WorldWideScience

Sample records for vibration isolation mass

  1. Vibration isolation for Coriolis Mass-Flow meters

    NARCIS (Netherlands)

    van de Ridder, Bert

    2015-01-01

    A Coriolis Mass-Flow Meter (CMFM) is an active device based on the Coriolis force principle for direct mass-flow measurements, with high accuracy, range-ability and repeatability. The working principle of a CMFM is as follows: a fluid conveying tube is actuated to oscillate at a low amplitude. A

  2. VIBRATION ISOLATION SYSTEM PROBABILITY ANALYSIS

    Directory of Open Access Journals (Sweden)

    Smirnov Vladimir Alexandrovich

    2012-10-01

    Full Text Available The article deals with the probability analysis for a vibration isolation system of high-precision equipment, which is extremely sensitive to low-frequency oscillations even of submicron amplitude. The external sources of low-frequency vibrations may include the natural city background or internal low-frequency sources inside buildings (pedestrian activity, HVAC. Taking Gauss distribution into account, the author estimates the probability of the relative displacement of the isolated mass being still lower than the vibration criteria. This problem is being solved in the three dimensional space, evolved by the system parameters, including damping and natural frequency. According to this probability distribution, the chance of exceeding the vibration criteria for a vibration isolation system is evaluated. Optimal system parameters - damping and natural frequency - are being developed, thus the possibility of exceeding vibration criteria VC-E and VC-D is assumed to be less than 0.04.

  3. Identification and Partial Structural Characterization of Mass Isolated Valsartan and Its Metabolite with Messenger Tagging Vibrational Spectroscopy

    Science.gov (United States)

    Gorlova, Olga; Colvin, Sean M.; Brathwaite, Antonio; Menges, Fabian S.; Craig, Stephanie M.; Miller, Scott J.; Johnson, Mark A.

    2017-08-01

    Recent advances in the coupling of vibrational spectroscopy with mass spectrometry create new opportunities for the structural characterization of metabolites with great sensitivity. Previous studies have demonstrated this scheme on 300 K ions using very high power free electron lasers in the fingerprint region of the infrared. Here we extend the scope of this approach to a single investigator scale as well as extend the spectral range to include the OH stretching fundamentals. This is accomplished by detecting the IR absorptions in a linear action regime by photodissociation of weakly bound N2 molecules, which are attached to the target ions in a cryogenically cooled, rf ion trap. We consider the specific case of the widely used drug Valsartan and two isomeric forms of its metabolite. Advantages and challenges of the cold ion approach are discussed, including disentangling the role of conformers and the strategic choices involved in the selection of the charging mechanism that optimize spectral differentiation among candidate structural isomers. In this case, the Na+ complexes are observed to yield sharp resonances in the high frequency NH and OH stretching regions, which can be used to easily differentiate between two isomers of the metabolite. [Figure not available: see fulltext.

  4. A new isolator for vibration control

    Science.gov (United States)

    Behrooz, Majid; Sutrisno, Joko; Wang, Xiaojie; Fyda, Robert; Fuchs, Alan; Gordaninejad, Faramarz

    2011-03-01

    This study presents the feasibility of a new variable stiffness and damping isolator (VSDI) in an integrated vibratory system. The integrated system comprised of two VSDIs, a connecting plate and a mass. The proposed VSDI consists of a traditional steel-rubber vibration absorber, as the passive element, and a magneto-rheological elastomer (MRE), with a controllable (or variable) stiffness and damping, as the semi-active element. MREs' stiffness and damping properties can be altered by a magnetic field. Dynamic testing on this integrated system has been performed to investigate the effectiveness of the VSDIs for vibration control. Experimental results show significant shift in natural frequency, when activating the VSDIs. Transmissibility and natural frequency of the integrated system are obtained from properties of single device. The experimental and predicted results show good agreement between the values of the natural frequency of the system at both off and on states. However, system damping predictions are different from experimental results. This might be due to unforeseen effects of pre-stressed MREs and nonlinear material properties.

  5. Numerical Modelling of Rubber Vibration Isolators: identification of material parameters

    NARCIS (Netherlands)

    Beijers, C.A.J.; Noordman, Bram; de Boer, Andries; Ivanov, N.I.; Crocker, M.J.

    2004-01-01

    Rubber vibration isolators are used for vibration isolation of engines at high frequencies. To make a good prediction regarding the characteristics of a vibration isolator in the design process, numerical models can be used. However, for a reliable prediction of the dynamic behavior of the isolator,

  6. Numerical modelling of rubber vibration isolators

    NARCIS (Netherlands)

    Beijers, C.A.J.; de Boer, Andries; Nilsson, A.; Boden, H.

    2003-01-01

    An important cause for interior noise in vehicles is structure-borne sound from the engine. The vibrations of the source (engine) are transmitted to the receiver structure (the vehicle) causing interior noise in the vehicle. For this reason the engine is supported by rubber isolators for passive

  7. Vibration Isolation for Parallel Hydraulic Hybrid Vehicles

    Directory of Open Access Journals (Sweden)

    The M. Nguyen

    2008-01-01

    Full Text Available In recent decades, several types of hybrid vehicles have been developed in order to improve the fuel economy and to reduce the pollution. Hybrid electric vehicles (HEV have shown a significant improvement in fuel efficiency for small and medium-sized passenger vehicles and SUVs. HEV has several limitations when applied to heavy vehicles; one is that larger vehicles demand more power, which requires significantly larger battery capacities. As an alternative solution, hydraulic hybrid technology has been found effective for heavy duty vehicle because of its high power density. The mechanical batteries used in hydraulic hybrid vehicles (HHV can be charged and discharged remarkably faster than chemical batteries. This feature is essential for heavy vehicle hybridization. One of the main problems that should be solved for the successful commercialization of HHV is the excessive noise and vibration involving with the hydraulic systems. This study focuses on using magnetorheological (MR technology to reduce the noise and vibration transmissibility from the hydraulic system to the vehicle body. In order to study the noise and vibration of HHV, a hydraulic hybrid subsystem in parallel design is analyzed. This research shows that the MR elements play an important role in reducing the transmitted noise and vibration to the vehicle body. Additionally, locations and orientations of the isolation system also affect the efficiency of the noise and vibration mitigation. In simulations, a skyhook control algorithm is used to achieve the highest possible effectiveness of the MR isolation system.

  8. Active isolation of vibrations with adaptive structures

    Science.gov (United States)

    Guigou, C.; Fuller, C. R.; Wagstaff, P. R.

    1991-01-01

    Vibration transmission in structures is controlled by means of a technique which employs distributed arrays of piezoelectric transducers bonded to the supporting structure. Distributed PVDF piezoelectric strips are employed as error sensors, and a two-channel feedforward adaptive LMS algorithm is used for minimizing error signals and thereby controlling the structure. A harmonic force input excites a thick plate, and a receiving plate is configured with three pairs of piezoelectric actuators. Modal analyses are performed to determine the resonant frequencies of the system, and a scanning laser vibrometer is used to study the shape of the response of the receiving plate during excitation with and without the control algorithm. Efficient active isolation of the vibrations is achieved with modal suppression, and good control is noted in the on-resonance cases in which increased numbers of PVDF sensors and piezoelectric actuators are employed.

  9. Active vibration isolation of a rigidly mounted turbo pump

    NARCIS (Netherlands)

    Basten, T.G.H.; Doppenberg, E.J.J.

    2006-01-01

    Manufacturers of precision equipment are constantly aiming at increased accuracy. Elimination of disturbing vibrations is therefore getting more and more important. The technical limitations of passive isolation methods require alternative strategies for vibration reduction, such as active

  10. A Sub-Hertz, Low-Frequency Vibration Isolation Platform

    Science.gov (United States)

    Ortiz, Gerardo, G.; Farr, William H.; Sannibale, Virginio

    2011-01-01

    struts ends are connected in pairs to the base and to the platform, forming an octahedron. The six struts provide the vibration isolation due to the properties of mechanical oscillators that behave as second-order lowpass filters for frequencies above the resonance. At high frequency, the ideal second-order low-pass filter response is spoiled by the distributed mass and the internal modes of membrane and of the platform with its payload.

  11. Vibration Isolation Technology (VIT) ATD Project

    Science.gov (United States)

    Lubomski, Joseph F.; Grodsinsky, Carlos M.; Logsdon, Kirk A.; Rohn, Douglas A.; Ramachandran, N.

    1994-01-01

    A fundamental advantage for performing material processing and fluid physics experiments in an orbital environment is the reduction in gravity driven phenomena. However, experience with manned spacecraft such as the Space Transportation System (STS) has demonstrated a dynamic acceleration environment far from being characterized as a 'microgravity' platform. Vibrations and transient disturbances from crew motions, thruster firings, rotating machinery etc. can have detrimental effects on many proposed microgravity science experiments. These same disturbances are also to be expected on the future space station. The Microgravity Science and Applications Division (MSAD) of the Office of Life and Microgravity Sciences and Applications (OLMSA), NASA Headquarters recognized the need for addressing this fundamental issue. As a result an Advanced Technology Development (ATD) project was initiated in the area of Vibration Isolation Technology (VIT) to develop methodologies for meeting future microgravity science needs. The objective of the Vibration Isolation Technology ATD project was to provide technology for the isolation of microgravity science experiments by developing methods to maintain a predictable, well defined, well characterized, and reproducible low-gravity environment, consistent with the needs of the microgravity science community. Included implicitly in this objective was the goal of advising the science community and hardware developers of the fundamental need to address the importance of maintaining, and how to maintain, a microgravity environment. This document will summarize the accomplishments of the VIT ATD which is now completed. There were three specific thrusts involved in the ATD effort. An analytical effort was performed at the Marshall Space Flight Center to define the sensitivity of selected experiments to residual and dynamic accelerations. This effort was redirected about half way through the ATD focusing specifically on the sensitivity of

  12. Improvement of the vibration isolation system for TAMA300

    CERN Document Server

    Takahashi, R

    2002-01-01

    The vibration isolation system for TAMA300 has a vibration isolation ratio large enough to achieve the requirement in the observation band around 300 Hz. At a lower frequency range, it is necessary to reduce the large fluctuation of mirrors for stable operation of the interferometer. With this aim, the mirror suspension systems were modified and an active vibration isolation system using pneumatic actuators was installed. These improvements contributed to the realization of a continuous interferometer lock for more than 24 h.

  13. Sensor fusion for active vibration isolation in precision equipment

    NARCIS (Netherlands)

    Tjepkema, D.; van Dijk, Johannes; Soemers, Herman

    2012-01-01

    Sensor fusion is a promising control strategy to improve the performance of active vibration isolation systems that are used in precision equipment. Normally, those vibration isolation systems are only capable of realizing a low transmissibility. Additional objectives are to increase the damping

  14. Active hard mount vibration isolation for precision equipment

    NARCIS (Netherlands)

    Tjepkema, D.

    2012-01-01

    Floor vibrations and acoustic excitation may limit the performance of precision equipment, that is used for example to produce computer chips or to make images of very tiny structures. Therefore, it is common to mount a vibration isolator in the suspension of such equipment to isolate it from these

  15. Reconstruction of Input Excitation Acting on Vibration Isolation System

    Directory of Open Access Journals (Sweden)

    Pan Zhou

    2016-01-01

    Full Text Available Vibration isolation systems are widely employed in automotive, marine, aerospace, and other engineering fields. Accurate input forces are of great significance for mechanical design, vibration prediction, and structure modification and optimization. One-stage vibration isolation system including engine, vibration isolators, and flexible supporting structure is modeled theoretically in this paper. Input excitation acting on the vibration isolation system is reconstructed using dynamic responses measured on engine and supporting structure under in-suit condition. The reconstructed forces reveal that dynamic responses on rigid body are likely to provide more accurate estimation results. Moreover, in order to improve the accuracy of excitation reconstructed by dynamic responses on flexible supporting structure, auto/cross-power spectral density function is utilized to reduce measurement noise.

  16. Research on Vibration Isolation Systems Used in Laser and Nanotechnologies

    Directory of Open Access Journals (Sweden)

    Justinas Kuncė

    2012-12-01

    Full Text Available The paper discusses the efficiency of a vibration isolation system made of the optical table and two negative-stiffness tables and considers excitation referring to harmonic and nonharmonic methods in the frequency range of 0,2–110 Hz. The article reviews the types and sources of vibrations and types of vibration isolation systems, including those of negative-stiffness. The paper also presents the methodology of experimental tests and proposes research on vibration transmissibility. A composite system consisting of two vibration isolation table having negative stiffness and an air table has been tested. The results and conclusions of experimental analysis are suggested at the end of the article.Article in Lithuanian

  17. Vibration transfers to measure the performance of vibration isolated platforms on site using background noise excitation

    NARCIS (Netherlands)

    Segerink, Franciscus B.; Korterik, Jeroen P.; Offerhaus, Herman L.

    2011-01-01

    This article demonstrates a quick and easy way of quantifying the performance of a vibration-isolated platform. We measure the vibration transfer from floor to table using background noise excitation from the floor. As no excitation device is needed, our setup only requires two identical sensors (in

  18. Active vibration isolation platform on base of magnetorheological elastomers

    Energy Technology Data Exchange (ETDEWEB)

    Mikhailov, Valery P., E-mail: mikhailov@bmstu.ru; Bazinenkov, Alexey M.

    2017-06-01

    The article describes the active vibration isolation platform on base of magnetorheological (MR) elastomers. An active damper based on the MR elastomers can be used as an actuator of micro- or nanopositioning for a vibroinsulated object. The MR elastomers give such advantages for active control of vibration as large range of displacements (up to 1 mm), more efficient absorption of the vibration energy, possibility of active control of amplitude-frequency characteristics and positioning with millisecond response speed and nanometer running accuracy. The article presents the results of experimental studies of the most important active damper parameters. Those are starting current, transient time for stepping, transmission coefficient of the vibration displacement amplitude.

  19. Experimental investigation of torsional vibration isolation using Magneto Rheological Elastomer

    Directory of Open Access Journals (Sweden)

    Praveen Shenoy K

    2018-01-01

    Full Text Available Rotating systems suffer from lateral and torsional vibrations which have detrimental effect on the roto-dynamic performance. Many available technologies such as vibration isolators and vibration absorbers deal with the torsional vibrations to a certain extent, however passive isolators and absorbers find less application when the input conditions are dynamic. The present work discusses use of a smart material called as Magneto Rheological Elastomer (MRE, whose properties can be changed based on magnetic field input, as a potential isolator for torsional vibrations under dynamic loading conditions. Carbonyl Iron Particles (CIP of average size 5 μm were mixed with RTV Silicone rubber to form the MRE. The effect of magnetic field on the system parameters was comprehended under impulse loading conditions using a custom built in-house system. Series arrangement of accelerometers were used to differentiate between the torsional and the bending modes of vibration of the system. Impact hammer tests were carried out on the torsional system to study its response, in the presence and absence of magnetic field. The tests revealed a shift in torsional frequency in the presence of magnetic field which elucidates the ability of MRE to work as a potential vibration isolator for torsional systems.

  20. Development of an active isolation mat based on dielectric elastomer stack actuators for mechanical vibration cancellation

    Science.gov (United States)

    Karsten, Roman; Flittner, Klaus; Haus, Henry; Schlaak, Helmut F.

    2013-04-01

    This paper describes the development of an active isolation mat for cancelation of vibrations on sensitive devices with a mass of up to 500 gram. Vertical disturbing vibrations are attenuated actively while horizontal vibrations are damped passively. The dimensions of the investigated mat are 140 × 140 × 20 mm. The mat contains 5 dielectric elastomer stack actuators (DESA). The design and the optimization of active isolation mat are realized by ANSYS FEM software. The best performance shows a DESA with air cushion mounted on its circumference. Within the mounting encased air increases static and reduces dynamic stiffness. Experimental results show that vibrations with amplitudes up to 200 μm can be actively eliminated.

  1. Whole body vibration improves body mass, flexibility and strength in ...

    African Journals Online (AJOL)

    Whole body vibration improves body mass, flexibility and strength in previously sedentary adults. Abstract. Objectives. This study aimed to determine the effectiveness of whole body vibration (WBV) training for promoting health- related physical fitness in sedentary adults. Design. A non-randomised sampling technique was ...

  2. Optimization of the impact multi-mass vibration absorbers

    Directory of Open Access Journals (Sweden)

    Ivan Kernytskyy

    2017-09-01

    Full Text Available The problem of attaching dynamic vibration absorber (DVA to a discrete multi-degree-of-freedom or continuous structure has been outlined in many papers and monographs. An impact damping system can overcome some limitations by impact as the damping medium and impact mass interaction as the damping mechanism. The paper contemplates the provision of DVA with the several of the impact masses. Such originally designed absorbers reduce vibration selectively in maximum vibration mode without introducing vibration in other modes. An impact damper is a passive control device which takes the form of a freely moving mass, constrained by stops attached to the structure under control, i.e. the primary structure. The damping results from the exchange of momentum during impacts between the mass and the stops as the structure vibrates. The paper contemplates the provision of the impact multi-mass DVA’s with masses collisions for additional damping. For some cases of DVA optimization such a design seems more effective than conventional multi-mass DVA with independent mass moving. A technique is developed to give the optimal DVA’s for the elimination of excessive vibration in harmonic stochastic and impact loaded systems.

  3. Combined Euler column vibration isolation and energy harvesting

    Science.gov (United States)

    Davis, R. B.; McDowell, M. D.

    2017-05-01

    A new device that combines vibration isolation and energy harvesting is modeled, simulated, and tested. The vibration isolating portion of the device uses post-buckled beams as its spring elements. Piezoelectric film is applied to the beams to harvest energy from their dynamic flexure. The entire device operates passively on applied base excitation and requires no external power or control system. The structural system is modeled using the elastica, and the structural response is applied as forcing on the electric circuit equation to predict the output voltage and the corresponding harvested power. The vibration isolation and energy harvesting performance is simulated across a large parameter space and the modeling approach is validated with experimental results. Experimental transmissibilities of 2% and harvested power levels of 0.36 μW are simultaneously demonstrated. Both theoretical and experimental data suggest that there is not necessarily a trade-off between vibration isolation and harvested power. That is, within the practical operational range of the device, improved vibration isolation will be accompanied by an increase in the harvested power as the forcing frequency is increased.

  4. A tubular dielectric elastomer actuator: Fabrication, characterization and active vibration isolation

    DEFF Research Database (Denmark)

    Sarban, R.; Jones, R. W.; Mace, B. R.

    2011-01-01

    This contribution reviews the fabrication, characterization and active vibration isolation performance of a core-free rolled tubular dielectric elastomer (DE) actuator, which has been designed and developed by Danfoss PolyPower A/S. PolyPower DE material, PolyPower (TM), is produced in thin sheets...... the dominant dynamic characteristics of the core-free tubular actuator. It has been observed that all actuators have similar dynamic characteristics in a frequency range up to 1 kHz. A tubular actuator is then used to provide active vibration isolation (AVI) of a 250 g mass subject to shaker generated 'ground...... vibration'. An adaptive feedforward control approach is used to achieve this. The tubular actuator is shown to provide excellent isolation against harmonic vibratory disturbances with attenuation of the resulting 5 and 10 Hz harmonics being 66 and 23 dB, respectively. AVI against a narrow band vibratory...

  5. Environmental vibration reduction utilizing an array of mass scatterers

    DEFF Research Database (Denmark)

    Peplow, Andrew; Andersen, Lars Vabbersgaard; Bucinskas, Paulius

    2017-01-01

    Ground vibration generated by rail and road traffic is a major source of environmental noise and vibration pollution in the low-frequency range. A promising and cost effective mitigation method can be the use of heavy masses placed as a periodic array on the ground surface near the road or track (e.......g. concrete or stone blocks, specially designed brick walls, etc.). The natural frequencies of vibration for such blocks depend on the local ground stiffness and on the mass of the blocks which can be chosen to provide resonance at specified frequencies. This work concerns the effectiveness of such “blocking...

  6. Environmental vibration reduction utilizing an array of mass scatterers

    DEFF Research Database (Denmark)

    Peplow, Andrew; Andersen, Lars Vabbersgaard; Bucinskas, Paulius

    2017-01-01

    Ground vibration generated by rail and road traffic is a major source of environmental noise and vibration pollution in the low-frequency range. A promising and cost effective mitigation method can be the use of heavy masses placed as a periodic array on the ground surface near the road or track (e......” resonating masses. A semi-analytical lumped-parameter method is utilized assuming that the blocks are point masses situated on an elastic half-space. The work is enhanced by examples highlighting advantages and disadvantages of single-mass scatterers and periodic scatterers. © 2017 The Authors. Published...

  7. A 6-DOF vibration isolation system for hydraulic hybrid vehicles

    Science.gov (United States)

    Nguyen, The; Elahinia, Mohammad; Olson, Walter W.; Fontaine, Paul

    2006-03-01

    This paper presents the results of vibration isolation analysis for the pump/motor component of hydraulic hybrid vehicles (HHVs). The HHVs are designed to combine gasoline/diesel engine and hydraulic power in order to improve the fuel efficiency and reduce the pollution. Electric hybrid technology is being applied to passenger cars with small and medium engines to improve the fuel economy. However, for heavy duty vehicles such as large SUVs, trucks, and buses, which require more power, the hydraulic hybridization is a more efficient choice. In function, the hydraulic hybrid subsystem improves the fuel efficiency of the vehicle by recovering some of the energy that is otherwise wasted in friction brakes. Since the operation of the main component of HHVs involves with rotating parts and moving fluid, noise and vibration are an issue that affects both passengers (ride comfort) as well as surrounding people (drive-by noise). This study looks into the possibility of reducing the transmitted noise and vibration from the hydraulic subsystem to the vehicle's chassis by using magnetorheological (MR) fluid mounts. To this end, the hydraulic subsystem is modeled as a six degree of freedom (6-DOF) rigid body. A 6-DOF isolation system, consisting of five mounts connected to the pump/motor at five different locations, is modeled and simulated. The mounts are designed by combining regular elastomer components with MR fluids. In the simulation, the real loading and working conditions of the hydraulic subsystem are considered and the effects of both shock and vibration are analyzed. The transmissibility of the isolation system is monitored in a wide range of frequencies. The geometry of the isolation system is considered in order to sustain the weight of the hydraulic system without affecting the design of the chassis and the effectiveness of the vibration isolating ability. The simulation results shows reduction in the transmitted vibration force for different working cycles of

  8. Vibration transfers to measure the performance of vibration isolated platforms on site using background noise excitation

    Science.gov (United States)

    Segerink, F. B.; Korterik, J. P.; Offerhaus, H. L.

    2011-06-01

    This article demonstrates a quick and easy way of quantifying the performance of a vibration-isolated platform. We measure the vibration transfer from floor to table using background noise excitation from the floor. As no excitation device is needed, our setup only requires two identical sensors (in our case, low noise accelerometers), a data acquisition system, and processing software. Background noise excitation from the floor has the additional advantage that any non-linearity in the suspension system relevant to the actual vibration amplitudes will be taken into account. Measurement time is typically a few minutes, depending on the amount of background noise. The (coherent) transfer of the vibrations in the floor to the platform, as well as the (non-coherent) acoustical noise pick-up by the platform are measured. Since we use calibrated sensors, the absolute value of the vibration levels is established and can be expressed in vibration criterion curves. Transfer measurements are shown and discussed for two pneumatic isolated optical tables, a spring suspension system, and a simple foam suspension system.

  9. Microgravity Active Vibration Isolation System on Parabolic Flights

    Science.gov (United States)

    Dong, Wenbo; Pletser, Vladimir; Yang, Yang

    2016-07-01

    The Microgravity Active Vibration Isolation System (MAIS) aims at reducing on-orbit vibrations, providing a better controlled lower gravity environment for microgravity physical science experiments. The MAIS will be launched on Tianzhou-1, the first cargo ship of the China Manned Space Program. The principle of the MAIS is to suspend with electro-magnetic actuators a scientific payload, isolating it from the vibrating stator. The MAIS's vibration isolation capability is frequency-dependent and a decrease of vibration of about 40dB can be attained. The MAIS can accommodate 20kg of scientific payload or sample unit, and provide 30W of power and 1Mbps of data transmission. The MAIS is developed to support microgravity scientific experiments on manned platforms in low earth orbit, in order to meet the scientific requirements for fluid physics, materials science, and fundamental physics investigations, which usually need a very quiet environment, increasing their chances of success and their scientific outcomes. The results of scientific experiments and technology tests obtained with the MAIS will be used to improve future space based research. As the suspension force acting on the payload is very small, the MAIS can only be operative and tested in a weightless environment. The 'Deutsches Zentrum für Luft- und Raumfahrt e.V.' (DLR, German Aerospace Centre) granted a flight opportunity to the MAIS experiment to be tested during its 27th parabolic flight campaign of September 2015 performed on the A310 ZERO-G aircraft managed by the French company Novespace, a subsidiary of the 'Centre National d'Etudes Spatiales' (CNES, French Space Agency). The experiment results confirmed that the 6 degrees of freedom motion control technique was effective, and that the vibration isolation performance fulfilled perfectly the expectations based on theoretical analyses and simulations. This paper will present the design of the MAIS and the experiment results obtained during the

  10. Experimental Study of Vibration Isolation Characteristics of a Geometric Anti-Spring Isolator

    Directory of Open Access Journals (Sweden)

    Lixun Yan

    2017-07-01

    Full Text Available In order to realize low-frequency vibration isolation, a novel geometric anti-spring isolator consisting of several cantilever blade springs are developed in this paper. The optimal design parameters of the geometric anti-spring isolator for different nonlinear geometric parameters are theoretically obtained. The transmissibility characteristic of the geometric anti-spring isolator is investigated through mathematical simulation. A geometric anti-spring isolator with a nonlinear geometric parameter of 0.92 is designed and its vibration isolation performance and nonlinearity characteristic is experimentally studied. The experiment results show that the designed isolator has good low-frequency vibration isolation performance, of which the initial isolation frequency is less than 3.6 Hz when the load weight is 21 kg. The jump phenomena of the response of the isolator under linear frequency sweep excitation are observed, and this result demonstrates that the geometric anti-spring isolator has a complex nonlinearity characteristics with the increment of excitation amplitude. This research work provides a theoretical and experimental basis for the application of the nonlinear geometric anti-spring low-frequency passive vibration isolation technology in engineering practice.

  11. Active vibration isolation of high precision machines

    CERN Document Server

    Collette, C; Artoos, K; Hauviller, C

    2010-01-01

    This paper provides a review of active control strategies used to isolate high precisionmachines (e.g. telescopes, particle colliders, interferometers, lithography machines or atomic force microscopes) from external disturbances. The objective of this review is to provide tools to develop the best strategy for a given application. Firstly, the main strategies are presented and compared, using single degree of freedom models. Secondly, the case of huge structures constituted of a large number of elements, like particle colliders or segmented telescopes, is considered.

  12. Investigations on Elastic and Damping Characteristics of Vibration Isolation Systems While Using Factor Experiment

    Directory of Open Access Journals (Sweden)

    G. N. Reysina

    2014-01-01

    Full Text Available The paper presents results of the investigations on elastic and damping characteristics of a vibration isolation system. Adequate mathematical models of relative root-mean-square values for acceleration of antivibration mass have been obtained depending on elastic and viscous constituents. The paper  reveals  that the proposed method of multiple correlation is the most rational one for the analysis of power  fluids used in the electro-rheological dampers.

  13. Research on typical topologies of a tubular horizontal-gap passive magnetic levitation vibration isolator

    Directory of Open Access Journals (Sweden)

    Zhou Yiheng

    2017-01-01

    Full Text Available Magnetic levitation vibration isolators have attracted more and more attention in the field of high-precision measuring and machining equipment. In this paper, we describe a tubular horizontal-gap passive magnetic levitation vibration isolator. Four typical topologies of the tubular horizontal-gap passive magnetic levitation vibration isolator are proposed. The analytical expression of magnetic force is derived. The relationship between levitation force, force density, force ripple and major structural parameters are analysed by finite element method, which is conductive to the design and optimization of the tubular horizontal-gap passive magnetic levitation vibration isolator. The force characteristics of different topologies of the tubular horizontal-gap passive magnetic levitation vibration isolator are compared and evaluated from the aspect of force density, force ripple and manufacturability. In comparison with conventional passive magnetic levitation vibration isolators, the proposed tubular horizontal-gap passive magnetic levitation vibration isolator shows advantage in higher force density.

  14. Synthesis of stiffness and mass matrices from experimental vibration modes.

    Science.gov (United States)

    Ross, R. G., Jr.

    1971-01-01

    With highly complex structures, it is sometimes desirable to derive a dynamic model of the system from experimental vibration data. This paper presents algorithms for synthesizing the mass and stiffness matrices from experimentally derived modal data in a way which preserves the physical significance of the individual mass and stiffness elements. The synthesizing procedures allow for the incorporation of other mass and stiffness data, whether empirical or based on the analyst's insight. The mass and stiffness matrices are derived for a cantilever beam example and are compared with those obtained using earlier techniques.

  15. Lumped mass model of a 1D metastructure for vibration suppression with no additional mass

    Science.gov (United States)

    Reichl, Katherine K.; Inman, Daniel J.

    2017-09-01

    The article examines the effectiveness of metastructures for vibration suppression from a weight standpoint. Metastructures, a metamaterial inspired concept, are structures with distributed vibration absorbers. In automotive and aerospace industries, it is critical to have low levels of vibrations while also using lightweight materials. Previous work has shown that metastructures are effective at mitigating vibrations, but do not consider the effects of mass. This work takes mass into consideration by comparing a structure with vibration absorbers to a structure of equal mass with no absorbers. These structures are modeled as one-dimensional lumped mass models, chosen for simplicity. Results compare both the steady-state and the transient responses. As a quantitative performance measure, the H2 norm, which is related to the area under the frequency response function, is calculated and compared for both the metastructure and the baseline structure. These results show that it is possible to obtain a favorable vibration response without adding additional mass to the structure. Additionally, the performance measure is utilized to optimize the geometry of the structure, determine the optimal ratio of mass in the absorber to mass of the host structure, and determine the frequencies of the absorbers. The dynamic response of this model is verified using a finite element analysis.

  16. Study of micro piezoelectric vibration generator with added mass and capacitance suitable for broadband vibration

    Energy Technology Data Exchange (ETDEWEB)

    He, Qing, E-mail: hqng@163.com; Mao, Xinhua, E-mail: 30400414@qq.com; Chu, Dongliang, E-mail: 569256386@qq.com [School of Energy, Power and Mechanical Engineering, North China Electric Power University, Beijing 102206 (China)

    2015-07-15

    This study proposes an optimized frequency adjustment method that uses a micro-cantilever beam-based piezoelectric vibration generator based on a combination of added mass and capacitance. The most important concept of the proposed method is that the frequency adjustment process is divided into two steps: the first is a rough adjustment step that changes the size of the mass added at the end of cantilever to adjust the frequency in a large-scale and discontinuous manner; the second step is a continuous but short-range frequency adjustment via the adjustable added capacitance. Experimental results show that when the initial natural frequency of a micro piezoelectric vibration generator is 69.8 Hz, then this natural frequency can be adjusted to any value in the range from 54.2 Hz to 42.1 Hz using the combination of the added mass and the capacitance. This method simply and effectively matches a piezoelectric vibration generator’s natural frequency to the vibration source frequency.

  17. Study of micro piezoelectric vibration generator with added mass and capacitance suitable for broadband vibration

    Directory of Open Access Journals (Sweden)

    Qing He

    2015-07-01

    Full Text Available This study proposes an optimized frequency adjustment method that uses a micro-cantilever beam-based piezoelectric vibration generator based on a combination of added mass and capacitance. The most important concept of the proposed method is that the frequency adjustment process is divided into two steps: the first is a rough adjustment step that changes the size of the mass added at the end of cantilever to adjust the frequency in a large-scale and discontinuous manner; the second step is a continuous but short-range frequency adjustment via the adjustable added capacitance. Experimental results show that when the initial natural frequency of a micro piezoelectric vibration generator is 69.8 Hz, then this natural frequency can be adjusted to any value in the range from 54.2 Hz to 42.1 Hz using the combination of the added mass and the capacitance. This method simply and effectively matches a piezoelectric vibration generator’s natural frequency to the vibration source frequency.

  18. Study of the Mechanical Properties and Vibration Isolation Performance of a Molecular Spring Isolator

    Directory of Open Access Journals (Sweden)

    Muchun Yu

    2016-01-01

    Full Text Available Molecular Spring Isolator (MSI is a novel passive vibration isolation technique, providing High-Static-Low-Dynamic (HSLD stiffness based on the use of molecular spring material. The molecular spring material is a solid-liquid mixture consisting of water and hydrophobic nanoporous materials. Under a certain level of external pressure, water molecules can intrude into the hydrophobic pores of nanoporous materials, developing an additional solid-liquid interface. Such interfaces are able to store, release, and transform mechanical energy, providing properties like mechanical spring. Having been only recently developed, the basic mechanic properties of a MSI have not been studied in depth. This paper focuses on the stiffness influence factors, the dynamic frequency response, and the vibration isolation performance of a MSI; these properties help engineers to design MSIs for different engineering applications. First, the working mechanism of a MSI is introduced from a three-dimensional general view of the water infiltration massive hydrophobic nanoporous pores. Next, a wide range of influence factors on the stiffness properties of MSI are studied. In addition, the frequency response functions (FRFs of the MSI vibration isolation system are studied utilizing the matching method based on equivalent piecewise linear (EPL system. Finally, the vibration isolation properties of MSI are evaluated by force transmissibility.

  19. Robust control of novel pendulum-type vibration isolation system

    Science.gov (United States)

    Tsai, Meng-Shiun; Sun, Yann-Shuoh; Liu, Chun-Hsieh

    2011-08-01

    A novel pendulum-type vibration isolation system is proposed consisting of three active cables with embedded piezoelectric actuators and a passive elastomer layer. The dynamic response of the isolation module in the vertical and horizontal directions is modeled using the Lagrangian approach. The validity of the dynamic model is confirmed by comparing the simulation results for the frequency response in the vertical and horizontal directions with the experimental results. An approximate model is proposed to take into account system uncertainties such as payload changes and hysteresis effects. A robust quantitative feedback theory (QFT)-based active controller is then designed to ensure that the active control can achieve a high level of disturbance rejection in the low-frequency range even under variable loading conditions. It is shown that the controller achieves average disturbance rejection of -14 dB in the 2-60 Hz bandwidth range and -35 dB at the resonance frequency. The experimental results confirm that the proposed system achieves a robust vibration isolation performance under the payload in the range of 40-60 kg.

  20. Vibrational overtone spectrum of matrix isolated cis, cis-HOONO

    Science.gov (United States)

    Zhang, Xu; Nimlos, Mark R.; Ellison, G. Barney; Varner, Mychel E.; Stanton, John F.

    2007-05-01

    Cis, cis-peroxynitrous acid is known to be an intermediate in atmospheric reactions between OH and NO2 as well as HOO and NO. The infrared absorption spectra of matrix-isolated cc-HOONO and cc-DOONO in argon have been observed in the range of 500-8000cm-1. Besides the seven fundamental vibrational modes that have been assigned earlier for this molecule [Zhang et al., J. Chem. Phys. 124, 084305 (2006)], more than 50 of the overtone and combination bands have been observed for cc-HOONO and cc-DOONO. Ab initio CCSD(T)/atomic natural orbital anharmonic force field calculations were used to help guide the assignments. Based on this study of the vibrational overtone transitions of cis, cis-HOONO that go as high as 8000cm-1 and the earlier paper on the vibrational fundamentals, we conclude that the CCSD(T)/ANO anharmonic frequencies seem to correct to ±35cm-1. The success of the theoretically predicted anharmonic frequencies {υ } in assigning overtone spectra of HOONO up to 8000cm-1 suggests that the CCSD(T)/ANO method is producing a reliable potential energy surface for this reactive molecule.

  1. Parameter optimization of an inerter-based isolator for passive vibration control of Michelangelo's Rondanini Pietà

    Science.gov (United States)

    Siami, A.; Karimi, H. R.; Cigada, A.; Zappa, E.; Sabbioni, E.

    2018-01-01

    Preserving cultural heritage against earthquake and ambient vibrations can be an attractive topic in the field of vibration control. This paper proposes a passive vibration isolator methodology based on inerters for improving the performance of the isolation system of the famous statue of Michelangelo Buonarroti Pietà Rondanini. More specifically, a five-degree-of-freedom (5DOF) model of the statue and the anti-seismic and anti-vibration base is presented and experimentally validated. The parameters of this model are tuned according to the experimental tests performed on the assembly of the isolator and the structure. Then, the developed model is used to investigate the impact of actuation devices such as tuned mass-damper (TMD) and tuned mass-damper-inerter (TMDI) in vibration reduction of the structure. The effect of implementation of TMDI on the 5DOF model is shown based on physical limitations of the system parameters. Simulation results are provided to illustrate effectiveness of the passive element of TMDI in reduction of the vibration transmitted to the statue in vertical direction. Moreover, the optimal design parameters of the passive system such as frequency and damping coefficient will be calculated using two different performance indexes. The obtained optimal parameters have been evaluated by using two different optimization algorithms: the sequential quadratic programming method and the Firefly algorithm. The results prove significant reduction in the transmitted vibration to the structure in the presence of the proposed tuned TMDI, without imposing a large amount of mass or modification to the structure of the isolator.

  2. Research on typical topologies of a tubular horizontal-gap passive magnetic levitation vibration isolator

    OpenAIRE

    Zhou Yiheng; Kou Baoquan; Yang Xiaobao; Luo Jun; Zhang He

    2017-01-01

    Magnetic levitation vibration isolators have attracted more and more attention in the field of high-precision measuring and machining equipment. In this paper, we describe a tubular horizontal-gap passive magnetic levitation vibration isolator. Four typical topologies of the tubular horizontal-gap passive magnetic levitation vibration isolator are proposed. The analytical expression of magnetic force is derived. The relationship between levitation force, force density, force ripple and major ...

  3. Force Limited Random Vibration Test of TESS Camera Mass Model

    Science.gov (United States)

    Karlicek, Alexandra; Hwang, James Ho-Jin; Rey, Justin J.

    2015-01-01

    The Transiting Exoplanet Survey Satellite (TESS) is a spaceborne instrument consisting of four wide field-of-view-CCD cameras dedicated to the discovery of exoplanets around the brightest stars. As part of the environmental testing campaign, force limiting was used to simulate a realistic random vibration launch environment. While the force limit vibration test method is a standard approach used at multiple institutions including Jet Propulsion Laboratory (JPL), NASA Goddard Space Flight Center (GSFC), European Space Research and Technology Center (ESTEC), and Japan Aerospace Exploration Agency (JAXA), it is still difficult to find an actual implementation process in the literature. This paper describes the step-by-step process on how the force limit method was developed and applied on the TESS camera mass model. The process description includes the design of special fixtures to mount the test article for properly installing force transducers, development of the force spectral density using the semi-empirical method, estimation of the fuzzy factor (C2) based on the mass ratio between the supporting structure and the test article, subsequent validating of the C2 factor during the vibration test, and calculation of the C.G. accelerations using the Root Mean Square (RMS) reaction force in the spectral domain and the peak reaction force in the time domain.

  4. A Novel Dual–Parallelogram Passive Rocking Vibration Isolator: A Theoretical Investigation and Experiment

    Directory of Open Access Journals (Sweden)

    Shuai Wang

    2017-04-01

    Full Text Available Vibration isolators with quasi-zero stiffness (QZS perform well for low- or ultra-low-frequency vibration isolation. This paper proposes a novel dual-parallelogram passive rocking vibration isolator with QZS that could effectively attenuate in-plane disturbances with low-frequency vibration. First, a kinematic model of the proposed vibration isolator was established and four linear spring configuration schemes were developed to implement the QZS. Next, an optimal scheme with good high-static-low-dynamic stiffness (HSLDS performance was obtained through comparison and analysis, and used as a focus for the QZS model. Subsequently, a dynamic model-based Lagrangian equation that considered the spring stiffness and damping and the influence of the payload gravity center on the vibration isolation system was developed, and an average approach was used to analyze the vibration transmissibility. Finally, the prototype and test system were constructed. A comparison of the simulation and experimental results showed that this novel passive rocking vibration isolator could bolster a heavy payload. Experimentally, the vibration amplitude decreased by 53% and 86% under harmonic disturbances of 0.08 Hz and 0.35 Hz, respectively, suggesting the great practical applicability of this presented vibration isolator.

  5. Vibration isolation techniques suitable for portable electronic speckle pattern interferometry

    Science.gov (United States)

    Findeis, Dirk M.; Gryzagoridis, Jasson; Rowland, David R.

    2002-06-01

    Electronic Speckle Pattern Interferometry (ESPI) and Digital Shearography are optical interference techniques, suitable for non-destructive inspection procedures. Due to the stringent vibration isolation conditions required for ESPI, the technique is mainly suited for laboratory based inspection procedures, which cannot be said for Digital Shearography. On the other hand, the interference patterns obtained using ESPI exhibit better fringe definition and contrast than those obtained using Digital Shearography. The image quality of Digital Shearography can be improved by introducing phase stepping and unwrapping techniques, but these methods add a level of complexity to the inspection system and reduce the image refresh rate of the overall process. As part of a project to produce a low cost portable ESPI system suitable for industrial applications, this paper investigates various methods of minimizing the impact of environmental vibration on the ESPI technique. This can be achieved by effectively 'freezing' the object movement during the image acquisition process. The methods employed include using a high-powered infra-red laser, which is continuously pulsed using an electronic signal generator as well as a mechanical chopper. The effect of using a variable shutter speed camera in conjunction with custom written software acquisition routines is also studied. The techniques employed are described and are applied to selected samples. The initial results are presented and analyzed. Conclusions are drawn and their impact on the feasibility of a portable ESPI system discussed.

  6. Viscoelasticity of new generation thermoplastic polyurethane vibration isolators

    Science.gov (United States)

    Bek, Marko; Betjes, Joris; von Bernstorff, Bernd-Steffen; Emri, Igor

    2017-12-01

    This paper presents the analysis of pressure dependence of three thermoplastic polyurethane (TPU) materials on vibration isolation. The three TPU Elastollan® materials are 1190A, 1175A, and 1195D. The aim of this investigation was to analyze how much the performance of isolation can be enhanced using patented Dissipative bulk and granular systems technology. The technology uses granular polymeric materials to enhance materials properties (without changing its chemical or molecular composition) by exposing them to "self-pressurization," which shifts material energy absorption maxima toward lower frequencies, to match the excitation frequency of dynamic loading to which a mechanical system is exposed. Relaxation experiments on materials were performed at different isobaric and isothermal states to construct mastercurves, the time-temperature-pressure interrelation was modeled using the Fillers-Moonan-Tschoegl model. Dynamic material functions, related to isolation stiffness and energy absorption, were determined with the Schwarzl approximation. An increase in stiffness and energy absorption at selected hydrostatic pressure, compared to its stiffness and energy absorption at ambient conditions, is represented with κk(p, ω), defining the increase in stiffness and κd(p, ω), defining the increase in energy absorption. The study showed that close to the glassy state, moduli of 1190A and 1195D are about 6-9 times higher compared to 1175A, whereas their properties at ambient conditions are, for all practical purposes, the same. TPU 1190A turns out to be most sensitive to pressure: at 300 MPa its properties are shifted for 5.5 decades, while for 1195D and 1175A this shift is only 3.5 and 1.5 decades, respectively. In conclusion, the stiffness and energy absorption of isolation may be increased with pressure for about 100 times for 1190A and 1195D and for about 10 times for 1175A.

  7. Design of a Long-Stroke Noncontact Electromagnetic Actuator for Active Vibration Isolation

    Science.gov (United States)

    Banerjee, Bibhuti; Allaire, Paul E.

    1996-01-01

    A long-stroke moving coil Lorentz Actuator was designed for use in a microgravity vibration isolation experiment. The final design had a stroke of 5.08 cm (2 in) and enough force capability to isolate a mass of the order of 22.7-45.4 kg. A simple dynamic magnetic circuit analysis, using an electrical analog, was developed for the initial design of the actuator. A neodymium-iron-boron material with energy density of 278 T-kA/m (35 MGOe) was selected to supply the magnetic field. The effect of changes in the design parameters of core diameter, shell outer diameter, pole face length, and coil wire layers were investigated. An extensive three-dimensional finite element analysis was carried out to accurately determine linearity with regard to axial position of the coil and coil current levels. The actuator was constructed and tested on a universal testing machine. Example plots are shown, indicating good linearity over the stroke of approximately 5.08 cm (2 in) and a range of coil currents from -1.5 A to +1.5 A. The actuator was then used for the microgravity vibration isolation experiments, described elsewhere.

  8. Active automotive engine vibration isolation using feedback control

    Science.gov (United States)

    Olsson, Claes

    2006-06-01

    Large frequency band feedback active automotive engine vibration isolation is considered. A MIMO (multi-input multi-output) controller design for an active engine suspension system has been performed making use of a virtual development environment for design, analysis, and co-simulation based closed-loop verification. Utilising relevant control object dynamic modelling, this design strategy provides a powerful opportunity to deal with various plant dynamics, such as structural flexibility and nonlinear characteristics where the main objective is to approach the actual physical characteristics for design and verification in early design phases where no prototypes are yet physically available. H2 loop shaping technique proves to be powerful when achieving the desired frequency dependent loop gain while ensuring closed-loop stability. However, to achieve closed-loop stability two kinds of nonlinearities have to be taken into account. Those are nonlinear material characteristics of the engine mounts and large angular engine displacements. It is demonstrated how the adopted design strategy facilitates the investigation of the latter nonlinearity's impact on closed-loop characteristics. To deal with the nonlinearities, gain scheduling has been used.

  9. Comparison of Two Conceptions of the Vibration Isolation Systems

    Science.gov (United States)

    Šklíba, Jan; Sivčák, M.; Čižmár, J.

    The sprung stretcher of a ground ambulance litter as the space conducting mechanism with three degrees of freedom. The first degree is determined to compensate the vertical translations of a carriage, the second and third to compensate both horizontal rotations (so called pitching and rolling). The first degree is realized with scissor or with parallelogram, on the upper base on which the double Cardane suspension is placed (as the second and third degree). The second Cardane frame is connected with an own stretcher. The vibration isolation is realized with controlled pneumatic springs. Their control has two sensing units: sensor of the relative position of the upper and lower base and sensor of the absolute angle deflection of the second Cardane frame from an horizontal plane (double electrolytic level). This level is modeled as a spherical pendulum (on the base of its identified characteristics). There was analyzed this dynamic system with five degrees of freedom. The analyze of two conceptions demonstrates that the scissor mechanism is for the complete space mechanism more useful than the parallelogram.

  10. The vibration damping effectiveness of an active seat suspension system and its robustness to varying mass loading

    Science.gov (United States)

    Maciejewski, I.; Meyer, L.; Krzyzynski, T.

    2010-09-01

    The paper describes the simulated dynamic response of an active vibro-isolating pneumatic suspension seat. Active control of the air-spring force is used to improve its vibro-isolation properties. For the active vibration isolating system described, a triple feedback loop control system was developed and analysed. The system robustness for different load masses was investigated using the verified active seat suspension model. The Seat Effective Amplitude Transmissibility factor (SEAT) and the maximum suspension deflection were used as the seat performance indices.

  11. Development of a multi-degree-of-freedom micropositioning, vibration isolation and vibration suppression system

    Science.gov (United States)

    Jaensch, M.; Lampérth, M. U.

    2007-04-01

    This paper describes the design and performance testing of a micropositioning, vibration isolation and suppression system, which can be used to position a piece of equipment with sub-micrometre accuracy and stabilize it against various types of external disturbance. The presented demonstrator was designed as part of a novel extremely open pre-polarization magnetic resonance imaging (MRI) scanner. The active control system utilizes six piezoelectric actuators, wide-bandwidth optical fibre displacement sensors and a very fast digital field programmable gate array (FPGA) controller. A PID feedback control algorithm with emphasis on a very high level of integral gain is employed. Due to the high external forces expected, the whole structure is designed to be as stiff as possible, including a novel hard mount approach with parallel passive damping for the suspension of the payload. The performance of the system is studied theoretically and experimentally. The sensitive equipment can be positioned in six degrees of freedom with an accuracy of ± 0.2 µm. External disturbances acting on the support structure or the equipment itself are attenuated in three degrees of freedom by more than -20 dB within a bandwidth of 0-200 Hz. Excellent impulse rejection and input tracking are demonstrated as well.

  12. Low-frequency vibration isolation in six degrees of freedom: the Hummingbird

    NARCIS (Netherlands)

    Rijnveld, N.; Braber, R. van den; Fraanje, P.R.; Dool, T.C. van den

    2010-01-01

    TNO Science and Industry and MECAL have developed a six degree of freedom vibration isolation system that suppresses both floor vibrations and direct forces on a table top. The achieved reduction of transmissibility and compliance is 40 dB between 1 and 50 Hz in vertical direction, and 30 dB between

  13. Control concepts for an active vibration isolation system

    NARCIS (Netherlands)

    Kerber, F.; Hurlebaus, S.; Beadle, B. M.; Stobener, U.

    2007-01-01

    In the fields of high-resolution metrology and manufacturing, effective anti-vibration measures are required to obtain precise and repeatable results. This is particularly true when the amplitudes of ambient vibration and the dimensions of the investigated or manufactured structure are comparable,

  14. Modelling of tuning of an ultra low frequency Roberts Linkage vibration isolator

    Energy Technology Data Exchange (ETDEWEB)

    Dumas, Jean-Charles, E-mail: jcdumas@physics.uwa.edu.a [School of Physics, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009 (Australia); Ju Li; Blair, David G. [School of Physics, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009 (Australia)

    2010-08-09

    We present an analytical model for a Roberts Linkage used as an ultra low frequency vibration isolator. The Roberts Linkage is a structure that simulates a very long radius conical pendulum, at a relatively small height. We show through an analytical solution that it is possible to independently tune the centre of percussion and the resonant frequency for arbitrary geometrical configurations. The result is shown to provide a practical tuning solution, which achieves near ideal vibration isolation.

  15. Modelling of tuning of an ultra low frequency Roberts Linkage vibration isolator

    Science.gov (United States)

    Dumas, Jean-Charles; Ju, Li; Blair, David G.

    2010-08-01

    We present an analytical model for a Roberts Linkage used as an ultra low frequency vibration isolator. The Roberts Linkage is a structure that simulates a very long radius conical pendulum, at a relatively small height. We show through an analytical solution that it is possible to independently tune the centre of percussion and the resonant frequency for arbitrary geometrical configurations. The result is shown to provide a practical tuning solution, which achieves near ideal vibration isolation.

  16. Six Degree of Freedom Active Vibration Isolation at 1 HZ and above

    Science.gov (United States)

    Newell, David Bryan

    One possible addition to future ground-based gravitational wave observatories is a low frequency detector operating in the frequency range of about 1-100 Hz. Such a detector would extend the mass range of black holes from which bursts due to inspiral events or initial formation could be searched for. The increase in seismic noise in this frequency range, however, requires an isolation system of unconventional design. A group at JILA has proposed a local vibration isolation system which demonstrates the principles that could be used in a low frequency laser interferometric detector. Such a system would be used to isolate the support point of each final pendulum that carries one of the end mirrors from ground motion. It is a three-stage system with each stage consisting of a spring mounted platform that provides both active and passive isolation in all six degrees of freedom. Active isolation is achieved by six quasi-independent single input, single output control loops, based on displacement sensors. The second and third stages are expected to be capable of isolating by about a factor of 100 in all six degrees of freedom for frequencies from 1 to 100 Hz. The internal noise level for the last stage, including thermal noise and all other sources of noise, is expected to be [ 1times 10^{-13} (1 Hz/f)^{2.5}+3times 10^{-15 }] m/sqrt{Hz} or less for both horizontal and vertical displacements. The first stage has been completed and is the main topic of this thesis. The platform consists of an equilateral triangular table, 1.1 meter on a side, with a total weight of 462 kg, including the vacuum system and the expected mass of the other two stages. The current reduced vibrational noise of the first stage is about 10 ^{-10} m/sqrt{Hz} for vertical displacements and rm 3times 10^{-10} m/sqrt{Hz} for horizontal displacement from 1 to about 100 Hz.

  17. Magnetorheological elastomer vibration isolation of tunable three-dimensional locally resonant acoustic metamaterial

    Science.gov (United States)

    Xu, Zhenlong; Tong, Jie; Wu, Fugen

    2018-03-01

    Magnetorheological elastomers (MREs) are used as cladding in three-dimensional locally resonant acoustic metamaterial (LRAM) cores. The metamaterial units are combined into a vibration isolator. Two types of LRAMs, namely, cubic and spherical kernels, are constructed. The finite element method is used to analyze the elastic band structures, transmittances, and vibration modes of the incident elastic waves. Results show that the central position and width of the LRAM elastic bandgap can be controlled by the application of an external magnetic field; furthermore, they can be adjusted by changing the MRE cladding thickness. These methods contribute to the design of metamaterial MRE vibration isolators.

  18. The effect of critically moving loads on the vibrations of soft soils and isolated railway tracks

    Science.gov (United States)

    Auersch, L.

    2008-02-01

    The dynamic response of the railway track is strongly influenced by the underlying soil. For a soft soil and very high train speeds or for a very soft soil and regular train speeds, the train speed can be close to the speed of elastic waves in the soil. This paper presents a detailed study of the so-called "moving-load effect", i.e. an amplification of the dynamic response due to the load movement, for the tracks on soft soil. The analysis is carried out by evaluating the related integrals in the wavenumber domain. The influence of the load speed is quantified for a large set of parameters, showing that the effect on the soil vibration is reduced with increase of the frequency, track width and inverse wave velocity. Therefore, the moving-load effect associated with vibratory train loads is negligible whereas the amplification associated with the moving dead weight of the train can be significant. The strong moving-load effect on a perfectly homogeneous soil, however, can be strongly diminished by a layered or randomly varying soil situation. This theoretical result is affirmed by measurements at a test site in Germany where the trains run on a very soft soil at a near-critical speed. The results for soft soils are compared with experimental and theoretical results for a stiff soil. It is found that the influence of the stiffness of the soil is much stronger than the moving-load effect. This holds for the soil vibration as well as for the track vibration which both show a minor dependence on the load speed but a considerable dependence on the soil stiffness in theory and experiment. Railway tracks can include soft isolation elements such as rail pads, sleeper shoes and ballast mats. For these types of isolation elements and normal soil conditions, the influence of the load speed is usually negligible. There is only one isolation measure for which the moving load may be effective: a track which is constructed as a heavy mass-spring system. The resonance of this track

  19. Torsional Vibration Semiactive Control of Drivetrain Based on Magnetorheological Fluid Dual Mass Flywheel

    Directory of Open Access Journals (Sweden)

    Qing-hua Zu

    2015-01-01

    Full Text Available The damping characteristics of the traditional dual mass flywheel (DMF cannot be changed and can only meet one of the damping requirements. Given that the traditional DMF cannot avoid the resonance interval in start/stop conditions, it tends to generate high-resonance amplitude, which reduces the lifetime of a vehicle’s parts and leads to vehicle vibration and noise. The problems associated with the traditional DMF can be solved through the magnetorheological fluid dual mass flywheel (MRF-DMF, which was designed in this study with adjustable damping performance under different conditions. The MRF-DMF is designed based on the rheological behavior of the magnetorheological fluid (MRF, which can be changed by magnetic field strength. The damping torque of the MRF-DMF, which is generated by the MRF effect, is derived in detail. Thus, the cosimulation between the drivetrain model built in AMESim and the control system model developed in Simulink is conducted. The controller of MRF-DMF is developed, after which the torsional vibration control test of drivetrain is carried out. The cosimulation and test results indicate that MRF-DMF with the controller effectively isolates torque fluctuation of the engine in the driving condition and exhibits high performance in suppressing the resonance amplitude in the start/stop conditions.

  20. Orbital rotational vibrations in the A =130 mass region

    Energy Technology Data Exchange (ETDEWEB)

    Faessler, A.; Nojarov, R. (Institut fuer Theoretische Physik, Universitaet Tuebingen, Auf der Morgenstelle 14, D-7400 Tuebingen, Federal Republic of Germany (DE))

    1990-03-01

    The rotational vibrations ({ital K}{sup {pi}}=1{sup +} states) in 16 even-even Xe, Ba, and Ce nuclei are studied in the quasiparticle random-phase approximation with a mean field given by a deformed Woods-Saxon potential and residual forces: a self-consistent quadrupole-quadrupole interaction, a spin-spin interaction, and a force that restores the rotational invariance of the Hamiltonian. A shell effect is found which is typical for this mass region: a strong orbital character of almost all low-energy (2.5--5 MeV) excitations, while the higher-energy ones are predominantly spin flip. The comparison of random-phase approximation {ital M}1 transition densities and ({ital e},{ital e}{prime}) form factors with the microscopic realization of the two-rotor model 1{sup +} state allow us to conclude that the strongly orbital low-energy random-phase approximation states perform the scissor-type motion described by the two-rotor model, but only few particles are involved in this motion.

  1. An adaptive left-right eigenvector evolution algorithm for vibration isolation control

    Science.gov (United States)

    Wu, T. Y.

    2009-11-01

    The purpose of this research is to investigate the feasibility of utilizing an adaptive left and right eigenvector evolution (ALREE) algorithm for active vibration isolation. As depicted in the previous paper presented by Wu and Wang (2008 Smart Mater. Struct. 17 015048), the structural vibration behavior depends on both the disturbance rejection capability and mode shape distributions, which correspond to the left and right eigenvector distributions of the system, respectively. In this paper, a novel adaptive evolution algorithm is developed for finding the optimal combination of left-right eigenvectors of the vibration isolator, which is an improvement over the simultaneous left-right eigenvector assignment (SLREA) method proposed by Wu and Wang (2008 Smart Mater. Struct. 17 015048). The isolation performance index used in the proposed algorithm is defined by combining the orthogonality index of left eigenvectors and the modal energy ratio index of right eigenvectors. Through the proposed ALREE algorithm, both the left and right eigenvectors evolve such that the isolation performance index decreases, and therefore one can find the optimal combination of left-right eigenvectors of the closed-loop system for vibration isolation purposes. The optimal combination of left-right eigenvectors is then synthesized to determine the feedback gain matrix of the closed-loop system. The result of the active isolation control shows that the proposed method can be utilized to improve the vibration isolation performance compared with the previous approaches.

  2. Vibration isolation measures due to the high sensitive linear accelerator at the Paul Scherrer Institute

    Directory of Open Access Journals (Sweden)

    Trombik Peter

    2015-01-01

    Full Text Available The new 735m long linear accelerator “SwissFEL” at the Paul Scherrer Institute (PSI in Würenlingen is extremely sensitive against vibrations coming from surrounding equipment (pumps, ventilators, transformers, etc.. The manufacturer’s vibration limit for this linear accelerator is 0.1μm displacement amplitude. Therefore, all vibration sources must strictly be isolated to the highest-possible degree from the rest of the structure. This paper discusses the vibration situation in general for this unique construction (ground vibrations, vibration propagations / structural amplifications, vibration limits, etc. and as a case study the isolation of a pump located in the building. Steel springs were used and it was achieved to reduce the vibration transmitted to the floor by more than 99%, to a level where the coherent component of the motion recorded on the floor next to the linear accelerator is non-measurable / below the ground motions. The measurements were found to be in good accordance with the FEM model used.

  3. Active and passive vibration isolation in piezoelectric phononic rods with external voltage excitation

    Directory of Open Access Journals (Sweden)

    Qicheng Zhang

    2017-05-01

    Full Text Available Active piezoelectric materials are applied to one-dimensional phononic crystals, for the control of longitudinal vibration propagation both in active and passive modes. Based on the electromechanical coupling between the acoustical vibration and electric field, the electromechanical equivalent method is taken to theoretically predict the transmission spectrum of the longitudinal vibration. It is shown that the phononic rod can suppress the vibration efficiently at the frequencies of interest, by actively optimizing the motions of piezoelectric elements. In an illustrated phononic rod of 11.2cm long, active tunable isolations of more than 20dB at low frequencies (500Hz-14kHz are generated by controlling the excitation voltages of piezoelectric elements. Meanwhile, passive fixed isolation at high frequencies (14k-63kHz are presented by its periodicity characteristics. Finite element simulations and vibration experiments on the rod demonstrate the effectiveness of the approach in terms of its vibration isolation capabilities and tunable characteristics. This phononic rod can be manufactured easily and provides numerous potential applications in designing isolation mounts and platforms.

  4. The Shock Vibration Bulletin. Part 3. Isolation and Damping, Vibration Test Criteria, and Vibration Analysis and Test

    Science.gov (United States)

    1987-01-01

    fatigae equivalent test time of 45-mimates. 1. BACKGROUND subjected to both vibration and loose cargo testing as well an the type and amount of...Environmental Test the track laying environment. Nethods, 10 March 1975. 8. FUTURE EFFORTS 11. Soci, Darrell F., Fatigae Life Estimation Techniques, Technical

  5. Whole body vibration improves body mass, flexibility and strength in ...

    African Journals Online (AJOL)

    related fitness benefits; not only those associated with obesity, but also the reduction ... The use of whole body vibration (WBV) as an exercise intervention for health ..... muscular strength, muscular endurance and aerobic capacity. In addition ...

  6. Positioning and Microvibration Control by Electromagnets of an Air Spring Vibration Isolation System

    Science.gov (United States)

    Watanabe, Katsuhide; Cui, Weimin; Haga, Takahide; Kanemitsu, Yoichi; Yano, Kenichi

    1996-01-01

    Active positioning and microvibration control has been attempted by electromagnets equipped in a bellows-type, air-spring vibration isolation system. Performance tests have been carried out to study the effects. The main components of the system's isolation table were four electromagnetic actuators and controllers. The vibration isolation table was also equipped with six acceleration sensors for detecting microvibration of the table. The electromagnetic actuators were equipped with bellows-type air springs for passive support of the weight of the item placed on the table, with electromagnets for active positioning, as well as for microvibration control, and relative displacement sensors. The controller constituted a relative feedback system for positioning control and an absolute feedback system for vibration isolation control. In the performance test, a 1,490 kg load (net weight of 1,820 kg) was placed on the vibration isolation table, and both the positioning and microvibration control were carried out electromagnetically. Test results revealed that the vibration transmission was reduced by 95%.

  7. Active Tuned Mass Dampers for Control of In-Plane Vibrations of Wind Turbine Blades

    DEFF Research Database (Denmark)

    Fitzgerald, B.; Basu, Biswajit; Nielsen, Søren R.K.

    2013-01-01

    This paper investigates the use of active tuned mass dampers (ATMDs) for the mitigation of in-plane vibrations in rotating wind turbine blades. The rotating wind turbine blades with tower interaction represent time-varying dynamical systems with periodically varying mass, stiffness, and damping...... for this purpose, which considers the structural dynamics of the system and the interaction between in-plane and out-of-plane vibrations. Also, the interaction between the blades and the tower including the tuned mass dampers is considered. The wind turbine with tuned mass dampers was subjected to gravity...

  8. Accelerated lifetime test of vibration isolator made of Metal Rubber material

    Science.gov (United States)

    Ao, Hongrui; Ma, Yong; Wang, Xianbiao; Chen, Jianye; Jiang, Hongyuan

    2017-01-01

    The Metal Rubber material (MR) is a kind of material with nonlinear damping characteristics for its application in the field of aerospace, petrochemical industry and so on. The study on the lifetime of MR material is impendent to its application in engineering. Based on the dynamic characteristic of MR, the accelerated lifetime experiments of vibration isolators made of MR working under random vibration load were conducted. The effects of structural parameters of MR components on the lifetime of isolators were studied and modelled with the fitting curves of degradation data. The lifetime prediction methods were proposed based on the models.

  9. Whole body vibration improves body mass, flexibility and strength in ...

    African Journals Online (AJOL)

    Objectives. This study aimed to determine the effectiveness of whole body vibration (WBV) training for promoting healthrelated physical fitness in sedentary adults. Design. A non-randomised sampling technique was used with an equivalent match-pair comparison group, pre- and posttest design. Volunteers were gathered ...

  10. Parametric Design and Multiobjective Optimization of Maglev Actuators for Active Vibration Isolation System

    Directory of Open Access Journals (Sweden)

    Qianqian Wu

    2014-05-01

    Full Text Available The microvibration has a serious impact on science experiments on the space station and on image quality of high resolution satellites. As an important component of the active vibration isolation platform, the maglev actuator has a large stroke and exhibits excellent isolating performance benefiting from its noncontact characteristic. A maglev actuator with good linearity was designed in this paper. Fundamental features of the maglev actuator were obtained by finite element simulation. In order to minimize the coil weight and the heat dissipation of the maglev actuator, parametric design was carried out and multiobjective optimization based on the genetic algorithm was adopted. The optimized actuator has better mechanical properties than the initial one. Active vibration isolation platforms for different-scale payload were designed by changing the arrangement of the maglev actuators. The prototype to isolate vibration for small-scale payload was manufactured and the experiments for verifying the characteristics of the actuators were set up. The linearity of the actuator and the mechanical dynamic response of the vibration isolation platform were obtained. The experimental results highlight the effectiveness of the proposed design.

