate components: short-term vibrational dynamics related to individual free-energy wells and long-term conformational dynamics associated with transitions between wells. We apply this method to separate the configurational entropy of the protein villin headpiece subdomain into its conformational and vibrational components. We find that the change in configurational entropy upon folding is dominated by the conformational entropy despite the fact that the magnitude of the vibrational entropy is the significantly larger component in each of the folded and unfolded states, which is in accord with the previous empirical estimations. The straightforward applicability of our method to unfolded proteins promises a wide range of applications, including those related to intrinsically disordered proteins.

  20. Survey of vibration amplitudes throughout the linac

    International Nuclear Information System (INIS)

    Werner, K.L.

    1984-01-01

    The magnitude of vibrations of the Linac structure due to on site disturbances, such as cooling towers, pumps, generators, Highway 280 overpass traffic, is of interest. CN-263, for example, discusses tolerances of random (i.e., uncorrelated) quad jitter and suggests that amplitudes should not exceed 0.7 microns rms. This note describes the results of a series of measurements carried out in the summer of 1983. In general, the tolerance is not exceeded, but there appears not to be a good safety factor at low frequencies

  1. Teleseismic magnitude relations

    Directory of Open Access Journals (Sweden)

    Markus Båth

    2010-02-01

    Full Text Available Using available sets of magnitude determinations, primarily from Uppsala seismological bulletin, various extensions are made of the Zurich magnitude recommendations of 1967. Thus, body-wave magnitude (m and surface-wave magnitudes (M are related to each other for 12 different earthquake regions as well as world-wide. Depth corrections for M are derived for all focal depths. Formulas are developed which permit calculation of M also from vertical component long-period seismographs. Body-wave magnitudes from broad-band and narrow-band short-period seismographs are compared and relations deduced. Applications are made both to underground nuclear explosions and to earthquakes. The possibilities of explosion-earthquake discrimination on the basis of magnitudes are examined, as well as the determination of explosive yield from magnitudes. For earthquakes, relations between magnitudes of main earthquakes and largest aftershocks are investigated. A world-wide station network for more homogeneous magnitude determinations is suggested in order to provide the necessary reference system.

  2. Understanding of bridge cable vibrations and the associate flow-field through the full-scale monitoring of vibrations and Wind

    DEFF Research Database (Denmark)

    Acampora, Antonio

    This dissertation investigates the conditions that promote rain-wind-induced vibrations of inclined cable on cable-stayed bridges. Rain-wind-induced vibrations are known as the most common type of cable vibrations and capable of severe vibrations. The recent increase in the number of cable stayed...... bridges continuously becoming longer and lighter have resulted in a high number of observations of cable vibrations. A theoretical background for the tool used in this work is presented in terms of cables vibrations mechanisms, aerodynamic damping and system identification techniques. A detailed...... literature review of reported observations of rain-wind-induced cable vibrations of fullscale bridges is shown. The database of observed events on bridges collects information about the conditions that likely develop the phenomenon, together with the means used to suppress or reduce the occurrence of cable...

  3. Scaling relations of moment magnitude, local magnitude, and duration magnitude for earthquakes originated in northeast India

    Science.gov (United States)

    Bora, Dipok K.

    2016-06-01

    In this study, we aim to improve the scaling between the moment magnitude ( M W), local magnitude ( M L), and the duration magnitude ( M D) for 162 earthquakes in Shillong-Mikir plateau and its adjoining region of northeast India by extending the M W estimates to lower magnitude earthquakes using spectral analysis of P-waves from vertical component seismograms. The M W- M L and M W- M D relationships are determined by linear regression analysis. It is found that, M W values can be considered consistent with M L and M D, within 0.1 and 0.2 magnitude units respectively, in 90 % of the cases. The scaling relationships investigated comply well with similar relationships in other regions in the world and in other seismogenic areas in the northeast India region.

  4. A new vibration isolation bed stage with magnetorheological dampers for ambulance vehicles

    International Nuclear Information System (INIS)

    Chae, Hee Dong; Choi, Seung-Bok

    2015-01-01

    The vibration experienced in an ambulance can lead to secondary injury to a patient and discourage a paramedic from providing emergency care. In this study, with the goal of resolving this problem, a new vibration isolation bed stage associated with magnetorheological (MR) dampers is proposed to ensure ride quality as well as better care for the patient while he/she is being transported. The bed stage proposed in this work can isolate vibrations in the vertical, rolling and pitching directions to reflect the reality that occurs in the ambulance. Firstly, an appropriate-sized MR damper is designed based on the field-dependent rheological properties of MR fluid, and the damping force characteristics of a MR damper are evaluated as a function of the current. A mechanical model of the proposed vibration isolation bed stage is then established to derive the governing equations of motion. Subsequently, a sliding mode controller is formulated to control the vibrations caused from the imposed excitation signals; those signals are directly measured using a real ambulance subjected to bump-and-curve road conditions. Using the controller based on the dynamic motion of the bed stage, the vibration control performance is evaluated in both the vertical and pitch directions. It is demonstrated that the magnitude of the vibration in the patient compartment of the ambulance can be significantly reduced by applying an input current to the MR dampers installed for the new bed stage. (technical note)

  5. 16 x 16 Vantage+ Fuel Assembly Flow Vibrational Testing

    International Nuclear Information System (INIS)

    Chambers, Martin; Kurincic, Bojan

    2014-01-01

    Nuklearna Elektrarna Krsko (NEK) has experienced leaking fuel after increasing the cycle duration to 18 months. The leaking fuel mechanism has predominantly been consistent over multiple cycles and is typically observed in highly irradiated Fuel Assemblies (FA) after around 4 years of continuous operation that were located at the core periphery (baffle). The cause of the leaking fuel is due to Grid-To-Rod-Fretting (GRTF) and occasional debris fretting. NEK utilises a 16x16 Vantage+ FA design with all Inconel structural mixing vane grids (8 in total), Zirlo thimbles, Integral Fuel Burnable Absorber (IFBA) rods with enriched ZrB2, enriched Annular Blanket, Debris Filter Bottom Nozzle (DFBN), Removable Top Nozzle (RTN) and Zirlo fuel cladding material with a high burnup capability of 60 GWD/MTU. Numerous design and operational changes are thought to have reduced the original 16x16 FA design margin to fretting resistance of either vibration or its wear work rate, such as significant power uprate (spring force loss, rod creep down...), operational cycle duration increase from 12 to 18 months (increasing residence time as well as lead FA and fuel rod burnup values), Reactor Coolant System flow increase (increased vibration), removal of Thimble Plugs (increased bypass flow, increased vibration) and Zirc-4 to Zirlo cladding change (decreasing wear work rate). The fuel rod to grid spring as well as dimple contact areas are relatively smaller than other FA designs that exhibit good in-reactor fretting performance. A FA design change project to address the small rod to dimple / spring contact area and utilise fuel cladding oxide coating is currently being pursued with the fuel supplier. The FA vibrational properties are very important to the in-reactor FA performance and reliability. The 16x16 Vantage+ vibrational testing was performed with a full size FA in the Fuel Assembly Compatibility Testing (FACTS) loop that is able to provide full flow rates at elevated temperature

  6. Whole-body vibration exercise in postmenopausal osteoporosis

    Directory of Open Access Journals (Sweden)

    Magdalena Weber-Rajek

    2015-01-01

    Full Text Available The report of the World Health Organization (WHO of 2008 defines osteoporosis as a disease characterized by low bone mass and an increased risk of fracture. Postmenopausal osteoporosis is connected to the decrease in estrogens concentration as a result of malfunction of endocrine ovarian function. Low estrogens concentration causes increase in bone demineralization and results in osteoporosis. Physical activity, as a component of therapy of patients with osteoporosis, has been used for a long time now. One of the forms of safe physical activity is the vibration training. Training is to maintain a static position or execution of specific exercises involving the appropriate muscles on a vibrating platform, the mechanical vibrations are transmitted to the body of the patient. According to the piezoelectric theory, pressure induces bone formation in the electrical potential difference, which acts as a stimulant of the process of bone formation. Whole body vibration increases the level of growth hormone and testosterone in serum, preventing sarcopenia and osteoporosis. The aim of this study was to review the literature on vibration exercise in patients with postmenopausal osteoporosis based on the PubMed and Medline database. While searching the database, the following key words were used ‘postmenopausal osteoporosis’ and ‘whole-body vibration exercise’.

  7. Psychophysical estimate of plantar vibration sensitivity brings additional information to the detection threshold in young and elderly subjects

    Directory of Open Access Journals (Sweden)

    Yves Jammes

    Full Text Available Objective: Vibration detection threshold of the foot sole was compared to the psychophysical estimate of vibration in a wide range of amplitudes in young (20–34 years old and elderly subjects (53–67 years old. Methods: The vibration detection threshold was determined on the hallux, 5th metatarsal head, and heel at frequencies of 25, 50 and 150 Hz. For vibrations of higher amplitude (reaching 360 μm, the Stevens power function (Ψ = k * Φn allowed to obtain regression equations between the vibration estimate (Ψ and its physical magnitude (Φ, the n coefficient giving the subjective intensity in vibration perception. We searched for age-related changes in the vibration perception by the foot sole. Results: In all participants, higher n values were measured at vibration frequencies of 150 Hz and, compared to the young adults the elderly had lower n values measured at this frequency. Only in the young participants, the vibration detection threshold was lowered at 150 Hz. Conclusion: The psychophysical estimate brings further information than the vibration detection threshold which is less affected by age. Significance: The clinical interest of psychophysical vibration estimate was assessed in a patient with a unilateral alteration of foot sensitivity. Keywords: Vibration sensitivity, Vibration detection threshold, Foot sole, Elderly

  8. Parameter definition using vibration prediction software leads to significant drilling performance improvements

    Energy Technology Data Exchange (ETDEWEB)

    Amorim, Dalmo; Hanley, Chris Hanley; Fonseca, Isaac; Santos, Juliana [National Oilwell Varco, Houston TX (United States); Leite, Daltro J.; Borella, Augusto; Gozzi, Danilo [Petroleo Brasileiro S.A. (PETROBRAS), Rio de Janeiro, RJ (Brazil)

    2012-07-01

    The understanding and mitigation of downhole vibration has been a heavily researched subject in the oil industry as it results in more expensive drilling operations, as vibrations significantly diminish the amount of effective drilling energy available to the bit and generate forces that can push the bit or the Bottom Hole Assembly (BHA) off its concentric axis of rotation, producing high magnitude impacts with the borehole wall. In order to drill ahead, a sufficient amount of energy must be supplied by the rig to overcome the resistance of the drilling system, including the reactive torque of the system, drag forces, fluid pressure losses and energy dissipated by downhole vibrations, then providing the bit with the energy required to fail the rock. If the drill string enters resonant modes of vibration, not only does it decreases the amount of available energy to drill, but increases the potential for catastrophic downhole equipment and drilling bit failures. In this sense, the mitigation of downhole vibrations will result in faster, smoother, and cheaper drilling operations. A software tool using Finite Element Analysis (FEA) has been developed to provide better understanding of downhole vibration phenomena in drilling environments. The software tool calculates the response of the drilling system at various input conditions, based on the design of the wellbore along with the geometry of the Bottom Hole Assembly (BHA) and the drill string. It identifies where undesired levels of resonant vibration will be driven by certain combinations of specific drilling parameters, and also which combinations of drilling parameters will result in lower levels of vibration, so the least shocks, the highest penetration rate and the lowest cost per foot can be achieved. With the growing performance of personal computers, complex software systems modeling the drilling vibrations using FEA has been accessible to a wider audience of field users, further complimenting with real time

  9. Nonlinear vibration with control for flexible and adaptive structures

    CERN Document Server

    Wagg, David

    2015-01-01

    This book provides a comprehensive discussion of nonlinear multi-modal structural vibration problems, and shows how vibration suppression can be applied to such systems by considering a sample set of relevant control techniques. It covers the basic principles of nonlinear vibrations that occur in flexible and/or adaptive structures, with an emphasis on engineering analysis and relevant control techniques. Understanding nonlinear vibrations is becoming increasingly important in a range of engineering applications, particularly in the design of flexible structures such as aircraft, satellites, bridges, and sports stadia. There is an increasing trend towards lighter structures, with increased slenderness, often made of new composite materials and requiring some form of deployment and/or active vibration control. There are also applications in the areas of robotics, mechatronics, micro electrical mechanical systems, non-destructive testing and related disciplines such as structural health monitoring. Two broader ...

  10. [Occupational standing vibration rate and vibrational diseases].

    Science.gov (United States)

    Karnaukh, N G; Vyshchipan, V F; Haumenko, B S

    2003-12-01

    Occupational standing vibration rate is proposed in evaluating a degree of impairment of an organism activity. It will allow more widely to introduce specification of quality and quantity in assessment of the development of vibrational disease. According out-patient and inpatient obtained data we have established criterial values of functional changes in accordance with accumulated occupational standing vibration rate. The nomogram was worked out for defining a risk of the development of vibrational disease in mine workers. This nomogram more objectively can help in diagnostics of the disease.

  11. Comparative Study of Reducing the Vibration Level of a Cylindrical Gear Transmissions by Increasing the Manufacturing Precision of the Gears, Respective by Applying of Fluoropolymer Coating on the Gear Teeth

    Directory of Open Access Journals (Sweden)

    Zoltan Korka

    2012-09-01

    Full Text Available The current trend in the construction of gearboxes, regarding the speed increase, favors the increase of the dynamic loads and, consequentially of the vibration level. Therefore, the vibration reduction of gear transmissions finds a growing interest, representing an element of fight against environmental pollution.

  12. Catalytic synthesis of ammonia using vibrationally excited nitrogen

    DEFF Research Database (Denmark)

    Henriksen, Niels Engholm; Billing, Gert D.; Hansen, Flemming Yssing

    1992-01-01

    In a previous study we have considered the catalytic synthesis of ammonia in the presence of vibrationally excited nitrogen. The distribution over vibrational states was assumed to be maintained during the reaction, and it was shown that the yield of ammonia increased considerably compared...... to that from conventional synthesis. In the present study the nitrogen molecules are only excited at the inlet of a plug flow reactor, and the importance of vibrational relaxation is investigated. We show that vibrational excitation can give an enhanced yield of ammonia also in the situation where vibrational...

  13. Applying Low-Frequency Vibration for the Experimental Investigation of Clutch Hub Forming

    Directory of Open Access Journals (Sweden)

    De’an Meng

    2018-05-01

    Full Text Available A vibration-assisted plastic-forming method was proposed, and its influence on clutch hub forming process was investigated. The experiments were conducted on a vibration-assisted hydraulic extrusion press with adjustable frequency and amplitude. Vibration frequency and amplitude were considered in investigating the effect of vibration on forming load and surface quality. Results showed that applying vibration can effectively reduce forming force and improve surface quality. The drop in forming load was proportional to the vibration frequency and amplitude, and the load decreased by up to 25%. Such reduction in forming load raised with amplitude increase because the increase in amplitude would accelerate punch relative speed, which then weakened the adhesion between workpiece and dies. By increasing the vibration frequency, the punch movement was enhanced, and the number of attempts to drag the lubricant out of the pits was increased. In this manner, the lubrication condition was improved greatly. The 3D surface topography testing confirmed the assumption. Moreover, vibration frequency exerted a more significant effect on the forming load reduction than vibration amplitude.

  14. Intermediate energy cross sections for electron-impact vibrational-excitation of pyrimidine

    Energy Technology Data Exchange (ETDEWEB)

    Jones, D. B. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001 (Australia); Ellis-Gibbings, L.; García, G. [Instituto de Física Fundamental, CSIC, Serrano 113-bis, 28006 Madrid (Spain); Nixon, K. L. [Departamento de Física, Universidade Federal de Juiz de Fora, 36036-330 Juiz de Fora, Minas Gerais (Brazil); School of Biology, Chemistry and Forensic Science, University of Wolverhampton, Wolverhampton WV1 1LY (United Kingdom); Lopes, M. C. A. [Departamento de Física, Universidade Federal de Juiz de Fora, 36036-330 Juiz de Fora, Minas Gerais (Brazil); Brunger, M. J., E-mail: Michael.Brunger@flinders.edu.au [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001 (Australia); Institute of Mathematical Sciences, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2015-09-07

    We report differential cross sections (DCSs) and integral cross sections (ICSs) for electron-impact vibrational-excitation of pyrimidine, at incident electron energies in the range 15–50 eV. The scattered electron angular range for the DCS measurements was 15°–90°. The measurements at the DCS-level are the first to be reported for vibrational-excitation in pyrimidine via electron impact, while for the ICS we extend the results from the only previous condensed-phase study [P. L. Levesque, M. Michaud, and L. Sanche, J. Chem. Phys. 122, 094701 (2005)], for electron energies ⩽12 eV, to higher energies. Interestingly, the trend in the magnitude of the lower energy condensed-phase ICSs is much smaller when compared to the corresponding gas phase results. As there is no evidence for the existence of any shape-resonances, in the available pyrimidine total cross sections [Baek et al., Phys. Rev. A 88, 032702 (2013); Fuss et al., ibid. 88, 042702 (2013)], between 10 and 20 eV, this mismatch in absolute magnitude between the condensed-phase and gas-phase ICSs might be indicative for collective-behaviour effects in the condensed-phase results.

  15. Recovering Intrinsic Fragmental Vibrations Using the Generalized Subsystem Vibrational Analysis.

    Science.gov (United States)

    Tao, Yunwen; Tian, Chuan; Verma, Niraj; Zou, Wenli; Wang, Chao; Cremer, Dieter; Kraka, Elfi

    2018-05-08

    Normal vibrational modes are generally delocalized over the molecular system, which makes it difficult to assign certain vibrations to specific fragments or functional groups. We introduce a new approach, the Generalized Subsystem Vibrational Analysis (GSVA), to extract the intrinsic fragmental vibrations of any fragment/subsystem from the whole system via the evaluation of the corresponding effective Hessian matrix. The retention of the curvature information with regard to the potential energy surface for the effective Hessian matrix endows our approach with a concrete physical basis and enables the normal vibrational modes of different molecular systems to be legitimately comparable. Furthermore, the intrinsic fragmental vibrations act as a new link between the Konkoli-Cremer local vibrational modes and the normal vibrational modes.

  16. VIBRATION CONTROL OF RECTANGULAR CROSS-PLY FRP PLATES USING PZT MATERIALS

    Directory of Open Access Journals (Sweden)

    DILEEP KUMAR K

    2017-12-01

    Full Text Available Piezoelectric materials are extensively employed in the field of structures for condition monitoring, smart control and testing applications. The piezoelectric patches are surface bonded to a composite laminate plate and used as vibration actuators. The coupling effects between the mechanical and electric properties of piezoelectric materials have drawn significant attention for their potential applications. In the present work, an analytical solution of the vibration response of a simply supported laminate rectangular plate under time harmonic electrical loading is obtained and a concept is developed for an approximate dynamic model to the vibration response of the simply supported orthotropic rectangular plates excited by a piezoelectric patch of variable rectangular geometry and location. A time harmonic electric voltages with the same magnitude and opposite sign are applied to the two symmetric piezoelectric actuators, which results in the bending moment on the plate. The main objective of the work is to obtain an analytical solution for the vibration amplitude of composite plate predicted from plate theory. The results demonstrate that the vibration modes can be selectively excited and the geometry of the PZTactuator shape remarkably affects the distribution of the response among modes. Thus according to the desired degree shape control it is possible to tailor the shape, size and properly designed control algorithm of the actuator to either excite or suppress particular modes.

  17. Metabolic effect of bodyweight whole-body vibration in a 20-min exercise session: A crossover study using verified vibration stimulus.

    Directory of Open Access Journals (Sweden)

    Chiara Milanese

    Full Text Available The ability of whole body vibration (WBV to increase energy expenditure (EE has been investigated to some extent in the past using short-term single exercises or sets of single exercises. However, the current practice in WBV training for fitness is based on the execution of multiple exercises during a WBV training session for a period of at least 20 min; nevertheless, very limited and inconsistent data are available on EE during long term WBV training session. This crossover study was designed to demonstrate, in an adequately powered sample of participants, the ability of WBV to increase the metabolic cost of exercise vs. no vibration over the time span of a typical WBV session for fitness (20 min. Twenty-two physically active young males exercised on a vibration platform (three identical sets of six different exercises using an accelerometer-verified vibration stimulus in both the WBV and no vibration condition. Oxygen consumption was measured with indirect calorimetry and expressed as area under the curve (O2(AUC. Results showed that, in the overall 20-min training session, WBV increased both the O2(AUC and the estimated EE vs. no vibration by about 22% and 20%, respectively (P<0.001 for both, partial eta squared [η2] ≥0.35 as well as the metabolic equivalent of task (+5.5%, P = 0.043; η2 = 0.02 and the rate of perceived exertion (+13%, P<0.001; ŋ2 = 0.16. Results demonstrated that vibration is able to significantly increase the metabolic cost of exercise in a 20-min WBV training session.

  18. Elbow joint position sense after neuromuscular training with handheld vibration.

    Science.gov (United States)

    Tripp, Brady L; Faust, Donald; Jacobs, Patrick

    2009-01-01

    Clinicians use neuromuscular control exercises to enhance joint position sense (JPS); however, because standardizing such exercises is difficult, validations of their use are limited. To evaluate the acute effects of a neuromuscular training exercise with a handheld vibrating dumbbell on elbow JPS acuity. Crossover study. University athletic training research laboratory. Thirty-one healthy, college-aged volunteers (16 men, 15 women, age = 23 + or - 3 years, height = 173 + or - 8 cm, mass = 76 + or - 14 kg). We measured and trained elbow JPS using an electromagnetic tracking device that provided auditory and visual biofeedback. For JPS testing, participants held a dumbbell and actively identified the target elbow flexion angle (90 degrees ) using the software-generated biofeedback, followed by 3 repositioning trials without feedback. Each neuromuscular training protocol included 3 exercises during which participants held a 2.55-kg dumbbell vibrating at 15, 5, or 0 Hz and used software-generated biofeedback to locate and maintain the target elbow flexion angle for 15 seconds. We calculated absolute (accuracy) and variable (variability) errors using the differences between target and reproduced angles. Training protocols using 15-Hz vibration enhanced accuracy and decreased variability of elbow JPS (P or = .200). Our results suggest these neuromuscular control exercises, which included low-magnitude, low-frequency handheld vibration, may enhance elbow JPS. Future researchers should examine vibration of various durations and frequencies, should include injured participants and functional multijoint and multiplanar measures, and should examine long-term effects of training protocols on JPS and injury.

  19. Short duration small sided football and to a lesser extent whole body vibration exercise induce acute changes in markers of bone turnover

    DEFF Research Database (Denmark)

    Bowtell, Joanna L.; Jackman, Sarah R; Scott, Suzanne

    2016-01-01

    .8 ± 15.1 to 36.6 ± 14.7 μg·L(-1), P > 0.05). An increase in osteocalcin was observed 48 h after exercise (P type 1 collagen was not affected by exercise. Blood lactate concentration increased during exercise for FG15 (0......) small sided football or low magnitude whole body vibration training (VIB). Procollagen type 1 amino-terminal propeptide (P1NP) was increased during exercise for FG15 (51.6 ± 23.0 to 56.5 ± 22.5 μg·L(-1), mean ± SD, P

  20. Scaling A Moment-Rate Function For Small To Large Magnitude Events

    Science.gov (United States)

    Archuleta, Ralph; Ji, Chen

    2017-04-01

    vibration theory explain the PGA, PGV scaling relationships for larger magnitude?

  1. Vibrations of alkali metal overlayers on metal surfaces

    International Nuclear Information System (INIS)

    Rusina, G G; Eremeev, S V; Borisova, S D; Echenique, P M; Chulkov, E V; Benedek, G

    2008-01-01

    We review the current progress in the understanding of vibrations of alkalis adsorbed on metal surfaces. The analysis of alkali vibrations was made on the basis of available theoretical and experimental results. We also include in this discussion our recent calculations of vibrations in K/Pt(111) and Li(Na)/Cu(001) systems. The dependence of alkali adlayer localized modes on atomic mass, adsorption position and coverage as well as the dependence of vertical vibration frequency on the substrate orientation is discussed. The square root of atomic mass dependence of the vertical vibration energy has been confirmed by using computational data for alkalis on the Al(111) and Cu(001) substrates. We have confirmed that in a wide range of submonolayer coverages the stretch mode energy remains nearly constant while the energy of in-plane polarized modes increases with the increase of alkali coverage. It was shown that the spectrum of both stretch and in-plane vibrations can be very sensitive to the adsorption position of alkali atoms and substrate orientation

  2. Design, simulation, fabrication, and characterization of MEMS vibration energy harvesters

    Science.gov (United States)

    Oxaal, John

    Energy harvesting from ambient sources has been a longtime goal for microsystem engineers. The energy available from ambient sources is substantial and could be used to power wireless micro devices, making them fully autonomous. Self-powered wireless sensors could have many applications in for autonomous monitoring of residential, commercial, industrial, geological, or biological environments. Ambient vibrations are of particular interest for energy harvesting as they are ubiquitous and have ample kinetic energy. In this work a MEMS device for vibration energy harvesting using a variable capacitor structure is presented. The nonlinear electromechanical dynamics of a gap-closing type structure is experimentally studied. Important experimental considerations such as the importance of reducing off-axis vibration during testing, characterization methods, dust contamination, and the effect of grounding on parasitic capacitance are discussed. A comprehensive physics based model is developed and validated with two different microfabricated devices. To achieve maximal power, devices with high aspect ratio electrodes and a novel two-level stopper system are designed and fabricated. The maximum achieved power from the MEMS device when driven by sinusoidal vibrations was 3.38 muW. Vibrations from HVAC air ducts, which have a primary frequency of 65 Hz and amplitude of 155 mgrms, are targeted as the vibration source and devices are designed for maximal power harvesting potential at those conditions. Harvesting from the air ducts, the devices reached 118 nW of power. When normalized to the operating conditions, the best figure of merit of the devices tested was an order of magnitude above state-of-the-art of the devices (1.24E-6).

  3. Local-mode vibrations of water

    International Nuclear Information System (INIS)

    Lawton, R.T.; Child, M.S.

    1981-01-01

    Quantum-mechanical eigenvalues for the stretching vibrations of H 2 O on the Sorbie-Murrell potential surface are shown to contain a series of local-mode doublets, with splittings which vary as the energy increases from 100 cm - 1 at v=1 to 0.001 cm - 1 at v=8. Preliminary calculations indicate that this pattern is largely unaffected by inclusion of the bending vibrational mode. (author)

  4. Effect of shelf aging on vibration transmissibility of anti-vibration gloves

    Science.gov (United States)

    SHIBATA, Nobuyuki

    2017-01-01

    Anti-vibration gloves have been used in real workplaces to reduce vibration transmitted through hand-held power tools to the hand. Generally materials used for vibration attenuation in gloves are resilient materials composed of certain synthetic and/or composite polymers. The mechanical characteristics of the resilient materials used in anti-vibration gloves are prone to be influenced by environmental conditions such as temperature, humidity, and photo-irradiation, which cause material degradation and aging. This study focused on the influence of shelf aging on the vibration attenuation performance of air-packaged anti-vibration gloves following 2 yr of shelf aging. Effects of shelf aging on the vibration attenuation performance of anti-vibration gloves were examined according to the Japan industrial standard JIS T8114 test protocol. The findings indicate that shelf aging induces the reduction of vibration attenuation performance in air-packaged anti-vibration gloves. PMID:28978817

  5. Adolescents with Developmental Dyscalculia Do Not Have a Generalized Magnitude Deficit - Processing of Discrete and Continuous Magnitudes.

    Science.gov (United States)

    McCaskey, Ursina; von Aster, Michael; O'Gorman Tuura, Ruth; Kucian, Karin

    2017-01-01

    The link between number and space has been discussed in the literature for some time, resulting in the theory that number, space and time might be part of a generalized magnitude system. To date, several behavioral and neuroimaging findings support the notion of a generalized magnitude system, although contradictory results showing a partial overlap or separate magnitude systems are also found. The possible existence of a generalized magnitude processing area leads to the question how individuals with developmental dyscalculia (DD), known for deficits in numerical-arithmetical abilities, process magnitudes. By means of neuropsychological tests and functional magnetic resonance imaging (fMRI) we aimed to examine the relationship between number and space in typical and atypical development. Participants were 16 adolescents with DD (14.1 years) and 14 typically developing (TD) peers (13.8 years). In the fMRI paradigm participants had to perform discrete (arrays of dots) and continuous magnitude (angles) comparisons as well as a mental rotation task. In the neuropsychological tests, adolescents with dyscalculia performed significantly worse in numerical and complex visuo-spatial tasks. However, they showed similar results to TD peers when making discrete and continuous magnitude decisions during the neuropsychological tests and the fMRI paradigm. A conjunction analysis of the fMRI data revealed commonly activated higher order visual (inferior and middle occipital gyrus) and parietal (inferior and superior parietal lobe) magnitude areas for the discrete and continuous magnitude tasks. Moreover, no differences were found when contrasting both magnitude processing conditions, favoring the possibility of a generalized magnitude system. Group comparisons further revealed that dyscalculic subjects showed increased activation in domain general regions, whilst TD peers activate domain specific areas to a greater extent. In conclusion, our results point to the existence of a

  6. Vibration-induced particle formation during yogurt fermentation - Industrial vibration measurements and development of an experimental setup.

    Science.gov (United States)

    Körzendörfer, Adrian; Temme, Philipp; Nöbel, Stefan; Schlücker, Eberhard; Hinrichs, Jörg

    2016-07-01

    The aim of the study was to investigate the effects of vibrations during yogurt fermentation. Machinery such as pumps and switching valves generate vibrations that may disturb the gelation by inducing large particles. Oscillation measurements on an industrial yogurt production line showed that oscillations are transferred from pumps right up to the fermentation tanks. An experimental setup (20L) was developed to study the effect of vibrations systematically. The fermenters were decoupled with air springs to enable reference fermentations under idle conditions. A vibration exciter was used to stimulate the fermenters. Frequency sweeps (25-1005Hz, periodic time 10s) for 20min from pH5.4 induced large particles. The number of visible particles was significantly increased from 35±4 (reference) to 89±9 particles per 100g yogurt. Rheological parameters of the stirred yogurt samples were not influenced by vibrations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Axial vibrations of brass wind instrument bells and their acoustical influence: Theory and simulations.

    Science.gov (United States)

    Kausel, Wilfried; Chatziioannou, Vasileios; Moore, Thomas R; Gorman, Britta R; Rokni, Michelle

    2015-06-01

    Previous work has demonstrated that structural vibrations of brass wind instruments can audibly affect the radiated sound. Furthermore, these broadband effects are not explainable by assuming perfect coincidence of the frequency of elliptical structural modes with air column resonances. In this work a mechanism is proposed that has the potential to explain the broadband influences of structural vibrations on acoustical characteristics such as input impedance, transfer function, and radiated sound. The proposed mechanism involves the coupling of axial bell vibrations to the internal air column. The acoustical effects of such axial bell vibrations have been studied by extending an existing transmission line model to include the effects of a parasitic flow into vibrating walls, as well as distributed sound pressure sources due to periodic volume fluctuations in a duct with oscillating boundaries. The magnitude of these influences in typical trumpet bells, as well as in a complete instrument with an unbraced loop, has been studied theoretically. The model results in predictions of input impedance and acoustical transfer function differences that are approximately 1 dB for straight instruments and significantly higher when coiled tubes are involved or when very thin brass is used.

  8. Olive oil increases the magnitude of postprandial chylomicron remnants compared to milk fat and safflower oil.

    Science.gov (United States)

    Higashi, K; Ishikawa, T; Shige, H; Tomiyasu, K; Yoshida, H; Ito, T; Nakajima, K; Yonemura, A; Sawada, S; Nakamura, H

    1997-10-01

    The acute effects of olive oil, milk fat and safflower oil on postprandial lipemia and remnant lipoprotein metabolism were investigated. Eight Healthy male volunteers randomly underwent three types of oral fat-vitamin A loading tests. The test drink was a mixture of retinyl palmitate (RP)(50,000 IU of aqueous vitamin A/m2 body surface area) and one of the three types of oils (40 g of fat/m2 body surface area): olive oil (70.7% oleic acid of total fatty acids); milk fat (69.3% saturated fatty acid); safflower oil (74.2% linoleic acid). Olive oil significantly increased plasma triacylglycerol and RP concentrations 4 hours after fat loading, as compared to other fats. Increases of remnant like particle concentrations were higher after olive oil than after the other two fats. These results show that olive oil increases the magnitude of postprandial chylomicrons and chylomicron remnants compared to milk fat and safflower oil.

  9. Local vibrations and lift performance of low Reynolds number airfoil

    Directory of Open Access Journals (Sweden)

    TariqAmin Khan

    2017-06-01

    Full Text Available The 2D incompressible Navier-Stokes equations are solved based on the finite volume method and dynamic mesh technique is used to carry out partial fluid structure interaction. The local flexible structure (hereinafter termed as flexible structure vibrates in a single mode located on the upper surface of the airfoil. The Influence of vibration frequency and amplitude are examined and the corresponding fluid flow characteristics are investigated which add complexity to the inherent problem in unsteady flow. The study is conducted for flow over NACA0012 airfoil at 600≤Re≤3000 at a low angle of attack. Vibration of flexible structure induces a secondary vortex which modifies the pressure distribution and lift performance of the airfoil. At some moderate vibration amplitude, frequency synchronization or lock-in phenomenon occurs when the vibration frequency is close to the characteristic frequency of rigid airfoil. Evolution and shedding of vortices corresponding to the deformation of flexible structure depends on the Reynolds number. In the case of Re≤1000, the deformation of flexible structure is considered in-phase with the vortex shedding i.e., increasing maximum lift is linked with the positive deformation of flexible structure. At Re=1500 a phase shift of about 1/π exists while they are out-of-phase at Re>1500. Moreover, the oscillation amplitude of lift coefficient increases with increasing vibration amplitude for Re≤1500 while it decreases with increasing vibration amplitude for Re>1500. As a result of frequency lock-in, the average lift coefficient is increased with increasing vibration amplitude for all investigated Reynolds numbers (Re. The maximum increase in the average lift coefficient is 19.72% within the range of investigated parameters.

  10. Effect of Low Frequency Burner Vibrations on the Characteristics of Jet Diffusion Flames

    Directory of Open Access Journals (Sweden)

    C. Kanthasamy

    2012-03-01

    Full Text Available Mechanical vibrations introduced in diffusion flame burners significantly affect the flame characteristics. In this experimental study, the effects of axial vibrations on the characteristics of laminar diffusion flames are investigated systematically. The effect of the frequency and amplitude of the vibrations on the flame height oscillations and flame stability is brought out. The amplitude of flame height oscillations is found to increase with increase in both frequency and amplitude of burner vibrations. Vibrations are shown to enhance stability of diffusion flames. Although flame lifts-off sooner with vibrations, stability of the flame increases.

  11. Vibrations in the urban environment controlling 222Rn migration in soils

    International Nuclear Information System (INIS)

    Wiegand, J.

    1998-01-01

    Comparable to investigations looking for a connection of 222 Rn and earthquakes, this study shows the influence of subsurface vibrations on the 222 Rn concentration of the soil-gas in urban environments. Generally, the 222 Rn concentration increases through vibrations induced by trains, street-traffic and activities at project sites. The spatial radius of the 222 Rn increase due to vibrations reach highest values at project sites where piled foundations or metal panels are rammed into the ground (> 60 m). Along railway tracks the radius is wider (> 30 m) than along heavy traffic roads ( 222 Rn concentrations in soil-gas due to vibrations is the highest at project sites (53%). Along heavy traffic roads the increase of 222 Rn concentrations by motor vehicle traffic is higher (37%) than that by railway traffic (11.5%). The maximum increase of 400% was observed in a distance of 1 m from a railway track. In the vicinity of railway tracks a difference of the vibration influence according to unconsolidated rock (11.1%) or solid rock (11.8%) was not noticed. Beside this vibration effect, the overall 222 Rn level decreases with increasing distance to the vibration source, but only at locations laying above solid rocks. The observation of the increase of 222 Rn concentrations can be explained by a 'pump effect': the mechanical vibration of soil and mineral particles leads to an upward motion of the whole volume of soil-gas. Therefore, 222 Rn is pumped out of the soil to the atmosphere and as a result the upward transport is increased. (author)

  12. A new potential energy surface for vibration-vibration coupling in HF-HF collisions. Formulation and quantal scattering calculations

    Science.gov (United States)

    Schwenke, David W.; Truhlar, Donald G.

    1988-04-01

    We present new ab initio calculations of the HF-HF interaction potential for the case where both molecules are simultaneously displaced from their equilibrium internuclear distance. These and previous ab initio calculations are then fit to a new analytic representation which is designed to be efficient to evaluate and to provide an especially faithful account of the forces along the vibrational coordinates. We use the new potential for two sets of quantal scattering calculations for collisions in three dimensions with total angular momentum zero. First we test that the angular harmonic representation of the anisotropy is adequate by comparing quantal rigid rotator calculations to those carried out for potentials involving higher angular harmonics and for which the expansion in angular harmonics is systematically increased to convergence. Then we carry out large-scale quantal calculations of vibration-vibration energy transfer including the coupling of both sets of vibrational and rotational coordinates. These calculations indicate that significant rotational energy transfer accompanies the vibration-to-vibration energy transfer process.

  13. Magnitude and duration of stretch modulate fibroblast remodeling.

    Science.gov (United States)

    Balestrini, Jenna L; Billiar, Kristen L

    2009-05-01

    Mechanical cues modulate fibroblast tractional forces and remodeling of extracellular matrix in healthy tissue, healing wounds, and engineered matrices. The goal of the present study is to establish dose-response relationships between stretch parameters (magnitude and duration per day) and matrix remodeling metrics (compaction, strength, extensibility, collagen content, contraction, and cellularity). Cyclic equibiaxial stretch of 2-16% was applied to fibroblast-populated fibrin gels for either 6 h or 24 h/day for 8 days. Trends in matrix remodeling metrics as a function of stretch magnitude and duration were analyzed using regression analysis. The compaction and ultimate tensile strength of the tissues increased in a dose-dependent manner with increasing stretch magnitude, yet remained unaffected by the duration in which they were cycled (6 h/day versus 24 h/day). Collagen density increased exponentially as a function of both the magnitude and duration of stretch, with samples stretched for the reduced duration per day having the highest levels of collagen accumulation. Cell number and failure tension were also dependent on both the magnitude and duration of stretch, although stretch-induced increases in these metrics were only present in the samples loaded for 6 h/day. Our results indicate that both the magnitude and the duration per day of stretch are critical parameters in modulating fibroblast remodeling of the extracellular matrix, and that these two factors regulate different aspects of this remodeling. These findings move us one step closer to fully characterizing culture conditions for tissue equivalents, developing improved wound healing treatments and understanding tissue responses to changes in mechanical environments during growth, repair, and disease states.

  14. Vibrational spectroscopy

    Science.gov (United States)

    Umesh P. Agarwal; Rajai Atalla

    2010-01-01

    Vibrational spectroscopy is an important tool in modern chemistry. In the past two decades, thanks to significant improvements in instrumentation and the development of new interpretive tools, it has become increasingly important for studies of lignin. This chapter presents the three important instrumental methods-Raman spectroscopy, infrared (IR) spectroscopy, and...

  15. Influence of Electron Molecule Resonant Vibrational Collisions over the Symmetric Mode and Direct Excitation-Dissociation Cross Sections of CO2 on the Electron Energy Distribution Function and Dissociation Mechanisms in Cold Pure CO2 Plasmas.

    Science.gov (United States)

    Pietanza, L D; Colonna, G; Laporta, V; Celiberto, R; D'Ammando, G; Laricchiuta, A; Capitelli, M

    2016-05-05

    A new set of electron-vibrational (e-V) processes linking the first 10 vibrational levels of the symmetric mode of CO2 is derived by using a decoupled vibrational model and inserted in the Boltzmann equation for the electron energy distribution function (eedf). The new eedf and dissociation rates are in satisfactory agreement with the corresponding ones obtained by using the e-V cross sections reported in the database of Hake and Phelps (H-P). Large differences are, on the contrary, found when the experimental dissociation cross sections of Cosby and Helm are inserted in the Boltzman equation. Comparison of the corresponding rates with those obtained by using the low-energy threshold energy, reported in the H-P database, shows differences up to orders of magnitude, which decrease with the increasing of the reduced electric field. In all cases, we show the importance of superelastic vibrational collisions in affecting eedf and dissociation rates either in the direct electron impact mechanism or in the pure vibrational mechanism.

  16. VIBRATION ANALYSIS OF TURBINE BASED ON FLUID-STRUCTURE COUPLING

    Institute of Scientific and Technical Information of China (English)

    LIU Demin; LIU Xiaobing

    2008-01-01

    The vibration of a Francis turbine is analyzed with the additional quality matrix method based on fluid-structure coupling (FSC). Firstly, the vibration frequency and mode of blade and runner in air and water are calculated. Secondly, the influences to runner frequency domain by large flow, small flow and design flow working conditions are compared. Finally the influences to runner modes by centrifugal forces under three rotating speeds of 400 r/min, 500 r/min and 600 r/min are compared. The centrifugal force and small flow working condition have greatly influence on the vibration of small runner. With the increase of centrifugal force, the vibration frequency of the runner is sharply increased. Some order frequencies are even close to the runner natural frequency in the air. Because the low frequency vibration will severely damage the stability of the turbine, low frequency vibration of units should be avoided as soon as possible.

  17. Modeling of forced vibration phenomenon by making an electrical analogy with ANSYS finite element software

    Directory of Open Access Journals (Sweden)

    Myriam Rocío Pallares Muñoz

    2009-01-01

    Full Text Available Designing mechanical systems which are submitted to vibration requires calculation methods which are very different to those u-sed in other disciplines because, when this occurs, the magnitude of the forces becomes secondary and the frequency with which the force is repeated becomes the most important aspect. It must be taken care of, given that smaller periodic forces can prompt disasters than greater static forces. The article presents a representative problem regarding systems having forced vibration, the mathematical treatment of differential equations from an electrical and mechanical viewpoint, an electrical analogy, numerical modeling of circuits using ANSYS finite element software, analysis and comparison of numerical modeling results compared to test values, the post-processing of results and conclusions regarding electrical analogy methodology when analysing forced vibra-tion systems.

  18. The Influence of Various Vibration Frequency on Barium Sulfate Scale Formation Of Vibrated Piping System In The Presence Citric Acid

    Science.gov (United States)

    Karaman, N.; Mangestiyono, W.; Muryanto, S.; Jamari, J.; Bayuseno, A. P.

    2018-01-01

    In this paper, the influence of vibrated piping system for BaSO4 scale formation was investigated. The vibration frequency and presence of citric acid were independent variables determining the kinetics, mass deposit and polymorph of the crystals. Correspondingly, induction time and mass of scale were obtained during the experiments. The crystalline scale was observed by scanning electron microscopy (SEM) and X-Ray Diffraction (XRD) to investigate the morphology and the phase mineral deposits, respectively. This effect indicated that the increase in vibration frequency promoted the increased deposition rate, while the pure barite with a plate-like morphology was produced in the experiments.

  19. Whole-body vibration and the risk of low back pain and sciatica: a systematic review and meta-analysis.

    Science.gov (United States)

    Burström, Lage; Nilsson, Tohr; Wahlström, Jens

    2015-05-01

    The aim of this systematic literature review was to evaluate the association between whole-body vibration (WBV) and low back pain (LBP) and sciatica with special attention given to exposure estimates. Moreover, the aim was to estimate the magnitude of such an association using meta-analysis and to compare our findings with previous reviews. The authors systematically searched the PubMed (National Library of Medicine, Bethesda), Nioshtic2 (National Institute for Occupational Safety and Health (NIOSH, Morgantown), and ScienceDirect (Elsevier, Amsterdam) databases for records up to December 31, 2013. Two of the authors independently assessed studies to determine their eligibility, validity, and possible risk of bias. The literature search gave a total of 306 references out of which 28 studies were reviewed and 20 were included in the meta-analysis. Exposure to WBV was associated with increased prevalence of LBP and sciatica [pooled odds ratio (OR) = 2.17, 95% confidence interval (CI) 1.61-2.91 and OR 1.92, 95% CI 1.38-2.67, respectively]. Workers exposed to high vibration levels had a pooled risk estimate of 1.5 for both outcomes when compared with workers exposed to low levels of vibration. The results also indicate that some publication bias could have occurred especially for sciatica. This review shows that there is scientific evidence that exposure to WBV increases the risk of LBP and sciatica.

  20. Local-mode vibrations of water

    Energy Technology Data Exchange (ETDEWEB)

    Lawton, R.T.; Child, M.S. (Oxford Univ. (UK). Dept. of Theoretical Chemistry)

    1981-05-11

    Quantum-mechanical eigenvalues for the stretching vibrations of H/sub 2/O on the Sorbie-Murrell potential surface are shown to contain a series of local-mode doublets, with splittings which vary as the energy increases from 100 cm/sup -1/ at v=1 to 0.001 cm/sup -1/ at v=8. Preliminary calculations indicate that this pattern is largely unaffected by inclusion of the bending vibrational mode.

  1. Local-mode vibrations of water

    Energy Technology Data Exchange (ETDEWEB)

    Lawton, R.T.; Child, M.S. (Oxford Univ. (UK). Dept. of Theoretical Chemistry)

    1981-05-11

    Quantum-mechanical eigenvalues for the stretching vibrations of H/sub 2/O on the Sorbie-Murrell potential surface are shown to contain a series of local-mode doublets, with splittings which vary as the energy increases from 100 cm/sup -1/ at theta=1 to 0.001 cm/sup -1/ at theta=8. Preliminary calculations indicate that this pattern is largely unaffected by inclusion of the bending vibrational mode.

  2. Analysis of whole-body vibration on rheological models for tissues

    Science.gov (United States)

    Neamţu, A.; Simoiu, D.; Nyaguly, E.; Crastiu, I.; Bereteu, L.

    2018-01-01

    Whole body vibrations have become a very popular method in recent years, both in physical therapy and in sports. This popularity is due to the fact that, as a result of analyzing the groups of subjects, the effects of small amplitude vibration and low frequency vibration, it was found an increase in the force developed by the feet, a hardening of bone strength or an increase in bone density. In this paper we propose to give a possible explanation of the stress relieving in muscle and/or bone after whole body vibration treatment. To do this we consider some rheological models which after whole body vibrations and after the analysis of their response lead to various experiments.

  3. Reinforcer magnitude and rate dependency: evaluation of resistance-to-change mechanisms.

    Science.gov (United States)

    Pinkston, Jonathan W; Ginsburg, Brett C; Lamb, Richard J

    2014-10-01

    Under many circumstances, reinforcer magnitude appears to modulate the rate-dependent effects of drugs such that when schedules arrange for relatively larger reinforcer magnitudes rate dependency is attenuated compared with behavior maintained by smaller magnitudes. The current literature on resistance to change suggests that increased reinforcer density strengthens operant behavior, and such strengthening effects appear to extend to the temporal control of behavior. As rate dependency may be understood as a loss of temporal control, the effects of reinforcer magnitude on rate dependency may be due to increased resistance to disruption of temporally controlled behavior. In the present experiments, pigeons earned different magnitudes of grain during signaled components of a multiple FI schedule. Three drugs, clonidine, haloperidol, and morphine, were examined. All three decreased overall rates of key pecking; however, only the effects of clonidine were attenuated as reinforcer magnitude increased. An analysis of within-interval performance found rate-dependent effects for clonidine and morphine; however, these effects were not modulated by reinforcer magnitude. In addition, we included prefeeding and extinction conditions, standard tests used to measure resistance to change. In general, rate-decreasing effects of prefeeding and extinction were attenuated by increasing reinforcer magnitudes. Rate-dependent analyses of prefeeding showed rate-dependency following those tests, but in no case were these effects modulated by reinforcer magnitude. The results suggest that a resistance-to-change interpretation of the effects of reinforcer magnitude on rate dependency is not viable.

  4. Experiment studies of fuel rod vibration in coolant flow for substantiation of vibration stability of fuel rods with no fretting-wear

    International Nuclear Information System (INIS)

    Egorov, Yu. V.; Afanasiev, A. V.; Makarov, V. V.; Matvienko, I. V.

    2013-01-01

    For substantiation of vibration stability it is necessary to determine the ultimate permissible vibration levels which do not cause fretting, to compare them with the level of fuel rod vibration caused by coolant flow. Another approach is feasible if there is experience of successful operation of FA-prototypes. In this case in order to justify vibration stability it may be sufficient to demonstrate that the new element does not cause increased vibration of the fuel rod. It can be done by comparing the levels of hydro-dynamic fuel rod vibration and FA new designs. Program of vibration tests of TVS-2M model included studies of forced oscillations of 12 fuel rods in the coolant flow in the spans containing intensifiers, in the reference span without intensifiers, in the lower spans with assembled ADF and after its disassembly. The experimental results for TVS-2M show that in the spans with intensifier «Sector run» the level of movements is 6% higher on the average than in the span without intensifiers, in the spans with intensifier «Eddy» it is 2% higher. The level of fuel rod vibration movements in the spans with set ADF is 2 % higher on the average than without ADF. During the studies of TVS-KVADRAT fuel rod vibration, the following tasks were solved: determination of acceleration of the middle of fuel rod spans at vibration excited due to hydrodynamics; determination of influence of coolant thermal- hydraulic parameters (temperature, flowrate, dynamic pressure) on fuel rod vibration response; determination of influence of span lengths on the vibration level. Conclusions: 1) The vibration tests of the full-scale model of TVS-2M in the coolant flow showed that the new elements of TVS-2M design (intensifiers of heat exchange and ADF) are not the source of fuel rod increased vibration. Considering successful operation of similar fuel rod spans in the existing TVS-2M design, vibration stability of TVS-2M fuel rods with new elements is ensured on the mechanism of

  5. Resonant vibration control of three-bladed wind turbine rotors

    DEFF Research Database (Denmark)

    Krenk, Steen; Svendsen, Martin Nymann; Høgsberg, Jan Becker

    2012-01-01

    Rotors with blades, as in wind turbines, are prone to vibrations due to the flexibility of the blades and the support. In the present paper a theory is developed for active control of a combined set of vibration modes in three-bladed rotors. The control system consists of identical collocated...... to influence of other nonresonant modes. The efficiency of the method isdemonstrated byapplication to a rotor with 42 m blades, where the sensor/actuator system is implemented in the form of an axial extensible strut near the root of each blade. The load is provided by a simple but fully threedimensional...... correlated wind velocity field. It is shown by numerical simulations that the active damping system can provide a significant reduction in the response amplitude of the targeted modes, while applying control moments to the blades that are about 1 order of magnitude smaller than the moments from the external...

  6. Magnitude conversion to unified moment magnitude using orthogonal regression relation

    Science.gov (United States)

    Das, Ranjit; Wason, H. R.; Sharma, M. L.

    2012-05-01

    Homogenization of earthquake catalog being a pre-requisite for seismic hazard assessment requires region based magnitude conversion relationships. Linear Standard Regression (SR) relations fail when both the magnitudes have measurement errors. To accomplish homogenization, techniques like Orthogonal Standard Regression (OSR) are thus used. In this paper a technique is proposed for using such OSR for preparation of homogenized earthquake catalog in moment magnitude Mw. For derivation of orthogonal regression relation between mb and Mw, a data set consisting of 171 events with observed body wave magnitudes (mb,obs) and moment magnitude (Mw,obs) values has been taken from ISC and GCMT databases for Northeast India and adjoining region for the period 1978-2006. Firstly, an OSR relation given below has been developed using mb,obs and Mw,obs values corresponding to 150 events from this data set. M=1.3(±0.004)m-1.4(±0.130), where mb,proxy are body wave magnitude values of the points on the OSR line given by the orthogonality criterion, for observed (mb,obs, Mw,obs) points. A linear relation is then developed between these 150 mb,obs values and corresponding mb,proxy values given by the OSR line using orthogonality criterion. The relation obtained is m=0.878(±0.03)m+0.653(±0.15). The accuracy of the above procedure has been checked with the rest of the data i.e., 21 events values. The improvement in the correlation coefficient value between mb,obs and Mw estimated using the proposed procedure compared to the correlation coefficient value between mb,obs and Mw,obs shows the advantage of OSR relationship for homogenization. The OSR procedure developed in this study can be used to homogenize any catalog containing various magnitudes (e.g., ML, mb, MS) with measurement errors, by their conversion to unified moment magnitude Mw. The proposed procedure also remains valid in case the magnitudes have measurement errors of different orders, i.e. the error variance ratio is

  7. Tuning and sensitivity of the human vestibular system to low-frequency vibration.

    Science.gov (United States)

    Todd, Neil P McAngus; Rosengren, Sally M; Colebatch, James G

    2008-10-17

    Mechanoreceptive hair-cells of the vertebrate inner ear have a remarkable sensitivity to displacement, whether excited by sound, whole-body acceleration or substrate-borne vibration. In response to seismic or substrate-borne vibration, thresholds for vestibular afferent fibre activation have been reported in anamniotes (fish and frogs) in the range -120 to -90 dB re 1g. In this article, we demonstrate for the first time that the human vestibular system is also extremely sensitive to low-frequency and infrasound vibrations by making use of a new technique for measuring vestibular activation, via the vestibulo-ocular reflex (VOR). We found a highly tuned response to whole-head vibration in the transmastoid plane with a best frequency of about 100 Hz. At the best frequency we obtained VOR responses at intensities of less than -70 dB re 1g, which was 15 dB lower than the threshold of hearing for bone-conducted sound in humans at this frequency. Given the likely synaptic attenuation of the VOR pathway, human receptor sensitivity is probably an order of magnitude lower, thus approaching the seismic sensitivity of the frog ear. These results extend our knowledge of vibration-sensitivity of vestibular afferents but also are remarkable as they indicate that the seismic sensitivity of the human vestibular system exceeds that of the cochlea for low-frequencies.

