WorldWideScience

Sample records for vibration control studies

  1. Flow induced vibration studies on PFBR control plug components

    Energy Technology Data Exchange (ETDEWEB)

    Prakash, V., E-mail: prakash@igcar.gov.in [Fast Reactor Technology Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamilnadu (India); Kumar, P. Anup; Anandaraj, M.; Thirumalai, M.; Anandbabu, C.; Rajan, K.K. [Fast Reactor Technology Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamilnadu (India)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer Flow induced vibration studies on Prototype Fast Breeder Reactor control plug model carried out. Black-Right-Pointing-Pointer Velocity similitude was followed for the study. Black-Right-Pointing-Pointer Frequencies and amplitude of vibrations of various control plug components measured. Black-Right-Pointing-Pointer Overall values of vibration are well within permissible limits. - Abstract: The construction of Prototype Fast Breeder Reactor (PFBR), a 500 MWe liquid sodium cooled reactor, is in progress at Kalpakkam in India. Control plug (CP) is located right above the core subassemblies in the hot pool. Control plug is an important component as many of the critical reactor parameters are sensed and controlled by the components housed in the control plug assembly. In PFBR primary circuit, components are basically thin walled, slender shells with diameter to thickness ratio ranging from 100 to 650. These components are prone to flow induced vibrations. The existence of free liquid (sodium) surfaces, which is the source of sloshing phenomenon and the operation of primary sodium pump in the primary pool are other potential sources of vibration of reactor components. Control plug is a hollow cylindrical shell structure and provides passages and support for 12 absorber rod drive mechanisms (ARDM) which consists of 9 control and safety rods and 3 diverse safety rods, 210 thermo wells to measure the sodium temperature at the exit of various fuel subassemblies, three failed fuel localization modules (FFLM) and acoustic detectors. It consists of a core cover plate (CCP), which forms the bottom end, two intermediate supports plate, i.e. lower stay plate (LSP) and upper stay plate (USP) and an outer shell. The CCP is located at a distance of 1.3 m from the core top. With such a gap, there will be long free hanging length of the thermocouple sleeves, Delayed neutron detector (DND) sampling tubes and ARDM shroud tubes and hence they are

  2. Study on antilock brake system with elastic membrane vibration generated by controlled solenoid excitation

    International Nuclear Information System (INIS)

    Wibowo,; Zakaria,; Lambang, Lullus; Triyono,; Muhayat, Nurul

    2016-01-01

    The most effective chassis control system for improving vehicle safety during severe braking is anti-lock braking system (ABS). Antilock effect can be gained by vibrate the pad brake at 7 to 20 cycle per second. The aim of this study is to design a new method of antilock braking system with membrane elastic vibrated by solenoid. The influence of the pressure fluctuations of brake fluid is investigated. Vibration data is collected using a small portable accelerometer-slam stick. The experiment results that the vibration of brake pad caused by controlled solenoid excitation at 10 Hz is obtained by our new method. The result of measurements can be altered by varying brake fluid pressure.

  3. Study on antilock brake system with elastic membrane vibration generated by controlled solenoid excitation

    Energy Technology Data Exchange (ETDEWEB)

    Wibowo,, E-mail: wibowo-uns@yahoo.com; Zakaria,, E-mail: zakaaria27@gmail.com; Lambang, Lullus, E-mail: lulus-l@yahoo.com; Triyono,, E-mail: tyon-bila@yahoo.co.id; Muhayat, Nurul, E-mail: nurulmuhayat@ymail.com [Mechanical Engineering Department, Sebelas Maret University, Surakarta 57128 (Indonesia)

    2016-03-29

    The most effective chassis control system for improving vehicle safety during severe braking is anti-lock braking system (ABS). Antilock effect can be gained by vibrate the pad brake at 7 to 20 cycle per second. The aim of this study is to design a new method of antilock braking system with membrane elastic vibrated by solenoid. The influence of the pressure fluctuations of brake fluid is investigated. Vibration data is collected using a small portable accelerometer-slam stick. The experiment results that the vibration of brake pad caused by controlled solenoid excitation at 10 Hz is obtained by our new method. The result of measurements can be altered by varying brake fluid pressure.

  4. Experimental studies on active vibration control of a smart composite beam using a PID controller

    International Nuclear Information System (INIS)

    Jovanović, Miroslav M; Lukić, Nebojša S; Ilić, Slobodan S; Simonović, Aleksandar M; Zorić, Nemanja D; Stupar, Slobodan N

    2013-01-01

    This paper presents experimental verification of the active vibration control of a smart cantilever composite beam using a PID controller. In order to prevent negative occurrences in the derivative and integral terms in a PID controller, first-order low-pass filters are implemented in the derivative action and in the feedback of the integral action. The proposed application setup consists of a composite cantilever beam with a fiber-reinforced piezoelectric actuator and strain gage sensors. The beam is modeled using a finite element method based on third-order shear deformation theory. The experiment considers vibration control under periodic excitation and an initial static deflection. A control algorithm was implemented on a PIC32MX440F256H microcontroller. Experimental results corresponding to the proposed PID controller are compared with corresponding results using proportional (P) control, proportional–integral (PI) control and proportional–derivative (PD) control. Experimental results indicate that the proposed PID controller provides 8.93% more damping compared to a PD controller, 14.41% more damping compared to a PI controller and 19.04% more damping compared to a P controller in the case of vibration under periodic excitation. In the case of free vibration control, the proposed PID controller shows better performance (settling time 1.2 s) compared to the PD controller (settling time 1.5 s) and PI controller (settling time 2.5 s). (paper)

  5. Active vibration control by robust control techniques

    International Nuclear Information System (INIS)

    Lohar, F.A.

    2001-01-01

    This paper studies active vibration control of multi-degree-of-freedom system. The control techniques considered are LTR, H/sup 2/ and H/sup infinite/. The results show that LTR controls the vibration but its respective settling time is higher than that of the other techniques. The control performance of H/sup infinite/ control is similar to that of H/sup 2/ control in the case of it weighting functions. However, H/sup infinite/ control is superior to H/sup 2/ control with respect to robustness, steady state error and settling time. (author)

  6. Experimental Study of Flexible Plate Vibration Control by Using Two-Loop Sliding Mode Control Strategy

    Science.gov (United States)

    Yang, Jingyu; Lin, Jiahui; Liu, Yuejun; Yang, Kang; Zhou, Lanwei; Chen, Guoping

    2017-08-01

    It is well known that intelligent control theory has been used in many research fields, novel modeling method (DROMM) is used for flexible rectangular active vibration control, and then the validity of new model is confirmed by comparing finite element model with new model. In this paper, taking advantage of the dynamics of flexible rectangular plate, a two-loop sliding mode (TSM) MIMO approach is introduced for designing multiple-input multiple-output continuous vibration control system, which can overcome uncertainties, disturbances or unstable dynamics. An illustrative example is given in order to show the feasibility of the method. Numerical simulations and experiment confirm the effectiveness of the proposed TSM MIMO controller.

  7. Studies on neutron noise diagnostics of control rod vibrations by neural networks

    International Nuclear Information System (INIS)

    Roston, G.; Kozma, R.; Kitamura, M.; Garis, N.S.; Pazsit, I.

    1996-01-01

    This work is focussed on the study of a neutron noise based technique for the diagnostics of reactor core internal, in particular, excessively vibrating control rods. The use of a combination of physical models and neural networks offers an alternative way of performing the inversion procedure. The application of a neural network technique to determine the rod position from the detector spectra is much faster, more effective and simpler to use than the conventional method. (author). 5 refs., 1 fig., 1 tab

  8. Ground test for vibration control demonstrator

    Science.gov (United States)

    Meyer, C.; Prodigue, J.; Broux, G.; Cantinaud, O.; Poussot-Vassal, C.

    2016-09-01

    In the objective of maximizing comfort in Falcon jets, Dassault Aviation is developing an innovative vibration control technology. Vibrations of the structure are measured at several locations and sent to a dedicated high performance vibration control computer. Control laws are implemented in this computer to analyse the vibrations in real time, and then elaborate orders sent to the existing control surfaces to counteract vibrations. After detailing the technology principles, this paper focuses on the vibration control ground demonstration that was performed by Dassault Aviation in May 2015 on Falcon 7X business jet. The goal of this test was to attenuate vibrations resulting from fixed forced excitation delivered by shakers. The ground test demonstrated the capability to implement an efficient closed-loop vibration control with a significant vibration level reduction and validated the vibration control law design methodology. This successful ground test was a prerequisite before the flight test demonstration that is now being prepared. This study has been partly supported by the JTI CleanSky SFWA-ITD.

  9. Experimental Study on the Vibration Control Effect of Long Elastic Sleeper Track in Subways

    Directory of Open Access Journals (Sweden)

    Xiaopei Cai

    2018-01-01

    Full Text Available The vibration effect of urban rail transit has gained attention from both academia and the industry sector. Long Elastic Sleeper Track (LEST is a new structure for vibration reduction which has recently been designed and applied to Chinese subways. However, little research has been devoted to its vibration reduction effect. In this study, field tests were conducted during peak transit hours on Beijing Subway Line 15 to examine the vibration reduction effects of the common ballastless track and LEST on both straight and curved sections. The results demonstrate that although LEST increases the wheel-rail vertical forces, rail vertical displacements, and rail accelerations to some extent, these effects do not threaten subway operational safety, and vibrations of track bed and tunnel wall are positively mitigated. LEST has an obvious vibration reduction effect at frequencies above 40 Hz. In straight track, the vibration of bottom of the tunnel wall measured in one-third octave bands is reduced by 10.52 dB, while the vibration at point on the tunnel wall at 1.5 m height is reduced by 9.60 dB. For the curved track, the vibrations at those two points are reduced by 9.35 dB and 8.44 dB, respectively. This indicates that LEST reduces vibrations slightly more for the straight track than for the curved track.

  10. Experimental Study of Active Vibration Control of Planar 3-RRR Flexible Parallel Robots Mechanism

    Directory of Open Access Journals (Sweden)

    Qinghua Zhang

    2016-01-01

    Full Text Available An active vibration control experiment of planar 3-RRR flexible parallel robots is implemented in this paper. Considering the direct and inverse piezoelectric effect of PZT material, a general motion equation is established. A strain rate feedback controller is designed based on the established general motion equation. Four control schemes are designed in this experiment: three passive flexible links are controlled at the same time, only passive flexible link 1 is controlled, only passive flexible link 2 is controlled, and only passive flexible link 3 is controlled. The experimental results show that only one flexible link controlled scheme  suppresses elastic vibration and cannot suppress the elastic vibration of the other flexible links, whereas when three passive flexible links are controlled at the same time, they are able to effectively suppress the elastic vibration of all of the flexible links. In general, the experiment verifies that a strain rate feedback controller is able to effectively suppress the elastic vibration of the flexible links of plane 3-RRR flexible parallel robots.

  11. Adaptive Robust Sliding Mode Vibration Control of a Flexible Beam Using Piezoceramic Sensor and Actuator: An Experimental Study

    Directory of Open Access Journals (Sweden)

    Ruo Lin Wang

    2014-01-01

    Full Text Available This paper presents an experimental study of an adaptive robust sliding mode control scheme based on the Lyapunov’s direct method for active vibration control of a flexible beam using PZT (lead zirconate titanate sensor and actuator. PZT, a type of piezoceramic material, has the advantages of high reliability, high bandwidth, and solid state actuation and is adopted here in forms of surface-bond patches for vibration control. Two adaptive robust sliding mode controllers for vibration suppression are designed: one uses a discontinuous bang-bang robust compensator and the other uses a smooth compensator with a hyperbolic tangent function. Both controllers guarantee asymptotic stability, as proved by the Lyapunov’s direct method. Experimental results verified the effectiveness and the robustness of both adaptive sliding mode controllers. However, from the experimental results, the bang-bang robust compensator causes small-magnitude chattering because of the discontinuous switching actions. With the smooth compensator, vibration is quickly suppressed and no chattering is induced. Furthermore, the robustness of the controllers is successfully demonstrated with ensured effectiveness in vibration control when masses are added to the flexible beam.

  12. Vibration control, machine diagnostics

    International Nuclear Information System (INIS)

    1990-01-01

    Changing vibrations announce damage in the form of wear or cracks on components of, e.g., engine rotors, pumps, power plant turbo sets, rounding-up tools, or marine diesel engines. Therefore, machine diagnostics use frequency analyses, system tests, trend analyses as well as expert systems to localize or estimate the causes of these damages and malfunctions. Data acquisistion, including not only sensors, but also reliable and redundant data processing systems and analyzing systems, play an important role. The lectures pertaining to the data base are covered in detail. (DG) [de

  13. A Study of Active Rotor-Blade Vibration Control using Electro-Magnetic Actuation - Part II: Experiment

    DEFF Research Database (Denmark)

    Christensen, Rene Hardam; Santos, Ilmar

    2004-01-01

    . The remaining two sets of actuators are applied to act directly onto the hub, working as an active radial bearing controlling the rotor lateral movement. The rig is equipped with sensors measuring blade and rotor vibrations. Actuators and sensors are connected to a digital signal processor running the control......This is the second paper in a two-part study on active rotor-blade vibration control. This part presents an experimental contribution into the work of active controller design for rotor-blade systems. The primary aim is to give an experimental validation and show the applicability...... algorithm. Measurement signals and actuator control signals from the sensors and actuators fixed in the rotating disc are transmitted to the control unit through a slip-ring device. Various measured responses of both the controlled and the non-controlled system with identical blades and with deliberately...

  14. Controlling flexible rotor vibrations using parametric excitation

    Energy Technology Data Exchange (ETDEWEB)

    Atepor, L, E-mail: katepor@yahoo.co [Department of Mechanical Engineering, University of Glasgow, G12 8QQ (United Kingdom)

    2009-08-01

    This paper presents both theoretical and experimental studies of an active vibration controller for vibration in a flexible rotor system. The paper shows that the vibration amplitude can be modified by introducing an axial parametric excitation. The perturbation method of multiple scales is used to solve the equations of motion. The steady-state responses, with and without the parametric excitation terms, is investigated. An experimental test machine uses a piezoelectric exciter mounted on the end of the shaft. The results show a reduction in the rotor response amplitude under principal parametric resonance, and some good correlation between theory and experiment.

  15. No specific effect of whole-body vibration training in chronic stroke: a double-blind randomized controlled study.

    Science.gov (United States)

    Brogårdh, Christina; Flansbjer, Ulla-Britt; Lexell, Jan

    2012-02-01

    To evaluate the effects of whole-body vibration (WBV) training in individuals after stroke. A double-blind randomized controlled study with assessments pre- and posttraining. A university hospital rehabilitation department. Participants (N=31; mean age ± SD, 62±7 y; 6-101 mo poststroke) were randomized to an intervention group or a control group. Supervised WBV training (2 sessions/wk for 6wk; 12 repetitions of 40-60s WBV per session). The intervention group trained on a vibrating platform with a conventional amplitude (3.75 mm) and the control group on a "placebo" vibrating platform (0.2mm amplitude); the frequency was 25Hz on both platforms. All participants and examiners were blinded to the amplitudes of the 2 platforms. Primary outcome measures were isokinetic and isometric knee muscle strength (dynamometer). Secondary outcome measures were balance (Berg Balance Scale), muscle tone (Modified Ashworth Scale), gait performance (Timed Up & Go, comfortable gait speed, fast gait speed, and six-minute walk tests), and perceived participation (Stroke Impact Scale). There were no significant differences between the 2 groups after the WBV training. Significant but small improvements (Pnormative variation. Six weeks of WBV training on a vibration platform with conventional amplitude was not more efficient than a placebo vibrating platform. Therefore, the use of WBV training in individuals with chronic stroke and mild to moderate disability is not supported. Copyright © 2012 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  16. A Study of Active Rotor-Blade Vibration Control using Electro-Magnetic Actuation - Part I: Theory

    DEFF Research Database (Denmark)

    Christensen, Rene Hardam; Santos, Ilmar

    2004-01-01

    actuators fixed directly in the blades. However, due to the impracticability and problems by fixing actuators in the rotating blades, it is for practical application of great interest to study whether the vibrations can be controlled using shaft-based actuators, i.e. electro-magnetic bearings...

  17. Off-axis Modal Active Vibration Control Of Rotational Vibrations

    NARCIS (Netherlands)

    Babakhani, B.; de Vries, Theodorus J.A.; van Amerongen, J.

    Collocated active vibration control is an effective and robustly stable way of adding damping to the performance limiting vibrations of a plant. Besides the physical parameters of the Active Damping Unit (ADU) containing the collocated actuator and sensor, its location with respect to the

  18. Optimal control of vibrational transitions of HCl

    Indian Academy of Sciences (India)

    Control of fundamental and overtone transitions of a vibration are studied for the diatomic molecule, HCl. Specifically, the results of the effect of variation of the penalty factor on the physical attributes of the system (i.e., probabilities) and pulse (i.e., amplitudes) considering three different pulse durations for each value of the ...

  19. Multiple-source multiple-harmonic active vibration control of variable section cylindrical structures: A numerical study

    Science.gov (United States)

    Liu, Jinxin; Chen, Xuefeng; Gao, Jiawei; Zhang, Xingwu

    2016-12-01

    Air vehicles, space vehicles and underwater vehicles, the cabins of which can be viewed as variable section cylindrical structures, have multiple rotational vibration sources (e.g., engines, propellers, compressors and motors), making the spectrum of noise multiple-harmonic. The suppression of such noise has been a focus of interests in the field of active vibration control (AVC). In this paper, a multiple-source multiple-harmonic (MSMH) active vibration suppression algorithm with feed-forward structure is proposed based on reference amplitude rectification and conjugate gradient method (CGM). An AVC simulation scheme called finite element model in-loop simulation (FEMILS) is also proposed for rapid algorithm verification. Numerical studies of AVC are conducted on a variable section cylindrical structure based on the proposed MSMH algorithm and FEMILS scheme. It can be seen from the numerical studies that: (1) the proposed MSMH algorithm can individually suppress each component of the multiple-harmonic noise with an unified and improved convergence rate; (2) the FEMILS scheme is convenient and straightforward for multiple-source simulations with an acceptable loop time. Moreover, the simulations have similar procedure to real-life control and can be easily extended to physical model platform.

  20. Numerical experiment designs: study of the vibrational behaviour of the control rod cluster of a pressurized water reactor

    International Nuclear Information System (INIS)

    Soulier, B.; Bosselut, D.; Regnier, G.

    1997-01-01

    A finite element model has been performed at EDF to simulate the vibrations of control rod cluster assembly and to analyse the wear phenomenon of control rods. A parametrical study bas been performed for a given computer experiment domain with an experimental design method. The building of the computer experiment design is described. The influence of parameters on calculated mean wear power has been determined along rods and responses surfaces have been easily approximated. Systematism and closeness of experiment design technique is underlined. (authors)

  1. Adaptive Piezoelectric Absorber for Active Vibration Control

    Directory of Open Access Journals (Sweden)

    Sven Herold

    2016-02-01

    Full Text Available Passive vibration control solutions are often limited to working reliably at one design point. Especially applied to lightweight structures, which tend to have unwanted vibration, active vibration control approaches can outperform passive solutions. To generate dynamic forces in a narrow frequency band, passive single-degree-of-freedom oscillators are frequently used as vibration absorbers and neutralizers. In order to respond to changes in system properties and/or the frequency of excitation forces, in this work, adaptive vibration compensation by a tunable piezoelectric vibration absorber is investigated. A special design containing piezoelectric stack actuators is used to cover a large tuning range for the natural frequency of the adaptive vibration absorber, while also the utilization as an active dynamic inertial mass actuator for active control concepts is possible, which can help to implement a broadband vibration control system. An analytical model is set up to derive general design rules for the system. An absorber prototype is set up and validated experimentally for both use cases of an adaptive vibration absorber and inertial mass actuator. Finally, the adaptive vibration control system is installed and tested with a basic truss structure in the laboratory, using both the possibility to adjust the properties of the absorber and active control.

  2. Control of pipe vibrations; Schwingungsminderung bei Rohrleitungen

    Energy Technology Data Exchange (ETDEWEB)

    Sinambari, G.R. [FH Bingen, Fachrichtung Umweltschutz, und IBS Ingenieurbuero fuer Schall- und Schwingungstechnik GmbH, Frankenthal (Germany); Thorn, U. [IBS Ingenieurbuero fuer Schall- und Schwingungstechnik GmbH, Frankenthal (Germany)

    2005-06-01

    Following commissioning of a new vacuum system for the refinery of MiRO Mineraloelraffinerie Oberrhein GmbH and Co. KG, vibrations occurred in the furnace exhaust pipes. As these had to be regarded as critical for the fatigue strength of the pipes, the pipes' vibration response in the critical frequency range was investigated immediately by means of a vibration analysis, and appropriate measures for vibration control were elaborated. All investigations, and the installation of the hydraulic vibration dampers, took place with the system operating. The effectiveness of the measures taken was checked by means of measurements following installation. The measures succeeded in attenuating the vibrations to a level at which, empirically, damage need no longer be expected. This paper illustrates the procedure for developing the vibration control measures and the essential results of the investigations. (orig.)

  3. Model Predictive Vibration Control Efficient Constrained MPC Vibration Control for Lightly Damped Mechanical Structures

    CERN Document Server

    Takács, Gergely

    2012-01-01

    Real-time model predictive controller (MPC) implementation in active vibration control (AVC) is often rendered difficult by fast sampling speeds and extensive actuator-deformation asymmetry. If the control of lightly damped mechanical structures is assumed, the region of attraction containing the set of allowable initial conditions requires a large prediction horizon, making the already computationally demanding on-line process even more complex. Model Predictive Vibration Control provides insight into the predictive control of lightly damped vibrating structures by exploring computationally efficient algorithms which are capable of low frequency vibration control with guaranteed stability and constraint feasibility. In addition to a theoretical primer on active vibration damping and model predictive control, Model Predictive Vibration Control provides a guide through the necessary steps in understanding the founding ideas of predictive control applied in AVC such as: ·         the implementation of ...

  4. Active and passive vibration control of structures

    CERN Document Server

    Spelsberg-Korspeter, Gottfried

    2014-01-01

    Active and Passive Vibration Control of Structures form an issue of very actual interest in many different fields of engineering, for example in the automotive and aerospace industry, in precision engineering (e.g. in large telescopes), and also in civil engineering. The papers in this volume bring together engineers of different background, and it fill gaps between structural mechanics, vibrations and modern control theory.  Also links between the different applications in structural control are shown.

  5. Study protocol: the effect of whole body vibration on acute unilateral unstable lateral ankle sprain- a biphasic randomized controlled trial.

    Science.gov (United States)

    Baumbach, Sebastian Felix; Fasser, Mariette; Polzer, Hans; Sieb, Michael; Regauer, Markus; Mutschler, Wolf; Schieker, Matthias; Blauth, Michael

    2013-01-14

    Ankle sprains often result in ankle instability, which is most likely caused by damage to passive structures and neuromuscular impairment. Whole body vibration (WBV) is a neuromuscular training method improving those impaired neurologic parameters. The aim of this study is to compare the current gold standard functional treatment to functional treatment plus WBV in patients with acute unilateral unstable inversion ankle sprains. 60 patients, aged 18-40 years, presenting with an isolated, unilateral, acute unstable inversion ankle sprain will be included in this bicentric, biphasic, randomized controlled trial. Samples will be randomized by envelope drawing. All patients will be allowed early mobilization and pain-dependent weight bearing, limited functional immobilization by orthosis, PRICE, NSARDs as well as home and supervised physiotherapy. Supervised physical therapy will take place twice a week, for 30 minutes for a period of 6 weeks, following a standardized intervention protocol. During supervised physical therapy, the intervention group will perform exercises similar to those of the control group, on a side-alternating sinusoidal vibration platform. Two time-dependent primary outcome parameters will be assessed: short-term outcome after six weeks will be postural control quantified by the sway index; mid-term outcome after one year will be assessed by subjective instability, defined by the presence of giving-way attacks. Secondary outcome parameters include: return to pre-injury level of activities, residual pain, recurrence, objective instability, energy/coordination, Foot and Ankle Disability Index and EQ 5D. This is the first trial investigating the effects of WBV in patients with acute soft tissue injury. Inversion ankle sprains often result in ankle instability, which is most likely due to damage of neurological structures. Due to its unique, frequency dependent, influence on various neuromuscular parameters, WBV is a promising treatment method for

  6. Study protocol: the effect of whole body vibration on acute unilateral unstable lateral ankle sprain- a biphasic randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Baumbach Sebastian Felix

    2013-01-01

    Full Text Available Abstract Background Ankle sprains often result in ankle instability, which is most likely caused by damage to passive structures and neuromuscular impairment. Whole body vibration (WBV is a neuromuscular training method improving those impaired neurologic parameters. The aim of this study is to compare the current gold standard functional treatment to functional treatment plus WBV in patients with acute unilateral unstable inversion ankle sprains. Methods/Design 60 patients, aged 18–40 years, presenting with an isolated, unilateral, acute unstable inversion ankle sprain will be included in this bicentric, biphasic, randomized controlled trial. Samples will be randomized by envelope drawing. All patients will be allowed early mobilization and pain-dependent weight bearing, limited functional immobilization by orthosis, PRICE, NSARDs as well as home and supervised physiotherapy. Supervised physical therapy will take place twice a week, for 30 minutes for a period of 6 weeks, following a standardized intervention protocol. During supervised physical therapy, the intervention group will perform exercises similar to those of the control group, on a side-alternating sinusoidal vibration platform. Two time-dependent primary outcome parameters will be assessed: short-term outcome after six weeks will be postural control quantified by the sway index; mid-term outcome after one year will be assessed by subjective instability, defined by the presence of giving-way attacks. Secondary outcome parameters include: return to pre-injury level of activities, residual pain, recurrence, objective instability, energy/coordination, Foot and Ankle Disability Index and EQ 5D. Discussion This is the first trial investigating the effects of WBV in patients with acute soft tissue injury. Inversion ankle sprains often result in ankle instability, which is most likely due to damage of neurological structures. Due to its unique, frequency dependent, influence on various

  7. Failure modes and natural control time for distributed vibrating systems

    International Nuclear Information System (INIS)

    Reid, R.M.

    1994-01-01

    The eigenstructure of the Gram matrix of frequency exponentials is used to study linear vibrating systems of hyperbolic type with distributed control. Using control norm as a practical measure of controllability and the vibrating string as a prototype, it is demonstrated that hyperbolic systems have a natural control time, even when only finitely many modes are excited. For shorter control times there are identifiable control failure modes which can be steered to zero only with very high cost in control norm. Both natural control time and the associated failure modes are constructed for linear fluids, strings, and beams, making note of the essential algorithms and Mathematica code, and displaying results graphically

  8. First international conference on vibration control in optics and metrology

    International Nuclear Information System (INIS)

    Baker, L.R.

    1987-01-01

    This book contains 27 selections. Some of the titles are: Use of optics for vibration analysis of automotive components; Use of pulsed lasers for vibration analysis in the nuclear power industry; Vibration analysis of photocopiers; Control of ground vibrations; Design of low-vibration buildings: two case histories; and Continuous pulsed electronic speckle pattern interferometry

  9. Experiments on vibration control of a piezoelectric laminated paraboloidal shell

    Science.gov (United States)

    Yue, Honghao; Lu, Yifan; Deng, Zongquan; Tzou, Hornsen

    2017-01-01

    A paraboloidal shell plays a key role in aerospace and optical structural systems applied to large optical reflector, communications antenna, rocket fairing, missile radome, etc. Due to the complexity of analytical procedures, an experimental study of active vibration control of a piezoelectric laminated paraboloidal shell by positive position feedback is carried out. Sixteen PVDF patches are laminated inside and outside of the shell, in which eight of them are used as sensors and eight as actuators to control the vibration of the first two natural modes. Lower natural frequencies and vibration modes of the paraboloidal shell are obtained via the frequency response function analysis by Modal VIEW software. A mathematical model of the control system is formulated by means of parameter identification. The first shell mode is controlled as well as coupled the first and second modes based on the positive position feedback (PPF) algorithm. To minimize the control energy consumption in orbit, an adaptive modal control method is developed in this study by using the PPF in laboratory experiments. The control system collects vibration signals from the piezoelectric sensors to identify location(s) of the largest vibration amplitudes and then select the best two from eight PVDF actuators to apply control forces so that the modal vibration suppression could be accomplished adaptively and effectively.

  10. Fractional order absolute vibration suppression (AVS) controllers

    Science.gov (United States)

    Halevi, Yoram

    2017-04-01

    Absolute vibration suppression (AVS) is a control method for flexible structures. The first step is an accurate, infinite dimension, transfer function (TF), from actuation to measurement. This leads to the collocated, rate feedback AVS controller that in some cases completely eliminates the vibration. In case of the 1D wave equation, the TF consists of pure time delays and low order rational terms, and the AVS controller is rational. In all other cases, the TF and consequently the controller are fractional order in both the delays and the "rational parts". The paper considers stability, performance and actual implementation in such cases.

  11. Integrated cable vibration control system using wireless sensors

    Science.gov (United States)

    Jeong, Seunghoo; Cho, Soojin; Sim, Sung-Han

    2017-04-01

    As the number of long-span bridges is increasing worldwide, maintaining their structural integrity and safety become an important issue. Because the stay cable is a critical member in most long-span bridges and vulnerable to wind-induced vibrations, vibration mitigation has been of interest both in academia and practice. While active and semi-active control schemes are known to be quite effective in vibration reduction compared to the passive control, requirements for equipment including data acquisition, control devices, and power supply prevent a widespread adoption in real-world applications. This study develops an integrated system for vibration control of stay-cables using wireless sensors implementing a semi-active control. Arduino, a low-cost single board system, is employed with a MEMS digital accelerometer and a Zigbee wireless communication module to build the wireless sensor. The magneto-rheological (MR) damper is selected as a damping device, controlled by an optimal control algorithm implemented on the Arduino sensing system. The developed integrated system is tested in a laboratory environment using a cable to demonstrate the effectiveness of the proposed system on vibration reduction. The proposed system is shown to reduce the vibration of stay-cables with low operating power effectively.

  12. Simulation Study on Train-Induced Vibration Control of a Long-Span Steel Truss Girder Bridge by Tuned Mass Dampers

    Directory of Open Access Journals (Sweden)

    Hao Wang

    2014-01-01

    Full Text Available Train-induced vibration of steel truss bridges is one of the key issues in bridge engineering. This paper talks about the application of tuned mass damper (TMD on the vibration control of a steel truss bridge subjected to dynamic train loads. The Nanjing Yangtze River Bridge (NYRB is taken as the research object and a recorded typical train load is included in this study. With dynamic finite element (FE method, the real-time dynamic responses of NYRB are analyzed based on a simplified train-bridge time-varying system. Thereinto, two cases including single train moving at one side and two trains moving oppositely are specifically investigated. According to the dynamic characteristics and dynamic responses of NYRB, the fourth vertical bending mode is selected as the control target and the parameter sensitivity analysis on vibration control efficiency with TMD is conducted. Using the first-order optimization method, the optimal parameters of TMD are then acquired with the control efficiency of TMD, the static displacement of Midspan, expenditure of TMDs, and manufacture difficulty of the damper considered. Results obtained in this study can provide references for the vibration control of steel truss bridges.

  13. Control aid for xenon vibration in reactor

    International Nuclear Information System (INIS)

    Kanekawa, Takashi.

    1990-01-01

    In the present invention, the control operation for suppressing xenon vibrations in a reactor is aided for saving forecasting analysis and operator's skills. That is, parameters to be controlled for the suppression of xenon vibrations are power distribution, iodine distribution and xenon distribution. But what can be observed by operaters by the conventional fast overtone method is only the output distribution. In the present invention, the output level of the reactor core is always observed. Then, mathematical processings are conducted for the iodine distribution, the xenon distribution and the power distribution in the reactor core based on the histeresis of the parameters obtained by the measurement using physical constants and reactor design data. The xenon vibration control is aided by displaying the change with time of the distortion in axial direction. Accordingly, operators can always recognize the axial distortion of the power distribution, the iodine distribution and the xenon distribution. (I.S.)

  14. Whole body vibration compared to conventional physiotherapy in patients with gonarthrosis: a protocol for a randomized, controlled study

    Directory of Open Access Journals (Sweden)

    Siewe Jan

    2010-06-01

    Full Text Available Abstract Background Osteoarthritis (OA is the most common degenerative arthropathy. Load-bearing joints such as knee and hip are more often affected than spine or hands. The prevalence of gonarthrosis is generally higher than that of coxarthrosis. Because no cure for OA exists, the main emphasis of therapy is analgesic treatment through either mobility or medication. Non-pharmacologic treatment is the first step, followed by the addition of analgesic medication, and ultimately by surgery. The goal of non-pharmacologic and non-invasive therapy is to improve neuromuscular function, which in turn both prevents formation of and delays progression of OA. A modification of conventional physiotherapy, whole body vibration has been successfully employed for several years. Since its introduction, this therapy is in wide use at our facility not only for gonarthrosis, but also coxarthrosis and other diseases leading to muscular imbalance. Methods/Design This study is a randomized, therapy-controlled trial in a primary care setting at a university hospital. Patients presenting to our outpatient clinic with initial symptoms of gonarthrosis will be assessed against inclusion and exclusion criteria. After patient consent, 6 weeks of treatment will ensue. During the six weeks of treatment, patients will receive one of two treatments, conventional physiotherapy or whole-body-vibration exercises of one hour three times a week. Follow-up examinations will be performed immediately after treatment and after another 6 and 20 weeks, for a total study duration of 6 months. 20 patients will be included in each therapy group. Outcome measurements will include objective analysis of motion and ambulation as well as examinations of balance and isokinetic force. The Western Ontario and McMaster Universities Arthritis Index and SF-12 scores, the patients' overall status, and clinical examinations of the affected joint will be carried out. Discussion As new physiotherapy

  15. Whole body vibration compared to conventional physiotherapy in patients with gonarthrosis: a protocol for a randomized, controlled study.

    Science.gov (United States)

    Stein, Gregor; Knoell, Peter; Faymonville, Christoph; Kaulhausen, Thomas; Siewe, Jan; Otto, Christina; Eysel, Peer; Zarghooni, Kourosh

    2010-06-21

    Osteoarthritis (OA) is the most common degenerative arthropathy. Load-bearing joints such as knee and hip are more often affected than spine or hands. The prevalence of gonarthrosis is generally higher than that of coxarthrosis.Because no cure for OA exists, the main emphasis of therapy is analgesic treatment through either mobility or medication. Non-pharmacologic treatment is the first step, followed by the addition of analgesic medication, and ultimately by surgery.The goal of non-pharmacologic and non-invasive therapy is to improve neuromuscular function, which in turn both prevents formation of and delays progression of OA. A modification of conventional physiotherapy, whole body vibration has been successfully employed for several years. Since its introduction, this therapy is in wide use at our facility not only for gonarthrosis, but also coxarthrosis and other diseases leading to muscular imbalance. This study is a randomized, therapy-controlled trial in a primary care setting at a university hospital. Patients presenting to our outpatient clinic with initial symptoms of gonarthrosis will be assessed against inclusion and exclusion criteria. After patient consent, 6 weeks of treatment will ensue. During the six weeks of treatment, patients will receive one of two treatments, conventional physiotherapy or whole-body-vibration exercises of one hour three times a week. Follow-up examinations will be performed immediately after treatment and after another 6 and 20 weeks, for a total study duration of 6 months. 20 patients will be included in each therapy group.Outcome measurements will include objective analysis of motion and ambulation as well as examinations of balance and isokinetic force. The Western Ontario and McMaster Universities Arthritis Index and SF-12 scores, the patients' overall status, and clinical examinations of the affected joint will be carried out. As new physiotherapy techniques develop for the treatment of OA, it is important to

  16. Active Vibration Control of Hydrodynamic Journal Bearings

    Science.gov (United States)

    Tůma, J.; Šimek, J.; Škuta, J.; Los, J.; Zavadil, J.

    Rotor instability is one of the most serious problems of high-speed rotors supported by sliding bearings. With constantly increasing parameters, new machines problems with rotor instability are encountered more and more often. Even though there are many solutions based on passive improvement of the bearing geometry to enlarge the operational speed range of the journal bearing, the paper deals with a working prototype of a system for the active vibration control of journal bearings with the use of piezoactuators. The actively controlled journal bearing consists of a movable bushing, which is actuated by two piezoactuators. It is assumed that the journal vibration is measured by a pair of proximity probes. Force produced by piezoactuators and acting at the bushing is controlled according to error signals derived from the proximity probe output signals. The active vibration control was tested with the use of a test rig, which consists of a rotor supported by two controllable journal bearings and driven by an inductive motor up to 23,000 rpm. As it was proved by experiments the active vibration control extends considerably the range of the rotor operational speed.

  17. Experimental Robustness Study of Positive Position Feedback Control for Active Vibration Suppression

    Science.gov (United States)

    2001-01-01

    several distinguished advantagesas compared to thenwidely used velocity feedbackcon- trol laws. It is insensitive to spillover,2 where contributions from...be known exactlyor itmayvarywith time.When the frequencyused in thePPF controller is different from that of the structure, the performanceof the PPF...revision received 30 July 2001; accepted for pub- lication 7 September 2001. This material is declared a work of the U.S. Government and is not subject

  18. Internal Temperature Control For Vibration Testers

    Science.gov (United States)

    Dean, Richard J.

    1996-01-01

    Vibration test fixtures with internal thermal-transfer capabilities developed. Made of aluminum for rapid thermal transfer. Small size gives rapid response to changing temperatures, with better thermal control. Setup quicker and internal ducting facilitates access to parts being tested. In addition, internal flows smaller, so less energy consumed in maintaining desired temperature settings.

  19. Vibration noise control in laser satellite communication

    Science.gov (United States)

    Saksonov, Avigdor; Shlomi, Arnon; Kopeika, Norman S.

    2001-08-01

    Laser satellite communication has become especially attractive in recent years. Because the laser beam width is narrow than in the RF or microwave range, the transmitted optical power may be significantly reduced. This leads to development of miniature communication systems with extremely low power consumption. On the other hand, the laser communication channel is very sensitive to vibrations of the optical platform. These vibrations cause angular noise in laser beam pointing, comparable to the laser beam width. As result, as significant portion of the optical power between transmitter and receiver is lost and the bit error rate is increased. Consequently, vibration noise control is a critical problem in laser satellite communication. The direction of the laser beam is corrected with a fast steering mirror (FSM). In this paper are presented two approaches for the FSM control. One is the feedback control that uses an LQG algorithm. The second is the direct feed- forward control when vibration noise is measured by three orthogonal accelerometers and drives directly the F SM. The performances of each approach are evaluated using MATLAB simulations.

  20. Rail Vehicle Vibrations Control Using Parameters Adaptive PID Controller

    Directory of Open Access Journals (Sweden)

    Muzaffer Metin

    2014-01-01

    Full Text Available In this study, vertical rail vehicle vibrations are controlled by the use of conventional PID and parameters which are adaptive to PID controllers. A parameters adaptive PID controller is designed to improve the passenger comfort by intuitional usage of this method that renews the parameters online and sensitively under variable track inputs. Sinusoidal vertical rail misalignment and measured real rail irregularity are considered as two different disruptive effects of the system. Active vibration control is applied to the system through the secondary suspension. The active suspension application of rail vehicle is examined by using 5-DOF quarter-rail vehicle model by using Manchester benchmark dynamic parameters. The new parameters of adaptive controller are optimized by means of genetic algorithm toolbox of MATLAB. Simulations are performed at maximum urban transportation speed (90 km/h of the rail vehicle with ±5% load changes of rail vehicle body to test the robustness of controllers. As a result, superior performance of parameters of adaptive controller is determined in time and frequency domain.

  1. Multi-mode vibration control of piping system

    International Nuclear Information System (INIS)

    Minowa, Takeshi; Seto, Kazuto; Iiyama, Fumiya; Sodeyama, Hiroshi

    1999-01-01

    In this paper, dual dynamic absorbers are applied to the piping system in order to control the multiple vibration modes. ANSYS, which is one of the software based on FEM(finite element method), is used for the design of dual dynamic absorbers as well as for the determination of their optimum installing positions. The dual dynamic absorbers designed optimally for controlling the first three vibration modes perform just like a houde damper in higher frequency and have an effect on controlling higher modes. To use this advantage, three dual dynamic absorbers are installed in positions where they influence higher modes, and not only the first three modes of the piping system but also the extensive modes are controlled. Practical experimental study has also been carried out and it is shown that a dual dynamic absorber is suitable for controlling the vibration of the piping system. (author)

  2. Blasting vibrations control: The shortcomings of traditional methods

    Energy Technology Data Exchange (ETDEWEB)

    Vuillaume, P.M.; Kiszlo, M. [Institut National de l`Environnement Industriel et des Risques, Verneuil en Halatte (France); Bernard, T. [Compagnie Nouvelle de Scientifiques, Nice (France)

    1996-12-31

    In the context of its studies for the French ministry of the environment and for the French national coal board, INERIS (the French institute for the industrial environment and hazards, formerly CERCHAR) has made a complete critical survey of the methods generally used to reduce the levels of blasting vibrations. It is generally acknowledged that the main parameter to control vibrations is the so-called instantaneous charge, or charge per delay. This should be reduced as much as possible in order to diminish vibration levels. On account of this, the use of a new generation of blasting devices, such as non-electric detonators or electronic sequential timers has been developed since the seventies. INERIS has collected data from about 900 blasts in 2 quarries and 3 open pit mines. These data include input parameters such as borehole diameter, burden, spacing, charge per hole, charge per delay, total fired charge, etc ... They also include output measurements, such as vibration peak particle velocities, and main frequencies. These data have been analyzed with the help of multi variable statistical tools. Blasting tests were undertaken to evaluate new methods of vibrations control, such as the superposition of vibration signals. These methods appear to be accurate in many critical cases, but certainly would be highly improved with a better accuracy of firing delays. The development of electronic detonators seems to be the way of the future for a better blasting control.

  3. Controlling coupled bending-twisting vibrations of anisotropic composite wing

    Science.gov (United States)

    Ryabov, Victor; Yartsev, Boris

    2018-05-01

    The paper discusses the possibility to control coupled bending-twisting vibrations of anisotropic composite wing by means of the monoclinic structures in the reinforcement of the plating. Decomposing the potential straining energy and kinetic energy of natural vibration modes into interacting and non-interacting parts, it became possible to introduce the two coefficients that integrally consider the effect of geometry and reinforcement structure upon the dynamic response parameters of the wing. The first of these coefficients describes the elastic coupling of the natural vibration modes, the second coefficient describes the inertial one. The paper describes the numerical studies showing how the orientation of considerably anisotropic CRP layers in the plating affects natural frequencies, loss factors, coefficients of elastic and inertial coupling for several lower tones of natural bending-twisting vibrations of the wing. Besides, for each vibration mode, partial values of the above mentioned dynamic response parameters were determined by means of the relationships for orthotropic structures where instead of "free" shearing modulus in the reinforcement plant, "pure" shearing modulus is used. Joint analysis of the obtained results has shown that each pair of bending-twisting vibration modes has its orientation angle ranges of the reinforcing layers where the inertial coupling caused by asymmetry of the cross-section profile with respect to the main axes of inertia decreases, down to the complete extinction, due to the generation of the elastic coupling in the plating material. These ranges are characterized by the two main features: 1) the difference in the natural frequencies of the investigated pair of bending-twisting vibration modes is the minimum and 2) natural frequencies of bending-twisting vibrations belong to a stretch restricted by corresponding partial natural frequencies of the investigated pair of vibration modes. This result is of practical importance

  4. Experimental and analytical study on vibration control effects of eddy-current tuned mass dampers under seismic excitations

    Science.gov (United States)

    Lu, Zheng; Huang, Biao; Zhang, Qi; Lu, Xilin

    2018-05-01

    Eddy-current tuned mass dampers (EC-TMDs) are non-contacting passive control devices and are developed on the basis of conventional tuned mass dampers. They comprise a solid mass, a stiffness element, and a damping element, wherein the damping mechanism originates from eddy currents. By relative motion between a non-magnetic conductive metal and a permanent magnet in a dynamic system, a time-varying magnetic field is induced in the conductor, thereby generating eddy currents. The eddy currents induce a magnetic field with opposite polarity, causing repulsive forces, i.e., damping forces. This technology can overcome the drawbacks of conventional tuned mass dampers, such as limited service life, deterioration of mechanical properties, and undesired additional stiffness. The experimental and analytical study of this system installed on a multi-degree-of-freedom structure is presented in this paper. A series of shaking table tests were conducted on a five-story steel-frame model with/without an EC-TMD to evaluate the effectiveness and performance of the EC-TMD in suppressing the vibration of the model under seismic excitations. The experimental results show that the EC-TMD can effectively reduce the displacement response, acceleration response, interstory drift ratio, and maximum strain of the columns under different earthquake excitations. Moreover, an analytical method was proposed on the basis of electromagnetic and structural dynamic theories. A comparison between the test and simulation results shows that the simulation method can be used to estimate the response of structures with an EC-TMD under earthquake excitations with acceptable accuracy.

  5. Optimization of boundary controls of string vibrations

    Energy Technology Data Exchange (ETDEWEB)

    Il' in, V A; Moiseev, E I [Department of Computing Mathematics and Cybernetics, M.V. Lomonosov Moscow State University, Moscow (Russian Federation)

    2005-12-31

    For a large time interval T boundary controls of string vibrations are optimized in the following seven boundary-control problems: displacement control at one end (with the other end fixed or free); displacement control at both ends; elastic force control at one end (with the other end fixed or free); elastic force control at both ends; combined control (displacement control at one end and elastic force control at the other). Optimal boundary controls in each of these seven problems are sought as functions minimizing the corresponding boundary-energy integral under the constraints following from the initial and terminal conditions for the string at t=0 and t=T, respectively. For all seven problems, the optimal boundary controls are written out in closed analytic form.

  6. Sampled control of vibration in suspended cask by using vibration manipulation functions

    International Nuclear Information System (INIS)

    Kotake, Shigeo

    2014-01-01

    Safe and reliable operation is most important for decommissioning the Fukushima 1 nuclear power plant. Especially it requires for transferring spent nuclear fuels from fuel pool to storage cask. Since the heavy cask will be suspended during the transferring operation, there is a risk of dropping it in case of the strike of large earthquakes. In this study, we introduce analytical functions to suppress residual vibration of a suspended cask by using vibration manipulation function. Hence the oscillation of the cask can be feedforward or sampled-data controlled by moving a trolley with analog actuator, the possible risk could be reduced. (author)

  7. A novel technique for active vibration control, based on optimal

    Indian Academy of Sciences (India)

    In the last few decades, researchers have proposed many control techniques to suppress unwanted vibrations in a structure. In this work, a novel and simple technique is proposed for the active vibration control. In this technique, an optimal tracking control is employed to suppress vibrations in a structure by simultaneously ...

  8. Vibration study of the APS magnet support assemblies

    International Nuclear Information System (INIS)

    Wambsganss, M.W.; Jendrzejczyk, J.A.; Chen, S.S.

    1990-11-01

    Stability of the positron closed orbit is a requirement for successful operation of the Advanced Photon Source. The fact that vibration of the storage ring quadrupole magnets can lead to distortion of the positron closed orbit and to potentially unacceptable beam emittance growth provides the motivation for the subject studies. Low frequency vibrations can be controlled with steering magnets using feedback systems, provided the vibration amplitudes are within the dynamic range of the controllers. High frequency vibration amplitudes, on the other hand, are out of the range of the controller and, therefore must be limited to ensure the emittance growth will not exceed a prescribed value. Vibration criteria were developed based on the requirement that emittance growth be limited to 10 percent. Recognizing that the quadrupole magnets have the most significant effect, three different scenarios were considered: vibration of a single quadrupole within the storage ring, random vibration of all the quadrupoles in the ring, and the hypothetical case of a plane wave sweeping across the site and the quadrupoles following the motion of the plane wave. The maximum allowable peak vibration amplitudes corresponding to these three vibration scenarios are given. The criteria associated with the passage of a plane wave is dependent on wavelength, or, alternatively, on frequency given the wave speed. The wave speed used is that measured as a part of the geotechnical investigation at the APS site

  9. Resonant vibration control of wind turbine blades

    DEFF Research Database (Denmark)

    Svendsen, Martin Nymann; Krenk, Steen; Høgsberg, Jan Becker

    2010-01-01

    . The efficiency of the resonant controller is demonstrated for a representative turbine blade exposed to turbulent wind loading. It is found that the present explicit tuning procedure yields close to optimal tuning, with very limited modal spill-over and effective reduction of the vibration amplitudes.......The paper deals with introduction of damping to specific vibration modes of wind turbine blades, using a resonant controller with acceleration feedback. The wind turbine blade is represented by three-dimensional, two-node finite elements in a local, rotating frame of reference. The element...... formulation accounts for arbitrary mass density distributions, general elastic crosssection properties and geometric stiffness effects due to internal stresses. A compact, linear formulation for aerodynamic forces with associated stiffness and damping terms is established and added to the structural model...

  10. Applications of super elasticity in vibrational control

    International Nuclear Information System (INIS)

    Soul, H

    2005-01-01

    In this work, the possibilities of using shape memory alloys (SMA) as passive dampers devices in mechanicals vibrations problems are studied.The property that is exploited is the super elastic effect, by wich strains of the order of 10% can be obtained.The relationship between stress and strain means that this is an inelastic process.Nevertheless when load is removed the material recoveries its original dimension, presenting zero or almost zero permanent strain relative to others common materials, describing in its stress-strain diagram an important hysteretic loop.This features occurs basically because in well suited conditions the SMA can undergo martensitic transformations induced by stress.A series of uniaxial tension tests in commercial NiTi wires are performed, in order to characterize the super elastic behavior of the material.The influence of variables as ambient temperature, strain rate, strain levels and number of tension cycles accumulated are studied paying attention to the dissipative capacity of the material defined by means of the shape of the hysteretic loop.The influence on the damping capacity of the thermal effects associated with the martensitic transformation are evaluated by performing experiments at different transformation rates.Results are rationalized in terms of a model considering the interaction between a source term (heat of transformation), heat convection to the ambient and conduction along the wire.Some numerical results are obtained and discussed. For a performance evaluation in devices applications a simplified model of super elasticity is proposed.Then, the response of an elastic frame structure endowed with SMA tensors is evaluated following the model behavior when seismic movement is imposed at the base.The obtained results verify the possibility of using SMA as kernel elements in vibration control.This conclusion is experimentally verified in a prototype of the structure specially designed and constructed for this work

  11. On the control of vibrations using synchrophasing

    Science.gov (United States)

    Dench, M. R.; Brennan, M. J.; Ferguson, N. S.

    2013-09-01

    This paper describes the application of a technique, known as synchrophasing, to the control of machinery vibration. It is applicable to machinery installations, in which several synchronous machines, such as those driven by electrical motors, are fitted to an isolated common structure known as a machinery raft. To reduce the vibration transmitted to the host structure to which the machinery raft is attached, the phase of the electrical supply to the motors is adjusted so that the net transmitted force to the host structure is minimised. It is shown that while this is relatively simple for an installation consisting of two machines, it is more complicated for installations in which there are more than two machines, because of the interaction between the forces generated by each machine. The development of a synchrophasing scheme, which has been applied to propeller aircraft, and is known as Propeller Signature Theory (PST) is discussed. It is shown both theoretically and experimentally, that this is an efficient way of controlling the phase of multiple machines. It is also shown that synchrophasing is a worthwhile vibration control technique, which has the potential to suppress vibration transmitted to the host structure by up to 20 dB at certain frequencies. Although the principle of synchronisation has been demonstrated on a one-dimensional structure, it is believed that this captures the key features of the approach. However, it should be realised that the mode-shapes of a machinery raft may be more complex than that of a one-dimensional structure and this may need to be taken into account in a real application.

  12. Wireless sensor networks for active vibration control in automobile structures

    International Nuclear Information System (INIS)

    Mieyeville, Fabien; Navarro, David; Du, Wan; Ichchou, Mohamed; Scorletti, Gérard

    2012-01-01

    Wireless sensor networks (WSNs) are nowadays widely used in monitoring and tracking applications. This paper presents the feasibility of using WSNs in active vibration control strategies. The method employed here involves active-structural acoustic control using piezoelectric sensors distributed on a car structure. This system aims at being merged with a WSN whose head node collects data and processes control laws so as to command piezoelectric actuators wisely placed on the structure. We will study the feasibility of implementing WSNs in active vibration control and introduce a complete design methodology to optimize hardware/software and control law synergy in mechatronic systems. A design space exploration will be conducted so as to identify the best WSN platform and the resulting impact on control. (paper)

  13. Experimental Study on Piezoelectric Energy Harvesting from Vortex-Induced Vibrations and Wake-Induced Vibrations

    Directory of Open Access Journals (Sweden)

    Min Zhang

    2016-01-01

    Full Text Available A rigid circular cylinder with two piezoelectric beams attached on has been tested through vortex-induced vibrations (VIV and wake-induced vibrations (WIV by installing a big cylinder fixed upstream, in order to study the influence of the different flow-induced vibrations (FIV types. The VIV test shows that the output voltage increases with the increases of load resistance; an optimal load resistance exists for the maximum output power. The WIV test shows that the vibration of the small cylinder is controlled by the vortex frequency of the large one. There is an optimal gap of the cylinders that can obtain the maximum output voltage and power. For a same energy harvesting device, WIV has higher power generation capacity; then the piezoelectric output characteristics can be effectively improved.

  14. Vibrational Spectral Studies of Gemfibrozil

    Science.gov (United States)

    Benitta, T. Asenath; Balendiran, G. K.; James, C.

    2008-11-01

    The Fourier Transform Raman and infrared spectra of the crystallized drug molecule 5-(2,5-Dimethylphenoxy)-2,2-dimethylpentanoic acid (Gemfibrozil) have been recorded and analyzed. Quantum chemical computational methods have been employed using Gaussian 03 software package based on Hartree Fock method for theoretically modeling the grown molecule. The optimized geometry and vibrational frequencies have been predicted. Observed vibrational modes have been assigned with the aid of normal coordinate analysis.

  15. Vibration control of a cluster of buildings through the Vibrating Barrier

    Science.gov (United States)

    Tombari, A.; Garcia Espinosa, M.; Alexander, N. A.; Cacciola, P.

    2018-02-01

    A novel device, called Vibrating Barrier (ViBa), that aims to reduce the vibrations of adjacent structures subjected to ground motion waves has been recently proposed. The ViBa is a structure buried in the soil and detached from surrounding buildings that is able to absorb a significant portion of the dynamic energy arising from the ground motion. The working principle exploits the dynamic interaction among vibrating structures due to the propagation of waves through the soil, namely the structure-soil-structure interaction. In this paper the efficiency of the ViBa is investigated to control the vibrations of a cluster of buildings. To this aim, a discrete model of structures-site interaction involving multiple buildings and the ViBa is developed where the effects of the soil on the structures, i.e. the soil-structure interaction (SSI), the structure-soil-structure interaction (SSSI) as well as the ViBa-soil-structures interaction are taken into account by means of linear elastic springs. Closed-form solutions are derived to design the ViBa in the case of harmonic excitation from the analysis of the discrete model. Advanced finite element numerical simulations are performed in order to assess the efficiency of the ViBa for protecting more than a single building. Parametric studies are also conducted to identify beneficial/adverse effects in the use of the proposed vibration control strategy to protect cluster of buildings. Finally, experimental shake table tests are performed to a prototype of a cluster of two buildings protected by the ViBa device for validating the proposed numerical models.

  16. Wind Turbine Rotors with Active Vibration Control

    DEFF Research Database (Denmark)

    Svendsen, Martin Nymann

    that the basic modes of a wind turbine blade can be effectively addressed by an in-blade ‘active strut’ actuator mechanism. The importance of accounting for background mode flexibility is demonstrated. Also, it is shown that it is generally possible to address multiple beam modes with multiple controllers, given...... in the targeted modes and the observed spill-over to other modes is very limited and generally stabilizing. It is shown that physical controller positioning for reduced background noise is important to the calibration. By simulation of the rotor response to both simple initial conditions and a stochastic wind......This thesis presents a framework for structural modeling, analysis and active vibration damping of rotating wind turbine blades and rotors. A structural rotor model is developed in terms of finite beam elements in a rotating frame of reference. The element comprises a representation of general...

  17. F.E.M. of PWR's control rod cluster. Parametrical study of vibrating behavior by an Experiment Design method

    International Nuclear Information System (INIS)

    Bosselut, D.; Soulier, B.

    1997-03-01

    Some finite element models have been performed at EDF to simulate the vibrations of rod cluster and to analyse the wear phenomenon of rods using parametrical studies. In the first part, one of the finite element models is presented. The location of excitation sources is described. The calculated values are: rod displacement in the guiding cards, shock forces on the guiding cards and wear power produced. In the second part, a parametrical study is presented for a given computer experiment domain with an Experimental Design method. The building of the computer experiment design is described. The used polynomial model has all linear, quadratic and interactive terms for each of the 6 parameters (26 coefficients), 34 polynomials have been built to approach the effective shock forces and the mean wear power at each of the 17 guiding points. In the last part, the influence of parameters on calculated mean wear power is shown along rods and some responses surfaces are visualized. Systematism and closeness of experiment design technique is underlined. Easy simulation of all the response domain by polynomial approach, allows comparison with experiment feedback. (author)

  18. On the neutron noise diagnostics of pressurized water reactor control rod vibrations II. Stochastic vibrations

    International Nuclear Information System (INIS)

    Pazsit, I.; Glockler, O.

    1984-01-01

    In an earlier publication, using the theory of neutron fluctuations induced by a vibrating control rod, a complete formal solution of rod vibration diagnostics based on neutron noise measurements was given in terms of Fourier-transformed neutron detector time signals. The suggested procedure was checked in numerical simulation tests where only periodic vibrations could be considered. The procedure and its numerical testing are elaborated for stochastic two-dimensional vibrations. A simple stochastic theory of two-dimensional flow-induced vibrations is given; then the diagnostic method is formulated in the stochastic case, that is, in terms of neutron detector auto- and crosspower spectra. A previously suggested approximate rod localization technique is also formulated in the stochastic case. Applicability of the methods is then investigated in numerical simulation tests, using the proposed model of stochastic two-dimensional vibrations when generating neutron detector spectra that simulate measured data

  19. Mechanical systems a unified approach to vibrations and controls

    CERN Document Server

    Gans, Roger F

    2015-01-01

    This essential textbook covers analysis and control of engineering mechanisms, which include almost any apparatus with moving parts used in daily life, from musical instruments to robots. The text  presents both vibrations and controls with considerable breadth and depth using a unified notation. It strikes a nice balance between the analytical and the practical.  This text contains enough material for a two semester sequence, but it can also be used in a single semester course combining the two topics. Mechanical Systems: A Unified Approach to Vibrations and Controls presents a common notation and approach to these closely related areas. Examples from the both vibrations and controls components are integrated throughout this text. This book also: ·         Presents a unified approach to vibrations and controls, including an excellent diagram that simultaneously discusses embedding classical vibrations (mechanical systems) in a discussion of models, inverse models, and open and closed loop control ...

  20. Control of 2D Flexible Structures by Confinement of Vibrations and Regulation of Their Energy Flow

    Directory of Open Access Journals (Sweden)

    Fakhreddine Landolsi

    2009-01-01

    Full Text Available In this paper, we investigate the control of 2D flexible structures by vibration confinement and the regulation of their energy flow along prespecified spatial paths. A discretized-model-based feedback strategy, aiming at confining and suppressing simultaneously the vibration, is proposed. It is assumed that the structure consists of parts that are sensitive to vibrations. The control design introduces a new pseudo-modal matrix derived from the computed eigenvectors of the discretized model. Simulations are presented to show the efficacy of the proposed control law. A parametric study is carried out to examine the effects of the different control parameters on the simultaneous confinement and suppression of vibrations. In addition, we conducted a set of simulations to investigate the flow control of vibrational energy during the confinement-suppression process. We found that the energy flow can be regulated via a set of control parameters for different confinement configurations.

  1. Innovation in Active Vibration Control Strategy of Intelligent Structures

    Directory of Open Access Journals (Sweden)

    A. Moutsopoulou

    2014-01-01

    Full Text Available Large amplitudes and attenuating vibration periods result in fatigue, instability, and poor structural performance. In light of past approaches in this field, this paper intends to discuss some innovative approaches in vibration control of intelligent structures, particularly in the case of structures with embedded piezoelectric materials. Control strategies are presented, such as the linear quadratic control theory, as well as more advanced theories, such as robust control theory. The paper presents sufficiently a recognizable advance in knowledge of active vibration control in intelligent structures.

  2. COMPENSATED INVERSE PID CONTROLLER FOR ACTIVE VIBRATION CONTROL WITH PIEZOELECTRIC PATCHES: MODELING, SIMULATION AND IMPLEMENTATION

    Directory of Open Access Journals (Sweden)

    Asan Gani

    2010-09-01

    Full Text Available Active vibration control of the first three modes of a vibrating cantilever beam using collocated piezoelectric sensor and actuator is examined in this paper. To achieve this, a model based on Euler-Bernoulli beam equation is adopted and extended to the case of three bonded piezoelectric patches that act as sensor, actuator and exciter respectively. A compensated inverse PID controller has been designed and developed to damp first three modes of vibration. Controllers have been designed for each mode and these are later combined in parallel to damp any of the three modes. Individual controller gives better reduction in sensor output for the second and third modes while the combined controller performs better for the first mode. Simulation studies are carried out using MATLAB. These results are compared and verified experimentally and the real-time implementation is carried out with xPC-target toolbox in MATLAB

  3. Studies of interstellar vibrationally-excited molecules

    International Nuclear Information System (INIS)

    Ziurys, L.M.; Snell, R.L.; Erickson, N.R.

    1986-01-01

    Several molecules thus far have been detected in the ISM in vibrationally-excited states, including H 2 , SiO, HC 3 N, and CH 3 CN. In order for vibrational-excitation to occur, these species must be present in unusually hot and dense gas and/or where strong infrared radiation is present. In order to do a more thorough investigation of vibrational excitation in the interstellar medium (ISM), studies were done of several mm-wave transitions originating in excited vibrational modes of HCN, an abundant interstellar molecule. Vibrationally-excited HCN was recently detected toward Orion-KL and IRC+10216, using a 12 meter antenna. The J=3-2 rotational transitions were detected in the molecule's lowest vibrational state, the bending mode, which is split into two separate levels, due to l-type doubling. This bending mode lies 1025K above ground state, with an Einstein A coefficient of 3.6/s. The J=3-2 line mode of HCN, which lies 2050K above ground state, was also observed toward IRC+10216, and subsequently in Orion-KL. Further measurements of vibrationally-excited HCN were done using a 14 meter telescope, which include the observations of the (0,1,0) and (0,2,0) modes towards Orion-KL, via their J=3-2 transitions at 265-267 GHz. The spectrum of the J=3-2 line in Orion taken with the 14 meter telescope, is shown, along with a map, which indicates that emission from vibrationally-excited HCN arises from a region probably smaller than the 14 meter telescope's 20 arcsec beam

  4. Semi-active control of helicopter vibration using controllable stiffness and damping devices

    Science.gov (United States)

    Anusonti-Inthra, Phuriwat

    Semi-active concepts for helicopter vibration reduction are developed and evaluated in this dissertation. Semi-active devices, controllable stiffness devices or controllable orifice dampers, are introduced; (i) in the blade root region (rotor-based concept) and (ii) between the rotor and the fuselage as semi-active isolators (in the non-rotating frame). Corresponding semi-active controllers for helicopter vibration reduction are also developed. The effectiveness of the rotor-based semi-active vibration reduction concept (using stiffness and damping variation) is demonstrated for a 4-bladed hingeless rotor helicopter in moderate- to high-speed forward flight. A sensitivity study shows that the stiffness variation of root element can reduce hub vibrations when proper amplitude and phase are used. Furthermore, the optimal semi-active control scheme can determine the combination of stiffness variations that produce significant vibration reduction in all components of vibratory hub loads simultaneously. It is demonstrated that desired cyclic variations in properties of the blade root region can be practically achieved using discrete controllable stiffness devices and controllable dampers, especially in the flap and lag directions. These discrete controllable devices can produce 35--50% reduction in a composite vibration index representing all components of vibratory hub loads. No detrimental increases are observed in the lower harmonics of blade loads and blade response (which contribute to the dynamic stresses) and controllable device internal loads, when the optimal stiffness and damping variations are introduced. The effectiveness of optimal stiffness and damping variations in reducing hub vibration is retained over a range of cruise speeds and for variations in fundamental rotor properties. The effectiveness of the semi-active isolator is demonstrated for a simplified single degree of freedom system representing the semi-active isolation system. The rotor

  5. Optimal Vibration Control for Tracked Vehicle Suspension Systems

    Directory of Open Access Journals (Sweden)

    Yan-Jun Liang

    2013-01-01

    Full Text Available Technique of optimal vibration control with exponential decay rate and simulation for vehicle active suspension systems is developed. Mechanical model and dynamic system for a class of tracked vehicle suspension vibration control is established and the corresponding system of state space form is described. In order to prolong the working life of suspension system and improve ride comfort, based on the active suspension vibration control devices and using optimal control approach, an optimal vibration controller with exponential decay rate is designed. Numerical simulations are carried out, and the control effects of the ordinary optimal controller and the proposed controller are compared. Numerical simulation results illustrate the effectiveness of the proposed technique.