  11. High accuracy position adjustment and vibration isolation actuator with the controlled ferrofluid

    Science.gov (United States)

    Wu, Shuai; Li, Chunfang; Zhao, Xiangyu; Jiao, Zongxia

    2017-11-01

    An actuator for microposition adjustment and vibration isolation using the controlled ferrofluid is reported in this letter. The proposed actuator levitates on the ferrofluid which is affected by the combined dynamic magnetic field which is formed by coupling a permanent magnetic field with a controlled electromagnetic field. A controlled electromagnetic field is superposed on the permanent magnetic field in order to change the shape of the ferrofluid to ultimately move the actuator. The experimental results indicate that the proposed actuator can adjust the position with high accuracy and has a good dynamic performance. The proposed actuator can bear over 2 N loads, and the positioning accuracy is within 0.1 μ m. The stroke of the actuator is about of ±30 μ m with no load, and the stroke increases to ±75 μ m at 2 N load. Its dynamic band with -3 dB amplitude attenuation and -90° phase is over 40 Hz. In addition, the displacement has a very good linear relationship with the input current. The results also demonstrate that the actuator can isolate vibration in a wide frequency range, as the low frequency vibration can be compensated by the active motion control, while the high frequency vibration can be attenuated by the elasticity and damping effects of the ferrofluid. Consequently, the proposed actuator has a significant potential for applications where the high accuracy micro-position adjustment and vibration isolation are needed.

  12. Vibration of a hanging tapered string with or without tip mass

    Energy Technology Data Exchange (ETDEWEB)

    Wang, C Y, E-mail: cywang@math.msu.edu [Departments of Mathematics, Michigan State University, East Lansing, MI 48824 (United States)

    2011-09-15

    A vibrating hanging tapered string (chord, chain, cable) is studied both analytically and numerically. The proper boundary condition for a tip-mass-less string is derived. It is found that the frequencies depend heavily on the taper, tip mass and the shape of the cross section. (letters and comments)

  13. Dynamic modeling and simulation of a two-stage series-parallel vibration isolation system

    Directory of Open Access Journals (Sweden)

    Rong Guo

    2016-07-01

    Full Text Available A two-stage series-parallel vibration isolation system is already widely used in various industrial fields. However, when the researchers analyze the vibration characteristics of a mechanical system, the system is usually regarded as a single-stage one composed of two substructures. The dynamic modeling of a two-stage series-parallel vibration isolation system using frequency response function–based substructuring method has not been studied. Therefore, this article presents the source-path-receiver model and the substructure property identification model of such a system. These two models make up the transfer path model of the system. And the model is programmed by MATLAB. To verify the proposed transfer path model, a finite element model simulating a vehicle system, which is a typical two-stage series-parallel vibration isolation system, is developed. The substructure frequency response functions and system level frequency response functions can be obtained by MSC Patran/Nastran and LMS Virtual.lab based on the finite element model. Next, the system level frequency response functions are substituted into the transfer path model to predict the substructural frequency response functions and the system response of the coupled structure can then be further calculated. By comparing the predicted results and exact value, the model proves to be correct. Finally, the random noise is introduced into several relevant system level frequency response functions for error sensitivity analysis. The system level frequency response functions that are most sensitive to the random error are found. Since a two-stage series-parallel system has not been well studied, the proposed transfer path model improves the dynamic theory of the multi-stage vibration isolation system. Moreover, the validation process of the model here actually provides an example for acoustic and vibration transfer path analysis based on the proposed model. And it is worth noting that the

  14. A small-scale study of magneto-rheological track vibration isolation system

    Science.gov (United States)

    Li, Rui; Mu, Wenjun; Zhang, Luyang; Wang, Xiaojie

    2016-04-01

    A magneto-rheological bearing (MRB) is proposed to improve the vibration isolation performance of a floating slab track system. However, it's difficult to carry out the test for the full-scale track vibration isolation system in the laboratory. In this paper, the research is based on scale analysis of the floating slab track system, from the point view of the dimensionless of the dynamic characteristics of physical quantity, to establish a small scale test bench system for the MRBs. A small scale MRB with squeeze mode using magneto-rheological grease is designed and its performance is tested. The major parameters of a small scale test bench are obtained according to the similarity theory. The force transmissibility ratio and the relative acceleration transmissibility ratio are selected as evaluation index of system similarity. Dynamics of these two similarity systems are calculated by MATLAB experiment. Simulation results show that the dynamics of the prototype and scale models have good similarity. Further, a test bench is built according to the small-scale model parameter analysis. The experiment shows that the bench testing results are consistency with that of theoretical model in evaluating the vibration force and acceleration. Therefore, the small-scale study of magneto-rheological track vibration isolation system based on similarity theory reveals the isolation performance of a real slab track prototype system.

  15. THE REDUCTION OF VIBRATIONS IN A CAR – THE PRINCIPLE OF PNEUMATIC DUAL MASS FLYWHEEL

    Directory of Open Access Journals (Sweden)

    Robert GREGA

    2014-09-01

    Full Text Available The dual-mass flywheel replaces the classic flywheel in such way that it is divided into two masses (the primary mass and the secondary mass, which are jointed together by means of a flexible interconnection. This kind of the flywheel solution enables to change resonance areas of the engine with regard to the engine dynamic behaviour what leads to a reduction of vibrations consequently. However, there is also a disadvantage of the dualmass flywheels. The disadvantage is its short-time durability. There was projected a new type of the dual-mass flywheel in the framework of our workplace in order to eliminate disadvantages of the present dual-mass flywheels, i.e. we projected the pneumatic dual-mass flywheel, taking into consideration our experiences obtained during investigation of vibrations.

  16. Vibration Isolation Platform for Long Range Optical Communications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Optical communication links provide higher data transfer rates with lower mass, power, and volume than conventional radio-frequency links. For deep space...

  17. Effectiveness of Stationary Humans and Tuned Mass Dampers in Controlling Floor vibrations

    DEFF Research Database (Denmark)

    Pedersen, Lars

    2006-01-01

    damper) so as to ensure compliance with requirements related to human tolerance to vertical vibrations. However, the paper demonstrates that stationary humans themselves can provide a significant passive damping source due to dynamic interaction between the masses of the stationary humans...... a dynamic excitation generated by humans in motion. The vibration levels are compared with those expected if the else wise empty structures were fitted with a tuned mass damper so as to illustrate the effectiveness of the crowd in mitigating floor vibrations. Since a stationary crowd of people changes...... the dynamic characteristics of the floor which they occupy, the effectiveness of a potential tuned mass damper installation would also be influenced by the crowd's presence, and the paper quantifies the changes in damper effectiveness introduced in this way. From the results presented in the paper is would...

  18. Model-free fuzzy control of a magnetorheological elastomer vibration isolation system: analysis and experimental evaluation

    Science.gov (United States)

    Fu, Jie; Li, Peidong; Wang, Yuan; Liao, Guanyao; Yu, Miao

    2016-03-01

    This paper addresses the problem of micro-vibration control of a precision vibration isolation system with a magnetorheological elastomer (MRE) isolator and fuzzy control strategy. Firstly, a polyurethane matrix MRE isolator working in the shear-compression mixed mode is introduced. The dynamic characteristic is experimentally tested, and the range of the frequency shift and the model parameters of the MRE isolator are obtained from experimental results. Secondly, a new semi-active control law is proposed, which uses isolation structure displacement and relative displacement between the isolation structure and base as the inputs. Considering the nonlinearity of the MRE isolator and the excitation uncertainty of an isolation system, the designed semi-active fuzzy logic controller (FLC) is independent of a system model and is robust. Finally, the numerical simulations and experiments are conducted to evaluate the performance of the FLC with single-frequency and multiple-frequency excitation, respectively, and the experimental results show that the acceleration transmissibility is reduced by 54.04% at most, which verifies the effectiveness of the designed semi-active FLC. Moreover, the advantages of the approach are demonstrated in comparison to the passive control and ON-OFF control.

  19. Apparently the first closed-form solution of vibrating inhomogeneous beam with a tip mass

    Science.gov (United States)

    Elishakoff, I.; Johnson, V.

    2005-09-01

    Whereas there are numerous papers on the free vibrations of beams of uniform or non-uniform cross-section carrying concentrated masses, the problem does not lend itself to the closed-form solution. Here such a solution is reported, apparently for the first time. The solution originally derived for the inhomogeneous beam without a concentrated mass is generalized to include a tip mass. The semi-inverse method is utilized, to achieve this goal.

  20. Vibration induced sliding: theory and experiment for a beam with a spring-loaded mass

    DEFF Research Database (Denmark)

    Miranda, Erik; Thomsen, Jon Juel

    1998-01-01

    The study sets up a simple model for predicting vibration induced sliding of mass, and provides quantitative experimental evidence for the validity of the model. The results lend confidence to recent theoretical developments on using vibration induced sliding for passive vibration damping......, and contributes to a further understanding of this nonlinear phenomenon. A mathematical model is set up to describe vibration induced sliding for a base-excited cantilever beam with a spring-loaded pointmass. Approximations simplify the model into two nonlinear ordinary differential equations, describing motions...... of the system at near-resonant excitation of a single beam mode. This simplified model is studied numerically and analytically, and tested against laboratory experiments. The experiments provide evidence that the simplified mathematical model retains those features of the real system that are necessary...

  1. Collective and single particle states in medium mass vibrational nuclei

    CERN Document Server

    Suliman, G

    2001-01-01

    The particle-core coupling model has been employed to describe the low lying nuclear excitations in the vibrational odd-A nuclei. In the frame of this model the following observables were calculated: excitation energies, spin and parity quantum numbers, electric quadrupole moments, magnetic dipole moments and reduced transition probabilities. Two computer codes were employed. The first one, PCOREC, diagonalized the Hamiltonian providing the eigenvectors and eigenvalues. The second one, PCORECTR, starts from the eigenvector computer by the first program and computes the observables which are compared we results of experiments. A good description of the experimental data has been obtained for the sup 1 sup 3 sup 3 Sb, sup 1 sup 2 sup 3 Sb and sup 1 sup 2 sup 5 Sb nuclei. (authors)

  2. Vibration response of piezoelectric microcantilever as ultrasmall mass sensor in liquid environment.

    Science.gov (United States)

    Karimpour, Masoud; Ghaderi, Reza; Raeiszadeh, Farhad

    2017-10-01

    The present study aims to analyze the vibrating behavior of a piezoelectric microcantilever (MC) as a mass nanosensor. The vibrating behavior of the MC as well as its sensitivity as a mass nanosensor are investigated and compared in both air and liquid environments. To this end, Euler-Bernoulli theory was used to model the vibrating behavior of piezoelectric MC with added mass at its free end. Frequency analysis was conducted by considering geometric discontinuities and taking added mass into account. The effect of liquid environment applied to the MC (as hydrodynamic forces) was based on a string of spheres model. Since changes in resonance frequency are used as the measurement parameter in mass sensors, changes in resonance frequency during absorption of nanoparticles was selected as the main parameter to be investigated in this study. Ultimately, with the aim to achieve optimal geometric dimensions for the piezoelectric MC, sensitivity analysis was additionally performed in order to increase the frequency sensitivity. According to the results, frequency sensitivity of the piezoelectric MC decreased in liquid environment compared to air environments. Moreover, increases in fluid density and viscosity caused a decreased frequency sensitivity. Simulation results indicate that the second vibrating mode in air and liquid environments is the appropriate operating mode for this type of MC. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Verification of the Microgravity Active Vibration Isolation System based on Parabolic Flight

    Science.gov (United States)

    Zhang, Yong-kang; Dong, Wen-bo; Liu, Wei; Li, Zong-feng; Lv, Shi-meng; Sang, Xiao-ru; Yang, Yang

    2017-12-01

    The Microgravity active vibration isolation system (MAIS) is a device to reduce on-orbit vibration and to provide a lower gravity level for certain scientific experiments. MAIS system is made up of a stator and a floater, the stator is fixed on the spacecraft, and the floater is suspended by electromagnetic force so as to reduce the vibration from the stator. The system has 3 position sensors, 3 accelerometers, 8 Lorentz actuators, signal processing circuits and a central controller embedded in the operating software and control algorithms. For the experiments on parabolic flights, a laptop is added to MAIS for monitoring and operation, and a power module is for electric power converting. The principle of MAIS is as follows: the system samples the vibration acceleration of the floater from accelerometers, measures the displacement between stator and floater from position sensitive detectors, and computes Lorentz force current for each actuator so as to eliminate the vibration of the scientific payload, and meanwhile to avoid crashing between the stator and the floater. This is a motion control technic in 6 degrees of freedom (6-DOF) and its function could only be verified in a microgravity environment. Thanks for DLR and Novespace, we get a chance to take the DLR 27th parabolic flight campaign to make experiments to verify the 6-DOF control technic. The experiment results validate that the 6-DOF motion control technique is effective, and vibration isolation performance perfectly matches what we expected based on theoretical analysis and simulation. The MAIS has been planned on Chinese manned spacecraft for many microgravity scientific experiments, and the verification on parabolic flights is very important for its following mission. Additionally, we also test some additional function by microgravity electromagnetic suspension, such as automatic catching and locking and working in fault mode. The parabolic flight produces much useful data for these experiments.

  4. Verification of the Microgravity Active Vibration Isolation System based on Parabolic Flight

    Science.gov (United States)

    Zhang, Yong-kang; Dong, Wen-bo; Liu, Wei; Li, Zong-feng; Lv, Shi-meng; Sang, Xiao-ru; Yang, Yang

    2017-09-01

    The Microgravity active vibration isolation system (MAIS) is a device to reduce on-orbit vibration and to provide a lower gravity level for certain scientific experiments. MAIS system is made up of a stator and a floater, the stator is fixed on the spacecraft, and the floater is suspended by electromagnetic force so as to reduce the vibration from the stator. The system has 3 position sensors, 3 accelerometers, 8 Lorentz actuators, signal processing circuits and a central controller embedded in the operating software and control algorithms. For the experiments on parabolic flights, a laptop is added to MAIS for monitoring and operation, and a power module is for electric power converting. The principle of MAIS is as follows: the system samples the vibration acceleration of the floater from accelerometers, measures the displacement between stator and floater from position sensitive detectors, and computes Lorentz force current for each actuator so as to eliminate the vibration of the scientific payload, and meanwhile to avoid crashing between the stator and the floater. This is a motion control technic in 6 degrees of freedom (6-DOF) and its function could only be verified in a microgravity environment. Thanks for DLR and Novespace, we get a chance to take the DLR 27th parabolic flight campaign to make experiments to verify the 6-DOF control technic. The experiment results validate that the 6-DOF motion control technique is effective, and vibration isolation performance perfectly matches what we expected based on theoretical analysis and simulation. The MAIS has been planned on Chinese manned spacecraft for many microgravity scientific experiments, and the verification on parabolic flights is very important for its following mission. Additionally, we also test some additional function by microgravity electromagnetic suspension, such as automatic catching and locking and working in fault mode. The parabolic flight produces much useful data for these experiments.

  5. Synchronization of Two Self-Synchronous Vibrating Machines on an Isolation Frame

    Directory of Open Access Journals (Sweden)

    Chunyu Zhao

    2011-01-01

    Full Text Available This paper investigates synchronization of two self-synchronous vibrating machines on an isolation rigid frame. Using the modified average method of small parameters, we deduce the non-dimensional coupling differential equations of the disturbance parameters for the angular velocities of the four unbalanced rotors. Then the stability problem of synchronization for the four unbalanced rotors is converted into the stability problems of two generalized systems. One is the generalized system of the angular velocity disturbance parameters for the four unbalanced rotors, and the other is the generalized system of three phase disturbance parameters. The condition of implementing synchronization is that the torque of frequency capture between each pair of the unbalanced rotors on a vibrating machine is greater than the absolute values of the output electromagnetic torque difference between each pair of motors, and that the torque of frequency capture between the two vibrating machines is greater than the absolute value of the output electromagnetic torque difference between the two pairs of motors on the two vibrating machines. The stability condition of synchronization of the two vibrating machines is that the inertia coupling matrix is definite positive, and that all the eigenvalues for the generalized system of three phase disturbance parameters have negative real parts. Computer simulations are carried out to verify the results of the theoretical investigation.

  6. Vibration isolation systems, considered as systems with single degree of freedom

    Directory of Open Access Journals (Sweden)

    Zebilila Mohammed

    2017-01-01

    Full Text Available The research considers and analyzes vibration isolation systems, whose design schemes are single degree of freedom systems, including nonlinear elements - displacement limiter and viscous damper. Presented are calculation formulas in closed form for linear systems in operational modes (for harmonic and impulse loads, algorithms and examples of calculation of linear and nonlinear systems in operational and transient modes. The calculation method and the above dependences are written using the transfer (TF and impulse response functions (IRF of linear dynamical systems and dependencies that determine the relationship between these functions. The effectiveness of 2 options of vibration isolation systems in transient modes is analyzed. There is significant reduction of load from the equipment to the supporting structures in the starting-stopping modes by the use of displacement limiter.

  7. Vibration Isolation and Trajectory Following Control of a Cable Suspended Stewart Platform

    Directory of Open Access Journals (Sweden)

    Xuechao Duan

    2016-10-01

    Full Text Available To achieve high-quality vibration isolation and trajectory following control of a cable driven parallel robot based Stewart platform in the five hundred meter aperture spherical radio telescope (FAST design, the integrated dynamic model of the Stewart platform including the electric cylinder is established in this paper, the globally feedback linearization of the dynamic model is implemented based on the control law partitioning approach. To overcome the disadvantages of the external disturbance on the base and unmodeled flexibility of the mechanism, a PID (Proportional-Derivative-Integral controller with base acceleration feedforward is designed in the operational space of the Stewart platform. Experiments of the vibration isolation and trajectory following control of the cable suspended Stewart platform with presence of the base disturbance is carried out. The experimental results show that the presented control scheme has the advantage of stable dynamics, high accuracy and strong robustness.

  8. Design and Implementation of a Digital Controller for a Vibration Isolation and Vernier Pointing System

    Science.gov (United States)

    Neff, Daniel J.; Britcher, Colin P.

    1996-01-01

    This paper discusses the recommissioning of the Annular Suspension and Pointing System (ASPS), originally developed in the mid 1970's for pointing and vibration isolation of space experiments. The hardware was developed for NASA Langley Research Center by Sperry Flight Systems (now Honeywell Satellite Systems), was delivered to NASA in 1983. Recently, the hardware was loaned to Old Dominion University (ODU). The ASPS includes coarse gimbal assemblies and a Vernier Pointing Assembly (VPA) that utilize magnetic suspension to provide noncontacting vibration isolation and vernier pointing of the payload. The VPA is the main focus of this research. At ODU, the system has been modified such that it can now be operated in a l-g environment without a gravity offload. Suspension of the annular iron rotor in five degrees-of-freedom has been achieved with the use of modern switching power amplifiers and a digital controller implemented on a 486-class PC.

  9. Transverse Free Vibration of Axially Moving Stepped Beam with Different Length and Tip Mass

    Directory of Open Access Journals (Sweden)

    Guoliang Ma

    2015-01-01

    Full Text Available Axially moving stepped beam (AMSB with different length and tip mass is represented by adopting Euler-Bernoulli beam theory, and its characteristics and displacements of transverse free vibration are calculated by using semianalytical method. Firstly, the governing equation of the transverse free vibration is established based on Hamilton’s principle. The equation is cast into eigenvalue equation through the complex modal analysis. Then, a scheme is proposed to derive the continuous condition accordingly as the displacement, rotation, bending moment, and shear force are all equal at the connections of any two segments. Another scheme is to derive frequency equation from the given boundary conditions which contain a tip mass in the last segment. Finally, the natural frequency and modal function are calculated by using numerical method according to the eigenvalue equation and frequency equation. Due to the introduction of modal truncation, displacement and, the free vibration solution can be obtained by adopting modal superposition after Hilbert transform. The numerical examples illustrate that length, velocity, mass, and geometry affect characteristics and displacements significantly; the series of methods are effective and accurate to investigate the vibration of the AMSB with different length and tip mass after comparing several results.

  10. Determination of vibration frequency depending on abrasive mass flow rate during abrasive water jet cutting

    Czech Academy of Sciences Publication Activity Database

    Hreha, P.; Radvanská, A.; Hloch, Sergej; Peržel, V.; Krolczyk, G.; Monková, K.

    2014-01-01

    Roč. 77, 1-4 (2014), s. 763-774 ISSN 0268-3768 Institutional support: RVO:68145535 Keywords : Abrasive water jet * Abrasive mass flow rate * Vibration Subject RIV: JQ - Machines ; Tools Impact factor: 1.458, year: 2014 http://link.springer.com/article/10.1007%2Fs00170-014-6497-9#page-1

  11. The Nonlinear Behavior of Vibrational Conveyers with Single-Mass Crank-and-Rod Exciters

    Directory of Open Access Journals (Sweden)

    G. Füsun Alışverişçi

    2012-01-01

    Full Text Available The single-mass, crank-and-rod exciters vibrational conveyers have a trough supported on elastic stands which are rigidly fastened to the trough and a supporting frame. The trough is oscillated by a common crank drive. This vibration causes the load to move forward and upward. The moving loads jump periodically and move forward with relatively small vibration. The movement is strictly related to vibrational parameters. This is applicable in laboratory conditions in the industry which accommodate a few grams of loads, up to those that accommodate tons of loading capacity. In this study I explore the transitional behavior across resonance, during the starting of a single degree of freedom vibratory system excited by crank-and-rod. A loaded vibratory conveyor is more safe to start than an empty one. Vibrational conveyers with cubic nonlinear spring and ideal vibration exciter have been analyzed analytically for primary and secondary resonance by the Method of Multiple Scales, and numerically. The approximate analytical results obtained in this study have been compared with the numerical results and have been found to be well matched.

  12. Free Vibrations of a Cantilevered SWCNT with Distributed Mass in the Presence of Nonlocal Effect

    Directory of Open Access Journals (Sweden)

    M. A. De Rosa

    2015-01-01

    Full Text Available The Hamilton principle is applied to deduce the free vibration frequencies of a cantilever single-walled carbon nanotube (SWCNT in the presence of an added mass, which can be distributed along an arbitrary part of the span. The nonlocal elasticity theory by Eringen has been employed, in order to take into account the nanoscale effects. An exact formulation leads to the equations of motion, which can be solved to give the frequencies and the corresponding vibration modes. Moreover, two approximate semianalytical methods are also illustrated, which can provide quick parametric relationships. From a more practical point of view, the problem of detecting the mass of the attached particle has been solved by calculating the relative frequency shift due to the presence of the added mass: from it, the mass value can be easily deduced. The paper ends with some numerical examples, in which the nonlocal effects are thoroughly investigated.

  13. Quantification of the influence of external vibrations on the measurement error of a coriolis mass-flow meter

    NARCIS (Netherlands)

    van de Ridder, Bert; Hakvoort, Wouter; van Dijk, Johannes; Lötters, Joost Conrad; de Boer, Andries

    2014-01-01

    In this paper the influence of external vibrations on the measurement value of a Coriolis mass-flow meter (CMFM) for low flows is investigated and quantified. Model results are compared with experimental results to improve the knowledge on how external vibrations affect the mass-flow measurement

  14. Effects of internal mass distribution and its isolation on the acoustic characteristics of a submerged hull

    Science.gov (United States)

    Peters, Herwig; Kinns, Roger; Kessissoglou, Nicole

    2014-03-01

    The primary aim of machinery isolation in marine vessels is to isolate structural vibration of the onboard machinery from the hull and to reduce far-field radiation of underwater noise. A substantial proportion of the total submarine mass is on flexible mounts that isolate supported masses from the hull at frequencies above the mounting system resonant frequency. This reduces the dynamically effective mass of the hull and affects the signature of the marine vessel due to propeller excitation. A fully coupled finite element/boundary element (FE/BE) model has been developed to investigate the effect of mass distribution and isolation in a submerged hull. The finite element model of the structure includes internal structures to represent the machinery and other flexibly mounted components. Changes in the radiated sound power demonstrate the effect of machinery isolation on the acoustic signature of the submerged hull due to the external propeller forces. Results are also presented to show how the arrangement of flexible mounts for a large internal structure can influence the radiation due to machinery forces.

  15. Highly sensitive mass detection and identification using vibration localization in coupled microcantilever arrays

    Science.gov (United States)

    Spletzer, Matthew; Raman, Arvind; Sumali, Hartono; Sullivan, John P.

    2008-03-01

    We study the use of vibration localization in large arrays of mechanically coupled, nearly identical microcantilevers for ultrasensitive mass detection and identification. We demonstrate that eigenmode changes in such an array can be two to three orders of magnitude greater than relative changes in resonance frequencies when an analyte mass is added. Moreover, the changes in eigenmodes are unique to the cantilever to which mass is added, thereby providing a characteristic "fingerprint" that identifies the particular cantilever where mass has been added. This opens the door to ultrasensitive detection and identification of multiple analytes with a single coupled array.

  16. Bifurcations and chaos of a vibration isolation system with magneto-rheological damper

    Directory of Open Access Journals (Sweden)

    Hailong Zhang

    2016-03-01

    Full Text Available Magneto-rheological (MR damper possesses inherent hysteretic characteristics. We investigate the resulting nonlinear behaviors of a two degree-of-freedom (2-DoF MR vibration isolation system under harmonic external excitation. A MR damper is identified by employing the modified Bouc-wen hysteresis model. By numerical simulation, we characterize the nonlinear dynamic evolution of period-doubling, saddle node bifurcating and inverse period-doubling using bifurcation diagrams of variations in frequency with a fixed amplitude of the harmonic excitation. The strength of chaos is determined by the Lyapunov exponent (LE spectrum. Semi-physical experiment on the 2-DoF MR vibration isolation system is proposed. We trace the time history and phase trajectory under certain values of frequency of the harmonic excitation to verify the nonlinear dynamical evolution of period-doubling bifurcations to chaos. The largest LEs computed with the experimental data are also presented, confirming the chaotic motion in the experiment. We validate the chaotic motion caused by the hysteresis of the MR damper, and show the transitions between distinct regimes of stable motion and chaotic motion of the 2-DoF MR vibration isolation system for variations in frequency of external excitation.

  17. Case study of system effects on high frequency vibration isolation in aircraft structure

    Science.gov (United States)

    Simmons, William E.; Marshall, Steven E.

    In an attempt to improve isolator selection criteria for use in commercial airplanes, a modeling technique was developed. This technique was used to map the vibrational energy transfer from a resiliently mounted electric motor-driven hydraulic pump (or ACMP) to its foundation, a keel beam in the main wheelwell of a large airplane. The system level parameters that strongly influence mount transmissibility were investigated. Using common elastomeric material properties model, predictions were found to compare favorably to measured transmissibility data. The present study discusses the modeling technique and test data comparison, Potential improvements in isolator performance are evaluated. Isolator properties are then identified whch, when combined with transmissibility data, would enhance the isolator selection process.

  18. Membrane-type resonator as an effective miniaturized tuned vibration mass damper

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Liang; Au-Yeung, Ka Yan; Yang, Min; Tang, Suet To; Yang, Zhiyu, E-mail: phyang@ust.hk; Sheng, Ping [Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong (China)

    2016-08-15

    Damping of low frequency vibration by lightweight and compact devices has been a serious challenge in various areas of engineering science. Here we report the experimental realization of a type of miniature low frequency vibration dampers based on decorated membrane resonators. At frequency around 150 Hz, two dampers, each with outer dimensions of 28 mm in diameter and 5 mm in height, and a total mass of 1.78 g which is less than 0.6% of the host structure (a nearly free-standing aluminum beam), can reduce its vibrational amplitude by a factor of 1400, or limit its maximum resonance quality factor to 18. Furthermore, the conceptual design of the dampers lays the foundation and demonstrates the potential of further miniaturization of low frequency dampers.

  19. Two improvements on numerical simulation of 2-DOF vortex-induced vibration with low mass ratio

    Science.gov (United States)

    Kang, Zhuang; Ni, Wen-chi; Zhang, Xu; Sun, Li-ping

    2017-12-01

    Till now, there have been lots of researches on numerical simulation of vortex-induced vibration. Acceptable results have been obtained for fixed cylinders with low Reynolds number. However, for responses of 2-DOF vortex-induced vibration with low mass ratio, the accuracy is not satisfactory, especially for the maximum amplitudes. In Jauvtis and Williamson's work, the maximum amplitude of the cylinder with low mass ratio m*=2.6 can reach as large as 1.5 D to be called as the "super-upper branch", but from current literatures, few simulation results can achieve such value, even fail to capture the upper branch. Besides, it is found that the amplitude decays too fast in the lower branch with the RANS-based turbulence model. The reason is likely to be the defects of the turbulence model itself in the prediction of unsteady separated flows as well as the unreasonable setting of the numerical simulation parameters. Aiming at above issues, a modified turbulence model is proposed in this paper, and the effect of the acceleration of flow field on the response of vortex-induced vibration is studied based on OpenFOAM. By analyzing the responses of amplitude, phase and trajectory, frequency and vortex mode, it is proved that the vortex-induced vibration can be predicted accurately with the modified turbulence model under appropriate flow field acceleration.

  20. Active tuned mass damper for damping of offshore wind turbine vibrations

    DEFF Research Database (Denmark)

    Brodersen, Mark Laier; Bjørke, Ann-Sofie; Høgsberg, Jan Becker

    2017-01-01

    An active tuned mass damper (ATMD) is employed for damping of tower vibrations of fixed offshore wind turbines, where the additional actuator force is controlled using feedback from the tower displacement and the relative velocity of the damper mass. An optimum tuning procedure equivalent...... to the tuning procedure of the passive tuned mass damper combined with a simple procedure for minimizing the control force is employed for determination of optimum damper parameters and feedback gain values. By time domain simulations conducted in an aeroelastic code, it is demonstrated that the ATMD can...... be used to further reduce the structural response of the wind turbine compared with the passive tuned mass damper and this without an increase in damper mass. A limiting factor of the design of the ATMD is the displacement of the damper mass, which for the ATMD, increases to compensate for the reduction...

  1. Design of mechanical metamaterials for simultaneous vibration isolation and energy harvesting

    Science.gov (United States)

    Li, Ying; Baker, Evan; Reissman, Timothy; Sun, Cheng; Liu, Wing Kam

    2017-12-01

    Through finite element analysis and a 3D printing assisted experimental study, we demonstrate a design of mechanical metamaterials for simultaneous mechanical wave filtering and energy harvesting. The mechanical metamaterials compromise a square array of free-standing cantilevers featuring piezoelectric properties being attached to a primary structural frame. A complete bandgap has thus been created via the strong coupling of the bulk elastic wave propagating along the structural frame and the distributed local resonance associated with the square array of piezoelectrically active cantilevers. Operating within the stop-band, external vibration energy has been trapped and transferred into the kinetic energy of the cantilevers, which is further converted into electric energy through mechano-electrical conversion of its integrated piezoelectric elements. Therefore, two distinct functions, vibration isolation and energy harvesting, are achieved simultaneously through the designed mechanical metamaterials.

  2. Design and experiments of an active isolator for satellite micro-vibration

    Directory of Open Access Journals (Sweden)

    Li Weipeng

    2014-12-01

    Full Text Available In this paper, a soft active isolator (SAI derived from a voice coil motor is studied to determine its abilities as a micro-vibration isolation device for sensitive satellite payloads. Firstly, the two most important parts of the SAI, the mechanical unit and the low-noise driver, are designed and manufactured. Then, a rigid-flexible coupling dynamic model of the SAI is built, and a dynamic analysis is conducted. Furthermore, a controller with a sky-hook damper is designed. Finally, results from the performance tests of the mechanical/electronic parts and the isolation experiments are presented. The SAI attenuations are found to be more than −20 dB above 5 Hz, and the control effect is stable.

  3. Importance of Added Mass and Damping in Flow-Induced Vibration Analysis of Tubes Bundle: An Overview

    Directory of Open Access Journals (Sweden)

    Faisal Karim Shami

    2012-01-01

    Full Text Available Flow-induced vibration is of prime concern to the designers of heat exchangers subjected to high flows of gases or liquids. Excessive vibration may cause tube failure due to fatigue or fretting-wear. Tube failure results in, expensive plant upholding and suffers loss of production. Therefore, tube failure due to unwarranted vibration must be avoided in process heat exchangers and nuclear steam generators, preferably at design stage. Such vibration problems may be avoided through a comprehensive flowinduced vibration analysis before fabrication of heat exchangers. However, it requires an understanding of vibration mechanism and parameters related to flow-induced vibration. For an accurate vibration analysis, it is of prime importance to have good estimates of structural and flow related dynamic parameters. Thus dynamic parameters such as added mass and damping are of significant concern in a flow regime. The purpose of this paper is to provide an overview of our state of knowledge and role of dynamic parameters in flow-induced vibration on tube bundles due to current trend of larger heat exchangers. The present paper provides published data, analysis, evaluation, formulation, and experimental studies related to hydrodynamic mass and damping by a large number of researchers. Guidelines for experimental research and heat exchangers design related to added mass and damping mechanisms subjected to both single and two-phase flow are outlined in this paper.

  4. Nonlinear transition dynamics in a time-delayed vibration isolator under combined harmonic and stochastic excitations

    Science.gov (United States)

    Yang, Tao; Cao, Qingjie

    2017-04-01

    Based on the quasi-zero stiffness vibration isolation (QZS-VI) system, nonlinear transition dynamics have been investigated coupled with both time-delayed displacement and velocity feedbacks. Using a delayed nonlinear Langevin approach, we discuss a new mechanism for the transition of a vibration isolator in which the energy originates from harmonic and noise excitations. For this stochastic process, the effective displacement potential, stationary probability density function and the escape ratio are obtained. We investigate a variety of noise-induced behaviors affecting the transitions between system equilibria states. The results indicate that the phenomena of transition, resonant activation and delay-enhanced stability may emerge in the QZS-VI system. Moreover, we also show that the time delay, delay feedback intensities, and harmonic excitation play significant roles in the resonant activation and delay-enhanced stability phenomena. Finally, a quantitative measure for amplitude response has been carried out to evaluate the isolation performance of the controlled QZS-VI system. The results show that with properly designed feedback parameters, time delay and displacement feedback intensity can play the role of a damping force. This research provides instructive ideas on the application of the time-delayed control in practical engineering.

  5. Quantitative estimation of the influence of external vibrations on the measurement error of a coriolis mass-flow meter

    NARCIS (Netherlands)

    van de Ridder, Bert; Hakvoort, Wouter; van Dijk, Johannes; Lötters, Joost Conrad; de Boer, Andries; Dimitrovova, Z.; de Almeida, J.R.

    2013-01-01

    In this paper the quantitative influence of external vibrations on the measurement value of a Coriolis Mass-Flow Meter for low flows is investigated, with the eventual goal to reduce the influence of vibrations. Model results are compared with experimental results to improve the knowledge on how

  6. Effects of functional group mass variance on vibrational properties and thermal transport in graphene

    Science.gov (United States)

    Lindsay, L.; Kuang, Y.

    2017-03-01

    Intrinsic thermal resistivity critically depends on features of phonon dispersions dictated by harmonic interatomic forces and masses. Here we present the effects of functional group mass variance on vibrational properties and thermal conductivity (κ ) of functionalized graphene from first-principles calculations. We use graphane, a buckled graphene backbone with covalently bonded hydrogen atoms on both sides, as the base material and vary the mass of the hydrogen atoms to simulate the effect of mass variance from other functional groups. We find nonmonotonic behavior of κ with increasing mass of the functional group and an unusual crossover from acoustic-dominated to optic-dominated thermal transport behavior. We connect this crossover to changes in the phonon dispersion with varying mass which suppress acoustic phonon velocities, but also give unusually high velocity optic modes. Further, we show that out-of-plane acoustic vibrations contribute significantly more to thermal transport than in-plane acoustic modes despite breaking of a reflection-symmetry-based scattering selection rule responsible for their large contributions in graphene. This work demonstrates the potential for manipulation and engineering of thermal transport properties in two-dimensional materials toward targeted applications.

  7. Prediction of Acoustically Induced Random Vibration Response of Satellite Equipments with Proposed Asymptotic Apparent Mass

    Science.gov (United States)

    Ando, Shigemasa; Shi, Qinzhong

    Acoustically induced random vibration of satellite equipment mounted on honeycomb panels is a critical design consideration in satellite equipment development. Prediction of this random vibration is performed in the early stage of satellite design to specify the design limit value of random vibration excitation for satellite equipment. Various prediction methods for response prediction using Statistical Energy Analysis (SEA) have been developed: (i) NASA Lewis method, (ii) point-mass impedance method, and (iii) area-coupling impedance method. However, the first method has limited accuracy for heavy and concentrated equipment, the second one often overestimates, and the third one requires a detailed parameter. A new method combining the asymptotic apparent mass of specific equipment with NASA Lewis method is proposed herein. This proposed method takes the elastic behavior of satellite equipment rather than a rigid mass. The acoustic excitation experiments for nine real satellites (404 equipments in all) were conducted to compare existing methods to the proposed method statistically. Results show that the proposed method provides the most accurate prediction in the important frequency range.

  8. Vibration of a continuous beam excited by a moving mass and experimental validation

    Science.gov (United States)

    Stancioiu, D.; James, S.; Ouyang, H.; Mottershead, J. E.

    2009-08-01

    The work presented in this paper deals with the vibration of a continuous slender beam excited by a mass moving at various speeds along it. An experimental model is designed and set up to study this problem. This model, which consists of a four-span continuous beam traversed by a moving mass at a constant speed, is used to build a theoretical model for the supporting structure. A series of tests designed to assess the accuracy of the model are carried out. The final section of the paper is dedicated to the numerical and experimental results and discussion.

  9. Free Vibration of a Perfectly Clamped-Free Beam with Stepwise Eccentric Distributed Masses

    Directory of Open Access Journals (Sweden)

    Gilbert-Rainer Gillich

    2016-01-01

    Full Text Available A direct approach for the calculation of the natural frequencies and vibration mode shapes of a perfectly clamped-free beam with additional stepwise eccentric distributed masses is developed, along with its corresponding equations. Firstly there is contrived influence of a mass, located on a given position along the beam, upon the modal energies, via an energy analysis method. Secondly, the mass participation coefficient is defined as a function of the mass location and the bending vibration mode number. The proposed coefficient is employed to deduce the mathematical relation for the frequencies of beams with supplementary eccentric loads, generally available for any boundary conditions. The accuracy of the obtained mathematical relation was examined in comparison with the numerical simulation and experimental results for a cantilever beam. For this aim, several finite element models have been developed, individualized by the disturbance extent and the mass increase or decrease. Also, one real system was tested. The comparisons between the analytically achieved results and those obtained from experiments proved the accuracy of the developed mathematical relation.

  10. Vibration Isolation System for Cryocoolers of Soft X-Ray Spectrometer (SXS) Onboard ASTRO-H (Hitomi)

    Science.gov (United States)

    Takei, Yoh; Yasuda, Susumu; Ishimura, Kosei; Iwata, Naoko; Okamoto, Atsushi; Sato, Yoichi; Ogawa, Mina; Sawada, Makoto; Kawano, Taro; Obara, Shingo; hide

    2016-01-01

    Soft X-ray Spectrometer (SXS) onboard ASTRO-H (named Hitomi after launch) is a micro-calorimeter-type spectrometer, installed in a dewar to be cooled at 50 mK. The energy resolution of the SXS engineering model suffered from micro-vibration from cryocoolers mounted on the dewar. This is mitigated for the flight model by introducing vibration isolation systems between the cryocoolers and the dewar. The detector performance of the flight model was verified before launch of the spacecraft in both ambient condition and thermal-vac condition, showing no detectable degradation in energy resolution. The in-orbit performance was also consistent with that on ground, indicating that the cryocoolers were not damaged by launch environment. The design and performance of the vibration isolation system along with the mechanism of how the micro-vibration could degrade the cryogenic detector is shown.

  11. Analytical and experimental investigation on a multiple-mass-element pendulum impact damper for vibration mitigation

    Science.gov (United States)

    Egger, Philipp; Caracoglia, Luca

    2015-09-01

    Impact dampers are often used in the field of civil, mechanical and aerospace engineering for reducing structural vibrations. The behavior of this type of passive control device has been investigated for several decades. In this research a distributed-mass impact damper, similar to the "chain damper" used in wind engineering, has been examined and applied to the vibration reduction on a slender line-like structural element (stay-cable). This study is motivated by a practical problem and describes the derivation of a reduced-order model for explaining the behavior, observed during a field experiment on a prototype system. In its simplest form, the dynamics of the apparatus is modeled as a "resilient damper", composed of mass-spring-dashpot secondary elements, attached to the primary structure. Various sources of excitation are analyzed: free vibration, external harmonic force and random excitation. The proposed model is general and potentially applicable to the analysis of several structural systems. The study also shows that the model can adequately describe and explain the experimentally observed behavior.

  12. Vibration isolation analysis of new design OEM damper for malaysia vehicle suspension system featuring MR fluid

    Science.gov (United States)

    Unuh, M. H.; Muhamad, P.; Norfazrina, H. M. Y.; Ismail, M. A.; Tanasta, Z.

    2018-01-01

    The applications of semi-active damper employing magnetorheological (MR) fluids keep increasing in fulfilling the demand to control undesired vibration effect. The aim of this study is to introduce the new design of damper for Malaysian vehicle model as well to evaluate its effectiveness in promoting comfort. The vibration isolation performance of the OEM damper featuring MR fluid was analysed physically under real road profile excitation experimentally. An experiment using quarter car rig suspension and LMS SCADAS Mobile was conducted to demonstrate the influence of current in controlling the characteristics of MR fluid in alter the damping behaviour under 5 cm bump impact. Subsequently, the displacement values were measured with respect to time. The new design OEM damper featuring MR fluid was validated by comparing the data with original equipment manufacturer (OEM) passive damper results under the same approach of testing. Comparison of numerical data of the new design OEM damper shown that it can reduce the excitation amplitude up to 40% compared to those obtained by OEM passive damper. Finally, the new design OEM damper featuring MR fluid has effectively isolated the disturbance from the road profile and control the output force.

  13. Vibration control of buildings by using partial floor loads as multiple tuned mass

    Directory of Open Access Journals (Sweden)

    Tharwat A. Sakr

    2017-08-01

    Full Text Available Tuned mass dampers (TMDs are considered as the most common control devices used for protecting high-rise buildings from vibrations. Because of their simplicity and efficiency, they have found wide practical applications in high-rise buildings around the world. This paper proposes an innovative technique for using partial floor loads as multiple TMDs at limited number of floors. This technique eliminates complications resulting from the addition of huge masses required for response control and maintains the mass of the original structure without any added loads. The effects of using partial loads of limited floors starting from the top as TMDs on the vibration response of buildings to wind and earthquakes are investigated. The effects of applying the proposed technique to buildings with different heights and characteristics are also investigated. A parametric study is carried out to illustrate how the behavior of a building is affected by the number of stories and the portion of the floor utilized as TMDs. Results indicate the effectiveness of the proposed control technique in enhancing the drift, acceleration, and force response of buildings to wind and earthquakes. The response of buildings to wind and earthquakes was observed to be more enhanced by increasing the story-mass ratios and the number of floor utilized as TMDs.

  14. Electromagnetic and Mechanical Characteristics Analysis of a Flat-Type Vertical-Gap Passive Magnetic Levitation Vibration Isolator

    Directory of Open Access Journals (Sweden)

    Baoquan Kou

    2016-01-01

    Full Text Available In this paper, we describe a flat-type vertical-gap passive magnetic levitation vibration isolator (FVPMLVI for active vibration isolation system (AVIS. A dual-stator scheme and a special stator magnet array are adopted in the proposed FVPMLVI, which has the effect of decreasing its natural frequency, and this enhances the vibration isolation capability of the FVPMLVI. The structure, operating principle, analytical model, and electromagnetic and mechanical characteristics of the FVPMLVI are investigated. The relationship between the force characteristics (levitation force, horizontal force, force ripple, and force density and major structural parameters (width and thickness of stator and mover magnets is analyzed by finite element method. The experiment result is in good agreement with the theoretical analysis.

  15. Improved vibration-based energy harvesting by annular mass configuration of piezoelectric circular diaphragms

    Science.gov (United States)

    Yang, Yangyiwei; Li, Yuanbo; Guo, Yaqian; Xu, Bai-Xiang; Yang, Tongqing

    2018-03-01

    Vibration-based energy harvesting using piezoelectric circular diaphragms (PCDs) with a structure featuring the central mass (C-mass) configuration has drawn much attention in recent decades. In this work, we propose a new configuration with the annular proof mass (A-mass) where an improved energy harvesting is promised. The numerical analysis was employed using the circuit-coupled piezoelectric simulation, and the experimental validation was implemented using PCDs with the even-width annular electrodes. Samples with the different mass configurations as well as structural parameters ϖ 1 and ϖ 2, which indicate the ratio between the inner boundary radius and piezoelectric ceramic radius as well as the ratio between outer boundary radius and the substrate radius, respectively, were prepared and tested. The impedance-matched output power of full-electrode PCDs was also collected, and some distinct improvement was measured on samples with the certain structural parameters. The power increases from 14.1 mW to 19.0 mW after changing the configuration from C-mass to A-mass with the same parameters (ϖ 1, ϖ 2) = (0.16, 0.9), showing the considerable improvement in energy harvesting by using A-mass configuration.

  16. Modal mass estimation from ambient vibrations measurement: A method for civil buildings

    Science.gov (United States)

    Acunzo, G.; Fiorini, N.; Mori, F.; Spina, D.

    2018-01-01

    A new method for estimating the modal mass ratios of buildings from unscaled mode shapes identified from ambient vibrations is presented. The method is based on the Multi Rigid Polygons (MRP) model in which each floor of the building is ideally divided in several non-deformable polygons that move independent of each other. The whole mass of the building is concentrated in the centroid of the polygons and the experimental mode shapes are expressed in term of rigid translations and of rotations. In this way, the mass matrix of the building can be easily computed on the basis of simple information about the geometry and the materials of the structure. The modal mass ratios can be then obtained through the classical equation of structural dynamics. Ambient vibrations measurement must be performed according to this MRP models, using at least two biaxial accelerometers per polygon. After a brief illustration of the theoretical background of the method, numerical validations are presented analysing the method sensitivity for possible different source of errors. Quality indexes are defined for evaluating the approximation of the modal mass ratios obtained from a certain MRP model. The capability of the proposed model to be applied to real buildings is illustrated through two experimental applications. In the first one, a geometrically irregular reinforced concrete building is considered, using a calibrated Finite Element Model for validating the results of the method. The second application refers to a historical monumental masonry building, with a more complex geometry and with less information available. In both cases, MRP models with a different number of rigid polygons per floor are compared.

  17. Dynamics of vibration isolation system with rubber-cord-pneumatic spring with damping throttle

    Science.gov (United States)

    Burian, Yu A.; Silkov, M. V.

    2017-06-01

    The study refers to the important area of applied mechanics; it is the theory of vibration isolation of vibroactive facilities. The design and the issues of mathematical modeling of pneumatic spring perspective design made on the basis of rubber-cord shell with additional volume connected with its primary volume by means of throttle passageway are considered in the text. Damping at the overflow of air through the hole limits the amplitude of oscillation at resonance. But in contrast to conventional systems with viscous damping it does not increase transmission ratio at high frequencies. The mathematical model of suspension allowing selecting options to reduce the power transmission ratio on the foundation, especially in the high frequency range is obtained

  18. Time-domain filtered-x-Newton narrowband algorithms for active isolation of frequency-fluctuating vibration

    Science.gov (United States)

    Li, Yan; He, Lin; Shuai, Chang-geng; Wang, Fei

    2016-04-01

    A time-domain filtered-x Newton narrowband algorithm (the Fx-Newton algorithm) is proposed to address three major problems in active isolation of machinery vibration: multiple narrowband components, MIMO coupling, and amplitude and frequency fluctuations. In this algorithm, narrowband components are extracted by narrowband-pass filters (NBPF) and independently controlled by multi-controllers, and fast convergence of the control algorithm is achieved by inverse secondary-path filtering of the extracted sinusoidal reference signal and its orthogonal component using L×L numbers of 2nd-order filters in the time domain. Controller adapting and control signal generation are also implemented in the time domain, to ensure good real-time performance. The phase shift caused by narrowband filter is compensated online to improve the robustness of control system to frequency fluctuations. A double-reference Fx-Newton algorithm is also proposed to control double sinusoids in the same frequency band, under the precondition of acquiring two independent reference signals. Experiments are conducted with an MIMO single-deck vibration isolation system on which a 200 kW ship diesel generator is mounted, and the algorithms are tested under the vibration alternately excited by the diesel generator and inertial shakers. The results of control over sinusoidal vibration excited by inertial shakers suggest that the Fx-Newton algorithm with NBPF have much faster convergence rate and better attenuation effect than the Fx-LMS algorithm. For swept, frequency-jumping, double, double frequency-swept and double frequency-jumping sinusoidal vibration, and multiple high-level harmonics in broadband vibration excited by the diesel generator, the proposed algorithms also demonstrate large vibration suppression at fast convergence rate, and good robustness to vibration with frequency fluctuations.

  19. Spectral investigations of 2,5-difluoroaniline by using mass, electronic absorption, NMR, and vibrational spectra

    Science.gov (United States)

    Kose, Etem; Karabacak, Mehmet; Bardak, Fehmi; Atac, Ahmet

    2016-11-01

    One of the most significant aromatic amines is aniline, a primary aromatic amine replacing one hydrogen atom of a benzene molecule with an amino group (NH2). This study reports experimental and theoretical investigation of 2,5-difluoroaniline molecule (2,5-DFA) by using mass, ultraviolet-visible (UV-vis), 1H and 13C nuclear magnetic resonance (NMR), Fourier transform infrared and Raman (FT-IR and FT-Raman) spectra, and supported with theoretical calculations. Mass spectrum (MS) of 2,5-DFA is presented with their stabilities. The UV-vis spectra of the molecule are recorded in the range of 190-400 nm in water and ethanol solvents. The 1H and 13C NMR chemical shifts are recorded in CDCl3 solution. The vibrational spectra are recorded in the region 4000-400 cm-1 (FT-IR) and 4000-10 cm-1 (FT-Raman), respectively. Theoretical studies are underpinned the experimental results as described below; 2,5-DFA molecule is optimized by using B3LYP/6-311++G(d,p) basis set. The mass spectrum is evaluated and possible fragmentations are proposed based on the stable structure. The electronic properties, such as excitation energies, oscillator strengths, wavelengths, frontier molecular orbitals (FMO), HOMO and LUMO energies, are determined by time-dependent density functional theory (TD-DFT). The electrostatic potential surface (ESPs), density of state (DOS) diagrams are also prepared and evaluated. In addition to these, reduced density gradient (RDG) analysis is performed, and thermodynamic features are carried out theoretically. The NMR spectra (1H and 13C) are calculated by using the gauge-invariant atomic orbital (GIAO) method. The vibrational spectra of 2,5-DFA molecule are obtained by using DFT/B3LYP method with 6-311++G(d,p) basis set. Fundamental vibrations are assigned based on the potential energy distribution (PED) of the vibrational modes. The nonlinear optical properties (NLO) are also investigated. The theoretical and experimental results give a detailed description of

  20. The apparent mass and mechanical impedance of the hand and the transmission of vibration to the fingers, hand, and arm

    Science.gov (United States)

    Concettoni, Enrico; Griffin, Michael

    2009-08-01

    Although hand-transmitted vibration causes injury and disease, most often evident in the fingers, the biodynamic responses of the fingers, hand, and arm are not yet well understood. A method of investigating the motion of the entire finger-hand-arm system, based on the simultaneous measurement of the biodynamic response at the driving point and the transmissibility to many points on the finger-hand-arm system, is illustrated. Fourteen male subjects participated in an experiment in which they pushed down on a vertically vibrating metal plate with their right forearm pronated and their elbow bent at 90°. The apparent mass and mechanical impedance of the finger-hand-arm system were measured for each of seven different contact conditions between the plate and the fingers and hand. Simultaneously, the vibration of the fingers, hand, and arm was measured at 41 locations using a scanning laser Doppler vibrometer. Transmissibilities showed how the vibration was transmitted along the arm and allowed the construction of spectral operating deflection shapes showing the vibration pattern of the fingers, hand, and arm for each of the seven contact conditions. The vibration patterns at critical frequencies for each contact condition have been used to explain features in the driving point biodynamic responses and the vibration behaviour of the hand-arm system. Spectral operating deflection shapes for the upper limb assist the interpretation of driving point biodynamic responses and help to advance understanding required to predict, explain, and control the various effects of hand-transmitted vibration.

  1. Forced Vibration of Delaminated Timoshenko Beams under the Action of Moving Oscillatory Mass

    Directory of Open Access Journals (Sweden)

    M.H. Kargarnovin

    2013-01-01

    Full Text Available This paper presents the dynamic response of a delaminated composite beam under the action of a moving oscillating mass. In this analysis the Poisson's effect is considered for the first time. Moreover, the effects of rotary inertia and shear deformation are incorporated. In our modeling linear springs are used between delaminated surfaces to simulate the dynamic interaction between sub-beams. To solve the governing differential equations of motion using modal expansion series, eigen-solution technique is used to obtain the natural frequencies and their corresponding mode shapes necessary for forced vibration analysis. The obtained results for the free and forced vibrations of beams are verified against reported similar results in the literatures. Moreover, the maximum dynamic response of such beam is compared with an intact beam. The effects of different parameters such as the velocity of oscillating mass, different ply configuration and the delamination length, its depth and spanwise location on the dynamic response of the beam are studied. In addition, the effects of delamination parameters on the oscillator critical speed are investigated. Furthermore, different conditions under which the detachment of moving oscillator from the beam will initiate are investigated.

  2. A multi-reference filtered-x-Newton narrowband algorithm for active isolation of vibration and experimental investigations

    Science.gov (United States)

    Wang, Chun-yu; He, Lin; Li, Yan; Shuai, Chang-geng

    2018-01-01

    In engineering applications, ship machinery vibration may be induced by multiple rotational machines sharing a common vibration isolation platform and operating at the same time, and multiple sinusoidal components may be excited. These components may be located at frequencies with large differences or at very close frequencies. A multi-reference filtered-x Newton narrowband (MRFx-Newton) algorithm is proposed to control these multiple sinusoidal components in an MIMO (multiple input and multiple output) system, especially for those located at very close frequencies. The proposed MRFx-Newton algorithm can decouple and suppress multiple sinusoidal components located in the same narrow frequency band even though such components cannot be separated from each other by a narrowband-pass filter. Like the Fx-Newton algorithm, good real-time performance is also achieved by the faster convergence speed brought by the 2nd-order inverse secondary-path filter in the time domain. Experiments are also conducted to verify the feasibility and test the performance of the proposed algorithm installed in an active-passive vibration isolation system in suppressing the vibration excited by an artificial source and air compressor/s. The results show that the proposed algorithm not only has comparable convergence rate as the Fx-Newton algorithm but also has better real-time performance and robustness than the Fx-Newton algorithm in active control of the vibration induced by multiple sound sources/rotational machines working on a shared platform.

  3. Influence of isolated or simultaneous application of electromyostimulation and vibration on leg blood flow.

    Science.gov (United States)

    Menéndez, Héctor; Martín-Hernández, Juan; Ferrero, Cristina; Figueroa, Arturo; Herrero, Azael J; Marín, Pedro J

    2015-08-01

    The aim of this study was to analyze the acute effects of isolated or simultaneously applied whole-body vibration (WBV) and electromyostimulation (ES) on the popliteal arterial blood velocity and skin temperature (ST) of the calf. Thirteen healthy males were assessed in five different sessions. After a familiarization session, four interventions were applied in random order; WBV, ES, simultaneous WBV and ES (WBV+ES), and 30 s of WBV followed by 30 s of ES (WBV30/ES30). Each intervention consisted of 10 sets × 1 min ON + 1 min OFF. The subject was standing on the vibration platform (squat position, 30° knee flexion, 26 Hz, 5 mm peak-to-peak), and ES was applied on the gastrocnemius of both the legs (8 Hz, 400 µs). The WBV+ES intervention was the only one that maintained the mean blood velocity (MBV) elevated above baseline during the 10 sets, from set-1 (134.6 % p < 0.01) to set-10 (112.6 % p < 0.05). The combined interventions were the only ones that maintained the peak blood velocity (PBV) elevated above baseline during all the sets, from set-1 (113.5 % p < 0.001) to set-10 (88.8 % p < 0.01) and from set-1 (58.4 % p < 0.01) to set-10 (49.1 % p < 0.05) for WBV+ES and WBV30/ES30, respectively. The simultaneous application of WBV and ES produced a general greater increase in MBV and PBV than the application of each method alone or consecutive. This novel methodological proposal could be interesting in different fields such as sports or the rehabilitation process of different pathologies, to achieve an enhanced peripheral blood flow.

  4. Mode shape combination in a two-dimensional vibration energy harvester through mass loading structural modification

    Energy Technology Data Exchange (ETDEWEB)

    Sharpes, Nathan; Kumar, Prashant [Center for Energy Harvesting Materials and Systems (CEHMS), Virginia Tech, Blacksburg, Virginia 24061 (United States); Abdelkefi, Abdessattar; Abdelmoula, Hichem [Department of Mechanical and Aerospace Engineering, New Mexico State University, Las Cruces, New Mexico 88003 (United States); Adler, Jan [Center for Energy Harvesting Materials and Systems (CEHMS), Virginia Tech, Blacksburg, Virginia 24061 (United States); Institute of Dynamics and Vibration Research (IDS), Leibniz Universität, Hannover 30167 (Germany); Priya, Shashank [Center for Energy Harvesting Materials and Systems (CEHMS), Virginia Tech, Blacksburg, Virginia 24061 (United States); Bio-Inspired Materials and Devices Laboratory (BMDL), Virginia Tech, Blacksburg, Virginia 24061 (United States)

    2016-07-18

    Mode shapes in the design of mechanical energy harvesters, as a means of performance increase, have been largely overlooked. Currently, the vast majority of energy harvester designs employ some variation of a single-degree-of-freedom cantilever, and the mode shapes of such beams are well known. This is especially true for the first bending mode, which is almost exclusively the chosen vibration mode for energy harvesting. Two-dimensional beam shapes (those which curve, meander, spiral, etc., in a plane) have recently gained research interest, as they offer freedom to modify the vibration characteristics of the harvester beam for achieving higher power density. In this study, the second bending mode shape of the “Elephant” two-dimensional beam shape is examined, and its interaction with the first bending mode is evaluated. A combinatory mode shape created by using mass loading structural modification to lower the second bending modal frequency was found to interact with the first bending mode. This is possible since the first two bending modes do not share common areas of displacement. The combined mode shape is shown to produce the most power of any of the considered mode shapes.

  5. Multiple tuned mass damper based vibration mitigation of offshore wind turbine considering soil-structure interaction

    Science.gov (United States)

    Hussan, Mosaruf; Sharmin, Faria; Kim, Dookie

    2017-08-01

    The dynamics of jacket supported offshore wind turbine (OWT) in earthquake environment is one of the progressing focuses in the renewable energy field. Soil-structure interaction (SSI) is a fundamental principle to analyze stability and safety of the structure. This study focuses on the performance of the multiple tuned mass damper (MTMD) in minimizing the dynamic responses of the structures objected to seismic loads combined with static wind and wave loads. Response surface methodology (RSM) has been applied to design the MTMD parameters. The analyses have been performed under two different boundary conditions: fixed base (without SSI) and flexible base (with SSI). Two vibration modes of the structure have been suppressed by multi-mode vibration control principle in both cases. The effectiveness of the MTMD in reducing the dynamic response of the structure is presented. The dynamic SSI plays an important role in the seismic behavior of the jacket supported OWT, especially resting on the soft soil deposit. Finally, it shows that excluding the SSI effect could be the reason of overestimating the MTMD performance.

  6. Three-Dimensional Vibration Isolator for Suppressing High-Frequency Responses for Sage III Contamination Monitoring Package (CMP)

    Science.gov (United States)

    Li, Y.; Cutright, S.; Dyke, R.; Templeton, J.; Gasbarre, J.; Novak, F.

    2015-01-01

    The Stratospheric Aerosol and Gas Experiment (SAGE) III - International Space Station (ISS) instrument will be used to study ozone, providing global, long-term measurements of key components of the Earth's atmosphere for the continued health of Earth and its inhabitants. SAGE III is launched into orbit in an inverted configuration on SpaceX;s Falcon 9 launch vehicle. As one of its four supporting elements, a Contamination Monitoring Package (CMP) mounted to the top panel of the Interface Adapter Module (IAM) box experiences high-frequency response due to structural coupling between the two structures during the SpaceX launch. These vibrations, which were initially observed in the IAM Engineering Development Unit (EDU) test and later verified through finite element analysis (FEA) for the SpaceX launch loads, may damage the internal electronic cards and the Thermoelectric Quartz Crystal Microbalance (TQCM) sensors mounted on the CMP. Three-dimensional (3D) vibration isolators were required to be inserted between the CMP and IAM interface in order to attenuate the high frequency vibrations without resulting in any major changes to the existing system. Wire rope isolators were proposed as the isolation system between the CMP and IAM due to the low impact to design. Most 3D isolation systems are designed for compression and roll, therefore little dynamic data was available for using wire rope isolators in an inverted or tension configuration. From the isolator FEA and test results, it is shown that by using the 3D wire rope isolators, the CMP high-frequency responses have been suppressed by several orders of magnitude over a wide excitation frequency range. Consequently, the TQCM sensor responses are well below their qualification environments. It is indicated that these high-frequency responses due to the typical instrument structural coupling can be significantly suppressed by a vibration passive control using the 3D vibration isolator. Thermal and contamination

  7. Measurement Model and Precision Analysis of Accelerometers for Maglev Vibration Isolation Platforms.

    Science.gov (United States)

    Wu, Qianqian; Yue, Honghao; Liu, Rongqiang; Zhang, Xiaoyou; Ding, Liang; Liang, Tian; Deng, Zongquan

    2015-08-14

    High precision measurement of acceleration levels is required to allow active control for vibration isolation platforms. It is necessary to propose an accelerometer configuration measurement model that yields such a high measuring precision. In this paper, an accelerometer configuration to improve measurement accuracy is proposed. The corresponding calculation formulas of the angular acceleration were derived through theoretical analysis. A method is presented to minimize angular acceleration noise based on analysis of the root mean square noise of the angular acceleration. Moreover, the influence of installation position errors and accelerometer orientation errors on the calculation precision of the angular acceleration is studied. Comparisons of the output differences between the proposed configuration and the previous planar triangle configuration under the same installation errors are conducted by simulation. The simulation results show that installation errors have a relatively small impact on the calculation accuracy of the proposed configuration. To further verify the high calculation precision of the proposed configuration, experiments are carried out for both the proposed configuration and the planar triangle configuration. On the basis of the results of simulations and experiments, it can be concluded that the proposed configuration has higher angular acceleration calculation precision and can be applied to different platforms.

  8. Measurement Model and Precision Analysis of Accelerometers for Maglev Vibration Isolation Platforms

    Directory of Open Access Journals (Sweden)

    Qianqian Wu

    2015-08-01

    Full Text Available High precision measurement of acceleration levels is required to allow active control for vibration isolation platforms. It is necessary to propose an accelerometer configuration measurement model that yields such a high measuring precision. In this paper, an accelerometer configuration to improve measurement accuracy is proposed. The corresponding calculation formulas of the angular acceleration were derived through theoretical analysis. A method is presented to minimize angular acceleration noise based on analysis of the root mean square noise of the angular acceleration. Moreover, the influence of installation position errors and accelerometer orientation errors on the calculation precision of the angular acceleration is studied. Comparisons of the output differences between the proposed configuration and the previous planar triangle configuration under the same installation errors are conducted by simulation. The simulation results show that installation errors have a relatively small impact on the calculation accuracy of the proposed configuration. To further verify the high calculation precision of the proposed configuration, experiments are carried out for both the proposed configuration and the planar triangle configuration. On the basis of the results of simulations and experiments, it can be concluded that the proposed configuration has higher angular acceleration calculation precision and can be applied to different platforms.