  8. Energy Expenditure and Substrate Oxidation in Response to Side-Alternating Whole Body Vibration across Three Commonly-Used Vibration Frequencies.

    Directory of Open Access Journals (Sweden)

    Elie-Jacques Fares

    Full Text Available There is increasing recognition about the importance of enhancing energy expenditure (EE for weight control through increases in low-intensity physical activities comparable with daily life (1.5-4 METS. Whole-body vibration (WBV increases EE modestly and could present both a useful adjuvant for obesity management and tool for metabolic phenotyping. However, it is unclear whether a "dose-response" exists between commonly-used vibration frequencies (VF and EE, nor if WBV influences respiratory quotient (RQ, and hence substrate oxidation. We aimed to investigate the EE-VF and RQ-VF relationships across three different frequencies (30, 40, and 50Hz.EE and RQ were measured in 8 healthy young adults by indirect calorimetry at rest, and subsequently during side-alternating WBV at one of 3 VFs (30, 40, and 50 Hz. Each frequency was assessed over 5 cycles of intermittent WBV (30s vibration/30s rest, separated by 5 min seated rest. During the WBV participants stood on the platform with knees flexed sufficiently to maintain comfort, prevent transmission of vibration to the upper body, and minimise voluntary physical exertion. Repeatability was assessed across 3 separate days in a subset of 4 individuals. In order to assess any sequence/habituation effect, an additional group of 6 men underwent 5 cycles of intermittent WBV (30s vibration/30s rest at 40 Hz, separated by 5 min seated rest.Side-alternating WBV increased EE relative to standing, non-vibration levels (+36%, p<0.001. However, no differences in EE were observed across VFs. Similarly, no effect of VF on RQ was found, nor did WBV alter RQ relative to standing without vibration.No relationship could be demonstrated between EE and VF in the range of 30-50Hz, and substrate oxidation did not change in response to WBV. Furthermore, the thermogenic effect of intermittent WBV, whilst robust, was quantitatively small (<2 METS.

  9. The potential benefits and inherent risks of vibration as a non-drug therapy for the prevention and treatment of osteoporosis.

    Science.gov (United States)

    Chan, M Ete; Uzer, Gunes; Rubin, Clinton T

    2013-03-01

    The delivery of mechanical signals to the skeleton using vibration is being considered as a non-drug treatment of osteoporosis. Delivered over a range of magnitudes and frequencies, vibration has been shown to be both anabolic and anti-catabolic to the musculoskeletal tissues, yet caution must be emphasized as these mechanical signals, particularly chronic exposure to higher intensities, is a known pathogen to many physiological systems. In contrast, accumulating preclinical and clinical evidence indicates that low intensity vibration (LIV) improves bone quality through regulating the activity of cells responsible for bone remodeling, as well as biasing the differentiation fate of their mesenchymal and hematopoietic stem cell progenitors. In vitro studies provide insights into the biologic mechanisms of LIV, and indicate that cells respond to these low magnitude signals through a distinct mechanism driven not by matrix strain but acceleration. These cell, animal, and human studies may represent the foundation of a safe, non-drug means to protect and improve the musculoskeletal system of the elderly, injured, and infirmed.

  10. Vibrational entropies in metallic alloys

    Science.gov (United States)

    Ozolins, Vidvuds; Asta, Mark; Wolverton, Christopher

    2000-03-01

    Recently, it has been recognized that vibrational entropy can have significant effects on the phase stability of metallic alloys. Using density functional linear response calculations and molecular dynamics simulations we study three representative cases: (i) phase diagram of Al-rich Al-Sc alloys, (ii) stability of precipitate phases in CuAl_2, and (iii) phonon dynamics in bcc Zr. We find large vibrational entropy effects in all cases. In the Al-Sc system, vibrations increase the solid solubility of Sc in Al by decreasing the stability of the L12 (Al_3Sc) phase. This leads to a nearly ten-fold increase in the solid solubility of Sc in Al at T=800 K. In the Cu-Al system, our calculations predict that the tetragonal Laves phase of CuAl2 has 0.35 kB/atom higher vibrational entropy than the cubic CaF_2-type phase (the latter is predicted to be the T=0 K ground state of CuAl_2). This entropy difference causes a structural transformation in CuAl2 precipitates from the fluorite to the tetragonal Laves phase around T=500 K. Finally, we analyze the highly unusual dynamics of anharmonically stabilized bcc Zr, finding large diffuse-scattering intensity streaks between the bcc Bragg peaks.

  11. Vibration mixer

    Energy Technology Data Exchange (ETDEWEB)

    Alekhin, S.A.; Chernov, V.S.; Denisenko, V.V.; Gorodnyanskiy, I.F.; Prokopov, L.I.; Tikhonov, Yu.P.

    1983-01-01

    The vibration mixer is proposed which contains a housing, vibration drive with rod installed in the upper part of the mixing mechanism made in the form of a hollow shaft with blades. In order to improve intensity of mixing and dispersion of the mud, the shaft with the blades is arranged on the rod of the vibrator and is equipped with a cam coupling whose drive disc is attached to the vibration rod. The rod is made helical, while the drive disc of the cam coupling is attached to the helical surface of the rod. In addition, the vibration mixer is equipped with perforated discs installed on the ends of the rods.

  12. Optical fiber grating vibration sensor for vibration monitoring of hydraulic pump

    Science.gov (United States)

    Zhang, Zhengyi; Liu, Chuntong; Li, Hongcai; He, Zhenxin; Zhao, Xiaofeng

    2017-06-01

    In view of the existing electrical vibration monitoring traditional hydraulic pump vibration sensor, the high false alarm rate is susceptible to electromagnetic interference and is not easy to achieve long-term reliable monitoring, based on the design of a beam of the uniform strength structure of the fiber Bragg grating (FBG) vibration sensor. In this paper, based on the analysis of the vibration theory of the equal strength beam, the principle of FBG vibration tuning based on the equal intensity beam is derived. According to the practical application of the project, the structural dimensions of the equal strength beam are determined, and the optimization design of the vibrator is carried out. The finite element analysis of the sensor is carried out by ANSYS, and the first order resonant frequency is 94.739 Hz. The vibration test of the sensor is carried out by using the vibration frequency of 35 Hz and the vibration source of 50 Hz. The time domain and frequency domain analysis results of test data show that the sensor has good dynamic response characteristics, which can realize the accurate monitoring of the vibration frequency and meet the special requirements of vibration monitoring of hydraulic pump under specific environment.

  13. Local magnitude, duration magnitude and seismic moment of Dahshour 1992 earthquakes

    Directory of Open Access Journals (Sweden)

    M. F. Abdelwahed

    2000-06-01

    Full Text Available Local magnitudes ML have been calculated for 56 earthquakes of the Dahshour 1992 sequence using simulated records of the KEG broadband station and the estimated calibration function of the Dahshour area. These were compared with their corresponding values of duration magnitudes obtained from the analog short period seismograms of the HLW station. The local magnitudes M L and the duration magnitudes M D for this region imply a linear relation as follows: M L = 1.2988 (± 0.04 M D – 0.9032 (± 0.14. Seismic moment has also been estimated for these events using simple measurements from the time domain records. These measurements based on the simulated Wood Anderson seismograms are used for the local magnitude (ML estimation. The derived relationship between seismic moment (M 0 and magnitude (M L is: log (M 0 = 0.954 (± 0.019 M L + 17.258 (± 0.075.

  14. Ergonomic Evaluation of Vibrations of a Rototiller with New Blade

    Directory of Open Access Journals (Sweden)

    H Gholami

    2017-10-01

    Full Text Available Introduction One of the most important problems arising with operation of the conventional rototillers is severe vibration of the machine handle which is transmitted to the user’s hands, arms and shoulders. Long period exposure of the hand-transmitted vibration may cause various diseases such as white finger syndrome. Therefore in this study, vibrations of a new type of rototiller with ridged blades were investigated at the position of handle/hand interface in different working conditions. Finally, the maximum allowable exposure time to the rototiller users in continuous tillage operation was obtained according to ISO 5349-1. Materials and Methods Experiments were carried out in one of the farms with silty clay soil texture, located in Sari city, Mazandaran province, Iran. Vibration measurements were performed according to ISO 5349-1 and ISO 5349-2 standards in two different modes, including in situ mode and tillage mode. Vibrational parameters were obtained in three blade rotational speeds, i.e., low speed (140-170 rpm, medium speed (170-200, and high speed (200-230. Blade rotational speed varied by changing engine speed using the throttle control lever. In each experiment, different vibrational values were individually recorded in three directions (x, y, and z. Experimental design and data analysis were performed in a Randomized Complete Block Design with three replications using the SPSS16 software. Results and Discussion Based on the obtained results in this study, the RMS of acceleration increased by increasing in rotational speed for all of the conducted experiments. The reason is that number of cutting per unit of time and consequently the frequency of changing in the dynamic forces exerting on the blades dramatically increases with increasing the rotational speed of the blades. Noteworthy is that in most cases the variation of acceleration in the tillage mode showed similar trend with vibrational values in the idling mode. This

  15. Collaboratively Adaptive Vibration Sensing System for High-fidelity Monitoring of Structural Responses Induced by Pedestrians

    Directory of Open Access Journals (Sweden)

    Shijia Pan

    2017-05-01

    Full Text Available This paper presents a collaboratively adaptive vibration monitoring system that captures high-fidelity structural vibration signals induced by pedestrians. These signals can be used for various human activities’ monitoring by inferring information about the impact sources, such as pedestrian footsteps, door opening and closing, and dragging objects. Such applications often require high-fidelity (high resolution and low distortion signals. Traditionally, expensive high resolution and high dynamic range sensors are adopted to ensure sufficient resolution. However, for sensing systems that use low-cost sensing devices, the resolution and dynamic range are often limited; hence this type of sensing methods is not well explored ubiquitously. We propose a low-cost sensing system that utilizes (1 a heuristic model of the investigating excitations and (2 shared information through networked devices to adapt hardware configurations and obtain high-fidelity structural vibration signals. To further explain the system, we use indoor pedestrian footstep sensing through ambient structural vibration as an example to demonstrate the system performance. We evaluate the application with three metrics that measure the signal quality from different aspects: the sufficient resolution rate to present signal resolution improvement without clipping, the clipping rate to measure the distortion of the footstep signal, and the signal magnitude to quantify the detailed resolution of the detected footstep signal. In experiments conducted in a school building, our system demonstrated up to 2× increase on the sufficient resolution rate and 2× less error rate when used to locate the pedestrians as they walk along the hallway, compared to a fixed sensing setting.

  16. Local magnitude, duration magnitude and seismic moment of Dahshour 1992 earthquakes

    OpenAIRE

    M. F. Abdelwahed; E. M. Abdelrahman; H. M. Hussein; M. M. Dessokey

    2000-01-01

    Local magnitudes ML have been calculated for 56 earthquakes of the Dahshour 1992 sequence using simulated records of the KEG broadband station and the estimated calibration function of the Dahshour area. These were compared with their corresponding values of duration magnitudes obtained from the analog short period seismograms of the HLW station. The local magnitudes M L and the duration magnitudes M D for this region imply a linear relation as follows: M L = 1.2988 (± 0.04) M D – 0.9032 (± 0...

  17. High-accuracy vibration sensor based on a Fabry-Perot interferometer with active phase-tracking technology.

    Science.gov (United States)

    Xia, Wei; Li, Chuncheng; Hao, Hui; Wang, Yiping; Ni, Xiaoqi; Guo, Dongmei; Wang, Ming

    2018-02-01

    A novel position-sensitive Fabry-Perot interferometer was constructed with direct phase modulation by a built-in electro-optic modulator. Pure sinusoidal phase modulation of the light was produced, and the first harmonic of the interference signal was extracted to dynamically maintain the interferometer phase to the most sensitive point of the interferogram. Therefore, the minute vibration of the object was coded on the variation of the interference signal and could be directly retrieved by the output voltage of a photodetector. The operating principle and the signal processing method for active feedback control of the interference phase have been demonstrated in detail. The developed vibration sensor was calibrated through a high-precision piezo-electric transducer and tested by a nano-positioning stage under a vibration magnitude of 60 nm and a frequency of 300 Hz. The active phase-tracking method of the system provides high immunity against environmental disturbances. Experimental results show that the proposed interferometer can effectively reconstruct tiny vibration waveforms with subnanometer resolution, paving the way for high-accuracy vibration sensing, especially for micro-electro-mechanical systems/nano-electro-mechanical systems and ultrasonic devices.

  18. Adolescents with Developmental Dyscalculia Do Not Have a Generalized Magnitude Deficit – Processing of Discrete and Continuous Magnitudes

    Science.gov (United States)

    McCaskey, Ursina; von Aster, Michael; O’Gorman Tuura, Ruth; Kucian, Karin

    2017-01-01

    The link between number and space has been discussed in the literature for some time, resulting in the theory that number, space and time might be part of a generalized magnitude system. To date, several behavioral and neuroimaging findings support the notion of a generalized magnitude system, although contradictory results showing a partial overlap or separate magnitude systems are also found. The possible existence of a generalized magnitude processing area leads to the question how individuals with developmental dyscalculia (DD), known for deficits in numerical-arithmetical abilities, process magnitudes. By means of neuropsychological tests and functional magnetic resonance imaging (fMRI) we aimed to examine the relationship between number and space in typical and atypical development. Participants were 16 adolescents with DD (14.1 years) and 14 typically developing (TD) peers (13.8 years). In the fMRI paradigm participants had to perform discrete (arrays of dots) and continuous magnitude (angles) comparisons as well as a mental rotation task. In the neuropsychological tests, adolescents with dyscalculia performed significantly worse in numerical and complex visuo-spatial tasks. However, they showed similar results to TD peers when making discrete and continuous magnitude decisions during the neuropsychological tests and the fMRI paradigm. A conjunction analysis of the fMRI data revealed commonly activated higher order visual (inferior and middle occipital gyrus) and parietal (inferior and superior parietal lobe) magnitude areas for the discrete and continuous magnitude tasks. Moreover, no differences were found when contrasting both magnitude processing conditions, favoring the possibility of a generalized magnitude system. Group comparisons further revealed that dyscalculic subjects showed increased activation in domain general regions, whilst TD peers activate domain specific areas to a greater extent. In conclusion, our results point to the existence of a

  19. Vibrational relaxation of matrix-isolated CH3F and HCl

    International Nuclear Information System (INIS)

    Young, L.

    1981-08-01

    Kinetic and spectroscopic studies have been performed on CH 3 F and HCl as a function of host matrix and temperature. Temporally and spectrally resolved infrared fluorescence was used to monitor the populations of both the initially excited state and the lower lying levels which participate in the relaxation process. For CH 3 F, relaxation from any of the levels near 3.5 μ, i.e. the CH stretching fundamentals or bend overtones, occurs via rapid ( 3 with subsequent relaxation of the ν 3 (CF stretch) manifold. Lifetimes of 2ν 3 and ν 3 were determined through overtone, ΔV = 2, and fundamental fluorescence. These lifetimes show a dramatic dependence on host lattice, an increase of two orders of magnitude in going from Xe and Ar matrices. Lifetimes depend only weakly on temperature. The relaxation of 2ν 3 and ν 3 is consistent with a model in which production of a highly rotationally excited guest via collisions with the repulsive wall of the host is the rate limiting step. For HCl, lifetimes of v = 1,2,3 have been determined. In all hosts, the relaxation is non-radiative. For a given vibrational state, v, the relaxation rate increases in the series k(Ar) < k(Kr) < k(Xe). The dependence of the relaxation rate; on v is superlinear in all matrices, the deviation from linearity increasng in the order Ar < Kr < Xe. The relaxation rates become more strongly temperature dependent with increasing vibrational excitation. The results are consistent with a mechanism in which complex formation introduces the anisotropy necessary to induce a near resonant V → R transition in the rate limiting step

  20. Return to Flying Duties Following Centrifuge or Vibration Exposures

    Science.gov (United States)

    Scheuring, Richard A.; Clarke, Jonathan; Jones, Jeffrey A.

    2009-01-01

    Introduction: In an effort to determine the human performance limits for vibration in spacecraft being developed by NASA, astronauts were evaluated during a simulated launch profile in a centrifuge/vibration environment and separate vibration-only simulation. Current USAF and Army standards for return to flight following centrifuge exposures require 12-24 hours to pass before a crewmember may return to flying duties. There are no standards on vibration exposures and return to flying duties. Based on direct observation and provocative neurological testing of the astronauts, a new standard for return to flying duties following centrifuge and/or vibration exposures was established. Methods: 13 astronaut participants were exposed to simulated launch profiles in a + 3.5 Gx bias centrifuge/vibration environment and separately on a vibration table at the NASA-Ames Research Center. Each subject had complete neurological evaluations pre- and post-exposure for the centrifuge/vibration runs with the NASA neurological function rating scale (NFRS). Subjects who participated in the vibration-only exposures had video oculography performed with provocative maneuvers in addition to the NFRS. NFRS evaluations occurred immediately following each exposure and at 1 hour post-run. Astronauts who remained symptomatic at 1 hour had repeat NFRS performed at 1 hour intervals until the crewmember was asymptomatic. Results: Astronauts in the centrifuge/vibration study averaged a 3-5 point increase in NFRS scores immediately following exposure but returned to baseline 3 hours post-run. Subjects exposed to the vibration-only simulation had a 1-3 point increase following exposure and returned to baseline within 1-2 hours. Pre- and post- vibration exposure video oculography did not reveal any persistent ocular findings with provocative testing 1 hour post-exposure. Discussion: Based on direct observations and objective measurement of neurological function in astronauts following simulated launch

  1. Vibrational Spectroscopy of Ionic Liquids.

    Science.gov (United States)

    Paschoal, Vitor H; Faria, Luiz F O; Ribeiro, Mauro C C

    2017-05-24

    Vibrational spectroscopy has continued use as a powerful tool to characterize ionic liquids since the literature on room temperature molten salts experienced the rapid increase in number of publications in the 1990's. In the past years, infrared (IR) and Raman spectroscopies have provided insights on ionic interactions and the resulting liquid structure in ionic liquids. A large body of information is now available concerning vibrational spectra of ionic liquids made of many different combinations of anions and cations, but reviews on this literature are scarce. This review is an attempt at filling this gap. Some basic care needed while recording IR or Raman spectra of ionic liquids is explained. We have reviewed the conceptual basis of theoretical frameworks which have been used to interpret vibrational spectra of ionic liquids, helping the reader to distinguish the scope of application of different methods of calculation. Vibrational frequencies observed in IR and Raman spectra of ionic liquids based on different anions and cations are discussed and eventual disagreements between different sources are critically reviewed. The aim is that the reader can use this information while assigning vibrational spectra of an ionic liquid containing another particular combination of anions and cations. Different applications of IR and Raman spectroscopies are given for both pure ionic liquids and solutions. Further issues addressed in this review are the intermolecular vibrations that are more directly probed by the low-frequency range of IR and Raman spectra and the applications of vibrational spectroscopy in studying phase transitions of ionic liquids.

  2. Research on Effects of Blast Casting Vibration and Vibration Absorption of Presplitting Blasting in Open Cast Mine

    Directory of Open Access Journals (Sweden)

    Li Ma

    2016-01-01

    Full Text Available The impact energy produced by blast casting is able to break and cast rocks, yet the strong vibration effects caused at the same time would threaten the safety of mines. Based on the theory of Janbu’s Limit Equilibrium Method (LEM, pseudo-static method has been incorporated to analyze the influence of dynamic loads of blasting on slope stability. The horizontal loads produced by blast vibrations cause an increase in sliding forces, and this leads to a lower slope stability coefficient. When the tensile stresses of the two adjacent blast holes are greater than the tensile strength of rock mass, the radical oriented cracks are formed, which is the precondition for the formation of presplit face. Thus, the formula for calculating the blast hole spacing of presplit blasting can be obtained. Based on the analysis of the principles of vibration tester and vibration pick-up in detecting blast vibrations, a detection scheme of blast vibration is worked out by taking the blast area with precrack rear and non-precrack side of the detection object. The detection and research results of blast vibration show that presplit blasting can reduce the attenuation coefficient of stress wave by half, and the vibration absorption ratio could reach 50.2%; the impact of dynamic loads on the end-wall slope stability coefficient is 1.98%, which proves that presplit blasting plays an important role in shock absorption of blast casting.

  3. Vibration-related extrusion of capillary blood from the calf musculature depends upon directions of vibration of the leg and of the gravity vector.

    Science.gov (United States)

    Çakar, Halil Ibrahim; Doğan, Serfiraz; Kara, Sadık; Rittweger, Jörn; Rawer, Rainer; Zange, Jochen

    2017-06-01

    In this study, we investigated the effects of vibration of the whole lower leg on the content and the oxygenation of hemoglobin in the unloaded relaxed lateral gastrocnemius muscle. Vibration was applied orthogonal to and in parallel with leg axis to examine whether the extrusion of blood depends on an alignment of main vessel direction, axis of vibration and gravity. The blood volume in the muscles was altered by horizontal and 30° upright body posture. Fifteen male subjects were exposed to 4 sets of experiments with both vibration directions and both tilt angles applied in permutated order. The absence of voluntary muscular activity and the potential occurrence of compound action potentials by stretch reflexes were monitored using electromyography. Total hemoglobin and tissue saturation index were measured with near infrared spectroscopy. Changes of lower leg circumference were measured with strain gauge system placed around the calf. Vibration caused decrease in tHb and increase in TSI indicating extrusion of predominantly venous blood from the muscle. In 30° tilted position, muscles contained more blood at baseline and vibration ejected more blood from the muscle compared with horizontal posture (p < 0.01). At 30° tilting deeper drop in tHb and steeper increase in TSI (p < 0.01) were observed when vibration was applied in parallel with the length axis of muscle. It is concluded that the vibration extrudes more blood in 30° head up posture and the vibration applied in parallel with the length axis of the muscle is more effective than orthogonal vibration.

  4. Theory of vibration protection

    CERN Document Server

    Karnovsky, Igor A

    2016-01-01

    This text is an advancement of the theory of vibration protection of mechanical systems with lumped and distributed parameters. The book offers various concepts and methods of solving vibration protection problems, discusses the advantages and disadvantages of different methods, and the fields of their effective applications. Fundamental approaches of vibration protection, which are considered in this book, are the passive, parametric and optimal active vibration protection. The passive vibration protection is based on vibration isolation, vibration damping and dynamic absorbers. Parametric vibration protection theory is based on the Shchipanov-Luzin invariance principle. Optimal active vibration protection theory is based on the Pontryagin principle and the Krein moment method. The book also contains special topics such as suppression of vibrations at the source of their occurrence and the harmful influence of vibrations on humans. Numerous examples, which illustrate the theoretical ideas of each chapter, ar...

  5. Effect of vibration on microstructures and mechanical properties of 304 stainless steel GTA welds

    Science.gov (United States)

    Hsieh, Chih-Chun; Lai, Chien-Hong; Wu, Weite

    2013-07-01

    This study investigates the microstructures and mechanical properties of 304 stainless steel at various vibration frequencies during simultaneous vibration welding. The experimental results demonstrated that simultaneous vibration welding could accelerate the nucleation and grain refinement of the microstructures. The effect of the grain refinement was more evident at the resonant frequency (375 Hz) and a minimum content of residual δ-ferrite (4.0%). The γ phase grew in the preferential orientation of the (111) direction with and without vibration. The full width at half maximum of the diffraction peak widened after the vibration, which was attributed to the grain refinement. The residual stress could be efficiently removed through simultaneous vibration welding when the amplitude of the vibration was increased. Furthermore, the lowest residual stress (139 MPa) was found when the vibration frequency was 375 Hz. The hardness and Young's modulus exhibited slight increases with low and medium frequencies. The hardness values were increased by 7.6% and Young's modulus was increased by 15% when the vibration frequency was resonant (375 Hz).

  6. Vibration of machine

    International Nuclear Information System (INIS)

    Kwak, Mun Gyu; Na, Sung Su; Baek, Gwang Hyeon; Song, Chul Gi; Han, Sang Bo

    2001-09-01

    This book deals with vibration of machine which gives descriptions of free vibration using SDOF system, forced vibration using SDOF system, vibration of multi-degree of freedom system like introduction and normal form, distribution system such as introduction, free vibration of bar and practice problem, approximate solution like lumped approximations and Raleigh's quotient, engineering by intuition and experience, real problem and experimental method such as technology of signal, fourier transform analysis, frequency analysis and sensor and actuator.

  7. Combined Euler column vibration isolation and energy harvesting

    Science.gov (United States)

    Davis, R. B.; McDowell, M. D.

    2017-05-01

    A new device that combines vibration isolation and energy harvesting is modeled, simulated, and tested. The vibration isolating portion of the device uses post-buckled beams as its spring elements. Piezoelectric film is applied to the beams to harvest energy from their dynamic flexure. The entire device operates passively on applied base excitation and requires no external power or control system. The structural system is modeled using the elastica, and the structural response is applied as forcing on the electric circuit equation to predict the output voltage and the corresponding harvested power. The vibration isolation and energy harvesting performance is simulated across a large parameter space and the modeling approach is validated with experimental results. Experimental transmissibilities of 2% and harvested power levels of 0.36 μW are simultaneously demonstrated. Both theoretical and experimental data suggest that there is not necessarily a trade-off between vibration isolation and harvested power. That is, within the practical operational range of the device, improved vibration isolation will be accompanied by an increase in the harvested power as the forcing frequency is increased.

  8. Magnitude Knowledge: The Common Core of Numerical Development

    Science.gov (United States)

    Siegler, Robert S.

    2016-01-01

    The integrated theory of numerical development posits that a central theme of numerical development from infancy to adulthood is progressive broadening of the types and ranges of numbers whose magnitudes are accurately represented. The process includes four overlapping trends: (1) representing increasingly precisely the magnitudes of non-symbolic…

  9. Estimation of the Magnitude of Excavation Damaged Zone at KURT

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Won Jin; Kim, Jin Sub; Lee, Changsoo; Cho, Heui Joo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    In the EDZ, the permeability of the rock increases. The annular EDZ surrounding the tunnel may act as a continuous and high-permeable pathway for the groundwater flow, which accelerates the intrusion of groundwater into the repository and increases the release of radionuclide into the biosphere from the repository. Therefore an investigation on the magnitude of the EDZ has been important from the viewpoint of mechanical stability and radiological safety for a geological repository. In this study, two in-situ measurements were performed at the KURT (KAERI Underground Research Tunnel) to investigate the magnitude of the EDZ. The magnitude of EDZ was estimated to be 0.6 to 1.8 m from the tunnel wall on the basis of the deformation modulus, and the value of deformation modulus in the EDZ is about 40% of those in undisturbed zone. The magnitude of EDZ can be estimated to be about 2 m from the viewpoint of permeability, and the permeabilities in the EDZ seem to be increased at up to 2 orders of magnitude compared with those in the intact rock. The magnitude of EDZ estimated based on the permeability is larger than that from the Goodman jack test.

  10. MR Damper Controlled Vibration Absorber for Enhanced Mitigation of Harmonic Vibrations

    Directory of Open Access Journals (Sweden)

    Felix Weber

    2016-12-01

    Full Text Available This paper describes a semi-active vibration absorber (SVA concept based on a real-time controlled magnetorheological damper (MR-SVA for the enhanced mitigation of structural vibrations due to harmonic disturbing forces. The force of the MR damper is controlled in real-time to generate the frequency and damping controls according to the behaviour of the undamped vibration absorber for the actual frequency of vibration. As stiffness and damping emulations in semi-active actuators are coupled quantities the control is formulated to prioritize the frequency control by the controlled stiffness. The control algorithm is augmented by a stiffness correction method ensuring precise frequency control when the desired control force is constrained by the semi-active restriction and residual force of the MR damper. The force tracking task is solved by a model-based feed forward with feedback correction. The MR-SVA is numerically and experimentally validated for the primary structure with nominal eigenfrequency and when de-tuning of −10%, −5%, +5% and +10% is present. Both validations demonstrate that the MR-SVA improves the vibration reduction in the primary structure by up to 55% compared to the passive tuned mass damper (TMD. Furthermore, it is shown that the MR-SVA with only 80% of tuned mass leads to approximately the same enhanced performance while the associated increased relative motion amplitude of the tuned mass is more than compensated be the reduced dimensions of the mass. Therefore, the MR-SVA is an appropriate solution for the mitigation of tall buildings where the pendulum mass can be up to several thousands of metric tonnes and space for the pendulum damper is limited.

  11. Effects of different vibration exercises on bench press.

    Science.gov (United States)

    Marín, P J; Torres-Luque, G; Hernández-García, R; García-López, D; Garatachea, N

    2011-10-01

    This study was undertaken to analyze the effects of different vibration recovery strategies via feet or hands on the number of repetitions performed and on mean velocity, peak velocity and blood lactate concentration during consecutive bench-press sets. 9 elite judo athletes performed 3 sets of bench press at 60% of one-repetition maximum (1RM), leading to failure and allowing a 180 s rest period between sets. During the rest period, 1 of the 3 following procedures was performed: 150 s rest plus 30 s push-up vibration exercise (Push-up), 150 s rest plus 30 s squat vibration exercise (Squat) or 180 s only rest (Passive). Statistical analysis revealed that the Squat condition resulted in a significant increase in the number of repetitions achieved, in comparison with all other rest strategies. However, kinematic parameters and blood lactate concentration were not affected by vibration. These data suggest that a vibration stimulus applied to the feet, between sets, can result in positive improvements in upper body resistance exercise performance. Although the mechanisms are not fully understood, this positive effect of vibration could be due to an increased motor cortex excitability and voluntary drive. © Georg Thieme Verlag KG Stuttgart · New York.

  12. Study on vibration behaviors of engineered barrier system

    Energy Technology Data Exchange (ETDEWEB)

    Mikoshiba, Tadashi; Ogawa, Nobuyuki; Minowa, Chikahiro [National Research Inst. for Earth Science and Disaster Prevention, Tsukuba, Ibaraki (Japan)

    1999-02-01

    Small engineered barrier model was mode and tested by vibrating with the random wave and the real earthquake wave. The wave observed at Kamaishi (N-S, N-W), Iwate Prefecture, in September 6, 1993, and Kobe (N-S) etc. were used as the real earthquake waves. The trial overpack showed non-linear characteristics (soft spring) by vibrating with the random wave. The pressure and acceleration of trial overpack and constraint container increased with increasing the vibration level of the real earthquake wave. The trial overpack moved the maximum 1.7 mm of displacement and 16 mm subsidence. The results showed both waves rocked the trialpack. (S.Y.)

  13. Magnitude, precision, and realism of depth perception in stereoscopic vision.

    Science.gov (United States)

    Hibbard, Paul B; Haines, Alice E; Hornsey, Rebecca L

    2017-01-01

    Our perception of depth is substantially enhanced by the fact that we have binocular vision. This provides us with more precise and accurate estimates of depth and an improved qualitative appreciation of the three-dimensional (3D) shapes and positions of objects. We assessed the link between these quantitative and qualitative aspects of 3D vision. Specifically, we wished to determine whether the realism of apparent depth from binocular cues is associated with the magnitude or precision of perceived depth and the degree of binocular fusion. We presented participants with stereograms containing randomly positioned circles and measured how the magnitude, realism, and precision of depth perception varied with the size of the disparities presented. We found that as the size of the disparity increased, the magnitude of perceived depth increased, while the precision with which observers could make depth discrimination judgments decreased. Beyond an initial increase, depth realism decreased with increasing disparity magnitude. This decrease occurred well below the disparity limit required to ensure comfortable viewing.

  14. Magnitude Estimation for Large Earthquakes from Borehole Recordings

    Science.gov (United States)

    Eshaghi, A.; Tiampo, K. F.; Ghofrani, H.; Atkinson, G.

    2012-12-01

    We present a simple and fast method for magnitude determination technique for earthquake and tsunami early warning systems based on strong ground motion prediction equations (GMPEs) in Japan. This method incorporates borehole strong motion records provided by the Kiban Kyoshin network (KiK-net) stations. We analyzed strong ground motion data from large magnitude earthquakes (5.0 ≤ M ≤ 8.1) with focal depths < 50 km and epicentral distances of up to 400 km from 1996 to 2010. Using both peak ground acceleration (PGA) and peak ground velocity (PGV) we derived GMPEs in Japan. These GMPEs are used as the basis for regional magnitude determination. Predicted magnitudes from PGA values (Mpga) and predicted magnitudes from PGV values (Mpgv) were defined. Mpga and Mpgv strongly correlate with the moment magnitude of the event, provided sufficient records for each event are available. The results show that Mpgv has a smaller standard deviation in comparison to Mpga when compared with the estimated magnitudes and provides a more accurate early assessment of earthquake magnitude. We test this new method to estimate the magnitude of the 2011 Tohoku earthquake and we present the results of this estimation. PGA and PGV from borehole recordings allow us to estimate the magnitude of this event 156 s and 105 s after the earthquake onset, respectively. We demonstrate that the incorporation of borehole strong ground-motion records immediately available after the occurrence of large earthquakes significantly increases the accuracy of earthquake magnitude estimation and the associated improvement in earthquake and tsunami early warning systems performance. Moment magnitude versus predicted magnitude (Mpga and Mpgv).

  15. Vibration-induced particle formation during yogurt fermentation-Effect of frequency and amplitude.

    Science.gov (United States)

    Körzendörfer, Adrian; Temme, Philipp; Schlücker, Eberhard; Hinrichs, Jörg; Nöbel, Stefan

    2018-05-01

    Machinery such as pumps used for the commercial production of fermented milk products cause vibrations that can spread to the fermentation tanks. During fermentation, such vibrations can disturb the gelation of milk proteins by causing texture defects including lumpiness and syneresis. To study the effect of vibrations on yogurt structure systematically, an experimental setup was developed consisting of a vibration exciter to generate defined vibrational states and accelerometers for monitoring. During the fermentation of skim milk, vibrations (frequency sweep: 25 to 1,005 Hz) were introduced at different pH (5.7 to 5.1, step width 0.1 units) for 200 s. Physical properties of set gels (syneresis, firmness) and resultant stirred yogurts (visible particles, rheology, laser diffraction) were analyzed. Vibrational treatments at pH 5.5 to 5.2 increased syneresis, gel firmness, and the number of large particles (d > 0.9 mm); hence, this period was considered critical. The particle number increased from 34 ± 5 to 242 ± 16 particles per 100 g of yogurt due to vibrations at pH 5.4. In further experiments, yogurts were excited with fixed frequencies (30, 300, and 1,000 Hz). All treatments increased syneresis, firmness, and particle formation. As the strongest effect was observed by applying 30 Hz, the amplitude was set to vibration accelerations of a = 5, 10, 15, 20, and 25 m/s 2 in the final experiments. The number of large particles was increased due to each treatment and a positive correlation with the amplitude was found. We concluded that vibrations during gelation increase the collision probability of aggregating milk proteins, resulting in a compressed set gel with syneresis. Resultant stirred yogurts exhibit large particles with a compact structure leading to a reduced water-holding capacity and product viscosity. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  16. Active Vibration Control for Helicopter Interior Noise Reduction Using Power Minimization

    Science.gov (United States)

    Mendoza, J.; Chevva, K.; Sun, F.; Blanc, A.; Kim, S. B.

    2014-01-01

    This report describes work performed by United Technologies Research Center (UTRC) for NASA Langley Research Center (LaRC) under Contract NNL11AA06C. The objective of this program is to develop technology to reduce helicopter interior noise resulting from multiple gear meshing frequencies. A novel active vibration control approach called Minimum Actuation Power (MAP) is developed. MAP is an optimal control strategy that minimizes the total input power into a structure by monitoring and varying the input power of controlling sources. MAP control was implemented without explicit knowledge of the phasing and magnitude of the excitation sources by driving the real part of the input power from the controlling sources to zero. It is shown that this occurs when the total mechanical input power from the excitation and controlling sources is a minimum. MAP theory is developed for multiple excitation sources with arbitrary relative phasing for single or multiple discrete frequencies and controlled by a single or multiple controlling sources. Simulations and experimental results demonstrate the feasibility of MAP for structural vibration reduction of a realistic rotorcraft interior structure. MAP control resulted in significant average global vibration reduction of a single frequency and multiple frequency excitations with one controlling actuator. Simulations also demonstrate the potential effectiveness of the observed vibration reductions on interior radiated noise.

  17. Vertical vibration and shape oscillation of acoustically levitated water drops

    International Nuclear Information System (INIS)

    Geng, D. L.; Xie, W. J.; Yan, N.; Wei, B.

    2014-01-01

    We present the vertical harmonic vibration of levitated water drops within ultrasound field. The restoring force to maintain such a vibration mode is provided by the resultant force of acoustic radiation force and drop gravity. Experiments reveal that the vibration frequency increases with the aspect ratio for drops with the same volume, which agrees with the theoretical prediction for those cases of nearly equiaxed drops. During the vertical vibration, the floating drops undergo the second order shape oscillation. The shape oscillation frequency is determined to be twice the vibration frequency.

  18. Vertical vibration and shape oscillation of acoustically levitated water drops

    Energy Technology Data Exchange (ETDEWEB)

    Geng, D. L.; Xie, W. J.; Yan, N.; Wei, B., E-mail: bbwei@nwpu.edu.cn [Department of Applied Physics, Northwestern Polytechnical University, Xi' an 710072 (China)

    2014-09-08

    We present the vertical harmonic vibration of levitated water drops within ultrasound field. The restoring force to maintain such a vibration mode is provided by the resultant force of acoustic radiation force and drop gravity. Experiments reveal that the vibration frequency increases with the aspect ratio for drops with the same volume, which agrees with the theoretical prediction for those cases of nearly equiaxed drops. During the vertical vibration, the floating drops undergo the second order shape oscillation. The shape oscillation frequency is determined to be twice the vibration frequency.

  19. Influence of alcohol abuse on development and course of vibration disease among miners

    Energy Technology Data Exchange (ETDEWEB)

    Gut, V.G.; Balan, G.M.

    1987-12-01

    Examines effect of alcohol use on the development of vibration disease among tunnellers, facemen and machine drill operators, miners exposed to dangerous amounts of vibration. Men were investigated using clinical-psychiatric and experimental psychological methods (memory tests, comprehension and scales of anxiety). Results of investigation demonstrated extent alcohol use affects time period during which vibration disease develops: occasional users developed disease in 12 years, moderate and heavy users in 9 1/2 years and chronic alcoholics in 7 1/2 years. With heavy use of alcohol, severity of vibration disease increased. Progressive tendency of disease continued among alcoholics even though contact with vibration ceased. In addition to vibration disease, frequency of psychopathological syndromes increased with alcohol use (occasional, moderate, heavy and chronic alcoholism). Increase in asthenic affective and psycho-organic syndromes paralleled degree of alcohol use from occasional to chronic alcoholism. With increased use, anxieties increase, ability to recall on memory tests declines, facility in switching from one task to another decreases. Results of study make clear need for better methods of preventing and treating drunkeness and alcoholism among miners in occupations subject to hazardous amounts of vibration. 10 refs.

  20. Experimental Study of the Ultrasonic Vibration-Assisted Abrasive Waterjet Micromachining the Quartz Glass

    Directory of Open Access Journals (Sweden)

    Rongguo Hou

    2018-01-01

    Full Text Available The ultrasonic vibration is used to enhance the capability of the abrasive water micromachining glass. And, the ultrasonic vibration is activated on the abrasive waterjet nozzle. The quality of the flow is improved, and the velocity of the abrasive is increased because of the addition of the ultrasonic energy. The relevant experimental results indicate that the erosion depth and the material volume removal of the glass are obviously increased when ultrasonic vibration is working. As for the influence of process parameters on the material removal of the glass such as vibration amplitude, system pressure, distance of the standoff, and abrasive size, the experimental results indicate that the system pressure and vibration contribute greatly to the glass material removal. Also, the erosion depth and the volume of material removal are increased with the increase in the vibration amplitude and system pressure. There are some uplifts found at the edge of erosion pit. Then, it can be inferred that the plastic method is an important material removal method during the machining process of ultrasonic vibration-assisted abrasive waterjet.

  1. Vibrational relaxation in OCS mixtures

    International Nuclear Information System (INIS)

    Simpson, C.J.S.M.; Gait, P.D.; Simmie, J.M.

    1976-01-01

    Experimental measurements are reported of vibrational relaxation times which may be used to show whether there is near resonant vibration-rotation energy transfer between OCS and H 2 , D 2 or HD. Vibrational relaxation times have been measured in OCS and OCS mixtures over the temperature range 360 to 1000 K using a shock tube and a laser schlieren system. The effectiveness of the additives in reducing the relaxation time of OCS is in the order 4 He 3 He 2 2 and HD. Along this series the effect of an increase in temperature changes from the case of speeding up the rate with 4 He to retarding it with D 2 , HD and H 2 . There is no measurable difference in the effectiveness of n-D 2 and o-D 2 and little, or no, difference between n-H 2 and p-H 2 . Thus the experimental results do not give clear evidence for rotational-vibration energy transfer between hydrogen and OCS. This contrasts with the situation for CO 2 + H 2 mixtures. (author)

  2. Adjustable Nonlinear Springs to Improve Efficiency of Vibration Energy Harvesters

    OpenAIRE

    Boisseau, S.; Despesse, G.; Seddik, B. Ahmed

    2012-01-01

    Vibration Energy Harvesting is an emerging technology aimed at turning mechanical energy from vibrations into electricity to power microsystems of the future. Most of present vibration energy harvesters are based on a mass spring structure introducing a resonance phenomenon that allows to increase the output power compared to non-resonant systems, but limits the working frequency bandwidth. Therefore, they are not able to harvest energy when ambient vibrations' frequencies shift. To follow sh...

  3. Rovibrational Interaction and Vibrational Constants of the Symmetric Top Molecule 14NF3

    Directory of Open Access Journals (Sweden)

    Hamid Najib

    2013-01-01

    Full Text Available Several accurate experimental values of the and rotation-vibration interaction parameters and , , and vibrational constants have been extracted from the most recent high-resolution Fourier transform infrared, millimeter wave, and centimeter wave investigations in the spectra of the oblate symmetric top molecule 14NF3. The band-centres used are those of the four fundamental, the overtones, the combination, and hot bands identified in the region between 400 cm−1 and 2000 cm−1. Comparison of our constants with the ones measured previously, by infrared spectroscopy at low resolution, reveals orders of magnitude higher accuracy of the new values. The agreement between our values and those determined by ab initio calculations employing the TZ2Pf basis is excellent.

  4. Vibration of mechanically-assembled 3D microstructures formed by compressive buckling

    Science.gov (United States)

    Wang, Heling; Ning, Xin; Li, Haibo; Luan, Haiwen; Xue, Yeguang; Yu, Xinge; Fan, Zhichao; Li, Luming; Rogers, John A.; Zhang, Yihui; Huang, Yonggang

    2018-03-01

    Micro-electromechanical systems (MEMS) that rely on structural vibrations have many important applications, ranging from oscillators and actuators, to energy harvesters and vehicles for measurement of mechanical properties. Conventional MEMS, however, mostly utilize two-dimensional (2D) vibrational modes, thereby imposing certain limitations that are not present in 3D designs (e.g., multi-directional energy harvesting). 3D vibrational micro-platforms assembled through the techniques of controlled compressive buckling are promising because of their complex 3D architectures and the ability to tune their vibrational behavior (e.g., natural frequencies and modes) by reversibly changing their dimensions by deforming their soft, elastomeric substrates. A clear understanding of such strain-dependent vibration behavior is essential for their practical applications. Here, we present a study on the linear and nonlinear vibration of such 3D mesostructures through analytical modeling, finite element analysis (FEA) and experiment. An analytical solution is obtained for the vibration mode and linear natural frequency of a buckled ribbon, indicating a mode change as the static deflection amplitude increases. The model also yields a scaling law for linear natural frequency that can be extended to general, complex 3D geometries, as validated by FEA and experiment. In the regime of nonlinear vibration, FEA suggests that an increase of amplitude of external loading represents an effective means to enhance the bandwidth. The results also uncover a reduced nonlinearity of vibration as the static deflection amplitude of the 3D structures increases. The developed analytical model can be used in the development of new 3D vibrational micro-platforms, for example, to enable simultaneous measurement of diverse mechanical properties (density, modulus, viscosity etc.) of thin films and biomaterials.

  5. Ultra-low-vibration pulse-tube cryocooler system - cooling capacity and vibration

    Science.gov (United States)

    Ikushima, Yuki; Li, Rui; Tomaru, Takayuki; Sato, Nobuaki; Suzuki, Toshikazu; Haruyama, Tomiyoshi; Shintomi, Takakazu; Yamamoto, Akira

    2008-09-01

    This report describes the development of low-vibration cooling systems with pulse-tube (PT) cryocoolers. Generally, PT cryocoolers have the advantage of lower vibrations in comparison to those of GM cryocoolers. However, cooling systems for the cryogenic laser interferometer observatory (CLIO), which is a gravitational wave detector, require an operational vibration that is sufficiently lower than that of a commercial PT cryocooler. The required specification for the vibration amplitude in cold stages is less than ±1 μm. Therefore, during the development of low-vibration cooling systems for the CLIO, we introduced advanced countermeasures for commercial PT cryocoolers. The cooling performance and the vibration amplitude were evaluated. The results revealed that 4 K and 80 K PT cooling systems with a vibration amplitude of less than ±1 μm and cooling performance of 4.5 K and 70 K at heat loads of 0.5 W and 50 W, respectively, were developed successfully.

  6. Characterization of Direct Piezoelectric Properties for Vibration Energy Harvesting

    Energy Technology Data Exchange (ETDEWEB)

    Yoshimura, Takeshi; Miyabuchi, Hiroki; Ashida, Atsushi; Fujimura, Norifumi [Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531 (Japan); Murakami, Syuichi, E-mail: tyoshi@pe.osakafu-u.ac.jp [Technology Research Institute of Osaka Prefecture, 2-7-1 Ayumino, Izumi, Osaka, 594-1157 (Japan)

    2011-10-29

    Direct piezoelectric effect of Pb(Zr,Ti)O{sub 3} (PZT) thin films was investigated to discuss the application of ferroelectric films to vibration energy harvesting. From the model of the piezoelectric vibration energy harvester, it was found that the figure of merit (FOM) is proportional of the square of the effective transverse piezoelectric coefficient e{sub 31,f}. The e{sub 31,f} coefficient of PZT films were measured by substrate bending method. Furthermore, it was found that the e{sub 31,f} coefficient increases with increasing strain, which is favourable for the vibration energy harvesting.

  7. Dependence of Moessbauer resonance intensities on vibrational lattice anisotropy in case of an axial electric field gradient

    International Nuclear Information System (INIS)

    Friedt, J.M.

    1976-01-01

    The change in the hyperfine line intensities is discussed for various Moessbauer transitions in cases involving axial vibrational lattice anisotropy and axial electric field gradient at the resonant nucleus. The change in the relative intensities of the spectral components has been calculed numerically for the different types of Moessbauer transitions. Polynomial expansions are given to describe the functional dependence of the relative intensities on the magnitude of the vibration anisotropy. They may be used to extract the relevant parameters from experimental data without requiring the numerical integrations implied in the description of the Goldanskii-Karyagin effect [fr

  8. Task-specific recruitment of motor units for vibration damping.

    Science.gov (United States)

    Wakeling, James M; Liphardt, Anna-Maria

    2006-01-01

    Vibrations occur within the soft tissues of the lower extremities due to the heel-strike impact during walking. Increases in muscle activity in the lower extremities result in increased damping to reduce this vibration. The myoelectric intensity spectra were compared using principal component analysis from the tibialis anterior and lateral gastrocnemius of 40 subjects walking with different shoe conditions. The soft insert condition resulted in a significant, simultaneous increase in muscle activity with a shift to higher myoelectric frequencies in the period 0-60 ms after heel-strike which is the period when the greater vibration damping occurred. These increases in myoelectric frequency match the spectral patterns which indicate increases in recruitment of faster motor units. It is concluded that fast motor units are recruited during the task of damping the soft-tissue resonance that occurs following heel-strike.

  9. Researches Concerning to Minimize Vibrations when Processing Normal Lathe

    Directory of Open Access Journals (Sweden)

    Lenuța Cîndea

    2015-09-01

    Full Text Available In the cutting process, vibration is inevitable appearance, and in situations where the amplitude exceeds the limits of precision dimensional and shape of the surfaces generated vibrator phenomenon is detrimental.Field vibration is an issue of increasingly developed, so the futures will a better understanding of them and their use even in other sectors.The paper developed experimental measurement of vibrations at the lathe machining normal. The scheme described kinematical machine tool, cutting tool, cutting conditions, presenting experimental facility for measuring vibration occurring at turning. Experimental results have followed measurement of amplitude, which occurs during interior turning the knife without silencer incorporated. The tests were performed continuously for different speed, feed and depth of cut.

  10. Perceptual Space of Superimposed Dual-Frequency Vibrations in the Hands.

    Science.gov (United States)

    Hwang, Inwook; Seo, Jeongil; Choi, Seungmoon

    2017-01-01

    The use of distinguishable complex vibrations that have multiple spectral components can improve the transfer of information by vibrotactile interfaces. We investigated the qualitative characteristics of dual-frequency vibrations as the simplest complex vibrations compared to single-frequency vibrations. Two psychophysical experiments were conducted to elucidate the perceptual characteristics of these vibrations by measuring the perceptual distances among single-frequency and dual-frequency vibrations. The perceptual distances of dual-frequency vibrations between their two frequency components along their relative intensity ratio were measured in Experiment I. The estimated perceptual spaces for three frequency conditions showed non-linear perceptual differences between the dual-frequency and single-frequency vibrations. A perceptual space was estimated from the measured perceptual distances among ten dual-frequency compositions and five single-frequency vibrations in Experiment II. The effect of the component frequency and the frequency ratio was revealed in the perceptual space. In a percept of dual-frequency vibration, the lower frequency component showed a dominant effect. Additionally, the perceptual difference among single-frequency and dual-frequency vibrations were increased with a low relative difference between two frequencies of a dual-frequency vibration. These results are expected to provide a fundamental understanding about the perception of complex vibrations to enrich the transfer of information using vibrotactile stimuli.

  11. Investigation of Concrete Floor Vibration Using Heel-Drop Test

    Science.gov (United States)

    Azaman, N. A. Mohd; Ghafar, N. H. Abd; Azhar, A. F.; Fauzi, A. A.; Ismail, H. A.; Syed Idrus, S. S.; Mokhjar, S. S.; Hamid, F. F. Abd

    2018-04-01

    In recent years, there is an increased in floor vibration problems of structures like residential and commercial building. Vibration is defined as a serviceability issue related to the comfort of the occupant or damage equipment. Human activities are the main source of vibration in the building and it could affect the human comfort and annoyance of residents in the building when the vibration exceed the recommend level. A new building, Madrasah Tahfiz located at Yong Peng have vibration problem when load subjected on the first floor of the building. However, the limitation of vibration occurs on building is unknown. Therefore, testing is needed to determine the vibration behaviour (frequency, damping ratio and mode shape) of the building. Heel-drop with pace 2Hz was used in field measurement to obtain the vibration response. Since, the heel-drop test results would vary in light of person performance, test are carried out three time to reduce uncertainty. Natural frequency from Frequency Response Function analysis (FRF) is 17.4Hz, 16.8, 17.4Hz respectively for each test.

  12. Active vibration isolation of a rigidly mounted turbo pump

    NARCIS (Netherlands)

    Basten, T.G.H.; Doppenberg, E.J.J.