  6. Control of chaotic vibration in automotive wiper systems

    International Nuclear Information System (INIS)

    Wang Zheng; Chau, K.T.

    2009-01-01

    Chaotic vibration has been identified in the automotive wiper system at certain wiping speeds. This irregular vibration not only decreases the wiping efficiency, but also degrades the driving comfort. The purpose of this paper is to propose a new approach to stabilize the chaotic vibration in the wiper system. The key is to employ the extended time-delay feedback control in such a way that the applied voltage of the wiper motor is online adjusted according to its armature current feedback. Based on a practical wiper system, it is verified that the proposed approach can successfully stabilize the chaotic vibration, and provide a wide range of wiping speeds

  7. Piezoelectric Vibration Damping Study for Rotating Composite Fan Blades

    Science.gov (United States)

    Min, James B.; Duffy, Kirsten P.; Choi, Benjamin B.; Provenza, Andrew J.; Kray, Nicholas

    2012-01-01

    Resonant vibrations of aircraft engine blades cause blade fatigue problems in engines, which can lead to thicker and aerodynamically lower performing blade designs, increasing engine weight, fuel burn, and maintenance costs. In order to mitigate undesirable blade vibration levels, active piezoelectric vibration control has been investigated, potentially enabling thinner blade designs for higher performing blades and minimizing blade fatigue problems. While the piezoelectric damping idea has been investigated by other researchers over the years, very little study has been done including rotational effects. The present study attempts to fill this void. The particular objectives of this study were: (a) to develop and analyze a multiphysics piezoelectric finite element composite blade model for harmonic forced vibration response analysis coupled with a tuned RLC circuit for rotating engine blade conditions, (b) to validate a numerical model with experimental test data, and (c) to achieve a cost-effective numerical modeling capability which enables simulation of rotating blades within the NASA Glenn Research Center (GRC) Dynamic Spin Rig Facility. A numerical and experimental study for rotating piezoelectric composite subscale fan blades was performed. It was also proved that the proposed numerical method is feasible and effective when applied to the rotating blade base excitation model. The experimental test and multiphysics finite element modeling technique described in this paper show that piezoelectric vibration damping can significantly reduce vibrations of aircraft engine composite fan blades.

  8. Nonlinear vibration with control for flexible and adaptive structures

    CERN Document Server

    Wagg, David

    2015-01-01

    This book provides a comprehensive discussion of nonlinear multi-modal structural vibration problems, and shows how vibration suppression can be applied to such systems by considering a sample set of relevant control techniques. It covers the basic principles of nonlinear vibrations that occur in flexible and/or adaptive structures, with an emphasis on engineering analysis and relevant control techniques. Understanding nonlinear vibrations is becoming increasingly important in a range of engineering applications, particularly in the design of flexible structures such as aircraft, satellites, bridges, and sports stadia. There is an increasing trend towards lighter structures, with increased slenderness, often made of new composite materials and requiring some form of deployment and/or active vibration control. There are also applications in the areas of robotics, mechatronics, micro electrical mechanical systems, non-destructive testing and related disciplines such as structural health monitoring. Two broader ...

  9. The Study of Vibration Processes in Oil Flooded Screw Compressors

    Directory of Open Access Journals (Sweden)

    I. V. Filippov

    2014-01-01

    Full Text Available Vibration processes that accompany most of machines and mechanisms are of interest to the researcher, as a source of information about the technical condition and the nature of the business processes flow. Vibration-based diagnostics of oil flooded screw compressors allows us to estimate the deviation of their operation from the main mode in accordance with changing the settings of vibration processes.The oil flooded screw compressor transition from the main mode of operation to the abnormal one is accompanied by complex gas-dynamic phenomena i.e. the initial gaps and their decays. This leads to changes in the nature of vibration processes, prompting suggestions that there is a relationship to a change of vibration parameters and mode of compressor operation.Studies were conducted by combined method using an analytical calculation of the decay parameters of the initial discontinuity and an experimental one based on the measurement of acceleration on the body of the real oil flooded screw compressor. A virtually adequate reaction of the decay parameters of the initial gap and the peak values of vibration acceleration to the change of operation mode of oil flooded screw compressor has been received. The peak value of the vibration acceleration was selected by the method of Gating being time-coinciding with the beginning discharge phase of the oil flooded screw compressor, and therefore, with the decay time of the initial discontinuity.This indicates a large degree of hypothesis likelihood on an existing initial break in oil flooded screw compressor when operating in abnormal conditions. This work contains the study results of vibration processes and their relationship to the operating mode of the oil flooded screw compressor, which distinguish it from the other works studied vibration processes in reciprocating compressors. The vibration parameters control of operating oil flooded screw compressor allows us to create an automatic capacity control

  10. Structural health monitoring (vibration) as a tool for identifying structural alterations of the lumbar spine: a twin control study.

    Science.gov (United States)

    Kawchuk, Gregory N; Hartvigsen, Jan; Edgecombe, Tiffany; Prasad, Narasimha; van Dieen, Jaap H

    2016-03-11

    Structural health monitoring (SHM) is an engineering technique used to identify mechanical abnormalities not readily apparent through other means. Recently, SHM has been adapted for use in biological systems, but its invasive nature limits its clinical application. As such, the purpose of this project was to determine if a non-invasive form of SHM could identify structural alterations in the spines of living human subjects. Lumbar spines of 10 twin pairs were visualized by magnetic resonance imaging then assessed by a blinded radiologist to determine whether twin pairs were structurally concordant or discordant. Vibration was then applied to each subject's spine and the resulting response recorded from sensors overlying lumbar spinous processes. The peak frequency, area under the curve and the root mean square were computed from the frequency response function of each sensor. Statistical analysis demonstrated that in twins whose structural appearance was discordant, peak frequency was significantly different between twin pairs while in concordant twins, no outcomes were significantly different. From these results, we conclude that structural changes within the spine can alter its vibration response. As such, further investigation of SHM to identify spinal abnormalities in larger human populations is warranted.

  11. Vibration control for precision manufacturing using piezoelectric actuators

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, D.R.; Hinnerichs, T.D.; Redmond, J.M.

    1995-12-31

    Piezoelectric actuators provide high frequency, force, and stiffness capabilities along with reasonable Stroke limits, all of which can be used to increase performance levels in precision manufacturing systems. This paper describes two examples of embedding piezoelectric actuators in structural components for vibration control. One example involves suppressing the self excited chatter phenomenon in the metal cutting process of a milling machine and the other involves damping vibrations induced by rigid body stepping of a photolithography platen. Finite element modeling and analyses are essential for locating and sizing the actuators and permit further simulation studies of the response of the dynamic system. Experimental results are given for embedding piezoelectric actuators in a cantilevered bar configuration, which was used as a surrogate machine tool structure. These results are incorporated into a previously developed milling process simulation and the effect of the control on the cutting process stability diagram is quantified. Experimental results are also given for embedding three piezoelectric actuators in a surrogate photolithography platen to suppress vibrations. These results demonstrate the potential benefit that can be realized by applying advances from the field of adaptive structures to problems in precision manufacturing.

  12. Intelligent failure-proof control system for structural vibration

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Kazuo [Keio Univ., Yokohama (Japan). Faculty of Science and Technology; Oba, Takahiro [Keio Univ., Tokyo (Japan)

    2000-11-01

    With progress of technology in recent years, gigantism and complication such as high-rise buildings, nuclear reactors and so on have brought about new problems. Particularly, the safety and the reliability for damages in abnormal situations have become more important. Intelligent control systems which can judge whether the situation is normal or abnormal at real time and cope with these situations suitably are demanded. In this study, Cubic Neural Network (CNN) is adopted, which consists of the controllers possessing cubically some levels of information abstracting. In addition to the usual quantitative control, the qualitative control is used for the abnormal situations. And, by selecting a suitable controller, CNN can cope with the abnormal situation. In order to confirm the effectiveness of this system, the structural vibration control problems with sensory failure and elasto-plastic response are dealt with. As a result of simulations, it was demonstrated that CNN can cope with unexpected abnormal situations which are not considered in learning. (author)

  13. Intelligent failure-proof control system for structural vibration

    International Nuclear Information System (INIS)

    Yoshida, Kazuo

    2000-01-01

    With progress of technology in recent years, gigantism and complication such as high-rise buildings, nuclear reactors and so on have brought about new problems. Particularly, the safety and the reliability for damages in abnormal situations have become more important. Intelligent control systems which can judge whether the situation is normal or abnormal at real time and cope with these situations suitably are demanded. In this study, Cubic Neural Network (CNN) is adopted, which consists of the controllers possessing cubically some levels of information abstracting. In addition to the usual quantitative control, the qualitative control is used for the abnormal situations. And, by selecting a suitable controller, CNN can cope with the abnormal situation. In order to confirm the effectiveness of this system, the structural vibration control problems with sensory failure and elasto-plastic response are dealt with. As a result of simulations, it was demonstrated that CNN can cope with unexpected abnormal situations which are not considered in learning. (author)

  14. Effect of vibration on muscle strength imbalance in lower extremity using multi-control whole body vibration platform.

    Science.gov (United States)

    Yu, Chang Ho; Seo, Shin Bae; Kang, Seung Rok; Kim, Kyung; Kwon, Tae Kyu

    2015-01-01

    This study shows the improvement of muscle activity and muscle strength imbalance in the lower extremities through independent exercise loads in vibration platform. Twenty females of age 20 participated in this study. The subjects were divided into WBV group, with more than 10% of muscle strength imbalance between left and right the lower extremities, and control group, with less than 10% of muscle strength imbalance between left and right the lower extremities. As the prior experiment showed, different exercise postures provide different muscular activities. As a result, the highest muscular activity was found to be in the low squat posture. Therefore, the LS posture was selected for the exercise in this experiment. Vibration intensities were applied to dominant muscle and non-dominant muscle, and the vibration frequency was fixed at 25Hz for the WBV group. The control group was asked to perform the same exercise as the WBV group, without stimulated vibration. This exercise was conducted for a total of 4 weeks. As a result, the WBV group which showed an average deviation of 16% before the experiment, tended to decrease approximately to 5%. In this study, vibration exercise using load deviation is shown to be effective in improving the muscle strength imbalance.

  15. Vibrational spectroscopic study of fluticasone propionate

    Science.gov (United States)

    Ali, H. R. H.; Edwards, H. G. M.; Kendrick, J.; Scowen, I. J.

    2009-03-01

    Fluticasone propionate is a synthetic glucocorticoid with potent anti-inflammatory activity that has been used effectively in the treatment of chronic asthma. The present work reports a vibrational spectroscopic study of fluticasone propionate and gives proposed molecular assignments on the basis of ab initio calculations using BLYP density functional theory with a 6-31G* basis set and vibrational frequencies predicted within the quasi-harmonic approximation. Several spectral features and band intensities are explained. This study generated a library of information that can be employed to aid the process monitoring of fluticasone propionate.

  16. Active control of noise radiation from vibrating structures

    DEFF Research Database (Denmark)

    Mørkholt, Jakob

    developed, based on the theory of radiation filters for estimating the sound radiation from multimodal vibrations. This model has then been used in simulations of optimal feedback control, with special emphasis of the stability margins of the optimal control scheme. Two different methods of designing...... optimal and robust discrete-time feedback controllers for active vibration control of multimodal structures have been compared. They have been showed to yield controllers with identical frequency response characteristics, even though they employ completely different methods of numerical solutions...... and result in different representations of the controllers. The Internal Model Control structure combined with optimal filtering is suggested as an alternative to state space optimal control techniques for designing robust optimal controllers for audio frequency vibration control of resonant structures....

  17. Vibrations control of light rail transportation vehicle via PID type fuzzy controller using parameters adaptive method

    OpenAIRE

    METİN, Muzaffer; GÜÇLÜ, Rahmi

    2014-01-01

    In this study, a conventional PID type fuzzy controller and parameter adaptive fuzzy controller are designed to control vibrations actively of a light rail transport vehicle which modeled as 6 degree-of-freedom system and compared performances of these two controllers. Rail vehicle model consists of a passenger seat and its suspension system, vehicle body, bogie, primary and secondary suspensions and wheels. The similarity between mathematical model and real system is shown by compar...

  18. Active Vibration Control of a Railway Vehicle Carbody Using Piezoelectric Elements

    Science.gov (United States)

    Molatefi, Habibollah; Ayoubi, Pejman; Mozafari, Hozhabr

    2017-07-01

    In recent years and according to modern transportation development, rail vehicles are manufactured lighter to achieve higher speed and lower transportation costs. On the other hand, weight reduction of rail vehicles leads to increase the structural vibration. In this study, Active Vibration Control of a rail vehicle using piezoelectric elements is investigated. The optimal control employed as the control approach regard to the first two modes of vibration. A simplified Car body structure is modeled in Matlab using the finite element theory by considering six DOF beam element and then the Eigen functions and mode shapes are derived. The surface roughness of different classes of rail tracks have been obtained using random vibration theory and applied to the secondary suspension as the excitation of the structure; Then piezoelectric mounted where the greatest moments were captured. The effectiveness of Piezoelectric in structural vibrations attenuation of car body is demonstrated through the state space equations and its effect on modal coefficient.

  19. Vibration control for precision manufacturing at Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Hinnerichs, T.; Martinez, D. [Sandia National Labs., Albuquerque, NM (United States). Structural Dynamics and Vibration Control Dept.

    1995-04-01

    Sandia National Laboratories performs R and D in structural dynamics and vibration suppression for precision applications in weapon systems, space, underwater, transportation and civil structures. Over the last decade these efforts have expanded into the areas of active vibration control and ``smart`` structures and material systems. In addition, Sandia has focused major resources towards technology to support weapon product development and agile manufacturing capability for defense and industrial applications. This paper will briefly describe the structural dynamics modeling and verification process currently in place at Sandia that supports vibration control and some specific applications of these techniques to manufacturing in the areas of lithography, machine tools and flexible robotics.

  20. Vibration control for precision manufacturing at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Hinnerichs, T.; Martinez, D.

    1995-01-01

    Sandia National Laboratories performs R and D in structural dynamics and vibration suppression for precision applications in weapon systems, space, underwater, transportation and civil structures. Over the last decade these efforts have expanded into the areas of active vibration control and ''smart'' structures and material systems. In addition, Sandia has focused major resources towards technology to support weapon product development and agile manufacturing capability for defense and industrial applications. This paper will briefly describe the structural dynamics modeling and verification process currently in place at Sandia that supports vibration control and some specific applications of these techniques to manufacturing in the areas of lithography, machine tools and flexible robotics

  1. Vibration control in smart coupled beams subjected to pulse excitations

    Science.gov (United States)

    Pisarski, Dominik; Bajer, Czesław I.; Dyniewicz, Bartłomiej; Bajkowski, Jacek M.

    2016-10-01

    In this paper, a control method to stabilize the vibration of adjacent structures is presented. The control is realized by changes of the stiffness parameters of the structure's couplers. A pulse excitation applied to the coupled adjacent beams is imposed as the kinematic excitation. For such a representation, the designed control law provides the best rate of energy dissipation. By means of a stability analysis, the performance in different structural settings is studied. The efficiency of the proposed strategy is examined via numerical simulations. In terms of the assumed energy metric, the controlled structure outperforms its passively damped equivalent by over 50 percent. The functionality of the proposed control strategy should attract the attention of practising engineers who seek solutions to upgrade existing damping systems.

  2. Vibrational spectroscopic study of terbutaline hemisulphate

    Science.gov (United States)

    Ali, H. R. H.; Edwards, H. G. M.; Kendrick, J.; Scowen, I. J.

    2009-05-01

    The Raman spectrum of terbutaline hemisulphate is reported for the first time, and molecular assignments are proposed on the basis of ab initio BLYP DFT calculations with a 6-31G* basis set and vibrational frequencies predicted within the quasi-harmonic approximation; these predictions compare favourably with the observed vibrational spectra. Comparison with previously published infrared data explains several spectral features. The results from this study provide data that can be used for the preparative process monitoring of terbutaline hemisulphate, an important β 2 agonist drug in various dosage forms and its interaction with excipients and other components.

  3. Piezoelectric pushers for active vibration control of rotating machinery

    Science.gov (United States)

    Palazzolo, A. B.; Lin, R. R.; Alexander, R. M.; Kascak, A. F.; Montague, J.

    1989-01-01

    The active control of rotordynamic vibrations and stability by magnetic bearings and electromagnetic shakers have been discussed extensively in the literature. These devices, though effective, are usually large in volume and add significant weight to the stator. The use of piezoelectric pushers may provide similar degrees of effectiveness in light, compact packages. Tests are currently being conducted with piezoelectric pusher-based active vibration control. Results from tests performed on NASA test rigs as preliminary verification of the related theory are presented.

  4. Feedforward Control of Gear Mesh Vibration Using Piezoelectric Actuators

    Directory of Open Access Journals (Sweden)

    Gerald T. Montague

    1994-01-01

    Full Text Available This article presents a novel means for suppressing gear mesh related vibrations. The key components in this approach are piezoelectric actuators and a high-frequency, analog feed forward controller. Test results are presented and show up to a 70% reduction in gear mesh acceleration and vibration control up to 4500 Hz. The principle of the approach is explained by an analysis of a harmonically excited, general linear vibratory system.

  5. Active vibration control of clamped beams using positive position feedback controllers with moment pair

    International Nuclear Information System (INIS)

    Shin, Chang Joo; Jeong, Weui Bong; Hong, Chin Suk

    2012-01-01

    This paper investigates the active vibration control of clamp beams using positive position feedback (PPF) controllers with a sensor/ moment pair actuator. The sensor/moment pair actuator which is the non-collocated configuration leads to instability of the control system when using the direct velocity feedback (DVFB) control. To alleviate the instability problem, a PPF controller is considered in this paper. A parametric study of the control system with PPF controller is first conducted to characterize the effects of the design parameters (gain and damping ratio in this paper) on the stability and performance. The gain of the controller is found to affect only the relative stability. Increasing the damping ratio of the controller slightly improves the stability condition while the performance gets worse. In addition, the higher mode tuned PPF controller affects the system response at the lower modes significantly. Based on the characteristics of PPF controllers, a multi-mode controllable SISO PPF controller is then considered and tuned to different modes (in this case, three lowest modes) numerically and experimentally. The multi-mode PPF controller can be achieved to have a high gain margin. Moreover, it reduces the vibration of the beam significantly. The vibration levels at the tuned modes are reduced by about 11 dB

  6. Vibration isolation using nonlinear damping implemented by a feedback-controlled MR damper

    International Nuclear Information System (INIS)

    Ho, C; Lang, Z Q; Billings, S A; Sapiński, B

    2013-01-01

    The main problem of using a conventional linear damper on a vibration isolation system is that the reduction of the resonant peak in many cases inevitably results in the degradation of the high-frequency transmissibility. Instead of using active control methods which normally depend on the model of the controlled plant and where unmodelled dynamics may induce stability concerns, recent studies have revealed that optimal vibration isolation over a wide frequency range can be achieved by using nonlinear damping. The present study is concerned with the realization of the ideal nonlinear damping characteristic using a feedback-controlled MR damper. Both simulation and experimental studies are conducted to demonstrate the advantages of the simple but effective vibration control strategy. This research work has significant implications for the effective use of MR dampers in the vibration control of a wide range of engineering systems. (paper)

  7. Effect of Vibration on Pain Response to Heel Lance: A Pilot Randomized Control Trial.

    Science.gov (United States)

    McGinnis, Kate; Murray, Eileen; Cherven, Brooke; McCracken, Courtney; Travers, Curtis

    2016-12-01

    Applied mechanical vibration in pediatric and adult populations has been shown to be an effective analgesic for acute and chronic pain, including needle pain. Studies among the neonatal population are lacking. According to the Gate Control Theory, it is expected that applied mechanical vibration will have a summative effect with standard nonpharmacologic pain control strategies, reducing behavioral and physiologic pain responses to heel lancing. To determine the safety and efficacy of mechanical vibration for relief of heel lance pain among neonates. In this parallel design randomized controlled trial, eligible enrolled term or term-corrected neonates (n = 56) in a level IV neonatal intensive care unit were randomized to receive either sucrose and swaddling or sucrose, swaddling, and vibration for heel lance analgesia. Vibration was applied using a handheld battery-powered vibrator (Norco MiniVibrator, Hz = 92) to the lateral aspect of the lower leg along the sural dermatome throughout the heel lance procedure. Neonatal Pain, Agitation, and Sedation Scale (N-PASS) scores, heart rate, and oxygen saturations were collected at defined intervals surrounding heel lancing. Infants in the vibration group (n = 30) had significantly lower N-PASS scores and more stable heart rates during heel stick (P = .006, P = .037) and 2 minutes after heel lance (P = .002, P = .016) than those in the nonvibration group. There were no adverse behavioral or physiologic responses to applied vibration in the sample. Applied mechanical vibration is a safe and effective method for managing heel lance pain. This pilot study suggests that mechanical vibration warrants further exploration as a nonpharmacologic pain management tool among the neonatal population.

  8. Concept study of a novel energy harvesting-enabled tuned mass-damper-inerter (EH-TMDI) device for vibration control of harmonically-excited structures

    International Nuclear Information System (INIS)

    Salvi, Jonathan; Giaralis, Agathoklis

    2016-01-01

    A novel dynamic vibration absorber (DVA) configuration is introduced for simultaneous vibration suppression and energy harvesting from oscillations typically exhibited by large-scale low-frequency engineering structures and structural components. The proposed configuration, termed energy harvesting-enabled tuned mass-damper-inerter (EH-TMDI) comprises a mass grounded via an in-series electromagnetic motor (energy harvester)-inerter layout, and attached to the primary structure through linear spring and damper in parallel connection. The governing equations of motion are derived and solved in the frequency domain, for the case of harmonically-excited primary structures, here modelled as damped single-degree- of-freedom (SDOF) systems. Comprehensive parametric analyses proved that by varying the mass amplification property of the grounded inerter, and by adjusting the stiffness and the damping coefficients using simple optimum tuning formulae, enhanced vibration suppression (in terms of primary structure peak displacement) and energy harvesting (in terms of relative velocity at the terminals of the energy harvester) may be achieved concurrently and at nearresonance frequencies, for a fixed attached mass. Hence, the proposed EH-TMDI allows for relaxing the trade-off between vibration control and energy harvesting purposes, and renders a dual-objective optimisation a practically-feasible, reliable task. (paper)

  9. Study of the hybrid controller electronics for the nano-stabilization of mechanical vibrations of CLIC quadrupoles

    International Nuclear Information System (INIS)

    Carmona, P Fernandez; Artoos, K; Esposito, M; Guinchard, M; Janssens, S; Kuzmin, A; Ballester, R Moron; Collette, C

    2011-01-01

    In order to achieve the required levels of luminosity in the CLIC linear collider, mechanical stabilization of quadrupoles to the nanometre level is required. The paper describes a design of hybrid electronics combining an analogue controller and digital communication with the main machine controller. The choice of local analogue control ensures the required low latency while still keeping sufficiently low noise level. Furthermore, it reduces the power consumption, rack space and cost. Sensitivity to radiation single events upsets is reduced compared to a digital controller. The digital part is required for fine tuning and real time monitoring via digitization of critical parameters.

  10. MR Damper Controlled Vibration Absorber for Enhanced Mitigation of Harmonic Vibrations

    Directory of Open Access Journals (Sweden)

    Felix Weber

    2016-12-01

    Full Text Available This paper describes a semi-active vibration absorber (SVA concept based on a real-time controlled magnetorheological damper (MR-SVA for the enhanced mitigation of structural vibrations due to harmonic disturbing forces. The force of the MR damper is controlled in real-time to generate the frequency and damping controls according to the behaviour of the undamped vibration absorber for the actual frequency of vibration. As stiffness and damping emulations in semi-active actuators are coupled quantities the control is formulated to prioritize the frequency control by the controlled stiffness. The control algorithm is augmented by a stiffness correction method ensuring precise frequency control when the desired control force is constrained by the semi-active restriction and residual force of the MR damper. The force tracking task is solved by a model-based feed forward with feedback correction. The MR-SVA is numerically and experimentally validated for the primary structure with nominal eigenfrequency and when de-tuning of −10%, −5%, +5% and +10% is present. Both validations demonstrate that the MR-SVA improves the vibration reduction in the primary structure by up to 55% compared to the passive tuned mass damper (TMD. Furthermore, it is shown that the MR-SVA with only 80% of tuned mass leads to approximately the same enhanced performance while the associated increased relative motion amplitude of the tuned mass is more than compensated be the reduced dimensions of the mass. Therefore, the MR-SVA is an appropriate solution for the mitigation of tall buildings where the pendulum mass can be up to several thousands of metric tonnes and space for the pendulum damper is limited.

  11. Experimental study of acoustic vibration in BWRs

    International Nuclear Information System (INIS)

    Kumagai, Kosuke; Someya, Satoshi; Okamoto, Koji

    2009-01-01

    In recent years, the power uprate of Boiling Water Reactors have been conducted at several existing power plants as a way to improve plant economy. In one of the power uprated plants (117.8% uprates) in the United States, the steam dryer breakages due to fatigue fracture occurred. It is conceivable that the increased steam flow passing through the branches caused a self-induced vibration with the propagation of sound wave into the steam-dome. The resonance among the structure, flow and the pressure fluctuation resulted in the breakages. To understand the basic mechanism of the resonance, previous researches were done by a point measurement of the pressure and by a phase averaged measurement of the flow, while it was difficult to detect the interaction among them by the conventional method. In this study, Dynamic Particle Image Velocimetry (PIV) System was applied to investigate the effect of sound on natural convection and forced convection. Dynamic PIV system is the newest entrant to the field of fluid flow measurement. Its paramount advantage is the instantaneous global evaluation of conditions over plane extended across the whole velocity field. Also, to evaluate the coupling between the acoustic wave and structure (simulated as tuning fork vibrator in this experiment), in the resonance frequency of tuning fork vibrator, fluid behavior and the motion of tuning fork vibrator are measured simultaneously. (author)

  12. Active vibration control based on piezoelectric smart composite

    International Nuclear Information System (INIS)

    Gao, Le; Lu, Qingqing; Fei, Fan; Leng, Jinsong; Liu, Liwu; Liu, Yanju

    2013-01-01

    An aircraft’s vertical fin may experience dramatic buffet loads in high angle of attack flight conditions, and these buffet loads would cause huge vibration and dynamic stress on the vertical fin structure. To reduce the dynamic vibration of the vertical fin structure, macro fiber composite (MFC) actuators were used in this paper. The drive moment equations and sensing voltage equations of the MFC actuators were developed. Finite element analysis models based on three kinds of models of simplified vertical fin structures with surface-bonded MFC actuators were established in ABAQUS. The equivalent damping ratio of the structure was employed in finite element analysis, in order to measure the effectiveness of vibration control. Further, an open-loop test for the active vibration control system of the vertical fin with MFC actuators was designed and developed. The experimental results validated the effectiveness of the MFC actuators as well as the developed methodology. (paper)

  13. Active Blade Vibration Control Being Developed and Tested

    Science.gov (United States)

    Johnson, Dexter

    2003-01-01

    Gas turbine engines are currently being designed to have increased performance, lower weight and manufacturing costs, and higher reliability. Consequently, turbomachinery components, such as turbine and compressor blades, have designs that are susceptible to new vibration problems and eventual in-service failure due to high-cycle fatigue. To address this problem, researchers at the NASA Glenn Research Center are developing and testing innovative active blade vibration control concepts. Preliminary results of using an active blade vibration control system, involving a rotor supported by an active magnetic bearing in Glenn's Dynamic Spin Rig, indicate promising results (see the photograph). Active blade vibration control was achieved using feedback of blade strain gauge signals within the magnetic bearing control loop. The vibration amplitude was reduced substantially (see the graphs). Also, vibration amplitude amplification was demonstrated; this could be used to enhance structural mode identification, if desired. These results were for a nonrotating two-bladed disk. Tests for rotating blades are planned. Current and future active blade vibration control research is planned to use a fully magnetically suspended rotor and smart materials. For the fully magnetically suspended rotor work, three magnetic bearings (two radial and one axial) will be used as actuators instead of one magnetic bearing. This will allow additional degrees of freedom to be used for control. For the smart materials work, control effectors located on and off the blade will be considered. Piezoelectric materials will be considered for on-the-blade actuation, and actuator placement on a stator vane, or other nearby structure, will be investigated for off-the-blade actuation. Initial work will focus on determining the feasibility of these methods by performing basic analysis and simple experiments involving feedback control.

  14. Active vibration control of spatial flexible multibody systems

    Energy Technology Data Exchange (ETDEWEB)

    Neto, Maria Augusta, E-mail: augusta.neto@dem.uc.pt [Universidade de Coimbra (Polo II), Departamento de Engenharia Mecanica, Faculdade de Ciencia e Tecnologia (Portugal); Ambrosio, Jorge A. C., E-mail: jorge@dem.ist.utl.pt [Instituto Superior Tecnico, Instituto de Engenharia Mecanica (Portugal); Roseiro, Luis M., E-mail: lroseiro@isec.pt [Instituto Superior de Engenharia de Coimbra, Departamento de Engenharia Mecanica (Portugal); Amaro, A., E-mail: ana.amaro@dem.uc.pt [Universidade de Coimbra (Polo II), Departamento de Engenharia Mecanica, Faculdade de Ciencia e Tecnologia (Portugal); Vasques, C. M. A., E-mail: cvasques@inegi.up.pt [Universidade do Porto, INEGI-Instituto de Engenharia Mecanica e Gestao Industrial (Portugal)

    2013-06-15

    In this work a flexible multibody dynamics formulation of complex models including elastic components made of composite materials is extended to include piezoelectric sensors and actuators. The only limitation for the deformation of a structural member is that they must remain elastic and linear when described in a coordinate frame fixed to a material point or region of its domain. The flexible finite-element model of each flexible body is obtained referring the flexible body nodal coordinates to the body fixed frame and using a diagonalized mass description of the inertia in the mass matrix and on the gyroscopic force vector. The modal superposition technique is used to reduce the number of generalized coordinates to a reasonable dimension for complex shaped structural models of flexible bodies. The active vibration control of the flexible multibody components is implemented using an asymmetric collocated piezoelectric sensor/actuator pair. An electromechanically coupled model is taken into account to properly consider the surface-bonded piezoelectric transducers and their effects on the time and spatial response of the flexible multibody components. The electromechanical effects are introduced in the flexible multibody equations of motion by the use of beam and plate/shell elements, developed to this purpose. A comparative study between the classical control strategies, constant gain and amplitude velocity feedback, and optimal control strategy, linear quadratic regulator (LQR), is performed in order to investigate their effectiveness to suppress vibrations in structures with piezoelectric sensing and actuating patches.

  15. Active vibration control of spatial flexible multibody systems

    International Nuclear Information System (INIS)

    Neto, Maria Augusta; Ambrósio, Jorge A. C.; Roseiro, Luis M.; Amaro, A.; Vasques, C. M. A.

    2013-01-01

    In this work a flexible multibody dynamics formulation of complex models including elastic components made of composite materials is extended to include piezoelectric sensors and actuators. The only limitation for the deformation of a structural member is that they must remain elastic and linear when described in a coordinate frame fixed to a material point or region of its domain. The flexible finite-element model of each flexible body is obtained referring the flexible body nodal coordinates to the body fixed frame and using a diagonalized mass description of the inertia in the mass matrix and on the gyroscopic force vector. The modal superposition technique is used to reduce the number of generalized coordinates to a reasonable dimension for complex shaped structural models of flexible bodies. The active vibration control of the flexible multibody components is implemented using an asymmetric collocated piezoelectric sensor/actuator pair. An electromechanically coupled model is taken into account to properly consider the surface-bonded piezoelectric transducers and their effects on the time and spatial response of the flexible multibody components. The electromechanical effects are introduced in the flexible multibody equations of motion by the use of beam and plate/shell elements, developed to this purpose. A comparative study between the classical control strategies, constant gain and amplitude velocity feedback, and optimal control strategy, linear quadratic regulator (LQR), is performed in order to investigate their effectiveness to suppress vibrations in structures with piezoelectric sensing and actuating patches.

  16. Research of vibration controlling based on programmable logic controller for electrostatic precipitator

    International Nuclear Information System (INIS)

    Zhang, Zisheng; Li, Yanhu; Li, Jiaojiao; Liu, Zhiqiang; Li, Qing

    2013-01-01

    In order to improve the reliability, stability and automation of electrostatic precipitator, circuits of vibration motor for ESP and vibration control ladder diagram program are investigated using Schneider PLC with high performance and programming software of Twidosoft. Operational results show that after adopting PLC, vibration motor can run automatically; compared with traditional control system of vibration based on single-chip microcomputer, it has higher reliability, better stability and higher dust removal rate, when dust emission concentrations ≤ 50 mg m −3 , providing a new method for vibration controlling of ESP.

  17. Passive and Active Vibration Control of Renewable Energy Structures

    DEFF Research Database (Denmark)

    Zhang, Zili

    The present thesis deals with fundamental researches on passive and active vibration control of renewable energy structures, and provides useful models for practical applications. Effective and robust vibration control methods have been explored for mitigating the lightly damped edgewise blade...... solutions for wave energy point absorbers, in order to maximize the mean absorbed power and to deliver more smooth power to the grid. A novel suboptimal causal control law has been established for controlling the motion of the point absorber, and a new type of point absorber has also been proposed...

  18. Optimal control of vibrational transitions of HCl

    Indian Academy of Sciences (India)

    2016-09-07

    Sep 7, 2016 ... and making, occur in ultrafast time-scale. The control of energy flow in a relatively short time-scale (∼10 fs), in a nuclear ... general motivation to study HCl. ...... ics in science and engineering (Academic Press, New York,.

  19. Acute effect of whole body vibration on postural control in congenitally blind subjects: a preliminary evidence.

    Science.gov (United States)

    di Cagno, Alessandra; Giombini, Arrigo; Iuliano, Enzo; Moffa, Stefano; Caliandro, Tiziana; Parisi, Attilio; Borrione, Paolo; Calcagno, Giuseppe; Fiorilli, Giovanni

    2017-07-11

    The purpose of this study was to investigate the acute effects of whole body vibration at optimal frequency, on postural control in blind subjects. Twenty-four participants, 12 congenital blind males (Experimental Group), and 12 non-disabled males with no visual impairment (Control Groups) were recruited. The area of the ellipse and the total distance of the center of pressure displacements, as postural control parameters, were evaluated at baseline (T0), immediately after the vibration (T1), after 10 min (T10) and after 20 min (T20). Whole body vibration protocol consisted into 5 sets of 1 min for each vibration, with 1 min rest between each set on a vibrating platform. The total distance of center of pressure showed a significant difference (p < 0.05) amongst groups, while the area remained constant. No significant differences were detected among times of assessments, or in the interaction group × time. No impairments in static balance were found after an acute bout of whole body vibration at optimal frequency in blind subjects and, consequently, whole body vibration may be considered as a safe application in individuals who are blind.

  20. A Review on Eigenstructure Assignment Methods and Orthogonal Eigenstructure Control of Structural Vibrations

    Directory of Open Access Journals (Sweden)

    Mohammad Rastgaar

    2009-01-01

    Full Text Available This paper provides a state-of-the-art review of eigenstructure assignment methods for vibration cancellation. Eigenstructure assignment techniques have been widely used during the past three decades for vibration suppression in structures, especially in large space structures. These methods work similar to mode localization in which global vibrations are managed such that they remain localized within the structure. Such localization would help reducing vibrations more effectively than other methods of vibration cancellation, by virtue of confining the vibrations close to the source of disturbance. The common objective of different methods of eigenstructure assignment is to provide controller design freedom beyond pole placement, and define appropriate shapes for the eigenvectors of the systems. These methods; however, offer a large and complex design space of options that can often overwhelm the control designer. Recent developments in orthogonal eigenstructure control offers a significant simplification of the design task while allowing some experience-based design freedom. The majority of the papers from the past three decades in structural vibration cancellation using eigenstructure assignment methods are reviewed, along with recent studies that introduce new developments in eigenstructure assignment techniques.

  1. Quantum control of vibrational excitations in a heteronuclear ...

    Indian Academy of Sciences (India)

    WINTEC

    Optimal control theory is applied to obtain infrared laser pulses for selective vibrational exci- tation in a ... introduced in the field prior to evaluation of the cost functional for better field shape. Conjugate ... focused greater attention on optimal control of quan- tum states ... from the ground state to the first excited state in a.

  2. Performance evaluation on vibration control of MR landing gear

    Energy Technology Data Exchange (ETDEWEB)

    Lee, D Y; Nam, Y J; Park, M K [Graduate School, Pusan National University, Busan 609-735 (Korea, Republic of); Yamane, R [Kokushikan University, 4-28-1 Setagaya, Setagaya-ku, Tokyo 154-8515 (Japan)], E-mail: ldy5577@yahoo.co.kr, E-mail: mkpark1@pusan.ac.kr

    2009-02-01

    This paper is concerned with the applicability of the developed MR damper to the landing gear system for the attenuating undesired shock and vibration in the landing and taxing phases. First of all, the experimental model of the MR damper is derived based on the results of performance evaluations. Next, a simplified skyhook controller, which is one of the most straightforward, but effective approaches for improving ride comport in vehicles with active suspensions, is formulated. Then, the vibration control performances of the landing gear system using the MR damper are theoretically evaluated in the landing phase of the aircraft. A series of simulation analyses show that the proposed MR damper with the skyhook controller is effective for suppressing undesired vibration of the aircraft body. Finally, the effectiveness of the simulation results are additionally verified via HILS (Hardware-in-the-loop-simulation) method.

  3. Smart helicopter rotors optimization and piezoelectric vibration control

    CERN Document Server

    Ganguli, Ranjan; Viswamurthy, Sathyamangalam Ramanarayanan

    2016-01-01

    Exploiting the properties of piezoelectric materials to minimize vibration in rotor-blade actuators, this book demonstrates the potential of smart helicopter rotors to achieve the smoothness of ride associated with jet-engined, fixed-wing aircraft. Vibration control is effected using the concepts of trailing-edge flaps and active-twist. The authors’ optimization-based approach shows the advantage of multiple trailing-edge flaps and algorithms for full-authority control of dual trailing-edge-flap actuators are presented. Hysteresis nonlinearity in piezoelectric stack actuators is highlighted and compensated by use of another algorithm. The idea of response surfaces provides for optimal placement of trailing-edge flaps. The concept of active twist involves the employment of piezoelectrically induced shear actuation in rotating beams. Shear is then demonstrated for a thin-walled aerofoil-section rotor blade under feedback-control vibration minimization. Active twist is shown to be significant in reducing vibra...

  4. Real-Time Performance of Mechatronic PZT Module Using Active Vibration Feedback Control.

    Science.gov (United States)

    Aggogeri, Francesco; Borboni, Alberto; Merlo, Angelo; Pellegrini, Nicola; Ricatto, Raffaele

    2016-09-25

    This paper proposes an innovative mechatronic piezo-actuated module to control vibrations in modern machine tools. Vibrations represent one of the main issues that seriously compromise the quality of the workpiece. The active vibration control (AVC) device is composed of a host part integrated with sensors and actuators synchronized by a regulator; it is able to make a self-assessment and adjust to alterations in the environment. In particular, an innovative smart actuator has been designed and developed to satisfy machining requirements during active vibration control. This study presents the mechatronic model based on the kinematic and dynamic analysis of the AVC device. To ensure a real time performance, a H2-LQG controller has been developed and validated by simulations involving a machine tool, PZT actuator and controller models. The Hardware in the Loop (HIL) architecture is adopted to control and attenuate the vibrations. A set of experimental tests has been performed to validate the AVC module on a commercial machine tool. The feasibility of the real time vibration damping is demonstrated and the simulation accuracy is evaluated.

  5. New algorithm for controlling electric arc furnaces using their vibrational and acoustic characteristics

    Science.gov (United States)

    Cherednichenko, V. S.; Bikeev, R. A.; Serikov, V. A.; Rechkalov, A. V.; Cherednichenko, A. V.

    2016-12-01

    The processes occurring in arc discharges are analyzed as the sources of acoustic radiation in an electric arc furnace (EAF). Acoustic vibrations are shown to transform into mechanical vibrations in the furnace laboratory. The shielding of the acoustic energy fluxes onto water-cooled wall panels by a charge is experimentally studied. It is shown that the rate of charge melting and the depth of submergence of arc discharges in the slag and metal melt can be monitored by measuring the vibrational characteristics of furnaces and using them in a universal industrial process-control system, which was developed for EAFs.

  6. Active Piezoelectric Vibration Control of Subscale Composite Fan Blades

    Science.gov (United States)

    Duffy, Kirsten P.; Choi, Benjamin B.; Provenza, Andrew J.; Min, James B.; Kray, Nicholas

    2012-01-01

    As part of the Fundamental Aeronautics program, researchers at NASA Glenn Research Center (GRC) are investigating new technologies supporting the development of lighter, quieter, and more efficient fans for turbomachinery applications. High performance fan blades designed to achieve such goals will be subjected to higher levels of aerodynamic excitations which could lead to more serious and complex vibration problems. Piezoelectric materials have been proposed as a means of decreasing engine blade vibration either through a passive damping scheme, or as part of an active vibration control system. For polymer matrix fiber composite blades, the piezoelectric elements could be embedded within the blade material, protecting the brittle piezoceramic material from the airflow and from debris. To investigate this idea, spin testing was performed on two General Electric Aviation (GE) subscale composite fan blades in the NASA GRC Dynamic Spin Rig Facility. The first bending mode (1B) was targeted for vibration control. Because these subscale blades are very thin, the piezoelectric material was surface-mounted on the blades. Three thin piezoelectric patches were applied to each blade two actuator patches and one small sensor patch. These flexible macro-fiber-composite patches were placed in a location of high resonant strain for the 1B mode. The blades were tested up to 5000 rpm, with patches used as sensors, as excitation for the blade, and as part of open- and closed-loop vibration control. Results show that with a single actuator patch, active vibration control causes the damping ratio to increase from a baseline of 0.3% critical damping to about 1.0% damping at 0 RPM. As the rotor speed approaches 5000 RPM, the actively controlled blade damping ratio decreases to about 0.5% damping. This occurs primarily because of centrifugal blade stiffening, and can be observed by the decrease in the generalized electromechanical coupling with rotor speed.

  7. Intelligent vibration control of ELTs and large AO hardware

    Science.gov (United States)

    Pott, J.-U.; Kürster, M.; Trowitzsch, J.; Borelli, J.; Rohloff, R.-R.; Herbst, T.; Böhm, M.; Keck, A.; Ruppel, T.; Sawodny, O.

    2012-07-01

    MPIA leads the construction of the LINC-NIRVANA instrument, the MCAO-supported Fizeau imager for the LBT, serves as pathfinder for future ELT-AO imagers in terms of size and technology. In this contribution, we review recent results and significant progress made on the development of key items of our stratgey to achieve a piston stability of up to 100nm during a science exposure. We present an overview of our vibration control strategies for optical path and tip-tilt stabilization, involving accelerometer based real-time vibration measurements, vibration sensitive active control of actuators, and the development of a dynamical model of the LBT. MPIA also co-develops the E-ELT first-light NIR imager MICADO (both SCAO and MCAO assisted). Our experiences, made with LINC-NIRVANA, will be fed into the MICADO structural AO design to reach highest on-sky sensitivity.

  8. Control model for dampening hand vibrations using information of internal and external coordinates.

    Directory of Open Access Journals (Sweden)

    Shunta Togo

    Full Text Available In the present study, we investigate a control mechanism that dampens hand vibrations. Here, we propose a control method with two components to suppress hand vibrations. The first is a passive suppression method that lowers the joint stiffness to passively dampen the hand vibrations. The second is an active suppression method that adjusts an equilibrium point based on skyhook control to actively dampen the hand vibrations. In a simulation experiment, we applied these two methods to dampen hand vibrations during the shoulder's horizontal oscillation. We also conducted a measurement experiment wherein a subject's shoulder was sinusoidally oscillated by a platform that generated horizontal oscillations. The results of the measurement experiments showed that the jerk of each part of the arm in a task using a cup filled with water was smaller than the shoulder jerk and that in a task with a cup filled with stones was larger than the shoulder jerk. Moreover, the amplitude of the hand trajectory in both horizontal and vertical directions was smaller in a task using a cup filled with water than in a task using a cup filled with stones. The results of the measurement experiments were accurately reproduced by the active suppression method based on skyhook control. These results suggest that humans dampen hand vibrations by controlling the equilibrium point through the information of the external workspace and the internal body state rather than by lowering joint stiffness only by using internal information.

  9. A Family of Resonant Vibration Control Formats

    OpenAIRE

    Krenk, Steen; Høgsberg, Jan Becker

    2012-01-01

    Resonant control makes use of a controller with a resonance frequency and an equivalent damping ratio.A simple explicit calibration procedure is presented for a family of resonant controllers in which the frequencyis tuned to the natural frequency of the targeted mode in such a way that the two resulting modes exhibit identicaldamping ratio. This tuning is independent of the imposed controller damping. The controller damping is thenselected as an optimal compromise between too small damping, ...

  10. Vibration control of active structures an introduction

    CERN Document Server

    Preumont, Andre

    2002-01-01

    This text is an introduction to the dynamics of active structures and to the feedback control of lightly damped flexible structures. The emphasis is placed on basic issues and simple control strategies that work.

  11. Shape modification of bridge cables for aerodynamic vibration control

    DEFF Research Database (Denmark)

    Kleissl, Kenneth; Georgakis, Christos

    2010-01-01

    In this paper, the viability of modifying cable shape and surface for the purpose of controlling wind-induced vibrations is examined. To this end, an extensive wind-tunnel test campaign was carried out on various cable sections in the critical Reynolds number region under both smooth and turbulen...

  12. Numerical analysis using state space method for vibration control of ...

    African Journals Online (AJOL)

    ATHARVA

    carried out for two cases namely car moving on sagged bridges and car ... the vibrations of steel moment resisting frame in reinforced cement concrete buildings. ... active or semi-active dampers rolled into one (Spencer Jr. and Soong, 1999). ... implementation cost, low power consumption, ease of control, simple design ...

  13. Test rig with active damping control for the simultaneous evaluation of vibration control and energy harvesting via piezoelectric transducers

    International Nuclear Information System (INIS)

    Perfetto, S; Rohlfing, J; Infante, F; Mayer, D; Herold, S

    2016-01-01

    Piezoelectric transducers can be used to harvest electrical energy from structural vibrations in order to power continuously operating condition monitoring systems local to where they operate. However, excessive vibrations can compromise the safe operation of mechanical systems. Therefore, absorbers are commonly used to control vibrations. With an integrated device, the mechanical energy that otherwise would be dissipated can be converted via piezoelectric transducers. Vibration absorbers are designed to have high damping factors. Hence, the integration of transducers would lead to a low energy conversion. Efficient energy harvesters usually have low damping capabilities; therefore, they are not effective for vibration suppression. Thus, the design of an integrated device needs to consider the two conflicting requirements on the damping. This study focuses on the development of a laboratory test rig with a host structure and a vibration absorber with tunable damping via an active relative velocity feedback. A voice coil actuator is used for this purpose. To overcome the passive damping effects of the back electromagnetic force a novel voltage feedback control is proposed, which has been validated both in simulation and experimentally. The aim of this study is to have a test rig ready for the introduction of piezo-transducers and available for future experimental evaluations of the damping effect on the effectiveness of vibration reduction and energy harvesting efficiency. (paper)

  14. Test rig with active damping control for the simultaneous evaluation of vibration control and energy harvesting via piezoelectric transducers

    Science.gov (United States)

    Perfetto, S.; Rohlfing, J.; Infante, F.; Mayer, D.; Herold, S.

    2016-09-01

    Piezoelectric transducers can be used to harvest electrical energy from structural vibrations in order to power continuously operating condition monitoring systems local to where they operate. However, excessive vibrations can compromise the safe operation of mechanical systems. Therefore, absorbers are commonly used to control vibrations. With an integrated device, the mechanical energy that otherwise would be dissipated can be converted via piezoelectric transducers. Vibration absorbers are designed to have high damping factors. Hence, the integration of transducers would lead to a low energy conversion. Efficient energy harvesters usually have low damping capabilities; therefore, they are not effective for vibration suppression. Thus, the design of an integrated device needs to consider the two conflicting requirements on the damping. This study focuses on the development of a laboratory test rig with a host structure and a vibration absorber with tunable damping via an active relative velocity feedback. A voice coil actuator is used for this purpose. To overcome the passive damping effects of the back electromagnetic force a novel voltage feedback control is proposed, which has been validated both in simulation and experimentally. The aim of this study is to have a test rig ready for the introduction of piezo-transducers and available for future experimental evaluations of the damping effect on the effectiveness of vibration reduction and energy harvesting efficiency.

  15. Use of electro-magnetic damping for vibration control

    DEFF Research Database (Denmark)

    Stein, George Juraj; Darula, Radoslav; Sorokin, Sergey

    2012-01-01

    to introduce additional electromagnetic damping into vibrating mechanical system. The hysteretic losses and eddy currents are included in the model, to take into account more realistic dynamic behaviour of the system. The mathematical model of the controller is derived using lumped parameter approach......Vibration of machines is an unwanted phenomenon, and it is usually of interest to eliminate it. There are various means to be used in order to reach the goal, where the utilization of the electromagnet augmented by an external shunt circuit is analyzed in the paper. The magnetic force is used...

  16. Sinonasal inhalation of tobramycin vibrating aerosol in cystic fibrosis patients with upper airway Pseudomonas aeruginosa colonization: results of a randomized, double-blind, placebo-controlled pilot study

    Science.gov (United States)

    Mainz, Jochen G; Schädlich, Katja; Schien, Claudia; Michl, Ruth; Schelhorn-Neise, Petra; Koitschev, Assen; Koitschev, Christiane; Keller, Peter M; Riethmüller, Joachim; Wiedemann, Baerbel; Beck, James F

    2014-01-01

    Rationale In cystic fibrosis (CF), the paranasal sinuses are sites of first and persistent colonization by pathogens such as Pseudomonas aeruginosa. Pathogens subsequently descend to the lower airways, with P. aeruginosa remaining the primary cause of premature death in patients with the inherited disease. Unlike conventional aerosols, vibrating aerosols applied with the PARI Sinus™ nebulizer deposit drugs into the paranasal sinuses. This trial assessed the effects of vibrating sinonasal inhalation of the antibiotic tobramycin in CF patients positive for P. aeruginosa in nasal lavage. Objectives To evaluate the effects of sinonasal inhalation of tobramycin on P. aeruginosa quantification in nasal lavage; and on patient quality of life, measured with the Sino-Nasal Outcome Test (SNOT-20), and otologic and renal safety and tolerability. Methods Patients were randomized to inhalation of tobramycin (80 mg/2 mL) or placebo (2 mL isotonic saline) once daily (4 minutes/nostril) with the PARI Sinus™ nebulizer over 28 days, with all patients eligible for a subsequent course of open-label inhalation of tobramycin for 28 days. Nasal lavage was obtained before starting and 2 days after the end of each treatment period by rinsing each nostril with 10 mL of isotonic saline. Results Nine patients participated, six initially receiving tobramycin and three placebo. Sinonasal inhalation was well tolerated, with serum tobramycin <0.5 mg/L and stable creatinine. P. aeruginosa quantity decreased in four of six (67%) patients given tobramycin, compared with zero of three given placebo (non-significant). SNOT-20 scores were significantly lower in the tobramycin than in the placebo group (P=0.033). Conclusion Sinonasal inhalation of vibrating antibiotic aerosols appears promising for reducing pathogen colonization of paranasal sinuses and for control of symptoms in patients with CF. PMID:24596456

  17. Studies on neutron noise diagnostics of control rod vibrations by neural networks; Obtencion de U{sub 3}O{sub 8} y UO{sub 2} a partir de ADU (diuranato amonico) precipitado con aplicacion de ultrasonido

    Energy Technology Data Exchange (ETDEWEB)

    Roston, G; Kozma, R; Kitamura, M [Tohoku Univ., Sendai (Japan); Garis, N S; Pazsit, I [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Reactor Physics

    1997-12-31

    This work is focussed on the study of a neutron noise based technique for the diagnostics of reactor core internal, in particular, excessively vibrating control rods. The use of a combination of physical models and neural networks offers an alternative way of performing the inversion procedure. The application of a neural network technique to determine the rod position from the detector spectra is much faster, more effective and simpler to use than the conventional method. (author). 5 refs., 1 fig., 1 tab.

  18. Tuning of active vibration controllers for ACTEX by genetic algorithm

    Science.gov (United States)

    Kwak, Moon K.; Denoyer, Keith K.

    1999-06-01

    This paper is concerned with the optimal tuning of digitally programmable analog controllers on the ACTEX-1 smart structures flight experiment. The programmable controllers for each channel include a third order Strain Rate Feedback (SRF) controller, a fifth order SRF controller, a second order Positive Position Feedback (PPF) controller, and a fourth order PPF controller. Optimal manual tuning of several control parameters can be a difficult task even though the closed-loop control characteristics of each controller are well known. Hence, the automatic tuning of individual control parameters using Genetic Algorithms is proposed in this paper. The optimal control parameters of each control law are obtained by imposing a constraint on the closed-loop frequency response functions using the ACTEX mathematical model. The tuned control parameters are then uploaded to the ACTEX electronic control electronics and experiments on the active vibration control are carried out in space. The experimental results on ACTEX will be presented.

  19. A Family of Resonant Vibration Control Formats

    DEFF Research Database (Denmark)

    Krenk, Steen; Høgsberg, Jan Becker

    resulting modes exhibit identical damping ratio. This tuning is independent of the imposed controller damping. The controller damping is then selected as an optimal compromise between too small damping, and too large damping at which the modal frequencies coincide, and thereby produce undesirable...

  20. Implementation of internal model based control and individual pitch control to reduce fatigue loads and tower vibrations in wind turbines

    Science.gov (United States)

    Mohammadi, Ebrahim; Fadaeinedjad, Roohollah; Moschopoulos, Gerry

    2018-05-01

    Vibration control and fatigue loads reduction are important issues in large-scale wind turbines. Identifying the vibration frequencies and tuning dampers and controllers at these frequencies are major concerns in many control methods. In this paper, an internal model control (IMC) method with an adaptive algorithm is implemented to first identify the vibration frequency of the wind turbine tower and then to cancel the vibration signal. Standard individual pitch control (IPC) is also implemented to compare the performance of the controllers in term of fatigue loads reduction. Finally, the performance of the system when both controllers are implemented together is evaluated. Simulation results demonstrate that using only IMC or IPC alone has advantages and can reduce fatigue loads on specific components. IMC can identify and suppress tower vibrations in both fore-aft and side-to-side directions, whereas, IPC can reduce fatigue loads on blades, shaft and yaw bearings. When both IMC and IPC are implemented together, the advantages of both controllers can be used. The aforementioned analysis and comparisons were not studied in literature and this study fills this gap. FAST, AreoDyn and Simulink are used to simulate the mechanical, aerodynamic and electrical aspects of wind turbine.

  1. Theoretical and Experimental Study on Vibration Propagation in PMMA Components in Ultrasonic Bonding Process

    Directory of Open Access Journals (Sweden)

    Yibo Sun

    2017-03-01

    Full Text Available Ultrasonic bonding has an increasing application in the micro assembly of polymeric micro-electro mechanical systems (MEMS with high requirements for fusion precision. In the ultrasonic bonding process, the propagation of ultrasonic vibration in polymer components is related to the interfacial fusion, which can be used as a monitoring parameter to control ultrasonic energy. To study the vibration propagation in viscoelastic polymer components, finite element analysis on the bonding of poly methyl methacrylate (PMMA micro connector to substrate for microfluidic system is carried out. Curves of propagated vibration amplitude corresponding to interfacial temperatures are obtained. The ultrasonic vibration propagated in PMMA components are measured through experiments. The theoretical and experimental results are contrasted to analyze the change mechanism of vibration propagation related to temperature. Based on the ultrasonic bonding process controlled by the feedback of vibration propagation, interfacial fusions at different vibration propagation states are obtained through experiments. Interfacial fusion behavior is contrasted to the propagated vibration amplitude in theoretical and experimental studies. The relation between vibration propagation and fusion degree is established with the proper parameter range for the obtained high quality bonding.

  2. A single-center, prospective, double-blind, sham-controlled, randomized study of the effect of a vibrating capsule on colonic transit in patients with chronic constipation.

    Science.gov (United States)

    Nelson, A D; Camilleri, M; Acosta, A; Boldingh, A; Busciglio, I; Burton, D; Ryks, M; Zinsmeister, A R

    2017-07-01

    In an open-label study of 26 patients with IBS-C and chronic constipation, treatment with a vibrating (VIBRANT) capsule twice a week for 7.5 weeks resulted in 88.5% responders. Effects on colonic transit are unclear. We aimed to compare effects of VIBRANT and sham capsule treatment on colonic transit in patients with functional constipation. Patients with functional constipation (Rome III criteria) were randomized to VIBRANT or sham capsule treatment for 8 weeks and underwent scintigraphic colonic transit measurements during week 8. We estimated the overall rate of colonic transit from the slope of progression of colonic geometric center over 48 hours. The capsule was activated 8 hours after ingestion, and the vibration sequence included 240 cycles. There were no significant group differences in overall colonic transit [GC48, 2.76 (IQR 2.42-4.03) for sham group and 3.46 (2.55-4.61) for active treatment group (P=.13)]. Additionally, the progression of the isotope through the colon was numerically faster, though not significantly different (slope, P=.14) in the VIBRANT capsule group compared to the sham group. Three participants in the VIBRANT capsule group had accelerated colonic transit at 32 hours and faster colonic transit slope compared to the 95th percentile of the sham group. Although there were no group differences between VIBRANT and sham capsule treatment on colonic transit, at least one (and possibly three) of 12 patients receiving the VIBRANT capsule had faster colonic transit. The vibration parameters to accelerate colonic transit in patients with functional constipation require further optimization. © 2017 John Wiley & Sons Ltd.

  3. Vibration control for the ARGOS laser launch path

    Science.gov (United States)

    Peter, Diethard; Gässler, Wolfgang; Borelli, Jose; Barl, Lothar; Rabien, S.

    2012-07-01

    Present and future adaptive optics systems aim for the correction of the atmospheric turbulence over a large field of view combined with large sky coverage. To achieve this goal the telescope is equipped with multiple laser beacons. Still, to measure tip-tilt aberrations a natural guide star is used. For some fields such a tilt-star is not available and a correction on the laser beacons alone is applied. For this method to work well the laser beacons must not be affected by telescope vibrations on their up-link path. For the ARGOS system the jitter of the beacons is specified to be below 0.05. To achieve this goal a vibration compensation system is necessary to mitigate the mechanical disturbances. The ARGOS vibration compensation system is an accelerometer based feed forward system. The accelerometer measurements are fed into a real time controller. To achieve high performance the controller of the system is model based. The output is applied to a fast steering mirror. This paper presents the concept of the ARGOS vibration compensation, the hardware, and laboratory results.

  4. Semi-decentralized Strategies in Structural Vibration Control

    Directory of Open Access Journals (Sweden)

    F. Palacios-Quiñonero

    2011-04-01

    Full Text Available In this work, the main ideas involved in the design of overlapping and multi-overlapping controllers via the Inclusion Principle are discussed and illustrated in the context of the Structural Vibration Control of tall buildings under seismic excitation. A detailed theoretical background on the Inclusion Principle and the design of overlapping controllers is provided. Overlapping and multi-overlapping LQR controllers are designed for a simplified five-story building model. Numerical simulations are conducted to asses the performance of the proposed semi-decentralized controllers with positive results.

  5. Influences of the Control on the Nonlinear Vibrations of a Variable Compression Ratio Mechanism

    Directory of Open Access Journals (Sweden)

    Mănescu Bogdan

    2018-01-01

    Full Text Available For the mechanism described in references the study of the nonlinear vibrations is performed considering a multibody approach for the elements of the mechanism and different laws of motion for the control element. A great attention is paid to the equilibrium of the motion. The influence of different parameters of control is highlighted in the paper. The results are numerically validated.

  6. Adaptive and robust active vibration control methodology and tests

    CERN Document Server

    Landau, Ioan Doré; Castellanos-Silva, Abraham; Constantinescu, Aurelian

    2017-01-01

    This book approaches the design of active vibration control systems from the perspective of today’s ideas of computer control. It formulates the various design problems encountered in the active management of vibration as control problems and searches for the most appropriate tools to solve them. The experimental validation of the solutions proposed on relevant tests benches is also addressed. To promote the widespread acceptance of these techniques, the presentation eliminates unnecessary theoretical developments (which can be found elsewhere) and focuses on algorithms and their use. The solutions proposed cannot be fully understood and creatively exploited without a clear understanding of the basic concepts and methods, so these are considered in depth. The focus is on enhancing motivations, algorithm presentation and experimental evaluation. MATLAB®routines, Simulink® diagrams and bench-test data are available for download and encourage easy assimilation of the experimental and exemplary material. Thre...

  7. Resonant vibration control of three-bladed wind turbine rotors

    DEFF Research Database (Denmark)

    Krenk, Steen; Svendsen, Martin Nymann; Høgsberg, Jan Becker

    2012-01-01

    Rotors with blades, as in wind turbines, are prone to vibrations due to the flexibility of the blades and the support. In the present paper a theory is developed for active control of a combined set of vibration modes in three-bladed rotors. The control system consists of identical collocated...... to influence of other nonresonant modes. The efficiency of the method isdemonstrated byapplication to a rotor with 42 m blades, where the sensor/actuator system is implemented in the form of an axial extensible strut near the root of each blade. The load is provided by a simple but fully threedimensional...... correlated wind velocity field. It is shown by numerical simulations that the active damping system can provide a significant reduction in the response amplitude of the targeted modes, while applying control moments to the blades that are about 1 order of magnitude smaller than the moments from the external...

