Some problems of control of dynamical conditions of technological vibrating machines
Kuznetsov, N. K.; Lapshin, V. L.; Eliseev, A. V.
2017-10-01
The possibility of control of dynamical condition of the shakers that are designed for vibration treatment of parts interacting with granular media is discussed. The aim of this article is to develop the methodological basis of technology of creation of mathematical models of shake tables and the development of principles of formation of vibrational fields, estimation of their parameters and control of the structure vibration fields. Approaches to build mathematical models that take into account unilateral constraints, the relationships between elements, with the vibrating surface are developed. Methods intended to construct mathematical model of linear mechanical oscillation systems are used. Small oscillations about the position of static equilibrium are performed. The original method of correction of vibration fields by introduction of the oscillating system additional ties to the structure are proposed. Additional ties are implemented in the form of a mass-inertial device for changing the inertial parameters of the working body of the vibration table by moving the mass-inertial elements. The concept of monitoring the dynamic state of the vibration table based on the original measuring devices is proposed. Estimation for possible changes in dynamic properties is produced. The article is of interest for specialists in the field of creation of vibration technology machines and equipment.
Vibrations and Stability: Solved Problems
DEFF Research Database (Denmark)
Thomsen, Jon Juel
Worked out solutions for exercise problems in J. J. Thomsen 'Vibrations and Stability: Advanced Theory, Analysis, and Tools', Springer, Berlin - Heidelberg, 2003.......Worked out solutions for exercise problems in J. J. Thomsen 'Vibrations and Stability: Advanced Theory, Analysis, and Tools', Springer, Berlin - Heidelberg, 2003....
Model Indepedent Vibration Control
Yuan, Jing
2010-01-01
A NMIFC system is proposed for broadband vibration control. It has two important features. Feature F1 is that the NMIFC is stable without introducing any invasive effects, such as probing signals or controller perturbations, into the vibration system; feature F2 is
Directory of Open Access Journals (Sweden)
Khomenko Andrei P.
2018-01-01
Full Text Available The article deals with the development of mathematical models and evaluation criteria of the vibration field in the dynamic interactions of the elements of the vibrational technological machines for the processes of vibrational strengthening of long-length parts with help of a steel balls working medium. The study forms a theoretical understanding of the modes of motions of material particles in interaction with a vibrating surface of the working body of the vibration machine. The generalized approach to the assessment of the dynamic quality of the work of vibrating machines in multiple modes of tossing, when the period of free flight of particles is a multiple of the period of the surface oscillations of the working body, is developed in the article. For the correction of vibration field of the working body, the characteristics of dynamic interactions of granular elements of the medium are taken into account using original sensors. The sensors that can detect different particularities of interaction of the granular medium elements at different points of the working body are proposed to evaluate the deviation from a homogeneous and one-dimensional mode of vibration field. Specially developed sensors are able to register interactions between a single granule, a system of granules in filamentous structures, and multipoint interactions of the elements in a close-spaced cylindrical structure. The system of regularization of the structure of vibration fields based on the introduction of motion translation devices is proposed using the multi-point sensor locations on the working body. The article refers to analytical approaches of the theory of vibration displacements. For the experimental data assessment, the methods of statistical analysis are applied. It is shown that the peculiar features of the motion of granular medium registered by the sensors can be used to build active control systems of field vibration.
DOWNHOLE VIBRATION MONITORING & CONTROL SYSTEM
Energy Technology Data Exchange (ETDEWEB)
Martin E. Cobern
2004-08-31
The deep hard rock drilling environment induces severe vibrations into the drillstring, which can cause reduced rates of penetration (ROP) and premature failure of the equipment. The only current means of controlling vibration under varying conditions is to change either the rotary speed or the weight-on-bit (WOB). These changes often reduce drilling efficiency. Conventional shock subs are useful in some situations, but often exacerbate the problems. The objective of this project is development of a unique system to monitor and control drilling vibrations in a ''smart'' drilling system. This system has two primary elements: (1) The first is an active vibration damper (AVD) to minimize harmful axial, lateral and torsional vibrations. The hardness of this damper will be continuously adjusted using a robust, fast-acting and reliable unique technology. (2) The second is a real-time system to monitor drillstring vibration, and related parameters. This monitor adjusts the damper according to local conditions. In some configurations, it may also send diagnostic information to the surface via real-time telemetry. The AVD is implemented in a configuration using magnetorheological (MR) fluid. By applying a current to the magnetic coils in the damper, the viscosity of the fluid can be changed rapidly, thereby altering the damping coefficient in response to the measured motion of the tool. Phase I of this program entailed modeling and design of the necessary subsystems and design, manufacture and test of a full laboratory prototype. Phase I of the project was completed by the revised end date of May 31, 2004. The objectives of this phase were met, and all prerequisites for Phase II have been completed.
DOWNHOLE VIBRATION MONITORING & CONTROL SYSTEM
Energy Technology Data Exchange (ETDEWEB)
Martin E. Cobern
2004-10-13
The deep hard rock drilling environment induces severe vibrations into the drillstring, which can cause reduced rates of penetration (ROP) and premature failure of the equipment. The only current means of controlling vibration under varying conditions is to change either the rotary speed or the weight-on-bit (WOB). These changes often reduce drilling efficiency. Conventional shock subs are useful in some situations, but often exacerbate the problems. The objective of this project is development of a unique system to monitor and control drilling vibrations in a ''smart'' drilling system. This system has two primary elements: (1) The first is an active vibration damper (AVD) to minimize harmful axial, lateral and torsional vibrations. The hardness of this damper will be continuously adjusted using a robust, fast-acting and reliable unique technology. (2) The second is a real-time system to monitor drillstring vibration, and related parameters. This monitor adjusts the damper according to local conditions. In some configurations, it may also send diagnostic information to the surface via real-time telemetry. The AVD is implemented in a configuration using magnetorheological (MR) fluid. By applying a current to the magnetic coils in the damper, the viscosity of the fluid can be changed rapidly, thereby altering the damping coefficient in response to the measured motion of the tool. Phase I of this program entailed modeling and design of the necessary subsystems and design, manufacture and test of a full laboratory prototype. Phase I of the project was completed by the revised end date of May 31, 2004. The objectives of this phase were met, and all prerequisites for Phase II have been completed. The month of June, 2004 was primarily occupied with the writing of the Phase I Final Report, the sole deliverable of Phase I, which will be submitted in the next quarter. Redesign of the laboratory prototype and design of the downhole (Phase II) prototype was
Simulation studies for multichannel active vibration control
Prakash, Shashikala; Balasubramaniam, R.; Praseetha, K. K.
2003-10-01
Traditional approach to vibration control uses passive techniques, which are relatively large, costly and ineffective at low frequencies. Active Vibration Control (AVC) is used to overcome these problems & in AVC additional sources (secondary) are used to cancel vibration from primary source based on the principle of superposition theorem Since the characteristics of the vibration source and environment are time varying, the AVC system must be adaptive. Adaptive systems have the ability to track time varying disturbances and provide optimal control over a much broader range of conditions than conventional fixed control systems. In multi channel AVC vibration fields in large dimensions are controlled & is more complicated. Therefore to actively control low frequency vibrations on large structures, multi channel AVC requires a control system that uses multiple secondary sources to control the vibration field simultaneously at multiple error sensor locations. The error criterion that can be directly measured is the sum of squares of outputs of number of sensors. The adaptive algorithm is designed to minimize this & the algorithm implemented is the "Multiple error LMS algorithm." The best known applications of multiple channel FXLMS algorithm is in real time AVC and system identification. More wider applications are in the control of propeller induced noise in flight cabin interiors. In the present paper the results of simulation studies carried out in MATLAB as well as on TMS320C32 DSP processor will be brought out for a two-channel case.