    2006-01-01

    Manufacturers of precision equipment are constantly aiming at increased accuracy. Elimination of disturbing vibrations is therefore getting more and more important. The technical limitations of passive isolation methods require alternative strategies for vibration reduction, such as active

  13. Transmission of vibration through gloves: effects of contact area.

    Science.gov (United States)

    Md Rezali, Khairil Anas; Griffin, Michael J

    2017-01-01

    For three samples of material (12.5, 25.0 and 37.5 mm diameter) from each of three gloves, the dynamic stiffnesses and the vibration transmissibilities of the materials (to both the palm of the hand and the thenar eminence) were measured at frequencies from 10 to 300 Hz. Additional measurements showed the apparent masses of the hand at the palm and the thenar eminence were independent of contact area at frequencies less than about 40 Hz, but increased with increasing area at higher frequencies. The stiffness and damping of the glove materials increased with increasing area. These changes caused material transmissibilities to the hand to increase with increasing area. It is concluded that the size of the area of contact has a large influence on the transmission of vibration through a glove to the hand. The area of contact should be well-defined and controlled when evaluating the transmission of vibration through gloves. Practitioner Summary: The transmission of vibration through gloves depends on both the dynamic stiffness of glove material and the dynamic response of the hand. Both of these depend on the size of the contact area between a glove material and the hand, which should be taken into account when assessing glove transmissibility.

  14. Hand-arm vibration and the risk of vascular and neurological diseases-A systematic review and meta-analysis.

    Directory of Open Access Journals (Sweden)

    Tohr Nilsson

    Full Text Available Increased occurrence of Raynaud's phenomenon, neurosensory injury and carpal tunnel syndrome has been reported for more than 100 years in association with work with vibrating machines. The current risk prediction modelling (ISO-5349 for "Raynaud's phenomenon" is based on a few studies published 70 to 40 years ago. There are no corresponding risk prediction models for neurosensory injury or carpal tunnel syndrome, nor any systematic reviews comprising a statistical synthesis (meta-analysis of the evidence.Our aim was to provide a systematic review of the literature on the association between Raynaud's phenomenon, neurosensory injuries and carpal tunnel syndrome and hand-arm vibration (HAV exposure. Moreover the aim was to estimate the magnitude of such an association using meta-analysis.This systematic review covers the scientific literature up to January 2016. The databases used for the literature search were PubMed and Science Direct. We found a total of 4,335 abstracts, which were read and whose validity was assessed according to pre-established criteria. 294 articles were examined in their entirety to determine whether each article met the inclusion criteria. The possible risk of bias was assessed for each article. 52 articles finally met the pre-established criteria for inclusion in the systematic review.The results show that workers who are exposed to HAV have an increased risk of vascular and neurological diseases compared to non-vibration exposed groups. The crude estimate of the risk increase is approximately 4-5 fold. The estimated effect size (odds ratio is 6.9 for the studies of Raynaud's phenomenon when including only the studies judged to have a low risk of bias. The corresponding risk of neurosensory injury is 7.4 and the equivalent of carpal tunnel syndrome is 2.9.At equal exposures, neurosensory injury occurs with a 3-time factor shorter latency than Raynaud's phenomenon. Which is why preventive measures should address this

  15. Flow-induced vibration of helical coil compression springs

    International Nuclear Information System (INIS)

    Stokes, F.E.; King, R.A.

    1983-01-01

    Helical coil compression springs are used in some nuclear fuel assembly designs to maintain holddown and to accommodate thermal expansion. In the reactor environment, the springs are exposed to flowing water, elevated temperatures and pressures, and irradiation. Flow parallel to the longitudinal axis of the spring may excite the spring coils and cause vibration. The purpose of this investigation was to determine the flow-induced vibration (FIV) response characteristics of the helical coil compression springs. Experimental tests indicate that a helical coil spring responds like a single circular cylinder in cross-flow. Two FIV excitation mechanisms control spring vibration. Namely: 1) Turbulent Buffeting causes small amplitude vibration which increases as a function of velocity squared. 2) Vortex Shedding causes large amplitude vibration when the spring natural frequency and Strouhal frequency coincide. Several methods can be used to reduce or to prevent vortex shedding large amplitude vibrations. One method is compressing the spring to a coil pitch-to-diameter ratio of 2 thereby suppressing the vibration amplitude. Another involves modifying the spring geometry to alter its stiffness and frequency characteristics. These changes result in separation of the natural and Strouhal frequencies. With an understanding of how springs respond in the flowing water environment, the spring physical parameters can be designed to avoid large amplitude vibration. (orig.)

  16. Numerical optimization approach for resonant electromagnetic vibration transducer designed for random vibration

    International Nuclear Information System (INIS)

    Spreemann, Dirk; Hoffmann, Daniel; Folkmer, Bernd; Manoli, Yiannos

    2008-01-01

    This paper presents a design and optimization strategy for resonant electromagnetic vibration energy harvesting devices. An analytic expression for the magnetic field of cylindrical permanent magnets is used to build up an electromagnetic subsystem model. This subsystem is used to find the optimal resting position of the oscillating mass and to optimize the geometrical parameters (shape and size) of the magnet and coil. The objective function to be investigated is thereby the maximum voltage output of the transducer. An additional mechanical subsystem model based on well-known equations describing the dynamics of spring–mass–damper systems is established to simulate both nonlinear spring characteristics and the effect of internal limit stops. The mechanical subsystem enables the identification of optimal spring characteristics for realistic operation conditions such as stochastic vibrations. With the overall transducer model, a combination of both subsystems connected to a simple electrical circuit, a virtual operation of the optimized vibration transducer excited by a measured random acceleration profile can be performed. It is shown that the optimization approach results in an appreciable increase of the converter performance

  17. Vibration monitoring with artificial neural networks

    International Nuclear Information System (INIS)

    Alguindigue, I.

    1991-01-01

    Vibration monitoring of components in nuclear power plants has been used for a number of years. This technique involves the analysis of vibration data coming from vital components of the plant to detect features which reflect the operational state of machinery. The analysis leads to the identification of potential failures and their causes, and makes it possible to perform efficient preventive maintenance. Earlydetection is important because it can decrease the probability of catastrophic failures, reduce forced outgage, maximize utilization of available assets, increase the life of the plant, and reduce maintenance costs. This paper documents our work on the design of a vibration monitoring methodology based on neural network technology. This technology provides an attractive complement to traditional vibration analysis because of the potential of neural network to operate in real-time mode and to handle data which may be distorted or noisy. Our efforts have been concentrated on the analysis and classification of vibration signatures collected from operating machinery. Two neural networks algorithms were used in our project: the Recirculation algorithm for data compression and the Backpropagation algorithm to perform the actual classification of the patterns. Although this project is in the early stages of development it indicates that neural networks may provide a viable methodology for monitoring and diagnostics of vibrating components. Our results to date are very encouraging

  18. Videometrics-based Detection of Vibration Linearity in MEMS Gyroscope

    Directory of Open Access Journals (Sweden)

    Yong Zhou

    2011-05-01

    Full Text Available MEMS gyroscope performs as a sort of sensor to detect angular velocity, with diverse applications in engineering including vehicle and intelligent traffic etc. A balanced vibration of driving module excited by electrostatic driving signal is the base MEMS gyroscope's performance. In order to analyze the linear property of vibration in MEMS Gyroscope, a method of computer vision measuring is applied with the help of high-speed vidicon to obtain video of linear vibration of driving module in gyroscope, under the driving voltage signal of inherent frequency and amplitude linearly increasing. By means of image processing, target identifying, and motion parameter extracting from the obtained video, vibration curve with time variation is acquired. And then, linearity of this vibration system can be analyzed by focusing on the amplitude value of vibration responding to the amplitude variation of driving voltage signal.

  19. Fingers' vibration transmission and grip strength preservation performance of vibration reducing gloves.

    Science.gov (United States)

    Hamouda, K; Rakheja, S; Dewangan, K N; Marcotte, P

    2018-01-01

    The vibration isolation performances of vibration reducing (VR) gloves are invariably assessed in terms of power tools' handle vibration transmission to the palm of the hand using the method described in ISO 10819 (2013), while the nature of vibration transmitted to the fingers is ignored. Moreover, the VR gloves with relatively low stiffness viscoelastic materials affect the grip strength in an adverse manner. This study is aimed at performance assessments of 12 different VR gloves on the basis of handle vibration transmission to the palm and the fingers of the gloved hand, together with reduction in the grip strength. The gloves included 3 different air bladder, 3 gel, 3 hybrid, and 2 gel-foam gloves in addition to a leather glove. Two Velcro finger adapters, each instrumented with a three-axis accelerometer, were used to measure vibration responses of the index and middle fingers near the mid-phalanges. Vibration transmitted to the palm was measured using the standardized palm adapter. The vibration transmissibility responses of the VR gloves were measured in the laboratory using the instrumented cylindrical handle, also described in the standard, mounted on a vibration exciter. A total of 12 healthy male subjects participated in the study. The instrumented handle was also used to measure grip strength of the subjects with and without the VR gloves. The results of the study showed that the VR gloves, with only a few exceptions, attenuate handle vibration transmitted to the fingers only in the 10-200 Hz and amplify middle finger vibration at frequencies exceeding 200 Hz. Many of the gloves, however, provided considerable reduction in vibration transmitted to the palm, especially at higher frequencies. These suggest that the characteristics of vibration transmitted to fingers differ considerably from those at the palm. Four of the test gloves satisfied the screening criteria of the ISO 10819 (2013) based on the palm vibration alone, even though these caused

  20. The Influence of Tractor-Seat Height above the Ground on Lateral Vibrations

    Directory of Open Access Journals (Sweden)

    Jaime Gomez-Gil

    2014-10-01

    Full Text Available Farmers experience whole-body vibrations when they drive tractors. Among the various factors that influence the vibrations to which the driver is exposed are terrain roughness, tractor speed, tire type and pressure, rear axle width, and tractor seat height above the ground. In this paper the influence of tractor seat height above the ground on the lateral vibrations to which the tractor driver is exposed is studied by means of a geometrical and an experimental analysis. Both analyses show that: (i lateral vibrations experienced by a tractor driver increase linearly with tractor-seat height above the ground; (ii lateral vibrations to which the tractor driver is exposed can equal or exceed vertical vibrations; (iii in medium-size tractors, a feasible 30 cm reduction in the height of the tractor seat, which represents only 15% of its current height, will reduce the lateral vibrations by around 20%; and (iv vertical vibrations are scarcely influenced by tractor-seat height above the ground. The results suggest that manufacturers could increase the comfort of tractors by lowering tractor-seat height above the ground, which will reduce lateral vibrations.

  1. The effect of mechanical vibration on orthodontically induced root resorption.

    Science.gov (United States)

    Yadav, Sumit; Dobie, Thomas; Assefnia, Amir; Kalajzic, Zana; Nanda, Ravindra

    2016-09-01

    To investigate the effect of low-frequency mechanical vibration (LFMV) on orthodontically induced root resorption. Forty male CD1, 12-week-old mice were used for the study. The mice were randomly divided into five groups: group 1 (baseline)-no spring and no mechanical vibration, group 2-orthodontic spring but no vibration, group 3-orthodontic spring and 5 Hz of vibration applied to the maxillary first molar, group 4-orthodontic spring and 10 Hz of vibration applied to maxillary first molar, and group 5-orthodontic spring and 20 Hz of vibration applied to maxillary first molar. In the different experimental groups, the first molar was moved mesially for 2 weeks using a nickel-titanium coil spring delivering 10 g of force. LFMVs were applied at 5 Hz, 10 Hz, and 20 Hz. Microfocus X-ray computed tomography imaging was used to analyze root resorption. Additionally, to understand the mechanism, we applied LFMV to MC3T3 cells, and gene expression analyses were done for receptor activator of nuclear factor kappa-B ligand (RANKL) and osteoprotegerin (OPG). Orthodontic tooth movement leads to decreased root volume (increased root resorption craters). Our in vivo experiments showed a trend toward increase in root volume with different frequencies of mechanical vibration. In vitro gene expression analyses showed that with 20 Hz of mechanical vibration, there was a significant decrease in RANKL and a significant increase in OPG expression. There was a trend toward decreased root resorption with different LFMVs (5 Hz, 10 Hz, and 20 Hz); however, it was not more statistically significant than the orthodontic-spring-only group.

  2. Experimental study of flow induced vibration of the planar fuel assembly

    International Nuclear Information System (INIS)

    Wang Jinhua; Bo Hanliang; Jiang Shengyao; Jia Haijun; Zheng Wenxiang; Min Gang; Qu Xinxing

    2005-01-01

    The paper studied the flow-induced vibration of the planar fuel assembly under scour of coolant through experiments, the study includes: the characteristics of the inherent vibration, the response to the flow-induced vibration in rating condition and the confirmation of the critical flow velocity's scope of the flow flexible instability. The velocity distributions in different flow channels formed by fuel plates in the assembly were measured, and the velocity distribution in the same flow channel was also measured. The experimental conclusions includes: the inherent vibration frequency of the planar fuel assembly is different for a little in each direction. The damp ratio corresponding to the assembly each rank's inherent frequency is small, and the damp ratio decreased with the increase of the corresponding inherent frequency. The velocity in different flow channels decreased from outside to inside, and the velocity in the middle channel was the least; the velocity in the same channel decreased from inside to outside, and the velocity in the middle position was the most. The vibration swing of the fuel assembly was small at rating condition, and the vibration swing of the fuel plates was larger than side plates. The vibration of the fuel assembly increased with the increase of the velocity, the vibration of the middle fuel plate were larger than the border fuel plate, and the vibration of the border fuel plate was larger than the side plate. The large scale vibration of the flow flexible instability didn't occur in the velocity scope of 0-18.8 m/s in the experiment, so the critical flow velocity of the flow flexible instability was not in the flow velocity scope of the experiment. (authors)

  3. PREFACE: Vibrations at surfaces Vibrations at surfaces

    Science.gov (United States)

    Rahman, Talat S.

    2011-12-01

    This special issue is dedicated to the phenomenon of vibrations at surfaces—a topic that was indispensible a couple of decades ago, since it was one of the few phenomena capable of revealing the nature of binding at solid surfaces. For clean surfaces, the frequencies of modes with characteristic displacement patterns revealed how surface geometry, as well as the nature of binding between atoms in the surface layers, could be different from that in the bulk solid. Dispersion of the surface phonons provided further measures of interatomic interactions. For chemisorbed molecules on surfaces, frequencies and dispersion of the vibrational modes were also critical for determining adsorption sites. In other words, vibrations at surfaces served as a reliable means of extracting information about surface structure, chemisorption and overlayer formation. Experimental techniques, such as electron energy loss spectroscopy and helium-atom-surface scattering, coupled with infra-red spectroscopy, were continually refined and their resolutions enhanced to capture subtleties in the dynamics of atoms and molecules at surfaces. Theoretical methods, whether based on empirical and semi-empirical interatomic potential or on ab initio electronic structure calculations, helped decipher experimental observations and provide deeper insights into the nature of the bond between atoms and molecules in regions of reduced symmetry, as encountered on solid surfaces. Vibrations at surfaces were thus an integral part of the set of phenomena that characterized surface science. Dedicated workshops and conferences were held to explore the variety of interesting and puzzling features revealed in experimental and theoretical investigations of surface vibrational modes and their dispersion. One such conference, Vibrations at Surfaces, first organized by Harald Ibach in Juelich in 1980, continues to this day. The 13th International Conference on Vibrations at Surfaces was held at the University of

  4. Flow Instabilities and Main Steam Line Vibrations in a Pressurized Water Reactor

    International Nuclear Information System (INIS)

    Henriksson, Mats; Westin, Johan; Granhall, Tord; Andersson, Lars; Bjerke, Lars-Erik

    2002-01-01

    Severe vibrational problems occurred in the main steam system of a PWR nuclear power plant, about 18 months after a steam generator replacement had been carried out. The magnitude of the vibrations reached levels at which the operators had to reduce power in order to stay within the operating limits imposed by the nuclear inspectorate. To solve the problem the following analyses methods were employed: - Testing the influence on vibration level from different modes of plant operation; - Analyses of plant measurement data; - Calculations of: hydraulic behaviour of the system, structural dynamic behaviour of the system, flow at the steam generator outlet. Scale model testing of the steam generator outlet region. Hydraulic flow disturbances in the main steam system were measured using pressure and strain gauges, which made it possible to track individual pressure pulses propagating through the main steam system. Analyses showed that the pressure pulses causing the vibration originated from the vicinity of the steam generator outlet. By using computer codes for network fluid flow analyses the pressure pulses found in the measurement traces could be generated in calculations. Careful studies of the flow at the steam generator outlet region, using model testing in a 1:3 scale model as well as transient 3D CFD calculations, gave clear indications that flow separation occurred at the steam generator outlet nozzle and at the first bend. Finally, by substituting the outlet nozzle for a different design with a multi-port nozzle, the steam line vibration problem has been solved. (authors)

  5. Phalanx force magnitude and trajectory deviation increased during power grip with an increased coefficient of friction at the hand-object interface.

    Science.gov (United States)

    Enders, Leah R; Seo, Na Jin

    2011-05-17

    This study examined the effect of friction between the hand and grip surface on a person's grip strategy and force generation capacity. Twelve young healthy adults performed power grip exertions on an instrumented vertical cylinder with the maximum and 50% of maximum efforts (far above the grip force required to hold the cylinder), while normal and shear forces at each phalanx of all five fingers in the direction orthogonal to the gravity were recorded. The cylinder surface was varied for high-friction rubber and low-friction paper coverings. An increase in surface friction by replacing the paper covering with the rubber covering resulted in 4% greater mean phalanx normal force (perpendicular to the cylinder surface) and 22% greater mean phalanx shear force in either the proximal or distal direction of the digits (pfriction with the rubber surface compared to the paper surface was associated with a 20% increase in the angular deviation of the phalanx force from the direction normal to the cylinder surface (p<0.05). This study demonstrates that people significantly changed the magnitude and direction of phalanx forces depending on the surface they gripped. Such change in the grip strategy appears to help increase grip force generation capacity. This finding suggests that a seemingly simple power grip exertion involves sensory feedback-based motor control, and that people's power grip capacity may be reduced in cases of numbness, glove use, or injuries resulting in reduced sensation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Loose parts, vibration and leakage monitoring methods and systems to increase availability, transparency and lifetime of power plants

    International Nuclear Information System (INIS)

    Streicher, V.; Jax, P.; Ruthrof, K.

    1987-01-01

    This paper deals with three stand-alone-systems as an aid to check the mechanical integrity of the primary circuit of nuclear power plants. The main goals of these systems are early detection of faults and malfunctions, the facilitation of fault clearance, the avoidance of sequential damage and reduction of inspection time and cost. Obviously the proper application of the systems as well as the measures they induce and make possible increase the availability of the plant and contribute to lifetime extension. In order to detect, identify and pinpoint the changes in component structure such as loosened connections, broken parts or components, loose or loosened particles, fatigued materials, cracks and leaks, specialized monitoring systems were developed by KWU (Kraftwerk Union AG) during the last ten years. Requirements concerning vibration, loose parts and leakage monitoring are part of German guidelines and safety standards. Therefore systems for these applications are implemented in most of the nuclear power plants in Western Germany. This paper presents newly developed, microprocessor-based systems for loose parts monitoring, vibration monitoring and leakage monitoring and also includes specific case histories for the different topics

  7. Sensor fusion for active vibration isolation in precision equipment

    NARCIS (Netherlands)

    Tjepkema, D.; van Dijk, Johannes; Soemers, Herman

    2012-01-01

    Sensor fusion is a promising control strategy to improve the performance of active vibration isolation systems that are used in precision equipment. Normally, those vibration isolation systems are only capable of realizing a low transmissibility. Additional objectives are to increase the damping

  8. Comparing the effects of 3 weeks of upper-body vibration training, vibration and stretching, and stretching alone on shoulder flexibility in college-aged men.

    Science.gov (United States)

    Ferguson, Steven L; Kim, Eonho; Seo, Dong-Il; Bemben, Michael G

    2013-12-01

    This study compared the effects of 3 weeks of upper-body vibration training, vibration and stretching, and stretching alone on shoulder flexibility in college-aged men. Twenty-one men were randomly assigned to vibration-stretching (VS; n = 8), vibration only (VO; n = 6), or stretching only (SO; n = 7) groups that trained 3 times per week for 3 weeks. All 3 groups performed 9 total sets of 30-second stretches. The VS group performed four 30-second upper-body vibration exercises and five 30-second upper-body stretching exercises. The VO group performed nine 30-second upper-body vibration exercises. The SO group performed nine 30-second upper-body stretching exercises. Shoulder flexion (SF), shoulder extension (SE), and shoulder transverse extension (STE) were assessed by a Leighton Flexometer and back scratch tests bilaterally (BSR, BSL) were measured via tape measure. A 1-way analysis of variance (ANOVA) evaluated groups at baseline and a 2-way repeated-measures ANOVA evaluated the interventions over time. At baseline, there were no group differences in age, height, or weight. There was a significant (p alone or combined with stretching, is a viable alternative to a standard stretching routine when attempting to increase shoulder flexibility. Adding vibration training to a flexibility regimen may improve the likelihood of regularly performing flexibility sessions because of increased variety.

  9. Effect of whole-body vibration on bone properties in aging mice.

    Science.gov (United States)

    Wenger, Karl H; Freeman, James D; Fulzele, Sadanand; Immel, David M; Powell, Brian D; Molitor, Patrick; Chao, Yuh J; Gao, Hong-Sheng; Elsalanty, Mohammed; Hamrick, Mark W; Isales, Carlos M; Yu, Jack C

    2010-10-01

    Recent studies suggest that whole-body vibration (WBV) can improve measures of bone health for certain clinical conditions and ages. In the elderly, there also is particular interest in assessing the ability of physical interventions such as WBV to improve coordination, strength, and movement speed, which help prevent falls and fractures and maintain ambulation for independent living. The current study evaluated the efficacy of WBV in an aging mouse model. Two levels of vibration--0.5 and 1.5g--were applied at 32Hz to CB57BL/6 male mice (n=9 each) beginning at age 18 months and continuing for 12 weeks, 30 min/day, in a novel pivoting vibration device. Previous reports indicate that bone parameters in these mice begin to decrease substantially at 18 months, equivalent to mid-fifties for humans. Micro-computed tomography (micro-CT) and biomechanical assessments were made in the femur, radius, and lumbar vertebra to determine the effect of these WBV magnitudes and durations in the aging model. Sera also were collected for analysis of bone formation and breakdown markers. Mineralizing surface and cell counts were determined histologically. Bone volume in four regions of the femur did not change significantly, but there was a consistent shift toward higher mean density in the bone density spectrum (BDS), with the two vibration levels producing similar results. This new parameter represents an integral of the conventional density histogram. The amount of high density bone statistically improved in the head, neck, and diaphysis. Biomechanically, there was a trend toward greater stiffness in the 1.5 g group (p=0.139 vs. controls in the radius), and no change in strength. In the lumbar spine, no differences were seen due to vibration. Both vibration groups significantly reduced pyridinoline crosslinks, a collagen breakdown marker. They also significantly increased dynamic mineralization, MS/BS. Furthermore, osteoclasts were most numerous in the 1.5 g group (p≤ 0

  10. Influence of delayed excitation on vibrations of turbine blades couple

    Directory of Open Access Journals (Sweden)

    Půst L.

    2013-06-01

    Full Text Available In the presented paper, the computational model of the turbine blade couple is investigated with the main attention to the influence two harmonic excitation forces, having the same frequency and amplitude but with moderate delay in time. Time delay between the exciting harmonic forces depends on the revolutions of bladed disk, on the number of blades on a rotating disk and on the number of stator blades. The reduction of resonance vibrations realized by means of dry friction between the shroud blade-heads increases roughly proportional to the difference of stator and rotor blade-numbers and also to the magnitude of dry friction force. From the analysis of blade couple with direct contact it was proved that the increase of friction forces causes decrease of resonance peaks, but the influence of elastic micro-deformations in the contact surfaces (modeled e.g. by the modified Coulomb dry friction law is rather small. Analysis of a blade couple with a friction element shows that the lower number of stator blades has negligible influence on the amplitudes of both blades, but decreases amplitudes of the friction element oscillations. Similarly the increase of friction forces causes a decrease of resonance peaks, but an increase of friction element amplitudes.

  11. Vibration measurement with nonlinear converter in the presence of noise

    Science.gov (United States)

    Mozuras, Almantas

    2017-10-01

    Conventional vibration measurement methods use the linear properties of physical converters. These methods are strongly influenced by nonlinear distortions, because ideal linear converters are not available. Practically, any converter can be considered as a linear one, when an output signal is very small. However, the influence of noise increases significantly and signal-to-noise ratio decreases at lower signals. When the output signal is increasing, the nonlinear distortions are also augmenting. If the wide spectrum vibration is measured, conventional methods face a harmonic distortion as well as intermodulation effects. Purpose of this research is to develop a measurement method of wide spectrum vibration by using a converter described by a nonlinear function of type f(x), where x =x(t) denotes the dependence of coordinate x on time t due to the vibration. Parameter x(t) describing the vibration is expressed as Fourier series. The spectral components of the converter output f(x(t)) are determined by using Fourier transform. The obtained system of nonlinear equations is solved using the least squares technique that permits to find x(t) in the presence of noise. This method allows one to carry out the absolute or relative vibration measurements. High resistance to noise is typical for the absolute vibration measurement, but it is necessary to know the Taylor expansion coefficients of the function f(x). If the Taylor expansion is not known, the relative measurement of vibration parameters is also possible, but with lower resistance to noise. This method allows one to eliminate the influence of nonlinear distortions to the measurement results, and consequently to eliminate harmonic distortion and intermodulation effects. The use of nonlinear properties of the converter for measurement gives some advantages related to an increased frequency range of the output signal (consequently increasing the number of equations) that allows one to decrease the noise influence on

  12. Determination of increased mean drag coefficients for a cylinder vibrating at low values of Keulegan-Carpenter number

    Directory of Open Access Journals (Sweden)

    Carlos Alberto Riveros

    2014-06-01

    Full Text Available There is an increasing demand for the development of a reliable technology for wind turbines in deepwaters.Therefore, offshore wind turbine technology is receiving great amount of attention by the research community. Nevertheless, the dynamic response prediction of the support system for offshore wind turbines is still challenging due to the nonlinear and self-regulated nature of the Vortex Induced Vibration (VIV process. In this paper, the numerical implementation of a computational fluid dynamics-based approach for determination of increased mean drag coefficient is presented. The numerical study is conducted at low values of Keulegan-Carpenter number in order to predict the increment of drag force due to cross-flow motion. The simulation results are then compared with previously developed empirical formulations. Good agreement is observed in these comparisons.

  13. One stacked-column vibration test and analysis for VHTR core

    International Nuclear Information System (INIS)

    Ikushima, Takeshi; Ishizuka, Hiroshi; Ide, Akira; Hayakawa, Hitoshi; Shingai, Kazuteru.

    1978-07-01

    This paper describes experimental results of the vibration test on a single stacked-column and compares them with the analytical results. A 1/2 scale model of the core element of a very high temperature gas-cooled reactor (VHTR) was set on a shaking table. Sinusoidal waves, response time history waves, beat wave and step wave of input acceleration 100 - 900 gal in the frequency of 0.5 to 15 Hz were used to vibrate the table horizontally. Results are as follows: (1) The column has a non-linear resonance and exhibits a hysteresis response with jump points. (2) The column vibration characteristics is similar to that of the finite beams connected with non-linear soft spring. (3) The column resonance frequency decreases with increasing input acceleration. (4) The impact force increases with increasing input acceleration and boundary gap width. (5) Good correlation in vibration behavior of the stacked-column and impact force on the boundary between test and analysis was obtained. (auth.)

  14. The effect of the condensed-phase environment on the vibrational frequency shift of a hydrogen molecule inside clathrate hydrates.

    Science.gov (United States)

    Powers, Anna; Scribano, Yohann; Lauvergnat, David; Mebe, Elsy; Benoit, David M; Bačić, Zlatko

    2018-04-14

    We report a theoretical study of the frequency shift (redshift) of the stretching fundamental transition of an H 2 molecule confined inside the small dodecahedral cage of the structure II clathrate hydrate and its dependence on the condensed-phase environment. In order to determine how much the hydrate water molecules beyond the confining small cage contribute to the vibrational frequency shift, quantum five-dimensional (5D) calculations of the coupled translation-rotation eigenstates are performed for H 2 in the v=0 and v=1 vibrational states inside spherical clathrate hydrate domains of increasing radius and a growing number of water molecules, ranging from 20 for the isolated small cage to over 1900. In these calculations, both H 2 and the water domains are treated as rigid. The 5D intermolecular potential energy surface (PES) of H 2 inside a hydrate domain is assumed to be pairwise additive. The H 2 -H 2 O pair interaction, represented by the 5D (rigid monomer) PES that depends on the vibrational state of H 2 , v=0 or v=1, is derived from the high-quality ab initio full-dimensional (9D) PES of the H 2 -H 2 O complex [P. Valiron et al., J. Chem. Phys. 129, 134306 (2008)]. The H 2 vibrational frequency shift calculated for the largest clathrate domain considered, which mimics the condensed-phase environment, is about 10% larger in magnitude than that obtained by taking into account only the small cage. The calculated splittings of the translational fundamental of H 2 change very little with the domain size, unlike the H 2 j = 1 rotational splittings that decrease significantly as the domain size increases. The changes in both the vibrational frequency shift and the j = 1 rotational splitting due to the condensed-phase effects arise predominantly from the H 2 O molecules in the first three complete hydration shells around H 2 .

  15. The effect of the condensed-phase environment on the vibrational frequency shift of a hydrogen molecule inside clathrate hydrates

    Science.gov (United States)

    Powers, Anna; Scribano, Yohann; Lauvergnat, David; Mebe, Elsy; Benoit, David M.; Bačić, Zlatko

    2018-04-01

    We report a theoretical study of the frequency shift (redshift) of the stretching fundamental transition of an H2 molecule confined inside the small dodecahedral cage of the structure II clathrate hydrate and its dependence on the condensed-phase environment. In order to determine how much the hydrate water molecules beyond the confining small cage contribute to the vibrational frequency shift, quantum five-dimensional (5D) calculations of the coupled translation-rotation eigenstates are performed for H2 in the v =0 and v =1 vibrational states inside spherical clathrate hydrate domains of increasing radius and a growing number of water molecules, ranging from 20 for the isolated small cage to over 1900. In these calculations, both H2 and the water domains are treated as rigid. The 5D intermolecular potential energy surface (PES) of H2 inside a hydrate domain is assumed to be pairwise additive. The H2-H2O pair interaction, represented by the 5D (rigid monomer) PES that depends on the vibrational state of H2, v =0 or v =1 , is derived from the high-quality ab initio full-dimensional (9D) PES of the H2-H2O complex [P. Valiron et al., J. Chem. Phys. 129, 134306 (2008)]. The H2 vibrational frequency shift calculated for the largest clathrate domain considered, which mimics the condensed-phase environment, is about 10% larger in magnitude than that obtained by taking into account only the small cage. The calculated splittings of the translational fundamental of H2 change very little with the domain size, unlike the H2 j = 1 rotational splittings that decrease significantly as the domain size increases. The changes in both the vibrational frequency shift and the j = 1 rotational splitting due to the condensed-phase effects arise predominantly from the H2O molecules in the first three complete hydration shells around H2.

  16. Investigation into high-frequency-vibration assisted micro-blanking of pure copper foils

    Directory of Open Access Journals (Sweden)

    Wang Chunju

    2015-01-01

    Full Text Available The difficulties encountered during the manufacture of microparts are often associated with size effects relating to material, process and tooling. Utilizing acoustoplastic softening, achieved through a high-frequency vibration assisted micro-blanking process, was introduced to improve the surface finish in micro-blanking. A frequency of 1.0 kHz was chosen to activate the longitudinal vibration mode of the horn tip, using a piezoelectric actuator. A square hole with dimensions of 0.5 mm × 0.5 mm was made, successfully, from a commercial rolled T2 copper foil with 100 μm in thickness. It was found that the maximum blanking force could be reduced by 5% through utilizing the high-frequency vibration. Proportion of the smooth, burnished area in the cut cross-section increases with an increase of the plasticity to fracture, under the high-frequency vibration, which suggests that the vibration introduced is helpful for inhibiting evolution of the crack due to its acoustoplastic softening effect. During blanking, roughness of the burnished surface could be reduced by increasing the vibration amplitude of the punch, which played a role as surface polishing. The results obtained suggest that the high-frequency vibration can be adopted in micro-blanking in order to improve quality of the microparts.

  17. Wind Turbine Bearing Diagnostics Based on Vibration Monitoring

    Science.gov (United States)

    Kadhim, H. T.; Mahmood, F. H.; Resen, A. K.

    2018-05-01

    Reliability maintenance can be considered as an accurate condition monitoring system which increasing beneficial and decreasing the cost production of wind energy. Supporting low friction of wind turbine rotating shaft is the main task of rolling element bearing and it is the main part that suffers from failure. The rolling failures elements have an economic impact and may lead to malfunctions and catastrophic failures. This paper concentrates on the vibration monitoring as a Non-Destructive Technique for assessing and demonstrates the feasibility of vibration monitoring for small wind turbine bearing defects based on LabVIEW software. Many bearings defects were created, such as inner race defect, outer race defect, and ball spin defect. The spectra data were recorded and compared with the theoretical results. The accelerometer with 4331 NI USB DAQ was utilized to acquiring, analyzed, and recorded. The experimental results were showed the vibration technique is suitable for diagnostic the defects that will be occurred in the small wind turbine bearings and developing a fault in the bearing which leads to increasing the vibration amplitude or peaks in the spectrum.

  18. Adaptive Robust Sliding Mode Vibration Control of a Flexible Beam Using Piezoceramic Sensor and Actuator: An Experimental Study

    Directory of Open Access Journals (Sweden)

    Ruo Lin Wang

    2014-01-01

    Full Text Available This paper presents an experimental study of an adaptive robust sliding mode control scheme based on the Lyapunov’s direct method for active vibration control of a flexible beam using PZT (lead zirconate titanate sensor and actuator. PZT, a type of piezoceramic material, has the advantages of high reliability, high bandwidth, and solid state actuation and is adopted here in forms of surface-bond patches for vibration control. Two adaptive robust sliding mode controllers for vibration suppression are designed: one uses a discontinuous bang-bang robust compensator and the other uses a smooth compensator with a hyperbolic tangent function. Both controllers guarantee asymptotic stability, as proved by the Lyapunov’s direct method. Experimental results verified the effectiveness and the robustness of both adaptive sliding mode controllers. However, from the experimental results, the bang-bang robust compensator causes small-magnitude chattering because of the discontinuous switching actions. With the smooth compensator, vibration is quickly suppressed and no chattering is induced. Furthermore, the robustness of the controllers is successfully demonstrated with ensured effectiveness in vibration control when masses are added to the flexible beam.

  19. Scaling Relations of Local Magnitude versus Moment Magnitude for Sequences of Similar Earthquakes in Switzerland

    KAUST Repository

    Bethmann, F.; Deichmann, N.; Mai, Paul Martin

    2011-01-01

    Theoretical considerations and empirical regressions show that, in the magnitude range between 3 and 5, local magnitude, ML, and moment magnitude, Mw, scale 1:1. Previous studies suggest that for smaller magnitudes this 1:1 scaling breaks down

  20. Analysis and simulation of centrifugal pendulum vibration absorbers

    OpenAIRE

    Smith, Emma

    2015-01-01

    When environmental laws are constricted and downsizing of engines has become the reality of the vehicle industry, there needs to be a solution for the rise in torsion vibrations in the drivetrain. These increased levels of torsion vibrations are mostly due to excitations from the firing pulses, which in turn have become increased due to higher cylinder pressures. One of the solutions for further dampening the system is to add a centrifugal pendulum absorber to the flywheel, and predicting the...

  1. Experimental Research on Vibrations of Double Harmonic Gear Transmission

    Directory of Open Access Journals (Sweden)

    Sava Ianici

    2017-11-01

    Full Text Available Gears transmission can be important sources of vibration in the mechanical system structures and can have a significant share in the overall vibration level. The current trend of significant increase in powers and speeds transmitted by modern mechanical systems, along with the size reduction, may cause a worsening of the behaviour of transmissions with gears in terms of vibration, especially when the optimization criteria were not respected in the design, execution and installation phase. This paper presents a study of vibrations that occur in a double harmonic gear transmission (DHGT, based on experimental research. The experimental researches revealed that in a double harmonic gear transmission the vibrations are initiated and develop in the multipara harmonics engagement of the teeth and in the kinematic couplings materialized between the wave generator and the flexible toothed wheel. These vibrations are later transmitted by means of the shafts and bearings to the transmission housing, respectively, through the walls of it, propagating in the air.

  2. Flow induced vibration in shell and tube heat exchangers

    International Nuclear Information System (INIS)

    Soper, B.M.H.

    1981-01-01

    Assessing heat exchanger designs, from the standpoint of flow induced vibration, is becoming increasingly important as shell side flow velocities are increased in a quest for better thermal performance. This paper reviews the state of the art concerning the main sources of vibration excitation, i.e. vortex shedding resonance, turbulent buffeting, fluidelastic instability and acoustic resonance, as well as the structural dynamics of the tubes. It is concluded that there are many areas which require further investigation but there are sufficient data available at present to design, with reasonable confidence, units that will be free from flow induced vibration. Topics which are considered to be key areas for further work are listed

  3. Ambient vibration characterization and monitoring of a rock slope close to collapse

    Science.gov (United States)

    Burjánek, Jan; Gischig, Valentin; Moore, Jeffrey R.; Fäh, Donat

    2018-01-01

    We analyse the ambient vibration response of Alpe di Roscioro (AdR), an incipient rock slope failure located above the village Preonzo in southern Switzerland. Following a major failure in May 2012 (volume ˜210 000 m3), the remaining unstable rock mass (˜140 000 m3) remains highly fractured and disrupted, and has been the subject of intensive monitoring. We deployed a small-aperture seismic array at the site shortly after the 2012 failure. The measured seismic response exhibited strong directional amplification (factors up to 35 at 3.5 Hz), higher than previously recorded on rock slopes. The dominant direction of ground motion was found to be parallel to the predominant direction of deformation and perpendicular to open fractures, reflecting subsurface structure of the slope. We then equipped the site with two semi-permanent seismic stations to monitor the seismic response with the goal of identifying changes caused by internal damage that may precede subsequent failure. Although failure has not yet occurred, our data reveal important variations in the seismic response. Amplification factors and resonant frequencies exhibit seasonal trends related (both directly and inversely) to temperature changes and are sensitive to freezing periods (resonant frequencies increase with temperature and during freezing). We attribute these effects to thermal expansion driving microcrack closure, in addition to ice formation, which increase fracture and bulk rock stiffness. We find the site response at AdR is linear over the measured range of weak input motions spanning two orders of magnitude. Our results further develop and refine ambient vibration methods used in rock slope hazard assessment.

  4. Vibration analysis and vibration damage assessment in nuclear and process equipment

    International Nuclear Information System (INIS)

    Pettigrew, M.J.; Taylor, C.E.; Fisher, N.J.; Yetisir, M.; Smith, B.A.W.

    1997-01-01

    Component failures due to excessive flow-induced vibration are still affecting the performance and reliability of process and nuclear components. The purpose of this paper is to discuss flow-induced vibration analysis and vibration damage prediction. Vibration excitation mechanisms are described with particular emphasis on fluid elastic instability. The dynamic characteristics of process and power equipment are explained. The statistical nature of some parameters, in particular support conditions, is discussed. The prediction of fretting-wear damage is approached from several points-of-view. An energy approach to formulate fretting-wear damage is proposed. (author)

  5. Finite Element Analysis and Experimental Study on Elbow Vibration Transmission Characteristics

    Science.gov (United States)

    Qing-shan, Dai; Zhen-hai, Zhang; Shi-jian, Zhu

    2017-11-01

    Pipeline system vibration is one of the significant factors leading to the vibration and noise of vessel. Elbow is widely used in the pipeline system. However, the researches about vibration of elbow are little, and there is no systematic study. In this research, we firstly analysed the relationship between elbow vibration transmission characteristics and bending radius by ABAQUS finite element simulation. Then, we conducted the further vibration test to observe the vibration transmission characteristics of different elbows which have the same diameter and different bending radius under different flow velocity. The results of simulation calculation and experiment both showed that the vibration acceleration levels of the pipeline system decreased with the increase of bending radius of the elbow, which was beneficial to reduce the transmission of vibration in the pipeline system. The results could be used as reference for further studies and designs for the low noise installation of pipeline system.

  6. Vibration of hydraulic machinery

    CERN Document Server

    Wu, Yulin; Liu, Shuhong; Dou, Hua-Shu; Qian, Zhongdong

    2013-01-01

    Vibration of Hydraulic Machinery deals with the vibration problem which has significant influence on the safety and reliable operation of hydraulic machinery. It provides new achievements and the latest developments in these areas, even in the basic areas of this subject. The present book covers the fundamentals of mechanical vibration and rotordynamics as well as their main numerical models and analysis methods for the vibration prediction. The mechanical and hydraulic excitations to the vibration are analyzed, and the pressure fluctuations induced by the unsteady turbulent flow is predicted in order to obtain the unsteady loads. This book also discusses the loads, constraint conditions and the elastic and damping characters of the mechanical system, the structure dynamic analysis, the rotor dynamic analysis and the system instability of hydraulic machines, including the illustration of monitoring system for the instability and the vibration in hydraulic units. All the problems are necessary for vibration pr...

  7. Vibrations and Eigenvalues

    Indian Academy of Sciences (India)

    We make music by causing strings, membranes, or air columns to vibrate. Engineers design safe structures by control- ling vibrations. I will describe to you a very simple vibrating system and the mathematics needed to analyse it. The ideas were born in the work of Joseph-Louis Lagrange (1736–1813), and I begin by quot-.

  8. Vibration Energy Harvesting Potential for Turbomachinery Applications

    Directory of Open Access Journals (Sweden)

    Adrian STOICESCU

    2018-03-01

    Full Text Available The vibration energy harvesting process represents one of the research directions for increasing power efficiency of electric systems, increasing instrumentation nodes autonomy in hard to reach locations and decreasing total system mass by eliminating cables and higher-power adapters. Research based on the possibility of converting vibration energy into useful electric energy is used to evaluate the potential of its use on turbomachinery applications. Aspects such as the structure and characteristics of piezoelectric generators, harvesting networks, their setup and optimization, are considered. Finally, performance test results are shown using piezoelectric systems on a turbine engine.

  9. The Health Effects and Keep Down of Whole Body Vibration

    Directory of Open Access Journals (Sweden)

    Funda Sevencan

    2014-04-01

    Full Text Available Vibration was defined that oscillation of the body according to the reference point. The tools that are used in industry and are the source of vibration cause diseases. For this reason, the vibration has been one of the factors that affect the health and of the most widely researched in the field of ergonomics. The perceived intensity and health effects of vibration depend on the vibration frequency, intensity, direction, acceleration, duration of exposure, vibration affects the region, age, gender, posture, distance from the source person, activity, time of day and the person\\s overall health condition. The one of the most common health effects of whole body vibration is impact on musculoskeletal system. In many studies, indicated that whole-body vibration effect waist, back, shoulder and neck especially. There were varied studies that hormone levels were not changed as well there were varied studies that hormone levels were increased or decreased. There were varied studies about the digestive and circulatory system. In these studies, digestive system complaints, peptic ulcer, gastritis, varicose veins and hemorrhoids were determined frequently. For protection the health effect of vibration, Directives of the European Commission, Turkish Standards, Assessment and Management of Environmental Noise and Vibration Regulations were published. For the control of vibration are need technical and medical measures and education [TAF Prev Med Bull 2014; 13(2.000: 177-186

  10. Handbook Of Noise And Vibration

    International Nuclear Information System (INIS)

    1995-12-01

    This book is about noise and vibration. The first chapter has explanations of noise such as basic of sound, influence of noise, assessment of noise, measurement of prevention of noise and technology, case of noise measurement and soundproof. The second chapter describes vibration with outline, theory of vibration, interpretation of vibration, measurement for reduction of vibration, case of design of protection against vibration. It deals with related regulation and method of measurement.

  11. Short Duration Small Sided Football and to a Lesser Extent Whole Body Vibration Exercise Induce Acute Changes in Markers of Bone Turnover

    Directory of Open Access Journals (Sweden)

    J. L. Bowtell

    2016-01-01

    Full Text Available We aimed to study whether short-duration vibration exercise or football sessions of two different durations acutely changed plasma markers of bone turnover and muscle strain. Inactive premenopausal women (n=56 were randomized to complete a single bout of short (FG15 or long duration (FG60 small sided football or low magnitude whole body vibration training (VIB. Procollagen type 1 amino-terminal propeptide (P1NP was increased during exercise for FG15 (51.6±23.0 to 56.5±22.5 μg·L−1, mean ± SD, P0.05. An increase in osteocalcin was observed 48 h after exercise (P<0.05, which did not differ between exercise groups. C-terminal telopeptide of type 1 collagen was not affected by exercise. Blood lactate concentration increased during exercise for FG15 (0.6±0.2 to 3.4±1.2 mM and FG60 (0.6±0.2 to 3.3±2.0 mM, but not for VIB (0.6±0.2 to 0.8±0.4 mM (P<0.05. Plasma creatine kinase increased by 55±63% and 137±119% 48 h after FG15 and FG60 (P<0.05, but not after VIB (26±54%, NS. In contrast to the minor elevation in osteocalcin in response to a single session of vibration exercise, both short and longer durations of small sided football acutely increased plasma P1NP, osteocalcin, and creatine kinase. This may contribute to favorable effects of chronic training on musculoskeletal health.

  12. Vibration mode and vibration shape under excitation of a three phase model transformer core

    Science.gov (United States)

    Okabe, Seiji; Ishigaki, Yusuke; Omura, Takeshi

    2018-04-01

    Structural vibration characteristics and vibration shapes under three-phase excitation of a archetype transformer core were investigated to consider their influences on transformer noise. Acoustic noise and vibration behavior were measured in a three-limb model transformer core. Experimental modal analysis by impact test was performed. The vibration shapes were measured by a laser scanning vibrometer at different exciting frequencies. Vibration amplitude of the core in out-of-plane direction were relatively larger than those in other two in-plane directions. It was consistent with the result that the frequency response function of the core in out-of-plane direction was larger by about 20 dB or more than those in in-plane directions. There were many vibration modes having bending deformation of limbs in out-of-plane direction. The vibration shapes of the core when excited at 50 Hz and 60 Hz were almost the same because the fundamental frequencies of the vibration were not close to the resonance frequencies. When excitation frequency was 69 Hz which was half of one of the resonance frequencies, the vibration shape changed to the one similar to the resonance vibration mode. Existence of many vibration modes in out-of-plane direction of the core was presumed to be a reason why frequency characteristics of magnetostriction and transformer noise do not coincide.

  13. Integrated cable vibration control system using wireless sensors

    Science.gov (United States)

    Jeong, Seunghoo; Cho, Soojin; Sim, Sung-Han

    2017-04-01

    As the number of long-span bridges is increasing worldwide, maintaining their structural integrity and safety become an important issue. Because the stay cable is a critical member in most long-span bridges and vulnerable to wind-induced vibrations, vibration mitigation has been of interest both in academia and practice. While active and semi-active control schemes are known to be quite effective in vibration reduction compared to the passive control, requirements for equipment including data acquisition, control devices, and power supply prevent a widespread adoption in real-world applications. This study develops an integrated system for vibration control of stay-cables using wireless sensors implementing a semi-active control. Arduino, a low-cost single board system, is employed with a MEMS digital accelerometer and a Zigbee wireless communication module to build the wireless sensor. The magneto-rheological (MR) damper is selected as a damping device, controlled by an optimal control algorithm implemented on the Arduino sensing system. The developed integrated system is tested in a laboratory environment using a cable to demonstrate the effectiveness of the proposed system on vibration reduction. The proposed system is shown to reduce the vibration of stay-cables with low operating power effectively.

  14. Study on pivot-point vibration of molecular bond-rupture events by quartz crystal microbalance for biomedical diagnostics.

    Science.gov (United States)

    Yuan, Yong J; Jia, Renjie

    2012-01-01

    Bond-rupture scanning for biomedical diagnostics is examined using quartz crystal microbalance (QCM) experiments and microparticle mechanics modeling calculations. Specific and nonspecific interactions between a microparticle and its binding QCM surface can be distinguished by gradually increasing the amplitude of driving voltage applied to QCM and monitoring its frequency changes. This research proposes a mechanical model of interactions between biological molecules and a QCM substrate surface. The mechanical force required to break a biotin-streptavidin bond was calculated through a one-pivot-point bottom-up vibration model. The bond-rupture force increases with an increase of the microparticle radius, the QCM resonant frequency, and the amplitude of driving voltage applied to the QCM. The significance of the research on biological molecular bond rupture is extremely important in characterizing microbial (such as cells and virus) specificity, due to the force magnitude needed to break bonds using a transducer.

  15. Vibration Analysis of Beam and Block Precast Slab System due to Human Vibrations

    Science.gov (United States)

    Chik, T. N. T.; Kamil, M. R. H.; Yusoff, N. A.

    2018-04-01

    Beam and block precast slabs system are very efficient which generally give maximum structural performance where their voids based on the design of the unit soffit block allow a significant reduction of the whole slab self-weight. Initially for some combinations of components or the joint connection of the structural slab, this structural system may be susceptible to excessive vibrations that could effects the performance and also serviceability. Dynamic forces are excited from people walking and jumping which produced vibrations to the slab system in the buildings. Few studies concluded that human induced vibration on precast slabs system may be harmful to structural performance and mitigate the human comfort level. This study will investigate the vibration analysis of beam and block precast slab by using finite element method at the school building. Human activities which are excited from jumping and walking will induce the vibrations signal to the building. Laser Doppler Vibrometer (LDV) was used to measure the dynamic responses of slab towards the vibration sources. Five different points were assigned specifically where each of location will determine the behaviour of the entire slabs. The finite element analyses were developed in ABAQUS software and the data was further processed in MATLAB ModalV to assess the vibration criteria. The results indicated that the beam and block precast systems adequate enough to the vibration serviceability and human comfort criteria. The overall vibration level obtained was fell under VC-E curve which it is generally under the maximum permissible level of vibrations. The vibration level on the slab is acceptable within the limit that have been used by Gordon.

  16. Effect of vibration frequency on microstructure and performance of high chromium cast iron prepared by lost foam casting

    Directory of Open Access Journals (Sweden)

    Wen-qi Zou

    2016-07-01

    Full Text Available In the present research, high chromium cast irons (HCCIs were prepared using the lost foam casting (LFC process. To improve the wear resistance of the high chromium cast irons (HCCIs, mechanical vibration was employed during the solidification of the HCCIs. The effects of vibration frequency on the microstructure and performance of the HCCIs under as-cast, as-quenched and as-tempered conditions were investigated. The results indicated that the microstructures of the LFC-produced HCCIs were refined due to the introduction of mechanical vibration, and the hardness was improved compared to that of the alloy without vibration. However, only a slight improvement in hardness was found in spite of the increase of vibration frequency. In contrast, the impact toughness of the as-tempered HCCIs increased with an increase in the vibration frequency. In addition, the wear resistance of the HCCIs was improved as a result of the introduction of vibration and increased with an increase in the vibration frequency.

  17. Vibrational energy transfer in selectively excited diatomic molecules

    International Nuclear Information System (INIS)

    Dasch, C.J.

    1978-09-01

    Single rovibrational states of HCl(v=2), HBr(v=2), DCl(v=2), and CO(v=2) were excited with a pulsed optical parametric oscillator (OPO). Total vibrational relaxation rates near - resonance quenchers were measured at 295 0 K using time resolved infrared fluorescence. These rates are attributed primarily to V - V energy transfer, and they generally conform to a simple energy gap law. A small deviation was found for the CO(v) + DCl(v') relaxation rates. Upper limits for the self relaxation by V - R,T of HCl(v=2) and HBr(v=2) and for the two quantum exchange between HCl and HBr were determined. The HF dimer was detected at 295 0 K and 30 torr HF pressure with an optoacoustic spectrometer using the OPO. Pulsed and chopped, resonant and non-resonant spectrophones are analyzed in detail. From experiments and first order perturbation theory, these V - V exchange rates appear to behave as a first order perturbation in the vibrational coordinates. The rotational dynamics are known to be complicated however, and the coupled rotational - vibrational dynamics were investigated theoreticaly in infinite order by the Dillon and Stephenson and the first Magnus approximations. Large ΔJ transitions appear to be important, but these calculations differ by orders of magnitude on specific rovibrational transition rates. Integration of the time dependent semiclassical equations by a modified Gordon method and a rotationally distorted wave approximation are discussed as methods which would treat the rotational motion more accurately. 225 references

  18. Prevalent hallucinations during medical internships: phantom vibration and ringing syndromes.

    Directory of Open Access Journals (Sweden)

    Yu-Hsuan Lin

    Full Text Available BACKGROUND: Phantom vibration syndrome is a type of hallucination reported among mobile phone users in the general population. Another similar perception, phantom ringing syndrome, has not been previously described in the medical literature. METHODS: A prospective longitudinal study of 74 medical interns (46 males, 28 females; mean age, 24.8±1.2 years was conducted using repeated investigations of the prevalence and associated factors of phantom vibration and ringing. The accompanying symptoms of anxiety and depression were evaluated with the Beck Anxiety and Depression Inventories before the internship began, and again at the third, sixth, and twelfth internship months, and two weeks after the internship ended. RESULTS: The baseline prevalence of phantom vibration was 78.1%, which increased to 95.9% and 93.2% in the third and sixth internship months. The prevalence returned to 80.8% at the twelfth month and decreased to 50.0% 2 weeks after the internship ended. The baseline prevalence of phantom ringing was 27.4%, which increased to 84.9%, 87.7%, and 86.3% in the third, sixth, and twelfth internship months, respectively. This returned to 54.2% two weeks after the internship ended. The anxiety and depression scores also increased during the internship, and returned to baseline two weeks after the internship. There was no significant correlation between phantom vibration/ringing and symptoms of anxiety or depression. The incidence of both phantom vibration and ringing syndromes significantly increased during the internship, and subsequent recovery. CONCLUSION: This study suggests that phantom vibration and ringing might be entities that are independent of anxiety or depression during evaluation of stress-associated experiences during medical internships.