  8. Synthesis of vibration control and health monitoring of building structures under unknown excitation

    International Nuclear Information System (INIS)

    He, Jia; Huang, Qin; Xu, You-Lin

    2014-01-01

    The vibration control and health monitoring of building structures have been actively investigated in recent years but often treated separately according to the primary objective pursued. In this study, a time-domain integrated vibration control and health monitoring approach is proposed based on the extended Kalman filter (EKF) for identifying the physical parameters of the controlled building structures without the knowledge of the external excitation. The physical parameters and state vectors of the building structure are then estimated and used for the determination of the control force for the purpose of the vibration attenuation. The interaction between the health monitoring and vibration control is revealed and assessed. The feasibility and reliability of the proposed approach is numerically demonstrated via a five-story shear building structure equipped with magneto-rheological (MR) dampers. Two types of excitations are considered: (1) the EI-Centro ground excitation underneath of the building and (2) a swept-frequency excitation applied on the top floor of the building. Results show that the structural parameters as well as the unknown dynamic loadings could be identified accurately; and, at the same time, the structural vibration is significantly reduced in the building structure. (paper)

  9. Study for increasing micro-drill reliability by vibrating drilling

    International Nuclear Information System (INIS)

    Yang Zhaojun; Li Wei; Chen Yanhong; Wang Lijiang

    1998-01-01

    A study for increasing micro-drill reliability by vibrating drilling is described. Under the experimental conditions of this study it is observed, from reliability testing and the fitting of a life-distribution function, that the lives of micro-drills under ordinary drilling follow the log-normal distribution and the lives of micro-drills under vibrating drilling follow the Weibull distribution. Calculations for reliability analysis show that vibrating drilling can increase the lives of micro-drills and correspondingly reduce the scatter of drill lives. Therefore, vibrating drilling increases the reliability of micro-drills

  10. Report on planning of input earthquake vibration for design of vibration controlling structure, in the Tokai Works, Power Reactor and Nuclear Fuel Development Corporation

    International Nuclear Information System (INIS)

    Uryu, Mitsuru; Shinohara, Takaharu; Terada, Shuji; Yamazaki, Toshihiko; Nakayama, Kazuhiko; Kondo, Toshinari; Hosoya, Hisashi

    1997-05-01

    When adopting a vibration controlling structure for a nuclear facility building, it is necessary to evaluate a little longer frequency vibration properly. Although various evaluation methods are proposed, there is no finished method. And, to the earthquake itself to investigate, some factors such as effect of surface wave, distant great earthquake, and so on must be considered, and further various evaluations and investigations are required. Here is reported on an evaluation method of the input earthquake vibration for vibration controlling design establishing on adoption of the vibration controlling structure using a vibration control device comprising of laminated rubber and lead damper for the buildings of reprocessing facility in Tokai Works. The input earthquake vibration for vibration controlling design shown in this report is to be adopted for a vibration controlling facility buildings in the Tokai Works. (G.K.)

  11. Adaptive active vibration isolation – A control perspective

    Directory of Open Access Journals (Sweden)

    Landau Ioan Doré

    2015-01-01

    The paper will review a number of recent developments for adaptive feedback compensation of multiple unknown and time-varying narrow band disturbances and for adaptive feedforward compensation of broad band disturbances in the presence of the inherent internal positive feedback caused by the coupling between the compensator system and the measurement of the image of the disturbance. Some experimental results obtained on a relevant active vibration control system will illustrate the performance of the various algorithms presented.

  12. Negative derivative feedback for vibration control of flexible structures

    International Nuclear Information System (INIS)

    Cazzulani, G; Resta, F; Ripamonti, F; Zanzi, R

    2012-01-01

    In this paper a resonant control technique, called negative derivative feedback (NDF), for structural vibration control is presented. Resonant control is a class of control logics, based on the modal approach, which calculates the control action through a dynamic compensator in order to achieve a damping increase on a certain number of system modes. The NDF compensator is designed to work as a band-pass filter, cutting off the control action far from the natural frequencies associated with the controlled modes and reducing the so-called spillover effect. In the paper the proposed control logic is compared both theoretically and experimentally with the most common state-of-the-art resonant control techniques. (paper)

  13. Comparative studies of perceived vibration strength for commercial mobile phones.

    Science.gov (United States)

    Lee, Heow Pueh; Lim, Siak Piang

    2014-05-01

    A mobile phone, also known as cell phone or hand phone, is among the most popular electrical devices used by people all over the world. The present study examines the vibration perception of mobile phones by co-relating the relevant design parameters such as excitation frequency, and size and mass of mobile phones to the vibration perception survey by volunteers. Five popular commercially available mobile phone models were tested. The main findings for the perception surveys were that higher vibration frequency and amplitude of the peak acceleration would result in stronger vibration perception of the mobile phones. A larger contact surface area with the palms and figures, higher peak acceleration and the associated larger peak inertia force may be the main factors for the relatively higher vibration perception. The future design for the vibration alert of the mobile phones is likely to follow this trend. Copyright © 2013 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  14. Passive Control of Flexible Structures by Confinement of Vibrations

    Directory of Open Access Journals (Sweden)

    M. Ouled Chtiba

    2007-01-01

    Full Text Available We propose a two-step strategy for the design of passive controllers for the simultaneous confinement and suppression of vibrations (SCSV in mechanical structures. Once the sensitive and insensitive elements of these structures are identified, the first design step synthesizes an active control law, which is referred to as the reference control law (RCL, for the SCSV. We show that the problem of SCSV can be formulated as an LQR-optimal control problem through which the maximum amplitudes, associated with the control input and the displacements of the sensitive and insensitive parts, can be regulated. In the second design step, a transformation technique that yields an equivalent passive controller is used. Such a technique uses the square root of sum of squares method to approximate an equivalent passive controller while maximizing the effects of springs and dampers characterizing passive elements that are added to the original structure. The viability of the proposed control design is illustrated using a three-DOF mechanical system subject to an excitation. It is assumed that all of the masses are sensitive to the excitation, and thus the vibratory energy must be confined in the added passive elements (insensitive parts. We show that the vibration amplitudes associated with the sensitive masses are attenuated at fast rate at the expense of slowing down the convergence of the passive elements to their steady states. It is also demonstrated that a combination of the RCL and the equivalent passive control strategy leads to similar structural performance.

  15. Optimal integral force feedback for active vibration control

    Science.gov (United States)

    Teo, Yik R.; Fleming, Andrew J.

    2015-11-01

    This paper proposes an improvement to Integral Force Feedback (IFF), which is a popular method for active vibration control of structures and mechanical systems. Benefits of IFF include robustness, guaranteed stability and simplicity. However, the maximum damping performance is dependent on the stiffness of the system; hence, some systems cannot be adequately controlled. In this paper, an improvement to the classical force feedback control scheme is proposed. The improved method achieves arbitrary damping for any mechanical system by introducing a feed-through term. The proposed improvement is experimentally demonstrated by actively damping an objective lens assembly for a high-speed confocal microscope.

  16. Actuator Control of Edgewise Vibrations in Wind Turbine Blades

    DEFF Research Database (Denmark)

    Staino, A.; Basu, B.; Nielsen, Søren R.K.

    2012-01-01

    ) theory. Multi-Blade Coordinate (MBC) transformation is applied to an edgewise reduced order model, leading to a linear time-invariant (LTI) representation of the dynamic model. The LTI description obtained is used for the design of the active control algorithm. Linear Quadratic (LQ) regulator designed...... for the MBC transformed system is compared with the control synthesis performed directly on an assumed nominal representation of the timevarying system. The LQ regulator is also compared against vibration control performance using Direct Velocity Feedback (DVF). Numerical simulations have been carried out...

  17. Vibration Isolation System Using Negative Stiffness(Advances in Motion and Vibration Control Technology)

    OpenAIRE

    水野, 毅; 高崎, 正也

    2003-01-01

    A new vibration isolation system using negative stiffness realized by active control technique is proposed in this paper. The serial connection of a normal spring and a suspension system with negative stiffness enables the isolation system to have low stiffness for vibration from the ground and high (theoretically infinite) stiffness against direct disturbance acting on the isolation table. A control method of realizing negative stiffness with a linear actuator is presented in an analytical f...

  18. Vibrational and electronic spectroscopic studies of melatonin

    Science.gov (United States)

    Singh, Gurpreet; Abbas, J. M.; Dogra, Sukh Dev; Sachdeva, Ritika; Rai, Bimal; Tripathi, S. K.; Prakash, Satya; Sathe, Vasant; Saini, G. S. S.

    2014-01-01

    We report the infrared absorption and Raman spectra of melatonin recorded with 488 and 632.8 nm excitations in 3600-2700 and 1700-70 cm-1 regions. Further, we optimized molecular structure of the three conformers of melatonin within density functional theory calculations. Vibrational frequencies of all three conformers have also been calculated. Observed vibrational bands have been assigned to different vibrational motions of the molecules on the basis of potential energy distribution calculations and calculated vibrational frequencies. Observed band positions match well with the calculated values after scaling except Nsbnd H stretching mode frequencies. It is found that the observed and calculated frequencies mismatch of Nsbnd H stretching is due to intermolecular interactions between melatonin molecules.

  19. Vibration control of ultrasonic cutting via dynamic absorber

    Energy Technology Data Exchange (ETDEWEB)

    Amer, Y.A. [Department of Mathematics, Faculty of Science, Zagazig University, Zagazig (Egypt)]. E-mail: yasser31270@yahoo.com

    2007-08-15

    Ultrasonic machining (USM) is one of the most effective non-conventional techniques. Its application especially to hard-to-machine material (HTM) is growing rapidly. The main operation condition of USM is at resonance where an exciter derives a tuned blade or a tool. In this paper, the coupling of two non-linear oscillators of the main system and absorber representing ultrasonic cutting process are investigated. This leads to a two-degree-of-freedom Duffing's oscillator in which such non-linear effects can be neutralized under certain dynamic conditions. The aim of this work is the control of the system behavior at principal parametric resonance condition where the system damage is probable. An approximate solution is derived up to the second order for the coupled system. A threshold value of linear damping has been obtained, where the system vibration can be reduced dramatically. The stability of the system is investigated applying both phase-plane and frequency response techniques. The effects of the different parameters of the absorber on system behavior are studied numerically. Comparison with the available published work is reported.

  20. Hardware interface unit for control of shuttle RMS vibrations

    Science.gov (United States)

    Lindsay, Thomas S.; Hansen, Joseph M.; Manouchehri, Davoud; Forouhar, Kamran

    1994-01-01

    Vibration of the Shuttle Remote Manipulator System (RMS) increases the time for task completion and reduces task safety for manipulator-assisted operations. If the dynamics of the manipulator and the payload can be physically isolated, performance should improve. Rockwell has developed a self contained hardware unit which interfaces between a manipulator arm and payload. The End Point Control Unit (EPCU) is built and is being tested at Rockwell and at the Langley/Marshall Coupled, Multibody Spacecraft Control Research Facility in NASA's Marshall Space Flight Center in Huntsville, Alabama.

  1. Semi-active vibration control in cable-stayed bridges under the condition of random wind load

    International Nuclear Information System (INIS)

    Heo, G; Joonryong, Jeon

    2014-01-01

    This paper aims at an experimental study on the real-time vibration control of bridge structures using a semi-active vibration control method that has been in the spotlight recently. As structures are becoming larger and larger, structural harmful vibration caused by unspecified external forces such as earthquakes, gusts of wind, and collisions has been brought to attention as an important issue. These harmful vibrations can cause not only user anxiety but also severe structural damage or even complete failure of structures. Therefore, in view of structural safety and economical long-term maintenance, real-time control technology of the harmful structural vibration is urgently required. In this paper, a laboratory-scale model of a cable-stayed bridge was built, and a shear-type MR damper and a semi-active vibration control algorithm (Lyapunov and clipped optimal) were applied for the control of harmful vibration of the model bridge, in real time. On the basis of the test results, each semi-active control algorithm was verified quantitatively. (papers)

  2. Active vibration control for piezoelectricity cantilever beam: an adaptive feedforward control method

    Science.gov (United States)

    Zhu, Qiao; Yue, Jun-Zhou; Liu, Wei-Qun; Wang, Xu-Dong; Chen, Jun; Hu, Guang-Di

    2017-04-01

    This work is focused on the active vibration control of piezoelectric cantilever beam, where an adaptive feedforward controller (AFC) is utilized to reject the vibration with unknown multiple frequencies. First, the experiment setup and its mathematical model are introduced. Due to that the channel between the disturbance and the vibration output is unknown in practice, a concept of equivalent input disturbance (EID) is employed to put an equivalent disturbance into the input channel. In this situation, the vibration control can be achieved by setting the control input be the identified EID. Then, for the EID with known multiple frequencies, the AFC is introduced to perfectly reject the vibration but is sensitive to the frequencies. In order to accurately identify the unknown frequencies of EID in presence of the random disturbances and un-modeled nonlinear dynamics, the time-frequency-analysis (TFA) method is employed to precisely identify the unknown frequencies. Consequently, a TFA-based AFC algorithm is proposed to the active vibration control with unknown frequencies. Finally, four cases are given to illustrate the efficiency of the proposed TFA-based AFC algorithm by experiment.

  3. Amplitude control of the track-induced self-excited vibration for a maglev system.

    Science.gov (United States)

    Zhou, Danfeng; Li, Jie; Zhang, Kun

    2014-09-01

    The Electromagnet Suspension (EMS) maglev train uses controlled electromagnetic forces to achieve suspension, and self-excited vibration may occur due to the flexibility of the track. In this article, the harmonic balance method is applied to investigate the amplitude of the self-excited vibration, and it is found that the amplitude of the vibration depends on the voltage of the power supplier. Based on this observation, a vibration amplitude control method, which controls the amplitude of the vibration by adjusting the voltage of the power supplier, is proposed to attenuate the vibration. A PI controller is designed to control the amplitude of the vibration at a given level. The effectiveness of this method shows a good prospect for its application to commercial maglev systems. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  4. A feedback control system for vibration of magnetostrictive plate subjected to follower force using sinusoidal shear

    Directory of Open Access Journals (Sweden)

    A. Ghorbanpour Arani

    2016-03-01

    Full Text Available In this research, the vibrational behavior of magnetostrictive plate (MsP as a smart component is studied. The plate is subjected to an external follower force and a magnetic field in which the vibration response of MsP has been investigated for both loading combinations. The velocity feedback gain parameter is evaluated to study the effect of magnetic field which is generated by the coil. Sinusoidal shear deformation theory is utilized due to its accuracy of polynomial function with respect to other plate theories. Equations of motion are derived using Hamilton’s principle and solved by differential quadrature method (DQM considering general boundary conditions. The effects of aspect ratio, thickness ratio, follower force and velocity feedback gain are investigated on the frequency response of MsP. Results indicate that magneto-mechanical coupling in MsM helps to control vibrational behaviors of systems such as electro-hydraulic actuator, wireless linear Motors and sensors.

  5. A new hybrid observer based rotor imbalance vibration control via passive autobalancer and active bearing actuation

    Science.gov (United States)

    Jung, DaeYi; DeSmidt, Hans

    2018-02-01

    Many researchers have explored the use of active bearings, such as non-contact Active Magnetic Bearings (AMB), to control imbalance vibration in rotor systems. Meanwhile, the advantages of a passive Auto-balancer device (ABD) eliminating the imbalance effect of rotor without using other active means have been recently studied. This paper develops a new hybrid imbalance vibration control approach for an ABD-rotor system supported by a normal passive bearing in augmented with an AMB to enhance the balancing and vibration isolation capabilities. Essentially, an ABD consists of several freely moving eccentric balancing masses mounted on the rotor, which, at supercritical operating speeds, act to cancel the rotor's imbalance at steady-state. However, due to the inherent nonlinearity of the ABD, the potential for other, non-synchronous limit-cycle behavior exists resulting in increased rotor vibration. To address this, the algorithm of proposed hybrid control is designed to guarantee globally asymptotic stability of the synchronous balanced condition. This algorithm also incorporates with a "Luenberger-like" observer that continuously estimates the states of a balancer ball circulating around within ABD. In particular, it is shown that the balanced equilibrium can be made globally attractive under the hybrid control strategy, and that the control power levels of AMB are significantly reduced via the addition of the ABD because the control is designed such that it is only switched on for the abnormal operation of ABD and will be disengaged otherwise. Moreover, unlike other imbalance vibration control applications based upon ABD such as rotor speed regulator [21,22], this approach enables the controller to achieve the desirable performance without altering rotor speed once the rotor initially reaches the target speed. These applications are relevant to limited power applications such as in satellite reaction wheels, flywheel energy storage batteries or CD-ROM application.

  6. Decentralized guaranteed cost static output feedback vibration control for piezoelectric smart structures

    International Nuclear Information System (INIS)

    Jiang, Jian-ping; Li, Dong-xu

    2010-01-01

    This paper is devoted to the study of the decentralized guaranteed cost static output feedback vibration control for piezoelectric smart structures. A smart panel with collocated piezoelectric actuators and velocity sensors is modeled using a finite element method, and then the size of the model is reduced in the state space using the modal Hankel singular value. The necessary and sufficient conditions of decentralized guaranteed cost static output feedback control for the reduced system have been presented. The decentralized and centralized static output feedback matrices can be obtained from solving two linear matrix inequalities. A comparison between centralized control and decentralized control is performed in order to investigate their effectiveness in suppressing vibration of a smart panel. Numerical results show that when the system is subjected to initial displacement or white noise disturbance, the decentralized and centralized controls are both very effective and the control results are very close

  7. Semi-active variable stiffness vibration control of vehicle seat suspension using an MR elastomer isolator

    International Nuclear Information System (INIS)

    Du, Haiping; Li, Weihua; Zhang, Nong

    2011-01-01

    This paper presents a study on continuously variable stiffness control of vehicle seat suspension using a magnetorheological elastomer (MRE) isolator. A concept design for an MRE isolator is proposed in the paper and its behavior is experimentally evaluated. An integrated seat suspension model, which includes a quarter-car suspension and a seat suspension with a driver body model, is used to design a sub-optimal H ∞ controller for an active isolator. The desired control force generated by this active isolator is then emulated by the MRE isolator through its continuously variable stiffness property when the actuating condition is met. The vibration control effect of the MRE isolator is evaluated in terms of driver body acceleration responses under both bump and random road conditions. The results show that the proposed control strategy achieves better vibration reduction performance than conventional on–off control

  8. Neural adaptive control for vibration suppression in composite fin-tip of aircraft.

    Science.gov (United States)

    Suresh, S; Kannan, N; Sundararajan, N; Saratchandran, P

    2008-06-01

    In this paper, we present a neural adaptive control scheme for active vibration suppression of a composite aircraft fin tip. The mathematical model of a composite aircraft fin tip is derived using the finite element approach. The finite element model is updated experimentally to reflect the natural frequencies and mode shapes very accurately. Piezo-electric actuators and sensors are placed at optimal locations such that the vibration suppression is a maximum. Model-reference direct adaptive neural network control scheme is proposed to force the vibration level within the minimum acceptable limit. In this scheme, Gaussian neural network with linear filters is used to approximate the inverse dynamics of the system and the parameters of the neural controller are estimated using Lyapunov based update law. In order to reduce the computational burden, which is critical for real-time applications, the number of hidden neurons is also estimated in the proposed scheme. The global asymptotic stability of the overall system is ensured using the principles of Lyapunov approach. Simulation studies are carried-out using sinusoidal force functions of varying frequency. Experimental results show that the proposed neural adaptive control scheme is capable of providing significant vibration suppression in the multiple bending modes of interest. The performance of the proposed scheme is better than the H(infinity) control scheme.

  9. Emerging trends in vibration control of wind turbines: a focus on a dual control strategy.

    Science.gov (United States)

    Staino, Andrea; Basu, Biswajit

    2015-02-28

    The paper discusses some of the recent developments in vibration control strategies for wind turbines, and in this context proposes a new dual control strategy based on the combination and modification of two recently proposed control schemes. Emerging trends in the vibration control of both onshore and offshore wind turbines are presented. Passive, active and semi-active structural vibration control algorithms have been reviewed. Of the existing controllers, two control schemes, active pitch control and active tendon control, have been discussed in detail. The proposed new control scheme is a merger of active tendon control with passive pitch control, and is designed using a Pareto-optimal problem formulation. This combination of controllers is the cornerstone of a dual strategy with the feature of decoupling vibration control from optimal power control as one of its main advantages, in addition to reducing the burden on the pitch demand. This dual control strategy will bring in major benefits to the design of modern wind turbines and is expected to play a significant role in the advancement of offshore wind turbine technologies. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  10. Active Lubrication for Reducing Wear and Vibration: A combination of Fluid Power Control and Tribology

    DEFF Research Database (Denmark)

    Nicoletti, Rodrigo; Santos, Ilmar

    2002-01-01

    The use of fluid power to reduce and control rotor vibration in rotating machines is investigated. An active hybrid bearing is studied, whose main objective is to reduce wear and vibration between rotating and stationary machinery parts. By injecting pressurised oil into the oil film, through...... orifices machined in the bearing pads, one can alter the machine dynamic characteristics, thus enhancing its operational range. A mathematical model of the rotor-bearing system, as well as of the hydraulic system, is presented. Numerical results of the system frequency response show good agreement...

  11. A Vibration Control Method for the Flexible Arm Based on Energy Migration

    Directory of Open Access Journals (Sweden)

    Yushu Bian

    2015-01-01

    Full Text Available A vibration control method based on energy migration is proposed to decrease vibration response of the flexible arm undergoing rigid motion. A type of vibration absorber is suggested and gives rise to the inertial coupling between the modes of the flexible arm and the absorber. By analyzing 1 : 2 internal resonance, it is proved that the internal resonance can be successfully created and the exchange of vibration energy is existent. Due to the inertial coupling, the damping enhancement effect is revealed. Via the inertial coupling, vibration energy of the flexible arm can be dissipated by not only the damping of the vibration absorber but also its own enhanced damping, thereby effectively decreasing vibration. Through numerical simulations and analyses, it is proven that this method is feasible in controlling nonlinear vibration of the flexible arm undergoing rigid motion.

  12. Experimental study on titanium wire drawing with ultrasonic vibration.

    Science.gov (United States)

    Liu, Shen; Shan, Xiaobiao; Guo, Kai; Yang, Yuancai; Xie, Tao

    2018-02-01

    Titanium and its alloys have been widely used in aerospace and biomedical industries, however, they are classified as difficult-to-machine materials. In this paper, ultrasonic vibration is imposed on the die to overcome the difficulties during conventional titanium wire drawing processes at the room temperature. Numerical simulations were performed to investigate the variation of axial stress within the contacting region and study the change of the drawing stress with several factors in terms of the longitudinal amplitude and frequency of the applied ultrasonic vibration, the diameter reduction ratio, and the drawing force. An experimental testing equipment was established to measure the drawing torque and rotational velocity of the coiler drum during the wire drawing process. The result indicates the drawing force increases with the growth of the drawing velocity and the reduction ratio, whether with or without vibrations. Application of either form of ultrasonic vibrations contributes to the further decrease of the drawing force, especially the longitudinal vibration with larger amplitude. SEM was employed to detect the surface morphology of the processed wires drawn under the three circumstances. The surface quality of the drawn wires with ultrasonic vibrations was apparently improved compared with those using conventional method. In addition, the longitudinal and torsional composite vibration was more effective for surface quality improvement than pure longitudinal vibration, however, at the cost of weakened drawing force reduction effect. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. An adaptive vibration control method to suppress the vibration of the maglev train caused by track irregularities

    Science.gov (United States)

    Zhou, Danfeng; Yu, Peichang; Wang, Lianchun; Li, Jie

    2017-11-01

    The levitation gap of the urban maglev train is around 8 mm, which puts a rather high requirement on the smoothness of the track. In practice, it is found that the track irregularity may cause stability problems when the maglev train is traveling. In this paper, the dynamic response of the levitation module, which is the basic levitation structure of the urban maglev train, is investigated in the presence of track irregularities. Analyses show that due to the structural configuration of the levitation module, the vibration of the levitation gap may be amplified and "resonances" may be observed under some specified track wavelengths and train speeds; besides, it is found that the gap vibration of the rear levitation unit in a levitation module is more significant than that of the front levitation unit, which agrees well with practice. To suppress the vibration of the rear levitation gap, an adaptive vibration control method is proposed, which utilizes the information of the front levitation unit as a reference. A pair of mirror FIR (finite impulse response) filters are designed and tuned by an adaptive mechanism, and they produce a compensation signal for the rear levitation controller to cancel the disturbance brought by the track irregularity. Simulations under some typical track conditions, including the sinusoidal track profile, random track irregularity, as well as track steps, indicate that the adaptive vibration control scheme can significantly reduce the amplitude of the rear gap vibration, which provides a method to improve the stability and ride comfort of the maglev train.

  14. Two-sensor control in active vibration isolation using hard mounts

    NARCIS (Netherlands)

    Beijen, M.A.; Tjepkema, D.; van Dijk, J.

    To isolate precision machines from floor vibrations, active vibration isolators are often applied. In this paper, a two-sensor control strategy, based on acceleration feedback and force feedback, is proposed for an active vibration isolator using a single-axis active hard mount. The hard mount

  15. Two-sensor control in active vibration isolation using hard mounts

    NARCIS (Netherlands)

    Beijen, M.A.; Tjepkema, D.; van Dijk, Johannes

    2014-01-01

    To isolate precision machines from floor vibrations, active vibration isolators are often applied. In this paper, a two-sensor control strategy, based on acceleration feedback and force feedback, is proposed for an active vibration isolator using a single-axis active hard mount. The hard mount

  16. A Comparative Study of Ground and Underground Vibrations Induced by Bench Blasting

    Directory of Open Access Journals (Sweden)

    Xiuzhi Shi

    2016-01-01

    Full Text Available Ground vibrations originating from bench blasting may cause damage to slopes, structures, and underground workings in close proximity to an operating open-pit mine. It is important to monitor and predict ground vibration levels induced by blasting and to take measures to reduce their hazardous effects. The aims of this paper are to determine the weaker protection objects by comparatively studying bench blasting induced vibrations obtained at surface and in an underground tunnel in an open-pit mine and thus to seek vibration control methods to protect engineering objects at the site. Vibrations arising from measurement devices at surface and in an underground tunnel at the Zijinshan Open-Pit Mine were obtained. Comparative analysis of the peak particle velocities shows that, in the greatest majority of cases, surface values are higher than underground values for the same vibration distance. The transmission laws of surface and underground vibrations were established depending on the type of rock mass, the explosive charge, and the distance. Compared with the Chinese Safety Regulations for Blasting (GB6722-2014, the bench blasting induced vibrations would not currently cause damage to the underground tunnel. According to the maximum allowable peak particle velocities for different objects, the permitted maximum charges per delay are obtained to reduce damage to these objects at different distances.

  17. Nonlinear dynamics and control of a vibrating rectangular plate

    Science.gov (United States)

    Shebalin, J. V.

    1983-01-01

    The von Karman equations of nonlinear elasticity are solved for the case of a vibrating rectangular plate by meams of a Fourier spectral transform method. The amplification of a particular Fourier mode by nonlinear transfer of energy is demonstrated for this conservative system. The multi-mode system is reduced to a minimal (two mode) system, retaining the qualitative features of the multi-mode system. The effect of a modal control law on the dynamics of this minimal nonlinear elastic system is examined.

  18. Active Control of Parametric Vibrations in Coupled Rotor-Blade Systems

    DEFF Research Database (Denmark)

    Christensen, Rene Hardam; Santos, Ilmar

    2003-01-01

    of modes. The designed control scheme is applied to a coupled rotor-blade system and dynamic responses are numerically evaluated. Such responses show that the vibrations are efficiently reduced. Frequency response diagrams demonstrate that both basis and parametric vibration modes are significantly...... the model becomes periodic-variant. In order to reduce basis as well as parametric vibrations by means of active control in such systems a time-variant control strategy has to be adopted. This paper presents a methodology for designing an active controller to reduce vibrations in a coupled rotor......-blade system. The main aim is to control blade as well as hub vibrations in such a system by means of active control with focus on reducing the parametric vibration. A periodic state feedback controller is designed by transforming the system into a linear time-invariant form. Using this a controller...

  19. Vibration control of a flexible structure with electromagnetic actuators

    DEFF Research Database (Denmark)

    Gruzman, Maurício; Santos, Ilmar

    2016-01-01

    This work presents the model of a shear-frame-type structure composed of six flexible beams and three rigid masses. Fixed on the ground, outside the structure, two voltage-controlled electromagnetic actuators are used for vibration control. To model the flexible beams, unidimensional finite...... elements were used. Nonlinear equations for the actuator electromagnetic force, noise in the position sensor, time delays for the control signal update and voltage saturation were also considered in the model. For controlling purposes, a discrete linear quadratic regulator combined with a predictive full......-order discrete linear observer was employed. Results of numerical simulations, where the structure is submitted to an impulsive disturbance force and to a harmonic force, show that the oscillations can be significantly reduced with the use of the electromagnetic actuators....

  20. Vibration and recoil control of pneumatic hammers. [by air flow pressure regulation

    Science.gov (United States)

    Constantinescu, I. N.; Darabont, A. V.

    1974-01-01

    Vibration sources are described for pneumatic hammers used in the mining industry (pick hammers), in boiler shops (riveting hammers), etc., bringing to light the fact that the principal vibration source is the variation in air pressure inside the cylinder. The present state of the art of vibration control of pneumatic hammers as it is practiced abroad, and the solutions adopted for this purpose, are discussed. A new type of pneumatic hammer with a low noise and vibration level is presented.

  1. On the neutron noise diagnostics of pressurized water reactor control rod vibrations. 1. periodic vibrations

    International Nuclear Information System (INIS)

    Pazsit, I.; Glockler, O.

    1983-01-01

    Based on the theory of neutron noise arising from the vibration of a localized absorber, the possibility of rod vibration diagnostics is investigated. It is found that noise source characteristics, namely rod position and vibration trajectory and spectra, can be unfolded from measured neutron noise signals. For the localization process, the first and more difficult part of the diagnostics, a procedure is suggested whose novelty is that it is applicable in case of arbitrary vibration trajectories. Applicability of the method is investigated in numerical experiments where effects of background noise are also accounted for

  2. Slewing maneuvers and vibration control of space structures by feedforward/feedback moment-gyro controls

    Science.gov (United States)

    Yang, Li-Farn; Mikulas, Martin M., Jr.; Park, K. C.; Su, Renjeng

    1993-01-01

    This paper presents a moment-gyro control approach to the maneuver and vibration suppression of a flexible truss arm undergoing a constant slewing motion. The overall slewing motion is triggered by a feedforward input, and a companion feedback controller is employed to augment the feedforward input and subsequently to control vibrations. The feedforward input for the given motion requirement is determined from the combined CMG (Control Momentum Gyro) devices and the desired rigid-body motion. The rigid-body dynamic model has enabled us to identify the attendant CMG momentum saturation constraints. The task for vibration control is carried out in two stages; first in the search of a suitable CMG placement along the beam span for various slewing maneuvers, and subsequently in the development of Liapunov-based control algorithms for CMG spin-stabilization. Both analytical and numerical results are presented to show the effectiveness of the present approach.

  3. Measurements of Acoustic Properties of Porous and Granular Materials and Application to Vibration Control

    Science.gov (United States)

    Park, Junhong; Palumbo, Daniel L.

    2004-01-01

    For application of porous and granular materials to vibro-acoustic controls, a finite dynamic strength of the solid component (frame) is an important design factor. The primary goal of this study was to investigate structural vibration damping through this frame wave propagation for various poroelastic materials. A measurement method to investigate the vibration characteristics of the frame was proposed. The measured properties were found to follow closely the characteristics of the viscoelastic materials - the dynamic modulus increased with frequency and the degree of the frequency dependence was determined by its loss factor. The dynamic stiffness of hollow cylindrical beams containing porous and granular materials as damping treatment was measured also. The data were used to extract the damping materials characteristics using the Rayleigh-Ritz method. The results suggested that the acoustic structure interaction between the frame and the structure enhances the dissipation of the vibration energy significantly.

  4. A new electromagnetic shunt damping treatment and vibration control of beam structures

    International Nuclear Information System (INIS)

    Niu Hongpan; Zhang Xinong; Xie Shilin; Wang Pengpeng

    2009-01-01

    In this paper a new class of shunted electromagnetic damping treatment is proposed: a non-contact electromagnetic shunt damper (NC-EMSD). The NC-EMSD consists of an electromagnet attached to a host structure, a permanent magnet attached to the fixed boundary and an electrical impedance connected to the terminals of the electromagnet. The electromagnet and the shunt impedance constitute a closed circuit. When the structure vibrates, an induced electromotive force will be produced and results in the electromagnetic force as damping force, which can suppress the vibration of the structure. The model of NC-EMSD is built up based on the equivalent current method. The governing equations of the beam with NC-EMSD are established using Hamilton's principle. The capacitor-matching-inductance (CMI) method and the negative resistive capacitor-matching-inductance (NR-CMI) method are proposed, respectively. Then the vibration control of a cantilever beam with NC-EMSD is simulated and measured by CMI and NR-CMI control methods, respectively. The results show that both the CMI and NR-CMI can attenuate the vibration effectively, and the NR-CMI provides much better control performance than that by CMI. It is indicated as well from the studies that the decrease of either the gap between the magnet pair or the resistance of the shunt impedance contributes to the improvement of control performance

  5. A review on the gun barrel vibrations and control for a main battle tank

    Directory of Open Access Journals (Sweden)

    Tolga Dursun

    2017-10-01

    Full Text Available Achieving high hitting accuracy for a main battle tank is challenging while the tank is on the move. This can be reached by proper design of a weapon control and gun system. In order to design an effective gun system while the tank is moving, better understanding of the dynamic behavior of the gun system is required. In this study, the dynamic behaviour of a gun system is discussed in this respect. Both experimental and numerical applications for the determination of the dynamic behaviour of a tank gun system are investigated. Methods such as the use of muzzle reference system (MRS and vibration absorbers, and active vibration control technology for the control and the reduction of the muzzle tip deflections are also reviewed. For the existing gun systems without making substantial modifications, MRS could be useful in controlling the deflections of gun barrels with estimation/prediction algorithms. The vibration levels could be cut into half by the use of optimised vibration absorbers for an existing gun. A new gun system with a longer barrel can be as accurate as the one with a short barrel with the appropriate structural modifications.

  6. Prediction and Control of Cutting Tool Vibration in Cnc Lathe with Anova and Ann

    Directory of Open Access Journals (Sweden)

    S. S. Abuthakeer

    2011-06-01

    Full Text Available Machining is a complex process in which many variables can deleterious the desired results. Among them, cutting tool vibration is the most critical phenomenon which influences dimensional precision of the components machined, functional behavior of the machine tools and life of the cutting tool. In a machining operation, the cutting tool vibrations are mainly influenced by cutting parameters like cutting speed, depth of cut and tool feed rate. In this work, the cutting tool vibrations are controlled using a damping pad made of Neoprene. Experiments were conducted in a CNC lathe where the tool holder is supported with and without damping pad. The cutting tool vibration signals were collected through a data acquisition system supported by LabVIEW software. To increase the buoyancy and reliability of the experiments, a full factorial experimental design was used. Experimental data collected were tested with analysis of variance (ANOVA to understand the influences of the cutting parameters. Empirical models have been developed using analysis of variance (ANOVA. Experimental studies and data analysis have been performed to validate the proposed damping system. Multilayer perceptron neural network model has been constructed with feed forward back-propagation algorithm using the acquired data. On the completion of the experimental test ANN is used to validate the results obtained and also to predict the behavior of the system under any cutting condition within the operating range. The onsite tests show that the proposed system reduces the vibration of cutting tool to a greater extend.

  7. Simultaneous Structural Health Monitoring and Vibration Control of Adaptive Structures Using Smart Materials

    Directory of Open Access Journals (Sweden)

    Myung-Hyun Kim

    2002-01-01

    Full Text Available The integration of actuators and sensors using smart materials enabled various applications including health monitoring and structural vibration control. In this study, a robust control technique is designed and implemented in order to reduce vibration of an active structure. Special attention is given to eliminating the possibility of interaction between the health monitoring system and the control system. Exploiting the disturbance decoupling characteristic of the sliding mode observer, it is demonstrated that the proposed observer can eliminate the possible high frequency excitation from the health monitoring system. At the same time, a damage identification scheme, which tracks the changes of mechanical impedance due to the presence of damage, has been applied to assess the health condition of structures. The main objective of this paper is to examine the potential of combining the two emerging techniques together. Using the collocated piezoelectric sensors/actuators for vibration suppression as well as for health monitoring, this technique enabled to reduce the number of system components, while enhancing the performance of structures. As an initial study, both simulation and experimental investigations were performed for an active beam structure. The results show that this integrated technique can provide substantial vibration reductions, while detecting damage on the structure at the same time.

  8. Active Vibration Control of a Monopile Offshore Structure

    DEFF Research Database (Denmark)

    Nielsen, Søren R. K.; Kirkegaard, Poul Henning; Thesbjerg, L.

    1996-01-01

    coefficient should be obtained in order to have a relatively small excitation on the cylinder. The drag coefficient can be controlled if the separation points of the boundary layers can be controlled. It is proposed to control the separation points by blowing compressed air out of the holes in the cylinder....... If the natura1 separation points of the boundary layers are rejected by blowing air out of the holes the drag coefficient will increase while it will decrease if it is possible to attach the boundary layer. The results from the experimental test have shown that it is possible to increase the drag coefficient...... with a factor 1.5-2 by blowing air out of the holes in a cylinder vibrating in a stationary water flow....

  9. PWR control rods wear by vibrations induced by coolant fluid

    International Nuclear Information System (INIS)

    Reynier, R.

    1997-01-01

    Flow induced vibrations in pressurised water reactors generate the wear of control rods against their guidance systems. Alternate sliding (at 320 deg. C in water) and impact-sliding tests (at room temperature in air) were carried out on 304 L austenitic stainless steel control rods' claddings. Microstructural analysis were made on the wear scars of the tube specimen using Scanning ELectron Microscopy, microhardness measurements and X-ray diffractometry. The alternate sliding leads to an important mass loss, a strong plastic deformation due to the strain hardening of the surface layers and generates strong compressive residual stresses. These results are specific to a severe wear case. Therefore, the impact-sliding mode induces martensitic phase, a cracked oxide layer and a compressive residual stresses weaker than those created in the alternate sliding case. This type of motion leads to a milder wear of the control rods

  10. 'NASA Invention of the Year' Controls Noise and Vibration

    Science.gov (United States)

    2007-01-01

    Developed at NASA's Langley Research Center, the Macro-Fiber Composite (MFC) is designed to control vibration, noise, and deflections in composite structural beams and panels. Smart Material Corporation specializes in the development of piezocomposite components, and licensed the MFC technology from Langley in 2002. To date, Smart Material Corporation has sold MFCs to over 120 customers, including such industry giants as Volkswagen, Toyota, Honda, BMW, General Electric, and the tennis company, HEAD. The company estimates that its customers have filed at least 100 patents for their various unique uses of the technology. In addition, the company's product portfolio has grown to include piezoceramic fibers and fiber composites, piezoceramic actuators and sensors, and test equipment for these products. It also offers a compact, lightweight power system for MFC testing and validation. Consumer applications already on the market include piezoelectric systems as part of audio speakers, phonograph cartridges and microphones, and recreational products requiring vibration control, such as skis, snowboards, baseball bats, hockey sticks, and tennis racquets.

  11. Numerical analysis using state space method for vibration control of ...

    African Journals Online (AJOL)

    In passenger cars the vibrations developed at the ground are transmitted to the passengers through seats. Due to vibrations discomfort is experienced by the passengers. Dampers are being successfully utilized to reduce the vibrations in civil engineering structures. Few dampers are used in passenger cars as well.

  12. Development of Approaches to Creation of Active Vibration Control System in Problems of the Dynamics for Granular Media

    Directory of Open Access Journals (Sweden)

    Khomenko Andrei P.

    2018-01-01

    Full Text Available The article deals with the development of mathematical models and evaluation criteria of the vibration field in the dynamic interactions of the elements of the vibrational technological machines for the processes of vibrational strengthening of long-length parts with help of a steel balls working medium. The study forms a theoretical understanding of the modes of motions of material particles in interaction with a vibrating surface of the working body of the vibration machine. The generalized approach to the assessment of the dynamic quality of the work of vibrating machines in multiple modes of tossing, when the period of free flight of particles is a multiple of the period of the surface oscillations of the working body, is developed in the article. For the correction of vibration field of the working body, the characteristics of dynamic interactions of granular elements of the medium are taken into account using original sensors. The sensors that can detect different particularities of interaction of the granular medium elements at different points of the working body are proposed to evaluate the deviation from a homogeneous and one-dimensional mode of vibration field. Specially developed sensors are able to register interactions between a single granule, a system of granules in filamentous structures, and multipoint interactions of the elements in a close-spaced cylindrical structure. The system of regularization of the structure of vibration fields based on the introduction of motion translation devices is proposed using the multi-point sensor locations on the working body. The article refers to analytical approaches of the theory of vibration displacements. For the experimental data assessment, the methods of statistical analysis are applied. It is shown that the peculiar features of the motion of granular medium registered by the sensors can be used to build active control systems of field vibration.

  13. Test rig with active damping control for the simultaneous evaluation of vibration control and energy harvesting via piezoelectric transducers

    OpenAIRE

    Perfetto, Sara; Rohlfing, Jens; Infante, Francesco; Mayer, Dirk; Herold, Sven

    2016-01-01

    Piezoelectric transducers can be used to harvest electrical energy from structural vibrations in order to power continuously operating condition monitoring systems local to where they operate. However, excessive vibrations can compromise the safe operation of mechanical systems. Therefore, absorbers are commonly used to control vibrations. With an integrated device, the mechanical energy that otherwise would be dissipated can be converted via piezoelectric transducers. Vibration absorbers are...

  14. Control of liquid crystal molecular orientation using ultrasound vibration

    Energy Technology Data Exchange (ETDEWEB)

    Taniguchi, Satoki [Faculty of Life and Medical Sciences, Doshisha University, 1-3 Tataramiyakodani, Kyotanabe, Kyoto 610-0321 (Japan); Wave Electronics Research Center, Doshisha University, 1-3 Tataramiyakodani, Kyotanabe, Kyoto 610-0321 (Japan); Koyama, Daisuke; Matsukawa, Mami [Wave Electronics Research Center, Doshisha University, 1-3 Tataramiyakodani, Kyotanabe, Kyoto 610-0321 (Japan); Faculty of Science and Engineering, Doshisha University, 1-3 Tataramiyakodani, Kyotanabe, Kyoto 610-0321 (Japan); Shimizu, Yuki; Emoto, Akira [Faculty of Science and Engineering, Doshisha University, 1-3 Tataramiyakodani, Kyotanabe, Kyoto 610-0321 (Japan); Nakamura, Kentaro [Precision and Intelligence Laboratory, Tokyo Institute of Technology, 4259-R2-26, Nagatsuta-cho, Midori-ku, Yokohama 226-8503 (Japan)

    2016-03-07

    We propose a technique to control the orientation of nematic liquid crystals using ultrasound and investigate the optical characteristics of the oriented samples. An ultrasonic liquid crystal cell with a thickness of 5–25 μm and two ultrasonic lead zirconate titanate transducers was fabricated. By exciting the ultrasonic transducers, the flexural vibration modes were generated on the cell. An acoustic radiation force to the liquid crystal layer was generated, changing the molecular orientation and thus the light transmission. By modulating the ultrasonic driving frequency and voltage, the spatial distribution of the molecular orientation of the liquid crystals could be controlled. The distribution of the transmitted light intensity depends on the thickness of the liquid crystal layer because the acoustic field in the liquid crystal layer is changed by the orientational film.

  15. Pain control in orthodontics using a micropulse vibration device: A randomized clinical trial.

    Science.gov (United States)

    Lobre, Wendy D; Callegari, Brent J; Gardner, Gary; Marsh, Curtis M; Bush, Anneke C; Dunn, William J

    2016-07-01

    To investigate the relationship between a micropulse vibration device and pain perception during orthodontic treatment. This study was a parallel group, randomized clinical trial. A total of 58 patients meeting eligibility criteria were assigned using block allocation to one of two groups: an experimental group using the vibration device or a control group (n  =  29 for each group). Patients used the device for 20 minutes daily. Patients rated pain intensity on a visual analog scale at appropriate intervals during the weeks after the separator or archwire appointment. Data were analyzed using repeated measures analysis of variance at α  =  .05. During the 4-month test period, significant differences between the micropulse vibration device group and the control group for overall pain (P  =  .002) and biting pain (P  =  .003) were identified. The authors observed that perceived pain was highest at the beginning of the month, following archwire adjustment. The micropulse vibration device significantly lowered the pain scores for overall pain and biting pain during the 4-month study period.

  16. Nonlinear dynamic analysis of 2-DOF nonlinear vibration isolation floating raft systems with feedback control

    International Nuclear Information System (INIS)

    Li Yingli; Xu Daolin; Fu Yiming; Zhou Jiaxi

    2012-01-01

    In this paper, the average method is adopted to analysis dynamic characteristics of nonlinear vibration isolation floating raft system with feedback control. The analytic results show that the purposes of reducing amplitude of oscillation and complicating the motion can be achieved by adjusting properly the system parameters, exciting frequency and control gain. The conclusions can provide some available evidences for the design and improvement of both the passive and active control of the vibration isolation systems. By altering the exciting frequency and control gain, complex motion of the system can be obtained. Numerical simulations show the system exhibits period vibration, double period vibration and quasi-period motion.

  17. Active vibration absorber for the CSI evolutionary model - Design and experimental results. [Controls Structures Interaction

    Science.gov (United States)

    Bruner, Anne M.; Belvin, W. Keith; Horta, Lucas G.; Juang, Jer-Nan

    1991-01-01

    The development of control of large flexible structures technology must include practical demonstrations to aid in the understanding and characterization of controlled structures in space. To support this effort, a testbed facility has been developed to study practical implementation of new control technologies under realistic conditions. The paper discusses the design of a second order, acceleration feedback controller which acts as an active vibration absorber. This controller provides guaranteed stability margins for collocated sensor/actuator pairs in the absence of sensor/actuator dynamics and computational time delay. Experimental results in the presence of these factors are presented and discussed. The robustness of this design under model uncertainty is demonstrated.

  18. Studying the influence of vibration exposures on digestives system of workers in a food processing company

    Directory of Open Access Journals (Sweden)

    2012-12-01

    Full Text Available Introduction: Today’s, defective and faulty equipments lose a large part of them energy as noise and vibration which beside their financial costs can be hazardous to the health of people. Vibration as a physical agent can cause an adverse health effect on human to nervous system. These effects, based on body region can be as specific or general systems. Digestion system has a natural vibration of 3-8Hz frequency. When the digestive system is exposed by such vibration, it can make impairment on that system. This study aimed to study vibration effect on digestion irregularities. . Material and Method: This was a retrospective case-control study conducted in a food industry. The number of 103 workers digestive problem and 431 healthy workers were selected as population study. Exposure to the vibration in the different parts were measured. People with more than 100 dB was considered exposed group. Then, after determining the number of exposed and non exposed groups, data were analyzed using statistical methodologies. .Result: The acceleration level of vibration was 109.8 dB in the packing section, which was less than standard limit (118.8 dB. Study population had a managed of 24-57 years old with 4-15 years of job tenure. In 59.2% of case comparing to 22.7% of control group were exposed to the vibration. The odds ratio (OR of prevalence rate of digestive problem among exposed group was 6.3 times more than non exposed group people, in risk of gastrointestinal complications. .Conclusion: Beside of the other risk factors of digestive problem, vibration can be also an effective cause of adverse health problem: Even by lower level of digestive problem can be seen in the exposed people. So, we suggest in the workplace with vibration risk factor, a digestive health exam be take general medical beside periodic examination. Moreover, it is recommended that researches related to the vibration is widely developed and the vibration standard limits is revised

  19. Effects of train noise and vibration on human heart rate during sleep: an experimental study.

    Science.gov (United States)

    Croy, Ilona; Smith, Michael G; Waye, Kerstin Persson

    2013-05-28

    Transportation of goods on railways is increasing and the majority of the increased numbers of freight trains run during the night. Transportation noise has adverse effects on sleep structure, affects the heart rate (HR) during sleep and may be linked to cardiovascular disease. Freight trains also generate vibration and little is known regarding the impact of vibration on human sleep. A laboratory study was conducted to examine how a realistic nocturnal railway traffic scenario influences HR during sleep. Case-control. Healthy participants. 24 healthy volunteers (11 men, 13 women, 19-28 years) spent six consecutive nights in the sleep laboratory. All participants slept during one habituation night, one control and four experimental nights in which train noise and vibration were reproduced. In the experimental nights, 20 or 36 trains with low-vibration or high-vibration characteristics were presented. Polysomnographical data and ECG were recorded. The train exposure led to a significant change of HR within 1 min of exposure onset (p=0.002), characterised by an initial and a delayed increase of HR. The high-vibration condition provoked an average increase of at least 3 bpm per train in 79% of the participants. Cardiac responses were in general higher in the high-vibration condition than in the low-vibration condition (p=0.006). No significant effect of noise sensitivity and gender was revealed, although there was a tendency for men to exhibit stronger HR acceleration than women. Freight trains provoke HR accelerations during sleep, and the vibration characteristics of the trains are of special importance. In the long term, this may affect cardiovascular functioning of persons living close to railways.

  20. A study of vibrational relaxation of electronically-excited molecules

    International Nuclear Information System (INIS)

    Datsyuk, V.V.; Izmailov, I.A.; Kochelap, V.A.

    1992-09-01

    The time kinetics of the vibrational relaxation of excimers is studied in the diffusional approximation. Simple formulae for functions of nonstationary vibrational distribution are found for the electronically excited molecules. Some spectral-kinetic dependencies of the excimer luminescence are explained in a new way. The possibilities of the determination of excimer parameters are discussed. The dependence of energetical characteristics of excimer lasers on these parameters is particularly emphasized. (author). 22 refs, 5 figs

  1. Nuclear resonance vibrational spectroscopic studies of iron-containing biomolecules

    International Nuclear Information System (INIS)

    Ohta, Takehiro; Seto, Makoto

    2014-01-01

    In this review, we report recent nuclear resonance vibrational spectroscopic (NRVS) studies of iron-containing biomolecules and their model complexes. The NRVS is synchrotron-based element-specific vibrational spectroscopic methods. Unlike Raman and infrared spectroscopy, the NRVS can investigate all iron motions without selection rules, which provide atomic level insights into the structure/reactivity correlation of biologically relevant iron complexes. (author)

  2. A new robust adaptive controller for vibration control of active engine mount subjected to large uncertainties

    International Nuclear Information System (INIS)

    Fakhari, Vahid; Choi, Seung-Bok; Cho, Chang-Hyun

    2015-01-01

    This work presents a new robust model reference adaptive control (MRAC) for vibration control caused from vehicle engine using an electromagnetic type of active engine mount. Vibration isolation performances of the active mount associated with the robust controller are evaluated in the presence of large uncertainties. As a first step, an active mount with linear solenoid actuator is prepared and its dynamic model is identified via experimental test. Subsequently, a new robust MRAC based on the gradient method with σ-modification is designed by selecting a proper reference model. In designing the robust adaptive control, structured (parametric) uncertainties in the stiffness of the passive part of the mount and in damping ratio of the active part of the mount are considered to investigate the robustness of the proposed controller. Experimental and simulation results are presented to evaluate performance focusing on the robustness behavior of the controller in the face of large uncertainties. The obtained results show that the proposed controller can sufficiently provide the robust vibration control performance even in the presence of large uncertainties showing an effective vibration isolation. (paper)

  3. Control of noise and structural vibration a MATLAB-based approach

    CERN Document Server

    Mao, Qibo

    2013-01-01

    Control of Noise and Structural Vibration presents a MATLAB®-based approach to solving the problems of undesirable noise generation and transmission by structures and of undesirable vibration within structures in response to environmental or operational forces. The fundamentals of acoustics, vibration and coupling between vibrating structures and the sound fields they generate are introduced including a discussion of the finite element method for vibration analysis. Following this, the treatment of sound and vibration control begins, illustrated by example systems such as beams, plates and double plate structures. Sensor and actuator placement is explained as is the idea of modal sensor–actuators. The design of appropriate feedback systems includes consideration of basic stability criteria and robust active structural acoustic control. Single and multi-mode positive position feedback (PPF) control systems are also described in the context of loudspeaker–duct model with non-collocated loudspeaker–microp...

  4. Study on the coupled vibration of square cylinders in a liquid, 3

    International Nuclear Information System (INIS)

    Kasai, Hiroaki

    1984-01-01

    The through-liquid coupled vibration of a group of square bars with same structural particulars supported in a vessel filled with liquid is under the control by the gap width between the bars, the gap width between the vessel and the bars, the ratio of the density of the bars and the liquid, the viscosity of the liquid and so on. Also the number of the natural frequency and the mode of vibration of the group of bars is 2 x the number of bars. In order to forecast the behavior of heat exchangers, the in-core structures of nuclear reactors and others at the time of earthquakes, the relation among these influencing factors and the vibration characteristics of a group of bars is to be examined. In this study, the vibration response was theoretically examined in the case where the system of many bars arranged two-dimensionally was subjected to forced vibration was examined. First, the method of reducing the equations of fluid force and the equations of motion of bars by using the axisymmetry of vibration mode was considered. Next, the method of approximate calculation under the assumption that fluid force is averaged was proposed. The vibration characteristics of various bar group models were compared by using the exact model and the approximate model, and it was confirmed that this method of approximate calculation can be practically used. (Kako, I.)

  5. Demonstration of non-collocated vibration control of a flexible manipulator using electrical dynamic absorbers

    International Nuclear Information System (INIS)

    Kim, Sang-Myeong; Kim, Heungseob; Boo, Kwangsuck; Brennan, Michael J

    2013-01-01

    This paper describes an experimental study into the vibration control of a servo system comprising a servo motor and a flexible manipulator. Two modes of the system are controlled by using the servo motor and an accelerometer attached to the tip of the flexible manipulator. The control system is thus non-collocated. It consists of two electrical dynamic absorbers, each of which consists of a modal filter and, in case of an out-of-phase mode, a phase inverter. The experimental results show that each absorber acts as a mechanical dynamic vibration absorber attached to each mode and significantly reduces the settling time for the system response to a step input. (technical note)

  6. The Effects of Vibration and Muscle Fatigue on Trunk Sensorimotor Control in Low Back Pain Patients.

    Directory of Open Access Journals (Sweden)

    Jean-Alexandre Boucher

    Full Text Available Changes in sensorimotor function and increased trunk muscle fatigability have been identified in patients with chronic low back pain (cLBP. This study assessed the control of trunk force production in conditions with and without local erector spinae muscle vibration and evaluated the influence of muscle fatigue on trunk sensorimotor control.Twenty non-specific cLBP patients and 20 healthy participants were asked to perform submaximal isometric trunk extension torque with and without local vibration stimulation, before and after a trunk extensor muscle fatigue protocol. Constant error (CE, variable error (VE as well as absolute error (AE in peak torque were computed and compared across conditions. Trunk extensor muscle activation during isometric contractions and during the fatigue protocol was measured using surface electromyography (sEMG.Force reproduction accuracy of the trunk was significantly lower in the patient group (CE = 9.81 ± 2.23 Nm; AE = 18.16 ± 3.97 Nm than in healthy participants (CE = 4.44 ± 1.68 Nm; AE = 12.23 ± 2.44 Nm. Local erector spinae vibration induced a significant reduction in CE (4.33 ± 2.14 Nm and AE (13.71 ± 3.45 Nm mean scores in the patient group. Healthy participants conversely showed a significant increase in CE (8.17 ± 2.10 Nm and AE (16.29 ± 2.82 Nm mean scores under vibration conditions. The fatigue protocol induced erector spinae muscle fatigue as illustrated by a significant decrease in sEMG median time-frequency slopes. Following the fatigue protocol, patients with cLBP showed significant decrease in sEMG root mean square activity at L4-5 level and responded in similar manner with and without vibration stimulation in regard to CE mean scores.Patients with cLBP have a less accurate force reproduction sense than healthy participants. Local muscle vibration led to significant trunk neuromuscular control improvements in the cLBP patients before and after a muscle fatigue protocol. Muscle vibration

  7. The Effects of Vibration and Muscle Fatigue on Trunk Sensorimotor Control in Low Back Pain Patients

    Science.gov (United States)

    Abboud, Jacques; Nougarou, François; Normand, Martin C.

    2015-01-01

    Introduction Changes in sensorimotor function and increased trunk muscle fatigability have been identified in patients with chronic low back pain (cLBP). This study assessed the control of trunk force production in conditions with and without local erector spinae muscle vibration and evaluated the influence of muscle fatigue on trunk sensorimotor control. Methods Twenty non-specific cLBP patients and 20 healthy participants were asked to perform submaximal isometric trunk extension torque with and without local vibration stimulation, before and after a trunk extensor muscle fatigue protocol. Constant error (CE), variable error (VE) as well as absolute error (AE) in peak torque were computed and compared across conditions. Trunk extensor muscle activation during isometric contractions and during the fatigue protocol was measured using surface electromyography (sEMG). Results Force reproduction accuracy of the trunk was significantly lower in the patient group (CE = 9.81 ± 2.23 Nm; AE = 18.16 ± 3.97 Nm) than in healthy participants (CE = 4.44 ± 1.68 Nm; AE = 12.23 ± 2.44 Nm). Local erector spinae vibration induced a significant reduction in CE (4.33 ± 2.14 Nm) and AE (13.71 ± 3.45 Nm) mean scores in the patient group. Healthy participants conversely showed a significant increase in CE (8.17 ± 2.10 Nm) and AE (16.29 ± 2.82 Nm) mean scores under vibration conditions. The fatigue protocol induced erector spinae muscle fatigue as illustrated by a significant decrease in sEMG median time-frequency slopes. Following the fatigue protocol, patients with cLBP showed significant decrease in sEMG root mean square activity at L4-5 level and responded in similar manner with and without vibration stimulation in regard to CE mean scores. Conclusions Patients with cLBP have a less accurate force reproduction sense than healthy participants. Local muscle vibration led to significant trunk neuromuscular control improvements in the cLBP patients before and after a muscle

  8. Effect of Low-Magnitude Whole-Body Vibration Combined with Alendronate in Ovariectomized Rats: A Random Controlled Osteoporosis Prevention Study

    Science.gov (United States)

    Zhong, Zhao-Ming; Wu, Xiu-Hua; Huang, Zhi-Ping; Li, Wei; Ding, Ruo-Ting; Yu, Hui; Chen, Jian-Ting

    2014-01-01

    Background Alendronate (ALE) is a conventional drug used to treat osteoporosis. Low-magnitude whole-body vibration (WBV) exercise has been developed as a potential treatment for osteoporosis. The aim of this study was to investigate whether low-magnitude WBV could enhance the protective effect of ALE on bone properties in ovariectomized rats. Methods A total of 128 Sprague-Dawley rats were randomly divided into five groups (SHAM, OVX+VEH, OVX+WBV, OVX + ALE, OVX+WBV+ALE). The level of WBV applied was 0.3 g at 45–55 Hz for 20 min/day, 5 day/week and for 3 months. ALE was administered in dose of 1 mg/Kg once a week. Every four weeks eight rats from each group were sacrificed and their blood and both tibiae were harvested. The expression of osteocalcin and CTX in serum was measured by enzyme-linked immunosorbent assay (ELISA) and the tibiae were subjected to metaphyseal three-point bending and μCT analysis. Results Osteocalcin rose after ovariectomy and was not appreciably changed by either alendronate or WBV alone or in combination. Alendronate treatment significantly prevented an increase in CTX. WBV alone treatment did not alter this effect. Compared with the OVX+WBV group, nearly all tested indices such as the BV/TV, TV apparent, Tb.N, Tb.Th, and Conn.D were higher in the OVX+ALE group at week 12.Compared with the OVX+WBV group, certain tested indices such as BV/TV, TV apparent, Tb.N, and Con.D, were higher in the OVX+WBV+ALE group at week 12. At week 12, tibiae treated with WBV+ALE exhibited a significantly higher Fmax compared to the OVX+VEH group, and a significant difference was also found in energy absorption between the OVX+WBV+ALE and OVX+VEH groups. Conclusions Compared with the WBV, ALE was more effective at preventing bone loss and improved the trabecular architecture. However, WBV enhanced the effect of alendronate in ovariectomized rats by inducing further improvements in trabecular architecture. PMID:24796785

  9. Active vibration control using state space LQG and internal model control methods

    DEFF Research Database (Denmark)

    Mørkholt, Jakob; Elliott, S.J.

    1998-01-01

    Two ways of designing discrete time robust H2-controllers for feedback broadband active vibration control are compared through computer simulations. The methods are based on different models of disturbance and plant transfer functions, but yield controllers with identical properties. Two simple...... ways of introducing robustness into the H2-design are compared, and finally an efficient way of designing a practical IIR-controller is proposed....

  10. Whole-body vibration versus proprioceptive training on postural control in post-menopausal osteopenic women.

    Science.gov (United States)

    Stolzenberg, Nils; Belavý, Daniel L; Rawer, Rainer; Felsenberg, Dieter

    2013-07-01

    To prevent falls in the elderly, especially those with low bone density, is it necessary to maintain muscle coordination and balance. The aim of this study was to examine the effect of classical balance training (BAL) and whole-body vibration training (VIB) on postural control in post-menopausal women with low bone density. Sixty-eight subjects began the study and 57 completed the nine-month intervention program. All subjects performed resistive exercise and were randomized to either the BAL- (N=31) or VIB-group (N=26). The BAL-group performed progressive balance and coordination training and the VIB-group underwent, in total, four minutes of vibration (depending on exercise; 24-26Hz and 4-8mm range) on the Galileo Fitness. Every month, the performance of a single leg stance task on a standard unstable surface (Posturomed) was tested. At baseline and end of the study only, single leg stance, Romberg-stance, semi-tandem-stance and tandem-stance were tested on a ground reaction force platform (Leonardo). The velocity of movement on the Posturomed improved by 28.3 (36.1%) (ppostural control in post-menopausal women with low bone density. The current study could not provide evidence for a significantly different impact of whole-body vibration or balance training on postural control. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. An Overview of Recent Automotive Applications of Active Vibration Control

    National Research Council Canada - National Science Library

    Kowalczyk, K; Svaricek, F; Bohn, C; Karkosch, H

    2004-01-01

    .... Continental has developed and implemented prototypes of active mounting systems on various test vehicles and demonstrated that significant reductions in noise and vibration levels are achievable...

  12. Nonlinear convergence active vibration absorber for single and multiple frequency vibration control

    Science.gov (United States)

    Wang, Xi; Yang, Bintang; Guo, Shufeng; Zhao, Wenqiang

    2017-12-01

    This paper presents a nonlinear convergence algorithm for active dynamic undamped vibration absorber (ADUVA). The damping of absorber is ignored in this algorithm to strengthen the vibration suppressing effect and simplify the algorithm at the same time. The simulation and experimental results indicate that this nonlinear convergence ADUVA can help significantly suppress vibration caused by excitation of both single and multiple frequency. The proposed nonlinear algorithm is composed of equivalent dynamic modeling equations and frequency estimator. Both the single and multiple frequency ADUVA are mathematically imitated by the same mechanical structure with a mass body and a voice coil motor (VCM). The nonlinear convergence estimator is applied to simultaneously satisfy the requirements of fast convergence rate and small steady state frequency error, which are incompatible for linear convergence estimator. The convergence of the nonlinear algorithm is mathematically proofed, and its non-divergent characteristic is theoretically guaranteed. The vibration suppressing experiments demonstrate that the nonlinear ADUVA can accelerate the convergence rate of vibration suppressing and achieve more decrement of oscillation attenuation than the linear ADUVA.

  13. The use of Classical Rolling Pendulum Bearings (CRPB for vibration control of stay-cables

    Directory of Open Access Journals (Sweden)

    Papastergiou Georgia

    2018-01-01

    Full Text Available Cables are efficient structural elements that are used in cable-stayed bridges, suspension bridges and other cable structures. A significant problem which arose from the praxis is the cables’ rain-wind induced vibrations as these cables are subjected to environmental excitations. Rain-wind induced stay-cable vibrations may occur at different cable eigenfrequencies. Large amplitude Rain-Wind-Induced-Vibrations (RWIV of stay cables are a challenging problem in the design of cable-stayed bridges. Several methods, including aerodynamic or structural means, have been investigated in order to control the vibrations of bridge’s stay-cables. The present research focuses on the effectiveness of a movable anchorage system with a Classical Rolling Pendulum Bearing (CRPB device. An analytical model of cable-damper system is developed based on the taut string representation of the cable. The gathered integral-differential equations are solved through the use of the Lagrange transformation. . Finally, a case study with realistic geometrical parameters is also presented to establish the validity of the proposed system.