  9. Nonlinear dynamic analysis of single-sided and single-mass crushing system under impact and vibration

    Directory of Open Access Journals (Sweden)

    Suhuan NI

    2017-10-01

    Full Text Available To research and develop efficient vibrating type crusher, a single-sided dynamic model is established for the impact and vibration crushing system, and the differential equation of vibration is set up with Newton's law for dynamic analysis. By making amplitude frequency curve, hysteretic impact force curve and energy absorption curve, the influence of which on the system response is analyzed. Based on the conclusion and using numerical method, the primary forced resonance of the system is calculated, and the time history of displacement, velocity and acceleration is obtained, showing that the motion mass movement is not a simple harmonic motion, the nonlinear impact force is one of the factors that influences the vibration system, and the influence rules of clearance, vibration frequency on the amplitude frequency curve, impact force and energy absorption are also obtained. The gap between the material and the broken head should be kept as small as possible so as to achieve a better crushing effect with a smaller excitation force, and the system is best to work in the main resonant area to get a big impact. The research result provides reference for further study of rules and mechanism of the vibration systems.

  10. Study of the effects of age and body mass index on the carotid wall vibration: extraction methodology and analysis.

    Science.gov (United States)

    Yousefi Rizi, Fereshteh; Setarehdan, Seyed Kamaledin; Behnam, Hamid; Alizadeh Sani, Zahra

    2014-07-01

    This study aims to non-invasively extract the vibrations of the carotid wall and evaluate the changes in the carotid artery wall caused by age and obesity. Such evaluation can increase the possibility of detecting wall stiffness and atherosclerosis in its early stage. In this study, a novel method that uses a phase-tracking method based on the continuous wavelet transform calculates the carotid wall motion from the ultrasound radio frequency signals. To extract the high-frequency components of the wall motion, wall vibration, the empirical mode decomposition was then used. The posterior wall (intima-media) motion and vibration were extracted for 54 healthy volunteers (mean age: 33.87 ± 14.73 years), including 13 overweight subjects (body mass index > 25) and 14 female participants using their radio frequency signals. The results showed that the dominant frequency of the wall vibration correlates with age (r = -0.5887, p analysis further demonstrated that the dominant frequency of the vibration in the radial direction of the carotid wall decreases by age and is lower in overweight subjects. Besides, the peak-to-peak amplitude of the wall vibration showed significant correlations with age (r = -0.5456, p vibrations and systolic/diastolic blood pressure and sex. Our proposed measures were certified using the calculated arterial stiffness indices. The average power spectrum of the elderly subjects'wall motion in the frequency range of the wall vibration (>100 Hz) is decreased more in comparison with the young subjects. Our results revealed that the proposed method may be useful for detecting the stiffness and distortion in the carotid wall that occur prior to wall thickening caused by age as an early-stage atherosclerotic sign. © IMechE 2014.

  11. Centrosome isolation and analysis by mass spectrometry-based proteomics

    DEFF Research Database (Denmark)

    Jakobsen, Lis; Schrøder, Jacob Morville; Larsen, Katja M

    2013-01-01

    Centrioles are microtubule-based scaffolds that are essential for the formation of centrosomes, cilia, and flagella with important functions throughout the cell cycle, in physiology and during development. The ability to purify centriole-containing organelles on a large scale, combined with advan......Centrioles are microtubule-based scaffolds that are essential for the formation of centrosomes, cilia, and flagella with important functions throughout the cell cycle, in physiology and during development. The ability to purify centriole-containing organelles on a large scale, combined...... understood. Considering the complexity and dynamics of centriole-related proteomes and the first-pass analyses reported so far, it is likely that further insight might come from more thorough proteome analyses under various cellular and physiological conditions. To this end, we here describe methods...... to isolate centrosomes from human cells and strategies to selectively identify and study the properties of the associated proteins using quantitative mass spectrometry-based proteomics....

  12. The effect of whole-body vibration training on lean mass: A PRISMA-compliant meta-analysis.

    Science.gov (United States)

    Chen, Hengting; Ma, Jianxiong; Lu, Bin; Ma, Xin-Long

    2017-11-01

    Whole-body vibration training (WBVT) confers a continuous vibration stimuli to the body. Although some reports have discussed the effects of whole-body vibration (WBV) on bone mineral density and muscle strength, study of WBV effects on lean mass have not been determined. The purpose of the present meta-analysis was to evaluate published, randomized controlled trials (RCTs) that investigated the effects of WBVT on lean mass. We identified only RCTs by searching databases, including Web of Science, PubMed, Scopus, Embase, and the Cochrane Library from inception to March 2017. Data extraction, quality assessment, and meta-analysis were performed. Ten RCTs with 5 RCTs concentrating on older people, 3 on young adults, and 2 on children and adolescents were included. We additionally explored the effect of WBVT on postmenopausal women (6 trials from the 10 trials). Significant improvements in lean mass with WBVT were merely found in young adults (P = .02) but not in other populations compared to control group. The effect of WBVT found in the present meta-analysis may be used in counteracting the loss of muscle mass in younger adults. Moreover, optimal WBVT protocols for greater muscle hypertrophy are expected to be investigated.

  13. Maximizing semi-active vibration isolation utilizing a magnetorheological damper with an inner bypass configuration

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Xian-Xu, E-mail: bai@hfut.edu.cn [Department of Vehicle Engineering, Hefei University of Technology, Hefei 230009 (China); Wereley, Norman M.; Hu, Wei [Department of Aerospace Engineering, University of Maryland, College Park, Maryland 20742 (United States)

    2015-05-07

    A single-degree-of-freedom (SDOF) semi-active vibration control system based on a magnetorheological (MR) damper with an inner bypass is investigated in this paper. The MR damper employing a pair of concentric tubes, between which the key structure, i.e., the inner bypass, is formed and MR fluids are energized, is designed to provide large dynamic range (i.e., ratio of field-on damping force to field-off damping force) and damping force range. The damping force performance of the MR damper is modeled using phenomenological model and verified by the experimental tests. In order to assess its feasibility and capability in vibration control systems, the mathematical model of a SDOF semi-active vibration control system based on the MR damper and skyhook control strategy is established. Using an MTS 244 hydraulic vibration exciter system and a dSPACE DS1103 real-time simulation system, experimental study for the SDOF semi-active vibration control system is also conducted. Simulation results are compared to experimental measurements.

  14. Integrated Vibration and Acceleration Testing to Reduce Payload Mass, Cost and Mission Risk Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop a capability to provide integrated acceleration, vibration, and shock testing using a state-of-the-art centrifuge, allowing for the test of...

  15. Stationary levitation and vibration transmission characteristic in a superconducting seismic isolation device with a permanent magnet system and a copper plate

    Science.gov (United States)

    Sasaki, S.; Shimada, K.; Yagai, T.; Tsuda, M.; Hamajima, T.; Kawai, N.; Yasui, K.

    2010-11-01

    We have devised a magnetic levitation type superconducting seismic isolation device taking advantage of the specific characteristic of HTS bulk that the HTS bulk returns to its original position by restoring force against a horizontal displacement. The superconducting seismic isolation device is composed of HTS bulks and permanent magnets (PM rails). The PMs are fixed on an iron plate to realize the same polarities in the longitudinal direction and the different polarities in the transverse direction. The superconducting seismic isolation device can theoretically remove any horizontal vibrations completely. Therefore, the vibration transmissibility in the longitudinal direction of the PM rail becomes zero in theory. The zero vibration transmissibility and the stationary levitation, however, cannot be achieved in the real device because a uniform magnetic field distribution in the longitudinal direction of PM rail cannot be realized due to the individual difference of the PMs. Therefore, to achieve stationary levitation in the real device we adopted a PM-PM system that the different polarities are faced each other. The stationary levitation could be achieved by the magnetic interaction between the PMs in the PM-PM system, while the vibration transmitted to the seismic isolation object due to the magnetic interaction. We adopted a copper plate between the PMs to reduce the vibration transmissibility. The PM-PM system with the copper plate is very useful for realizing the stationary levitation and reducing the vibration transmissibility.

  16. Vibrational spectroscopic analysis of a chymotrypsin inhibitor isolated from Schizolobium parahyba (Vell) Toledo seeds

    Science.gov (United States)

    Teles, Rozeni C. L.; Freitas, Sonia M.; Kawano, Yoshio; de Souza, Elizabeth M. T.; Arêas, Elizabeth P. G.

    1999-06-01

    Laser Raman and Fourier transform infrared spectroscopies were applied in the investigation of conformational features of a chymotrypsin inhibitor (SPC), inactive on trypsin, isolated from Schizolobium parahyba, a Leguminosae of the Cesalpinoidae family, found in tropical and subtropical regions. As a serine protease inhibitor, its importance is related to the control of proteolytic activity, which in turn is involved in a wide range of critically important biotechnological issues, such as blood coagulation, tumour cell growth, and plant natural defences against predators. SPC is a 20 kDa molecular mass monomeric protein, with two disulfide bonds. Its complete aminoacid primary sequence has not yet been determined. We analysed protein backbone conformation for the lyophylized solid and for an evaporated film, through Raman scattering and FTIR, respectively. The presence of significant amounts of disordered structures and of non-negligible contributions from α-helical and β-sheet structures were reckoned in both cases. The geometries of the disulfide bonds were defined: a gauche-gauche-gauche geometry was verified for one of the two bridges and a transient gauche-gauche-trans/trans-gauche-trans geometry has been indicated for the second one.Two out of the three tyrosine residues were shown to be in external location in the solid protein, as well as the only tryptophan residue.

  17. Wind Induced Vibration Control and Energy Harvesting of Electromagnetic Resonant Shunt Tuned Mass-Damper-Inerter for Building Structures

    Directory of Open Access Journals (Sweden)

    Yifan Luo

    2017-01-01

    Full Text Available This paper proposes a novel inerter-based dynamic vibration absorber, namely, electromagnetic resonant shunt tuned mass-damper-inerter (ERS-TMDI. To obtain the performances of the ERS-TMDI, the combined ERS-TMDI and a single degree of freedom system are introduced. H2 criteria performances of the ERS-TMDI are introduced in comparison with the classical tuned mass-damper (TMD, the electromagnetic resonant shunt series TMDs (ERS-TMDs, and series-type double-mass TMDs with the aim to minimize structure damage and simultaneously harvest energy under random wind excitation. The closed form solutions, including the mechanical tuning ratio, the electrical damping ratio, the electrical tuning ratio, and the electromagnetic mechanical coupling coefficient, are obtained. It is shown that the ERS-TMDI is superior to the classical TMD, ERS-TMDs, and series-type double-mass TMDs systems for protection from structure damage. Meanwhile, in the time domain, a case study of Taipei 101 tower is presented to demonstrate the dual functions of vibration suppression and energy harvesting based on the simulation fluctuating wind series, which is generated by the inverse fast Fourier transform method. The effectiveness and robustness of ERS-TMDI in the frequency and time domain are illustrated.

  18. Effects of Eight Months of Whole-Body Vibration Training on the Muscle Mass and Functional Capacity of Elderly Women.

    Science.gov (United States)

    Santin-Medeiros, Fernanda; Rey-López, Juan P; Santos-Lozano, Alejandro; Cristi-Montero, Carlos S; Garatachea Vallejo, Nuria

    2015-07-01

    Few intervention studies have used whole-body vibration (WBV) training in the elderly, and there is inconclusive evidence about its health benefits. We examined the effect of 8 months of WBV training on muscle mass and functional capacity in elderly women. A total of 37 women (aged 82.4 ± 5.7 years) voluntarily participated in this study. Subjects were randomly assigned to a vibration group (n = 19) or a control group (n = 18). The vibration group trained on a vertical vibration platform twice a week. The control group was requested not to change their habitual lifestyle. The quadriceps femoris muscle cross-sectional area was determined by magnetic resonance imaging. All participants were evaluated by a battery of tests (Senior Fitness Test) to determine their functional capacity, as well as handgrip strength and balance/gait. General linear repeated-measure analysis of variance (group by time) was performed to examine the effect of the intervention on the outcomes variables. After 8 months, nonstatistically significant differences in the quadriceps CSA (pre-training: 8,516.16 ± 1,271.78 mm² and post-training: 8,671.63 ± 1,389.03 mm²) (p > 0.05) were found in the WBV group (Cohen's d: -0.12), whereas the CON group significantly decreased muscle mass (pre-training: 9,756.18 ± 1,420.07 mm² and post-training: 9,326.82 ± 1,577.53 mm²), with moderate effect size evident (Cohen's d: 0.29). In both groups, no changes were observed in the functional capacity, handgrip strength and balance/gait. The WBV training could prevent the loss of quadriceps CSA in elderly women.

  19. Presentation to International Space University Students on g-LIMIT and STABLE-ATD Projects and Related Microgravity Vibration Isolation Topics

    Science.gov (United States)

    Alhorn, Dean

    1998-01-01

    Vibration isolation is a necessity in the development of science in space and especially those experiments destined for operation on the International Space Station (ISS). The premise of microgravity scientific research is that in space, disturbances are minimized and experiments can be conducted in the absence of gravity. Although microgravity conditions exist in space, disturbances are still present in various forms and can be detrimental to the success of a microgravity experiment. Due to the plethora of disturbances and the various types that will occur on the space station, the microgravity community has elected to incorporate various means of isolating scientific payloads from these unwanted vibrations. Designing these vibration isolators is a crucial task to achieve true microgravity science. Since conventional methods of isolating payloads can achieve only limited isolation, new technologies are being developed to achieve the goal of designing a generic vibration isolation system. One such system being developed for the Microgravity Science Glovebox (MSG) is called g-LIMIT which stands for Glovebox Integrated Microgravity Isolation Technology. The g-LIMIT system is a miniaturized active vibration isolator for glovebox experiments. Although the system is initially developed for glovebox experiments, the g-LIMIT technology is designed to be upwardly scaleable to provide isolation for a broad range of users. The g-LIMIT system is scheduled to be flown on the UF-2 mission in August of the year 2000 and will be tested shortly thereafter. Once the system has been fully qualified, the hardware will become available for other researchers and will provide a platform upon which the goal of microgravity science can be achieved.

  20. Effect of voluntary periodic muscular activity on nonlinearity in the apparent mass of the seated human body during vertical random whole-body vibration

    Science.gov (United States)

    Huang, Ya; Griffin, Michael J.

    2006-12-01

    The principal resonance frequency in the driving-point impedance of the human body decreases with increasing vibration magnitude—a nonlinear response. An understanding of the nonlinearities may advance understanding of the mechanisms controlling body movement and improve anthropodynamic modelling of responses to vibration at various magnitudes. This study investigated the effects of vibration magnitude and voluntary periodic muscle activity on the apparent mass resonance frequency using vertical random vibration in the frequency range 0.5-20 Hz. Each of 14 subjects was exposed to 14 combinations of two vibration magnitudes (0.25 and 2.0 m s -2 root-mean square (rms)) in seven sitting conditions: two without voluntary periodic movement (A: upright; B: upper-body tensed), and five with voluntary periodic movement (C: back-abdomen bending; D: folding-stretching arms from back to front; E: stretching arms from rest to front; F: folding arms from elbow; G: deep breathing). Three conditions with voluntary periodic movement significantly reduced the difference in resonance frequency at the two vibration magnitudes compared with the difference in a static sitting condition. Without voluntary periodic movement (condition A: upright), the median apparent mass resonance frequency was 5.47 Hz at the low vibration magnitude and 4.39 Hz at the high vibration magnitude. With voluntary periodic movement (C: back-abdomen bending), the resonance frequency was 4.69 Hz at the low vibration magnitude and 4.59 Hz at the high vibration magnitude. It is concluded that back muscles, or other muscles or tissues in the upper body, influence biodynamic responses of the human body to vibration and that voluntary muscular activity or involuntary movement of these parts can alter their equivalent stiffness.

  1. Phononic band gaps and vibrations in one- and two-dimensional mass-spring structures

    DEFF Research Database (Denmark)

    Jensen, Jakob Søndergaard

    2003-01-01

    The vibrational response of finite periodic lattice structures subjected to periodic loading is investigated. Special attention is devoted to the response in frequency ranges with gaps in the band structure for the corresponding infinite periodic lattice. The effects of boundaries, viscous dampin...

  2. EFFECTS OF WHOLE-BODY VIBRATION TRAINING ON BONE-FREE LEAN BODY MASS AND MUSCLE STRENGTH IN YOUNG ADULTS

    Directory of Open Access Journals (Sweden)

    Yusuke Osawa

    2011-03-01

    Full Text Available Resistance training with whole-body vibration (WBV is becoming increasingly popular as an alternative to conventional resistance training or as supplementary training. Despite its growing popularity, the specific effects of WBV training on muscle morphology, strength, and endurance are not well understood, particularly in young adults. The aim of this study was to determine the effects of WBV training on bone-free lean body mass (BFLBM, and maximal muscle strength and endurance in healthy, untrained, young individuals. Eighteen healthy men and women (21-39 years were randomly assigned to either a body-weight exercise with WBV (VT group or a control exercise group without WBV (CON. Participants performed eight exercises per 40- min session on a vibration platform (VT group, frequency = 30-40 Hz; amplitude = 2 mm twice weekly for 12 weeks. Anthropometry, total and regional BFLBM (trunks, legs, and arms measured by dual- energy X-ray absorptiometry, and muscle strength and endurance measured by maximal isometric lumbar extension strength, maximal isokinetic knee extension and flexion strength, and the number of sit- ups performed were recorded and compared. Two-way repeated-measures ANOVA revealed no significant changes between the groups in any of the measured variables. We conclude that 12 weeks of body weight vibration exercise compared to body weight exercise alone does not provide meaningful changes to BFLBM or muscle performance in healthy young adults.

  3. Theory of vibration protection

    CERN Document Server

    Karnovsky, Igor A

    2016-01-01

    This text is an advancement of the theory of vibration protection of mechanical systems with lumped and distributed parameters. The book offers various concepts and methods of solving vibration protection problems, discusses the advantages and disadvantages of different methods, and the fields of their effective applications. Fundamental approaches of vibration protection, which are considered in this book, are the passive, parametric and optimal active vibration protection. The passive vibration protection is based on vibration isolation, vibration damping and dynamic absorbers. Parametric vibration protection theory is based on the Shchipanov-Luzin invariance principle. Optimal active vibration protection theory is based on the Pontryagin principle and the Krein moment method. The book also contains special topics such as suppression of vibrations at the source of their occurrence and the harmful influence of vibrations on humans. Numerous examples, which illustrate the theoretical ideas of each chapter, ar...

  4. Vibration isolation performance of an ultra-low frequency folded pendulum resonator

    Science.gov (United States)

    Liu, Jiangfeng; Ju, Li; Blair, David G.

    1997-02-01

    We present an analysis of the transfer function of a very low frequency folded pendulum resonator. It is shown that performance depends critically on centre of percussion tuning of the pendulum arms. Experimental measurements of the transfer function are shown to agree well with theory. The isolator achieves 90 dB isolation at 7 Hz.

  5. Experimental energy harvesting from fluid flow by using two vibrating masses

    Science.gov (United States)

    Nishi, Yoshiki; Fukuda, Kengo; Shinohara, Wataru

    2017-04-01

    In this study, an experiment was performed to determine how the addition of a second degree of freedom to a vibratory system affects its energy extraction from a surrounding fluid flow. A circular cylinder was submerged underwater and subjected to flow, and another cylinder mounted on springs was inserted between the submerged cylinder and a generator. The experiment results demonstrated that vortex-induced vibration occurred at frequencies that were locked-in to the first and second natural modes for reduced velocity ranges of 5.0-9.0 and greater than 12.0, respectively. The output voltages were particularly high when the vibration frequency was locked-in to that of the second natural mode. It was found that application of energy extraction using a system with two degrees of freedom can widen the range of reduced velocity within which power extraction is effective.

  6. Bandwidth Widening of Piezoelectric Cantilever Beam Arrays by Mass-Tip Tuning for Low-Frequency Vibration Energy Harvesting

    Directory of Open Access Journals (Sweden)

    Eduard Dechant

    2017-12-01

    Full Text Available Wireless sensor networks usually rely on internal permanent or rechargeable batteries as a power supply, causing high maintenance efforts. An alternative solution is to supply the entire system by harvesting the ambient energy, for example, by transducing ambient vibrations into electric energy by virtue of the piezoelectric effect. The purpose of this paper is to present a simple engineering approach for the bandwidth optimization of vibration energy harvesting systems comprising multiple piezoelectric cantilevers (PECs. The frequency tuning of a particular cantilever is achieved by changing the tip mass. It is shown that the bandwidth enhancement by mass tuning is limited and requires several PECs with close resonance frequencies. At a fixed frequency detuning between subsequent PECs, the achievable bandwidth shows a saturation behavior as a function of the number of cantilevers used. Since the resonance frequency of each PEC is different, the output voltages at a particular excitation frequency have different amplitudes and phases. A simple power-transfer circuit where several PECs with an individual full wave bridge rectifier are connected in parallel allows one to extract the electrical power close to the theoretical maximum excluding the diode losses. The experiments performed on two- and three-PEC arrays show reasonable agreement with simulations and demonstrate that this power-transfer circuit additionally influences the frequency dependence of the harvested electrical power.

  7. Solar and interplanetary activities of isolated and non-isolated coronal mass ejections

    Science.gov (United States)

    Bendict Lawrance, M.; Shanmugaraju, A.; Moon, Y.-J.; Umapathy, S.

    2017-07-01

    We report our results on comparison of two halo Coronal Mass Ejections (CME) associated with X-class flares of similar strength (X1.4) but quite different in CME speed and acceleration, similar geo-effectiveness but quite different in Solar Energetic Particle (SEP) intensity. CME1 (non-isolated) was associated with a double event in X-ray flare and it was preceded by another fast halo CME of speed = 2684 km/s (pre-CME) associated with X-ray flare class X5.4 by 1 h from the same location. Since this pre-CME was more eastern, interaction with CME1 and hitting the earth were not possible. This event (CME1) has not suffered the cannibalism since pre-CME has faster speed than post-CME. Pre-CME plays a very important role in increasing the intensity of SEP and Forbush Decrease (FD) by providing energetic seed particles. So, the seed population is the major difference between these two selected events. CME2 (isolated) was a single event. We would like to address on the kinds of physical conditions related to such CMEs and their associated activities. Their associated activities such as, type II bursts, SEP, geomagnetic storm and FD are compared. The following results are obtained from the analysis. (1) The CME leading edge height at the start of metric/DH type II bursts are 2 R⊙/ 4 R⊙ for CME1, but 2 R⊙/ 2.75 R⊙ for CME2. (2) Peak intensity of SEP event associated with the two CMEs are quite different: 6530 pfu for CME1, but 96 pfu for CME2. (3) The Forbush decrease occurred with a minimum decrease of 9.98% in magnitude for CME1, but 6.90% for CME2. (4) These two events produced similar intense geomagnetic storms of intensity of Dst index -130 nT. (5) The maximum southward magnetic fields corresponding to Interplanetary CME (ICME) of these two events are nearly the same, but there is difference in Sheath Bz maximum (-14.2, -6.9 nT). (6) The time-line chart of the associated activities of two CMEs show some difference in the time delay between the onsets of

  8. Vibrational relaxation of matrix-isolated CH/sub 3/F and HCl

    Energy Technology Data Exchange (ETDEWEB)

    Young, L.

    1981-08-01

    Kinetic and spectroscopic studies have been performed on CH/sub 3/F and HCl as a function of host matrix and temperature. Temporally and spectrally resolved infrared fluorescence was used to monitor the populations of both the initially excited state and the lower lying levels which participate in the relaxation process. For CH/sub 3/F, relaxation from any of the levels near 3.5 ..mu.., i.e. the CH stretching fundamentals or bend overtones, occurs via rapid (< 5 ns) V ..-->.. V transfer to 2..nu../sub 3/ with subsequent relaxation of the ..nu../sub 3/ (CF stretch) manifold. Lifetimes of 2..nu../sub 3/ and ..nu../sub 3/ were determined through overtone, ..delta..V = 2, and fundamental fluorescence. These lifetimes show a dramatic dependence on host lattice, an increase of two orders of magnitude in going from Xe and Ar matrices. Lifetimes depend only weakly on temperature. The relaxation of 2..nu../sub 3/ and ..nu../sub 3/ is consistent with a model in which production of a highly rotationally excited guest via collisions with the repulsive wall of the host is the rate limiting step. For HCl, lifetimes of v = 1,2,3 have been determined. In all hosts, the relaxation is non-radiative. For a given vibrational state, v, the relaxation rate increases in the series k(Ar) < k(Kr) < k(Xe). The dependence of the relaxation rate; on v is superlinear in all matrices, the deviation from linearity increasng in the order Ar < Kr < Xe. The relaxation rates become more strongly temperature dependent with increasing vibrational excitation. The results are consistent with a mechanism in which complex formation introduces the anisotropy necessary to induce a near resonant V ..-->.. R transition in the rate limiting step.

  9. An Algorithm for Synthesizing Mass and Stiffness Matrices from Experimental Vibration Modes

    Science.gov (United States)

    Ross, R. G., Jr.

    1972-01-01

    An algorithm is described for synthesizing the mass and stiffness matrices from experimentally derived modal data in a way that preserves the physical significance of the individual mass and stiffness elements. The mass and stiffness matrices are derived for a rollup solar array example, and are then used to define the modal response of a modified array.

  10. Two-Stage Vibration Isolation for Flexible Satellite Bus and Optic Payload Structures

    Science.gov (United States)

    2015-11-27

    and damper model and with neglectable mass . Subscripts denote degree of freedoms corresponding to actuators ( R ), actuator isolators’ locations on... damper inserted inside the elastic element. Comparing with liquid damper and viscoelastic material damper , this damper has such merits as simple...satellite bus and the optic payload are rigid body. This study indicates that a large mass ratio between the satellite bus and the optical payload can

  11. Control of input delayed pneumatic vibration isolation table using adaptive fuzzy sliding mode

    Directory of Open Access Journals (Sweden)

    Mostafa Khazaee

    Full Text Available AbstractPneumatic isolators are promising candidates for increasing the quality of accurate instruments. For this purpose, higher performance of such isolators is a prerequisite. In particular, the time-delay due to the air transmission is an inherent issue with pneumatic systems, which needs to be overcome using modern control methods. In this paper an adaptive fuzzy sliding mode controller is proposed to improve the performance of a pneumatic isolator in the low frequency range, i.e., where the passive techniques have obvious shortcomings. The main idea is to combine the adaptive fuzzy controller with adaptive predictor as a new time delay control technique. The adaptive fuzzy sliding mode control and the adaptive fuzzy predictor help to circumvent the input delay and nonlinearities in such isolators. The main advantage of the proposed method is that the closed-loop system stability is guaranteed under certain conditions. Simulation results reveal the effectiveness of the proposed method, compared with other existing time -delay control methods.

  12. A Modified FEM for Transverse and Lateral Vibration Analysis of Thin Beams Under a Mass Moving with a Variable Acceleration

    Directory of Open Access Journals (Sweden)

    Ismail Esen

    Full Text Available Abstract In this paper, a new modified finite element method that can be used in the analysis of transverse and lateral vibrations of the thin beams under a point mass moving with a variable acceleration and constant jerk is presented. Jerk is the change in acceleration over time. In this method, the classical finite element of the beam is modified by the inclusion of the inertial effects of the moving mass. This modification is made using the relations between nodal forces and nodal deflections and shape functions of six DOF beam element. The mass, stiffness, and damping matrices of the modified finite element are determined by forces caused by the corresponding transverse and lateral accelerations and jerks, and transverse Coriolis and centripetal accelerations and jerks, respectively. This method was first applied on a simply supported beam plate to provide a comparison with the previous studies in literature, and it was proved that the results were within acceptable limits. Secondly, it was applied on a CNC type box-framed beam to analyse the dynamic response of the beam in terms of variable acceleration and jerk as well as constant velocity and mass ratios.

  13. Profiling of volatile organic compounds produced by clinical Aspergillus isolates using gas chromatography-mass spectrometry

    NARCIS (Netherlands)

    Gerritsen, M. G.; Brinkman, P.; Escobar, N.; Bos, L. D.; de Heer, K.; Meijer, M.; Janssen, H.-G.; de Cock, H.; Wösten, H. A. B.; Visser, C. E.; van Oers, M. H. J.; Sterk, P. J.

    2017-01-01

    Volatile organic compounds (VOCs) in exhaled breath may identify the presence of invasive pulmonary aspergillosis. We aimed to detect VOC profiles emitted by in vitro cultured, clinical Aspergillus isolates using gas chromatography-mass spectrometry (GC-MS). Three clinical Aspergillus isolates and a

  14. Study of wind-induced vibrations in tall buildings with tuned mass dampers taking into account vortices effects

    Science.gov (United States)

    Momtaz, Ali Ajilian; Abdollahian, Mohamadreza Akhavan; Farshidianfar, Anooshiravan

    2017-11-01

    In recent years, construction of tall buildings has been of great interest. Use of lightweight materials in such structures reduces stiffness and damping, making the building more influenced by wind loads. Moreover, tall buildings of more than 30 to 40 stories, depending on the geographical location, the wind effects are more influential than earthquakes. In addition, the complexity of the effects of wind flow on the structure due to the interaction of the fluid flow and solid body results in serious damages to the structure by eliminating them. Considering the importance of the issue, the present study investigates the phenomenon of wind-induced vibration on high-rise buildings, taking into account the effects of vortices created by the fluid flow and the control of this phenomenon. To this end, the governing equations of the structure, the fluid flow and the tuned mass damper (TMD) are first introduced, and their coefficient values are extracted according to the characteristics of ACT skyscraper in Japan. Then, these three coupled equations are solved using a program coded in MATLAB. After validation of the results, the effects of wind loads are analyzed and considered with regard to the effects of vortices and the use of TMD, and are compared with the results of the state where no vortices are considered. Generally, the results of this study point out the significance of vibrations caused by vortices in construction of engineering structures as well as the appropriate performance of a TMD in reducing oscillations in tall buildings.

  15. On the flexural vibration of an elastic plate carrying a concentrated mass

    Energy Technology Data Exchange (ETDEWEB)

    Sadiku, S. (Federal Univ. of Technology, Minna (Nigeria). Dept. of Civil Engineering)

    1989-12-01

    The dynamic response of an elastic plate carrying a concentrated mass is analysed. Despite the presence of a singular mass distribtion function, a rigorous analysis leading to a closed-form solution in the form of an infinite series has been made. By developing Green's function for the associated partial differential equation, any form of dynamic excitation is easily considered. (orig.).

  16. Nanoscale mass detection based on vibrating piezoelectric ultrathin films under thermo-electro-mechanical loads

    Science.gov (United States)

    Asemi, H. R.; Asemi, S. R.; Farajpour, A.; Mohammadi, M.

    2015-04-01

    The potential applications of piezoelectric nanofilms (PNFs) and double-piezoelectric-nanofilm (DPNF) systems as nanoelectromechanical mass sensors are examined. The PNFs carrying multiple nanoparticles at arbitrary locations are modeled as rectangular nonlocal plates with attached concentrated masses. Using the nonlocal elasticity theory and Hamilton's principle, the differential equations of motion are derived for both PNF-based and DPNF-based nanosensors. The influences of small scale, initial stress and temperature change on the frequency shifts of the nanoelectromechanical sensors are taken into consideration. Explicit expressions are derived for the resonance frequencies of the nanosensors by employing the Galerkin method. The present results show that when the value of nonlocal parameter decreases, the frequency shifts of piezoelectric nanosensors increase. Further, the frequency shifts of DPNF-based mass sensors are always greater than those of PNF-based mass sensors. The present work would be helpful in the design of nanoelectromechanical mass sensors using PNFs.

  17. MASS MEASUREMENTS OF ISOLATED OBJECTS FROM SPACE-BASED MICROLENSING

    DEFF Research Database (Denmark)

    Zhu, Wei; Novati, S. Calchi; Gould, A.

    2016-01-01

    We report on the mass and distance measurements of two single-lens events from the 2015 Spitzer microlensing campaign. With both finite-source effect and microlens parallax measurements, we find that the lens of OGLE-2015-BLG-1268 is very likely a brown dwarf (BD). Assuming that the source star l...... is dramatically increased once simultaneous ground- and space-based observations are conducted....

  18. Unbalanced machinery vibration isolation with a semi-active pneumatic suspension

    Science.gov (United States)

    Nieto, A. J.; Morales, A. L.; Chicharro, J. M.; Pintado, P.

    2010-01-01

    The problem of unbalanced machinery isolation is tackled in this paper. The proposed solution incorporates an air suspension that can be adapted depending on the turning frequency. The system is built with three main parts: an air spring, a reservoir and a connecting pipe. A model of the suspension excited by the unbalanced rotor is also shown in this paper. The properties of the system make it possible to use a configuration of the suspension (one pipe size) over a bandwidth range and another configuration (another pipe size) over the remaining bandwidth range. This idea is implemented with solenoid controlled valves and the results show significant improvements with respect to completely passive configurations.

  19. Ultrafast Desorption by Impulsive Vibrational Excitation (DIVE). Applications in laser surgery, mass spectrometry and towards ultimate limits in biodiagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Ling

    2015-07-15

    The prospects for minimally invasive surgery, spatial imaging with mass spectrometry and rapid high throughput biodiagnosis require new means of tissue incision and biomolecule extraction with conserved molecular structure. Towards this aim, a laser ablation process is utilized in this dissertation, which is capable of performing precise tissue incision with minimal collateral damage and extracting intact biological entities with conserved biological functions. The method is based on the recently developed Picosecond Infrared Laser (PIRL) designed to excite selectively the water vibrational modes under the condition of ultrafast Desorption by Impulsive Vibrational Excitation (DIVE). The basic concept is that the selectively excited water molecules act as propellant to ablate whole biological complexes into the plume, faster than any thermal deleterious effect or fragmentation that would mask molecular identities.The PIRL ablation under DIVE condition is applied for the first time to six types of ocular tissues, rendering precise and minimally invasive incisions in a well-controlled and reproducible way. An eminent demonstration is the contact-free and applanation-free corneal trephination with the PIRL. Mass spectrometry and other analytical techniques show that great abundance of proteins with various molecular weights are extracted from the tissue by the PIRL ablation, and that fragmentation or other chemical alternation does not occur to the proteins in the ablation plume. With various microscope imaging and biochemical analysis methods, nano-scale single protein molecules, viruses and cells in the ablation plume are found to be morphologically and functionally identical to their corresponding controls. The PIRL ablation provides a new means to push the frontiers of laser surgery in ophthalmology and can be applied to resolve chemical activities in situ and in vivo. The most important finding is the conserved nature of the extracted biological entities

  20. Vibration isolation analysis of a stabilized platform mounted on a small off-road vehicle

    CSIR Research Space (South Africa)

    Strydom, Anria

    2014-06-01

    Full Text Available Safety and Security, South Africa 2 Vehicle Dynamics Group, Dept. of Mechanical and Aeronautical Engineering, University of Pretoria *E-mail: astrydom@csir.co.za Abstract: Stabilised platforms are regularly integrated with vehicles in various... an electronic data acquisition system (eDAQ), and data is sampled at 100Hz. String displacement sensors are used to measure suspension deflection and the steering rack displacement. Accelerometers mounted on the vehicle body are used measure the sprung mass...

  1. Topology Optimization of Distributed Mass Dampers for Low-frequency Vibration Suppression

    DEFF Research Database (Denmark)

    Jensen, Jakob Søndergaard; Lazarov, Boyan Stefanov

    2007-01-01

    In this paper the method of topology optimization is used to find optimized parameter distributions for a multiple mass damper system with the purpose of minimizing the low-frequency steady-state response of a carrier structure. An effective density model that describes the steady-state effect...... of the dampers is derived based on a continuous approximation of the damper distribution. The dampers are optimized with respect to the point-wise distribution of mass ratio, natural frequency, and damping ratio....

  2. Analyzing the vibrational response of an AFM cantilever in liquid with the consideration of tip mass by comparing the hydrodynamic and contact repulsive force models in higher modes

    Science.gov (United States)

    Korayem, Moharam Habibnejad; Nahavandi, Amir

    2017-04-01

    This paper investigates the vibration of a tapping-mode Atomic Force Microscope (AFM) cantilever covered with two whole piezoelectric layers in a liquid medium. The authors of this article have already modeled the vibration of a cantilever immersed in liquid over rough surfaces. Five new ideas have been considered for improving the results of the previous work. Mass and damping of a cantilever probe tip have been considered. Since the probe tip of an AFM cantilever has a mass, which can itself affect the natural frequency of vibration, the significance of this mass has been explored. Also, two hydrodynamic force models for analyzing the mass and damping added to a cantilever in liquid medium have been evaluated. In modeling the vibration of a cantilever in liquid, simplifications are made to the theoretical equations used in the modeling, which may make the obtained results different from those in the real case. So, two hydrodynamic force models are introduced and compared with each other. In addition to the already introduced DMT model, the JKR model has been proposed. The forces acting on a probe tip have attractive and repulsive effects. The attractive Van der Waals force can vary depending on the surface smoothness or roughness, and the repulsive contact force, which is independent of the type of surface roughness and usually varies with the hardness or softness of a surface. When the first mode is used in the vibration of an AFM cantilever, the changes of the existing physical parameters in the simulation do not usually produce a significant difference in the response. Thus, three cantilever vibration modes have been investigated. Finally, an analytical approach for obtaining the response of equations is presented which solves the resulting motion equation by the Laplace method and, thus, a time function is obtained for cantilever deflection is determined. Also, using the COMSOL software to model a cantilever in a liquid medium, the computed natural

  3. Vibration Analysis of Inclined Laminated Composite Beams under Moving Distributed Masses

    Directory of Open Access Journals (Sweden)

    E. Bahmyari

    2014-01-01

    Full Text Available The dynamic response of laminated composite beams subjected to distributed moving masses is investigated using the finite element method (FEM based on the both first-order shear deformation theory (FSDT and the classical beam theory (CLT. Six and ten degrees of freedom beam elements are used to discretize the CLT and FSDT equations of motion, respectively. The resulting spatially discretized beam governing equations including the effect of inertial, Coriolis, and centrifugal forces due to moving distributed mass are evaluated in time domain by applying Newmark’s scheme. The presented approach is first validated by studying its convergence behavior and comparing the results with those of existing solutions in the literature. Then, the effect of incline angle, mass, and velocity of moving body, layer orientation, load length, and inertial, Coriolis, and centrifugal forces due to the moving distributed mass and friction force between the beam and the moving distributed mass on the dynamic behavior of inclined laminated composite beams are investigated.

  4. Vortex-induced vibration for an isolated circular cylinder under the wake interference of an oscillating airfoil: Part II. Single degree of freedom

    Science.gov (United States)

    Zhang, G. Q.; Ji, L. C.; Hu, X.

    2017-04-01

    The vortex-induced vibration behind an isolated cylinder under the wake interference of an oscillating airfoil at different oscillating frequencies and amplitudes have been studied numerically. Our previous research [11] mainly focused on the two degree of freedom vibration problem, several types of the phase portraits of the displacement have been newly found, including the "half -8″ and "cone-net" types as reduced velocity increases. At present, we have continued the research to the single degree of freedom vibration, the corresponding results had been found that under the wake of the free steady flow, as the reduced velocity increases, the phase portraits displacements of the single degree of freedom vibrating cylinder will begin to rotate counterclockwise from the first and third quadrants to the second and fourth quadrants in a Cartesian coordinate system. Under the wake of the oscillating airfoil, the single bending curve and the single closed orbit (double "8-shape" like) of the displacements are newly found in the drag and thrust producing cases respectively. Except this, the two triplets of vortices have also been newly found in the pair and single plus pair wakes at each cycle. The vorticity dynamics behind the vibrating cylinder together with the corresponding force variations have also been obtained computationally and analyzed in details.

  5. The study of the wedge-shaped vibration-driven robot motion in a viscous fluid forced by different oscillation laws of the internal mass

    Science.gov (United States)

    Nuriev, A. N.; Zakharova, O. S.; Zaitseva, O. N.; Yunusova, A. I.

    2016-11-01

    A rectilinear motion of a two-mass system in a viscous incompressible fluid is considered. The system consists of a shell having the form of an equilateral triangular cylinder and a movable internal mass. The motion of the system as a whole is forced by longitudinal oscillations of the internal mass relative to the shell. This mechanical system simulates a vibration-driven robot, i.e. a mobile device capable to move in a resistive medium without external moving parts. Investigation of the system is carried out by a direct numerical simulation. A comparative analysis of the characteristics of the motion and flow regimes around the vibration-driven robot is carried out for different internal mass oscillation laws.

  6. Determining Effects of Wagon Mass and Vehicle Velocity on Vertical Vibrations of a Rail Vehicle Moving with a Constant Acceleration on a Bridge Using Experimental and Numerical Methods

    Directory of Open Access Journals (Sweden)

    C. Mızrak

    2015-01-01

    Full Text Available Vibrations are vital for derailment safety and passenger comfort which may occur on rail vehicles due to the truck and nearby conditions. In particular, while traversing a bridge, dynamic interaction forces due to moving loads increase the vibrations even further. In this study, the vertical vibrations of a rail vehicle at the midpoint of a bridge, where the amount of deflection is expected to be maximum, were determined by means of a 1 : 5 scaled roller rig and Newmark-β numerical method. Simulations for different wagon masses and vehicle velocities were performed using both techniques. The results obtained from the numerical and experimental methods were compared and it was demonstrated that the former was accurate with an 8.9% error margin. Numerical simulations were performed by identifying different test combinations with Taguchi experiment design. After evaluating the obtained results by means of an ANOVA analysis, it was determined that the wagon mass had a decreasing effect on the vertical vibrations of the rail vehicle by 2.087%, while rail vehicle velocity had an increasing effect on the vibrations by 96.384%.

  7. Quasi-optical coherence vibration tomography technique for damage detection in beam-like structures based on auxiliary mass induced frequency shift

    Science.gov (United States)

    Zhong, Shuncong; Zhong, Jianfeng; Zhang, Qiukun; Maia, Nuno

    2017-09-01

    A novel quasi-optical coherence vibration tomography (Quasi-OCVT) measurement system suitable for structural damage detection is proposed by taking the concept of two-dimensional optical coherence vibration tomography (2D-OCVT) technique. An artificial quasi-interferogram fringe pattern (QIFP) similar to the interferogram of 2D-OCVT system, as a sensor, was pasted on the surface of a vibrating structure. Image sequences of QIFP were captured by a high-speed camera that worked as a detector. The period density of the imaged QIFP changed due to the structural vibration, from which the vibration information of the structure could be obtained. Noise influence on the measurement accuracy, torsional sensitivity and optical distortion effect of the Quasi-OCVT system were investigated. The efficiency and reliability of the proposed method were demonstrated by applying the system to damage detection of a cracked beam-like structure with a roving auxiliary mass. The roving of the mass along the cracked beam brings about the change of natural frequencies that could be obtained by the Quasi-OCVT technique. Therefore, frequency-shift curves can be achieved and these curves provide additional spatial information for structural damage detection. Same cases were also analyzed by the finite element method (FEM) and conventional accelerometer-based measurement method. Comparisons were carried out among these results. Results obtained by the proposed Quasi-OCVT method had a good agreement with the ones obtained by FEM, from which the damage could be directly detected. However, the results obtained by conventional accelerometer showed misleading ambiguous peaks at damage position owing to the mass effect on the structure, where the damage location cannot be identified confidently without further confirmation. The good performance of the cost-effective Quasi-OCVT method makes it attractive for vibration measurement and damage detection of beam-like structures.

  8. CAN THE MASSES OF ISOLATED PLANETARY-MASS GRAVITATIONAL LENSES BE MEASURED BY TERRESTRIAL PARALLAX?

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, M.; Botzler, C. S.; Bray, J. C.; Cherrie, J. M.; Rattenbury, N. J. [Department of Physics, University of Auckland, Private Bag 92019, Auckland 1142 (New Zealand); Philpott, L. C. [Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z4 (Canada); Abe, F.; Muraki, Y. [Solar-Terrestrial Environment Laboratory, Nagoya University, Nagoya 464-8601 (Japan); Albrow, M. D. [Department of Physics and Astronomy, University of Canterbury, P.O. Box 4800, Christchurch 8020 (New Zealand); Bennett, D. P. [Department of Physics, 225 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556 (United States); Bond, I. A. [Institute for Information and Mathematical Sciences, Massey University, Private Bag 102-904, Auckland 1330 (New Zealand); Christie, G. W.; Natusch, T. [Auckland Observatory, PO Box 180, Royal Oak, Auckland 1345 (New Zealand); Dionnet, Z. [Université d' Orsay, bat 470, F-91400 Orsay (France); Gould, A. [Department of Astronomy, Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Han, C. [Department of Physics, Chungbuk National University, 410 Seongbong-Rho, Hungduk-Gu, Chongju 371-763 (Korea, Republic of); Heyrovský, D. [Institute of Theoretical Physics, Charles University in Prague, Faculty of Mathematics and Physics, V Holesovickach 2, 18000 Prague (Czech Republic); McCormick, J. M. [Farm Cove Observatory, 2/24 Rapallo Place, Pakuranga, Auckland 2012 (New Zealand); Moorhouse, D. M. [Kumeu Observatory, Kumeu (New Zealand); Skowron, J., E-mail: mfre070@aucklanduni.ac.nz [Warsaw University Observatory, Al. Ujazdowskie 4, 00-478, Warszawa (Poland); and others

    2015-02-01

    Recently Sumi et al. reported evidence for a large population of planetary-mass objects (PMOs) that are either unbound or orbit host stars in orbits ≥10 AU. Their result was deduced from the statistical distribution of durations of gravitational microlensing events observed by the MOA collaboration during 2006 and 2007. Here we study the feasibility of measuring the mass of an individual PMO through microlensing by examining a particular event, MOA-2011-BLG-274. This event was unusual as the duration was short, the magnification high, the source-size effect large, and the angular Einstein radius small. Also, it was intensively monitored from widely separated locations under clear skies at low air masses. Choi et al. concluded that the lens of the event may have been a PMO but they did not attempt a measurement of its mass. We report here a re-analysis of the event using re-reduced data. We confirm the results of Choi et al. and attempt a measurement of the mass and distance of the lens using the terrestrial parallax effect. Evidence for terrestrial parallax is found at a 3σ level of confidence. The best fit to the data yields the mass and distance of the lens as 0.80 ± 0.30 M {sub J} and 0.80 ± 0.25 kpc respectively. We exclude a host star to the lens out to a separation ∼40 AU. Drawing on our analysis of MOA-2011-BLG-274 we propose observational strategies for future microlensing surveys to yield sharper results on PMOs including those down to super-Earth mass.

  9. Study on an improved variable stiffness tuned mass damper based on conical magnetorheological elastomer isolators

    Science.gov (United States)

    Wang, Qi; Dong, Xufeng; Li, Luyu; Ou, Jinping

    2017-10-01

    Use of a variable stiffness tuned mass damper (VSTMD) is an effective approach to reduce the dynamic responses of a structure with shifting natural frequencies. Magnetorheological elastomer (MRE) isolators can be used to build VSTMD due to their tunable stiffness by applying a magnetic field. However, conventional MRE isolators show deformation limits, huge energy consumption and uneconomic production. Focused on developing a MRE VSTMD system to improve this situation, a conical MRE isolator has been proposed and tested. Compared to conventional MRE isolators, the conical isolator shows much higher efficiency, better overall stability, greater deformability and a larger tunable range. The experimental results indicate that the prototype can provide a 46.29% increase in frequency and a 75 N control force range with a 25 W power source. The quick responding MRE VSTMD system has the potential to accurately provide the desired stiffness in two directions to achieve a better structure control.

  10. Locomotion analysis of a vibration-driven system with three acceleration-controlled internal masses

    Directory of Open Access Journals (Sweden)

    Xiong Zhan

    2015-03-01

    Full Text Available The controlled motion of a rigid body in the horizontal plane is investigated in this article. Three internal and acceleration-controlled masses are used to actuate the system. Dry friction acting between the system and the plane is isotropic. The dynamics of two basic motions of the system, that is, rectilinear and rotary motions, are first studied. Then by combining these two basic types of motions, planar locomotion of the system is constructed. Two typical planar trajectories of the system, that is, oblique lines and curve lines, are proposed and both approached with folding lines. The slope of the oblique lines and the curvature of the curves can be adjusted by varying the drive parameters, and the planar locomotion is thus controlled. To achieve a maximum average velocity, the drive parameters are optimized.

  11. Three-dimensional vibration analysis of a uniform beam with offset inertial masses at the ends

    Science.gov (United States)

    Robertson, D. K.

    1985-01-01

    Analysis of a flexible beam with displaced end-located inertial masses is presented. The resulting three-dimensional mode shape is shown to consist of two one-plane bending modes and one torsional mode. These three components of the mode shapes are shown to be linear combinations of trigonometric and hyperbolic sine and cosine functions. Boundary conditions are derived to obtain nonlinear algebraic equations through kinematic coupling of the general solutions of the three governing partial differential equations. A method of solution which takes these boundary conditions into account is also presented. A computer program has been written to obtain unique solutions to the resulting nonlinear algebraic equations. This program, which calculates natural frequencies and three-dimensional mode shapes for any number of modes, is presented and discussed.

  12. Effect of increased left ventricle mass on ischemia assessment in electrocardiographic signals: rabbit isolated heart study

    Czech Academy of Sciences Publication Activity Database

    Ronzhina, M.; Olejníčková, Veronika; Stračina, T.; Nováková, M.; Janoušek, O.; Hejč, J.; Kolářová, J.; Hlaváčová, M.; Paulová, H.

    2017-01-01

    Roč. 17, Aug 4 (2017), č. článku 216. ISSN 1471-2261 Institutional support: RVO:67985823 Keywords : myocardial ischemia detection * increased left ventricular mass * electrogram * ROC analysis * isolated heart * rabbit Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery Impact factor: 1.832, year: 2016

  13. Shaping frequency response of a vibrating plate for passive and active control applications by simultaneous optimization of arrangement of additional masses and ribs. Part II: Optimization

    Science.gov (United States)

    Wrona, Stanislaw; Pawelczyk, Marek

    2016-03-01

    It was shown in Part I that an ability to shape frequency response of a vibrating plate according to precisely defined demands has a very high practical potential. It can be used to improve acoustic radiation of the plate for required frequencies or enhance acoustic isolation of noise barriers and device casings. It can be used for both passive and active control. The proposed method is based on mounting several additional ribs and masses (passive and/or active) to the plate surface at locations followed from an optimisation process. In Part I a relevant model of such structure, as a function of arrangement of the additional elements was derived and validated. The model allows calculating natural frequencies and mode-shapes of the whole structure. The aim of this companion paper, Part II, is to present the second stage of the method. This is an optimization process that results in arrangement of the elements guaranteeing desired plate frequency response, and enhancement of controllability and observability measures. For that purpose appropriate cost functions, and constraints followed from technological feasibility are defined. Then, a memetic algorithm is employed to obtain a numerical solution with parameters of the arrangement. The optimization results are initially presented for simple cases to validate the method. Then, more complex scenarios are analysed with very special demands concerning the frequency response to present the full potential of the method. Subsequently, a laboratory experiment is presented and discussed. Finally, other areas of applications of the proposed method are shown and conclusions for future research are drawn.

  14. MALDI-TOF mass spectrometry proteomic based identification of clinical bacterial isolates

    Directory of Open Access Journals (Sweden)

    Ashutosh Panda

    2014-01-01

    Full Text Available Background & objectives: Pathogenic bacteria often cause life threatening infections especially in immunocompromised individuals. Therefore, rapid and reliable species identification is essential for a successful treatment and disease management. We evaluated a rapid, proteomic based technique for identification of clinical bacterial isolates by protein profiling using matrix-assisted laser desorption-ionization time - of - flight mass spectrometry (MALDI-TOF MS. Methods: Freshly grown bacterial isolates were selected from culture plates. Ethanol/formic acid extraction procedure was carried out, followed by charging of MALDI target plate with the extract and overlaying with α-cyano-4 hydroxy-cinnamic acid matrix solution. Identification was performed using the MALDI BioTyper 1.1, software for microbial identification (Bruker Daltonik GmbH, Bremen, Germany. Results: A comparative analysis of 82 clinical bacterial isolates using MALDI -TOF MS and conventional techniques was carried out. Amongst the clinical isolates, the accuracy at the species level for clinical isolates was 98.78%. One out of 82 isolates was not in accordance with the conventional assays because MALDI-TOF MS established it as Streptococcus pneumoniae and conventional methods as Streptococcus viridans. Interpretation & conclusions: MALDI - TOF MS was found to be an accurate, rapid, cost-effective and robust system for identification of clinical bacterial isolates. This innovative approach holds promise for earlier therapeutic intervention leading to better patient care.

  15. A procedure obtaining stiffnesses and masses of a structure from vibration modes and substructure static test data

    Science.gov (United States)

    Edighoffer, H. H.

    1979-01-01

    A component mode desynthesis procedure is developed for determining the unknown vibration characteristics of a structural component (i.e., a launch vehicle) given the vibration characteristics of a structural system composed of that component combined with a known one (i.e., a payload). At least one component static test has to be performed. These data are used in conjunction with the system measured frequencies and mode shapes to obtain the vibration characteristics of each component. The flight dynamics of an empty launch vehicle can be determined from measurements made on a vehicle/payload combination in conjunction with a static test on the payload.

  16. Shotgun mass mapping of Lactobacillus species and subspecies from caries related isolates by MALDI-MS.

    Science.gov (United States)

    Schmidt, Frank; Fiege, Thomas; Hustoft, Hanne K; Kneist, Susanne; Thiede, Bernd

    2009-04-01

    A taxonomical study of 90 isolates of lactobacilli isolated from soft and hard carious dentine of 70 deciduous molars is presented. The Lactobacillus strains were determined by shotgun mass mapping (SMM). This method based on MALDI-MS analysis of Lactobacillus isolates treated with trypsin followed by database comparison against a library of mass spectra derived from 20 reference strains. The SMM method allowed to discriminate different Lactobacillus subspecies. The method was used to analyse Lactobacillus isolates of unknown identity derived from carious dentine. Application of the SMM method to isolates from hard carious dentine revealed a nearly similar distribution of L. paracasei ss paracasei (29%), L. paracasei ss tolerans (32%) and L. casei ss rhamnosus (23%) as dominant subspecies. On the other hand, samples derived from soft carious dentine showed a clear bias only to L. paracasei ss paracasei (60%), whereas L. paracasei ss tolerans (14%) and L. casei ss rhamnosus (12%) were clear minorities. Compared to existent methods, SMM has unique potential for the analysis of Lactobacillus strains on subspecies level.

  17. Simulation Study on Train-Induced Vibration Control of a Long-Span Steel Truss Girder Bridge by Tuned Mass Dampers

    Directory of Open Access Journals (Sweden)

    Hao Wang

    2014-01-01

    Full Text Available Train-induced vibration of steel truss bridges is one of the key issues in bridge engineering. This paper talks about the application of tuned mass damper (TMD on the vibration control of a steel truss bridge subjected to dynamic train loads. The Nanjing Yangtze River Bridge (NYRB is taken as the research object and a recorded typical train load is included in this study. With dynamic finite element (FE method, the real-time dynamic responses of NYRB are analyzed based on a simplified train-bridge time-varying system. Thereinto, two cases including single train moving at one side and two trains moving oppositely are specifically investigated. According to the dynamic characteristics and dynamic responses of NYRB, the fourth vertical bending mode is selected as the control target and the parameter sensitivity analysis on vibration control efficiency with TMD is conducted. Using the first-order optimization method, the optimal parameters of TMD are then acquired with the control efficiency of TMD, the static displacement of Midspan, expenditure of TMDs, and manufacture difficulty of the damper considered. Results obtained in this study can provide references for the vibration control of steel truss bridges.

  18. The Shock and Vibration Bulletin. Part 2. Modal and Impedance Analysis, Human Response to Vibration and Shock, Isolation and Damping, Dynamic Analysis

    Science.gov (United States)

    1979-09-01

    Automatic Control, 6th World Congress, August 24-30, 1975, Boston/Cambridge, Mass., Part 1, Section 9.3, pp. 1-6. 9. Franklin, J. N., Matrix Theo , Prentice...deflection of such systems resulting from a free functions in terms of a "Cushion Factor" due to fall and impact with a hard substrate. The sys- Jansen [3

  19. Optical and Near-infrared Spectra of σ Orionis Isolated Planetary-mass Objects

    Science.gov (United States)

    Zapatero Osorio, M. R.; Béjar, V. J. S.; Peña Ramírez, K.

    2017-06-01

    We have obtained low-resolution optical (0.7-0.98 μm) and near-infrared (1.11-1.34 μm and 0.8-2.5 μm) spectra of 12 isolated planetary-mass candidates (J = 18.2-19.9 mag) of the 3 Myr σ Orionis star cluster with the aim of determining the spectroscopic properties of very young, substellar dwarfs and assembling a complete cluster mass function. We have classified our targets by visual comparison with high- and low-gravity standards and by measuring newly defined spectroscopic indices. We derived L0-L4.5 and M9-L2.5 using high- and low-gravity standards, respectively. Our targets reveal clear signposts of youth, thus corroborating their cluster membership and planetary masses (6-13 M Jup). These observations complete the σ Orionis mass function by spectroscopically confirming the planetary-mass domain to a confidence level of ˜75%. The comparison of our spectra with BT-Settl solar metallicity model atmospheres yields a temperature scale of 2350-1800 K and a low surface gravity of log g ≈ 4.0 [cm s-2], as would be expected for young planetary-mass objects. We discuss the properties of the cluster’s least-massive population as a function of spectral type. We have also obtained the first optical spectrum of S Ori 70, a T dwarf in the direction of σ Orionis. Our data provide reference optical and near-infrared spectra of very young L dwarfs and a mass function that may be used as templates for future studies of low-mass substellar objects and exoplanets. The extrapolation of the σ Orionis mass function to the solar neighborhood may indicate that isolated planetary-mass objects with temperatures of ˜200-300 K and masses in the interval 6-13 M Jup may be as numerous as very low-mass stars.

  20. The Shock and Vibration Bulletin. Part 2. Model Test and Analysis, Testing Techniques, Machinery Dynamics, Isolation and Damping, Structural Dynamics

    Science.gov (United States)

    1986-08-01

    jBfr 5? JOR JS T SIONAL/lBRATIONjerF^EAR-RANCHED PROPULSION.gVSTEMS j... 117 / H.F. Tavares, Cepstrum Engenharia Ltda., Rio de Janeiro, Brazil and V...MODELLING IN FINITE ELEMENT ANALYSES OF TORSIONAL VIBRATION OF GEAR-BRANCHED PROPULSION SYSTEMS H. F. Tavares Cepstrum Engenharia Ltda. S8o Paulo

  1. Active vibration control using DEAP actuators

    Science.gov (United States)

    Sarban, Rahimullah; Jones, Richard W.

    2010-04-01

    Dielectric electro-active polymer (DEAP) is a new type of smart material, which has the potential to be used to provide effective actuation for a wide range of applications. The properties of DEAP material place it somewhere between those of piezoceramics and shape memory alloys. Of the range of DEAP-based actuators that have been developed those having a cylindrical configuration are among the most promising. This contribution introduces the use of a tubular type DEAP actuator for active vibration control purposes. Initially the DEAP-based tubular actuator to be used in this study, produced by Danfoss PolyPower A/S, is introduced along with the static and dynamic characteristics. Secondly an electromechanical model of the tubular actuator is briefly reviewed and its ability to model the actuator's hysteresis characteristics for a range of periodic input signals at different frequencies demonstrated. The model will be used to provide hysteresis compensation in future vibration isolation studies. Experimental active vibration control using the actuator is then examined, specifically active vibration isolation of a 250 g mass subject to shaker generated 'ground vibration'. An adaptive feedforward control strategy is used to achieve this. The ability of the tubular actuator to reject both tonal and broadband random vibratory disturbances is then demonstrated.

  2. The Shock and Vibration Bulletin. Part 1. Keynote Address, Invited Papers Damping and Isolation, Fluid-Structure Interaction

    Science.gov (United States)

    1981-05-01

    gLAsTic SUPPORTS 114CLUDING DAMPING ’I FINITE ELEMENT ANALYSIS.........................................83 A. M. Sharan, T. S. Sankar and S. Stalks ...nuances of a at the Naval Weapons Center in China Lake, California. So, physical world of shock and vibration. So I asked myself while I am not a...l Fig. 4: Schematic diagram for the experimental set-up. Fig. 5a: Pictorial view of the Instrumentation for frequency analysis. = rot = :&C lo Fig. Sb

  3. Coupling thin-layer chromatography with vibrational cooling matrix-assisted laser desorption/ionization Fourier transform mass spectrometry for the analysis of ganglioside mixtures.

    Science.gov (United States)

    Ivleva, Vera B; Elkin, Yuri N; Budnik, Bogdan A; Moyer, Susanne C; O'Connor, Peter B; Costello, Catherine E

    2004-11-01

    Thin-layer chromatography (TLC), which is widely used for separation of glycolipids, oligosaccharides, lipids, and compounds of environmental and pharmaceutical interest, can be readily coupled to matrix-assisted laser desorption/ionization (MALDI) time-of-flight mass spectrometers, but this arrangement usually compromises mass spectral resolution due to the irregularity of the TLC surface. However, TLC can be coupled to an external ion source MALDI-Fourier transform (FT) MS instrument without compromising mass accuracy and resolution of the spectra. Furthermore, when the FTMS has a vibrationally cooled MALDI ion source, fragile glycolipids can be desorbed from TLC plates without fragmentation, even to the point that desorption of intact molecules from "hot"matrixes such as alpha-cyano-4-hydroxycinnamic acid is possible. In this work, whole brain gangliosides are separated using TLC; the TLC plates are attached directly to the MALDI target, where the gangliosides are desorbed, ionized, and detected in the FTMS with >70 000 resolving power.

  4. Low-magnitude whole body vibration does not affect bone mass but does affect weight in ovariectomized rats

    NARCIS (Netherlands)

    O.P. van der Jagt (Olav); J.C. van der Linden (Jacqueline); J.H. Waarsing (Jan); J.A.N. Verhaar (Jan); H.H. Weinans (Harrie)

    2012-01-01

    textabstractMechanical loading has stimulating effects on bone architecture, which can potentially be used as a therapy for osteoporosis. We investigated the skeletal changes in the tibia of ovariectomized rats during treatment with whole body vibration (WBV). Different low-magnitude WBV treatment

  5. Compact Vibration Damper

    Science.gov (United States)

    Ivanco, Thomas G. (Inventor)

    2014-01-01

    A vibration damper includes a rigid base with a mass coupled thereto for linear movement thereon. Springs coupled to the mass compress in response to the linear movement along either of two opposing directions. A converter coupled to the mass converts the linear movement to a corresponding rotational movement. A rotary damper coupled to the converter damps the rotational movement.

  6. LEO P: HOW MANY METALS CAN A VERY LOW MASS, ISOLATED GALAXY RETAIN?

    Energy Technology Data Exchange (ETDEWEB)

    McQuinn, Kristen B. W.; Skillman, Evan D. [Minnesota Institute for Astrophysics, School of Physics and Astronomy, 116 Church Street, S.E., University of Minnesota, Minneapolis, MN 55455 (United States); Dolphin, Andrew [Raytheon Company, 1151 E. Hermans Road, Tucson, AZ 85756 (United States); Cannon, John M. [Department of Physics and Astronomy, Macalester College, 1600 Grand Avenue, Saint Paul, MN 55105 (United States); Salzer, John J.; Rhode, Katherine L. [Department of Astronomy, Indiana University, 727 East 3rd Street, Bloomington, IN 47405 (United States); Adams, Elizabeth A. K. [ASTRON, the Netherlands Institute for Radio Astronomy, Postbus 2, 7990 AA, Dwingeloo (Netherlands); Berg, Danielle [Center for Gravitation, Cosmology and Astrophysics, Department of Physics, University of Wisconsin Milwaukee, 1900 East Kenwood Boulevard, Milwaukee, WI 53211 (United States); Giovanelli, Riccardo; Haynes, Martha P., E-mail: kmcquinn@astro.as.utexas.edu [Center for Radiophysics and Space Research, Space Sciences Building, Cornell University, Ithaca, NY 14853 (United States)

    2015-12-20

    Leo P is a gas-rich dwarf galaxy with an extremely low gas-phase oxygen abundance (3% solar). The isolated nature of Leo P enables a quantitative measurement of metals lost solely due to star formation feedback. We present an inventory of the oxygen atoms in Leo P based on the gas-phase oxygen abundance measurement, the star formation history (SFH), and the chemical enrichment evolution derived from resolved stellar populations. The SFH also provides the total amount of oxygen produced. Overall, Leo P has retained 5% of its oxygen; 25% of the retained oxygen is in the stars while 75% is in the gas phase. This is considerably lower than the 20%–25% calculated for massive galaxies, supporting the trend for less efficient metal retention for lower-mass galaxies. The retention fraction is higher than that calculated for other alpha elements (Mg, Si, Ca) in dSph Milky Way satellites of similar stellar mass and metallicity. Accounting only for the oxygen retained in stars, our results are consistent with those derived for the alpha elements in dSph galaxies. Thus, under the assumption that the dSph galaxies lost the bulk of their gas mass through an environmental process such as tidal stripping, the estimates of retained metal fractions represent underestimates by roughly a factor of four. Because of its isolation, Leo P provides an important datum for the fraction of metals lost as a function of galaxy mass due to star formation.