  19. Vibration behavior of the artificial barrier system

    Energy Technology Data Exchange (ETDEWEB)

    Mikoshiba, Tadashi; Ogawa, Nobuyuki; Nakamura, Izuru [National Research Inst. for Earth sceince and Disaster Prevention (Japan)

    2000-02-01

    This study aims at production of a mimic specimen of artificial barrier, experimental elucidation of influence of seismic motion due to a vibration experiment on the artificial barrier system, and establishment of an evaluating method on its long-term behavior. The study has been carried out under a cooperative study of the National Research Institute for Earth Science and Disaster Prevention and the Japan Nuclear Cycle Development Institute. In 1998 fiscal year, an artificial barrier specimen initiated by crosscut road was produced, and their random wave and actual seismic wave vibrations were carried out to acquire their fundamental data. As a result of the both vibrations, it was found that in a Case 2 specimen of which buffer material was swelled by poured water, the material was integrated with a mimic over-pack to vibrate under judgement of eigen-frequency, maximum acceleration ratio, and so forth on the test results. And, in a Case 1 specimen, it was thought that the mimic over-pack showed an extreme non-linear performance (soft spring) because of reducing eigen-frequency with increase of its vibration level. (G.K.)

  20. Vibration behavior of the artificial barrier system

    International Nuclear Information System (INIS)

    Mikoshiba, Tadashi; Ogawa, Nobuyuki; Nakamura, Izuru

    2000-01-01

    This study aims at production of a mimic specimen of artificial barrier, experimental elucidation of influence of seismic motion due to a vibration experiment on the artificial barrier system, and establishment of an evaluating method on its long-term behavior. The study has been carried out under a cooperative study of the National Research Institute for Earth Science and Disaster Prevention and the Japan Nuclear Cycle Development Institute. In 1998 fiscal year, an artificial barrier specimen initiated by crosscut road was produced, and their random wave and actual seismic wave vibrations were carried out to acquire their fundamental data. As a result of the both vibrations, it was found that in a Case 2 specimen of which buffer material was swelled by poured water, the material was integrated with a mimic over-pack to vibrate under judgement of eigen-frequency, maximum acceleration ratio, and so forth on the test results. And, in a Case 1 specimen, it was thought that the mimic over-pack showed an extreme non-linear performance (soft spring) because of reducing eigen-frequency with increase of its vibration level. (G.K.)

  1. A velocity-amplified electromagnetic energy harvester for small amplitude vibration

    Science.gov (United States)

    Klein, J.; Zuo, L.

    2017-09-01

    Dedicated, self-powered wireless sensors are widely being studied for use throughout many industries to monitor everyday operations, maintain safety, and report performance characteristics. To enable sensors to power themselves, harvesting energy from machine vibration has been studied, however, its overall effectiveness can be hampered due to small vibration amplitudes and thus limited harvestable energy density. This paper addresses the issue by proposing a novel vibration energy harvester architecture in which a compliant mechanism and proof mass system is used to amplify the vibrational velocity of machine vibration for a linear electromagnetic generator. A prototype has been fabricated and experimentally characterized to verify its effectiveness. When operating at its natural frequency in a low base amplitude, 0.001 inch (25.4 μm) at 19.4 Hz, during lab tests, the harvester has been shown to produce up to 0.91 V AC open voltage, and a maximum power of 2 mW, amplifying the relative proof mass velocity by approximately 5.4 times. This method of locally increasing the machine vibrational velocity has been shown to be a viable option for increasing the potential power output of an energy harvester. In addition, a mathematical model is created based on pseudo-rigid-body dynamics and the analysis matches closely with experiments.

  2. Factors affecting perception thresholds of vertical whole-body vibration in recumbent subjects: Gender and age of subjects, and vibration duration

    Science.gov (United States)

    Matsumoto, Y.; Maeda, S.; Iwane, Y.; Iwata, Y.

    2011-04-01

    Some factors that may affect human perception thresholds of the vertical whole-body vibrations were investigated in two laboratory experiments with recumbent subjects. In the first experiment, the effects of gender and age of subjects on perception were investigated with three groups of 12 subjects, i.e., young males, young females and old males. For continuous sinusoidal vibrations at 2, 4, 8, 16, 31.5 and 63 Hz, there were no significant differences in the perception thresholds between male and female subjects, while the thresholds of young subjects tended to be significantly lower than the thresholds of old subjects. In the second experiment, the effect of vibration duration was investigated by using sinusoidal vibrations, at the same frequencies as above, modulated by the Hanning windows with different lengths (i.e., 0.5, 1.0, 2.0 and 4.0 s) for 12 subjects. It was found that the peak acceleration at the threshold tended to decrease with increasing duration of vibration. The perception thresholds were also evaluated by the running root-mean-square (rms) acceleration and the fourth power acceleration method defined in the current standards. The differences in the threshold of the transient vibrations for different durations were less with the fourth power acceleration method. Additionally, the effect of the integration time on the threshold was investigated for the running rms acceleration and the fourth power acceleration. It was found that the integration time that yielded less differences in the threshold of vibrations for different durations depended on the frequency of vibration.

  3. Ship Vibrations

    DEFF Research Database (Denmark)

    Sørensen, Herman

    1997-01-01

    Methods for calculating natural frequencies for ship hulls and for plates and panels.Evaluation of the risk for inconvenient vibrations on board......Methods for calculating natural frequencies for ship hulls and for plates and panels.Evaluation of the risk for inconvenient vibrations on board...

  4. Effects of Noise and Vibration on the Solid to Liquid Fluidization Transition in Small Dense Granular Systems Under Shear

    Science.gov (United States)

    Melhus, Martin Frederic

    2011-07-01

    Granular materials exhibit bulk properties that are distinct from conventional solids, liq- uids, and gases, due to the dissipative nature of the inter-granular forces. Understanding the fundamentals of granular materials draws upon and gives insight into many fields at the current frontiers of physics, such as plasticity of solids, fracture and friction, com- plex systems such as colloids, foams and suspensions, and a variety of biological systems. Particulate flows are widespread in geophysics, and are also essential to many industries. Despite the importance of these phenomena, we lack a theoretical model that explains most behaviors of granular materials. Since granular assemblies are highly dissipative, they are often far from mechanical equilibrium, making most classical analyses inappli- cable. A theory for dilute granular systems exists, but for dense granular systems (by far the majority of granular systems in the real world) no comparable theory is accepted. We approach this problem by examining the fluidization, or transition from solid to liquid, in dense granular systems. In this study, the separate effects of random noise and vibration on the static to flowing transition of a dense granular assembly under planar shear is studied numerically using soft contact particle dynamics simulations in two dimensions. We focus on small systems in a thin planar Couette cell, examining the bistable region while increasing shear, with varying amounts of random noise or vibration, and determine the statistics of the shear required for the onset of flow. We find that the applied power is the key parameter in determining the magnitude of the effects of the noise or vibration, with vibration frequency also having an influence. Similarities and differences between noise and vibration are determined, and the results compare favorably with a two phase model for dense granular flow.

  5. Large electron transfer rate effects from the Duschinsky mixing of vibrations

    DEFF Research Database (Denmark)

    Sando, Gerald M.; Spears, Kenneth G; Hupp, Joseph T

    2001-01-01

    vibrations are very important. The Duschinsky effect arises when two electronic states have vibrational normal mode coordinate systems that are rotated and translated relative to each other. We use a conventional quantum rate model for ET, and the examples include 6-8 vibrations, where two vibrational modes...... are mixed with different amounts of coordinate rotation. The multidimensional Franck-Condon factors (FCF) are computed with standard algorithms and recently developed recursion relations. When displaced, totally symmetric modes are involved, rates with Duschinsky mixing can increase several orders...

  6. The differential effects of increasing frequency and magnitude of extreme events on coral populations.

    Science.gov (United States)

    Fabina, Nicholas S; Baskett, Marissa L; Gross, Kevin

    2015-09-01

    Extreme events, which have profound ecological consequences, are changing in both frequency and magnitude with climate change. Because extreme temperatures induce coral bleaching, we can explore the relative impacts of changes in frequency and magnitude of high temperature events on coral reefs. Here, we combined climate projections and a dynamic population model to determine how changing bleaching regimes influence coral persistence. We additionally explored how coral traits and competition with macroalgae mediate changes in bleaching regimes. Our results predict that severe bleaching events reduce coral persistence more than frequent bleaching. Corals with low adult mortality and high growth rates are successful when bleaching is mild, but bleaching resistance is necessary to persist when bleaching is severe, regardless of frequency. The existence of macroalgae-dominated stable states reduces coral persistence and changes the relative importance of coral traits. Building on previous studies, our results predict that management efforts may need to prioritize protection of "weaker" corals with high adult mortality when bleaching is mild, and protection of "stronger" corals with high bleaching resistance when bleaching is severe. In summary, future reef projections and conservation targets depend on both local bleaching regimes and biodiversity.

  7. Evaluation of vibration and vibration fatigue life for small bore pipe in nuclear power plants

    International Nuclear Information System (INIS)

    Wang Zhaoxi; Xue Fei; Gong Mingxiang; Ti Wenxin; Lin Lei; Liu Peng

    2011-01-01

    The assessment method of the steady state vibration and vibration fatigue life of the small bore pipe in the supporting system of the nuclear power plants is proposed according to the ASME-OM3 and EDF evaluation methods. The GGR supporting pipe system vibration is evaluated with this method. The evaluation process includes the filtration of inborn sensitivity, visual inspection, vibration tests, allowable vibration effective velocity calculation and vibration stress calculation. With the allowable vibration effective velocity calculated and the vibration velocity calculated according to the acceleration data tested, the filtrations are performed. The vibration stress at the welding coat is calculated with the spectrum method and compared with the allowable value. The response of the stress is calculated with the transient dynamic method, with which the fatigue life is evaluated with the Miners linear accumulation model. The vibration stress calculated with the spectrum method exceeds the allowable value, while the fatigue life calculated from the transient dynamic method is larger than the designed life with a big safety margin. (authors)

  8. Input Shaping to Reduce Solar Array Structural Vibrations

    Science.gov (United States)

    Doherty, Michael J.; Tolson, Robert J.

    1998-01-01

    Structural vibrations induced by actuators can be minimized using input shaping. Input shaping is a feedforward method in which actuator commands are convolved with shaping functions to yield a shaped set of commands. These commands are designed to perform the maneuver while minimizing the residual structural vibration. In this report, input shaping is extended to stepper motor actuators. As a demonstration, an input-shaping technique based on pole-zero cancellation was used to modify the Solar Array Drive Assembly (SADA) actuator commands for the Lewis satellite. A series of impulses were calculated as the ideal SADA output for vibration control. These impulses were then discretized for use by the SADA stepper motor actuator and simulated actuator outputs were used to calculate the structural response. The effectiveness of input shaping is limited by the accuracy of the knowledge of the modal frequencies. Assuming perfect knowledge resulted in significant vibration reduction. Errors of 10% in the modal frequencies caused notably higher levels of vibration. Controller robustness was improved by incorporating additional zeros in the shaping function. The additional zeros did not require increased performance from the actuator. Despite the identification errors, the resulting feedforward controller reduced residual vibrations to the level of the exactly modeled input shaper and well below the baseline cases. These results could be easily applied to many other vibration-sensitive applications involving stepper motor actuators.

  9. Moment Magnitudes and Local Magnitudes for Small Earthquakes: Implications for Ground-Motion Prediction and b-values

    Science.gov (United States)

    Baltay, A.; Hanks, T. C.; Vernon, F.

    2016-12-01

    We illustrate two essential consequences of the systematic difference between moment magnitude and local magnitude for small earthquakes, illuminating the underlying earthquake physics. Moment magnitude, M 2/3 log M0, is uniformly valid for all earthquake sizes [Hanks and Kanamori, 1979]. However, the relationship between local magnitude ML and moment is itself magnitude dependent. For moderate events, 3> fmax. Just as importantly, if this relation is overlooked, prediction of large-magnitude ground motion from small earthquakes will be misguided. We also consider the effect of this magnitude scale difference on b-value. The oft-cited b-value of 1 should hold for small magnitudes, given M. Use of ML necessitates b=2/3 for the same data set; use of mixed, or unknown, magnitudes complicates the matter further. This is of particular import when estimating the rate of large earthquakes when one has limited data on their recurrence, as is the case for induced earthquakes in the central US.

  10. Right idea, wrong magnitude system.

    Science.gov (United States)

    Lourenco, Stella F; Aulet, Lauren S; Ayzenberg, Vladislav; Cheung, Chi-Ngai; Holmes, Kevin J

    2017-01-01

    Leibovich et al. claim that number representations are non-existent early in life and that the associations between number and continuous magnitudes reside in stimulus confounds. We challenge both claims - positing, instead, that number is represented independently of continuous magnitudes already in infancy, but is nonetheless more deeply connected to other magnitudes through adulthood than acknowledged by the "sense of magnitude" theory.

  11. Historical revision of the exposure magnitude and the dosimetric magnitudes used in radiological protection; Revision historica de la magnitud exposicion y las magnitudes dosimetricas empleadas en proteccion radiologica

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez J, F. [UNAM, Facultad de Ciencias, Ciudad Universitaria, 04510 Mexico D. F. (Mexico); Alvarez R, J. T., E-mail: trinidad.alvarez@inin.gob.mx [ININ, Departamento de Metrologia de Radiaciones Ionizantes, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2014-10-15

    In this work a historical revision of the exposure magnitude development and their roentgen unit (1905 - 2011) is made, noting that it had their origin in the electric methods for the detection of the ionizing radiation in the period of 1895 at 1937. However, the ionization is not who better characterizes the physical, chemical and biological effects of the ionizing radiations, but is the energy deposited by this radiation in the interest bodies, which led historically to the development of dosimetric magnitudes in energy terms like they are: the absorbed dose D (1950), the kerma K (1958) and the equivalent dose H (1962). These dosimetric magnitudes culminated with the definition of the effective equivalent dose or effective dose which is not measurable and should be considered with the operative magnitudes ICRU: H environmental equivalent dose and/or H directional equivalent dose, which can be determined by means of a conversion coefficient that is applied to the exposure, kerma in air, fluence, etc. (Author)

  12. Off-axis Modal Active Vibration Control Of Rotational Vibrations

    NARCIS (Netherlands)

    Babakhani, B.; de Vries, Theodorus J.A.; van Amerongen, J.

    Collocated active vibration control is an effective and robustly stable way of adding damping to the performance limiting vibrations of a plant. Besides the physical parameters of the Active Damping Unit (ADU) containing the collocated actuator and sensor, its location with respect to the

  13. Vibration analysis of the synchronous motor of a propane compressor

    Energy Technology Data Exchange (ETDEWEB)

    Nogueira, D.; Rangel Junior, J. de S. [Petroleo Brasileiro S.A. - PETROBRAS, Rio de Janeiro, RJ (Brazil)], Emails: diananogueira@petrobras.com.br, joilson_jr@petrobras.com.br; Moreira, R.G. [Petroleo Brasileiro S.A. - PETROBRAS, Cabiunas, RJ (Brazil)], E-mail: ricgmoreira@petrobras.com.br

    2010-07-01

    This paper aims at describing the Analysis of a synchronous electric motor which presented high vibration levels (shaft displacement and bearing housing vibration) during the commissioning process, as well as propose the best practices for the solution of vibration problems in similar situations. This motor belongs to the propane centrifugal compressor installed at a Gas Compression Station. The methodology used in this study conducted an investigation of the problems presented in the motor through the execution of many types of tests and the analysis of the results. The main evaluations were performed, such as the vibration analysis and the rotor dynamic analysis. The electric motor was shipped back to the manufacturer's shop, where the manufacturer made certain modifications to the motor structure so as to improve the structure stiffness, such as the improvement of the support and the increase of the thickness of the structural plates. In addition to that, the dynamic balancing of the rotating set was checked. Finally, the excitation at a critical speed close to the rated speed was found after Rotor Dynamics Analysis was performed again, because of the increase in bearing clearances. The bearing shells were replaced so as to increase the separation margin between these frequencies. In order to verify the final condition of the motor, the manufacturer repeated the standard tests - FAT (Factory Acceptance Tests) - according to internal procedure and international standards. As a result of this work, it was possible to conclude that there was a significant increase in the vibration levels due to unbalance conditions. It was also possible to conclude that there are close relationships between high vibration levels and unbalance conditions, as well as between high vibration levels and the stiffness of the system and its support. Certain points of attention related to the manufacturing process of the motor compressor are described at the end of this paper, based

  14. Vibration insensitive interferometry

    Science.gov (United States)

    Millerd, James; Brock, Neal; Hayes, John; Kimbrough, Brad; North-Morris, Michael; Wyant, James C.

    2017-11-01

    The largest limitation of phase-shifting interferometry for optical testing is the sensitivity to the environment, both vibration and air turbulence. An interferometer using temporal phase-shifting is very sensitive to vibration because the various phase shifted frames of interferometric data are taken at different times and vibration causes the phase shifts between the data frames to be different from what is desired. Vibration effects can be reduced by taking all the phase shifted frames simultaneously and turbulence effects can be reduced by averaging many measurements. There are several techniques for simultaneously obtaining several phase-shifted interferograms and this paper will discuss two such techniques: 1) Simultaneous phase-shifting interferometry on a single detector array (PhaseCam) and 2) Micropolarizer phase-shifting array. The application of these techniques for the testing of large optical components, measurement of vibrational modes, the phasing of segmented optical components, and the measurement of deformations of large diffuse structures is described.

  15. Flow-Induced Vibration of Circular Cylindrical Structures

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Shoei-Sheng [Argonne National Lab. (ANL), Argonne, IL (United States). Components Technology Division

    1985-06-01

    of heat exchanger tube banks are typical examples. Recently, flow-induced vibration has been studied extensively for several reasons. First, with the use of high-strength materials, structures become more slender and more susceptible to vibration. Second, the development of advanced nuclear power reactors requires high-velocity fluid flowing through components, which can cause detrimental vibrations. Third, the dynamic interaction of structure and fluid is one of the most fascinating problems in engineering mechanics. The increasing study is evidenced by many conferences directed to this subject and numerous publications, including reviews and books. In a broad sense, flow-induced vibration encompasses all topics on the dynamic responses of structures submerged in fluid, containing fluid, or subjected to external flow. In this report, discussions focus on circular cylindrical structures with emphasis on nuclear reactor system components.

  16. Study on vibration behaviors of engineered barrier system

    International Nuclear Information System (INIS)

    Mikoshiba, Tadashi; Ogawa, Nobuyuki; Minowa, Chikahiro

    1998-01-01

    High-level radioactive wastes have been buried underground by packing into a strong sealed container made from carbon steel (over-pack) with buffer material (bentonite). The engineered barrier system constructed with an overpack and buffer materials must be resistant to earthquakes as well as invasion of groundwater for a long period. Therefore, seismic evaluation of barrier system for earthquakes is indispensable especially in Japan to keep its structural safety. Here, the effects of earthquake vibration on the engineered barrier systems were investigated experimentally. Random-wave vibration and practical seismic wave one were loaded for the systems and fundamental data were obtained. For the former vibration the response characteristics of both engineered barrier models constructed with overpack and bentonite were non-linear. For the latter one, the stress in bentonite was increased in proportion to the vibration level. (M.N.)

  17. Do vibrationally excited OH molecules affect middle and upper atmospheric chemistry?

    Directory of Open Access Journals (Sweden)

    T. von Clarmann

    2010-10-01

    oxygen sink. The OH sink is overestimated by up to 10%. After a solar proton event, when upper atmospheric OH can be enhanced by an order of magnitude, the excess relative odd oxygen sink by consideration of vibrational excitation in the reaction of OH(v=0...9+O3 is estimated at up to 0.2%, and the OH sink by OH(v=0...9+O can be reduced by 12% in the thermosphere by vibrational excitation.

  18. The moment magnitude Mw and the energy magnitude Me: common roots and differences

    OpenAIRE

    2010-01-01

    Abstract Starting from the classical empirical magnitude-energy relationships, in this article, the derivation of the modern scales for moment magnitude Mw and energy magnitude Me is outlined and critically discussed. The formulas for Mw and Me calculation are presented in a way that reveals, besides the contributions of the physically defined measurement parameters seismic moment M0 and radiated seismic energy ES, the role of the constants in the classical Gutenberg?Richter magnit...

  19. A Novel Ropes-DrivenWideband Piezoelectric Vibration Energy Harvester

    Directory of Open Access Journals (Sweden)

    Jinhui Zhang

    2016-12-01

    Full Text Available This paper presents a novel piezoelectric vibration energy harvester (PVEH in which a high-frequency generating beam (HFGB is driven by an array of low-frequency driving beams (LFDBs using ropes. Two mechanisms based on frequency upconversion and multimodal harvesting work together to broaden the frequency bandwidth of the proposed vibration energy harvester (VEH. The experimental results show that the output power of generating beam (GB remains unchanged with the increasing number of driving beams (DBs, compared with the traditional arrays of beams vibration energy harvester (AB-VEH, and the output power and bandwidth behavior can be adjusted by parameters such as acceleration, rope margin, and stiffness of LFDBs, which shows the potential to achieve unlimited wideband vibration energy-harvesting for a variable environment.

  20. Energy expenditure and substrate utilization during whole body vibration

    Directory of Open Access Journals (Sweden)

    Ravena Santos Raulino

    2015-04-01

    Full Text Available INTRODUCTION AND OBJECTIVE: the aim of this study was to investigate whether the addition of vibration during interval training would raise oxygen consumption VO2 to the extent necessary for weight management and to evaluate the influence of the intensity of the vibratory stimulus for prescribing the exercise program in question. METHODS: VO2, measured breath by breath, was evaluated at rest and during the four experimental conditions to determine energy expenditure, metabolic equivalent MET, respiratory exchange ratio RER, % Kcal from fat, and rate of fat oxidation. Eight young sedentary females age 22±1 years, height 163.88± 7.62 cm, body mass 58.35±10.96 kg, and VO2 max 32.75±3.55 mLO2.Kg-1.min-1 performed interval training duration = 13.3 min to the upper and lower limbs both with vibration 35 Hz and 2 mm, 40 Hz and 2 mm, 45 Hz and 2 mm and without vibration. The experimental conditions were randomized and balanced at an interval of 48 hours. RESULTS: the addition of vibration to exercise at 45 Hz and 2 mm resulted in an additional increase of 17.77±12.38% of VO2 compared with exercise without vibration. However, this increase did not change the fat oxidation rate p=0.42 because intensity of exercise 29.1±3.3 %VO2max, 2.7 MET was classified as mild to young subjects. CONCLUSION: despite the influence of vibration on VO2 during exercise, the increase was insufficient to reduce body weight and did not reach the minimum recommendation of exercise prescription for weight management for the studied population.

  1. Emergency Gate Vibration of the Pipe-Turbine Model

    Directory of Open Access Journals (Sweden)

    Andrej Predin

    2000-01-01

    Full Text Available The vibration behavior of an emergency gate situated on a horizontal-shaft Kaplan turbine is studied. The analysis and transfer of the dynamic movements of the gate are quite complex. In particular the behavior is examined of the emergency gate for the case when the power unit is disconnected from the system or there is a breakdown of the guide vane system at the moment when the maximal head and capacity are achieved. Experimental-numerical methods both in the time domain and in the frequency domain are employed. Natural vibrations characterize a first zone, corresponding to relatively small gate openings. As the gate opening increases, the vibration behavior of the gate becomes increasingly dependent on the swirl pulsations in the draft tube of the turbine. Finally, the data transfer from the model to the prototype by use of the dynamic similitude law is discussed.

  2. Structure from Dynamics: Vibrational Dynamics of Interfacial Water as a Probe of Aqueous Heterogeneity

    Science.gov (United States)

    2018-01-01

    The structural heterogeneity of water at various interfaces can be revealed by time-resolved sum-frequency generation spectroscopy. The vibrational dynamics of the O–H stretch vibration of interfacial water can reflect structural variations. Specifically, the vibrational lifetime is typically found to increase with increasing frequency of the O–H stretch vibration, which can report on the hydrogen-bonding heterogeneity of water. We compare and contrast vibrational dynamics of water in contact with various surfaces, including vapor, biomolecules, and solid interfaces. The results reveal that variations in the vibrational lifetime with vibrational frequency are very typical, and can frequently be accounted for by the bulk-like heterogeneous response of interfacial water. Specific interfaces exist, however, for which the behavior is less straightforward. These insights into the heterogeneity of interfacial water thus obtained contribute to a better understanding of complex phenomena taking place at aqueous interfaces, such as photocatalytic reactions and protein folding. PMID:29490138

  3. High-Power Piezoelectric Vibration Characteristics of Textured SrBi2Nb2O9 Ceramics

    Science.gov (United States)

    Kawada, Shinichiro; Ogawa, Hirozumi; Kimura, Masahiko; Shiratsuyu, Kosuke; Niimi, Hideaki

    2006-09-01

    The high-power piezoelectric vibration characteristics of textured SrBi2Nb2O9 (SBN) ceramics, that is bismuth-layer-structured ferroelectrics, were studied in the longitudinal mode (33-mode) by constant current driving method and compared with those of ordinary randomly oriented SBN and widely used Pb(Ti,Zr)O3 (PZT) ceramics. In the case of textured SBN ceramics, resonant properties are stable up to a vibration velocity of 2.6 m/s. Vibration velocity at resonant frequency increases proportionally with the applied electric field, and resonant frequency is almost constant in high-vibration-velocity driving. On the other hand, in the case of randomly oriented SBN and PZT ceramics, the increase in vibration velocity is not proportional to the applied high electric field, and resonant frequency decreases with increasing vibration velocity. The resonant sharpness Q of textured SBN ceramics is about 2000, even at a vibration velocity of 2.6 m/s. Therefore, textured SBN ceramics are good candidates for high-power piezoelectric applications.

  4. Relationships for electron-vibrational coupling in conjugated π organic systems

    Science.gov (United States)

    O'Neill, L.; Lynch, P.; McNamara, M.; Byrne, H. J.

    2005-06-01

    A series of π conjugated systems were studied by absorption, photoluminescence and vibrational spectroscopy. As is common for these systems, a linear relationship between the positioning of the absorption and photoluminescence maxima plotted against inverse conjugation length is observed. The relationships are in good agreement with the simple particle in a box method, one of the earliest descriptions of the properties of one-dimensional organic molecules. In addition to the electronic transition energies, it was observed that the Stokes shift also exhibited a well-defined relationship with increasing conjugation length, implying a correlation between the electron-vibrational coupling and chain length. This correlation is further examined using Raman spectroscopy, whereby the integrated Raman scattering is seen to behave superlinearly with chain length. There is a clear indication that the vibrational activity and thus nonradiative decay processes are controllable through molecular structure. The correlations between the Stokes energies and the vibrational structure are also observed in a selection of PPV based polymers and a clear trend of increasing luminescence efficiency with decreasing vibrational activity and Stokes shift is observable. The implications of such structure property relationships in terms of materials design are discussed.

  5. Experimental Investigation on the Material Removal of the Ultrasonic Vibration Assisted Abrasive Water Jet Machining Ceramics

    Directory of Open Access Journals (Sweden)

    Tao Wang

    2017-01-01

    Full Text Available The ultrasonic vibration activated in the abrasive water jet nozzle is used to enhance the capability of the abrasive water jet machinery. The experiment devices of the ultrasonic vibration assisted abrasive water jet are established; they are composed of the ultrasonic vibration producing device, the abrasive supplying device, the abrasive water jet nozzle, the water jet intensifier pump, and so on. And the effect of process parameters such as the vibration amplitude, the system working pressure, the stand-off, and the abrasive diameter on the ceramics material removal is studied. The experimental result indicates that the depth and the volume removal are increased when the ultrasonic vibration is added on abrasive water jet. With the increase of vibration amplitude, the depth and the volume of material removal are also increased. The other parameters of the ultrasonic vibration assisted abrasive water jet also have an important role in the improvement of ceramic material erosion efficiency.

  6. Current pathophysiological views on vibration-induced Raynaud's phenomenon.

    Science.gov (United States)

    Stoyneva, Z; Lyapina, M; Tzvetkov, D; Vodenicharov, E

    2003-03-01

    This review attempts to summarize and discuss contemporary pathogenetic views on vibration-induced Raynaud's phenomenon assuming its multifactorial etiology. An increase in central and peripheral sympathetic nervous activity is discussed based on different physiological indicators of autonomic dysfunction and sympathetic hyperactivity. Local acral vasodysregulation is considered. Receptor and nerve endings dysfunction presented with predominance of alpha(2)-receptor function in the digital arteries and neuronal loss in those digital cutaneous perivascular nerves containing calcitonin gene-related peptide result in deficiency of endogenous release of this powerful vasodilator. Endothelial damage and dysregulation induced by vibration and increased shear stresses are demonstrated by the elevated plasma level of thrombomodulin and of von Willebrand factor and reduced endothelium-dependent vasodilator responses. The concentrations of endothelin-1 are high, the highest being in most advanced stages. Decreased plasma thiol level, indicating increased production and activity of free radicals, contribute to vasospastic paroxysms in vibration white finger patients. Dysbalance of local vasoactive factors with opposing effects on vascular smooth muscle like endothelin and nitric oxide, endothelin and calcitonin gene-related peptide, nitric oxide and superoxide anion are discussed. Disturbed smooth muscle response is supposed. Changes in hemostasis, fibrinolysis and hemorrheology, activation of blood cells with erythrocyte hyperaggregation and red cell hypodeformability, platelet aggregation with increased release of vasoconstricting thromboxane A(2) and serotonin as well as leukocyte activation, entrapment within capillaries and post-capillary venules and increased reactive oxygen species and lysosomal lytic enzymes release might also contribute to digital vasospasms and tissue damage. Elevated soluble intercellular adhesion molecule-1 levels involved in the adherence of

  7. Vibration-damping structure for reactor building

    International Nuclear Information System (INIS)

    Kuno, Toshio; Iba, Chikara; Tanaka, Hideki; Kageyama, Mitsuru

    1998-01-01

    In a damping structure of a reactor building, an inner concrete body and a reactor container are connected by way of a vibration absorbing member. As the vibration absorbing member, springs or dampers are used. The inner concrete body and the reactor container each having weight and inherent frequency different from each other are opposed displaceably by way of the vibration absorbing member thereby enabling to reduce seismic input and reduce shearing force at least at leg portions. Accordingly, seismic loads are reduced to increase the grounding rate of the base thereby enabling to satisfy an allowable value. Therefore, it is not necessary to strengthen the inner concrete body and the reactor container excessively, the amount of reinforcing rods can be reduced, and the amount of a portion of the base buried to the ground can be reduced thereby enabling to constitute the reactor building easily. (N.H.)

  8. Nonlinear Response of Vibrational Conveyers with Nonideal Vibration Exciter: Superharmonic and Subharmonic Resonance

    Directory of Open Access Journals (Sweden)

    H. Bayıroğlu

    2012-01-01

    Full Text Available Vibrational conveyers with a centrifugal vibration exciter transmit their load based on the jumping method. Common unbalanced-mass driver oscillates the trough. The motion is strictly related to the vibrational parameters. The transition over resonance of a vibratory system, excited by rotating unbalances, is important in terms of the maximum vibrational amplitude produced and the power demand on the drive for the crossover. The mechanical system is driven by the DC motor. In this study, the working ranges of oscillating shaking conveyers with nonideal vibration exciter have been analyzed analytically for superharmonic and subharmonic resonances by the method of multiple scales and numerically. The analytical results obtained in this study agree well with the numerical results.

  9. Human annoyance, acceptability and concern as responses to vibration from the construction of Light Rapid Transit lines in residential environments

    Energy Technology Data Exchange (ETDEWEB)

    Wong-McSweeney, D., E-mail: D.B.C.WongMcSweeney@salford.ac.uk [Acoustics Research Centre, University of Salford, Salford M5 4TW (United Kingdom); Woodcock, J.S.; Peris, E.; Waddington, D.C.; Moorhouse, A.T. [Acoustics Research Centre, University of Salford, Salford M5 4TW (United Kingdom); Redel-Macías, M.D. [Dep. Rural Engineering Campus de Rabanales, University of Córdoba, Córdoba (Spain)

    2016-10-15

    The aim of this paper is to investigate the use of different self-reported measures for assessing the human response to environmental vibration from the construction of an urban LRT (Light Rapid Transit) system. The human response to environmental stressors such as vibration and noise is often expressed in terms of exposure–response relationships that describe annoyance as a function of the magnitude of the vibration. These relationships are often the basis of noise and vibration policy and the setting of limit values. This paper examines measures other than annoyance by expressing exposure–response relationships for vibration in terms of self-reported concern about property damage and acceptability. The exposure–response relationships for concern about property damage and for acceptability are then compared with those for annoyance. It is shown that concern about property damage occurs at vibration levels well below those where there is any risk of damage. Earlier research indicated that concern for damage is an important moderator of the annoyance induced. Acceptability, on the other hand, might be influenced by both annoyance and concern, as well as by other considerations. It is concluded that exposure–response relationships expressing acceptability as a function of vibration exposure could usefully complement existing relationships for annoyance in future policy decisions regarding environmental vibration. The results presented in this paper are derived from data collected through a socio-vibration survey (N = 321) conducted for the construction of an urban LRT in the United Kingdom. - Highlights: • The human response to construction vibration is assessed in residential environments. • Exposure–response relationships are generated based on survey and semi-empirical vibration estimation. • Annoyance, concern and acceptability are compared as response measures. • Concern and acceptability are viable measures complementing annoyance.

  10. Moment magnitude scale

    Energy Technology Data Exchange (ETDEWEB)

    Hanks, T.C.; Kanamori, H.

    1979-05-10

    The nearly conincident forms of the relations between seismic moment M/sub o/ and the magnitudes M/sub L/, M/sub s/, and M/sub w/ imply a moment magnitude scale M=2/3 log M/sub o/-10.7 which is uniformly valid for 3< or approx. =M/sub L/< or approx. = 7, 5 < or approx. =M/sub s/< or approx. =7 1/2 and M/sub w/> or approx. = 7 1/2.

  11. Nanoscale piezoelectric vibration energy harvester design

    Science.gov (United States)

    Foruzande, Hamid Reza; Hajnayeb, Ali; Yaghootian, Amin

    2017-09-01

    Development of new nanoscale devices has increased the demand for new types of small-scale energy resources such as ambient vibrations energy harvesters. Among the vibration energy harvesters, piezoelectric energy harvesters (PEHs) can be easily miniaturized and fabricated in micro and nano scales. This change in the dimensions of a PEH leads to a change in its governing equations of motion, and consequently, the predicted harvested energy comparing to a macroscale PEH. In this research, effects of small scale dimensions on the nonlinear vibration and harvested voltage of a nanoscale PEH is studied. The PEH is modeled as a cantilever piezoelectric bimorph nanobeam with a tip mass, using the Euler-Bernoulli beam theory in conjunction with Hamilton's principle. A harmonic base excitation is applied as a model of the ambient vibrations. The nonlocal elasticity theory is used to consider the size effects in the developed model. The derived equations of motion are discretized using the assumed-modes method and solved using the method of multiple scales. Sensitivity analysis for the effect of different parameters of the system in addition to size effects is conducted. The results show the significance of nonlocal elasticity theory in the prediction of system dynamic nonlinear behavior. It is also observed that neglecting the size effects results in lower estimates of the PEH vibration amplitudes. The results pave the way for designing new nanoscale sensors in addition to PEHs.

  12. Energy Dissipation from Vibrating Floor Slabs due to Human-Structure Interaction

    Directory of Open Access Journals (Sweden)

    James M.W. Brownjohn

    2001-01-01

    Full Text Available Lightweight pre-cast flooring systems using post-tensioning to increase strength but not stiffness are increasingly popular, and vibration serviceability problems tend to govern design of such floors where human occupants are increasingly concerned with vibrations. At the same time as inducing response, stationary human observers can also participate in the response as mitigating influence and it is clear that a human behaves as a highly effective damper, even when seated.

  13. Dissipation in vibrating superleak second sound transducers

    International Nuclear Information System (INIS)

    Giordano, N.

    1985-01-01

    We have performed an experimental study of the generation and detection of second sound in 4 He using vibrating superleak second sound transducers. At temperatures well below T/sub lambda/ and for low driving amplitudes, the magnitude of the generated second sound wave is proportional to the drive amplitude. However, near T/sub lambda/ and for high drive amplitudes this is no longer the case--instead, the second sound amplitude saturates. In this regime we also find that overtones of the drive frequency are generated. Our results suggest that this behavior is due to critical velocity effects in the pores of the superleak in the generator transducer. This type of measurement may prove to be a useful way in which to study critical velocity effects in confined geometries

  14. Vibration noise control in laser satellite communication

    Science.gov (United States)

    Saksonov, Avigdor; Shlomi, Arnon; Kopeika, Norman S.

    2001-08-01

    Laser satellite communication has become especially attractive in recent years. Because the laser beam width is narrow than in the RF or microwave range, the transmitted optical power may be significantly reduced. This leads to development of miniature communication systems with extremely low power consumption. On the other hand, the laser communication channel is very sensitive to vibrations of the optical platform. These vibrations cause angular noise in laser beam pointing, comparable to the laser beam width. As result, as significant portion of the optical power between transmitter and receiver is lost and the bit error rate is increased. Consequently, vibration noise control is a critical problem in laser satellite communication. The direction of the laser beam is corrected with a fast steering mirror (FSM). In this paper are presented two approaches for the FSM control. One is the feedback control that uses an LQG algorithm. The second is the direct feed- forward control when vibration noise is measured by three orthogonal accelerometers and drives directly the F SM. The performances of each approach are evaluated using MATLAB simulations.

  15. Direct observation of vibrational energy dispersal via methyl torsions.

    Science.gov (United States)

    Gardner, Adrian M; Tuttle, William D; Whalley, Laura E; Wright, Timothy G

    2018-02-28

    Explicit evidence for the role of methyl rotor levels in promoting energy dispersal is reported. A set of coupled zero-order vibration/vibration-torsion (vibtor) levels in the S 1 state of para -fluorotoluene ( p FT) are investigated. Two-dimensional laser-induced fluorescence (2D-LIF) and two-dimensional zero-kinetic-energy (2D-ZEKE) spectra are reported, and the assignment of the main features in both sets of spectra reveals that the methyl torsion is instrumental in providing a route for coupling between vibrational levels of different symmetry classes. We find that there is very localized, and selective, dissipation of energy via doorway states, and that, in addition to an increase in the density of states, a critical role of the methyl group is a relaxation of symmetry constraints compared to direct vibrational coupling.

  16. Experimental study on titanium wire drawing with ultrasonic vibration.

    Science.gov (United States)

    Liu, Shen; Shan, Xiaobiao; Guo, Kai; Yang, Yuancai; Xie, Tao

    2018-02-01

    Titanium and its alloys have been widely used in aerospace and biomedical industries, however, they are classified as difficult-to-machine materials. In this paper, ultrasonic vibration is imposed on the die to overcome the difficulties during conventional titanium wire drawing processes at the room temperature. Numerical simulations were performed to investigate the variation of axial stress within the contacting region and study the change of the drawing stress with several factors in terms of the longitudinal amplitude and frequency of the applied ultrasonic vibration, the diameter reduction ratio, and the drawing force. An experimental testing equipment was established to measure the drawing torque and rotational velocity of the coiler drum during the wire drawing process. The result indicates the drawing force increases with the growth of the drawing velocity and the reduction ratio, whether with or without vibrations. Application of either form of ultrasonic vibrations contributes to the further decrease of the drawing force, especially the longitudinal vibration with larger amplitude. SEM was employed to detect the surface morphology of the processed wires drawn under the three circumstances. The surface quality of the drawn wires with ultrasonic vibrations was apparently improved compared with those using conventional method. In addition, the longitudinal and torsional composite vibration was more effective for surface quality improvement than pure longitudinal vibration, however, at the cost of weakened drawing force reduction effect. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Conversion of Local and Surface-Wave Magnitudes to Moment Magnitude for Earthquakes in the Chinese Mainland

    Science.gov (United States)

    Li, X.; Gao, M.

    2017-12-01

    The magnitude of an earthquake is one of its basic parameters and is a measure of its scale. It plays a significant role in seismology and earthquake engineering research, particularly in the calculations of the seismic rate and b value in earthquake prediction and seismic hazard analysis. However, several current types of magnitudes used in seismology research, such as local magnitude (ML), surface wave magnitude (MS), and body-wave magnitude (MB), have a common limitation, which is the magnitude saturation phenomenon. Fortunately, the problem of magnitude saturation was solved by a formula for calculating the seismic moment magnitude (MW) based on the seismic moment, which describes the seismic source strength. Now the moment magnitude is very commonly used in seismology research. However, in China, the earthquake scale is primarily based on local and surface-wave magnitudes. In the present work, we studied the empirical relationships between moment magnitude (MW) and local magnitude (ML) as well as surface wave magnitude (MS) in the Chinese Mainland. The China Earthquake Networks Center (CENC) ML catalog, China Seismograph Network (CSN) MS catalog, ANSS Comprehensive Earthquake Catalog (ComCat), and Global Centroid Moment Tensor (GCMT) are adopted to regress the relationships using the orthogonal regression method. The obtained relationships are as follows: MW=0.64+0.87MS; MW=1.16+0.75ML. Therefore, in China, if the moment magnitude of an earthquake is not reported by any agency in the world, we can use the equations mentioned above for converting ML to MW and MS to MW. These relationships are very important, because they will allow the China earthquake catalogs to be used more effectively for seismic hazard analysis, earthquake prediction, and other seismology research. We also computed the relationships of and (where Mo is the seismic moment) by linear regression using the Global Centroid Moment Tensor. The obtained relationships are as follows: logMo=18

  18. Electronic and vibrational spectroscopy and vibrationally mediated photodissociation of V+(OCO).

    Science.gov (United States)

    Citir, Murat; Altinay, Gokhan; Metz, Ricardo B

    2006-04-20

    Electronic spectra of gas-phase V+(OCO) are measured in the near-infrared from 6050 to 7420 cm(-1) and in the visible from 15,500 to 16,560 cm(-1), using photofragment spectroscopy. The near-IR band is complex, with a 107 cm(-1) progression in the metal-ligand stretch. The visible band shows clearly resolved vibrational progressions in the metal-ligand stretch and rock, and in the OCO bend, as observed by Brucat and co-workers. A vibrational hot band gives the metal-ligand stretch frequency in the ground electronic state nu3'' = 210 cm(-1). The OCO antisymmetric stretch frequency in the ground electronic state (nu1'') is measured by using vibrationally mediated photodissociation. An IR laser vibrationally excites ions to nu1'' = 1. Vibrationally excited ions selectively dissociate following absorption of a second, visible photon at the nu1' = 1 CO2, due to interaction with the metal. Larger blue shifts observed for complexes with fewer ligands agree with trends seen for larger V+(OCO)n clusters.

  19. Vibration-Induced Errors in MEMS Tuning Fork Gyroscopes with Imbalance.

    Science.gov (United States)

    Fang, Xiang; Dong, Linxi; Zhao, Wen-Sheng; Yan, Haixia; Teh, Kwok Siong; Wang, Gaofeng

    2018-05-29

    This paper discusses the vibration-induced error in non-ideal MEMS tuning fork gyroscopes (TFGs). Ideal TFGs which are thought to be immune to vibrations do not exist, and imbalance between two gyros of TFGs is an inevitable phenomenon. Three types of fabrication imperfections (i.e., stiffness imbalance, mass imbalance, and damping imbalance) are studied, considering different imbalance radios. We focus on the coupling types of two gyros of TFGs in both drive and sense directions, and the vibration sensitivities of four TFG designs with imbalance are simulated and compared. It is found that non-ideal TFGs with two gyros coupled both in drive and sense directions (type CC TFGs) are the most insensitive to vibrations with frequencies close to the TFG operating frequencies. However, sense-axis vibrations with in-phase resonant frequencies of a coupled gyros system result in severe error outputs to TFGs with two gyros coupled in the sense direction, which is mainly attributed to the sense capacitance nonlinearity. With increasing stiffness coupled ratio of the coupled gyros system, the sensitivity to vibrations with operating frequencies is cut down, yet sensitivity to vibrations with in-phase frequencies is amplified.

  20. Experimental investigation of railway train-induced vibrations of surrounding ground and a nearby multi-story building

    Science.gov (United States)

    Xia, He; Chen, Jianguo; Wei, Pengbo; Xia, Chaoyi; de Roeck, G.; Degrande, G.

    2009-03-01

    In this paper, a field experiment was carried out to study train-induced environmental vibrations. During the field experiment, velocity responses were measured at different locations of a six-story masonry structure near the Beijing-Guangzhou Railway and along a small road adjacent to the building. The results show that the velocity response levels of the environmental ground and the building floors increase with train speed, and attenuate with the distance to the railway track. Heavier freight trains induce greater vibrations than lighter passenger trains. In the multi-story building, the lateral velocity levels increase monotonically with floor elevation, while the vertical ones increase with floor elevation in a fluctuating manner. The indoor floor vibrations are much lower than the outdoor ground vibrations. The lateral vibration of the building along the direction of weak structural stiffness is greater than along the direction with stronger stiffness. A larger room produces greater floor vibrations than the staircase at the same elevation, and the vibration at the center of a room is greater than at its corner. The vibrations of the building were compared with the Federal Transportation Railroad Administration (FTA) criteria for acceptable ground-borne vibrations expressed in terms of rms velocity levels in decibels. The results show that the train-induced building vibrations are serious, and some exceed the allowance given in relevant criterion.

  1. The vibrational signals that male fiddler crabs ( Uca lactea) use to attract females into their burrows

    Science.gov (United States)

    Takeshita, Fumio; Murai, Minoru

    2016-06-01

    In some fiddler crab species, males emit vibrations from their burrows to mate-searching females after they have attracted a female to the burrow entrance using a waving display. Although the vibrations are considered acoustic signals to induce mating, it has not been demonstrated whether the vibrations attract the females into the burrow and, consequently, influence females' mating decisions. We investigated the structures and patterns of the vibrations using a dummy female and demonstrated experimentally a female preference for male vibrations in Uca lactea in the field. The acoustic signals consisted of repetitions of pulses. The dominant frequency of the pulses decreased with male carapace width. The pulse length decreased slightly with an increasing number of vibrational repetitions, and the pulse interval increased with increasing repetitions. These factors imply that the vibrations convey information on male characteristics, such as body size and stamina. In the experiment on female mate choice, the females significantly preferred males with higher pulse repetition rates when they were positioned at the entrance of the burrow, indicating that the females use the male vibrational signals to decide whether to enter the burrow. However, females showed no preference for the vibrations once they were inside a burrow, i.e., whether they decided to copulate, suggesting that the vibrations do not independently affect a female's final decision of mate choice. The vibrations inside the burrow might influence a female's decision by interaction with other male traits such as the burrow structure.

  2. Moment Magnitude discussion in Austria

    Science.gov (United States)

    Weginger, Stefan; Jia, Yan; Hausmann, Helmut; Lenhardt, Wolfgang

    2017-04-01

    We implemented and tested the Moment Magnitude estimation „dbmw" from the University of Trieste in our Antelope near real-time System. It is used to get a fast Moment Magnitude solutions and Ground Motion Parameter (PGA, PGV, PSA 0.3, PSA 1.0 and PSA 3.0) to calculate Shake and Interactive maps. A Moment Magnitude Catalogue was generated and compared with the Austrian Earthquake Catalogue and all available Magnitude solution of the neighbouring agencies. Relations of Mw to Ml and Ground Motion to Intensity are presented.

  3. Advanced non-linear flow-induced vibration and fretting-wear analysis capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Toorani, M.; Pan, L.; Li, R.; Idvorian, N. [Babcock and Wilcox Canada Ltd., Cambridge, Ontario (Canada); Vincent, B.

    2009-07-01

    Fretting wear is a potentially significant degradation mechanism in nuclear steam generators and other shell and tube heat transfer equipment as well. This paper presents an overview of the recently developed code FIVDYNA which is used for the non-linear flow-induced vibration and fretting wear analysis for operating steam generators (OTSG and RSG) and shell-and-tube heat exchangers. FIVDYNA is a non-linear time-history Flow-Induced Vibration (FIV) analysis computer program that has been developed by Babcock and Wilcox Canada to advance the understanding of tube vibration and tube to tube-support interaction. In addition to the dynamic fluid induced forces the program takes into account other tube static forces due to axial and lateral tube preload and thermal interaction loads. The program is capable of predicting the location where the fretting wear is most likely to occur and its magnitude taking into account the support geometry including gaps. FIVDYNA uses the general purpose finite element computer code ABAQUS as its solver. Using ABAQUS gives the user the flexibility to add additional forces to the tube ranging from tube preloads and the support offsets to thermal loads. The forces currently being modeled in FIVDYNA are the random turbulence, steady drag force, fluid-elastic forces, support offset and pre-strain force (axial loads). This program models the vibration of tubes and calculates the structural dynamic characteristics, and interaction forces between the tube and the tube supports. These interaction forces are then used to calculate the work rate at the support and eventually the predicted depth of wear scar on the tube. A very good agreement is found with experiments and also other computer codes. (author)

  4. Risk of hearing loss among workers with vibration-induced white fingers.

    Science.gov (United States)

    Pettersson, Hans; Burström, Lage; Hagberg, Mats; Lundström, Ronnie; Nilsson, Tohr

    2014-12-01

    We examined the risk of hearing loss for workers who use hand-held vibrating tools with vibration-induced white fingers (VWF) compared to workers without VWF. Data on 184 participants from a 21-year cohort were gathered with questionnaires and measurements. The effects on hearing status of VWF, hand-arm vibration exposure, smoking habits, age and two-way interactions of these independent variables were examined with binary logistic regression. Analyses were made for the right hand and ear as well as for the hand with VWF and the ear with worse categorized hearing status. Workers with VWF in their right hand had an increased risk of hearing loss (odds ratio 2.2-2.3) in the right ear. Workers with VWF in any hand did not have any increased risk of hearing loss in the ear with worse hearing status. This study supports the hypothesis that VWF increases the risk of hearing loss among workers who use hand-held vibrating tools in a noisy environment. © 2014 Wiley Periodicals, Inc.

  5. Portable vibration exciter

    Science.gov (United States)

    Beecher, L. C.; Williams, F. T.

    1970-01-01

    Gas-driven vibration exciter produces a sinusoidal excitation function controllable in frequency and in amplitude. It allows direct vibration testing of components under normal loads, removing the possibility of component damage due to high static pressure.

  6. Kinetic model of vibrational relaxation in a humid-air pulsed corona discharge

    International Nuclear Information System (INIS)

    Komuro, Atsushi; Ono, Ryo; Oda, Tetsuji

    2010-01-01

    The effect of humidity on the vibrational relaxation of O 2 (v) and N 2 (v) in a humid-air pulsed corona discharge is studied using a kinetic model. We previously showed that humidity markedly increases the vibration-to-translation (V-T) rate of molecules in a humid-air pulsed corona discharge by measuring O 2 (v) density (Ono et al 2010 Plasma Sources Sci. Technol. 19 015009). In this paper, we numerically calculate the vibrational kinetics of O 2 , N 2 and H 2 O to study the reason behind the acceleration of V-T in the presence of humidity. The calculation closely reproduces the measured acceleration of V-T due to humidity, and shows that the increase in the V-T rate is caused by the fast vibration-to-vibration (V-V) processes of O 2 -H 2 O and N 2 -H 2 O and the subsequent rapid V-T process of H 2 O-H 2 O. In addition, it is shown that O atom density is also important in the vibrational kinetics owing to the rapid V-T process of O 2 -O.