Acoustic vibration problem for dissipative fluids
Lepe, Felipe; Meddahi, Salim; Mora, David; Rodríguez, Rodolfo
2016-01-01
In this paper we analyze a finite element method for solving a quadratic eigenvalue problem derived from the acoustic vibration problem for a heterogeneous dissipative fluid. The problem is shown to be equivalent to the spectral problem for a noncompact operator and athorough spectral characterization is given. The numerical discretization of the problem is based on Raviart-Thomas finite elements. The method is proved to be free of spurious modes and to converge with optimal order. Finally, w...
Feedback Linearisation for Nonlinear Vibration Problems
Directory of Open Access Journals (Sweden)
S. Jiffri
2014-01-01
Full Text Available Feedback linearisation is a well-known technique in the controls community but has not been widely taken up in the vibrations community. It has the advantage of linearising nonlinear system models, thereby enabling the avoidance of the complicated mathematics associated with nonlinear problems. A particular and common class of problems is considered, where the nonlinearity is present in a system parameter and a formulation in terms of the usual second-order matrix differential equation is presented. The classical texts all cast the feedback linearisation problem in first-order form, requiring repeated differentiation of the output, usually presented in the Lie algebra notation. This becomes unnecessary when using second-order matrix equations of the problem class considered herein. Analysis is presented for the general multidegree of freedom system for those cases when a full set of sensors and actuators is available at every degree of freedom and when the number of sensors and actuators is fewer than the number of degrees of freedom. Adaptive feedback linearisation is used to address the problem of nonlinearity that is not known precisely. The theory is illustrated by means of a three-degree-of-freedom nonlinear aeroelastic model, with results demonstrating the effectiveness of the method in suppressing flutter.
10th International Conference on Vibration Problems
Horáček, Jaromír; Okrouhlík, Miloslav; Marvalová, Bohdana; Verhulst, Ferdinand; Sawicki, Jerzy; Vibration Problems ICOVP 2011
2011-01-01
This volume presents the Proceedings of the 10th International Conference on Vibration Problems, September 5-8, 2011, Prague, Czech Republic. Since they started in 1990 the ICOVP conferences have matured into a reference platform reflecting the state-of-the-art of dynamics in the broadest sense, bringing together scientists from different backgrounds who are actively working on vibration-related problems in theoretical, experimental and applied dynamics, thus facilitating a lively exchange of ideas, methods and results. Dynamics as a scientific discipline draws inspiration from a large variety of engineering areas, such as Mechanical and Civil Engineering, Aero and Space Technology, Wind and Earthquake Engineering and Transport and Building Machinery. Moreover, the basic research in dynamics nowadays includes many fields of theoretical physics and various interdisciplinary subject areas. ICOVP 2011 covers all branches of dynamics and offers the most up-to-date results and developments in a high-quality select...
Resonant vibration control of rotating beams
DEFF Research Database (Denmark)
Svendsen, Martin Nymann; Krenk, Steen; Høgsberg, Jan Becker
2011-01-01
Rotatingstructures,like e.g.wind turbine blades, may be prone to vibrations associated with particular modes of vibration. It is demonstrated, how this type of vibrations can be reduced by using a collocated sensor–actuator system, governed by a resonant controller. The theory is here demonstrated...... modal connectivity, only very limited modal spill-over is generated. The controller acts by resonance and therefore has only a moderate energy consumption, and successfully reduces modal vibrations at the resonance frequency....
Diesel engine torsional vibration control coupling with speed control system
Guo, Yibin; Li, Wanyou; Yu, Shuwen; Han, Xiao; Yuan, Yunbo; Wang, Zhipeng; Ma, Xiuzhen
2017-09-01
The coupling problems between shafting torsional vibration and speed control system of diesel engine are very common. Neglecting the coupling problems sometimes lead to serious oscillation and vibration during the operation of engines. For example, during the propulsion shafting operation of a diesel engine, the oscillation of engine speed and the severe vibration of gear box occur which cause the engine is unable to operate. To find the cause of the malfunctions, a simulation model coupling the speed control system with the torsional vibration of deformable shafting is proposed and investigated. In the coupling model, the shafting is simplified to be a deformable one which consists of several inertias and shaft sections and with characteristics of torsional vibration. The results of instantaneous rotation speed from this proposed model agree with the test results very well and are successful in reflecting the real oscillation state of the engine operation. Furthermore, using the proposed model, the speed control parameters can be tuned up to predict the diesel engine a stable and safe running. The results from the tests on the diesel engine with a set of tuned control parameters are consistent with the simulation results very well.
THE PROBLEM OF IMPROVEMENT OF THE AVIONIC EQUIPMENT VIBRATION RESISTANCE
Directory of Open Access Journals (Sweden)
E. A. Danilova
2017-01-01
Full Text Available The article gives an approach to a solution of the problem of improvement the avionic equipment vibration resistance. It is shown that the use of the tests, which are provided by the state standards do not insure the required level of the failures caused by mechanical damages. Due to the fact that the tests are carried out restrictedly they do not completely reveal the main resonant phenomena, which define the structure vibrational strength. It is shown that the main challenges of the improvement are to increase the adequacy of test and real modes of vibration, to increase the accuracy of reproduction of the test modes on shake tables and also to increase the reliability of measuring information about the modes of vibration and dynamic responses of an object of researches and to increase the information capacity of the vibrational tests. To ensure the equivalence of the test modes to the modes of maintenance the modes of tests are provided, they are not created by in-phase submission of a test signal in points of fixing the printed circuit boards. It is shown that with the help of control over the amplitudes and phases of affecting signals on resonance frequencies the displacement of maxima deflection in the area of the printed circuit board is possible and, thereby, it is enable to increase the reliability. The received results of mathematical simulation and their correlation with the results of full-scale tests specified on the limitation of vibration tests by means of standard techniques. The conclusion about the necessity of full-scale tests modifications is drawn.
Directory of Open Access Journals (Sweden)
Patrik Flegner
2015-12-01
Full Text Available The process of separation of a rock massif by rotary drilling belongs to the most frequently used geotechnologies. Since their energy costs are significant, it makes sense to pay sufficient consideration to the subject of an efficient mode of drilling. Only an efficient drilling mode can guarantee the overall quality of this process. This contribution builds upon previous works of the authors in the area of utilization of abstract Hilbert spaces in control of specific processes. In this paper, some possibilities and aspects of visualization of concurrent vibrations with respect to efficient control of drilling are pointed out. The result of implementing the vibration signal as a vector in Hilbert space is the algorithm for recognition of the class into which the rock being separated belongs based on its geomechanical properties. The algorithm is based on geometrical interpretation of time or frequency characteristics of the concurrent vibrations. The method was applied to concurrent vibrations from drilling on an experimental stand and also from tunneling. The achieved results confirm the suitability of the proposed algorithm for its application in the system of automated setting of an efficient mode of drilling of rock massif.
DOWNHOLE VIBRATION MONITORING & CONTROL SYSTEM
Energy Technology Data Exchange (ETDEWEB)
Martin E. Cobern
2006-01-17
The objective of this program is to develop a system to both monitor the vibration of a bottomhole assembly, and to adjust the properties of an active damper in response to these measured vibrations. Phase I of this program, which entailed modeling and design of the necessary subsystems and design, manufacture and test of a full laboratory prototype, was completed on May 31, 2004. The principal objectives of Phase II are: more extensive laboratory testing, including the evaluation of different feedback algorithms for control of the damper; design and manufacture of a field prototype system; and, testing of the field prototype in drilling laboratories and test wells. Work during this quarter centered on the testing of the rebuilt laboratory prototype and its conversion into a version that will be operable in the drilling tests at TerraTek Laboratories. In addition, formations for use in these tests were designed and constructed, and a test protocol was developed. The change in scope and no-cost extension of Phase II to January, 2006, described in our last report, were approved. The tests are scheduled to be run during the week of January 23, and should be completed before the end of the month.