  7. Leo P: How Many Metals Can a Very Low Mass, Isolated Galaxy Retain?

    Science.gov (United States)

    McQuinn, Kristen B. W.; Skillman, Evan D.; Dolphin, Andrew; Cannon, John M.; Salzer, John J.; Rhode, Katherine L.; Adams, Elizabeth A. K.; Berg, Danielle; Giovanelli, Riccardo; Haynes, Martha P.

    2015-12-01

    Leo P is a gas-rich dwarf galaxy with an extremely low gas-phase oxygen abundance (3% solar). The isolated nature of Leo P enables a quantitative measurement of metals lost solely due to star formation feedback. We present an inventory of the oxygen atoms in Leo P based on the gas-phase oxygen abundance measurement, the star formation history (SFH), and the chemical enrichment evolution derived from resolved stellar populations. The SFH also provides the total amount of oxygen produced. Overall, Leo P has retained 5% of its oxygen; 25% of the retained oxygen is in the stars while 75% is in the gas phase. This is considerably lower than the 20%-25% calculated for massive galaxies, supporting the trend for less efficient metal retention for lower-mass galaxies. The retention fraction is higher than that calculated for other alpha elements (Mg, Si, Ca) in dSph Milky Way satellites of similar stellar mass and metallicity. Accounting only for the oxygen retained in stars, our results are consistent with those derived for the alpha elements in dSph galaxies. Thus, under the assumption that the dSph galaxies lost the bulk of their gas mass through an environmental process such as tidal stripping, the estimates of retained metal fractions represent underestimates by roughly a factor of four. Because of its isolation, Leo P provides an important datum for the fraction of metals lost as a function of galaxy mass due to star formation. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the Data Archive at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

  8. MALDI-TOF Mass Spectrometry Discriminates Known Species and Marine Environmental Isolates of Pseudoalteromonas

    Science.gov (United States)

    Emami, Kaveh; Nelson, Andrew; Hack, Ethan; Zhang, Jinwei; Green, David H.; Caldwell, Gary S.; Mesbahi, Ehsan

    2016-01-01

    The genus Pseudoalteromonas constitutes an ecologically significant group of marine Gammaproteobacteria with potential biotechnological value as producers of bioactive compounds and of enzymes. Understanding their roles in the environment and bioprospecting for novel products depend on efficient ways of identifying environmental isolates. Matrix Assisted Laser Desorption/Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS) biotyping has promise as a rapid and reliable method of identifying and distinguishing between different types of bacteria, but has had relatively limited application to marine bacteria and has not been applied systematically to Pseudoalteromonas. Therefore, we constructed a MALDI-TOF MS database of 31 known Pseudoalteromonas species, to which new isolates can be compared by MALDI-TOF biotyping. The ability of MALDI-TOF MS to distinguish between species was scrutinized by comparison with 16S rRNA gene sequencing. The patterns of similarity given by the two approaches were broadly but not completely consistent. In general, the resolution of MALDI-TOF MS was greater than that of 16S rRNA gene sequencing. The database was tested with 13 environmental Pseudoalteromonas isolates from UK waters. All of the test strains could be identified to genus level by MALDI-TOF MS biotyping, but most could not be definitely identified to species level. We conclude that several of these isolates, and possibly most, represent new species. Thus, further taxonomic investigation of Pseudoalteromonas is needed before MALDI-TOF MS biotyping can be used reliably for species identification. It is, however, a powerful tool for characterizing and distinguishing among environmental isolates and can make an important contribution to taxonomic studies. PMID:26903983

  9. Vibrational investigations of CO2-H2O, CO2-(H2O)2, and (CO2)2-H2O complexes isolated in solid neon.

    Science.gov (United States)

    Soulard, P; Tremblay, B

    2015-12-14

    The van der Waals complex of H2O with CO2 has attracted considerable theoretical interest as a typical example of a weak binding complex with a dissociation energy less than 3 kcal/mol. Up to now, experimental vibrational data are sparse. We have studied by FTIR the complexes involving CO2 and water molecules in solid neon. Many new absorption bands close to the well known monomers fundamentals give evidence for at least three (CO2)n-(H2O)m complexes, noted n:m. Concentration effects combined with a detailed vibrational analysis allow for the identification of sixteen, twelve, and five transitions for the 1:1, 1:2, and 2:1 complexes, respectively. Careful examination of the far infrared spectral region allows the assignment of several 1:1 and 1:2 intermolecular modes, confirmed by the observation of combinations of intra + intermolecular transitions, and anharmonic coupling constants have been derived. Our results demonstrate the high sensibility of the solid neon isolation to investigate the hydrogen-bonded complexes in contrast with the gas phase experiments for which two quanta transitions cannot be easily observed.

  10. Data set for the mass spectrometry based exoproteome analysis of Aspergillus flavus isolates

    Directory of Open Access Journals (Sweden)

    Ramu Muthu Selvam

    2015-03-01

    Full Text Available Aspergillus flavus is one of the predominant causative organisms of mycotic keratitis in tropical parts of the world. Extracellular proteins are the earliest proteins that come in contact with the host and have a role in the infection process. Exoproteins of A. flavus isolated from infected cornea, sputum and a saprophyte were pooled and identified using high resolution mass spectrometry in order to get the total exoproteome from cultures isolated from different sources. A total of 637 proteins was identified from the pooled A. flavus exoproteome. Analysis based on GO annotations of the 637 identified proteins revealed that hydrolases form the predominant class of proteins in the exoproteome. Interestingly, a greater proportion of the exoproteins seem to be secreted through the non-classical pathways. This data represent the first in-depth analysis of the representative A. flavus exoproteome of a large set of isolates from distinct sources. This data have been deposited to the ProteomeXchange with identifier PXD001296.

  11. Forming the stress state of a vibroisolated building in the process of mounting rubber steel vibration isolator

    Directory of Open Access Journals (Sweden)

    Dashevskiy Mikhail Aronovich

    2015-12-01

    Full Text Available The necessity to specificate the formation process of stress-strain state of buildings in the construction process is a new problem which requires including real production characteristics going beyond calculation models into calculation methods. Today the construction process lacks this specification. When mounting vibroisolators the stress-strein of a structure state is changing. The mounting method of vibroisolators is patented and consists in multistage successive compression loading of each vibroisolator with the constant speed and following fixation of this displacement. The specified engineering method of rubber-steel pads calculation in view of change of their form during deformation, nonlinearity, rheological processes is offered. Resilient pads look like rubber plates rectangular in plane reinforced on the basic surfaces with metal sheets. The influence of a time-variable static load and free vibrations of loaded pads are considered.

  12. Breast Cancer Mimic: Cutaneous B-Cell Lymphoma Presenting as an Isolated Breast Mass

    Directory of Open Access Journals (Sweden)

    Margaret Taghavi

    2014-10-01

    Full Text Available Background: Primary cutaneous B-cell lymphoma typically localizes to the skin, and dissemination to internal organs is rare. Lymphomatous involvement of the breasts is also rare. We describe the clinical and radiological findings of an unusual case of primary cutaneous B-cell lymphoma presenting as an isolated breast mass without associated skin changes. Case Presentation: The patient was a 55-year-old Caucasian female who initially presented with cutaneous B-cell lymphoma around her eyes and forehead with recurrence involving the skin between her breasts. Three years after terminating treatment due to a lack of symptoms, she presented for an annual screening mammogram that found a new mass in her upper inner right breast without imaging signs of cutaneous extension. On physical examination, there were no corresponding skin findings. Due to the suspicious imaging features of the mass that caused concern for primary breast malignancy, she underwent a core biopsy which revealed cutaneous B-cell lymphoma. Conclusion: When evaluating patients with a systemic disease who present with findings atypical for that process, it is important to still consider the systemic disease as a potential etiology, particularly with lymphoma given its reputation as a great mimicker.

  13. Tandem Mass Spectrometry Detection of Quorum Sensing Activity in Multidrug Resistant Clinical Isolate Acinetobacter baumannii

    Directory of Open Access Journals (Sweden)

    Kok-Gan Chan

    2014-01-01

    Full Text Available Many Proteobacteria communicate via production followed by response of quorum sensing molecules, namely, N-acyl homoserine lactones (AHLs. These molecules consist of a lactone moiety with N-acyl side chain with various chain lengths and degrees of saturation at C-3 position. AHL-dependent QS is often associated with regulation of diverse bacterial phenotypes including the expression of virulence factors. With the use of biosensor and high resolution liquid chromatography tandem mass spectrometry, the AHL production of clinical isolate A. baumannii 4KT was studied. Production of short chain AHL, namely, N-hexanoyl-homoserine lactone (C6-HSL and N-octanoyl-homoserine lactone (C8-HSL, was detected.

  14. Vibrational spectroscopy of the mass-selected tetrahydrofurfuryl alcohol monomers and its dimers in gas phase using IR depletion and VUV single photon ionization

    Science.gov (United States)

    Wang, Pengchao; Hu, Yongjun; Zhan, Huaqi; Chen, Jiaxin; Jin, Shan; Song, Wentao; Li, Yujian

    2017-10-01

    Tetrahydrofurfuryl alcohol (THFA, C5H10O2) is a close chemical analog of the sugar rings present in the phosphate-deoxyribose backbone structure of the nucleic acids. In present report, the infrared (IR) spectra of the size-selected THFA monomer and its dimer have been investigated in a pulsed supersonic jet using infrared-vacuum ultraviolet (VUV) ionization. Herein, the laser light at 118 nm wavelength served as the source of ;soft; ionization in a time-of-flight mass spectrometer. The IR features for the monomers located at 3622 cm- 1 can be assigned to the intramolecular hydrogen bonding stretch vibrations mainly referring to A and C conformers. Compared with the monomer, however, characteristic peaks for the dimer centered at 3415 and 3453 cm- 1, red shifted 207 and 169 cm- 1, respectively, were associated with the intermolecular hydrogen bonding stretch vibrations. Combined with the quantum-chemical calculations, the dimer in the gas phase preferred cyclic AC conformer stabled by forming two strong intermolecular hydrogen bonds, which shown the high hydrogen bond selectivity in the cluster. The conclusions drawn from the role played in the conformational flexibility by the hydroxyl and ether groups may be extended to other biomolecules.

  15. Vibrational spectra and structures of Ti-N2O and OTi-N2: a combined IR matrix isolation and theoretical study.

    Science.gov (United States)

    Marzouk, Asma; Alikhani, M Esmaïl; Madebène, Bruno; Tremblay, Benoît; Perchard, Jean-Pierre

    2013-02-28

    The reaction of atomic titanium with nitrous oxide has been reinvestigated using matrix isolation in solid neon coupled to infrared spectroscopy and by quantum chemical methods. Our technique of sublimation of Ti atoms from a filament heated at about 1500 °C allowed the formation of three species: one Ti-N(2)O pair of van der Waals (vdW) type characterized by small red shift with respect to N(2)O monomer, and two isomers of OTi-N(2) pair where N(2) is in interaction with the OTi moiety either with end-on or side-on structure. Interconversion between these structures has been performed with several wavelengths. In the visible and near-ultraviolet the conversion vdW → OTi-N(2) (end-on) is observed with characteristic times strongly varying according to the wavelength. In the near-infrared the conversion OTi-N(2) (end-on) → OTi-N(2) (side-on) occurs, the vdW species remaining unchanged. These selectivities allow 8, 6, and 4 vibrational transitions to be assigned for vdW, (3)[OTi(η(1)-NN)] (end-on), and (1)[OTi(η(2)-NN)] (side-on), respectively. Electronic and geometrical structures are also investigated with double-hybrid functionals. It has been shown that the side-on geometry corresponds to the ground state of (1)[OTi(η(2)-NN)] in the singlet electronic state. The theoretical vibrational analysis supports well the experimental attributions.

  16. Denaturation Kinetics of Whey Protein Isolate Solutions and Fouling Mass Distribution in a Plate Heat Exchanger

    Directory of Open Access Journals (Sweden)

    Marwa Khaldi

    2015-01-01

    Full Text Available Few investigations have attempted to connect the mechanism of dairy fouling to the chemical reaction of denaturation (unfolding and aggregation occurring in the bulk. The objective of this study is to contribute to this aspect in order to propose innovative controls to limit fouling deposit formation. Experimental investigations have been carried out to observe the relationship between the deposit mass distribution generated in plate heat exchangers (PHE by a whey protein isolate (WPI mainly composed of β-lactoglobulin (β-Lg and the ratio between the unfolding and aggregation rate constants. Experiments using a PHE were carried out at a pilot scale to identify the deposit distribution of a model fouling solution with different calcium contents. In parallel, laboratory experiments were performed to determine the unfolding/aggregation rate constants. Data analysis showed that (i β-Lg denaturation is highly dependent on the calcium content, (ii for each fouling solution, irrespective of the imposed temperature profile, the deposit mass in each channel and the ratio between the unfolding and aggregation rate constants seem to be well correlated. This study demonstrates that both the knowledge of the thermal profile and the β-Lg denaturation rate constants are required in order to predict accurately the deposit distribution along the PHE.

  17. [Improving of muscle mass and force in rehabilitation of heart-lung patients. Aerobic interval training, resistance-exercises, excentric exercises, vibration].

    Science.gov (United States)

    Apor, Péter; Tihanyi, József; Borka, Péter

    2005-09-18

    Improvement of muscle mass and force which got depleted by inactivity or pathological processes is one of the aims and also a prerequisite of a rehabilitative intervention. Metabolically active larger and stronger muscles diminish the cardiovascular risk, permit the aerobic preventive and rehabilitative activities and enables a higher quality of life. Interval forms of aerobic exercise improves also the muscles. The resistance training plays an important part in rehabilitation. Beside the traditional dynamic strength training with weights, gym machines, body weight etc. the excentric type of muscle activity potentiates higher muscle load with lesser energy consumption, therefore it is suitable in the case of smaller performance ability. Vibration of the whole body or parts of it by machines improves the co-activity of the motor units and results in force development with small metabolic involvement.

  18. Two-degree-of-freedom vortex-induced vibration of circular cylinders with very low aspect ratio and small mass ratio

    Science.gov (United States)

    Gonçalves, R. T.; Rosetti, G. F.; Franzini, G. R.; Meneghini, J. R.; Fujarra, A. L. C.

    2013-05-01

    The investigation of vortex-induced vibration on very short cylinders with two degrees of freedom has drawn the attention of a large number of researchers. Some investigations on such a problem are carried out in order to have a better understanding of the physics involved in vortex-induced motions of floating bodies such as offshore platforms. In this paper, experiments were carried out in a recirculating water channel over the range of Reynolds number 6000attention because of its smaller amplitude compared to the cases with the same aspect ratio and a larger mass ratio. This counter-intuitive behavior seems to be related to the energy transferring process from the steady stream to the oscillatory hydroelastic system. Finally, it is noteworthy that the characteristic of the “Strouhal-like” number decreases when the aspect ratio decreases, as also observed in previous works available in the literature, most of them for stationary cylinders.

  19. Isolated spinal neurenteric cyst presenting as intramedullary calcified cystic mass on imaging studies: case report and review of literature

    Energy Technology Data Exchange (ETDEWEB)

    Ziu, Mateo; Vecil, Giacomo G. [University of Texas Health Science Center, Department of Neurosurgery, San Antonio, TX (United States); Vibhute, Prasanna [University of Texas Health Science Center, Department of Radiology, San Antonio, TX (United States); Mayo Clinic, Department of Radiology, Jacksonville, FL (United States); Henry, James [University of Texas Health Science Center, Department of Pathology, San Antonio, TX (United States)

    2010-02-15

    Intramedullary neurenteric cysts (NEC) without associated malformations are extremely rare and, to our knowledge, have never been reported in association with calcification. We report a unique imaging presentation as a partially calcified mass of an isolated intramedullary neuroenteric cyst of the lower thoracic spinal cord with pathologic correlation. The literature for isolated forms of intramedullary NEC since the advent of magnetic resonance imaging is also reviewed. (orig.)

  20. Infrared absorption spectra of matrix-isolated cis, cis-HOONO and its ab initio CCSD(T) anharmonic vibrational bands

    Science.gov (United States)

    Zhang, Xu; Nimlos, Mark R.; Ellison, G. Barney; Varner, Mychel E.; Stanton, John F.

    2006-02-01

    The infrared absorption spectra of matrix-isolated cis, cis-peroxynitrous acid (HOONO and DOONO) in argon have been observed. Six of the nine fundamental vibrational modes for cis, cis-HOONO have been assigned definitively, and one tentatively. Coupled-cluster, ab initio anharmonic force field calculations were used to help guide some of the assignments. The experimental matrix frequencies (cm-1) for cis, cis-HOONO are (a'modes)ν1=3303±1,ν2=1600.6±0.6,ν3=1392±1,ν4=922.8±0.5,ν5=789.7±0.4,ν6=617±1; and (a″mode)ν8=462±1. The fundamentals for the deuterated isotopomer, cis, cis-DOONO, are (a'modes)ν1=2447.2±0.6,ν2=1595.7±0.7,ν3=1089.1±0.4,ν4=888.1±0.4,ν5=786.6±0.5,ν6=613.9±0.9; and (a″mode)ν8=456.5±0.5.

  1. Nano-scale mass sensor based on the vibration analysis of a magneto-electro-elastic nanoplate resting on a visco-Pasternak substrate

    Science.gov (United States)

    Khanmirza, E.; Jamalpoor, A.; Kiani, A.

    2017-10-01

    In this paper, a magneto-electro-elastic nanoplate resting on a visco-Pasternak medium with added concentrated nanoparticles is presented as a mass nanosensor according to the vibration analysis. The MEE nanoplate is supposed to be subject to external electric voltage and magnetic potential. In order to take into account the size effect on the sensitivity of the sensor, the nonlocal elasticity theory in conjunction with the Kirchhoff plate theory is applied. Partial differential equations are derived by implementing Hamilton's variational principle. Equilibrium equations were solved analytically to determine an explicit closed-form statement for both the damped frequency shift and the relative damped frequency shift using Navier's approach. A genetic algorithm (GA) is employed to achieve the optimal added nanoparticle location to gain the most sensitivity performance of the nanosensor. Numerical studies are performed to illustrate the variation of the sensitivity property corresponding to various values of the number of attached nanoparticles, the mass of each nanoparticle, the nonlocal parameter, external electric voltage and magnetic potential, the aspect ratio, and visco-Pasternak parameters. Some numerical outcomes of this paper show that the minimum value of the damped frequency shift occurs for a certain value of the length-to-thickness ratio. Also, it is shown that the external magnetic and external electric potentials have a different effect on the sensitivity property. It is anticipated that the results reported in this work can be considered as a benchmark in future micro-structures issues.

  2. Using MALDI-TOF Mass Spectrometry to Identify Drug Resistant Staphylococcal Isolates from Nonhospital Environments in Brunei Darussalam

    Directory of Open Access Journals (Sweden)

    Ko S. Chong

    2016-01-01

    Full Text Available Drug resistant bacteria have been a growing threat to the community and hospitals due to the misuse of antibiotics by humans, industrialization, and lack of novel antimicrobials currently available. Little is known about the prevalence of drug resistant bacteria in nonhealthcare environments in Brunei Darussalam and about how antibiotic resistant genes are transferred within these environments. Human contact points from different types of environments in Brunei Darussalam, varying from urban to jungle settings, were swabbed and cultured onto selective media to isolate staphylococci bacteria before performing antimicrobial susceptibility testing on the isolates. The identity of the isolates was determined using MALDI-TOF mass spectrometry (MS. Staphylococci isolates resistant to oxacillin were further tested for their minimum inhibitory concentration (MIC. PCR analysis of the mecA gene, a gene that confers resistance to oxacillin, is done to determine the level of resistance to oxacillin. Ten different staphylococcal species were identified by MALDI-TOF-MS analysis. Out of the 36 staphylococci isolates, 24 were resistant to multiple antibiotics including two isolates which were oxacillin resistant. Some staphylococci isolates had similar antibiotic resistance profiles to other staphylococci isolates of different species in the same location. This work provides the first-ever evidence of drug resistant staphylococci in the nonhospital environment in Brunei Darussalam.

  3. Dynamic profile of a prototype pivoted proof-mass actuator. [damping the vibration of large space structures

    Science.gov (United States)

    Miller, D. W.

    1981-01-01

    A prototype of a linear inertial reaction actuation (damper) device employing a flexure-pivoted reaction (proof) mass is discussed. The mass is driven by an electromechanic motor using a dc electromagnetic field and an ac electromagnetic drive. During the damping process, the actuator dissipates structural kinetic energy as heat through electromagnetic damping. A model of the inertial, stiffness and damping properties is presented along with the characteristic differential equations describing the coupled response of the actuator and structure. The equations, employing the dynamic coefficients, are oriented in the form of a feedback control network in which distributed sensors are used to dictate actuator response leading to a specified amount of structural excitation or damping.

  4. Differentiation of Streptococcus pneumoniae conjunctivitis outbreak isolates by matrix-assisted laser desorption ionization-time of flight mass spectrometry.

    Science.gov (United States)

    Williamson, Yulanda M; Moura, Hercules; Woolfitt, Adrian R; Pirkle, James L; Barr, John R; Carvalho, Maria Da Gloria; Ades, Edwin P; Carlone, George M; Sampson, Jacquelyn S

    2008-10-01

    Streptococcus pneumoniae (pneumococcus [Pnc]) is a causative agent of many infectious diseases, including pneumonia, septicemia, otitis media, and conjunctivitis. There have been documented conjunctivitis outbreaks in which nontypeable (NT), nonencapsulated Pnc has been identified as the etiological agent. The use of mass spectrometry to comparatively and differentially analyze protein and peptide profiles of whole-cell microorganisms remains somewhat uncharted. In this report, we discuss a comparative proteomic analysis between NT S. pneumoniae conjunctivitis outbreak strains (cPnc) and other known typeable or NT pneumococcal and streptococcal isolates (including Pnc TIGR4 and R6, Streptococcus oralis, Streptococcus mitis, Streptococcus pseudopneumoniae, and Streptococcus pyogenes) and nonstreptococcal isolates (including Escherichia coli, Enterococcus faecalis, and Staphylococcus aureus) as controls. cPnc cells and controls were grown to mid-log phase, harvested, and subsequently treated with a 10% trifluoroacetic acid-sinapinic acid matrix mixture. Protein and peptide fragments of the whole-cell bacterial isolate-matrix combinations ranging in size from 2 to 14 kDa were evaluated by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Additionally Random Forest analytical tools and dendrogramic representations (Genesis) suggested similarities and clustered the isolates into distinct clonal groups, respectively. Also, a peak list of protein and peptide masses was obtained and compared to a known Pnc protein mass library, in which a peptide common and unique to cPnc isolates was tentatively identified. Information gained from this study will lead to the identification and validation of proteins that are commonly and exclusively expressed in cPnc strains which could potentially be used as a biomarker in the rapid diagnosis of pneumococcal conjunctivitis.

  5. Numerical investigation of the vortex-induced vibration of an elastically mounted circular cylinder at high Reynolds number (Re = 104 and low mass ratio using the RANS code.

    Directory of Open Access Journals (Sweden)

    Niaz Bahadur Khan

    Full Text Available This study numerically investigates the vortex-induced vibration (VIV of an elastically mounted rigid cylinder by using Reynolds-averaged Navier-Stokes (RANS equations with computational fluid dynamic (CFD tools. CFD analysis is performed for a fixed-cylinder case with Reynolds number (Re = 104 and for a cylinder that is free to oscillate in the transverse direction and possesses a low mass-damping ratio and Re = 104. Previously, similar studies have been performed with 3-dimensional and comparatively expensive turbulent models. In the current study, the capability and accuracy of the RANS model are validated, and the results of this model are compared with those of detached eddy simulation, direct numerical simulation, and large eddy simulation models. All three response branches and the maximum amplitude are well captured. The 2-dimensional case with the RANS shear-stress transport k-w model, which involves minimal computational cost, is reliable and appropriate for analyzing the characteristics of VIV.

  6. Evaluation of phenylthiocarbamoyl-derivatized peptides by electrospray ionization mass spectrometry: selective isolation and analysis of modified multiply charged peptides for liquid chromatography-tandem mass spectrometry experiments.

    Science.gov (United States)

    Sanchez, Aniel; Perez-Riverol, Yasset; González, Luis Javier; Noda, Jesus; Betancourt, Lazaro; Ramos, Yassel; Gil, Jeovanis; Vera, Roberto; Padrón, Gabriel; Besada, Vladimir

    2010-10-15

    Edman degradation in the gas phase has been observed by collision activated dissociation of N-terminal phenylthiocarbamoyl (PTC) protonated peptide to yield abundant complementary b₁ and y(n-1) ion pairs. Here, we demonstrated the relation between the observed losses of aniline and/or the entire PTC derivatizing group with the availability of mobile protons using electrospray ionization mass spectrometry. In order to select the peptides with more efficient fragmentation, while simplifying the mixture of peptides, we extend the phenylisotiocyanate (PITC) derivatization of amino groups to the selective isolation of multiply charged peptides (those having the number of arginines and histidines residues higher than one) using a procedure previously developed in our group. Thus, it was possible to identify in the filtered protein database the sequence of the isolated multiply charged peptides derived from a single protein and a complex mixture of proteins extracted from Escherichia coli using only the molecular mass and the N-terminal amino acid information. For this purpose, we developed a novel bioinformatic tool for automatic identification of peptides from liquid chromatography-tandem mass spectrometry (LC-MS/MS) experiments, which potentially can be used in high-throughput proteomics.

  7. Decreasing sound and vibration during ground transport of infants with very low birth weight.

    Science.gov (United States)

    Prehn, J; McEwen, I; Jeffries, L; Jones, M; Daniels, T; Goshorn, E; Marx, C

    2015-02-01

    To measure the effectiveness of modifications to reduce sound and vibration during interhospital ground transport of a simulated infant with very low birth weight (VLBW) and a gestational age of 30 weeks, a period of high susceptibility to germinal matrix and intraventricular hemorrhage. Researchers measured vibration and sound levels during infant transport, and compared levels after modifications to the transport incubator mattresses, addition of vibration isolators under incubator wheels, addition of mass to the incubator mattress and addition of incubator acoustic cover. Modifications did not decrease sound levels inside the transport incubator during transport. The combination of a gel mattress over an air chambered mattress was effective in decreasing vibration levels for the 1368 g simulated infant. Transport mattress effectiveness in decreasing vibration is influenced by infant weight. Modifications that decrease vibration for infants weighing 2000 g are not effective for infants with VLBW. Sound levels are not affected by incubator covers, suggesting that sound is transmitted into the incubator as a low-frequency vibration through the incubator's contact with the ambulance. Medical transportation can apply industrial methods of vibration and sound control to protect infants with VLBW from excessive physical strain of transport during vulnerable periods of development.

  8. Rapid and reliable MALDI-TOF mass spectrometry identification of Candida non-albicans isolates from bloodstream infections.

    Science.gov (United States)

    Pulcrano, Giovanna; Iula, Dora Vita; Vollaro, Antonio; Tucci, Alessandra; Cerullo, Monica; Esposito, Matilde; Rossano, Fabio; Catania, Maria Rosaria

    2013-09-01

    Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) fingerprinting has recently become an effective instrument for rapid microbiological diagnostics and in particular for identification of micro-organisms directly in a positive blood culture. The aim of the study was to evaluate a collection of 82 stored yeast isolates from bloodstream infection, by MALDI-TOF MS; 21 isolates were identified also directly from positive blood cultures and in the presence of other co-infecting micro-organisms. Of the 82 isolates grown on plates, 64 (76%) were correctly identified by the Vitek II system and 82 (100%) by MALDI-TOF MS; when the two methods gave different results, the isolate was identified by PCR. MALDI-TOF MS was unreliable in identifying two isolates (Candida glabrata and Candida parapsilosis) directly from blood culture; however, direct analysis from positive blood culture samples was fast and effective for the identification of yeast, which is of great importance for early and adequate treatment. © 2013. Published by Elsevier B.V. All rights reserved.

  9. Monitoring vibrations

    Energy Technology Data Exchange (ETDEWEB)

    Tiryaki, B. [Hacettepe University (Turkey). Dept. of Mining Engineering

    2003-12-01

    The paper examines the prediction and optimisation of machine vibrations in longwall shearers. Underground studies were carried out at the Middle Anatolian Lignite Mine, between 1993 and 1997. Several shearer drums with different pick lacing arrangements were designed and tested on double-ended ranging longwall shearers employed at the mine. A computer program called the Vibration Analysis Program (VAP) was developed for analysing machine vibrations in longwall shearers. Shearer drums that were tested underground, as well as some provided by leading manufacturers, were analyzed using these programs. The results of the experiments and computer analyses are given in the article. 4 refs., 9 figs.

  10. Finite element modelling of human-seat interactions: vertical in-line and fore-and-aft cross-axis apparent mass when sitting on a rigid seat without backrest and exposed to vertical vibration.

    Science.gov (United States)

    Liu, Chi; Qiu, Yi; Griffin, Michael J

    2015-01-01

    Biodynamic models representing distributed human-seat interactions can assist seat design. This study sought to develop a finite element (FE) model representing the soft tissues of the body supported by seating and the vertical in-line apparent mass and the fore-and-aft cross-axis apparent mass of the seated human body during vertical vibration excitation. The model was developed with rigid parts representing the torso segments, skeletal structures (pelvis and femurs) and deformable parts representing the soft tissues of the buttocks and the thighs. The model had three vibration modes at frequencies less than 15 Hz and provided reasonable vertical in-line apparent mass and fore-and-aft cross-axis apparent mass. The model can be developed to represent dynamic interactions between the body and a seat over a seat surface (e.g. dynamic pressure distributions and variations in seat transmissibility over the seat surface). The three-dimensional FE model of the human body represents the in-line apparent mass and cross-axis apparent mass measured on a seat. With deformable soft tissues it can assist seat design by representing dynamic human-seat interactions, such as pressure distributions and variations in seat transmissibility over a seat surface.

  11. Identification of filamentous fungi isolates by MALDI-TOF mass spectrometry: clinical evaluation of an extended reference spectra library.

    Science.gov (United States)

    Becker, Pierre T; de Bel, Annelies; Martiny, Delphine; Ranque, Stéphane; Piarroux, Renaud; Cassagne, Carole; Detandt, Monique; Hendrickx, Marijke

    2014-11-01

    The identification of filamentous fungi by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) relies mainly on a robust and extensive database of reference spectra. To this end, a large in-house library containing 760 strains and representing 472 species was built and evaluated on 390 clinical isolates by comparing MALDI-TOF MS with the classical identification method based on morphological observations. The use of MALDI-TOF MS resulted in the correct identification of 95.4% of the isolates at species level, without considering LogScore values. Taking into account the Brukers' cutoff value for reliability (LogScore >1.70), 85.6% of the isolates were correctly identified. For a number of isolates, microscopic identification was limited to the genus, resulting in only 61.5% of the isolates correctly identified at species level while the correctness reached 94.6% at genus level. Using this extended in-house database, MALDI-TOF MS thus appears superior to morphology in order to obtain a robust and accurate identification of filamentous fungi. A continuous extension of the library is however necessary to further improve its reliability. Indeed, 15 isolates were still not represented while an additional three isolates were not recognized, probably because of a lack of intraspecific variability of the corresponding species in the database. © The Author 2014. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Vibrational Diver

    Science.gov (United States)

    Kozlov, Victor; Ivanova, Alevtina; Schipitsyn, Vitalii; Stambouli, Moncef

    2014-10-01

    The paper is concerned with dynamics of light solid in cavity with liquid subjected to rotational vibration in the external force field. New vibrational phenomenon - diving of a light cylinder to the cavity bottom is found. The experimental investigation of a horizontal annulus with a partition has shown that under vibration a light body situated in the upper part of the layer is displaced in a threshold manner some distance away from the boundary. In this case the body executes symmetric tangential oscillations. An increase of the vibration intensity leads to a tangential displacement of the body near the external boundary. This displacement is caused by the tangential component of the vibrational lift force, which appears as soon as the oscillations lose symmetry. In this case the trajectory of the body oscillatory motion has the form of a loop. The tangential lift force makes stable the position of the body on the inclined section of the layer and even in its lower part. A theoretical interpretation has been proposed, which explains stabilization of a quasi-equilibrium state of a light body near the cavity bottom in the framework of vibrational hydromechanics.

  13. Matrix-assisted laser desorption/ionisation mass spectrometry of transfer ribonucleic acids isolated from yeast.

    Science.gov (United States)

    Gruic-Sovulj, I; Lüdemann, H C; Hillenkamp, F; Weygand-Durasevic, I; Kucan, Z; Peter-Katalinic, J

    1997-01-01

    tRNATyr and tRNASer purified from bulk brewer's yeast tRNA were subjected to analysis by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry. Choosing a mixture of 2,4,6- and 2,3,4-trihydroxy-acetophenone and diammonium citrate as matrix a mass resolution of up to 220 (FWHM) was achieved in the linear mode of operation. Cation adduct suppression by addition of cation exchange beads and a chelating agent (CDTA) is shown to substantially improve mass resolution for this class of molecules. PMID:9108172

  14. CFBDSIR 2149-0403: young isolated planetary-mass object or high-metallicity low-mass brown dwarf?

    Science.gov (United States)

    Delorme, P.; Dupuy, T.; Gagné, J.; Reylé, C.; Forveille, T.; Liu, M. C.; Artigau, E.; Albert, L.; Delfosse, X.; Allard, F.; Homeier, D.; Malo, L.; Morley, C.; Naud, M. E.; Bonnefoy, M.

    2017-06-01

    Aims: We conducted a multi-wavelength, multi-instrument observational characterisation of the candidate free-floating planet CFBDSIR J214947.2-040308.9, a late T-dwarf with possible low-gravity features, in order to constrain its physical properties. Methods: We analysed nine hours of X-shooter spectroscopy with signal detectable from 0.8 to 2.3 μm, as well as additional photometry in the mid-infrared using the Spitzer Space Telescope. Combined with a VLT/HAWK-I astrometric parallax, this enabled a full characterisation of the absolute flux from the visible to 5 μm, encompassing more than 90% of the expected energy emitted by such a cool late T-type object. Our analysis of the spectrum also provided the radial velocity and therefore the determination of its full 3D kinematics. Results: While our new spectrum confirms the low gravity and/or high metallicity of CFBDSIR 2149, the parallax and kinematics safely rule out membership to any known young moving group, including AB Doradus. We use the equivalent width of the K I doublet at 1.25 μm as a promising tool to discriminate the effects of low-gravity from the effects of high-metallicity on the emission spectra of cool atmospheres. In the case of CFBDSIR 2149, the observed K I doublet clearly favours the low-gravity solution. Conclusions: CFBDSIR 2149 is therefore a peculiar late-T dwarf that is probably a young, planetary-mass object (2-13 MJup, <500 Myr) possibly similar to the exoplanet 51 Eri b, or perhaps a 2-40 MJup brown dwarf with super-solar metallicity. Based on observations obtained with X-shooter on VLT-UT2 at ESO-Paranal (run 091.D-0723). Based on observations obtained with HAWKI on VLT-UT4 (run 089.C-0952, 090.C-0483, 091.C-0543,092.C-0548,293.C-5019(A) and run 086.C-0655(A)). Based on observations obtained with ISAAC on VLT-UT3 at ESO-Paranal (run 290.C-5083). Based on observation obtained with WIRCam at CFHT (program 2012BF12). Based on Spitzer Space telescope DDT observation (program 10166).

  15. Enrichment/isolation of phosphorylated peptides on hafnium oxide prior to mass spectrometric analysis.

    Science.gov (United States)

    Rivera, José G; Choi, Yong Seok; Vujcic, Stefan; Wood, Troy D; Colón, Luis A

    2009-01-01

    Hafnium oxide (hafnia) exhibits unique enrichment properties towards phosphorylated peptides that are complementary to those of titanium oxide (titania) and zirconium oxide (zirconia) for use with mass spectrometric analysis in the field of proteomics.

  16. Performance of matrix-assisted laser desorption-time of flight mass spectrometry for identification of clinical yeast isolates

    DEFF Research Database (Denmark)

    Rosenvinge, Flemming S; Dzajic, Esad; Knudsen, Elisa

    2013-01-01

    Accurate and fast yeast identification is important when treating patients with invasive fungal disease as susceptibility to antifungal agents is highly species related. Matrix-assisted laser desorption-time of flight mass spectrometry (MALDI-TOF-MS) provides a powerful tool with a clear potential...... to improve current diagnostic practice. Two MALDI-TOF-MS-systems (BioTyper/Bruker and Saramis/AXIMA) were evaluated using: (i) A collection of 102 archived, well characterised yeast isolates representing 14 different species and (ii) Prospectively collected isolates obtained from clinical samples at two...... identification, respectively, whereas the other laboratory identified 83/98 (85%) to species level by both BioTyper/Bruker and conventional identification. Both MALDI-TOF-MS systems are fast, have built-in databases that cover the majority of clinically relevant Candida species, and have an accuracy...

  17. American Bullfrogs (Lithobates catesbeianus) Resist Infection by Multiple Isolates of Batrachochytrium dendrobatidis, Including One Implicated in Wild Mass Mortality.

    Science.gov (United States)

    Eskew, Evan A; Worth, S Joy; Foley, Janet E; Todd, Brian D

    2015-09-01

    The emerging amphibian disease chytridiomycosis varies in severity depending on host species. Within species, disease susceptibility can also be influenced by pathogen variation and environmental factors. Here, we report on experimental exposures of American bullfrogs (Lithobates catesbeianus) to three different isolates of Batrachochytrium dendrobatidis (Bd), including one implicated in causing mass mortality of wild American bullfrogs. Exposed frogs showed low infection prevalence, relatively low infection load, and lack of clinical disease. Our results suggest that environmental cofactors are likely important contributors to Bd-associated American bullfrog mortality and that this species both resists and tolerates Bd infection.

  18. Species identification of clinical Prevotella isolates by matrix-assisted laser desorption ionization-time of flight mass spectrometry.

    Science.gov (United States)

    Wybo, Ingrid; Soetens, Oriane; De Bel, Annelies; Echahidi, Fedoua; Vancutsem, Ellen; Vandoorslaer, Kristof; Piérard, Denis

    2012-04-01

    The performance of matrix-assisted laser desorption-ionization time of flight mass spectrometry (MALDI-TOF MS) for species identification of Prevotella was evaluated and compared with 16S rRNA gene sequencing. Using a Bruker database, 62.7% of the 102 clinical isolates were identified to the species level and 73.5% to the genus level. Extension of the commercial database improved these figures to, respectively, 83.3% and 89.2%. MALDI-TOF MS identification of Prevotella is reliable but needs a more extensive database.

  19. Species Identification of Clinical Prevotella Isolates by Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry

    Science.gov (United States)

    Soetens, Oriane; De Bel, Annelies; Echahidi, Fedoua; Vancutsem, Ellen; Vandoorslaer, Kristof; Piérard, Denis

    2012-01-01

    The performance of matrix-assisted laser desorption–ionization time of flight mass spectrometry (MALDI-TOF MS) for species identification of Prevotella was evaluated and compared with 16S rRNA gene sequencing. Using a Bruker database, 62.7% of the 102 clinical isolates were identified to the species level and 73.5% to the genus level. Extension of the commercial database improved these figures to, respectively, 83.3% and 89.2%. MALDI-TOF MS identification of Prevotella is reliable but needs a more extensive database. PMID:22301022

  20. Research on Hybrid Isolation System for Micro-Nano-Fabrication Platform

    Directory of Open Access Journals (Sweden)

    Jie Fu

    2014-06-01

    Full Text Available In order to obtain better vibration suppression effect, this paper designs a semiactive/fully active hybrid isolator by using magnetorheological elastomer (MRE and piezoelectric material. Combined with multimode control scheme, full frequency vibration suppression is achieved. Firstly, series type structure is determined for the hybrid isolator, and the structure of hybrid isolator is designed. Next, the dynamic model of hybrid isolator is derived, the dynamic characteristics measurement for MRE isolator and piezoelectric stack actuator (PSA is established, and parameters such as voltage-displacement coefficient, stiffness and damping constant are identified from the experimental results, respectively. Meanwhile, the switch frequency is determined by experimental results of PSA and MRE isolator. Lastly, influence of the stiffness of MRE, control voltage of PSA, and intermediate mass on hybrid isolator system is analyzed by simulations, and the results show that the hybrid isolator proposed is effective.

  1. Vibration Damping Circuit Card Assembly

    Science.gov (United States)

    Hunt, Ronald Allen (Inventor)

    2016-01-01

    A vibration damping circuit card assembly includes a populated circuit card having a mass M. A closed metal container is coupled to a surface of the populated circuit card at approximately a geometric center of the populated circuit card. Tungsten balls fill approximately 90% of the metal container with a collective mass of the tungsten balls being approximately (0.07) M.

  2. Oleaginous Microalgae from Dairy Farm Wastewater for Biodiesel Production: Isolation, Characterization and Mass Cultivation.

    Science.gov (United States)

    Sun, Zheng; Fang, Xiao-Peng; Li, Xiao-Yang; Zhou, Zhi-Gang

    2018-02-01

    Producing biodiesel from microalgae grown in wastewater is environment-friendly and cost-effective. The present study investigated the algae found in wastewater of a local dairy farm for their potential as biodiesel feedstocks. Thirteen native algal strains were isolated. On the basis of morphology and 16S/18S rRNA gene sequences, one strain was identified to be a member of cyanobacteria, while other 12 strains belong to green algae. After screening, two Scenedesmus strains out of the 13 microalgae isolates demonstrated superiority in growth rate, lipid productivity, and sedimentation properties, and therefore were selected for further scale-up outdoor cultivation. Both Scenedesmus strains quickly adapted to the outdoor conditions, exhibiting reasonably good growth and strong anti-contamination capabilities. In flat-plate photobioreactors (PBRs), algal cells accumulated predominantly neutral lipids that accounted for over 60% of total lipids with almost 70% being triacylglycerol. In addition, Scenedesmus obliquus had a high content of monounsaturated fatty acids, of which the amount of oleic acid (C18:1) was up to 27.11%. Based on these findings, the dairy farm wastewater-isolated Scenedesmus strains represent promising sources of low-cost, high-quality oil for biofuel production.

  3. Differentiation of Raoultella ornithinolytica/planticola and Klebsiella oxytoca clinical isolates by matrix-assisted laser desorption/ionization-time of flight mass spectrometry.

    NARCIS (Netherlands)

    Jong, Eefje de; Jong, A.S. de; Smidts-van den Berg, N.; Rentenaar, R.J.

    2013-01-01

    Ninety-nine clinical isolates previously identified as Klebsiella oxytoca were evaluated using matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS). Eight isolates were identified as Raoultella spp., being 5 Raoultella spp. and 3 K. oxytoca, by 16S rRNA

  4. Vibrating minds

    CERN Document Server

    2009-01-01

    Ed Witten is one of the leading scientists in the field of string theory, the theory that describes elementary particles as vibrating strings. This week he leaves CERN after having spent a few months here on sabbatical. His wish is that the LHC will unveil supersymmetry.

  5. Evaluation of the structural, electronic, topological and vibrational properties of N-(3,4-dimethoxybenzyl)-hexadecanamide isolated from Maca (Lepidium meyenii) using different spectroscopic techniques

    Science.gov (United States)

    Chain, Fernando; Iramain, Maximiliano Alberto; Grau, Alfredo; Catalán, César A. N.; Brandán, Silvia Antonia

    2017-01-01

    N-(3,4-dimethoxybenzyl)-hexadecanamide (DMH) was characterized by using Fourier Transform infrared (FT-IR) and Raman (FT-Raman), Ultraviolet- Visible (UV-Visible) and Hydrogen and Carbon Nuclear Magnetic Resonance (1H and 13C NMR) spectroscopies. The structural, electronic, topological and vibrational properties were evaluated in gas phase and in n-hexane employing ONIOM and self-consistent force field (SCRF) calculations. The atomic charges, molecular electrostatic potentials, stabilization energies and topological properties of DMH were analyzed and compared with those calculated for N-(3,4-dimethoxybenzyl)-acetamide (DMA) in order to evaluate the effect of the side chain on the properties of DMH. The reactivity and behavior of this alkamide were predicted by using the gap energies and some descriptors. Force fields and the corresponding force constants were reported for DMA only in gas phase and n-hexane due to the high number of vibration normal modes showed by DMH, while the complete vibrational assignments are presented for DMA and both forms of DMH. The comparisons between the experimental FTIR, FT-Raman, UV-Visible and 1H and 13C NMR spectra with the corresponding theoretical ones showed a reasonable concordance.

  6. Tunable Mechanical Filter for Longitudinal Vibrations

    National Research Council Canada - National Science Library

    Asiri, S

    2007-01-01

    This paper presents both theoretically and experimentally a new kind of vibration isolator called tunable mechanical filter which consists of four parallel hybrid periodic rods connected between two plates...

  7. Rapid characterisation of Klebsiella oxytoca isolates from contaminated liquid hand soap using mass spectrometry, FTIR and Raman spectroscopy.

    Science.gov (United States)

    Dieckmann, Ralf; Hammerl, Jens Andre; Hahmann, Hartmut; Wicke, Amal; Kleta, Sylvia; Dabrowski, Piotr Wojciech; Nitsche, Andreas; Stämmler, Maren; Al Dahouk, Sascha; Lasch, Peter

    2016-06-23

    Microbiological monitoring of consumer products and the efficiency of early warning systems and outbreak investigations depend on the rapid identification and strain characterisation of pathogens posing risks to the health and safety of consumers. This study evaluates the potential of three rapid analytical techniques for identification and subtyping of bacterial isolates obtained from a liquid hand soap product, which has been recalled and reported through the EU RAPEX system due to its severe bacterial contamination. Ten isolates recovered from two bottles of the product were identified as Klebsiella oxytoca and subtyped using matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI TOF MS), near-infrared Fourier transform (NIR FT) Raman spectroscopy and Fourier transform infrared (FTIR) spectroscopy. Comparison of the classification results obtained by these phenotype-based techniques with outcomes of the DNA-based methods pulsed-field gel electrophoresis (PFGE), multi-locus sequence typing (MLST) and single nucleotide polymorphism (SNP) analysis of whole-genome sequencing (WGS) data revealed a high level of concordance. In conclusion, a set of analytical techniques might be useful for rapid, reliable and cost-effective microbial typing to ensure safe consumer products and allow source tracking.

  8. Towards a Unified View of Inhomogeneous Stellar Winds in Isolated Supergiant Stars and Supergiant High Mass X-Ray Binaries

    Science.gov (United States)

    Martínez-Núñez, Silvia; Kretschmar, Peter; Bozzo, Enrico; Oskinova, Lidia M.; Puls, Joachim; Sidoli, Lara; Sundqvist, Jon Olof; Blay, Pere; Falanga, Maurizio; Fürst, Felix; Gímenez-García, Angel; Kreykenbohm, Ingo; Kühnel, Matthias; Sander, Andreas; Torrejón, José Miguel; Wilms, Jörn

    2017-10-01

    Massive stars, at least ˜10 times more massive than the Sun, have two key properties that make them the main drivers of evolution of star clusters, galaxies, and the Universe as a whole. On the one hand, the outer layers of massive stars are so hot that they produce most of the ionizing ultraviolet radiation of galaxies; in fact, the first massive stars helped to re-ionize the Universe after its Dark Ages. Another important property of massive stars are the strong stellar winds and outflows they produce. This mass loss, and finally the explosion of a massive star as a supernova or a gamma-ray burst, provide a significant input of mechanical and radiative energy into the interstellar space. These two properties together make massive stars one of the most important cosmic engines: they trigger the star formation and enrich the interstellar medium with heavy elements, that ultimately leads to formation of Earth-like rocky planets and the development of complex life. The study of massive star winds is thus a truly multidisciplinary field and has a wide impact on different areas of astronomy. In recent years observational and theoretical evidences have been growing that these winds are not smooth and homogeneous as previously assumed, but rather populated by dense "clumps". The presence of these structures dramatically affects the mass loss rates derived from the study of stellar winds. Clump properties in isolated stars are nowadays inferred mostly through indirect methods (i.e., spectroscopic observations of line profiles in various wavelength regimes, and their analysis based on tailored, inhomogeneous wind models). The limited characterization of the clump physical properties (mass, size) obtained so far have led to large uncertainties in the mass loss rates from massive stars. Such uncertainties limit our understanding of the role of massive star winds in galactic and cosmic evolution. Supergiant high mass X-ray binaries (SgXBs) are among the brightest X

  9. Application of Finite Element Based Simulation and Modal Testing Methods to Improve Vehicle Powertrain Idle Vibration

    Directory of Open Access Journals (Sweden)

    Polat Sendur

    2017-01-01

    Full Text Available Current practice of analytical and test methods related to the analysis, testing and improvement of vehicle vibrations is overviewed. The methods are illustrated on the determination and improvement of powertrain induced steering wheel vibration of a heavy commercial truck. More specifically, the transmissibility of powertrain idle vibration to cabin is investigated with respect to powertrain rigid body modes and modal alignment of the steering column/wheel system is considered. It is found out that roll mode of the powertrain is not separated from idle excitation for effective vibration isolation as well as steering wheel column mode is close to the 3rd engine excitation frequency order, which results in high vibration levels. Powertrain roll mode is optimized by tuning the powertrain mount stiffness to improve the performance. Steering column mode is also separated from the 3rd engine excitation frequency by the application of a mass absorber. It is concluded that the use of analytical and test methods to address the complex relation between design parameters and powertrain idle response is effective to optimize the system performance and evaluate the trade-offs in the vehicle design such as vibration performance and weight. Reference Number: www.asrongo.org/doi:4.2017.2.1.10

  10. Matrix-assisted laser desorption-ionization-time-of-flight mass spectrometry as a reliable proteomic method for characterization of Escherichia coli and Salmonella isolates

    OpenAIRE

    Shell, Waleed S.; Sayed, Mahmoud Lotfy; Allah, Fatma Mohamed Gad; Gamal, Fatma Elzahraa Mohamed; Khder, Afaf Ahmed; Samy, A. A.; Ali, Abdel Hakam M.

    2017-01-01

    Aim: Identification of pathogenic clinical bacterial isolates is mainly dependent on phenotypic and genotypic characteristics of the microorganisms. These conventional methods are costive, time-consuming, and need special skills and training. An alternative, mass spectral (proteomics) analysis method for identification of clinical bacterial isolates has been recognized as a rapid, reliable, and economical method for identification. This study was aimed to evaluate and compare the performance,...

  11. Analysis of potential helicopter vibration reduction concepts

    Science.gov (United States)

    Landgrebe, A. J.; Davis, M. W.

    1985-01-01

    Results of analytical investigations to develop, understand, and evaluate potential helicopter vibration reduction concepts are presented in the following areas: identification of the fundamental sources of vibratory loads, blade design for low vibration, application of design optimization techniques, active higher harmonic control, blade appended aeromechanical devices, and the prediction of vibratory airloads. Primary sources of vibration are identified for a selected four-bladed articulated rotor operating in high speed level flight. The application of analytical design procedures and optimization techniques are shown to have the potential for establishing reduced vibration blade designs through variations in blade mass and stiffness distributions, and chordwise center-of-gravity location.

  12. Two-step ion-exchange chromatographic purification combined with reversed-phase chromatography to isolate C-peptide for mass spectrometric analysis.

    Science.gov (United States)

    Kabytaev, Kuanysh; Durairaj, Anita; Shin, Dmitriy; Rohlfing, Curt L; Connolly, Shawn; Little, Randie R; Stoyanov, Alexander V

    2016-02-01

    A liquid chromatography with mass spectrometry on-line platform that includes the orthogonal techniques of ion exchange and reversed phase chromatography is applied for C-peptide analysis. Additional improvement is achieved by the subsequent application of cation- and anion-exchange purification steps that allow for isolating components that have their isoelectric points in a narrow pH range before final reversed-phase mass spectrometry analysis. The utility of this approach for isolating fractions in the desired "pI window" for profiling complex mixtures is discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Urban vibrations

    DEFF Research Database (Denmark)

    Morrison, Ann; Knudsen, L.; Andersen, Hans Jørgen

    2012-01-01

      lab   studies   in   that   we   found   a   decreased   detection   rate   in   busy   environments.   Here   we   test   with   a   much   larger   sample   and   age   range,   and   contribute   with   the   first   vibration  sensitivity  testing  outside  the  lab  in  an  urban   public...

  14. Rapid identification of Vibrio parahaemolyticus isolated from shellfish, sea water and sediments of the Khnifiss lagoon, Morocco, by MALDI-TOF mass spectrometry.

    Science.gov (United States)

    Malainine, S M; Moussaoui, W; Prévost, G; Scheftel, J-M; Mimouni, R

    2013-05-01

    We establish the presence of Vibrio parahaemolyticus and deepen the comparison of isolates using MALDI-TOF MS for the typing of isolates originating from the Khnifiss lagoon (Morocco). Amongst 48 samples from sea water, sediment and shellfish isolated from different sites of Khnifiss lagoon, Morocco, we obtained 22 isolates of V. parahaemolyticus identified by Vitek 2™ System (bioMérieux) and MALDI Biotyper™ (Bruker Daltonics). All isolates were highly resistant to ampicillin and ticarcillin, moderately resistant to cefalotin, but sensitive to 16 other antimicrobials tested. MALDI-TOF MS was used to discriminate between closely related environmental strains of V. parahaemolyticus. A clustering and distribution based on MALDI-TOF spectra were generated using the BioTyper 1.1™ software. Despite low diversity in regard to the biochemical characteristics and antimicrobial resistance, the isolates evoke a larger biodiversity when analysed through mass spectra of abundant proteins. Different evaluations of a cut-off value showed that, when placed at a 10% threshold of the whole diversity, isolates differed by at least three mass peaks. © 2013 The Society for Applied Microbiology.

  15. A comparative study of matrix- and nano-assisted laser desorption/ionisation time-of-flight mass spectrometry of isolated and synthetic lignin.

    Science.gov (United States)

    Yoshioka, Koichi; Ando, Daisuke; Watanabe, Takashi

    2012-01-01

    Lignin is the second most abundant biopolymer next to cellulose. However, because of the complexity of the heterogeneous macromolecules, it is difficult to elucidate the polymeric structures of lignin by conventional analytical methods. To obtain the detailed structures of lignin, we comparatively applied nano-assisted laser desorption/ionisation time-of-flight mass spectrometry (NALDI-TOF MS) and matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS). Synthetic lignin from coniferyl alcohol and an isolated lignin from Pinus densiflora were subjected to NALDI- and MALDI-TOF MS. We first obtained NALDI-TOF MS of synthetic and isolated lignin. Mass increments of 178 and 196 Da were observed in NALDI- and MALDI-TOF mass spectra of the synthetic and isolated lignin. The mass intervals indicated that radical coupling forming β-O-4 bonds is the major pathway. Peaks in the low molecular mass region between m/z 500 and 800 were observed more extensively using NALDI-TOF MS than MALDI-TOF MS, which enabled detailed analysis of the interunit linkages in lignin. Owing to the ionisation profile differentiation from MALDI-TOF MS, NALDI-TOF MS is useful for the structural analysis of lignin. Copyright © 2011 John Wiley & Sons, Ltd.

  16. Monitoring Vibration of A Model of Rotating Machine

    Directory of Open Access Journals (Sweden)

    Arko Djajadi

    2012-03-01

    Full Text Available Mechanical movement or motion of a rotating machine normally causes additional vibration. A vibration sensing device must be added to constantly monitor vibration level of the system having a rotating machine, since the vibration frequency and amplitude cannot be measured quantitatively by only sight or touch. If the vibration signals from the machine have a lot of noise, there are possibilities that the rotating machine has defects that can lead to failure. In this experimental research project, a vibration structure is constructed in a scaled model to simulate vibration and to monitor system performance in term of vibration level in case of rotation with balanced and unbalanced condition. In this scaled model, the output signal of the vibration sensor is processed in a microcontroller and then transferred to a computer via a serial communication medium, and plotted on the screen with data plotter software developed using C language. The signal waveform of the vibration is displayed to allow further analysis of the vibration. Vibration level monitor can be set in the microcontroller to allow shutdown of the rotating machine in case of excessive vibration to protect the rotating machine from further damage. Experiment results show the agreement with theory that unbalance condition on a rotating machine can lead to larger vibration amplitude compared to balance condition. Adding and reducing the mass for balancing can be performed to obtain lower vibration level. 

  17. Reliability Analysis of Random Vibration Transmission Path Systems

    Directory of Open Access Journals (Sweden)

    Wei Zhao

    2017-01-01

    Full Text Available The vibration transmission path systems are generally composed of the vibration source, the vibration transfer path, and the vibration receiving structure. The transfer path is the medium of the vibration transmission. Moreover, the randomness of transfer path influences the transfer reliability greatly. In this paper, based on the matrix calculus, the generalized second moment technique, and the stochastic finite element theory, the effective approach for the transfer reliability of vibration transfer path systems was provided. The transfer reliability of vibration transfer path system with uncertain path parameters including path mass and path stiffness was analyzed theoretically and computed numerically, and the correlated mathematical expressions were derived. Thus, it provides the theoretical foundation for the dynamic design of vibration systems in practical project, so that most random path parameters can be considered to solve the random problems for vibration transfer path systems, which can avoid the system resonance failure.

  18. Mechanical design of a pre-isolator for the CLIC final focusing magnets

    CERN Document Server

    Gaddi, A; Ramos, F; Siegrist, N

    2012-01-01

    Due to the very small vertical beam sizes, the final focusing elements at the future CLIC linear collider need to be stable against vibrations to below 0.15 nanometres at frequencies above about 4 Hz. One of the key elements in the strategy to achieve such a stable environment is a passive, heavy pre-isolator. In this report, the results from the dynamic finite element analyses of the proposed design for such a passive preisolator are summarized. Furthermore, the results from a low frequency, heavy mass passive vibration isolation test set-up used to validate the calculations are shown.

  19. Granular Media-Based Tunable Passive Vibration Suppressor

    Science.gov (United States)

    Dillon, Robert P.; Davis, Gregory L.; Shapiro, Andrew A.; Borgonia, John Paul C.; Kahn, Daniel L.; Boechler, Nicholas; Boechler,, Chiara

    2013-01-01

    and vibration suppression device is composed of statically compressed chains of spherical particles. The device superimposes a combination of dissipative damping and dispersive effects. The dissipative damping resulting from the elastic wave attenuation properties of the bulk material selected for the granular media is independent of particle geometry and periodicity, and can be accordingly designed based on the dissipative (or viscoelastic) properties of the material. For instance, a viscoelastic polymer might be selected where broadband damping is desired. In contrast, the dispersive effects result from the periodic arrangement and geometry of particles composing a linear granular chain. A uniform (monatomic) chain of statically compressed spherical particles will have a low-pass filter effect, with a cutoff frequency tunable as a function of particle mass, elastic modulus, Poisson fs ratio, radius, and static compression. Elastic waves with frequency content above this cutoff frequency will exhibit an exponential decay in amplitude as a function of propagation distance. System design targeting a specific application is conducted using a combination of theoretical, computational, and experimental techniques to appropriately select the particle radii, material (and thus elastic modulus and Poisson fs ratio), and static compression to satisfy estimated requirements derived for shock and/or vibration protection needs under particular operational conditions. The selection of a chain of polymer spheres with an elastic modulus .3 provided the appropriate dispersive filtering effect for that exercise; however, different operational scenarios may require the use of other polymers, metals, ceramics, or a combination thereof, configured as an array of spherical particles. The device is a linear array of spherical particles compressed in a container with a mechanism for attachment to the shock and/or vibration source, and a mechanism for attachment to the article requiring

  20. Maternal vibration: an important cue for embryo hatching in a subsocial shield bug.

    Directory of Open Access Journals (Sweden)

    Hiromi Mukai

    Full Text Available Hatching care has been reported for many taxonomic groups, from invertebrates to vertebrates. The sophisticated care that occurs around hatching time is expected to have an adaptive function supporting the feeble young. However, details of the characteristics of the adaptive function of hatching care remain unclear. This study investigated the hatching care of the subsocial shield bug, Parastrachia japonensis (Heteroptera: Parastrachiidae to verify its function. Results show that the P. japonensis mothers vibrated the egg mass intermittently while maintaining an egg-guarding posture. Then embryos started to emerge from their shells synchronously. Unlike such behaviors of closely related species, this vibrating behavior was faint, but lasted more than 6 h. To investigate the effect of this behavior on hatching synchrony and hatching success, we observed the hatching pattern and the hatching rate in control, mother-removed, and two artificial vibration groups. Control broods experienced continuous guarding from the mother. Intermittent artificial vibration broods were exposed to vibrations that matched the temporal pattern of maternal vibration produced by a motor. They showed synchronous hatching patterns and high hatching rates. However, for mother-removed broods, which were isolated from the mother, and when we provided continuous artificial vibration that did not match the temporal pattern of the maternal vibration, embryo hatching was not only asynchronous: some embryos failed to emerge from their shells. These results lead us to infer that hatching care in P. japonensis has two functions: hatching regulation and hatching assistance. Nevertheless, several points of observational and circumstantial evidence clearly contraindicate hatching assistance. A reduction in the hatching rate might result from dependence on maternal hatching care as a strong cue in P. japonensis. We conclude that the hatching care of P. japonensis regulates the hatching

  1. Análisis de la eficiencia del sistema de aislamiento de vibraciones de grupos electrógenos MAN 18 V48/60 B // Efficiency analysis of vibration isolation system installed on engine generator sets type MAN 18 V48/60 b

    Directory of Open Access Journals (Sweden)

    Evelio Palomino‐Marín

    2011-01-01

    Full Text Available Todo sistema de aislamiento de vibraciones está encaminado en primera instancia a aislarvibraciones como su propio nombre lo indica. En ocasiones es menester que a la máquina no laperturben vibraciones procedentes del entorno, como lo puede ser por ejemplo, el caso de unarectificadora en un taller de mecanizado. Así mismo, en otras ocasiones resulta necesario aislar lamáquina para evitar que las vibraciones producidas por ella misma afecten al entorno. Tal es el casode los grupos electrógenos MAN 18 V48/60 B, cuyos motores de combustión interna responden a undiseño de 18 cilindros en “V” distribuidos en 13 metros de longitud. El sistema de aislamiento deestos motores consta de 14 paquetes de ocho resortes cada uno, incluyendo un amortiguadorviscoso por cada calzo. Se efectuaron mediciones espectrales de vibraciones en cada uno de estoscalzos antivibratorios, sobre y debajo de estos respectivamente y se evaluó la eficiencia de estoscalzos en todo el espectro, determinándose aquellas frecuencias que por determinadas razones noalcanzan los niveles de eficiencia en el aislamiento establecidos a tales efectos. De esta manera, sepresenta una metodología para conducir este análisis.Palabras claves: calzos antivibratorios, aislamiento de vibraciones, grupos electrógenos.___________________________________________________________________AbstractA vibroisolation system has a priority goal which is isolate vibrations. Such vibrations can come fromthe environment and could affect the machine behavior and could affect its technological functionstoo. That’s the case of a machine tool, for instance. However, it is also possible that vibrations comefrom the own machine and in this case the main goal of vibroisolation system is to avoid thatvibrations go to machine foundations. This is the case on which this paper is focused. Twelvevibration isolators with eight springs each one including a viscous damper are mounted asvibroisolation system on

  2. Effects of surface vibrations on interlayer mass transport: Ab initio molecular dynamics investigation of Ti adatom descent pathways and rates from TiN/TiN(001) islands

    Science.gov (United States)

    Sangiovanni, D. G.; Mei, A. B.; Edström, D.; Hultman, L.; Chirita, V.; Petrov, I.; Greene, J. E.

    2018-01-01

    We carried out density-functional ab initio molecular dynamics (AIMD) simulations of Ti adatom (T iad ) migration on, and descent from, square TiN 〈100 〉 epitaxial islands on TiN(001) at temperatures (T ) ranging from 1200 to 2400 K. Adatom-descent energy barriers determined via ab initio nudged-elastic-band calculations at 0 Kelvin suggest that Ti interlayer transport on TiN(001) occurs essentially exclusively via direct hopping onto a lower layer. However, AIMD simulations reveal comparable rates for T iad descent via direct hopping vs push-out/exchange with a Ti island-edge atom for T ≥1500 K . We demonstrate that this effect is due to surface vibrations, which yield considerably lower activation energies at finite temperatures by significantly modifying the adatom push-out/exchange reaction pathway.

  3. Energetics, structures, vibrational frequencies, vibrational absorption, vibrational circular dichroism and Raman intensities of Leu-enkephalin

    DEFF Research Database (Denmark)

    Jalkanen, Karl J.