  7. Bubble Size Distribution in a Vibrating Bubble Column

    Science.gov (United States)

    Mohagheghian, Shahrouz; Wilson, Trevor; Valenzuela, Bret; Hinds, Tyler; Moseni, Kevin; Elbing, Brian

    2016-11-01

    While vibrating bubble columns have increased the mass transfer between phases, a universal scaling law remains elusive. Attempts to predict mass transfer rates in large industrial scale applications by extrapolating laboratory scale models have failed. In a stationary bubble column, mass transfer is a function of phase interfacial area (PIA), while PIA is determined based on the bubble size distribution (BSD). On the other hand, BSD is influenced by the injection characteristics and liquid phase dynamics and properties. Vibration modifies the BSD by impacting the gas and gas-liquid dynamics. This work uses a vibrating cylindrical bubble column to investigate the effect of gas injection and vibration characteristics on the BSD. The bubble column has a 10 cm diameter and was filled with water to a depth of 90 cm above the tip of the orifice tube injector. BSD was measured using high-speed imaging to determine the projected area of individual bubbles, which the nominal bubble diameter was then calculated assuming spherical bubbles. The BSD dependence on the distance from the injector, injector design (1.6 and 0.8 mm ID), air flow rates (0.5 to 5 lit/min), and vibration conditions (stationary and vibration conditions varying amplitude and frequency) will be presented. In addition to mean data, higher order statistics will also be provided.

  8. Heavy Rydberg behaviour in high vibrational levels of some ion-pair states of the halogens and inter-halogens

    International Nuclear Information System (INIS)

    Donovan, Robert J.; Lawley, Kenneth P.; Ridley, Trevor

    2015-01-01

    We report the identification of heavy Rydberg resonances in the ion-pair spectra of I 2 , Cl 2 , ICl, and IBr. Extensive vibrational progressions are analysed in terms of the energy dependence of the quantum defect δ(E b ) rather than as Dunham expansions. This is shown to define the heavy Rydberg region, providing a more revealing fit to the data with fewer coefficients and leads just as easily to numbering data sets separated by gaps in the observed vibrational progressions. Interaction of heavy Rydberg states with electronic Rydberg states at avoided crossings on the inner wall of the ion-pair potential is shown to produce distinctive changes in the energy dependence of δ(E b ), with weak and strong interactions readily distinguished. Heavy Rydberg behaviour is found to extend well below near-dissociation states, down to vibrational levels ∼18 000-20 000 cm −1 below dissociation. The rapid semi-classical calculation of δ(E b ) for heavy Rydberg states is emphasised and shows their absolute magnitude to be essentially the volume of phase space excluded from the vibrational motion by avoiding core-core penetration of the ions

  9. High-Temperature Vibration Damper

    Science.gov (United States)

    Clarke, Alan; Litwin, Joel; Krauss, Harold

    1987-01-01

    Device for damping vibrations functions at temperatures up to 400 degrees F. Dampens vibrational torque loads as high as 1,000 lb-in. but compact enough to be part of helicopter rotor hub. Rotary damper absorbs energy from vibrating rod, dissipating it in turbulent motion of viscous hydraulic fluid forced by moving vanes through small orifices.

  10. Fast Fourier transformation in vibration analysis of physically active systems

    International Nuclear Information System (INIS)

    Hafeez, T.; Amir, M.; Farooq, U.; Day, P.

    2003-01-01

    Vibration of all physical systems may be expressed as the summation of an infinite number of sine and cosine terms known as Fourier series. The basic vibration analysis tool used is the frequency 'spectrum' (a graph of vibration where the amplitude of vibration is plotted against frequency). When a particular rotating component begins to fail, its vibration tends to increase. Spectra graphs are powerful diagnostic tool for detecting components' degradation. Spectra obtained with accelerometers located at the various locations on the components and their analysis in practice from rotating machines enable early detecting of incipient failure. Consequence of unexpected failure can be catastrophic and costly. This study provides basis to relate defective component by its constituent frequencies and then to the known discrete frequency of its 'signature' or 'thumbprint' to predict and verify the sustained dynamic behavior of machine designs harmful effects of forced vibration. The spectra for gearbox of a vane with teeth damaged fault are presented here which signified the importance of FFT analysis as diagnostic tool. This may be helpful to predictive maintenance of the machinery. (author)

  11. Ground test for vibration control demonstrator

    Science.gov (United States)

    Meyer, C.; Prodigue, J.; Broux, G.; Cantinaud, O.; Poussot-Vassal, C.

    2016-09-01

    In the objective of maximizing comfort in Falcon jets, Dassault Aviation is developing an innovative vibration control technology. Vibrations of the structure are measured at several locations and sent to a dedicated high performance vibration control computer. Control laws are implemented in this computer to analyse the vibrations in real time, and then elaborate orders sent to the existing control surfaces to counteract vibrations. After detailing the technology principles, this paper focuses on the vibration control ground demonstration that was performed by Dassault Aviation in May 2015 on Falcon 7X business jet. The goal of this test was to attenuate vibrations resulting from fixed forced excitation delivered by shakers. The ground test demonstrated the capability to implement an efficient closed-loop vibration control with a significant vibration level reduction and validated the vibration control law design methodology. This successful ground test was a prerequisite before the flight test demonstration that is now being prepared. This study has been partly supported by the JTI CleanSky SFWA-ITD.

  12. Mechanical vibration and shock analysis, sinusoidal vibration

    CERN Document Server

    Lalanne, Christian

    2014-01-01

    Everything engineers need to know about mechanical vibration and shock...in one authoritative reference work! This fully updated and revised 3rd edition addresses the entire field of mechanical vibration and shock as one of the most important types of load and stress applied to structures, machines and components in the real world. Examples include everything from the regular and predictable loads applied to turbines, motors or helicopters by the spinning of their constituent parts to the ability of buildings to withstand damage from wind loads or explosions, and the need for cars to m

  13. Effects of train noise and vibration on human heart rate during sleep: an experimental study.

    Science.gov (United States)

    Croy, Ilona; Smith, Michael G; Waye, Kerstin Persson

    2013-05-28

    Transportation of goods on railways is increasing and the majority of the increased numbers of freight trains run during the night. Transportation noise has adverse effects on sleep structure, affects the heart rate (HR) during sleep and may be linked to cardiovascular disease. Freight trains also generate vibration and little is known regarding the impact of vibration on human sleep. A laboratory study was conducted to examine how a realistic nocturnal railway traffic scenario influences HR during sleep. Case-control. Healthy participants. 24 healthy volunteers (11 men, 13 women, 19-28 years) spent six consecutive nights in the sleep laboratory. All participants slept during one habituation night, one control and four experimental nights in which train noise and vibration were reproduced. In the experimental nights, 20 or 36 trains with low-vibration or high-vibration characteristics were presented. Polysomnographical data and ECG were recorded. The train exposure led to a significant change of HR within 1 min of exposure onset (p=0.002), characterised by an initial and a delayed increase of HR. The high-vibration condition provoked an average increase of at least 3 bpm per train in 79% of the participants. Cardiac responses were in general higher in the high-vibration condition than in the low-vibration condition (p=0.006). No significant effect of noise sensitivity and gender was revealed, although there was a tendency for men to exhibit stronger HR acceleration than women. Freight trains provoke HR accelerations during sleep, and the vibration characteristics of the trains are of special importance. In the long term, this may affect cardiovascular functioning of persons living close to railways.

  14. Model Predictive Vibration Control Efficient Constrained MPC Vibration Control for Lightly Damped Mechanical Structures

    CERN Document Server

    Takács, Gergely

    2012-01-01

    Real-time model predictive controller (MPC) implementation in active vibration control (AVC) is often rendered difficult by fast sampling speeds and extensive actuator-deformation asymmetry. If the control of lightly damped mechanical structures is assumed, the region of attraction containing the set of allowable initial conditions requires a large prediction horizon, making the already computationally demanding on-line process even more complex. Model Predictive Vibration Control provides insight into the predictive control of lightly damped vibrating structures by exploring computationally efficient algorithms which are capable of low frequency vibration control with guaranteed stability and constraint feasibility. In addition to a theoretical primer on active vibration damping and model predictive control, Model Predictive Vibration Control provides a guide through the necessary steps in understanding the founding ideas of predictive control applied in AVC such as: ·         the implementation of ...

  15. The high level vibration test program

    International Nuclear Information System (INIS)

    Hofmayer, C.H.; Curreri, J.R.; Park, Y.J.; Kato, W.Y.; Kawakami, S.

    1989-01-01

    As part of cooperative agreements between the US and Japan, tests have been performed on the seismic vibration table at the Tadotsu Engineering Laboratory of Nuclear Power Engineering Test Center (NUPEC) in Japan. The objective of the test program was to use the NUPEC vibration table to drive large diameter nuclear power piping to substantial plastic strain with an earthquake excitation and to compare the results with state-of-the-art analysis of the problem. The test model was subjected to a maximum acceleration well beyond what nuclear power plants are designed to withstand. A modified earthquake excitation was applied and the excitation level was increased carefully to minimize the cumulative fatigue damage due to the intermediate level excitations. Since the piping was pressurized, and the high level earthquake excitation was repeated several times, it was possible to investigate the effects of ratchetting and fatigue as well. Elastic and inelastic seismic response behavior of the test model was measured in a number of test runs with an increasing excitation input level up to the limit of the vibration table. In the maximum input condition, large dynamic plastic strains were obtained in the piping. Crack initiation was detected following the second maximum excitation run. Crack growth was carefully monitored during the next two additional maximum excitation runs. The final test resulted in a maximum crack depth of approximately 94% of the wall thickness. The HLVT (high level vibration test) program has enhanced understanding of the behavior of piping systems under severe earthquake loading. As in other tests to failure of piping components, it has demonstrated significant seismic margin in nuclear power plant piping

  16. CR-Calculus and adaptive array theory applied to MIMO random vibration control tests

    Science.gov (United States)

    Musella, U.; Manzato, S.; Peeters, B.; Guillaume, P.

    2016-09-01

    Performing Multiple-Input Multiple-Output (MIMO) tests to reproduce the vibration environment in a user-defined number of control points of a unit under test is necessary in applications where a realistic environment replication has to be achieved. MIMO tests require vibration control strategies to calculate the required drive signal vector that gives an acceptable replication of the target. This target is a (complex) vector with magnitude and phase information at the control points for MIMO Sine Control tests while in MIMO Random Control tests, in the most general case, the target is a complete spectral density matrix. The idea behind this work is to tailor a MIMO random vibration control approach that can be generalized to other MIMO tests, e.g. MIMO Sine and MIMO Time Waveform Replication. In this work the approach is to use gradient-based procedures over the complex space, applying the so called CR-Calculus and the adaptive array theory. With this approach it is possible to better control the process performances allowing the step-by-step Jacobian Matrix update. The theoretical bases behind the work are followed by an application of the developed method to a two-exciter two-axis system and by performance comparisons with standard methods.

  17. The influence of flywheel micro vibration on space camera and vibration suppression

    Science.gov (United States)

    Li, Lin; Tan, Luyang; Kong, Lin; Wang, Dong; Yang, Hongbo

    2018-02-01

    Studied the impact of flywheel micro vibration on a high resolution optical satellite that space-borne integrated. By testing the flywheel micro vibration with six-component test bench, the flywheel disturbance data is acquired. The finite element model of the satellite was established and the unit force/torque were applied at the flywheel mounting position to obtain the micro vibration data of the camera. Integrated analysis of the data of the two parts showed that the influence of flywheel micro vibration on the camera is mainly concentrated around 60-80 Hz and 170-230 Hz, the largest angular displacement of the secondary mirror along the optical axis direction is 0.04″ and the maximum angular displacement vertical to optical axis is 0.032″. After the design and installation of vibration isolator, the maximum angular displacement of the secondary mirror is 0.011″, the decay rate of root mean square value of the angular displacement is more than 50% and the maximum is 96.78%. The whole satellite was suspended to simulate the boundary condition on orbit; the imaging experiment results show that the image motion caused by the flywheel micro vibrationis less than 0.1 pixel after installing the vibration isolator.

  18. Thermal vibration of a rectangular single-layered graphene sheet with quantum effects

    International Nuclear Information System (INIS)

    Wang, Lifeng; Hu, Haiyan

    2014-01-01

    The thermal vibration of a rectangular single-layered graphene sheet is investigated by using a rectangular nonlocal elastic plate model with quantum effects taken into account when the law of energy equipartition is unreliable. The relation between the temperature and the Root of Mean Squared (RMS) amplitude of vibration at any point of the rectangular single-layered graphene sheet in simply supported case is derived first from the rectangular nonlocal elastic plate model with the strain gradient of the second order taken into consideration so as to characterize the effect of microstructure of the graphene sheet. Then, the RMS amplitude of thermal vibration of a rectangular single-layered graphene sheet simply supported on an elastic foundation is derived. The study shows that the RMS amplitude of the rectangular single-layered graphene sheet predicted from the quantum theory is lower than that predicted from the law of energy equipartition. The maximal relative difference of RMS amplitude of thermal vibration appears at the sheet corners. The microstructure of the graphene sheet has a little effect on the thermal vibrations of lower modes, but exhibits an obvious effect on the thermal vibrations of higher modes. The quantum effect is more important for the thermal vibration of higher modes in the case of smaller sides and lower temperature. The relative difference of maximal RMS amplitude of thermal vibration of a rectangular single-layered graphene sheet decreases monotonically with an increase of temperature. The absolute difference of maximal RMS amplitude of thermal vibration of a rectangular single-layered graphene sheet increases slowly with the rising of Winkler foundation modulus.

  19. Combined Effects of High-Speed Railway Noise and Ground Vibrations on Annoyance.

    Science.gov (United States)

    Yokoshima, Shigenori; Morihara, Takashi; Sato, Tetsumi; Yano, Takashi

    2017-07-27

    The Shinkansen super-express railway system in Japan has greatly increased its capacity and has expanded nationwide. However, many inhabitants in areas along the railways have been disturbed by noise and ground vibration from the trains. Additionally, the Shinkansen railway emits a higher level of ground vibration than conventional railways at the same noise level. These findings imply that building vibrations affect living environments as significantly as the associated noise. Therefore, it is imperative to quantify the effects of noise and vibration exposures on each annoyance under simultaneous exposure. We performed a secondary analysis using individual datasets of exposure and community response associated with Shinkansen railway noise and vibration. The data consisted of six socio-acoustic surveys, which were conducted separately over the last 20 years in Japan. Applying a logistic regression analysis to the datasets, we confirmed the combined effects of vibration/noise exposure on noise/vibration annoyance. Moreover, we proposed a representative relationship between noise and vibration exposures, and the prevalence of each annoyance associated with the Shinkansen railway.

  20. Vibration characteristics of a vertical round tube according to heat transfer regimes

    International Nuclear Information System (INIS)

    Lee, Yong Ho; Kim, Dae Hun; Chang, Soon Heung; Baek, Won Pil

    2001-01-01

    This paper presents the results of an experimental work on the effects of boiling heat transfer regimes on the vibration. the experiment has been performed using an electrically heated veritcal round tube through which water flows at atmospheric pressure. Vibration characteristics of the heated tube are changed significantly by heat transfer regimes and flow patterns. For single-phase liquid convection, the rod vibrations are negligible. However, On the beginning of subcooled nucleate boiling at tube exit, vibration level becomes very large. As bubble departure is occurred at the nucleation site of heated surface, the vibration decrease to saturated boiling region where thermal equilibrium quality becomes 0.0 at tube exit. In saturated boiling region, vibration amplitude increase with exit quality up to certain maximum value then decreases. At liquid film dryout condition, vibration could be regarded as negligible, however, these results cannot be extended to DNB-type CHF mechanism. Frequency analysis results of vibration signals suggested that excitation sources be different with heat transfer regimes. This study would contribute to improve the understanding of the relationship between boiling heat transfer and FIV

  1. Modeling and Analysis of a Combined Stress-Vibration Fiber Bragg Grating Sensor.

    Science.gov (United States)

    Yao, Kun; Lin, Qijing; Jiang, Zhuangde; Zhao, Na; Tian, Bian; Shi, Peng; Peng, Gang-Ding

    2018-03-01

    A combined stress-vibration sensor was developed to measure stress and vibration simultaneously based on fiber Bragg grating (FBG) technology. The sensor is composed of two FBGs and a stainless steel plate with a special design. The two FBGs sense vibration and stress and the sensor can realize temperature compensation by itself. The stainless steel plate can significantly increase sensitivity of vibration measurement. Theoretical analysis and Finite Element Method (FEM) were used to analyze the sensor's working mechanism. As demonstrated with analysis, the obtained sensor has working range of 0-6000 Hz for vibration sensing and 0-100 MPa for stress sensing, respectively. The corresponding sensitivity for vibration is 0.46 pm/g and the resulted stress sensitivity is 5.94 pm/MPa, while the nonlinearity error for vibration and stress measurement is 0.77% and 1.02%, respectively. Compared to general FBGs, the vibration sensitivity of this sensor is 26.2 times higher. Therefore, the developed sensor can be used to concurrently detect vibration and stress. As this sensor has height of 1 mm and weight of 1.15 g, it is beneficial for minimization and integration.

  2. On the Health Risk of the Lumbar Spine due to Whole-Body VIBRATION—THEORETICAL Approach, Experimental Data and Evaluation of Whole-Body Vibration

    Science.gov (United States)

    Seidel, H.; Blüthner, R.; Hinz, B.; Schust, M.

    1998-08-01

    The guidance on the effects of vibration on health in standards for whole-body vibration (WBV) does not provide quantitative relationships between WBV and health risk. The paper aims at the elucidation of exposure-response relationships. An analysis of published data on the static and dynamic strength of vertebrae and bone, loaded with various frequencies under different conditions, provided the basis for a theoretical approach to evaluate repetitive loads on the lumbar spine (“internal loads”). The approach enabled the calculation of “equivalent”—with respect to cumulative fatigue failure—combinations of amplitudes and numbers of internal cyclic stress. In order to discover the relation between external peak accelerations at the seat and internal peak loads, biodynamic data of experiments (36 subjects, three somatotypes, two different postures—relaxed and bent forward; random WBV,aw, r.m.s. 1·4 ms-2, containing high transients) were used as input to a biomechanical model. Internal pressure changes were calculated using individual areas of vertebral endplates. The assessment of WBV was based on the quantitative relations between peak accelerations at the seat and pressures predicted for the disk L5/S1. For identical exposures clearly higher rates of pressure rise in the bent forward compared to the relaxed posture were predicted. The risk assessment for internal forces considered the combined internal static and dynamic loads, in relation to the predicted individual strength, and Miner's hypothesis. For exposure durations between 1 min and 8 h, energy equivalent vibration magnitudes (formula B.1, ISO 2631-1, 1997) and equivalent vibration magnitudes according to formula B.2 (time dependence over-energetic) were compared with equivalent combinations of upward peak accelerations and exposure durations according to predicted cumulative fatigue failures of lumbar vertebrae. Formula B.1 seems to underestimate the health risk caused by high magnitudes

  3. Combined isometric and vibration training does not enhance strength beyond that of isometric training alone.

    Science.gov (United States)

    Fisher, J; Van-Dongen, M; Sutherland, R

    2015-09-01

    Research considering combined vibration and strength training is extensive yet results are equivocal. However, to date there appears no research which has considered the combination of both direct vibration and whole-body vibration when used in an isometric deadlift position. The aim of this study was to compare groups performing isometric training with and without direct and whole-body vibration. Twenty four participants (19-24 years) were randomly divided into: isometric training with vibration (ST+VT: N.=8), isometric training without vibration (ST: N.=8), and control (CON: N.=8). Within the training groups participants trained twice per week, for 6 weeks, performing 6-sets of maximal isometric deadlift contractions, increasing in duration from 30 seconds to 40 seconds (weeks 1-6). Hip and knee angle was maintained at 60° and 110°, respectively for both testing and training. Training sessions for ST+VT were identical to ST with the addition of a direct vibratory stimulus through hand-held straps and whole-body vibration via standing on vibration a platform. The amplitude remained constant (2 mm) throughout the intervention whilst the frequency increased from 35Hz to 50Hz. Pre- and post-test isometric strength was measured using an isometric deadlift dynamometer. Results revealed significant increases in isometric strength for both ST+VT (Pstrength training.

  4. Vibration-Assisted Handling of Dry Fine Powders

    Directory of Open Access Journals (Sweden)

    Paul Dunst

    2018-04-01

    Full Text Available Since fine powders tend strongly to adhesion and agglomeration, their processing with conventional methods is difficult or impossible. Typically, in order to enable the handling of fine powders, chemicals are added to increase the flowability and reduce adhesion. This contribution shows that instead of additives also vibrations can be used to increase the flowability, to reduce adhesion and cohesion, and thus to enable or improve processes such as precision dosing, mixing, and transport of very fine powders. The methods for manipulating powder properties are described in detail and prototypes for experimental studies are presented. It is shown that the handling of fine powders can be improved by using low-frequency, high-frequency or a combination of low- and high-frequency vibration.

  5. Impact of magnitude uncertainties on seismic catalogue properties

    Science.gov (United States)

    Leptokaropoulos, K. M.; Adamaki, A. K.; Roberts, R. G.; Gkarlaouni, C. G.; Paradisopoulou, P. M.

    2018-05-01

    Catalogue-based studies are of central importance in seismological research, to investigate the temporal, spatial and size distribution of earthquakes in specified study areas. Methods for estimating the fundamental catalogue parameters like the Gutenberg-Richter (G-R) b-value and the completeness magnitude (Mc) are well established and routinely applied. However, the magnitudes reported in seismicity catalogues contain measurement uncertainties which may significantly distort the estimation of the derived parameters. In this study, we use numerical simulations of synthetic data sets to assess the reliability of different methods for determining b-value and Mc, assuming the G-R law validity. After contaminating the synthetic catalogues with Gaussian noise (with selected standard deviations), the analysis is performed for numerous data sets of different sample size (N). The noise introduced to the data generally leads to a systematic overestimation of magnitudes close to and above Mc. This fact causes an increase of the average number of events above Mc, which in turn leads to an apparent decrease of the b-value. This may result to a significant overestimation of seismicity rate even well above the actual completeness level. The b-value can in general be reliably estimated even for relatively small data sets (N < 1000) when only magnitudes higher than the actual completeness level are used. Nevertheless, a correction of the total number of events belonging in each magnitude class (i.e. 0.1 unit) should be considered, to deal with the magnitude uncertainty effect. Because magnitude uncertainties (here with the form of Gaussian noise) are inevitable in all instrumental catalogues, this finding is fundamental for seismicity rate and seismic hazard assessment analyses. Also important is that for some data analyses significant bias cannot necessarily be avoided by choosing a high Mc value for analysis. In such cases, there may be a risk of severe miscalculation of

  6. Vibrations of rotating machinery

    CERN Document Server

    Matsushita, Osami; Kanki, Hiroshi; Kobayashi, Masao; Keogh, Patrick

    2017-01-01

    This book opens with an explanation of the vibrations of a single degree-of-freedom (dof) system for all beginners. Subsequently, vibration analysis of multi-dof systems is explained by modal analysis. Mode synthesis modeling is then introduced for system reduction, which aids understanding in a simplified manner of how complicated rotors behave. Rotor balancing techniques are offered for rigid and flexible rotors through several examples. Consideration of gyroscopic influences on the rotordynamics is then provided and vibration evaluation of a rotor-bearing system is emphasized in terms of forward and backward whirl rotor motions through eigenvalue (natural frequency and damping ratio) analysis. In addition to these rotordynamics concerning rotating shaft vibration measured in a stationary reference frame, blade vibrations are analyzed with Coriolis forces expressed in a rotating reference frame. Other phenomena that may be assessed in stationary and rotating reference frames include stability characteristic...

  7. Effect of 6 months of whole body vibration on lumbar spine bone density in postmenopausal women: a randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Lai CL

    2013-12-01

    Full Text Available Chung-Liang Lai,1,2 Shiuan-Yu Tseng,1,2 Chung-Nan Chen,3 Wan-Chun Liao,2 Chun-Hou Wang,4 Meng-Chih Lee,1,5,* Pi-Shan Hsu5,* 1Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan; 2Department of Physical Medicine and Rehabilitation, Taichung Hospital, Ministry of Health and Welfare, Taichung, Taiwan; 3Department of Radiology, Taichung Hospital, Ministry of Health and Welfare, Taichung, Taiwan; 4School of Physical Therapy, Chung Shan Medical University, Taichung, Taiwan; 5Department of Family Medicine, Taichung Hospital, Ministry of Health and Welfare, Taichung, Taiwan*These authors contributed equally to this workBackground: The issue of osteoporosis-induced fractures has attracted the world's attention. Postmenopausal women are particularly at risk for this type of fracture. The nonmedicinal intervention for postmenopausal women is mainly exercise. Whole body vibration (WBV is a simple and convenient exercise. There have been some studies investigating the effect of WBV on osteoporosis; however, the intervention models and results are different. This study mainly investigated the effect of high-frequency and high-magnitude WBV on the bone mineral density (BMD of the lumbar spine in postmenopausal women.Methods: This study randomized 28 postmenopausal women into either the WBV group or the control group for a 6-month trial. The WBV group received an intervention of high-frequency (30 Hz and high-magnitude (3.2 g WBV in a natural full-standing posture for 5 minutes, three times per week, at a sports center. Dual-energy X-ray absorptiometry was used to measure the lumbar BMD of the two groups before and after the intervention.Results: Six months later, the BMD of the WBV group had significantly increased by 2.032% (P=0.047, while that of the control group had decreased by 0.046% (P=0.188. The comparison between the two groups showed that the BMD of the WBV group had increased significantly (P=0.016.Conclusion: This study found

  8. Anaerobic digestion of molasses by means of a vibrating and non-vibrating submerged anaerobic membrane bioreactor

    International Nuclear Information System (INIS)

    De Vrieze, Jo; Hennebel, Tom; Van den Brande, Jens; Bilad, Ro'il M.; Bruton, Thomas A.; Vankelecom, Ivo F.J.; Verstraete, Willy; Boon, Nico

    2014-01-01

    Bio-refineries produce large volumes of waste streams with high organic content, which are potentially interesting for further processing. Anaerobic digestion (AD) can be a key technology for treatment of these sidestreams, such as molasses. However, the high concentration of salts in molasses can cause inhibition of methanogenesis. In this research, concentrated and diluted molasses were subjected to biomethanation in two types of submerged anaerobic membrane bioreactors (AnMBRs): one with biogas recirculation and one with a vibrating membrane. Both reactors were compared in terms of methane production and membrane fouling. Biogas recirculation seemed to be a good way to avoid membrane fouling, while the trans membrane pressures in the vibrating MBR increased over time, due to cake layer formation and the absence of a mixing system. Stable methane production, up to 2.05 L L −1  d −1 and a concomitant COD removal of 94.4%, was obtained only when diluted molasses were used, since concentrated molasses caused a decrease in methane production and an increase in volatile fatty acids (VFA), indicating an inhibiting effect of concentrated molasses on AD. Real-time PCR results revealed a clear dominance of Methanosaetaceae over Methanosarcinaceae as the main acetoclastic methanogens in both AnMBRs. - Highlights: • An anaerobic membrane bioreactor (AnMBR) can be used to digest diluted molasses. • Biogas recirculation is a good way to avoid fouling in an AnMBR. • Trans membrane pressures in AnMBR with vibrating membrane increased over time. • Methanosaeta sp. were the dominant acetoclastic methanogens

  9. A study on the flow induced vibration in two phase flow under heating and non-heating conditions

    International Nuclear Information System (INIS)

    Kim, Dae Hun

    2007-02-01

    Critical heat flux (CHF) enhancement devices, like a spacer grid with mixing vane, cause flow-induced vibration (FIV) due to turbulence made by structural resistance. CHF enhancement and FIV reduction are usually studied separately. The main purpose of this article is to investigate the relationship between CHF and FIV. Information of flow-induced vibration due to wire coil design, is experimentally presented in this study by detecting flow-induced vibration under the two-phase flow condition with wire coil inserts. CHF experiments were performed in an upward vertical annulus tube under controlled vibration conditions to determine the effect of vibration on CHF. FIV was measured in an upward vertical tube with various wire coil inserts using air-water as flow material. CHF experiments were performed at one atmosphere with mechanically controlled vibration. A quartz tube (inner diameter of 17 mm, thickness of 2mm and length of 0.72 m) was used for outer tube and a SUS-304 tube (outer diameter of 6.35 mm, thickness of 0.89 mm and length of 0.7 m) was used for the inner heater. Vibration of the heater tube with an amplitude range of 0.1 mm to 0.5 mm and a frequency range of 10 Hz to 50 Hz was carried out at a mass flux of 115 kg/m 2 s and 215 kg/m 2 s. CHF was enhanced by vibration with a maximum ratio of 16.4 %. CHF was increased with increased amplitude and quality. The CHF correlation was developed with R (coefficient of correlation) of 0.903. FIV measuring experiments were performed at one atmosphere by changing the inserted wire coil type. An acrylic tube was used for the test section with inner diameter of 25 mm, thickness of 10 mm and length of 0.5 m. Four types of wire coil, which have a thickness of between 2 mm and 3 mm and pitch length of between 25 mm and 50 mm, were used. FIV and dynamic pressure were detected in water mass flux range of 100 ∼ 3060 kg/m 2 s and air mass flux range of 5.02 ∼ 60.3 kg/m 2 s. Vibration increased along with mass flux and

  10. Free vibration analysis of corroded steel plates

    Energy Technology Data Exchange (ETDEWEB)

    Eslami-Majd, Alireza; Rahbar-Ranji, Ahmad [AmirKabir University of Technology, Tehran (Iran, Islamic Republic of)

    2014-06-15

    Vibration analysis of unstiffened/stiffened plates has long been studied due to its importance in the design and condition assessments of ship and offshore structures. Corrosion is inevitable in steel structures and has been so far considered in strength analysis of structures. We studied the free vibration of pitted corroded plates with simply supported boundary conditions. Finite element analysis, with ABAQUS, was used to determine the natural frequencies and mode shapes of corroded plates. Influential parameters including plate aspect ratio, degree of pit, one-sided/both-sided corroded plate, and different corrosion patterns were investigated. By increasing the degree of corrosion, reduction of natural frequency increases. Plate aspect ratio and plate dimensions have no influence on reduction of natural frequency. Different corrosion patterns on the surface of one-sided corroded plates have little influence on reduction of natural frequency. Ratio of pit depth over plate thickness has no influence on the reduction of natural frequency. The reduction of natural frequency in both-sided corroded plates is higher than one-sided corroded plates with the same amount of total corrosion loss. Mode shapes of vibration would change due to corrosion, except square mode shapes.

  11. Urban vibrations

    DEFF Research Database (Denmark)

    Morrison, Ann; Knudsen, L.; Andersen, Hans Jørgen

    2012-01-01

    In   this   paper   we   describe   a   field   study   conducted   with   a   wearable   vibration   belt   where   we   test   to   determine   the   vibration   intensity   sensitivity   ranges   on   a   large   diverse   group   of   participants   with   evenly   distributed  ages  and...

  12. The influence of material anisotropy on vibration at onset in a three-dimensional vocal fold model

    Science.gov (United States)

    Zhang, Zhaoyan

    2014-01-01

    Although vocal folds are known to be anisotropic, the influence of material anisotropy on vocal fold vibration remains largely unknown. Using a linear stability analysis, phonation onset characteristics were investigated in a three-dimensional anisotropic vocal fold model. The results showed that isotropic models had a tendency to vibrate in a swing-like motion, with vibration primarily along the superior-inferior direction. Anterior-posterior (AP) out-of-phase motion was also observed and large vocal fold vibration was confined to the middle third region along the AP length. In contrast, increasing anisotropy or increasing AP-transverse stiffness ratio suppressed this swing-like motion and allowed the vocal fold to vibrate in a more wave-like motion with strong medial-lateral motion over the entire medial surface. Increasing anisotropy also suppressed the AP out-of-phase motion, allowing the vocal fold to vibrate in phase along the entire AP length. Results also showed that such improvement in vibration pattern was the most effective with large anisotropy in the cover layer alone. These numerical predictions were consistent with previous experimental observations using self-oscillating physical models. It was further hypothesized that these differences may facilitate complete glottal closure in finite-amplitude vibration of anisotropic models as observed in recent experiments. PMID:24606284

  13. CFD simulation on flow induced vibrations in high pressure control and emergency stop turbine valve

    International Nuclear Information System (INIS)

    Lindqvist, H.

    2011-01-01

    During the refuelling outage at Unit 2 of Forsmark NPP in 2009, the high pressure turbine valves were replaced. Three month after recommissioning, an oil pipe connected to one of the actuators was broken. Measurements showed high-frequency vibration levels. The pipe break was suspected to be an effect of highly increased vibrations caused by the new valve. In order to establish the origin of the vibrations, investigations by means of CFD-simulations were made. The simulations showed that the increased vibrations most likely stems from the open cavity that the valves centre consists of. (author)

  14. Active Vibration Control of Hydrodynamic Journal Bearings

    Science.gov (United States)

    Tůma, J.; Šimek, J.; Škuta, J.; Los, J.; Zavadil, J.

    Rotor instability is one of the most serious problems of high-speed rotors supported by sliding bearings. With constantly increasing parameters, new machines problems with rotor instability are encountered more and more often. Even though there are many solutions based on passive improvement of the bearing geometry to enlarge the operational speed range of the journal bearing, the paper deals with a working prototype of a system for the active vibration control of journal bearings with the use of piezoactuators. The actively controlled journal bearing consists of a movable bushing, which is actuated by two piezoactuators. It is assumed that the journal vibration is measured by a pair of proximity probes. Force produced by piezoactuators and acting at the bushing is controlled according to error signals derived from the proximity probe output signals. The active vibration control was tested with the use of a test rig, which consists of a rotor supported by two controllable journal bearings and driven by an inductive motor up to 23,000 rpm. As it was proved by experiments the active vibration control extends considerably the range of the rotor operational speed.

  15. Surface vibrational spectroscopy

    International Nuclear Information System (INIS)

    Erskine, J.L.

    1984-01-01

    A brief review of recent studies which combine measurements of surface vibrational energies with lattice dynamical calculations is presented. These results suggest that surface vibrational spectroscopy offers interesting prospects for use as a molecular-level probe of surface geometry, adsorbate bond distances and molecular orientations

  16. Analysis of musle fatigue induced by isometric vibration exercise at varying frequencies

    NARCIS (Netherlands)

    Mischi, M.; Rabotti, C.; Cardinale, M. (Marco)

    2012-01-01

    An increase in neuromuscular activity, measured by electromyography (EMG), is usually observed during vibration exercise. The underlying mechanisms are however unclear, limiting the possibilities to introduce and exploit vibration training in rehabilitation programs. In this study, a new training

  17. METHOD FOR DETERMINATION OF ROTATION CENTER IN VIBRATING OBJECT

    Directory of Open Access Journals (Sweden)

    I. P. Kauryha

    2016-01-01

    Full Text Available Linear piezoelectric gauges, eddy current transducers and other control and measuring devices have been widely applied for vibration diagnostics of objects in industry. Methods based on such gauges and used for measuring angular and linear vibrations do not provide the possibility to assess a rotation center or point angle of an object. Parasitic oscillations may occur during rotor rotation and in some cases the oscillations are caused by dis-balance. The known methods for measuring angular and linear vibrations make it possible to detect the phenomenon and they do not provide information for balancing of the given object. For this very reason the paper describes a method for obtaining instantaneous rotation center in the vibrating object. It allows to improve informational content of the measurements owing to obtaining additional data on position of object rotation center. The obtained data can be used for balancing of a control object. Essence of the given method is shown by an example of piezoelectric gauges of linear vibrations. Two three-axial gauges are fixed to the investigated object. Then gauge output signals are recalculated in angular vibrations of the object (for this purpose it is necessary to know a distance between gauges. Further projection positions of the object rotation center are determined on three orthogonal planes. Instantaneous rotation center is calculated according to the position of one of the gauges. The proposed method permits to obtain data on linear and angular vibrations and rotation center position of the vibrating object using one system of linear gauge. Possibilities of object diagnostics are expanded due to increase in number of determined parameters pertaining to object moving. The method also makes it possible to reduce material and time expenses for measurement of an angular vibration component. 

  18. Coherent vibrational dynamics

    CERN Document Server

    Lanzani, Guglielmo; De Silvestri, Sandro

    2007-01-01

    Vibrational spectroscopy is a powerful investigation tool for a wide class of materials covering diverse areas in physics, chemistry and biology. The continuous development in the laser field regarding ultrashort pulse generation has led to the possibility of producing light pulses that can follow vibrational motion coupled to the electronic transitions in molecules and solids in real time. Aimed at researchers and graduate students using vibrational spectroscopy, this book provides both introductory chapters as well as more advanced contents reporting on recent progress. It also provides a good starting point for scientists seeking a sound introduction to ultrafast optics and spectroscopic techniques.

  19. Extreme value distribution of earthquake magnitude

    Science.gov (United States)

    Zi, Jun Gan; Tung, C. C.

    1983-07-01

    Probability distribution of maximum earthquake magnitude is first derived for an unspecified probability distribution of earthquake magnitude. A model for energy release of large earthquakes, similar to that of Adler-Lomnitz and Lomnitz, is introduced from which the probability distribution of earthquake magnitude is obtained. An extensive set of world data for shallow earthquakes, covering the period from 1904 to 1980, is used to determine the parameters of the probability distribution of maximum earthquake magnitude. Because of the special form of probability distribution of earthquake magnitude, a simple iterative scheme is devised to facilitate the estimation of these parameters by the method of least-squares. The agreement between the empirical and derived probability distributions of maximum earthquake magnitude is excellent.

  20. Nonlinear convergence active vibration absorber for single and multiple frequency vibration control

    Science.gov (United States)

    Wang, Xi; Yang, Bintang; Guo, Shufeng; Zhao, Wenqiang

    2017-12-01

    This paper presents a nonlinear convergence algorithm for active dynamic undamped vibration absorber (ADUVA). The damping of absorber is ignored in this algorithm to strengthen the vibration suppressing effect and simplify the algorithm at the same time. The simulation and experimental results indicate that this nonlinear convergence ADUVA can help significantly suppress vibration caused by excitation of both single and multiple frequency. The proposed nonlinear algorithm is composed of equivalent dynamic modeling equations and frequency estimator. Both the single and multiple frequency ADUVA are mathematically imitated by the same mechanical structure with a mass body and a voice coil motor (VCM). The nonlinear convergence estimator is applied to simultaneously satisfy the requirements of fast convergence rate and small steady state frequency error, which are incompatible for linear convergence estimator. The convergence of the nonlinear algorithm is mathematically proofed, and its non-divergent characteristic is theoretically guaranteed. The vibration suppressing experiments demonstrate that the nonlinear ADUVA can accelerate the convergence rate of vibration suppressing and achieve more decrement of oscillation attenuation than the linear ADUVA.

  1. Prototype observation and influencing factors of environmental vibration induced by flood discharge

    Directory of Open Access Journals (Sweden)

    Xin Wang

    2017-01-01

    Full Text Available Due to a wide range of field vibration problems caused by flood discharge at the Xiangjiaba Hydropower Station, vibration characteristics and influencing factors were investigated based on prototype observation. The results indicate that field vibrations caused by flood discharge have distinctive characteristics of constancy, low frequency, small amplitude, and randomness with impact, which significantly differ from the common high-frequency vibration characteristics. Field vibrations have a main frequency of about 0.5–3.0 Hz and the characteristics of long propagation distance and large-scale impact. The vibration of a stilling basin slab runs mainly in the vertical direction. The vibration response of the guide wall perpendicular to the flow is significantly stronger than it is in other directions and decreases linearly downstream along the guide wall. The vibration response of the underground turbine floor is mainly caused by the load of unit operation. Urban environmental vibration has particular distribution characteristics and change patterns, and is greatly affected by discharge, scheduling modes, and geological conditions. Along with the increase of the height of residential buildings, vibration responses show a significant amplification effect. The horizontal and vertical vibrations of the 7th floor are, respectively, about 6 times and 1.5 times stronger than the corresponding vibrations of the 1st floor. The vibration of a large-scale chemical plant presents the combined action of flood discharge and working machines. Meanwhile, it is very difficult to reduce the low-frequency environmental vibrations. Optimization of the discharge scheduling mode is one of the effective measures of reducing the flow impact loads at present. Choosing reasonable dam sites is crucial.

  2. Vibration transducer calibration techniques

    Science.gov (United States)

    Brinkley, D. J.

    1980-09-01

    Techniques for the calibration of vibration transducers used in the Aeronautical Quality Assurance Directorate of the British Ministry of Defence are presented. Following a review of the types of measurements necessary in the calibration of vibration transducers, the performance requirements of vibration transducers, which can be used to measure acceleration, velocity or vibration amplitude, are discussed, with particular attention given to the piezoelectric accelerometer. Techniques for the accurate measurement of sinusoidal vibration amplitude in reference-grade transducers are then considered, including the use of a position sensitive photocell and the use of a Michelson laser interferometer. Means of comparing the output of working-grade accelerometers with that of previously calibrated reference-grade devices are then outlined, with attention given to a method employing a capacitance bridge technique and a method to be used at temperatures between -50 and 200 C. Automatic calibration procedures developed to speed up the calibration process are outlined, and future possible extensions of system software are indicated.

  3. CONDITIONS FOR STABLE CHIP BREAKING AND PROVISION OF MACHINED SURFACE QUALITY WHILE TURNING WITH ASYMMETRIC TOOL VIBRATIONS

    Directory of Open Access Journals (Sweden)

    V. K. Sheleh

    2015-01-01

    Full Text Available The paper considers a process of turning structural steel with asymmetric tool vibrations directed along feeding. Asymmetric vibrations characterized by asymmetry coefficient of vibration cycle, their frequency and amplitude are additionally transferred to the tool in the turning process with the purpose to crush chips. Conditions of stable chip breaking and obtaining optimum dimensions of chip elements have been determined in the paper. In order to reduce a negative impact of the vibration amplitude on a cutting process and quality of the machined surfaces machining must be carried out with its minimum value. In this case certain ratio of the tool vibration frequency to the work-piece rotation speed has been ensured in the paper. A formula has been obtained for calculation of this ratio with due account of the expected length of chip elements and coefficient of vibration cycle asymmetry.Influence of the asymmetric coefficient of the tool vibration cycle on roughness of the machined surfaces and cutting tool wear has been determined in the paper. According to the results pertaining to machining of work-pieces made of 45 and ШХ15 steel the paper presents mathematical relationships of machined surface roughness with cutting modes and asymmetry coefficient of tool vibration cycle. Tool feeding being one of the cutting modes exerts the most significant impact on the roughness value and increase of the tool feeding entails increase in roughness. Reduction in coefficient of vibration cycle asymmetry contributes to surface roughness reduction. However, the cutting tool wear occurs more intensive. Coefficient of the vibration cycle asymmetry must be increased in order to reduce wear rate. Therefore, the choice of the coefficient of the vibration cycle asymmetry is based on the parameters of surface roughness which must be obtained after machining and intensity of tool wear rate.The paper considers a process of turning structural steel with asymmetric

  4. Reinforcement magnitude modulation of rate dependent effects in pigeons and rats.

    Science.gov (United States)

    Ginsburg, Brett C; Pinkston, Jonathan W; Lamb, R J

    2011-08-01

    Response rate can influence the behavioral effects of many drugs. Reinforcement magnitude may also influence drug effects. Further, reinforcement magnitude can influence rate-dependent effects. For example, in an earlier report, we showed that rate-dependent effects of two antidepressants depended on reinforcement magnitude. The ability of reinforcement magnitude to interact with rate-dependency has not been well characterized. It is not known whether our previous results are specific to antidepressants or generalize to other drug classes. Here, we further examine rate-magnitude interactions by studying effects of two stimulants (d-amphetamine [0.32-5.6 mg/kg] and cocaine [0.32-10 mg/kg]) and two sedatives (chlordiazepoxide [1.78-32 mg/kg] and pentobarbital [1.0-17.8 mg/kg]) in pigeons responding under a 3-component multiple fixed-interval (FI) 300-s schedule maintained by 2-, 4-, or 8-s of food access. We also examine the effects of d-amphetamine [0.32-3.2 mg/kg] and pentobarbital [1.8-10 mg/kg] in rats responding under a similar multiple FI300-s schedule maintained by 2- or 10- food pellet (45 mg) delivery. In pigeons, cocaine and, to a lesser extent, chlordiazepoxide exerted rate-dependent effects that were diminished by increasing durations of food access. The relationship was less apparent for pentobarbital, and not present for d-amphetamine. In rats, rate-dependent effects of pentobarbital and d-amphetamine were not modulated by reinforcement magnitude. In conclusion, some drugs appear to exert rate-dependent effect which are diminished when reinforcement magnitude is relatively high. Subsequent analysis of the rate-dependency data suggest the effects of reinforcement magnitude may be due to a diminution of drug-induced increases in low-rate behavior that occurs early in the fixed-interval. (c) 2011 APA, all rights reserved.

  5. Magnitude, direction and location of the resultant dipole moment of the pig heart.

    Science.gov (United States)

    Hodgkin, B C; Nelson, C V; Angelakos, E T

    1976-04-01

    Vectorcardiograms were obtained from 50 young domestic pigs using the Nelson lead system. Compensation for body size and shape is achieved and the resultant dipole moment magnitude reflects heart size. A strong relationship was found between heart size and maximum magnitude. Dipole moment magnitude increased as four pigs increased from five to ten weeks of age. The dipole moment during QRS is considered in light of known pig heart excitation pattern. Dipole locations during QRS, calculated by computer solution of the Gabor-Nelson equations, were in agreement with heart location and excitation data.

  6. Transverse Resonant Vibration of Non-Bearing Structures Caused by Wind

    Science.gov (United States)

    Jendzelovsky, Norbert; Antal, Roland

    2017-10-01

    Nowadays, there are increasing use of very thin, subtle and light structures in the field of building constructions. We can find such a structures as part of roofs or design facades. By using these lamellas like, non-bearing structures as a part of architectural design of buildings, it is necessary to consider wind effects on these structures. Subtle structures of this type are prone to vibration in the transverse direction of the wind flow. The fact that the vibration occurs depends on wind parameters (wind velocity, direction of an air flow) and it also depends on the properties of lamella (shape, length, mass, natural frequency, support type). The principal idea of this article is to show susceptibility of lamellae-like structures to transverse resonant vibration caused by the phenomenon called Von Karman effect. Comparison of susceptibility to transverse resonance vibration was analysed on the different shapes of lamellas loaded by different wind speed. Analysis was based on usage of empirically derived equations. Von Karman effect arise from wind flow past an object. Turbulence in the form of vortices are formed at the object and shed into the flowing stream intermittently. The potential problem is that this turbulence can induce vibrations into the lamella itself. In terms of this vibration problem, two frequencies are interesting. Von Karman shedding frequency is the frequency at which the vortices are formed and shed at the object. The vortex-shedding frequency increases with the velocity of the wind flow and decreases with the size of the object. Natural frequency of the object depends on the construction of the lamella itself. Parameters of lamella as a shape, mass, length, elasticity modulus of material and support types are directly involved in the calculation of natural frequency. Worst case scenario in the term of transverse resonant vibration occurs when the natural frequency of lamella is equal to the vortex-shedding frequency. In this case

  7. Flow-induced vibration phenomenon in a Mark III TRIGA reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, C K; Whittemore, W L; Kim, B S; Lee, J B; Blevins, R D; Burton, T E [Korea Atomic Energy Research Institute, Seoul (Korea, Republic of); General Atomic Company, San Diego, CA (United States)

    1976-07-01

    The Mark III TRIGA reactor with hexagonal fuel spacing is capable of operating at 2.0 MW. The Mark III at San Diego operated without core cooling problems or vibration at power levels up to 2.0 MW. All Mark III reactors have operated trouble-free up to 1.0 MW. The Mark III TRIGA in Korea was installed in 1972 and operated many months without trouble at 2.0 MW. During this period core changes including addition of new fuel were made. Eighteen months after startup, a coolant flow-induced vibration was observed for the first time at a power of 1.5 MW. A lengthy series of tests showed that it was not possible to establish a core configuration that permitted vibration-free operation for power levels in the range 1.5 - 2.0 MW. Observations during the tests confirmed that standing waves in the reactor tank water coupled the source within the core to the shield structure and surrounding building. Analysis of the data indicates strongly that the source of the vibration is the creation and collapse of bubbles with the core acting as a resonator. A substantially increased flow of coolant through the upper grid plate is expected to eliminate the vibration phenomenon and permit trouble-free operation at power up to 2.0 MW. In an attempt to seek a remedy, both GAC and KAERI have independently developed designs for upper grid plates. KAERI has constructed and installed an interim version of the standard grid plate which was calculated to provide 25% more coolant flow and mounted high so as to provide less restriction to flow around the upper fittings of the fuel elements. A substantial reduction in vibration was observed. No vibration was observed at any power up to 2.0 MW with cooling water at or below 20 C. A slight vibration at 1.8 MW occurred for higher cooling temperatures. The GAC grid plate design provides not only for increasing the flow area but also for streamlining the flow surfaces on the grid plate and possibly also on the top fittings of the fuel elements. It is

  8. Flow-induced vibration phenomenon in a Mark III TRIGA reactor

    International Nuclear Information System (INIS)

    Lee, C.K.; Whittemore, W.L.; Kim, B.S.; Lee, J.B.; Blevins, R.D.; Burton, T.E.

    1976-01-01

    The Mark III TRIGA reactor with hexagonal fuel spacing is capable of operating at 2.0 MW. The Mark III at San Diego operated without core cooling problems or vibration at power levels up to 2.0 MW. All Mark III reactors have operated trouble-free up to 1.0 MW. The Mark III TRIGA in Korea was installed in 1972 and operated many months without trouble at 2.0 MW. During this period core changes including addition of new fuel were made. Eighteen months after startup, a coolant flow-induced vibration was observed for the first time at a power of 1.5 MW. A lengthy series of tests showed that it was not possible to establish a core configuration that permitted vibration-free operation for power levels in the range 1.5 - 2.0 MW. Observations during the tests confirmed that standing waves in the reactor tank water coupled the source within the core to the shield structure and surrounding building. Analysis of the data indicates strongly that the source of the vibration is the creation and collapse of bubbles with the core acting as a resonator. A substantially increased flow of coolant through the upper grid plate is expected to eliminate the vibration phenomenon and permit trouble-free operation at power up to 2.0 MW. In an attempt to seek a remedy, both GAC and KAERI have independently developed designs for upper grid plates. KAERI has constructed and installed an interim version of the standard grid plate which was calculated to provide 25% more coolant flow and mounted high so as to provide less restriction to flow around the upper fittings of the fuel elements. A substantial reduction in vibration was observed. No vibration was observed at any power up to 2.0 MW with cooling water at or below 20 C. A slight vibration at 1.8 MW occurred for higher cooling temperatures. The GAC grid plate design provides not only for increasing the flow area but also for streamlining the flow surfaces on the grid plate and possibly also on the top fittings of the fuel elements. It is

  9. VIBRATION ISOLATION SYSTEM PROBABILITY ANALYSIS

    Directory of Open Access Journals (Sweden)

    Smirnov Vladimir Alexandrovich

    2012-10-01

    Full Text Available The article deals with the probability analysis for a vibration isolation system of high-precision equipment, which is extremely sensitive to low-frequency oscillations even of submicron amplitude. The external sources of low-frequency vibrations may include the natural city background or internal low-frequency sources inside buildings (pedestrian activity, HVAC. Taking Gauss distribution into account, the author estimates the probability of the relative displacement of the isolated mass being still lower than the vibration criteria. This problem is being solved in the three dimensional space, evolved by the system parameters, including damping and natural frequency. According to this probability distribution, the chance of exceeding the vibration criteria for a vibration isolation system is evaluated. Optimal system parameters - damping and natural frequency - are being developed, thus the possibility of exceeding vibration criteria VC-E and VC-D is assumed to be less than 0.04.

  10. Vibration Theory, Vol. 3

    DEFF Research Database (Denmark)

    Nielsen, Søren R. K.

    The present textbook has been written based on previous lecture notes for a course on stochastic vibration theory that is being given on the 9th semester at Aalborg University for M. Sc. students in structural engineering. The present 4th edition of this textbook on linear stochastic vibration th...... theory is unchanged in comparison to the 3rd edition. Only a few errors have been corrected.......The present textbook has been written based on previous lecture notes for a course on stochastic vibration theory that is being given on the 9th semester at Aalborg University for M. Sc. students in structural engineering. The present 4th edition of this textbook on linear stochastic vibration...

  11. Increasing magnitude of Hurricane Rapid Intensification in the central-eastern Atlantic over the past 30 years

    Science.gov (United States)

    Leung, L. R.; Balaguru, K.; Foltz, G. R.