Nonlinear vibration with control for flexible and adaptive structures
Wagg, David
2015-01-01
This book provides a comprehensive discussion of nonlinear multi-modal structural vibration problems, and shows how vibration suppression can be applied to such systems by considering a sample set of relevant control techniques. It covers the basic principles of nonlinear vibrations that occur in flexible and/or adaptive structures, with an emphasis on engineering analysis and relevant control techniques. Understanding nonlinear vibrations is becoming increasingly important in a range of engineering applications, particularly in the design of flexible structures such as aircraft, satellites, bridges, and sports stadia. There is an increasing trend towards lighter structures, with increased slenderness, often made of new composite materials and requiring some form of deployment and/or active vibration control. There are also applications in the areas of robotics, mechatronics, micro electrical mechanical systems, non-destructive testing and related disciplines such as structural health monitoring. Two broader ...
Actively controlled vibration welding system and method
Cai, Wayne W.; Kang, Bongsu; Tan, Chin-An
2013-04-02
A vibration welding system includes a controller, welding horn, an active material element, and anvil assembly. The assembly may include an anvil body connected to a back plate and support member. The element, e.g., a piezoelectric stack or shape memory alloy, is positioned with respect to the assembly. The horn vibrates in a desirable first direction to form a weld on a work piece. The element controls any vibrations in a second direction by applying calibrated response to the anvil body in the second direction. A method for controlling undesirable vibrations in the system includes positioning the element with respect to the anvil assembly, connecting the anvil body to the support member through the back plate, vibrating the horn in a desirable first direction, and transmitting an input signal to the element to control vibration in an undesirable second direction.
DOWNHOLE VIBRATION MONITORING & CONTROL SYSTEM
Energy Technology Data Exchange (ETDEWEB)
Martin E. Cobern
2005-04-27
The objective of this program is to develop a system to both monitor the vibration of a bottomhole assembly, and to adjust the properties of an active damper in response to these measured vibrations. Phase I of this program, which entailed modeling and design of the necessary subsystems and design, manufacture and test of a full laboratory prototype, was completed on May 31, 2004. The principal objectives of Phase II are: more extensive laboratory testing, including the evaluation of different feedback algorithms for control of the damper; design and manufacture of a field prototype system; and, testing of the field prototype in drilling laboratories and test wells. As a result of the lower than expected performance of the MR damper noted last quarter, several additional tests were conducted. These dealt with possible causes of the lack of dynamic range observed in the testing: additional damping from the oil in the Belleville springs; changes in properties of the MR fluid; and, residual magnetization of the valve components. Of these, only the last was found to be significant. By using a laboratory demagnetization apparatus between runs, a dynamic range of 10:1 was achieved for the damper, more than adequate to produce the needed improvements in drilling. Additional modeling was also performed to identify a method of increasing the magnetic field in the damper. As a result of the above, several changes were made in the design. Additional circuitry was added to demagnetize the valve as the field is lowered. The valve was located to above the Belleville springs to reduce the load placed upon it and offer a greater range of materials for its construction. In addition, to further increase the field strength, the coils were relocated from the mandrel to the outer housing. At the end of the quarter, the redesign was complete and new parts were on order. The project is approximately three months behind schedule at this time.
Takács, Gergely
2012-01-01
Real-time model predictive controller (MPC) implementation in active vibration control (AVC) is often rendered difficult by fast sampling speeds and extensive actuator-deformation asymmetry. If the control of lightly damped mechanical structures is assumed, the region of attraction containing the set of allowable initial conditions requires a large prediction horizon, making the already computationally demanding on-line process even more complex. Model Predictive Vibration Control provides insight into the predictive control of lightly damped vibrating structures by exploring computationally efficient algorithms which are capable of low frequency vibration control with guaranteed stability and constraint feasibility. In addition to a theoretical primer on active vibration damping and model predictive control, Model Predictive Vibration Control provides a guide through the necessary steps in understanding the founding ideas of predictive control applied in AVC such as: · the implementation of ...
Directory of Open Access Journals (Sweden)
Zhou Danfeng
2017-01-01
Full Text Available The maglev vehicle-girder coupled vibration problem has been encountered in many maglev test or commercial lines, which significantly degrade the performance of the maglev train. In previous research on the principle of the coupled vibration problem, it has been discovered that the fundamental model of the maglev girder can be simplified as a series of mass-spring resonators of different but related resonance frequencies, and that the stability of the vehicle-girder coupled system can be investigated by separately examining the stability of each mass-spring resonator – electromagnet coupled system. Based on this conclusion, a maglev test platform, which includes a single electromagnetic suspension control system, is built for experimental study of the coupled vibration problem. The guideway of the test platform is supported by a number of springs so as to change its flexibility. The mass of the guideway can also be changed by adjusting extra weights attached to it. By changing the flexibility and mass of the guideway, the rules of the maglev vehicle-girder coupled vibration problem are to be examined through experiments, and related theory on the vehicle-girder self-excited vibration proposed in previous research is also testified.
A Novel Control System Design for Vibrational MEMS Gyroscopes
Directory of Open Access Journals (Sweden)
Qing Zheng
2007-04-01
Full Text Available There are two major control problems associated with vibrational MEMS gyroscopes: to control two vibrating axes (or modes of the gyroscope, and to estimate a time-varying rotation rate. This paper demonstrates how a novel active disturbance rejection control addresses these problems in the presence of the mismatch of natural frequencies between two axes, mechanical-thermal noises, Quadrature errors, and parameter variations. A demodulation approach based on the estimated dynamics of the system by an extended state observer is used to estimate the rotation rate. The simulation results on a Z-axis MEMS gyroscope show that the controller is very effective by driving the output of the drive axis to a desired trajectory, forcing the vibration of the sense axis to zero for a force-to-rebalance operation and precisely estimating the rotation rate.
Vibration Control in Periodic Structures
DEFF Research Database (Denmark)
Høgsberg, Jan Becker
2017-01-01
Within the framework of periodic structures, the calibration of RL shunted piezoelectric inclusions is investigated with respect to maximum damping of a particular wave form. A finite element setting is assumed, with local shunted inclusions inside the unit cell. The effect of the shunts is repre....... The presentation contains dispersion diagrams and vibration amplitude curves for the optimally calibrated RL shunt system in a 1-D periodic structure with local piezoelectric inclusions....
Quantum control of vibrational excitations in a heteronuclear ...
Indian Academy of Sciences (India)
Optimal control theory is applied to obtain infrared laser pulses for selective vibrational excitation in a heteronuclear diatomic molecule. The problem of finding the optimized field is phrased as a maximization of a cost functional which depends on the laser field. A time dependent Gaussian factor is introduced in the field ...
Alexander, B. X. S.
Flywheel energy storage has distinct advantages over conventional energy storage methods such as electrochemical batteries. Because the energy density of a flywheel rotor increases quadratically with its speed, the foremost goal in flywheel design is to achieve sustainable high speeds of the rotor. Many issues exist with the flywheel rotor operation at high and varying speeds. A prominent problem is synchronous rotor vibration, which can drastically limit the sustainable rotor speed. In a set of projects, the novel Active Disturbance Rejection Control (ADRC) is applied to various problems of flywheel rotor operation. These applications include rotor levitation, steady state rotation at high speeds and accelerating operation. Several models such as the lumped mass model and distributed three-mass models have been analyzed. In each of these applications, the ADRC has been extended to cope with disturbance, noise, and control effort optimization; it also has been compared to various industry-standard controllers such as PID and PD/observer, and is proven to be superior. The control performance of the PID controller and the PD/observer currently used at NASA Glenn has been improved by as much as an order of magnitude. Due to the universality of the second order system, the results obtained in the rotor vibration problem can be straightforwardly extended to other vibrational systems, particularly, the MEMS gyroscope. Potential uses of a new nonlinear controller, which inherits the ease of use of the traditional PID, are also discussed.
Active vibration control using DEAP actuators
Sarban, Rahimullah; Jones, Richard W.