    2003-01-01

    Here we present several low energy conformers of Leu-enkephalin (LeuE) calculated with the density functional theory using the Becke 3LYP hybrid functional and the 6-31G* basis set. The structures, conformational energies, vibrational frequencies, vibrational absorption (VA) intensities......, vibrational circular dichroism (VCD) intensities and Raman scattering intensities are reported for the conformers of LeuE which are expected to be populated at room temperature. The species of LeuE-present in non-polar solvents is the neutral non-ionic species with the NH2 and CO2H groups, in contrast...... to the zwitterionic neutral species with the NH3+ and CO2- groups which predominates in aqueous solution and in the crystal. All of our attempts to find the zwitterionic species in the isolated state failed, with the result that a hydrogen atom from the positively charged N-terminus ammonium group transferred either...

  4. Do Scaphoideus titanus (Hemiptera: Cicadellidae) nymphs use vibrational communication?

    Science.gov (United States)

    Chuche, Julien; Thiéry, Denis; Mazzoni, Valerio

    2011-07-01

    Small Auchenorrhyncha use substrate-borne vibrations to communicate. Although this behaviour is well known in adult leafhoppers, so far no studies have been published on nymphs. Here we checked the occurrence of vibrational communication in Scaphoideus titanus (Hemiptera: Cicadellidae) nymphs as a possible explanation of their aggregative distributions on host plants. We studied possible vibratory emissions of isolated and grouped nymphs, as well as their behavioural responses to vibration stimuli that simulated presence of conspecifics, to disturbance noise, white noise and predator spiders. None of our synthetic stimuli or pre-recorded substrate vibrations from nymphs elicited specific vibration responses and only those due to grooming or mechanical contacts of the insect with the leaf were recorded. Thus, S. titanus nymphs showed to not use species-specific vibrations neither for intra- nor interspecific communication and also did not produce alarm vibrations when facing potential predators. We conclude that their aggregative behaviour is independent from a vibrational communication.

  5. Reducing Transmitted Vibration Using Delayed Hysteretic Suspension

    Directory of Open Access Journals (Sweden)

    Lahcen Mokni

    2011-01-01

    Full Text Available Previous numerical and experimental works show that time delay technique is efficient to reduce transmissibility of vibration in a single pneumatic chamber by controlling the pressure in the chamber. The present work develops an analytical study to demonstrate the effectiveness of such a technique in reducing transmitted vibrations. A quarter-car model is considered and delayed hysteretic suspension is introduced in the system. Analytical predictions based on perturbation analysis show that a delayed hysteretic suspension enhances vibration isolation comparing to the case where the nonlinear damping is delay-independent.

  6. Transverse vibration of spinning disk with attached distributed patch ...

    African Journals Online (AJOL)

    Free and forced transverse vibration characteristics of a thin spinning disc attached to a rigid core have been investigated by finite element analysis using ANSYS software. The effect of discrete point masses and patches of distributed masses attached at the periphery of the plate on free and forced vibration behavior of a ...

  7. NOISE AND VIBRATION DAMPING FOR YACHT INTERIOR

    Directory of Open Access Journals (Sweden)

    Murat Aydın

    2016-12-01

    Full Text Available Vibration damping and sound insulation are essential for all vehicles. Because moving parts and external factors such as wind, tracks, etc. can cause vibration and noise. Wave which is a dynamic force, drive system and HVAC systems are the main vibration and noise generators in a vessel. These all can affect comfort level on board yachts. Different types of isolators and absorbers such as sylomer®, cork panels, etc. are used to reduce these effects. Comfort level on board yachts can be increased using these types of materials. Otherwise, discomfort of passenger and crew may increase. These materials not only reduce structure-borne and air-borne noise and vibrations from waves, air, engines, pumps, generators and HVAC systems but also protect vibration sensitive interior or fittings. Noise and vibration evaluation is an important issue for this reason. And, measurement tools must be used not only to minimize this problem but also fulfill the regulations such as “comfort class”. Besides, providing quiet and low vibration increases the costs too. From this point of view, this study aims to explain clearly how noise and vibration damping can be done in a yacht.

  8. Matrix-assisted laser desorption ionisation time-of-flight mass spectrometry rapid detection of carbapenamase activity in Acinetobacter baumannii isolates.

    Science.gov (United States)

    Abouseada, Noha; Raouf, May; El-Attar, Eman; Moez, Pacinte

    2017-01-01

    Carbapenamase-producing Acinetobacter baumannii are an increasing threat in hospitals and Intensive Care Units. Accurate and rapid detection of carbapenamase producers has a great impact on patient improvement and aids in implementation of infection control measures. In this study, we describe the use of matrix-assisted laser desorption ionisation time-of-flight mass spectrometry (MALDI TOF MS) to identify carbapenamase-producing A. baumannii isolates in up to 3 h. Isolates and Methods: A total of 50 A. baumannii isolates (of which 39 were carabapenamase producers) were tested using MALDI TOF MS. Isolates were incubated for 3 h with 0.25 mg/ml up to 2 mg/ml of imipenem (IMP) at 37°C. Supernatants were analysed by MALDI TOF to analyse peaks corresponding to IMP (300 Da) and an IMP metabolite (254 Da) using UltrafleXtreme (Bruker Daltonics, Bremen, Germany). All carbapenamase-producing isolates were evidenced by the disappearance or reduction in intensity of the 300 Da peak of IPM and the appearance of a 254 Da peak of the IPM metabolite. In isolates that did not produce carbapenamase, the IPM 300 Da peak remained intact. MALDI TOF is a promising tool in the field of diagnostic microbiology that has the ability to transfer identification and antimicrobial susceptibility testing time from days to hours.

  9. Effects of solid-medium type on routine identification of bacterial isolates by use of matrix-assisted laser desorption ionization-time of flight mass spectrometry.

    Science.gov (United States)

    Anderson, Neil W; Buchan, Blake W; Riebe, Katherine M; Parsons, Lauren N; Gnacinski, Stacy; Ledeboer, Nathan A

    2012-03-01

    Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) is a rapid method for the identification of bacteria. Factors that may alter protein profiles, including growth conditions and presence of exogenous substances, could hinder identification. Bacterial isolates identified by conventional methods were grown on various media and identified using the MALDI Biotyper (Bruker Daltonics, Billerica, MA) using a direct smear method and an acid extraction method. Specimens included 23 Pseudomonas isolates grown on blood agar, Pseudocel (CET), and MacConkey agar (MAC); 20 Staphylococcus isolates grown on blood agar, colistin-nalidixic acid agar (CNA), and mannitol salt agar (MSA); and 25 enteric isolates grown on blood agar, xylose lysine deoxycholate agar (XLD), Hektoen enteric agar (HE), salmonella-shigella agar (SS), and MAC. For Pseudomonas spp., the identification rate to genus using the direct method was 83% from blood, 78% from MAC, and 94% from CET. For Staphylococcus isolates, the identification rate to genus using the direct method was 95% from blood, 75% from CNA, and 95% from MSA. For enteric isolates, the identification rate to genus using the direct method was 100% from blood, 100% from MAC, 100% from XLD, 92% from HE, and 87% from SS. Extraction enhanced identification rates. The direct method of MALDI-TOF analysis of bacteria from selective and differential media yields identifications of varied confidence. Notably, Staphylococci spp. from CNA exhibit low identification rates. Extraction enhances identification rates and is recommended for colonies from this medium.

  10. Application of system concept in vibration and noise reduction

    Directory of Open Access Journals (Sweden)

    SHENG Meiping

    2017-08-01

    Full Text Available Although certain vibration and noise control technologies are maturing, such as vibration absorption, vibration isolation, sound absorption and sound insulation, and new methods for specific frequency bands or special environments have been proposed unceasingly, there is still no guarantee that practical effective vibration and noise reduction can be obtained. An important constraint for vibration and noise reduction is the lack of a system concept, and the integrity and relevance of such practical systems as ship structure have not obtained enough attention. We have tried to use the system engineering theory in guiding vibration and noise reduction, and have already achieved certain effects. Based on the system concept, the noise control of a petroleum pipeline production workshop has been completed satisfactorily, and the abnormal noise source identification of an airplane has been accomplished successfully. We want to share our experience and suggestions to promote the popularization of the system engineering theory in vibration and noise control.

  11. A new low molecular mass alkaline cyclodextrin glucanotransferase from Amphibacillus sp. NRC-WN isolated from an Egyptian soda lake

    National Research Council Canada - National Science Library

    Al-Sharawi, Samar Z.R; Ibrahim, Abdelnasser S.S; El-Shatoury, Einas H; Gebreel, Hassan M; Eldiwany, Ahmad

    2014-01-01

    ...: Screening for CGTase-producing alkaliphilic bacteria from sediment and water samples collected from Egyptian soda lakes located in the Wadi Natrun valley resulted in the isolation of a potent CGTase...

  12. Simulations and Measurements of Human Middle Ear Vibrations Using Multi-Body Systems and Laser-Doppler Vibrometry with the Floating Mass Transducer

    Directory of Open Access Journals (Sweden)

    Tobias Strenger

    2013-10-01

    Full Text Available The transfer characteristic of the human middle ear with an applied middle ear implant (floating mass transducer is examined computationally with a Multi-body System approach and compared with experimental results. For this purpose, the geometry of the middle ear was reconstructed from μ-computer tomography slice data and prepared for a Multi-body System simulation. The transfer function of the floating mass transducer, which is the ratio of the input voltage and the generated force, is derived based on a physical context. The numerical results obtained with the Multi-body System approach are compared with experimental results by Laser Doppler measurements of the stapes footplate velocities of five different specimens. Although slightly differing anatomical structures were used for the calculation and the measurement, a high correspondence with respect to the course of stapes footplate displacement along the frequency was found. Notably, a notch at frequencies just below 1 kHz occurred. Additionally, phase courses of stapes footplate displacements were determined computationally if possible and compared with experimental results. The examinations were undertaken to quantify stapes footplate displacements in the clinical practice of middle ear implants and, also, to develop fitting strategies on a physical basis for hearing impaired patients aided with middle ear implants.

  13. Broadband Vibration Attenuation Using Hybrid Periodic Rods

    Directory of Open Access Journals (Sweden)

    S. Asiri

    2008-12-01

    Full Text Available This paper presents both theoretically and experimentally a new kind of a broadband vibration isolator. It is a table-like system formed by four parallel hybrid periodic rods connected between two plates. The rods consist of an assembly of periodic cells, each cell being composed of a short rod and piezoelectric inserts. By actively controlling the piezoelectric elements, it is shown that the periodic rods can efficiently attenuate the propagation of vibration from the upper plate to the lower one within critical frequency bands and consequently minimize the effects of transmission of undesirable vibration and sound radiation. In such a system, longitudinal waves can propagate from the vibration source in the upper plate to the lower one along the rods only within specific frequency bands called the "Pass Bands" and wave propagation is efficiently attenuated within other frequency bands called the "Stop Bands". The spectral width of these bands can be tuned according to the nature of the external excitation. The theory governing the operation of this class of vibration isolator is presented and their tunable filtering characteristics are demonstrated experimentally as functions of their design parameters. This concept can be employed in many applications to control the wave propagation and the force transmission of longitudinal vibrations both in the spectral and spatial domains in an attempt to stop/attenuate the propagation of undesirable disturbances.

  14. Tuned-Mass Damper For Turbine Blades

    Science.gov (United States)

    Marra, John J.

    1993-01-01

    Resonances altered to suppress vibrations. Damping ring designed to suppress fundamental-bending-mode vibrations of blades on integrally bladed turbine rotor. Damping ring and turbine blades behave analogously to two-mass, two-spring system.

  15. Tunable Passive Vibration Suppressor

    Science.gov (United States)

    Boechler, Nicholas (Inventor); Dillon, Robert Peter (Inventor); Daraio, Chiara (Inventor); Davis, Gregory L. (Inventor); Shapiro, Andrew A. (Inventor); Borgonia, John Paul C. (Inventor); Kahn, Daniel Louis (Inventor)

    2016-01-01

    An apparatus and method for vibration suppression using a granular particle chain. The granular particle chain is statically compressed and the end particles of the chain are attached to a payload and vibration source. The properties of the granular particles along with the amount of static compression are chosen to provide desired filtering of vibrations.

  16. Vibrations and Eigenvalues

    Indian Academy of Sciences (India)

    We make music by causing strings, membranes, or air columns to vibrate. Engineers design safe structures by control- ling vibrations. I will describe to you a very simple vibrating system and the mathematics needed to analyse it. The ideas were born in the work of Joseph-Louis Lagrange (1736–1813), and I begin by quot-.

  17. Cable Vibration due to Ice Accretions

    DEFF Research Database (Denmark)

    Gjelstrup, Henrik; Georgakis, Christos; Larsen, Allan

    On March 29, 2001, the Great Belt East Bridge exhibited large-amplitude hanger vibrations having elliptical orbits for wind speeds of between 16 – 18m/s. Vibrational amplitudes were in the order of 2m in the across-wind direction and 0.6m in the along-wind. In this poster, a preliminary...... investigation behind the causes of this relatively isolated hanger vibration event on the Great Belt East Bridge is presented. Furthermore a stability criterion for a 3DOF bluff body is proposed. One of the main assumptions of the investigation is that icy conditions may have contributed in some way to large...... to a form of “drag instability”. From the visual observations of the vibrations it is assumed that the aerodynamic moment coefficient is zero...

  18. Real-time detection of doorway states in the intramolecular vibrational energy redistribution of the OH/OD stretch vibration of phenol

    OpenAIRE

    Yamada, Yuji; Mikami, Naohiko; Ebata, Takayuki

    2004-01-01

    A picosecond time-resolved IR-UV pump-probe spectroscopic study was carried out for the intramolecular vibrational energy redistribution of the OH/OD stretching vibration of isolated phenol and its isotopomers in supersonic beams. The time evolution due to IVR showed a significant isotope effect; the OH stretch vibration showed a single exponential decay and its lifetime is greatly lengthened upon the deuterium substitution of the CH group. The OD stretch vibration exhibited prominent quantum...

  19. Matrix Assisted Laser Desorption/Ionization Time of Flight Mass Spectrometry for identification of Clostridium species isolated from Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Mohammed Suliman AlMogbel

    2016-06-01

    Full Text Available Abstract The aim of this study was to identify different Clostridium spp. isolated from currency notes from the Ha’il region of Saudi Arabia in September 2014 using MALDI–TOF-MS. Clostridium spp. were identified by Bruker MALDI–TOF-MS and compared with VITEK 2. The confirmation of the presence of different Clostridium spp. was performed by determining the sequence of the 16S ribosomal RNA gene. In this study, 144 Clostridium spp. were isolated. Among these specimens, MALDI–TOF-MS could identify 88.8% (128/144 of the isolates to the species level and 92.3% (133/144 to the genus level, whereas, VITEK 2 identified 77.7% of the (112/144 isolates. The correct identification of the 144 isolates was performed by sequence analysis of the 500 bp 16S rRNA gene. The most common Clostridium spp. identified were Clostridium perfringens (67.36%, Clostridium subterminale (14.58%, Clostridium sordellii (9% and Clostridium sporogenes (9%. The results of this study demonstrate that MALDI–TOF-MS is a rapid, accurate and user friendly technique for the identification of Clostridium spp. Additionally, MALDI–TOF-MS has advantages over VITEK 2 in the identification of fastidious micro-organisms, such as Clostridium spp. Incorporating this technique into routine microbiology would lead to more successful and rapid identification of pathogenic and difficult to identify micro-organisms.

  20. Usefulness of matrix-assisted laser desorption ionisation-time-of-flight mass spectrometry for identifying clinical Trichosporon isolates.

    Science.gov (United States)

    de Almeida Júnior, J N; Figueiredo, D S Y; Toubas, D; Del Negro, G M B; Motta, A L; Rossi, F; Guitard, J; Morio, F; Bailly, E; Angoulvant, A; Mazier, D; Benard, G; Hennequin, C

    2014-08-01

    Trichosporon spp. have recently emerged as significant human pathogens. Identification of these species is important, both for epidemiological purposes and for therapeutic management, but conventional identification based on biochemical traits is hindered by the lack of updates to the species databases provided by the different commercial systems. In this study, 93 strains, or isolates, belonging to 16 Trichosporon species were subjected to both molecular identification using IGS1 gene sequencing and matrix-assisted laser desorption ionisation-time-of-flight (MALDI-TOF) analysis. Our results confirmed the limits of biochemical systems for identifying Trichosporon species, because only 27 (36%) of the isolates were correctly identified using them. Different protein extraction procedures were evaluated, revealing that incubation for 30 min with 70% formic acid yields the spectra with the highest scores. Among the six different reference spectra databases that were tested, a specific one composed of 18 reference strains plus seven clinical isolates allowed the correct identification of 67 of the 68 clinical isolates (98.5%). Although until recently it has been less widely applied to the basidiomycetous fungi, MALDI-TOF appears to be a valuable tool for identifying clinical Trichosporon isolates at the species level. © 2013 The Authors Clinical Microbiology and Infection © 2013 European Society of Clinical Microbiology and Infectious Diseases.

  1. PRODUCTION OF EMBBRYONIC STEM CELLS FROM INNER CELL MASS OF BLASTOCYST ISOLATED BY ENZYMATIC AND IMMUNOSURGERY METHODS

    Directory of Open Access Journals (Sweden)

    Thomas Mata Hine

    2008-03-01

    Full Text Available The objective of the research is determining the ICM isolation method to produce ESC. Blastocyst stage of DDy mice embryos were used in this study. Zona pellucida of blastocysts were removed by 0.25% pronase, the ICM isolation were done by enzimatic or immunosurgery method, and then they were cultured in DMEM-high glucose supplemented with mercaptoethanol, gentamycin, fetal bovine serum, and cumulus cells as feeder layer. The result of the research indicated that immunosurgery method yielding attachment rate and number ESC colony 93.85% and 43.08%, respectively, higher (P<0.05 than enzimatic method that weree 79.63% and 18.52%, respectively, but the viability of ICM cells were equal (P >0.05 that are 93.59% in enzymatic method and 98.56% in immunosurgery method. This research concluded that immunosurgery more effective method for isolation of ICM and ESC production than enzymatic method.

  2. Time Resolved Energy Transfer and Photodissociation of Vibrationally Excited Molecules

    National Research Council Canada - National Science Library

    Crim, F. F

    2007-01-01

    ...) in solution and in the gas phase. This second experiment is one of the few direct comparisons of intramolecular vibrational energy flow in a solvated molecule with that in the same molecule isolated in a gas...

  3. Matrix-assisted laser desorption/ionisation-time of flight mass spectrometry: rapid identification of bacteria isolated from patients with cystic fibrosis.

    Science.gov (United States)

    Baillie, S; Ireland, K; Warwick, S; Wareham, D; Wilks, M

    2013-01-01

    Despite extensive research into the diagnosis and management of cystic fibrosis (CF) over the past decades, sufferers still have a median life expectancy of less than 37 years. Respiratory tract infections have a significant role in increasing the morbidity and mortality of patients with CF via a progressive decline in lung function. Rapid identification of organisms recovered from CF sputum is necessary for effective management of respiratory tract infections; however, standard techniques of identification are slow, technically demanding and expensive. The aim of this study is to asses the suitability of matrix-assisted laser desorption/ionisation-time of flight mass spectrometry (MALDI-TOF MS) in identifying bacteria isolated from the respiratory tract of patients with CF, and is assessed by testing the accuracy of MALDI-TOF MS in identifying samples from a reference collection of rare CF strains in conjunction with comparing MALDI-TOF MS and standard techniques in identifying clinical isolates from sputum samples of CF patients. MALDI-TOF MS accurately identified 100% of isolates from the reference collection of rare CF pathogens (EuroCare CF collection). The isolate identification given by MALDI-TOF MS agreed with that given by standard techniques for 479/481 (99.6%) clinical isolates obtained from respiratory samples provided by patients with CE In two (0.4%) of 481 samples there was a discrepancy in identification between MALDI-TOF MS and standard techniques. One organism was identified as Pseudomonas aeruginosa by MALDI-TOF but could only be identified by the laboratory's standard methods as of the Pseudomonas genus. The second organism was identified as P. beteli by MALDI-TOF MS and Stenotrophomonas maltophilia by standard methods. This study shows that MALDI-TOF MS is superior to standard techniques in providing cheap, rapid and accurate identification of CF sputum isolates.

  4. Floor Vibrations - as Induced and Reduced by Humans

    DEFF Research Database (Denmark)

    Pedersen, Lars

    . As for dynamic loads focus is placed on heel impact excitation and actions of jumping people causing floor vibrations. As for interaction between stationary humans and the vibrating floor focus is on modelling humans as oscillating spring-mass-damper systems attached to the floor rather than as simple added mass...... on the effectiveness of tuned mass dampers fitted to floors carrying humans is further examined....

  5. Rapid identification of Mycobacterium avium clinical isolates by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    Science.gov (United States)

    Lin, Chuan-Sheng; Su, Chih-Cheng; Hsieh, Shang-Chen; Lu, Chia-Chen; Wu, Tsu-Lan; Jia, Ju-Hsin; Wu, Ting-Shu; Han, Chau-Chung; Tsai, Wen-Cherng; Lu, Jang-Jih; Lai, Hsin-Chih

    2015-04-01

    Rapid and accurate discrimination of Mycobacterium avium from other mycobacteria is essential for appropriate therapeutic management and timely intervention for infection control. However, routine clinical identification methods for M. avium are both time consuming and labor intensive. In the present study, matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) was used to identify specific cellular protein pattern for rapid identification of M. avium isolates. A total of 40 clinically relevant Mycobacterium strains comprising 13 distinct species were enrolled for the MALDI-TOF MS identification. A 10-minute extraction-free examination procedure was set up to obtain mass spectral fingerprints from whole bacterial cells. The characteristic mass spectral peak patterns in the m/z (mass/charge ratio) range of 5-20 kDa can be obtained within 10 minutes. The species-specific mass spectra for M. avium is identified and can be differentiated from as Mycobacterium strains. This technique shortens and simplifies the identification procedure of MALDI-TOF MS and may further extend the mycobacterial MALDI-TOF MS database. Simplicity and rapidity of identification procedures make MALDI-TOF MS an attractive platform in routine identification of mycobacteria. MALDI-TOF MS is applicable for rapid discrimination of M. avium from other Mycobacterium species, and shows its potential for clinical application. Copyright © 2013. Published by Elsevier B.V.

  6. Implications for the origin of early-type dwarf galaxies - the discovery of rotation in isolated, low-mass early-type galaxies

    Science.gov (United States)

    Janz, Joachim; Penny, Samantha J.; Graham, Alister W.; Forbes, Duncan A.; Davies, Roger L.

    2017-07-01

    We present the discovery of rotation in quenched, low-mass early-type galaxies that are isolated. This finding challenges the claim that (all) rotating dwarf early-type galaxies in clusters were once spiral galaxies that have since been harassed and transformed into early-type galaxies. Our search of the Sloan Digital Sky Survey data within the Local Volume (z < 0.02) has yielded a sample of 46 galaxies with a stellar mass M⋆ ≲ 5 × 109 M⊙ (median M⋆ ˜ 9.29 × 108 M⊙), a low Hα equivalent width EWHα < 2 Å, and no massive neighbour (M⋆ ≳ 3 × 1010 M⊙) within a velocity interval of ΔV = 500 km s-1 and a projected distance of ˜1 Mpc. Nine of these galaxies were subsequently observed with Keck Echellette Spectrograph and Imager and their radial kinematics are presented here. These extend out to the half-light radius Re in the best cases, and beyond Re/2 for all. They reveal a variety of behaviours similar to those of a comparison sample of early-type dwarf galaxies in the Virgo cluster observed by Toloba et al. Both samples have similar frequencies of slow and fast rotators, as well as kinematically decoupled cores. This, and especially the finding of rotating quenched low-mass galaxies in isolation, reveals that the early-type dwarfs in galaxy clusters need not be harassed or tidally stirred spiral galaxies.

  7. Vibration analysis of cryocoolers

    Science.gov (United States)

    Tomaru, Takayuki; Suzuki, Toshikazu; Haruyama, Tomiyoshi; Shintomi, Takakazu; Yamamoto, Akira; Koyama, Tomohiro; Li, Rui

    2004-05-01

    The vibrations of Gifford-McMahon (GM) and pulse-tube (PT) cryocoolers were measured and analyzed. The vibrations of the cold-stage and cold-head were measured separately to investigate their vibration mechanisms. The measurements were performed while maintaining the thermal conditions of the cryocoolers at a steady state. We found that the vibration of the cold-head for the 4 K PT cryocooler was two orders of magnitude smaller than that of the 4 K GM cryocooler. On the other hand, the vibration of the cold-stages for both cryocoolers was of the same order of magnitude. From a spectral analysis of the vibrations and a simulation, we concluded that the vibration of the cold-stage is caused by an elastic deformation of the pulse tubes (or cylinders) due to the pressure oscillation of the working gas.

  8. Vibration analysis of cryocoolers

    Energy Technology Data Exchange (ETDEWEB)

    Tomaru, Takayuki; Suzuki, Toshikazu; Haruyama, Tomiyoshi; Shintomi, Takakazu; Yamamoto, Akira [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki (Japan); Koyama, Tomohiro; Rui Li [Sumitomo Heavy Industries Ltd., Tokyo (Japan)

    2004-05-01

    The vibrations of Gifford-McMahon (GM) and pulse-tube (PT) cryocoolers were measured and analyzed. The vibrations of the cold-stage and cold-head were measured separately to investigate their vibration mechanisms. The measurements were performed while maintaining the thermal conditions of the cryocoolers at a steady state. We found that the vibration of the cold-head for the 4 K PT cryocooler was two orders of magnitude smaller than that of the 4 K GM cryocooler. On the other hand, the vibration of the cold-stages for both cryocoolers was of the same order of magnitude. From a spectral analysis of the vibrations and a simulation, we concluded that the vibration of the cold-stage is caused by an elastic deformation of the pulse tubes (or cylinders) due to the pressure oscillation of the working gas. (Author)

  9. Vibration of hydraulic machinery

    CERN Document Server

    Wu, Yulin; Liu, Shuhong; Dou, Hua-Shu; Qian, Zhongdong

    2013-01-01

    Vibration of Hydraulic Machinery deals with the vibration problem which has significant influence on the safety and reliable operation of hydraulic machinery. It provides new achievements and the latest developments in these areas, even in the basic areas of this subject. The present book covers the fundamentals of mechanical vibration and rotordynamics as well as their main numerical models and analysis methods for the vibration prediction. The mechanical and hydraulic excitations to the vibration are analyzed, and the pressure fluctuations induced by the unsteady turbulent flow is predicted in order to obtain the unsteady loads. This book also discusses the loads, constraint conditions and the elastic and damping characters of the mechanical system, the structure dynamic analysis, the rotor dynamic analysis and the system instability of hydraulic machines, including the illustration of monitoring system for the instability and the vibration in hydraulic units. All the problems are necessary for vibration pr...

  10. Background Air Mass Can Impact U.S. Northeastern Corridor Urban GHG Emission Analysis: A Study to Isolate Incoming CO2 Air Mass with Tower Measurements in the Washington DC/Baltimore Area

    Science.gov (United States)

    Mueller, K. L.; Lopez-Coto, I.; Yadav, V.

    2016-12-01

    City governments worldwide have made commitments to cut over 3GtCO2e above their respective national government's Nationally Determined Contributions (NDCs). To help assess the progress of such activities, atmospheric GHG observations may be vital as they contain true emission signatures. Since GHG observations contain the sum of city, regional and global sources and sinks, the city emission signal must first be isolated in the observations to render them useful for evaluating urban mitigation policies. This is especially true for regions that are downwind from large sources and sinks, such as the U.S. Northeastern corridor (NEC). Regional and global signals are generally removed through the use of tower locations that observe "background" air masses. To site these background tower locations, many urban studies use average wind directions which may not be suitable for cities in the NEC. In this work, we focus on the Washington DC/Baltimore urban area. We assume a 12 tower network that is currently being installed to quantify CO2 emissions. Using the Weather Research Forecasting model coupled to the Stochastic Time-Inverted Lagrangian Transport Model, we create synthetic observations at these 12 locations using Vulcan model sources and Carbon Tracker sinks for a 500km radius area around Washington DC/Baltimore during February and July 2013. Using these observations, we assess the impact of regional and local sources and sinks on network measurements. We then identify possible background tower locations and generate synthetic data at these sites. Using a statistical model, we select four background towers that have the greatest likelihood of capturing incoming CO2 air mass. This works shows that CO2 emission estimates for Washington DC/Baltimore will be significantly biased if the background air masses are not isolated properly. We also show that the NEC observations can be impacted by both intermediate and far field sources and sinks. The additional variability in

  11. Adaptations of mouse skeletal muscle to low intensity vibration training

    Science.gov (United States)

    McKeehen, James N.; Novotny, Susan A.; Baltgalvis, Kristen A.; Call, Jarrod A.; Nuckley, David J.; Lowe, Dawn A.

    2013-01-01

    Purpose We tested the hypothesis that low intensity vibration training in mice improves contractile function of hindlimb skeletal muscles and promotes exercise-related cellular adaptations. Methods We subjected C57BL/6J mice to 6 wk, 5 d·wk−1, 15 min·d−1 of sham or low intensity vibration (45 Hz, 1.0 g) while housed in traditional cages (Sham-Active, n=8; Vibrated-Active, n=10) or in small cages to restrict physical activity (Sham-Restricted, n=8; Vibrated-Restricted, n=8). Contractile function and resistance to fatigue were tested in vivo (anterior and posterior crural muscles) and ex vivo on the soleus muscle. Tibialis anterior and soleus muscles were evaluated histologically for alterations in oxidative metabolism, capillarity, and fiber types. Epididymal fat pad and hindlimb muscle masses were measured. Two-way ANOVAs were used to determine effects of vibration and physical inactivity. Results Vibration training resulted in a 10% increase in maximal isometric torque (P=0.038) and 16% faster maximal rate of relaxation (P=0.030) of the anterior crural muscles. Posterior crural muscles were unaffected by vibration, with the exception of greater rates of contraction in Vibrated-Restricted mice compared to Vibrated-Active and Sham-Restricted mice (P=0.022). Soleus muscle maximal isometric tetanic force tended to be greater (P=0.057) and maximal relaxation was 20% faster (P=0.005) in Vibrated compared to Sham mice. Restriction of physical activity induced muscle weakness but was not required for vibration to be effective in improving strength or relaxation. Vibration training did not impact muscle fatigability or any indicator of cellular adaptation investigated (P≥0.431). Fat pad but not hindlimb muscle masses were affected by vibration training. Conclusion Vibration training in mice improved muscle contractility, specifically strength and relaxation rates, with no indication of adverse effects to muscle function or cellular adaptations. PMID:23274599

  12. Vision Influence on Whole-Body Human Vibration Comfort Levels

    OpenAIRE

    Duarte, Maria Lúcia Machado; de Brito Pereira, Matheus

    2006-01-01

    The well being of people needs to be a priority in the modern world. In that respect, vibration cannot be one more cause of stress. Besides that, vibration comfort is very important, since high levels may cause health or even tasks' accomplishment problems. Several parameters may influence the levels of vibration a human being supports. Among them, one can mention the influence of gender, age, corporeal mass index (CMI), temperature, humor, anxiety, hearing, posture, vision, etc. The first th...

  13. ANALYSIS OF VIBRATORY PROTECTION SYSTEM VIBRATION DURING HARMONIC AND POLYHARMONIC EXCITATIONS

    Directory of Open Access Journals (Sweden)

    T. N. Mikulik

    2011-01-01

    Full Text Available The paper considers a mathematical model of local «driver-seat» system and an algorithm for vibratory loading formation at external actions. Results of the investigations on the system vibration according to minimum vibration acceleration depending on transfer force factor acting on the seat and a vibration isolation factor are presented in the paper.

  14. Active seat isolation for hybrid electric vehicles

    Science.gov (United States)

    Leo, Donald J.; Malowicki, Mark; Buckley, Stephen J.; Naganathan, Ganapathy

    1999-07-01

    A feasibility study in the use of induced strain actuators for active seal isolation is described. The focus of the work is the isolation of lightweight automotive seats for hybrid-electric vehicles. The feasibility study is based on a numerical analysis of a three-degree-of-freedom vibration model of the seat. Mass and inertia properties are based on measurements from a powered seat that is found in current model year automobiles. Tradeoffs between vertical acceleration of the seat, actuator stroke requirements, and isolation frequency are determined through numerical analysis of the vibration model. Root mean square accelerations and actuator strokes are computed using power spectral densities that model broadband excitation and road excitation that is filtered by the vehicle suspension. Numerical results using the road excitation indicate that factors of two to three reduction in vertical acceleration are achieved when the active isolation frequency is reduced to approximately 1 Hz with damping factors on the order of 10 to 30 percent critical. More significant reductions are achieved in the case of broadband floor excitation. Root mean square actuator strokes for both case are int he range of 0.4 to 50 mm. Root mean square accelerations in the vertical direction are consistent with the levels found in standard comfort curves.

  15. Animal communication: he's giving me good vibrations.

    Science.gov (United States)

    Hill, Peggy S M

    2015-11-02

    A unique bioassay allows a substrate-borne vibration signal to be isolated and manipulated to test its role in eliciting female mate choice, which may be driving a speciation event, by a live, unrestrained male. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Vibration of imperfect rotating disk

    Directory of Open Access Journals (Sweden)

    Půst L.

    2011-12-01

    Full Text Available This study is concerned with the theoretical and numerical calculations of the flexural vibrations of a bladed disk. The main focus of this study is to elaborate the basic background for diagnostic and identification methods for ascertaining the main properties of the real structure or an experimental model of turbine disks. The reduction of undesirable vibrations of blades is proposed by using damping heads, which on the experimental model of turbine disk are applied only on a limited number of blades. This partial setting of damping heads introduces imperfection in mass, stiffness and damping distribution on the periphery and leads to more complicated dynamic properties than those of a perfect disk. Calculation of FEM model and analytic—numerical solution of disk behaviour in the limited (two modes frequency range shows the splitting of resonance with an increasing speed of disk rotation. The spectrum of resonance is twice denser than that of a perfect disk.

  17. Integration Design and Optimization Control of a Dynamic Vibration Absorber for Electric Wheels with In-Wheel Motor

    Directory of Open Access Journals (Sweden)

    Mingchun Liu

    2017-12-01

    Full Text Available This paper presents an integration design scheme and an optimization control strategy for electric wheels to suppress the in-wheel vibration and improve vehicle ride comfort. The in-wheel motor is considered as a dynamic vibration absorber (DVA, which is isolated from the unsprung mass by using a spring and a damper. The proposed DVA system is applicable for both the inner-rotor motor and outer-rotor motor. Parameters of the DVA system are optimized for the typical conditions, by using the particle swarm optimization (PSO algorithm, to achieve an acceptable vibration performance. Further, the DVA actuator force is controlled by using the alterable-domain-based fuzzy control method, to adaptively suppress the wheel vibration and reduce the wallop acting on the in-wheel motor (IWM as well. In addition, a suspension actuator force is also controlled, by using the linear quadratic regulator (LQR method, to enhance the suspension performance and meanwhile improve vehicle ride comfort. Simulation results demonstrate that the proposed DVA system effectively suppresses the wheel vibration and simultaneously reduces the wallop acting on the IWM. Also, the alterable-domain-based fuzzy control method performs better than the conventional ones, and the LQR-based suspension exhibits excellent performance in vehicle ride comfort.

  18. Proposal to use vibration analysis steering components and car body to monitor, for example, the state of unbalance wheel

    Science.gov (United States)

    Janczur, R.

    2016-09-01

    The results of road tests of car VW Passat equipped with tires of size 195/65 R15, on the influence of the unbalancing front wheel on vibration of the parts of steering system, steering wheel and the body of the vehicle have been presented in this paper. Unbalances wheels made using weights of different masses, placed close to the outer edge of the steel rim and checked on the machine Hunter GSP 9700 for balancing wheels. The recorded waveforms vibration steering components and car body, at different constant driving speeds, subjected to spectral analysis to determine the possibility of isolating vibration caused by unbalanced wheel in various states and coming from good quality asphalt road surface. The results were discussed in terms of the possibility of identifying the state of unbalancing wheels and possible changes in radial stiffness of the tire vibration transmitted through the system driving wheel on the steering wheel. Vibration analysis steering components and car body, also in the longitudinal direction, including information from the CAN bus of the state of motion of the car, can be used to monitor the development of the state of unbalance wheel, tire damage or errors shape of brake discs or brake drums, causing pulsations braking forces.

  19. Evaluation of matrix-assisted laser desorption ionization-time of flight mass spectrometry for species identification of Acinetobacter strains isolated from blood cultures.

    Science.gov (United States)

    Kishii, K; Kikuchi, K; Matsuda, N; Yoshida, A; Okuzumi, K; Uetera, Y; Yasuhara, H; Moriya, K

    2014-05-01

    The clinical relevance of Acinetobacter species, other than A. baumannii, as human pathogens has not been sufficiently assessed owing to the insufficiency of simple phenotypic clinical diagnostic laboratory tests. Infections caused by these organisms have different impacts on clinical outcome and require different treatment and management approaches. It is therefore important to correctly identify Acinetobacter species. Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has been introduced to identify a wide range of microorganisms in clinical laboratories, but only a few studies have examined its utility for identifying Acinetobacter species, particularly those of the non-Acinetobacter baumannii complex. We therefore evaluated MALDI-TOF MS for identification of Acinetobacter species by comparing it with sequence analysis of rpoB using 123 isolates of Acinetobacter species from blood. Of the isolates examined, we identified 106/123 (86.2%) to species, and 16/123 (13.0%) could only be identified as acinetobacters. The identity of one isolate could not be established. Of the 106 species identified, 89/106 (84.0%) were confirmed by rpoB sequence analysis, and 17/106 (16.0%) were discordant. These data indicate correct identification of 89/123 (72.4%) isolates. Surprisingly, all blood culture isolates were identified as 13 species of Acinetobacter, and the incidence of Acinetobacter pittii was unexpectedly high (42/123; 34.1%) and exceeded that of A. baumannii (22/123; 17.9%). Although the present identification rate using MALDI-TOF MS is not acceptable for species-level identification of Acinetobacter, further expansion of the database should remedy this situation. © 2013 The Authors Clinical Microbiology and Infection © 2013 European Society of Clinical Microbiology and Infectious Diseases.

  20. The first gravitational-wave source from the isolated evolution of two stars in the 40-100 solar mass range.

    Science.gov (United States)

    Belczynski, Krzysztof; Holz, Daniel E; Bulik, Tomasz; O'Shaughnessy, Richard

    2016-06-23

    The merger of two massive (about 30 solar masses) black holes has been detected in gravitational waves. This discovery validates recent predictions that massive binary black holes would constitute the first detection. Previous calculations, however, have not sampled the relevant binary-black-hole progenitors--massive, low-metallicity binary stars--with sufficient accuracy nor included sufficiently realistic physics to enable robust predictions to better than several orders of magnitude. Here we report high-precision numerical simulations of the formation of binary black holes via the evolution of isolated binary stars, providing a framework within which to interpret the first gravitational-wave source, GW150914, and to predict the properties of subsequent binary-black-hole gravitational-wave events. Our models imply that these events form in an environment in which the metallicity is less than ten per cent of solar metallicity, and involve stars with initial masses of 40-100 solar masses that interact through mass transfer and a common-envelope phase. These progenitor stars probably formed either about 2 billion years or, with a smaller probability, 11 billion years after the Big Bang. Most binary black holes form without supernova explosions, and their spins are nearly unchanged since birth, but do not have to be parallel. The classical field formation of binary black holes we propose, with low natal kicks (the velocity of the black hole at birth) and restricted common-envelope evolution, produces approximately 40 times more binary-black-holes mergers than do dynamical formation channels involving globular clusters; our predicted detection rate of these mergers is comparable to that from homogeneous evolution channels. Our calculations predict detections of about 1,000 black-hole mergers per year with total masses of 20-80 solar masses once second-generation ground-based gravitational-wave observatories reach full sensitivity.

  1. Analytical Evaluation of the Nonlinear Vibration of Coupled Oscillator Systems

    DEFF Research Database (Denmark)

    Bayat, M.; Shahidi, M.; Barari, Amin

    2011-01-01

    We consider periodic solutions for nonlinear free vibration of conservative, coupled mass-spring systems with linear and nonlinear stiffnesses. Two practical cases of these systems are explained and introduced. An analytical technique called energy balance method (EBM) was applied to calculate...... accuracy which is valid for a wide range of vibration amplitudes as indicated in the presented examples....

  2. Low-frequency vibration control of floating slab tracks using dynamic vibration absorbers

    Science.gov (United States)

    Zhu, Shengyang; Yang, Jizhong; Yan, Hua; Zhang, Longqing; Cai, Chengbiao

    2015-09-01

    This study aims to effectively and robustly suppress the low-frequency vibrations of floating slab tracks (FSTs) using dynamic vibration absorbers (DVAs). First, the optimal locations where the DVAs are attached are determined by modal analysis with a finite element model of the FST. Further, by identifying the equivalent mass of the concerned modes, the optimal stiffness and damping coefficient of each DVA are obtained to minimise the resonant vibration amplitudes based on fixed-point theory. Finally, a three-dimensional coupled dynamic model of a metro vehicle and the FST with the DVAs is developed based on the nonlinear Hertzian contact theory and the modified Kalker linear creep theory. The track irregularities are included and generated by means of a time-frequency transformation technique. The effect of the DVAs on the vibration absorption of the FST subjected to the vehicle dynamic loads is evaluated with the help of the insertion loss in one-third octave frequency bands. The sensitivities of the mass ratio of DVAs and the damping ratio of steel-springs under the floating slab are discussed as well, which provided engineers with the DVA's adjustable room for vibration mitigation. The numerical results show that the proposed DVAs could effectively suppress low-frequency vibrations of the FST when tuned correctly and attached properly. The insertion loss due to the attachment of DVAs increases as the mass ratio increases, whereas it decreases with the increase in the damping ratio of steel-springs.

  3. Differentiation of Staphylococcus argenteus (formerly: Staphylococcus aureus clonal complex 75) by mass spectrometry from S. aureus using the first strain isolated from a wild African great ape.

    Science.gov (United States)

    Schuster, Dominik; Rickmeyer, Jasmin; Gajdiss, Mike; Thye, Thorsten; Lorenzen, Stephan; Reif, Marion; Josten, Michaele; Szekat, Christiane; Melo, Luís D R; Schmithausen, Ricarda M; Liégeois, Florian; Sahl, Hans-Georg; Gonzalez, Jean-Paul J; Nagel, Michael; Bierbaum, Gabriele

    2017-01-01

    The species Staphylococcus argenteus was separated recently from Staphylococcus aureus (Tong S.Y., F. Schaumburg, M.J. Ellington, J. Corander, B. Pichon, F. Leendertz, S.D. Bentley, J. Parkhill, D.C. Holt, G. Peters, and P.M. Giffard, 2015). The objective of this work was to characterise the genome of a non-human S. argenteus strain, which had been isolated from the faeces of a wild-living western lowland gorilla in Gabon, and analyse the spectrum of this species in matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). The full genome sequence revealed a scarcity of virulence genes and absence of resistance genes, indicating a decreased virulence potential compared to S. aureus and the human methicillin-resistant S. argenteus isolate MSHR1132T. Spectra obtained by MALDI-TOF MS and the analysis of available sequences in the genome databases identified several MALDI-TOF MS signals that clearly differentiate S. argenteus, the closely related Staphylococcus schweitzeri and S. aureus. In conclusion, in the absence of biochemical tests that identify the three species, mass spectrometry should be employed as method of choice. Copyright © 2016 Elsevier GmbH. All rights reserved.

  4. The influence of flywheel micro vibration on space camera and vibration suppression

    Science.gov (United States)

    Li, Lin; Tan, Luyang; Kong, Lin; Wang, Dong; Yang, Hongbo

    2018-02-01

    Studied the impact of flywheel micro vibration on a high resolution optical satellite that space-borne integrated. By testing the flywheel micro vibration with six-component test bench, the flywheel disturbance data is acquired. The finite element model of the satellite was established and the unit force/torque were applied at the flywheel mounting position to obtain the micro vibration data of the camera. Integrated analysis of the data of the two parts showed that the influence of flywheel micro vibration on the camera is mainly concentrated around 60-80 Hz and 170-230 Hz, the largest angular displacement of the secondary mirror along the optical axis direction is 0.04″ and the maximum angular displacement vertical to optical axis is 0.032″. After the design and installation of vibration isolator, the maximum angular displacement of the secondary mirror is 0.011″, the decay rate of root mean square value of the angular displacement is more than 50% and the maximum is 96.78%. The whole satellite was suspended to simulate the boundary condition on orbit; the imaging experiment results show that the image motion caused by the flywheel micro vibrationis less than 0.1 pixel after installing the vibration isolator.

  5. The Pseudotumor Cerebri Syndrome: A Unifying Pathophysiological Concept for Patients with Isolated Intracranial Hypertension with Neither Mass Lesion Nor Ventriculomegaly.

    Science.gov (United States)

    Halmagyi, G M; Ahmed, R M; Johnston, I H

    2014-01-01

    In 1991 we proposed that while the syndrome of isolated intracranial hypertension might have many definite and probable causes, it has nonetheless a single unifying pathophysiological mechanism: namely, impairment of cerebrospinal fluid (CSF) reabsorption. For that reason, we also proposed then that it is best described by a single, unifying, inclusive term, namely, pseudotumor cerebri syndrome. Although it appears that there is, as far as nomenclature is concerned, now international agreement, there is as yet no agreement on pathophysiology and classification. Herein we outline our views on these matters and give our reasons.

  6. Steroidal glycosides from the leaves of Ruscus colchicus: isolation and structural elucidation based on a preliminary liquid chromatography-electrospray ionization tandem mass spectrometry profiling.

    Science.gov (United States)

    Perrone, Angela; Muzashvili, Tamara; Napolitano, Assunta; Skhirtladze, Alexandre; Kemertelidze, Ether; Pizza, Cosimo; Piacente, Sonia

    2009-12-01

    An HPLC-ESIMS(n) method, based on high-performance liquid chromatography coupled to electrospray positive ionisation multistage ion trap mass spectrometry, has been used as an effective tool to rapidly identify and guide the isolation of target saponins from the ethanol extract of the leaves of Ruscus colchicus Y. Yeo. Twenty-two steroidal glycosides, including seventeen furostanol, four spirostanol and one cholestane glycosides, were online identified. Subsequently, compounds were isolated and their structures were established by the extensive use of 1D- and 2D-NMR experiments. The structures identified by MS were fully consistent with those elucidated by NMR data. Sixteen steroidal glycosides, including thirteen furostanol, two spirostanol and one cholestane glycosides, were identified along with four known furostanol and two spirostanol glycosides. The saponin profile shows that the furostanol glycosides are the main constituents of R. colchicus extract, unlike the other Ruscus species, for which the spirostanol derivatives generally are reported as the major compounds. Moreover, for the first time a cholestane glycoside has been isolated from R. colchicus.

  7. Rapid identification of clinical mycobacterial isolates by protein profiling using matrix assisted laser desorption ionization-time of flight mass spectrometry.

    Science.gov (United States)

    Panda, A; Kurapati, S; Samantaray, J C; Myneedu, V P; Verma, A; Srinivasan, A; Ahmad, H; Behera, D; Singh, U B

    2013-01-01

    The purpose of this study was to evaluate the identification of Mycobacterium tuberculosis which is often plagued with ambiguity. It is a time consuming process requiring 4-8 weeks after culture positivity, thereby delaying therapeutic intervention. For a successful treatment and disease management, timely diagnosis is imperative. We evaluated a rapid, proteomic based technique for identification of clinical mycobacterial isolates by protein profiling using matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). Freshly grown mycobacterial isolates were used. Acetonitrile/trifluoroacetic acid extraction procedure was carried out, following which cinnamic acid charged plates were subjected to identification by MALDI-TOF MS. A comparative analysis of 42 clinical mycobacterial isolates using the MALDI-TOF MS and conventional techniques was carried out. Among these, 97.61% were found to corroborate with the standard methods at genus level and 85.36% were accurate till the species level. One out of 42 was not in accord with the conventional assays because MALDI-TOF MS established it as Mycobacterium tuberculosis (log (score)>2.0) and conventional methods established it to be non-tuberculous Mycobacterium. MALDI-TOF MS was found to be an accurate, rapid, cost effective and robust system for identification of mycobacterial species. This innovative approach holds promise for early therapeutic intervention leading to better patient care.

  8. Anti-vibration characteristics of rubberised reinforced concrete beams

    OpenAIRE

    Rahman, M; Al-Ghalib, A; Mohammad, FA

    2014-01-01

    The flexural and vibration properties were examined in order to evaluate the anti-vibration characteristics of rubber modified reinforced concrete beam. The rubberised mixtures were produced by replacing 5, 7.5, and 10 % by mass of the fine aggregate with 1–4 mm scrap truck tyre crumb rubber particles. A series of reinforced concrete beam (1,200 × 135 × 90 mm3) was tested in a free vibration mode and then subsequently in a four point flexural tests. The input and output signals from vibration...

  9. Structural investigation by tandem mass spectrometry analysis of a heterogeneous mixture of Lipid An isolated from the lipopolysaccharide of Aeromonas hydrophila SJ-55Ra.

    Science.gov (United States)

    Almostafa, Mervt; Fridgen, Travis D; Banoub, Joseph

    2017-10-24

    We report herein the electrospray ionization mass spectrometry (ESI-MS, negative ion mode) and low-energy collision induced dissociation tandem mass spectrometry (CID-MS/MS) analysis of a mixture of lipid An isolated from the lipopolysaccharide (LPS) of a rough-resistant wild strain of Gram-negative bacteria Aeromonas hydrophila grown in presence of phages (SJ-55Ra). This investigation indicates that the presence of a mixture of lipid A acylated disaccharides, which molecular structures were not relatively conserved, resulted from the incomplete LPS biosynthesis caused by the phage treatment. The heterogeneous lipid An mixture from the LPS-SJ55Ra was obtained following growth of the of the Gram-negative bacteria Aeromonas hydrophila (SJ-55R) in presence of phages and isolated by the aqueous phenol method. Following hydrolysis and purification of the lipopolysaccharide, ESI-MS and low-energy CID-MS/MS analyses were performed on a triple-quadrupole (QqQ) and Fourier transform ion cyclotron resonance (FTICR) instruments. ESI-MS analysis suggested that this lipid An mixture contained of 8 molecular disaccharide anions and 3 monosaccharide anions. This series of lipid An was asymmetrically substituted with ((R)-14:0(3-OH)) fatty acids located at O-3 and N-2 and with branched fatty acids: (Cl4:0(3-(R)-O-C14:0)) and (C12:0(3-(R)-O-(14:0)) at the O- 3' and N-2' positions. Tandem mass spectrometric analyses allowed the exact determination of the respective locations of the fatty acids acylation on the D-GlcpN disaccharide. The MS/MS results established that it was possible to selectively cleave C-O, C-N, C-C bonds, glycosidic C-O and cross ring cleavages, affording excellent structural analysis of lipid A biomolecules. This article is protected by copyright. All rights reserved.

  10. Granular dampers for the reduction of vibrations of an oscillatory saw

    Science.gov (United States)

    Heckel, Michael; Sack, Achim; Kollmer, Jonathan E.; Pöschel, Thorsten

    2012-10-01

    Instruments for surgical and dental application based on oscillatory mechanics submit unwanted vibrations to the operator's hand. Frequently the weight of the instrument's body is increased to dampen its vibration. Based on recent research regarding the optimization of granular damping we developed a prototype granular damper that attenuates the vibrations of an oscillatory saw twice as efficiently as a comparable solid mass.

  11. [Identification of Mycobacterium spp. isolates using matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS)].

    Science.gov (United States)

    Amlerová, J; Studentová, V; Hrabák, J

    2014-09-01

    Matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS) has recently been widely used in diagnostic microbiological laboratories. It is a cheap and rapid method for the identification of bacteria and micromycetes. Apart from this purpose, it is also used for the detection of antibiotic resistance mechanisms. It has the potential to be extended for other purposes in microbiology. The aim of this study was to validate MALDI-TOF MS for the identification of mycobacteria. Thirty isolates of Mycobacterium spp. isolated in the Laboratory of Mycobacteriology of the Plzeň University Hospital were included in the study. The isolates were identified to the species level using biochemical tests, gene probes, and sequencing of the gene encoding 16S rRNA. The identification by MALDI-TOF MS was performed with the use of silica beads. Strain identification by sequencing the gene encoding 16S rRNA was considered as the reference method. MALDI-TOF MS correctly identified all isolates of Mycobacterium spp. (score range 1.461 - 2.168). The species identified were Mycobacterium tuberculosis (n= 5), Mycobacterium kansasii (n=5), Mycobacterium avium (n=6), Mycobacterium intracelullare (n=3), Mycobacterium xenopi (n=3), Mycobacterium gordonae (n=1), Mycobacterium abscessus (n=1), Mycobacterium kumamotonense (n=2), Mycobacterium mantenii (n=1), Mycobacterium lentiflavum (n=1), Mycobacterium fortuitum (n=1), and Mycobacterium scrofulaceum (n=1). MALDI-TOF MS is a suitable tool for the routine identification of Mycobacterium spp. in laboratories using this method for the conventional identification of microbes.

  12. Mass Spectrometry-Based Metabolomics of Agave Sap (Agave salmiana after Its Inoculation with Microorganisms Isolated from Agave Sap Concentrate Selected to Enhance Anticancer Activity

    Directory of Open Access Journals (Sweden)

    Luis M. Figueroa

    2017-11-01

    Full Text Available Saponins have been correlated with the reduction of cancer cell growth and the apoptotic effect of agave sap concentrate. Empirical observations of this artisanal Mexican food have shown that fermentation occurs after agave sap is concentrated, but little is known about the microorganisms that survive after cooking, or their effects on saponins and other metabolites. The aim of this study was to evaluate the changes in metabolites found in agave (A. salmiana sap after its fermentation with microorganisms isolated from agave sap concentrate, and demonstrate its potential use to enhance anticancer activity. Microorganisms were isolated by dilution plating and identified by 16S rRNA analysis. Isolates were used to ferment agave sap, and their corresponding butanolic extracts were compared with those that enhanced the cytotoxic activity on colon (Caco-2 and liver (Hep-G2 cancer cells. Metabolite changes were investigated by mass spectrometry-based metabolomics. Among 69 isolated microorganisms, the actinomycetes Arthrobacter globiformis and Gordonia sp. were used to analyze the metabolites, along with bioactivity changes. From the 939 ions that were mainly responsible for variation among fermented samples at 48 h, 96 h, and 192 h, four were correlated to anticancer activity. It was shown that magueyoside B, a kammogenin glycoside, was found at higher intensities in the samples fermented with Gordonia sp. that reduced Hep-G2 viability better than controls. These findings showed that microorganisms from agave sap concentrate change agave sap metabolites such as saponins. Butanolic extracts obtained after agave sap fermentation with Arthrobacter globiformis or Gordonia sp. increased the cancer cell growth inhibitory effect on colon or liver cancer cells, respectively.

  13. Comparative studies of perceived vibration strength for commercial mobile phones.

    Science.gov (United States)

    Lee, Heow Pueh; Lim, Siak Piang

    2014-05-01

    A mobile phone, also known as cell phone or hand phone, is among the most popular electrical devices used by people all over the world. The present study examines the vibration perception of mobile phones by co-relating the relevant design parameters such as excitation frequency, and size and mass of mobile phones to the vibration perception survey by volunteers. Five popular commercially available mobile phone models were tested. The main findings for the perception surveys were that higher vibration frequency and amplitude of the peak acceleration would result in stronger vibration perception of the mobile phones. A larger contact surface area with the palms and figures, higher peak acceleration and the associated larger peak inertia force may be the main factors for the relatively higher vibration perception. The future design for the vibration alert of the mobile phones is likely to follow this trend. Copyright © 2013 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  14. Identification of clinical isolates of Aspergillus, including cryptic species, by matrix assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS).

    Science.gov (United States)

    Vidal-Acuña, M Reyes; Ruiz-Pérez de Pipaón, Maite; Torres-Sánchez, María José; Aznar, Javier

    2017-12-08

    An expanded library of matrix assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) has been constructed using the spectra generated from 42 clinical isolates and 11 reference strains, including 23 different species from 8 sections (16 cryptic plus 7 noncryptic species). Out of a total of 379 strains of Aspergillus isolated from clinical samples, 179 strains were selected to be identified by sequencing of beta-tubulin or calmodulin genes. Protein spectra of 53 strains, cultured in liquid medium, were used to construct an in-house reference database in the MALDI-TOF MS. One hundred ninety strains (179 clinical isolates previously identified by sequencing and the 11 reference strains), cultured on solid medium, were blindy analyzed by the MALDI-TOF MS technology to validate the generated in-house reference database. A 100% correlation was obtained with both identification methods, gene sequencing and MALDI-TOF MS, and no discordant identification was obtained. The HUVR database provided species level (score of ≥2.0) identification in 165 isolates (86.84%) and for the remaining 25 (13.16%) a genus level identification (score between 1.7 and 2.0) was obtained. The routine MALDI-TOF MS analysis with the new database, was then challenged with 200 Aspergillus clinical isolates grown on solid medium in a prospective evaluation. A species identification was obtained in 191 strains (95.5%), and only nine strains (4.5%) could not be identified at the species level. Among the 200 strains, A. tubingensis was the only cryptic species identified. We demonstrated the feasibility and usefulness of the new HUVR database in MALDI-TOF MS by the use of a standardized procedure for the identification of Aspergillus clinical isolates, including cryptic species, grown either on solid or liquid media. © The Author 2017. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For

  15. Model Indepedent Vibration Control

    OpenAIRE

    Yuan, Jing

    2010-01-01

    A NMIFC system is proposed for broadband vibration control. It has two important features. Feature F1 is that the NMIFC is stable without introducing any invasive effects, such as probing signals or controller perturbations, into the vibration system; feature F2 is

  16. Vibration Theory, Vol. 3

    DEFF Research Database (Denmark)

    Nielsen, Søren R. K.

    The present textbook has been written based on previous lecture notes for a course on stochastic vibration theory that is being given on the 9th semester at Aalborg University for M. Sc. students in structural engineering. The present 4th edition of this textbook on linear stochastic vibration...

  17. Vibration Theory, Vol. 3

    DEFF Research Database (Denmark)

    Nielsen, Søren R. K.

    The present textbook has been written based on previous lecture notes for a course on stochastic vibration theory that is being given on the 9th semester at Aalborg University for M. Sc. students in structural engineering. The present 2nd edition of this textbook on linear stochastic vibration...

  18. Hydroelastic Vibrations of Ships

    DEFF Research Database (Denmark)

    Jensen, Jørgen Juncher; Folsø, Rasmus

    2002-01-01

    A formula for the necessary hull girder bending stiffness required to avoid serious springing vibrations is derived. The expression takes into account the zero crossing period of the waves, the ship speed and main dimensions. For whipping vibrations the probability of exceedance for the combined...

  19. Gearbox vibration diagnostic analyzer

    Science.gov (United States)

    1992-01-01

    This report describes the Gearbox Vibration Diagnostic Analyzer installed in the NASA Lewis Research Center's 500 HP Helicopter Transmission Test Stand to monitor gearbox testing. The vibration of the gearbox is analyzed using diagnostic algorithms to calculate a parameter indicating damaged components.

  20. Mechanical vibration and shock analysis, sinusoidal vibration

    CERN Document Server

    Lalanne, Christian

    2014-01-01

    Everything engineers need to know about mechanical vibration and shock...in one authoritative reference work! This fully updated and revised 3rd edition addresses the entire field of mechanical vibration and shock as one of the most important types of load and stress applied to structures, machines and components in the real world. Examples include everything from the regular and predictable loads applied to turbines, motors or helicopters by the spinning of their constituent parts to the ability of buildings to withstand damage from wind loads or explosions, and the need for cars to m

  1. Vibrations of rotating machinery

    CERN Document Server

    Matsushita, Osami; Kanki, Hiroshi; Kobayashi, Masao; Keogh, Patrick

    2017-01-01

    This book opens with an explanation of the vibrations of a single degree-of-freedom (dof) system for all beginners. Subsequently, vibration analysis of multi-dof systems is explained by modal analysis. Mode synthesis modeling is then introduced for system reduction, which aids understanding in a simplified manner of how complicated rotors behave. Rotor balancing techniques are offered for rigid and flexible rotors through several examples. Consideration of gyroscopic influences on the rotordynamics is then provided and vibration evaluation of a rotor-bearing system is emphasized in terms of forward and backward whirl rotor motions through eigenvalue (natural frequency and damping ratio) analysis. In addition to these rotordynamics concerning rotating shaft vibration measured in a stationary reference frame, blade vibrations are analyzed with Coriolis forces expressed in a rotating reference frame. Other phenomena that may be assessed in stationary and rotating reference frames include stability characteristic...

  2. Vibration Based Sun Gear Damage Detection

    Science.gov (United States)

    Hood, Adrian; LaBerge, Kelsen; Lewicki, David; Pines, Darryll

    2013-01-01

    Seeded fault experiments were conducted on the planetary stage of an OH-58C helicopter transmission. Two vibration based methods are discussed that isolate the dynamics of the sun gear from that of the planet gears, bearings, input spiral bevel stage, and other components in and around the gearbox. Three damaged sun gears: two spalled and one cracked, serve as the focus of this current work. A non-sequential vibration separation algorithm was developed and the resulting signals analyzed. The second method uses only the time synchronously averaged data but takes advantage of the signal/source mapping required for vibration separation. Both algorithms were successful in identifying the spall damage. Sun gear damage was confirmed by the presence of sun mesh groups. The sun tooth crack condition was inconclusive.

  3. Mechanical Vibration Measurements on TTF Cryomodules

    CERN Document Server

    Bosotti, Angelo; Ferianis, Mario; Lange, Rolf; Pagani, Carlo; Paparella, Rocco; Pierini, Paolo; Sertore, Daniele

    2005-01-01

    Few of the TTF cryomodules have been equipped with Wire Position Monitors (WPM) for the on line monitoring of cold mass movements during cool-down, warm-up and operation. Each sensor can be used as a detector for mechanical vibrations of the cryostat. A Digital Receiver board is used to sample and analyze with high frequency resolution, the WPM picked up signals, looking to its amplitude modulation in the microphonic frequency range. Here we review and analyze the data and the vibration spectra taken during operation of the TTF cryomodules # 4 and #5.

  4. Simultaneous Counter-Ion Co-Deposition a Technique Enabling Matrix Isolation Spectroscopy Studies Using Low-Energy Beams of Mass-Selected Ions

    Science.gov (United States)

    Ludwig, Ryan M.; Moore, David T.

    2014-06-01

    Matrix isolation spectroscopy was first developed in Pimentel's group during the 1950's to facilitate spectroscopic studies of transient species. Cryogenic matrices of condensed rare gases provide an inert chemical environment with facile energy dissipation and are transparent at all wavelengths longer than vacuum UV, making them ideal for studying labile and reactive species such as radicals, weakly bound complexes, and ions. Since frozen rare gases are poor electrolytes, studies of ions require near-equal populations of anions and cations in order to stabilize the number densities required for spectroscopic experiments. Many techniques for generation of ions for using in matrix isolation studies satisfy this criterion intrinsically, however when ion beams generated in external sources are deposited, the counter-ions typically arise via secondary processes that are at best loosely controlled. It has long been recognized that it would be desirable to stabilize deposition of mass-selected ions generated in an external source using simultaneous co-deposition of a beam of counter-ions, however previous attempts to achieve this have been reported as unsuccessful. The Moore group at Lehigh has demonstrated successful experiments of this type, using mass-selected anions generated from a metal cluster source, co-deposited with a balanced current of cations generated in a separate electron ionization source. This talk will focus on the details of the technique, and present some results from proof-of-concept studies on anionic copper carbonyl complexes formed in argon matrices following co-deposition of Cu- with Ar+ or Kr+. Funding support from NSF CAREER Award CHE-0955637 is gratefully acknowledged. Whittle et al., J. Chem. Phys. 22, p.1943 (1954); Becker et al., J. Chem. Phys. 25, p.224 (1956). Godbout et al., J. Chem. Phys. 96, p.2892 (1996). Sabo et al., Appl. Spectrosc. 45, p. 535 (1991).