    2017-12-01

    During the 2017 Atlantic hurricane season, several hurricanes underwent rapid intensification (RI) in the central-eastern Atlantic. This motivates an analysis of trends in the strength of hurricane RI during the 30-year post-satellite period of 1986-2015. Our results show that in the eastern tropical Atlantic, to the east of 60W, the mean RI magnitude averaged during 2001-2015 was 3.8 kt per 24 hr higher than during 1986-2000. However, in the western tropical Atlantic, to the west of 60W, changes in RI magnitude over the same period were not statistically significant. We examined the large-scale environment to understand the causes behind these changes in RI magnitude and found that various oceanic and atmospheric parameters that play an important role in RI changed favorably in the eastern tropical Atlantic. More specifically, changes in SST, Potential Intensity, upper-ocean heat content, wind shear, relative humidity and upper-level divergence enhanced the ability for hurricanes to undergo RI in the eastern tropical Atlantic. In contrast, changes in the same factors are inconsistent in the western tropical Atlantic. While changes in SST and Potential Intensity were positive, changes in upper-ocean heat content, wind shear and upper-level divergence were either insignificant or unfavorable for RI. Finally, we examined the potential role of various climate phenomena, which are well-known to impact Atlantic hurricane activity, in causing the changes in the large-scale environment. Our analysis reveals that changes in the Atlantic Multidecadal Oscillation over the 30-year period are predominantly responsible. These results provide important aspects of the large-scale context to understand the Atlantic hurricane season of 2017.

  12. Skeletal site-specific effects of whole body vibration in mature rats: from deleterious to beneficial frequency-dependent effects.

    Science.gov (United States)

    Pasqualini, Marion; Lavet, Cédric; Elbadaoui, Mohamed; Vanden-Bossche, Arnaud; Laroche, Norbert; Gnyubkin, Vasily; Vico, Laurence

    2013-07-01

    Whole body vibration (WBV) is receiving increasing interest as an anti-osteoporotic prevention strategy. In this context, selective effects of different frequency and acceleration magnitude modalities on musculoskeletal responses need to be better defined. Our aim was to investigate the bone effects of different vibration frequencies at constant g level. Vertical WBV was delivered at 0.7 g (peak acceleration) and 8, 52 or 90 Hz sinusoidal vibration to mature male rats 10 min daily for 5 days/week for 4 weeks. Peak accelerations measured by skin or bone-mounted accelerometers at L2 vertebral and tibia crest levels revealed similar values between adjacent skin and bone sites. Local accelerations were greater at 8 Hz compared with 52 and 90 Hz and were greater in vertebra than tibia for all the frequencies tested. At 52 Hz, bone responses were mainly seen in L2 vertebral body and were characterized by trabecular reorganization and stimulated mineral apposition rate (MAR) without any bone volume alteration. At 90 Hz, axial and appendicular skeletons were affected as were the cortical and trabecular compartments. Cortical thickness increased in femur diaphysis (17%) along with decreased porosity; trabecular bone volume increased at distal femur metaphysis (23%) and even more at L2 vertebral body (32%), along with decreased SMI and increased trabecular connectivity. Trabecular thickness increased at the tibia proximal metaphysis. Bone cellular activities indicated a greater bone formation rate, which was more pronounced at vertebra (300%) than at long bone (33%). Active bone resorption surfaces were unaffected. At 8 Hz, however, hyperosteoidosis with reduced MAR along with increased resorption surfaces occurred in the tibia; hyperosteoidosis and trend towards decreased MAR was also seen in L2 vertebra. Trabecular bone mineral density was decreased at femur and tibia. Thus the most favorable regimen is 90 Hz, while deleterious effects were seen at 8 Hz. We concluded that

  13. Hot Ground Vibration Tests

    Data.gov (United States)

    National Aeronautics and Space Administration — Ground vibration tests or modal surveys are routinely conducted to support flutter analysis for subsonic and supersonic vehicles. However, vibration testing...

  14. Low Cost Digital Vibration Meter.

    Science.gov (United States)

    Payne, W Vance; Geist, Jon

    2007-01-01

    This report describes the development of a low cost, digital Micro Electro Mechanical System (MEMS) vibration meter that reports an approximation to the RMS acceleration of the vibration to which the vibration meter is subjected. The major mechanical element of this vibration meter is a cantilever beam, which is on the order of 500 µm in length, with a piezoresistor deposited at its base. Vibration of the device in the plane perpendicular to the cantilever beam causes it to bend, which produces a measurable change in the resistance of a piezoresistor. These changes in resistance along with a unique signal-processing scheme are used to determine an approximation to the RMS acceleration sensed by the device.

  15. Wireless Inductive Power Device Suppresses Blade Vibrations

    Science.gov (United States)

    Morrison, Carlos R.; Provenza, Andrew J.; Choi, Benjamin B.; Bakhle, Milind A.; Min, James B.; Stefko, George L.; Duffy, Kirsten P.; Fougers, Alan J.

    2011-01-01

    Vibration in turbomachinery can cause blade failures and leads to the use of heavier, thicker blades that result in lower aerodynamic efficiency and increased noise. Metal and/or composite fatigue in the blades of jet engines has resulted in blade destruction and loss of lives. Techniques for suppressing low-frequency blade vibration, such as gtuned circuit resistive dissipation of vibratory energy, h or simply "passive damping," can require electronics incorporating coils of unwieldy dimensions and adding unwanted weight to the rotor. Other approaches, using vibration-dampening devices or damping material, could add undesirable weight to the blades or hub, making them less efficient. A wireless inductive power device (WIPD) was designed, fabricated, and developed for use in the NASA Glenn's "Dynamic Spin Rig" (DSR) facility. The DSR is used to simulate the functionality of turbomachinery. The relatively small and lightweight device [10 lb (approx.=4.5 kg)] replaces the existing venerable and bulky slip-ring. The goal is the eventual integration of this technology into actual turbomachinery such as jet engines or electric power generators, wherein the device will facilitate the suppression of potentially destructive vibrations in fan blades. This technology obviates slip rings, which require cooling and can prove unreliable or be problematic over time. The WIPD consists of two parts: a remote element, which is positioned on the rotor and provides up to 100 W of electrical power to thin, lightweight piezoelectric patches strategically placed on/in fan blades; and a stationary base unit that wirelessly communicates with the remote unit. The base unit supplies inductive power, and also acts as an input and output corridor for wireless measurement, and active control command to the remote unit. Efficient engine operation necessitates minimal disturbance to the gas flow across the turbine blades in any effort to moderate blade vibration. This innovation makes it

  16. Experimental study of heat transfer enhancement due to the surface vibrations in a flexible double pipe heat exchanger

    Science.gov (United States)

    Hosseinian, A.; Meghdadi Isfahani, A. H.

    2018-04-01

    In this study, the heat transfer enhancement due to the surface vibration for a double pipe heat exchanger, made of PVDF, is investigated. In order to create forced vibrations (3-9 m/s2, 100 Hz) on the outer surface of the heat exchanger electro-dynamic vibrators are used. Experiments were performed at inner Reynolds numbers ranging from 2533 to 9960. The effects of volume flow rate and temperature on heat transfer performance are evaluated. Results demonstrated that heat transfer coefficient increases by increasing vibration level and mass flow rate. The most increase in heat transfer coefficient is 97% which is obtained for the highest vibration level (9 m/s2) in the experiment range.

  17. Nozzle Flow with Vibrational Nonequilibrium. Ph.D. Thesis

    Science.gov (United States)

    Landry, John Gary

    1995-01-01

    Flow of nitrogen gas through a converging-diverging nozzle is simulated. The flow is modeled using the Navier-Stokes equations that have been modified for vibrational nonequilibrium. The energy equation is replaced by two equations. One equation accounts for energy effects due to the translational and rotational degrees of freedom, and the other accounts for the affects due to the vibrational degree of freedom. The energy equations are coupled by a relaxation time which measures the time required for the vibrational energy component to equilibrate with the translational and rotational energy components. An improved relaxation time is used in this thesis. The equations are solved numerically using the Steger-Warming flux vector splitting method and the Implicit MacCormack method. The results show that uniform flow is produced outside of the boundary layer. Nonequilibrium exists in both the converging and diverging nozzle sections. The boundary layer region is characterized by a marked increase in translational-rotational temperature. The vibrational temperature remains frozen downstream of the nozzle, except in the boundary layer.

  18. Contributions of the Higher Vibrational Levels of Nitric Oxide to the Radiative Cooling of the Thermosphere

    Science.gov (United States)

    Venkataramani, K.; Yonker, J. D.; Bailey, S. M.

    2014-12-01

    The 5.3μm emission from the vibrational levels of nitric oxide (NO) and the 15μm emission from CO2 are known to be the dominant sources of cooling in the thermosphere above 100 km. The 5.3μm emission is primarily produced by the radiative de-excitation of NO from its first vibrational level, which in turn is mainly populated by the collisions of NO with atomic oxygen. However, the reaction of atomic nitrogen (N(4S) and N(2D)) with O2 yields vibrationally excited NO with v>1, resulting in a radiative cascade which produces more than one 5.3μm photon per vibrationally excited NO molecule. This chemiluminescence is approximately 20% in magnitude of the emission produced by thermal collisions. These additional sources of the 5.3μm emission are introduced into a one dimensional photochemical model and the Thermosphere-Ionosphere-Electrodynamics General Circulation Model (TIE-GCM) to assess their variability with latitude and solar activity, and to also understand their effect on the thermospheric energy budget. The results from the models are compared with data from the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) experiment on-board the Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) satellite, which has been making measurements of the infrared radiative response of the mesosphere and thermosphere to solar inputs since 2002.

  19. On the neutron noise diagnostics of pressurized water reactor control rod vibrations II. Stochastic vibrations

    International Nuclear Information System (INIS)

    Pazsit, I.; Glockler, O.

    1984-01-01

    In an earlier publication, using the theory of neutron fluctuations induced by a vibrating control rod, a complete formal solution of rod vibration diagnostics based on neutron noise measurements was given in terms of Fourier-transformed neutron detector time signals. The suggested procedure was checked in numerical simulation tests where only periodic vibrations could be considered. The procedure and its numerical testing are elaborated for stochastic two-dimensional vibrations. A simple stochastic theory of two-dimensional flow-induced vibrations is given; then the diagnostic method is formulated in the stochastic case, that is, in terms of neutron detector auto- and crosspower spectra. A previously suggested approximate rod localization technique is also formulated in the stochastic case. Applicability of the methods is then investigated in numerical simulation tests, using the proposed model of stochastic two-dimensional vibrations when generating neutron detector spectra that simulate measured data

  20. CaSO4 Scale Formation on Vibrated Piping System in the Presence Citric Acid

    Science.gov (United States)

    Mangestiyono, W.; Jamari, J.; Muryanto, S.; Bayuseno, A. P.

    2018-02-01

    Vibration in many industries commonly generated by the operation mechanical equipment such as extruder, mixer, blower, compressor, turbine, generator etc. Vibration propagates into the floor and attacks the pipe around those mechanical equipment. In this paper, the influence of vibration in a pipe on the CaSO4 scale formation was investigated to understand the effect of vibration on the kinetics, mass of scale, crystal phases and crystal polymorph. To generate vibration force, mechanical equipment was prepared consisted of electrical motor, crankshaft, connecting rod and a vibration table at where test pipe section mounted. Deposition rate increased significantly when the vibration affected to the system i.e. 0.5997 and 1.6705 gr/hr for vibration frequency 4.00 and 8.00 Hz. The addition 10.00 ppm of citric acid declined the deposition rate of 8 Hz experiment from 3.4599 gr/hr to 2.2865 gr/hr.

  1. The effect of vibration on bed voidage behaviors in fluidized beds with large particles

    Directory of Open Access Journals (Sweden)

    H. Jin

    2007-09-01

    Full Text Available The effects of vibration parameters, operating conditions and material properties on bed voidage were investigated using an optical fiber probe approach in a vibrating fluidized bed with a diameter of 148 mm. Variables studied included frequency (0-282 s-1, amplitude (0 mm-1 mm, bed height (0.1 m-0.4 m as well as four kinds of particles (belonging to Geldart's B and D groups. The axial and radial voidage distribution with vibration is compared with that without vibration, which shows vibration can aid in the fluidization behaviors of particles. For a larger vibration amplitude, the vibration seriously affects bed voidage. The vibration energy can damp out for particle layers with increasing the bed height. According to analysis of experimental data, an empirical correlation for predicting bed voidage, giving good agreement with the experimental data and a deviation within ±15%, was proposed.

  2. Harbor seal vibrissa morphology suppresses vortex-induced vibrations.

    Science.gov (United States)

    Hanke, Wolf; Witte, Matthias; Miersch, Lars; Brede, Martin; Oeffner, Johannes; Michael, Mark; Hanke, Frederike; Leder, Alfred; Dehnhardt, Guido

    2010-08-01

    Harbor seals (Phoca vitulina) often live in dark and turbid waters, where their mystacial vibrissae, or whiskers, play an important role in orientation. Besides detecting and discriminating objects by direct touch, harbor seals use their whiskers to analyze water movements, for example those generated by prey fish or by conspecifics. Even the weak water movements left behind by objects that have passed by earlier can be sensed and followed accurately (hydrodynamic trail following). While scanning the water for these hydrodynamic signals at a swimming speed in the order of meters per second, the seal keeps its long and flexible whiskers in an abducted position, largely perpendicular to the swimming direction. Remarkably, the whiskers of harbor seals possess a specialized undulated surface structure, the function of which was, up to now, unknown. Here, we show that this structure effectively changes the vortex street behind the whiskers and reduces the vibrations that would otherwise be induced by the shedding of vortices from the whiskers (vortex-induced vibrations). Using force measurements, flow measurements and numerical simulations, we find that the dynamic forces on harbor seal whiskers are, by at least an order of magnitude, lower than those on sea lion (Zalophus californianus) whiskers, which do not share the undulated structure. The results are discussed in the light of pinniped sensory biology and potential biomimetic applications.

  3. Differences in Train-induced Vibration between Hard Soil and Soft Soil

    Science.gov (United States)

    Noyori, M.; Yokoyama, H.

    2017-12-01

    Vibration and noise caused by running trains sometimes raises environmental issues. Train-induced vibration is caused by moving static and dynamic axle loads. To reduce the vibration, it is important to clarify the conditions under which the train-induced vibration increases. In this study, we clarified the differences in train-induced vibration between on hard soil and on soft soil using a numerical simulation method. The numerical simulation method we used is a combination of two analysis. The one is a coupled vibration analysis model of a running train, a track and a supporting structure. In the analysis, the excitation force of the viaduct slabs generated by a running train is computed. The other analysis is a three-dimensional vibration analysis model of a supporting structure and the ground into which the excitation force computed by the former analysis is input. As a result of the numerical simulation, the ground vibration in the area not more than 25m from the center of the viaduct is larger under the soft soil condition than that under the hard soil condition in almost all frequency ranges. On the other hand, the ground vibration of 40 and 50Hz at a point 50m from the center of the viaduct under the hard soil condition is larger than that under the soft soil condition. These are consistent with the result of the two-dimensional FEM based on a ground model alone. Thus, we concluded that these results are obtained from not the effects of the running train but the vibration characteristics of the ground.

  4. General principles of vibrational spectroscopies

    NARCIS (Netherlands)

    Weckhuysen, B.M.; Schoonheydt, R.A.

    2000-01-01

    Atoms in molecules and solids do not remain in fixed relative positions, but vibrate about some mean position. This vibrational motion is quantized and at room temperature, most of the molecules in a given sample are in their lowest vibrational state. Absorption of electromagnetic radiation with

  5. Random vibrations theory and practice

    CERN Document Server

    Wirsching, Paul H; Ortiz, Keith

    1995-01-01

    Random Vibrations: Theory and Practice covers the theory and analysis of mechanical and structural systems undergoing random oscillations due to any number of phenomena— from engine noise, turbulent flow, and acoustic noise to wind, ocean waves, earthquakes, and rough pavement. For systems operating in such environments, a random vibration analysis is essential to the safety and reliability of the system. By far the most comprehensive text available on random vibrations, Random Vibrations: Theory and Practice is designed for readers who are new to the subject as well as those who are familiar with the fundamentals and wish to study a particular topic or use the text as an authoritative reference. It is divided into three major sections: fundamental background, random vibration development and applications to design, and random signal analysis. Introductory chapters cover topics in probability, statistics, and random processes that prepare the reader for the development of the theory of random vibrations a...

  6. Turbine blade vibration dampening

    Science.gov (United States)

    Cornelius, C.C.; Pytanowski, G.P.; Vendituoli, J.S.

    1997-07-08

    The present turbine wheel assembly increases component life and turbine engine longevity. The combination of the strap and the opening combined with the preestablished area of the outer surface of the opening and the preestablished area of the outer circumferential surface of the strap and the friction between the strap and the opening increases the life and longevity of the turbine wheel assembly. Furthermore, the mass ``M`` or combined mass ``CM`` of the strap or straps and the centrifugal force assist in controlling vibrations and damping characteristics. 5 figs.

  7. Effects of wrist tendon vibration on arm tracking in people poststroke.

    Science.gov (United States)

    Conrad, Megan O; Scheidt, Robert A; Schmit, Brian D

    2011-09-01

    The goal of this study was to evaluate the influence of wrist tendon vibration on a multijoint elbow/shoulder tracking task. We hypothesized that tendon vibration applied at the wrist musculature would improve upper arm tracking performance in chronic stroke survivors through increased, Ia-afferent feedback to the central nervous system (CNS). To test this hypothesis, 10 chronic stroke and 5 neurologically intact subjects grasped the handle of a planar robot as they tracked a target through a horizontal figure-8 pattern. A total of 36 trials were completed by each subject. During the middle trials, 70-Hz tendon vibration was applied at the wrist flexor tendons. Position, velocity, and electromyography data were evaluated to compare the quality of arm movements before, during, and after trials with concurrent vibration. Despite tracking a target that moved at a constant velocity, hand trajectories appeared to be segmented, displaying alternating intervals of acceleration and deceleration. Segments were identifiable in tangential velocity data as single-peaked, bell-shaped speed pulses. When tendon vibration was applied at the wrist musculature, stroke subjects experienced improved tracking performance in that hand path lengths and peak speed variability decreased, whereas movement smoothness increased. These performance improvements were accompanied by decreases in the muscle activity during movement. Possible mechanisms behind improved movement control in response to tendon vibration may include improved sensorimotor integration or improved cortical modulation of spinal reflex activity.

  8. Guidelines for Whole-Body Vibration Health Surveillance

    Science.gov (United States)

    POPE, M.; MAGNUSSON, M.; LUNDSTRÖM, R.; HULSHOF, C.; VERBEEK, J.; BOVENZI, M.

    2002-05-01

    There is strong epidemiological evidence that occupational exposure to WBV is associated with an increased risk of low back pain (LBP), sciatic pain, and degenerative changes in the spinal system, including lumbar intervertebral disc disorders. A prototype health surveillance scheme for WBV is presented in this paper. Surveillance is the collection, analysis, and dissemination of data for the purpose of prevention. The aims are to assess health status and diagnose vibration-induced disorders at an early stage, to inform the workers on the potential risk associated with vibration exposure, to give preventive advice to employers and employees and to control whether preventive measures which have been taken, were successful. It is suggested that a pre-placement health examination should be offered to each worker who will be exposed to WBV so as to make the worker aware of the hazards, to obtain baseline health data, and to identify medical conditions that may increase the risk due to WBV. The case history should focus on personal history, work history, and leisure activities involving driving of vehicles. The personal medical history should detail back pain complaints, disorders in the spine, any injuries or surgery to the musculoskeletal system. A physical examination on the lower back should be performed on workers who have experienced LBP symptoms over the past 12 months. The preplacement examination should be followed by periodic health reassessment with a regular interval according to the legislation of the country. It is suggested that periodic medical examination should be made available at least every 2 years to all workers who are exposed to WBV. Any change in vibration exposure at the workplace should be reported by the employer. If an increase in vibration exposure or a change in health status have occurred, the medical re-examination should be offered at shorter intervals at the discretion of the attending physician. There should be a periodic medical

  9. Investigations on Vibration Characteristics of Sma Embedded Horizontal Axis Wind Turbine Blade

    Science.gov (United States)

    Jagadeesh, V.; Yuvaraja, M.; Chandhru, A.; Viswanathan, P.; Senthil kumar, M.

    2018-02-01

    Vibration induced in wind turbine blade is a solemn problem as it reduces the life of the blade and also it can create critical vibration onto the tower, which may cause serious damage to the tower. The aim of this paper is to investigate the vibration characteristics of the prototype horizontal axis wind turbine blade. Shape memory alloys (SMA), with its variable physical properties, provides an alternative actuating mechanism. Heating an SMA causes a change in the elastic modulus of the material and hence SMAs are used as a damping material. A prototype blade with S1223 profile has been manufactured and the natural frequency is found. The natural frequency is found by incorporating the single SMA wire of 0.5mm diameter over the surface of the blade for a length of 240 mm. Similarly, number of SMA wires over the blade is increased up to 3 and the natural frequency is found. Frequency responses showed that the embedment of SMA over the blade’s surface will increase the natural frequency and reduce the amplitude of vibration. This is because of super elastic nature of SMA. In this paper, when SMA wire of 0.5 mm diameter and of length of 720 mm is embedded on the blade, an increase in the natural frequency by 6.3% and reducing the amplitude by 64.8%. Results of the experimental modal and harmonic indicates the effectiveness of SMA as a passive vibration absorber and that it has potential as a modest and high-performance method for controlling vibration of the blade.

  10. Overtone spectroscopy of the hydroxyl stretch vibration in hydroxylamine (NH2OH)

    International Nuclear Information System (INIS)

    Scott, J.L.; Luckhaus, D.; Brown, S.S.; Crim, F.F.

    1995-01-01

    We present photoacoustic spectra of the second (3ν OH ), third (4ν OH ), and fourth (5ν OH ) overtone bands of the hydroxyl stretch vibration in hydroxylamine. Asymmetric rotor simulations of the rovibrational contours provide rotational constants and an estimate of the homogeneous linewidth. The fourth overtone band appears anomalously broad relative to the two lower bands, reflecting a sharp increase in the rate of intramolecular vibrational energy redistribution (IVR). By contrast, the calculated density of states increases smoothly with energy. The homogeneous linewidth of the fourth overtone transition is similar to that measured by Luo et al. [J. Chem. Phys. 93, 9194 (1990)] for the predissociative sixth overtone band, supporting the conclusion that the broadening arises from increased (ro)vibrational coupling at an energy between the third and fourth overtone states

  11. Single-molecule electronics: Cooling individual vibrational modes by the tunneling current.

    Science.gov (United States)

    Lykkebo, Jacob; Romano, Giuseppe; Gagliardi, Alessio; Pecchia, Alessandro; Solomon, Gemma C

    2016-03-21

    Electronic devices composed of single molecules constitute the ultimate limit in the continued downscaling of electronic components. A key challenge for single-molecule electronics is to control the temperature of these junctions. Controlling heating and cooling effects in individual vibrational modes can, in principle, be utilized to increase stability of single-molecule junctions under bias, to pump energy into particular vibrational modes to perform current-induced reactions, or to increase the resolution in inelastic electron tunneling spectroscopy by controlling the life-times of phonons in a molecule by suppressing absorption and external dissipation processes. Under bias the current and the molecule exchange energy, which typically results in heating of the molecule. However, the opposite process is also possible, where energy is extracted from the molecule by the tunneling current. Designing a molecular "heat sink" where a particular vibrational mode funnels heat out of the molecule and into the leads would be very desirable. It is even possible to imagine how the vibrational energy of the other vibrational modes could be funneled into the "cooling mode," given the right molecular design. Previous efforts to understand heating and cooling mechanisms in single molecule junctions have primarily been concerned with small models, where it is unclear which molecular systems they correspond to. In this paper, our focus is on suppressing heating and obtaining current-induced cooling in certain vibrational modes. Strategies for cooling vibrational modes in single-molecule junctions are presented, together with atomistic calculations based on those strategies. Cooling and reduced heating are observed for two different cooling schemes in calculations of atomistic single-molecule junctions.

  12. Gear noise, vibration, and diagnostic studies at NASA Lewis Research Center

    Science.gov (United States)

    Zakrajsek, J. J.; Oswald, F. B.; Townsend, D. P.; Coy, J. J.

    1990-01-01

    The NASA Lewis Research Center and the U.S. Army Aviation Systems Command are involved in a joint research program to advance the technology of rotorcraft transmissions. This program consists of analytical as well as experimental efforts to achieve the overall goals of reducing weight, noise, and vibration, while increasing life and reliability. Recent analytical activities are highlighted in the areas of gear noise, vibration, and diagnostics performed in-house and through NASA and U.S. Army sponsored grants and contracts. These activities include studies of gear tooth profiles to reduce transmission error and vibration as well as gear housing and rotordynamic modeling to reduce structural vibration and transmission and noise radiation, and basic research into current gear failure diagnostic methodologies. Results of these activities are presented along with an overview of near-term research plans in the gear noise, vibration, and diagnostics area.

  13. Combined Ultrasonic Elliptical Vibration and Chemical Mechanical Polishing of Monocrystalline Silicon

    Directory of Open Access Journals (Sweden)

    Liu Defu

    2016-01-01

    Full Text Available An ultrasonic elliptical vibration assisted chemical mechanical polishing(UEV-CMP is employed to achieve high material removal rate and high surface quality in the finishing of hard and brittle materials such as monocrystalline silicon, which combines the functions of conventional CMP and ultrasonic machining. In theultrasonic elliptical vibration aided chemical mechanical polishingexperimental setup developed by ourselves, the workpiece attached at the end of horn can vibrate simultaneously in both horizontal and vertical directions. Polishing experiments are carried out involving monocrystalline silicon to confirm the performance of the proposed UEV-CMP. The experimental results reveal that the ultrasonic elliptical vibration can increase significantly the material removal rate and reduce dramatically the surface roughness of monocrystalline silicon. It is found that the removal rate of monocrystalline silicon polished by UEV-CMP is increased by approximately 110% relative to that of conventional CMP because a passive layer on the monocrystalline silicon surface, formed by the chemical action of the polishing slurry, will be removed not only by the mechanical action of CMP but also by ultrasonic vibration action. It indicates that the high efficiency and high quality CMP of monocrystalline silicon can be performed with the proposed UEV-CMP technique.

  14. Piezoelectric Vibration Damping Study for Rotating Composite Fan Blades

    Science.gov (United States)

    Min, James B.; Duffy, Kirsten P.; Choi, Benjamin B.; Provenza, Andrew J.; Kray, Nicholas

    2012-01-01

    Resonant vibrations of aircraft engine blades cause blade fatigue problems in engines, which can lead to thicker and aerodynamically lower performing blade designs, increasing engine weight, fuel burn, and maintenance costs. In order to mitigate undesirable blade vibration levels, active piezoelectric vibration control has been investigated, potentially enabling thinner blade designs for higher performing blades and minimizing blade fatigue problems. While the piezoelectric damping idea has been investigated by other researchers over the years, very little study has been done including rotational effects. The present study attempts to fill this void. The particular objectives of this study were: (a) to develop and analyze a multiphysics piezoelectric finite element composite blade model for harmonic forced vibration response analysis coupled with a tuned RLC circuit for rotating engine blade conditions, (b) to validate a numerical model with experimental test data, and (c) to achieve a cost-effective numerical modeling capability which enables simulation of rotating blades within the NASA Glenn Research Center (GRC) Dynamic Spin Rig Facility. A numerical and experimental study for rotating piezoelectric composite subscale fan blades was performed. It was also proved that the proposed numerical method is feasible and effective when applied to the rotating blade base excitation model. The experimental test and multiphysics finite element modeling technique described in this paper show that piezoelectric vibration damping can significantly reduce vibrations of aircraft engine composite fan blades.

  15. Low frequency vibration tests on a floating slab track in an underground laboratory

    Institute of Scientific and Technical Information of China (English)

    De-yun DING; Wei-ning LIU; Ke-fei LI; Xiao-jing SUN; Wei-feng LIU

    2011-01-01

    Low frequency vibrations induced by underground railways have attracted increasing attention in recent years. To obtain the characteristics of low frequency vibrations and the low frequency performance of a floating slab track (FST), low frequency vibration tests on an FST in an underground laboratory at Beijing Jiaotong University were carried out. The FST and an unbalanced shaker SBZ30 for dynamic simulation were designed for use in low frequency vibration experiments. Vibration measurements were performed on the bogie of the unbalanced shaker, the rail, the slab, the tunnel invert, the tunnel wall, the tunnel apex, and on the ground surface at distances varying from 0 to 80 m from the track. Measurements were also made on several floors of an adjacent building. Detailed results of low frequency vibration tests were reported. The attenuation of low frequency vibrations with the distance from the track was presented, as well as the responses of different floors of the building. The experimental results could be regarded as a reference for developing methods to control low frequency vibrations and for adopting countermeasures.

  16. Active Blade Vibration Control Being Developed and Tested

    Science.gov (United States)

    Johnson, Dexter

    2003-01-01

    Gas turbine engines are currently being designed to have increased performance, lower weight and manufacturing costs, and higher reliability. Consequently, turbomachinery components, such as turbine and compressor blades, have designs that are susceptible to new vibration problems and eventual in-service failure due to high-cycle fatigue. To address this problem, researchers at the NASA Glenn Research Center are developing and testing innovative active blade vibration control concepts. Preliminary results of using an active blade vibration control system, involving a rotor supported by an active magnetic bearing in Glenn's Dynamic Spin Rig, indicate promising results (see the photograph). Active blade vibration control was achieved using feedback of blade strain gauge signals within the magnetic bearing control loop. The vibration amplitude was reduced substantially (see the graphs). Also, vibration amplitude amplification was demonstrated; this could be used to enhance structural mode identification, if desired. These results were for a nonrotating two-bladed disk. Tests for rotating blades are planned. Current and future active blade vibration control research is planned to use a fully magnetically suspended rotor and smart materials. For the fully magnetically suspended rotor work, three magnetic bearings (two radial and one axial) will be used as actuators instead of one magnetic bearing. This will allow additional degrees of freedom to be used for control. For the smart materials work, control effectors located on and off the blade will be considered. Piezoelectric materials will be considered for on-the-blade actuation, and actuator placement on a stator vane, or other nearby structure, will be investigated for off-the-blade actuation. Initial work will focus on determining the feasibility of these methods by performing basic analysis and simple experiments involving feedback control.

  17. The dynamic characteristics of harvesting energy from mechanical vibration via piezoelectric conversion

    International Nuclear Information System (INIS)

    Fan Kang-Qi; Ming Zheng-Feng; Xu Chun-Hui; Chao Feng-Bo

    2013-01-01

    As an alternative power solution for low-power devices, harvesting energy from the ambient mechanical vibration has received increasing research interest in recent years. In this paper we study the transient dynamic characteristics of a piezoelectric energy harvesting system including a piezoelectric energy harvester, a bridge rectifier, and a storage capacitor. To accomplish this, this energy harvesting system is modeled, and the charging process of the storage capacitor is investigated by employing the in-phase assumption. The results indicate that the charging voltage across the storage capacitor and the gathered power increase gradually as the charging process proceeds, whereas the charging rate slows down over time as the charging voltage approaches to the peak value of the piezoelectric voltage across the piezoelectric materials. In addition, due to the added electrical damping and the change of the system natural frequency when the charging process is initiated, a sudden drop in the vibration amplitude is observed, which in turn affects the charging rate. However, the vibration amplitude begins to increase as the charging process continues, which is caused by the decrease in the electrical damping (i.e., the decrease in the energy removed from the mechanical vibration). This electromechanical coupling characteristic is also revealed by the variation of the vibration amplitude with the charging voltage. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  18. The Development of the Mental Representations of the Magnitude of Fractions

    Science.gov (United States)

    Gabriel, Florence C.; Szucs, Denes; Content, Alain

    2013-01-01

    We investigated the development of the mental representation of the magnitude of fractions during the initial stages of fraction learning in grade 5, 6 and 7 children as well as in adults. We examined the activation of global fraction magnitude in a numerical comparison task and a matching task. There were global distance effects in the comparison task, but not in the matching task. This suggests that the activation of the global magnitude representation of fractions is not automatic in all tasks involving magnitude judgments. The slope of the global distance effect increased during early fraction learning and declined by adulthood, demonstrating that the development of the fraction global distance effect differs from that of the integer distance effect. PMID:24236169

  19. Characterization of Friction Joints Subjected to High Levels of Random Vibration

    Science.gov (United States)

    deSantos, Omar; MacNeal, Paul

    2012-01-01

    This paper describes the test program in detail including test sample description, test procedures, and vibration test results of multiple test samples. The material pairs used in the experiment were Aluminum-Aluminum, Aluminum- Dicronite coated Aluminum, and Aluminum-Plasmadize coated Aluminum. Levels of vibration for each set of twelve samples of each material pairing were gradually increased until all samples experienced substantial displacement. Data was collected on 1) acceleration in all three axes, 2) relative static displacement between vibration runs utilizing photogrammetry techniques, and 3) surface galling and contaminant generation. This data was used to estimate the values of static friction during random vibratory motion when "stick-slip" occurs and compare these to static friction coefficients measured before and after vibration testing.

  20. The Efficacy of Anti-vibration Gloves

    Science.gov (United States)

    Hewitt, Sue; Dong, Ren; McDowell, Tom; Welcome, Daniel

    2016-01-01

    Anyone seeking to control the risks from vibration transmitted to the hands and arms may contemplate the use of anti-vibration gloves. To make an informed decision about any type of personal protective equipment, it is necessary to have performance data that allow the degree of protection to be estimated. The information provided with an anti-vibration glove may not be easy to understand without some background knowledge of how gloves are tested and does not provide any clear route for estimating likely protection. Some of the factors that influence the potential efficacy of an anti-vibration glove include how risks from hand–arm vibration exposure are assessed, how the standard test for a glove is carried out, the frequency range and direction of the vibration for which protection is sought, how much hand contact force or pressure is applied and the physical limitations due to glove material and construction. This paper reviews some of the background issues that are useful for potential purchasers of anti-vibration gloves. Ultimately, anti-vibration gloves cannot be relied on to provide sufficient and consistent protection to the wearer and before their use is contemplated all other available means of vibration control ought first to be implemented. PMID:27582615

  1. Historical revision of the exposure magnitude and the dosimetric magnitudes used in radiological protection

    International Nuclear Information System (INIS)

    Gonzalez J, F.; Alvarez R, J. T.

    2014-10-01

    In this work a historical revision of the exposure magnitude development and their roentgen unit (1905 - 2011) is made, noting that it had their origin in the electric methods for the detection of the ionizing radiation in the period of 1895 at 1937. However, the ionization is not who better characterizes the physical, chemical and biological effects of the ionizing radiations, but is the energy deposited by this radiation in the interest bodies, which led historically to the development of dosimetric magnitudes in energy terms like they are: the absorbed dose D (1950), the kerma K (1958) and the equivalent dose H (1962). These dosimetric magnitudes culminated with the definition of the effective equivalent dose or effective dose which is not measurable and should be considered with the operative magnitudes ICRU: H environmental equivalent dose and/or H directional equivalent dose, which can be determined by means of a conversion coefficient that is applied to the exposure, kerma in air, fluence, etc. (Author)

  2. The magnitude of innovation and its evolution in social animals.

    Science.gov (United States)

    Arbilly, Michal; Laland, Kevin N

    2017-02-08

    Innovative behaviour in animals, ranging from invertebrates to humans, is increasingly recognized as an important topic for investigation by behavioural researchers. However, what constitutes an innovation remains controversial, and difficult to quantify. Drawing on a broad definition whereby any behaviour with a new component to it is an innovation, we propose a quantitative measure, which we call the magnitude of innovation , to describe the extent to which an innovative behaviour is novel. This allows us to distinguish between innovations that are a slight change to existing behaviours (low magnitude), and innovations that are substantially different (high magnitude). Using mathematical modelling and evolutionary computer simulations, we explored how aspects of social interaction, cognition and natural selection affect the frequency and magnitude of innovation. We show that high-magnitude innovations are likely to arise regularly even if the frequency of innovation is low, as long as this frequency is relatively constant, and that the selectivity of social learning and the existence of social rewards, such as prestige and royalties, are crucial for innovative behaviour to evolve. We suggest that consideration of the magnitude of innovation may prove a useful tool in the study of the evolution of cognition and of culture. © 2017 The Author(s).

  3. Induced vibrations facilitate traversal of cluttered obstacles

    Science.gov (United States)

    Thoms, George; Yu, Siyuan; Kang, Yucheng; Li, Chen

    When negotiating cluttered terrains such as grass-like beams, cockroaches and legged robots with rounded body shapes most often rolled their bodies to traverse narrow gaps between beams. Recent locomotion energy landscape modeling suggests that this locomotor pathway overcomes the lowest potential energy barriers. Here, we tested the hypothesis that body vibrations induced by intermittent leg-ground contact facilitate obstacle traversal by allowing exploration of locomotion energy landscape to find this lowest barrier pathway. To mimic a cockroach / legged robot pushing against two adjacent blades of grass, we developed an automated robotic system to move an ellipsoidal body into two adjacent beams, and varied body vibrations by controlling an oscillation actuator. A novel gyroscope mechanism allowed the body to freely rotate in response to interaction with the beams, and an IMU and cameras recorded the motion of the body and beams. We discovered that body vibrations facilitated body rolling, significantly increasing traversal probability and reducing traversal time (P locomotor pathways in complex 3-D terrains.

  4. Intraocular lens dislocation after whole-body vibration.

    Science.gov (United States)

    Vela, José I; Andreu, David; Díaz-Cascajosa, Jesús; Buil, José A

    2010-10-01

    We present 2 cases of intraocular lens (IOL) dislocation that appeared shortly after the patients exercised on a vibration platform. The first patient was a 71-year-old woman who presented with lens subluxation in her right eye and a complete posterior IOL dislocation in her left eye. The second case was a 62-year-old woman who presented with unilateral IOL dislocation within the capsular bag in her right eye. Timing from IOL implantation to dislocation was approximately 6 years and 4 years, respectively. Pars plana vitrectomy with removal of the dislocated IOL was performed in both patients. Whole-body vibration training has become increasingly popular as a form of exercise training. It reportedly may provide benefits in physical function and in some diseases, especially in older people. However, evidence-based protocols ensuring safety and efficacy in this population are lacking. We discuss vibration as a cause of late IOL dislocation. Copyright © 2010 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  5. Determination of rheological properties of fresh concrete and similar materials in a vibration rheometer

    Directory of Open Access Journals (Sweden)

    Sandra Juradin

    2012-02-01

    Full Text Available A vibration rheometer has been developed for the purpose of determining the viscosity coefficient and the yield value of fresh concrete under vibration. The main parts of the apparatus, a test specimen and a vibration source form a unitary oscillatory system whose parameters can be measured with sufficient precision. Two types of fine grained reference material have been prepared and examined; one with a high coefficient of viscosity and the other with a high yield value. The rheological properties of reference materials have been determined in a capillary tube viscometer. Since there is no analytical solution to the flow in the vibration rheometer, the constants of the vibration rheometer have been determined by experiment, for each position of the apparatus piston within the measuring range. The parameters of the flow depend on the maximum acceleration of the vibration source. An increase in acceleration causes an increase in the yield value as well as a reduction in the plastic viscosity coefficient of the material specimen. A testing of fresh mortar has been carried out as well. The obtained results have been compared with the impact on reference materials, which makes the results of our research applicable to fresh vibrated concrete.

  6. Vibrations on board and health effects

    DEFF Research Database (Denmark)

    Jensen, Anker; Jepsen, Jørgen Riis

    2014-01-01

    There is only limited knowledge of the exposure to vibrations of ships’ crews and their risk of vibration-induced health effects. Exposure to hand-arm vibrations from the use of vibrating tools at sea does not differ from that in the land-based trades. However, in contrast to most other work places...... of the health consequences of whole body vibrations in land-transportation, such exposure at sea may affect ships’ passengers and crews. While the relation of back disorders to high levels of whole body vibration has been demonstrated among e.g. tractor drivers, there are no reported epidemiological evidence...... for such relation among seafarers except for fishermen, who, however, are also exposed to additional recognised physical risk factors at work. The assessment and reduction of vibrations by naval architects relates to technical implications of this impact for the ships’ construction, but has limited value...

  7. The vibrational spectrum of the atoms in the grain boundaries of nanocrystalline Pd

    Energy Technology Data Exchange (ETDEWEB)

    Stuhr, U. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Wipf, H.; Hahn, H. [Technische Hochschule Darmstadt (Germany); Natter, H.; Hemperlmann, R. [Universitaet des Saarlandes, Saarbruecken (Germany); Andersen, K. [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)

    1997-09-01

    The vibrational excitations of the atoms in nanocrystalline Pd was investigated by neutron-time-of-flight spectroscopy. Hydrogen was used as a probe for the vibrations in the grain boundaries. The separation between the H and Pd vibrations was done by spin analysis. The results show that in the grain boundary the density of states of low energy excitations ({<=}5 meV) is drastically increased. (author) 3 figs., 3 refs.

  8. Attitudes Toward, and Use of, Vibrators in China.

    Science.gov (United States)

    Jing, Shen; Lay, Alixe; Weis, Laura; Furnham, Adrian

    2018-01-02

    The current study examined the relationship between traditional masculine traits and attitudes toward vibrator use, actual vibrator use, and frequency of vibrator use in China. In all, 235 Chinese females aged between 16 and 58 years completed a questionnaire regarding attitudes toward, and personal use of, vibrators. The results showed a positive association between masculine traits and attitudes toward women's vibrator use, attitudes toward vibrator use and actual vibrator use, as well as frequency of vibrator use. The findings revealed an indirect path in which masculinity influences actual and frequency of vibrator use through attitudes toward women's vibrator use. Limitations and implications of the study are discussed.

  9. Nonlinear vibration of a hemispherical dome under external water pressure

    International Nuclear Information System (INIS)

    Ross, C T F; McLennan, A; Little, A P F

    2011-01-01

    The aim of this study was to analyse the behaviour of a hemi-spherical dome when vibrated under external water pressure, using the commercial computer package ANSYS 11.0. In order to achieve this aim, the dome was modelled and vibrated in air and then in water, before finally being vibrated under external water pressure. The results collected during each of the analyses were compared to the previous studies, and this demonstrated that ANSYS was a suitable program and produced accurate results for this type of analysis, together with excellent graphical displays. The analysis under external water pressure, clearly demonstrated that as external water pressure was increased, the resonant frequencies decreased and a type of dynamic buckling became likely; because the static buckling eigenmode was similar to the vibration eigenmode. ANSYS compared favourably with the in-house software, but had the advantage that it produced graphical displays. This also led to the identification of previously undetected meridional modes of vibration; which were not detected with the in-house software.

  10. Nonlinear vibration of a hemispherical dome under external water pressure

    Science.gov (United States)

    Ross, C. T. F.; McLennan, A.; Little, A. P. F.

    2011-07-01

    The aim of this study was to analyse the behaviour of a hemi-spherical dome when vibrated under external water pressure, using the commercial computer package ANSYS 11.0. In order to achieve this aim, the dome was modelled and vibrated in air and then in water, before finally being vibrated under external water pressure. The results collected during each of the analyses were compared to the previous studies, and this demonstrated that ANSYS was a suitable program and produced accurate results for this type of analysis, together with excellent graphical displays. The analysis under external water pressure, clearly demonstrated that as external water pressure was increased, the resonant frequencies decreased and a type of dynamic buckling became likely; because the static buckling eigenmode was similar to the vibration eigenmode. ANSYS compared favourably with the in-house software, but had the advantage that it produced graphical displays. This also led to the identification of previously undetected meridional modes of vibration; which were not detected with the in-house software.

  11. Two-dimensional vibrational-electronic spectroscopy

    Science.gov (United States)

    Courtney, Trevor L.; Fox, Zachary W.; Slenkamp, Karla M.; Khalil, Munira

    2015-10-01

    Two-dimensional vibrational-electronic (2D VE) spectroscopy is a femtosecond Fourier transform (FT) third-order nonlinear technique that creates a link between existing 2D FT spectroscopies in the vibrational and electronic regions of the spectrum. 2D VE spectroscopy enables a direct measurement of infrared (IR) and electronic dipole moment cross terms by utilizing mid-IR pump and optical probe fields that are resonant with vibrational and electronic transitions, respectively, in a sample of interest. We detail this newly developed 2D VE spectroscopy experiment and outline the information contained in a 2D VE spectrum. We then use this technique and its single-pump counterpart (1D VE) to probe the vibrational-electronic couplings between high frequency cyanide stretching vibrations (νCN) and either a ligand-to-metal charge transfer transition ([FeIII(CN)6]3- dissolved in formamide) or a metal-to-metal charge transfer (MMCT) transition ([(CN)5FeIICNRuIII(NH3)5]- dissolved in formamide). The 2D VE spectra of both molecules reveal peaks resulting from coupled high- and low-frequency vibrational modes to the charge transfer transition. The time-evolving amplitudes and positions of the peaks in the 2D VE spectra report on coherent and incoherent vibrational energy transfer dynamics among the coupled vibrational modes and the charge transfer transition. The selectivity of 2D VE spectroscopy to vibronic processes is evidenced from the selective coupling of specific νCN modes to the MMCT transition in the mixed valence complex. The lineshapes in 2D VE spectra report on the correlation of the frequency fluctuations between the coupled vibrational and electronic frequencies in the mixed valence complex which has a time scale of 1 ps. The details and results of this study confirm the versatility of 2D VE spectroscopy and its applicability to probe how vibrations modulate charge and energy transfer in a wide range of complex molecular, material, and biological systems.

  12. Two-dimensional vibrational-electronic spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Courtney, Trevor L.; Fox, Zachary W.; Slenkamp, Karla M.; Khalil, Munira, E-mail: mkhalil@uw.edu [Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195 (United States)

    2015-10-21

    Two-dimensional vibrational-electronic (2D VE) spectroscopy is a femtosecond Fourier transform (FT) third-order nonlinear technique that creates a link between existing 2D FT spectroscopies in the vibrational and electronic regions of the spectrum. 2D VE spectroscopy enables a direct measurement of infrared (IR) and electronic dipole moment cross terms by utilizing mid-IR pump and optical probe fields that are resonant with vibrational and electronic transitions, respectively, in a sample of interest. We detail this newly developed 2D VE spectroscopy experiment and outline the information contained in a 2D VE spectrum. We then use this technique and its single-pump counterpart (1D VE) to probe the vibrational-electronic couplings between high frequency cyanide stretching vibrations (ν{sub CN}) and either a ligand-to-metal charge transfer transition ([Fe{sup III}(CN){sub 6}]{sup 3−} dissolved in formamide) or a metal-to-metal charge transfer (MMCT) transition ([(CN){sub 5}Fe{sup II}CNRu{sup III}(NH{sub 3}){sub 5}]{sup −} dissolved in formamide). The 2D VE spectra of both molecules reveal peaks resulting from coupled high- and low-frequency vibrational modes to the charge transfer transition. The time-evolving amplitudes and positions of the peaks in the 2D VE spectra report on coherent and incoherent vibrational energy transfer dynamics among the coupled vibrational modes and the charge transfer transition. The selectivity of 2D VE spectroscopy to vibronic processes is evidenced from the selective coupling of specific ν{sub CN} modes to the MMCT transition in the mixed valence complex. The lineshapes in 2D VE spectra report on the correlation of the frequency fluctuations between the coupled vibrational and electronic frequencies in the mixed valence complex which has a time scale of 1 ps. The details and results of this study confirm the versatility of 2D VE spectroscopy and its applicability to probe how vibrations modulate charge and energy transfer in a

  13. System Detects Vibrational Instabilities

    Science.gov (United States)

    Bozeman, Richard J., Jr.

    1990-01-01

    Sustained vibrations at two critical frequencies trigger diagnostic response or shutdown. Vibration-analyzing electronic system detects instabilities of combustion in rocket engine. Controls pulse-mode firing of engine and identifies vibrations above threshold amplitude at 5.9 and/or 12kHz. Adapted to other detection and/or control schemes involving simultaneous real-time detection of signals above or below preset amplitudes at two or more specified frequencies. Potential applications include rotating machinery and encoders and decoders in security systems.

  14. Transfer vibration through spine

    OpenAIRE

    Benyovszky, Adam

    2012-01-01

    Transfer Vibration through Spine Abstract In the bachelor project we deal with the topic of Transfer Vibration through Spine. The problem of TVS is trying to be solved by the critical review method. We analyse some diagnostic methods and methods of treatment based on this principle. Close attention is paid to the method of Transfer Vibration through Spine that is being currently solved by The Research Institute of Thermomechanics in The Czech Academy of Sciences in cooperation with Faculty of...

  15. Vibration isolation of a ship's seat

    Science.gov (United States)

    Agahi, Maryam; Samani, Mehrdad B.; Behzad, Mehdi

    2005-05-01

    Different factors cause vibration. These vibrations make the voyages difficult and reduce comfort and convenience in passenger ships. In this paper, the creating factors of vibration have discussed first, then with mathematical modelling it will be attempted to minimize the vibration over the crew's seat. The modelling consists of a system with two degrees of freedom and by using vibrationisolation with passive method of Tuned Mass Damper (TMD) it will be tried to reduce the vibration over personnel. Moreover using active control systems will be compared with passive systems.

  16. The Effects of Local Vibration on Balance, Power, and Self-Reported Pain After Exercise.

    Science.gov (United States)

    Custer, Lisa; Peer, Kimberly S; Miller, Lauren

    2017-05-01

    Muscle fatigue and acute muscle soreness occur after exercise. Application of a local vibration intervention may reduce the consequences of fatigue and soreness. To examine the effects of a local vibration intervention after a bout of exercise on balance, power, and self-reported pain. Single-blind crossover study. Laboratory. 19 healthy, moderately active subjects. After a 30-min bout of full-body exercise, subjects received either an active or a sham vibration intervention. The active vibration intervention was performed bilaterally over the muscle bellies of the triceps surae, quadriceps, hamstrings, and gluteals. At least 1 wk later, subjects repeated the bout, receiving the other vibration intervention. Static balance, dynamic balance, power, and self-reported pain were measured at baseline, after the vibration intervention, and 24 h postexercise. After the bout of exercise, subjects had reduced static and dynamic balance and increased self-reported pain regardless of vibration intervention. There were no differences between outcome measures between the active and sham vibration conditions. The local vibration intervention did not affect balance, power, or self-reported pain.

  17. Construction of a Vibration Monitoring System for HANARO's Rotating Machinery and Analysis of Pump Vibration Signals

    International Nuclear Information System (INIS)

    Ryu, Jeong Soo; Yoon, Doo Byung

    2005-01-01

    HANARO is an open-tank-in-pool type research reactor with a thermal power of 30MW. In order to remove the heat generated by the reactor core and the reflector vessel, primary cooling pumps and reflector cooling pumps circulate coolant. These pumps are installed at the RCI(Reactor Concrete Island) which is covered by heavy concrete hatches. For the prevention of an abnormal operation of these pumps in the RCI, it is necessary to construct a vibration monitoring system that provides an alarm signal to the reactor control room when the rotating speed or the vibration level exceeds the allowable limit. The first objective of this work is to construct a vibration monitoring system for HANARO's rotating machinery. The second objective is to verify the possibility of condition monitoring of the rotating machinery. To construct a vibration monitoring system, as a first step, the standards and references related to the vibration monitoring system were investigated. In addition, to determine the number and the location of sensors that can effectively characterize the overall vibration of a pump, the vibration of the primary cooling pumps and the reflector cooling pumps were measured. Based on these results, detailed construction plans for the vibration monitoring system for HANARO were established. Then, in accordance with the construction plans, the vibration monitoring system for HANARO's rotating machinery was manufactured and installed at HANARO. To achieve the second objective, FFT analysis and bearing fault detection of the measured vibration signals were performed. The analysis results demonstrate that the accelerometers mounted at the bearing locations of the pumps can effectively monitor the pump condition

  18. Effect of External Vibration on PZT Impedance Signature

    Directory of Open Access Journals (Sweden)

    Yaowen Yang

    2008-11-01

    Full Text Available Piezoelectric ceramic Lead Zirconate Titanate (PZT transducers, working on the principle of electromechanical impedance (EMI, are increasingly applied for structural health monitoring (SHM in aerospace, civil and mechanical engineering. The PZT transducers are usually surface bonded to or embedded in a structure and subjected to actuation so as to interrogate the structure at the desired frequency range. The interrogation results in the electromechanical admittance (inverse of EMI signatures which can be used to estimate the structural health or integrity according to the changes of the signatures. In the existing EMI method, the monitored structure is only excited by the PZT transducers for the interrogating of EMI signature, while the vibration of the structure caused by the external excitations other than the PZT actuation is not considered. However, many structures work under vibrations in practice. To monitor such structures, issues related to the effects of vibration on the EMI signature need to be addressed because these effects may lead to misinterpretation of the structural health. This paper develops an EMI model for beam structures, which takes into account the effect of beam vibration caused by the external excitations. An experimental study is carried out to verify the theoretical model. A lab size specimen with different external excitations is tested and the effect of vibration on EMI signature is discussed.