2010-04-01
Dielectric electro-active polymer (DEAP) is a new type of smart material, which has the potential to be used to provide effective actuation for a wide range of applications. The properties of DEAP material place it somewhere between those of piezoceramics and shape memory alloys. Of the range of DEAP-based actuators that have been developed those having a cylindrical configuration are among the most promising. This contribution introduces the use of a tubular type DEAP actuator for active vibration control purposes. Initially the DEAP-based tubular actuator to be used in this study, produced by Danfoss PolyPower A/S, is introduced along with the static and dynamic characteristics. Secondly an electromechanical model of the tubular actuator is briefly reviewed and its ability to model the actuator's hysteresis characteristics for a range of periodic input signals at different frequencies demonstrated. The model will be used to provide hysteresis compensation in future vibration isolation studies. Experimental active vibration control using the actuator is then examined, specifically active vibration isolation of a 250 g mass subject to shaker generated 'ground vibration'. An adaptive feedforward control strategy is used to achieve this. The ability of the tubular actuator to reject both tonal and broadband random vibratory disturbances is then demonstrated.
Topology optimization of vibration and wave propagation problems
DEFF Research Database (Denmark)
Jensen, Jakob Søndergaard
2007-01-01
The method of topology optimization is a versatile method to determine optimal material layouts in mechanical structures. The method relies on, in principle, unlimited design freedom that can be used to design materials, structures and devices with significantly improved performance and sometimes...... novel functionality. This paper addresses basic issues in simulation and topology design of vibration and wave propagation problems. Steady-state and transient wave propagation problems are addressed and application examples for both cases are presented....
Resonant vibration control of wind turbine blades
DEFF Research Database (Denmark)
Svendsen, Martin Nymann; Krenk, Steen; Høgsberg, Jan Becker
2010-01-01
The paper deals with introduction of damping to specific vibration modes of wind turbine blades, using a resonant controller with acceleration feedback. The wind turbine blade is represented by three-dimensional, two-node finite elements in a local, rotating frame of reference. The element....... The efficiency of the resonant controller is demonstrated for a representative turbine blade exposed to turbulent wind loading. It is found that the present explicit tuning procedure yields close to optimal tuning, with very limited modal spill-over and effective reduction of the vibration amplitudes....
PREFACE: International Conference on Vibration Problems (ICOVP-2015)
2015-12-01
Vibrations produced by operating machine cause deleterious effect including excessive stresses in mechanical components and reduce the machine performance. Hence, it is important to minimize the vibrations to improve the machine performance. Machines need the materials wherein vibration characteristics such as frequency and amplitude are lower. The vibration characteristics depend on strength and other elastic constants. Therefore, study of the relation between vibration characteristics and the elastic constants of the material is very much important. In the domain of seismology, the knowledge of vibrations associated with an earthquake is needed for the mitigation plans. With the increased use of strong and light weight structures especially in defence and aero-space engineering applications, wherein, precision is very important, problems of vibrations arise. The knowledge of quality (mechanical properties) of bones comes from the study of vibrations in it. This knowledge may, for exmple, help to answer bone tissue remodelling problems. Unfortunately, vibrations mostly deal with destructive areas such as manufacturing industry, seismology, and bonemechanics. These days, mathematics has become a very important tool for Non- Destructive Evaluation (NDE) in the destructive areas. A very common issue in the said domains is that the pertinent problems result in non-linear coupled differential equations which are not easily solvable. Keeping the above facts in mind, the Department of Mathematics, Kakatiya University has organized the International Conference on Vibration Problems (ICOVP-2015) from February, 18-20, 2015 in collaboration with the Department of Mechanical Engineering, Kakatiya University, and Von-Karman Society, West Bengal. This association has already succeeded in organizing the Wave Mechanics and Vibration Conference (WMVC) in the year 2010. In the Conference, new research results were presented by the experts from eight countries. There were more than
Wind Turbine Rotors with Active Vibration Control
DEFF Research Database (Denmark)
Svendsen, Martin Nymann
This thesis presents a framework for structural modeling, analysis and active vibration damping of rotating wind turbine blades and rotors. A structural rotor model is developed in terms of finite beam elements in a rotating frame of reference. The element comprises a representation of general...... formulation. The element provides an accurate representation of the eigenfrequencies and whirling modes of the gyroscopic system, and identifies lightly damped edge-wise modes. By adoption of a method for active, collocated resonant vibration of multi-degree-of-freedom systems it is demonstrated...... that these are geometrically well separated. For active vibration control in three-bladed wind turbine rotors the present work presents a resonance-based method for groups of one collective and two whirling modes. The controller is based on the existing resonant format and introduces a dual system targeting the collective...
Internal Temperature Control For Vibration Testers
Dean, Richard J.
1996-01-01
Vibration test fixtures with internal thermal-transfer capabilities developed. Made of aluminum for rapid thermal transfer. Small size gives rapid response to changing temperatures, with better thermal control. Setup quicker and internal ducting facilitates access to parts being tested. In addition, internal flows smaller, so less energy consumed in maintaining desired temperature settings.
Optimal control of vibrational transitions of HCl
Indian Academy of Sciences (India)
Control of fundamental and overtone transitions of a vibration are studied for the diatomic molecule, HCl. Specifically, the results of the effect of variation of the penalty factor on the physical attributes of the system (i.e., probabilities) and pulse (i.e., amplitudes) considering three different pulse durations for each value of the ...
Adaptive and robust active vibration control methodology and tests
Landau, Ioan Doré; Castellanos-Silva, Abraham; Constantinescu, Aurelian
2017-01-01
This book approaches the design of active vibration control systems from the perspective of today’s ideas of computer control. It formulates the various design problems encountered in the active management of vibration as control problems and searches for the most appropriate tools to solve them. The experimental validation of the solutions proposed on relevant tests benches is also addressed. To promote the widespread acceptance of these techniques, the presentation eliminates unnecessary theoretical developments (which can be found elsewhere) and focuses on algorithms and their use. The solutions proposed cannot be fully understood and creatively exploited without a clear understanding of the basic concepts and methods, so these are considered in depth. The focus is on enhancing motivations, algorithm presentation and experimental evaluation. MATLAB®routines, Simulink® diagrams and bench-test data are available for download and encourage easy assimilation of the experimental and exemplary material. Thre...
[Actuator placement for active sound and vibration control
1997-01-01
Two refereed journal publications and ten talks given at conferences, seminars, and colloquia resulted from research supported by NASA. They are itemized in this report. The two publications were entitled "Reactive Tabu and Search Sensor Selection in Active Structural Acoustic Control Problems" and "Quelling Cabin Noise in Turboprop Aircraft via Active Control." The conference presentations covered various aspects of actuator placement, including location problems, for active sound and vibration control of cylinders, of commuter jets, of propeller driven or turboprop aircraft, and for quelling aircraft cabin or interior noise.
Active vibration control of civil structures
Energy Technology Data Exchange (ETDEWEB)
Farrar, C.; Baker, W.; Fales, J.; Shevitz, D.
1996-11-01
This is a final report of a one year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Active vibration control (AVC) of structural and mechanical systems is one of the rapidly advancing areas of engineering research. The multifaceted nature of AVC covers many disciplines, such as sensors and instrumentation, numerical modeling, experimental mechanics, and advanced power systems. This work encompassed a review of the literature on active control of structures focusing both on active control hardware and on control algorithms, a design of an isolation systems using magneto-rheological fluid-filled (MRF) dampers and numerical simulations to study the enhanced vibration mitigation effects of this technology.