  5. Selective injection and isolation of ions in quadrupole ion trap mass spectrometry using notched waveforms created using the inverse Fourier transform

    Energy Technology Data Exchange (ETDEWEB)

    Soni, M.H.; Cooks, R.G. (Purdue Univ., West Lafayette, IN (United States))

    1994-08-01

    Broad-band excitation of ions is accomplished in the quadrupole ion trap mass spectrometer using notched waveforms created by the SWIFT (stored waveform inverse Fourier transform) technique. A series of notched SWIFT pulses are applied during the period of ion injection from an external Cs[sup +] source to resonantly eject all ions whose resonance frequencies fall within the frequency range of the pulse while injecting only those analyte ions whose resonance frequencies fall within the limits of the notch. This allows selective injection and accumulation of the ions of interest and continuous ejection of the unwanted ions. This is shown to result in significant improvement in S/N ratio, resolution, and sensitivity for the analyte ions of interest. Selective ion injection is demonstrated by injecting the protonated molecules of peptides VSV and gramicidin S and the intact cation of l-carnitine hydrochloride, using singly notched SWIFT pulses. Multiply notched SWIFT pulses are used to simultaneously inject ions of different m/z values of l-carnitine hydrochloride into the ion trap. A new coarse/fine ion isolation procedure, which employs a doubly notched SWIFT pulse, is demonstrated for isolating ions of a single m/z value of 4-bromobiphenyl from a population of trapped ions. 36 refs., 10 figs., 2 tabs.

  6. Quantitative comparison of structure and dynamics of elastin following three isolation schemes by 13C solid state NMR and MALDI mass spectrometry.

    Science.gov (United States)

    Papaioannou, A; Louis, M; Dhital, B; Ho, H P; Chang, E J; Boutis, G S

    2015-05-01

    Methods for isolating elastin from fat, collagen, and muscle, commonly used in the design of artificial elastin based biomaterials, rely on exposing tissue to harsh pH levels and temperatures that usually denature many proteins. At present, a quantitative measurement of the modifications to elastin following isolation from other extracellular matrix constituents has not been reported. Using magic angle spinning (13)C NMR spectroscopy and relaxation methodologies, we have measured the modification in structure and dynamics following three known purification protocols. Our experimental data reveal that the (13)C spectra of the hydrated samples appear remarkably similar across the various purification methods. Subtle differences in the half maximum widths were observed in the backbone carbonyl suggesting possible structural heterogeneity across the different methods of purification. Additionally, small differences in the relative signal intensities were observed between purified samples. Lyophilizing the samples results in a reduction of backbone motion and reveals additional differences across the purification methods studied. These differences were most notable in the alanine motifs indicating possible changes in cross-linking or structural rigidity. The measured correlation times of glycine and proline moieties are observed to also vary considerably across the different purification methods, which may be related to peptide bond cleavage. Lastly, the relative concentration of desmosine cross-links in the samples quantified by MALDI mass spectrometry is reported. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. MALDI-TOF mass spectrometry for the identification of lactic acid bacteria isolated from a French cheese: The Maroilles.

    Science.gov (United States)

    Nacef, Menouar; Chevalier, Mickaël; Chollet, Sylvie; Drider, Djamel; Flahaut, Christophe

    2017-04-17

    In this study we identified the culturable population of mesophilic lactic acid bacteria (LAB) from a French cheese Maroilles made either with raw or pasteurized milk using MALDI-TOF mass spectrometry (MS). Samples from rind and heart of Maroilles cheese were used, the LAB were selected on MRS agar at 30°C and 197 Gram-positive and catalase-negative strains were subjected to identification by MALDI-TOF MS profiling. All strains were unambiguously identified: 105 strains from Maroilles made with raw milk (38 on the rind and 67 in the heart) and 92 strains from Maroilles made with pasteurized milk (39 on the rind and 53 in the heart). MALDI-TOF MS identification allowed identification of three genera belonging to LAB including Lactobacillus, Enterococcus and Leuconostoc. Lactobacillus was the most represented genus with seven species: Lactobacillus plantarum (L. plantarum), L. paracasei, L. curvatus, L. rhamnosus, L. fructivorans, L. parabuchneri, L. brevis found in Maroilles made with both kind of milk. The correlation between the 16S rDNA-based identification performed on selected strains and those obtained by MALDI-TOF-MS demonstrates that this fast, economically affordable, robust and reliable method for bacteria characterisation stands as an attractive alternative to the commonly-used methods and its application in food industry is discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Tuneable vibration absorber design to suppress vibrations: An application in boring manufacturing process

    Science.gov (United States)

    Moradi, H.; Bakhtiari-Nejad, F.; Movahhedy, M. R.

    2008-11-01

    Dynamic vibration absorbers are used to reduce the undesirable vibrations in many applications such as electrical transmission lines, helicopters, gas turbines, engines, bridges, etc. Tuneable vibration absorbers (TVA) are also used as semi-active controllers. In this paper, the application of a TVA for suppression of chatter vibrations in the boring manufacturing process is presented. The boring bar is modeled as a cantilever Euler-Bernoulli beam and the TVA is composed of mass, spring and dashpot elements. In addition, the effect of spring mass is considered in this analysis. After formulation of the problem, the optimum specifications of the absorber such as spring stiffness, absorber mass and its position are determined using an algorithm based on the mode summation method. The analog-simulated block diagram of the system is developed and the effects of various excitations such as step, ramp, etc. on the absorbed system are simulated. In addition, chatter stability is analyzed in dominant modes of boring bar. Results show that at higher modes, larger critical widths of cut and consequently more material removal rate (MRR) can be achieved. In the case of self-excited vibration, which is associated with a delay differential equation, the optimum absorber suppresses the chatter and increases the limit of stability.

  9. Structural Stability and Vibration

    DEFF Research Database (Denmark)

    Wiggers, Sine Leergaard; Pedersen, Pauli

    This book offers an integrated introduction to the topic of stability and vibration. Strikingly, it describes stability as a function of boundary conditions and eigenfrequency as a function of both boundary conditions and column force. Based on a post graduate course held by the author at the Uni......This book offers an integrated introduction to the topic of stability and vibration. Strikingly, it describes stability as a function of boundary conditions and eigenfrequency as a function of both boundary conditions and column force. Based on a post graduate course held by the author...... and their derivation, thus stimulating them to write interactive and dynamic programs to analyze instability and vibrational modes....

  10. Vibration Analysis and the Accelerometer

    Science.gov (United States)

    Hammer, Paul

    2011-01-01

    Have you ever put your hand on an electric motor or motor-driven electric appliance and felt it vibrate? Ever wonder why it vibrates? What is there about the operation of the motor, or the object to which it is attached, that causes the vibrations? Is there anything "regular" about the vibrations, or are they the result of random causes? In this…

  11. Vibrational energy flow in substituted benzenes

    Science.gov (United States)

    Pein, Brandt C.

    Using ultrafast infrared (IR) Raman spectroscopy, vibrational energy flow was monitored in several liquid-state substituted benzenes at ambient temperature. In a series of mono-halogenated benzenes, X-C6H 5 (X = F, Cl, Br, I), a similar CH-stretch at 3068 cm-1 was excited using picosecond IR pulses and the resulting vibrational relaxation and overall vibrational cooling processes were monitored with anti-Stokes spectroscopy. In the molecules with a heavier halide substituent the CH-stretch decayed slower while midrange vibrations decayed faster. This result was logical if the density of states (DOS) in the first few tiers, which is the DOS composed of vibrations with smaller quantum number, is what primarily determines energy flow. For tiers 1-4, the DOS was nearly identical in the CH-stretch region while it increased in the midrange region for heavier halide mass. Excitation spectroscopy, an extension of 3D IR-Raman spectroscopy, was developed and used to selectively pump vibrations localized to the substituent or the phenyl group in nitrobenzene (NB), o-fluoronitrobenzene (OFNB) and o-nitrotoluene (ONT) and in the alkylbenzene series toluene, isopropylbenzene (IPB), and t-butylbenzene (TBB). Using quantum chemical calculations, each Raman active vibration was sorted, according to their atomic displacements, into three classifications: substituent, phenyl, or global. Using IR pump wavenumbers that initially excited substituent or phenyl vibrations, IR-Raman spectroscopy was used to monitor energy flowing from the substituent to phenyl vibrations and vice versa. In NB nitro-to-phenyl and nitro-to-global energy flow was almost nonexistent while phenyl-to-nitro and phenyl-to-global was weak. When ortho substituents (-CH3, -F) were introduced, energy flow from nitro-to-phenyl and nitro-to-global was activated. In ONT, phenyl-to-nitro energy flow ceased possibly due to the added methyl group diverting energy from entering the nitro vibrations. Energy flow is therefore

  12. Vibrations and Stability

    DEFF Research Database (Denmark)

    Thomsen, Jon Juel

    About this textbook An ideal text for students that ties together classical and modern topics of advanced vibration analysis in an interesting and lucid manner. It provides students with a background in elementary vibrations with the tools necessary for understanding and analyzing more complex...... dynamical phenomena that can be encountered in engineering and scientific practice. It progresses steadily from linear vibration theory over various levels of nonlinearity to bifurcation analysis, global dynamics and chaotic vibrations. It trains the student to analyze simple models, recognize nonlinear...... phenomena and work with advanced tools such as perturbation analysis and bifurcation analysis. Explaining theory in terms of relevant examples from real systems, this book is user-friendly and meets the increasing interest in non-linear dynamics in mechanical/structural engineering and applied mathematics...

  13. A MEMS vibration energy harvester for automotive applications

    Science.gov (United States)

    van Schaijk, R.; Elfrink, R.; Oudenhoven, J.; Pop, V.; Wang, Z.; Renaud, M.

    2013-05-01

    The objective of this work is to develop MEMS vibration energy harvesters for tire pressure monitoring systems (TPMS), they can be located on the rim or on the inner-liner of the car tire. Nowadays TPMS modules are powered by batteries with a limited lifetime. A large effort is ongoing to replace batteries with small and long lasting power sources like energy harvesters [1]. The operation principle of vibration harvesters is mechanical resonance of a seismic mass, where mechanical energy is converted into electrical energy. In general, vibration energy harvesters are of specific interest for machine environments where random noise or repetitive shock vibrations are present. In this work we present the results for MEMS based vibration energy harvesting for applying on the rim or inner-liner. The vibrations on the rim correspond to random noise. A vibration energy harvester can be described as an under damped mass-spring system acting like a mechanical band-pass filter, and will resonate at its natural frequency [2]. At 0.01 g2/Hz noise amplitude the average power can reach the level that is required to power a simple wireless sensor node, approximately 10 μW [3]. The dominant vibrations on the inner-liner consist mainly of repetitive high amplitude shocks. With a shock, the seismic mass is displaced, after which the mass will "ring-down" at its natural resonance frequency. During the ring-down period, part of the mechanical energy is harvested. On the inner-liner of the tire repetitive (one per rotation) high amplitude (few hundred g) shocks occur. The harvester enables an average power of a few tens of μW [4], sufficient to power a more sophisticated wireless sensor node that can measure additional tire-parameters besides pressure. In this work we characterized MEMS vibration energy harvesters for noise and shock excitation. We validated their potential for TPMS modules by measurements and simulation.

  14. Nanoscale piezoelectric vibration energy harvester design

    Science.gov (United States)

    Foruzande, Hamid Reza; Hajnayeb, Ali; Yaghootian, Amin

    2017-09-01

    Development of new nanoscale devices has increased the demand for new types of small-scale energy resources such as ambient vibrations energy harvesters. Among the vibration energy harvesters, piezoelectric energy harvesters (PEHs) can be easily miniaturized and fabricated in micro and nano scales. This change in the dimensions of a PEH leads to a change in its governing equations of motion, and consequently, the predicted harvested energy comparing to a macroscale PEH. In this research, effects of small scale dimensions on the nonlinear vibration and harvested voltage of a nanoscale PEH is studied. The PEH is modeled as a cantilever piezoelectric bimorph nanobeam with a tip mass, using the Euler-Bernoulli beam theory in conjunction with Hamilton's principle. A harmonic base excitation is applied as a model of the ambient vibrations. The nonlocal elasticity theory is used to consider the size effects in the developed model. The derived equations of motion are discretized using the assumed-modes method and solved using the method of multiple scales. Sensitivity analysis for the effect of different parameters of the system in addition to size effects is conducted. The results show the significance of nonlocal elasticity theory in the prediction of system dynamic nonlinear behavior. It is also observed that neglecting the size effects results in lower estimates of the PEH vibration amplitudes. The results pave the way for designing new nanoscale sensors in addition to PEHs.

  15. Nanoscale piezoelectric vibration energy harvester design

    Directory of Open Access Journals (Sweden)

    Hamid Reza Foruzande

    2017-09-01

    Full Text Available Development of new nanoscale devices has increased the demand for new types of small-scale energy resources such as ambient vibrations energy harvesters. Among the vibration energy harvesters, piezoelectric energy harvesters (PEHs can be easily miniaturized and fabricated in micro and nano scales. This change in the dimensions of a PEH leads to a change in its governing equations of motion, and consequently, the predicted harvested energy comparing to a macroscale PEH. In this research, effects of small scale dimensions on the nonlinear vibration and harvested voltage of a nanoscale PEH is studied. The PEH is modeled as a cantilever piezoelectric bimorph nanobeam with a tip mass, using the Euler-Bernoulli beam theory in conjunction with Hamilton’s principle. A harmonic base excitation is applied as a model of the ambient vibrations. The nonlocal elasticity theory is used to consider the size effects in the developed model. The derived equations of motion are discretized using the assumed-modes method and solved using the method of multiple scales. Sensitivity analysis for the effect of different parameters of the system in addition to size effects is conducted. The results show the significance of nonlocal elasticity theory in the prediction of system dynamic nonlinear behavior. It is also observed that neglecting the size effects results in lower estimates of the PEH vibration amplitudes. The results pave the way for designing new nanoscale sensors in addition to PEHs.

  16. The highest bond order between heavier main-group elements in an isolated compound? Energetics and vibrational spectroscopy of S2I4(MF6)2 (M = As, Sb).

    Science.gov (United States)

    Brownridge, Scott; Cameron, T Stanley; Du, Hongbin; Knapp, Carsten; Köppe, Ralf; Passmore, Jack; Rautiainen, J Mikko; Schnöckel, Hansgeorg

    2005-03-21

    The vibrational spectra of S2I4(MF6)2(s) (M = As, Sb), a normal coordinate analysis of S2I4(2+), and a redetermination of the X-ray structure of S2I4(AsF6)2 at low temperature show that the S-S bond in S2I4(2+) has an experimentally based bond order of 2.2-2.4, not distinguishably different from bond orders, based on calculations, of the Si-Si bonds in the proposed triply bonded disilyne of the isolated [(Me3Si)2 CH]2 (iPr)SiSiSiSi(iPr)[CH(SiMe3)2]2 and the hypothetical trans-RSiSiR (R = H, Me, Ph). Therefore, both S2I4(2+) and [(Me3Si)2 CH]2 (iPr)SiSiSiSi(iPr)[CH(SiMe3)2]2 have the highest bond orders between heavier main-group elements in an isolated compound, given a lack of the general acceptance of a bond order > 2 for the Ga-Ga bond in Na2[{Ga(C6H3Trip2-2,6)}2] (Trip = C6H2Pr(i)3-2,4,6) and the fact that the reported bond orders for the heavier group 14 alkyne analogues of formula REER [E = Ge, Sn, or Pb; R = bulky organic group] are ca. 2 or less. The redetermination of the X-ray structure gave a higher accuracy for the short S-S [1.842(4) A, Pauling bond order (BO) = 2.4] and I-I [2.6026(9) A, BO = 1.3] bonds and allowed the correct modeling of the AsF6- anions, the determination of the cation-anion contacts, and thus an empirical estimate of the positive charge on the sulfur and iodine atoms. FT-Raman and IR spectra of both salts, obtained for the first time, were assigned with the aid of density functional theory calculations and gave a stretching frequency of 734 cm(-1) for the S-S bond and 227 cm(-1) for the I-I bond, implying bond orders of 2.2 and 1.3, respectively. A normal-coordinate analysis showed that no mixing occurs and yielded force constants for the S-S (5.08 mdyn/A) and I-I bonds (1.95 mdyn/A), with corresponding bond orders of 2.2 for the S-S bond and 1.3 for the I-I bond, showing that S2I4(2+) maximizes pi bond formation. The stability of S2I4(2+) in the gas phase, in SO2 and HSO3F solutions, and in the solid state as its AsF6- salts was

  17. Relating normal vibrational modes to local vibrational modes: benzene and naphthalene.

    Science.gov (United States)

    Zou, Wenli; Kalescky, Robert; Kraka, Elfi; Cremer, Dieter

    2013-07-01

    Local vibrational modes can be directly derived from normal vibrational modes using the method of Konkoli and Cremer (Int J Quant Chem 67:29, 1998). This implies the calculation of the harmonic force constant matrix F (q) (expressed in internal coordinates q) from the corresponding Cartesian force constant matrix f (x) with the help of the transformation matrix U = WB (†)(BWB (†))(-1) (B: Wilson's B-matrix). It is proven that the local vibrational modes are independent of the choice of the matrix W. However, the choice W = M (-1) (M: mass matrix) has numerical advantages with regard to the choice W = I (I: identity matrix), where the latter is frequently used in spectroscopy. The local vibrational modes can be related to the normal vibrational modes in the form of an adiabatic connection scheme (ACS) after rewriting the Wilson equation with the help of the compliance matrix. The ACSs of benzene and naphthalene based on experimental vibrational frequencies are discussed as nontrivial examples. It is demonstrated that the local-mode stretching force constants provide a quantitative measure for the C-H and C-C bond strength.

  18. Evaluation of Bus Vibration Comfort Based on Passenger Crowdsourcing Mode

    Directory of Open Access Journals (Sweden)

    Hong Zhao

    2016-01-01

    Full Text Available Vibration comfort is an important factor affecting the quality of service (QoS of bus. In order to make people involved in supervising bus’s vibration comfort and improve passengers’ riding experience, a novel mode of passenger crowdsourcing is introduced. In this paper, comfort degree of bus vibration is calculated from bus’s vibration signals collected by passengers’ smartphones and sent through WiFi to the Boa web server which shows the vibration comfort on the LCD deployed in bus and maybe trigger alarm lamp when the vibration is beyond the threshold. Three challenges here have been overcome: firstly, space coordinate transformation algorithm is used to solve the constant drift of signals collected; secondly, a low-pass filter is designed to isolate gravity from signals real-timely via limited computing resources; thirdly, an embedded evaluation system is developed according to the calculation procedure specified by criterion ISO 2631-1997. Meanwhile, the model proposed is tested in a practical running environment, the vibration data in whole travel are recorded and analyzed offline. The results show that comfort degree of vibration obtained from the experimental system is identical with the truth, and this mode is proved to be effective.

  19. Emitted vibration measurement device and method

    Science.gov (United States)

    Gisler, G. L.

    1986-10-01

    This invention is directed to a method and apparatus for measuring emitted vibrational forces produced by a reaction wheel assembly due to imbalances, misalignment, bearing defects and the like. The apparatus includes a low mass carriage supported on a large mass base. The carriage is in the form of an octagonal frame having an opening which is adapted for receiving the reaction wheel assembly supported thereon by means of a mounting ring. The carriage is supported on the base by means of air bearings which support the carriage in a generally frictionless manner when supplied with compressed air from a source. A plurality of carriage brackets and a plurality of base blocks provided for physical coupling of the base and carriage. The sensing axes of the load cells are arranged generally parallel to the base and connected between the base and carriage such that all of the vibrational forces emitted by the reaction wheel assembly are effectively transmitted through the sensing axes of the load cells. In this manner, a highly reliable and accurate measurment of the vibrational forces of the reaction wheel assembly can be had. The output signals from the load cells are subjected to a dynamical analyzer which analyzes and identifies the rotor and spin bearing components which are causing the vibrational forces.

  20. Analysis of longitudinal vibration band gaps in periodic carbon nanotube intramolecular junctions using finite element method

    Directory of Open Access Journals (Sweden)

    Jiaqian Li

    2015-12-01

    Full Text Available The longitudinal vibration band gaps in periodic (n, 0–(2n, 0 single-walled carbon nanotube(SWCNT intramolecular junctions(IMJs are investigated based on the finite element calculation. The frequency ranges of band gaps in frequency response functions(FRF simulated by finite element method (FEM show good agreement with those in band structure obtained by simple spring-mass model. Moreover, a comprehensive parametric study is also conducted to highlight the influences of the geometrical parameters such as the size of unit cell, component ratios of the IMJs and diameters of the CNT segments as well as geometric imperfections on the first band gap. The results show that the frequency ranges and the bandwidth of the gap strongly depend on the geometrical parameters. Furthermore, the influences of geometrical parameters on gaps are nuanced in IMJs with different topological defects. The existence of vibration band gaps in periodic IMJs lends a new insight into the development of CNT-based nano-devices in application of vibration isolation.

  1. Vision Influence on Whole-Body Human Vibration Comfort Levels

    Directory of Open Access Journals (Sweden)

    Maria Lúcia Machado Duarte

    2006-01-01

    Full Text Available The well being of people needs to be a priority in the modern world. In that respect, vibration cannot be one more cause of stress. Besides that, vibration comfort is very important, since high levels may cause health or even tasks' accomplishment problems. Several parameters may influence the levels of vibration a human being supports. Among them, one can mention the influence of gender, age, corporeal mass index (CMI, temperature, humor, anxiety, hearing, posture, vision, etc. The first three parameters mentioned were already investigated in previous studies undertaken by GRAVI (Group of Acoustics and Vibration researchers. In this paper, the influence of vision is evaluated. The main objective with this series of tests performed is to try to quantify in a future the influence of each parameter in a global vibration comfort level. Conclusions are presented for the parameter investigated.

  2. Investigation of mistuning impact on vibration of rotor bladed disks

    Science.gov (United States)

    Repetckii, O.; Ryzhikov, I.; Quyet Nguyen, Tien

    2018-01-01

    Mistuning often reduces the fatigue life of bladed disks. The objective of this study is to determine the degree of influence of various types of mistuning on bladed disk vibration. It is also important to determine how the position of the detuned blades in the bladed disk affects the vibrations. The results of experimental and numerical analysis of mistuned bladed disk vibration are presented. The authors investigated the effect of various types of mistuning (geometry, mass, etc.) on the free vibrations of the bladed disk. The worst cases with minimum mistuning and maximum localization were identified. The developed algorithms for calculating of mistuned bladed disks vibration and obtained results can be used, when designing turbomachines rotors.

  3. MR Damper Controlled Vibration Absorber for Enhanced Mitigation of Harmonic Vibrations

    Directory of Open Access Journals (Sweden)

    Felix Weber

    2016-12-01

    Full Text Available This paper describes a semi-active vibration absorber (SVA concept based on a real-time controlled magnetorheological damper (MR-SVA for the enhanced mitigation of structural vibrations due to harmonic disturbing forces. The force of the MR damper is controlled in real-time to generate the frequency and damping controls according to the behaviour of the undamped vibration absorber for the actual frequency of vibration. As stiffness and damping emulations in semi-active actuators are coupled quantities the control is formulated to prioritize the frequency control by the controlled stiffness. The control algorithm is augmented by a stiffness correction method ensuring precise frequency control when the desired control force is constrained by the semi-active restriction and residual force of the MR damper. The force tracking task is solved by a model-based feed forward with feedback correction. The MR-SVA is numerically and experimentally validated for the primary structure with nominal eigenfrequency and when de-tuning of −10%, −5%, +5% and +10% is present. Both validations demonstrate that the MR-SVA improves the vibration reduction in the primary structure by up to 55% compared to the passive tuned mass damper (TMD. Furthermore, it is shown that the MR-SVA with only 80% of tuned mass leads to approximately the same enhanced performance while the associated increased relative motion amplitude of the tuned mass is more than compensated be the reduced dimensions of the mass. Therefore, the MR-SVA is an appropriate solution for the mitigation of tall buildings where the pendulum mass can be up to several thousands of metric tonnes and space for the pendulum damper is limited.

  4. Design of a nonlinear torsional vibration absorber

    Science.gov (United States)

    Tahir, Ammaar Bin

    Tuned mass dampers (TMD) utilizing linear spring mechanisms to mitigate destructive vibrations are commonly used in practice. A TMD is usually tuned for a specific resonant frequency or an operating frequency of a system. Recently, nonlinear vibration absorbers attracted attention of researchers due to some potential advantages they possess over the TMDs. The nonlinear vibration absorber, or the nonlinear energy sink (NES), has an advantage of being effective over a broad range of excitation frequencies, which makes it more suitable for systems with several resonant frequencies, or for a system with varying excitation frequency. Vibration dissipation mechanism in an NES is passive and ensures that there is no energy backflow to the primary system. In this study, an experimental setup of a rotational system has been designed for validation of the concept of nonlinear torsional vibration absorber with geometrically induced cubic stiffness nonlinearity. Dimensions of the primary system have been optimized so as to get the first natural frequency of the system to be fairly low. This was done in order to excite the dynamic system for torsional vibration response by the available motor. Experiments have been performed to obtain the modal parameters of the system. Based on the obtained modal parameters, the design optimization of the nonlinear torsional vibration absorber was carried out using an equivalent 2-DOF modal model. The optimality criterion was chosen to be maximization of energy dissipation in the nonlinear absorber attached to the equivalent 2-DOF system. The optimized design parameters of the nonlinear absorber were tested on the original 5-DOF system numerically. A comparison was made between the performance of linear and nonlinear absorbers using the numerical models. The comparison showed the superiority of the nonlinear absorber over its linear counterpart for the given set of primary system parameters as the vibration energy dissipation in the former is

  5. Vibration Control via Stiffness Switching of Magnetostrictive Transducers

    Science.gov (United States)

    Scheidler, Justin J.; Asnani, Vivake M.; Dapino, Marcelo J.

    2016-01-01

    This paper presents a computational study of structural vibration control that is realized by switching a magnetostrictive transducer between high and low stiffness states. Switching is accomplished by either changing the applied magnetic field with a voltage excitation or changing the shunt impedance on the transducer's coil (i.e., the magnetostrictive material's magnetic boundary condition). Switched-stiffness vibration control is simulated using a lumped mass supported by a damper and the magnetostrictive transducer (mount), which is represented by a nonlinear, electromechanical model. Free vibration of the mass is calculated while varying the mount's stiffness according to a reference switched-stiffness vibration control law. The results reveal that switching the magnetic field produces the desired change in stiffness, but also an undesired actuation force that can significantly degrade the vibration control. Hence, a modified switched-stiffness control law that accounts for the actuation force is proposed and implemented for voltage-controlled stiffness switching. The influence of the magnetomechanical bias condition is also discussed. Voltage-controlled stiffness switching is found to introduce damping equivalent to a viscous damping factor up to about 0.25; this is shown to primarily result from active vibration reduction caused by the actuation force. The merit of magnetostrictive switched-stiffness vibration control is then quantified by comparing the results of voltage- and shunt-controlled stiffness switching to the performance of optimal magnetostrictive shunt damping.

  6. A Novel Wireless and Temperature-Compensated SAW Vibration Sensor

    Directory of Open Access Journals (Sweden)

    Wen Wang

    2014-11-01

    Full Text Available A novel wireless and passive surface acoustic wave (SAW based temperature-compensated vibration sensor utilizing a flexible Y-cut quartz cantilever beam with a relatively substantial proof mass and two one-port resonators is developed. One resonator acts as the sensing device adjacent to the clamped end for maximum strain sensitivity, and the other one is used as the reference located on clamped end for temperature compensation for vibration sensor through the differential approach. Vibration directed to the proof mass flex the cantilever, inducing relative changes in the acoustic propagation characteristics of the SAW travelling along the sensing device, and generated output signal varies in frequency as a function of vibration.  A theoretical mode using the Rayleigh method was established to determine the optimal dimensions of the cantilever beam. Coupling of Modes (COM model was used to extract the optimal design parameters of the SAW devices prior to fabrication. The performance of the developed SAW sensor attached to an antenna towards applied vibration was evaluated wirelessly by using the precise vibration table, programmable incubator chamber, and reader unit.  High vibration sensitivity of ~10.4 kHz/g, good temperature stability, and excellent linearity were observed in the wireless measurements.

  7. Dynamics of Multistage Gear Transmission with Effects of Gearbox Vibrations

    Science.gov (United States)

    Choy, F. K.; Tu, Y. K.; Zakrajsek, J. J.; Townsend, Dennis P.

    1990-01-01

    A comprehensive approach is presented in analyzing the dynamic behavior of multistage gear transmission systems with the effects of gearbox induced vibrations and mass imbalances of the rotor. The modal method, with undamped frequencies and planar mode shapes, is used to reduce the degrees of freedom of the gear system for time-transient dynamic analysis. Both the lateral and torsional vibration modes of each rotor-bearing-gear stage as well as the interstage vibrational characteristics are coupled together through localized gear mesh tooth interactions. In addition, gearbox vibrations are also coupled to the rotor-bearing-gear system dynamics through bearing support forces between the rotor and the gearbox. Transient and steady state dynamics of lateral and torsional vibrations of the geared system are examined in both time and frequency domains to develop interpretations of the overall modal dynamic characteristics under various operating conditions. A typical three-stage geared system is used as an example. Effects of mass imbalance and gearbox vibrations on the system dynamic behavior are presented in terms of modal excitation functions for both lateral and torsional vibrations. Operational characteristics and conclusions are drawn from the results presented.

  8. [Performance of two matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) models for identification of bacteria isolated from blood culture].

    Science.gov (United States)

    Itoh, Eisuke; Watari, Tomohisa; Azuma, Yuka; Watanabe, Naoki; Tomoda, Yutaka; Akasaka, Kazumi; Kino, Shuichi

    2013-05-01

    We compared the results of two bacterial identification methods: 1) a traditional method based on phenotypic identification of the causative organism using gram-staining, culture and biochemical markers and 2) matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). A total of 111 isolates, including 107 strains of common bacteria species and 4 strains of 3 yeast species, were tested by the traditional method and MALDI-TOF MS method(VITEK MS and Micro flex LT). Data obtained using MALDI-TOF MS were classified as Level 1 and Level 2 according to the confidence level of identification results from the VITEK MS ver. 1.0 database (VITEK MS) and MALDI Biotyper ver. 2.0 database (Microflex LT). The proportions of measured samples identified as Level 1 were 98.2% with the VITEK MS database and 87.4% with the MALDI Biotyper database. The concordance rates of the traditional method were 93.7% with the VITEK MS database and 82.0% with the MALDI Biotyper database. Identification results of five strains were mismatched between the traditional method and MALDI-TOF MS. Their ribosomal RNA sequences were identical to the results obtained from MALDI-TOF MS. We concluded that the performance of VITEK MS is superior to that of the traditional method and Microflex LT.

  9. Isolation, characterisation and quantification of the main oligomeric macrocyclic ellagitannins in Epilobium angustifolium by ultra-high performance chromatography with diode array detection and electrospray tandem mass spectrometry.

    Science.gov (United States)

    Baert, Nicolas; Karonen, Maarit; Salminen, Juha-Pekka

    2015-11-06

    Tannins have beneficial effects in animal nutrition as they are able to decrease methane emission in ruminants and exert anthelminthic activity against intestinal nematodes. However, tannins can have very diverse structures and therefore, different activities. In order to enhance the research in tannin-rich forages we need tools which are able to quantify tannins individually. In this study we isolated and characterised the main tellimagrandin I (TI)-based oligomeric ellagitannins (ETs) from Epilobium angustifolium (willowherb) and developed a UHPLC-DAD-ESI-MS/MS method to quantify them in plant extracts. The mass spectrometer was operated in Multiple Reaction Monitoring mode to enable the selective detection of dimeric to heptameric ETs from the plant extract. The method proved to be sensitive, with limits of detection ranging from 0.1 to 1.3μgmL(-1). The stability test showed a good repeatability with an inter-run deviation of the results from 0.1 to 5%, except for the pentamer and hexamer where it reached 8%. The method was then successfully applied to evaluate the distribution of those ETs in the plant. This work also provides the first time evidence of the presence of tetrameric to heptameric TI in willowherb. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Formation of the main UV-induced thymine dimeric lesions within isolated and cellular DNA as measured by high performance liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Douki, T; Court, M; Sauvaigo, S; Odin, F; Cadet, J

    2000-04-21

    UVB radiation-induced formation of dimeric photoproducts at bipyrimidine sites within DNA has been unambiguously associated with the lethal and mutagenic properties of sunlight. The main lesions include the cyclobutane pyrimidine dimers and the pyrimidine (6-4) pyrimidone adducts. The latter compounds have been shown in model systems to be converted into their Dewar valence isomers upon exposure to UVB light. A new direct assay, based on the use of liquid chromatography coupled to tandem mass spectrometry, is now available to simultaneously detect each of the thymine photoproducts. It was applied to the determination of the yields of formation of the thymine lesions within both isolated and cellular DNA exposed to either UVC or UVB radiation. The cis-syn cyclobutane thymine dimer was found to be the major photoproduct within cellular DNA, whereas the related (6-4) adduct was produced in an approximately 8-fold lower yield. Interestingly, the corresponding Dewar valence isomer could not be detected upon exposure of human cells to biologically relevant doses of UVB radiation.

  11. Force limited vibration testing: an evaluation of the computation of C2 for real load and probabilistic source

    NARCIS (Netherlands)

    Wijker, Jacob J; de Boer, Andries; Ellenbroek, Marcellinus Hermannus Maria

    2015-01-01

    To prevent over-testing of the test-item during random vibration testing Scharton proposed and discussed the force limited random vibration testing (FLVT) in a number of publications. Besides the random vibration specification, the total mass and the turn-over frequency of the load (test item), is a

  12. Vibrational spectroscopy of resveratrol

    Science.gov (United States)

    Billes, Ferenc; Mohammed-Ziegler, Ildikó; Mikosch, Hans; Tyihák, Ernő

    2007-11-01

    In this article the authors deal with the experimental and theoretical interpretation of the vibrational spectra of trans-resveratrol (3,5,4'-trihydroxy- trans-stilbene) of diverse beneficial biological activity. Infrared and Raman spectra of the compound were recorded; density functional calculations were carried out resulting in the optimized geometry and several properties of the molecule. Based on the calculated force constants, a normal coordinate analysis yielded the character of the vibrational modes and the assignment of the measured spectral bands.

  13. Bumblebee vibration activated foraging

    OpenAIRE

    Su, Dan Kuan-Nien

    2009-01-01

    The ability use vibrational signals to activate nestmate foraging is found in the highly social bees, stingless bees and honey bees, and has been hypothesized to exist in the closely related, primitively eusocial bumble bees. We provide the first strong and direct evidence that this is correct. Inside the nest, bumble bee foragers produce brief bursts of vibration (foraging activation pulses) at 594.5 Hz for 63±26 ms (velocityRMS=0.46±0.02mm/s, forceRMS=0.8±0.2 mN. Production of these vibrati...

  14. Man-Induced Vibrations

    DEFF Research Database (Denmark)

    Jönsson, Jeppe; Hansen, Lars Pilegaard

    1994-01-01

    concerned with spectator-induced vertical vibrations on grandstands. The idea is to use impulse response analysis and base the load description on the load impulse. If the method is feasable, it could be used in connection with the formulation of requirements in building codes. During the last two decades...... work has been done on the measurement of the exact load functions and related reponse analysis. A recent work using a spectral description has been performed by Per-Erik Erikson and includes a good literature survey. Bachmann and Ammann give a good overview of vibrations caused by human activity. Other...

  15. Vibrations and waves

    CERN Document Server

    Kaliski, S

    2013-01-01

    This book gives a comprehensive overview of wave phenomena in different media with interacting mechanical, electromagnetic and other fields. Equations describing wave propagation in linear and non-linear elastic media are followed by equations of rheological models, models with internal rotational degrees of freedom and non-local interactions. Equations for coupled fields: thermal, elastic, electromagnetic, piezoelectric, and magneto-spin with adequate boundary conditions are also included. Together with its companion volume Vibrations and Waves. Part A: Vibrations this work provides a wealth

  16. Research on Effects of Blast Casting Vibration and Vibration Absorption of Presplitting Blasting in Open Cast Mine

    Directory of Open Access Journals (Sweden)

    Li Ma

    2016-01-01

    Full Text Available The impact energy produced by blast casting is able to break and cast rocks, yet the strong vibration effects caused at the same time would threaten the safety of mines. Based on the theory of Janbu’s Limit Equilibrium Method (LEM, pseudo-static method has been incorporated to analyze the influence of dynamic loads of blasting on slope stability. The horizontal loads produced by blast vibrations cause an increase in sliding forces, and this leads to a lower slope stability coefficient. When the tensile stresses of the two adjacent blast holes are greater than the tensile strength of rock mass, the radical oriented cracks are formed, which is the precondition for the formation of presplit face. Thus, the formula for calculating the blast hole spacing of presplit blasting can be obtained. Based on the analysis of the principles of vibration tester and vibration pick-up in detecting blast vibrations, a detection scheme of blast vibration is worked out by taking the blast area with precrack rear and non-precrack side of the detection object. The detection and research results of blast vibration show that presplit blasting can reduce the attenuation coefficient of stress wave by half, and the vibration absorption ratio could reach 50.2%; the impact of dynamic loads on the end-wall slope stability coefficient is 1.98%, which proves that presplit blasting plays an important role in shock absorption of blast casting.

  17. Vibration-free stirling cryocooler for high definition microscopy

    Science.gov (United States)

    Riabzev, S. V.; Veprik, A. M.; Vilenchik, H. S.; Pundak, N.; Castiel, E.

    2009-12-01

    -axes suppression of the residual wideband vibration, thermo-conductive vibration isolation struts and soft vibration mounts. The attainable performance of the resulting vibration free linear Stirling cryocooler (Ricor model K535-ULV) is evaluated through a full-scale experimentation.

  18. Heterogeneous Dynamics of Coupled Vibrations

    NARCIS (Netherlands)

    Cringus, Dan; Jansen, Thomas I. C.; Pshenichnikov, Maxim S.; Schoenlein, RW; Corkum, P; DeSilvestri, S; Nelson, KA; Riedle, E

    2009-01-01

    Frequency-dependent dynamics of coupled stretch vibrations of a water molecule are revealed by 2D IR correlation spectroscopy. These are caused by non-Gaussian fluctuations of the environment around the individual OH stretch vibrations.

  19. Application of Vibrational Power Flow to a Passenger Car for Reduction of Interior Noise

    Directory of Open Access Journals (Sweden)

    S.K. Lee

    2000-01-01

    Full Text Available Reduction of structure-borne noise in the compartment of a car is an important task in automotive engineering. Transfer path analysis using the vibroacoustic reciprocity technique or multiple path decomposition method has generally been used for structure-borne noise path analysis. These methods are useful for solving a particular problem, but they do not quantify the effectiveness of vibration isolation of each isolator of a vehicle. To quantify the effectiveness of vibration isolation, vibrational power flow has been used for a simple isolation system or a laboratory-based isolation system. It is often difficult to apply the vibrational power flow technique to a complex isolation system like a car. In this paper, a simple equation is derived for calculation of the vibrational power flow of an isolation system with multiple isolators such as a car. It is successfully applied not only to quantifying the relative contributions of eighteen isolators, but also to reducing the structure-borne noise of a passenger car. According to the results, the main contributor of the eighteen isolators is the rear roll mount of an engine. The reduced structure-borne noise level is about 5dBA.

  20. Design and verification of a negative resistance electromagnetic shunt damper for spacecraft micro-vibration

    Science.gov (United States)

    Stabile, Alessandro; Aglietti, Guglielmo S.; Richardson, Guy; Smet, Geert

    2017-01-01

    Active control techniques are often required to mitigate the micro-vibration environment existing on board spacecraft. However, reliability issues and high power consumption are major drawbacks of active isolation systems that have limited their use for space applications. In the present study, an electromagnetic shunt damper (EMSD) connected to a negative-resistance circuit is designed, modelled and analysed. The negative resistance produces an overall reduction of the circuit resistance that results in an increase of the induced current in the closed circuit and thus the damping performance. This damper can be classified as a semi-active damper since the shunt does not require any control algorithm to operate. Additionally, the proposed EMSD is characterised by low required power, simplified electronics and small device mass, allowing it to be comfortably integrated on a satellite. This work demonstrates, both analytically and experimentally, that this technology is capable of effectively isolating typical satellite micro-vibration sources over the whole temperature range of interest.

  1. A vibration correction method for free-fall absolute gravimeters

    Science.gov (United States)

    Qian, J.; Wang, G.; Wu, K.; Wang, L. J.

    2018-02-01

    An accurate determination of gravitational acceleration, usually approximated as 9.8 m s‑2, has been playing an important role in the areas of metrology, geophysics, and geodetics. Absolute gravimetry has been experiencing rapid developments in recent years. Most absolute gravimeters today employ a free-fall method to measure gravitational acceleration. Noise from ground vibration has become one of the most serious factors limiting measurement precision. Compared to vibration isolators, the vibration correction method is a simple and feasible way to reduce the influence of ground vibrations. A modified vibration correction method is proposed and demonstrated. A two-dimensional golden section search algorithm is used to search for the best parameters of the hypothetical transfer function. Experiments using a T-1 absolute gravimeter are performed. It is verified that for an identical group of drop data, the modified method proposed in this paper can achieve better correction effects with much less computation than previous methods. Compared to vibration isolators, the correction method applies to more hostile environments and even dynamic platforms, and is expected to be used in a wider range of applications.

  2. Development of a Microfluidic Open Interface with Flow Isolated Desorption Volume for the Direct Coupling of SPME Devices to Mass Spectrometry.

    Science.gov (United States)

    Tascon, Marcos; Alam, Md Nazmul; Gómez-Ríos, Germán Augusto; Pawliszyn, Janusz

    2018-02-20

    Technologies that efficiently integrate the sampling and sample preparation steps with direct introduction to mass spectrometry (MS), providing simple and sensitive analytical workflows as well as capabilities for automation, can generate a great impact in a vast variety of fields, such as in clinical, environmental, and food-science applications. In this study, a novel approach that facilitates direct coupling of Bio-SPME devices to MS using a microfluidic design is presented. This technology, named microfluidic open interface (MOI), which operates under the concept of flow-isolated desorption volume, consists of an open-to-ambient desorption chamber (V ≤ 7 μL) connected to an ionization source. Subsequently, compounds of interest are transported to the ionization source by means of the self-aspiration process intrinsic of these interfaces. Thus, any ionization technology that provides a reliable and constant suction, such as electrospray ionization (ESI), atmospheric-pressure chemical ionization (APCI), or inductively coupled plasma ionization (ICP), can be hyphenated to MOI. Using this setup, the desorption chamber is used to release target compounds from the coating, while the isolation of the flow enables the ionization source to be continuously fed with solvent, all without the necessity of employment of additional valves. As a proof of concept, the design was applied to an ESI-MS/MS system for experimental validation. Furthermore, numerical simulations were undertaken to provide a detailed understanding of the fluid flow pattern inside the interface, then used to optimize the system for better efficiency. The analytical workflow of the developed Bio-SPME-MOI-MS setup consists of the direct immersion of SPME fibers into the matrix to extract/enrich analytes of interest within a short period of time, followed by a rinsing step with water to remove potentially adhering proteins, salts, and/or other interfering compounds. Next, the fiber is inserted into the

  3. Reducing vibration transfer from power plants by active methods

    Science.gov (United States)

    Kiryukhin, A. V.; Milman, O. O.; Ptakhin, A. V.

    2017-12-01

    The possibility of applying the methods of active damping of vibration and pressure pulsations for reducing their transfer from power plants into the environment, the seating, and the industrial premises are considered. The results of experimental works implemented by the authors on the active broadband damping of vibration and dynamic forces after shock-absorption up to 15 dB in the frequency band up to 150 Hz, of water pressure pulsations in the pipeline up to 20 dB in the frequency band up to 600 Hz, and of spatial low-frequency air noise indoors of a diesel generator at discrete frequency up to 20 dB are presented. It is shown that a reduction of vibration transfer through a vibration-isolating junction (expansion joints) of pipelines with liquid is the most complicated and has hardly been developed so far. This problem is essential for vibration isolation of power equipment from the seating and the environment through pipelines with water and steam in the power and transport engineering, shipbuilding, and in oil and gas pipelines in pumping stations. For improving efficiency, reducing the energy consumption, and decreasing the overall dimensions of equipment, it is advisable to combine the work of an active system with passive damping means, the use of which is not always sufficient. The executive component of the systems of active damping should be placed behind the vibration isolators (expansion joints). It is shown that the existence of working medium and connection of vibration with pressure pulsations in existing designs of pipeline expansion joints lead to growth of vibration stiffness of the expansion joint with the environment by two and more orders as compared with the static stiffness and makes difficulties for using the active methods. For active damping of vibration transfer through expansion joints of pipelines with a liquid, it is necessary to develop expansion joint structures with minimal connection of vibrations and pulsations and minimal

  4. Composite Struts Would Damp Vibrations

    Science.gov (United States)

    Dolgin, Benjamin P.

    1991-01-01

    New design of composite-material (fiber/matrix laminate) struts increases damping of longitudinal vibrations without decreasing longitudinal stiffness or increasing weight significantly. Plies with opposing chevron patterns of fibers convert longitudinal vibrational stresses into shear stresses in intermediate viscoelastic layer, which dissipate vibrational energy. Composite strut stronger than aluminum strut of same weight and stiffness.

  5. Studying and Modeling Vibration Transducers and Accelerometers

    Directory of Open Access Journals (Sweden)

    Katalin Ágoston

    2010-12-01

    Full Text Available This paper presents types and operating mode of vibration sensors. Piezoelectric sensing elements are often used in accelerometers. It will be investigate the structure and transfer function of the seismic mass type sensing element. The article presents how the piezoelectric sensing element works and how can be modeled with an electronic circuit. The transfer functions of the electronic circuit models are studied in Matlab and the results are presented. It will be presented the influence of the seismic mass on the accelerometer’s working frequency domain.

  6. Ship Vibration Design Guide

    Science.gov (United States)

    1989-07-01

    Frachtschiffen," Werft Reederie Hafen, 1925. 4-21 Noonan, E. F. "Vibration Considerations for 120,000 CM LNG Ships," NKF: Preliminary Report No. 7107, 25...Ship Response to Ice - A Second Season by C. Daley, J. W. St. John, R. Brown, J. Meyer , and I. Glen 1990 SSC-340 Ice Forces and Ship Response to Ice

  7. Vibrations and Eigenvalues

    Indian Academy of Sciences (India)

    The vibrating string problem is the source of much mathematicsand physics. This article describes Lagrange's formulationof a discretised version of the problem and its solution.This is also the first instance of an eigenvalue problem. Author Affiliations. Rajendra Bhatia1. Ashoka University, Rai, Haryana 131 029, India.

  8. Blade Vibration Measurement System

    Science.gov (United States)

    Platt, Michael J.

    2014-01-01

    The Phase I project successfully demonstrated that an advanced noncontacting stress measurement system (NSMS) could improve classification of blade vibration response in terms of mistuning and closely spaced modes. The Phase II work confirmed the microwave sensor design process, modified the sensor so it is compatible as an upgrade to existing NSMS, and improved and finalized the NSMS software. The result will be stand-alone radar/tip timing radar signal conditioning for current conventional NSMS users (as an upgrade) and new users. The hybrid system will use frequency data and relative mode vibration levels from the radar sensor to provide substantially superior capabilities over current blade-vibration measurement technology. This frequency data, coupled with a reduced number of tip timing probes, will result in a system capable of detecting complex blade vibrations that would confound traditional NSMS systems. The hardware and software package was validated on a compressor rig at Mechanical Solutions, Inc. (MSI). Finally, the hybrid radar/tip timing NSMS software package and associated sensor hardware will be installed for use in the NASA Glenn spin pit test facility.

  9. Vibration Sensitive Keystroke Analysis

    NARCIS (Netherlands)

    Lopatka, M.; Peetz, M.-H.; van Erp, M.; Stehouwer, H.; van Zaanen, M.

    2009-01-01

    We present a novel method for performing non-invasive biometric analysis on habitual keystroke patterns using a vibration-based feature space. With the increasing availability of 3-D accelerometer chips in laptop computers, conventional methods using time vectors may be augmented using a distinct

  10. Active vibration control of civil structures

    Energy Technology Data Exchange (ETDEWEB)

    Farrar, C.; Baker, W.; Fales, J.; Shevitz, D.

    1996-11-01

    This is a final report of a one year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Active vibration control (AVC) of structural and mechanical systems is one of the rapidly advancing areas of engineering research. The multifaceted nature of AVC covers many disciplines, such as sensors and instrumentation, numerical modeling, experimental mechanics, and advanced power systems. This work encompassed a review of the literature on active control of structures focusing both on active control hardware and on control algorithms, a design of an isolation systems using magneto-rheological fluid-filled (MRF) dampers and numerical simulations to study the enhanced vibration mitigation effects of this technology.

  11. sEMG during Whole-Body Vibration Contains Motion Artifacts and Reflex Activity.

    Science.gov (United States)

    Lienhard, Karin; Cabasson, Aline; Meste, Olivier; Colson, Serge S

    2015-03-01

    The purpose of this study was to determine whether the excessive spikes observed in the surface electromyography (sEMG) spectrum recorded during whole-body vibration (WBV) exercises contain motion artifacts and/or reflex activity. The occurrence of motion artifacts was tested by electrical recordings of the patella. The involvement of reflex activity was investigated by analyzing the magnitude of the isolated spikes during changes in voluntary background muscle activity. Eighteen physically active volunteers performed static squats while the sEMG was measured of five lower limb muscles during vertical WBV using no load and an additional load of 33 kg. In order to record motion artifacts during WBV, a pair of electrodes was positioned on the patella with several layers of tape between skin and electrodes. Spectral analysis of the patella signal revealed recordings of motion artifacts as high peaks at the vibration frequency (fundamental) and marginal peaks at the multiple harmonics were observed. For the sEMG recordings, the root mean square of the spikes increased with increasing additional loads (p activity might be contained in the isolated spikes, as identical behavior has been found for stretch reflex responses evoked during direct vibration. In conclusion, the spikes visible in the sEMG spectrum during WBV exercises contain motion artifacts and possibly reflex activity. Key pointsThe spikes observed in the sEMG spectrum during WBV exercises contain motion artifacts and possibly reflex activityThe motion artifacts are more pronounced in the first spike than the following spikes in the sEMG spectrumReflex activity during WBV exercises is enhanced with an additional load of approximately 50% of the body mass.

  12. Reduction of personnel vibration hazards in underground coal mines

    Energy Technology Data Exchange (ETDEWEB)

    Oh, X.; Middlin, A. (Vipac Engineers and Scientists Ltd. (Australia))

    1991-03-01

    Whole-Body Vibration (WBV) due to the 'rough ride' in vehicles is a major source of back and neck injury in underground coal mines. Hand-Arm Vibration (HAV) from hand held equipment can also cause long term health damage. Surveys in three collieries in NSW have been conducted to measure the vibration levels to which miners are being exposed and to assess them according to the two relevant Australian Standards namely AS2670 and AS2763. WBV results indicated that shock loadings must be the source of back and neck injuries that are occurring due to 'rough ride'. Existing off-the-shelf seat suspensions were demonstrated to be inadequate for providing effective shock isolation, due to them being prone to bottoming out under rough conditions, and due their scissor action mechanism becoming rapidly jammed by dirt to the point where they become rigid. Commercially available seats were evaluated and tested on a hydraulic shaker, but none proved able to provide the required vibration isolation. A prototype seat suspension was developed by Vipac. This suspension was shaker tested and trialled in low loaders at two collieries. The seat proved capable of cushioning shock loads without bottoming out, as well as attenuating the dominant vibration at 2.5 Hz and higher. This suspension with encapsulated mechanism could be readily adapted to suit a wide range of underground vehicles. The HAV survey results identified the Wombat roof-bolter as the major item requiring vibration level reductions. Extensive investigations resulted in the design of a prototype vibration isolated handle. During field tests this prototype handle reduced the HAV level such that the Exposure Time (10th percentile) was increased from 7 to 11.5 years. Guidelines are presented for additional developments which would further improve this performance and result in a handle design suitable for retrofitting to existing roof bolters.

  13. Mass Society

    DEFF Research Database (Denmark)

    Borch, Christian

    2017-01-01

    the negative features usually ascribed by late nineteenth-century crowd psychology to spontaneous crowds, and attributes these to the entire social fabric. However, in contrast to crowd psychology, theorists of mass society often place greater emphasis on how capitalism, technological advances, or demographic......Mass society is a societal diagnosis that emphasizes – usually in a pejorative, modernity critical manner – a series of traits allegedly associated with modern society, such as the leveling of individuality, moral decay, alienation, and isolation. As such, the notion of mass society generalizes...... developments condition such negative features, and some theorists argue that mass society produces a propensity to totalitarianism. Discussions of mass society culminated in the early and mid-twentieth century....

  14. Evaluation of the Bruker Biotyper matrix-assisted laser desorption/ionization time-of-flight mass spectrometry system for identification of clinical and environmental isolates of Burkholderia pseudomallei

    Directory of Open Access Journals (Sweden)

    He eWang

    2016-04-01

    Full Text Available Burkholderia pseudomallei is not represented in the current version of Bruker Biotyper matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS system. A total of 66 isolates of B. pseudomallei, including 30 clinical isolates collected from National Taiwan University Hospital (NTUH, n=27 and Peking Union Medical College Hospital (PUMCH, n=3, and 36 isolates of genetically confirmed strains, including 13 from clinical samples and 23 from environmental samples, collected from southern Taiwan were included in this study. All these isolates were identified by partial 16S rDNA gene sequencing analysis and the Bruker Biotyper MALDI-TOF MS system. Among the 30 isolates initially identified as B. pseudomallei by conventional identification methods, one was identified as B. cepacia complex (NTUH and three were identified as B. putida (PUMCH by partial 16S rDNA gene sequencing analysis and Bruker Biotyper MALDI-TOF MS system. The Bruker Biotyper MALDI-TOF MS system misidentified 62 genetically confirmed B. pseudomallei isolates as B. thailandensis or Burkholderia species (score values, 1.803-2.063 when the currently available database (DB 5627 was used. However, using a newly created MALDI-TOF MS database (including B. pseudomallei NTUH-3 strain, all isolates were correctly identified as B. pseudomallei (score values >2.000, 100%. An additional 60 isolates of genetically confirmed B. cepacia complex and B. putida were also evaluated by the Bruker Biotyper MALDI-TOF MS system using the newly created database and none of these isolates were identified as B. pseudomallei. MALDI-TOF MS is a versatile and robust tool for the rapid identification of B. pseudomallei using the enhanced database.

  15. Animal Communications Through Seismic Vibrations

    Energy Technology Data Exchange (ETDEWEB)

    Hill, Peggy (University of Tulsa)

    2001-05-02

    Substrate vibration has been important to animals as a channel of communication for millions of years, but our literature on vibration in this context of biologically relevant information is only decades old. The jaw mechanism of the earliest land vertebrates allowed them to perceive substrate vibrations as their heads lay on the ground long before airborne sounds could be heard. Although the exact mechanism of vibration production and the precise nature of the wave produced are not always understood, recent development of affordable instrumentation to detect and measure vibrations has allowed researchers to answer increasingly sophisticated questions about how animals send and receive vibration signals. We now know that vibration provides information used in predator defense, prey detection, recruitment to food, mate choice, intrasexual competition, and maternal/brood social interactions in a variety of insect orders, spiders, crabs, scorpions, chameleons, frogs, golden moles, mole rats, kangaroos rats, wallabies, elephants and bison.

  16. Adaptations of mouse skeletal muscle to low-intensity vibration training.

    Science.gov (United States)

    McKeehen, James N; Novotny, Susan A; Baltgalvis, Kristen A; Call, Jarrod A; Nuckley, David J; Lowe, Dawn A

    2013-06-01

    We tested the hypothesis that low-intensity vibration training in mice improves contractile function of hindlimb skeletal muscles and promotes exercise-related cellular adaptations. We subjected C57BL/6J mice to 6 wk, 5 d·wk, 15 min·d of sham or low-intensity vibration (45 Hz, 1.0g) while housed in traditional cages (Sham-Active, n = 8; Vibrated-Active, n = 10) or in small cages to restrict physical activity (Sham-Restricted, n = 8; Vibrated-Restricted, n = 8). Contractile function and resistance to fatigue were tested in vivo (anterior and posterior crural muscles) and ex vivo on the soleus muscle. Tibialis anterior and soleus muscles were evaluated histologically for alterations in oxidative metabolism, capillarity, and fiber types. Epididymal fat pad and hindlimb muscle masses were measured. Two-way ANOVAs were used to determine the effects of vibration and physical inactivity. Vibration training resulted in a 10% increase in maximal isometric torque (P = 0.038) and 16% faster maximal rate of relaxation (P = 0.030) of the anterior crural muscles. Posterior crural muscles were unaffected by vibration, except greater rates of contraction in Vibrated-Restricted mice compared with Vibrated-Active and Sham-Restricted mice (P = 0.022). Soleus muscle maximal isometric tetanic force tended to be greater (P = 0.057), and maximal relaxation was 20% faster (P = 0.005) in vibrated compared with sham mice. The restriction of physical activity induced muscle weakness but was not required for vibration to be effective in improving strength or relaxation. Vibration training did not affect muscle fatigability or any indicator of cellular adaptation investigated (P ≥ 0.431). Fat pad but not hindlimb muscle masses were affected by vibration training. Vibration training in mice improved muscle contractility, specifically strength and relaxation rates, with no indication of adverse effects to muscle function or cellular adaptations.

  17. Design of a Maglev Vibration Test Platform for the Research of Maglev Vehicle-girder Coupled Vibration Problem

    Directory of Open Access Journals (Sweden)

    Zhou Danfeng

    2017-01-01

    Full Text Available The maglev vehicle-girder coupled vibration problem has been encountered in many maglev test or commercial lines, which significantly degrade the performance of the maglev train. In previous research on the principle of the coupled vibration problem, it has been discovered that the fundamental model of the maglev girder can be simplified as a series of mass-spring resonators of different but related resonance frequencies, and that the stability of the vehicle-girder coupled system can be investigated by separately examining the stability of each mass-spring resonator – electromagnet coupled system. Based on this conclusion, a maglev test platform, which includes a single electromagnetic suspension control system, is built for experimental study of the coupled vibration problem. The guideway of the test platform is supported by a number of springs so as to change its flexibility. The mass of the guideway can also be changed by adjusting extra weights attached to it. By changing the flexibility and mass of the guideway, the rules of the maglev vehicle-girder coupled vibration problem are to be examined through experiments, and related theory on the vehicle-girder self-excited vibration proposed in previous research is also testified.

  18. Fatigue and soft tissue vibration during prolonged running.

    Science.gov (United States)

    Khassetarash, Arash; Hassannejad, Reza; Ettefagh, Mir Mohammad; Sari-Sarraf, Vahid

    2015-12-01

    Muscle tuning paradigm proposes that the mechanical properties of soft tissues are tuned in such a way that its vibration amplitude become minimized. Therefore, the vibrations of soft tissue are heavily damped. However, it has been hypothesized that the ability of muscle tuning decreases with fatigue. This study investigated the changes in vibration characteristics of soft tissue with fatigue. Vibrations of the gastrocnemius muscle of 8 runners during a prolonged run protocol on a treadmill at constant velocity (4 ms(-1)) were measured using a tri-axial accelerometer. The vibration amplitude is calculated using the Fourier transform and a wavelet-based method was used to calculate the damping coefficient. The results showed that: (1) the vibration amplitude in longitudinal direction increased with fatigue, which may be interpreted as the decreased muscle function with fatigue. (2) The amplitude increase percent strongly depended on the vibration frequency. (3) The damping coefficient of the gastrocnemius increased with fatigue. A 1-DOF mass-spring-damper model was used in order to validate the wavelet based method and simulate the observed phenomena. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Vibration Attenuation of Plate Using Multiple Vibration Absorbers

    Directory of Open Access Journals (Sweden)

    Zaman Izzuddin

    2014-07-01

    Full Text Available Vibrations are undesired phenomenon and it can cause harm, distress and unsettling influence to the systems or structures, for example, aircraft, automobile, machinery and building. One of the approach to limit this vibration by introducing passive vibration absorber attached to the structure. In this paper, the adequacy of utilizing passive vibration absorbers are investigated. The vibration absorber system is designed to minimize the vibration of a thin plate fixed along edges. The plate’s vibration characteristics, such as, natural frequency and mode shape are determined using three techniques: theoretical equations, finite element (FE analysis and experiment. The results demonstrate that the first four natural frequencies of fixed-fixed ends plate are 48, 121, 193 and 242 Hz, and these results are corroborated well with theoretical, FE simulation and experiment. The experiment work is further carried out with attached single and multiple vibration absorbers onto plate by tuning the absorber’s frequency to match with the excitation frequency. The outcomes depict that multiple vibration absorbers are more viable in lessening the global structural vibration.

  20. The Shock and Vibration Digest. Volume 18, Number 8

    Science.gov (United States)

    1986-08-01

    addressed [21]. Existing active vibration con- described [11]. Stoppel [12] has critically trollers have been evaluated [22]; suggestions analyzed calculated...London (Sept 1985). 12. Stoppel , J., "Structural Dynamic Aspects of Rotor Antiresonant Isolation," AHS/USARO Intl. 22. Davis, M.W., "Development and

  1. Vibration Analysis of Structures with Rotation and Reflection Symmetry

    Directory of Open Access Journals (Sweden)

    Baojian Li

    1996-01-01

    Full Text Available The article applies group representation theory to the vibration analysis of structures with Cnv symmetry, and presents a new structural vibration analysis method. The eigenvalue problem of the whole structure is divided into much smaller subproblems by forming the mass and stiffness matrices of one substructure and than modifying them to form mass and stiffness matrices in each irreducible subspace, resulting in the saving of computer time and memory. The modal characteristics of structures with Cnv symmetry are derived from theoretical analysis. Computation and modal testing are used to verify the validity of the theoretical deductions.

  2. Effects of whole-body vibration exercise on the endocrine system of healthy men.

    Science.gov (United States)

    Di Loreto, C; Ranchelli, A; Lucidi, P; Murdolo, G; Parlanti, N; De Cicco, A; Tsarpela, O; Annino, G; Bosco, C; Santeusanio, F; Bolli, G B; De Feo, P

    2004-04-01

    Whole-body vibration is reported to increase muscle performance, bone mineral density and stimulate the secretion of lipolytic and protein anabolic hormones, such as GH and testosterone, that might be used for the treatment of obesity. To date, as no controlled trial has examined the effects of vibration exercise on the human endocrine system, we performed a randomized controlled study, to establish whether the circulating concentrations of glucose and hormones (insulin, glucagon, cortisol, epinephrine, norepinephrine, GH, IGF-1, free and total testosterone) are affected by vibration in 10 healthy men [age 39 +/- 3, body mass index (BMI) of 23.5 +/- 0.5 kg/m2, mean +/- SEM]. Volunteers were studied on two occasions before and after standing for 25 min on a ground plate in the absence (control) or in the presence (vibration) of 30 Hz whole body vibration. Vibration slightly reduced plasma glucose (30 min: vibration 4.59 +/- 0.21, control 4.74 +/- 0.22 mM, p=0.049) and increased plasma norepinephrine concentrations (60 min: vibration 1.29 +/- 0.18, control 1.01 +/- 0.07 nM, p=0.038), but did not change the circulating concentrations of other hormones. These results demonstrate that vibration exercise transiently reduces plasma glucose, possibly by increasing glucose utilization by contracting muscles. Since hormonal responses, with the exception of norepinephrine, are not affected by acute vibration exposure, this type of exercise is not expected to reduce fat mass in obese subjects.

  3. Good vibrations. [Hydraulic turbines

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, P.

    1994-07-01

    The latest developments in the Voith Turbine Control and Automation System (VTLS), which couples digital control technology to hydropower plant equipment, are described. Prominent among these is the vibration diagnostics module for hydraulic turbines. It provides machine-specific diagnostic logic for a vibration monitoring and analysis system. Of the two other VTLS modules described, the operation module optimizes the control of a power plant with three or more turbines by considering the individual properties of each in turn, recommending which should be run, and how, in order to partition the load for a required power output. The cavitation module is a diagnostic system which enables the limits of operation of the turbines to be extended to bands just outside those determined by cavitation calculations. (3 figures). (UK)

  4. Electric field generated by axial longitudinal vibration modes of microtubule.

    Science.gov (United States)

    Cifra, M; Pokorný, J; Havelka, D; Kucera, O

    2010-05-01

    Microtubules are electrically polar structures fulfilling prerequisites for generation of oscillatory electric field in the kHz to GHz region. Energy supply for excitation of elasto-electrical vibrations in microtubules may be provided from GTP-hydrolysis; motor protein-microtubule interactions; and energy efflux from mitochondria. We calculated electric field generated by axial longitudinal vibration modes of microtubules for random, and coherent excitation. In case of coherent excitation of vibrations, the electric field intensity is highest at the end of microtubule. The dielectrophoretic force exerted by electric field on the surrounding molecules will influence the kinetics of microtubule polymerization via change in the probability of the transport of charge and mass particles. The electric field generated by vibrations of electrically polar cellular structures is expected to play an important role in biological self-organization. 2010 Elsevier Ireland Ltd. All rights reserved.