  14. Self-tuning MIMO disturbance feedforward control for active hard-mounted vibration isolators

    NARCIS (Netherlands)

    Beijen, M.A.; Heertjes, M.F.; van Dijk, J.W.; Hakvoort, W.B.J.

    2018-01-01

    This paper proposes a multi-input multi-output (MIMO) disturbance feedforward controller to improve the rejection of floor vibrations in active vibration isolation systems for high-precision machinery. To minimize loss of performance due to model uncertainties, the feedforward controller is

  15. Prevalence and characteristics of vibrator use by women in the United States: results from a nationally representative study.

    Science.gov (United States)

    Herbenick, Debra; Reece, Michael; Sanders, Stephanie; Dodge, Brian; Ghassemi, Annahita; Fortenberry, J Dennis

    2009-07-01

    Although vibrators are commonly recommended by clinicians as adjunct to treatment for female sexual dysfunction, and for sexual enhancement, little is known about their prevalence or correlates of use. The aim of this study was to determine the lifetime and recent prevalence of women's vibrator use during masturbation and partnered sex, and the correlates of use related to sociodemographic variables, health behaviors, and sexual function. A nationally representative sample of 3,800 women aged 18-60 years were invited to participate in a cross-sectional Internet-based survey; 2,056 (54.1%) participated. The prevalence of vibrator use, the relationship between vibrator use and physical and psychological well-being (as assessed by the Centers for Disease Control and Prevention [CDC] Healthy Days measure) and health-promoting behaviors, the relationship between vibrator use and women's scores on the Female Sexual Function Index, and an assessment of the frequency and severity of side effects potentially associated with vibrator use. The prevalence of women's vibrator use was found to be 52.5% (95% CI 50.3-54.7%). Vibrator users were significantly more likely to have had a gynecologic exam during the past year (P health-promoting behaviors and positive sexual function, and rarely associated with side effects. Clinicians may find these data useful in responding to patients' sexual issues and recommending vibrator use to improve sexual function. Further research on the relationships between vibrator use and sexual health is warranted.

  16. Magnetic suspension motorized spindle-cutting system dynamics analysis and vibration control review

    Directory of Open Access Journals (Sweden)

    Xiaoli QIAO

    2016-10-01

    Full Text Available The performance of high-speed spindle directly determines the development of high-end machine tools. The cutting system's dynamic characteristics and vibration control effect are inseparable with the performance of the spindle,which influence each other, synergistic effect together the cutting efficiency, the surface quality of the workpiece and tool life in machining process. So, the review status on magnetic suspension motorized spindle, magnetic suspension bearing-flexible rotor system dynamics modeling theory and status of active control technology of flexible magnetic suspension motorized spindle rotor vibration are studied, and the problems which present in the magnetic suspension flexible motorized spindle rotor systems are refined, and the development trend of magnetic levitation motorized spindle and the application prospect is forecasted.

  17. Experimental Active Vibration Control in Truss Structures Considering Uncertainties in System Parameters

    Directory of Open Access Journals (Sweden)

    Douglas Domingues Bueno

    2008-01-01

    Full Text Available This paper deals with the study of algorithms for robust active vibration control in flexible structures considering uncertainties in system parameters. It became an area of enormous interest, mainly due to the countless demands of optimal performance in mechanical systems as aircraft, aerospace, and automotive structures. An important and difficult problem for designing active vibration control is to get a representative dynamic model. Generally, this model can be obtained using finite element method (FEM or an identification method using experimental data. Actuators and sensors may affect the dynamics properties of the structure, for instance, electromechanical coupling of piezoelectric material must be considered in FEM formulation for flexible and lightly damping structure. The nonlinearities and uncertainties involved in these structures make it a difficult task, mainly for complex structures as spatial truss structures. On the other hand, by using an identification method, it is possible to obtain the dynamic model represented through a state space realization considering this coupling. This paper proposes an experimental methodology for vibration control in a 3D truss structure using PZT wafer stacks and a robust control algorithm solved by linear matrix inequalities.

  18. MU-SYNTHESIS BASED ACTIVE ROBUST VIBRATION CONTROL OF AN MRI INLET

    Directory of Open Access Journals (Sweden)

    Atta Oveisi

    2016-04-01

    Full Text Available In this paper, a robust control technique based on μ-synthesis is employed in order to investigate the vibration control of a funnel-shaped structure that is used as the inlet of a magnetic resonance imaging (MRI device. MRI devices are widely subjected to the vibration of the magnetic gradient coil which then propagates to acoustic noise and leads to a series of clinical and mechanical problems. In order to address this issue and as a part of noise cancellation study in MRI devices, distributed piezo-transducers are bounded on the top surface of the funnel as functional sensor/actuator modules. Then, a reduced order linear time-invariant (LTI model of the piezolaminated structure in the state-space representation is estimated by means of a predictive error minimization (PEM algorithm as a subspace identification method based on the trust-region-reflective technique. The reduced order model is expanded by the introduction of appropriate frequency-dependent weighting functions that address the unmodeled dynamics and the augmented multiplicative modeling uncertainties of the system. Then, the standard D-K iteration algorithm as an output-feedback control method is used based on the nominal model with the subordinate uncertainty elements from the previous step. Finally, the proposed control system implemented experimentally on the real structure is to evaluate the robust vibration attenuation performance of the closed-loop system.

  19. Performance of active vibration control technology: the ACTEX flight experiments

    Science.gov (United States)

    Nye, T. W.; Manning, R. A.; Qassim, K.

    1999-12-01

    This paper discusses the development and results of two intelligent structures space-flight experiments, each of which could affect architecture designs of future spacecraft. The first, the advanced controls technology experiment I (ACTEX I), is a variable stiffness tripod structure riding as a secondary payload on a classified spacecraft. It has been operating well past its expected life since becoming operational in 1996. Over 60 on-orbit experiments have been run on the ACTEX I flight experiment. These experiments form the basis for in-space controller design problems and for concluding lifetime/reliability data on the active control components. Transfer functions taken during the life of ACTEX I have shown consistent predictability and stability in structural behavior, including consistency with those measurements taken on the ground prior to a three year storage period and the launch event. ACTEX I can change its modal characteristics by employing its dynamic change mechanism that varies preloads in portions of its structure. Active control experiments have demonstrated maximum vibration reductions of 29 dB and 16 dB in the first two variable modes of the system, while operating over a remarkable on-orbit temperature range of -80 °C to 129 °C. The second experiment, ACTEX II, was successfully designed, ground-tested, and integrated on an experimental Department of Defense satellite prior to its loss during a launch vehicle failure in 1995. ACTEX II also had variable modal behavior by virtue of a two-axis gimbal and added challenges of structural flexibility by being a large deployable appendage. Although the loss of ACTEX II did not provide space environment experience, ground testing resulted in space qualifying the hardware and demonstrated 21 dB, 14 dB, and 8 dB reductions in amplitude of the first three primary structural modes. ACTEX II could use either active and/or passive techniques to affect vibration suppression. Both experiments trailblazed

  20. The influence of mechanical vibration on local and central balance control.

    Science.gov (United States)

    Ehsani, Hossein; Mohler, Jane; Marlinski, Vladimir; Rashedi, Ehsan; Toosizadeh, Nima

    2018-04-11

    Fall prevention has an indispensable role in enhancing life expectancy and quality of life among older adults. The first step to prevent falls is to devise reliable methods to identify individuals at high fall risk. The purpose of the current study was to assess alterations in local postural muscle and central sensory balance control mechanisms due to low-frequency externally applied vibration among elders at high fall risk, in comparison with healthy controls, as a potential tool for assessing fall risk. Three groups of participants were recruited: healthy young (n = 10; age = 23 ± 2 years), healthy elders (n = 10; age = 73 ± 3 years), and elders at high fall risk (n = 10; age = 84 ± 9 years). Eyes-open and eyes-closed upright standing balance performance was measured with no vibration, 30 Hz, and 40 Hz vibration of Gastrocnemius muscles. When vibratory stimulation was applied, changes in local-control performance manifested significant differences among the groups (p fall risk participants when compared to healthy young and older adults, respectively. On the other hand, vibration-induced changes in the central-control performance were not significant between groups (p ≥ 0.19). Results suggest that local-control deficits are responsible for balance behavior alterations among elders at high fall risk and healthy individuals. This observation may be attributable to deterioration of short-latency reflexive loop in elders at high fall risk. On the other hand, we could not ascribe the balance alterations to problems related to central nervous system performance or long-latency responses. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Structural and vibrational studies of clean and chemisorbed metal surfaces

    International Nuclear Information System (INIS)

    Jiang, Qing-Tang.

    1992-01-01

    Using Medium Energy Ion Scattering, we have studied the structural and vibrational properties of a number of clean and chemisorbed metal surfaces. The work presented in this thesis is mainly of a fundamental nature. However, it is believed that an atomistic understanding of the forces that affect surface structural and vibrational properties can have a beneficial impact on a large number of areas of applied nature. We find that the surface structure of Cu(001) follows the common trend for metal surfaces, where a small oscillatory relaxation exists beginning with a slight contraction in the top layer. In addition, the surface vibrational amplitude is enhanced (as s usually the case) by ∼80%. A detailed analysis of our data shows an unexpected anisotropy of the vibrational amplitude, such that the out-of-plane vibrational amplitude is 30% smaller than the in-plane vibrational amplitude. The unexpected results may imply a large tensile stress on Cu(001). Upon adsorption of 1/4 of a monolayer of S, a p(2 x 2)-S/Cu(001) surface is created. This submonolayer amount of S atoms makes the surface bulk-like, in which the anisotropy of the surface vibrations is removed and the first interlayer contraction is lifted. By comparing our model to earlier contradictory results on this controversial system. We find excellent agreement with a recent LEED study. The presence of 0.1 monolayer of Ca atoms on the Au(113) surface induces a drastic atomic rearrangements, in which half of the top layer Au atoms are missing and a (1 x 2) symmetry results. In addition, the first interlayer spacing of Au(113) is significantly reduced. Our results are discussed in terms of the energy balance between competing surface electronic charge densities

  2. Transfer matrix method for dynamics modeling and independent modal space vibration control design of linear hybrid multibody system

    Science.gov (United States)

    Rong, Bao; Rui, Xiaoting; Lu, Kun; Tao, Ling; Wang, Guoping; Ni, Xiaojun

    2018-05-01

    In this paper, an efficient method of dynamics modeling and vibration control design of a linear hybrid multibody system (MS) is studied based on the transfer matrix method. The natural vibration characteristics of a linear hybrid MS are solved by using low-order transfer equations. Then, by constructing the brand-new body dynamics equation, augmented operator and augmented eigenvector, the orthogonality of augmented eigenvector of a linear hybrid MS is satisfied, and its state space model expressed in each independent model space is obtained easily. According to this dynamics model, a robust independent modal space-fuzzy controller is designed for vibration control of a general MS, and the genetic optimization of some critical control parameters of fuzzy tuners is also presented. Two illustrative examples are performed, which results show that this method is computationally efficient and with perfect control performance.

  3. Vibration Control of Sandwich Beams Using Electro-Rheological Fluids

    Science.gov (United States)

    Srikantha Phani, A.; Venkatraman, K.

    2003-09-01

    Electro-rheological (ER) fluids are a class of smart materials exhibiting significant reversible changes in their rheological and hence mechanical properties under the influence of an applied electric field. Efforts are in progress to embed ER fluids in various structural elements to mitigate vibration problems. The present work is an experimental investigation of the behaviour of a sandwich beam with ER fluid acting as the core material. A starch-silicone-oil-based ER fluid is used in the present study. Significant improvements in the damping properties are achieved in experiments and the damping contributions by viscous and non-viscous forces are estimated by force-state mapping (FSM) technique. With the increase in electric field across the ER fluid from 0 to 2 kV, an increase of 25-50% in equivalent viscous damping is observed. It is observed that as concentration of starch is increased, the ER effect grows stronger but eventually is overcome by applied stresses.

  4. Active Vibration Suppression of a 3-DOF Flexible Parallel Manipulator Using Efficient Modal Control

    Directory of Open Access Journals (Sweden)

    Quan Zhang

    2014-01-01

    Full Text Available This paper addresses the dynamic modeling and efficient modal control of a planar parallel manipulator (PPM with three flexible linkages actuated by linear ultrasonic motors (LUSM. To achieve active vibration control, multiple lead zirconate titanate (PZT transducers are mounted on the flexible links as vibration sensors and actuators. Based on Lagrange’s equations, the dynamic model of the flexible links is derived with the dynamics of PZT actuators incorporated. Using the assumed mode method (AMM, the elastic motion of the flexible links are discretized under the assumptions of pinned-free boundary conditions, and the assumed mode shapes are validated through experimental modal test. Efficient modal control (EMC, in which the feedback forces in different modes are determined according to the vibration amplitude or energy of their own, is employed to control the PZT actuators to realize active vibration suppression. Modal filters are developed to extract the modal displacements and velocities from the vibration sensors. Numerical simulation and vibration control experiments are conducted to verify the proposed dynamic model and controller. The results show that the EMC method has the capability of suppressing multimode vibration simultaneously, and both the structural and residual vibrations of the flexible links are effectively suppressed using EMC approach.

  5. Acoustic and Vibration Control for an Underwater Structure under Mechanical Excitation

    Directory of Open Access Journals (Sweden)

    Shi-Jian Zhu

    2014-01-01

    Full Text Available Acoustic and vibration control for an underwater structure under mechanical excitation has been investigated by using negative feedback control algorithm. The underwater structure is modeled with cylindrical shells, conical shells, and circular bulkheads, of which the motion equations are built with the variational approach, respectively. Acoustic property is analyzed by the Helmholtz integration formulation with boundary element method. Based on negative feedback control algorithm, a control loop with a coupling use of piezoelectric sensor and actuator is built, and accordingly some numerical examples are carried out on active control of structural vibration and acoustic response. Effects of geometrical and material parameters on acoustic and vibration properties are investigated and discussed.

  6. Design and Vibration Suppression Control of a Modular Elastic Joint

    Directory of Open Access Journals (Sweden)

    Hong Liu

    2018-06-01

    Full Text Available In this paper, a novel mechatronic design philosophy is introduced to develop a compact modular rotary elastic joint for a humanoid manipulator. The designed elastic joint is mainly composed of a brushless direct current (DC motor, harmonic reducer, customized torsional spring, and fail-safe brake. The customized spring considerably reduces the volume of the elastic joint and facilitates the construction of a humanoid manipulator which employs this joint. The large central hole along the joint axis brings convenience for cabling and the fail-safe brake can guarantee safety when the power is off. In order to reduce the computational burden on the central controller and simplify system maintenance, an expandable electrical system, which has a double-layer control structure, is introduced. Furthermore, a robust position controller for the elastic joint is proposed and interpreted in detail. Vibration of the elastic joint is suppressed by means of resonance ratio control (RRC. In this method, the ratio between the resonant and anti-resonant frequency can be arbitrarily designated according to the feedback of the nominal spring torsion. Instead of using an expensive torque sensor, the spring torque can be obtained by calculating the product of spring stiffness and deformation, due to the high linearity of the customized spring. In addition, to improve the system robustness, a motor-side disturbance observer (DOb and an arm-side DOb are employed to estimate and compensate for external disturbances and system uncertainties, such as model variation, friction, and unknown external load. Validity of the DOb-based RRC is demonstrated in the simulation results. Experimental results show the performance of the modular elastic joint and the viability of the proposed controller further.

  7. Piezoelectric actuators in the active vibration control system of journal bearings

    Science.gov (United States)

    Tůma, J.; Šimek, J.; Mahdal, M.; Pawlenka, M.; Wagnerova, R.

    2017-07-01

    The advantage of journal hydrodynamic bearings is high radial load capacity and operation at high speeds. The disadvantage is the excitation of vibrations, called an oil whirl, after crossing a certain threshold of the rotational speed. The mentioned vibrations can be suppressed using the system of the active vibration control with piezoactuators which move the bearing bushing. The motion of the bearing bushing is controlled by a feedback controller, which responds to the change in position of the bearing journal which is sensed by a pair of capacitive sensors. Two stacked linear piezoactuators are used to actuate the position of the bearing journal. This new bearing enables not only to damp vibrations but also serves to maintain the desired bearing journal position with an accuracy of micrometers. The paper will focus on the effect of active vibration control on the performance characteristics of the journal bearing.

  8. Vibration Control of Flexible Mode for a Beam-Type Substrate Transport Robot

    Directory of Open Access Journals (Sweden)

    Cheol Hoon Park

    2013-07-01

    Full Text Available Beam-type substrate transport robots are widely used to handle substrates, especially in the solar cell manufacturing process. To reduce the takt time and increase productivity, accurate position control becomes increasingly important as the size of the substrate increases. However, the vibration caused by the flexible forks in beam-type robots interferes with accurate positioning, which results in long takt times in the manufacturing process. To minimize the vibration and transport substrates on the fork as fast as possible, the trajectories should be prevented from exciting the flexible modes of the forks. For this purpose, a fifth-order polynomial trajectory generator and input shaping were incorporated into the controller of the beam-type robot in this study. The flexible modes of the forks were identified by measuring the frequency response function (FRF, and the input shaping was designed so as not to excite the flexible modes. The controller was implemented by using MATLAB/xPC Target. In this paper, the design procedure of input shaping and its effectiveness for vibration attenuation in both “no load” and “load” cases is presented.

  9. Self-excited vibration control for axially fast excited beam by a time delay state feedback

    International Nuclear Information System (INIS)

    Hamdi, Mustapha; Belhaq, Mohamed

    2009-01-01

    This work examines the control of self-excited vibration of a simply-supported beam subjected to an axially high-frequency excitation. The investigation of the resonant cases are not considered in this paper. The control is implemented via a corrective position feedback with time delay. The objective of this control is to eliminate the undesirable self-excited vibrations with an appropriate choice of parameters. The issue of stability is also addressed in this paper. Using the technique of direct partition of motion, the dynamic of discretized equations is separated into slow and fast components. The multiple scales method is then performed on the slow dynamic to obtain a slow flow for the amplitude and phase. Analysis of this slow flow provides analytical approximations locating regions in parameters space where undesirable self-excited vibration can be eliminated. A numerical study of these regions is performed on the original discretized system and compared to the analytical prediction showing a good agreement.

  10. Studies on Phantom Vibration and Ringing Syndrome among Postgraduate Students

    Directory of Open Access Journals (Sweden)

    Atul Kumar Goyal

    2015-03-01

    Full Text Available Phantom vibrations and ringing of mobile phones are prevalent hallucinations in the general population. They might be considered as a normal brain mechanism. The aim of this study was to establish the prevalence of Phantom vibrations and ringing syndrome among students and to assess factors associated it. The survey of 300 postgraduate students belonging to different field of specialization was conducted at Kurukshetra University. 74% of students were found to have both Phantom vibrations and ringing syndrome. Whereas 17% of students felt Phantom vibration exclusively and 4% students face only Phantom ringing syndrome. Both the syndrome occurs more fervent in students who kept their mobile phone in shirt or jean pocket than to who kept mobile in handbag. 75% of students felt vibration or ringing even when the phone is switched off or phone was not in their pocket. Also the frequency of both the syndrome is directly proportional to the duration of mobile phone use and person emotional behavior. Although most of students agree that the Phantom syndrome did not bother them but some students deals with anxiety when they feel symptoms associated with Phantom syndrome. By using mobile phones in proper way, one can avoid these syndromes, or at least can ameliorate the symptoms.

  11. Performance Study of Diagonally Segmented Piezoelectric Vibration Energy Harvester

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Eun [Catholic Univ. of Daegu, Daegu (Korea, Republic of)

    2013-08-15

    This study proposes a piezoelectric vibration energy harvester composed of two diagonally segmented energy harvesting units. An auxiliary structural unit is attached to the tip of a host structural unit cantilevered to a vibrating base, where the two components have beam axes in opposite directions from each other and matched short-circuit resonant frequencies. Contrary to the usual observations in two resonant frequency-matched structures, the proposed structure shows little eigenfrequency separation and yields a mode sequence change between the first two modes. These lead to maximum power generation around a specific frequency. By using commercial finite element software, it is shown that the magnitude of the output power from the proposed vibration energy harvester can be substantially improved in comparison with those from conventional cantilevered energy harvesters with the same footprint area and magnitude of a tip mass.

  12. Conformational, vibrational, NMR and DFT studies of N-methylacetanilide.

    Science.gov (United States)

    Arjunan, V; Santhanam, R; Rani, T; Rosi, H; Mohan, S

    2013-03-01

    A detailed conformational, vibrational, NMR and DFT studies of N-methylacetanilide have been carried out. In DFT, B3LYP method have been used with 6-31G(**), 6-311++G(**) and cc-pVTZ basis sets. The vibrational frequencies were calculated resulting in IR and Raman frequencies together with intensities and Raman depolarisation ratios. The dipole moment derivatives were computed analytically. Owing to the complexity of the molecule, the potential energy distributions of the vibrational modes of the compound are also calculated. Isoelectronic molecular electrostatic potential surface (MEP) and electron density surface were examined. (1)H and (13)C NMR isotropic chemical shifts were calculated and the assignments made are compared with the experimental values. The energies of important MO's of the compound were also determined from TD-DFT method. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Research on torsional vibration modelling and control of printing cylinder based on particle swarm optimization

    Science.gov (United States)

    Wang, Y. M.; Xu, W. C.; Wu, S. Q.; Chai, C. W.; Liu, X.; Wang, S. H.

    2018-03-01

    The torsional oscillation is the dominant vibration form for the impression cylinder of printing machine (printing cylinder for short), directly restricting the printing speed up and reducing the quality of the prints. In order to reduce torsional vibration, the active control method for the printing cylinder is obtained. Taking the excitation force and moment from the cylinder gap and gripper teeth open & closing cam mechanism as variable parameters, authors establish the dynamic mathematical model of torsional vibration for the printing cylinder. The torsional active control method is based on Particle Swarm Optimization(PSO) algorithm to optimize input parameters for the serve motor. Furthermore, the input torque of the printing cylinder is optimized, and then compared with the numerical simulation results. The conclusions are that torsional vibration active control based on PSO is an availability method to the torsional vibration of printing cylinder.

  14. Self-tuning MIMO disturbance feedforward control for active hard-mounted vibration isolators

    NARCIS (Netherlands)

    Beijen, M.A.; Heertjes, M.F.; Van Dijk, J.; Hakvoort, W. B.J.

    2018-01-01

    © 2017 Elsevier Ltd This paper proposes a multi-input multi-output (MIMO) disturbance feedforward controller to improve the rejection of floor vibrations in active vibration isolation systems for high-precision machinery. To minimize loss of performance due to model uncertainties, the feedforward

  15. Observer-based output-feedback control to eliminate torsional drill-string vibrations

    NARCIS (Netherlands)

    Vromen, T.G.M.; Wouw, van de N.; Doris, A.; Astrid, P.; Nijmeijer, H.

    2014-01-01

    Torsional stick-slip vibrations decrease the performance and reliability of drilling systems used for the exploration of energy and mineral resources. In this work, we present the design of a nonlinear observer-based output-feedback control strategy to eliminate these vibrations. We apply the

  16. Observer based output-feedback control to eliminate rorsional drill-string vibrations

    NARCIS (Netherlands)

    Vromen, T.G.M.; van de Wouw, N.; Doris, A.; Astrid, P.; Nijmeijer, H.

    2014-01-01

    Torsional stick-slip vibrations decrease the performance and reliability of drilling systems used for the exploration of energy and mineral resources. In this work, we present the design of a nonlinear observer-based outputfeedback control strategy to eliminate these vibrations. We apply the

  17. Passive Vibration Control of Existing Structures by Gravity-Loaded Cables

    Science.gov (United States)

    Alvis, E.; Tsang, H. H.; Hashemi, M. J.

    2017-06-01

    Structures with high concentration of mass at or close to the top such as highway bridge piers are vulnerable in earthquakes or accidents. In this paper, a simple and convenient retrofit strategy is proposed for minimizing vibrations and damages, extending service life and preventing collapse of existing structures. The proposed system comprises of tension-only cables secured to the sides of the structure through gravity anchor blocks that are free to move in vertical shafts. The system is installed in such a way that the cables do not induce unnecessary stress on the main structure when there is no lateral motion or vibration. The effectiveness of controlling global structural responses is investigated for tension-only bilinear-elastic behaviour of cables. Results of a realistic case study for a reinforced concrete bridge pier show that response reduction is remarkably well under seismic excitation.

  18. Balanced calibration of resonant shunt circuits for piezoelectric vibration control

    DEFF Research Database (Denmark)

    Høgsberg, Jan; Krenk, Steen

    2012-01-01

    Shunting of piezoelectric transducers and suitable electric circuits constitutes an effective passive approach to resonant vibration damping of structures. Most common design concepts for resonant resistor-inductor (RL) shunt circuits rely on either maximization of the attainable modal damping...

  19. Stability and vibration control in synchrotron light source buildings

    Energy Technology Data Exchange (ETDEWEB)

    Godel, J.B.

    1991-01-01

    Synchrotron light sources have undergone three generations of development in the last two decades. The National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory has two second generation'' storage rings that currently provide the world's most intense sources of photons in the VUV and X-ray spectral ranges. There are almost 90 beam lines serving a community of 2600 scientists from 370 institutions. They are engaged in basic and applied research in physics, chemistry, biology, medicine, materials science and various technologies. When design of the NSLS began in 1977, emphasis was given to the stability of the concrete slab on which the storage rings and experimental beam lines were placed. Stability is the result of controlling: vibration from sources internal and external to the building, thermal effects of air and water temperature variations, foundation settlement and contact between the slab and underlying subsoil. With the advent of new research where highly focused beams of x-rays must be placed on increasingly smaller targets located 35 meters or more from the source, and the development of x-ray lithography with resolutions approaching 0.1 micron at chip exposure stations, even greater attention to stability is required in building designs. This paper will review the results of the successful NSLS experience and give an integrated design approach that includes elements which contribute to instabilities, and the means available to reduce them to acceptable levels.

  20. Stability and vibration control in synchrotron light source buildings

    Energy Technology Data Exchange (ETDEWEB)

    Godel, J.B.

    1991-12-31

    Synchrotron light sources have undergone three generations of development in the last two decades. The National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory has two ``second generation`` storage rings that currently provide the world`s most intense sources of photons in the VUV and X-ray spectral ranges. There are almost 90 beam lines serving a community of 2600 scientists from 370 institutions. They are engaged in basic and applied research in physics, chemistry, biology, medicine, materials science and various technologies. When design of the NSLS began in 1977, emphasis was given to the stability of the concrete slab on which the storage rings and experimental beam lines were placed. Stability is the result of controlling: vibration from sources internal and external to the building, thermal effects of air and water temperature variations, foundation settlement and contact between the slab and underlying subsoil. With the advent of new research where highly focused beams of x-rays must be placed on increasingly smaller targets located 35 meters or more from the source, and the development of x-ray lithography with resolutions approaching 0.1 micron at chip exposure stations, even greater attention to stability is required in building designs. This paper will review the results of the successful NSLS experience and give an integrated design approach that includes elements which contribute to instabilities, and the means available to reduce them to acceptable levels.

  1. Stability and vibration control in synchrotron light source buildings

    International Nuclear Information System (INIS)

    Godel, J.B.

    1991-01-01

    Synchrotron light sources have undergone three generations of development in the last two decades. The National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory has two ''second generation'' storage rings that currently provide the world's most intense sources of photons in the VUV and X-ray spectral ranges. There are almost 90 beam lines serving a community of 2600 scientists from 370 institutions. They are engaged in basic and applied research in physics, chemistry, biology, medicine, materials science and various technologies. When design of the NSLS began in 1977, emphasis was given to the stability of the concrete slab on which the storage rings and experimental beam lines were placed. Stability is the result of controlling: vibration from sources internal and external to the building, thermal effects of air and water temperature variations, foundation settlement and contact between the slab and underlying subsoil. With the advent of new research where highly focused beams of x-rays must be placed on increasingly smaller targets located 35 meters or more from the source, and the development of x-ray lithography with resolutions approaching 0.1 micron at chip exposure stations, even greater attention to stability is required in building designs. This paper will review the results of the successful NSLS experience and give an integrated design approach that includes elements which contribute to instabilities, and the means available to reduce them to acceptable levels

  2. Non-collocated fuzzy logic and input shaping control strategy for elastic joint manipulator: vibration suppression and time response analysis

    Energy Technology Data Exchange (ETDEWEB)

    Rashidifar, Mohammed Amin [Faculty of Mechanical Engineering, Islamic Azad University, SHADEGAN (Iran, Islamic Republic of); Rashidifar, Ali Amin, E-mail: rashidifar_58@yahoo.com [Computer Science, Islamic Azad University, SHADEGAN (Iran, Islamic Republic of)

    2014-07-01

    Conventional model-based control strategies are very complex and difficult to synthesize due to high complexity of the dynamics of robots manipulator considering joint elasticity. This paper presents investigations into the development of hybrid control schemes for trajectory tracking and vibration control of a flexible joint manipulator. To study the effectiveness of the controllers, initially a collocated proportional-derivative (P D)-type Fuzzy Logic Controller (FLC) is developed for tip angular position control of a flexible joint manipulator. This is then extended to incorporate a non-collocated Fuzzy Logic Controller and input shaping scheme for vibration reduction of the flexible joint system. The positive zero-vibration-derivative-derivative (ZVDD) shaper is designed based on the properties of the system. Simulation results of the response of the flexible joint manipulator with the controllers are presented in time and frequency domains. The performances of the hybrid control schemes are examined in terms of input tracking capability, level of vibration reduction and time response specifications. Finally, a comparative assessment of the control techniques is presented and discussed. (Author)

  3. Active vibration control of a full scale aircraft wing using a reconfigurable controller

    Science.gov (United States)

    Prakash, Shashikala; Renjith Kumar, T. G.; Raja, S.; Dwarakanathan, D.; Subramani, H.; Karthikeyan, C.

    2016-01-01

    This work highlights the design of a Reconfigurable Active Vibration Control (AVC) System for aircraft structures using adaptive techniques. The AVC system with a multichannel capability is realized using Filtered-X Least Mean Square algorithm (FxLMS) on Xilinx Virtex-4 Field Programmable Gate Array (FPGA) platform in Very High Speed Integrated Circuits Hardware Description Language, (VHDL). The HDL design is made based on Finite State Machine (FSM) model with Floating point Intellectual Property (IP) cores for arithmetic operations. The use of FPGA facilitates to modify the system parameters even during runtime depending on the changes in user's requirements. The locations of the control actuators are optimized based on dynamic modal strain approach using genetic algorithm (GA). The developed system has been successfully deployed for the AVC testing of the full-scale wing of an all composite two seater transport aircraft. Several closed loop configurations like single channel and multi-channel control have been tested. The experimental results from the studies presented here are very encouraging. They demonstrate the usefulness of the system's reconfigurability for real time applications.

  4. A quality control method by ultrasonic vibration energy and diagnosis system at trimming process

    International Nuclear Information System (INIS)

    Suh, Chang Min; Song, Gil Ho; Pyoun, Young Shik

    2007-01-01

    In this paper, the characteristics in mechanical properties of ultrasonic cold forging treatment (UCFT) used for the trimming knife and the effects of ultrasonic vibration energy (UVE) into the trimming process on the state of the strip cutting face were studied. And a diagnosis system to quality control for trimming knife and strip cutting face was developed and installed in plant. By the plant application of UCFT, service life of knife was more increased over 100% than that of conventional knife and using the developed diagnosis system, the knife breakage and saw ear have been perfectly detected and quality control of trimming face is effectively obtained

  5. A THEORETICAL STUDY AND 3D MODELING OF NONLINEAR PASSIVE VIBRATION ISOLATOR

    OpenAIRE

    Sabyasachi Mukherjee

    2017-01-01

    The study of sound and vibration are closely related. Sound or "pressure waves" are generated by vibrating structures (e.g. vocal cords); these pressure waves can also induce the vibration of structures (e.g. ear drum). Hence, when trying to reduce noise it is often a problem in trying to reduce vibration. The high speed engines and machines when mounted on foundations and supports cause vibrations of excessive amplitude because of unbalance forces setup during their working. These are the di...

  6. Active vibration control of smart hull structure using piezoelectric composite actuators

    International Nuclear Information System (INIS)

    Sohn, Jung Woo; Choi, Seung-Bok; Lee, Chul-Hee

    2009-01-01

    In this paper, active vibration control performance of the smart hull structure with macro-fiber composite (MFC) is evaluated. MFC is an advanced piezoelectric composite which has great flexibility and increased actuating performance compared to a monolithic piezoelectric ceramic patch. The governing equations of motion of the hull structure with MFC actuators are derived based on the classical Donnell–Mushtari shell theory. The actuating model for the interaction between hull structure and MFC is included in the governing equations. Subsequently, modal characteristics are investigated and compared with the results obtained from experiment. The governing equations of the vibration control system are then established and expressed in the state space form. A linear quadratic Gaussian (LQG) control algorithm is designed in order to effectively and actively control the imposed vibration. The controller is experimentally realized and vibration control performances are evaluated

  7. Reduction of the radiating sound of a submerged finite cylindrical shell structure by active vibration control.

    Science.gov (United States)

    Kim, Heung Soo; Sohn, Jung Woo; Jeon, Juncheol; Choi, Seung-Bok

    2013-02-06

    In this work, active vibration control of an underwater cylindrical shell structure was investigated, to suppress structural vibration and structure-borne noise in water. Finite element modeling of the submerged cylindrical shell structure was developed, and experimentally evaluated. Modal reduction was conducted to obtain the reduced system equation for the active feedback control algorithm. Three Macro Fiber Composites (MFCs) were used as actuators and sensors. One MFC was used as an exciter. The optimum control algorithm was designed based on the reduced system equations. The active control performance was then evaluated using the lab scale underwater cylindrical shell structure. Structural vibration and structure-borne noise of the underwater cylindrical shell structure were reduced significantly by activating the optimal controller associated with the MFC actuators. The results provide that active vibration control of the underwater structure is a useful means to reduce structure-borne noise in water.

  8. Reduction of the Radiating Sound of a Submerged Finite Cylindrical Shell Structure by Active Vibration Control

    Directory of Open Access Journals (Sweden)

    Seung-Bok Choi

    2013-02-01

    Full Text Available In this work, active vibration control of an underwater cylindrical shell structure was investigated, to suppress structural vibration and structure-borne noise in water. Finite element modeling of the submerged cylindrical shell structure was developed, and experimentally evaluated. Modal reduction was conducted to obtain the reduced system equation for the active feedback control algorithm. Three Macro Fiber Composites (MFCs were used as actuators and sensors. One MFC was used as an exciter. The optimum control algorithm was designed based on the reduced system equations. The active control performance was then evaluated using the lab scale underwater cylindrical shell structure. Structural vibration and structure-borne noise of the underwater cylindrical shell structure were reduced significantly by activating the optimal controller associated with the MFC actuators. The results provide that active vibration control of the underwater structure is a useful means to reduce structure-borne noise in water.

  9. Density functional theory study of vibrational spectra, and ...

    Indian Academy of Sciences (India)

    The FTIR and FT Raman spectra of dacarbazine were recorded in the regions 4000-400 and 3500-100 cm-1, respectively. The optimized geometry, wavenumber, polarizability and several thermodynamic properties of dacarbazine were studied using ab initio Hartree-Fock, MP2 and DFT methods. A complete vibrational ...

  10. Modal Vibration Control in Periodic Time-Varying Structures with Focus on Rotor Blade Systems

    DEFF Research Database (Denmark)

    Christensen, Rene Hardam; Santos, Ilmar

    2004-01-01

    of active modal controllers. The main aim is to reduce vibrations in periodic time-varying structures. Special emphasis is given to vibration control of coupled bladed rotor systems. A state feedback modal control law is developed based on modal analysis in periodic time-varying structures. The first step...... in the procedure is a transformation of the model into a time-invariant modal form by applying the modal matrices, which are also periodic time-variant. Due to coupled rotor and blade motions complex vibration modes occur in the modal transformed state space model. This implies that the modal transformed model...

  11. Active Vibration Control of Plate Partly Treated with ACLD Using Hybrid Control

    Directory of Open Access Journals (Sweden)

    Dongdong Zhang

    2014-01-01

    Full Text Available A finite element model of plate partly treated with ACLD treatments is developed based on the constitutive equations of elastic, piezoelectric, viscoelastic materials and Hamilton’s principle. The Golla-Hughes-Mctavish (GHM method is employed to describe the frequency-dependent characteristics of viscoelastic material (VEM. A model reduction is completed by using iterative dynamic condensation and balance model reduction method to design an effective control system. The emphasis is concerned on hybrid (combined feedback/feedforward control system to attenuate the vibration of plates with ACLD treatments. The optimal linear quadratic Gaussian (LQG controller is considered as a feedback channel and the adaptive filtered-reference LMS (FxLMS controller is used as a feedforward channel. They can be utilized individually or in a hybrid way to suppress the vibration of plate/ACLD system. The results show that the hybrid controller which combines feedback/feedforward together can reduce the displacement amplitude of plate/ACLD system subjected to a complicated disturbance substantially without requiring more control effort. Furthermore, the hybrid controller has more rapid and stable convergence rate than the adaptive feedforward FxLMS controller. Meanwhile, perfect robustness to phase error of the cancellation path in feedforward controller and the weight matrices in feedback LQG controller is demonstrated in proposed hybrid controller. Therefore, its application in structural engineering can be highly appreciated.

  12. Hybrid Vibration Control under Broadband Excitation and Variable Temperature Using Viscoelastic Neutralizer and Adaptive Feedforward Approach

    Directory of Open Access Journals (Sweden)

    João C. O. Marra

    2016-01-01

    Full Text Available Vibratory phenomena have always surrounded human life. The need for more knowledge and domain of such phenomena increases more and more, especially in the modern society where the human-machine integration becomes closer day after day. In that context, this work deals with the development and practical implementation of a hybrid (passive-active/adaptive vibration control system over a metallic beam excited by a broadband signal and under variable temperature, between 5 and 35°C. Since temperature variations affect directly and considerably the performance of the passive control system, composed of a viscoelastic dynamic vibration neutralizer (also called a viscoelastic dynamic vibration absorber, the associative strategy of using an active-adaptive vibration control system (based on a feedforward approach with the use of the FXLMS algorithm working together with the passive one has shown to be a good option to compensate the neutralizer loss of performance and generally maintain the extended overall level of vibration control. As an additional gain, the association of both vibration control systems (passive and active-adaptive has improved the attenuation of vibration levels. Some key steps matured over years of research on this experimental setup are presented in this paper.

  13. Fractional-order positive position feedback compensator for active vibration control of a smart composite plate

    Science.gov (United States)

    Marinangeli, L.; Alijani, F.; HosseinNia, S. Hassan

    2018-01-01

    In this paper, Active Vibration Control (AVC) of a rectangular carbon fibre composite plate with free edges is presented. The plate is subjected to out-of-plane excitation by a modal vibration exciter and controlled by Macro Fibre Composite (MFC) transducers. Vibration measurements are performed by using a Laser Doppler Vibrometer (LDV) system. A fractional-order Positive Position Feedback (PPF) compensator is proposed, implemented and compared to the standard integer-order PPF. MFC actuator and sensor are positioned on the plate based on maximal modal strain criterion, so as to control the second natural mode of the plate. Both integer and fractional-order PPF allowed for the effective control of the second mode of vibration. However, the newly proposed fractional-order controller is found to be more efficient in achieving the same performance with less actuation voltage. Moreover, it shows promising performance in reducing spillover effect due to uncontrolled modes.

  14. Study on Vibration of Heavy-Precision Robot Cantilever Based on Time-varying Glowworm Swarm Optimization Algorithm

    Science.gov (United States)

    Luo, T. H.; Liang, S.; Miao, C. B.

    2017-12-01

    A method of terminal vibration analysis based on Time-varying Glowworm Swarm Optimization algorithm is proposed in order to solve the problem that terminal vibration of the large flexible robot cantilever under heavy load precision.The robot cantilever of the ballastless track is used as the research target and the natural parameters of the flexible cantilever such as the natural frequency, the load impact and the axial deformation is considered. Taking into account the change of the minimum distance between the glowworm individuals, the terminal vibration response and adaptability could meet. According to the Boltzmann selection mechanism, the dynamic parameters in the motion simulation process are determined, while the influence of the natural frequency and the load impact as well as the axial deformation on the terminal vibration is studied. The method is effective and stable, which is of great theoretical basis for the study of vibration control of flexible cantilever terminal.

  15. Some problems of control of dynamical conditions of technological vibrating machines

    Science.gov (United States)

    Kuznetsov, N. K.; Lapshin, V. L.; Eliseev, A. V.

    2017-10-01

    The possibility of control of dynamical condition of the shakers that are designed for vibration treatment of parts interacting with granular media is discussed. The aim of this article is to develop the methodological basis of technology of creation of mathematical models of shake tables and the development of principles of formation of vibrational fields, estimation of their parameters and control of the structure vibration fields. Approaches to build mathematical models that take into account unilateral constraints, the relationships between elements, with the vibrating surface are developed. Methods intended to construct mathematical model of linear mechanical oscillation systems are used. Small oscillations about the position of static equilibrium are performed. The original method of correction of vibration fields by introduction of the oscillating system additional ties to the structure are proposed. Additional ties are implemented in the form of a mass-inertial device for changing the inertial parameters of the working body of the vibration table by moving the mass-inertial elements. The concept of monitoring the dynamic state of the vibration table based on the original measuring devices is proposed. Estimation for possible changes in dynamic properties is produced. The article is of interest for specialists in the field of creation of vibration technology machines and equipment.

  16. Laser method of acoustical emission control from vibrating surfaces

    Science.gov (United States)

    Motyka, Zbigniew

    2013-01-01

    For limitation of the noise in environment, the necessity occurs of determining and location of sources of sounds emitted from surfaces of many machines and devices, assuring in effect the possibility of suitable constructional changes implementation, targeted at decreasing of their nuisance. In the paper, the results of tests and calculations are presented for plane surface sources emitting acoustic waves. The tests were realized with the use of scanning laser vibrometer which enabled remote registration and the spectral analysis of the surfaces vibrations. The known hybrid digital method developed for determination of sound wave emission from such surfaces divided into small finite elements was slightly modified by distinguishing the phase correlations between such vibrating elements. The final method being developed may find use in wide range of applications for different forms of vibrations of plane surfaces.

  17. Self-Tuning Vibration Control of a Rotational Flexible Timoshenko Arm Using Neural Networks

    Directory of Open Access Journals (Sweden)

    Minoru Sasaki

    2012-01-01

    Full Text Available A self-tuning vibration control of a rotational flexible arm using neural networks is presented. To the self-tuning control system, the control scheme consists of gain tuning neural networks and a variable-gain feedback controller. The neural networks are trained so as to make the root moment zero. In the process, the neural networks learn the optimal gain of the feedback controller. The feedback controller is designed based on Lyapunov's direct method. The feedback control of the vibration of the flexible system is derived by considering the time rate of change of the total energy of the system. This approach has the advantage over the conventional methods in the respect that it allows one to deal directly with the system's partial differential equations without resorting to approximations. Numerical and experimental results for the vibration control of a rotational flexible arm are discussed. It verifies that the proposed control system is effective at controlling flexible dynamical systems.

  18. PAHA study: psychological active and healthy aging: psychological wellbeing, proactive attitude and happiness effects of whole-body vibration versus Multicomponent Training in aged women: study protocol for a randomized controlled trial.

    Science.gov (United States)

    Compare, Angelo; Zarbo, Cristina; Marín, Elena; Meloni, Alessia; Rubio-Arias, Jacobo A; Berengüí, Rosendo; Grossi, Enzo; Shonin, Edo; Martini, Gianmaria; Alcaraz, Pedro E

    2014-05-20

    Evidence demonstrates that physical exercise and psychological wellbeing are closely interlinked, particularly in older-aged women. However, research investigating how different forms of exercise influence mental health in older-aged women is underdeveloped. A randomized controlled trial (N = 300) will assess the relative effectiveness of two different exercise programs (whole-body vibration and Multicomponent Training) for improving psychological wellbeing in older-aged women. The following outcomes will be assessed at three time points (that is, pre, post, and follow-up): psychological wellbeing, proactive attitude, quality of life, and happiness. Results will have important implications for preventing psychological and physiological disease in older-aged women and for managing health-related costs for this population group. Number NCT01966562 on Clinical Gov database the 8 October 2013.

  19. Effect of nonlinearity of connecting dampers on vibration control of connected building structures

    Directory of Open Access Journals (Sweden)

    Masatoshi eKasagi

    2016-01-01

    Full Text Available The connection of two building structures with dampers is one of effective vibration control systems. In this vibration control system, both buildings have to possess different vibration properties in order to provide a higher vibration reduction performance. In addition to such condition of different vibration properties of both buildings, the connecting dampers also play an important role in the vibration control mechanism. In this paper, the effect of nonlinearity of connecting dampers on the vibration control of connected building structures is investigated in detail. A high-damping rubber damper and an oil damper with and without relief mechanism are treated. It is shown that, while the high-damping rubber damper is effective in a rather small deformation level, the linear oil damper is effective in a relatively large deformation level. It is further shown that, while the oil dampers reduce the response in the same phase as the case without dampers, the high-damping rubber dampers change the phase. The merit is that the high-damping rubber can reduce the damper deformation and keep the sufficient space between both buildings. This can mitigate the risk of building pounding.

  20. Simulations and Experiments on Vibration Control of Aerospace Thin-Walled Parts via Preload

    Directory of Open Access Journals (Sweden)

    Qiong Wu

    2017-01-01

    Full Text Available Thin-walled parts primarily comprise the entire piece of rough machining, and the material removal rate can surpass 95%. Numerous components with thin-walled structures are preferred in the aerospace industry for their light weight, high strength, and other advantages. In aerospace thin-walled workpiece machining processes and practical applications, they are excited by the vibration. The preload changing the modal stiffness of the part is found and this change causes continuous changes in the natural frequency. Researching on the influence of pretightening force on dynamic characteristics of thin-walled components is highly significant for controlling vibration. In this study, the typical aviation thin-walled part is the research object. Finite element numerical simulation and experimental verification are employed to analyze the dynamic characteristics of 7075 aluminum alloy thin-walled plates under different preloads for exploring the relationship between natural frequency and preload. The relationship is validated by comparative results. Both the simulation and experimental results show that the natural frequencies of plates increase following the augmentation of the preload. Thus, this research introduces the method where vibration of aerospace thin-walled parts is reduced by preload. For practical engineering application, a program showing the relationship between natural frequency and preload is written using Visual Basic language.

  1. Optimal design of a magneto-rheological brake absorber for torsional vibration control

    International Nuclear Information System (INIS)

    Nguyen, Q H; Choi, S B

    2012-01-01

    This research presents an optimal design of a magneto-rheological (MR) brake absorber for torsional vibration control of a rotating shaft. Firstly, the configuration of an MR brake absorber for torsional vibration control of a rotating shaft system is proposed. Then, the braking torque of the MR brake is derived based on the Bingham plastic model of the MR fluid. By assuming that the behaviour of the MR brake absorber is similar to that of a dry friction torsional damper, the optimal braking torque to control the torsional vibration is determined and validated by simulation. The optimal design problem of the MR brake absorber is then developed and a procedure to solve the optimal problem is proposed. Based on the proposed optimal design procedure, the optimal design of a specific rotating shaft system is performed. Vibration control performance of the shaft system employing the optimized MR brake absorber is then investigated through simulation and discussion on the results is given. (paper)

  2. Vibration reduction methods and techniques for rotorcraft utilizing on-blade active control, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Rotor blades adapted for vibration control have the added benefit of extended blade and rotor life, as well as improved passenger comfort. Approaches that have been...

  3. Piezoelectric Tailoring with Enhanced Electromechanical Coupling for Concurrent Vibration Control of Mistuned Periodic Structures

    National Research Council Canada - National Science Library

    Wang, Kon-Well

    2006-01-01

    The objective of this research is to advance the state of the art of vibration control of mistuned periodic structures utilizing the electromechanical coupling and damping characteristics of piezoelectric networking...

  4. Optimal design of a magneto-rheological brake absorber for torsional vibration control

    Science.gov (United States)

    Nguyen, Q. H.; Choi, S. B.

    2012-02-01

    This research presents an optimal design of a magneto-rheological (MR) brake absorber for torsional vibration control of a rotating shaft. Firstly, the configuration of an MR brake absorber for torsional vibration control of a rotating shaft system is proposed. Then, the braking torque of the MR brake is derived based on the Bingham plastic model of the MR fluid. By assuming that the behaviour of the MR brake absorber is similar to that of a dry friction torsional damper, the optimal braking torque to control the torsional vibration is determined and validated by simulation. The optimal design problem of the MR brake absorber is then developed and a procedure to solve the optimal problem is proposed. Based on the proposed optimal design procedure, the optimal design of a specific rotating shaft system is performed. Vibration control performance of the shaft system employing the optimized MR brake absorber is then investigated through simulation and discussion on the results is given.

  5. Application of a movable active vibration control system on a floating raft

    Science.gov (United States)

    Wang, Zhen; Mak, Cheuk Ming

    2018-02-01

    This paper presents a theoretical study of an inertial actuator connected to an accelerometer by a local feedback loop for active vibration control on a floating raft. On the criterion of the minimum power transmission from the vibratory machines to the flexible foundation in the floating raft, the best mounting positions for the inertial actuator on the intermediate mass of the floating raft are investigated. Simulation results indicate that the best mounting positions for the inertial actuator vary with frequency. To control time-varying excitations of vibratory machines on a floating raft effectively, an automatic control system based on real-time measurement of a cost function and automatically searching the best mounting position of the inertial actuator is proposed. To the best of our knowledge, it is the first time that an automatic control system is proposed to move an actuator automatically for controlling a time-varying excitation.

  6. Response analysis and energy transmissibility of a vibration isolation system with real-power nonlinearities under a NMPPF controller

    International Nuclear Information System (INIS)

    Huang, Dongmei; Xu, Wei; Shi, Lingling

    2016-01-01

    Highlights: • The nonlinear modified positive position feedback (NMPPF) scheme and the real-power form of restoring and damping forces are combined to improve the response performance of a vibration isolation system. • The primary resonance, dynamical stability and energy transmissibility of the real-power vibration isolation system are studied. • The sensitivity of the controller parameters on the responses has been analyzed. • In order to suppress the amplitude peak, the feedback parameters have been determined by the frequency response. • The energy transmissibility is investigated. - Abstract: In this paper, the nonlinear modified positive position feedback (NMPPF) scheme and the real-power form of restoring and damping forces are combined to improve the response performance of a vibration isolation system. Based on the method of multiple scales, the frequency response, the stability and the energy transmissibility of the real-power vibration isolation system are studied. It is found that the controlled isolation system exhibits a softening behavior for sub-linear restoring force, while it exhibits the two peak response characteristic rather than a hardening behavior for over-linear restoring force. Further, the sensitivity of the feedback parameters on the responses is discussed. The results, compared to the conventional PPF and IRC methods, show that the proposed method is significantly more effective in controlling the steady-state response, and slightly advantageous for the steady-state dynamics control. The effectiveness of this method is also verified by time domain analysis. Then, the suitable feedback and controller parameters are derived by simulation results in which the amplitude peak is suppressed and the resonance stability is maintained. Finally, the energy transmissibility of the vibration isolation system is investigated. The results show that the feedback gain can reduce the whole transmissibility level and greatly suppress vibration

  7. AN ADAPTIVE OPTIMAL KALMAN FILTER FOR STOCHASTIC VIBRATION CONTROL SYSTEM WITH UNKNOWN NOISE VARIANCES

    Institute of Scientific and Technical Information of China (English)

    Li Shu; Zhuo Jiashou; Ren Qingwen

    2000-01-01

    In this paper, an optimal criterion is presented for adaptive Kalman filter in a control sys tem with unknown variances of stochastic vibration by constructing a function of noise variances and minimizing the function. We solve the model and measure variances by using DFP optimal method to guarantee the results of Kalman filter to be optimized. Finally, the control of vibration can be implemented by LQG method.

  8. Foreword(Advances in Motion and Vibration Control Technology)

    OpenAIRE

    水野, 毅

    2003-01-01

    A new vibration isolation system using negative stiffness realized by active control technique is proposed in this paper. The serial connection of a normal spring and a suspension system with negative stiffness enables the isolation system to have low stiffness for vibration from the ground and high (theoretically infinite) stiffness against direct disturbance acting on the isolation table. A control method of realizing negative stiffness with a linear actuator is presented in an analytical f...

  9. An Efficient Modal Control Strategy for the Active Vibration Control of a Truss Structure

    Directory of Open Access Journals (Sweden)

    Ricardo Carvalhal

    2007-01-01

    Full Text Available In this paper an efficient modal control strategy is described for the active vibration control of a truss structure. In this approach, a feedback force is applied to each mode to be controlled according to a weighting factor that is determined by assessing how much each mode is excited by the primary source. The strategy is effective provided that the primary source is at a fixed position on the structure, and that the source is stationary in the statistical sense. To test the effectiveness of the control strategy it is compared with an alternative, established approach namely, Independent Modal Space Control (IMSC. Numerical simulations show that with the new strategy it is possible to significantly reduce the control effort required, with a minimal reduction in control performance.

  10. Nonlinear free vibration control of beams using acceleration delayed-feedback control

    International Nuclear Information System (INIS)

    Alhazza, Khaled A; Alajmi, Mohammed; Masoud, Ziyad N

    2008-01-01

    A single-mode delayed-feedback control strategy is developed to reduce the free vibrations of a flexible beam using a piezoelectric actuator. A nonlinear variational model of the beam based on the von Kàrmàn nonlinear type deformations is considered. Using Galerkin's method, the resulting governing partial differential equations of motion are reduced to a system of nonlinear ordinary differential equations. A linear model using the first mode is derived and is used to characterize the damping produced by the controller as a function of the controller's gain and delay. Three-dimensional figures showing the damping magnitude as a function of the controller gain and delay are presented. The characteristic damping of the controller as predicted by the linear model is compared to that calculated using direct long-time integration of a three-mode nonlinear model. Optimal values of the controller gain and delay using both methods are obtained, simulated and compared. To validate the single-mode approximation, numerical simulations are performed using a three-mode full nonlinear model. Results of the simulations demonstrate an excellent controller performance in mitigating the first-mode vibration

  11. Theoretical and Experimental Study on Electromechanical Coupling Properties of Multihammer Synchronous Vibration System

    Directory of Open Access Journals (Sweden)

    Xin Lai

    2016-01-01

    Full Text Available Industrial simulation of real external load using multiple exciting points or increasing exciting force by synchronizing multiple exciting forces requires multiple vibration hammers to be coordinated and work together. Multihammer vibration system which consists of several hammers is a complex electromechanical system with complex electromechanical coupling. In this paper, electromechanical coupling properties of such a multihammer vibration system were studied in detail using theoretical derivation, numerical simulation, and experiment. A kinetic model of multihammer synchronous vibration system was established, and approximate expressions for electromechanical coupling strength were solved using a small parameter periodic averaging method. Basic coupling rules and reasons were obtained. Self-synchronization and frequency hopping phenomenon were also analyzed. Subsequently, numerical simulations were carried out and electromechanical coupling process was obtained for different parameters. Simulation results verify correctness of the proposed model and results. Finally, experiments were carried out, self-synchronization and frequency hopping phenomenon were both observed, and results agree well with theoretical deduction and simulation results. These results provide theoretical foundations for multihammer synchronous vibration system and its synchronous control.

  12. Numerical simulation of 900 MW control rods impact friction vibration and wear

    International Nuclear Information System (INIS)

    Jacquart, G.

    1993-12-01

    Impact-friction vibrations and wear have motivated a great research and development program aiming at understanding the impact and vibration behaviour of these components through experimental and numerical works. This report presents a numerical simulation of the vibrations of a single control rod and of a whole control cluster. Excitation sources for this component are due to hydraulic forces and are situated in the lower part of the rods and in the part of the cluster. Some parametric computations have been carried out on a single rod, to evaluate the effect of the lower excitation source. Different excitation levels, different eccentricities or static forces have been computed and compared to measurements on the MAGALY mock-up representing a complete rod cluster. A numerical model for the complete cluster allowed the evaluation of the upper excitation source effects. This source appears to be less powerful than the lower one. These results have been validated by comparison with MAGALY measurements. At last, some computations were performed with a model of the complete cluster, taking into account the both excitation sources. A parametric study on eccentricity and static forces has been carried out. A comparison with MAGALY measurements seems to be fairly fitting, showing that the numerical results are of the right order of magnitude. Through this numerical study, we have shown that numerical simulation of a complete control rod cluster could be lead, and we have obtained some new informations about impact forces and wear rates that need to be confirmed by more computational or experimental works or in-situ measurements. (author). 10 annexes, 11 refs

  13. Evaluation of an occupational health intervention programme on whole-body vibration in forklift truck drivers: a controlled trial

    NARCIS (Netherlands)

    Hulshof, C. T. J.; Verbeek, J. H. A. M.; Braam, I. T. J.; Bovenzi, M.; van Dijk, F. J. H.

    2006-01-01

    OBJECTIVES: To evaluate process and outcome of a multifaceted occupational health intervention programme on whole-body vibration (WBV) in forklift truck drivers. METHODS: An experimental pretest/post-test control group study design. The authors trained occupational health services (OHS) in the

  14. An Experimental Validated Control Strategy of Maglev Vehicle-Bridge Self-Excited Vibration

    Directory of Open Access Journals (Sweden)

    Lianchun Wang

    2017-01-01

    Full Text Available This study discusses an experimentally validated control strategy of maglev vehicle-bridge vibration, which degrades the stability of the suspension control, deteriorates the ride comfort, and limits the cost of the magnetic levitation system. First, a comparison between the current-loop and magnetic flux feedback is carried out and a minimum model including flexible bridge and electromagnetic levitation system is proposed. Then, advantages and disadvantages of the traditional feedback architecture with the displacement feedback of electromagnet yE and bridge yB in pairs are explored. The results indicate that removing the feedback of the bridge’s displacement yB from the pairs (yE − yB measured by the eddy-current sensor is beneficial for the passivity of the levitation system and the control of the self-excited vibration. In this situation, the signal acquisition of the electromagnet’s displacement yE is discussed for the engineering application. Finally, to validate the effectiveness of the aforementioned control strategy, numerical validations are carried out and the experimental data are provided and analyzed.

  15. Vibration, buckling and smart control of microtubules using piezoelectric nanoshells under electric voltage in thermal environment

    Energy Technology Data Exchange (ETDEWEB)

    Farajpour, A., E-mail: ariobarzan.oderj@gmail.com; Rastgoo, A.; Mohammadi, M.

    2017-03-15

    Piezoelectric nanomaterials such as zinc oxide (ZnO) are of low toxicity and have many biomedical applications including optical imaging, drug delivery, biosensing and harvesting biomechanical energy using hybrid nanogenerators. In this paper, the vibration, buckling and smart control of microtubules (MTs) embedded in an elastic medium in thermal environment using a piezoelectric nanoshell (PNS) are investigated. The MT and PNS are considered to be coupled by a filament network. The PNS is subjected to thermal loads and an external electric voltage which operates to control the mechanical behavior of the MT. Using the nonlocal continuum mechanics, the governing differential equations are derived. An exact solution is presented for simply supported boundary conditions. The differential quadrature method is also used to solve the governing equations for other boundary conditions. A detailed parametric study is conducted to investigate the effects of the elastic constants of surrounding medium and internal filament matrix, scale coefficient, electric voltage, the radius-to-thickness ratio of PNSs and temperature change on the smart control of MTs. It is found that the applied electric voltage can be used as an effective controlling parameter for the vibration and buckling of MTs.

  16. Flight Control of Biomimetic Air Vehicles Using Vibrational Control and Averaging

    Science.gov (United States)

    Tahmasian, Sevak; Woolsey, Craig A.

    2017-08-01

    A combination of vibrational inputs and state feedback is applied to control the flight of a biomimetic air vehicle. First, a control strategy is developed for longitudinal flight, using a quasi-steady aerodynamic model and neglecting wing inertial effects. Vertical and forward motion is controlled by modulating the wings' stroke and feather angles, respectively. Stabilizing control parameter values are determined using the time-averaged dynamic model. Simulations of a system resembling a hawkmoth show that the proposed controller can overcome modeling error associated with the wing inertia and small parameter uncertainties when following a prescribed trajectory. After introducing the approach through an application to longitudinal flight, the control strategy is extended to address flight in three-dimensional space.

  17. Design and vibration control of vehicle engine mount activated by MR fluid and piezoelectric actuator

    Science.gov (United States)

    Lee, D. Y.; Park, Y. K.; Choi, S. B.; Lee, H. G.

    2009-07-01

    An engine is one of the most dominant noise and vibration sources in vehicle systems. Therefore, in order to resolve noise and vibration problems due to engine, various types of engine mounts have been proposed. This work presents a new type of active engine mount system featuring a magneto-rheological (MR) fluid and a piezostack actuator. As a first step, six degrees-of freedom dynamic model of an in-line four-cylinder engine which has three points mounting system is derived by considering the dynamic behaviors of MR mount and piezostack mount. In the configuration of engine mount system, two MR mounts are installed for vibration control of roll mode motion whose energy is very high in low frequency range, while one piezostack mount is installed for vibration control of bounce and pitch mode motion whose energy is relatively high in high frequency range. As a second step, linear quadratic regulator (LQR) controller is synthesized to actively control the imposed vibration. In order to demonstrate the effectiveness of the proposed active engine mount, vibration control performances are evaluated under various engine operating speeds (wide frequency range).

  18. Edgewise vibration control of wind turbine blades using roller and liquid dampers

    DEFF Research Database (Denmark)

    Zhang, Zili; Nielsen, Søren R.K.

    2014-01-01

    suppressing edgewise vibrations. The roller dampers are more volumetrically efficient due to the higher mass density of the steel comparing with the liquid. On the other hand, TLCDs have their advantage that it is easier to specify the optimum damping of the damper by changing the opening ratio of the orifice......This paper deals with the passive vibration control of edgewise vibrations by means of roller dampers and tuned liquid column dampers (TLCDs). For a rotating blade, the large centrifugal acceleration makes it possible to use roller dampers or TLCDs with rather small masses for effectively...

  19. Adaptive Gain Scheduled Semiactive Vibration Control Using a Neural Network

    Directory of Open Access Journals (Sweden)

    Kazuhiko Hiramoto

    2018-01-01

    Full Text Available We propose an adaptive gain scheduled semiactive control method using an artificial neural network for structural systems subject to earthquake disturbance. In order to design a semiactive control system with high control performance against earthquakes with different time and/or frequency properties, multiple semiactive control laws with high performance for each of multiple earthquake disturbances are scheduled with an adaptive manner. Each semiactive control law to be scheduled is designed based on the output emulation approach that has been proposed by the authors. As the adaptive gain scheduling mechanism, we introduce an artificial neural network (ANN. Input signals of the ANN are the measured earthquake disturbance itself, for example, the acceleration, velocity, and displacement. The output of the ANN is the parameter for the scheduling of multiple semiactive control laws each of which has been optimized for a single disturbance. Parameters such as weight and bias in the ANN are optimized by the genetic algorithm (GA. The proposed design method is applied to semiactive control design of a base-isolated building with a semiactive damper. With simulation study, the proposed adaptive gain scheduling method realizes control performance exceeding single semiactive control optimizing the average of the control performance subject to various earthquake disturbances.