Downhole Vibration Monitoring and Control System
Energy Technology Data Exchange (ETDEWEB)
Martin E. Cobern
2007-09-30
The objective of this program is to develop a system to both monitor the vibration of a bottomhole assembly, and to adjust the properties of an active damper in response to these measured vibrations. The key feature of this system is its use of a magnetorheological fluid (MRF) to allow the damping coefficient to be changed extensively, rapidly and reversibly without the use of mechanical valves, but only by the application of a current. Phase I of this program, which entailed modeling and design of the necessary subsystems and design, manufacture and test of a full laboratory prototype, was completed on May 31, 2004. Much of the effort was devoted to the design and testing of the MRF damper, itself. The principal objectives of Phase II were: more extensive laboratory testing, including the evaluation of different feedback algorithms for control of the damper; design and manufacture of a field prototype system; and, testing of the field prototype in a drilling laboratory. Phase II concluded on January 31, 2006, and a final report was issued. Work on Phase III of the project began during the first quarter, 2006, with the objectives of building precommercial prototypes, testing them in a drilling laboratory and the field; developing and implementing a commercialization plan. All of these have been accomplished. The Downhole Vibration Monitoring & Control System (DVMCS) prototypes have been successfully proven in testing at the TerraTek drilling facility and at the Rocky Mountain Oilfield Test Center (RMOTC.) Based on the results of these tests, we have signed a definitive development and distribution agreement with Smith, and commercial deployment is underway. This current version of the DVMCS monitors and controls axial vibrations. Due to time and budget constraints of this program, it was not possible to complete a system that would also deal with lateral and torsional (stick-slip) vibrations as originally planned; however, this effort is continuing without DOE
A novel technique for active vibration control, based on optimal ...
Indian Academy of Sciences (India)
In the last few decades, researchers have proposed many control techniques to suppress unwanted vibrations in a structure. In this work, a novel and simple technique is proposed for the active vibration control. In this technique, an optimal tracking control is employed to suppress vibrations in a structure by simultaneously ...
A novel technique for active vibration control, based on optimal ...
Indian Academy of Sciences (India)
BEHROUZ KHEIRI SARABI
2017-07-11
Jul 11, 2017 ... Abstract. In the last few decades, researchers have proposed many control techniques to suppress unwanted vibrations in a structure. In this work, a novel and simple technique is proposed for the active vibration control. In this technique, an optimal tracking control is employed to suppress vibrations in a ...
A data driven control method for structure vibration suppression
Xie, Yangmin; Wang, Chao; Shi, Hang; Shi, Junwei
2018-02-01
High radio-frequency space applications have motivated continuous research on vibration suppression of large space structures both in academia and industry. This paper introduces a novel data driven control method to suppress vibrations of flexible structures and experimentally validates the suppression performance. Unlike model-based control approaches, the data driven control method designs a controller directly from the input-output test data of the structure, without requiring parametric dynamics and hence free of system modeling. It utilizes the discrete frequency response via spectral analysis technique and formulates a non-convex optimization problem to obtain optimized controller parameters with a predefined controller structure. Such approach is then experimentally applied on an end-driving flexible beam-mass structure. The experiment results show that the presented method can achieve competitive disturbance rejections compared to a model-based mixed sensitivity controller under the same design criterion but with much less orders and design efforts, demonstrating the proposed data driven control is an effective approach for vibration suppression of flexible structures.
Control of noise and structural vibration a MATLAB-based approach
Mao, Qibo
2013-01-01
Control of Noise and Structural Vibration presents a MATLAB®-based approach to solving the problems of undesirable noise generation and transmission by structures and of undesirable vibration within structures in response to environmental or operational forces. The fundamentals of acoustics, vibration and coupling between vibrating structures and the sound fields they generate are introduced including a discussion of the finite element method for vibration analysis. Following this, the treatment of sound and vibration control begins, illustrated by example systems such as beams, plates and double plate structures. Sensor and actuator placement is explained as is the idea of modal sensor–actuators. The design of appropriate feedback systems includes consideration of basic stability criteria and robust active structural acoustic control. Single and multi-mode positive position feedback (PPF) control systems are also described in the context of loudspeaker–duct model with non-collocated loudspeaker–microp...
Active Control of Panel Vibrations Induced by a Boundary Layer Flow
Chow, Pao-Liu
1998-01-01
In recent years, active and passive control of sound and vibration in aeroelastic structures have received a great deal of attention due to many potential applications to aerospace and other industries. There exists a great deal of research work done in this area. Recent advances in the control of sound and vibration can be found in the several conference proceedings. In this report we will summarize our research findings supported by the NASA grant NAG-1-1175. The problems of active and passive control of sound and vibration has been investigated by many researchers for a number of years. However, few of the articles are concerned with the sound and vibration with flow-structure interaction. Experimental and numerical studies on the coupling between panel vibration and acoustic radiation due to flow excitation have been done by Maestrello and his associates at NASA/Langley Research Center. Since the coupled system of nonlinear partial differential equations is formidable, an analytical solution to the full problem seems impossible. For this reason, we have to simplify the problem to that of the nonlinear panel vibration induced by a uniform flow or a boundary-layer flow with a given wall pressure distribution. Based on this simplified model, we have been able to study the control and stabilization of the nonlinear panel vibration, which have not been treated satisfactorily by other authors. The vibration suppression will clearly reduce the sound radiation power from the panel. The major research findings will be presented in the next three sections. In Section II we shall describe our results on the boundary control of nonlinear panel vibration, with or without flow excitation. Section III is concerned with active control of the vibration and sound radiation from a nonlinear elastic panel. A detailed description of our work on the parametric vibrational control of nonlinear elastic panel will be presented in Section IV. This paper will be submitted to the Journal
Intelligent failure-proof control system for structural vibration
Energy Technology Data Exchange (ETDEWEB)
Yoshida, Kazuo [Keio Univ., Yokohama (Japan). Faculty of Science and Technology; Oba, Takahiro [Keio Univ., Tokyo (Japan)
2000-11-01
With progress of technology in recent years, gigantism and complication such as high-rise buildings, nuclear reactors and so on have brought about new problems. Particularly, the safety and the reliability for damages in abnormal situations have become more important. Intelligent control systems which can judge whether the situation is normal or abnormal at real time and cope with these situations suitably are demanded. In this study, Cubic Neural Network (CNN) is adopted, which consists of the controllers possessing cubically some levels of information abstracting. In addition to the usual quantitative control, the qualitative control is used for the abnormal situations. And, by selecting a suitable controller, CNN can cope with the abnormal situation. In order to confirm the effectiveness of this system, the structural vibration control problems with sensory failure and elasto-plastic response are dealt with. As a result of simulations, it was demonstrated that CNN can cope with unexpected abnormal situations which are not considered in learning. (author)
Tiltrotor Vibration Reduction Through Higher Harmonic Control
Nixon, Mark W.; Kvaternik, Raymond G.; Settle, T. Ben
1997-01-01
The results of a joint NASA/Army/Bell Helicopter Textron wind-tunnel test to assess the potential of higher harmonic control (HHC) for reducing vibrations in tiltrotor aircraft operating in the airplane mode of flight, and to evaluate the effectiveness of a Bell-developed HHC algorithm called MAVSS (Multipoint Adaptive Vibration Suppression System) are presented. The test was conducted in the Langley Transonic Dynamics Tunnel using an unpowered 1/5-scale semispan aeroelastic model of the V-22 which was modified to incorporate an HHC system employing both the rotor swashplate and the wing flaperon. The effectiveness of the swashplate and the flaperon acting either singly or in combination in reducing IP and 3P wing vibrations over a wide range of tunnel airspeeds and rotor rotational speeds was demonstrated. The MAVSS algorithm was found to be robust to variations in tunnel airspeed and rotor speed, requiring only occasional on-line recalculations of the system transfer matrix. HHC had only a small (usually beneficial) effect on blade loads but increased pitch link loads by 25%. No degradation in aeroelastic stability was noted for any of the conditions tested.
Higher Harmonic Control for Tiltrotor Vibration Reduction
Nixon, Mark W.; Kvaternik, Raymond G.; Settle, T. Ben
1997-01-01
The results of a joint NASA/Army/Bell Helicopter Textron wind-tunnel test to assess the potential of higher harmonic control (HHC) for reducing vibrations in tiltrotor aircraft operating in the airplane mode of flight, and to evaluate the effectiveness of a Bell-developed HHC algorithm called MAVSS (Multipoint Adaptive Vibration Suppression System) are presented. The test was conducted in the Langley Transonic Dynamics Tunnel using an unpowered 1/5- scale semispan aeroelastic model of the V-22 which was modified to incorporate an HHC system employing both the rotor swashplate and the wing flaperon. The effectiveness of the swashplate and the flaperon acting either singly or in combination in reducing 1P and 3P wing vibrations over a wide range of tunnel airspeeds and rotor rotational speeds was demonstrated. The MAVSS algorithm was found to be robust to variations in tunnel airspeed and rotor speed, requiring only occasion-al on-line recalculations of the system transfer matrix.