  5. Pickin’ up good vibrations

    CERN Multimedia

    Katarina Anthony

    2015-01-01

    In preparation for the civil engineering work on the HL-LHC, vibration measurements were carried out at the LHC’s Point 1 last month. These measurements will help evaluate how civil engineering work could impact the beam, and will provide crucial details about the site’s geological make-up before construction begins.   A seismic truck at Point 1 generated wave-like vibrations measured by EN/MME. From carrying out R&D to produce state-of-the-art magnets to developing innovative, robust materials capable of withstanding beam impact, the HL-LHC is a multi-faceted project involving many groups and teams across CERN’s departments. It was in this framework that the project management mandated CERN's Mechanical and Materials Engineering (EN/MME) group to measure the propagation of vibrations around Point 1. Their question: can civil engineering work for the HL-LHC – the bulk of which is scheduled for LS2 – begin while the LHC is running? Alth...

  6. Vibrational stability of graphene

    Directory of Open Access Journals (Sweden)

    Yangfan Hu

    2013-05-01

    Full Text Available The mechanical stability of graphene as temperature rises is analyzed based on three different self-consistent phonon (SCP models. Compared with three-dimensional (3-D materials, the critical temperature Ti at which instability occurs for graphene is much closer to its melting temperature Tm obtained from Monte Carlo simulation (Ti ≃ 2Tm, K. V. Zakharchenko, A. Fasolino, J. H. Los, and M. I. Katsnelson, J. Phys. Condens. Matter 23, 202202. This suggests that thermal vibration plays a significant role in melting of graphene while melting for 3-D materials is often dominated by topologic defects. This peculiar property of graphene derives from its high structural anisotropy, which is characterized by the vibrational anisotropic coefficient (VAC, defined upon its Lindermann ratios in different directions. For any carbon based material with a graphene-like structure, the VAC value must be smaller than 5.4 to maintain its stability. It is also found that the high VAC value of graphene is responsible for its negative thermal expansion coefficient at low temperature range. We believe that the VAC can be regarded as a new criterion concerning the vibrational stability of any low-dimensional (low-D materials.

  7. Analyses of black fungi by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS): species-level identification of clinical isolates of Exophiala dermatitidis.

    Science.gov (United States)

    Kondori, Nahid; Erhard, Marcel; Welinder-Olsson, Christina; Groenewald, Marizeth; Verkley, Gerard; Moore, Edward R B

    2015-01-01

    Conventional mycological identifications based on the recognition of morphological characteristics can be problematic. A relatively new methodology applicable for the identification of microorganisms is based on the exploitation of taxon- specific mass patterns recorded from abundant cell proteins directly from whole-cell preparations, using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). This study reports the application of MALDI-TOF MS for the differentiation and identifications of black yeasts, isolated from the respiratory tracts of patients with cystic fibrosis (CF). Initial phenotypic and DNA sequence-based analyses identified these isolates to be Exophiala dermatitidis. The type strains of E. dermatitidis (CBS 207.35(T)) and other species of Exophiala were included in the MALDI-TOF MS analyses to establish the references for comparing the mass spectra of the clinical isolates of Exophiala. MALDI-TOF MS analyses exhibited extremely close relationships among the clinical isolates and with the spectra generated from the type strain of E. dermatitidis. The relationships observed between the E. dermatitidis strains from the MALDI-TOF MS profiling analyses were supported by DNA sequence-based analyses of the rRNA ITS1 and ITS2 regions. These data demonstrated the applicability of MALDI-TOF MS as a reliable, rapid and cost-effective method for the identification of isolates of E. dermatitidis and other clinically relevant fungi and yeasts that typically are difficult to identify by conventional methods. © FEMS 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Application of Matrix-assisted Laser Desorption Ionization Time-of-flight Mass Spectrometry for Identification of Coagulase-negative Staphylococci Isolated from Milk of Cows with Subclinical Mastitis.

    Science.gov (United States)

    Banach, T; Bochniarz, M; Łyp, P; Adaszek, Ł; Wawron, W; Furmaga, B; Skrzypczak, M; Ziętek, J; Winiarczyk, S

    2016-09-01

    The aim of this study was to use matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) for the identification of coagulase-negative staphylococci (CNS) isolated from the milk of cows with subclinical mastitis. The study material consisted of 33 isolates of CNS, identified by the results of API Staph tests, obtained from the milk of cows with subclinical mastitis. Based on the spectra analyses, MALDI-TOF MS tests of 33 bacterial samples allowed identification of the microorganisms in 27 cases (81.8%). The most frequent cause of subclinical mastitis was found to be Staphylococcus sciuri (39%), while S. vitulinus was detected in 15% of the milk samples. The results obtained indicate that MALDI-TOF MS can be used for the identification of CNS isolated from bovine mastitis as a method supplementary to biochemical tests.

  9. Comparison of the Bruker Biotyper and VITEK MS Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry Systems Using a Formic Acid Extraction Method to Identify Common and Uncommon Yeast Isolates.

    Science.gov (United States)

    Lee, Hyun Seung; Shin, Jong Hee; Choi, Min Ji; Won, Eun Jeong; Kee, Seung Jung; Kim, Soo Hyun; Shin, Myung Geun; Suh, Soon Pal

    2017-05-01

    Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) allows rapid and accurate identification of clinical yeast isolates. In-tube formic acid/acetonitrile (FA/ACN) extraction is recommended prior to the analysis with MALDI Biotyper, but the direct on-plate FA extraction is simpler. We compared the Biotyper with the VITEK MS for the identification of various clinically relevant yeast species, focusing on the use of the FA extraction method. We analyzed 309 clinical isolates of 42 yeast species (four common Candida species, Cryptococcus neoformans, and 37 uncommon yeast species) using the Biotyper and VITEK MS systems. FA extraction was used initially for all isolates. If 'no identification' result was obtained following the initial FA extraction, these samples were then retested by using FA (both systems, additive FA) or FA/ACN (Biotyper only, additive FA/ACN) extraction. These results were compared with those obtained by sequence-based identification. Both systems correctly identified all 158 isolates of the four common Candida species after the initial FA extraction. The Biotyper correctly identified 8.7%, 30.4%, and 100% of 23 C. neoformans isolates after performing initial FA, additive FA, and FA/ACN extractions, respectively, while VITEK MS identified all C. neoformans isolates after the initial FA extraction. Both systems had comparable identification rates of 37 uncommon yeast species (128 isolates), following the initial FA (Biotyper, 74.2%; VITEK MS, 73.4%) or additive FA (Biotyper, 82.0%; VITEK MS, 73.4%). The identification rate of most common and uncommon yeast isolates is comparable between simple FA extraction/Biotyper method and VITEK MS methods, but FA/ACN extraction is necessary for C. neoformans identification by Biotyper.

  10. Analysis of algorithms for detection of resonance frequencies in vibration measurements on super heater tubes; Analys av algoritmer foer detektering av resonansfrekvenser i vibrationsmaetningar paa oeverhettartuber

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, Daniel

    2010-07-01

    Combustion of fuel in thermal power plants emits particles which creates coatings on the super heater tubes. The coatings isolate the tubes and impairs the efficiency of the heat transfer. Cleaning the tubes occurs while the power plant is running but without any knowledge of the actual coating. A change in frequency corresponds to a change in mass of the coatings. This thesis has been focusing in estimating resonance frequencies in vibration measurements made by strain gauges on the tubes. To improve the estimations a target tracking algorithm had been added. The results indicates that it is possible to estimate the resonance frequencies but the algorithms need to be verified on more signals.

  11. Base isolation: Fresh insight

    Energy Technology Data Exchange (ETDEWEB)

    Shustov, V.

    1993-07-15

    The objective of the research is a further development of the engineering concept of seismic isolation. Neglecting the transient stage of seismic loading results in a widespread misjudgement: The force of resistance associated with velocity is mostly conceived as a source of damping vibrations, though it is an active force at the same time, during an earthquake type excitation. For very pliant systems such as base isolated structures with relatively low bearing stiffness and with artificially added heavy damping mechanism, the so called `damping`` force may occur even the main pushing force at an earthquake. Thus, one of the two basic pillars of the common seismic isolation philosophy, namely, the doctrine of usefulness and necessity of a strong damping mechanism, is turning out to be a self-deception, sometimes even jeopardizing the safety of structures and discrediting the very idea of seismic isolation. There is a way out: breaking with damping dependancy.

  12. On Coulomb and Viscosity damped single-degree-of-freedom vibrating systems

    DEFF Research Database (Denmark)

    Jakobsen, J.; Sivebæk, Ion Marius

    2016-01-01

    Attention on friction damping mechanisms could be of interest for vibration reduction, and appears therefore to be desirable. Presentations of textbook analyses on mechanical vibration of a viscosity damped single degree system [mass, spring and eventually damping] are numerous. Often they begin...

  13. Mems-based pzt/pzt bimorph thick film vibration energy harvester

    DEFF Research Database (Denmark)

    Xu, Ruichao; Lei, Anders; Dahl-Petersen, Christian

    2011-01-01

    We describe fabrication and characterization of a significantly improved version of a MEMS-based PZT/PZT thick film bimorph vibration energy harvester with an integrated silicon proof mass. The main advantage of bimorph vibration energy harvesters is that strain energy is not lost in mechanical...

  14. Whole-body vibration slows the acquisition of fat in mature female rats

    Science.gov (United States)

    Maddalozzo, GF; Iwaniec, UT; Turner, RT; Rosen, CJ; Widrick, JJ

    2008-01-01

    Objective To evaluate the effects of whole-body vibration on fat, bone, leptin and muscle mass. Methods/Design Thirty 7-month-old female 344 Fischer rats were randomized by weight into three groups (baseline, vibration or control; n=7–10 per group). Rats in the vibration group were placed inside individual compartments attached to a Pneu-Vibe vibration platform (Pneumex, Sandpoint, ID, USA) and vibrated at 30–50 Hz (6mm peak to peak) for 30 min per day, 5 days per week, for 12 weeks. The vibration intervention consisted of six 5-min cycles with a 1-min break between cycles. Results There were significant body composition differences between the whole-body vibration and the control groups. The whole-body vibration group weighed approximately 10% less (mean ± s.d.; 207 ± 10 vs 222 ± 15 g, Pbody fat (20.8 ± 3.8 vs 26.8 ± 5.9 g, Pbody fat (10.2 ± 1.7 vs 12 ± 2.0%, Pbody vibration group had significantly greater BMC (0.33 ± 0.05 vs 0.26 ± 0.03 g, Pbody vibration reduced body fat accumulation and serum leptin without affecting whole body BMC, BMD or lean mass. However, the increase in vertebral BMC and BMD suggests that vibration may have resulted in local increases in bone mass and density. Also, whole-body vibration did not affect muscle function or food consumption. PMID:18663370

  15. Random vibrations theory and practice

    CERN Document Server

    Wirsching, Paul H; Ortiz, Keith

    1995-01-01

    Random Vibrations: Theory and Practice covers the theory and analysis of mechanical and structural systems undergoing random oscillations due to any number of phenomena— from engine noise, turbulent flow, and acoustic noise to wind, ocean waves, earthquakes, and rough pavement. For systems operating in such environments, a random vibration analysis is essential to the safety and reliability of the system. By far the most comprehensive text available on random vibrations, Random Vibrations: Theory and Practice is designed for readers who are new to the subject as well as those who are familiar with the fundamentals and wish to study a particular topic or use the text as an authoritative reference. It is divided into three major sections: fundamental background, random vibration development and applications to design, and random signal analysis. Introductory chapters cover topics in probability, statistics, and random processes that prepare the reader for the development of the theory of random vibrations a...

  16. Rotation of the apparent vibration plane of a swinging spring at the 1:1:2 resonance

    Science.gov (United States)

    Petrov, A. G.

    2017-05-01

    Nonlinear spatial vibrations of a mass point on a weightless elastic suspension (pendulum on a spring) are considered. The frequency of vertical vibrations is assumed to be equal to the doubled swinging frequency (the 1:1:2 resonance). In this case, as numerical calculations and experiments show, the vertical vibrations are unstable, which leads to the vertical vibration energy transfer to the pendulum swinging energy. The vertical vibrations of the mass point decay and, after a certain time period, the pendulum starts swinging in a certain vertical plane. This swinging is also unstable, which results in the reverse energy transfer into the vertical vibration mode. The vertical vibrations are again repeated. But after the second transfer of the vertical vibration energy to the pendulum swinging energy, the apparent plane of vibrations rotates by a certain angle. These effects are described analytically; namely, the energy transfer period, the time variations in the amplitudes of both modes, and the variations in the angle of the apparent vibration plane are determined. An asymptotic solution is also constructed for the mass point trajectory in the orbit elements. In projection on the horizonal plane, the mass point moves in a nearly elliptic trajectory. The ellipse semiaxes slowly vary with time, so that their product remains constant, and the major semiaxis slowly rotates at a constant sectorial velocity. The obtained analytic time dependence of the ellipse semiaxes and the precession angle agree well with the results of numerical calculations.

  17. Characterization of Klebsiella isolates by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and determination of antimicrobial resistance with VITEK 2 advanced expert system (AES).

    Science.gov (United States)

    Karagöz, Alper; Acar, Sümeyra; Körkoca, Hanifi

    2015-01-01

    The purpose of the study was to evaluate the performance of the VITEK mass spectrometry (MS) (bioMérieux, France) system for the identification of Klebsiella spp. isolated from different sources. Moreover, while assessing the ability of the VITEK 2 automated expert system (AES) to recognize antimicrobial resistance patterns, the researchers have extended the study to compare VITEK 2 with the routine antimicrobial susceptibility testing method. This study tested 51 Klebsiella spp. isolates that were isolated from environmental examples and clinical examples. Results of conventional methods and the matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) MS were compared. Then, any differing results were compared against a reference 16S rRNA gene sequence, and when indicated, a recA sequencing analysis was done. VITEK MS correctly identified 100% of the Klebsiella spp. isolates. There were two K. oxytoca isolates incorrectly identified to the species level with conventional methods according to the 16S rRNA gene sequencing analysis. In addition, a VITEK 2 AST-N261 card was used for the detection of extended spectrum beta-lactamases (ESBL). Using the VITEK 2 AES, ESBL positivity was found at the rate of 16.3% whereas this rate was 4.08% using the disk diffusion method. MALDI-TOF MS is a rapid and accurate method for the identification of Klebsiella spp. Moreover, the bioMérieux AES provides a useful laboratory tool for the interpretation of susceptibility results.

  18. Quantitative comparison of structure and dynamics of elastin following three isolation schemes by 13C solid state NMR and MALDI mass spectrometry

    OpenAIRE

    Papaioannou, A.; Louis, M.; Dhital, B.; Ho, H. P.; Chang, E. J.; Boutis, G. S.

    2015-01-01

    Methods for isolating elastin from fat, collagen, and muscle, commonly used in the design of artificial elastin based biomaterials, rely on exposing tissue to harsh pH levels and temperatures that usually denature many proteins. At present, a quantitative measurement of the modifications to elastin following isolation from other extracellular matrix constituents has not been reported. Using magic angle spinning 13C NMR spectroscopy and relaxation methodologies, we have measured the modificati...

  19. A novel technique for active vibration control, based on optimal tracking control

    Science.gov (United States)

    Kheiri Sarabi, Behrouz; Sharma, Manu; Kaur, Damanjeet

    2017-08-01

    In the last few decades, researchers have proposed many control techniques to suppress unwanted vibrations in a structure. In this work, a novel and simple technique is proposed for the active vibration control. In this technique, an optimal tracking control is employed to suppress vibrations in a structure by simultaneously tracking zero references for modes of vibration. To illustrate the technique, a two-degrees of freedom spring-mass-damper system is considered as a test system. The mathematical model of the system is derived and then converted into a state-space model. A linear quadratic tracking control law is then used to make the disturbed system track zero references.

  20. Chaotic vortex induced vibrations

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, J.; Sheridan, J. [Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, Victoria 3800 (Australia); Leontini, J. S. [Department of Mechanical and Product Design Engineering, Swinburne University of Technology, Hawthorn, Victoria 3122 (Australia); Lo Jacono, D. [Institut de Mécanique des Fluides de Toulouse (IMFT), CNRS, UPS and Université de Toulouse, 31400 Toulouse (France)

    2014-12-15

    This study investigates the nature of the dynamic response of an elastically mounted cylinder immersed in a free stream. A novel method is utilized, where the motion of the body during a free vibration experiment is accurately recorded, and then a second experiment is conducted where the cylinder is externally forced to follow this recorded trajectory. Generally, the flow response during both experiments is identical. However, particular regimes exist where the flow response is significantly different. This is taken as evidence of chaos in these regimes.

  1. Lattice Vibrations in Chlorobenzenes:

    DEFF Research Database (Denmark)

    Reynolds, P. A.; Kjems, Jørgen; White, J. W.

    1974-01-01

    Lattice vibrational dispersion curves for the ``intermolecular'' modes in the triclinic, one molecule per unit cell β phase of p‐C6D4Cl2 and p‐C6H4Cl2 have been obtained by inelastic neutron scattering. The deuterated sample was investigated at 295 and at 90°K and a linear extrapolation to 0°K...... was applied in order to correct for anharmonic effects. Calculations based on the atom‐atom model for van der Waals' interaction and on general potential parameters for the aromatic compounds agree reasonably well with the experimental observations. There is no substantial improvement in fit obtained either...

  2. Quantum dynamics of vibrational excitations and vibrational charge ...

    Indian Academy of Sciences (India)

    Quantum dynamics of vibrational excitations and vibrational charge transfer processes in H+ + O2 collisions at collision energy 23 eV ... The Fritz Haber Research Centre and The Department of Physical Chemisry, Hebrew University of Jerusalem, Jerusalem, Israel 91904; Department of Chemistry, Indian Institute of ...

  3. Force limited random vibration testing: the computation of the semi-empirical constant C2 for a real test article and unknown supporting structure

    NARCIS (Netherlands)

    Wijker, Jacob J; Ellenbroek, Marcellinus Hermannus Maria; de Boer, Andries

    2015-01-01

    To prevent over-testing of the test-item during random vibration testing Scharton proposed and discussed the force limited random vibration testing (FLVT) in a number of publications. Besides the random vibration specification, the total mass and the turn-over frequency of the test article (load),

  4. Flexural Free Vibrations of Multistep Nonuniform Beams

    Directory of Open Access Journals (Sweden)

    Guojin Tan

    2016-01-01

    Full Text Available This paper presents an exact approach to investigate the flexural free vibrations of multistep nonuniform beams. Firstly, one-step beam with moment of inertia and mass per unit length varying as I(x=α11+βxr+4 and m(x=α21+βxr was studied. By using appropriate transformations, the differential equation for flexural free vibration of one-step beam with variable cross section is reduced to a four-order differential equation with constant coefficients. According to different types of roots for the characteristic equation of four-order differential equation with constant coefficients, two kinds of modal shape functions are obtained, and the general solutions for flexural free vibration of one-step beam with variable cross section are presented. An exact approach to solve the natural frequencies and modal shapes of multistep beam with variable cross section is presented by using transfer matrix method, the exact general solutions of one-step beam, and iterative method. Numerical examples reveal that the calculated frequencies and modal shapes are in good agreement with the finite element method (FEM, which demonstrates the solutions of present method are exact ones.

  5. Free Vibration of Uncertain Unsymmetrically Laminated Beams

    Science.gov (United States)

    Kapania, Rakesh K.; Goyal, Vijay K.

    2001-01-01

    Monte Carlo Simulation and Stochastic FEA are used to predict randomness in the free vibration response of thin unsymmetrically laminated beams. For the present study, it is assumed that randomness in the response is only caused by uncertainties in the ply orientations. The ply orientations may become random or uncertain during the manufacturing process. A new 16-dof beam element, based on the first-order shear deformation beam theory, is used to study the stochastic nature of the natural frequencies. Using variational principles, the element stiffness matrix and mass matrix are obtained through analytical integration. Using a random sequence a large data set is generated, containing possible random ply-orientations. This data is assumed to be symmetric. The stochastic-based finite element model for free vibrations predicts the relation between the randomness in fundamental natural frequencies and the randomness in ply-orientation. The sensitivity derivatives are calculated numerically through an exact formulation. The squared fundamental natural frequencies are expressed in terms of deterministic and probabilistic quantities, allowing to determine how sensitive they are to variations in ply angles. The predicted mean-valued fundamental natural frequency squared and the variance of the present model are in good agreement with Monte Carlo Simulation. Results, also, show that variations between plus or minus 5 degrees in ply-angles can affect free vibration response of unsymmetrically and symmetrically laminated beams.

  6. Vibrationally excited state stectroscopy of radicals in a supersonic plasma

    NARCIS (Netherlands)

    G. Bazalgette Courreges-Lacoste, J. Bulthuis, S. Stolte, T. Motylewski; Linnartz, H.V.J.

    2001-01-01

    A plasma source based on a multilayer discharge geometry in combination with a time-of-flight REMPI experiment is used to study rotationally cold spectra of highly excited vibrational states of mass selected radicals. The rovibrational state distributions upon discharge excitation are characterised

  7. Torsional vibration of thin-walled elastic beams with doubly ...

    African Journals Online (AJOL)

    In this paper, the problem of analyzing the torsional vibration of thin-walled elastic beams, with open cross-sections that are doubly symmetric and traversed by moving concentrated masses at constant speeds is addressed. The mathematical model adopted accounts for both the gravitational and inertial effects of the ...

  8. Analytical approximations for stick-slip vibration amplitudes

    DEFF Research Database (Denmark)

    Thomsen, Jon Juel; Fidlin, A.

    2003-01-01

    The classical "mass-on-moving-belt" model for describing friction-induced vibrations is considered, with a friction law describing friction forces that first decreases and then increases smoothly with relative interface speed. Approximate analytical expressions are derived for the conditions...

  9. Free vibration analysis of elastically supported Timoshenko columns ...

    Indian Academy of Sciences (India)

    Abstract. This paper deals with the free vibration of Timoshenko columns with attached masses having rotary inertia. The support of the model is elastically restrained against rotation. The concept of fixity factor is used to define the stiffness of the elastic connection relative to that of the column. The governing equation.

  10. Technical Note. A Clamped Bar Model for the Sompoton Vibrator

    National Research Council Canada - National Science Library

    Tee Hao Wong; Jedol Dayou; M.C.D. Ngu; Jackson H.W. Chang; Willey Y.H. Liew

    2013-01-01

    .... In this paper, the vibrator is modeled as a clamped bar with a uniformly distributed mass. By means of this model, the fundamental frequency is analyzed with the use of an equivalent single degree of freedom system (SDOF) and exact analysis...

  11. Exact Vibration Solution for initially stressed Beams resting on ...

    African Journals Online (AJOL)

    It is observed that, as the values of these structural parameters increase, the transverse deflections of the finite elastic beam under the actions of moving masses decreases. Furthermore, the conditions under which the vibrating systems will experience resonance phenomenon are highlighted. Results presented in this paper ...

  12. Whole-body vibration exercise in postmenopausal osteoporosis

    Directory of Open Access Journals (Sweden)

    Magdalena Weber-Rajek

    2015-01-01

    Full Text Available The report of the World Health Organization (WHO of 2008 defines osteoporosis as a disease characterized by low bone mass and an increased risk of fracture. Postmenopausal osteoporosis is connected to the decrease in estrogens concentration as a result of malfunction of endocrine ovarian function. Low estrogens concentration causes increase in bone demineralization and results in osteoporosis. Physical activity, as a component of therapy of patients with osteoporosis, has been used for a long time now. One of the forms of safe physical activity is the vibration training. Training is to maintain a static position or execution of specific exercises involving the appropriate muscles on a vibrating platform, the mechanical vibrations are transmitted to the body of the patient. According to the piezoelectric theory, pressure induces bone formation in the electrical potential difference, which acts as a stimulant of the process of bone formation. Whole body vibration increases the level of growth hormone and testosterone in serum, preventing sarcopenia and osteoporosis. The aim of this study was to review the literature on vibration exercise in patients with postmenopausal osteoporosis based on the PubMed and Medline database. While searching the database, the following key words were used ‘postmenopausal osteoporosis’ and ‘whole-body vibration exercise’.

  13. Modeling of Axial Spring Stiffness in Active Vibration Controlled Drilling

    Directory of Open Access Journals (Sweden)

    Pao William

    2014-07-01

    Full Text Available During drilling process, substantial amount of vibration and shock are induced to the drill string. Active vibration controlled drilling is introduced to reduce the vibration and increase the efficiency of drilling process. In this system, two main components that determine the damping coefficient are magnetorheological (MR damper and spring assembly. Performance of vibration damping system is depending on the viscosity of MR fluid in the damper and spring constant of spring assembly. One of the key issues that are unclear from the design is the correlation between the axial spring stiffness configuration and the damping force which needs to be tuned actively. There has been lack of studies on how the viscosity of MR fluid on the active vibration damper affects the damping stiffness of the whole system. The objective of the project is to extract the correlations for the viscous damping coefficient, equivalent spring stiffness and power input to the system. Simplified vibration model is thus created using Simulink, together with experimental data fed from APS Technology’s in-house team. Inputs of the simulation such as force exerted, mass of mandrel, spring constant and step time are based on the experimental data and can be adjusted to suit different experiments. By having the model, behavior of the system can be studied and analyzed. From the simulation, it is also observed that the relationship between damping coefficient and power input of the system is linear.

  14. Literature survey on anti-vibration gloves

    CSIR Research Space (South Africa)

    Sampson, E

    2003-08-01

    Full Text Available ............................................................................................................... 1 2. HAND ARM VIBRATION SYNDROME (HAVS).......................................................... 2 2.1 Hand-arm vibration................................................. Error! Bookmark not defined. 2.2 Human Response to vibration...

  15. Vibration Control via Stiffness Switching of Magnetostrictive Transducers

    Science.gov (United States)

    Scheidler, Justin J.; Asnani, Vivake M.; Dapino, Marcelo J.

    2016-01-01

    In this paper, a computational study is presented of structural vibration control that is realized by switching a magnetostrictive transducer between high and low stiffness states. Switching is accomplished by either changing the applied magnetic field with a voltage excitation or changing the shunt impedance on the transducer's coil (i.e., the magnetostrictive material's magnetic boundary condition). Switched-stiffness vibration control is simulated using a lumped mass supported by a damper and the magnetostrictive transducer (mount), which is represented by a nonlinear, electromechanical model. Free vibration of the mass is calculated while varying the mount's stiffness according to a reference switched-stiffness vibration control law. The results reveal that switching the magnetic field produces the desired change in stiffness, but also an undesired actuation force that can significantly degrade the vibration control. Hence, a modified switched-stiffness control law that accounts for the actuation force is proposed and implemented for voltage-controlled stiffness switching. The influence of the magneto-mechanical bias condition is also discussed. Voltage-controlled stiffness switching is found to introduce damping equivalent to a viscous damping factor up to about 0.13; this is shown to primarily result from active vibration reduction caused by the actuation force. The merit of magnetostrictive switched-stiffness vibration control is then quantified by comparing the results of voltage- and shunt-controlled stiffness switching to the performance of optimal magnetostrictive shunt damping. For the cases considered, optimal resistive shunt damping performed considerably better than both voltage- and shunt-controlled stiffness switching.

  16. Vibrational Sensing in Marine Invertebrates

    Science.gov (United States)

    1997-09-30

    VIBRATIONAL SENSING IN MARINE INVERTEBRATES Peter A. Jumars School of Oceanography University of Washington Box 357940 Seattle, WA 98195-7940 (206...DATES COVERED 00-00-1997 to 00-00-1997 4. TITLE AND SUBTITLE Vibrational Sensing in Marine Invertebrates 5a. CONTRACT NUMBER 5b. GRANT NUMBER

  17. Vibrations and Stability: Solved Problems

    DEFF Research Database (Denmark)

    Thomsen, Jon Juel

    Worked out solutions for exercise problems in J. J. Thomsen 'Vibrations and Stability: Advanced Theory, Analysis, and Tools', Springer, Berlin - Heidelberg, 2003.......Worked out solutions for exercise problems in J. J. Thomsen 'Vibrations and Stability: Advanced Theory, Analysis, and Tools', Springer, Berlin - Heidelberg, 2003....

  18. Vibration properties of and power harvested by a system of electromagnetic vibration energy harvesters that have electrical dynamics

    Science.gov (United States)

    Cooley, Christopher G.

    2017-09-01

    This study investigates the vibration and dynamic response of a system of coupled electromagnetic vibration energy harvesting devices that each consist of a proof mass, elastic structure, electromagnetic generator, and energy harvesting circuit with inductance, resistance, and capacitance. The governing equations for the coupled electromechanical system are derived using Newtonian mechanics and Kirchhoff circuit laws for an arbitrary number of these subsystems. The equations are cast in matrix operator form to expose the device's vibration properties. The device's complex-valued eigenvalues and eigenvectors are related to physical characteristics of its vibration. Because the electrical circuit has dynamics, these devices have more natural frequencies than typical electromagnetic vibration energy harvesters that have purely resistive circuits. Closed-form expressions for the steady state dynamic response and average power harvested are derived for devices with a single subsystem. Example numerical results for single and double subsystem devices show that the natural frequencies and vibration modes obtained from the eigenvalue problem agree with the resonance locations and response amplitudes obtained independently from forced response calculations. This agreement demonstrates the usefulness of solving eigenvalue problems for these devices. The average power harvested by the device differs substantially at each resonance. Devices with multiple subsystems have multiple modes where large amounts of power are harvested.

  19. The origins of vibration theory

    Science.gov (United States)

    Dimarogonas, A. D.

    1990-07-01

    The Ionian School of natural philosophy introduced the scientific method of dealing with natural phenomena and the rigorous proofs for abstract propositions. Vibration theory was initiated by the Pythagoreans in the fifth century BC, in association with the theory of music and the theory of acoustics. They observed the natural frequency of vibrating systems and proved that it is a system property and that it does not depend on the excitation. Pythagoreans determined the fundamental natural frequencies of several simple systems, such as vibrating strings, pipes, vessels and circular plates. Aristoteles and the Peripatetic School founded mechanics and developed a fundamental understanding of statics and dynamics. In Alexandrian times there were substantial engineering developments in the field of vibration. The pendulum as a vibration, and probably time, measuring device was known in antiquity, and was further developed by the end of the first millennium AD.

  20. Rotor position and vibration control for aerospace flywheel energy storage devices and other vibration based devices

    Science.gov (United States)

    Alexander, B. X. S.

    Flywheel energy storage has distinct advantages over conventional energy storage methods such as electrochemical batteries. Because the energy density of a flywheel rotor increases quadratically with its speed, the foremost goal in flywheel design is to achieve sustainable high speeds of the rotor. Many issues exist with the flywheel rotor operation at high and varying speeds. A prominent problem is synchronous rotor vibration, which can drastically limit the sustainable rotor speed. In a set of projects, the novel Active Disturbance Rejection Control (ADRC) is applied to various problems of flywheel rotor operation. These applications include rotor levitation, steady state rotation at high speeds and accelerating operation. Several models such as the lumped mass model and distributed three-mass models have been analyzed. In each of these applications, the ADRC has been extended to cope with disturbance, noise, and control effort optimization; it also has been compared to various industry-standard controllers such as PID and PD/observer, and is proven to be superior. The control performance of the PID controller and the PD/observer currently used at NASA Glenn has been improved by as much as an order of magnitude. Due to the universality of the second order system, the results obtained in the rotor vibration problem can be straightforwardly extended to other vibrational systems, particularly, the MEMS gyroscope. Potential uses of a new nonlinear controller, which inherits the ease of use of the traditional PID, are also discussed.

  1. Acoustic buffeting by infrasound in a low vibration facility.

    Science.gov (United States)

    MacLeod, B P; Hoffman, J E; Burke, S A; Bonn, D A

    2016-09-01

    Measurement instruments and fabrication tools with spatial resolution on the atomic scale require facilities that mitigate the impact of vibration sources in the environment. One approach to protection from vibration in a building's foundation is to place the instrument on a massive inertia block, supported on pneumatic isolators. This opens the questions of whether or not a massive floating block is susceptible to acoustic forces, and how to mitigate the effects of any such acoustic buffeting. Here this is investigated with quantitative measurements of vibrations and sound pressure, together with finite element modeling. It is shown that a particular concern, even in a facility with multiple acoustic enclosures, is the excitation of the lowest fundamental acoustic modes of the room by infrasound in the low tens of Hz range, and the efficient coupling of the fundamental room modes to a large inertia block centered in the room.

  2. Free vibrations of a multi-span Timoshenko beam carrying multiple ...

    Indian Academy of Sciences (India)

    The literature regarding the free vibration analysis of Bernoulli–Euler single-span beams carrying a number of spring-mass system and Bernoulli–Euler multi-span beams carrying multiple spring-mass systems are plenty, but on Timoshenko multi-span beams carrying multiple spring-mass systems is fewer. This paper aims ...

  3. Research and Analysis of Quasi-Zero-Stiffness Isolator with Geometric Nonlinear Damping

    Directory of Open Access Journals (Sweden)

    Qingguo Meng

    2017-01-01

    Full Text Available This paper presents a novel quasi-zero-stiffness (QZS isolator designed by combining a tension spring with a vertical linear spring. In order to improve the performance of low-frequency vibration isolation, geometric nonlinear damping is proposed and applied to a quasi-zero-stiffness (QZS vibration isolator. Through the study of static characteristics first, the relationship between force displacement and stiffness displacement of the vibration isolation mechanism is established; it is concluded that the parameters of the mechanism have the characteristics of quasi-zero stiffness at the equilibrium position. The solutions of the QZS system are obtained based on the harmonic balance method (HBM. Then, the force transmissibility of the QZS vibration isolator is analyzed. And the results indicate that increasing the nonlinear damping can effectively suppress the transmissibility compared with the nonlinear damping system. Finally, this system is innovative for low-frequency vibration isolation of rehabilitation robots and other applications.

  4. Vibration analysis on compact car shock absorber

    Science.gov (United States)

    Tan, W. H.; Cheah, J. X.; Lam, C. K.; Lim, E. A.; Chuah, H. G.; Khor, C. Y.

    2017-10-01

    Shock absorber is a part of the suspension system which provides comfort experience while driving. Resonance, a phenomenon where forced frequency is coinciding with the natural frequency has significant effect on the shock absorber itself. Thus, in this study, natural frequencies of the shock absorber in a 2 degree-of-freedom system were investigated using Wolfram Mathematica 11, CATIA, and ANSYS. Both theoretical and simulation study how will the resonance affect the car shock absorber. The parametric study on the performance of shock absorber also had been conducted. It is found that the failure tends to occur on coil sprung of the shock absorber before the body of the shock absorber is fail. From mathematical modelling, it can also be seen that higher vibration level occurred on un-sprung mass compare to spring mass. This is due to the weight of sprung mass which could stabilize as compared with the weight of un-sprung mass. Besides that, two natural frequencies had been obtained which are 1.0 Hz and 9.1 Hz for sprung mass and un-sprung mass respectively where the acceleration is recorded as maximum. In conclusion, ANSYS can be used to validate with theoretical results with complete model in order to match with mathematical modelling.

  5. Development of a Rapid and Accurate Identification Method for Citrobacter Species Isolated from Pork Products Using a Matrix-Assisted Laser-Desorption Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS).

    Science.gov (United States)

    Kwak, Hye-Lim; Han, Sun-Kyung; Park, Sunghoon; Park, Si Hong; Shim, Jae-Yong; Oh, Mihwa; Ricke, Steven C; Kim, Hae-Yeong

    2015-09-01

    Previous detection methods for Citrobacter are considered time consuming and laborious. In this study, we have developed a rapid and accurate detection method for Citrobacter species in pork products, using matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry (MS). A total of 35 Citrobacter strains were isolated from 30 pork products and identified by both MALDI-TOF MS and 16S rRNA gene sequencing approaches. All isolates were identified to the species level by the MALDI-TOF MS, while 16S rRNA gene sequencing results could not discriminate them clearly. These results confirmed that MALDI-TOF MS is a more accurate and rapid detection method for the identification of Citrobacter species.

  6. Fuzzy Semiactive Vibration Control of Structures Using Magnetorheological Elastomer

    Directory of Open Access Journals (Sweden)

    Xuan Bao Nguyen

    2017-01-01

    Full Text Available In this research, a novel variable stiffness vibration isolator that uses magnetorheological elastomers (MREs accompanied with a fuzzy semiactive vibration control was developed. Firstly, the viscoelastic characteristics of MREs in shear mode were clarified systematically in order to achieve a mathematical basis for the controller development. Secondly, the fuzzy semiactive vibration control with a strategy based on the Lyapunov theory and dynamic characteristic of MREs was proposed for minimizing the movement of the isolator. In the conventional semiactive algorithm, the command applied current of MRE-based isolator is set at either minimum or maximum value which causes high acceleration and jerk peaks periodically, thus leading to the degeneration of the overall system quality. However, the fuzzy semiactive algorithm presented here is able to produce the sufficient applied current and thus viscoelastic force is desirably produced. The effectiveness of the developed isolator was evaluated numerically by MATLAB simulation and experimentally in comparison with the performances of a passive system and a system with on-off type semiactive controller. The results showed that the developed controller was successful in overcoming the disadvantages of conventional on-off semiactive control.

  7. Correction of vibration for classical free-fall gravimeters with correlation-analysis

    Science.gov (United States)

    Wang, G.; Hu, H.; Wu, K.; Wang, L. J.

    2017-03-01

    In a free-fall absolute gravimeter, a laser interferometer is used to track the falling retro-reflector. To buffer the reference retro-reflector from seismic noise, a low-frequency vertical vibration isolator is traditionally used. However, an isolation device is usually complicated and expensive. A strap-down system using a seismometer to record the vibration and correct the measurement resolves the issue, but the actual recorded vibration cannot be directly used because of signal transfer delay and amplitude attenuation. Nevertheless, by quadratically fitting the trajectory of the falling retro-reflector and the motion of the reference retro-reflector, we find that their residuals are significantly correlated. Moreover, the transfer delay and the amplitude attenuation can be calculated using correlation analysis. With this capability, a vibration correction method for absolute gravimeters is proposed and demonstrated. The transfer delay and the gain attenuation are determined from data of only 25 drops, and can be used to correct subsequent measurements. The method is also applied in the T-1 absolute gravimeter. The standard deviation of the measurement results is improved by a factor of 20 after correction in a noisy environment, and improved by a factor of 5 in a quiet environment. Compared with vibration isolators, the strap-down system using this correction method is much more compact, enabling its use in field conditions or even dynamic environments not suitable for vibration isolators.

  8. Simple Program to Investigate Hysteresis Damping Effect of Cross-Ties on Cables Vibration of Cable-Stayed Bridges

    Directory of Open Access Journals (Sweden)

    Panagis G. Papadopoulos

    2012-01-01

    Full Text Available A short computer program, fully documented, is presented, for the step-by-step dynamic analysis of isolated cables or couples of parallel cables of a cable-stayed bridge, connected to each other and possibly with the deck of the bridge, by very thin pretensioned wires (cross-ties and subjected to variation of their axial forces due to traffic or to successive pulses of a wind drag force. A simplified SDOF model, approximating the fundamental vibration mode, is adopted for every individual cable. The geometric nonlinearity of the cables is taken into account by their geometric stiffness, whereas the material nonlinearities of the cross-ties include compressive loosening, tensile yielding, and hysteresis stress-strain loops. Seven numerical experiments are performed. Based on them, it is observed that if two interconnected parallel cables have different dynamic characteristics, for example different lengths, thus different masses, weights, and geometric stiffnesses, too, or if one of them has a small additional mass, then a single pretensioned very thin wire, connecting them to each other and possibly with the deck of the bridge, proves effective in suppressing, by its hysteresis damping, the vibrations of the cables.

  9. Spherical tuned liquid damper for vibration control in wind turbines

    DEFF Research Database (Denmark)

    Chen, Jun-Ling; Georgakis, Christos T.

    2015-01-01

    A tuned liquid damper (TLD), which consisted of two-layer hemispherical containers, partially filled with water, was investigated as a cost-effective method to reduce the wind-induced vibration of wind turbines. A 1/20 scaled test model was designed to investigate its performance on the shaking...... table. Three groups of equivalent ground accelerations were inputted to simulate the wind-induced dynamic response under different load cases. The influence of rotors and nacelle was assumed to be a concentrated tip mass. A series of free and forced vibration experiments were performed on the shaking...

  10. OPTIMAL AUTOMOBILE MUFFLER VIBRATION AND NOISE ANALYSIS

    Directory of Open Access Journals (Sweden)

    Sujit Kumar Jha

    2013-06-01

    Full Text Available The muffler is the main part of the Automobile Exhaust System, consisting of fibrous and porous materials to absorb noise and vibrations. The exhaust gas mass coming from the engine can produce resonance, which may be the source of fatigue failure in the exhaust pipe due to the presence of continuous resonance. The modes on the muffler should be located away from the engine’s operating frequencies in order to minimise the resonance. The objective of this paper is to determine the frequencies that appear at the modes, which have the more adverse effect during the operation of the automobile. An impact test has been conducted by applying the force using a hard head hammer, and data generated have been used for plotting a graph of the transfer functions using MATLAB. Six points have been selected, namely 1, 2, 3, 4, 7, and 11 on the muffler for the impact test. The collected data from theses six points have been analysed for the addition of damping. Results suggests that increasing the mass increases the damping and lowers the modes of the transfer function. Further research will identify higher strength materials that can withstand the higher gas temperatures as well as the corrosion and erosion by the gas emitted from the engine. muffler, noise, vibration,modal analysis,

  11. Vibration response of misaligned rotors

    Science.gov (United States)

    Patel, Tejas H.; Darpe, Ashish K.

    2009-08-01

    Misalignment is one of the common faults observed in rotors. Effect of misalignment on vibration response of coupled rotors is investigated in the present study. The coupled rotor system is modelled using Timoshenko beam elements with all six dof. An experimental approach is proposed for the first time for determination of magnitude and harmonic nature of the misalignment excitation. Misalignment effect at coupling location of rotor FE model is simulated using nodal force vector. The force vector is found using misalignment coupling stiffness matrix, derived from experimental data and applied misalignment between the two rotors. Steady-state vibration response is studied for sub-critical speeds. Effect of the types of misalignment (parallel and angular) on the vibration behaviour of the coupled rotor is examined. Along with lateral vibrations, axial and torsional vibrations are also investigated and nature of the vibration response is also examined. It has been found that the misalignment couples vibrations in bending, longitudinal and torsional modes. Some diagnostic features in the fast Fourier transform (FFT) of torsional and longitudinal response related to parallel and angular misalignment have been revealed. Full spectra and orbit plots are effectively used to reveal the unique nature of misalignment fault leading to reliable misalignment diagnostic information, not clearly brought out by earlier studies.

  12. The application of SEAT values for predicting how compliant seats with backrests influence vibration discomfort.

    Science.gov (United States)

    Basri, Bazil; Griffin, Michael J

    2014-11-01

    The extent to which a seat can provide useful attenuation of vehicle vibration depends on three factors: the characteristics of the vehicle motion, the vibration transmissibility of the seat, and the sensitivity of the body to vibration. The 'seat effective amplitude transmissibility' (i.e., SEAT value) reflects how these three factors vary with the frequency and the direction of vibration so as to predict the vibration isolation efficiency of a seat. The SEAT value is mostly used to select seat cushions or seat suspensions based on the transmission of vertical vibration to the principal supporting surface of a seat. This study investigated the accuracy of SEAT values in predicting how seats with backrests influence the discomfort caused by multiple-input vibration. Twelve male subjects participated in a four-part experiment to determine equivalent comfort contours, the relative discomfort, the location of discomfort, and seat transmissibility with three foam seats and a rigid reference seat at 14 frequencies of vibration in the range 1-20 Hz at magnitudes of vibration from 0.2 to 1.6 ms(-2) r.m.s. The 'measured seat dynamic discomfort' (MSDD) was calculated for each foam seat from the ratio of the vibration acceleration required to cause similar discomfort with the foam seat and with the rigid reference seat. Using the frequency weightings in current standards, the SEAT values of each seat were calculated from the ratio of overall ride values with the foam seat to the overall ride values with the rigid reference seat, and compared to the corresponding MSDD at each frequency. The SEAT values provided good predictions of how the foam seats increased vibration discomfort at frequencies around the 4-Hz resonance but reduced vibration discomfort at frequencies greater than about 6.3 Hz, with discrepancies explained by a known limitation of the frequency weightings. Copyright © 2014 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  13. The Effect of Upper Body Mass and Initial Knee Flexion on the Injury Outcome of Post Mortem Human Subject Pedestrian Isolated Legs.

    Science.gov (United States)

    Petit, Philippe; Trosseille, Xavier; Dufaure, Nicolas; Dubois, Denis; Potier, Pascal; Vallancien, Guy

    2014-11-01

    In the ECE 127 Regulation on pedestrian leg protection, as well as in the Euro NCAP test protocol, a legform impactor hits the vehicle at the speed of 40 kph. In these tests, the knee is fully extended and the leg is not coupled to the upper body. However, the typical configuration of a pedestrian impact differs since the knee is flexed during most of the gait cycle and the hip joint applies an unknown force to the femur. This study aimed at investigating the influence of the inertia of the upper body (modelled using an upper body mass fixed at the proximal end of the femur) and the initial knee flexion angle on the lower limb injury outcome. In total, 18 tests were conducted on 18 legs from 9 Post Mortem Human Subjects (PMHS). The principle of these tests was to impact the leg at 40 kph using a sled equipped with 3 crushing steel tubes, the stiffness of which were representative of the front face of a European sedan (bonnet leading edge, bumper and spoiler). The mass of the equipped sled was 74.5 kg. The test matrix was designed to perform 4 tests in 4 configurations combining two upper body masses (either 0 or 3 kg) and two knee angles (0 or 20 degrees) at 40 kph (11 m/s) plus 2 tests at 9 m/s. Autopsies were performed on the lower limbs and an injury assessment was established. The findings of this study were first that the increase of the upper body mass resulted in more severe injuries, second that an initial flexion of the knee, corresponding to its natural position during the gait cycle, decreased the severity of the injuries, and third that based on the injury outcome, a test conducted with no upper body mass and the knee fully extended was as severe as a test conducted with a 3 kg upper body mass and an initial knee flexion of 20°.

  14. Tissue vibration in prolonged running.

    Science.gov (United States)

    Friesenbichler, Bernd; Stirling, Lisa M; Federolf, Peter; Nigg, Benno M

    2011-01-04

    The impact force in heel-toe running initiates vibrations of soft-tissue compartments of the leg that are heavily dampened by muscle activity. This study investigated if the damping and frequency of these soft-tissue vibrations are affected by fatigue, which was categorized by the time into an exhaustive exercise. The hypotheses were tested that (H1) the vibration intensity of the triceps surae increases with increasing fatigue and (H2) the vibration frequency of the triceps surae decreases with increasing fatigue. Tissue vibrations of the triceps surae were measured with tri-axial accelerometers in 10 subjects during a run towards exhaustion. The frequency content was quantified with power spectra and wavelet analysis. Maxima of local vibration intensities were compared between the non-fatigued and fatigued states of all subjects. In axial (i.e. parallel to the tibia) and medio-lateral direction, most local maxima increased with fatigue (supporting the first hypothesis). In anterior-posterior direction no systematic changes were found. Vibration frequency was minimally affected by fatigue and frequency changes did not occur systematically, which requires the rejection of the second hypothesis. Relative to heel-strike, the maximum vibration intensity occurred significantly later in the fatigued condition in all three directions. With fatigue, the soft tissue of the triceps surae oscillated for an extended duration at increased vibration magnitudes, possibly due to the effects of fatigue on type II muscle fibers. Thus, the protective mechanism of muscle tuning seems to be reduced in a fatigued muscle and the risk of potential harm to the tissue may increase. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. Influence of Chair Vibrations on Indoor Sonic Boom Annoyance

    Science.gov (United States)

    Rathsam, Jonathan; Klos, Jacob; Loubeau, Alexandra

    2015-01-01

    One goal of NASA’s Commercial Supersonic Technology Project is to identify candidate noise metrics suitable for regulating quiet sonic boom aircraft. A suitable metric must consider the short duration and pronounced low frequency content of sonic booms. For indoor listeners, rattle and creaking sounds and floor and chair vibrations may also be important. The current study examined the effect of such vibrations on the annoyance of test subjects seated indoors. The study involved two chairs exposed to nearly identical acoustic levels: one placed directly on the floor, and the other isolated from floor vibrations by pneumatic elastomeric mounts. All subjects experienced both chairs, sitting in one chair for the first half of the experiment and the other chair for the remaining half. Each half of the experiment consisted of 80 impulsive noises played at the exterior of the sonic boom simulator. When all annoyance ratings were analyzed together there appeared to be no difference in mean annoyance with isolation condition. When the apparent effect of transfer bias was removed, a subtle but measurable effect of vibration on annoyance was identified.

  16. Matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) and Bayesian phylogenetic analysis to characterize Candida clinical isolates.

    Science.gov (United States)

    Angeletti, Silvia; Lo Presti, Alessandra; Cella, Eleonora; Dicuonzo, Giordano; Crea, Francesca; Palazzotti, Bernardetta; Dedej, Etleva; Ciccozzi, Massimo; De Florio, Lucia

    2015-12-01

    Clinical Candida isolates from two different hospitals in Rome were identified and clustered by MALDI-TOF MS system and their origin and evolution estimated by Bayesian phylogenetic analysis. The different species of Candida were correctly identified and clustered separately, confirming the ability of these techniques to discriminate between different Candida species. Focusing MALDI-TOF analysis on a single Candida species, Candida albicans and Candida parapsilosis strains clustered differently for hospital setting as well as for period of isolation than Candida glabrata and Candida tropicalis isolates. The evolutionary rates of C. albicans and C. parapsilosis (1.93×10(-2) and 1.17×10(-2)substitutions/site/year, respectively) were in agreement with a higher rate of mutation of these species, even in a narrow period, than what was observed in C. glabrata and C. tropicalis strains (6.99×10(-4) and 7.52×10(-3)substitutions/site/year, respectively). C. albicans resulted as the species with the highest between and within clades genetic distance values in agreement with the temporal-related clustering found by MALDI-TOF and the high evolutionary rate 1.93×10(-2)substitutions/site/year. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Molecular vibrations the theory of infrared and Raman vibrational spectra

    CERN Document Server

    Wilson, E Bright; Cross, Paul C

    1980-01-01

    Pedagogical classic and essential reference focuses on mathematics of detailed vibrational analyses of polyatomic molecules, advancing from application of wave mechanics to potential functions and methods of solving secular determinant.

  18. Avoid heat transfer equipment vibration

    Energy Technology Data Exchange (ETDEWEB)

    Ganapathy, V.

    1987-06-01

    Tube bundles in heat exchangers, boilers, superheaters and heaters are often subject to vibration and noise problems. Vibration can lead to tube thinning and wear, resulting in tube failures. Excessive noise can be a problem to plant operating personnel. Large gas pressure drop across the equipment is also a side effect, which results in large operating costs. With the design checks presented in this paper, one can predict during design if problems associated with noise and vibration are likely to occur in petroleum refineries.

  19. Experimental Study on Vibration Reduction Characteristics of Gear Shafts Based on ISFD Installation Position

    Directory of Open Access Journals (Sweden)

    Kaihua Lu

    2017-01-01

    Full Text Available A novel type of integral squeeze film damper (ISFD is proposed to reduce and isolate vibration excitations of the gear system through bearing to the foundation. Four ISFD designs were tested experimentally with an open first-grade spur gear system. Vibration reduction characteristics were experimentally studied at different speeds for cases where ISFD elastic damping supports were simultaneously installed on the driving and driven shafts, installed on the driven shaft, or only installed on the driving shaft. Experimental results show that the ISFD elastic damping support can effectively reduce shock vibration of the gear system. Additionally, resonant modulation in gear shafts caused by meshing impact was significantly reduced. Different vibration amplitudes of gear shafts with ISFD installed only on driven or driving shafts were compared. Results indicated that vibration reduction is better when ISFD is only installed on the driven shaft than on the driving shaft.

  20. Effect of longitudinal vibration of fluid-filled pipe with elastic wall on sound transmission character

    Directory of Open Access Journals (Sweden)

    DONG Peng

    2017-01-01

    Full Text Available When one end of a fluid-filled pipe with an elastic wall is fixed and a harmonic force effect acts on the other end,a steady longitudinal vibration will be produced. Compared to the pipeline resonance mode,the amplitude of the steady longitudinal vibration of an elastic pipe is greater,and the effect on the sound is also greater. The study of the steady longitudinal vibration of pipes can better describe the effects of fluid-filled pipelines on the radiation sound field of the pipe opening. Through the contrast between the analysis calculation of the equivalent beam model and the experimental results,the accuracy of the equivalent beam model for the calculation of the steady longitudinal vibration of pipelines is verified,and a method of isolating the steady longitudinal vibration state is proposed and verified.

  1. Cryogenic Vibrational Spectroscopy Provides Unique Fingerprints for Glycan Identification

    Science.gov (United States)

    Masellis, Chiara; Khanal, Neelam; Kamrath, Michael Z.; Clemmer, David E.; Rizzo, Thomas R.

    2017-10-01

    The structural characterization of glycans by mass spectrometry is particularly challenging. This is because of the high degree of isomerism in which glycans of the same mass can differ in their stereochemistry, attachment points, and degree of branching. Here we show that the addition of cryogenic vibrational spectroscopy to mass and mobility measurements allows one to uniquely identify and characterize these complex biopolymers. We investigate six disaccharide isomers that differ in their stereochemistry, attachment point of the glycosidic bond, and monosaccharide content, and demonstrate that we can identify each one unambiguously. Even disaccharides that differ by a single stereogenic center or in the monosaccharide sequence order show distinct vibrational fingerprints that would clearly allow their identification in a mixture, which is not possible by ion mobility spectrometry/mass spectrometry alone. Moreover, this technique can be applied to larger glycans, which we demonstrate by distinguishing isomeric branched and linear pentasaccharides. The creation of a database containing mass, collision cross section, and vibrational fingerprint measurements for glycan standards should allow unambiguous identification and characterization of these biopolymers in mixtures, providing an enabling technology for all fields of glycoscience. [Figure not available: see fulltext.

  2. DIFFERENTIATION OF AEROMONAS ISOLATES OBTAINED FROM DRINKING WATER DISTRIBUTION SYSTEM USING MATRIX-ASSISTED LASER DESCRIPTION/IONIZATION-MASS SPECTROMETRY (MALDI-MS)

    Science.gov (United States)

    The genus Aeromonas is one of several medically significant genera that have gained prominence due to their evolving taxonomy and controversial role in human diseases. In this study, matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS) was used to analyze the...

  3. Time of FLight-Secondary Ion Mass Spectrometry on isolated extracellular fractions and intact biofilms of three species of benthic diatoms

    NARCIS (Netherlands)

    de Brouwer, J.F.C.; Cooksey, K.E.; Wigglesworth-Cooksey, B.; Staal, M.J.; Stal, L.J.; Avci, R.

    2006-01-01

    Time of Flight-Secondary Ion Mass Spectrometry (ToF-SIMS) was used to study compositional characteristics of Extracellular Polymeric Substances (EPS) and compared these to characteristics of the EPS-matrix of intact diatom biofilms. Three benthic diatoms species were investigated, Cylindrotheca

  4. Isolated Mass-Forming IgG4-Related Cholangitis as an Initial Clinical Presentation of Systemic IgG4-Related Disease

    Directory of Open Access Journals (Sweden)

    Seokhwi Kim

    2016-07-01

    Full Text Available IgG4-related disease (IgG4-RD may involve multiple organs. Although it usually presents as diffuse organ involvement, localized mass-forming lesions have been occasionally encountered in pancreas. However, the same pattern has been seldom reported in biliary tract. A 61-year-old male showed a hilar bile duct mass with multiple enlarged lymph nodes in imaging studies and he underwent trisectionectomy under impression of cholangiocarcinoma. Gross examination revealed a mass-like lesion around hilar bile duct. Histopathologically, dense lymphoplasmacytic infiltration and storiform fibrosis were identified without evidence of malignancy. Immunohistochemical stain demonstrated rich IgG4-positive plasma cell infiltration. Follow-up imaging studies disclosed multiple enlarged lymph nodes with involvement of pancreas and perisplenic soft tissue. The lesions have been significantly reduced after steroid treatment, which suggests multi-organ involvement of systemic IgG4-RD. Here, we report an unusual localized mass-forming IgG4-related cholangitis as an initial presentation of IgG4-RD, which was biliary manifestation of systemic IgG4-related autoimmune disease.

  5. Some problems of control of dynamical conditions of technological vibrating machines

    Science.gov (United States)

    Kuznetsov, N. K.; Lapshin, V. L.; Eliseev, A. V.

    2017-10-01

    The possibility of control of dynamical condition of the shakers that are designed for vibration treatment of parts interacting with granular media is discussed. The aim of this article is to develop the methodological basis of technology of creation of mathematical models of shake tables and the development of principles of formation of vibrational fields, estimation of their parameters and control of the structure vibration fields. Approaches to build mathematical models that take into account unilateral constraints, the relationships between elements, with the vibrating surface are developed. Methods intended to construct mathematical model of linear mechanical oscillation systems are used. Small oscillations about the position of static equilibrium are performed. The original method of correction of vibration fields by introduction of the oscillating system additional ties to the structure are proposed. Additional ties are implemented in the form of a mass-inertial device for changing the inertial parameters of the working body of the vibration table by moving the mass-inertial elements. The concept of monitoring the dynamic state of the vibration table based on the original measuring devices is proposed. Estimation for possible changes in dynamic properties is produced. The article is of interest for specialists in the field of creation of vibration technology machines and equipment.

  6. Vibrations transmitted from human hands to upper arm, shoulder, back, neck, and head.

    Science.gov (United States)

    Xu, Xueyan S; Dong, Ren G; Welcome, Daniel E; Warren, Christopher; McDowell, Thomas W; Wu, John Z

    2017-12-01

    Some powered hand tools can generate significant vibration at frequencies below 25 Hz. It is not clear whether such vibration can be effectively transmitted to the upper arm, shoulder, neck, and head and cause adverse effects in these substructures. The objective of this study is to investigate the vibration transmission from the human hands to these substructures. Eight human subjects participated in the experiment, which was conducted on a 1-D vibration test system. Unlike many vibration transmission studies, both the right and left hand-arm systems were simultaneously exposed to the vibration to simulate a working posture in the experiment. A laser vibrometer and three accelerometers were used to measure the vibration transmitted to the substructures. The apparent mass at the palm of each hand was also measured to help in understanding the transmitted vibration and biodynamic response. This study found that the upper arm resonance frequency was 7-12 Hz, the shoulder resonance was 7-9 Hz, and the back and neck resonances were 6-7 Hz. The responses were affected by the hand-arm posture, applied hand force, and vibration magnitude. The transmissibility measured on the upper arm had a trend similar to that of the apparent mass measured at the palm in their major resonant frequency ranges. The implications of the results are discussed. Musculoskeletal disorders (MSDs) of the shoulder and neck are important issues among many workers. Many of these workers use heavy-duty powered hand tools. The combined mechanical loads and vibration exposures are among the major factors contributing to the development of MSDs. The vibration characteristics of the body segments examined in this study can be used to help understand MSDs and to help develop more effective intervention methods.

  7. Buckling and vibration of circular cylindrical shells containing hot liquid

    Science.gov (United States)

    Ganesan, N.; Pradeep, V.

    2005-11-01

    Cylindrical shell filled with hot liquid is analyzed for buckling and vibration behavior using semi-analytical finite element method. A parametric study is conducted on a 316L stainless-steel cylinder filled with hot liquid. The temperature distribution in shell domain is obtained by using axisymmetric eight-node ring finite elements, capable of taking axial variation of temperature into account. Three-node ring elements are used for buckling and vibration analysis, formulated using semi-analytical finite element method. Thermal stress resultants and moment resultants in the shell are estimated and static buckling analysis is carried out to find the buckling temperature of the container for different levels of filling of liquid and for two different boundary conditions. Free vibration analysis carried out by considering initial stress effect and added mass effect due to hot liquid. Two different geometries are considered to study the effect of geometry on buckling temperature.

  8. Vibration Properties of a Steel-PMMA Composite Beam

    Directory of Open Access Journals (Sweden)

    Yuyang He

    2015-01-01

    Full Text Available A steel-polymethyl methacrylate (steel-PMMA beam was fabricated to investigate the vibration properties of a one-dimensional phononic crystal structure. The experimental system included an excitation system, a signal acquisition system, and a data analysis and processing system. When an excitation signal was exerted on one end of the beam, the signals of six response points were collected with acceleration sensors. Subsequent signal analysis showed that the beam was attenuated in certain frequency ranges. The lumped mass method was then used to calculate the bandgap of the phononic crystal beam to analyze the vibration properties of a beam made of two different materials. The finite element method was also employed to simulate the vibration of the phononic crystal beam, and the simulation results were consistent with theoretical calculations. The existence of the bandgap was confirmed experimentally and theoretically, which allows for the potential applications of phononic crystals, including wave guiding and filtering, in integrated structures.

  9. 14 CFR 33.63 - Vibration.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Vibration. 33.63 Section 33.63 Aeronautics... STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.63 Vibration. Each engine... because of vibration and without imparting excessive vibration forces to the aircraft structure. ...

  10. 14 CFR 33.83 - Vibration test.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Vibration test. 33.83 Section 33.83... STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.83 Vibration test. (a) Each engine must undergo vibration surveys to establish that the vibration characteristics of those components that...

  11. 14 CFR 33.33 - Vibration.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Vibration. 33.33 Section 33.33 Aeronautics... STANDARDS: AIRCRAFT ENGINES Design and Construction; Reciprocating Aircraft Engines § 33.33 Vibration. The... vibration and without imparting excessive vibration forces to the aircraft structure. ...

  12. 14 CFR 33.43 - Vibration test.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Vibration test. 33.43 Section 33.43... STANDARDS: AIRCRAFT ENGINES Block Tests; Reciprocating Aircraft Engines § 33.43 Vibration test. (a) Each engine must undergo a vibration survey to establish the torsional and bending vibration characteristics...

  13. 49 CFR 178.819 - Vibration test.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Vibration test. 178.819 Section 178.819... Testing of IBCs § 178.819 Vibration test. (a) General. The vibration test must be conducted for the... vibration test. (b) Test method. (1) A sample IBC, selected at random, must be filled and closed as for...

  14. Rectangular Parallelepiped Vibration in Plane Strain State

    OpenAIRE

    Hanckowiak, Jerzy

    2004-01-01

    In this paper we present a vibration spectrum of a homogenous parallelepiped (HP) under the action of volume and surface forces resulting from the exponent displacements entering the Fourier transforms. Vibration under the action of axial surface tractions and the free vibration are described separately. A relationship between the high frequency vibration and boundary conditions (BC) is also considered.

  15. Calculated rotational and vibrational g factors of LiH X 1S+ and evaluation of parameters in radial functions from rotational and vibration-rotational spectra

    DEFF Research Database (Denmark)

    Sauer, Stephan P. A.; Paidarová, Ivana; Oddershede, Jens

    2011-01-01

    The vibrational g factor, that is, the nonadiabatic correction to the vibrational reduced mass, of LiH has been calculated for internuclear distances over a wide range. Based on multiconfigurational wave functions with a large complete active space and an extended set of gaussian type basis...... functions, these calculations yielded also the rotational g factor, the electric dipolar moment, and its gradient with internuclear distance for LiH in its electronic ground state X (1)Sigma(+). The vibrational g factor g(v) exhibits a pronounced minimum near internuclear distance R = 3.65 x 10(-10) m...

  16. Proteomic analysis of a 14.2 kDa protein isolated from Bali cattle (Bos sondaicus/javanicus saliva using 1-D SDS-PAGE gel and MALDITOF-TOF mass spectrometer

    Directory of Open Access Journals (Sweden)

    Sulaiman N. Depamede

    2013-07-01

    Full Text Available A 14.2 kDa protein isolated from Bali cattle (Bos sondaicus/javanicus saliva has been reported to have a bactericidal activity. The aim of this study was to analyse the nature of a 14.2 kDa protein using single dimension (1-D sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE and matrix-assisted laser desorption ionization time-of-flight tandem mass spectrometer (MALDI TOF/TOF. The protein was isolated by means of polyethylene glycol (PEG/sodium sulfate aqueous two-phase system, and then determined by 12.5% SDS-PAGE. A band of 14.2 kDa was sliced and analysed by MALDI TOF/TOF mass spectrometer using a 5800 proteomics analyzer. Mascot search and National Center for Biotechnology Information (NCBI Blast search revealed that the spot of 1-D SDS-PAGE consisted of three proteins: zymogen granule protein 16 homologue B, pancreatic adenocarcinoma upregulated factor-like, and prolactin-inducible protein homologue precursor. The three proteins have been observed in Bos taurus and other species such as mouse. The actual nature of the proteins and their function in Bali cattle (Bos sondaicus/javanicus, as well as the connection with the evolution of bovines need further analysis.