  20. Phase and gain control policies for robust active vibration control of flexible structures

    International Nuclear Information System (INIS)

    Zhang, K; Ichchou, M N; Scorletti, G; Mieyeville, F

    2013-01-01

    The interest of this paper is to develop a general and systematic robust control methodology for active vibration control of flexible structures. For this purpose, first phase and gain control policies are proposed to impose qualitative frequency-dependent requirements on the controller to consider a complete set of control objectives. Then the proposed control methodology is developed by employing phase and gain control policies in the dynamic output feedback H ∞  control: according to the set of control objectives, phase and gain control policies incorporate necessary weighting functions and determine them in a rational and systematic way; on the other hand, with the appropriate weighting functions efficient H ∞  control algorithms can automatically realize phase and gain control policies and generate a satisfactory H ∞  controller. The proposed control methodology can be used for both SISO and MIMO systems with collocated or non-collocated sensors and actuators. In this paper, it is validated on a non-collocated piezoelectric cantilever beam. Both numerical simulations and experimental results demonstrate the effectiveness of the proposed control methodology. (paper)

  1. Vibration control and monitoring in nuclear power plants

    International Nuclear Information System (INIS)

    Theodor, P.

    1989-01-01

    Nuclear Power Plants are operated with a computer system support. The computer system for a nuclear power plant is designed to reliably monitor plant parameters and perform a series of operations and calculations designed to allow increased plant operation efficiency. Rotating machinery surveillance methods for the recognition of damage are particularly important in Nuclear Power Plants. Deviation of the vibration behavior from normal conditions is an indicator of the development of incipient faults and can be reliably recognized by the use of vibration monitoring systems. Machinery Condition Monitoring is defined as a method or methods of surveillance designed to recognize changes from a norm and is also a warning or it initiates an automatic shutdown when the changes exceed limiting values or safety limits. This paper reports that it is important to distinguish between surveillance and diagnostics. Whereas the former is necessary for protection, the latter is not generally required until it becomes necessary to identify the source of a known anomaly

  2. Recent development of the passive vibration control method

    Science.gov (United States)

    Ishida, Yukio

    2012-05-01

    This paper introduces new passive vibration suppression methods developed recently in our laboratory. First, two methods used to suppress steady-state resonances are explained. One is the improvement of the efficiency of a ball balancer. A simple method to eliminate the influence of friction of balls and to improve its efficiency is introduced. The other is an effective method that utilizes the discontinuous spring characteristics. Secondly, a method to eliminate unstable ranges in rotor systems is explained. Unstable ranges in an asymmetrical shaft, and in a hollow rotor partially filled with liquid, are eliminated by the discontinuous spring characteristics. Thirdly, a method to suppress self-excited oscillations is explained. Self-excited oscillations due to internal damping and rubbing are discussed. Finally, the methods of using a pendulum or roller type absorbers to suppress torsional vibrations are explained.

  3. Active control of annular flow-induced vibration of axisymmetric elastic beam by the local gap width control

    International Nuclear Information System (INIS)

    Takada, Shoji; Shintani, Atsuhiko; Ito, Tomohiro; Fujita, Katsuhisa

    2011-01-01

    Flow-induced vibration may occur in the structures such as elastic beams subjected to annular flow in the narrow passage. Once the flow-induced vibration occurs, vibration amplitude becomes larger, consequently it causes a lot of troubles such as fatigue or failure in mechanical structures. In this paper, for the purpose to avoid these troubles, the active control of vibration of an axisymmetric elastic beam subjected to annular flow is investigated. An air-pressured actuator is attached on the surface of the circular cylinder for the vibrational control. As the shape of the actuator changes by control, the gap width in narrow passage changes, which causes the change of the fluid pressure. Therefore, the vibration of the fluid-structure coupled system can be suppressed. The fluid-structure coupled equation based on the Euler-Bernoulli type of partial differential equation and the Navier-Stokes equations is analytically derived including control terms. By applying the optimal control law to the coupled system, the unstable behavior is stabilized. The stability of the coupled system is investigated by eigenvalue analyses of controlled coupled equations. Numerical simulations are performed to investigate the efficiency of the proposed control method. (author)

  4. Intelligent control for braking-induced longitudinal vibration responses of floating-type railway bridges

    Science.gov (United States)

    Qu, Wei-Lian; Qin, Shun-Quan; Tu, Jian-Weia; Liu, Jia; Zhou, Qiang; Cheng, Haibin; Pi, Yong-Lin

    2009-12-01

    This paper presents an intelligent control method and its engineering application in the control of braking-induced longitudinal vibration of floating-type railway bridges. Equations of motion for the controlled floating-type railway bridges have been established based on the analysis of the longitudinal vibration responses of floating-type railway bridges to train braking and axle-loads of moving trains. For engineering applications of the developed theory, a full-scale 500 kN smart magnetorheologic (MR) damper has been designed, fabricated and used to carry out experiments on the intelligent control of braking-induced longitudinal vibration. The procedure for using the developed intelligent method in conjunction with the full-scale 500 kN MR dampers has been proposed and used to control the longitudinal vibration responses of the deck of floating-type railway bridges induced by train braking and axle-loads of moving trains. This procedure has been applied to the longitudinal vibration control of the Tian Xingzhou highway and railway cable-stayed bridge over the Yangtze River in China. The simulated results have shown that the intelligent control system using the smart MR dampers can effectively control the longitudinal response of the floating-type railway bridge under excitations of braking and axle-loads of moving trains.

  5. Intelligent control for braking-induced longitudinal vibration responses of floating-type railway bridges

    International Nuclear Information System (INIS)

    Qu, Wei-Lian; Tu, Jian-Weia; Liu, Jia; Zhou, Qiang; Qin, Shun-Quan; Cheng, Haibin; Pi, Yong-Lin

    2009-01-01

    This paper presents an intelligent control method and its engineering application in the control of braking-induced longitudinal vibration of floating-type railway bridges. Equations of motion for the controlled floating-type railway bridges have been established based on the analysis of the longitudinal vibration responses of floating-type railway bridges to train braking and axle-loads of moving trains. For engineering applications of the developed theory, a full-scale 500 kN smart magnetorheologic (MR) damper has been designed, fabricated and used to carry out experiments on the intelligent control of braking-induced longitudinal vibration. The procedure for using the developed intelligent method in conjunction with the full-scale 500 kN MR dampers has been proposed and used to control the longitudinal vibration responses of the deck of floating-type railway bridges induced by train braking and axle-loads of moving trains. This procedure has been applied to the longitudinal vibration control of the Tian Xingzhou highway and railway cable-stayed bridge over the Yangtze River in China. The simulated results have shown that the intelligent control system using the smart MR dampers can effectively control the longitudinal response of the floating-type railway bridge under excitations of braking and axle-loads of moving trains

  6. Seismic isolation floor and vibration control equipment for nuclear power plant

    International Nuclear Information System (INIS)

    Niwa, H.; Fujimoto, S.; Aida, Y.; Miyano, H.

    1996-01-01

    We have developed a seismic isolation floor to improve protection against earthquakes for process computer systems, and a magnetic dynamic damper to reduce the mechanical vibrations of piping systems and pumps in nuclear power plants. Seismic excitation tests of the seismic isolation floor, on which process computer systems were installed, were performed using large earthquake simulators. The test results proved that the seismic isolation floor significantly reduced seismic forces. To control mechanical vibrations, a magnetic dynamic damper was designed using permanent magnets. This magnetic dynamic damper does not require mechanical springs, dampers and supports in the floors and walls of the building. Vibration tests using a rotating machine model confirmed that the magnetic dynamic damper effectively controlled vibrations in such a rotating machine model. (author)

  7. A new online secondary path modeling method for adaptive active structure vibration control

    International Nuclear Information System (INIS)

    Pu, Yuxue; Zhang, Fang; Jiang, Jinhui

    2014-01-01

    This paper proposes a new variable step size FXLMS algorithm with an auxiliary noise power scheduling strategy for online secondary path modeling. The step size for the secondary path modeling filter and the gain of auxiliary noise are varied in accordance with the parameters available directly. The proposed method has a low computational complexity. Computer simulations show that an active vibration control system with the proposed method gives much better vibration attenuation and modeling accuracy at a faster convergence rate than existing methods. National Instruments’ CompactRIO is used as an embedded processor to control simply supported beam vibration. Experimental results indicate that the vibration of the beam has been effectively attenuated. (papers)

  8. A novel approach to enhance the accuracy of vibration control of Frames

    Directory of Open Access Journals (Sweden)

    Toloue Iraj

    2018-01-01

    Full Text Available All structures built within known seismically active regions are typically designed to endure earthquake forces. Despite advances in earthquake resistant structures, it can be inferred from hindsight that no structure is entirely immune to damage from earthquakes. Active vibration control systems, unlike the traditional methods which enlarge beams and columns, are highly effective countermeasures to reduce the effects of earthquake loading on a structure. It requires fast computation of nonlinear structural analysis in near time and has historically demanded advanced programming hosted on powerful computers. This research aims to develop a new approach for active vibration control of frames, which is applicable over both elastic and plastic material behavior. In this study, the Force Analogy Method (FAM, which is based on Hook’s Law is further extended using the Timoshenko element which considers shear deformations to increase the reliability and accuracy of the controller. The proposed algorithm is applied to a 2D portal frame equipped with linear actuator, which is designed based on full state Linear Quadratic Regulator (LQR. For comparison purposes, the portal frame is analysed by both the Euler Bernoulli and Timoshenko element respectively. The results clearly demonstrate the superiority of the Timoshenko element over Euler Bernoulli for application in nonlinear analysis.

  9. Vibration control of buildings by using partial floor loads as multiple tuned mass

    Directory of Open Access Journals (Sweden)

    Tharwat A. Sakr

    2017-08-01

    Full Text Available Tuned mass dampers (TMDs are considered as the most common control devices used for protecting high-rise buildings from vibrations. Because of their simplicity and efficiency, they have found wide practical applications in high-rise buildings around the world. This paper proposes an innovative technique for using partial floor loads as multiple TMDs at limited number of floors. This technique eliminates complications resulting from the addition of huge masses required for response control and maintains the mass of the original structure without any added loads. The effects of using partial loads of limited floors starting from the top as TMDs on the vibration response of buildings to wind and earthquakes are investigated. The effects of applying the proposed technique to buildings with different heights and characteristics are also investigated. A parametric study is carried out to illustrate how the behavior of a building is affected by the number of stories and the portion of the floor utilized as TMDs. Results indicate the effectiveness of the proposed control technique in enhancing the drift, acceleration, and force response of buildings to wind and earthquakes. The response of buildings to wind and earthquakes was observed to be more enhanced by increasing the story-mass ratios and the number of floor utilized as TMDs.

  10. Mathematical Modeling of a Transient Vibration Control Strategy Using a Switchable Mass Stiffness Compound System

    Directory of Open Access Journals (Sweden)

    Diego Francisco Ledezma-Ramirez

    2014-01-01

    Full Text Available A theoretical control strategy for residual vibration control resulting from a shock pulse is studied. The semiactive control strategy is applied in a piecewise linear compound model and involves an on-off logic to connect and disconnect a secondary mass stiffness system from the primary isolation device, with the aim of providing high energy dissipation for lightly damped systems. The compound model is characterized by an energy dissipation mechanism due to the inelastic collision between the two masses and then viscous damping is introduced and its effects are analyzed. The objective of the simulations is to evaluate the transient vibration response in comparison to the results for a passive viscously damped single degree-of-freedom system considered as the benchmark or reference case. Similarly the decay in the compound system is associated with an equivalent decay rate or logarithmic decrement for direct comparison. It is found how the compound system provides improved isolation compared to the passive system, and the damping mechanisms are explained.

  11. A novel approach to enhance the accuracy of vibration control of Frames

    Science.gov (United States)

    Toloue, Iraj; Shahir Liew, Mohd; Harahap, I. S. H.; Lee, H. E.

    2018-03-01

    All structures built within known seismically active regions are typically designed to endure earthquake forces. Despite advances in earthquake resistant structures, it can be inferred from hindsight that no structure is entirely immune to damage from earthquakes. Active vibration control systems, unlike the traditional methods which enlarge beams and columns, are highly effective countermeasures to reduce the effects of earthquake loading on a structure. It requires fast computation of nonlinear structural analysis in near time and has historically demanded advanced programming hosted on powerful computers. This research aims to develop a new approach for active vibration control of frames, which is applicable over both elastic and plastic material behavior. In this study, the Force Analogy Method (FAM), which is based on Hook's Law is further extended using the Timoshenko element which considers shear deformations to increase the reliability and accuracy of the controller. The proposed algorithm is applied to a 2D portal frame equipped with linear actuator, which is designed based on full state Linear Quadratic Regulator (LQR). For comparison purposes, the portal frame is analysed by both the Euler Bernoulli and Timoshenko element respectively. The results clearly demonstrate the superiority of the Timoshenko element over Euler Bernoulli for application in nonlinear analysis.

  12. Vibration control of bridges and buildings hybrid system. Kyoryoter dot tatemono no shindo seigyo hybrid hoshiki

    Energy Technology Data Exchange (ETDEWEB)

    Tanida, K. (Ishikawajima-Harima Heavy Industries Co. Ltd., Tokyo (Japan))

    1991-11-15

    Multistory buildings, suspension bridges, and cable stayed bridges tend to become huge, and technology of controlling their vibration caused by strong winds and earthquakes is becoming an important subject for study. A description is made on a hybrid system which is a combination of the conventional passive system and active system, having merits of both of the systems. Verification test made using a model and an example of application to an actual bridge are introduced. This hybrid control system has been applied to the main tower of the cable stayed bridge on Route 12 of the Tokyo expressway. It is installed and in operation on the top of the tower to improve the workability, and can decrease the vibration of the tower caused by vortical excitation produced during the construction of the main tower. With the hybrid system, the actuator capacity can be reduced to about 1/5 for the similar damping performance to that of the active system with the same mass ratio. In addition, the weight of the equipment can be nearly halved in comparison with the passive system. Moreover, it has such a high safety characteristic as being used as a passive system when power supply is cut off because the controlling force of the system is smaller as compared with the active system. 2 refs., 11 figs.

  13. Vibration control of uncertain multiple launch rocket system using radial basis function neural network

    Science.gov (United States)

    Li, Bo; Rui, Xiaoting

    2018-01-01

    Poor dispersion characteristics of rockets due to the vibration of Multiple Launch Rocket System (MLRS) have always restricted the MLRS development for several decades. Vibration control is a key technique to improve the dispersion characteristics of rockets. For a mechanical system such as MLRS, the major difficulty in designing an appropriate control strategy that can achieve the desired vibration control performance is to guarantee the robustness and stability of the control system under the occurrence of uncertainties and nonlinearities. To approach this problem, a computed torque controller integrated with a radial basis function neural network is proposed to achieve the high-precision vibration control for MLRS. In this paper, the vibration response of a computed torque controlled MLRS is described. The azimuth and elevation mechanisms of the MLRS are driven by permanent magnet synchronous motors and supposed to be rigid. First, the dynamic model of motor-mechanism coupling system is established using Lagrange method and field-oriented control theory. Then, in order to deal with the nonlinearities, a computed torque controller is designed to control the vibration of the MLRS when it is firing a salvo of rockets. Furthermore, to compensate for the lumped uncertainty due to parametric variations and un-modeled dynamics in the design of the computed torque controller, a radial basis function neural network estimator is developed to adapt the uncertainty based on Lyapunov stability theory. Finally, the simulated results demonstrate the effectiveness of the proposed control system and show that the proposed controller is robust with regard to the uncertainty.

  14. VIBRATION REDUCTION ON SINGLE-LINK FLEXIBLE MANIPULATOR USING H∞ CONTROL

    Directory of Open Access Journals (Sweden)

    Roberd Saragih

    2012-06-01

    Full Text Available This paper is concerned with the vibration and position control of a single link flexible manipulator. Robot link manipulators are widely used in various industrial applications. It is desirable to build light weight flexible manipulators. Light flexible manipulators have a variety of applications, most significantly in space exploration,manufacturing automation, construction, mining, and hazardous operation. Timoshenko beam theory is used to derive mathematical model of a flexible manipulator. The dynamic equations of motion are obtained using the Lagrange's formulation of dynamics.The H∞ controller is designed for vibration and position control of the system. Simulations are presented and show that vibration and position control of a single flexible link can be controlled with the designed H∞ controller.

  15. Vibrational spectroscopic studies of Isoleucine by quantum chemical calculations.

    Science.gov (United States)

    Moorthi, P P; Gunasekaran, S; Ramkumaar, G R

    2014-04-24

    In this work, we reported a combined experimental and theoretical study on molecular structure, vibrational spectra and NBO analysis of Isoleucine (2-Amino-3-methylpentanoic acid). The optimized molecular structure, vibrational frequencies, corresponding vibrational assignments, thermodynamics properties, NBO analyses, NMR chemical shifts and ultraviolet-visible spectral interpretation of Isoleucine have been studied by performing MP2 and DFT/cc-pVDZ level of theory. The FTIR, FT-Raman spectra were recorded in the region 4000-400 cm(-1) and 3500-50 cm(-1) respectively. The UV-visible absorption spectra of the compound were recorded in the range of 200-800 nm. Computational calculations at MP2 and B3LYP level with basis set of cc-pVDZ is employed in complete assignments of Isoleucine molecule on the basis of the potential energy distribution (PED) of the vibrational modes, calculated using VEDA-4 program. The calculated wavenumbers are compared with the experimental values. The difference between the observed and calculated wavenumber values of most of the fundamentals is very small. (13)C and (1)H nuclear magnetic resonance chemical shifts of the molecule were calculated using the gauge independent atomic orbital (GIAO) method and compared with experimental results. The formation of hydrogen bond was investigated in terms of the charge density by the NBO calculations. Based on the UV spectra and TD-DFT calculations, the electronic structure and the assignments of the absorption bands were carried out. Besides, molecular electrostatic potential (MEP) were investigated using theoretical calculations. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Finite Element Analysis and Experimental Study on Elbow Vibration Transmission Characteristics

    Science.gov (United States)

    Qing-shan, Dai; Zhen-hai, Zhang; Shi-jian, Zhu

    2017-11-01

    Pipeline system vibration is one of the significant factors leading to the vibration and noise of vessel. Elbow is widely used in the pipeline system. However, the researches about vibration of elbow are little, and there is no systematic study. In this research, we firstly analysed the relationship between elbow vibration transmission characteristics and bending radius by ABAQUS finite element simulation. Then, we conducted the further vibration test to observe the vibration transmission characteristics of different elbows which have the same diameter and different bending radius under different flow velocity. The results of simulation calculation and experiment both showed that the vibration acceleration levels of the pipeline system decreased with the increase of bending radius of the elbow, which was beneficial to reduce the transmission of vibration in the pipeline system. The results could be used as reference for further studies and designs for the low noise installation of pipeline system.

  17. Physical model study of neutron noise induced by vibration of reactor internals

    International Nuclear Information System (INIS)

    Liu Jinhui; Gu Fangyu

    1999-01-01

    The author presents a physical model of neutron noise induced by reactor internals vibration in frequency domain. Based on system control theory, the reactor dynamic equations are coupled with random vibration equation, and non-linear terms are also taken into accounted while treating the random vibration. Experiments carried out on a zero-power reactor show that the model can be used to describe dynamic character of neutron noise induced by internals' vibration. The model establishes a method to help to determine internals'vibration features, and to diagnosis anomalies through neutron noise

  18. Recent Advances In Structural Vibration And Failure Mode Control In Mainland China: Theory, Experiments And Applications

    International Nuclear Information System (INIS)

    Li Hui; Ou Jinping

    2008-01-01

    A number of researchers have been focused on structural vibration control in the past three decades over the world and fruit achievements have been made. This paper introduces the recent advances in structural vibration control including passive, active and semiactive control in mainland China. Additionally, the co-author extends the structural vibration control to failure mode control. The research on the failure mode control is also involved in this paper. For passive control, this paper introduces full scale tests of buckling-restrained braces conducted to investigate the performance of the dampers and the second-editor of the Code of Seismic Design for Buildings. For active control, this paper introduces the HMD system for wind-induced vibration control of the Guangzhou TV tower. For semiactive control, the smart damping devices, algorithms for semi-active control, design methods and applications of semi-active control for structures are introduced in this paper. The failure mode control for bridges is also introduced

  19. Experimental Study on the Measurement of Water Bottom Vibration Induced by Underwater Drilling Blasting

    OpenAIRE

    Wenbin, Gu; Jianghai, Chen; Zhenxiong, Wang; Zhihua, Wang; Jianqing, Liu; Ming, Lu

    2015-01-01

    Due to the lack of proper instrumentations and the difficulties in underwater measurements, the studies about water bottom vibration induced by underwater drilling blasting are seldom reported. In order to investigate the propagation and attenuation laws of blasting induced water bottom vibration, a water bottom vibration monitor was developed with consideration of the difficulties in underwater measurements. By means of this equipment, the actual water bottom vibration induced by underwater ...

  20. Lateral vibration control of a flexible overcritical rotor via an active gas bearing – Theoretical and experimental comparisons

    DEFF Research Database (Denmark)

    Pierart Vásquez, Fabián Gonzalo; Santos, Ilmar

    2016-01-01

    The lack of damping of radial gas bearings leads to high vibration levels of a rotor supported by this type of bearing when crossing resonant areas. This is even more relevant for flexible rotors, as studied in this work. In order to reduce these high vibration levels, an active gas bearing...... is proposed. The control action of this active bearing is selected based on two different strategies: a simple proportional integral derivative controller and an optimal controller. Both controllers are designed based on a theoretical model previously presented. The dynamics of the flexible rotor are modelled......-based controllers are compared against experimental results, showing good agreement. Theoretical and experimental results show a significant increase in the damping ratio of the system, enabling the flexible rotor to run safely across the critical speeds and up to 12,000rev/min, i.e. 50 percent over the second...

  1. Optimal placement and decentralized robust vibration control for spacecraft smart solar panel structures

    International Nuclear Information System (INIS)

    Jiang, Jian-ping; Li, Dong-xu

    2010-01-01

    The decentralized robust vibration control with collocated piezoelectric actuator and strain sensor pairs is considered in this paper for spacecraft solar panel structures. Each actuator is driven individually by the output of the corresponding sensor so that only local feedback control is implemented, with each actuator, sensor and controller operating independently. Firstly, an optimal placement method for the location of the collocated piezoelectric actuator and strain gauge sensor pairs is developed based on the degree of observability and controllability indices for solar panel structures. Secondly, a decentralized robust H ∞ controller is designed to suppress the vibration induced by external disturbance. Finally, a numerical comparison between centralized and decentralized control systems is performed in order to investigate their effectiveness to suppress vibration of the smart solar panel. The simulation results show that the vibration can be significantly suppressed with permitted actuator voltages by the controllers. The decentralized control system almost has the same disturbance attenuation level as the centralized control system with a bit higher control voltages. More importantly, the decentralized controller composed of four three-order systems is a better practical implementation than a high-order centralized controller is

  2. A hierarchically structured identification- and classification method for vibration control of reactor components

    International Nuclear Information System (INIS)

    Saedtler, E.

    1981-01-01

    The method for controlling the vibrating behaviour of primary circuit components or for a general systems control is a combination of methods of the statistic systems theory, optimum filter theory, statistic decision theory and of the pattern recognition method. It is appropriate for automatic control of complex systems and stochastic events. (DG) [de

  3. Theoretical investigation of the neutron noise diagnostics of two-dimensional control rod vibrations in a PWR

    International Nuclear Information System (INIS)

    Pazsit, I.; Analytis, G.T.

    1980-01-01

    In order to develop a method for monitoring control rod vibrations by neutron noise measurements, the noise induced by two-dimensional vibrations of control elements is investigated. The two-dimensional Green's function relating the small stochastic cross-section fluctuations to the neutron noise is determined for a rectangular slab reactor in the modified one-group theory, and subsequently, the neutron response to two-dimensional vibrating noise sources is investigated. Two possible diagnostical applications are considered: (a) the reconstruction of the mechanical trajectory of the vibrating element by neutron noise measurements, and (b) the possibility of locating the vibrating element in the core. (author)

  4. A Study on the Vibration Measurement and Analysis of Rotating Machine Foundations

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Rim; Jeon, Kyu Sik; Suh, Young Pyo; Cho, Chul Hwan; Kim, Sung Taeg; Lee, Myung Kyu [Korea Electric Power Research Institute, Taejon (Korea, Republic of)

    1996-12-31

    To search for the cause of vibration problem of rotating machine in the power plant, first the rotating machine is classified according to their type and each vibration characteristic is reviewed. The criteria for the evaluation of mechanical vibration effect on the structure and human being during the design of machine foundation is described below. The foundation of rotating machine is classified according to its shape and some factors are described which should be considered during dynamic modeling analysis for its correct result. Also the methods of incorporating foundation vibration into mechanical vibration analysis are reviewed. Type of vibration measurement and analysis which is used to find out the dynamic characteristic of structure is described in accordance with its signal processing and measuring method. Measurement of vibration and its analysis when there occurs real vibration troubles in power plant are compared with the results of numerical modeling as case studies. (author). 16 refs., 23 figs.

  5. The combined effect of Parathyroid hormone (1-34) and whole-body Vibration exercise in the treatment of OSteoporosis (PaVOS)- study protocol for a randomized controlled trial

    DEFF Research Database (Denmark)

    Jepsen, Ditte Beck; Ryg, Jesper; Jørgensen, Niklas Rye

    2018-01-01

    Background: PaVOS is a randomized controlled trial (RCT) which aims to address the use of whole-body vibration exercise (WBV) in combination with parathyroid hormone 1-34 fragment teriparatide (PTH 1-34) treatment in patients with osteoporosis. PTH 1-34 is an effective but expensive anabolic...... fracture risk. Methods/design: PaVOS is a multicenter, assessor-blinded, superiority, two-armed randomized controlled trial (RCT). Postmenopausal women (n = 40, aged 50 years and older) starting taking PTH 1-34 from outpatient clinics will be randomized and assigned to a PTH 1-34 + WBV-exercise group...... (intervention group), or a PTH 1-34-alone group (control group). The intervention group will undergo WBV three sessions a week (12 min each, including 1:1 ratio of exercise: rest, 30 Hz, 1 mm amplitude) for a 12-month intervention period. Both the intervention and the control group will receive PTH 1...

  6. Vibrations measurement in fast and PWR reactor study

    International Nuclear Information System (INIS)

    Tigeot, Y.; Epstein, A.; Hareux, F.

    1975-01-01

    In the past severe damages have occured in several nuclear reactors, by structural vibrations induced by the primary cooling flow. To avoid this kind of troubles, the SEMT makes studies for two different types of reactors. For the light pressurized water reactors, some tests have been made on the SAFRAN test loop which is a three loop 1/8 scale internal model of a 900 MWe reactor. This study is actually undertaken jointly with Framatome. Elsewhere, measurements have been made on the Phenix fast breeder sodium reactor, and studies are planned for the Super Phenix reactor [fr

  7. Linear response properties required to simulate vibrational spectra of biomolecules in various media: (R)-phenyloxirane (A comparative theoretical and spectroscopic vibrational study)

    DEFF Research Database (Denmark)

    Jalkanen, Karl J.; Jürgensen, Vibeke Würtz; Degtyarenko, I.M.

    2005-01-01

    We here present a combined VA, VCD, Raman and ROA vibrational study of phenyloxirane. We have simulated the vibrational absorption (VA), also called IR, vibrational circular dichroism (VCD), Raman scattering and Raman optical activity (ROA) intensities utilizing the density functional theory (DFT...

  8. Can Internal Conversion BE Controlled by Mode-Specific Vibrational Excitation in Polyatomic Molecules

    Science.gov (United States)

    Portnov, Alexander; Epshtein, Michael; Bar, Ilana

    2017-06-01

    Nonadiabatic processes, dominated by dynamic passage of reactive fluxes through conical intersections (CIs) are considered to be appealing means for manipulating reaction paths. One approach that is considered to be effective in controlling the course of dissociation processes is the selective excitation of vibrational modes containing a considerable component of motion. Here, we have chosen to study the predissociation of the model test molecule, methylamine and its deuterated isotopologues, excited to well-characterized quantum states on the first excited electronic state, S_{1}, by following the N-H(D) bond fission dynamics through sensitive H(D) photofragment probing. The branching ratios between slow and fast H(D) photofragments, the internal energies of their counter radical photofragments and the anisotropy parameters for fast H photofragments, confirm correlated anomalies for predissociation initiated from specific rovibronic states, reflecting the existence of a dynamic resonance in each molecule. This resonance strongly depends on the energy of the initially excited rovibronic states, the evolving vibrational mode on the repulsive S_{1} part during N-H(D) bond elongation, and the manipulated passage through the CI that leads to radicals excited with C-N-H(D) bending and preferential perpendicular bond breaking, relative to the photolyzing laser polarization, in molecules containing the NH_{2} group. The indicated resonance plays an important role in the bifurcation dynamics at the CI and can be foreseen to exist in other photoinitiated processes and to control their outcome.

  9. A broadband frequency-tunable dynamic absorber for the vibration control of structures

    International Nuclear Information System (INIS)

    Komatsuzaki, T; Inoue, T; Terashima, O

    2016-01-01

    A passive-type dynamic vibration absorber (DVA) is basically a mass-spring system that suppresses the vibration of a structure at a particular frequency. Since the natural frequency of the DVA is usually tuned to a frequency of particular excitation, the DVA is especially effective when the excitation frequency is close to the natural frequency of the structure. Fixing the physical properties of the DVA limits the application to a narrowband, harmonically excited vibration problem. A frequency-tunable DVA that can modulate its stiffness provides adaptability to the vibration control device against non-stationary disturbances. In this paper, we suggest a broadband frequency-tunable DVA whose natural frequency can be extended by 300% to the nominal value using the magnetorheological elastomers (MREs). The frequency adjustability of the proposed absorber is first shown. The real-time vibration control performance of the frequency-tunable absorber for an acoustically excited plate having multiple resonant peaks is then evaluated. Investigations show that the vibration of the structure can be effectively reduced with an improved performance by the DVA in comparison to the conventional passive- type absorber. (paper)

  10. Active twist control methodology for vibration reduction of a helicopter with dissimilar rotor system

    International Nuclear Information System (INIS)

    Pawar, Prashant M; Jung, Sung Nam

    2009-01-01

    In this work, an active vibration reduction of hingeless composite rotor blades with dissimilarity is investigated using the active twist concept and the optimal control theory. The induced shear strain on the actuation mechanism by the piezoelectric constant d 15 from the PZN–8% PT-based single-crystal material is used to achieve more active twisting to suppress the extra vibrations. The optimal control algorithm is based on the minimization of an objective function comprised of quadratic functions of vibratory hub loads and voltage control harmonics. The blade-to-blade dissimilarity is modeled using the stiffness degradation of composite blades. The optimal controller is applied to various possible dissimilarities arising from different damage patterns of composite blades. The governing equations of motion are derived using Hamilton's principle. The effects of composite materials and smart actuators are incorporated into the comprehensive aeroelastic analysis system. Numerical results showing the impact of addressing the blade dissimilarities on hub vibrations and voltage inputs required to suppress the vibrations are demonstrated. It is observed that all vibratory shear forces are reduced considerably and the major harmonics of moments are reduced significantly. However, the controller needs further improvement to suppress 1/rev moment loads. A mechanism to achieve vibration reduction for the dissimilar rotor system has also been identified

  11. Active twist control methodology for vibration reduction of a helicopter with dissimilar rotor system

    Science.gov (United States)

    Pawar, Prashant M.; Jung, Sung Nam

    2009-03-01

    In this work, an active vibration reduction of hingeless composite rotor blades with dissimilarity is investigated using the active twist concept and the optimal control theory. The induced shear strain on the actuation mechanism by the piezoelectric constant d15 from the PZN-8% PT-based single-crystal material is used to achieve more active twisting to suppress the extra vibrations. The optimal control algorithm is based on the minimization of an objective function comprised of quadratic functions of vibratory hub loads and voltage control harmonics. The blade-to-blade dissimilarity is modeled using the stiffness degradation of composite blades. The optimal controller is applied to various possible dissimilarities arising from different damage patterns of composite blades. The governing equations of motion are derived using Hamilton's principle. The effects of composite materials and smart actuators are incorporated into the comprehensive aeroelastic analysis system. Numerical results showing the impact of addressing the blade dissimilarities on hub vibrations and voltage inputs required to suppress the vibrations are demonstrated. It is observed that all vibratory shear forces are reduced considerably and the major harmonics of moments are reduced significantly. However, the controller needs further improvement to suppress 1/rev moment loads. A mechanism to achieve vibration reduction for the dissimilar rotor system has also been identified.

  12. Fixed-Order Mixed Norm Designs for Building Vibration Control

    Science.gov (United States)

    Whorton, Mark S.; Calise, Anthony J.

    2000-01-01

    This study investigates the use of H2, mu-synthesis, and mixed H2/mu methods to construct full order controllers and optimized controllers of fixed dimensions. The benchmark problem definition is first extended to include uncertainty within the controller bandwidth in the form of parametric uncertainty representative of uncertainty in the natural frequencies of the design model. The sensitivity of H2 design to unmodeled dynamics and parametric uncertainty is evaluated for a range of controller levels of authority. Next, mu-synthesis methods are applied to design full order compensators that are robust to both unmodeled dynamics and to parametric uncertainty. Finally, a set of mixed H2/mu compensators are designed which are optimized for a fixed compensator dimension. These mixed norm designs recover the H2 design performance levels while providing the same levels of robust stability as the mu designs. It is shown that designing with the mixed norm approach permits higher levels of controller authority for which the H2 designs are destabilizing. The benchmark problem is that of an active tendon system. The controller designs are all based on the use of acceleration feedback.

  13. Active Vibration Control for Helicopter Interior Noise Reduction Using Power Minimization

    Science.gov (United States)

    Mendoza, J.; Chevva, K.; Sun, F.; Blanc, A.; Kim, S. B.

    2014-01-01

    This report describes work performed by United Technologies Research Center (UTRC) for NASA Langley Research Center (LaRC) under Contract NNL11AA06C. The objective of this program is to develop technology to reduce helicopter interior noise resulting from multiple gear meshing frequencies. A novel active vibration control approach called Minimum Actuation Power (MAP) is developed. MAP is an optimal control strategy that minimizes the total input power into a structure by monitoring and varying the input power of controlling sources. MAP control was implemented without explicit knowledge of the phasing and magnitude of the excitation sources by driving the real part of the input power from the controlling sources to zero. It is shown that this occurs when the total mechanical input power from the excitation and controlling sources is a minimum. MAP theory is developed for multiple excitation sources with arbitrary relative phasing for single or multiple discrete frequencies and controlled by a single or multiple controlling sources. Simulations and experimental results demonstrate the feasibility of MAP for structural vibration reduction of a realistic rotorcraft interior structure. MAP control resulted in significant average global vibration reduction of a single frequency and multiple frequency excitations with one controlling actuator. Simulations also demonstrate the potential effectiveness of the observed vibration reductions on interior radiated noise.

  14. Vibration control of an elastic strip by a singular force

    Indian Academy of Sciences (India)

    strip are changed by applying a lateral concentrated force to the plate. ... Predicting resonance frequency of plates is an important technological and scientific ... Ritz methods in a number of studies pertaining to control of flutter in aerospace ..... Bingham B, Atalla M J, Hagood N W 2001 Comparison of structural-acoustic ...

  15. Nonlinear dissipative devices in structural vibration control: A review

    Science.gov (United States)

    Lu, Zheng; Wang, Zixin; Zhou, Ying; Lu, Xilin

    2018-06-01

    Structural vibration is a common phenomenon existing in various engineering fields such as machinery, aerospace, and civil engineering. It should be noted that the effective suppression of structural vibration is conducive to enhancing machine performance, prolonging the service life of devices, and promoting the safety and comfort of structures. Conventional linear energy dissipative devices (linear dampers) are largely restricted for wider application owing to their low performance under certain conditions, such as the detuning effect of tuned mass dampers subjected to nonstationary excitations and the excessively large forces generated in linear viscous dampers at high velocities. Recently, nonlinear energy dissipative devices (nonlinear dampers) with broadband response and high robustness are being increasingly used in practical engineering. At the present stage, nonlinear dampers can be classified into three groups, namely nonlinear stiffness dampers, nonlinear-stiffness nonlinear-damping dampers, and nonlinear damping dampers. Corresponding to each nonlinear group, three types of nonlinear dampers that are widely utilized in practical engineering are reviewed in this paper: the nonlinear energy sink (NES), particle impact damper (PID), and nonlinear viscous damper (NVD), respectively. The basic concepts, research status, engineering applications, and design approaches of these three types of nonlinear dampers are summarized. A comparison between their advantages and disadvantages in practical engineering applications is also conducted, to provide a reference source for practical applications and new research.

  16. Vibration control of an artificial muscle manipulator with a magnetorheological fluid brake

    Science.gov (United States)

    Tomori, H.; Midorikawa, Y.; Nakamura, T.

    2013-02-01

    Recently, proposed applications of robots require them to contact human safely. Therefore, we focus on pneumatic rubber artificial muscle. This actuator is flexible, light, and has high-power density. However, because the artificial muscle is flexible, it vibrates when there is a high load. Therefore, we paid attention to the magnetorheological (MR) fluid. We propose a control method of the MR brake considering energy of the manipulator system. By this control method, MR brake dissipates energy leading to vibration of the manipulator. In this paper, we calculated the energy and controlled the MR brake. And, we deliberated the proposal method by simulation using the dynamic model of the manipulator, and experiment.

  17. Studies on flow induced vibration of reactivity devices of 700 MWe Indian PHWR

    Energy Technology Data Exchange (ETDEWEB)

    Prabhakaran, K.M., E-mail: kmprabha@yahoo.com [Reactor Safety Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Goyal, P.; Dutta, Anu; Bhasin, V.; Vaze, K.K.; Ghosh, A.K. [Reactor Safety Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Pillai, Ajith V.; Mathew, Jimmy [Nuclear Power Corporation of India Ltd., Mumbai 400 094 (India)

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer FIV studies on internals of heavy water filled calandria of 700 MWe Indian PHWR is presented. Black-Right-Pointing-Pointer This includes CFD and structural dynamic analysis to predict the dynamic behavior of component lying inside calandria. Black-Right-Pointing-Pointer Results of these calculations as well as conclusions from this investigation are presented. Black-Right-Pointing-Pointer It is established that FIV is not a concern in the present design of calandria internals. - Abstract: Component failures due to excessive flow-induced vibration are still affecting the performance and reliability of nuclear power stations. Tube failures due to fretting-wear in nuclear steam generators, and vibration related damage of reactor internals are of particular concern. In the Indian nuclear industry, flow induced vibrations are assessed early in the design process and the results are incorporated in the design procedures. In this paper the details of flow induced vibration studies on internals like liquid zone control unit and poison injection units of heavy water filled calandria of 700 MWe Indian pressurized heavy water reactor is given. This includes computational fluid dynamics studies from which the velocities are extracted for the components lying inside the calandria. With these velocities as input, further studies are performed to predict the dynamic behavior of these components. Results of these calculations as well as conclusions derived from this investigation are presented. Based on the studies it has been established that flow induced vibration is not a concern in the present design of 700 MWe calandria internals.

  18. Experimental Study on the Measurement of Water Bottom Vibration Induced by Underwater Drilling Blasting

    Directory of Open Access Journals (Sweden)

    Gu Wenbin

    2015-01-01

    Full Text Available Due to the lack of proper instrumentations and the difficulties in underwater measurements, the studies about water bottom vibration induced by underwater drilling blasting are seldom reported. In order to investigate the propagation and attenuation laws of blasting induced water bottom vibration, a water bottom vibration monitor was developed with consideration of the difficulties in underwater measurements. By means of this equipment, the actual water bottom vibration induced by underwater drilling blasting was measured in a field experiment. It shows that the water bottom vibration monitor could collect vibration signals quite effectively in underwater environments. The followed signal analysis shows that the characteristics of water bottom vibration and land ground vibration induced by the same underwater drilling blasting are quite different due to the different geological environments. The amplitude and frequency band of water bottom vibration both exceed those of land ground vibration. Water bottom vibration is mainly in low-frequency band that induced by blasting impact directly acts on rock. Besides the low-frequency component, land vibration contains another higher frequency band component that induced by followed water hammer wave acts on bank slope.

  19. Whole-Body Vibration Does Not Seem to Affect Postural Control in Healthy Active Older Women

    Directory of Open Access Journals (Sweden)

    P. S. C. Gomes

    2018-01-01

    Full Text Available Objective. This study investigated the acute residual effects induced by different frequencies of whole-body vibration (WBV on postural control of elderly women. Design. Thirty physically active elderly women (67±5 years were randomly divided into three groups: two experimental groups (high WBV frequency: 45 Hz and 4 mm amplitude, n=10; low WBV frequency: 30 Hz and 4 mm amplitude, n=10 and one control group (n=10, with no treatment. The participants were first subjected to stabilometry tests and were then guided through three sets of isometric partial squats for 60 s while the WBV stimulation was applied. The control group was subjected to the same conditions but without the WBV stimulation. The participants were again subjected to body balance tests immediately following the end of the intervention period and again at 8, 16, and 24 min. To measure body sway control, three 60 s tests were performed at 10 s intervals for each of the following experimental conditions: (1 eyes opened and (2 eyes closed. The following variables were investigated: the average velocity of the displacement of the centre of pressure in the anterior-posterior and medial-lateral planes as well as in the elliptical area. Results. A 3 (condition × 5 (test two-way repeated-measures ANOVA did not identify significant differences in the stabilometric variables, regardless of group, time, or experimental condition. Conclusions. The effect of WBV, regardless of the stimulation frequency, did not have a significant effect immediately after or up to 24 minutes after vibration cessation, on the variables involved in the control of postural stability in physically active elderly women.

  20. Compliant liquid column damper modified by shape memory alloy device for seismic vibration control

    International Nuclear Information System (INIS)

    Gur, Sourav; Mishra, Sudib Kumar; Bhowmick, Sutanu; Chakraborty, Subrata

    2014-01-01

    Liquid column dampers (LCDs) have long been used for the seismic vibration control of flexible structures. In contrast, tuning LCDs to short-period structures poses difficulty. Various modifications have been proposed on the original LCD configuration for improving its performance in relatively stiff structures. One such system, referred to as a compliant-LCD has been proposed recently by connecting the LCD to the structure with a spring. In this study, an improvement is attempted in compliant LCDs by replacing the linear spring with a spring made of shape memory alloy (SMA). Considering the dissipative, super-elastic, force-deformation hysteresis of SMA triggered by stress-induced micro-structural phase transition, the performance is expected to improve further. The optimum parameters for the SMA-compliant LCD are obtained through design optimization, which is based on a nonlinear random vibration response analysis via stochastic linearization of the force-deformation hysteresis of SMA and dissipation by liquid motion through an orifice. Substantially enhanced performance of the SMA–LCD over a conventional compliant LCD is demonstrated, the consistency of which is further verified under recorded ground motions. The robustness of the improved performance is also validated by parametric study concerning the anticipated variations in system parameters as well as variability in seismic loading. (paper)

  1. Performance studies of the vibration wire monitor on the test stand with low energy electron beam

    International Nuclear Information System (INIS)

    Okabe, Kota; Yoshimoto, Masahiro; Kinsho, Michikazu

    2015-01-01

    In the high intensity proton accelerator as the Japan Proton Accelerator Research Complex (J-PARC) accelerators, serious radiation and residual dose is induced by a small beam loss such a beam halo. Therefore, diagnostics of the beam halo formation is one of the most important issues to control the beam loss. For the beam halo monitor, the vibration wire monitor (VWM) has a potential for investigating the beam halo and weak beam scanning. The VWM has a wide dynamic range, high resolution and the VWM is not susceptible to secondary electrons and electric noises. We have studied the VWM features as a new beam-halo monitor on the test stand with low energy electron gun. The frequency shift of the irradiated vibration wire was confirmed about wire material and the electron beam profile measured by using the VWM was consistent with the results of the Faraday cup measurement. Also we calculated a temperature distribution on the vibration wire which is irradiated by the electron beam with the numerical simulation. The simulations have been fairly successful in reproducing the transient of the irradiated vibration wire frequency measured by test stand experiments. In this paper, we will report a result of performance evaluation for the VWM on the test stands and discuss the VWM for beam halo diagnostic. (author)

  2. Application of Time Delay Consideration on Bridge Vibration Control Method with Active Tendons

    Directory of Open Access Journals (Sweden)

    Lezin Seba MINSILI

    2010-12-01

    Full Text Available For many years bridge structures have been designed or constructed as passive structures that rely on their mass and solidity to resist external forces, while being incapable of adapting to the dynamics of an ever-changing environment. When the rigidity assumption is not met in particular for high-rise structures like bridge towers, a proper dynamic model should be established and conclusions made on the differential vibration of the tower when it is investigated out of the bridge system. The present work outlines a vibration control method by tendons on the tower of cable supported structures considering time delay effects, based on the discrete-time Linearization of the Feedback Gain Matrix. The efficiency of this vibration control method first proposed on the design process of a local bridge in Cameroon, is more compatible to the control of civil structures and is of great interest in accordance with simulation results.

  3. Vibrational motions in rotating nuclei studied by Coulomb excitations

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Yoshifumi R [Kyushu Univ., Fukuoka (Japan). Dept. of Physics

    1998-03-01

    As is well-known Coulomb excitation is an excellent tool to study the nuclear collective motions. Especially the vibrational excitations in rotating nuclei, which are rather difficult to access by usual heavy-ion fusion reactions, can be investigated in detail. Combined with the famous 8{pi}-Spectrometer, which was one of the best {gamma}-ray detector and had discovered some of superdeformed bands, such Coulomb excitation experiments had been carried out at Chalk River laboratory just before it`s shutdown of physics division. In this meeting some of the experimental data are presented and compared with the results of theoretical investigations. (author)

  4. Stochastic resonance whole-body vibration improves postural control in health care professionals: a worksite randomized controlled trial.

    Science.gov (United States)

    Elfering, Achim; Schade, Volker; Stoecklin, Lukas; Baur, Simone; Burger, Christian; Radlinger, Lorenz

    2014-05-01

    Slip, trip, and fall injuries are frequent among health care workers. Stochastic resonance whole-body vibration training was tested to improve postural control. Participants included 124 employees of a Swiss university hospital. The randomized controlled trial included an experimental group given 8 weeks of training and a control group with no intervention. In both groups, postural control was assessed as mediolateral sway on a force plate before and after the 8-week trial. Mediolateral sway was significantly decreased by stochastic resonance whole-body vibration training in the experimental group but not in the control group that received no training (p < .05). Stochastic resonance whole-body vibration training is an option in the primary prevention of balance-related injury at work. Copyright 2014, SLACK Incorporated.

  5. Application of pattern recognition techniques to the detection of the Phenix reactor control rods vibrations

    International Nuclear Information System (INIS)

    Zwingelstein, G.; Deat, M.; Le Guillou, G.

    1979-01-01

    The incipient detection of control rods vibrations is very important for the safety of the operating plants. This detection can be achieved by an analysis of the peaks of the power spectrum density of the neutron noise. Pattern Recognition techniques were applied to detect the rod vibrations which occured at the fast breeder Phenix (250MWe). In the first part we give a description of the basic pattern which is used to characterize the behavior of the plant. The pattern is considered as column vector in n dimensional Euclidian space where the components are the samples of the power spectral density of the neutron noise. In the second part, a recursive learning procedure of the normal patterns which provides the mean and the variance of the estimates is described. In the third part the classification problem has been framed in terms of a partitioning procedure in n dimensional space which encloses regions corresponding to normal operations. This pattern recognition scheme was applied to the detection of rod vibrations with neutron data collected at the Phenix site before and after occurence of the vibrations. The analysis was carried out with a 42-dimensional measurement space. The learned pattern was estimated with 150 measurement vectors which correspond to the period without vibrations. The efficiency of the surveillance scheme is then demonstrated by processing separately 119 measurement vectors recorded during the rod vibration period

  6. A study on the flow induced vibration in two phase flow under heating and non-heating conditions

    International Nuclear Information System (INIS)

    Kim, Dae Hun

    2007-02-01

    Critical heat flux (CHF) enhancement devices, like a spacer grid with mixing vane, cause flow-induced vibration (FIV) due to turbulence made by structural resistance. CHF enhancement and FIV reduction are usually studied separately. The main purpose of this article is to investigate the relationship between CHF and FIV. Information of flow-induced vibration due to wire coil design, is experimentally presented in this study by detecting flow-induced vibration under the two-phase flow condition with wire coil inserts. CHF experiments were performed in an upward vertical annulus tube under controlled vibration conditions to determine the effect of vibration on CHF. FIV was measured in an upward vertical tube with various wire coil inserts using air-water as flow material. CHF experiments were performed at one atmosphere with mechanically controlled vibration. A quartz tube (inner diameter of 17 mm, thickness of 2mm and length of 0.72 m) was used for outer tube and a SUS-304 tube (outer diameter of 6.35 mm, thickness of 0.89 mm and length of 0.7 m) was used for the inner heater. Vibration of the heater tube with an amplitude range of 0.1 mm to 0.5 mm and a frequency range of 10 Hz to 50 Hz was carried out at a mass flux of 115 kg/m 2 s and 215 kg/m 2 s. CHF was enhanced by vibration with a maximum ratio of 16.4 %. CHF was increased with increased amplitude and quality. The CHF correlation was developed with R (coefficient of correlation) of 0.903. FIV measuring experiments were performed at one atmosphere by changing the inserted wire coil type. An acrylic tube was used for the test section with inner diameter of 25 mm, thickness of 10 mm and length of 0.5 m. Four types of wire coil, which have a thickness of between 2 mm and 3 mm and pitch length of between 25 mm and 50 mm, were used. FIV and dynamic pressure were detected in water mass flux range of 100 ∼ 3060 kg/m 2 s and air mass flux range of 5.02 ∼ 60.3 kg/m 2 s. Vibration increased along with mass flux and

  7. VIBRATION CONTROL OF RECTANGULAR CROSS-PLY FRP PLATES USING PZT MATERIALS

    Directory of Open Access Journals (Sweden)

    DILEEP KUMAR K

    2017-12-01

    Full Text Available Piezoelectric materials are extensively employed in the field of structures for condition monitoring, smart control and testing applications. The piezoelectric patches are surface bonded to a composite laminate plate and used as vibration actuators. The coupling effects between the mechanical and electric properties of piezoelectric materials have drawn significant attention for their potential applications. In the present work, an analytical solution of the vibration response of a simply supported laminate rectangular plate under time harmonic electrical loading is obtained and a concept is developed for an approximate dynamic model to the vibration response of the simply supported orthotropic rectangular plates excited by a piezoelectric patch of variable rectangular geometry and location. A time harmonic electric voltages with the same magnitude and opposite sign are applied to the two symmetric piezoelectric actuators, which results in the bending moment on the plate. The main objective of the work is to obtain an analytical solution for the vibration amplitude of composite plate predicted from plate theory. The results demonstrate that the vibration modes can be selectively excited and the geometry of the PZTactuator shape remarkably affects the distribution of the response among modes. Thus according to the desired degree shape control it is possible to tailor the shape, size and properly designed control algorithm of the actuator to either excite or suppress particular modes.

  8. Vibration attenuation and shape control of surface mounted, embedded smart beam

    Directory of Open Access Journals (Sweden)

    Vivek Rathi

    Full Text Available Active Vibration Control (AVC using smart structure is used to reduce the vibration of a system by automatic modification of the system structural response. AVC is widely used, because of its wide and broad frequency response range, low additional mass, high adaptability and good efficiency. A lot of research has been done on Finite Element (FE models for AVC based on Euler Bernoulli Beam Theory (EBT. In the present work Timoshenko Beam Theory (TBT is used to model a smart cantilever beam with surface mounted sensors / actuators. A Periodic Output Feedback (POF Controller has been designed and applied to control the first three modes of vibration of a flexible smart cantilever beam. The difficulties encountered in the usage of surface mounted piezoelectric patches in practical situations can be overcome by the use of embedded shear sensors / actuators. A mathematical model of a smart cantilever beam with embedded shear sensors and actuators is developed. A POF Controller has been designed and applied to control of vibration of a flexible smart cantilever beam and effect of actuator location on the performance of the controller is investigated. The mathematical modeling and control of a Multiple Input multiple Output (MIMO systems with two sensors and two actuators have also been considered.

  9. Active aeroelastic flutter analysis and vibration control of supersonic beams using the piezoelectric actuator/sensor pairs

    International Nuclear Information System (INIS)

    Song, Zhi-Guang; Li, Feng-Ming

    2011-01-01

    The active vibration control of all kinds of structures by using the piezoelectric material has been extensively investigated. In this paper, the active aeroelastic flutter characteristics and vibration control of supersonic beams applying the piezoelectric material are studied further. The piezoelectric materials are bonded on the top and bottom surfaces of the beams to act as the actuator and sensor so that the active aeroelastic flutter suppression for the supersonic beams can be conducted. The supersonic piston theory is adopted to evaluate the aerodynamic pressure. Hamilton's principle with the assumed mode method is used to develop the dynamical model of the structural systems. By using the standard eigenvalue methodology, the solutions for the complex eigenvalue problem are obtained. A negative velocity feedback control strategy is used to obtain active damping. The aeroelastic flutter bounds are calculated and the active aeroelastic flutter characteristics are analyzed. The impulse responses of the structural system are obtained by using the Houbolt numerical algorithm to study the active aeroelastic vibration control. The influences of the non-dimensional aerodynamic pressure on the active flutter control are analyzed. From the numerical results it is observed that the aeroelastic flutter characteristics of the supersonic beams can be significantly improved and that the aeroelastic vibration amplitudes can be remarkably reduced, especially at the flutter points, by using the piezoelectric actuator/sensor pairs which can provide an active damping. Within a certain value of the feedback control gain, with the increase of it, the flutter aerodynamic pressure (or flutter velocity) can be increased and the control results are also improved

  10. Somatosensory Nerve Function, Measured by Vibration Thresholds in Asymptomatic Tennis Players: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Sarah Harrisson

    2015-06-01

    Full Text Available Tennis players are vulnerable to injury in their upper limbs due to the repetitive exposure to racket vibrations and torsional forces during play, leading to musculoskeletal adaptations in the dominant arm including some evidence of changes in nerve function (Colak et al., 2004. Vibration is a sensitive technique for diagnosing mild pathology in clinically asymptomatic participant groups. It has been used in participants with various musculoskeletal disorders (Laursen et al., 2006 (Tucker et al., 2007 showing widespread and bilateral increases in vibration threshold. Tests of somatosensory function by vibration will be abnormal prior to changes in nerve conduction velocity. Thus vibration testing in a sub-clinical group of participants may a more sensitive measure of nerve function compared to nerve conduction by electrodiagnostic testing. The aim of this pilot study was to conduct an exploratory investigation to establish whether tennis players have a reduction in their somatosensory nerve function compared to non- tennis playing controls. It also set out to compare the somatosensory nerve function of the dominant compared to the non-dominant upper limb in tennis players. Healthy tennis players (males, n = 8, females, n = 2, mean age 22 years and control non- tennis playing volunteers (males, n = 6, females, n = 4, mean age 22 years were recruited on an opportunistic basis from a tennis centre in London UK. Participants were excluded if they had any history of neurological impairment, serious injury or fracture or any arthritic condition affecting the upper limbs, cervical or thoracic spine. Control participants were excluded if it was deemed that they played a sport where there was exposure to repetitive use of the upper body. Ethical approval was obtained from the University College London Ethics Committee and all participants gave written informed consent. A preliminary clinical examination was carried out on all participants followed by

  11. Methodology for Analysing Controllability and Observability of Bladed Disc Coupled Vibrations

    DEFF Research Database (Denmark)

    Christensen, Rene Hardam; Santos, Ilmar

    2004-01-01

    to place sensors and actuators so that all vibration levels can be monitored and controlled. Due to the special dynamic characteristics of rotating coupled bladed discs, where disc lateral motion is coupled to blade flexible motion, such analyses become quite complicated. The dynamics is described...... by a time-variant mathematical model, which presents parametric vibration modes and centrifugal stiffening effects resulting in increasing blade natural frequencies. In this framework the objective and contribution of this paper is to present a methodology for analysing the modal controllability...

  12. Wireless sensing and vibration control with increased redundancy and robustness design.

    Science.gov (United States)

    Li, Peng; Li, Luyu; Song, Gangbing; Yu, Yan

    2014-11-01

    Control systems with long distance sensor and actuator wiring have the problem of high system cost and increased sensor noise. Wireless sensor network (WSN)-based control systems are an alternative solution involving lower setup and maintenance costs and reduced sensor noise. However, WSN-based control systems also encounter problems such as possible data loss, irregular sampling periods (due to the uncertainty of the wireless channel), and the possibility of sensor breakdown (due to the increased complexity of the overall control system). In this paper, a wireless microcontroller-based control system is designed and implemented to wirelessly perform vibration control. The wireless microcontroller-based system is quite different from regular control systems due to its limited speed and computational power. Hardware, software, and control algorithm design are described in detail to demonstrate this prototype. Model and system state compensation is used in the wireless control system to solve the problems of data loss and sensor breakdown. A positive position feedback controller is used as the control law for the task of active vibration suppression. Both wired and wireless controllers are implemented. The results show that the WSN-based control system can be successfully used to suppress the vibration and produces resilient results in the presence of sensor failure.

  13. Vibration control of a cable-stayed bridge using electromagnetic induction based sensor integrated MR dampers

    International Nuclear Information System (INIS)

    Cho, Sang Won; Koo, Jeong Hoi; Jo, Ji Seong

    2007-01-01

    This paper presents a novel electromagnetic induction (EMI) system integrated in magneto rheological (MR) dampers: The added EMI system converts reciprocal motions of MR damper into electiral energy (electromotive force or emf) according to the Faraday's law of electromagnetic induction. Maximum energy dissipation algorithm (MEDA) is employed to regulate the MR dampers because it strives to simplify a complex design process by employing the Lyapunov's direct approach. The emf signal, produced from the EMI, provides the necessary measurement information (i.e., realtive velocity across the damper) for the MEDA controller. Thus, the EMI acts as a sensor in the proposed MR-EMI system. In order to evaluate the performance and robustness of the MR-EMI sensor system with the MEDA control, this study performed an extensive simulation study using the first generation benchmark cable-stayed bridge. Moreover, it compared the performance and the robustness of proposed system with those of Clipped-Optimal Control (COC) and Sliding Mode Control (SMC), which were previously studied for the benchmark cable-stayed bridge. The results show that the MR-EMI system reduced the vibrations of the bridge structure more than those of COC and SMC and show more robust performance than that of SMC. These results suggest that EMIs can be used cost-effective sensing devices for MR damper control systems without compromising the performance of them

  14. Reduction of low frequency vibration of truck driver and seating system through system parameter identification, sensitivity analysis and active control

    Science.gov (United States)

    Wang, Xu; Bi, Fengrong; Du, Haiping

    2018-05-01

    This paper aims to develop an 5-degree-of-freedom driver and seating system model for optimal vibration control. A new method for identification of the driver seating system parameters from experimental vibration measurement has been developed. The parameter sensitivity analysis has been conducted considering the random excitation frequency and system parameter uncertainty. The most and least sensitive system parameters for the transmissibility ratio have been identified. The optimised PID controllers have been developed to reduce the driver's body vibration.

  15. Control Application of Piezoelectric Materials to Aeroelastic Self-Excited Vibrations

    Directory of Open Access Journals (Sweden)

    Mohammad Amin Rashidifar

    2014-01-01

    Full Text Available A method for application of piezoelectric materials to aeroelasticity of turbomachinery blades is presented. The governing differential equations of an overhung beam are established. The induced voltage in attached piezoelectric sensors due to the strain of the beam is calculated. In aeroelastic self-excited vibrations, the aerodynamic generalized force of a specified mode can be described as a linear function of the generalized coordinate and its derivatives. This simplifies the closed loop system designed for vibration control of the corresponding structure. On the other hand, there is an industrial interest in measurement of displacement, velocity, acceleration, or a contribution of them for machinery condition monitoring. Considering this criterion in quadratic optimal control systems, a special style of performance index is configured. Utilizing the current relations in an aeroelastic case with proper attachment of piezoelectric elements can provide higher margin of instability and lead to lower vibration magnitude.

  16. Experimental Studies on Dynamic Vibration Absorber using Shape Memory Alloy (NiTi) Springs

    International Nuclear Information System (INIS)

    Kumar, V. Raj; Kumar, M. B. Bharathi Raj; Kumar, M. Senthil

    2011-01-01

    Shape memory alloy (SMA) springs have been used as actuators in many applications although their use in the vibration control area is very recent. Since shape memory alloys differ from conventional alloy materials in many ways, the traditional design approach for springs is not completely suitable for designing SMA springs. Some vibration control concepts utilizing unique characteristics of SMA's will be presented in this paper.A dynamic vibration absorber (DVA) using shape memory alloy (SMA) actuator is developed for attenuation of vibration in a cantilever beam. The design procedure of the DVA is presented. The system consists of a cantilever beam which is considered to generate the real-time vibration using shaker. A SMA spring is used with a mass attached to its end. The stiffness of the SMA spring is dynamically varied in such a way to attenuate the vibration. Both simulation and experimentation are carried out using PID controller. The experiments were carried out by interfacing the experimental setup with a computer using LabVIEW software, Data acquisition and control are implemented using a PCI data acquisition card. Standard PID controllers have been used to control the vibration of the beam. Experimental results are used to demonstrate the effectiveness of the controllers designed and the usefulness of the proposed test platform by exciting the structure at resonance. In experimental setup, an accelerometer is used to measure the vibration which is fed to computer and correspondingly the SMA spring is actuated to change its stiffness to control the vibration. The results obtained illustrate that the developed DVA using SMA actuator is very effective in reducing structural response and have great potential to be an active vibration control medium.

  17. Structural vibration control of micro/macro-manipulator using feedforward and feedback approaches

    International Nuclear Information System (INIS)

    Lew, J.Y.; Cannon, D.W.; Magee, D.P.; Book, W.J.

    1995-09-01

    Pacific Northwest Laboratory (PDL) researchers investigated the combined use of two control approaches to minimize micro/macro-manipulator structural vibration: (1) modified input shaping and (2) inertial force active damping control. Modified input shaping (MIS) is used as a feedforward controller to modify reference input by canceling the vibratory motion. Inertial force active damping (IFAD) is applied as a feedback controller to increase the system damping and robustness to unexpected disturbances. Researchers implemented both control schemes in the PNL micro/macro flexible-link manipulator testbed collaborating with Georgia Institute of Technology. The experiments successfully demonstrated the effectiveness of two control approaches in reducing structural vibration. Based on the results of the experiments, the combined use of two controllers is recommended for a micro/macro manipulator to achieve the fastest response to commands while canceling disturbances from unexpected forces

  18. Vibration suppression in cutting tools using collocated piezoelectric sensors/actuators with an adaptive control algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Radecki, Peter P [Los Alamos National Laboratory; Farinholt, Kevin M [Los Alamos National Laboratory; Park, Gyuhae [Los Alamos National Laboratory; Bement, Matthew T [Los Alamos National Laboratory

    2008-01-01

    The machining process is very important in many engineering applications. In high precision machining, surface finish is strongly correlated with vibrations and the dynamic interactions between the part and the cutting tool. Parameters affecting these vibrations and dynamic interactions, such as spindle speed, cut depth, feed rate, and the part's material properties can vary in real-time, resulting in unexpected or undesirable effects on the surface finish of the machining product. The focus of this research is the development of an improved machining process through the use of active vibration damping. The tool holder employs a high bandwidth piezoelectric actuator with an adaptive positive position feedback control algorithm for vibration and chatter suppression. In addition, instead of using external sensors, the proposed approach investigates the use of a collocated piezoelectric sensor for measuring the dynamic responses from machining processes. The performance of this method is evaluated by comparing the surface finishes obtained with active vibration control versus baseline uncontrolled cuts. Considerable improvement in surface finish (up to 50%) was observed for applications in modern day machining.