  19. Effect of External Vibration on PZT Impedance Signature.

    Science.gov (United States)

    Yang, Yaowen; Miao, Aiwei

    2008-11-01

    Piezoelectric ceramic Lead Zirconate Titanate (PZT) transducers, working on the principle of electromechanical impedance (EMI), are increasingly applied for structural health monitoring (SHM) in aerospace, civil and mechanical engineering. The PZT transducers are usually surface bonded to or embedded in a structure and subjected to actuation so as to interrogate the structure at the desired frequency range. The interrogation results in the electromechanical admittance (inverse of EMI) signatures which can be used to estimate the structural health or integrity according to the changes of the signatures. In the existing EMI method, the monitored structure is only excited by the PZT transducers for the interrogating of EMI signature, while the vibration of the structure caused by the external excitations other than the PZT actuation is not considered. However, many structures work under vibrations in practice. To monitor such structures, issues related to the effects of vibration on the EMI signature need to be addressed because these effects may lead to misinterpretation of the structural health. This paper develops an EMI model for beam structures, which takes into account the effect of beam vibration caused by the external excitations. An experimental study is carried out to verify the theoretical model. A lab size specimen with different external excitations is tested and the effect of vibration on EMI signature is discussed.

  20. A laser-optical sensor system for blade vibration detection of high-speed compressors

    Science.gov (United States)

    Neumann, Mathias; Dreier, Florian; Günther, Philipp; Wilke, Ulrich; Fischer, Andreas; Büttner, Lars; Holzinger, Felix; Schiffer, Heinz-Peter; Czarske, Jürgen

    2015-12-01

    Improved efficiency as well as increased lifetime of turbines and compressors are important goals in turbomachinery development. A significant enhancement to accomplish these aims can be seen in online monitoring of the operating parameters of the machines. During the operation of compressors it is of high interest to predict critical events like flutter or stall which can be achieved by observing blade deformations and vibrations. We have developed a laser Doppler distance sensor (LDDS), which is capable of simultaneously measuring the radial blade expansions, the circumferential blade deflections as well as the circumferential velocities of the rotor blade tips. As a result, an increase of blade vibrations is measured before stall at characteristic frequencies. While the detected vibration frequencies and the vibration increase are in agreement with the measurement results of a commercial capacitive blade tip timing system, the measured values of the vibration amplitudes differ by a factor of three. This difference can be mainly attributed to the different measurement locations and to the different measurement approaches. Since the LDDS is applicable to metal as well as ceramic, carbon-fiber and glass-fiber reinforced composite blades, a universally applicable sensor system for stall prediction and status monitoring is presented.

  1. Strongly nonlinear free vibration of four edges simply supported stiffened plates with geometric imperfections

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zhaoting; Wang, Rong Hui; Chen, Li; Dong, Chung Uang [School of Civil Engineering and Transportation, South China University of Technology, Guangzhou (China)

    2016-08-15

    This article investigated the strongly nonlinear free vibration of four edges simply supported stiffened plates with geometric imperfections. The von Karman nonlinear strain-displacement relationships are applied. The nonlinear vibration of stiffened plate is reduced to a one-degree-of-freedom nonlinear system by assuming mode shapes. The Multiple scales Lindstedt-Poincare method (MSLP) and Modified Lindstedt-Poincare method (MLP) are used to solve the governing equations of vibration. Numerical examples for stiffened plates with different initial geometric imperfections are presented in order to discuss the influences to the strongly nonlinear free vibration of the stiffened plate. The results showed that: the frequency ratio reduced as the initial geometric imperfections of plate increased, which showed that the increase of the initial geometric imperfections of plate can lead to the decrease of nonlinear effect; by comparing the results calculated by MSLP method, using MS method to study strongly nonlinear vibration can lead to serious mistakes.

  2. Magnitude and gender distribution of obesity and abdominal ...

    African Journals Online (AJOL)

    Background: Obesity and abdominal adiposity are associated with increased cardiovascular morbidity in diabetes. This study evaluated their magnitude and gender distribution in Nigerians with Type 2 DM attending a tertiary care clinic. Patients and Methods: 258 consecutive patients with type 2 DM were evaluated.

  3. NIF Ambient Vibration Measurements

    International Nuclear Information System (INIS)

    Noble, C.R.; Hoehler, M.S.; S.C. Sommer

    1999-01-01

    LLNL has an ongoing research and development project that includes developing data acquisition systems with remote wireless communication for monitoring the vibrations of large civil engineering structures. In order to establish the capability of performing remote sensing over an extended period of time, the researchers needed to apply this technology to a real structure. The construction of the National Ignition Facility provided an opportunity to test the data acquisition system on a large structure to monitor whether the facility is remaining within the strict ambient vibration guidelines. This document will briefly discuss the NIF ambient vibration requirements and summarize the vibration measurements performed during the Spring and Summer of 1999. In addition, a brief description of the sensors and the data acquisition systems will be provided in Appendix B

  4. Local magnitudes of small contained explosions.

    Energy Technology Data Exchange (ETDEWEB)

    Chael, Eric Paul

    2009-12-01

    The relationship between explosive yield and seismic magnitude has been extensively studied for underground nuclear tests larger than about 1 kt. For monitoring smaller tests over local ranges (within 200 km), we need to know whether the available formulas can be extrapolated to much lower yields. Here, we review published information on amplitude decay with distance, and on the seismic magnitudes of industrial blasts and refraction explosions in the western U. S. Next we measure the magnitudes of some similar shots in the northeast. We find that local magnitudes ML of small, contained explosions are reasonably consistent with the magnitude-yield formulas developed for nuclear tests. These results are useful for estimating the detection performance of proposed local seismic networks.

  5. Vibration features of an 180 kW maglev circulator test rig

    International Nuclear Information System (INIS)

    Su Jiageng; Li Hongwei; Shi Qian; Sha Honglei; Yu Suyuan

    2015-01-01

    The helium circulator is the key equipment to drive the helium gas flowing in the primary loop for energy exchange in HTGR. Active magnetic bearings (AMB) have been considered as an alternative to replace traditional mechanical bearings in the helium circulator. Such contactless bearings do not have frictional wear and can be used to suppress vibration in rotor-dynamic applications. It is necessary to study the vibration characteristics of the maglev helium circulator to guarantee the reactor safety. Therefore, a maglev circulator test rig was built. The power of the circulator is 180 kW and the maximum speed is 17000 rpm. For the time being, the test atmosphere is air. In this paper the test rig was introduced. Vibration test work of the maglev circulator was also carried out. The measuring points were arranged at the seat because the seat vibration level is important to evaluate the machine noise. The measuring points were also arranged at the base of the circulator housing to better study the vibration characteristics. The vibrations were measured by the LC-8024 multichannel machinery diagnoses system. At each measuring point the vibrations were detected in three directions (X, Y and Z) with the vibration acceleration sensors. The test speeds varied from 1000 rpm to 17000 rpm with an increase of 1000 rpm each time. The vibration values of the seat are from 89.5 dB at 1000 rpm to 113.3 dB at 17000 rpm. The test results showed that the maglev circulator exhibits good vibration properties. This work will offer important theoretical base and engineering experience to explore the high-speed helium circulator in HTGR. (author)

  6. Development of Vibration Diagnostic System in Research Reactors

    International Nuclear Information System (INIS)

    EL-Kafas, A. A.

    1999-01-01

    Early failure detection and diagnosis system are an important group with increasing interest with the operating support system. Already existing system to monitor integrity of primary system components are vibration and acoustic monitoring system (2,3). The development of vibration diagnostic system for MARIA reactor (30 MW)-the second research reactor in Poland -was made. The new system is applied for the Egypt research reactor (ETRR-1). This paper represents the result obtained during the operation of this activity that carried out at MARIA and ETRR-1 reactors

  7. On the neutron noise diagnostics of pressurized water reactor control rod vibrations. 1. periodic vibrations

    International Nuclear Information System (INIS)

    Pazsit, I.; Glockler, O.

    1983-01-01

    Based on the theory of neutron noise arising from the vibration of a localized absorber, the possibility of rod vibration diagnostics is investigated. It is found that noise source characteristics, namely rod position and vibration trajectory and spectra, can be unfolded from measured neutron noise signals. For the localization process, the first and more difficult part of the diagnostics, a procedure is suggested whose novelty is that it is applicable in case of arbitrary vibration trajectories. Applicability of the method is investigated in numerical experiments where effects of background noise are also accounted for

  8. Development of S-wave portable vibrator; S ha potable vibrator shingen no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Kaida, Y; Matsubara, Y [OYO Corp., Tokyo (Japan); Nijhof, V; Brouwer, J

    1996-05-01

    An S-wave portable vibrator to serve as a seismic source has been developed for the purpose of applying the shallow-layer reflection method to the study of the soil ground. The author, et al., who previously developed a P-wave portable vibrator has now developed an S-wave version, considering the advantage of the S-wave over the P-wave in that, for example, the S-wave velocity may be directly compared with the N-value representing ground strength and that the S-wave travels more slowly than the P-wave through sticky soil promising a higher-resolution exploration. The experimentally constructed S-wave vibrator consists of a conventional P-wave vibrator and an L-type wooden base plate combined therewith. Serving as the monitor for vibration is a conventional accelerometer without any modification. The applicability test was carried out at a location where a plank hammering test was once conducted for reflection aided exploration, and the result was compared with that of the plank hammering test. As the result, it was found that after some preliminary treatment the results of the two tests were roughly the same but that both reflected waves were a little sharper in the S-wave vibrator test than in the plank hammering test. 4 refs., 9 figs., 1 tab.

  9. Vibration monitoring of EDF rotating machinery using artificial neural networks

    International Nuclear Information System (INIS)

    Alguindigue, I.E.; Loskiewicz-Buczak, A.; Uhrig, R.E.; Hamon, L.; Lefevre, F.

    1991-01-01

    Vibration monitoring of components in nuclear power plants has been used for a number of years. This technique involves the analysis of vibration data coming from vital components of the plant to detect features which reflect the operational state of machinery. The analysis leads to the identification of potential failures and their causes, and makes it possible to perform efficient preventive maintenance. Earlydetection is important because it can decrease the probability of catastrophic failures, reduce forced outgage, maximize utilization of available assets, increase the life of the plant, and reduce maintenance costs. This paper documents our work on the design of a vibration monitoring methodology based on neural network technology. This technology provides an attractive complement to traditional vibration analysis because of the potential of neural networks to operate in real-time mode and to handle data which may be distorted or noisy. Our efforts have been concentrated on the analysis and classification of vibration signatures collected by Electricite de France (EDF). Two neural networks algorithms were used in our project: the Recirculation algorithm and the Backpropagation algorithm. Although this project is in the early stages of development it indicates that neural networks may provide a viable methodology for monitoring and diagnostics of vibrating components. Our results are very encouraging

  10. DYNAMICS OF VIBRATION FEEDERS WITH A NONLINEAR ELASTIC CHARACTERISTIC

    Directory of Open Access Journals (Sweden)

    V. I. Dyrda

    2017-04-01

    Full Text Available Purpose. Subject to the smooth and efficient operation of each production line, is the use of vehicles transporting high specification. It worked well in practice for transporting construction machines, which are used during the vibration. The use of vibration machines requires optimization of their operation modes. In the form of elastic link in them are increasingly using rubber-metallic elements, which are characterized by nonlinear damping properties. So it is necessary to search for new, more modern, methods of calculation of dynamic characteristics of the vibration machines on the properties of rubber as a cushioning material. Methodology. The dynamics of vibration machine that is as elastic rubber block units and buffer shock absorbers limiting the amplitude of the vibrations of the working body. The method of determining amplitude-frequency characteristics of the vibrating feeder is based on the principle of Voltaire, who in the calculations of the damping properties of the dampers will allow for elastic-hereditary properties of rubber. When adjusting the basic dynamic stiffness of the elastic ties and vibratory buffers, using the principle of heredity rubber properties, determine the dependence of the amplitude of the working body of the machine vibrations. This method is called integro-operator using the fractional-exponential kernels of relaxation. Findings. Using the derived formula for determining the amplitude of the resonance curve is constructed one-mass nonlinear system. It is established that the use of the proposed method of calculation will provide a sufficiently complete description of the damping parameters of rubber-metallic elements and at the same time be an effective means of calculating the amplitude-frequency characteristics of nonlinear vibration systems. Originality. The authors improved method of determining damping characteristics of rubber-metallic elements and the amplitude-frequency characteristics of nonlinear

  11. Active Vibration Control of a Railway Vehicle Carbody Using Piezoelectric Elements

    Science.gov (United States)

    Molatefi, Habibollah; Ayoubi, Pejman; Mozafari, Hozhabr

    2017-07-01

    In recent years and according to modern transportation development, rail vehicles are manufactured lighter to achieve higher speed and lower transportation costs. On the other hand, weight reduction of rail vehicles leads to increase the structural vibration. In this study, Active Vibration Control of a rail vehicle using piezoelectric elements is investigated. The optimal control employed as the control approach regard to the first two modes of vibration. A simplified Car body structure is modeled in Matlab using the finite element theory by considering six DOF beam element and then the Eigen functions and mode shapes are derived. The surface roughness of different classes of rail tracks have been obtained using random vibration theory and applied to the secondary suspension as the excitation of the structure; Then piezoelectric mounted where the greatest moments were captured. The effectiveness of Piezoelectric in structural vibrations attenuation of car body is demonstrated through the state space equations and its effect on modal coefficient.

  12. Nonlinear free vibration control of beams using acceleration delayed-feedback control

    International Nuclear Information System (INIS)

    Alhazza, Khaled A; Alajmi, Mohammed; Masoud, Ziyad N

    2008-01-01

    A single-mode delayed-feedback control strategy is developed to reduce the free vibrations of a flexible beam using a piezoelectric actuator. A nonlinear variational model of the beam based on the von Kàrmàn nonlinear type deformations is considered. Using Galerkin's method, the resulting governing partial differential equations of motion are reduced to a system of nonlinear ordinary differential equations. A linear model using the first mode is derived and is used to characterize the damping produced by the controller as a function of the controller's gain and delay. Three-dimensional figures showing the damping magnitude as a function of the controller gain and delay are presented. The characteristic damping of the controller as predicted by the linear model is compared to that calculated using direct long-time integration of a three-mode nonlinear model. Optimal values of the controller gain and delay using both methods are obtained, simulated and compared. To validate the single-mode approximation, numerical simulations are performed using a three-mode full nonlinear model. Results of the simulations demonstrate an excellent controller performance in mitigating the first-mode vibration

  13. Adaptive learning algorithms for vibration energy harvesting

    International Nuclear Information System (INIS)

    Ward, John K; Behrens, Sam

    2008-01-01

    By scavenging energy from their local environment, portable electronic devices such as MEMS devices, mobile phones, radios and wireless sensors can achieve greater run times with potentially lower weight. Vibration energy harvesting is one such approach where energy from parasitic vibrations can be converted into electrical energy through the use of piezoelectric and electromagnetic transducers. Parasitic vibrations come from a range of sources such as human movement, wind, seismic forces and traffic. Existing approaches to vibration energy harvesting typically utilize a rectifier circuit, which is tuned to the resonant frequency of the harvesting structure and the dominant frequency of vibration. We have developed a novel approach to vibration energy harvesting, including adaptation to non-periodic vibrations so as to extract the maximum amount of vibration energy available. Experimental results of an experimental apparatus using an off-the-shelf transducer (i.e. speaker coil) show mechanical vibration to electrical energy conversion efficiencies of 27–34%

  14. Integrated Circuit Stellar Magnitude Simulator

    Science.gov (United States)

    Blackburn, James A.

    1978-01-01

    Describes an electronic circuit which can be used to demonstrate the stellar magnitude scale. Six rectangular light-emitting diodes with independently adjustable duty cycles represent stars of magnitudes 1 through 6. Experimentally verifies the logarithmic response of the eye. (Author/GA)

  15. Recent advances in micro-vibration isolation

    Science.gov (United States)

    Liu, Chunchuan; Jing, Xingjian; Daley, Steve; Li, Fengming

    2015-05-01

    Micro-vibration caused by disturbance sources onboard spacecraft can severely degrade the working environment of sensitive payloads. Some notable vibration control methods have been developed particularly for the suppression or isolation of micro-vibration over recent decades. Usually, passive isolation techniques are deployed in aerospace engineering. Active isolators, however, are often proposed to deal with the low frequency vibration that is common in spacecraft. Active/passive hybrid isolation has also been effectively used in some spacecraft structures for a number of years. In semi-active isolation systems, the inherent structural performance can be adjusted to deal with variation in the aerospace environment. This latter approach is potentially one of the most practical isolation techniques for micro-vibration isolation tasks. Some emerging advanced vibration isolation methods that exploit the benefits of nonlinearity have also been reported in the literature. This represents an interesting and highly promising approach for solving some challenging problems in the area. This paper serves as a state-of-the-art review of the vibration isolation theory and/or methods which were developed, mainly over the last decade, specifically for or potentially could be used for, micro-vibration control.

  16. Enhancement of Rayleigh scatter in optical fiber by simple UV treatment: an order of magnitude increase in distributed sensing sensitivity

    Science.gov (United States)

    Loranger, Sébastien; Parent, François; Lambin-Iezzi, Victor; Kashyap, Raman

    2016-02-01

    Rayleigh scatter in optical fiber communication systems has long been considered a nuisance as a loss mechanism, although applications have used such scatter to probe the fiber for faults and propagation loss using time domain reflectometry (OTDR). It is however only with the development of Frequency domain reflectometry (OFDR) and coherent-phase OTDR that Rayleigh scatter has been probed to its deepest and can now be used to measure strain and temperature along a fiber, leading to the first distributed sensing applications. However, Rayleigh scatter remains very weak giving rise to very small signals which limits the technique for sensing. We show here a new technique to significantly enhance the Rayleigh scatter signal by at least two orders of magnitude, in a standard optical fiber with simple UV exposure of the core. A study of various exposures with different types of fibers has been conducted and a phenomenological description developed. We demonstrate that such an increase in signal can enhance the temperature and strain sensitivity by an order of magnitude for distributed sensing with an OFDR technique. Such improved performance can lead to temperature/strain RMS noise levels of 6 mK and 50 nɛ for 1 cm spatial resolution in UV exposed SMF-28, compared to the typical noise level of 100 mK for the same spatial resolution in the similar unexposed fiber.

  17. Assessment of exposure to whole body vibration in Yazd city taxi drivers

    Directory of Open Access Journals (Sweden)

    F Samoori sakhvidi

    2016-11-01

    in the Z-axis is equal to .45 m/s2 that was more than out of the axes X, Y. (rms acceleration values in the range of potential risks to health. The average Aeq acceleration in the Pride was obtained. 62 m/s2, which was more than 2 cars, although statistically significant difference was not found between the types of vehicles. But average Aeq acceleration of the vehicle was located in the zone caution health. Average vibration dose for all vehicles were less than limits recommended in the ISO 2631 standard. The results showed that increasing the mileage and life of the car and also traffic during driving can increase exposure to vibration in the taxi drivers. Conclusion: The results suggest that taxi drivers are exposed to significant amounts of whole body vibration. Therefore, we must take measures to reduce the adverse effects of vibration on these people.

  18. Investigation and analysis the vibration of handles of chainsaw without cutting

    Directory of Open Access Journals (Sweden)

    M Feyzi

    2016-04-01

    (VMI-192. The accelerometer mounted on an adapter inserted between the handle and accelerometer. The experiments were conducted in split plot completely randomized design. Ninety tests in two handles, three speeds of engine, three perpendicular axes and five repeats were conducted. The vibration acceleration at various conditions was measured and the root mean square of vibration acceleration was calculated based on acceleration-time spectrum. To investigate the characteristics of vibration in different speeds, the vibration spectrums in time domain were converted to spectrums in frequency domain. The frequency weighted RMS acceleration at 1/3rd octave bands from 6.3Hz to 1250Hz and the vibration total value was calculated from frequency spectrum. To analyze the obtained data, SAS software was used. Furthermore, the Duncan's multiple range tests were used to compare the RMS values. Results and Discussion: Main source of vibration of chainsaw was single cylinder engine. The acceleration spectra of employed chainsaw had peaks in frequencies in accordance with the speed of engine. These peaks in 2800 rpm, 10000 rpm and 13300 rpm speeds of engine occurred in 46.5Hz, 166.5Hz and 221.5Hz, respectively. To achieve a safe design for handle of portable tools, identifying the frequency which leads to the maximum value of vibration acceleration is very useful. To avoid the resonance phenomenon, the natural frequency of handle must be far from dominant frequency of engine. The results of ANOVA showed that the RMS acceleration in different axes and different speeds were significant at 1% level. The maximum value of vibration acceleration, at idling engine speed, occurred in the lateral axis. In addition, the mentioned variable was maximized in normal and axial axes at nominal and racing speeds, respectively. The total value of vibration was increased when the speed of engine moving away from nominal speed. This increase in rear handle is very larger than front handle. The total

  19. Vibrational lifetimes of protein amide modes

    International Nuclear Information System (INIS)

    Peterson, K.A.; Rella, C.A.

    1995-01-01

    Measurement of the lifetimes of vibrational modes in proteins has been achieved with a single frequency infrared pump-probe technique using the Stanford Picosecond Free-electron Laser, These are the first direct measurements of vibrational dynamics in the polyamide structure of proteins. In this study, modes associated with the protein backbone are investigated. Results for the amide I band, which consists mainly of the stretching motion of the carbonyl unit of the amide linkage, show that relaxation from the first vibrational excited level (v=1) to the vibrational ground state (v=0) occurs within 1.5 picoseconds with apparent first order kinetics. Comparison of lifetimes for myoglobin and azurin, which have differing secondary structures, show a small but significant difference. The lifetime for the amide I band of myoglobin is 300 femtoseconds shorter than for azurin. Further measurements are in progress on other backbone vibrational modes and on the temperature dependence of the lifetimes. Comparison of vibrational dynamics for proteins with differing secondary structure and for different vibrational modes within a protein will lead to a greater understanding of energy transfer and dissipation in biological systems. In addition, these results have relevance to tissue ablation studies which have been conducted with pulsed infrared lasers. Vibrational lifetimes are necessary for calculating the rate at which the energy from absorbed infrared photons is converted to equilibrium thermal energy within the irradiated volume. The very fast vibrational lifetimes measured here indicate that mechanisms which involve direct vibrational up-pumping of the amide modes with consecutive laser pulses, leading to bond breakage or weakening, are not valid

  20. Interference between vibration-to-translation and vibration-to-vibration energy transfer modes in diatomic molecules at high collision energies

    International Nuclear Information System (INIS)

    Shin, H.K.

    1983-01-01

    An explicit time dependent approach for simultaneous VT and VV energy transfer in diatom--diatom collisions is explored using the exponential form of ladder operators in the solution of the Schroedinger equation of motion. The collision of two hydrogen molecules is chosen to illustrate the extent of interference between VT and VV modes among various vibrational states. While vibrational energy transfer processes of nominally VT type can be treated with pure VT mode at low collision energies, the intermode coupling is found to be very important at collision energies of several hω. The occurrence of the coupling appears to be nearly universal in vibrational transitions at such energies. Exceptions to the coupling have been discussed

  1. Effective representation of amide III, II, I, and A modes on local vibrational modes: Analysis of ab initio quantum calculation results.

    Science.gov (United States)

    Hahn, Seungsoo

    2016-10-28

    The Hamiltonian matrix for the first excited vibrational states of a protein can be effectively represented by local vibrational modes constituting amide III, II, I, and A modes to simulate various vibrational spectra. Methods for obtaining the Hamiltonian matrix from ab initio quantum calculation results are discussed, where the methods consist of three steps: selection of local vibrational mode coordinates, calculation of a reduced Hessian matrix, and extraction of the Hamiltonian matrix from the Hessian matrix. We introduce several methods for each step. The methods were assessed based on the density functional theory calculation results of 24 oligopeptides with four different peptide lengths and six different secondary structures. The completeness of a Hamiltonian matrix represented in the reduced local mode space is improved by adopting a specific atom group for each amide mode and reducing the effect of ignored local modes. The calculation results are also compared to previous models using C=O stretching vibration and transition dipole couplings. We found that local electric transition dipole moments of the amide modes are mainly bound on the local peptide planes. Their direction and magnitude are well conserved except amide A modes, which show large variation. Contrary to amide I modes, the vibrational coupling constants of amide III, II, and A modes obtained by analysis of a dipeptide are not transferable to oligopeptides with the same secondary conformation because coupling constants are affected by the surrounding atomic environment.

  2. Cleaning device for vibrational hose filter

    Energy Technology Data Exchange (ETDEWEB)

    Engels, R

    1978-01-05

    Filter hoses out of web in dust separators can be cleaned by enforced vibrations. The efficiency of the cleaning is a maximum if the vibrations are at about the individual frequency of the whole arrangement. In the interior of the hose a cage from bars parallel to the wall of the hose is placed on its total length. The bars are fixed at one end and connected with a vibration exciter at the other end. The unilaterally fixed vibration bars can be adjusted to the individual frequency of the vibration exciter. If the hose filter is flown through from the outer to the inner side the vibration bars serve as a supporting body. In the reverse case the bars are placed on the outer side of the hose filter.

  3. Vibrations in orthopedics.

    Science.gov (United States)

    Nokes, L D; Thorne, G C

    1988-01-01

    Measurements of various mechanical properties of skeletal material using vibration techniques have been reported. The purposes of such investigations include the monitoring of pathogenic disorders such as osteoporosis, the rate and extent of fracture healing, and the status of internal fixations. Early investigations pioneered the application of conventional vibration measurement equipment to biological systems. The more recent advent of the microcomputer has made available to research groups more sophisticated techniques for data acquisition and analysis. The economical advantages of such equipment has led to the development of portable research instrumentation which lends itself to use in a clinical environment. This review article reports on the developments and progression of the various vibrational techniques and theories as applied to musculoskeletal systems.

  4. Silicon micromachined vibrating gyroscopes

    Science.gov (United States)

    Voss, Ralf

    1997-09-01

    This work gives an overview of silicon micromachined vibrating gyroscopes. Market perspectives and fields of application are pointed out. The advantage of using silicon micromachining is discussed and estimations of the desired performance, especially for automobiles are given. The general principle of vibrating gyroscopes is explained. Vibrating silicon gyroscopes can be divided into seven classes. for each class the characteristic principle is presented and examples are given. Finally a specific sensor, based on a tuning fork for automotive applications with a sensitivity of 250(mu) V/degrees is described in detail.

  5. Quantum wavepacket ab initio molecular dynamics: an approach for computing dynamically averaged vibrational spectra including critical nuclear quantum effects.

    Science.gov (United States)

    Sumner, Isaiah; Iyengar, Srinivasan S

    2007-10-18

    We have introduced a computational methodology to study vibrational spectroscopy in clusters inclusive of critical nuclear quantum effects. This approach is based on the recently developed quantum wavepacket ab initio molecular dynamics method that combines quantum wavepacket dynamics with ab initio molecular dynamics. The computational efficiency of the dynamical procedure is drastically improved (by several orders of magnitude) through the utilization of wavelet-based techniques combined with the previously introduced time-dependent deterministic sampling procedure measure to achieve stable, picosecond length, quantum-classical dynamics of electrons and nuclei in clusters. The dynamical information is employed to construct a novel cumulative flux/velocity correlation function, where the wavepacket flux from the quantized particle is combined with classical nuclear velocities to obtain the vibrational density of states. The approach is demonstrated by computing the vibrational density of states of [Cl-H-Cl]-, inclusive of critical quantum nuclear effects, and our results are in good agreement with experiment. A general hierarchical procedure is also provided, based on electronic structure harmonic frequencies, classical ab initio molecular dynamics, computation of nuclear quantum-mechanical eigenstates, and employing quantum wavepacket ab initio dynamics to understand vibrational spectroscopy in hydrogen-bonded clusters that display large degrees of anharmonicities.

  6. Calculation of the ex-core neutron noise induced by fuel vibrations in PWRs

    International Nuclear Information System (INIS)

    Tran Hoai Nam; Cao Van Chung; Hoang Thanh Phi Hung; Hoang Van Khanh

    2015-01-01

    Calculation of the neutron noise induced by fuel assembly vibrations in two pressurized water reactor (PWR) cores has been performed to investigate the effect of cycle burnup on the properties of the ex-core detector noise. Pendular vibrations of individual fuel assemblies were assumed to occur at different locations in the core. The auto power spectra density (APSD) of the ex-core detector noise was evaluated with the assumption of stochastic vibrations along a random two-dimensional trajectory. The results show that no general monotonic variation of APSD was found. The increase of APSD occurs predominantly for peripheral assemblies. Assuming simultaneous vibrations of a number of fuel assemblies uniformly distributed over the core with the more realistic perturbation model, the effect of the peripheral assemblies will dominate and the increase of the amplitude of the ex-core neutron noise with burnup can be confirmed. (author)

  7. Attitudes Toward, and Use of, Vibrators in China

    OpenAIRE

    Jing, S.; Lay, A.; Weis, L.; Furnham, A.

    2018-01-01

    The current study examined the relationship between traditional masculine traits and attitudes toward vibrator use, actual vibrator use, and frequency of vibrator use in China. In all, 235 Chinese females aged between 16 and 58 years completed a questionnaire regarding attitudes toward, and personal use of, vibrators. The results showed a positive association between masculine traits and attitudes toward women's vibrator use, attitudes toward vibrator use and actual vibrator use, as well as f...

  8. The effects of hypergravity and substrate vibration on vestibular function in developing chickens.

    Science.gov (United States)

    Jones, S M; Warren, L E; Shukla, R; Browning, A; Fuller, C A; Jones, T A

    2000-12-01

    We used linear vestibular evoked potentials (VsEPs) to characterize peripheral and central vestibular function in birds following embryogenesis at 2G centrifugation or at elevated levels of vibration (+20dB re: background levels). Additionally, we characterized peripheral and central vestibular adaptation to 2G centrifugation in early post-hatch birds. Linear VsEP response peak latencies, amplitudes, thresholds and input/output functions were quantified and compared between experimental and control animals. Birds vibrated throughout embryogenesis and up to one-week post-hatch revealed no changes in linear VsEP response components compared to control siblings. Birds centrifuged at 2G throughout embryogenesis also evidenced no changes in the linear VsEP measured at hatch (P0). Significant changes were seen, however, for linear VsEPs of post-hatch birds placed at 2G for 7 days beginning on post-hatch day 5. Linear VsEPs for these animals displayed significant reductions in response amplitudes associated with peaks P2, N2 and P3, response peaks generated by central neural relays of gravity receptors. The earliest response components, generated by the peripheral vestibular nerve (i.e., P1, N1), were not significantly altered with the 7-day exposure to 2G. Thus, there was no evidence of generalized changes in peripheral gravity receptor excitability or in the rate of maturation in developing animals under increased levels of gravity or vibration. If gravity level plays a critical role in shaping peripheral vestibular ontogeny at magnitudes between 1 and 2G, then it may serve to stabilize function under changing G-fields or it may operate on physiological features that can not be resolved by the VsEP. In contrast, exposure to elevated gravity during post-hatch periods does alter central vestibular function thus providing direct evidence for central vestibular adaptation to the gravitational environment. The fact that central functional change was observed in hatchlings

  9. The High Level Vibration Test Program

    International Nuclear Information System (INIS)

    Hofmayer, C.H.; Curreri, J.R.; Park, Y.J.; Kato, W.Y.; Kawakami, S.

    1989-01-01

    As part of cooperative agreements between the United States and Japan, tests have been performed on the seismic vibration table at the Tadotsu Engineering Laboratory of Nuclear Power Engineering Test Center (NUPEC) in Japan. The objective of the test program was to use the NUPEC vibration table to drive large diameter nuclear power piping to substantial plastic strain with an earthquake excitation and to compare the results with state-of-the-art analysis of the problem. The test model was designed by modifying the 1/2.5 scale model of the PWR primary coolant loop. Elastic and inelastic seismic response behavior of the test model was measured in a number of test runs with an increasing excitation input level up to the limit of the vibration table. In the maximum input condition, large dynamic plastic strains were obtained in the piping. Crack initiation was detected following the second maximum excitation run. The test model was subjected to a maximum acceleration well beyond what nuclear power plants are designed to withstand. This paper describes the overall plan, input motion development, test procedure, test results and comparisons with pre-test analysis. 4 refs., 16 figs., 2 tabs

  10. The High Level Vibration Test program

    International Nuclear Information System (INIS)

    Hofmayer, C.H.; Curreri, J.R.; Park, Y.J.; Kato, W.Y.; Kawakami, S.

    1990-01-01

    As part of cooperative agreements between the United States and Japan, tests have been performed on the seismic vibration table at the Tadotsu Engineering Laboratory of Nuclear Power Engineering Test Center (NUPEC) in Japan. The objective of the test program was to use the NUPEC vibration table to drive large diameter nuclear power piping to substantial plastic strain with an earthquake excitation and to compare the results with state-of-the-art analysis of the problem. The test model was designed by modifying the 1/2.5 scale model of the pressurized water reactor primary coolant loop. Elastic and inelastic seismic response behavior of the test model was measured in a number of test runs with an increasing excitation input level up to the limit of the vibration table. In the maximum input condition, large dynamic plastic strains were obtained in the piping. Crack initiation was detected following the second maximum excitation run. The test model was subjected to a maximum acceleration well beyond what nuclear power plants are designed to withstand. This paper describes the overall plan, input motion development, test procedure, test results and comparisons with pre-test analysis

  11. Benefits of Spacecraft Level Vibration Testing

    Science.gov (United States)

    Gordon, Scott; Kern, Dennis L.

    2015-01-01

    NASA-HDBK-7008 Spacecraft Level Dynamic Environments Testing discusses the approaches, benefits, dangers, and recommended practices for spacecraft level dynamic environments testing, including vibration testing. This paper discusses in additional detail the benefits and actual experiences of vibration testing spacecraft for NASA Goddard Space Flight Center (GSFC) and Jet Propulsion Laboratory (JPL) flight projects. JPL and GSFC have both similarities and differences in their spacecraft level vibration test approach: JPL uses a random vibration input and a frequency range usually starting at 5 Hz and extending to as high as 250 Hz. GSFC uses a sine sweep vibration input and a frequency range usually starting at 5 Hz and extending only to the limits of the coupled loads analysis (typically 50 to 60 Hz). However, both JPL and GSFC use force limiting to realistically notch spacecraft resonances and response (acceleration) limiting as necessary to protect spacecraft structure and hardware from exceeding design strength capabilities. Despite GSFC and JPL differences in spacecraft level vibration test approaches, both have uncovered a significant number of spacecraft design and workmanship anomalies in vibration tests. This paper will give an overview of JPL and GSFC spacecraft vibration testing approaches and provide a detailed description of spacecraft anomalies revealed.

  12. Theoretical and Experimental Study on Vibration Propagation in PMMA Components in Ultrasonic Bonding Process

    Directory of Open Access Journals (Sweden)

    Yibo Sun

    2017-03-01

    Full Text Available Ultrasonic bonding has an increasing application in the micro assembly of polymeric micro-electro mechanical systems (MEMS with high requirements for fusion precision. In the ultrasonic bonding process, the propagation of ultrasonic vibration in polymer components is related to the interfacial fusion, which can be used as a monitoring parameter to control ultrasonic energy. To study the vibration propagation in viscoelastic polymer components, finite element analysis on the bonding of poly methyl methacrylate (PMMA micro connector to substrate for microfluidic system is carried out. Curves of propagated vibration amplitude corresponding to interfacial temperatures are obtained. The ultrasonic vibration propagated in PMMA components are measured through experiments. The theoretical and experimental results are contrasted to analyze the change mechanism of vibration propagation related to temperature. Based on the ultrasonic bonding process controlled by the feedback of vibration propagation, interfacial fusions at different vibration propagation states are obtained through experiments. Interfacial fusion behavior is contrasted to the propagated vibration amplitude in theoretical and experimental studies. The relation between vibration propagation and fusion degree is established with the proper parameter range for the obtained high quality bonding.

  13. 2008 Vibrational Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Philip J. Reid

    2009-09-21

    The conference focuses on using vibrational spectroscopy to probe structure and dynamics of molecules in gases, liquids, and interfaces. The goal is to bring together a collection of researchers who share common interests and who will gain from discussing work at the forefront of several connected areas. The intent is to emphasize the insights and understanding that studies of vibrations provide about a variety of systems.

  14. Experimental and theoretical investigation of an impact vibration harvester with triboelectric transduction

    Science.gov (United States)

    Ibrahim, Alwathiqbellah; Ramini, Abdallah; Towfighian, Shahrzad

    2018-03-01

    There has been remarkable interest in triboelectric mechanisms because of their high efficiency, wide availability, and low-cost generation of sustainable power. Using impact vibrations, we introduce piece-wise stiffness to the system to enlarge frequency bandwidth. The triboelectric layers consist of Aluminum, which also serves as an electrode, and Polydimethylsiloxane (PDMS) with micro semi-cylindrical patterns. At the bottom of the PDMS layer, there is another Al electrode. The layers are sandwiched between the center mass of a clamped-clamped beam and its base. The center mass enhances the impact force on the triboelectric layers subjected to external vibrations. Upon impact, alternating current, caused by the contact electrification and electrostatic induction, flows between the Al electrodes. Because of the impact, the equivalent stiffness of the structure increases and as a result, the frequency bandwidth gets wider. The output voltage and power reach as large as 5.5 V, 15 μW, respectively at 0.8 g vibrational amplitude. In addition, we report how the surface charge density increases with the excitation levels. The analysis delineates the interactions between impact vibrations and triboelectric transductions. The ability of the system to achieve wider bandwidth paves the way for efficient triboelectric vibrational energy harvesters.

  15. Heavy atom vibrational modes and low-energy vibrational autodetachment in nitromethane anions

    International Nuclear Information System (INIS)

    Thompson, Michael C.; Weber, J. Mathias; Baraban, Joshua H.; Matthews, Devin A.; Stanton, John F.

    2015-01-01

    We report infrared spectra of nitromethane anion, CH 3 NO 2 − , in the region 700–2150 cm −1 , obtained by Ar predissociation spectroscopy and electron detachment spectroscopy. The data are interpreted in the framework of second-order vibrational perturbation theory based on coupled-cluster electronic structure calculations. The modes in the spectroscopic region studied here are mainly based on vibrations involving the heavier atoms; this work complements earlier studies on nitromethane anion that focused on the CH stretching region of the spectrum. Electron detachment begins at photon energies far below the adiabatic electron affinity due to thermal population of excited vibrational states

  16. Vibration damping method and apparatus

    Science.gov (United States)

    Redmond, James M.; Barney, Patrick S.; Parker, Gordon G.; Smith, David A.

    1999-01-01

    The present invention provides vibration damping method and apparatus that can damp vibration in more than one direction without requiring disassembly, that can accommodate varying tool dimensions without requiring re-tuning, and that does not interfere with tool tip operations and cooling. The present invention provides active dampening by generating bending moments internal to a structure such as a boring bar to dampen vibration thereof.

  17. Atomic beams probe surface vibrations

    International Nuclear Information System (INIS)

    Robinson, A.L.

    1982-01-01

    In the last two years, surface scientist have begun trying to obtain the vibrational frequencies of surface atoms in both insulating and metallic crystals from beams of helium atoms. It is the inelastic scattering that researchers use to probe surface vibrations. Inelastic atomic beam scattering has only been used to obtain vibrational frequency spectra from clean surfaces. Several experiments using helium beams are cited. (SC)

  18. Adaptive Piezoelectric Absorber for Active Vibration Control

    Directory of Open Access Journals (Sweden)

    Sven Herold

    2016-02-01

    Full Text Available Passive vibration control solutions are often limited to working reliably at one design point. Especially applied to lightweight structures, which tend to have unwanted vibration, active vibration control approaches can outperform passive solutions. To generate dynamic forces in a narrow frequency band, passive single-degree-of-freedom oscillators are frequently used as vibration absorbers and neutralizers. In order to respond to changes in system properties and/or the frequency of excitation forces, in this work, adaptive vibration compensation by a tunable piezoelectric vibration absorber is investigated. A special design containing piezoelectric stack actuators is used to cover a large tuning range for the natural frequency of the adaptive vibration absorber, while also the utilization as an active dynamic inertial mass actuator for active control concepts is possible, which can help to implement a broadband vibration control system. An analytical model is set up to derive general design rules for the system. An absorber prototype is set up and validated experimentally for both use cases of an adaptive vibration absorber and inertial mass actuator. Finally, the adaptive vibration control system is installed and tested with a basic truss structure in the laboratory, using both the possibility to adjust the properties of the absorber and active control.

  19. Capacitance-based frequency adjustment of micro piezoelectric vibration generator.

    Science.gov (United States)

    Mao, Xinhua; He, Qing; Li, Hong; Chu, Dongliang

    2014-01-01

    Micro piezoelectric vibration generator has a wide application in the field of microelectronics. Its natural frequency is unchanged after being manufactured. However, resonance cannot occur when the natural frequencies of a piezoelectric generator and the source of vibration frequency are not consistent. Output voltage of the piezoelectric generator will sharply decline. It cannot normally supply power for electronic devices. In order to make the natural frequency of the generator approach the frequency of vibration source, the capacitance FM technology is adopted in this paper. Different capacitance FM schemes are designed by different locations of the adjustment layer. The corresponding capacitance FM models have been established. Characteristic and effect of the capacitance FM have been simulated by the FM model. Experimental results show that the natural frequency of the generator could vary from 46.5 Hz to 42.4 Hz when the bypass capacitance value increases from 0 nF to 30 nF. The natural frequency of a piezoelectric vibration generator could be continuously adjusted by this method.

  20. Capacitance-Based Frequency Adjustment of Micro Piezoelectric Vibration Generator

    Directory of Open Access Journals (Sweden)

    Xinhua Mao

    2014-01-01

    Full Text Available Micro piezoelectric vibration generator has a wide application in the field of microelectronics. Its natural frequency is unchanged after being manufactured. However, resonance cannot occur when the natural frequencies of a piezoelectric generator and the source of vibration frequency are not consistent. Output voltage of the piezoelectric generator will sharply decline. It cannot normally supply power for electronic devices. In order to make the natural frequency of the generator approach the frequency of vibration source, the capacitance FM technology is adopted in this paper. Different capacitance FM schemes are designed by different locations of the adjustment layer. The corresponding capacitance FM models have been established. Characteristic and effect of the capacitance FM have been simulated by the FM model. Experimental results show that the natural frequency of the generator could vary from 46.5 Hz to 42.4 Hz when the bypass capacitance value increases from 0 nF to 30 nF. The natural frequency of a piezoelectric vibration generator could be continuously adjusted by this method.

  1. Gearbox vibration diagnostic analyzer

    Science.gov (United States)

    1992-01-01

    This report describes the Gearbox Vibration Diagnostic Analyzer installed in the NASA Lewis Research Center's 500 HP Helicopter Transmission Test Stand to monitor gearbox testing. The vibration of the gearbox is analyzed using diagnostic algorithms to calculate a parameter indicating damaged components.

  2. Increase by order of magnitude in quality factor during Cherenkov radiation detection in samples on solid carriers in glass cuvettes Kavalier

    International Nuclear Information System (INIS)

    Podracka, E.; Tykva, R.

    The method of measuring Cherenkov radiation is discussed developed by the authors, based on measuring samples on a solid carrier in glass scintillation cuvettes Kavalier. Increased interaction of emitted beta particles and modified measurement configuration were achieved by putting polyethylene foils of 0.3 mm in thickness and 17 mm in diameter straight to the sample or inserting a polyethylene tube of 13 mm in length and 15 mm in diameter down to the bottom of the cuvette in whose axis the sample is mounted. The application of the said technique can increase the quality factor by an order of magnitude when Czechoslovak-made cuvettes are used and a significantly higher value of quality factor can be obtained than when peak standard cuvettes imported from abroad and the original Huelsen and Prenzel's procedure are used. (B.S.)

  3. Study of Bubble Size, Void Fraction, and Mass Transport in a Bubble Column under High Amplitude Vibration

    Directory of Open Access Journals (Sweden)

    Shahrouz Mohagheghian

    2018-04-01

    Full Text Available Vertical vibration is known to cause bubble breakup, clustering and retardation in gas-liquid systems. In a bubble column, vibration increases the mass transfer ratio by increasing the residence time and phase interfacial area through introducing kinetic buoyancy force (Bjerknes effect and bubble breakup. Previous studies have explored the effect of vibration frequency (f, but minimal effort has focused on the effect of amplitude (A on mass transfer intensification. Thus, the current work experimentally examines bubble size, void fraction, and mass transfer in a bubble column under relatively high amplitude vibration (1.5 mm < A <9.5 mm over a frequency range of 7.5–22.5 Hz. Results of the present work were compared with past studies. The maximum stable bubble size under vibration was scaled using Hinze theory for breakage. Results of this work indicate that vibration frequency exhibits local maxima in both mass transfer and void fraction. Moreover, an optimum amplitude that is independent of vibration frequency was found for mass transfer enhancements. Finally, this work suggests physics-based models to predict void fraction and mass transfer in a vibrating bubble column.

  4. Lateral vibration behavior analysis and TLD vibration absorption design of the soft yoke single-point mooring system

    Science.gov (United States)

    Lyu, Bai-cheng; Wu, Wen-hua; Yao, Wei-an; Du, Yu

    2017-06-01

    Mooring system is the key equipment of FPSO safe operation. The soft yoke mooring system is regarded as one of the best shallow water mooring strategies and widely applied to the oil exploitation in the Bohai Bay in China and the Gulf of Mexico. Based on the analysis of numerous monitoring data obtained by the prototype monitoring system of one FPSO in the Bohai Bay, the on-site lateral vibration behaviors found on the site of the soft yoke subject to wave load were analyzed. ADAMS simulation and model experiment were utilized to analyze the soft yoke lateral vibration and it was determined that lateral vibration was resonance behaviors caused by wave excitation. On the basis of the soft yoke longitudinal restoring force being guaranteed, a TLD-based vibration damper system was constructed and the vibration reduction experiments with multi-tank space and multi-load conditions were developed. The experimental results demonstrated that the proposed TLD vibration reduction system can effectively reduce lateral vibration of soft yoke structures.

  5. Experimental study of acoustic vibration in BWRs

    International Nuclear Information System (INIS)

    Kumagai, Kosuke; Someya, Satoshi; Okamoto, Koji

    2009-01-01

    In recent years, the power uprate of Boiling Water Reactors have been conducted at several existing power plants as a way to improve plant economy. In one of the power uprated plants (117.8% uprates) in the United States, the steam dryer breakages due to fatigue fracture occurred. It is conceivable that the increased steam flow passing through the branches caused a self-induced vibration with the propagation of sound wave into the steam-dome. The resonance among the structure, flow and the pressure fluctuation resulted in the breakages. To understand the basic mechanism of the resonance, previous researches were done by a point measurement of the pressure and by a phase averaged measurement of the flow, while it was difficult to detect the interaction among them by the conventional method. In this study, Dynamic Particle Image Velocimetry (PIV) System was applied to investigate the effect of sound on natural convection and forced convection. Dynamic PIV system is the newest entrant to the field of fluid flow measurement. Its paramount advantage is the instantaneous global evaluation of conditions over plane extended across the whole velocity field. Also, to evaluate the coupling between the acoustic wave and structure (simulated as tuning fork vibrator in this experiment), in the resonance frequency of tuning fork vibrator, fluid behavior and the motion of tuning fork vibrator are measured simultaneously. (author)

  6. Simulation Study on Material Property of Cantilever Piezoelectric Vibration Generator

    Directory of Open Access Journals (Sweden)

    Yan Zhen

    2014-06-01

    Full Text Available For increasing generating capacity of cantilever piezoelectric vibration generator with limited volume, relation between output voltage, inherent frequency and material parameter of unimorph, bimorph in series type and bimorph in parallel type piezoelectric vibration generator is analyzed respectively by mechanical model and finite element modeling. The results indicate PZT-4, PZT- 5A and PZT-5H piezoelectric materials and stainless steel, nickel alloy substrate material should be firstly chosen.

  7. Vibrationally coupled electron transport through single-molecule junctions

    Energy Technology Data Exchange (ETDEWEB)

    Haertle, Rainer

    2012-04-26

    Single-molecule junctions are among the smallest electric circuits. They consist of a molecule that is bound to a left and a right electrode. With such a molecular nanocontact, the flow of electrical currents through a single molecule can be studied and controlled. Experiments on single-molecule junctions show that a single molecule carries electrical currents that can even be in the microampere regime. Thereby, a number of transport phenomena have been observed, such as, for example, diode- or transistor-like behavior, negative differential resistance and conductance switching. An objective of this field, which is commonly referred to as molecular electronics, is to relate these transport phenomena to the properties of the molecule in the contact. To this end, theoretical model calculations are employed, which facilitate an understanding of the underlying transport processes and mechanisms. Thereby, one has to take into account that molecules are flexible structures, which respond to a change of their charge state by a profound reorganization of their geometrical structure or may even dissociate. It is thus important to understand the interrelation between the vibrational degrees of freedom of a singlemolecule junction and the electrical current flowing through the contact. In this thesis, we investigate vibrational effects in electron transport through singlemolecule junctions. For these studies, we calculate and analyze transport characteristics of both generic and first-principles based model systems of a molecular contact. To this end, we employ a master equation and a nonequilibrium Green's function approach. Both methods are suitable to describe this nonequilibrium transport problem and treat the interactions of the tunneling electrons on the molecular bridge non-perturbatively. This is particularly important with respect to the vibrational degrees of freedom, which may strongly interact with the tunneling electrons. We show in detail that the resulting

  8. Stabilization of axisymmetric liquid bridges through vibration-induced pressure fields.

    Science.gov (United States)

    Haynes, M; Vega, E J; Herrada, M A; Benilov, E S; Montanero, J M

    2018-03-01

    Previous theoretical studies have indicated that liquid bridges close to the Plateau-Rayleigh instability limit can be stabilized when the upper supporting disk vibrates at a very high frequency and with a very small amplitude. The major effect of the vibration-induced pressure field is to straighten the liquid bridge free surface to compensate for the deformation caused by gravity. As a consequence, the apparent Bond number decreases and the maximum liquid bridge length increases. In this paper, we show experimentally that this procedure can be used to stabilize millimeter liquid bridges in air under normal gravity conditions. The breakup of vibrated liquid bridges is examined experimentally and compared with that produced in absence of vibration. In addition, we analyze numerically the dynamics of axisymmetric liquid bridges far from the Plateau-Rayleigh instability limit by solving the Navier-Stokes equations. We calculate the eigenfrequencies characterizing the linear oscillation modes of vibrated liquid bridges, and determine their stability limits. The breakup process of a vibrated liquid bridge at that stability limit is simulated too. We find qualitative agreement between the numerical predictions for both the stability limits and the breakup process and their experimental counterparts. Finally, we show the applicability of our technique to control the amount of liquid transferred between two solid surfaces. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Hydroelastic Vibrations of Ships

    DEFF Research Database (Denmark)

    Jensen, Jørgen Juncher; Folsø, Rasmus

    2002-01-01

    A formula for the necessary hull girder bending stiffness required to avoid serious springing vibrations is derived. The expression takes into account the zero crossing period of the waves, the ship speed and main dimensions. For whipping vibrations the probability of exceedance for the combined...

  10. Vibrations on pulse tube based Dry Dilution Refrigerators for low noise measurements

    Energy Technology Data Exchange (ETDEWEB)

    Olivieri, E. [CSNSM, Univ. Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, 91405 Orsay (France); Billard, J.; De Jesus, M.; Juillard, A. [Univ Lyon, Université Lyon 1, CNRS/IN2P3, IPN-Lyon, F-69622 Villeurbanne (France); Leder, A. [Massachussets Institute of Technology, Laboratory for Nuclear Science, 77 Massachusetts Avenue Cambridge, MA 02139-4307 (United States)

    2017-06-21

    Dry Dilution Refrigerators (DDR) based on pulse tube cryo-coolers have started to replace Wet Dilution Refrigerators (WDR) due to the ease and low cost of operation. However these advantages come at the cost of increased vibrations, induced by the pulse tube. In this work, we present the vibration measurements performed on three different commercial DDRs. We describe in detail the vibration measurement system we assembled, based on commercial accelerometers, conditioner and DAQ, and examined the effects of the various damping solutions utilized on three different DDRs, both in the low and high frequency regions. Finally, we ran low temperature, pseudo-massive (30 and 250 g) germanium bolometers in the best vibration-performing system under study and report on the results.