  17. Whole-body vibration therapy in intensive care patients: A feasibility and safety study.

    Science.gov (United States)

    Boeselt, Tobias; Nell, Christoph; Kehr, Katahrina; Holland, Angélique; Dresel, Marc; Greulich, Timm; Tackenberg, Björn; Kenn, Klaus; Boeder, Johannes; Klapdor, Benjamin; Kirschbaum, Andreas; Vogelmeier, Claus; Alter, Peter; Koczulla, Andreas Rembert

    2016-03-01

    Admission to the intensive care unit is associated with sustained loss of muscle mass, reduced quality of life and increased mortality. Early rehabilitation measures may counteract this process. New approaches to rehabilitation while the patient remains in bed are whole-body vibration alone and whole-body vibration with a dumbbell. The aims of this study are to determine the safety of whole-body vibration for patients admitted to the intensive care unit, and to compare the effects of these techniques in intensive care unit patients and healthy subjects. Twelve intensive care unit patients and 12 healthy subjects using whole-body vibration for the first time were examined while lying in bed. First both groups performed whole body vibration over 3 min. In a second step whole body vibration with dumbbell was performed. In order to determine the safety of the training intensity, heart rate, oxygen saturation and blood pressure were measured. The study was approved by the Marburg ethics committee. There were minor reversible and transient increases in diastolic blood pressure (p = 0.005) and heart rate (p = 0.001) in the control group with whole-body vibration with a dumbbell. In intensive care patients receiving whole-body vibration alone, there were increases in diastolic blood pressure (p = 0.011) and heart rate (p vibration and whole-body vibration with a dumbbell for intensive care unit in-bed patients. No clinically significant safety problems were found. Whole-body vibration and whole-body vibration with a dumbbell might therefore be alternative methods for use in early in-bed rehabilitation, not only for hospitalized patients.

  18. Differentiation of Staphylococcus argenteus (formerly : Staphylococcus aureus clonal complex 75) by mass spectrometry from S. aureus using the first strain isolated from a wild African great ape

    OpenAIRE

    Schuster, D.; Rickmeyer, J.; Gajdiss, M.; Thye, T.; Lorenzen, S.; Reif, M.; Josten, M.; Szekat, C.; Melo, L. D. R.; Schmithausen, R. M.; Liégeois, Florian; Sahl, H. G.; Gonzalez, J. P.; Nagel, M.; Bierbaum, G.

    2017-01-01

    The species Staphylococcus argenteus was separated recently from Staphylococcus aureus (Tong S.Y., F. Schaumburg, M.J. Ellington, J. Corander, B. Pichon, F. Leendertz, S.D. Bentley, J. Parkhill, D.C. Holt, G. Peters, and P.M. Giffard, 2015). The objective of this work was to characterise the genome of a non-human S. argenteus strain, which had been isolated from the faeces of a wild-living western lowland gorilla in Gabon, and analyse the spectrum of this species in matrix-assisted laser deso...

  19. Acoustic vibration modes and electron-lattice coupling in self-assembled silver nanocolumns.

    Science.gov (United States)

    Burgin, J; Langot, P; Arbouet, A; Margueritat, J; Gonzalo, J; Afonso, C N; Vallée, F; Mlayah, A; Rossell, M D; Van Tendeloo, G

    2008-05-01

    Using ultrafast spectroscopy, we investigated electron-lattice coupling and acoustic vibrations in self-assembled silver nanocolumns embedded in an amorphous Al2O3 matrix. The measured electron-lattice energy exchange time is smaller in the nanocolumns than in bulk silver, with a value very close to that of isolated nanospheres with comparable surface to volume ratio. Two vibration modes were detected and ascribed to the breathing and extensional mode of the nanocolumns, in agreement with numerical simulations.

  20. Vibrational Damping of Composite Materials

    OpenAIRE

    Biggerstaff, Janet M.

    2006-01-01

    The purpose of this research was to develop new methods of vibrational damping in polymeric composite materials along with expanding the knowledge of currently used vibrational damping methods. A new barrier layer technique that dramatically increased damping in viscoelastic damping materials that interacted with the composite resin was created. A method for testing the shear strength of damping materials cocured in composites was developed. Directional damping materials, where the loss facto...

  1. Vibration Theory, Vol. 1B

    DEFF Research Database (Denmark)

    Asmussen, J. C.; Nielsen, Søren R. K.

    The present collection of MATLAB exercises has been published as a supplement to the textbook, Svingningsteori, Bind 1 and the collection of exercises in Vibration theory, Vol. 1A, Solved Problems. Throughout the exercise references are made to these books. The purpose of the MATLAB exercises...... is to give a better understanding of the physical problems in linear vibration theory and to surpress the mathematical analysis used to solve the problems. For this purpose the MATLAB environment is excellent....

  2. Harmonic vibrations of multispan beams

    DEFF Research Database (Denmark)

    Dyrbye, Claes

    1996-01-01

    Free and forced harmonic vibrations of multispan beams are determined by a method which implies 1 equation regardless of the configuration. The necessary formulas are given in the paper. For beams with simple supports and the same length of all (n) spans, there is a rather big difference between...... the n´th and the (n+1)´th eigenfrequency. The reason for this phenomenon is explained.Keywords: Vibrations, Eigenfrequencies, Beams....

  3. Smart accelerometer. [vibration damage detection

    Science.gov (United States)

    Bozeman, Richard J., Jr. (Inventor)

    1994-01-01

    The invention discloses methods and apparatus for detecting vibrations from machines which indicate an impending malfunction for the purpose of preventing additional damage and allowing for an orderly shutdown or a change in mode of operation. The method and apparatus is especially suited for reliable operation in providing thruster control data concerning unstable vibration in an electrical environment which is typically noisy and in which unrecognized ground loops may exist.

  4. Improved Predictions for Geotechnical Vibrations

    OpenAIRE

    Macijauskas, Darius

    2015-01-01

    In urban areas where the infrastructure is dense and construction of new structures is near existing and sensitive buildings, frequently vibrations, caused by human activities, occur. Generated waves in the soil may adversely affect surrounding buildings. These vibrations have to be predicted a priori by using currently available knowledge of the soil dynamics. Current research, conducted by Deltares research institute, showed that the reliability of methods for prediction of m...

  5. Stress analysis of vibrating pipelines

    Science.gov (United States)

    Zachwieja, Janusz

    2017-03-01

    The pipelines are subject to various constraints variable in time. Those vibrations, if not monitored for amplitude and frequency, may result in both the fatigue damage in the pipeline profile at high stress concentration and the damage to the pipeline supports. If the constraint forces are known, the system response may be determined with high accuracy using analytical or numerical methods. In most cases, it may be difficult to determine the constraint parameters, since the industrial pipeline vibrations occur due to the dynamic effects of the medium in the pipeline. In that case, a vibration analysis is a suitable alternative method to determine the stress strain state in the pipeline profile. Monitoring the pipeline vibration levels involves a comparison between the measured vibration parameters and the permissible values as depicted in the graphs for a specific pipeline type. Unfortunately, in most cases, the studies relate to the petrochemical industry and thus large diameter, long and straight pipelines. For a pipeline section supported on both ends, the response in any profile at the entire section length can be determined by measuring the vibration parameters at two different profiles between the pipeline supports. For a straight pipeline section, the bending moments, variable in time, at the ends of the analysed section are a source of the pipe excitation. If a straight pipe section supported on both ends is excited by the bending moments in the support profile, the starting point for the stress analysis are the strains, determined from the Euler-Bernoulli equation. In practice, it is easier to determine the displacement using the experimental methods, since the factors causing vibrations are unknown. The industrial system pipelines, unlike the transfer pipelines, are straight sections at some points only, which makes it more difficult to formulate the equation of motion. In those cases, numerical methods can be used to determine stresses using the

  6. Comparison of phenotypic methods and matrix-assisted laser desorption ionisation time-of-flight mass spectrometry for the identification of aero-tolerant Actinomyces spp. isolated from soft-tissue infections.

    Science.gov (United States)

    Ng, L S Y; Sim, J H C; Eng, L C; Menon, S; Tan, T Y

    2012-08-01

    Aero-tolerant Actinomyces spp. are an under-recognised cause of cutaneous infections, in part because identification using conventional phenotypic methods is difficult and may be inaccurate. Matrix-assisted laser desorption ionisation time-of-flight mass spectrometry (MALDI-TOF MS) is a promising new technique for bacterial identification, but with limited data on the identification of aero-tolerant Actinomyces spp. This study evaluated the accuracy of a phenotypic biochemical kit, MALDI-TOF MS and genotypic identification methods for the identification of this problematic group of organisms. Thirty aero-tolerant Actinomyces spp. were isolated from soft-tissue infections over a 2-year period. Species identification was performed by 16 s rRNA sequencing and genotypic results were compared with results obtained by API Coryne and MALDI-TOF MS. There was poor agreement between API Coryne and genotypic identification, with only 33% of isolates correctly identified to the species level. MALDI-TOF MS correctly identified 97% of isolates to the species level, with 33% of identifications achieved with high confidence scores. MALDI-TOF MS is a promising new tool for the identification of aero-tolerant Actinomyces spp., but improvement of the database is required in order to increase the confidence level of identification.

  7. Vibrational modes of nanolines

    Science.gov (United States)

    Heyliger, Paul R.; Flannery, Colm M.; Johnson, Ward L.

    2008-04-01

    Brillouin-light-scattering spectra previously have been shown to provide information on acoustic modes of polymeric lines fabricated by nanoimprint lithography. Finite-element methods for modeling such modes are presented here. These methods provide a theoretical framework for determining elastic constants and dimensions of nanolines from measured spectra in the low gigahertz range. To make the calculations feasible for future incorporation in inversion algorithms, two approximations of the boundary conditions are employed in the calculations: the rigidity of the nanoline/substrate interface and sinusoidal variation of displacements along the nanoline length. The accuracy of these approximations is evaluated as a function of wavenumber and frequency. The great advantage of finite-element methods over other methods previously employed for nanolines is the ability to model any cross-sectional geometry. Dispersion curves and displacement patterns are calculated for modes of polymethyl methacrylate nanolines with cross-sectional dimensions of 65 nm × 140 nm and rectangular or semicircular tops. The vibrational displacements and dispersion curves are qualitatively similar for the two geometries and include a series of flexural, Rayleigh-like, and Sezawa-like modes. This paper is a contribution of the National Institute of Standards and Technology and is not subject to copyright in the United States.

  8. Vernalophrys algivore gen. nov., sp. nov. (Rhizaria: Cercozoa: Vampyrellida), a New Algal Predator Isolated from Outdoor Mass Culture of Scenedesmus dimorphus.

    Science.gov (United States)

    Gong, Yingchun; Patterson, David J; Li, Yunguang; Hu, Zixuan; Sommerfeld, Milton; Chen, Yongsheng; Hu, Qiang

    2015-06-15

    Microbial contamination is the main cause of loss of biomass yield in microalgal cultures, especially under outdoor environmental conditions. Little is known about the identities of microbial contaminants in outdoor mass algal cultures. In this study, a new genus and species of vampyrellid amoeba, Vernalophrys algivore, is described from cultures of Scenedesmus dimorphus in open raceway ponds and outdoor flat-panel photobioreactors. This vampyrellid amoeba was a significant grazer of Scenedesmus and was frequently associated with a very rapid decline in algal numbers. We report on the morphology, subcellular structure, feeding behavior, molecular phylogeny, and life cycle. The new amoeba resembles Leptophrys in the shape of trophozoites and pseudopodia and in the mechanism of feeding (mainly by engulfment). It possesses two distinctive regions in helix E10_1 (nucleotides 117 to 119, CAA) and E23_1 (nucleotides 522 and 523, AG) of the 18S rRNA gene. It did not form a monophyletic group with Leptophrys in molecular phylogenetic trees. We establish a new genus, Vernalophrys, with the type species Vernalophrys algivore. The occurrence, impact of the amoeba on mass culture of S. dimorphus, and means to reduce vampyrellid amoeba contamination in Scenedesmus cultures are addressed. The information obtained from this study will be useful for developing an early warning system and control measures for preventing or treating this contaminant in microalgal mass cultures. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  9. Experimental evidence of the tonic vibration reflex during whole-body vibration of the loaded and unloaded leg.

    Directory of Open Access Journals (Sweden)

    Lisa N Zaidell

    Full Text Available Increased muscle activation during whole-body vibration (WBV is mainly ascribed to a complex spinal and supraspinal neurophysiological mechanism termed the tonic vibration reflex (TVR. However, TVR has not been experimentally demonstrated during low-frequency WBV, therefore this investigation aimed to determine the expression of TVR during WBV. Whilst seated, eight healthy males were exposed to either vertical WBV applied to the leg via the plantar-surface of the foot, or Achilles tendon vibration (ATV at 25 Hz and 50 Hz for 70s. Ankle plantar-flexion force, tri-axial accelerations at the shank and vibration source, and surface EMG activity of m. soleus (SOL and m. tibialis anterior (TA were recorded from the unloaded and passively loaded leg to simulate body mass supported during standing. Plantar flexion force was similarly augmented by WBV and ATV and increased over time in a load- and frequency dependent fashion. SOL and TA EMG amplitudes increased over time in all conditions independently of vibration mode. 50 Hz WBV and ATV resulted in greater muscle activation than 25 Hz in SOL when the shank was loaded and in TA when the shank was unloaded despite the greater transmission of vertical acceleration from source to shank with 25 Hz and WBV, especially during loading. Low-amplitude WBV of the unloaded and passively loaded leg produced slow tonic muscle contraction and plantar-flexion force increase of similar magnitudes to those induced by Achilles tendon vibration at the same frequencies. This study provides the first experimental evidence supporting the TVR as a plausible mechanism underlying the neuromuscular response to whole-body vibration.

  10. Vibrational frequencies in Car-Parrinello molecular dynamics.

    Science.gov (United States)

    Ong, Sheau Wei; Tok, Eng Soon; Kang, Hway Chuan

    2010-12-07

    Car-Parrinello molecular dynamics (CPMD) are widely used to investigate the dynamical properties of molecular systems. An important issue in such applications is the dependence of dynamical quantities such as molecular vibrational frequencies upon the fictitious orbital mass μ. Although it is known that the correct Born-Oppenheimer dynamics are recovered at zero μ, it is not clear how these dynamical quantities are to be rigorously extracted from CPMD calculations. Our work addresses this issue for vibrational frequencies. We show that when the system is sufficiently close to the ground state the calculated ionic vibrational frequencies are ω(M) = ω(0M)[1 -C(μ/M)] for small μ/M, where ω(0M) is the Born-Oppenheimer ionic frequency, M the ionic mass, and C a constant that depends upon the ion-orbital coupling force constants. Our analysis also provides a quantitative understanding of the orbital oscillation amplitudes, leading to a relationship between the adiabaticity of a system and the ion-orbital coupling constants. In particular, we show that there is a significant systematic dependence of calculated vibrational frequencies upon how close the CPMD trajectory is to the Born-Oppenheimer surface. We verify our analytical results with numerical simulations for N(2), Sn(2), and H/Si(100)-(2×1).

  11. Improving Robustness of Tuned Vibration Absorbers Using Shape Memory Alloys

    Directory of Open Access Journals (Sweden)

    Mohammad H. Elahinia

    2005-01-01

    Full Text Available A conventional passive tuned vibration absorber (TVA is effective when it is precisely tuned to the frequency of a vibration mode; otherwise, it may amplify the vibrations of the primary system. In many applications, the frequency often changes over time. For example, adding or subtracting external mass on the existing primary system results in changes in the system’s natural frequency. The frequency changes of the primary system can significantly degrade the performance of TVA. To cope with this problem, many alternative TVAs (such as semiactive, adaptive, and active TVAs have been studied. As another alternative, this paper investigates the use of Shape Memory Alloys (SMAs in passive TVAs in order to improve the robustness of the TVAs subject to mass change in the primary system. The proposed SMA-TVA employs SMA wires, which exhibit variable stiffness, as the spring element of the TVA. This allows us to tune effective stiffness of the TVA to adapt to the changes in the primary system's natural frequency. The simulation model, presented in this paper, contains the dynamics of the TVA along with the SMA wire model that includes phase transformation, heat transfer, and the constitutive relations. Additionally, a PID controller is included for regulating the applied voltage to the SMA wires in order to maintain the desired stiffness. The robustness analysis is then performed on both the SMA-TVA and the equivalent passive TVA. For our robustness analysis, the mass of the primary system is varied by ± 30% of its nominal mass. The simulation results show that the SMA-TVA is more robust than the equivalent passive TVA in reducing peak vibrations in the primary system subject to change of its mass.

  12. Species identification of clinical isolates of anaerobic bacteria: a comparison of two matrix-assisted laser desorption ionization-time of flight mass spectrometry systems

    DEFF Research Database (Denmark)

    Justesen, Ulrik Stenz; Holm, Anette; Knudsen, Elisa

    2011-01-01

    We compared two matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) systems (Shimadzu/SARAMIS and Bruker) on a collection of consecutive clinically important anaerobic bacteria (n = 290). The Bruker system had more correct identifications to the species level...... (67.2% versus 49.0%), but also more incorrect identifications (7.9% versus 1.4%). The system databases need to be optimized to increase identification levels. However, MALDI-TOF MS in its present version seems to be a fast and inexpensive method for identification of most clinically important...

  13. Electrostatic energy harvesting device with dual resonant structure for wideband random vibration sources at low frequency.

    Science.gov (United States)

    Zhang, Yulong; Wang, Tianyang; Zhang, Ai; Peng, Zhuoteng; Luo, Dan; Chen, Rui; Wang, Fei

    2016-12-01

    In this paper, we present design and test of a broadband electrostatic energy harvester with a dual resonant structure, which consists of two cantilever-mass subsystems each with a mass attached at the free edge of a cantilever. Comparing to traditional devices with single resonant frequency, the proposed device with dual resonant structure can resonate at two frequencies. Furthermore, when one of the cantilever-masses is oscillating at resonance, the vibration amplitude is large enough to make it collide with the other mass, which provides strong mechanical coupling between the two subsystems. Therefore, this device can harvest a decent power output from vibration sources at a broad frequency range. During the measurement, continuous power output up to 6.2-9.8 μW can be achieved under external vibration amplitude of 9.3 m/s2 at a frequency range from 36.3 Hz to 48.3 Hz, which means the bandwidth of the device is about 30% of the central frequency. The broad bandwidth of the device provides a promising application for energy harvesting from the scenarios with random vibration sources. The experimental results indicate that with the dual resonant structure, the vibration-to-electricity energy conversion efficiency can be improved by 97% when an external random vibration with a low frequency filter is applied.

  14. Evaluation of hand-arm vibration reducing effect of anti-vibration glove

    OpenAIRE

    樹野, 淳也; 前田, 節雄; 横田, 和樹; 平, 雄一郎

    2015-01-01

    Many kinds of the anti-vibration glove have been developed for reducing hand-arm vibration during the operation with vibration tools. International standard ISO 10819 evaluates the physical effect of gloves' vibration transmissibility but not evaluates the physiological effect of human hands. Thus, in this paper, we proposed the evaluation using the temporary threshold shift of vibrotactile perception threshold to evaluate the hand-arm vibration reducing effect of anti-vibration glove. We per...

  15. Experimental Study on Influence of Hardening of Isolator in Multiple Isolation Building

    OpenAIRE

    Fujita, Kohei; Miura, Toshiya; Tsuji, Masaaki; Takewaki, Izuru

    2016-01-01

    An innovative multiple isolation building system is proposed, and the influence of hardening in seismic isolators on the response of a multiple isolation building is investigated by shaking table vibration tests for a scaled structural model. From the observation in recent earthquake disasters in far-fault ground motions, e.g., the 2011 off the Pacific coast of Tohoku earthquake, a significant concern is reminded that the long-period and long-duration ground excitation may cause severe damage...

  16. Linear lateral vibration of axisymmetric liquid briges

    Science.gov (United States)

    Ferrera, C.; Montanero, J. M.; Cabezas, M. G.

    A liquid bridge is a mass of liquid sustained by the action of the surface tension force between two parallel supporting disks Apart from their basic scientific interest a liquid bridge can be considered as the simplest idealization of the configuration appearing in the floating zone technique used for crystal growth and purification of high melting point materials footnote Messeguer et al emph Crystal Growth Res bf 5 27 1999 This has conferred considerable interest on the study of liquid bridges not only in fluid mechanics but also in the field of material engineering The axisymmetric dynamics of an isothermal liquid bridge has been frequently analysed over the past years The studies have considered different phenomena such as free oscillations footnote Montanero emph E J Mech B Fluids bf 22 169 2003 footnote Acero and Montanero emph Phys Fluids bf 17 078105 2005 forced vibrations footnote Perales and Messeguer emph Phys Fluids A bf 4 1110 1992 g-jitter effects footnote Messeguer and Perales emph Phys Fluids A bf 3 2332 1991 extensional deformation footnote Zhang et al emph J Fluid Mech bf 329 207 1996 and breakup process footnote Espino et al emph Phys Fluids bf 14 3710 2002 among others Works considering the nonaxisymmetric dynamical behaviour of a liquid bridge has been far less common footnote Sanz and Diez emph J Fluid Mech bf 205 503 1989 In the present study the linear vibration of an axisymmetric liquid

  17. Semiactive Vibration Control of a Wind Turbine Tower using an MR Damper

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Nielsen, Søren R. K.; Poulsen, B. L.

    2002-01-01

    For fatigue vibration reduction modern wind turbines are installed with different kind of passive systems such as a tuned mass damper or a tuned liquid damper. However, passive control systems are limited because they cannot adapt to broadbanded loading conditions, i.e. they perform well...... or semiactive system for reducing the fatigue will be more optimal than a passive control system. This paper presents a numerically and experimentally investigation of semiactive vibration control of wind turbine tower vibrations by using a magnetorheological (MR) fluid damper. Numerical simulations as well...... as experimental laboratory results indicate that the MR damper approach is superior to a traditional tuned mass damper for reducing the vibration of wind turbine towers....

  18. Model reduction and analysis of a vibrating beam microgyroscope

    KAUST Repository

    Ghommem, Mehdi

    2012-05-08

    The present work is concerned with the nonlinear dynamic analysis of a vibrating beam microgyroscope composed of a rotating cantilever beam with a tip mass at its end. The rigid mass is coupled to two orthogonal electrodes in the drive and sense directions, which are attached to the rotating base. The microbeam is driven by an AC voltage in the drive direction, which induces vibrations in the orthogonal sense direction due to rotation about the microbeam axis. The electrode placed in the sense direction is used to measure the induced motions and extract the underlying angular speed. A reduced-order model of the gyroscope is developed using the method of multiple scales and used to examine its dynamic behavior. © The Author(s) 2012 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  19. Vibrations in a Multi-Storey Lightweight Building Structure

    DEFF Research Database (Denmark)

    Andersen, Lars Vabbersgaard; Kirkegaard, Poul Henning

    2013-01-01

    This paper provides a quantification of the changes in vibration level that can be expected in a lightweight multi-storey wooden building due to reduced connection stiffness or added nonstructural mass. Firstly, the impact of changes in the floor-to-wall connections is examined. Secondly, a study...... is performed regarding variations of the vibration level due to different placements of nonstructural mass inside the building. The analyses are carried out by means of a modular three-dimensional finite-element model. Each floor and wall panel is modelled in high detail, including door and window openings....... By a substructure approach, the panels are assembled to construct a global building model that allows analysis within a reasonable computation time....

  20. Whole-body vibration augments resistance training effects on body composition in postmenopausal women.

    Science.gov (United States)

    Fjeldstad, Cecilie; Palmer, Ian J; Bemben, Michael G; Bemben, Debra A

    2009-05-20

    Age-related changes in body composition are well-documented with a decrease in lean body mass and a redistribution of body fat generally observed. Resistance training alone has been shown to have positive effects on body composition, however, these benefits may be enhanced by the addition of a vibration stimulus. The purpose of this study was to determine the effects of 8 months of resistance training with and without whole-body vibration (WBV) on body composition in sedentary postmenopausal women. Fifty-five women were assigned to resistance only (RG, n=22), vibration plus resistance (VR, n=21) or non-exercising control (CG, n=12) groups. Resistance training (3 sets 10 repetitions 80% strength) was performed using isotonic weight training equipment and whole-body vibration was done with the use of the power plate (Northbrooke, IL) vibration platform for three times per week for 8 months. Total and regional body composition was assessed from the total body DXA scans at baseline (pre) and after 8 months (post) of training. In the VR group, total % body fat decreased from pre- to post-time points (ptraining groups exhibited significant increases in bone free lean tissue mass for the total body, arm and trunk regions from pre to post (ptraining alone and with whole-body vibration resulted in positive body composition changes by increasing lean tissue. However, only the combination of resistance training and whole-body vibration was effective for decreasing percent body fat.

  1. Tandem mass spectrometry determination of the putative structure of a heterogeneous mixture of Lipid As isolated from the lipopolysaccharide of the Gram-negative bacteria Aeromonas liquefaciens SJ-19a.

    Science.gov (United States)

    Almostafa, Mervt; Allehyane, Bashaeer; Egli, Stefana; Bottaro, Christina; Fridgen, Travis D; Banoub, Joseph

    2016-04-30

    We report herein the electrospray ionization mass spectrometry (ESI-MS) and low-energy collision-induced dissociation tandem mass spectrometry analysis (CID-MS/MS) of a mixture of lipid As isolated from the rough lipopolysaccharide (LPS) of the mutant wild strain of the Gram-negative bacteria Aeromonas liquefaciens (SJ-19a, resistant) grown in the presence of phages. The interaction between the phages and the Gram-negative bacteria regulates host specificity and the heterogeneity of the lipid A component of the LPS. The heterogeneous mixture of lipid As was isolated by the aqueous phenol method from the LPS of the rough wild strain of Gram-negative bacteria Aeromonas liquefaciens (SJ-19a). Hydrolysis of the LPS was with 1% acetic acid, and purification was by chromatography using Sephadex G-50 and Sephadex G-15. ESI-MS and low-energy CID-MS/MS analyses were performed with a triple-quadrupole (QqQ) and a Fourier transform ion cyclotron resonance (FTICR) mass spectrometer. Preliminary analysis of the lipid As mixture was conducted by ESI-MS in the negative ion mode and the spectrum obtained suggested that the lipid A SJ-19a was composed of a heterogeneous mixture of different lipid A molecules. CID-MS/MS experiments confirmed the identities of the various mono-phosphorylated β-D-GlcpN-(1→6)-α-D-GlcpN disaccharide entities. This lipid As mixture was asymmetrically substituted with fatty acids such as ((R)-14:0(3-OH)), (14:0(3-(R)-(O-12:0)) and (14:0(3-(R)-O-(14:0)) located on the O-3, O-3', N-2 and N-2' positions, respectively. Low-energy collision-induced dissociation tandem mass spectrometry in-space (QqQ-MS/MS) and in-time (FTICR-MS/MS) allowed the exact determination of the fatty acid acylation positions on the H2 PO3 →4-O'-β-D-GlcpN-(1→6)-α-D-GlcpN disaccharide backbones of this heterogeneous mixture of lipid As , composed inter alia of seven different substituted lipid As , formed from the incomplete biosynthesis of their respective LPS. Copyright

  2. Long- but not short-term adult-onset, isolated GH deficiency in male mice leads to deterioration of β-cell function, which cannot be accounted for by changes in β-cell mass.

    Science.gov (United States)

    Cordoba-Chacon, Jose; Gahete, Manuel D; Pokala, Naveen K; Geldermann, David; Alba, Maria; Salvatori, Roberto; Luque, Raul M; Kineman, Rhonda D

    2014-03-01

    Developmental models of GH deficiency (GHD) and excess indicate that GH is positively associated with β-cell mass. Therefore, the reduction in GH levels observed with age and weight gain may contribute to the age-related decline in β-cell function. To test this hypothesis, β-cell mass and function were assessed in a mouse model of adult-onset, isolated GHD (AOiGHD). β-Cell mass did not differ between low-fat (LF)-fed AOiGHD and controls. However, high fat-fed AOiGHD mice displayed impaired expansion of β-cell mass and a reduction of bromodeoxyuridine-labeled islet cells, whereas in vitro β-cell function (basal and glucose-stimulated insulin secretion [GSIS]) did not differ from controls. In contrast, duration of AOiGHD differentially altered in vitro β-cell function in LF-fed mice. Specifically, islets from young LF-fed AOiGHD mice showed significant reductions in insulin content and basal insulin secretion, but GSIS was similar to that of controls. A similar islet phenotype was observed in a developmental model of isolated GHD (GH-releasing hormone knockout). Given that LF- and high fat-fed AOiGHD mice, as well as GH-releasing hormone knockout mice, display improved insulin sensitivity, islet changes may be due to reduced insulin demand, rather than primary β-cell dysfunction. However, islets from older LF-fed AOiGHD mice exhibited impaired GSIS, associated with reduced expression of genes important to maintain glucose sensing, suggesting that factors secondary to AOiGHD can alter β-cell function with age. AOiGHD mice exhibited postprandial hypertriglyceridemia and increased pancreatic expression of lipid/inflammatory stress response genes (activating transcription factor 3 and peroxisome proliferator activator receptor β/δ). Therefore, we speculate that these changes may initially protect the AOiGHD β-cell, but with age, lipotoxicity may impair β-cell function.

  3. A Comparative Study of Ground and Underground Vibrations Induced by Bench Blasting

    Directory of Open Access Journals (Sweden)

    Xiuzhi Shi

    2016-01-01

    Full Text Available Ground vibrations originating from bench blasting may cause damage to slopes, structures, and underground workings in close proximity to an operating open-pit mine. It is important to monitor and predict ground vibration levels induced by blasting and to take measures to reduce their hazardous effects. The aims of this paper are to determine the weaker protection objects by comparatively studying bench blasting induced vibrations obtained at surface and in an underground tunnel in an open-pit mine and thus to seek vibration control methods to protect engineering objects at the site. Vibrations arising from measurement devices at surface and in an underground tunnel at the Zijinshan Open-Pit Mine were obtained. Comparative analysis of the peak particle velocities shows that, in the greatest majority of cases, surface values are higher than underground values for the same vibration distance. The transmission laws of surface and underground vibrations were established depending on the type of rock mass, the explosive charge, and the distance. Compared with the Chinese Safety Regulations for Blasting (GB6722-2014, the bench blasting induced vibrations would not currently cause damage to the underground tunnel. According to the maximum allowable peak particle velocities for different objects, the permitted maximum charges per delay are obtained to reduce damage to these objects at different distances.

  4. Rapid prototyping tool for tuning of vibration absorbers; Rapid-Prototyping-Tool zur Abstimmung von Schwingungstilgern

    Energy Technology Data Exchange (ETDEWEB)

    Marienfeld, P.M.; Karkosch, H.J. [ContiTech Vibration Control GmbH, Hannover (Germany); Bohn, C. [Technische Univ. Clausthal (Germany); Svaricek, F. [Univ. der Bundeswehr Muenchen (Germany); Knake-Langhorst, S. [Deutsches Zentrum fuer Luft- und Raumfahrt, Braunschweig (Germany)

    2008-07-01

    In the automotive industry passive vibration absorbers are a well established method to reduce structural vibrations in automotive vehicles. Designing a vibration absorber consists of selecting its mechanical properties. Usually extensive tests are necessary with different absorbers in the vehicle and subjective as well as objective evaluation of the results. This requires hardware modifications between different tests. In this paper, an approach is proposed that can assist in the development of vibration absorbers. It is based on tuning an active vibration control system such that it reproduces the behavior of a specified vibration absorber. This behavior can then be changed electronically without modifying the hardware. Two different control approaches are compared. In the first approach, the apparent physical properties of a vibration absorber are directly modified through acceleration, velocity or displacement feedback. In the second approach, a desired dynamic mass transfer function for the vibration absorber is prescribed and an H2-norm optimal model matching problem is solved. Experimental results obtained with this approach are presented. (orig.)

  5. Free vibrations of a multi-span Timoshenko beam carrying multiple ...

    Indian Academy of Sciences (India)

    Wu (2002) obtained the natural frequencies and mode shapes of the beams carrying any number of two-degrees of freedom spring-mass systems by using finite element method (FEM). Wu & Chen (2001) used the numerical assembly technique for free vibration analysis of a Timoshenko beam carrying multiple spring-mass.

  6. Ultrasonic metal welding with a vibration source using longitudinal and torsional vibration transducers

    Science.gov (United States)

    Asami, Takuya; Tamada, Yosuke; Higuchi, Yusuke; Miura, Hikaru

    2017-07-01

    Conventional ultrasonic metal welding for joining dissimilar metals uses a linear vibration locus, although this method suffers from problems such as low overall weld strength. Our previous studies have shown that ultrasonic welding with a planar vibration locus improves the weld strength. However, the vibration source in our previous studies had problems in longitudinal-torsional vibration controllability and small welding tip. Therefore, the study of the optimal shape of the vibration locus was difficult. Furthermore, improvement of weld strength cannot be expected. We have developed a new ultrasonic vibration source that can control the longitudinal-torsional vibration and can connect to a large welding tip. In this study, we clarified the longitudinal-torsional vibration controllability of the developed ultrasonic vibration source. Moreover, we clarified that using the planar locus of the developed vibration source produced a higher weld strength than our previous studies, and clarified the optimal shape of the vibration locus.

  7. Negative effective mass in acoustic metamaterial with nonlinear mass-in-mass subsystems

    Science.gov (United States)

    Cveticanin, L.; Zukovic, M.

    2017-10-01

    In this paper the dynamics of the nonlinear mass-in-mass system as the basic subsystem of the acoustic metamaterial is investigated. The excitation of the system is in the form of the Jacobi elliptic function. The corresponding model to this forcing is the mass-in-mass system with cubic nonlinearity of the Duffing type. Mathematical model of the motion is a system of two coupled strong nonlinear and nonhomogeneous second order differential equations. Particular solution to the system is obtained. The analytical solution of the problem is based on the simple and double integral of the cosine Jacobi function. In the paper the integrals are given in the form of series of trigonometric functions. These results are new one. After some modification the simplified solution in the first approximation is obtained. The result is convenient for discussion. Conditions for elimination of the motion of the mass 1 by connection of the nonlinear dynamic absorber (mass - spring system) are defined. In the consideration the effective mass ratio is introduced in the nonlinear mass-in-mass system. Negative effective mass ratio gives the absorption of vibrations with certain frequencies. The advantage of the nonlinear subunit in comparison to the linear one is that the frequency gap is significantly wider. Nevertheless, it has to be mentioned that the amplitude of vibration differs from zero for a small value. In the paper the analytical results are compared with numerical one and are in agreement.

  8. Vibrational modes of the Cu(100)-c(2x2)-Pd surface

    DEFF Research Database (Denmark)

    Stoltze, Per; Hannon, J.B.; Ibach, H.

    1996-01-01

    The vibrational modes of the surface have been measured using electron-energy loss spectroscopy. The measured mode energies are compared to dynamical models with parameters taken from effective medium theory. Strong Pd-Cu interplanar bonding gives rise to nearly degenerate Pd and Cu vibrations (95...... cm(-1)) at the (X) over bar point, despite the large mass difference of the ions. Upon low-temperature annealing of the surface, overlayer islands of pure Cu coalesce and order. These overlayer islands are characterized by a high-energy vibrational mode near 128 cm(-1) which grows in intensity upon...

  9. Energy-Saving Vibration Impulse Coal Degradation at Finely Dispersed Coal-Water Slurry Preparation

    Directory of Open Access Journals (Sweden)

    Moiseev V.A.

    2015-01-01

    Full Text Available Theoretical and experimental research results of processes of finely dispersed coal-water slurry preparation for further generation of energetic gas in direct flow and vortex gas generator plants have been presented. It has been stated that frequency parameters of parabolic vibration impulse mill influence degradation degree. Pressure influence on coal parameters in grinding cavity has been proven. Experimental researches have proven efficiency of vibration impulse mill with unbalanced mass vibrator generator development. Conditions of development on intergranular walls of coal cracks have been defined.

  10. Free vibrations of laminated composite elliptic plates

    Science.gov (United States)

    Andersen, C. M.; Noor, A. K.

    1976-01-01

    The free vibrations are studied of laminated anisotropic elliptic plates with clamped edges. The analytical formulation is based on a Mindlin-Reissner type plate theory with the effects of transverse shear deformation, rotary inertia, and bending-extensional coupling included. The frequencies and mode shapes are obtained by using the Rayleigh-Ritz technique in conjunction with Hamilton's principle. A computerized symbolic integration approach is used to develop analytic expressions for the stiffness and mass coefficients and is shown to be particularly useful in evaluating the derivatives of the eigenvalues with respect to certain geometric and material parameters. Numerical results are presented for the case of angle-ply composite plates with skew-symmetric lamination.

  11. Effects of vibrational motion on core-level spectra of prototype organic molecules

    Energy Technology Data Exchange (ETDEWEB)

    Uejio, Janel S.; Schwartz, Craig P.; Saykally, Richard J.; Prendergast, David

    2008-08-21

    A computational approach is presented for prediction and interpretation of core-level spectra of complex molecules. Applications are presented for several isolated organic molecules, sampling a range of chemical bonding and structural motifs. Comparison with gas phase measurements indicate that spectral lineshapes are accurately reproduced both above and below the ionization potential, without resort to ad hoc broadening. Agreement with experiment is significantly improved upon inclusion of vibrations via molecular dynamics sampling. We isolate and characterize spectral features due to particular electronic transitions enabled by vibrations, noting that even zero-point motion is sufficient in some cases.

  12. The Shock and Vibration Digest, Volume 18, Number 3

    Science.gov (United States)

    1986-03-01

    optimal design of passive suspensions, based tendon control system and an active mass upon statistical analysis of vehicle vibrations and damper system...Space Trusses - . J.A. Teixeira de Freitas, J.P.B. Moitinho de ,-. Almeida, F.B.E. Virtuoso .-. . Universidade Tecnica de Lisboa, Lisbon, Portugal 86...34 Manual on, Aernelasticity," Part U, Aero- dynamic Aspects, Advisory Unfortunately, such information is Group Aeronaut. Res. Dev. often unreliable

  13. Fundamental vibrational mode in a highly inhomogeneous star

    OpenAIRE

    Bastrukov, S. I.; Chang, H. -K.; Wu, E. -H.; Molodtsova, I. V.

    2008-01-01

    The eigenfrequency problem of fundamental vibrational mode in a highly inhomogeneous star, modeled by self-gravitating mass of viscous liquid with singular density at the center, is considered in juxtaposition with that for Kelvin fundamental mode in the liquid star model with uniform density. Particular attention is given to the difference between spectral equations for the frequency and lifetime of f-mode in the singular and homogeneous star models. The newly obtained results are discussed ...

  14. Energy expenditure and substrate utilization during whole body vibration

    Directory of Open Access Journals (Sweden)

    Ravena Santos Raulino

    2015-04-01

    Full Text Available INTRODUCTION AND OBJECTIVE: the aim of this study was to investigate whether the addition of vibration during interval training would raise oxygen consumption VO2 to the extent necessary for weight management and to evaluate the influence of the intensity of the vibratory stimulus for prescribing the exercise program in question. METHODS: VO2, measured breath by breath, was evaluated at rest and during the four experimental conditions to determine energy expenditure, metabolic equivalent MET, respiratory exchange ratio RER, % Kcal from fat, and rate of fat oxidation. Eight young sedentary females age 22±1 years, height 163.88± 7.62 cm, body mass 58.35±10.96 kg, and VO2 max 32.75±3.55 mLO2.Kg-1.min-1 performed interval training duration = 13.3 min to the upper and lower limbs both with vibration 35 Hz and 2 mm, 40 Hz and 2 mm, 45 Hz and 2 mm and without vibration. The experimental conditions were randomized and balanced at an interval of 48 hours. RESULTS: the addition of vibration to exercise at 45 Hz and 2 mm resulted in an additional increase of 17.77±12.38% of VO2 compared with exercise without vibration. However, this increase did not change the fat oxidation rate p=0.42 because intensity of exercise 29.1±3.3 %VO2max, 2.7 MET was classified as mild to young subjects. CONCLUSION: despite the influence of vibration on VO2 during exercise, the increase was insufficient to reduce body weight and did not reach the minimum recommendation of exercise prescription for weight management for the studied population.

  15. Mechanical Vibrations Modeling and Measurement

    CERN Document Server

    Schmitz, Tony L

    2012-01-01

    Mechanical Vibrations:Modeling and Measurement describes essential concepts in vibration analysis of mechanical systems. It incorporates the required mathematics, experimental techniques, fundamentals of modal analysis, and beam theory into a unified framework that is written to be accessible to undergraduate students,researchers, and practicing engineers. To unify the various concepts, a single experimental platform is used throughout the text to provide experimental data and evaluation. Engineering drawings for the platform are included in an appendix. Additionally, MATLAB programming solutions are integrated into the content throughout the text. This book also: Discusses model development using frequency response function measurements Presents a clear connection between continuous beam models and finite degree of freedom models Includes MATLAB code to support numerical examples that are integrated into the text narrative Uses mathematics to support vibrations theory and emphasizes the practical significanc...

  16. The transmission of vertical vibration through seats: Influence of the characteristics of the human body

    Science.gov (United States)

    Toward, Martin G. R.; Griffin, Michael J.

    2011-12-01

    The transmission of vibration through a seat depends on the impedance of the seat and the apparent mass of the seat occupant. This study was designed to determine how factors affecting the apparent mass of the body (age, gender, physical characteristics, backrest contact, and magnitude of vibration) affect seat transmissibility. The transmission of vertical vibration through a car seat was measured with 80 adults (41 males and 39 females aged 18-65) at frequencies between 0.6 and 20 Hz with two backrest conditions (no backrest and backrest), and with three magnitudes of random vibration (0.5, 1.0, and 1.5 m s -2 rms). Linear regression models were used to study the effects of subject physical characteristics (age, gender, and anthropometry) and features of their apparent mass (resonance frequency, apparent mass at resonance and at 12 Hz) on the measured seat transmissibility. The strongest predictor of both the frequency of the principal resonance in seat transmissibility and the seat transmissibility at resonance was subject age, with other factors having only marginal effects. The transmissibility of the seat at 12 Hz depended on subject age, body mass index, and gender. Although subject weight was strongly associated with apparent mass, weight was not strongly associated with seat transmissibility. The resonance frequency of the seat decreased with increases in the magnitude of the vibration excitation and increased when subjects made contact with the backrest. Inter-subject variability in the resonance frequency and transmissibility at resonance was less with greater vibration excitation, but was largely unaffected by backrest contact. A lumped parameter seat-person model showed that changes in seat transmissibility with age can be predicted from changes in apparent mass with age, and that the dynamic stiffness of the seat appeared to increase with increased loading so as to compensate for increases in subject apparent mass associated with increased sitting

  17. DOWNHOLE VIBRATION MONITORING & CONTROL SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Martin E. Cobern

    2004-08-31

    The deep hard rock drilling environment induces severe vibrations into the drillstring, which can cause reduced rates of penetration (ROP) and premature failure of the equipment. The only current means of controlling vibration under varying conditions is to change either the rotary speed or the weight-on-bit (WOB). These changes often reduce drilling efficiency. Conventional shock subs are useful in some situations, but often exacerbate the problems. The objective of this project is development of a unique system to monitor and control drilling vibrations in a ''smart'' drilling system. This system has two primary elements: (1) The first is an active vibration damper (AVD) to minimize harmful axial, lateral and torsional vibrations. The hardness of this damper will be continuously adjusted using a robust, fast-acting and reliable unique technology. (2) The second is a real-time system to monitor drillstring vibration, and related parameters. This monitor adjusts the damper according to local conditions. In some configurations, it may also send diagnostic information to the surface via real-time telemetry. The AVD is implemented in a configuration using magnetorheological (MR) fluid. By applying a current to the magnetic coils in the damper, the viscosity of the fluid can be changed rapidly, thereby altering the damping coefficient in response to the measured motion of the tool. Phase I of this program entailed modeling and design of the necessary subsystems and design, manufacture and test of a full laboratory prototype. Phase I of the project was completed by the revised end date of May 31, 2004. The objectives of this phase were met, and all prerequisites for Phase II have been completed.

  18. DOWNHOLE VIBRATION MONITORING & CONTROL SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Martin E. Cobern

    2004-10-13

    The deep hard rock drilling environment induces severe vibrations into the drillstring, which can cause reduced rates of penetration (ROP) and premature failure of the equipment. The only current means of controlling vibration under varying conditions is to change either the rotary speed or the weight-on-bit (WOB). These changes often reduce drilling efficiency. Conventional shock subs are useful in some situations, but often exacerbate the problems. The objective of this project is development of a unique system to monitor and control drilling vibrations in a ''smart'' drilling system. This system has two primary elements: (1) The first is an active vibration damper (AVD) to minimize harmful axial, lateral and torsional vibrations. The hardness of this damper will be continuously adjusted using a robust, fast-acting and reliable unique technology. (2) The second is a real-time system to monitor drillstring vibration, and related parameters. This monitor adjusts the damper according to local conditions. In some configurations, it may also send diagnostic information to the surface via real-time telemetry. The AVD is implemented in a configuration using magnetorheological (MR) fluid. By applying a current to the magnetic coils in the damper, the viscosity of the fluid can be changed rapidly, thereby altering the damping coefficient in response to the measured motion of the tool. Phase I of this program entailed modeling and design of the necessary subsystems and design, manufacture and test of a full laboratory prototype. Phase I of the project was completed by the revised end date of May 31, 2004. The objectives of this phase were met, and all prerequisites for Phase II have been completed. The month of June, 2004 was primarily occupied with the writing of the Phase I Final Report, the sole deliverable of Phase I, which will be submitted in the next quarter. Redesign of the laboratory prototype and design of the downhole (Phase II) prototype was

  19. Tunable Digital Metamaterial for Broadband Vibration Isolation at Low Frequency.

    Science.gov (United States)

    Wang, Ziwei; Zhang, Quan; Zhang, Kai; Hu, Gengkai

    2016-11-01

    A 3D-printed digital metamaterial embedded with electromagnets is fabricated. Switching electromagnets between the attaching (1 bit) and detaching (0 bit) modes activates different waveguides in the metamaterial. The underlying mechanism is investigated theoretically and experimentally. The hierarchical assemblies of unit cells, mimicking digital bits, allow programmable broadening of the bandgap of the metamaterial. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Canfield Joint - Vibration Isolation System for High Precision Pointing Project

    Data.gov (United States)

    National Aeronautics and Space Administration — During our Phase I STTR effort, Balcones Technologies, LLC (BT) and The University of Texas at Austin Center for Electromechanics (CEM) successfully achieved all...

  1. Development of a variable stiffness and damping tunable vibration isolator

    CSIR Research Space (South Africa)

    Cronje, JM

    2005-03-01

    Full Text Available the amplification at resonance. A practical variable stiffness spring was developed by using a compound leaf spring with circular spring elements. A wax actuator, controlled by a hot-air gun with a closed-loop displacement and velocity feedback control system...

  2. Evaluation of MALDI-TOF mass spectrometry and MALDI BioTyper in comparison to 16S rDNA sequencing for the identification of bacteria isolated from Arctic sea water.

    Directory of Open Access Journals (Sweden)

    Anna Maria Timperio

    Full Text Available MALDI-TOF Mass Spectrometry in association with the MALDI BioTyper 3.1 software has been evaluated for the identification and classification of 45 Arctic bacteria isolated from Kandalaksha Bay (White Sea, Russia. The high reliability of this method has been already demonstrated, in clinical microbiology, by a number of studies showing high attribution concordance with other credited analyses. Recently, it has been employed also in other branches of microbiology with controversial performance. The phyloproteomic results reported in this study were validated with those obtained by the "gold standard" 16S rDNA analysis. Concordance between the two methods was 100% at the genus level, while at the species level it was 48%. These percentages appeared to be quite high compared with other studies regarding environmental bacteria. However, the performance of MALDI BioTyper changed in relation to the taxonomical group analyzed, reflecting known identification problems related to certain genera. In our case, attribution concordance for Pseudomonas species was rather low (29%, confirming the problematic taxonomy of this genus, whereas that of strains from other genera was quite high (> 60%. Among the isolates tested in this study, two strains (Exiguobacterium oxidotolerans and Pseudomonas costantinii were misidentified by MALDI BioTyper due to absence of reference spectra in the database. Accordingly, missing spectra were acquired for the database implementation.

  3. Species-Level Identification of Actinomyces Isolates Causing Invasive Infections: Multiyear Comparison of Vitek MS (Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry) to Partial Sequencing of the 16S rRNA Gene

    Science.gov (United States)

    Gregson, D.; Church, D. L.

    2016-01-01

    Actinomyces species are uncommon but important causes of invasive infections. The ability of our regional clinical microbiology laboratory to report species-level identification of Actinomyces relied on molecular identification by partial sequencing of the 16S ribosomal gene prior to the implementation of the Vitek MS (matrix-assisted laser desorption ionization–time of flight mass spectrometry [MALDI-TOF MS]) system. We compared the use of the Vitek MS to that of 16S rRNA gene sequencing for reliable species-level identification of invasive infections caused by Actinomyces spp. because limited data had been published for this important genera. A total of 115 cases of Actinomyces spp., either alone or as part of a polymicrobial infection, were diagnosed between 2011 and 2014. Actinomyces spp. were considered the principal pathogen in bloodstream infections (n = 17, 15%), in skin and soft tissue abscesses (n = 25, 22%), and in pulmonary (n = 26, 23%), bone (n = 27, 23%), intraabdominal (n = 16, 14%), and central nervous system (n = 4, 3%) infections. Compared to sequencing and identification from the SmartGene Integrated Database Network System (IDNS), Vitek MS identified 47/115 (41%) isolates to the correct species and 10 (9%) isolates to the correct genus. However, the Vitek MS was unable to provide identification for 43 (37%) isolates while 15 (13%) had discordant results. Phylogenetic analyses of the 16S rRNA sequences demonstrate high diversity in recovered Actinomyces spp. and provide additional information to compare/confirm discordant identifications between MALDI-TOF and 16S rRNA gene sequences. This study highlights the diversity of clinically relevant Actinomyces spp. and provides an important typing comparison. Based on our analysis, 16S rRNA gene sequencing should be used to rapidly identify Actinomyces spp. until MALDI-TOF databases are optimized. PMID:26739153

  4. Species-Level Identification of Actinomyces Isolates Causing Invasive Infections: Multiyear Comparison of Vitek MS (Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry) to Partial Sequencing of the 16S rRNA Gene.

    Science.gov (United States)

    Lynch, T; Gregson, D; Church, D L

    2016-03-01

    Actinomyces species are uncommon but important causes of invasive infections. The ability of our regional clinical microbiology laboratory to report species-level identification of Actinomyces relied on molecular identification by partial sequencing of the 16S ribosomal gene prior to the implementation of the Vitek MS (matrix-assisted laser desorption ionization-time of flight mass spectrometry [MALDI-TOF MS]) system. We compared the use of the Vitek MS to that of 16S rRNA gene sequencing for reliable species-level identification of invasive infections caused by Actinomyces spp. because limited data had been published for this important genera. A total of 115 cases of Actinomyces spp., either alone or as part of a polymicrobial infection, were diagnosed between 2011 and 2014. Actinomyces spp. were considered the principal pathogen in bloodstream infections (n = 17, 15%), in skin and soft tissue abscesses (n = 25, 22%), and in pulmonary (n = 26, 23%), bone (n = 27, 23%), intraabdominal (n = 16, 14%), and central nervous system (n = 4, 3%) infections. Compared to sequencing and identification from the SmartGene Integrated Database Network System (IDNS), Vitek MS identified 47/115 (41%) isolates to the correct species and 10 (9%) isolates to the correct genus. However, the Vitek MS was unable to provide identification for 43 (37%) isolates while 15 (13%) had discordant results. Phylogenetic analyses of the 16S rRNA sequences demonstrate high diversity in recovered Actinomyces spp. and provide additional information to compare/confirm discordant identifications between MALDI-TOF and 16S rRNA gene sequences. This study highlights the diversity of clinically relevant Actinomyces spp. and provides an important typing comparison. Based on our analysis, 16S rRNA gene sequencing should be used to rapidly identify Actinomyces spp. until MALDI-TOF databases are optimized. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  5. Stroboscopic shearography for vibration analysis

    Science.gov (United States)

    Steinchen, Wolfgang; Kupfer, Gerhard; Maeckel, Peter; Voessing, Frank

    1999-09-01

    Digital Shearography, a laser interferometric technique in conjunction with the digital image processing, has the potential for vibration analysis due to its simple optical system and insensitivity against small rigid body motions. This paper will focus on its recent developments for vibration analysis and for nondestructive testing (NDT) by dynamic (harmonical) excitation. With the introduction of real time observation using automatically refreshing reference frame, both small and large rigid body motions are greatly suppressed. The development of a smaller and more mobile measuring device in conjunction with a user guided comfortable program Shearwin enables the digital shearography to be applied easily as an industrial online testing tool.

  6. Vibrational Collapse of Hexapod Packings

    Science.gov (United States)

    Zhao, Yuchen; Ding, Jingqiu; Barés, Jonathan; Zheng, Hu; Dierichs, Karola; Menges, Achim; Behringer, Robert

    2017-06-01

    Columns made of convex noncohesive grains like sand collapse after being released from a confining container. However, structures built from non-convex grains can be stable without external support. In the current experiments, we investigate the effect of vibration on destroying such columns. The change of column height during vertical vibration, can be well characterized by stretched exponential relaxation when the column is short, which is in agreement with previous work, while a faster collapse happens when the column is tall. We investigate the collapse after the fast process including its dependence on column geometry, and on interparticle and basal friction.

  7. Innovative Techniques Simplify Vibration Analysis

    Science.gov (United States)

    2010-01-01

    In the early years of development, Marshall Space Flight Center engineers encountered challenges related to components in the space shuttle main engine. To assess the problems, they evaluated the effects of vibration and oscillation. To enhance the method of vibration signal analysis, Marshall awarded Small Business Innovation Research (SBIR) contracts to AI Signal Research, Inc. (ASRI), in Huntsville, Alabama. ASRI developed a software package called PC-SIGNAL that NASA now employs on a daily basis, and in 2009, the PKP-Module won Marshall s Software of the Year award. The technology is also used in many industries: aircraft and helicopter, rocket engine manufacturing, transportation, and nuclear power."

  8. Extracellular mass transport considerations for space flight research concerning suspended and adherent in vitro cell cultures

    Science.gov (United States)

    Klaus, David M.; Benoit, Michael R.; Nelson, Emily S.; Hammond, Timmothy G.

    2004-01-01

    Conducting biological research in space requires consideration be given to isolating appropriate control parameters. For in vitro cell cultures, numerous environmental factors can adversely affect data interpretation. A biological response attributed to microgravity can, in theory, be explicitly correlated to a specific lack of weight or gravity-driven motion occurring to, within or around a cell. Weight can be broken down to include the formation of hydrostatic gradients, structural load (stress) or physical deformation (strain). Gravitationally induced motion within or near individual cells in a fluid includes sedimentation (or buoyancy) of the cell and associated shear forces, displacement of cytoskeleton or organelles, and factors associated with intra- or extracellular mass transport. Finally, and of particular importance for cell culture experiments, the collective effects of gravity must be considered for the overall system consisting of the cells, their environment and the device in which they are contained. This does not, however, rule out other confounding variables such as launch acceleration, on orbit vibration, transient acceleration impulses or radiation, which can be isolated using onboard centrifuges or vibration isolation techniques. A framework is offered for characterizing specific cause-and-effect relationships for gravity-dependent responses as a function of the above parameters.

  9. Development of new efficient method for isolation of phenolics from sea algae prior to their rapid resolution liquid chromatographic-tandem mass spectrometric determination.

    Science.gov (United States)

    Klejdus, Bořivoj; Plaza, Merichel; Šnóblová, Marie; Lojková, Lea

    2017-02-20

    The extraction of phenolic compounds from 4 different sea algae samples, three brown algae (Cystoseira abies-marina, C. abies-marina grinded under cryogenic conditions with liquid nitrogen, Undaria pinnatifida and Sargassum muticum) and one red algae (Chondrus crispus) via solid phase extraction using micro-elution solid-phase extraction (μ-SPE) plate method was studied. Prior to μ-SPE, 50mg of algae with 80% methanol mixture was extracted in hyphenated series by various extraction techniques, such as pressurized liquid extraction and Ika Ultra-Turrax® Tube Drive, in combination with ultrasound assisted extraction. The μ-SPE plate technique reduced the time of sample pre-treatment thanks to higher sensitivity and pre-concentration effect. Selected groups of benzoic acid derivatives (p-hydroxybenzoic, protocatechuic, gallic, vanillic, and syringic acids), hydroxybenzaldehydes (4-hydroxybenzaldehyde, and 3,4-dihydroxybenzaldehyde), and cinnamic acid derivatives (p-coumaric, caffeic, ferulic, sinapic, and chlorogenic acids) were determined using rapid resolution liquid chromatography coupled to mass spectrometry detection with negative ion electrospray ionization (RRLC-ESI-MS) using multiple reactions monitoring. LOQs of measured samples varied in the range 0.23-1.68ng/mL and LODs in the range 0.07-0.52ng/mL. The applied method allowed a simultaneous determination of phenolics (i.e. free, esters soluble in methanol, glycosides, and esters insoluble in methanol) in less than 5min (including alkaline or acidic hydrolysis of raw extracts) from sea algae extracts. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. On the isolation of elemental carbon (EC) for micro-molar 14C accelerator mass spectrometry: development of a hybrid reference material for 14C-EC accuracy assurance, and a critical evaluation of the thermal optical kinetic (TOK) EC isolation procedure

    Science.gov (United States)

    Currie, L. A.; Kessler, J. D.

    2005-10-01

    The primary objective of the research reported here has been the development of a hybrid reference material (RM) to serve as a test of accuracy for elemental carbon (EC) isotopic (14C) speciation measurements. Such measurements are vital for the quantitative apportionment of fossil and biomass sources of "soot" (EC), the tracer of fire that has profound effects on health, atmospheric visibility, and climate. Previous studies of 14C-EC measurement quality, carried out with NIST SRM 1649a (Urban Dust), showed a range of results, but since the "truth" was not known for this natural matrix RM, one had to rely on isotopic-chemical consistency evidence (14C in PAH, EC) of measurement validity (Currie et al., 2002). Components of the new Hybrid RM (DiesApple), however, have known 14C and EC composition, and they are nearly orthogonal (isotopically and chemically). NIST SRM 2975 (Forklift Diesel Soot) has little or no 14C, and its major compositional component is EC; SRM 1515 (Apple Leaves) has the 14C content of biomass-C, and it has little or no EC. Thus, the Hybrid RM can serve as an absolute isotopic test for the absence of EC-mimicking pyrolysis-C (char) from SRM 1515 in the EC isolate of the Hybrid RM, as well as a test for conservation of its dominant soot fraction throughout the isolation procedure. The secondary objective was to employ the Hybrid RM for the comparative evaluation of the thermal optical kinetic (TOK) and thermal optical transmission (TOT) methods for the isolation of EC for micro-molar carbon accelerator mass spectrometry (AMS). As part of this process, the relatively new TOK method was subjected to a critical evaluation and significant development. Key findings of our study are: (1) both methods exhibited biomass-C "leakage"; for TOT, the EC fraction isolated for AMS contained about 8% of the original biomass-C; for TOK, the refractory carbon (RC) isolated contained about 3% of the original biomass-C.; (2) the initial isothermal oxidation stage of

  11. On the isolation of elemental carbon (EC for micro-molar 14C accelerator mass spectrometry: development of a hybrid reference material for 14C-EC accuracy assurance, and a critical evaluation of the thermal optical kinetic (TOK EC isolation procedure

    Directory of Open Access Journals (Sweden)

    L. A. Currie

    2005-01-01

    Full Text Available The primary objective of the research reported here has been the development of a hybrid reference material (RM to serve as a test of accuracy for elemental carbon (EC isotopic (14C speciation measurements. Such measurements are vital for the quantitative apportionment of fossil and biomass sources of 'soot' (EC, the tracer of fire that has profound effects on health, atmospheric visibility, and climate. Previous studies of 14C-EC measurement quality, carried out with NIST SRM 1649a (Urban Dust, showed a range of results, but since the 'truth' was not known for this natural matrix RM, one had to rely on isotopic-chemical consistency evidence (14C in PAH, EC of measurement validity (Currie et al., 2002. Components of the new Hybrid RM (DiesApple, however, have known 14C and EC composition, and they are nearly orthogonal (isotopically and chemically. NIST SRM 2975 (Forklift Diesel Soot has little or no 14C, and its major compositional component is EC; SRM 1515 (Apple Leaves has the 14C content of biomass-C, and it has little or no EC. Thus, the Hybrid RM can serve as an absolute isotopic test for the absence of EC-mimicking pyrolysis-C (char from SRM 1515 in the EC isolate of the Hybrid RM, as well as a test for conservation of its dominant soot fraction throughout the isolation procedure. The secondary objective was to employ the Hybrid RM for the comparative evaluation of the thermal optical kinetic (TOK and thermal optical transmission (TOT methods for the isolation of EC for micro-molar carbon accelerator mass spectrometry (AMS. As part of this process, the relatively new TOK method was subjected to a critical evaluation and significant development. Key findings of our study are: (1 both methods exhibited biomass-C 'leakage'; for TOT, the EC fraction isolated for AMS contained about 8% of the original biomass-C; for TOK, the refractory carbon (RC isolated contained about 3% of the original biomass-C.; (2 the initial isothermal oxidation stage

  12. Resonant vibration control of rotating beams

    DEFF Research Database (Denmark)

    Svendsen, Martin Nymann; Krenk, Steen; Høgsberg, Jan Becker

    2011-01-01

    Rotatingstructures,like e.g.wind turbine blades, may be prone to vibrations associated with particular modes of vibration. It is demonstrated, how this type of vibrations can be reduced by using a collocated sensor–actuator system, governed by a resonant controller. The theory is here demonstrated...... modal connectivity, only very limited modal spill-over is generated. The controller acts by resonance and therefore has only a moderate energy consumption, and successfully reduces modal vibrations at the resonance frequency....

  13. Low-energy isovector quadrupole vibrations

    Energy Technology Data Exchange (ETDEWEB)

    Faessler, A.; Nojarov, R.

    1986-01-23

    The low-lying isovector quadrupole vibrations are described by an extension of the vibrational model allowing independent proton and neutron vibrations coupled by the symmetry energy. The recently detected low-lying isovector states in nearly spherical nuclei with N=84 are described well concerning their energies and E2/M1 mixing ratios. (orig.).

  14. Ground Vibration Measurements at LHC Point 4

    Energy Technology Data Exchange (ETDEWEB)

    Bertsche, Kirk; /SLAC; Gaddi, Andrea; /CERN

    2012-09-17

    Ground vibration was measured at Large Hadron Collider (LHC) Point 4 during the winter shutdown in February 2012. This report contains the results, including power and coherence spectra. We plan to collect and analyze vibration data from representative collider halls to inform specifications for future linear colliders, such as ILC and CLIC. We are especially interested in vibration correlations between final focus lens locations.

  15. Rotor Vibration Reduction via Active Hybrid Bearings

    DEFF Research Database (Denmark)

    Nicoletti, Rodrigo; Santos, Ilmar

    2002-01-01

    The use of fluid power to reduce and control rotor vibration in rotating machines is investigated. An active hybrid bearing is studied, whose main objective is to reduce wear and vibration between rotating and stationary machinery parts. By injecting pressurised oil into the oil film, through...... with experiment, and simulations show the feasibility of controlling shaft vibration through this active device....

  16. 33 CFR 159.103 - Vibration test.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Vibration test. 159.103 Section...) POLLUTION MARINE SANITATION DEVICES Design, Construction, and Testing § 159.103 Vibration test. The device... subjected to a sinusoidal vibration for a period of 12 hours, 4 hours in each of the x, y, and z planes, at...

  17. 14 CFR 27.907 - Engine vibration.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Engine vibration. 27.907 Section 27.907... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant General § 27.907 Engine vibration. (a) Each engine must be installed to prevent the harmful vibration of any part of the engine or rotorcraft. (b) The addition of the...

  18. 14 CFR 29.251 - Vibration.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Vibration. 29.251 Section 29.251... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Flight Miscellaneous Flight Requirements § 29.251 Vibration. Each part of the rotorcraft must be free from excessive vibration under each appropriate speed and power...

  19. 14 CFR 29.907 - Engine vibration.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Engine vibration. 29.907 Section 29.907... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant General § 29.907 Engine vibration. (a) Each engine must be installed to prevent the harmful vibration of any part of the engine or rotorcraft. (b) The...

  20. 14 CFR 27.251 - Vibration.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Vibration. 27.251 Section 27.251... STANDARDS: NORMAL CATEGORY ROTORCRAFT Flight Miscellaneous Flight Requirements § 27.251 Vibration. Each part of the rotorcraft must be free from excessive vibration under each appropriate speed and power...