  19. General principles of control method of passenger car bodies bending vibration parameters

    Science.gov (United States)

    Skachkov, A. N.; Samoshkin, S. L.; Korshunov, S. D.; Kobishchanov, V. V.; Antipin, D. Ya

    2018-03-01

    Weight reduction of passenger cars is a promising direction of reducing the cost of their production and increasing transportation profitability. One way to reduce the weight of passenger cars is the lightweight metal body design by means of using of high-strength aluminum alloys, low-alloy and stainless steels. However, it has been found that the limit of the lightweight metal body design is not determined by the total mode of deformation, but its flexural rigidity, as the latter influences natural frequencies of body bending vibrations. With the introduction of mandatory certification for compliance with the Customs Union technical regulations, the following index was confirmed: “first natural frequency of body bending vibrations in the vertical plane”. This is due to the fact that vibration, noise and car motion depend on this index. To define the required indexes, the principles of the control method of bending vibration parameters of passenger car bodies are proposed in this paper. This method covers all stages of car design – development of design documentation, manufacturing and testing experimental and pilot models, launching the production. The authors also developed evaluation criteria and the procedure of using the results for introduction of control method of bending vibration parameters of passenger car bodies.

  20. An experimental investigation of composite floor vibration due to human activities. A case study

    Directory of Open Access Journals (Sweden)

    Yasser G. Mohamed Fahmy

    2012-12-01

    Full Text Available Composite steel floor decks are used in a large variety of constructions with long spans, such as administration and commercial buildings, hotels and bridges. Due to decreased floor mass and longer span lengths, floor vibrations have become an area of concern. Floor decks with low frequencies may be in resonance with the vibrations due to human activities and the resulting acceleration may exceed human comfort levels. The design of slender floor structures, with steel or composite cross sections, is often limited by the serviceability criteria such as deflection limits and vibration behavior, rather than the strength criteria. Control of deflections under AISC specifications requirement is not enough to satisfy the serviceability requirements of the floor systems for vibration. In addition, vibration analysis procedures introduced by AISC design Guide No. 11 are based on regularly-shaped structures and simple boundary conditions. In this paper, a case study for full scale testing of a composite floor system proposed for a tower at Kuwait state that was tested prior to construction. The heel-drop and walking tests are performed on floor systems with and without raised floor respectively. Since heel-drop and walking test results would vary in light of person performance, both tests are carried out three or four times to reduce uncertainty. The fundamental frequencies and damping ratio of the floor system are measured. Comparison of the experimental results with results based on the AISC hand calculations shows that there is no significant difference; therefore the results based on AISC are generally acceptable.

  1. The effects of whole body vibration combined biofeedback postural control training on the balance ability and gait ability in stroke patients.

    Science.gov (United States)

    Uhm, Yo-Han; Yang, Dae-Jung

    2017-11-01

    [Purpose] The purpose of this study was to examine the effect of biofeedback postural control training using whole body vibration in acute stroke patients on balance and gait ability. [Subjects and Methods] Thirty stroke patients participated in this study and were divided into a group of 10, a group for biofeedback postural control training combined with a whole body vibration, one for biofeedback postural control training combined with an aero-step, and one for biofeedback postural control training. Biorescue was used to measure the limits of stability, balance ability, and Lukotronic was used to measure step length, gait ability. [Results] In the comparison of balance ability and gait ability between the groups for before and after intervention, Group I showed a significant difference in balance ability and gait ability compared to Groups II and III. [Conclusion] This study showed that biofeedback postural control training using whole body vibration is effective for improving balance ability and gait ability in stroke patients.

  2. Vibrations in the urban environment controlling 222Rn migration in soils

    International Nuclear Information System (INIS)

    Wiegand, J.

    1998-01-01

    Comparable to investigations looking for a connection of 222 Rn and earthquakes, this study shows the influence of subsurface vibrations on the 222 Rn concentration of the soil-gas in urban environments. Generally, the 222 Rn concentration increases through vibrations induced by trains, street-traffic and activities at project sites. The spatial radius of the 222 Rn increase due to vibrations reach highest values at project sites where piled foundations or metal panels are rammed into the ground (> 60 m). Along railway tracks the radius is wider (> 30 m) than along heavy traffic roads ( 222 Rn concentrations in soil-gas due to vibrations is the highest at project sites (53%). Along heavy traffic roads the increase of 222 Rn concentrations by motor vehicle traffic is higher (37%) than that by railway traffic (11.5%). The maximum increase of 400% was observed in a distance of 1 m from a railway track. In the vicinity of railway tracks a difference of the vibration influence according to unconsolidated rock (11.1%) or solid rock (11.8%) was not noticed. Beside this vibration effect, the overall 222 Rn level decreases with increasing distance to the vibration source, but only at locations laying above solid rocks. The observation of the increase of 222 Rn concentrations can be explained by a 'pump effect': the mechanical vibration of soil and mineral particles leads to an upward motion of the whole volume of soil-gas. Therefore, 222 Rn is pumped out of the soil to the atmosphere and as a result the upward transport is increased. (author)

  3. Study of low vibration 4 K pulse tube cryocoolers

    Science.gov (United States)

    Xu, Mingyao; Nakano, Kyosuke; Saito, Motokazu; Takayama, Hirokazu; Tsuchiya, Akihiro; Maruyama, Hiroki

    2012-06-01

    Sumitomo Heavy Industries, Ltd. (SHI) has been continuously improving the efficiency and reducing the vibration of a 4 K pulse tube cryocooler. One advantage of a pulse tube cryocooler over a GM cryocooler is low vibration. In order to reduce vibration, both the displacement and the acceleration have to be reduced. The vibration acceleration can be reduced by splitting the valve unit from the cold head. One simple way to reduce vibration displacement is to increase the wall thickness of the tubes on the cylinder. However, heat conduction loss increases while the wall thickness increases. To overcome this dilemma, a novel concept, a tube with non-uniform wall thickness, is proposed. Theoretical analysis of this concept, and the measured vibration results of an SHI lowvibration pulse tube cryocooler, will be introduced in this paper.

  4. Experiment studies of fuel rod vibration in coolant flow for substantiation of vibration stability of fuel rods with no fretting-wear

    International Nuclear Information System (INIS)

    Egorov, Yu. V.; Afanasiev, A. V.; Makarov, V. V.; Matvienko, I. V.

    2013-01-01

    For substantiation of vibration stability it is necessary to determine the ultimate permissible vibration levels which do not cause fretting, to compare them with the level of fuel rod vibration caused by coolant flow. Another approach is feasible if there is experience of successful operation of FA-prototypes. In this case in order to justify vibration stability it may be sufficient to demonstrate that the new element does not cause increased vibration of the fuel rod. It can be done by comparing the levels of hydro-dynamic fuel rod vibration and FA new designs. Program of vibration tests of TVS-2M model included studies of forced oscillations of 12 fuel rods in the coolant flow in the spans containing intensifiers, in the reference span without intensifiers, in the lower spans with assembled ADF and after its disassembly. The experimental results for TVS-2M show that in the spans with intensifier «Sector run» the level of movements is 6% higher on the average than in the span without intensifiers, in the spans with intensifier «Eddy» it is 2% higher. The level of fuel rod vibration movements in the spans with set ADF is 2 % higher on the average than without ADF. During the studies of TVS-KVADRAT fuel rod vibration, the following tasks were solved: determination of acceleration of the middle of fuel rod spans at vibration excited due to hydrodynamics; determination of influence of coolant thermal- hydraulic parameters (temperature, flowrate, dynamic pressure) on fuel rod vibration response; determination of influence of span lengths on the vibration level. Conclusions: 1) The vibration tests of the full-scale model of TVS-2M in the coolant flow showed that the new elements of TVS-2M design (intensifiers of heat exchange and ADF) are not the source of fuel rod increased vibration. Considering successful operation of similar fuel rod spans in the existing TVS-2M design, vibration stability of TVS-2M fuel rods with new elements is ensured on the mechanism of

  5. Control of forced vibrations of mechanical structures by an electromagnetic controller with a permanent magnet

    DEFF Research Database (Denmark)

    Stein, George Juraj; Darula, Radoslav; Sorokin, Sergey

    2012-01-01

    A theoretical analysis of an electromagnetic vibration controller is presented. The analyzed device consists of a pot-type iron core with a coil and a permanent magnet as a source of constant magnetic flux. The magnetic circuit is closed by a yoke, excited by an external harmonic mechanical force....... The so generated magnetic flux variation induces alternating voltage in the electric circuit, which is dissipated in a shunt resistor. The induced current driven through the coil generates magnetic force, which damps the excitation force and changes the damped natural frequency of the oscillatory system....... Due to the hysteretic effects in the magnetic material the internal losses influence the overall system’s performance. A mathematical model of the force balance in the oscillatory system is derived in a simplified, linearised form. The electric as well as mechanical system is modelled using lumped...

  6. Nonlinear saturation controller for vibration supersession of a nonlinear composite beam

    Energy Technology Data Exchange (ETDEWEB)

    Hamed, Y. S. [Menofia University, Menouf (Egypt); Amer, Y. A. [Zagazig University, Zagazig (Egypt)

    2014-08-15

    In this paper, a study for nonlinear saturation controller (NSC) is presented that used to suppress the vibration amplitude of a structural dynamic model simulating nonlinear composite beam at simultaneous sub-harmonic and internal resonance excitation. The absorber exploits the saturation phenomenon that is known to occur in dynamical systems with quadratic non-linearities of the feedback gain and a two-to-one internal resonance. The analytical solution for the system and the nonlinear saturation controller are obtained using method of multiple time scales perturbation up to the second order approximation. All possible resonance cases were extracted at this approximation order and studied numerically. The stability of the system at the worst resonance case (Ω = 2ω{sub s} and ω{sub s} =2ω{sub C}) is investigated using both frequency response equations and phase-plane trajectories. The effects of different parameters on the system and the controller are studied numerically. The effect of some types of controller on the system is investigated numerically. The simulation results are achieved using Matlab and Maple programs.

  7. Vibration characteristics of a deployable controllable-geometry truss boom

    Science.gov (United States)

    Dorsey, J. T.

    1983-01-01

    An analytical study was made to evaluate changes in the fundamental frequency of a two dimensional cantilevered truss boom at various stages of deployment. The truss could be axially deployed or retracted and undergo a variety of controlled geometry changes by shortening or lengthening the telescoping diagonal members in each bay. Both untapered and tapered versions of the truss boom were modeled and analyzed by using the finite element method. Large reductions in fundamental frequency occurred for both the untapered and tapered trusses when they were uniformly retracted or maneuvered laterally from their fully deployed position. These frequency reductions can be minimized, however, if truss geometries are selected which maintain cantilever root stiffness during truss maneuvers.

  8. The effects of whole body vibration combined computerized postural control training on the lower extremity muscle activity and cerebral cortex activity in stroke patients.

    Science.gov (United States)

    Uhm, Yo-Han; Yang, Dae-Jung

    2018-02-01

    [Purpose] The purpose of this study was to examine the effect of computerized postural control training using whole body vibration on lower limb muscle activity and cerebral cortical activation in acute stroke patients. [Subjects and Methods] Thirty stroke patients participated and were divided into groups of 10, a group of the computerized postural control training using whole body vibration (Group I), the computerized postural control training combined with aero step (Group II) and computerized postural control training (Group III). MP100 was used to measure lower limb muscle activity, and QEEG-8 was used to measure cerebral cortical activation. [Results] Comparison of muscle activity and cerebral cortical activation before and after intervention between groups showed that Group I had significant differences in lower limb muscle activity and cerebral cortical activation compared to Groups II and III. [Conclusion] This study showed that whole body vibration combined computerized postural control training is effective for improving muscle activity and cerebral cortex activity in stroke patients.

  9. Vibration control of a camera mount system for an unmanned aerial vehicle using piezostack actuators

    International Nuclear Information System (INIS)

    Oh, Jong-Seok; Choi, Seung-Bok; Han, Young-Min

    2011-01-01

    This work proposes an active mount for the camera systems of unmanned aerial vehicles (UAV) in order to control unwanted vibrations. An active actuator of the proposed mount is devised as an inertial type, in which a piezostack actuator is directly connected to the inertial mass. After evaluating the actuating force of the actuator, it is combined with the rubber element of the mount, whose natural frequency is determined based on the measured vibration characteristics of UAV. Based on the governing equations of motion of the active camera mount, a robust sliding mode controller (SMC) is then formulated with consideration of parameter uncertainties and hysteresis behavior of the actuator. Subsequently, vibration control performances of the proposed active mount are experimentally evaluated in the time and frequency domains. In addition, a full camera mount system of UAVs that is supported by four active mounts is considered and its vibration control performance is evaluated in the frequency domain using a hardware-in-the-loop simulation (HILS) method

  10. Early vibration assisted physiotherapy in toddlers with cerebral palsy - a randomized controlled pilot trial

    NARCIS (Netherlands)

    Stark, C.; Herkenrath, P.; Hollmann, H.; Waltz, S.; Becker, I.; Hoebing, L.; Semler, O.; Hoyer-Kuhn, H.; Duran, I.; Hero, B.; Hadders-Algra, M.; Schoenau, E.

    OBJECTIVES: to investigate feasibility, safety and efficacy of home-based side-alternating whole body vibration (sWBV) to improve motor function in toddlers with cerebral palsy (CP). METHODS: Randomized controlled trial including 24 toddlers with CP (mean age 19 months (SD±3.1); 13 boys).

  11. An acoustic radiator with integrated cavity and active control of surface vibration

    NARCIS (Netherlands)

    Berkhoff, Arthur; Tajdari, Farnaz

    2017-01-01

    This paper presents a method to realize an acoustic source for low frequencies with relatively small thickness. A honeycomb plate structure which is open on one side combines the radiating surface and the major part of the air cavity. The vibration of the plate is controlled with a decentralized

  12. Mathematical Modelling and Parameter Identification of an Electro-Magneto-Mechanical Actuator for Vibration Control

    DEFF Research Database (Denmark)

    Darula, Radoslav; Stein, George Juraj; Kallesøe, Carsten Skovmose

    2012-01-01

    Electromechanical systems for vibration control exhibit complex non-linear behaviour. Therefore advanced mathematical tools and appropriate simplifications are required for their modelling. To properly understand the dynamics of such a non-linear system, it is necessary to identify the parameters....... The electric circuit is closed with a shunt resistance connected to the electromagnet. The current induced in the circuit generates additional alternating magnetic force. This force counteracts the original vibration and damps it. In this way the coupled electro-magneto-mechanical system suppresses the forced...

  13. An adaptive left–right eigenvector evolution algorithm for vibration isolation control

    International Nuclear Information System (INIS)

    Wu, T Y

    2009-01-01

    The purpose of this research is to investigate the feasibility of utilizing an adaptive left and right eigenvector evolution (ALREE) algorithm for active vibration isolation. As depicted in the previous paper presented by Wu and Wang (2008 Smart Mater. Struct. 17 015048), the structural vibration behavior depends on both the disturbance rejection capability and mode shape distributions, which correspond to the left and right eigenvector distributions of the system, respectively. In this paper, a novel adaptive evolution algorithm is developed for finding the optimal combination of left–right eigenvectors of the vibration isolator, which is an improvement over the simultaneous left–right eigenvector assignment (SLREA) method proposed by Wu and Wang (2008 Smart Mater. Struct. 17 015048). The isolation performance index used in the proposed algorithm is defined by combining the orthogonality index of left eigenvectors and the modal energy ratio index of right eigenvectors. Through the proposed ALREE algorithm, both the left and right eigenvectors evolve such that the isolation performance index decreases, and therefore one can find the optimal combination of left–right eigenvectors of the closed-loop system for vibration isolation purposes. The optimal combination of left–right eigenvectors is then synthesized to determine the feedback gain matrix of the closed-loop system. The result of the active isolation control shows that the proposed method can be utilized to improve the vibration isolation performance compared with the previous approaches

  14. Mathematical formulation of temperature fluctuation and control rod vibration in PARR

    International Nuclear Information System (INIS)

    Ansari, S.A.; Ayazuddin, S.K.

    This report describes the mathematical interpretation of experimental neutron noise spectra obtained for PARR core. A one dimensional thermal-hydraulic model of PARR core was developed to calculate the magnitude of neutron noise as a result of fluctuation in the core inlet coolant temperature. The sink structure of the neutron power spectral density as well as the dependence of observed neutron spectra on coolant velocity is also explained by the thermal hydraulic model. An attempt is made to explain the phenomena of control rod vibration by a simple eigen frequency vibration model. The calculated neutron power spectral density due to vibration and temperature noise were added and compared with the experimental power spectra obtained for PARR. (orig./A.B.)

  15. Active Tuned Mass Dampers for Control of In-Plane Vibrations of Wind Turbine Blades

    DEFF Research Database (Denmark)

    Fitzgerald, B.; Basu, Biswajit; Nielsen, Søren R.K.

    2013-01-01

    matrices. The aim of this paper is to determine whether ATMDs could be used to reduce in-plane blade vibrations in wind turbines with better performance than compared with their passive counterparts. A Euler–Lagrangian wind turbine mathematical model based on energy formulation was developed......, centrifugal, and turbulent aerodynamic loadings. Investigations show promising results for the use of ATMDs in the vibration control of wind turbine blades.......This paper investigates the use of active tuned mass dampers (ATMDs) for the mitigation of in-plane vibrations in rotating wind turbine blades. The rotating wind turbine blades with tower interaction represent time-varying dynamical systems with periodically varying mass, stiffness, and damping...

  16. Vibration Isolation and Trajectory Following Control of a Cable Suspended Stewart Platform

    Directory of Open Access Journals (Sweden)

    Xuechao Duan

    2016-10-01

    Full Text Available To achieve high-quality vibration isolation and trajectory following control of a cable driven parallel robot based Stewart platform in the five hundred meter aperture spherical radio telescope (FAST design, the integrated dynamic model of the Stewart platform including the electric cylinder is established in this paper, the globally feedback linearization of the dynamic model is implemented based on the control law partitioning approach. To overcome the disadvantages of the external disturbance on the base and unmodeled flexibility of the mechanism, a PID (Proportional-Derivative-Integral controller with base acceleration feedforward is designed in the operational space of the Stewart platform. Experiments of the vibration isolation and trajectory following control of the cable suspended Stewart platform with presence of the base disturbance is carried out. The experimental results show that the presented control scheme has the advantage of stable dynamics, high accuracy and strong robustness.

  17. Robust Control for Microgravity Vibration Isolation using Fixed Order, Mixed H2/Mu Design

    Science.gov (United States)

    Whorton, Mark

    2003-01-01

    Many space-science experiments need an active isolation system to provide a sufficiently quiescent microgravity environment. Modern control methods provide the potential for both high-performance and robust stability in the presence of parametric uncertainties that are characteristic of microgravity vibration isolation systems. While H2 and H(infinity) methods are well established, neither provides the levels of attenuation performance and robust stability in a compensator with low order. Mixed H2/H(infinity), controllers provide a means for maximizing robust stability for a given level of mean-square nominal performance while directly optimizing for controller order constraints. This paper demonstrates the benefit of mixed norm design from the perspective of robustness to parametric uncertainties and controller order for microgravity vibration isolation. A nominal performance metric analogous to the mu measure, for robust stability assessment is also introduced in order to define an acceptable trade space from which different control methodologies can be compared.

  18. Vibration Control of Structures using Vibro-Impact Nonlinear Energy Sinks

    Directory of Open Access Journals (Sweden)

    M. Ahmadi

    2016-09-01

    Full Text Available Using Vibro-Impact Nonlinear Energy Sinks (VI NESs is one of the novel strategies to control structural vibrations and mitigate their seismic response. In this system, a mass is tuned on the structure floor, so that it has a specific distance from an inelastic constraint connected to the floor mass. In case of structure stimulation, the displaced VI NES mass collides with the  inelastic constraint and upon impacts, energy is dissipated. In the present work, VI NES is studied when its parameters, including clearance and stiffness ratio, are simultaneously optimized. Harmony search as a recent meta-heuristic algorithm is efficiently specialized and utilized for the aforementioned continuous optimization problem. The optimized attached VI NES is thus shown to be capable of interacting with the primary structure over a wide range of frequencies. The resulting controlled response is then investigated, in a variety of low and medium rise steel moment frames, via nonlinear dynamic time history analyses. Capability of the VI NES to dissipate siesmic input energy of earthquakes and their capabilitiy in reducing response of srtructures effectively, through vibro-impacts between the energy sink’s mass and the floor mass, is discussed by extracting several performance indices and the corresponding Fourier spectra. Results of the numerical simulations done on some structural model examples reveal that the optimized VI NES has caused successive redistribution of energy from low-frequency high-amplitude vibration modes to high-frequency low-amplitude modes, bringing about the desired attenuation of the structural responses.

  19. Vibration amplitude rule study for rotor under large time scale

    International Nuclear Information System (INIS)

    Yang Xuan; Zuo Jianli; Duan Changcheng

    2014-01-01

    The rotor is an important part of the rotating machinery; its vibration performance is one of the important factors affecting the service life. This paper presents both theoretical analyses and experimental demonstrations of the vibration rule of the rotor under large time scales. The rule can be used for the service life estimation of the rotor. (authors)

  20. Effect of Space Vehicle Structure Vibration on Control Moment Gyroscope Dynamics

    Science.gov (United States)

    Dobrinskaya, Tatiana

    2008-01-01

    Control Moment Gyroscopes (CMGs) are used for non-propulsive attitude control of satellites and space stations, including the International Space Station (ISS). CMGs could be essential for future long duration space missions due to the fact that they help to save propellant. CMGs were successfully tested on the ground for many years, and have been successfully used on satellites. However, operations have shown that the CMG service life on the ISS is significantly shorter than predicted. Since the dynamic environment of the ISS differs greatly from the nominal environment of satellites, it was important to analyze how operations specific to the station (dockings and undockings, huge solar array motion, crew exercising, robotic operations, etc) can affect the CMG performance. This task became even more important since the first CMG failure onboard the ISS. The CMG failure resulted in the limitation of the attitude control capabilities, more propellant consumption, and additional operational issues. Therefore, the goal of this work was to find out how the vibrations of a space vehicle structure, caused by a variety of onboard operations, can affect the CMG dynamics and performance. The equations of CMG motion were derived and analyzed for the case when the gyro foundation can vibrate in any direction. The analysis was performed for unbalanced CMG gimbals to match the CMG configuration on ISS. The analysis showed that vehicle structure vibrations can amplify and significantly change the CMG motion if the gyro gimbals are unbalanced in flight. The resonance frequencies were found. It was shown that the resonance effect depends on the magnitude of gimbal imbalance, on the direction of a structure vibration, and on gimbal bearing friction. Computer modeling results of CMG dynamics affected by the external vibration are presented. The results can explain some of the CMG vibration telemetry observed on ISS. This work shows that balancing the CMG gimbals decreases the effect

  1. Nonlinear finite element modeling of vibration control of plane rod-type structural members with integrated piezoelectric patches

    Science.gov (United States)

    Chróścielewski, Jacek; Schmidt, Rüdiger; Eremeyev, Victor A.

    2018-05-01

    This paper addresses modeling and finite element analysis of the transient large-amplitude vibration response of thin rod-type structures (e.g., plane curved beams, arches, ring shells) and its control by integrated piezoelectric layers. A geometrically nonlinear finite beam element for the analysis of piezolaminated structures is developed that is based on the Bernoulli hypothesis and the assumptions of small strains and finite rotations of the normal. The finite element model can be applied to static, stability, and transient analysis of smart structures consisting of a master structure and integrated piezoelectric actuator layers or patches attached to the upper and lower surfaces. Two problems are studied extensively: (i) FE analyses of a clamped semicircular ring shell that has been used as a benchmark problem for linear vibration control in several recent papers are critically reviewed and extended to account for the effects of structural nonlinearity and (ii) a smart circular arch subjected to a hydrostatic pressure load is investigated statically and dynamically in order to study the shift of bifurcation and limit points, eigenfrequencies, and eigenvectors, as well as vibration control for loading conditions which may lead to dynamic loss of stability.

  2. Edgewise vibration control of wind turbine blades using roller and liquid dampers

    International Nuclear Information System (INIS)

    Zhang, Z L; Nielsen, S R K

    2014-01-01

    This paper deals with the passive vibration control of edgewise vibrations by means of roller dampers and tuned liquid column dampers (TLCDs). For a rotating blade, the large centrifugal acceleration makes it possible to use roller dampers or TLCDs with rather small masses for effectively suppressing edgewise vibrations. The roller dampers are more volumetrically efficient due to the higher mass density of the steel comparing with the liquid. On the other hand, TLCDs have their advantage that it is easier to specify the optimum damping of the damper by changing the opening ratio of the orifice. In this paper, 2-DOF nonlinear models are suggested for tuning a roller damper or a TLCD attached to a rotating wind turbine blade, ignoring the coupling between the blade and the tower. The decoupled optimization is verified by incorporating the optimized damper into a more sophisticated 13- DOF wind turbine model with due consideration of the coupled blade-tower-drivetrain vibrations, quasi-static aeroelasticity as well as a collective pitch controller. Performances of the dampers are compared in terms of the control efficiency and the practical applications. The results indicate that roller dampers and TLCDs at optimal tuning can effectively suppress the dynamic response of wind turbine blades

  3. Parametric Study and Optimization of a Piezoelectric Energy Harvester from Flow Induced Vibration

    Science.gov (United States)

    Ashok, P.; Jawahar Chandra, C.; Neeraj, P.; Santhosh, B.

    2018-02-01

    Self-powered systems have become the need of the hour and several devices and techniques were proposed in favour of this crisis. Among the various sources, vibrations, being the most practical scenario, is chosen in the present study to investigate for the possibility of harvesting energy. Various methods were devised to trap the energy generated by vibrating bodies, which would otherwise be wasted. One such concept is termed as flow-induced vibration which involves the flow of a fluid across a bluff body that oscillates due to a phenomenon known as vortex shedding. These oscillations can be converted into electrical energy by the use of piezoelectric patches. A two degree of freedom system containing a cylinder as the primary mass and a cantilever beam as the secondary mass attached with a piezoelectric circuit, was considered to model the problem. Three wake oscillator models were studied in order to determine the one which can generate results with high accuracy. It was found that Facchinetti model produced better results than the other two and hence a parametric study was performed to determine the favourable range of the controllable variables of the system. A fitness function was formulated and optimization of the selected parameters was done using genetic algorithm. The parametric optimization led to a considerable improvement in the harvested voltage from the system owing to the high displacement of secondary mass.

  4. Quantum coherent control of the vibrational dynamics of a ...

    Indian Academy of Sciences (India)

    2014-02-12

    Feb 12, 2014 ... c Indian Academy of Sciences. Vol. 82, No ... Abstract. We simulate adaptive feedback control to coherently shape a femtosecond infrared laser ... it was shown that different coherent control schemes are unified on a fundamental level. ... A 150 fs pulse with a fluence of 600 J/m2 was used as an initial pulse.

  5. Smart Materials and Active Noise and Vibration Control in Vehicles

    NARCIS (Netherlands)

    Doppenberg, E.J.J.; Berkhoff, Arthur P.; van Overbeek, M.; Gissinger, G.L.

    2001-01-01

    The paper presents the results for the reduction of sound radiated from a structure using different control methodologies, and discusses two approaches for active structural acoustic control: the acoustic approach or the vibro-acoustic approach. Integrated actuators in structure material are

  6. A reduced energy supply strategy in active vibration control

    Science.gov (United States)

    Ichchou, M. N.; Loukil, T.; Bareille, O.; Chamberland, G.; Qiu, J.

    2011-12-01

    In this paper, a control strategy is presented and numerically tested. This strategy aims to achieve the potential performance of fully active systems with a reduced energy supply. These energy needs are expected to be comparable to the power demands of semi-active systems, while system performance is intended to be comparable to that of a fully active configuration. The underlying strategy is called 'global semi-active control'. This control approach results from an energy investigation based on management of the optimal control process. Energy management encompasses storage and convenient restitution. The proposed strategy monitors a given active law without any external energy supply by considering purely dissipative and energy-demanding phases. Such a control law is offered here along with an analysis of its properties. A suboptimal form, well adapted for practical implementation steps, is also given. Moreover, a number of numerical experiments are proposed in order to validate test findings.

  7. A reduced energy supply strategy in active vibration control

    International Nuclear Information System (INIS)

    Ichchou, M N; Loukil, T; Bareille, O; Chamberland, G; Qiu, J

    2011-01-01

    In this paper, a control strategy is presented and numerically tested. This strategy aims to achieve the potential performance of fully active systems with a reduced energy supply. These energy needs are expected to be comparable to the power demands of semi-active systems, while system performance is intended to be comparable to that of a fully active configuration. The underlying strategy is called 'global semi-active control'. This control approach results from an energy investigation based on management of the optimal control process. Energy management encompasses storage and convenient restitution. The proposed strategy monitors a given active law without any external energy supply by considering purely dissipative and energy-demanding phases. Such a control law is offered here along with an analysis of its properties. A suboptimal form, well adapted for practical implementation steps, is also given. Moreover, a number of numerical experiments are proposed in order to validate test findings

  8. Vibrational and thermal study of l-methionine nitrate polycrystals

    Energy Technology Data Exchange (ETDEWEB)

    Victor, F.M.S.; Ribeiro, L.H.L.; Facanha Filho, P.F.; Santos, C.A.S.; Soares, R.A.; Abreu, D.C.; Sousa, J.C.F.; Carvalho, J.O.; Santos, A.O. dos [Universidade Federal do Maranhao (UFMA), MA (Brazil)

    2016-07-01

    Full text: Intensified in studies of nonlinear optical materials has been observed over the past two decades for its wide application in telecommunications, optical modulation and optical signal processing. The goal of this work is the thermal and vibrational study of L-methionine nitrate polycrystalline. The polycrystals were obtained by the method of slow evaporation of solvent at ambient temperature of 25 ° C. The X-ray diffraction was performed to confirm the structure of the material, which has monoclinic structure (space group P21) with four molecules per unit cell structure. Refinement by Rietveld method has been optimized and good quality parameters Rwp = 7.97% , Rp = 5.74 and S = 1.92%. The thermal stability of the material was verified from Thermogravimetric analysis (TGA), Differential Thermal Analysis (DTA) and Differential Scanning Calorimetry (DSC). The measures showed a possible phase transition event at about 107°C before the melting point of the material, which took place at about 127°C. Thermogravimetric analysis showed two mass loss events of 61.5% and 30.4%. The vibrational modes of the L-methionine nitrate molecule were identified by Raman spectroscopy in the spectral range between 35cm-1 and 3500 cm-1, the scattering measurements were made from room temperature up to the melting temperature of the material (140 ° C ) in which the disappearance of bands was found in the region of normal modes at 130 ° C, thus demonstrating a irreversible structural phase transition, because the spectrum obtained after returning the sample to ambient temperature is typical of amorphous material. (author)

  9. Application of a Broadband Active Vibration Control System to a Helicopter Trim Panel

    Science.gov (United States)

    Cabell, Randolph H.; Schiller, Noah H.; Simon, Frank

    2013-01-01

    This paper discusses testing of a broadband active vibration control concept on an interior trim panel in a helicopter cabin mockup located at ONERA's Centre de Toulouse. The control system consisted of twelve diamond-shaped piezoelectric actuators distributed around a 1.2m x 1.2m trim panel. Accelerometers were mounted at the four vertices of each diamond. The aspect ratio of the diamond was based on the dielectric constants of the piezoelectric material in order to create an actuator-sensor pair that was collocated over a broad frequency range. This allowed robust control to be implemented using simple, low power analog electronics. Initial testing on a thick acrylic window demonstrated the capability of the controller, but actuator performance was less satisfactory when mounted on a composite sandwich trim panel. This may have been due to the orthotropic nature of the trim panel, or due to its much higher stiffness relative to the acrylic window. Insights gained from a finite element study of the actuator-sensor-structural system are discussed.

  10. Semi-active control for vibration mitigation of structural systems incorporating uncertainties

    International Nuclear Information System (INIS)

    Miah, Mohammad S; Chatzi, Eleni N; Weber, Felix

    2015-01-01

    This study introduces a novel semi-active control scheme, where the linear-quadratic regulator (LQR) is combined with an unscented Kalman filter (UKF) observer, for the real-time mitigation of structural vibration. Due to a number of factors, such as environmental effects and ageing processes, the controlled system may be characterized by uncertainties. The UKF, which comprises a nonlinear observer, is employed herein for devising an adaptive semi-active control scheme capable of tackling such a challenge. This is achieved through the real-time realization of joint state and parameter estimation during the structural control process via the proposed LQR-UKF approach. The behavior of the introduced scheme is exemplified through two numerical applications. The efficacy of the devised methodology is firstly compared against the standard LQR-KF approach in a linear benchmark application where the system model is assumed known a priori, and secondly, the method is validated on a joint state and parameter estimation problem where the system model is assumed uncertain, formulated as nonlinear, and updated in real-time. (paper)

  11. A study on the evaluation of vibration effect and the development of vibration reduction method for Wolsung unit 1 main steam piping

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyun; Kim, Yeon Whan [Korea Electric Power Corp. (KEPCO), Taejon (Korea, Republic of). Research Center; Kim, Tae Ryong; Park, Jin Ho [Korea Atomic Energy Research Inst., Daeduk (Korea, Republic of)

    1996-08-01

    The main steam piping of nuclear power plant which runs between steam generator and high pressure turbine has been experienced to have a severe effect on the safe operation of the plant due to the vibration induced by the steam flowing inside the piping. The imposed cyclic loads by the vibration could result in the degradation of the related structures such as connection parts between main instruments, valves, pipe supports and building. The objective of the study is to reduce the vibration level of Wolsung nuclear power plant unit 1 main steam pipeline by analyzing vibration characteristics of the piping, identifying sources of the vibration and developing a vibration reduction method .The location of the maximum vibration is piping between the main steam header and steam chest .The stress level was found to be within the allowable limit .The main vibration frequency was found to be 4{approx}6 Hz which is the same as the natural frequency from model test .A vibration reduction method using pipe supports of energy absorbing type(WEAR)is selected .The measured vibration level after WEAR installation was reduced about 36{approx}77% in displacement unit (author). 36 refs., 188 figs.

  12. Research on the Random Shock Vibration Test Based on the Filter-X LMS Adaptive Inverse Control Algorithm

    Directory of Open Access Journals (Sweden)

    Wang Wei

    2016-01-01

    Full Text Available The related theory and algorithm of adaptive inverse control were presented through the research which pointed out the adaptive inverse control strategy could effectively eliminate the noise influence on the system control. Proposed using a frequency domain filter-X LMS adaptive inverse control algorithm, and the control algorithm was applied to the two-exciter hydraulic vibration test system of random shock vibration control process and summarized the process of the adaptive inverse control strategies in the realization of the random shock vibration test. The self-closed-loop and field test show that using the frequency-domain filter-X LMS adaptive inverse control algorithm can realize high precision control of random shock vibration test.

  13. a Method for Preview Vibration Control of Systems Having Forcing Inputs and Rapidly-Switched Dampers

    Science.gov (United States)

    ElBeheiry, E. M.

    1998-07-01

    In a variety of applications, especially in large scale dynamic systems, the mechanization of different vibration control elements in different locations would be decided by limitations placed on the modal vibration of the system and the inherent dynamic coupling between its modes. Also, the quality of vibration control to the economy of producing the whole system would be another trade-off leading to a mix of passive, active and semi-active vibration control elements in one system. This termactiveis limited to externally powered vibration control inputs and the termsemi-activeis limited to rapidly switched dampers. In this article, an optimal preview control method is developed for application to dynamic systems having active and semi-active vibration control elements mechanized at different locations in one system. The system is then a piecewise (bilinear) controller in which two independent sets of control inputs appear additively and multiplicatively. Calculus of variations along with the Hamiltonian approach are employed for the derivation of this method. In essence, it requires the active elements to be ideal force generators and the switched dampers to have the property of on-line variation of the damping characteristics to pre-determined limits. As the dampers switch during operation the whole system's structure differs, and then values of the active forcing inputs are adapted to match these rapid changes. Strictly speaking, each rapidly switched damper has pre-known upper and lower damping levels and it can take on any in-between value. This in-between value is to be determined by the method as long as the damper tracks a pre-known fully active control demand. In every damping state of each semi-active damper the method provides the optimal matching values of the active forcing inputs. The method is shown to have the feature of solving simple standard matrix equations to obtain closed form solutions. A comprehensive 9-DOF tractor semi-trailer model is used

  14. A STUDY OF CONDITION MONITORING IN WATER PIPE USING VIBRATION SENSOR

    OpenAIRE

    角田, 裕紀

    2013-01-01

    This paper describes a study of condition monitoring in water pipe using vibration sensor. The vibration sensor composed of condenser microphone is placed at water pipe. This sensor picks up vibration by water flow. We estimate of flow rate from the output voltage waveform. It is high cost that any conventional flowmeter which use at outside pipe such as ultrasonic flowmeter. We develop a lower cost system and make measurement of flow rate in water pipe easier. The validity of sensing pipe vi...

  15. CR-Calculus and adaptive array theory applied to MIMO random vibration control tests

    Science.gov (United States)

    Musella, U.; Manzato, S.; Peeters, B.; Guillaume, P.

    2016-09-01

    Performing Multiple-Input Multiple-Output (MIMO) tests to reproduce the vibration environment in a user-defined number of control points of a unit under test is necessary in applications where a realistic environment replication has to be achieved. MIMO tests require vibration control strategies to calculate the required drive signal vector that gives an acceptable replication of the target. This target is a (complex) vector with magnitude and phase information at the control points for MIMO Sine Control tests while in MIMO Random Control tests, in the most general case, the target is a complete spectral density matrix. The idea behind this work is to tailor a MIMO random vibration control approach that can be generalized to other MIMO tests, e.g. MIMO Sine and MIMO Time Waveform Replication. In this work the approach is to use gradient-based procedures over the complex space, applying the so called CR-Calculus and the adaptive array theory. With this approach it is possible to better control the process performances allowing the step-by-step Jacobian Matrix update. The theoretical bases behind the work are followed by an application of the developed method to a two-exciter two-axis system and by performance comparisons with standard methods.

  16. Active vibrations control of journal bearings with the use of piezoactuators

    Science.gov (United States)

    Tůma, Jiří; Šimek, Jiří; Škuta, Jaromír; Los, Jaroslav

    2013-04-01

    Rotor instability is one of the most serious problems of high-speed rotors supported by sliding bearings. With constantly increasing parameters, new machines problems with rotor instability are encountered more and more often. Even though there are many solutions based on passive improvement of the bearing geometry to enlarge the operational speed range of the journal bearing, the paper deals with a working prototype of a system for the active vibration control of journal bearings with the use of piezoactuators. The controllable journal bearing is a part of a test rig, which consists of a rotor driven by an inductive motor up to 23,000 rpm. The actively controlled journal bearing consists of a movable bushing, which is actuated by two piezoactuators. The journal vibration is measured by a pair of proximity probes. The control system enables run-up, coast-down and steady-state rotation. A real-time simulator dSpace encloses the control loop. Force produced by piezoactuators and acting at the bushing is controlled according to error signals derived from the proximity probe output signals. As it was proved by experiments the active vibration control extends considerably the range of the operational speed.

  17. Adaptive Model Predictive Vibration Control of a Cantilever Beam with Real-Time Parameter Estimation

    Directory of Open Access Journals (Sweden)

    Gergely Takács

    2014-01-01

    Full Text Available This paper presents an adaptive-predictive vibration control system using extended Kalman filtering for the joint estimation of system states and model parameters. A fixed-free cantilever beam equipped with piezoceramic actuators serves as a test platform to validate the proposed control strategy. Deflection readings taken at the end of the beam have been used to reconstruct the position and velocity information for a second-order state-space model. In addition to the states, the dynamic system has been augmented by the unknown model parameters: stiffness, damping constant, and a voltage/force conversion constant, characterizing the actuating effect of the piezoceramic transducers. The states and parameters of this augmented system have been estimated in real time, using the hybrid extended Kalman filter. The estimated model parameters have been applied to define the continuous state-space model of the vibrating system, which in turn is discretized for the predictive controller. The model predictive control algorithm generates state predictions and dual-mode quadratic cost prediction matrices based on the updated discrete state-space models. The resulting cost function is then minimized using quadratic programming to find the sequence of optimal but constrained control inputs. The proposed active vibration control system is implemented and evaluated experimentally to investigate the viability of the control method.

  18. Novel controller design demonstration for vibration alleviation of helicopter rotor blades

    Science.gov (United States)

    Ulker, Fatma Demet; Nitzsche, Fred

    2012-04-01

    This paper presents an advanced controller design methodology for vibration alleviation of helicopter rotor sys- tems. Particularly, vibration alleviation in a forward ight regime where the rotor blades experience periodically varying aerodynamic loading was investigated. Controller synthesis was carried out under the time-periodic H2 and H∞ framework and the synthesis problem was solved based on both periodic Riccati and Linear Matrix Inequality (LMI) formulations. The closed-loop stability was analyzed using Floquet-Lyapunov theory, and the controller's performance was validated by closed-loop high-delity aeroelastic simulations. To validate the con- troller's performance an actively controlled trailing edge ap strategy was implemented. Computational cost was compared for both formulations.

  19. Robust tracking control for linear vibrating mechanical systems

    Directory of Open Access Journals (Sweden)

    Francisco Beltrán-Carbajal

    2015-01-01

    Full Text Available Se propone un enfoque de control novedoso para seguimiento por realimentación de la salida para sistemas mecánicos vibratorios del tipo masa-resorte-amortiguador lineales sub-actuados. La metodología de diseño de control que se presenta considera robustez con respecto de dinámicas no modeladas y fuerzas externas. El esquema de control propuesto solamente requiere mediciones de la variable de la salida de posición. Se utiliza compensación integral del error de seguimiento de manera apropiada para evitar la estimación en tiempo real de las perturbaciones. Resultado analíticos y numéricos muestran la efectividad del esquema de control activo de vibración para atenuación de vibraciones resonantes y caóticas afectando la respuesta de la variable de salida.

  20. Reduction of interior sound fields in flexible cylinders by active vibration control

    Science.gov (United States)

    Jones, J. D.; Fuller, C. R.

    1988-01-01

    The mechanisms of interior sound reduction through active control of a thin flexible shell's vibrational response are presently evaluated in view of an analytical model. The noise source is a single exterior acoustic monopole. The active control model is evaluated for harmonic excitation; the results obtained indicate spatially-averaged noise reductions in excess of 20 dB over the source plane, for acoustic resonant conditions inside the cavity.

  1. TLCD Parametric Optimization for the Vibration Control of Building Structures Based on Linear Matrix Inequality

    OpenAIRE

    Huo, Linsheng; Qu, Chunxu; Li, Hongnan

    2014-01-01

    Passive liquid dampers have been used to effectively reduce the dynamic response of civil infrastructures subjected to earthquakes or strong winds. The design of liquid dampers for structural vibration control involves the determination of the optimal parameters. This paper presents an optimal design methodology for tuned liquid column dampers (TLCDs) based on the H∞ control theory. A practical structure, Dalian Xinghai Financial Business Building, is used to illustrate the feasibility of the...

  2. The LBT real-time based control software to mitigate and compensate vibrations

    Science.gov (United States)

    Borelli, J.; Trowitzsch, J.; Brix, M.; Kürster, M.; Gässler, W.; Bertram, T.; Briegel, F.

    2010-07-01

    The Large Binocular Telescope (LBT) uses two 8.4 meters active primary mirrors and two adaptive secondary mirrors on the same mounting to take advantage of its interferometric capabilities. Both applications, interferometry and AO, are sensitive to vibrations. Several measurement campaigns have been carried out at the LBT and their results strongly indicate that a vibration monitoring system is required to improve the performance of LINC-NIRVANA, LBTI, and ARGOS, the laser guided ground layer adaptive optic system. Currently, a control software for mitigation and compensation of the vibrations is being designed. A complex set of algorithms collects real-time vibration data, archiving it for further analysis, and in parallel, generating the tip-tilt and optical path difference (OPD) data for the control loop of the instruments. A real-time data acquisition device equipped with embedded real-time Linux is used in our systems. A set of quick-look tools is currently under development in order to verify if the conditions at the telescope are suitable for interferometric/adaptive observations.

  3. Structural Modifications for Torsional Vibration Control of Shafting Systems Based on Torsional Receptances

    Directory of Open Access Journals (Sweden)

    Zihao Liu

    2016-01-01

    Full Text Available Torsional vibration of shafts is a very important problem in engineering, in particular in ship engines and aeroengines. Due to their high levels of integration and complexity, it is hard to get their accurate structural data or accurate modal data. This lack of data is unhelpful to vibration control in the form of structural modifications. Besides, many parts in shaft systems are not allowed to be modified such as rotary inertia of a pump or an engine, which is designed for achieving certain functions. This paper presents a strategy for torsional vibration control of shaft systems in the form of structural modifications based on receptances, which does not need analytical or modal models of the systems under investigation. It only needs the torsional receptances of the system, which can be obtained by testing simple auxiliary structure attached to relevant locations of the shaft system and using the finite element model (FEM of the simple structure. An optimization problem is constructed to determine the required structural modifications, based on the actual requirements of modal frequencies and mode shapes. A numerical experiment is set up and the influence of several system parameters is analysed. Several scenarios of constraints in practice are considered. The numerical simulation results demonstrate the effectiveness of this method and its feasibility in solving torsional vibration problems in practice.

  4. Study on vibration behaviors of engineered barrier system

    Energy Technology Data Exchange (ETDEWEB)

    Mikoshiba, Tadashi; Ogawa, Nobuyuki; Minowa, Chikahiro [National Research Inst. for Earth Science and Disaster Prevention, Tsukuba, Ibaraki (Japan)

    1999-02-01

    Small engineered barrier model was mode and tested by vibrating with the random wave and the real earthquake wave. The wave observed at Kamaishi (N-S, N-W), Iwate Prefecture, in September 6, 1993, and Kobe (N-S) etc. were used as the real earthquake waves. The trial overpack showed non-linear characteristics (soft spring) by vibrating with the random wave. The pressure and acceleration of trial overpack and constraint container increased with increasing the vibration level of the real earthquake wave. The trial overpack moved the maximum 1.7 mm of displacement and 16 mm subsidence. The results showed both waves rocked the trialpack. (S.Y.)

  5. Nonlinear discrete-time multirate adaptive control of non-linear vibrations of smart beams

    Science.gov (United States)

    Georgiou, Georgios; Foutsitzi, Georgia A.; Stavroulakis, Georgios E.

    2018-06-01

    The nonlinear adaptive digital control of a smart piezoelectric beam is considered. It is shown that in the case of a sampled-data context, a multirate control strategy provides an appropriate framework in order to achieve vibration regulation, ensuring the stability of the whole control system. Under parametric uncertainties in the model parameters (damping ratios, frequencies, levels of non linearities and cross coupling, control input parameters), the scheme is completed with an adaptation law deduced from hyperstability concepts. This results in the asymptotic satisfaction of the control objectives at the sampling instants. Simulation results are presented.

  6. Control of Vibration in Mechanical Systems Using Shaped Reference Inputs

    Science.gov (United States)

    1988-01-01

    damping with several discrete actuators. Burke and Hubbard 34! generated a distributed control law by applying a piezoelectric film to the beam that...setpoints from successive memory locations. DATA-kYOVE (- starts servoing to setpoints from successive memory locations for mnicro scified by MN while taking

  7. Adaptive Neural Control for Space Structure Vibration Suppression.

    Science.gov (United States)

    1996-08-01

    based implementations is the subject of the next chapter. 17 ANC Final Report Kam VdI k (~k)A .. loco[ Excitation --Control ON 1 15 20 25 30 Figure 2...must’write something to the update register to cause ~ 1* a conversion. * #def ine MODE OxOOOO 1* Keep things in range * #def ine NAXDA 2048 #define DASENS

  8. An active vibration control method of bridge structures by the ...

    African Journals Online (AJOL)

    The 'Linearization of Feedback Gain Matrix' (LFGM) method proposed by the author to achieve this objective is obtained by activating some useful components of the Riccati matrix while others are strongly attenuated according to the expected output-results and requirements of control mechanism. The present algorithm is ...

  9. A Review of the Evaluation, Control, and Application Technologies for Drill String Vibrations and Shocks in Oil and Gas Well

    Directory of Open Access Journals (Sweden)

    Guangjian Dong

    2016-01-01

    Full Text Available Drill string vibrations and shocks (V&S can limit the optimization of drilling performance, which is a key problem for trajectory optimizing, wellbore design, increasing drill tools life, rate of penetration, and intelligent drilling. The directional wells and other special trajectory drilling technologies are often used in deep water, deep well, hard rock, and brittle shale formations. In drilling these complex wells, the cost caused by V&S increases. According to past theories, indoor experiments, and field studies, the relations among ten kinds of V&S, which contain basic forms, response frequency, and amplitude, are summarized and discussed. Two evaluation methods are compared systematically, such as theoretical and measurement methods. Typical vibration measurement tools are investigated and discussed. The control technologies for drill string V&S are divided into passive control, active control, and semiactive control. Key methods for and critical equipment of three control types are compared. Based on the past development, a controlling program of drill string V&S is devised. Application technologies of the drill string V&S are discussed, such as improving the rate of penetration, controlling borehole trajectory, finding source of seismic while drilling, and reducing the friction of drill string. Related discussions and recommendations for evaluating, controlling, and applying the drill string V&S are made.

  10. Effects of whole-body vibration on balance and mobility in institutionalized older adults: a randomized controlled trial.

    Science.gov (United States)

    Lam, Freddy Mh; Chan, Philip Fl; Liao, L R; Woo, Jean; Hui, Elsie; Lai, Charles Wk; Kwok, Timothy Cy; Pang, Marco Yc

    2018-04-01

    To investigate whether a comprehensive exercise program was effective in improving physical function among institutionalized older adults and whether adding whole-body vibration to the program conferred additional therapeutic benefits. A single-blinded randomized controlled trial was conducted. This study was carried out in residential care units. In total, 73 older adults (40 women, mean age: 82.3 ± 7.3 years) were enrolled into this study. Participants were randomly allocated to one of the three groups: strength and balance program combined with whole-body vibration, strength and balance program without whole-body vibration, and social and recreational activities consisting of upper limb exercises only. All participants completed three training sessions per week for eight weeks. Assessment of mobility, balance, lower limb strength, walking endurance, and self-perceived balance confidence were conducted at baseline and immediately after the eight-week intervention. Incidences of falls requiring medical attention were recorded for one year after the end of the training period. A significant time × group interaction was found for lower limb strength (five-times-sit-to-stand test; P = 0.048), with the exercise-only group showing improvement (pretest: 35.8 ± 16.1 seconds; posttest: 29.0 ± 9.8 seconds), compared with a decline in strength among controls (pretest: 27.1 ± 10.4 seconds; posttest: 28.7 ± 12.3 seconds; P = 0.030). The exercise with whole-body vibration group had a significantly better outcome in balance confidence (pretest: 39.2 ± 29.0; posttest: 48.4 ± 30.6) than the exercise-only group (pretest: 35.9 ± 24.8; posttest: 38.2 ± 26.5; P = 0.033). The exercise program was effective in improving lower limb strength among institutionalized older adults but adding whole-body vibration did not enhance its effect. Whole-body vibration may improve balance confidence without enhancing actual balance performance.

  11. Study on vibration behaviors of engineered barrier system

    International Nuclear Information System (INIS)

    Mikoshiba, Tadashi; Ogawa, Nobuyuki; Minowa, Chikahiro

    1998-01-01

    High-level radioactive wastes have been buried underground by packing into a strong sealed container made from carbon steel (over-pack) with buffer material (bentonite). The engineered barrier system constructed with an overpack and buffer materials must be resistant to earthquakes as well as invasion of groundwater for a long period. Therefore, seismic evaluation of barrier system for earthquakes is indispensable especially in Japan to keep its structural safety. Here, the effects of earthquake vibration on the engineered barrier systems were investigated experimentally. Random-wave vibration and practical seismic wave one were loaded for the systems and fundamental data were obtained. For the former vibration the response characteristics of both engineered barrier models constructed with overpack and bentonite were non-linear. For the latter one, the stress in bentonite was increased in proportion to the vibration level. (M.N.)

  12. Simulation Study on Material Property of Cantilever Piezoelectric Vibration Generator

    Directory of Open Access Journals (Sweden)

    Yan Zhen

    2014-06-01

    Full Text Available For increasing generating capacity of cantilever piezoelectric vibration generator with limited volume, relation between output voltage, inherent frequency and material parameter of unimorph, bimorph in series type and bimorph in parallel type piezoelectric vibration generator is analyzed respectively by mechanical model and finite element modeling. The results indicate PZT-4, PZT- 5A and PZT-5H piezoelectric materials and stainless steel, nickel alloy substrate material should be firstly chosen.

  13. Modeling and control of lateral vibration of an axially translating flexible link

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Heon Seop; Rhim, Sung Soo [Kyung Hee University, Yongin (Korea, Republic of)

    2015-01-15

    Manipulators used for the transportation of large panel-shape payloads often adopt long and slender links (or forks) with translational joins to carry the payloads. As the size of the payload increases, the length of the links also increases to hold the payload securely. The increased length of the link inevitably amplifies the effect of the flexure in the link. Intuitively, the translational motion of the link in its longitudinal direction should have no effect on the lateral vibration of the link because of the orthogonality between the direction of the translational motion and the lateral vibration. If, however, the link was flexible and translated horizontally (perpendicular to the gravitational field) the asymmetric deflection of the link caused by gravity would break the orthogonality between the two directions, and the longitudinal motion of the link would excite lateral motion in the link. In this paper, the lateral oscillatory motion of the flexible link in a large-scale solar cell panel handling robot is investigated where the links carry the panel in its longitudinal direction. The Newtonian approach in conjunction with the assumed modes method is used for derivation of the equation of motion for the flexible forks where non-zero control force is applied at the base of the link. The analysis illustrates the effect of longitudinal motion on the lateral vibration and dynamic stiffening effect (variation of the natural frequency) of the link due to the translational velocity. Lateral vibration behavior is simulated using the derived equations of the motion. A robust vibration control scheme, the input shaping filter technique, is implemented on the model and the effectiveness of the scheme is verified numerically.

  14. Modeling and control of lateral vibration of an axially translating flexible link

    International Nuclear Information System (INIS)

    Shin, Heon Seop; Rhim, Sung Soo

    2015-01-01

    Manipulators used for the transportation of large panel-shape payloads often adopt long and slender links (or forks) with translational joins to carry the payloads. As the size of the payload increases, the length of the links also increases to hold the payload securely. The increased length of the link inevitably amplifies the effect of the flexure in the link. Intuitively, the translational motion of the link in its longitudinal direction should have no effect on the lateral vibration of the link because of the orthogonality between the direction of the translational motion and the lateral vibration. If, however, the link was flexible and translated horizontally (perpendicular to the gravitational field) the asymmetric deflection of the link caused by gravity would break the orthogonality between the two directions, and the longitudinal motion of the link would excite lateral motion in the link. In this paper, the lateral oscillatory motion of the flexible link in a large-scale solar cell panel handling robot is investigated where the links carry the panel in its longitudinal direction. The Newtonian approach in conjunction with the assumed modes method is used for derivation of the equation of motion for the flexible forks where non-zero control force is applied at the base of the link. The analysis illustrates the effect of longitudinal motion on the lateral vibration and dynamic stiffening effect (variation of the natural frequency) of the link due to the translational velocity. Lateral vibration behavior is simulated using the derived equations of the motion. A robust vibration control scheme, the input shaping filter technique, is implemented on the model and the effectiveness of the scheme is verified numerically.

  15. Theoretical and experimental study of vibration, generated by monorail trains

    Science.gov (United States)

    Rybak, Samuil A.; Makhortykh, Sergey A.; Kostarev, Stanislav A.

    2002-11-01

    Monorail transport as all other city transport vehicles is the source of high noise and vibration levels. It is less widespread than cars or underground transport but its influence in modern cities enhances. Now in Moscow the first monorail road with trains on tires is designed, therefore the problem of vibration and noise assessments and prediction of its impact on the residential region appears. To assess the levels of generated vibration a physical model of interaction in the system wagon-tire-road coating-viaduct-soil has been proposed and then numerically analyzed. The model is based on the known from publications facts of automobile transport vibration and our own practice concerning underground trains vibration generation. To verify computer simulation results and adjust model parameters the series of measurements of noise and vibration near experimental monorail road was carried out. In the report the results of calculations and measurements will be presented and some outcomes of possible acoustical ecologic situation near monorail roads will be proposed.

  16. Vibrations and spatial patterns in biomimetic surfaces: using the shark-skin effect to control blood clotting.

    Science.gov (United States)

    Ramachandran, Rahul; Maani, Nazanin; Rayz, Vitaliy L; Nosonovsky, Michael

    2016-08-06

    We study the effect of small-amplitude fast vibrations and small-amplitude spatial patterns on various systems involving wetting and liquid flow, such as superhydrophobic surfaces, membranes and flow pipes. First, we introduce a mathematical method of averaging the effect of small spatial and temporal patterns and substituting them with an effective force. Such an effective force can change the equilibrium state of a system as well as a phase state, leading to surface texture-induced and vibration-induced phase control. Vibration and patterns can effectively jam holes in vessels with liquid, separate multi-phase flow, change membrane properties, result in propulsion and locomotion and lead to many other multi-scale, nonlinear effects including the shark-skin effect. We discuss the application of such effects to blood flow for novel biomedical 'haemophobic' applications which can prevent blood clotting and thrombosis by controlling the surface pattern at a wall of a vessel (e.g. a catheter or stent).This article is part of the themed issue 'Bioinspired hierarchically structured surfaces for green science'. © 2016 The Author(s).

  17. Improving Delay-Margin of Noncollocated Vibration Control of Piezo-Actuated Flexible Beams via a Fractional-Order Controller

    Directory of Open Access Journals (Sweden)

    Teerawat Sangpet

    2014-01-01

    Full Text Available Noncollocated control of flexible structures results in nonminimum-phase systems because the separation between the actuator and the sensor creates an input-output delay. The delay can deteriorate stability of closed-loop systems. This paper presents a simple approach to improve the delay-margin of the noncollocated vibration control of piezo-actuated flexible beams using a fractional-order controller. Results of real life experiments illustrate efficiency of the controller and show that the fractional-order controller has better stability robustness than the integer-order controller.

  18. Parametric control of structural vibrations and sound radiation by fast time-space variation of distributed stiffness parameters

    International Nuclear Information System (INIS)

    Krylov, V.I.; Sorokin, S.V.

    1998-01-01

    The dynamics of a Euler-Bernoulli beam with a time-and-space dependent bending stiffness is studied. The , problem is considered in connection with the application of noise control using smart structures. It is shown that a control for the vibrations of the beam can be achieved by varying the bending stiffness. The technique of direct separation of fast and slow motion coupled with a Green's function method is used to analyze the dynamics of the beam with high-frequency modulation of the stiffness

  19. Use of piezoelectric actuators in active vibration control of rotating machinery

    Science.gov (United States)

    Lin, Reng Rong; Palazzolo, Alan B.; Kascak, Albert F.; Montague, Gerald

    1990-01-01

    Theoretical and test results for the development of piezoelectric-actuator-based active vibration control (AVC) are presented. The evolution of this technology starts with an ideal model of the actuator and progresses to a more sophisticated model where the pushers force the squirrel cage ball bearing supports of a rotating shaft. The piezoelectric pushers consist of a stack of piezoelectric ceramic disks that are arranged on top of one another and connected in parallel electrically. This model consists of a prescribed displacement that is proportional to the input voltage and a spring that represents the stiffness of the stack of piezoelectric disks. System tests were carried out to stabilize the AVC system, verify its effectiveness in controlling vibration, and confirm the theory presented.

  20. Optimal design and experimental analyses of a new micro-vibration control payload-platform

    Science.gov (United States)

    Sun, Xiaoqing; Yang, Bintang; Zhao, Long; Sun, Xiaofen

    2016-07-01

    This paper presents a new payload-platform, for precision devices, which possesses the capability of isolating the complex space micro-vibration in low frequency range below 5 Hz. The novel payload-platform equipped with smart material actuators is investigated and designed through optimization strategy based on the minimum energy loss rate, for the aim of achieving high drive efficiency and reducing the effect of the magnetic circuit nonlinearity. Then, the dynamic model of the driving element is established by using the Lagrange method and the performance of the designed payload-platform is further discussed through the combination of the controlled auto regressive moving average (CARMA) model with modified generalized prediction control (MGPC) algorithm. Finally, an experimental prototype is developed and tested. The experimental results demonstrate that the payload-platform has an impressive potential of micro-vibration isolation.

  1. Adaptive super twisting vibration control of a flexible spacecraft with state rate estimation

    Science.gov (United States)

    Malekzadeh, Maryam; Karimpour, Hossein

    2018-05-01

    The robust attitude and vibration control of a flexible spacecraft trying to perform accurate maneuvers in spite of various sources of uncertainty is addressed here. Difficulties for achieving precise and stable pointing arise from noisy onboard sensors, parameters indeterminacy, outer disturbances as well as un-modeled or hidden dynamics interactions. Based on high-order sliding-mode methods, the non-minimum phase nature of the problem is dealt with through output redefinition. An adaptive super-twisting algorithm (ASTA) is incorporated with its observer counterpart on the system under consideration to get reliable attitude and vibration control in the presence of sensor noise and momentum coupling. The closed-loop efficiency is verified through simulations under various indeterminate situations and got compared to other methods.

  2. Consensus positive position feedback control for vibration attenuation of smart structures

    Science.gov (United States)

    Omidi, Ehsan; Nima Mahmoodi, S.

    2015-04-01

    This paper presents a new network-based approach for active vibration control in smart structures. In this approach, a network with known topology connects collocated actuator/sensor elements of the smart structure to one another. Each of these actuators/sensors, i.e., agent or node, is enhanced by a separate multi-mode positive position feedback (PPF) controller. The decentralized PPF controlled agents collaborate with each other in the designed network, under a certain consensus dynamics. The consensus constraint forces neighboring agents to cooperate with each other such that the disagreement between the time-domain actuation of the agents is driven to zero. The controller output of each agent is calculated using state-space variables; hence, optimal state estimators are designed first for the proposed observer-based consensus PPF control. The consensus controller is numerically investigated for a flexible smart structure, i.e., a thin aluminum beam that is clamped at its both ends. Results demonstrate that the consensus law successfully imposes synchronization between the independently controlled agents, as the disagreements between the decentralized PPF controller variables converge to zero in a short time. The new consensus PPF controller brings extra robustness to vibration suppression in smart structures, where malfunctions of an agent can be compensated for by referencing the neighboring agents’ performance. This is demonstrated in the results by comparing the new controller with former centralized PPF approach.

  3. Children's behavioral pain reactions during local anesthetic injection using cotton-roll vibration method compared with routine topical anesthesia: A randomized controlled trial.

    Science.gov (United States)

    Bagherian, Ali; Sheikhfathollahi, Mahmood

    2016-01-01

    Topical anesthesia has been widely advocated as an important component of atraumatic administration of intraoral local anesthesia. The aim of this study was to use direct observation of children's behavioral pain reactions during local anesthetic injection using cotton-roll vibration method compared with routine topical anesthesia. Forty-eight children participated in this randomized controlled clinical trial. They received two separate inferior alveolar nerve block or primary maxillary molar infiltration injections on contralateral sides of the jaws by both cotton-roll vibration (a combination of topical anesthesia gel, cotton roll, and vibration for physical distraction) and control (routine topical anesthesia) methods. Behavioral pain reactions of children were measured according to the author-developed face, head, foot, hand, trunk, and cry (FHFHTC) scale, resulting in total scores between 0 and 18. The total scores on the FHFHTC scale ranged between 0-5 and 0-10 in the cotton-roll vibration and control methods, respectively. The mean ± standard deviation values of total scores on FHFHTC scale were lower in the cotton-roll vibration method (1.21 ± 1.38) than in control method (2.44 ± 2.18), and this was statistically significant (P anesthesia in reducing behavioral pain reactions in children during local anesthesia administration.

  4. Monitoring and control of vibrations due to blasting in Sumapaz tunnel, granting Bogotá-Girardot

    Directory of Open Access Journals (Sweden)

    Luis Humberto Pinto-Morales

    2013-12-01

    Full Text Available This article discusses the most relevant topics of the subject of vibration of the ground, from its generation and monitoring to the control of their effects. We emphasize on the use and interpretation of the dynamic data field, since the theoretical methods and testing laboratory at times are not sufficient to solve applied geotechnical problems; for example, in the case of the assessment of the impact of the blasting in the Sumapaz tunnel, Boquerón area, department of Cundinamarca, Colombia. The work is the result of studies carried out by company I.GEOSOTMINE LTDA., in coordination with the Research Group INGEOFISICA of Universidad Pedagógica y Tecnológica de Colombia, on the exploration of the subsoil, aimed at the monitoring and control of blasting caused by explosive and micro-trepidation, in several Colombian regions.