Emerging trends in vibration control of wind turbines: a focus on a dual control strategy.
Staino, Andrea; Basu, Biswajit
2015-02-28
The paper discusses some of the recent developments in vibration control strategies for wind turbines, and in this context proposes a new dual control strategy based on the combination and modification of two recently proposed control schemes. Emerging trends in the vibration control of both onshore and offshore wind turbines are presented. Passive, active and semi-active structural vibration control algorithms have been reviewed. Of the existing controllers, two control schemes, active pitch control and active tendon control, have been discussed in detail. The proposed new control scheme is a merger of active tendon control with passive pitch control, and is designed using a Pareto-optimal problem formulation. This combination of controllers is the cornerstone of a dual strategy with the feature of decoupling vibration control from optimal power control as one of its main advantages, in addition to reducing the burden on the pitch demand. This dual control strategy will bring in major benefits to the design of modern wind turbines and is expected to play a significant role in the advancement of offshore wind turbine technologies. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Active Vibration Control of a Flexible Structure Using Piezoceramic Actuators
Directory of Open Access Journals (Sweden)
J. Fei
2008-03-01
Full Text Available Considerable attention has been devoted recently to active vibration control using intelligent materials as actuators. This paper presents results on active control schemes for vibration suppression of flexible steel cantilever beam with bonded piezoelectric actuators. The PZT patches are surface bonded near the fixed end of flexible steel cantilever beam. The dynamic model of the flexible steel cantilever beam is derived. Active vibration control methods, strain rate feedback control (SRF, positive position feedback control (PPF are investigated and implemented using xPC Target real-time system. Experimental results demonstrate that the SRF control and PPF control achieve effective vibration suppression results of steel cantilever beam.
Active structural elements within a general vibration control framework
Holterman, J.; de Vries, Theodorus J.A.; Isermann, R.
2000-01-01
High-precision machines typically suffer from small but annoying vibrations. As the most appropriate solution to a particular vibration problem is not always obvious, it may be convenient to cast the problem in a more general framework. This framework may then be used for frequency response
Zhou, Danfeng; Yu, Peichang; Wang, Lianchun; Li, Jie
2017-11-01
The levitation gap of the urban maglev train is around 8 mm, which puts a rather high requirement on the smoothness of the track. In practice, it is found that the track irregularity may cause stability problems when the maglev train is traveling. In this paper, the dynamic response of the levitation module, which is the basic levitation structure of the urban maglev train, is investigated in the presence of track irregularities. Analyses show that due to the structural configuration of the levitation module, the vibration of the levitation gap may be amplified and "resonances" may be observed under some specified track wavelengths and train speeds; besides, it is found that the gap vibration of the rear levitation unit in a levitation module is more significant than that of the front levitation unit, which agrees well with practice. To suppress the vibration of the rear levitation gap, an adaptive vibration control method is proposed, which utilizes the information of the front levitation unit as a reference. A pair of mirror FIR (finite impulse response) filters are designed and tuned by an adaptive mechanism, and they produce a compensation signal for the rear levitation controller to cancel the disturbance brought by the track irregularity. Simulations under some typical track conditions, including the sinusoidal track profile, random track irregularity, as well as track steps, indicate that the adaptive vibration control scheme can significantly reduce the amplitude of the rear gap vibration, which provides a method to improve the stability and ride comfort of the maglev train.
Compact integrated piezoelectric vibration control package
Spangler, Ronald L., Jr.; Russo, Farla M.; Palombo, Daniel A.
1997-06-01
Using recent advances in small, surface-mount electronics, coupled with proprietary packaging techniques, ACX has developed the SmartPackTM. The design and realization of this self-contained, active piezoelectric control device are described in this paper. The SmartPack uses a local control architecture, consisting of two parallel, analog, positive position feedback (PPF) filters, along with nearly collocated piezo strain sensors and actuators, to control multiple structural vibration modes. A key issue is the management of waste heat from the power electronics required to drive the piezo actuators. This issue is addressed through thermal/electrical modeling of the packaged amplifier. The effectiveness of the device is demonstrated through multi-mode active damping on a 24 inch square plate.
A new isolator for vibration control
Behrooz, Majid; Sutrisno, Joko; Wang, Xiaojie; Fyda, Robert; Fuchs, Alan; Gordaninejad, Faramarz
2011-03-01
This study presents the feasibility of a new variable stiffness and damping isolator (VSDI) in an integrated vibratory system. The integrated system comprised of two VSDIs, a connecting plate and a mass. The proposed VSDI consists of a traditional steel-rubber vibration absorber, as the passive element, and a magneto-rheological elastomer (MRE), with a controllable (or variable) stiffness and damping, as the semi-active element. MREs' stiffness and damping properties can be altered by a magnetic field. Dynamic testing on this integrated system has been performed to investigate the effectiveness of the VSDIs for vibration control. Experimental results show significant shift in natural frequency, when activating the VSDIs. Transmissibility and natural frequency of the integrated system are obtained from properties of single device. The experimental and predicted results show good agreement between the values of the natural frequency of the system at both off and on states. However, system damping predictions are different from experimental results. This might be due to unforeseen effects of pre-stressed MREs and nonlinear material properties.
A fractional-order controller for vibration suppression of uncertain structures.
Aghababa, Mohammad Pourmahmood
2013-11-01
The problem of active control of vibration structures has attracted much attention over the past decades. A general description of the control problem of vibration systems is to design an active controller to suppress the vibrations of the system induced by external disturbances such as an earthquake. In this paper, a novel fractional-order sliding mode control is introduced to attenuate the vibrations of structures with uncertainties and disturbances. After establishing a stable fractional sliding surface, a sliding mode control law is proposed. Then, the global asymptotic stability of the closed-loop system is analytically proved using fractional Lyapunov stability theorem. Finally, the robustness and applicability of the technique are verified using two examples, including a three degree of freedom structure and a two-story shear building. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.
Compact Active Vibration Control System for a Flexible Panel
Schiller, Noah H. (Inventor); Cabell, Randolph H. (Inventor); Perey, Daniel F. (Inventor)
2014-01-01
A diamond-shaped actuator for a flexible panel has an inter-digitated electrode (IDE) and a piezoelectric wafer portion positioned therebetween. The IDE and/or the wafer portion are diamond-shaped. Point sensors are positioned with respect to the actuator and measure vibration. The actuator generates and transmits a cancelling force to the panel in response to an output signal from a controller, which is calculated using a signal describing the vibration. A method for controlling vibration in a flexible panel includes connecting a diamond-shaped actuator to the flexible panel, and then connecting a point sensor to each actuator. Vibration is measured via the point sensor. The controller calculates a proportional output voltage signal from the measured vibration, and transmits the output signal to the actuator to substantially cancel the vibration in proximity to each actuator.
Mechanical systems a unified approach to vibrations and controls
Gans, Roger F
2015-01-01
This essential textbook covers analysis and control of engineering mechanisms, which include almost any apparatus with moving parts used in daily life, from musical instruments to robots. The text presents both vibrations and controls with considerable breadth and depth using a unified notation. It strikes a nice balance between the analytical and the practical. This text contains enough material for a two semester sequence, but it can also be used in a single semester course combining the two topics. Mechanical Systems: A Unified Approach to Vibrations and Controls presents a common notation and approach to these closely related areas. Examples from the both vibrations and controls components are integrated throughout this text. This book also: · Presents a unified approach to vibrations and controls, including an excellent diagram that simultaneously discusses embedding classical vibrations (mechanical systems) in a discussion of models, inverse models, and open and closed loop control ...