  11. Determining the static electronic and vibrational energy correlations via two-dimensional electronic-vibrational spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Hui; Lewis, Nicholas H. C.; Oliver, Thomas A. A.; Fleming, Graham R., E-mail: grfleming@lbl.gov [Department of Chemistry, University of California, Berkeley, California 94720 (United States); Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, Californial 94720 (United States); Kavli Energy NanoSciences Institute at Berkeley, Berkeley, California 94720 (United States)

    2015-05-07

    Changes in the electronic structure of pigments in protein environments and of polar molecules in solution inevitably induce a re-adaption of molecular nuclear structure. Both changes of electronic and vibrational energies can be probed with visible or infrared lasers, such as two-dimensional electronic spectroscopy or vibrational spectroscopy. The extent to which the two changes are correlated remains elusive. The recent demonstration of two-dimensional electronic-vibrational (2DEV) spectroscopy potentially enables a direct measurement of this correlation experimentally. However, it has hitherto been unclear how to characterize the correlation from the spectra. In this paper, we present a theoretical formalism to demonstrate the slope of the nodal line between the excited state absorption and ground state bleach peaks in the spectra as a characterization of the correlation between electronic and vibrational transition energies. We also show the dynamics of the nodal line slope is correlated to the vibrational spectral dynamics. Additionally, we demonstrate the fundamental 2DEV spectral line-shape of a monomer with newly developed response functions.

  12. Approaches for reducing structural vibration of the carbody railway vehicles

    Directory of Open Access Journals (Sweden)

    Dumitriu Mădălina

    2017-01-01

    Full Text Available Reducing the weight of the railway vehicles stands as a decisive rule in their design, entailed by higher velocities, the need to consume less energy and lower the manufacturing costs, along with the maximization of the use of loads on the axle. Once complied with this rule, the vehicle flexibility increases and leads to an easy excitation of the structural vibrations in the carbody, with an impact upon the ride comfort in the railway vehicle. For a better ride comfort in lightweight railway vehicles, both vibration isolation approaches and structural damping approaches have been introduced. The paper herein submits a brief review of the main structural damping approaches aiming to reduce the amplitude in the carbody structural vibrations, based on the use of the piezoelectric elements in passive control schemes. The paper outcomes show the potential of the presented methods concerning the reduction of the flexible vibrations in the carbody and the ride comfort improvement.

  13. Diagnostics of sources of disturbances and distribution of vibrations over the width of a tape in tape-feed mechanisms

    Science.gov (United States)

    Kenstavichyus, A. B. B.

    1973-01-01

    Disturbances created by certain assemblies and components of tape-feed mechanisms (TFM) and acting on a moving magnetic tape are studied. The method, based on elements of digital logic, is established by stress-strain diagrams of the longitudinal deformations and vibrations across the width of a magnetic tape. Experimental studies were carried out for determination of the functional relationships of longitudinal deformations in a section of magnetic tape to the magnitude of roller play, tension vibrations rate of movement, and elasticity of magnetic tapes. A block diagram of the measurements is shown. Appropriate digital computer algorithms and programs were proposed for statistical analysis of the data obtained. Estimates of the mathematical expectation, dispersion, intercorrelation function, energy spectral density, and distribution pattern of the random process values were calculated.

  14. Force Maintenance Accuracy Using a Tool: Effects of Magnitude and Feedback.

    Science.gov (United States)

    Wang, Dangxiao; Jiao, Jian; Yang, Gaofeng; Zhang, Yuru

    2016-01-01

    The ability to precisely produce a force via a hand-held tool is crucial in fine manipulations. In this paper, we study the error in maintaining a target force ranging from 0.5 to 5 N under two concurrent feedback conditions: pure haptic feedback (H), and visual plus haptic feedback (V + H). The results show that absolute error (AE) increases along with the increasing force magnitudes under both feedback conditions. For target forces ranging from 1.5 to 5 N, the relative error (RE) is approximately constant under both feedback conditions, while the RE significantly increases for the small target forces of 0.5 and 1 N. The effect of force magnitude on the coefficient of variation (CoV) is not significant for target forces ranging from 1.5 to 5 N. For both the RE and the CoV, the values under the H condition are significantly larger than those under the V + H condition. The effect of manipulation mode (i.e., a hand-held tool or a fingertip) on force maintenance accuracy is complex, i.e., its effect on RE is not significant while its effect on CoV is significant. Only for the magnitude of 0.5 N, the RE of using the tool was significantly greater than that of using the fingertip under both feedback conditions. For both the RE and the CoV, no interaction effect exists between manipulation mode, force magnitude and feedback condition.

  15. Vibration control of a cluster of buildings through the Vibrating Barrier

    Science.gov (United States)

    Tombari, A.; Garcia Espinosa, M.; Alexander, N. A.; Cacciola, P.

    2018-02-01

    A novel device, called Vibrating Barrier (ViBa), that aims to reduce the vibrations of adjacent structures subjected to ground motion waves has been recently proposed. The ViBa is a structure buried in the soil and detached from surrounding buildings that is able to absorb a significant portion of the dynamic energy arising from the ground motion. The working principle exploits the dynamic interaction among vibrating structures due to the propagation of waves through the soil, namely the structure-soil-structure interaction. In this paper the efficiency of the ViBa is investigated to control the vibrations of a cluster of buildings. To this aim, a discrete model of structures-site interaction involving multiple buildings and the ViBa is developed where the effects of the soil on the structures, i.e. the soil-structure interaction (SSI), the structure-soil-structure interaction (SSSI) as well as the ViBa-soil-structures interaction are taken into account by means of linear elastic springs. Closed-form solutions are derived to design the ViBa in the case of harmonic excitation from the analysis of the discrete model. Advanced finite element numerical simulations are performed in order to assess the efficiency of the ViBa for protecting more than a single building. Parametric studies are also conducted to identify beneficial/adverse effects in the use of the proposed vibration control strategy to protect cluster of buildings. Finally, experimental shake table tests are performed to a prototype of a cluster of two buildings protected by the ViBa device for validating the proposed numerical models.

  16. Vibration measurements of automobile catalyst

    Science.gov (United States)

    Aatola, Seppo

    1994-09-01

    Vibration of catalyst cell, which is inside the casing of the catalyst, is difficult to measure with usual measuring instrumentation. When catalyst is in use, there is hot exhaust gas flow though the catalyst cell and temperature of the cell is approximately +900 degree(s)C. Therefore non-contact Laser- Doppler-Vibrometer was used to measure vibration velocity of the catalyst cell. The laser beam was directed towards the cell through pipe which was put through and welded to the casing of the catalyst. The outer end of the pipe was screw down with a tempered class to prevent exhaust gas flow from the pipe. The inner end of the pipe was open and few millimeters away from the measuring point. Catalyst was attached to the engine with two ways, rigidly close to the engine and flexible under the engine. The engine was running in test bench under controlled conditions. Vibration measurements were carried out during constant running speeds of the engine. Vibration signals were captured and analyzed with FFT-analyzer. Vibration of catalyst cell was strongest at running speed of 5000 rpm, from 10 to 20 g (1 g equals 9.81 ms-2), when catalyst was attached rigidly close to the engine. At running speed of 3000 rpm, vibration of catalyst cell was from 2 to 3 g in most cases, when catalyst was attached either rigidly or flexible to the engine. It is estimated that in real life, i.e. when catalyst is attached to car with same engine, vibration of catalyst cell at running speed of 5000 rpm is somewhere between 1 and 10 g. At running speed of 3000 rpm, which may be more often used when driving car (car speed approximately 100 kmh-1), vibration of catalyst cell is probably few g's.

  17. Active vibration control of smart hull structure using piezoelectric composite actuators

    International Nuclear Information System (INIS)

    Sohn, Jung Woo; Choi, Seung-Bok; Lee, Chul-Hee

    2009-01-01

    In this paper, active vibration control performance of the smart hull structure with macro-fiber composite (MFC) is evaluated. MFC is an advanced piezoelectric composite which has great flexibility and increased actuating performance compared to a monolithic piezoelectric ceramic patch. The governing equations of motion of the hull structure with MFC actuators are derived based on the classical Donnell–Mushtari shell theory. The actuating model for the interaction between hull structure and MFC is included in the governing equations. Subsequently, modal characteristics are investigated and compared with the results obtained from experiment. The governing equations of the vibration control system are then established and expressed in the state space form. A linear quadratic Gaussian (LQG) control algorithm is designed in order to effectively and actively control the imposed vibration. The controller is experimentally realized and vibration control performances are evaluated

  18. Characteristics of North Korea nuclear test and KMA magnitude scale

    Science.gov (United States)

    Jeon, Y. S.; Lee, D.; Min, K.; Hwang, E. H.; Lee, J.; Park, E.; Jo, E.; Lee, M. S.

    2017-12-01

    Democratic People's Republic of Korea(DPRK) carried out 6th nuclear test on 3 Sep. 2017 at 03:30 UTC. Korea Meteorological Administration(KMA) announced to the public that the event took place in the DPRK's test site, Punggye-ri with the magnitude 5.7. This event is larger than previous one in terms of magnitude and showed that measured magnitude strongly depends on the frequency band of data. After we applied several magnitude scales such as Everdon(1967), Nuttli(1967), and Hong & Lee(2012) to this event, we found that magnitude ranges from 5.3 to 6.7 which depends on frequency band and epicentral distance of signal. 6th DPRK test experiment indicated that spectral amplitude ratio of 6th/5th near 2.37 Hz shows similar amplification compatible to relative spectral magnitude 5.7, while spectral amplitude ratio of 6th/5th near 1.0 Hz marks relative spectral magnitude about 6.1. Relative spectral magnitude varies with frequencies and decreases as frequency increase. We found that systematic non-linearity exists for spectral amplitude ratio of 6th/5th from 1.0 to 10.0 Hz, while it's characteristic is not found at 5th/4th and 4th/3th. A methodology is presented for determining mb(Pn) magnitude of underground nuclear explosions from local Pn phase. 582 waveforms from vertical component of broadband and acceleration seismographs at 120 stations in the epicenter distance from 340 to 800 km are used to calibrate mb(Pn) magnitude scaling for DPRK's nuclear tests. The mb(Pn) estimates of regional events for Korean Peninsula are determined to be mb(Pn) ? = log10(A) + 2.1164×log10(d) - 0.2721, where A is the peak-to-peak Pn amplitude in μm and d is the epicentral distance in km. Systematic non-linearity does not observed at frequency band from 0.1 to 1.0 Hz. The magnitude of 6th event is mb(Pn) 6.08 and mb(Pn) 4.52, 4.92, 4.84 and 5.03 for 2nd, 3rd, 4th and 5th respectively. Further research of applicable mb(Pn) magnitude scaling is required for all frequency band and

  19. Acute effects of a vibration-like stimulus during knee extension exercise.

    Science.gov (United States)

    Mileva, Katya N; Naleem, Asif A; Biswas, Santonu K; Marwood, Simon; Bowtell, Joanna L

    2006-07-01

    This study was conducted to test whether a low-frequency vibration-like stimulus (rapid variable resistance) applied during a single session of knee extension exercise would alter muscle performance. Torque, knee joint angle, EMG activity of rectus femoris (RF) and vastus lateralis (VL) muscles, and VL muscle oxygenation status (near-infrared spectroscopy) were recorded during metronome-guided knee extension exercise. Nine healthy adults completed four trials exercising at contraction intensities of 35% (L) or 70% (H) of one-repetition maximum (1RM) in control (no vibration, Vb-) or vibrated condition (superimposed 10-Hz vibration-like stimulus, Vb+). Maximum voluntary contraction and 1RM were tested pre- and postexercise. During 1RM tests, muscle dynamic strength (P=0.02) and power (P=0.05) were significantly higher during vibrated rather than nonvibrated trials, and strength was significantly higher post- than preexercise (P=0.002), except during LVb- trial. Median spectral frequency of VL and RF EMG activity was significantly higher during postexercise than preexercise 1RM test in the vibration trials but unchanged in the control trials (Pvibration superimposition tended to speed muscle deoxygenation rate (P=0.065, 36% effect size) particularly during L trials. Vibration superimposition during knee extension exercise at low contraction intensity enhanced muscle performance. This effect appears to result from adaptation of neural factors such as motor unit excitability (recruitment and firing frequency, conduction velocity of excitation) in response to sensory receptor stimulation. Muscle vibration may increase the training effects derived from light-to-moderate exercise.

  20. Vertical Vibration Characteristics of a High-Temperature Superconducting Maglev Vehicle System

    Science.gov (United States)

    Jiang, Jing; Li, Ke Cai; Zhao, Li Feng; Ma, Jia Qing; Zhang, Yong; Zhao, Yong

    2013-06-01

    The vertical vibration characteristics of a high-temperature superconducting maglev vehicle system are investigated experimentally. The displacement variations of the maglev vehicle system are measured with different external excitation frequency, in the case of a certain levitation gap. When the external vibration frequency is low, the amplitude variations of the response curve are small. With the increase of the vibration frequency, chaos status can be found. The resonance frequencies with difference levitation gap are also investigated, while the external excitation frequency range is 0-100 Hz. Along with the different levitation gap, resonance frequency is also different. There almost is a linear relationship between the levitation gap and the resonance frequency.

  1. Control of pipe vibrations; Schwingungsminderung bei Rohrleitungen

    Energy Technology Data Exchange (ETDEWEB)

    Sinambari, G.R. [FH Bingen, Fachrichtung Umweltschutz, und IBS Ingenieurbuero fuer Schall- und Schwingungstechnik GmbH, Frankenthal (Germany); Thorn, U. [IBS Ingenieurbuero fuer Schall- und Schwingungstechnik GmbH, Frankenthal (Germany)

    2005-06-01

    Following commissioning of a new vacuum system for the refinery of MiRO Mineraloelraffinerie Oberrhein GmbH and Co. KG, vibrations occurred in the furnace exhaust pipes. As these had to be regarded as critical for the fatigue strength of the pipes, the pipes' vibration response in the critical frequency range was investigated immediately by means of a vibration analysis, and appropriate measures for vibration control were elaborated. All investigations, and the installation of the hydraulic vibration dampers, took place with the system operating. The effectiveness of the measures taken was checked by means of measurements following installation. The measures succeeded in attenuating the vibrations to a level at which, empirically, damage need no longer be expected. This paper illustrates the procedure for developing the vibration control measures and the essential results of the investigations. (orig.)

  2. Determination of the Meteor Limiting Magnitude

    Science.gov (United States)

    Kingery, A.; Blaauw, R.; Cooke, W. J.

    2016-01-01

    The limiting meteor magnitude of a meteor camera system will depend on the camera hardware and software, sky conditions, and the location of the meteor radiant. Some of these factors are constants for a given meteor camera system, but many change between meteor shower or sporadic source and on both long and short timescales. Since the limiting meteor magnitude ultimately gets used to calculate the limiting meteor mass for a given data set, it is important to have an understanding of these factors and to monitor how they change throughout the night, as a 0.5 magnitude uncertainty in limiting magnitude translates to a uncertainty in limiting mass by a factor of two.

  3. Software development of the mechanical vibration monitoring system of the CNA I reactor internals by neutron noise technique

    International Nuclear Information System (INIS)

    Wentzeis, Luis M.; Calvo, Maria D.

    2009-01-01

    The neutron noise analysis technique is an important predictive maintenance tool for early detection of failures such as sensor malfunctions and incipient mechanical problems located in the reactor internals. This technique was applied successfully in Argentina since 1987. The FER-GAEN group dependent of the CNEA developed the measuring system to detect anomalies as early as possible. The magnitude of interest in this analysis is the fluctuating component of the neutron flux known as 'neutron noise'. In order to improve and facilitate the analysis, a new software code was developed for the data acquisition of the neutron noise signals and neutron spectra estimation in the frequency domain. The RMS values related with the internals vibrations are calculated from these spectra and are chronologically displayed, in order to detect any anomalous vibration or incipient detector malfunction as early as possible. (author)

  4. Changes in the timing and magnitude of floods in Canada

    International Nuclear Information System (INIS)

    Cunderlik, J.M.; Ouarda, T.B.M.J.

    2008-01-01

    It is expected that the global climate change will have significant impacts on the regime of hydrologic extremes. An increase in both the frequency and magnitude of hydrologic extremes is anticipated in the near future. As a consequence, the design and operation of water resource systems will have to adapt to the changing regime of hydrologic extremes. This study explores trends in the timing and magnitude of floods in natural streamflow gauging stations in Canada. The seasonality of floods is analyzed and the selected streamflow stations grouped into five flood seasonality regions. A common 30-year long observation period from 1974 to 2003 is used in the analysis to eliminate the effect of hydro-climatic variability in the timing and magnitude of floods resulting from different observation periods. The timing of floods is described in terms of directional statistics. A method is developed for analyzing trends in directional dates of flood occurrence that is not affected by the choice of zero direction. The magnitude of floods is analyzed by the annual maximum and peak-over-threshold methods. Trends in the timing and magnitude of floods are identified in each flood seasonality region using the Mann-Kendall nonparametric test, with a modification for auto-correlated data. The results show a good correspondence between the identified flood seasonality regions and the main terrestrial zones in Canada. Significant changes in the timing and magnitude of floods are found in the flood seasonality regions. (author)

  5. Heat exchanger vibration

    International Nuclear Information System (INIS)

    Richards, D.J.W.

    1977-01-01

    The heat exchangers of various types are common items of plant in the generation and transmission of electricity. The amount of attention given to the flow-induced vibrations of heat exchangers by designers is usually related to the operational history of similar items of plant. Consequently, if a particular design procedure yields items of plant which behave in a satisfactory manner during their operational life, there is little incentive to improve or refine the design procedure. On the other hand, failures of heat exchangers clearly indicate deficiencies in the design procedures or in the data available to the designer. When such failures are attributable to flow-induced vibrations, the identification of the mechanisms involved is a prime importance. Ideally, basic research work provides the background understanding and the techniques necessary to be able to identify the important mechanisms. In practice, the investigation of a flow-induced vibration problem may identify the presence of mechanisms but may not be able to quantify their effects adequately. In these circumstances the need for additional work is established and the objectives of the research programme emerge. The purpose of this paper is to outline the background to the current research programme at C.E.R.L. on heat exchanger vibration

  6. Heat exchanger vibration

    Energy Technology Data Exchange (ETDEWEB)

    Richards, D J.W. [CERL, CEGB, Leatherhead, Surrey (United Kingdom)

    1977-12-01

    The heat exchangers of various types are common items of plant in the generation and transmission of electricity. The amount of attention given to the flow-induced vibrations of heat exchangers by designers is usually related to the operational history of similar items of plant. Consequently, if a particular design procedure yields items of plant which behave in a satisfactory manner during their operational life, there is little incentive to improve or refine the design procedure. On the other hand, failures of heat exchangers clearly indicate deficiencies in the design procedures or in the data available to the designer. When such failures are attributable to flow-induced vibrations, the identification of the mechanisms involved is a prime importance. Ideally, basic research work provides the background understanding and the techniques necessary to be able to identify the important mechanisms. In practice, the investigation of a flow-induced vibration problem may identify the presence of mechanisms but may not be able to quantify their effects adequately. In these circumstances the need for additional work is established and the objectives of the research programme emerge. The purpose of this paper is to outline the background to the current research programme at C.E.R.L. on heat exchanger vibration.

  7. Design and fabrication of an energy-harvesting device using vibration absorber

    Science.gov (United States)

    Heidari, Hamidreza; Afifi, Arash

    2017-05-01

    Energy-harvesting devices collect energy that is being wasted and convert to the electrical energy. For this reason, this type of devices is considered as a convenient alternative to traditional batteries. In this paper, experimental examinations were performed to investigate the application of harvesting device for the reduction of the vibration amplitude in a vibration system and also increase the efficiency of energy-harvesting device. This study focuses on the energy-harvesting device as both producing electrical device and a vibration disabled absorber. In this regard, a motion-based energy-harvesting device is designed to produce electrical energy and also eliminate vibrations of a two joint-end beam which is located under the harmonic excitation force. Then, the governing equations of the forced motion on the main beam are derived and energy-harvesting system are simulated. In addition, the system designed by MATLAB simulation is explained and its results are expressed. Finally, a prototype of the system was made and the ability of the energy-harvesting device to absorb the original system vibrations, as well as parameters impact on the efficiency of energy harvesting is investigated. Experimental results show that the energy-harvesting device, in addition to producing electric current with a maximum value of 1.5V, reduces 94% of the original system vibrations.

  8. Data of piezoelectric vibration energy harvesting of a bridge undergoing vibration testing and train passage

    Directory of Open Access Journals (Sweden)

    Paul Cahill

    2018-04-01

    Full Text Available The data presented in this article is in relation to the research article “Vibration energy harvesting based monitoring of an operational bridge undergoing forced vibration and train passage” Cahill et al. (2018 [1]. The article provides data on the full-scale bridge testing using piezoelectric vibration energy harvesters on Pershagen Bridge, Sweden. The bridge is actively excited via a swept sinusoidal input. During the testing, the bridge remains operational and train passages continue. The test recordings include the voltage responses obtained from the vibration energy harvesters during these tests and train passages. The original dataset is made available to encourage the use of energy harvesting for Structural Health Monitoring.

  9. The moment magnitude M w and the energy magnitude M e: common roots and differences

    Science.gov (United States)

    Bormann, Peter; di Giacomo, Domenico

    2011-04-01

    Starting from the classical empirical magnitude-energy relationships, in this article, the derivation of the modern scales for moment magnitude M w and energy magnitude M e is outlined and critically discussed. The formulas for M w and M e calculation are presented in a way that reveals, besides the contributions of the physically defined measurement parameters seismic moment M 0 and radiated seismic energy E S, the role of the constants in the classical Gutenberg-Richter magnitude-energy relationship. Further, it is shown that M w and M e are linked via the parameter Θ = log( E S/ M 0), and the formula for M e can be written as M e = M w + (Θ + 4.7)/1.5. This relationship directly links M e with M w via their common scaling to classical magnitudes and, at the same time, highlights the reason why M w and M e can significantly differ. In fact, Θ is assumed to be constant when calculating M w. However, variations over three to four orders of magnitude in stress drop Δ σ (as well as related variations in rupture velocity V R and seismic wave radiation efficiency η R) are responsible for the large variability of actual Θ values of earthquakes. As a result, for the same earthquake, M e may sometimes differ by more than one magnitude unit from M w. Such a difference is highly relevant when assessing the actual damage potential associated with a given earthquake, because it expresses rather different static and dynamic source properties. While M w is most appropriate for estimating the earthquake size (i.e., the product of rupture area times average displacement) and thus the potential tsunami hazard posed by strong and great earthquakes in marine environs, M e is more suitable than M w for assessing the potential hazard of damage due to strong ground shaking, i.e., the earthquake strength. Therefore, whenever possible, these two magnitudes should be both independently determined and jointly considered. Usually, only M w is taken as a unified magnitude in many

  10. Anti-vibration bars for nuclear steam generators

    International Nuclear Information System (INIS)

    Gowda, B.V.; Wilson, R.M.; Wepfer, R.M.

    1986-01-01

    A method of installing tubular anti-vibration bars into a tube bundle of a steam generator wherein the tube bundle comprises rows of tubes, with the anti-vibration bars received between adjacent rows of the tube bundle for stabilizing the tubes against vibration. The anti-vibration bars are first inserted between adjacent rows of the tube bundle and a pressurized fluid is then introduced into the anti-vibration bars which are thus expanded into contact with the tubes of the adjacent rows for support

  11. Putting a damper on drilling's bad vibrations

    Energy Technology Data Exchange (ETDEWEB)

    Jardine, S [Sedco forex, Montrouge (France); Malone, D [Anadrill, Sugar Land, TX (United States); Sheppard, M [Schlumberger Cambridge Research, Cambridge (United Kingdom)

    1994-01-01

    Harmful drilling vibrations are costing the industry dearly. Three main vibration types (axial, torsional and transverse) are explained and its causes discussed. Technology exists to eliminate most vibrations, but requires more systematic deployment than is usual. Hardware that eliminates vibrations is reviewed, including downhole shock measurement, torque feedback shock guards and antiwhirl bits. 9 figs., 11 refs.

  12. Axisymmetric vibrations of thick shells of revolution

    International Nuclear Information System (INIS)

    Suzuki, Katsuyoshi; Kosawada, Tadashi; Takahashi, Shin

    1983-01-01

    Axisymmetric shells of revolution are used for chemical plants, nuclear power plants, aircrafts, structures and so on, and the elucidation of their free vibration is important for the design. In this study, the axisymmetric vibration of a barrel-shaped shell was analyzed by the modified thick shell theory. The Lagrangian during one period of the vibration of a shell of revolution was determined, and from its stopping condition, the vibration equations and the boundary conditions were derived. The vibration equations were analyzed strictly by using the series solution. Moreover, the basic equations for the strain of a shell and others were based on those of Love. As the examples of numerical calculation, the natural frequency and vibration mode of the symmetrical shells of revolution fixed at both ends and supported at both ends were determined, and their characteristics were clarified. By comparing the results of this study with the results by thin shell theory, the effects of shearing deformation and rotary inertia on the natural frequency and vibration mode were clarified. The theoretical analysis and the numerical calculation are described. The effects of shearing deformation and rotary inertia on the natural frequency became larger in the higher order vibration. The vibration mode did not much change in both theories. (Kako, I.)

  13. Lifetime-vibrational interference effects in resonantly excited x-ray emission spectra of CO

    Energy Technology Data Exchange (ETDEWEB)

    Skytt, P.; Glans, P.; Gunnelin, K. [Uppsala Univ. (Sweden)] [and others

    1997-04-01

    The parity selection rule for resonant X-ray emission as demonstrated for O{sub 2} and N{sub 2} can be seen as an effect of interference between coherently excited degenerate localized core states. One system where the core state degeneracy is not exact but somewhat lifted was previously studied at ALS, namely the resonant X-ray emission of amino-substituted benzene (aniline). It was shown that the X-ray fluorescence spectrum resulting from excitation of the C1s at the site of the {open_quotes}aminocarbon{close_quotes} could be described in a picture separating the excitation and the emission processes, whereas the spectrum corresponding to the quasi-degenerate carbons could not. Thus, in this case it was necessary to take interference effects between the quasi-degenerate intermediate core excited states into account in order to obtain agreement between calculations and experiment. The different vibrational levels of core excited states in molecules have energy splittings which are of the same order of magnitude as the natural lifetime broadening of core excitations in the soft X-ray range. Therefore, lifetime-vibrational interference effects are likely to appear and influence the band shapes in resonant X-ray emission spectra. Lifetime-vibrational interference has been studied in non-resonant X-ray emission, and in Auger spectra. In this report the authors discuss results of selectively excited soft X-ray fluorescence spectra of molecules, where they focus on lifetime-interference effects appearing in the band shapes.

  14. Experimental Study on the Vibration Control Effect of Long Elastic Sleeper Track in Subways

    Directory of Open Access Journals (Sweden)

    Xiaopei Cai

    2018-01-01

    Full Text Available The vibration effect of urban rail transit has gained attention from both academia and the industry sector. Long Elastic Sleeper Track (LEST is a new structure for vibration reduction which has recently been designed and applied to Chinese subways. However, little research has been devoted to its vibration reduction effect. In this study, field tests were conducted during peak transit hours on Beijing Subway Line 15 to examine the vibration reduction effects of the common ballastless track and LEST on both straight and curved sections. The results demonstrate that although LEST increases the wheel-rail vertical forces, rail vertical displacements, and rail accelerations to some extent, these effects do not threaten subway operational safety, and vibrations of track bed and tunnel wall are positively mitigated. LEST has an obvious vibration reduction effect at frequencies above 40 Hz. In straight track, the vibration of bottom of the tunnel wall measured in one-third octave bands is reduced by 10.52 dB, while the vibration at point on the tunnel wall at 1.5 m height is reduced by 9.60 dB. For the curved track, the vibrations at those two points are reduced by 9.35 dB and 8.44 dB, respectively. This indicates that LEST reduces vibrations slightly more for the straight track than for the curved track.

  15. Machinery Vibration Monitoring Program at the Savannah River Site

    International Nuclear Information System (INIS)

    Potvin, M.M.

    1990-01-01

    The Reactor Maintenance's Machinery Vibration Monitoring Program (MVMP) plays an essential role in ensuring the safe operation of the three Production Reactors at the Westinghouse Savannah River Company (WRSC) Savannah River Site (SRS). This program has increased machinery availability and reduced maintenance cost by the early detection and determination of machinery problems. This paper presents the Reactor Maintenance's Machinery Vibration Monitoring Program, which has been documented based on Electric Power Research Institute's (EPRI) NP-5311, Utility Machinery Monitoring Guide, and some examples of the successes that it has enjoyed

  16. Hand-Arm vibration assessment among tiller operator

    Directory of Open Access Journals (Sweden)

    P. Nassiri

    2013-08-01

    Result: Results of the present study indicated that in all measured situations, exposure to hand arm vibration was higher than the standard limit suggested by Iranian occupational health committee and there was risk of vibration-induced disorders. The maximum exposure to vibration is in plowing ground. Exposure to hand arm vibration in three modes of plowing, transmission and natural, were respectively 16.95, 14.16 and 8.65 meters per second squared. Additionally, in all situations, vibration exposure was highest in the X-axis in comparison with Z- and Y-axes. .Conclusion: This study emphasizes on the need to provide intervention and controlling and managing strategies in order to eliminate or reduce vibration transmitted from tiller to operators hand and arm and also prevent to serious problems including neurovascular disorders, discomfort and white finger syndrome. Meanwhile, more studies are necessary to identify the sources of vibration on different models of tiller.

  17. Responses of sympathetic nervous system to cold exposure in vibration syndrome subjects and age-matched healthy controls.

    Science.gov (United States)

    Nakamoto, M

    1990-01-01

    Plasma norepinephrine and epinephrine in vibration syndrome subjects and age-matched healthy controls were measured for the purpose of estimating the responsibility of the sympathetic nervous system to cold exposure. In preliminary experiment, it was confirmed that cold air exposure of the whole body was more suitable than one-hand immersion in cold water. In the main experiment, 195 subjects were examined. Sixty-five subjects had vibration syndrome with vibration-induced white finger (VWF + group) and 65 subjects had vibration syndrome without VWF (VWF- group) and 65 controls had no symptoms (control group). In the three groups, plasma norepinephrine levels increased during cold air exposure of whole body at 7 degrees +/- 1.5 degrees C. Blood pressure increased and skin temperature decreased during cold exposure. Percent increase of norepinephrine in the VWF+ group was the highest while that in VWF- group followed and that in the control group was the lowest. This whole-body response of the sympathetic nervous system to cold conditions reflected the VWF which are characteristic symptoms of vibration syndrome. Excluding the effects of shivering and a cold feeling under cold conditions, it was confirmed that the sympathetic nervous system in vibration syndrome is activated more than in the controls. These results suggest that vibration exposure to hand and arm affects the sympathetic nervous system.

  18. The development of two Broadband Vibration Energy Harvesters (BVEH) with adaptive conversion electronics

    Science.gov (United States)

    Clingman, Dan J.; Thiesen, Jack

    2017-04-01

    Historically, piezoelectric vibration energy harvesters have been limited to operation at a single, structurally resonant frequency. A piezoceramic energy harvester, such as a bimorph beam, operating at structural resonance exchanges energy between dynamic and strain regimes. This energy exchange increases the coupling between piezoceramic deformation and electrical charge generation. Two BVEH mechanisms are presented that exploit strain energy management to reduce inertial forces needed to deform the piezoceramic, thus increasing the coupling between structural and electrical energy conversion over a broadband vibration spectrum. Broadband vibration excitation produces a non-sinusoidal electrical wave form from the BVEH device. An adaptive energy conversion circuit was developed that exploits a buck converter to capture the complex waveform energy in a form easily used by standard electrical components.

  19. PREFACE: International Conference on Vibration Problems (ICOVP-2015)

    Science.gov (United States)

    2015-12-01

    Vibrations produced by operating machine cause deleterious effect including excessive stresses in mechanical components and reduce the machine performance. Hence, it is important to minimize the vibrations to improve the machine performance. Machines need the materials wherein vibration characteristics such as frequency and amplitude are lower. The vibration characteristics depend on strength and other elastic constants. Therefore, study of the relation between vibration characteristics and the elastic constants of the material is very much important. In the domain of seismology, the knowledge of vibrations associated with an earthquake is needed for the mitigation plans. With the increased use of strong and light weight structures especially in defence and aero-space engineering applications, wherein, precision is very important, problems of vibrations arise. The knowledge of quality (mechanical properties) of bones comes from the study of vibrations in it. This knowledge may, for exmple, help to answer bone tissue remodelling problems. Unfortunately, vibrations mostly deal with destructive areas such as manufacturing industry, seismology, and bonemechanics. These days, mathematics has become a very important tool for Non- Destructive Evaluation (NDE) in the destructive areas. A very common issue in the said domains is that the pertinent problems result in non-linear coupled differential equations which are not easily solvable. Keeping the above facts in mind, the Department of Mathematics, Kakatiya University has organized the International Conference on Vibration Problems (ICOVP-2015) from February, 18-20, 2015 in collaboration with the Department of Mechanical Engineering, Kakatiya University, and Von-Karman Society, West Bengal. This association has already succeeded in organizing the Wave Mechanics and Vibration Conference (WMVC) in the year 2010. In the Conference, new research results were presented by the experts from eight countries. There were more than

  20. Vibration of imperfect rotating disk

    Directory of Open Access Journals (Sweden)

    Půst L.

    2011-12-01

    Full Text Available This study is concerned with the theoretical and numerical calculations of the flexural vibrations of a bladed disk. The main focus of this study is to elaborate the basic background for diagnostic and identification methods for ascertaining the main properties of the real structure or an experimental model of turbine disks. The reduction of undesirable vibrations of blades is proposed by using damping heads, which on the experimental model of turbine disk are applied only on a limited number of blades. This partial setting of damping heads introduces imperfection in mass, stiffness and damping distribution on the periphery and leads to more complicated dynamic properties than those of a perfect disk. Calculation of FEM model and analytic—numerical solution of disk behaviour in the limited (two modes frequency range shows the splitting of resonance with an increasing speed of disk rotation. The spectrum of resonance is twice denser than that of a perfect disk.

  1. Magnitude determination for large underground nuclear explosions

    Energy Technology Data Exchange (ETDEWEB)

    Porter, Lawrence D [Lawrence Radiation Laboratory, University of California, Livermore, CA (United States)

    1970-05-15

    A method is presented for determining the local magnitudes for large underground nuclear explosions. The Gutenberg-Richter nomograph is applied to the peak amplitudes for 24 large underground nuclear explosions that took place in Nevada. The amplitudes were measured at 18 California Wood-Anderson stations located 150-810 km from the explosion epicenter. The variation of the individual station magnitudes and magnitude corrections and the variation of the average and rms error estimates in the magnitude determinations are examined with respect to distance, azimuth, and event location. The magnitude prediction capability of the Gutenberg-Richter nomograph is examined on the basis of these two criteria, and certain corrections are suggested. The azimuthal dependence of the individual station magnitudes is investigated, and corrections for the California stations are calculated. Statistical weighting schemes for two-component data are employed, and the assumptions and limitations in the use of peak amplitudes are discussed. (author)

  2. Vibration reduction at the engine-pumps assembly of the main moderator system

    International Nuclear Information System (INIS)

    Holostencu, Adriana; Dinu, Marius

    2005-01-01

    vibrations, (solution efficiency checked using the calibrated model). In order to reduce the pump-motor assembly vibrations, the EUROTEST/ Stevenson recommendation was to install 6 viscous dampers VES- 100. The modifications were completed in Outage 2002. After dampers coupling a considerable reduction on motor vibration level was noticed. The value read in MCR decreased from 9 mm/s to 2,5 mm/s. The results were confirmed by independent local measurements perform in field by CNE- PROD, Stevenson and Bently- Nevada teams. At the same time a slight increase of the vibration on the discharge header was noticed. The vibration regime in the discharge header was analysed by Stevenson in order to asses the impact of increased vibration on the system pipes. The analysis was made in accordance with ASME OM -S/ G. The conclusion of this analysis is that the vibrations regime for the moderator system including pumps, motors and pipes induces loads below the endurance limits. The same solution was also implemented at Quinshan NPP and it will be applied at Cernavoda NPP Unit 2

  3. Impact self-excited vibrations of linear motor

    Science.gov (United States)

    Zhuravlev, V. Ph.

    2010-08-01

    Impact self-exciting vibration modes in a linear motor of a monorail car are studied. Existence and stability conditions of self-exciting vibrations are found. Ways of avoiding the vibrations are discussed.

  4. Nonlinear vibration of a traveling belt with non-homogeneous boundaries

    Science.gov (United States)

    Ding, Hu; Lim, C. W.; Chen, Li-Qun

    2018-06-01

    Free and forced nonlinear vibrations of a traveling belt with non-homogeneous boundary conditions are studied. The axially moving materials in operation are always externally excited and produce strong vibrations. The moving materials with the homogeneous boundary condition are usually considered. In this paper, the non-homogeneous boundaries are introduced by the support wheels. Equilibrium deformation of the belt is produced by the non-homogeneous boundaries. In order to solve the equilibrium deformation, the differential and integral quadrature methods (DIQMs) are utilized to develop an iterative scheme. The influence of the equilibrium deformation on free and forced nonlinear vibrations of the belt is explored. The DIQMs are applied to solve the natural frequencies and forced resonance responses of transverse vibration around the equilibrium deformation. The Galerkin truncation method (GTM) is utilized to confirm the DIQMs' results. The numerical results demonstrate that the non-homogeneous boundary conditions cause the transverse vibration to deviate from the straight equilibrium, increase the natural frequencies, and lead to coexistence of square nonlinear terms and cubic nonlinear terms. Moreover, the influence of non-homogeneous boundaries can be exacerbated by the axial speed. Therefore, non-homogeneous boundary conditions of axially moving materials especially should be taken into account.

  5. Size-dependent elastic moduli and vibrational properties of fivefold twinned copper nanowires

    Science.gov (United States)

    Zheng, Y. G.; Zhao, Y. T.; Ye, H. F.; Zhang, H. W.

    2014-08-01

    Based on atomistic simulations, the elastic moduli and vibration behaviors of fivefold twinned copper nanowires are investigated in this paper. Simulation results show that the elastic (i.e., Young’s and shear) moduli exhibit size dependence due to the surface effect. The effective Young’s modulus is found to decrease slightly whereas the effective shear modulus increases slightly with the increase in the wire radius. Both moduli tend to approach certain values at a larger radius and can be suitably described by core-shell composite structure models. Furthermore, we show by comparing simulation results and continuum predictions that, provided the effective Young’s and shear moduli are used, classic elastic theory can be applied to describe the small-amplitude vibration of fivefold twinned copper nanowires. Moreover, for the transverse vibration, the Timoshenko beam model is more suitable because shear deformation becomes apparent.

  6. Size-dependent elastic moduli and vibrational properties of fivefold twinned copper nanowires

    International Nuclear Information System (INIS)

    Zheng, Y G; Zhao, Y T; Ye, H F; Zhang, H W

    2014-01-01

    Based on atomistic simulations, the elastic moduli and vibration behaviors of fivefold twinned copper nanowires are investigated in this paper. Simulation results show that the elastic (i.e., Young’s and shear) moduli exhibit size dependence due to the surface effect. The effective Young’s modulus is found to decrease slightly whereas the effective shear modulus increases slightly with the increase in the wire radius. Both moduli tend to approach certain values at a larger radius and can be suitably described by core-shell composite structure models. Furthermore, we show by comparing simulation results and continuum predictions that, provided the effective Young’s and shear moduli are used, classic elastic theory can be applied to describe the small-amplitude vibration of fivefold twinned copper nanowires. Moreover, for the transverse vibration, the Timoshenko beam model is more suitable because shear deformation becomes apparent. (paper)

  7. Frequency adjustable MEMS vibration energy harvester

    Science.gov (United States)

    Podder, P.; Constantinou, P.; Amann, A.; Roy, S.

    2016-10-01

    Ambient mechanical vibrations offer an attractive solution for powering the wireless sensor nodes of the emerging “Internet-of-Things”. However, the wide-ranging variability of the ambient vibration frequencies pose a significant challenge to the efficient transduction of vibration into usable electrical energy. This work reports the development of a MEMS electromagnetic vibration energy harvester where the resonance frequency of the oscillator can be adjusted or tuned to adapt to the ambient vibrational frequency. Micro-fabricated silicon spring and double layer planar micro-coils along with sintered NdFeB micro-magnets are used to construct the electromagnetic transduction mechanism. Furthermore, another NdFeB magnet is adjustably assembled to induce variable magnetic interaction with the transducing magnet, leading to significant change in the spring stiffness and resonance frequency. Finite element analysis and numerical simulations exhibit substantial frequency tuning range (25% of natural resonance frequency) by appropriate adjustment of the repulsive magnetic interaction between the tuning and transducing magnet pair. This demonstrated method of frequency adjustment or tuning have potential applications in other MEMS vibration energy harvesters and micromechanical oscillators.

  8. The vibration compensation system for ARGOS

    Science.gov (United States)

    Peter, D.; Gaessler, W.; Borelli, J.; Kulas, M.

    2011-09-01

    For every adaptive optics system telescope vibrations can strongly reduce the performance. This is true for the receiver part of the system i.e. the telescope and wave front sensor part as well as for the transmitter part in the case of a laser guide star system. Especially observations in deep fields observed with a laser guide star system without any tip-tilt star will be greatly spoiled by telescope vibrations. The ARGOS GLAO system actually being built for the LBT aims to implement this kind of mode where wave front correction will rely purely on signals from the laser beacons. To remove the vibrations from the uplink path a vibration compensation system will be installed. This system uses accelerometers to measure the vibrations and corrects their effect with a small fast tip-tilt mirror. The controller of the system is built based on the assumption that the vibrations take place at a few distinct frequencies. Here I present a lab set-up of this system and show first results of the performance.

  9. Frequency adjustable MEMS vibration energy harvester

    International Nuclear Information System (INIS)

    Podder, P; Constantinou, P; Roy, S; Amann, A

    2016-01-01

    Ambient mechanical vibrations offer an attractive solution for powering the wireless sensor nodes of the emerging “Internet-of-Things”. However, the wide-ranging variability of the ambient vibration frequencies pose a significant challenge to the efficient transduction of vibration into usable electrical energy. This work reports the development of a MEMS electromagnetic vibration energy harvester where the resonance frequency of the oscillator can be adjusted or tuned to adapt to the ambient vibrational frequency. Micro-fabricated silicon spring and double layer planar micro-coils along with sintered NdFeB micro-magnets are used to construct the electromagnetic transduction mechanism. Furthermore, another NdFeB magnet is adjustably assembled to induce variable magnetic interaction with the transducing magnet, leading to significant change in the spring stiffness and resonance frequency. Finite element analysis and numerical simulations exhibit substantial frequency tuning range (25% of natural resonance frequency) by appropriate adjustment of the repulsive magnetic interaction between the tuning and transducing magnet pair. This demonstrated method of frequency adjustment or tuning have potential applications in other MEMS vibration energy harvesters and micromechanical oscillators. (paper)

  10. Vibrational spectroscopy: a clinical tool for cancer diagnostics.

    Science.gov (United States)

    Kendall, Catherine; Isabelle, Martin; Bazant-Hegemark, Florian; Hutchings, Joanne; Orr, Linda; Babrah, Jaspreet; Baker, Rebecca; Stone, Nicholas

    2009-06-01

    Vibrational spectroscopy techniques have demonstrated potential to provide non-destructive, rapid, clinically relevant diagnostic information. Early detection is the most important factor in the prevention of cancer. Raman and infrared spectroscopy enable the biochemical signatures from biological tissues to be extracted and analysed. In conjunction with advanced chemometrics such measurements can contribute to the diagnostic assessment of biological material. This paper also illustrates the complementary advantage of using Raman and FTIR spectroscopy technologies together. Clinical requirements are increasingly met by technological developments which show promise to become a clinical reality. This review summarises recent advances in vibrational spectroscopy and their impact on the diagnosis of cancer.

  11. Time-varying output performances of piezoelectric vibration energy harvesting under nonstationary random vibrations

    Science.gov (United States)

    Yoon, Heonjun; Kim, Miso; Park, Choon-Su; Youn, Byeng D.

    2018-01-01

    Piezoelectric vibration energy harvesting (PVEH) has received much attention as a potential solution that could ultimately realize self-powered wireless sensor networks. Since most ambient vibrations in nature are inherently random and nonstationary, the output performances of PVEH devices also randomly change with time. However, little attention has been paid to investigating the randomly time-varying electroelastic behaviors of PVEH systems both analytically and experimentally. The objective of this study is thus to make a step forward towards a deep understanding of the time-varying performances of PVEH devices under nonstationary random vibrations. Two typical cases of nonstationary random vibration signals are considered: (1) randomly-varying amplitude (amplitude modulation; AM) and (2) randomly-varying amplitude with randomly-varying instantaneous frequency (amplitude and frequency modulation; AM-FM). In both cases, this study pursues well-balanced correlations of analytical predictions and experimental observations to deduce the relationships between the time-varying output performances of the PVEH device and two primary input parameters, such as a central frequency and an external electrical resistance. We introduce three correlation metrics to quantitatively compare analytical prediction and experimental observation, including the normalized root mean square error, the correlation coefficient, and the weighted integrated factor. Analytical predictions are in an excellent agreement with experimental observations both mechanically and electrically. This study provides insightful guidelines for designing PVEH devices to reliably generate electric power under nonstationary random vibrations.

  12. Damping of wind turbine tower vibrations

    DEFF Research Database (Denmark)

    Brodersen, Mark Laier; Pedersen, Mikkel Melters

    Damping of wind turbine vibrations by supplemental dampers is a key ingredient for the continuous use of monopiles as support for offshore wind turbines. The present thesis consists of an extended summary with four parts and appended papers [P1-P4] concerning novel strategies for damping of tower...... dominated vibrations.The first part of the thesis presents the theoretical framework for implementation of supplemental dampers in wind turbines. It is demonstrated that the feasibility of installing dampers at the bottom of the tower is significantly increased when placing passive or semiactive dampers...... in a stroke amplifying brace, which amplifies the displacement across the damper and thus reduces the desired level of damper force. For optimal damping of the two lowest tower modes, a novel toggle-brace concept for amplifying the bending deformation of the tower is presented. Numerical examples illustrate...

  13. Resonances in photoionization. Cross section for vibrationally excited H2

    International Nuclear Information System (INIS)

    Mezei, J.Zs.; Jungen, Ch.

    2011-01-01

    averaged photoabsorption/photoionization cross section and we found that at low photon energies, near the ionization thresholds (vibrational levels of the ground electronic states of the molecular ion), the resonance enhancement exceeds the background cross section (direct ionization) by more than one order of magnitude, while at higher energies it is still more than a factor of two larger than the latter. A detailed examination on the relative contributions to the photoabsorption and photoionization cross sections of the resonances associated with the vibrational levels of npπ 1 Π u - , n = 3 - 6 electronic states shows that more than 42% of the total photoionization cross section and more than 35% of the photoabsorption cross section are produced by the four lowest electronic states. Acknowledgements. J.Zs.M. acknowledges support from the French ANR project SUMOSTAI and from the CPER Haute-Normandie/CNRT Energie, Electronique, Materiaux. I.F.S., E.R. and Ch.J. were supported by the ANR (France) under the contract 09-BLAN- 020901.

  14. The obscure factor analysis on the vibration reliability of the internals of nuclear power plant reactor and anti-vibration measures

    International Nuclear Information System (INIS)

    Fu Geyan; Zhu Qirong

    1998-11-01

    It is pointed out that the main reason making nuclear power plants reactors leak is the vibration of internals of reactors. The factors which lead the vibration all have randomness and obscureness. The obscure reliability theory is introduced to the vibration system of internals of nuclear power reactor. Based on a quantity of designing and moving data, the obscure factors effecting the vibration reliability of the internals of nuclear power plant reactor are analyzed and the anti-vibration reliability criteria and the evaluating model are given. And the anti-vibration reliability measures are advanced from different quarters of the machine design and building, the thermohydraulics design, the control of reactivity, etc.. They may benefit the theory and practice for building and perfecting the vibration obscure reliability model of the reactor internals

  15. Studies of interstellar vibrationally-excited molecules

    International Nuclear Information System (INIS)

    Ziurys, L.M.; Snell, R.L.; Erickson, N.R.

    1986-01-01

    Several molecules thus far have been detected in the ISM in vibrationally-excited states, including H 2 , SiO, HC 3 N, and CH 3 CN. In order for vibrational-excitation to occur, these species must be present in unusually hot and dense gas and/or where strong infrared radiation is present. In order to do a more thorough investigation of vibrational excitation in the interstellar medium (ISM), studies were done of several mm-wave transitions originating in excited vibrational modes of HCN, an abundant interstellar molecule. Vibrationally-excited HCN was recently detected toward Orion-KL and IRC+10216, using a 12 meter antenna. The J=3-2 rotational transitions were detected in the molecule's lowest vibrational state, the bending mode, which is split into two separate levels, due to l-type doubling. This bending mode lies 1025K above ground state, with an Einstein A coefficient of 3.6/s. The J=3-2 line mode of HCN, which lies 2050K above ground state, was also observed toward IRC+10216, and subsequently in Orion-KL. Further measurements of vibrationally-excited HCN were done using a 14 meter telescope, which include the observations of the (0,1,0) and (0,2,0) modes towards Orion-KL, via their J=3-2 transitions at 265-267 GHz. The spectrum of the J=3-2 line in Orion taken with the 14 meter telescope, is shown, along with a map, which indicates that emission from vibrationally-excited HCN arises from a region probably smaller than the 14 meter telescope's 20 arcsec beam

  16. Effects of nuclear vibration on the ionization process of H2+ in ultrashort intense laser field

    International Nuclear Information System (INIS)

    Phan, Ngoc-Loan; Nguyen, Ngoc-Ty; Truong, Tran-Chau

    2015-01-01

    By numerically solving the time-dependent Schrödinger equation, we calculate the ionization probability of a vibrating H 2 + exposed to ultrashort intense laser fields. The results show that the ionization probability increases by time and gets a saturation value. We also find that with some first vibration levels, the ionization probability from a higher vibration level is larger than that from a lower one. However, with higher vibration levels, at a certain level the ionization probability will take maximum and decrease with next levels. (paper)

  17. Heterogeneous Dynamics of Coupled Vibrations

    NARCIS (Netherlands)

    Cringus, Dan; Jansen, Thomas I. C.; Pshenichnikov, Maxim S.; Schoenlein, RW; Corkum, P; DeSilvestri, S; Nelson, KA; Riedle, E

    2009-01-01

    Frequency-dependent dynamics of coupled stretch vibrations of a water molecule are revealed by 2D IR correlation spectroscopy. These are caused by non-Gaussian fluctuations of the environment around the individual OH stretch vibrations.

  18. New approach for calibration and interpretation of IRAD GAGE vibrating-wire stressmeters

    International Nuclear Information System (INIS)

    Mao, N.

    1986-05-01

    IRAD GAGE vibrating-wire stressmeters were installed in the Spent Fuel Facility at the Nevada Test Site to measure the change in in-situ stress during the Spent Fuel Test-Climax (SFT-C). This paper discusses the results of removing a cylindrical section of rock and gages as a unit through overcoring, and the subsequent post-test calibration of the stressmeters in the laboratory. The estimated in-situ stresses based on post test calibration data are quite consistent with those directly measured in nearby holes. The magnitude of stress change calculated from pre-test calibration data is generally much smaller than that estimated from post test calibration data. 11 refs., 5 figs., 2 tabs

  19. Aircraft gas turbine engine vibration diagnostics

    Directory of Open Access Journals (Sweden)

    Stanislav Fábry

    2017-11-01

    Full Text Available In the Czech and Slovak aviation are in service elderly aircrafts, usually produced in former Soviet Union. Their power units can be operated in more efficient way, in case of using additional diagnostic methods that allow evaluating their health. Vibration diagnostics is one of the methods indicating changes of rotational machine dynamics. Ground tests of aircraft gas turbine engines allow vibration recording and analysis. Results contribute to airworthiness evaluation and making corrections, if needed. Vibration sensors distribution, signal recording and processing are introduced in a paper. Recorded and re-calculated vibration parameters are used in role of health indicators.

  20. Influence of Cable Vibrations on Connectors Used in Automotive Applications

    Directory of Open Access Journals (Sweden)

    AMEL Bouzera

    2012-10-01

    Full Text Available In order to determine the influence of cable vibrations on the contact resistance of connectors, the cable resonant frequency and the resulting movement of both parts of the connector have been studied. The increase of contact voltage, followed by rapidfluctuations generated by wear particles, has been analysed. A test bench designed to monitor wire vibrations was used while the transferred amplitude was measured by a high sensitivity displacement sensor. The contact interface was made of copper alloy and tin coated. The connector was connected to a resistive power supplytransmitting different currents and voltage values. Two investigations were performed on the contact voltage measured with a fast sampling oscilloscope which enabled histograms and a Fast FourierTransform analysis to be obtained. The appearance of contact fluctuations observed during the fretting generated by cable vibrations, and depending upon the wear effect, is attributed toelectromechanical phenomena. Some slow fluctuations are well correlated to the vibration period while the rapid ones are linked to an electrical conduction perturbation in the granular interface caused by the connector movement.