  5. Thermal Effects on Vibration and Control of Piezocomposite Kirchhoff Plate Modeled by Finite Elements Method

    OpenAIRE

    Sanbi, M.; Saadani, R.; Sbai, K.; Rahmoune, M.

    2015-01-01

    Theoretical and numerical results of the modeling of a smart plate are presented for optimal active vibration control. The smart plate consists of a rectangular aluminum piezocomposite plate modeled in cantilever configuration with surface bonded thermopiezoelectric patches. The patches are symmetrically bonded on top and bottom surfaces. A generic thermopiezoelastic theory for piezocomposite plate is derived, using linear thermopiezoelastic theory and Kirchhoff assumptions. Finite element eq...

  6. Responses of sympathetic nervous system to cold exposure in vibration syndrome subjects and age-matched healthy controls.

    Science.gov (United States)

    Nakamoto, M

    1990-01-01

    Plasma norepinephrine and epinephrine in vibration syndrome subjects and age-matched healthy controls were measured for the purpose of estimating the responsibility of the sympathetic nervous system to cold exposure. In preliminary experiment, it was confirmed that cold air exposure of the whole body was more suitable than one-hand immersion in cold water. In the main experiment, 195 subjects were examined. Sixty-five subjects had vibration syndrome with vibration-induced white finger (VWF + group) and 65 subjects had vibration syndrome without VWF (VWF- group) and 65 controls had no symptoms (control group). In the three groups, plasma norepinephrine levels increased during cold air exposure of whole body at 7 degrees +/- 1.5 degrees C. Blood pressure increased and skin temperature decreased during cold exposure. Percent increase of norepinephrine in the VWF+ group was the highest while that in VWF- group followed and that in the control group was the lowest. This whole-body response of the sympathetic nervous system to cold conditions reflected the VWF which are characteristic symptoms of vibration syndrome. Excluding the effects of shivering and a cold feeling under cold conditions, it was confirmed that the sympathetic nervous system in vibration syndrome is activated more than in the controls. These results suggest that vibration exposure to hand and arm affects the sympathetic nervous system.

  7. Effects of whole-body vibration training on explosive strength and postural control in young female athletes.

    Science.gov (United States)

    Fort, Azahara; Romero, Daniel; Bagur, Caritat; Guerra, Myriam

    2012-04-01

    This study aimed to evaluate the effectiveness of a whole-body vibration training program to improve neuromuscular performance in young elite female athletes. Twenty-three women basketball players (14-18 years old) were randomly assigned to a control group (CG, n = 11) or to a whole-body vibration group (WBVG, n = 12). During the study period, both groups continued their usual training program, but the WBVG also underwent a 15-week vibration training program. We analyzed the countermovement jump test (CMJ), the 1-leg hop test for the right leg and for the left leg, and the single-limb standing balance for both legs and with eyes open and closed at 3 time points: before training (T1), after an 8-week training period (T2), and after a further 7-week training period (T3). Compared with the CG, CMJ increased significantly in the WBVG from T1 to T2 (6.47%, p training program improves explosive strength and postural stability in adolescent female basketball players.

  8. Viability Analysis of Waste Tires as Material for Rail Vibration and Noise Control in Modern Tram Track Systems

    Directory of Open Access Journals (Sweden)

    Caiyou Zhao

    2015-01-01

    Full Text Available This research study focused on the effect of using damping chamber elements made from waste tires on railway noise reduction. First, the energy absorption characteristics of damping chamber elements with various gradation combinations and compaction indices were measured in the laboratory using compression testing. The laboratory compression results demonstrated that the optimal gradation combination of damping chamber elements is as follows: the content of fine rubber particles is 10%, the content of coarse granules is 90%, and the optimal compaction index is 0.98. Next, the findings from the laboratory compression-test studies were used to produce damping chamber elements that were applied to a full-scale modern track model in the laboratory. The measurements of the dynamic properties indicated that the damping chamber elements could significantly reduce the vibration levels of the rail head. Finally, the damping chamber elements, which had been proven effective through laboratory dynamic tests, were widely applied to test rail sections in the field. The field tests demonstrated that damping chamber elements can significantly increase the track vibration decay rate in the frequency range of 200–10000 Hz. Therefore, damping chamber elements made from waste tires are able to control rail vibration and noise in modern tram track systems.

  9. An observational study of the effect of vibration on the caking of suspensions in oily vehicles.

    Science.gov (United States)

    Jain, Rohit; Bork, Olaf; Alawi, Fadil; Nanjan, Karthigeyan; Tucker, Ian G

    2016-11-30

    An oily suspension of penethamate (PNT) that was physically stable on storage, caked solidly during road/air transport. This paper reports on the caking behaviour of PNT oily suspension formulations exposed to vibrations in a lab-based test designed to simulate road/air transport. The lab-test was used to study the effects of container type (glass v PET) and formulation (oil, surfactant type and concentration) on the physical stability of suspension under vibration. Redispersibility of the sediment was lower at longer vibrations times and at higher intensity of vibration. Caking on vibration was strongly influenced by the type of container (caking in glass but not in PET) possibly due to tribo-charging of particles. Caking on vibration was dependent on the formulation: type and concentration of surfactant; type of oil. The physical stability of oily suspensions, and the effect of vibration are two areas which have been largely neglected in the pharmaceutical literature. This paper discusses some potential mechanisms for the observations but studies using fully characterised materials are required. Finally we conclude that static testing of physical stability of oily suspensions is not sufficient and that a vibrational stress test is required. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Tautomerism of 4-hydrazinoquinazolines: vibrational spectra and computational study

    Directory of Open Access Journals (Sweden)

    Tetiana Yu. Sergeieva

    2014-03-01

    Full Text Available The tautomerism of 4-hydrazinoquinazoline and its derivatives was investigated. Geometry and thermodynamic parameters were computed theoretically using Gaussian 03 software. All calculations were performed at the MP2 level of theory using the standard 6-31G(d basis. Energetics and relative stabilities of tautomers were compared and analyzed in a gas phase. The effect of solvents (1,4-dioxane, acetic acid, ethanol and water on the tautomeric equlibria was evaluated using PCM. It was determined that solvents induced slight changes in the relative stability. In all cases 4-hydrazinoquinazoline exists predominantly as the amino form. The variation of dipole moments was studied. The anharmonic vibrational wavenumbers for unsubstituted 4-hydrazinoquinazoline were calculated at MP2/6-31G(d level and compared with experimental data. The modes of IR spectra were assigned. The calculated herein wavenumbers and intensities of amino form are in good agreement with those observed experimentally.      

  11. Vibration response imaging in idiopathic pulmonary fibrosis: a pilot study.

    Science.gov (United States)

    Liu, Qing-Xia; Guan, Wei-Jie; Xie, Yan-Qing; An, Jia-Ying; Jiang, Mei; Zhu, Zheng; Guo, E; Yu, Xin-Xin; Liu, Wen-Ting; Gao, Yi; Zheng, Jin-Ping

    2014-07-01

    Vibration response imaging (VRI) is a novel imaging technique and little is known about its characteristics and diagnostic value in idiopathic pulmonary fibrosis (IPF). The aim of this study was to investigate the features of VRI in subjects with IPF. We enrolled 23 subjects with IPF (42-74 y old) and 28 healthy subjects (42-72 y old). Subjects with IPF were diagnosed by lung biopsy and underwent VRI, spirometry, lung diffusion testing, and chest x-ray or computed tomography, which entailed assessment of the value of VRI indices. The total VRI score correlated statistically with single-breath carbon monoxide diffusing capacity percent predicted (r = -0.30, P = .04), but not with FVC percent predicted, FEV1 percent predicted, and FEV1/FVC (r = -0.27, -0.22, and 0.19; all P > .05). Compared with healthy subjects (17.9%), 20 subjects with IPF (86.96%, P .05), except for the upper right and lower left lobes (P diagnostic value (sensitivity, 1.00; specificity, 0.82), followed by presence of abundant crackles (sensitivity, 0.70; specificity, 0.96). Total VRI score was not a sensitive indicator of IPF, owing to low assay sensitivity (0.70) and specificity (0.64). VRI may be helpful to discriminate between IPF subjects and healthy individuals. Maximum energy frame and abundant crackles might serve as a diagnostic tool for IPF. Copyright © 2014 by Daedalus Enterprises.

  12. Vibrational studies of Thyroxine hormone: Comparative study with quantum chemical calculations

    Science.gov (United States)

    Borah, Mukunda Madhab; Devi, Th. Gomti

    2017-11-01

    The FTIR and Raman techniques have been used to record spectra of Thyroxine. The stable geometrical parameters and vibrational wave numbers were calculated based on potential energy distribution (PED) using vibrational energy distribution analysis (VEDA) program. The vibrational energies are assigned to monomer, chain dimer and cyclic dimers of this molecule using the basis set B3LYP/LANL2DZ. The computational scaled frequencies are in good agreements with the experimental results. The study is extended to calculate the HOMO-LUMO energy gap, Molecular Electrostatic Potential (MEP) surface, hardness (η), chemical potential (μ), Global electrophilicity index (ω) and different thermo dynamical properties of Thyroxine in different states. The calculated HOMO-LUMO energies show the charge transfer occurs within the molecule. The calculated Natural bond orbital (NBO) analysis confirms the presence of intra-molecular charge transfer as well as the hydrogen bonding interaction.

  13. RESEARCH OF THE HIGH HARMONICS INDIVIDUAL BLADE CONTROL EFFECT ON VIBRATIONS CAUSED BY THE HELICOPTER MAIN ROTOR THRUST

    Directory of Open Access Journals (Sweden)

    2016-01-01

    Full Text Available The paper presents numerical results analysis of main rotor vibration due to helicopter main rotor thrust pulsation.The calculation method, the object of research and numerical research results with the aim to reduce the amplitude of the vibrations transmitted to the hub from the helicopters main rotor by the individual blade control in azimuth by the installation angle of blades cyclic changes are set out in the article. The individual blades control law for a five-blade main rotor based on the blade frequencies is made. It allows reducing the vibration from thrust. Research takes into account the main rotor including and excluding the blade flapping motion. The minimal vibrations regime is identified.Numerical study of variable loads caused by unsteady flow around the main rotor blades at high relative speeds of flight, which transmitted to the rotor hub, is made. The scheme of a thin lifting surface and the rotor vortex theory are used for simulation of the aerodynamic loads on blades. Non - uniform loads caused by the thrust, decomposed on the blade harmonic and its overtones. The largest values of deviation from the mean amplitude thrust are received. The analysis of variable loads with a traditional control system is made. Algorithms of higher harmonics individual blade control capable of reducing the thrust pulsation under the average value of thrust are developed.Numerical research shows that individual blade control of high harmonics reduces variable loads. The necessary change in the blade installation is about ± 0,2 degree that corresponds to the maximum displacement of the additional con- trol stick is about 1 mm.To receive the overall picture is necessary to consider all six components of forces and moments. Control law with own constants will obtained for each of them. It is supposed, that each of six individual blade control laws have an impact on other components. Thus, the problem reduces to the optimization issue. The

  14. Design and experiment of controlled bistable vortex induced vibration energy harvesting systems operating in chaotic regions

    Science.gov (United States)

    Huynh, B. H.; Tjahjowidodo, T.; Zhong, Z.-W.; Wang, Y.; Srikanth, N.

    2018-01-01

    Vortex induced vibration based energy harvesting systems have gained interests in these recent years due to its potential as a low water current energy source. However, the effectiveness of the system is limited only at a certain water current due to the resonance principle that governs the concept. In order to extend the working range, a bistable spring to support the structure is introduced on the system. The improvement on the performance is essentially dependent on the bistable gap as one of the main parameters of the nonlinear spring. A sufficiently large bistable gap will result in a significant performance improvement. Unfortunately, a large bistable gap might also increase a chance of chaotic responses, which in turn will result in diminutive harvested power. To mitigate the problem, an appropriate control structure is required to stabilize the chaotic vibrations of a VIV energy converter with the bistable supporting structure. Based on the nature of the double-well potential energy in a bistable spring, the ideal control structure will attempt to drive the responses to inter-well periodic vibrations in order to maximize the harvested power. In this paper, the OGY control algorithm is designed and implemented to the system. The control strategy is selected since it requires only a small perturbation in a structural parameter to execute the control effort, thus, minimum power is needed to drive the control input. Facilitated by a wake oscillator model, the bistable VIV system is modelled as a 4-dimensional autonomous continuous-time dynamical system. To implement the controller strategy, the system is discretized at a period estimated from the subspace hyperplane intersecting to the chaotic trajectory, whereas the fixed points that correspond to the desired periodic orbits are estimated by the recurrence method. Simultaneously, the Jacobian and sensitivity matrices are estimated by the least square regression method. Based on the defined fixed point and the

  15. Gear noise, vibration, and diagnostic studies at NASA Lewis Research Center

    Science.gov (United States)

    Zakrajsek, J. J.; Oswald, F. B.; Townsend, D. P.; Coy, J. J.

    1990-01-01

    The NASA Lewis Research Center and the U.S. Army Aviation Systems Command are involved in a joint research program to advance the technology of rotorcraft transmissions. This program consists of analytical as well as experimental efforts to achieve the overall goals of reducing weight, noise, and vibration, while increasing life and reliability. Recent analytical activities are highlighted in the areas of gear noise, vibration, and diagnostics performed in-house and through NASA and U.S. Army sponsored grants and contracts. These activities include studies of gear tooth profiles to reduce transmission error and vibration as well as gear housing and rotordynamic modeling to reduce structural vibration and transmission and noise radiation, and basic research into current gear failure diagnostic methodologies. Results of these activities are presented along with an overview of near-term research plans in the gear noise, vibration, and diagnostics area.

  16. Vibration control of an energy regenerative seat suspension with variable external resistance

    Science.gov (United States)

    Ning, Donghong; Sun, Shuaishuai; Du, Haiping; Li, Weihua; Zhang, Nong

    2018-06-01

    In this paper, an energy regenerative seat suspension with a variable external resistance is proposed and built, and a semi-active controller for its vibration control is also designed and validated. The energy regenerative seat suspension is built with a three-phase generator and a gear reducer, which are installed in the scissors structure centre of the seat suspension, and the vibration energy is directly harvested from the rotary movement of suspension's scissors structure. The electromagnetic torque of the semi-active seat suspension actuator is controlled by an external variable resistor. An integrated model including the seat suspension's kinematics and the generator is built and proven to match the test result very well. A simplified experimental phenomenon model is also built based on the test results for the controller design. A state feedback H∞ controller is proposed for the regenerative seat suspension's semi-active vibration control. The proposed regenerative seat suspension and its controller are validated with both simulations and experiments. A well-tuned passive seat suspension is applied to evaluate the regenerative seat's performance. Based on ISO 2631-1, the frequency-weighted root mean square (FW-RMS) acceleration of the proposed seat suspension has a 22.84% reduction when compared with the passive one, which indicates the improvement of ride comfort. At the same time, the generated RMS power is 1.21 W. The proposed regenerative seat suspension can greatly improve the driver's ride comfort and has the potential to be developed to a self-powered semi-active system.

  17. Experimental and Computational Instrumentation for Rotorcraft Noise and Vibration Control Research at the Penn State Rotorcraft Center

    National Research Council Canada - National Science Library

    Smith, Edward

    2001-01-01

    A team of faculty at the Penn State Rotorcraft Center of Excellence has integrated five new facilities into a broad range of research and educational programs focused on rotorcraft noise and vibration control...

  18. Design of a new engine mount for vertical and horizontal vibration control using magnetorheological fluid

    International Nuclear Information System (INIS)

    Phu, D X; Choi, S B; Lee, Y S; Han, M S

    2014-01-01

    This paper presents a new design of a magnetorheological fluid (MR) mount for vibration control considering both vertical forces and horizontal moments such as are met in various engine systems, including a medium high-speed engine of ship. The newly designed mount, called a MR brake mount, offers several salient benefits such as small size and relatively high load capacity compared with a conventional MR engine mount that can control vertical vibration only. The principal design parameters of the proposed mount are optimally determined to achieve maximum torque with geometric and spatial constraints. Subsequently, the proposed MR mount is designed and manufactured based on the optimized design parameters. It is shown from experimental testing that the proposed mount, which combines MR mount with MR brake, can produce the desired force and torque to reduce unwanted vibration of a medium high-speed engine system of ship subjected to both vertical and horizontal exciting motions. In addition, it is verified that there is no large difference between experiment results and simulation results that are obtained from an analytical model derived in this work. (technical note)

  19. Experimental study of flow induced vibration of the planar fuel assembly

    International Nuclear Information System (INIS)

    Wang Jinhua; Bo Hanliang; Jiang Shengyao; Jia Haijun; Zheng Wenxiang; Min Gang; Qu Xinxing

    2005-01-01

    The paper studied the flow-induced vibration of the planar fuel assembly under scour of coolant through experiments, the study includes: the characteristics of the inherent vibration, the response to the flow-induced vibration in rating condition and the confirmation of the critical flow velocity's scope of the flow flexible instability. The velocity distributions in different flow channels formed by fuel plates in the assembly were measured, and the velocity distribution in the same flow channel was also measured. The experimental conclusions includes: the inherent vibration frequency of the planar fuel assembly is different for a little in each direction. The damp ratio corresponding to the assembly each rank's inherent frequency is small, and the damp ratio decreased with the increase of the corresponding inherent frequency. The velocity in different flow channels decreased from outside to inside, and the velocity in the middle channel was the least; the velocity in the same channel decreased from inside to outside, and the velocity in the middle position was the most. The vibration swing of the fuel assembly was small at rating condition, and the vibration swing of the fuel plates was larger than side plates. The vibration of the fuel assembly increased with the increase of the velocity, the vibration of the middle fuel plate were larger than the border fuel plate, and the vibration of the border fuel plate was larger than the side plate. The large scale vibration of the flow flexible instability didn't occur in the velocity scope of 0-18.8 m/s in the experiment, so the critical flow velocity of the flow flexible instability was not in the flow velocity scope of the experiment. (authors)

  20. Vibration control of an MR vehicle suspension system considering both hysteretic behavior and parameter variation

    International Nuclear Information System (INIS)

    Choi, Seung-Bok; Seong, Min-Sang; Ha, Sung-Hoon

    2009-01-01

    This paper presents vibration control responses of a controllable magnetorheological (MR) suspension system considering the two most important characteristics of the system; the field-dependent hysteretic behavior of the MR damper and the parameter variation of the suspension. In order to achieve this goal, a cylindrical MR damper which is applicable to a middle-sized passenger car is designed and manufactured. After verifying the damping force controllability, the field-dependent hysteretic behavior of the MR damper is identified using the Preisach hysteresis model. The full-vehicle suspension model is then derived by considering vertical, pitch and roll motions. An H ∞ controller is designed by treating the sprung mass of the vehicle as a parameter variation and integrating it with the hysteretic compensator which produces additional control input. In order to demonstrate the effectiveness and robustness of the proposed control system, the hardware-in-the-loop simulation (HILS) methodology is adopted by integrating the suspension model with the proposed MR damper. Vibration control responses of the vehicle suspension system such as vertical acceleration are evaluated under both bump and random road conditions

  1. RESEARCH OF THE HIGH HARMONICS INDIVIDUAL BLADE CONTROL EFFECT ON VIBRATIONS CAUSED BY THE HELICOPTER MAIN ROTOR THRUST

    OpenAIRE

    2016-01-01

    The paper presents numerical results analysis of main rotor vibration due to helicopter main rotor thrust pulsation.The calculation method, the object of research and numerical research results with the aim to reduce the amplitude of the vibrations transmitted to the hub from the helicopters main rotor by the individual blade control in azimuth by the installation angle of blades cyclic changes are set out in the article. The individual blades control law for a five-blade main rotor based on ...

  2. A COMPARATIVE STUDY OF WHOLE-BODY VIBRATION EXPOSURE IN TRAIN AND CAR PASSENGERS: A CASE STUDY IN MALAYSIA

    Directory of Open Access Journals (Sweden)

    M.M. Rahman

    2011-12-01

    Full Text Available Trains and cars are the most important modes of transportation throughout the world. In highly developed countries, trains have become essential for human use as the most well-known form of public transportation, whereas the car plays a significant role in prompt human travel from one place to another. The high magnitude of vibration caused by trains and cars may cause health problems in humans, especially low back pain. The aim of this study was to evaluate and validate the values of daily exposure to vibration A(8 and the vibration dose value (VDV in passengers travelling by train and car and to assess the effects produced by this exposure on the human body. Moreover, this study introduces a newly developed whole-body vibration measurement instrumentation system. One train travelling from the east coast to the south of Malaysia was chosen to conduct the study. Whole-body vibration exposure was measured over 8 hours, which is equal to the duration of normal occupational exposure. One car was chosen randomly and whole-body vibration exposure was measured for 5 min and 10 min. All the data were computed using an IEPE(ICPTM accelerometer sensor connected to a DT9837 device which is capable of effectively measuring and analysing vibration. The vibration results were displayed on a personal computer using a custom graphical user interface (GUI. Matlab software was used to interpret the data. From the results, the whole-body vibration exposure level could be determined. It can be concluded that the whole-body vibration absorbed by the human body is enhanced when the magnitude of the vibration exposure experienced by the passengers increased. This was shown by the increased values of daily exposure to vibration A(8 and VDV calculated in the study.

  3. Recent progress and development of building vibration control systems in Japan

    International Nuclear Information System (INIS)

    Izumi, Masanori

    1989-01-01

    Japan is on a seismically active zone. The people are frequently shaken, and there is good reason to develop vibration control systems. Ministries and major construction companies have contributed to the progress of the technology. An example is the Fast Breeder Reactor (FBR) Research project, which may be equipped with a base-isolation system. Rubber bearings will be standardized and base-isolated buildings will be designed and constructed easily on good ground in the near future. But one needs time to realize a building with an active control system, which is effective in potentially destructive earthquakes

  4. Compact vibration isolation and suspension for Australian International Gravitational Observatory: local control system.

    Science.gov (United States)

    Dumas, Jean-Charles; Barriga, Pablo; Zhao, Chunnong; Ju, Li; Blair, David G

    2009-11-01

    High performance vibration isolators are required for ground based gravitational wave detectors. To attain very high performance at low frequencies we have developed multistage isolators for the proposed Australian International Gravitational Observatory detector in Australia. New concepts in vibration isolation including self-damping, Euler springs, LaCoste springs, Roberts linkages, and double preisolation require novel sensors and actuators. Double preisolation enables internal feedback to be used to suppress low frequency seismic noise. Multidegree of freedom control systems are required to attain high performance. Here we describe the control components and control systems used to control all degrees of freedom. Feedback forces are injected at the preisolation stages and at the penultimate suspension stage. There is no direct actuation on test masses. A digital local control system hosted on a digital signal processor maintains alignment and position, corrects drifts, and damps the low frequency linear and torsional modes without exciting the very high Q-factor test mass suspension. The control system maintains an optical cavity locked to a laser with a high duty cycle even in the absence of an autoalignment system. An accompanying paper presents the mechanics of the system, and the optical cavity used to determine isolation performance. A feedback method is presented, which is expected to improve the residual motion at 1 Hz by more than one order of magnitude.

  5. Compact vibration isolation and suspension for Australian International Gravitational Observatory: Local control system

    Science.gov (United States)

    Dumas, Jean-Charles; Barriga, Pablo; Zhao, Chunnong; Ju, Li; Blair, David G.

    2009-11-01

    High performance vibration isolators are required for ground based gravitational wave detectors. To attain very high performance at low frequencies we have developed multistage isolators for the proposed Australian International Gravitational Observatory detector in Australia. New concepts in vibration isolation including self-damping, Euler springs, LaCoste springs, Roberts linkages, and double preisolation require novel sensors and actuators. Double preisolation enables internal feedback to be used to suppress low frequency seismic noise. Multidegree of freedom control systems are required to attain high performance. Here we describe the control components and control systems used to control all degrees of freedom. Feedback forces are injected at the preisolation stages and at the penultimate suspension stage. There is no direct actuation on test masses. A digital local control system hosted on a digital signal processor maintains alignment and position, corrects drifts, and damps the low frequency linear and torsional modes without exciting the very high Q-factor test mass suspension. The control system maintains an optical cavity locked to a laser with a high duty cycle even in the absence of an autoalignment system. An accompanying paper presents the mechanics of the system, and the optical cavity used to determine isolation performance. A feedback method is presented, which is expected to improve the residual motion at 1 Hz by more than one order of magnitude.

  6. Composite multi-modal vibration control for a stiffened plate using non-collocated acceleration sensor and piezoelectric actuator

    International Nuclear Information System (INIS)

    Li, Shengquan; Li, Juan; Mo, Yueping; Zhao, Rong

    2014-01-01

    A novel active method for multi-mode vibration control of an all-clamped stiffened plate (ACSP) is proposed in this paper, using the extended-state-observer (ESO) approach based on non-collocated acceleration sensors and piezoelectric actuators. Considering the estimated capacity of ESO for system state variables, output superposition and control coupling of other modes, external excitation, and model uncertainties simultaneously, a composite control method, i.e., the ESO based vibration control scheme, is employed to ensure the lumped disturbances and uncertainty rejection of the closed-loop system. The phenomenon of phase hysteresis and time delay, caused by non-collocated sensor/actuator pairs, degrades the performance of the control system, even inducing instability. To solve this problem, a simple proportional differential (PD) controller and acceleration feed-forward with an output predictor design produce the control law for each vibration mode. The modal frequencies, phase hysteresis loops and phase lag values due to non-collocated placement of the acceleration sensor and piezoelectric patch actuator are experimentally obtained, and the phase lag is compensated by using the Smith Predictor technology. In order to improve the vibration control performance, the chaos optimization method based on logistic mapping is employed to auto-tune the parameters of the feedback channel. The experimental control system for the ACSP is tested using the dSPACE real-time simulation platform. Experimental results demonstrate that the proposed composite active control algorithm is an effective approach for suppressing multi-modal vibrations. (paper)

  7. Clinical studies of the vibration syndrome using a cold stress test measuring finger temperature.

    Science.gov (United States)

    Gautherie, M

    1995-01-01

    Since nine years multicentre, transversal and longitudinal clinical studies on hand-arm, vibration-exposed patients are being performed in cooperation with French occupational medicine centers and social security institutions. These studies are based upon current clinical assessment and standardized, temperature-measuring cooling tests. Data acquisition uses a portable, 10-channel, micro-processor-based temperature recorder and miniature thermal sensors. Temperature is monitored at the ten finger tips continuously, before, during and after a cold stress performed in strictly controlled conditions. Data from examinations performed at outlying sites are transferred through the telephonic network to a central processing unit. Data analysis uses a specific, expert-type software procedure based upon previous clinical studies on (i) 238 "normal" subjects, and (ii) 3,046 patients with vascular disturbances of the upper extremities of various etiologies. This procedure includes a staging process which assigns each finger a class representing the degree of severity of the abnormalities of response to cold ("dysthermia") related to vascular disorders. All data processing is fully automatic and results in a printed examination report. To date, over 1,623 vibration-exposed forestry, building and mechanical workers were examined. Sixty-three per cent of patients had received high dose of vibration (daily use of chain saws, air hammers, ballast tampers over many years). Typical white finger attacks or only neurological symptoms were found in 36% and 23% of patients respectively. The rate of sever dysthermia was much higher in patients with white finger attacks (83%) than in patients without (32%). In 90% of the vibration-exposed patients, the severity of dysthermia has differed greatly from one finger to another and between hands, while in non-exposed patients with primary Raynaud syndrome the dysthermia are generally similar for all fingers but the thumbs. Of 208 forestry

  8. H infinity controller design to a rigid-flexible satellite with two vibration modes

    International Nuclear Information System (INIS)

    De Souza, A G; De Souza, L C G

    2015-01-01

    The satellite attitude control system (ACS) design becomes more complex when the satellite structure has components like, flexible solar panels, antennas and mechanical manipulators. These flexible structures can interact with the satellite rigid parts during translational and/or rotational manoeuvre damaging the ACS pointing accuracy. Although, a well-designed controller can suppress such disturbances quickly, the controller error pointing may be limited by the minimum time necessary to suppress such disturbances thus affecting the satellite attitude acquisition. This paper deals with the rigid-flexible satellite ACS design using the H infinity method. The rigid-flexible satellite is represented by a beam connected to a central rigid hub at one end and free at the other one. The equations of motions are obtained considering small flexible deformations and the Euler-Bernoulli hypothesis. The results of the simulations have shown that the H-infinity controller was able to control the rigid motion and suppress the vibrations. (paper)

  9. Heat exchanger vibrations - a case study (Paper No. 5.12)

    International Nuclear Information System (INIS)

    Khilnaney, V.K.

    1992-01-01

    The satisfactory performance of heat exchangers is crucial to the reliability of the plant. Thorough vibration analysis is essential at design stage to avoid failures at the time of operation. Detailed vibration analysis techniques were not available at the time of designing these exchangers and the exchangers were designed as per general guidelines and prevalent good engineering practices. The designs were not checked especially from the point of view of their proneness to excessive flow induced vibration. The present paper gives a study of revamping of cooling water heat exchanger at Heavy Water Plant, Kota. (author)

  10. [Study on the vibrational spectra and XRD characters of Huanglong jade from Longling County, Yunnan Province].

    Science.gov (United States)

    Pei, Jing-cheng; Fan, Lu-wei; Xie, Hao

    2014-12-01

    Based on the conventional test methods, the infrared absorption spectrum, Raman spectrum and X-ray diffraction (XRD) were employed to study the characters of the vibration spectrum and mineral composition of Huanglong jade. The testing results show that Huanglong jade shows typical vibrational spectrum characteristics of quartziferous jade. The main infrared absorption bands at 1162, 1076, 800, 779, 691, 530 and 466 cm(-1) were induced by the asymmetric stretching vibration, symmetrical stretching vibration and bending vibration of Si-O-Si separately. Especially the absorption band near 800 cm(-1) is split, which indicates that Huanglong jade has good crystallinity. In Raman spectrum, the main strong vibration bands at 463 and 355 cm(-1) were attributed to bending vibration of Si-O-Si. XRD test confirmed that Quartz is main mineral composition of Huanglong jade and there is a small amount of hematite in red color samples which induced the red color of Huanglong jade. This is the first report on the infrared, Raman and XRD spectra feature of Huanglong jade. It will provide a scientific basis for the identification, naming and other research for huanglong jade.

  11. Raman study of vibrational dynamics of aminopropylsilanetriol in gas phase

    Science.gov (United States)

    Volovšek, V.; Dananić, V.; Bistričić, L.; Movre Šapić, I.; Furić, K.

    2014-01-01

    Raman spectrum of aminopropylsilanetriol (APST) in gas phase has been recorded at room temperature in macro chamber utilizing two-mirror technique over the sample tube. Unlike predominantly trans molecular conformation in condensed phase, the spectra of vapor show that the molecules are solely in gauche conformation with intramolecular hydrogen bond N⋯Hsbnd O which reduces the molecular energy in respect to trans conformation by 0.152 eV. The assignment of the molecular spectra based on the DFT calculation is presented. The strong vibrational bands at 354 cm-1, 588 cm-1 and 3022 cm-1 are proposed for verifying the existence of the ring like, hydrogen bonded structure. Special attention was devoted to the high frequency region, where hydrogen bond vibrations are coupled to stretchings of amino and silanol groups.

  12. Vibration perception threshold in relation to postural control and fall risk assessment in elderly.

    Science.gov (United States)

    de Mettelinge, Tine Roman; Calders, Patrick; Palmans, Tanneke; Vanden Bossche, Luc; Van Den Noortgate, Nele; Cambier, Dirk

    2013-09-01

    This study investigates (i) the potential discriminative role of a clinical measure of peripheral neuropathy (PN) in assessing postural performance and fall risk and (ii) whether the integration of a simple screening vibration perception threshold (VPT) for PN in any physical (fall risk) assessment among elderly should be recommended, even if they do not suffer from DM. One hundred and ninety-five elderly were entered in a four-group model: DM with PN (D+; n = 75), DM without PN (D-; n = 28), non-diabetic elderly with idiopathic PN (C+; n = 31) and non-diabetic elderly without PN (C-; n = 61). Posturographic sway parameters were captured during different static balance conditions (AMTI AccuGait, Watertown, MA). VPT, fall data, Mini-Mental State Examination and Clock Drawing Test were registered. Two-factor repeated-measures ANOVA was used to compare between groups and across balance conditions. The groups with PN demonstrated a strikingly comparable, though bigger sway, and a higher prospective fall incidence than their peers without PN. The indication of PN, irrespective of its cause, interferes with postural control and fall incidence. The integration of a simple screening for PN (like bio-thesiometry) in any fall risk assessment among elderly is highly recommended. Implications for Rehabilitation The indication of peripheral neuropathy (PN), irrespective of its cause, interferes with postural control and fall incidence. Therefore, the integration of a simple screening for PN (like bio-thesiometry) in any fall risk assessment among elderly is highly recommended. It might be useful to integrate somatosensory stimulation in rehabilitation programs designed for fall prevention.

  13. Experimental study on the vibrational characteristics of piping snubbers

    International Nuclear Information System (INIS)

    Kobatake, K.; Ooka, Y.; Suzuki, M.; Katsuki, T.; Hashimoto, T.

    1982-01-01

    Oil snubbers have been widely used for the anti-earthquake suports of piping systems in nuclear power plants. Several types of mechanical snubbers are now being considered. Vibration tests were performed on three models to obtain their fundamental characteristics by using a shaking table. From tests on a pendulum structure model, a piping model, and a vessel model, the equivalent stiffness and fundamental characteristics are estimated, and useful suggestions for applications are made

  14. Vibrational Spectroscopic Studies of Tenofovir Using Density Functional Theory Method

    Directory of Open Access Journals (Sweden)

    G. R. Ramkumaar

    2013-01-01

    Full Text Available A systematic vibrational spectroscopic assignment and analysis of tenofovir has been carried out by using FTIR and FT-Raman spectral data. The vibrational analysis was aided by electronic structure calculations—hybrid density functional methods (B3LYP/6-311++G(d,p, B3LYP/6-31G(d,p, and B3PW91/6-31G(d,p. Molecular equilibrium geometries, electronic energies, IR intensities, and harmonic vibrational frequencies have been computed. The assignments proposed based on the experimental IR and Raman spectra have been reviewed and complete assignment of the observed spectra have been proposed. UV-visible spectrum of the compound was also recorded and the electronic properties such as HOMO and LUMO energies and were determined by time-dependent DFT (TD-DFT method. The geometrical, thermodynamical parameters, and absorption wavelengths were compared with the experimental data. The B3LYP/6-311++G(d,p-, B3LYP/6-31G(d,p-, and B3PW91/6-31G(d,p-based NMR calculation procedure was also done. It was used to assign the 13C and 1H NMR chemical shift of tenofovir.

  15. Numerical Modelling and Simulation of Dynamic Parameters for Vibration Driven Mobile Robot: Preliminary Study

    Science.gov (United States)

    Baharudin, M. E.; Nor, A. M.; Saad, A. R. M.; Yusof, A. M.

    2018-03-01

    The motion of vibration-driven robots is based on an internal oscillating mass which can move without legs or wheels. The oscillation of the unbalanced mass by a motor is translated into vibration which in turn produces vertical and horizontal forces. Both vertical and horizontal oscillations are of the same frequency but the phases are shifted. The vertical forces will deflect the bristles which cause the robot to move forward. In this paper, the horizontal motion direction caused by the vertically vibrated bristle is numerically simulated by tuning the frequency of their oscillatory actuation. As a preliminary work, basic equations for a simple off-centered vibration location on the robot platform and simulation model for vibration excitement are introduced. It involves both static and dynamic vibration analysis of robots and analysis of different type of parameters. In addition, the orientation of the bristles and oscillators are also analysed. Results from the numerical integration seem to be in good agreement with those achieved from the literature. The presented numerical integration modeling can be used for designing the bristles and controlling the speed and direction of the robot.

  16. Uncertainty modeling in vibration, control and fuzzy analysis of structural systems

    CERN Document Server

    Halder, Achintya; Ayyub, Bilal M

    1997-01-01

    This book gives an overview of the current state of uncertainty modeling in vibration, control, and fuzzy analysis of structural and mechanical systems. It is a coherent compendium written by leading experts and offers the reader a sampling of exciting research areas in several fast-growing branches in this field. Uncertainty modeling and analysis are becoming an integral part of system definition and modeling in many fields. The book consists of ten chapters that report the work of researchers, scientists and engineers on theoretical developments and diversified applications in engineering sy

  17. Operating experience with an on-line vibration control system for PWR main coolant pumps

    International Nuclear Information System (INIS)

    Runkel, J.; Stegemann, D.; Vortriede, A.

    1996-01-01

    The main circulation pumps are key components of nuclear power plants with pressurized water reactors, because the availability of the main circulation pumps has a direct influence on the availability and electrical output of the entire plant. The on-line automatic vibration control system ASMAS was developed for early failure detection during the normal operation of the main circulation pumps in order to avoid unexpected outages and to establish the possibility of preventive maintenance of the pumps. This system is permanently and successfully operating in three German 1300 MW el NPP's with PWR and has been successfully tested in a 350 MW el NPP with a PWR. (orig.)

  18. Operating experience with an on-line vibration control system for PWR main coolant pumps

    International Nuclear Information System (INIS)

    Runkel, J.; Stegemann, D.; Vortriede, A.

    1998-01-01

    The main circulation pumps are key components of nuclear power plants with pressurized water reactors (PWRs), because the availability of the main circulation pumps has a direct influence on the availability and electrical output of the entire plant. The on-line automatic vibration control system ASMAS was developed for early failure detection during the normal operation of the main circulation pumps in order to avoid unexpected outages and to establish the possibility of preventive maintenance of the pumps. This system is permanently and successfully operating in three German 1300 MW e1 NPP's with PWR and has been successfully tested in a 350 MW e1 NPP with a PWR. (orig.)

  19. Early vibration assisted physiotherapy in toddlers with cerebral palsy ? a randomized controlled pilot trial

    OpenAIRE

    Stark, C.; Herkenrath, P.; Hollmann, H.; Waltz, S.; Becker, I.; Hoebing, L.; Semler, O.; Hoyer-Kuhn, H.; Duran, I.; Hero, B.; Hadders-Algra, M.; Schoenau, E.

    2016-01-01

    Objectives: to investigate feasibility, safety and efficacy of home-based side-alternating whole body vibration (sWBV) to improve motor function in toddlers with cerebral palsy (CP). Methods: Randomized controlled trial including 24 toddlers with CP (mean age 19 months (SD?3.1); 13 boys). Intervention: 14 weeks sWBV with ten 9-minute sessions weekly (non-individualized). Group A started with sWBV, followed by 14 weeks without; in group B this order was reversed. Feasibility (?70% adherence) a...

  20. Reliability-based optimization of an active vibration controller using evolutionary algorithms

    Science.gov (United States)

    Saraygord Afshari, Sajad; Pourtakdoust, Seid H.

    2017-04-01

    Many modern industrialized systems such as aircrafts, rotating turbines, satellite booms, etc. cannot perform their desired tasks accurately if their uninhibited structural vibrations are not controlled properly. Structural health monitoring and online reliability calculations are emerging new means to handle system imposed uncertainties. As stochastic forcing are unavoidable, in most engineering systems, it is often needed to take them into the account for the control design process. In this research, smart material technology is utilized for structural health monitoring and control in order to keep the system in a reliable performance range. In this regard, a reliability-based cost function is assigned for both controller gain optimization as well as sensor placement. The proposed scheme is implemented and verified for a wing section. Comparison of results for the frequency responses is considered to show potential applicability of the presented technique.

  1. Study on Nonlinear Vibration Analysis of Gear System with Random Parameters

    Science.gov (United States)

    Tong, Cao; Liu, Xiaoyuan; Fan, Li

    2018-03-01

    In order to study the dynamic characteristics of gear nonlinear vibration system and the influence of random parameters, firstly, a nonlinear stochastic vibration analysis model of gear 3-DOF is established based on Newton’s Law. And the random response of gear vibration is simulated by stepwise integration method. Secondly, the influence of stochastic parameters such as meshing damping, tooth side gap and excitation frequency on the dynamic response of gear nonlinear system is analyzed by using the stability analysis method such as bifurcation diagram and Lyapunov exponent method. The analysis shows that the stochastic process can not be neglected, which can cause the random bifurcation and chaos of the system response. This study will provide important reference value for vibration engineering designers.

  2. Dynamics and Control of Lateral Tower Vibrations in Offshore Wind Turbines by Means of Active Generator Torque

    Directory of Open Access Journals (Sweden)

    Zili Zhang

    2014-11-01

    Full Text Available Lateral tower vibrations of offshore wind turbines are normally lightly damped, and large amplitude vibrations induced by wind and wave loads in this direction may significantly shorten the fatigue life of the tower. This paper proposes the modeling and control of lateral tower vibrations in offshore wind turbines using active generator torque. To implement the active control algorithm, both the mechanical and power electronic aspects have been taken into consideration. A 13-degrees-of-freedom aeroelastic wind turbine model with generator and pitch controllers is derived using the Euler–Lagrangian approach. The model displays important features of wind turbines, such as mixed moving frame and fixed frame-defined degrees-of-freedom, couplings of the tower-blade-drivetrain vibrations, as well as aerodynamic damping present in different modes of motions. The load transfer mechanisms from the drivetrain and the generator to the nacelle are derived, and the interaction between the generator torque and the lateral tower vibration are presented in a generalized manner. A three-dimensional rotational sampled turbulence field is generated and applied to the rotor, and the tower is excited by a first order wave load in the lateral direction. Next, a simple active control algorithm is proposed based on active generator torques with feedback from the measured lateral tower vibrations. A full-scale power converter configuration with a cascaded loop control structure is also introduced to produce the feedback control torque in real time. Numerical simulations have been carried out using data calibrated to the referential 5-MW NREL (National Renewable Energy Laboratory offshore wind turbine. Cases of drivetrains with a gearbox and direct drive to the generator are considered using the same time series for the wave and turbulence loadings. Results show that by using active generator torque control, lateral tower vibrations can be significantly mitigated for

  3. Consideration on local blast vibration control by delay blasting; Danpatsu happa ni yoru kyokuchiteki shindo seigyo ni kansuru ichikosatsu

    Energy Technology Data Exchange (ETDEWEB)

    Mogi, Gento; Adachi, Tsuyoshi; Yamatomi, Jiro [The University of Tokyo School of Engineering Department of Geosystem Engineering, Tokyo (Japan); Hoshino, Tatsuya [Mitsui Mining and Smelting Corp., Tokyo (Japan)

    1999-10-31

    In this research, local blast vibration control based on the theory of superposition of waves was investigated. Firstly, the influence of delay time errors of conventional electric detonators upon the level of local blast vibration was examined. Secondly, for a further effective local blast vibration control, a new delay blasting design concept 'combined delay blasting' that postulates the use of electronic detonators, which virtually have no delay time errors, is proposed. For a delay blasting with uniform detonation time intervals, an optimum time interval to minimize the local PPV (Peak Particle Velocity) is obtained based on the relationship between the PPV and the time interval, which is derived by superposing identical vibration time histories of each single hole shot. However, due to the scattering of the actual delay time caused by errors, PPV of a production blast seldom coincides with the estimated one. Since the expected value and the variance of PPV mainly depend on sensitivity of PPV around the nominal delay time, it is proposed that not only the optimum but also several sub-optimum candidates of delay time should be examined taking error into consideration. Concerning the 'combined delay blasting', its concept and some simulation results are presented. The estimated reduction effect of blast vibration of a delay blast based on this concept was quite favorable, indicating a possibility for further effective local blast vibration control. (author)

  4. New technological development of passive and active vibration control: analysis and test

    Science.gov (United States)

    Matsuzaki, Yuji; Ikeda, Tadashige; Boller, Christian

    2005-04-01

    We present a brief summary of new technical developments of passive and active vibration controls which we have performed for the last several years partly as an international collaborative R&D project on Smart Materials and Structural Systems sponsored by the Japanese Ministry of Economy, Trade and Industry. In connection with the passive damping control, shape memory alloys (SMAs) were used as damping elements. To examine the effect of damping enhancement, beams with SMA films bonded onto them or SMA wires embedded into them were made, and free damped oscillations were measured. The damping coefficient increased by more than 100% compared with the beams without SMAs. Thermodynamic behaviors of an SMA wire and film were also investigated experimentally and numerically. In active vibration control, a new concept of smart material systems was proposed. That is a partially magnetized alloy, which is stiff and strong enough as a structural element and responds sufficiently quickly as an actuator due to an electromagnetic force. A simplified experiment and numerical simulation were performed and the results showed the feasibility of the proposed smart material system using the electromagnetic force.

  5. Study on Vibration of Marine Diesel-Electric Hybrid Propulsion System

    OpenAIRE

    Nengqi Xiao; Ruiping Zhou; Xiang Xu; Xichen Lin

    2016-01-01

    This study analyzes the characteristics of hybrid propulsion shafting and builds mathematical models and vibration equations of shafting using the lumped parameter method. Main focus is on the asymmetric double diesel propulsion shafting operation process and the impact of the phase angle and motor excitation on torsional vibration of shafting. Model result is validated by testing results conducted on double diesel propulsion shafting bench. Mathematical model and model-building methods of sh...

  6. Studies on the substrate mediated vibrational excitation of CO/Si(100) by means of SFG spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Han, Xu; Lass, Kristian; Balgar, Thorsten; Hasselbrink, Eckart [Universitaet Duisburg-Essen, Fachbereich Chemie, 45117 Essen (Germany)

    2009-07-01

    Vibrational excitations of adsorbates play an important role in chemical reaction dynamics. In the past decade CO on solid surfaces was chosen as adequate model system for studying vibrational relaxation dynamics. Our work is focused on the energy dissipation of vibrationally excited CO adsorbed on a silicon surface by means of IR/Vis sum frequency generation (SFG) spectroscopy. Here we present studies on substrate mediated excitation of vibrational modes of CO on Si(100) induced by UV radiation. We suppose the observation of highly excited internal stretch vibrations of CO caused by hot electrons generated within the silicon substrate.

  7. Finite Element Analysis for Active-force Control on Vibration of a Flexible Single-link Manipulator

    Directory of Open Access Journals (Sweden)

    Abdul Kadir Muhammad

    2015-10-01

    Full Text Available The purposes of this research are to formulate the equations of motion of the system, to develop computational codes by a finite element analysis in order to perform dynamics simulation with vibration control, to propose an effective control scheme using active-force (AF control a flexible single-link manipulator. The system used in this paper consists of an aluminum beam as a flexible link, a clamp-part, a servo motor to rotate the link and a piezoelectric actuator to control vibration. Computational codes on time history responses, FFT (Fast Fourier Transform processing and eigenvalues-eigenvectors analysis were developed to calculate dynamic behavior of the link. Furthermore, the AF control was designed to drive the piezoelectric actuator. Calculated results have revealed that the vibration of the system can be suppressed effectively.

  8. Quantitative measurement of vocal fold vibration in male radio performers and healthy controls using high-speed videoendoscopy.

    Directory of Open Access Journals (Sweden)

    Samantha Warhurst

    Full Text Available Acoustic and perceptual studies show a number of differences between the voices of radio performers and controls. Despite this, the vocal fold kinematics underlying these differences are largely unknown. Using high-speed videoendoscopy, this study sought to determine whether the vocal vibration features of radio performers differed from those of non-performing controls.Using high-speed videoendoscopy, recordings of a mid-phonatory/i/ in 16 male radio performers (aged 25-52 years and 16 age-matched controls (aged 25-52 years were collected. Videos were extracted and analysed semi-automatically using High-Speed Video Program, obtaining measures of fundamental frequency (f0, open quotient and speed quotient. Post-hoc analyses of sound pressure level (SPL were also performed (n = 19. Pearson's correlations were calculated between SPL and both speed and open quotients.Male radio performers had a significantly higher speed quotient than their matched controls (t = 3.308, p = 0.005. No significant differences were found for f0 or open quotient. No significant correlation was found between either open or speed quotient with SPL.A higher speed quotient in male radio performers suggests that their vocal fold vibration was characterised by a higher ratio of glottal opening to closing times than controls. This result may explain findings of better voice quality, higher equivalent sound level and greater spectral tilt seen in previous research. Open quotient was not significantly different between groups, indicating that the durations of complete vocal fold closure were not different between the radio performers and controls. Further validation of these results is required to determine the aetiology of the higher speed quotient result and its implications for voice training and clinical management in performers.

  9. Study on the vibrational scraping of uranium product from a solid cathode of electrorefiner

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sung Bin; Kang, Young Ho; Hwang, Sung Chan; Lee, Han Soo; Paek, Seung Woo; Ahn, Do Hee [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-12-15

    A high-throughput electrorefiner has been developed for commercialization use by enhancing the uranium recovery from the reduced metal which is produced from the oxide reduction process. It is necessary to scrap and effectively collect uranium dendrites from the surface of the solid cathode for high yield. When a steel electrode is used as the cathode in the electrorefining process, uranium is deposited and regularly stuck to the steel cathode during electrorefining. The sticking coefficient of a steel cathode is very high. In order to decrease the sticking coefficient of the steel cathode effectively, vibration mode was applied to the electrode in this study. Uranium dendrites were scraped and fell apart from the steel cathode by a vibration force. The vibrational scraping of the steel cathode was compared to the self-scraping of the graphite cathode. Effects of the applied current density and the vibration stroke on the scraping of the uranium dendrites were also investigated.

  10. Experimental and computational study on molecular structure and vibrational analysis of an antihyperglycemic biomolecule: Gliclazide

    Science.gov (United States)

    Karakaya, Mustafa; Kürekçi, Mehmet; Eskiyurt, Buse; Sert, Yusuf; Çırak, Çağrı

    2015-01-01

    In present study, the experimental and theoretical harmonic vibrational frequencies of gliclazide molecule have been investigated. The experimental FT-IR (400-4000 cm-1) and Laser-Raman spectra (100-4000 cm-1) of the molecule in the solid phase were recorded. Theoretical vibrational frequencies and geometric parameters (bond lengths and bond angles) have been calculated using ab initio Hartree Fock (HF), density functional theory (B3LYP hybrid function) methods with 6-311++G(d,p) and 6-31G(d,p) basis sets by Gaussian 09W program. The assignments of the vibrational frequencies were performed by potential energy distribution (PED) analysis by using VEDA 4 program. Theoretical optimized geometric parameters and vibrational frequencies have been compared with the corresponding experimental data, and they have been shown to be in a good agreement with each other. Also, the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies have been found.

  11. Theoretical study of molecular vibration and Application to linear triatomic molecules: case of OCS

    International Nuclear Information System (INIS)

    Andrianavalomahefa, A.

    2014-01-01

    Our aim is to give a theoretical approach to the calculation of vibrational energy levels of polyatomic molecules. By using matrix calculation, we have to solve an eigenvalue equation that gives normal vibration frequencies of the system. A basis change introduces normal coordinates of vibration, which diagonalize the Hamiltonian. The harmonic approximation gives a rough evaluation of parameters which describe the system. Then, we introduce nonlinear terms to take into account the anharmonicity of interatomic bounds. Morse oscillator gives good approximation for diatomic molecules. We consider cubic and quartic potential terms for polyatomic molecules. We treat the problem both in classical and quantum approach. The results thus obtained are applied to study longitudinal vibration of carbonyl sulfide. [fr

  12. Wind Turbine Loads Induced by Terrain and Wakes: An Experimental Study through Vibration Analysis and Computational Fluid Dynamics

    Directory of Open Access Journals (Sweden)

    Francesco Castellani

    2017-11-01

    Full Text Available A wind turbine is a very well-known archetype of energy conversion system working at non-stationary regimes. Despite this, a deep mechanical comprehension of wind turbines operating in complicated conditions is still challenging, especially as regards the analysis of experimental data. In particular, wind turbines in complex terrain represent a very valuable testing ground because of the possible combination of wake effects among nearby turbines and flow accelerations caused by the terrain morphology. For these reasons, in this work, a cluster of four full-scale wind turbines from a very complex site is studied. The object of investigation is vibrations, at the level of the structure (tower and drive-train. Data collected by the on-board condition monitoring system are analyzed and interpreted in light of the knowledge of wind conditions and operating parameters collected by the Supervisory Control And Data Acquisition (SCADA. A free flow Computational Fluid Dynamics (CFD simulation is also performed, and it allows one to better interpret the vibration analysis. The main outcome is the interpretation of how wakes and flow turbulences appear in the vibration signals, both at the structural level and at the drive-train level. Therefore, this wind to gear approach builds a connection between flow phenomena and mechanical phenomena in the form of vibrations, representing a precious tool for assessing loads in different working conditions.

  13. Study on the Effect of Reciprocating Pump Pipeline System Vibration on Oil Transportation Stations

    Directory of Open Access Journals (Sweden)

    Hongfang Lu

    2018-01-01

    Full Text Available Due to the periodic movement of the piston in the reciprocating pump, the fluid will cause a pressure pulsation, and the resulting pipeline vibration may lead to instrument distortion, pipe failure and equipment damage. Therefore, it is necessary to study the vibration phenomena of reciprocating pump pipelines based on pressure pulsation theory. This paper starts from the reciprocating pump pipe pressure pulsation caused by a fluid, pressure pulsation in the pipeline and the unbalanced exciting force is calculated under the action of the reciprocating pump. Then, the numerical simulation model is established based on the pipe beam model, and the rationality of the numerical simulation method is verified by indoor experiments. Finally, a case study is taken as an example to analyze the vibration law of the pipeline system, and vibration reduction measures are proposed. The following main conclusions are drawn from the analysis: (1 unbalanced exciting forces are produced in the elbows or tee joints, and it can also influence the straight pipe to different levels; (2 in actual engineering, it should be possible to prevent the simultaneous settlement of multiple places; (3 the vibration amplitude increases with the pipe thermal stress, and when the oil temperature is higher than 85 °C, it had a greater influence on the vertical vibration amplitude of the pipe.

  14. Time-domain prefilter design for enhanced tracking and vibration suppression in machine motion control

    Science.gov (United States)

    Cole, Matthew O. T.; Shinonawanik, Praween; Wongratanaphisan, Theeraphong

    2018-05-01

    Structural flexibility can impact negatively on machine motion control systems by causing unmeasured positioning errors and vibration at locations where accurate motion is important for task execution. To compensate for these effects, command signal prefiltering may be applied. In this paper, a new FIR prefilter design method is described that combines finite-time vibration cancellation with dynamic compensation properties. The time-domain formulation exploits the relation between tracking error and the moment values of the prefilter impulse response function. Optimal design solutions for filters having minimum H2 norm are derived and evaluated. The control approach does not require additional actuation or sensing and can be effective even without complete and accurate models of the machine dynamics. Results from implementation and testing on an experimental high-speed manipulator having a Delta robot architecture with directionally compliant end-effector are presented. The results show the importance of prefilter moment values for tracking performance and confirm that the proposed method can achieve significant reductions in both peak and RMS tracking error, as well as settling time, for complex motion patterns.

  15. Portable vibration exciter

    Science.gov (United States)

    Beecher, L. C.; Williams, F. T.

    1970-01-01

    Gas-driven vibration exciter produces a sinusoidal excitation function controllable in frequency and in amplitude. It allows direct vibration testing of components under normal loads, removing the possibility of component damage due to high static pressure.

  16. Chaotification of vibration isolation floating raft system via nonlinear time-delay feedback control

    International Nuclear Information System (INIS)

    Zhang Jing; Xu Daolin; Zhou Jiaxi; Li Yingli

    2012-01-01

    Highlights: ► A chaotification method based on nonlinear time-delay feedback control is present. ► An analytical function of nonlinear time-delay feedback control is derived. ► A large range of parametric domain for chaotification is obtained. ► The approach allows using small control gain. ► Design of chaotification becomes a standard process without uncertainty. - Abstract: This paper presents a chaotification method based on nonlinear time-delay feedback control for a two-dimensional vibration isolation floating raft system (VIFRS). An analytical function of nonlinear time-delay feedback control is derived. This approach can theoretically provide a systematic design of chaotification for nonlinear VIFRS and completely avoid blind and inefficient numerical search on the basis of trials and errors. Numerical simulations show that with a proper setting of control parameters the method holds the favorable aspects including the capability of chaotifying across a large range of parametric domain, the advantage of using small control and the flexibility of designing control feedback forms. The effects on chaotification performance are discussed in association with the configuration of the control parameters.

  17. Wind Turbine Gearbox Condition Monitoring Round Robin Study - Vibration Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, S.

    2012-07-01

    The Gearbox Reliability Collaborative (GRC) at the National Wind Technology Center (NWTC) tested two identical gearboxes. One was tested on the NWTCs 2.5 MW dynamometer and the other was field tested in a turbine in a nearby wind plant. In the field, the test gearbox experienced two oil loss events that resulted in damage to its internal bearings and gears. Since the damage was not severe, the test gearbox was removed from the field and retested in the NWTCs dynamometer before it was disassembled. During the dynamometer retest, some vibration data along with testing condition information were collected. These data enabled NREL to launch a Wind Turbine Gearbox Condition Monitoring Round Robin project, as described in this report. The main objective of this project was to evaluate different vibration analysis algorithms used in wind turbine condition monitoring (CM) and find out whether the typical practices are effective. With involvement of both academic researchers and industrial partners, the project sets an example on providing cutting edge research results back to industry.

  18. A Study of Polishing Feature of Ultrasonic-Assisted Vibration Method in Bamboo Charcoal

    Directory of Open Access Journals (Sweden)

    Hsin-Min Lee

    2017-01-01

    Full Text Available Focusing on the feature of porosity in bamboo charcoal, this study applies the ultrasonic-assisted vibration method to perform surface polishing of the silicon wafer workpiece. The self-developed bamboo charcoal polishing spindle and ultrasonic- assisted vibration mechanism are attached to a single lapping machine. In the machining process, ultrasonic vibration enables the diamond slurry to smoothly pass through the microscopic holes of bamboo charcoal; the end of the bamboo charcoalis able to continue machining on the surface of the workpiece through the grasping force which exists in the microscopic holes. Under the polishing and machining parameters of ultrasonic-assisted vibration, with a diamond slurry concentration of 0.3%, the experimental results show a polishing time of 20 min, a loading of 25 N on the workpiece surface, a spindle speed of 1200 rpm, a vibration frequency of 30 kHz and the original surface roughness value of Ra 0.252 μm equals that of a mirror-like surface at Ra 0.017 μm. These research results prove that by using bamboo charcoal and ultrasonic-assisted vibration for polishing, a very good improvement can be achieved on the workpiece surface.

  19. Gearbox Tooth Cut Fault Diagnostics Using Acoustic Emission and Vibration Sensors — A Comparative Study

    Directory of Open Access Journals (Sweden)

    Yongzhi Qu

    2014-01-01

    Full Text Available In recent years, acoustic emission (AE sensors and AE-based techniques have been developed and tested for gearbox fault diagnosis. In general, AE-based techniques require much higher sampling rates than vibration analysis-based techniques for gearbox fault diagnosis. Therefore, it is questionable whether an AE-based technique would give a better or at least the same performance as the vibration analysis-based techniques using the same sampling rate. To answer the question, this paper presents a comparative study for gearbox tooth damage level diagnostics using AE and vibration measurements, the first known attempt to compare the gearbox fault diagnostic performance of AE- and vibration analysis-based approaches using the same sampling rate. Partial tooth cut faults are seeded in a gearbox test rig and experimentally tested in a laboratory. Results have shown that the AE-based approach has the potential to differentiate gear tooth damage levels in comparison with the vibration-based approach. While vibration signals are easily affected by mechanical resonance, the AE signals show more stable performance.

  20. Gearbox tooth cut fault diagnostics using acoustic emission and vibration sensors--a comparative study.

    Science.gov (United States)

    Qu, Yongzhi; He, David; Yoon, Jae; Van Hecke, Brandon; Bechhoefer, Eric; Zhu, Junda

    2014-01-14

    In recent years, acoustic emission (AE) sensors and AE-based techniques have been developed and tested for gearbox fault diagnosis. In general, AE-based techniques require much higher sampling rates than vibration analysis-based techniques for gearbox fault diagnosis. Therefore, it is questionable whether an AE-based technique would give a better or at least the same performance as the vibration analysis-based techniques using the same sampling rate. To answer the question, this paper presents a comparative study for gearbox tooth damage level diagnostics using AE and vibration measurements, the first known attempt to compare the gearbox fault diagnostic performance of AE- and vibration analysis-based approaches using the same sampling rate. Partial tooth cut faults are seeded in a gearbox test rig and experimentally tested in a laboratory. Results have shown that the AE-based approach has the potential to differentiate gear tooth damage levels in comparison with the vibration-based approach. While vibration signals are easily affected by mechanical resonance, the AE signals show more stable performance.

  1. Gearbox Tooth Cut Fault Diagnostics Using Acoustic Emission and Vibration Sensors — A Comparative Study

    Science.gov (United States)

    Qu, Yongzhi; He, David; Yoon, Jae; Van Hecke, Brandon; Bechhoefer, Eric; Zhu, Junda

    2014-01-01

    In recent years, acoustic emission (AE) sensors and AE-based techniques have been developed and tested for gearbox fault diagnosis. In general, AE-based techniques require much higher sampling rates than vibration analysis-based techniques for gearbox fault diagnosis. Therefore, it is questionable whether an AE-based technique would give a better or at least the same performance as the vibration analysis-based techniques using the same sampling rate. To answer the question, this paper presents a comparative study for gearbox tooth damage level diagnostics using AE and vibration measurements, the first known attempt to compare the gearbox fault diagnostic performance of AE- and vibration analysis-based approaches using the same sampling rate. Partial tooth cut faults are seeded in a gearbox test rig and experimentally tested in a laboratory. Results have shown that the AE-based approach has the potential to differentiate gear tooth damage levels in comparison with the vibration-based approach. While vibration signals are easily affected by mechanical resonance, the AE signals show more stable performance. PMID:24424467

  2. Topological material layout in plates for vibration suppression and wave propagation control

    DEFF Research Database (Denmark)

    Larsen, Anders Astrup; Laksafoss, B.; Jensen, Jakob Søndergaard

    2009-01-01

    We propose a topological material layout method to design elastic plates with optimized properties for vibration suppression and guided transport of vibration energy. The gradient-based optimization algorithm is based on a finite element model of the plate vibrations obtained using the Mindlin...

  3. Urban vibrations

    DEFF Research Database (Denmark)

    Morrison, Ann; Knudsen, L.; Andersen, Hans Jørgen

    2012-01-01

    In   this   paper   we   describe   a   field   study   conducted   with   a   wearable   vibration   belt   where   we   test   to   determine   the   vibration   intensity   sensitivity   ranges   on   a   large   diverse   group   of   participants   with   evenly   distributed  ages  and...

  4. Development of hardware system using temperature and vibration maintenance models integration concepts for conventional machines monitoring: A case study

    OpenAIRE

    Adeyeri, Michael Kanisuru; Mpofu, Khumbulani; Kareem, Buliaminu

    2016-01-01

    This article describes the integration of temperature and vibration models for maintenance monitoring of conventional machinery parts in which their optimal andbest functionalities are affected by abnormal changes in temperature and vibration values thereby resulting in machine failures, machines breakdown, poor quality of products, inability to meeting customers' demand, poor inventory control and just to mention a few. The work entails the use of temperature and vibration sensors as monitor...