Jerk Minimization Method for Vibration Control in Buildings
Abatan, Ayo O.; Yao, Leummim
1997-01-01
In many vibration minimization control problems for high rise buildings subject to strong earthquake loads, the emphasis has been on a combination of minimizing the displacement, the velocity and the acceleration of the motion of the building. In most cases, the accelerations that are involved are not necessarily large but the change in them (jerk) are abrupt. These changes in magnitude or direction are responsible for most building damage and also create discomfort like motion sickness for inhabitants of these structures because of the element of surprise. We propose a method of minimizing also the jerk which is the sudden change in acceleration or the derivative of the acceleration using classical linear quadratic optimal controls. This was done through the introduction of a quadratic performance index involving the cost due to the jerk; a special change of variable; and using the jerk as a control variable. The values of the optimal control are obtained using the Riccati equation.
Resonant vibration control of three-bladed wind turbine rotors
DEFF Research Database (Denmark)
Krenk, Steen; Svendsen, Martin Nymann; Høgsberg, Jan Becker
2012-01-01
Rotors with blades, as in wind turbines, are prone to vibrations due to the flexibility of the blades and the support. In the present paper a theory is developed for active control of a combined set of vibration modes in three-bladed rotors. The control system consists of identical collocated...
Damping of Torsional Beam Vibrations by Control of Warping Displacement
DEFF Research Database (Denmark)
Høgsberg, Jan Becker; Hoffmeyer, David; Ejlersen, Christian
2016-01-01
Supplemental damping of torsional beam vibrations is considered by viscous bimoments acting on the axial warping displacement at the beam supports. The concept is illustrated by solving the governing eigenvalue problem for various support configurations with the applied bimoments represented...
Innovation in Active Vibration Control Strategy of Intelligent Structures
Directory of Open Access Journals (Sweden)
A. Moutsopoulou
2014-01-01
Full Text Available Large amplitudes and attenuating vibration periods result in fatigue, instability, and poor structural performance. In light of past approaches in this field, this paper intends to discuss some innovative approaches in vibration control of intelligent structures, particularly in the case of structures with embedded piezoelectric materials. Control strategies are presented, such as the linear quadratic control theory, as well as more advanced theories, such as robust control theory. The paper presents sufficiently a recognizable advance in knowledge of active vibration control in intelligent structures.
Vibration Control via Stiffness Switching of Magnetostrictive Transducers
Scheidler, Justin J.; Asnani, Vivake M.; Dapino, Marcelo J.
2016-01-01
This paper presents a computational study of structural vibration control that is realized by switching a magnetostrictive transducer between high and low stiffness states. Switching is accomplished by either changing the applied magnetic field with a voltage excitation or changing the shunt impedance on the transducer's coil (i.e., the magnetostrictive material's magnetic boundary condition). Switched-stiffness vibration control is simulated using a lumped mass supported by a damper and the magnetostrictive transducer (mount), which is represented by a nonlinear, electromechanical model. Free vibration of the mass is calculated while varying the mount's stiffness according to a reference switched-stiffness vibration control law. The results reveal that switching the magnetic field produces the desired change in stiffness, but also an undesired actuation force that can significantly degrade the vibration control. Hence, a modified switched-stiffness control law that accounts for the actuation force is proposed and implemented for voltage-controlled stiffness switching. The influence of the magnetomechanical bias condition is also discussed. Voltage-controlled stiffness switching is found to introduce damping equivalent to a viscous damping factor up to about 0.25; this is shown to primarily result from active vibration reduction caused by the actuation force. The merit of magnetostrictive switched-stiffness vibration control is then quantified by comparing the results of voltage- and shunt-controlled stiffness switching to the performance of optimal magnetostrictive shunt damping.
Inhibiting multiple mode vibration in controlled flexible systems
Hyde, James M.; Chang, Kenneth W.; Seering, Warren P.
1991-01-01
Viewgraphs on inhibiting multiple mode vibration in controlled flexible systems are presented. Topics covered include: input pre-shaping background; developing multiple-mode shapers; Middeck Active Control Experiment (MACE) test article; and tests and results.
Optimal Vibration Control for Tracked Vehicle Suspension Systems
Directory of Open Access Journals (Sweden)
Yan-Jun Liang
2013-01-01
Full Text Available Technique of optimal vibration control with exponential decay rate and simulation for vehicle active suspension systems is developed. Mechanical model and dynamic system for a class of tracked vehicle suspension vibration control is established and the corresponding system of state space form is described. In order to prolong the working life of suspension system and improve ride comfort, based on the active suspension vibration control devices and using optimal control approach, an optimal vibration controller with exponential decay rate is designed. Numerical simulations are carried out, and the control effects of the ordinary optimal controller and the proposed controller are compared. Numerical simulation results illustrate the effectiveness of the proposed technique.
Energy Technology Data Exchange (ETDEWEB)
Balci, Murat [Dept. of Mechanical Engineering, Bayburt University, Bayburt (Turkmenistan); Gundogdu, Omer [Dept. of Mechanical Engineering, Ataturk University, Erzurum (Turkmenistan)
2017-01-15
In this study, estimation of some physical properties of a laminated composite plate was conducted via the inverse vibration problem. Laminated composite plate was modelled and simulated to obtain vibration responses for different length-to-thickness ratio in ANSYS. Furthermore, a numerical finite element model was developed for the laminated composite utilizing the Kirchhoff plate theory and programmed in MATLAB for simulations. Optimizing the difference between these two vibration responses, inverse vibration problem was solved to obtain some of the physical properties of the laminated composite using genetic algorithms. The estimated parameters are compared with the theoretical results, and a very good correspondence was observed.
Methodology for Analysing Controllability and Observability of Bladed Disc Coupled Vibrations
DEFF Research Database (Denmark)
Christensen, Rene Hardam; Santos, Ilmar
2004-01-01
and observability of bladed discs. The aim is to determine where to locate actuators and sensors in order to be capable of controlling and monitoring both disc lateral and blade vibrations. The analysis methodology is based on the time-variant modal analysis. A numerical example of the methodogy is provided....... A tuned rotating bladed disc is analysed. The analysis shows that blade actuators and sensors are inevitable in order to control and monitor the vibrations. Moreover, it shows that the controllability and observability depends very strongly on the rotational speed.......Many bladed rotating machines such as helicopters, turbines and compressors are susceptible to blade faults due to vibration problems. Typically, blade vibrations in this kind of machines are suppressed by using passive mechanical components. However, when passive control techniques...
A new compound control method for sine-on-random mixed vibration test
Zhang, Buyun; Wang, Ruochen; Zeng, Falin
2017-09-01
Vibration environmental test (VET) is one of the important and effective methods to provide supports for the strength design, reliability and durability test of mechanical products. A new separation control strategy was proposed to apply in multiple-input multiple-output (MIMO) sine on random (SOR) mixed mode vibration test, which is the advanced and intensive test type of VET. As the key problem of the strategy, correlation integral method was applied to separate the mixed signals which included random and sinusoidal components. The feedback control formula of MIMO linear random vibration system was systematically deduced in frequency domain, and Jacobi control algorithm was proposed in view of the elements, such as self-spectrum, coherence, and phase of power spectral density (PSD) matrix. Based on the excessive correction of excitation in sine vibration test, compression factor was introduced to reduce the excitation correction, avoiding the destruction to vibration table or other devices. The two methods were synthesized to be applied in MIMO SOR vibration test system. In the final, verification test system with the vibration of a cantilever beam as the control object was established to verify the reliability and effectiveness of the methods proposed in the paper. The test results show that the exceeding values can be controlled in the tolerance range of references accurately, and the method can supply theory and application supports for mechanical engineering.
Vibrational Excitation Can Control Tropospheric Chemistry
National Research Council Canada - National Science Library
Geoffrey Tyndall
2012-01-01
.... However, on page 1066 of this issue, Glowacki et al. show that a strikingly different product distribution can be obtained in the oxidation of acetylene depending on whether the radicals contain high amounts of internal (vibrational...