  5. Vibration control of an IVVS long-reach deployer using unknown visual features from inside the ITER vessel

    Energy Technology Data Exchange (ETDEWEB)

    Dubus, G., E-mail: gregory.dubus@f4e.europa.e [Fusion for Energy, Remote Handling group, Josep Pla 2, Torres Diagonal Litoral B3, Barcelona E-08019 (Spain); David, O.; Measson, Y. [CEA LIST, Interactive Robotics Unit, 18 route du Panorama, BP6, Fontenay-aux-Roses F-92265 (France)

    2010-12-15

    The In-Vessel Viewing System (IVVS) project assumes that a long reach deployer equipped with a probe penetrates the ITER chamber to perform periodic inspections. By giving the operator the capability and flexibility to examine unplanned targets, man-in-the-loop technology would be very helpful. But vibrations due to the high flexibility of the structure are probably the main problem in such a master-slave mode, which therefore needs the integration of a high level compensation scheme. However the ITER RH equipment will be confronted with strong electromagnetic interferences as well as a cumulated radiation dose up to several MGy. Short of costly developments, these constraints limit the use of dedicated electronics such as accelerometers or strain gauges. Our main idea is to control the vibrational behaviour of the flexible carrier without considering any extra sensor apart from its embedded probe. In this pre-study we propose to use the kind of rad-hardened viewing system already developed for the AIA demonstrator in order to feed an oscillation observer with visual information. The visual data are extracted from the environment without a priori knowledge of the examined scene. Our approach is quite open-ended and can be extended to other flexible systems. Moreover it has been designed to damp the oscillatory behaviour of the arm whatever its origins may be. As a consequence it should yield good performance when vibrations result from a critical trajectory imposed by the operator, from an interaction with the environment, or from internal dynamics of the carried process, e.g. the rotating prism of the IVVS 3D Inspection System. Experimental results validate the proposed strategy.

  6. Vibration control of an IVVS long-reach deployer using unknown visual features from inside the ITER vessel

    International Nuclear Information System (INIS)

    Dubus, G.; David, O.; Measson, Y.

    2010-01-01

    The In-Vessel Viewing System (IVVS) project assumes that a long reach deployer equipped with a probe penetrates the ITER chamber to perform periodic inspections. By giving the operator the capability and flexibility to examine unplanned targets, man-in-the-loop technology would be very helpful. But vibrations due to the high flexibility of the structure are probably the main problem in such a master-slave mode, which therefore needs the integration of a high level compensation scheme. However the ITER RH equipment will be confronted with strong electromagnetic interferences as well as a cumulated radiation dose up to several MGy. Short of costly developments, these constraints limit the use of dedicated electronics such as accelerometers or strain gauges. Our main idea is to control the vibrational behaviour of the flexible carrier without considering any extra sensor apart from its embedded probe. In this pre-study we propose to use the kind of rad-hardened viewing system already developed for the AIA demonstrator in order to feed an oscillation observer with visual information. The visual data are extracted from the environment without a priori knowledge of the examined scene. Our approach is quite open-ended and can be extended to other flexible systems. Moreover it has been designed to damp the oscillatory behaviour of the arm whatever its origins may be. As a consequence it should yield good performance when vibrations result from a critical trajectory imposed by the operator, from an interaction with the environment, or from internal dynamics of the carried process, e.g. the rotating prism of the IVVS 3D Inspection System. Experimental results validate the proposed strategy.

  7. Backstepping boundary control: an application to the suppression of flexible beam vibration

    Science.gov (United States)

    Boonkumkrong, Nipon; Asadamongkon, Pichai; Chinvorarat, Sinchai

    2018-01-01

    This paper presents a backstepping boundary control for vibration suppression of flexible beam. The applications are such as industrial robotic arms, space structures, etc. Most slender beams can be modelled using a shear beam. The shear beam is more complex than the conventional Euler-Bernoulli beam in that a shear deformation is additionally taken into account. At present, the application of this method in industry is rather limited, because the application of controllers to the beam is difficult. In this research, we use the shear beam with moving base as a model. The beam is cantilever type. This design method allows us to deal directly with the beam’s partial differential equations (PDEs) without resorting to approximations. An observer is used to estimate the deflections along the beam. Gain kernel of the system is calculated and then used in the control law design. The control setup is anti-collocation, i.e. a sensor is placed at the beam tip and an actuator is placed at the beam moving base. Finite difference equations are used to solve the PDEs and the partial integro-differential equations (PIDEs). Control parameters are varied to see their influences that affect the control performance. The results of the control are presented via computer simulation to verify that the control scheme is effective.

  8. Resonant passive–active vibration absorber with integrated force feedback control

    International Nuclear Information System (INIS)

    Høgsberg, Jan; Brodersen, Mark L; Krenk, Steen

    2016-01-01

    A general format of a two-terminal vibration absorber is constructed by placing a passive unit in series with a hybrid unit, composed of an active actuator in parallel with a second passive element. The displacement of the active actuator is controlled by an integrated feedback control with the difference in force between the two passive elements as input. This format allows passive and active contributions to be combined arbitrarily within the hybrid unit, which results in a versatile absorber format with guaranteed closed-loop stability. This is demonstrated for resonant absorbers with inertia realized passively by a mechanical inerter or actively by the integrated force feedback. Accurate calibration formulae are presented for two particular absorber configurations and the performance is subsequently demonstrated with respect to both equal modal damping and effective response reduction. (technical note)

  9. An analytical study of the effects of transverse shear deformation and anisotropy on natural vibration frequencies of laminated cylinders

    Science.gov (United States)

    Jegley, Dawn C.

    1988-01-01

    Natural vibration frequencies of orthotropic and anisotropic simply supported right circular cylinders are predicted using a higher-order transverse-shear deformation theory. A comparison of natural vibration frequencies predicted by first-order transverse-shear deformation theory and the higher-order theory shows that an additional allowance for transverse shear deformation has a negligible effect on the lowest predicted natural vibration frequencies of laminated cylinders but significantly reduces the higher natural vibration frequencies. A parametric study of the effects of ply orientation on the natural vibration frequencies of laminated cylinders indicates that while stacking sequence affects natural vibration frequencies, cylinder geometry is more important in predicting transverse-shear deformation effects. Interaction curves for cylinders subjected to axial compressive loadings and low natural vibration frequencies indicate that transverse shearing effects are less important in predicting low natural vibration frequencies than in predicting axial compressive buckling loads. The effects of anisotropy are more important than the effects of transverse shear deformation for most strongly anisotropic laminated cylinders in predicting natural vibration frequencies. However, transverse-shear deformation effects are important in predicting high natural vibration frequencies of thick-walled laminated cylinders. Neglecting either anisotropic effects or transverse-shear deformation effects leads to non-conservative errors in predicted natural vibration frequencies.

  10. Active control of time-varying broadband noise and vibrations using a sliding-window Kalman filter

    NARCIS (Netherlands)

    van Ophem, S.; Berkhoff, Arthur P.; Sas, P.; Moens, D.; Denayer, H.

    2014-01-01

    Recently, a multiple-input/multiple-output Kalman filter technique was presented to control time-varying broadband noise and vibrations. By describing the feed-forward broadband active noise control problem in terms of a state estimation problem it was possible to achieve a faster rate of

  11. Adaptive Vibration Suppression System: An Iterative Control Law for a Piezoelectric Actuator Shunted by a Negative Capacitor

    Czech Academy of Sciences Publication Activity Database

    Kodejska, M.; Mokrý, Pavel; Linhart, V.; Václavík, Jan; Sluka, T.

    2012-01-01

    Roč. 59, č. 12 (2012), s. 2785-2796 ISSN 0885-3010 R&D Projects: GA MŠk(CZ) ED2.1.00/03.0079 Institutional support: RVO:61389021 Keywords : ELASTICITY CONTROL * HARMONIC EXCITATIONS * STRUCTURAL VIBRATION * FEEDBACK-CONTROL * CIRCUITS * MEMBRANE Subject RIV: BI - Acoustics Impact factor: 1.822, year: 2012

  12. Experimental and analytical studies on pedestrian induced footbridge vibrations

    DEFF Research Database (Denmark)

    Gudmundsson, Gudmundur Valur; Ingólfsson, Einar Thór; Einarsson, Baldvin

    2007-01-01

    characteristics and to measure the response of the bridges to human induced excitation such as walking, running and jumping. Two of the bridges were a part of a design competition related to the realignment of an existing highway in the city centre of Reykjavik in 2005. The bridges have similar cross sections...... modes corresponding to the measured values. The models were subsequently used to calculate the predicted acceleration according to the preliminary version of the Eurocode (ENV 1992-2: Concrete bridges) using time-history analysis with a moving load as representative for a single pedestrian. The load...... models describing human-induced vibrations on structures in current literature and standards are explained, both for a single person walking or running and crowd loading. The measured vertical acceleration induced by single pedestrians was compared against the predictions and it was found that all...

  13. Linear and non-linear systems identification for adaptive control in mechanical applications vibration suppression

    Science.gov (United States)

    Cazzulani, Gabriele; Resta, Ferruccio; Ripamonti, Francesco

    2012-04-01

    During the last years, more and more mechanical applications saw the introduction of active control strategies. In particular, the need of improving the performances and/or the system health is very often associated to vibration suppression. This goal can be achieved considering both passive and active solutions. In this sense, many active control strategies have been developed, such as the Independent Modal Space Control (IMSC) or the resonant controllers (PPF, IRC, . . .). In all these cases, in order to tune and optimize the control strategy, the knowledge of the system dynamic behaviour is very important and it can be achieved both considering a numerical model of the system or through an experimental identification process. Anyway, dealing with non-linear or time-varying systems, a tool able to online identify the system parameters becomes a key-point for the control logic synthesis. The aim of the present work is the definition of a real-time technique, based on ARMAX models, that estimates the system parameters starting from the measurements of piezoelectric sensors. These parameters are returned to the control logic, that automatically adapts itself to the system dynamics. The problem is numerically investigated considering a carbon-fiber plate model forced through a piezoelectric patch.

  14. Study of vibration analysis for nuclear reactor building

    International Nuclear Information System (INIS)

    Hirashima, Shin-ichi

    1978-01-01

    The mutual interference between the contiguous buildings with separate foundations and also that between the outer wall under the ground and the foundation bottom of the building were taken into consideration for the vibration analysis with spring-mass system. For two contiguous foundations of buildings it was attempted to represent the static mutual interference by a spring-mass system model. The theoretical analysis formulas are shown for the combination of the vertical movement and rocking motion, and for the interfering forces between the foundation and the outer wall of a building. The method of extending the model to dynamic one is explained. Several spring constants utilized in the analysis were obtained, for example, for mutual interference springs regarding vertical motion, mutual interfering springs for the foundation and the outer wall of a building and the mutual interference springs concerning horizontal movement. These models and analysis were applied to the BWR-MARK II-1100 MW nuclear reactor building and the contiguous turbine building. The structures and level relations of two buildings are shown, and the spring-mass system model for these buildings is expressed. The masses of about 20, the weights, the rotating inertia, the sectional moment of inertia, the spring constant and the damping coefficient for each mass are tabulated. As the results, the peak displacements occur at 2.556 Hz, 6.918 Hz, 10.43 Hz and 13.85 Hz. The damping coefficient is large and about 10 - 30% at the lower order modes. The calculated and the measured vibration characteristics for the BWR plant buildings are not much different, and this spring-mass system model is verified to be adequate. (Nakai, Y.)

  15. A Numerical Study on the Screening of Blast-Induced Waves for Reducing Ground Vibration

    Science.gov (United States)

    Park, Dohyun; Jeon, Byungkyu; Jeon, Seokwon

    2009-06-01

    Blasting is often a necessary part of mining and construction operations, and is the most cost-effective way to break rock, but blasting generates both noise and ground vibration. In urban areas, noise and vibration have an environmental impact, and cause structural damage to nearby structures. Various wave-screening methods have been used for many years to reduce blast-induced ground vibration. However, these methods have not been quantitatively studied for their reduction effect of ground vibration. The present study focused on the quantitative assessment of the effectiveness in vibration reduction of line-drilling as a screening method using a numerical method. Two numerical methods were used to analyze the reduction effect toward ground vibration, namely, the “distinct element method” and the “non-linear hydrocode.” The distinct element method, by particle flow code in two dimensions (PFC 2D), was used for two-dimensional parametric analyses, and some cases of two-dimensional analyses were analyzed three-dimensionally using AUTODYN 3D, the program of the non-linear hydrocode. To analyze the screening effectiveness of line-drilling, parametric analyses were carried out under various conditions, with the spacing, diameter of drill holes, distance between the blasthole and line-drilling, and the number of rows of drill holes, including their arrangement, used as parameters. The screening effectiveness was assessed via a comparison of the vibration amplitude between cases both with and without screening. Also, the frequency distribution of ground motion of the two cases was investigated through fast Fourier transform (FFT), with the differences also examined. From our study, it was concluded that line-drilling as a screening method of blast-induced waves was considerably effective under certain design conditions. The design details for field application have also been proposed.

  16. Flow induced vibration studies for LMFBR in Japan: Past and recent studies of FIV for JOYO and MONJU

    Energy Technology Data Exchange (ETDEWEB)

    Sato, K [Sodium Engineering Division, O-arai Engineering Centre, Power Reactor and Nuclear Fuel, Development Corporation, Narita-cho, O-arai Machi, Ibaraki-ken (Japan)

    1977-12-01

    This paper presents the past and recent studies of flow induced vibration of the reactor components for the experimental fast breeder reactor JOYO and the prototype fast breeder reactor MONJU, in which many suggestive results for the higher flow velocity systems in a future reactor are contained. The fuel subassembly is the most important from the view point of the vibration. Thus, the studies were carried out with a mock-up subassembly for JOYO. In this experiment, statistical analysis results of the vibration characteristics of single core subassembly and the effects of external forced vibration, flow disturbance and fuel pin bundle vibration were reported. The further more detailed investigations are now being performed for MONJU. In addition to the above studies, the vibration failure of a sodium valve is reported. The valve is a 8-inch stop valve in SODIUM FLOW AND HEAT TRANSFER TEST LOOP at O-arai Engineering Center. The failure occurred in 1969 during the performance test of the mechanical pump, and this resulted in a small sodium leak. The cause of the failure was found to be the vibration fatigue of the metal bellows. (author)

  17. Safety and Effectiveness of Vibration Massage by Deep Oscillations: A Prospective Observational Study

    Directory of Open Access Journals (Sweden)

    Karin Kraft

    2013-01-01

    Full Text Available The objective of this study is to assess the safety of treatment with vibration massage using a deep oscillation device and the effects on symptom severity and quality of life in patients with primary fibromyalgia syndrome (FMS. Outpatients with FMS performed an observational prospective study with visits 2–4 weeks after the last treatment (control and after further 2 months (follow-up. Patients were treated with 10 sessions of 45 min deep oscillation massage, 2/week. Primary outcome parameters were safety and tolerability (5-level Likert scale (1 = very good (after each treatment session and at control visit. Secondary outcome parameters were symptom severity (Fibromyalgia Impact Questionnaire (FIQ, pain and quality of life (SF-36. Seventy patients (97.1% females were included. At control visit, 41 patients (58.6% reported 63 mild and short-lasting adverse events, mainly worsening of prevalent symptoms such as pain and fatigue. Tolerability was rated as 1.8 (95% confidence interval: 1.53; 2.07. Symptoms and quality of life were significantly improved at both control and follow-up visits (at least P<0.01. In conclusion, deep oscillation massage is safe and well tolerated in patients with FMS and might improve symptoms and quality of life rather sustained.

  18. Life Cycle Cost Evaluation of Noise and Vibration Control Methods at Urban Railway Turnouts

    Directory of Open Access Journals (Sweden)

    Rodrigo Tavares de Freitas

    2016-12-01

    Full Text Available A focus of the railway industry over the past decades has been to research, find and develop methods to mitigate noise and vibration resulting from wheel/rail contact along track infrastructure. This resulted in a wide range of abatement measures that are available for today’s engineers. The suitability of each method must be analysed through budget and timeframe limitations, which includes building, maintenance and inspection costs and time allocation, while also aiming at delivering other benefits, such as environmental impact and durability of infrastructure. There are several situations that need noise and vibration mitigation methods, but each design allocates different priorities on a case-by-case basis. Traditionally, the disturbance caused by railways to the community are generated by wheel/rail contact sound radiation that is expressed in different ways, depending on the movement of the rolling stock and track alignment, such as rolling noise, impact noise and curve noise. More specifically, in special trackworks such as turnouts (or called “switches and crossings”, there are two types of noise that can often be observed: impact noise and screeching noise. With respect to the screeching (or flanging, its mitigation methods are usually associated with curve lubrications. In contrast, the impact noise emerges from the sound made by the rolling stock moving through joints and discontinuities (i.e., gaps, resulting in various noise abatement features to minimise such noise impact. Life cycle analysis is therefore vital for cost efficiency benchmarking of the mitigation methods. The evaluation is based on available data from open literature and the total costs were estimated from valid industry reports to maintain coherency. A 50-year period for a life cycle analysis is chosen for this study. As for the general parameters, an area with a high density of people is considered to estimate the values for a community with very strict limits

  19. Experimental studies of processes with vibrationally excited hydrogen molecules that are important for tokamak edge plasma

    International Nuclear Information System (INIS)

    Cadez, I.; Markelj, S.; Rupnik, Z.; Pelicon, P.

    2006-01-01

    We are currently conducting a series of different laboratory experimental studies of processes involving vibrationally excited hydrogen molecules that are relevant to fusion edge plasma. A general overview of our activities is presented together with results of studies of hydrogen recombination on surfaces. This includes vibrational spectroscopy of molecules formed by recombination on metal surfaces exposed to the partially dissociated hydrogen gas and recombination after hydrogen permeation through metal membrane. The goal of these studies is to provide numerical parameters needed for edge plasma modelling and better understanding of plasma wall interaction processes. (author)

  20. Vibrational and electronic spectra of 2-nitrobenzanthrone: An experimental and computational study

    Science.gov (United States)

    Onchoke, Kefa K.; Chaudhry, Saad N.; Ojeda, Jorge J.

    2016-01-01

    The environmental pollutant 2-nitrobenzanthrone (2-NBA) poses human health hazards, and is formed by atmospheric reactions of NOX gases with atmospheric particulates. Though its mutagenic effects have been studied in biological systems, its comprehensive spectroscopic experimental data are scarce. Thus, vibrational and optical spectroscopic analysis (UV-Vis, and fluorescence) of 2-NBA was studied using both experimental and density functional theory employing B3LYP method with 6-311 + G(d,p) basis set. The scaled theoretical vibrational frequencies show good agreement to experiment to within 5 cm- 1 and NBA, respectively. On the basis of normal coordinate analysis complete assignments of harmonic experimental infrared and Raman bands are made. The influence of the nitro group substitution upon the benzanthrone structure and symmetric CH vibrations, and electronic spectra is noted. This study is useful for the development of spectroscopy-mutagenicity relationships in nitrated polycyclic aromatic hydrocarbons.

  1. Control method for multi-input multi-output non-Gaussian random vibration test with cross spectra consideration

    Directory of Open Access Journals (Sweden)

    Ronghui ZHENG

    2017-12-01

    Full Text Available A control method for Multi-Input Multi-Output (MIMO non-Gaussian random vibration test with cross spectra consideration is proposed in the paper. The aim of the proposed control method is to replicate the specified references composed of auto spectral densities, cross spectral densities and kurtoses on the test article in the laboratory. It is found that the cross spectral densities will bring intractable coupling problems and induce difficulty for the control of the multi-output kurtoses. Hence, a sequential phase modification method is put forward to solve the coupling problems in multi-input multi-output non-Gaussian random vibration test. To achieve the specified responses, an improved zero memory nonlinear transformation is utilized first to modify the Fourier phases of the signals with sequential phase modification method to obtain one frame reference response signals which satisfy the reference spectra and reference kurtoses. Then, an inverse system method is used in frequency domain to obtain the continuous stationary drive signals. At the same time, the matrix power control algorithm is utilized to control the spectra and kurtoses of the response signals further. At the end of the paper, a simulation example with a cantilever beam and a vibration shaker test are implemented and the results support the proposed method very well. Keywords: Cross spectra, Kurtosis control, Multi-input multi-output, Non-Gaussian, Random vibration test

  2. a Study of Radial Vibrations of a Rolling Tyre for TYRE-ROAD Noise Characterisation

    Science.gov (United States)

    Périsse, J.

    2002-11-01

    Because tyre-road noise represents the main noise source for light vehicles with driving speed above 60 km/h, comprehension of generation mechanism of tyre-road noise has become a subject of major importance. In this paper, tyre-road interaction and radial tyre vibrations are investigated for tyre-road noise characterisation. Experimental measurements are performed on a rolling smooth tyre with test laboratory facilities. Both tread band and sidewall responses of the tyre are measured and compared to each other. High concentration of vibrations is observed in the vicinity of the contact area. Stationary radial deformation and non-stationary vibrations due to road rugosity are studied. Frequency analyses have been performed on the acceleration time signals showing the influence of the rotating speed on the vibrations level and frequency content. Finally, by integrating acceleration signal of the tyre tread over one revolution, stationary radial displacement can be calculated and the true contact length can be estimated. This study provides us with new measurement data for comparison with mathematical modelling. It also gives a physical insight on generation mechanism of tyre radial vibrations.

  3. Vibration therapy tolerated in children with Duchenne muscular dystrophy: a pilot study.

    Science.gov (United States)

    Myers, Kenneth A; Ramage, Barbara; Khan, Aneal; Mah, Jean K

    2014-07-01

    Duchenne muscular dystrophy is an X-linked recessive muscular dystrophy. Clinical management primarily involves rehabilitation strategies aimed at preserving functional mobility as long as possible. Side-alternating vibration therapy is a rehabilitation intervention that has shown promise in a number of different neuromuscular disorders, and has the potential to preserve strength, functional mobility, and bone mass. There has been little research regarding the tolerance to side-alternating vibration therapy in muscle diseases such as Duchenne muscular dystrophy. Four patients were recruited for a pilot study assessing the safety and tolerance of side-alternating vibration therapy in individuals with Duchenne muscular dystrophy. All patients participated in a 4-week training period involving side-alternating vibration therapy sessions three times per week. Serum creatine kinase was measured, and adverse effects reviewed at each session with functional mobility assessed before and after the training period. All patients tolerated the training protocol well, and there were no major changes in functional mobility. One patient had a transient increase in creatine kinase during the study; however, levels of this enzyme were stable overall when comparing the pretraining and posttraining values. Some patients reported subjective improvement during the training period. Side-alternating vibration therapy is well tolerated in children with Duchenne muscular dystrophy and may have potential to improve or maintain functional mobility and strength in these patients. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Optimization of Sensing and Feedback Control for Vibration/Flutter of Rotating Disk by PZT Actuators via Air Coupled Pressure

    Directory of Open Access Journals (Sweden)

    Bingfeng Ju

    2011-03-01

    Full Text Available In this paper, a feedback control mechanism and its optimization for rotating disk vibration/flutter via changes of air-coupled pressure generated using piezoelectric patch actuators are studied. A thin disk rotates in an enclosure, which is equipped with a feedback control loop consisting of a micro-sensor, a signal processor, a power amplifier, and several piezoelectric (PZT actuator patches distributed on the cover of the enclosure. The actuator patches are mounted on the inner or the outer surfaces of the enclosure to produce necessary control force required through the airflow around the disk. The control mechanism for rotating disk flutter using enclosure surfaces bonded with sensors and piezoelectric actuators is thoroughly studied through analytical simulations. The sensor output is used to determine the amount of input to the actuator for controlling the response of the disk in a closed loop configuration. The dynamic stability of the disk-enclosure system, together with the feedback control loop, is analyzed as a complex eigenvalue problem, which is solved using Galerkin’s discretization procedure. The results show that the disk flutter can be reduced effectively with proper configurations of the control gain and the phase shift through the actuations of PZT patches. The effectiveness of different feedback control methods in altering system characteristics and system response has been investigated. The control capability, in terms of control gain, phase shift, and especially the physical configuration of actuator patches, are also evaluated by calculating the complex eigenvalues and the maximum displacement produced by the actuators. To achieve a optimal control performance, sizes, positions and shapes of PZT patches used need to be optimized and such optimization has been achieved through numerical simulations.

  5. Optimization of sensing and feedback control for vibration/flutter of rotating disk by PZT actuators via air coupled pressure.

    Science.gov (United States)

    Yan, Tianhong; Xu, Xinsheng; Han, Jianqiang; Lin, Rongming; Ju, Bingfeng; Li, Qing

    2011-01-01

    In this paper, a feedback control mechanism and its optimization for rotating disk vibration/flutter via changes of air-coupled pressure generated using piezoelectric patch actuators are studied. A thin disk rotates in an enclosure, which is equipped with a feedback control loop consisting of a micro-sensor, a signal processor, a power amplifier, and several piezoelectric (PZT) actuator patches distributed on the cover of the enclosure. The actuator patches are mounted on the inner or the outer surfaces of the enclosure to produce necessary control force required through the airflow around the disk. The control mechanism for rotating disk flutter using enclosure surfaces bonded with sensors and piezoelectric actuators is thoroughly studied through analytical simulations. The sensor output is used to determine the amount of input to the actuator for controlling the response of the disk in a closed loop configuration. The dynamic stability of the disk-enclosure system, together with the feedback control loop, is analyzed as a complex eigenvalue problem, which is solved using Galerkin's discretization procedure. The results show that the disk flutter can be reduced effectively with proper configurations of the control gain and the phase shift through the actuations of PZT patches. The effectiveness of different feedback control methods in altering system characteristics and system response has been investigated. The control capability, in terms of control gain, phase shift, and especially the physical configuration of actuator patches, are also evaluated by calculating the complex eigenvalues and the maximum displacement produced by the actuators. To achieve a optimal control performance, sizes, positions and shapes of PZT patches used need to be optimized and such optimization has been achieved through numerical simulations.

  6. Graph theory applied to noise and vibration control in statistical energy analysis models.

    Science.gov (United States)

    Guasch, Oriol; Cortés, Lluís

    2009-06-01

    A fundamental aspect of noise and vibration control in statistical energy analysis (SEA) models consists in first identifying and then reducing the energy flow paths between subsystems. In this work, it is proposed to make use of some results from graph theory to address both issues. On the one hand, linear and path algebras applied to adjacency matrices of SEA graphs are used to determine the existence of any order paths between subsystems, counting and labeling them, finding extremal paths, or determining the power flow contributions from groups of paths. On the other hand, a strategy is presented that makes use of graph cut algorithms to reduce the energy flow from a source subsystem to a receiver one, modifying as few internal and coupling loss factors as possible.

  7. Experimental Assessment of a Skyhook Semiactive Strategy for Seismic Vibration Control of a Steel Structure

    Directory of Open Access Journals (Sweden)

    Nicola Caterino

    2018-01-01

    Full Text Available Sky-hook damping is one of the most promising techniques for feedback control of structural vibrations. It is based on the idea of connecting the structure to an ideal fixed point of the space through passive dissipative devices. Herein the benefit of semiactive (SA sky-hook (SH damping is investigated for seismic protection of a two-storey steel frame via shaking table tests. This kind of SA control is achieved implementing a continuous monitoring of selected structural response parameters and using variable dampers. The damping properties of the latter are changed in real-time so as to make the force provided by the damper match the desired SH damping force as closely as possible. To this aim, two prototype magnetorheological dampers have been installed at the first level of the frame and remotely driven by a SH controller. The effectiveness of the control strategy is measured as response to reduction in terms of floor accelerations and interstory drift in respect to the uncontrolled configuration. Two different calibrations of the SH controller have been tested. The experimental results are deeply discussed in order to identify the optimal one and understand the motivations of its better performance.

  8. Short-Term Effects of Whole-Body Vibration Combined with Task-Related Training on Upper Extremity Function, Spasticity, and Grip Strength in Subjects with Poststroke Hemiplegia: A Pilot Randomized Controlled Trial.

    Science.gov (United States)

    Lee, Jung-Sun; Kim, Chang-Yong; Kim, Hyeong-Dong

    2016-08-01

    The aim of this study was to determine the effect of whole-body vibration training combined with task-related training on arm function, spasticity, and grip strength in subjects with poststroke hemiplegia. Forty-five subjects with poststroke were randomly allocated to 3 groups, each with 15 subjects as follows: control group, whole-body vibration group, and whole-body vibration plus task-related training group. Outcome was evaluated by clinical evaluation and measurements of the grip strength before and 4 weeks after intervention. Our results show that there was a significantly greater increase in the Fugl-Meyer scale, maximal grip strength of the affected hand, and grip strength normalized to the less affected hand in subjects undergoing the whole-body vibration training compared with the control group after the test. Furthermore, there was a significantly greater increase in the Wolf motor function test and a decrease in the modified Ashworth spasticity total scores in subjects who underwent whole-body vibration plus task-related training compared with those in the other 2 groups after the test. The findings indicate that the use of whole-body vibration training combined with task-related training has more benefits on the improvement of arm function, spasticity, and maximal grip strength than conventional upper limb training alone or with whole-body vibration in people with poststroke hemiplegia.

  9. Design of a new adaptive fuzzy controller and its application to vibration control of a vehicle seat installed with an MR damper

    International Nuclear Information System (INIS)

    Phu, Do Xuan; Shin, Do Kyun; Choi, Seung-Bok

    2015-01-01

    This paper presents a new adaptive fuzzy controller featuring a combination of two different control methodologies: H infinity control technique and sliding mode control. It is known that both controllers are powerful in terms of high performance and robust stability. However, both control methods require an accurate dynamic model to design a state variable based controller in order to maintain their advantages. Thus, in this work a fuzzy control method which does not require an accurate dynamic model is adopted and two control methodologies are integrated to maintain the advantages even in an uncertain environment of the dynamic system. After a brief explanation of the interval type 2 fuzzy logic, a new adaptive fuzzy controller associated with the H infinity control and sliding mode control is formulated on the basis of Lyapunov stability theory. Subsequently, the formulated controller is applied to vibration control of a vehicle seat equipped with magnetorheological fluid damper (MR damper in short). An experimental setup for realization of the proposed controller is established and vibration control performances such as acceleration at the driver’s seat are evaluated. In addition, in order to demonstrate the effectiveness of the proposed controller, a comparative work with two existing controllers is undertaken. It is shown through simulation and experiment that the proposed controller can provide much better vibration control performance than the two existing controllers. (paper)

  10. Vibrations and Eigenvalues

    Indian Academy of Sciences (India)

    We make music by causing strings, membranes, or air columns to vibrate. Engineers design safe structures by control- ling vibrations. I will describe to you a very simple vibrating system and the mathematics needed to analyse it. The ideas were born in the work of Joseph-Louis Lagrange (1736–1813), and I begin by quot-.

  11. Metabolic effect of bodyweight whole-body vibration in a 20-min exercise session: A crossover study using verified vibration stimulus.

    Directory of Open Access Journals (Sweden)

    Chiara Milanese

    Full Text Available The ability of whole body vibration (WBV to increase energy expenditure (EE has been investigated to some extent in the past using short-term single exercises or sets of single exercises. However, the current practice in WBV training for fitness is based on the execution of multiple exercises during a WBV training session for a period of at least 20 min; nevertheless, very limited and inconsistent data are available on EE during long term WBV training session. This crossover study was designed to demonstrate, in an adequately powered sample of participants, the ability of WBV to increase the metabolic cost of exercise vs. no vibration over the time span of a typical WBV session for fitness (20 min. Twenty-two physically active young males exercised on a vibration platform (three identical sets of six different exercises using an accelerometer-verified vibration stimulus in both the WBV and no vibration condition. Oxygen consumption was measured with indirect calorimetry and expressed as area under the curve (O2(AUC. Results showed that, in the overall 20-min training session, WBV increased both the O2(AUC and the estimated EE vs. no vibration by about 22% and 20%, respectively (P<0.001 for both, partial eta squared [η2] ≥0.35 as well as the metabolic equivalent of task (+5.5%, P = 0.043; η2 = 0.02 and the rate of perceived exertion (+13%, P<0.001; ŋ2 = 0.16. Results demonstrated that vibration is able to significantly increase the metabolic cost of exercise in a 20-min WBV training session.

  12. A study on leakage-flow-induced vibrations: Pt. 1

    International Nuclear Information System (INIS)

    Inada, F.; Hayama, S.

    1990-01-01

    The viscous fluid-dynamic forces and the moments acting on the walls of a one-dimensional, narrow, tapered passage when one wall is vibrating in coupled translational and rotational modes are analyzed, and fluid-dynamic mass, damping and stiffness matrices are determined. By this means the mechanism of instability generated from the flow through a narrow passage is examined. In the case of a single-degree-of-freedom translational or rotational system, only diagonal components of the fluid-dynamic matrices are estimated, and it is found that both negative fluid-dynamic damping caused by the phase delay due to the fluid inertia and negative fluid-dynamic stiffness can occur. In the case of a single-degree-of-freedom translational system, if the passage is divergent, both negative fluid-dynamic damping and fluid-dynamic stiffness can occur. In the case of a single-degree-of-freedom rotational system, the area increment ratio of the passage, at which negative fluid-dynamic damping and fluid-dynamic stiffness can occur, changes remarkably with the location of the pivot. In the case of a two-degree-of-freedom translational and rotational system, it is difficult to conclude directly from the fluid-dynamic matrices whether the fluid-dynamic forces stabilize the system or not. (author)

  13. Study on Vibration Reduction Method for a Subway Station in Soft Ground

    Directory of Open Access Journals (Sweden)

    Xian-Feng Ma

    2017-01-01

    Full Text Available With the rapid development of metro system in urban areas, vibration and its impact on adjacent structures caused by metro operation have drawn much attention of researches and worries relating to it have risen. This paper analyzed the vibration attenuation and the environment impact by a case study of a subway station in soft ground with adjacent laboratory building. A method of setting a compound separation barrier surrounding the station is checked and different materials used in the barrier have been tried and tested through numerical analysis. Key parameters of the material and the effects of vibration reduction are studied with the purpose that similar methodology and findings can be referenced in future practices.

  14. Genetic algorithm based active vibration control for a moving flexible smart beam driven by a pneumatic rod cylinder

    Science.gov (United States)

    Qiu, Zhi-cheng; Shi, Ming-li; Wang, Bin; Xie, Zhuo-wei

    2012-05-01

    A rod cylinder based pneumatic driving scheme is proposed to suppress the vibration of a flexible smart beam. Pulse code modulation (PCM) method is employed to control the motion of the cylinder's piston rod for simultaneous positioning and vibration suppression. Firstly, the system dynamics model is derived using Hamilton principle. Its standard state-space representation is obtained for characteristic analysis, controller design, and simulation. Secondly, a genetic algorithm (GA) is applied to optimize and tune the control gain parameters adaptively based on the specific performance index. Numerical simulations are performed on the pneumatic driving elastic beam system, using the established model and controller with tuned gains by GA optimization process. Finally, an experimental setup for the flexible beam driven by a pneumatic rod cylinder is constructed. Experiments for suppressing vibrations of the flexible beam are conducted. Theoretical analysis, numerical simulation and experimental results demonstrate that the proposed pneumatic drive scheme and the adopted control algorithms are feasible. The large amplitude vibration of the first bending mode can be suppressed effectively.

  15. Cortical activation pattern during shoulder simple versus vibration exercises: a functional near infrared spectroscopy study

    Directory of Open Access Journals (Sweden)

    Sung Ho Jang

    2017-01-01

    Full Text Available To date, the cortical effect of exercise has not been fully elucidated. Using the functional near infrared spectroscopy, we attempted to compare the cortical effect between shoulder vibration exercise and shoulder simple exercise. Eight healthy subjects were recruited for this study. Two different exercise tasks (shoulder vibration exercise using the flexible pole and shoulder simple exercise were performed using a block paradigm. We measured the values of oxygenated hemoglobin in the four regions of interest: the primary sensory-motor cortex (SM1 total, arm somatotopy, and leg and trunk somatotopy, the premotor cortex, the supplementary motor area, and the prefrontal cortex. During shoulder vibration exercise and shoulder simple exercise, cortical activation was observed in SM1 (total, arm somatotopy, and leg and trunk somatotopy, premotor cortex, supplementary motor area, and prefrontal cortex. Higher oxygenated hemoglobin values were also observed in the areas of arm somatotopy of SM1 compared with those of other regions of interest. However, no significant difference in the arm somatotopy of SM1 was observed between the two exercises. By contrast, in the leg and trunk somatotopy of SM1, shoulder vibration exercise led to a significantly higher oxy-hemoglobin value than shoulder simple exercise. These two exercises may result in cortical activation effects for the motor areas relevant to the shoulder exercise, especially in the arm somatotopy of SM1. However, shoulder vibration exercise has an additional cortical activation effect for the leg and trunk somatotopy of SM1.

  16. Cortical activation pattern during shoulder simple versus vibration exercises: a functional near infrared spectroscopy study.

    Science.gov (United States)

    Jang, Sung Ho; Yeo, Sang Seok; Lee, Seung Hyun; Jin, Sang Hyun; Lee, Mi Young

    2017-08-01

    To date, the cortical effect of exercise has not been fully elucidated. Using the functional near infrared spectroscopy, we attempted to compare the cortical effect between shoulder vibration exercise and shoulder simple exercise. Eight healthy subjects were recruited for this study. Two different exercise tasks (shoulder vibration exercise using the flexible pole and shoulder simple exercise) were performed using a block paradigm. We measured the values of oxygenated hemoglobin in the four regions of interest: the primary sensory-motor cortex (SM1 total, arm somatotopy, and leg and trunk somatotopy), the premotor cortex, the supplementary motor area, and the prefrontal cortex. During shoulder vibration exercise and shoulder simple exercise, cortical activation was observed in SM1 (total, arm somatotopy, and leg and trunk somatotopy), premotor cortex, supplementary motor area, and prefrontal cortex. Higher oxygenated hemoglobin values were also observed in the areas of arm somatotopy of SM1 compared with those of other regions of interest. However, no significant difference in the arm somatotopy of SM1 was observed between the two exercises. By contrast, in the leg and trunk somatotopy of SM1, shoulder vibration exercise led to a significantly higher oxy-hemoglobin value than shoulder simple exercise. These two exercises may result in cortical activation effects for the motor areas relevant to the shoulder exercise, especially in the arm somatotopy of SM1. However, shoulder vibration exercise has an additional cortical activation effect for the leg and trunk somatotopy of SM1.

  17. Nerve conduction in relation to vibration exposure - a non-positive cohort study

    Directory of Open Access Journals (Sweden)

    Nilsson Tohr

    2010-07-01

    Full Text Available Abstract Background Peripheral neuropathy is one of the principal clinical disorders in workers with hand-arm vibration syndrome. Electrophysiological studies aimed at defining the nature of the injury have provided conflicting results. One reason for this lack of consistency might be the sparsity of published longitudinal etiological studies with both good assessment of exposure and a well-defined measure of disease. Against this background we measured conduction velocities in the hand after having assessed vibration exposure over 21 years in a cohort of manual workers. Methods The study group consisted of 155 male office and manual workers at an engineering plant that manufactured pulp and paper machinery. The study has a longitudinal design regarding exposure assessment and a cross-sectional design regarding the outcome of nerve conduction. Hand-arm vibration dose was calculated as the product of self-reported occupational exposure, collected by questionnaire and interviews, and the measured or estimated hand-arm vibration exposure in 1987, 1992, 1997, 2002, and 2008. Distal motor latencies in median and ulnar nerves and sensory nerve conduction over the carpal tunnel and the finger-palm segments in the median nerve were measured in 2008. Before the nerve conduction measurement, the subjects were systemically warmed by a bicycle ergometer test. Results There were no differences in distal latencies between subjects exposed to hand-arm vibration and unexposed subjects, neither in the sensory conduction latencies of the median nerve, nor in the motor conduction latencies of the median and ulnar nerves. Seven subjects (9% in the exposed group and three subjects (12% in the unexposed group had both pathological sensory nerve conduction at the wrist and symptoms suggestive of carpal tunnel syndrome. Conclusion Nerve conduction measurements of peripheral hand nerves revealed no exposure-response association between hand-arm vibration exposure and

  18. CFD simulation on flow induced vibrations in high pressure control and emergency stop turbine valve

    International Nuclear Information System (INIS)

    Lindqvist, H.

    2011-01-01

    During the refuelling outage at Unit 2 of Forsmark NPP in 2009, the high pressure turbine valves were replaced. Three month after recommissioning, an oil pipe connected to one of the actuators was broken. Measurements showed high-frequency vibration levels. The pipe break was suspected to be an effect of highly increased vibrations caused by the new valve. In order to establish the origin of the vibrations, investigations by means of CFD-simulations were made. The simulations showed that the increased vibrations most likely stems from the open cavity that the valves centre consists of. (author)

  19. Concorde noise-induced building vibrations: International Airport Dulles. [studies by Langley Research Center

    Science.gov (United States)

    Mayes, W. H.; Scholl, H. F.; Stephens, D. G.; Holliday, B. G.; Deloach, R.; Finley, T. D.; Holmes, H. K.; Lewis, R. B.; Lynch, J. W.

    1977-01-01

    A series of studies were conducted to assess the noise-induced building vibrations associated with Concorde operations. The vibration levels of windows, walls, and floors were measured along with the associated noise levels of Concorde, subsonic aircraft and some nonaircraft events. Test sites included Sully Plantation which is adjacent to Dulles International Airport and three residential homes located in Montgomery County, Maryland. The measured vibration response levels due to Concorde operations were found to be: (1) higher than the levels due to other aircraft, (2) less than the levels due to certain household events which involve direct impulsive loading such as door and window closing, (3) less than criteria levels for building damage, and (4) comparable to levels which are perceptible to people.

  20. Study of the levels of serum cortisol and gastrin in dogs with vibration-induced injury

    International Nuclear Information System (INIS)

    Wei Zikun

    2005-01-01

    Objective: To study the changes of levels of serum cortisol and gastrin in dogs with vibration-induced injury for providing better treatment regimen. Methods: In this experiment, 8 or 10 domestic dogs were placed on each of four sites away from explosion center about 0, 100, 200, 300 meters respectively. The dogs were standing uncontrolled or lying right side down under anesthesia. Serum cortisol and gastrin levels were detected with RIA both before and after explosion. Results: The levels of serum cortisol and gastrin began to fall about 24 hours after explosion. The serum levels of cortisol were still decreased significantly after 9 days and 17 days. Conclusion: The levels of the serum cortisol declined when the animals were injured by vibration. Detection of serum cortisol levels might lead to definitive diagnosis and supplemental treatment with cortical hormones for vibration-induced injury. (authors)

  1. Study of a vibrating plate: comparison between experimental (ESPI) and analytical results

    Science.gov (United States)

    Romero, G.; Alvarez, L.; Alanís, E.; Nallim, L.; Grossi, R.

    2003-07-01

    Real-time electronic speckle pattern interferometry (ESPI) was used for tuning and visualization of natural frequencies of a trapezoidal plate. The plate was excited to resonant vibration by a sinusoidal acoustical source, which provided a continuous range of audio frequencies. Fringe patterns produced during the time-average recording of the vibrating plate—corresponding to several resonant frequencies—were registered. From these interferograms, calculations of vibrational amplitudes by means of zero-order Bessel functions were performed in some particular cases. The system was also studied analytically. The analytical approach developed is based on the Rayleigh-Ritz method and on the use of non-orthogonal right triangular co-ordinates. The deflection of the plate is approximated by a set of beam characteristic orthogonal polynomials generated by using the Gram-Schmidt procedure. A high degree of correlation between computational analysis and experimental results was observed.

  2. Study of the solvent effects on the molecular structure and Cdbnd O stretching vibrations of flurbiprofen

    Science.gov (United States)

    Tekin, Nalan; Pir, Hacer; Sagdinc, Seda

    2012-12-01

    The effects of 15 solvents on the C=O stretching vibrational frequency of flurbiprofen (FBF) were determined to investigate solvent-solute interactions. Solvent effects on the geometry and C=O stretching vibrational frequency, ν(C=O), of FBF were studied theoretically at the DFT/B3LYP and HF level in combination with the polarizable continuum model and experimentally using attenuated total reflection infrared spectroscopy (ATR-IR). The calculated C=O stretching frequencies in the liquid phase are in agreement with experimental values. Moreover, the wavenumbers of ν(C=O) of FBF in different solvents have been obtained and correlated with the Kirkwood-Bauer-Magat equation (KBM), the solvent acceptor numbers (ANs), and the linear solvation energy relationships (LSERs). The solvent-induced stretching vibrational frequency shifts displayed a better correlation with the LSERs than with the ANs and KBM.

  3. DFT, FT-IR, FT-Raman and vibrational studies of 3-methoxyphenyl boronic acid

    Science.gov (United States)

    Patil, N. R.; Hiremath, Sudhir M.; Hiremath, C. S.

    2018-05-01

    The aim of this work is to study the possible stable, geometrical molecular structure, experimental and theoretical FT-IR and FT-Raman spectroscopic methods of 3-Methoxyphenyl boronic acid (3MPBA). FT-IR and FT-Raman spectra were recorded in the region of 4000-400 cm-1 and 40000-50 cm-1 respectively. The optimized geometric structure and vibrational wavenumbers of the title compound were searched by B3LYP hybrid density functional theory method with 6-311++G (d, p) basis set. The Selectedexperimentalbandswereassignedandcharacterizedonthebasisofthescaledtheoreticalwavenumbersby their potential energy distribution (PED) of the vibrational modes obtained from VEDA 4 program. Finally, the predicted calculation results were applied to simulated FT-IR and FT-Raman spectra of the title compound, which show agreement with the observed spectra. Whereas, it is observed that, the theoretical frequencies are more than the experimental one for O-H stretching vibration modes of the title molecule.

  4. Accelerometer-based estimation and modal velocity feedback vibration control of a stress-ribbon bridge with pneumatic muscles

    Science.gov (United States)

    Liu, Xiaohan; Schauer, Thomas; Goldack, Arndt; Bleicher, Achim; Schlaich, Mike

    2016-09-01

    Lightweight footbridges are very elegant but also prone to vibration. By employing active vibration control, smart footbridges could accomplish not only the architectural concept but also the required serviceability and comfort. Inertial sensors such as accelerometers allow the estimation of nodal velocities and displacements. A Kalman filter together with a band-limited multiple Fourier linear combiner (BMFLC) is applied to enable a drift-free estimation of these signals for the quasi-periodic motion under pedestrian excitation without extra information from other kinds of auxiliary sensors. The modal velocities of the structure are determined by using a second Kalman filter with the known applied actuator forces as inputs and the estimated nodal displacement and velocities as measurements. The obtained multi-modal velocities are then used for feedback control. An ultra-lightweight stress-ribbon footbridge built in the Peter-Behrens- Halle at the Technische Universitat Berlin served as the research object. Using two inertial sensors in optimal points we can estimate the dominant modal characteristics of this bridge. Real-time implementation and evaluation results of the proposed estimator will be presented in comparison to signals derived from classical displacement encoders. The real-time estimated modal velocities were applied in a multi-modal velocity feedback vibration control scheme with lightweight pneumatic muscle actuators. Experimental results demonstrate the feasibility of using inertial sensors for active vibration control of lightweight footbridges.

  5. Accelerometer-based estimation and modal velocity feedback vibration control of a stress-ribbon bridge with pneumatic muscles

    International Nuclear Information System (INIS)

    Liu, Xiaohan; Goldack, Arndt; Schlaich, Mike; Schauer, Thomas; Bleicher, Achim

    2016-01-01

    Lightweight footbridges are very elegant but also prone to vibration. By employing active vibration control, smart footbridges could accomplish not only the architectural concept but also the required serviceability and comfort. Inertial sensors such as accelerometers allow the estimation of nodal velocities and displacements. A Kalman filter together with a band-limited multiple Fourier linear combiner (BMFLC) is applied to enable a drift-free estimation of these signals for the quasi-periodic motion under pedestrian excitation without extra information from other kinds of auxiliary sensors. The modal velocities of the structure are determined by using a second Kalman filter with the known applied actuator forces as inputs and the estimated nodal displacement and velocities as measurements. The obtained multi-modal velocities are then used for feedback control. An ultra-lightweight stress-ribbon footbridge built in the Peter-Behrens- Halle at the Technische Universitat Berlin served as the research object. Using two inertial sensors in optimal points we can estimate the dominant modal characteristics of this bridge. Real-time implementation and evaluation results of the proposed estimator will be presented in comparison to signals derived from classical displacement encoders. The real-time estimated modal velocities were applied in a multi-modal velocity feedback vibration control scheme with lightweight pneumatic muscle actuators. Experimental results demonstrate the feasibility of using inertial sensors for active vibration control of lightweight footbridges. (paper)

  6. Detection of combustion start in the controlled auto ignition engine by wavelet transform of the engine block vibration signal

    International Nuclear Information System (INIS)

    Kim, Seonguk; Min, Kyoungdoug

    2008-01-01

    The CAI (controlled auto ignition) engine ignites fuel and air mixture by trapping high temperature burnt gas using a negative valve overlap. Due to auto ignition in CAI combustion, efficiency improvements and low level NO x emission can be obtained. Meanwhile, the CAI combustion regime is restricted and control parameters are limited. The start of combustion data in the compressed ignition engine are most critical for controlling the overall combustion. In this research, the engine block vibration signal is transformed by the Meyer wavelet to analyze CAI combustion more easily and accurately. Signal acquisition of the engine block vibration is a more suitable method for practical use than measurement of in-cylinder pressure. A new method for detecting combustion start in CAI engines through wavelet transformation of the engine block vibration signal was developed and results indicate that it is accurate enough to analyze the start of combustion. Experimental results show that wavelet transformation of engine block vibration can track the start of combustion in each cycle. From this newly developed method, the start of combustion data in CAI engines can be detected more easily and used as input data for controlling CAI combustion

  7. Short-term effects of whole-body vibration on postural control in unilateral chronic stroke patients: preliminary evidence.

    NARCIS (Netherlands)

    Nes, I.J.W. van; Geurts, A.C.H.; Hendricks, H.T.; Duysens, J.E.J.

    2004-01-01

    The short-term effects of whole-body vibration as a novel method of somatosensory stimulation on postural control were investigated in 23 chronic stroke patients. While standing on a commercial platform, patients received 30-Hz oscillations at 3 mm of amplitude in the frontal plane. Balance was

  8. Detection of combustion start in the controlled auto ignition engine by wavelet transform of the engine block vibration signal

    Science.gov (United States)

    Kim, Seonguk; Min, Kyoungdoug

    2008-08-01

    The CAI (controlled auto ignition) engine ignites fuel and air mixture by trapping high temperature burnt gas using a negative valve overlap. Due to auto ignition in CAI combustion, efficiency improvements and low level NOx emission can be obtained. Meanwhile, the CAI combustion regime is restricted and control parameters are limited. The start of combustion data in the compressed ignition engine are most critical for controlling the overall combustion. In this research, the engine block vibration signal is transformed by the Meyer wavelet to analyze CAI combustion more easily and accurately. Signal acquisition of the engine block vibration is a more suitable method for practical use than measurement of in-cylinder pressure. A new method for detecting combustion start in CAI engines through wavelet transformation of the engine block vibration signal was developed and results indicate that it is accurate enough to analyze the start of combustion. Experimental results show that wavelet transformation of engine block vibration can track the start of combustion in each cycle. From this newly developed method, the start of combustion data in CAI engines can be detected more easily and used as input data for controlling CAI combustion.

  9. Semi-Active Control of Three-Dimensional Vibrations of an Inclined Sag Cable with Magnetorheological Dampers

    DEFF Research Database (Denmark)

    Zhou, Q.; Nielsen, Søren R.K.; Qu, W. L.

    2006-01-01

    Three-dimensional semi-active vibration control of an inclined sag cable with discrete magnetorheological (MR) dampers is investigated in this paper using the finite difference method (FDM). A modified Dahl model is used to describe the dynamic property of MR damper. The nonlinear equations...

  10. Study of flow induce vibration inside 3.5 inch hard disk drives

    Directory of Open Access Journals (Sweden)

    Wichitpon Seepangmon

    2014-06-01

    Full Text Available This study focused on flow induced vibration of head stack assembly (HSA in a 3.5 inch hard disk drive with 5 disks and 10 read/write heads. We studied the effects of air flow on gimbal flex and resonance on arm. The comparison of vibrations on slider between the normal model and the experiment has been done for verifying the model. The peaks of frequency in experiment match the normal model at 1,040 1,320 and 1,400 Hz respectively. After that, the RNG K-ε turbulence model was used to determine the turbulent air flow of 7,200 rpm hard disk drive. The comparison between the normal model and the model with spoiler was investigated by using, computational fluid dynamics software (ANSYS and FLUENT. The results shown velocity magnitudes at the arm were decreased by 0.725 - 57.689 % and pressure dropped by 74.028 - 87.222 %. The velocity magnitudes at the gimbal flex were decreased by 5.522 - 14.291 % and pressure dropped by 48.440 - 82.947 %. The peak of vibrations on arm and gimbal flex was occurred at the frequency 1200 Hz. The model with spoiler could reduce vibration at arm by 2.56 - 95.601 % and reduce vibration at gimbal flex by 4.065 - 95.503 %. In the conclusion, the model with a spoiler could decrease the vibration at all surface of the arm and gimbal flex due to the velocity and pressure reduction[1][4].

  11. GOES-R active vibration damping controller design, implementation, and on-orbit performance

    Science.gov (United States)

    Clapp, Brian R.; Weigl, Harald J.; Goodzeit, Neil E.; Carter, Delano R.; Rood, Timothy J.

    2018-01-01

    GOES-R series spacecraft feature a number of flexible appendages with modal frequencies below 3.0 Hz which, if excited by spacecraft disturbances, can be sources of undesirable jitter perturbing spacecraft pointing. To meet GOES-R pointing stability requirements, the spacecraft flight software implements an Active Vibration Damping (AVD) rate control law which acts in parallel with the nadir point attitude control law. The AVD controller commands spacecraft reaction wheel actuators based upon Inertial Measurement Unit (IMU) inputs to provide additional damping for spacecraft structural modes below 3.0 Hz which vary with solar wing angle. A GOES-R spacecraft dynamics and attitude control system identified model is constructed from pseudo-random reaction wheel torque commands and IMU angular rate response measurements occurring over a single orbit during spacecraft post-deployment activities. The identified Fourier model is computed on the ground, uplinked to the spacecraft flight computer, and the AVD controller filter coefficients are periodically computed on-board from the Fourier model. Consequently, the AVD controller formulation is based not upon pre-launch simulation model estimates but upon on-orbit nadir point attitude control and time-varying spacecraft dynamics. GOES-R high-fidelity time domain simulation results herein demonstrate the accuracy of the AVD identified Fourier model relative to the pre-launch spacecraft dynamics and control truth model. The AVD controller on-board the GOES-16 spacecraft achieves more than a ten-fold increase in structural mode damping for the fundamental solar wing mode while maintaining controller stability margins and ensuring that the nadir point attitude control bandwidth does not fall below 0.02 Hz. On-orbit GOES-16 spacecraft appendage modal frequencies and damping ratios are quantified based upon the AVD system identification, and the increase in modal damping provided by the AVD controller for each structural mode is

  12. Understanding and controlling wind-induced vibrations of bridge cables: Results from the Femern Crossing research project

    DEFF Research Database (Denmark)

    Georgakis, Christos T.; Jakobsen, J. B.; Koss, Holger

    of the project has been the establishment of novel vibration mitigation schemes that could be readily, economically, and effectively implemented on a cable-supported bridge that might form part of the fixed link. In support of the proposed research, Femern A/S commissioned a new climatic wind tunnel, designed......Following the successful completion of the Storebælt and Øresund Crossings, the Danish Ministry of Transport appointed Femern A/S to be in charge of preparation, investigations and planning in relation to the establishment of a fixed link across the Fehmarnbelt. To further investigate the causes...... behind the cable vibrations that were observed on the cable-supported bridges forming part of the aforementioned crossings, Femern A/S commissioned a 5-year international collaborative research project, entitled “Understanding and controlling wind-induced vibrations of bridge cables”. The ultimate goal...

  13. Anti-vibration gloves?

    Science.gov (United States)

    Hewitt, Sue; Dong, Ren G; Welcome, Daniel E; McDowell, Thomas W

    2015-03-01

    For exposure to hand-transmitted vibration (HTV), personal protective equipment is sold in the form of anti-vibration (AV) gloves, but it remains unclear how much these gloves actually reduce vibration exposure or prevent the development of hand-arm vibration syndrome in the workplace. This commentary describes some of the issues that surround the classification of AV gloves, the assessment of their effectiveness and their applicability in the workplace. The available information shows that AV gloves are unreliable as devices for controlling HTV exposures. Other means of vibration control, such as using alternative production techniques, low-vibration machinery, routine preventative maintenance regimes, and controlling exposure durations are far more likely to deliver effective vibration reductions and should be implemented. Furthermore, AV gloves may introduce some adverse effects such as increasing grip force and reducing manual dexterity. Therefore, one should balance the benefits of AV gloves and their potential adverse effects if their use is considered. © Crown copyright 2014.

  14. Intra-oral pressure-based voicing control of electrolaryngeal speech with intra-oral vibrator.

    Science.gov (United States)

    Takahashi, Hirokazu; Nakao, Masayuki; Kikuchi, Yataro; Kaga, Kimitaka

    2008-07-01

    In normal speech, coordinated activities of intrinsic laryngeal muscles suspend a glottal sound at utterance of voiceless consonants, automatically realizing a voicing control. In electrolaryngeal speech, however, the lack of voicing control is one of the causes of unclear voice, voiceless consonants tending to be misheard as the corresponding voiced consonants. In the present work, we developed an intra-oral vibrator with an intra-oral pressure sensor that detected utterance of voiceless phonemes during the intra-oral electrolaryngeal speech, and demonstrated that an intra-oral pressure-based voicing control could improve the intelligibility of the speech. The test voices were obtained from one electrolaryngeal speaker and one normal speaker. We first investigated on the speech analysis software how a voice onset time (VOT) and first formant (F1) transition of the test consonant-vowel syllables contributed to voiceless/voiced contrasts, and developed an adequate voicing control strategy. We then compared the intelligibility of consonant-vowel syllables among the intra-oral electrolaryngeal speech with and without online voicing control. The increase of intra-oral pressure, typically with a peak ranging from 10 to 50 gf/cm2, could reliably identify utterance of voiceless consonants. The speech analysis and intelligibility test then demonstrated that a short VOT caused the misidentification of the voiced consonants due to a clear F1 transition. Finally, taking these results together, the online voicing control, which suspended the prosthetic tone while the intra-oral pressure exceeded 2.5 gf/cm2 and during the 35 milliseconds that followed, proved efficient to improve the voiceless/voiced contrast.

  15. Design of a one-chip board microcontrol unit for active vibration control of a naval ship mounting system

    International Nuclear Information System (INIS)

    Oh, Jong-Seok; Choi, Seung-Bok; Han, Young-Min; Nguyen, Vien-Quoc; Moon, Seok-Jun

    2012-01-01

    This work presents an experimental implementation of a user-tunable one-chip board microcontrol unit which is specifically designed for vibration control of the active mounting system for naval ships. The proposed mounting system consists of four active mounts supporting vibration-sensitive equipment. Each active mount constitutes a rubber element, an inertial mass and the piezostack actuator. It is designed for particular applications that require effective isolation performance against wide frequency ranges, such as naval ship equipment. After describing the configuration of the active mount, dynamic characteristics of the rubber element and the piezostack actuator are experimentally identified. Accordingly, the proposed mounting system is constructed and the governing equations of motion are formulated. In order to attenuate the unwanted vibrations transferred from the upper mass, a feedforward controller with fast Fourier algorithm is designed and experimentally realized using the one-chip microcontrol board which is specially made for this practical application. In order to evaluate the performance of the one-chip microcontrol unit, vibration control results of the proposed active mounting system are presented in the frequency domain. (technical note)

  16. Theoretical and experimental study of the vibrational excitations in ethane monolayers adsorbed on graphite (0001) surfaces

    DEFF Research Database (Denmark)

    Hansen, Flemming Yssing; Taub, H.

    1987-01-01

    The collective vibrational excitations of two different crystalline monolayer phases of ethane (C2H6) adsorbed on the graphite (0001) surface have been investigated theoretically and experimentally. The monolayer phases studied are the commensurate 7/8 ×4 structure in which the ethane molecules lie...

  17. Study of cancer cell lines with Fourier transform infrared (FTIR)/vibrational absorption (VA) spectroscopy

    DEFF Research Database (Denmark)

    Uceda Otero, E. P.; Eliel, G. S. N.; Fonseca, E. J. S.

    2013-01-01

    In this work we have used Fourier transform infrared (FTIR) / vibrational absorption (VA) spectroscopy to study two cancer cell lines: the Henrietta Lacks (HeLa) human cervix carcinoma and 5637 human bladder carcinoma cell lines. Our goal is to experimentally investigate biochemical changes...

  18. Vibration Control of a High-Speed Precision Servo Numerically Controlled Punching Press: Multidomain Simulation and Experiments

    Directory of Open Access Journals (Sweden)

    Teng Xu

    2017-01-01

    Full Text Available A three-degree-of-freedom mathematical vibration model of a high-speed punching press was developed in order to explore the vibration modes of the punching press. A multidomain model of the punching press was established to predict the kinematic state during different conditions, as well as the effects of load fluctuation on the motor speed. Experimental measurements of the acceleration of the punching press were carried out. The results comparison reveals that the multidomain model is consistent with the vibration model and the experimental measurements. Modal analysis and structure modification of the punching press were conducted. The foundation at the base of the punching press was improved against excess of vibration. The effects of the dimensions of the foundation on the vibration were discussed with the aid of the multidomain model. Finally, proper foundation design, able to reduce the vibration, was obtained.

  19. In-vitro tensile testing machine for vibration study of fresh rabbit Achilles tendon

    Science.gov (United States)

    Revel, Gian M.; Scalise, Alessandro; Scalise, Lorenzo; Pianosi, Antonella

    2001-10-01

    A lot of people, overall athletic one suffer from tendinitis or complete rupture of the Achilles tendon. This structure becomes inflamed and damaged mainly from a variety of mechanical forces and sometimes due to metabolic problems, such as diabetes or arthritis. Over the past three decades extensive studies have been performed on the structural and mechanical properties of Achilles tendon trying to explain the constitutive equations to describe and foresee tendon behavior. Among the various mechanical parameters, the vibrational behavior is also of interest. Several investigations are performed in order to study how the Achilles tendon vibrations influence the response of the muscle proprioception and human posture. The present article describes how in vitro tensile experiments can be performed, taking into account the need to simulate physiological condition of Achilles tendon and thus approaching some opened problems in the design of the experimental set-up. A new system for evaluating tendon vibrations by non contact techniques is proposed. Preliminary simple elongation tests are made extracting the main mechanical parameters: stress and strain at different fixed stretches, in order to characterize the tissue. Finally, a vibration study is made at each pretensioned tendon level evaluating the oscillating curves caused by a small hammer.

  20. Study of the Mechanical Properties and Vibration Isolation Performance of a Molecular Spring Isolator

    Directory of Open Access Journals (Sweden)

    Muchun Yu

    2016-01-01

    Full Text Available Molecular Spring Isolator (MSI is a novel passive vibration isolation technique, providing High-Static-Low-Dynamic (HSLD stiffness based on the use of molecular spring material. The molecular spring material is a solid-liquid mixture consisting of water and hydrophobic nanoporous materials. Under a certain level of external pressure, water molecules can intrude into the hydrophobic pores of nanoporous materials, developing an additional solid-liquid interface. Such interfaces are able to store, release, and transform mechanical energy, providing properties like mechanical spring. Having been only recently developed, the basic mechanic properties of a MSI have not been studied in depth. This paper focuses on the stiffness influence factors, the dynamic frequency response, and the vibration isolation performance of a MSI; these properties help engineers to design MSIs for different engineering applications. First, the working mechanism of a MSI is introduced from a three-dimensional general view of the water infiltration massive hydrophobic nanoporous pores. Next, a wide range of influence factors on the stiffness properties of MSI are studied. In addition, the frequency response functions (FRFs of the MSI vibration isolation system are studied utilizing the matching method based on equivalent piecewise linear (EPL system. Finally, the vibration isolation properties of MSI are evaluated by force transmissibility.