Rail Vehicle Vibrations Control Using Parameters Adaptive PID Controller
Directory of Open Access Journals (Sweden)
Muzaffer Metin
2014-01-01
Full Text Available In this study, vertical rail vehicle vibrations are controlled by the use of conventional PID and parameters which are adaptive to PID controllers. A parameters adaptive PID controller is designed to improve the passenger comfort by intuitional usage of this method that renews the parameters online and sensitively under variable track inputs. Sinusoidal vertical rail misalignment and measured real rail irregularity are considered as two different disruptive effects of the system. Active vibration control is applied to the system through the secondary suspension. The active suspension application of rail vehicle is examined by using 5-DOF quarter-rail vehicle model by using Manchester benchmark dynamic parameters. The new parameters of adaptive controller are optimized by means of genetic algorithm toolbox of MATLAB. Simulations are performed at maximum urban transportation speed (90 km/h of the rail vehicle with ±5% load changes of rail vehicle body to test the robustness of controllers. As a result, superior performance of parameters of adaptive controller is determined in time and frequency domain.
Vibration mode shape control by prestressing
Holnicki-Szulc, Jan; Haftka, Raphael T.
1992-01-01
A procedure is described for reducing vibration at sensitive locations on a structure, by induced distortions. The emphasis is placed on the excitation in a narrow frequency band, so that only a small number of vibration modes contribute to the intensity of the forced response. The procedure is demonstrated on an antenna truss example, showing that, with repeated frequencies, it is very easy to move nodal lines of one of the modes.
Feedback Controller Stabilizing Vibrations of a Flexible Cable Related to an Overhead Crane
Directory of Open Access Journals (Sweden)
Abdelhadi Elharfi
2010-01-01
Full Text Available The problem of stabilizing vibrations of flexible cable related to an overhead crane is considered. The cable vibrations are described by a hyperbolic partial differential equation (HPDE with an update boundary condition. We provide in this paper a systematic way to derive a boundary feedback law which restores in a closed form the cable vibrations to the desired zero equilibrium. Such a control law is explicitly constructed in terms of the solution of an appropriate kernel PDE. The pursued approach combines the “backstepping method” and “semigroup theory”.
Magnetostrictively actuated control flaps for vibration reduction in helicopter rotors
Energy Technology Data Exchange (ETDEWEB)
Millott, T.; Friedmann, P.P. [Univ. of California, Los Angeles, CA (United States). Mechanical, Aerospace and Nuclear Engineering Dept.
1994-12-31
High vibration levels can impose constraints on helicopter operations and hinder passenger acceptance. Vibration reduction using blade root pitch control introduces a significant power penalty and may adversely affect the airworthiness of the flight control system. Comparable levels of vibration reduction can be achieved using considerably less power through an actively controlled trailing edge flap mounted on the blade. Such a device would have no effect on helicopter airworthiness since it is controlled by a loop separate from the primary flight control system which utilizes the swashplate. Control flap actuation using the magnetostrictive material Terfenol-D is studied in this paper by designing a minimum weight actuator, subject to a set of actuation and stress constraints. The resulting device is capable of producing vibration reduction in excess of 90% at cruise conditions.
Boz, Utku; Basdogan, Ipek
2015-12-01
Structural vibrations is a major cause for noise problems, discomfort and mechanical failures in aerospace, automotive and marine systems, which are mainly composed of plate-like structures. In order to reduce structural vibrations on these structures, active vibration control (AVC) is an effective approach. Adaptive filtering methodologies are preferred in AVC due to their ability to adjust themselves for varying dynamics of the structure during the operation. The filtered-X LMS (FXLMS) algorithm is a simple adaptive filtering algorithm widely implemented in active control applications. Proper implementation of FXLMS requires availability of a reference signal to mimic the disturbance and model of the dynamics between the control actuator and the error sensor, namely the secondary path. However, the controller output could interfere with the reference signal and the secondary path dynamics may change during the operation. This interference problem can be resolved by using an infinite impulse response (IIR) filter which considers feedback of the one or more previous control signals to the controller output and the changing secondary path dynamics can be updated using an online modeling technique. In this paper, IIR filtering based filtered-U LMS (FULMS) controller is combined with online secondary path modeling algorithm to suppress the vibrations of a plate-like structure. The results are validated through numerical and experimental studies. The results show that the FULMS with online secondary path modeling approach has more vibration rejection capabilities with higher convergence rate than the FXLMS counterpart.
Lead-Lag Control for Helicopter Vibration and Noise Reduction
Gandhi, Farhan
1995-01-01
. Both schemes cause an increase in pitch link loads. Trailing Edge Flap (TEF) deployment can also used to generate unsteady aerodynamic forces and moments that counter the original vibratory loads, and thereby reduce rotor vibrations. While the vibrations absorbers, HHC, IBC, and TEF concepts discussed above attempt to reduce the vibratory loads, they do not specifically address the phenomena causing the vibrations at high advance ratios. One passive method that attempts to directly alleviate compressibility and stall, instead of reducing the ensuing vibrations, is the use of advanced tip designs. Taper, sweep, anhedral, and the manipulation of other geometric properties of the blade tips can reduce the severity of stall and compressibility effects , as well as reduce rotor power. A completely different approach to solve these problems is the tiltrotor configuration. As the forward velocity of the aircraft increases, the rotors, in this case, are tilted forward until they are perpendicular to the flow and act as propellers. This eliminates the edgewise flow encountered by conventional rotors and circumvents all the problems associated with flow asymmetry. However, the success involves a tremendous increase in cost and complexity of the aircraft. Another possible approach that has been proposed for the alleviation of vibratory loads at high forward flight speeds involves the use of controlled lead-lag motions to reduce the asymmetry in flow. A correctly phased 1/rev controlled lag motion could be introduced such that it produces a backward velocity on the advancing side and a forward velocity on the retreating side, to delay compressibility effects and stall to a higher advance ratio. Using a large enough lead-lag amplitude, the tip velocities could be reduced to levels encountered in hover. This concept was examined by two groups in the 1950's and early 1960's. In the United States, the Research Labs Division of United Aircraft developed a large lead-lag motion rotor
Integrated cable vibration control system using wireless sensors
Jeong, Seunghoo; Cho, Soojin; Sim, Sung-Han
2017-04-01
As the number of long-span bridges is increasing worldwide, maintaining their structural integrity and safety become an important issue. Because the stay cable is a critical member in most long-span bridges and vulnerable to wind-induced vibrations, vibration mitigation has been of interest both in academia and practice. While active and semi-active control schemes are known to be quite effective in vibration reduction compared to the passive control, requirements for equipment including data acquisition, control devices, and power supply prevent a widespread adoption in real-world applications. This study develops an integrated system for vibration control of stay-cables using wireless sensors implementing a semi-active control. Arduino, a low-cost single board system, is employed with a MEMS digital accelerometer and a Zigbee wireless communication module to build the wireless sensor. The magneto-rheological (MR) damper is selected as a damping device, controlled by an optimal control algorithm implemented on the Arduino sensing system. The developed integrated system is tested in a laboratory environment using a cable to demonstrate the effectiveness of the proposed system on vibration reduction. The proposed system is shown to reduce the vibration of stay-cables with low operating power effectively.
Adaptive inverse control for rotorcraft vibration reduction. Ph.D. Thesis
Jacklin, S. A.
1985-01-01
The Least Mean Square (LMS) algorithm is extended to solve the multiple-input, multiple-output problem of alleviating N/Rev helicopter fuselage vibration by means of adaptive inverse control. A frequency domain locally linear model is used to represent the transfer matrix relating the high harmonic pitch control inputs to the harmonic vibration outputs to be controlled. By using the inverse matrix as the controller gain matrix, an adaptive inverse regulator is formed to alleviate the N/Rev vibration. The stability and rate of convergence properties of the extended LMS algorithm are discussed. It is shown that the stability ranges for the elements of the stability gain matrix are directly related to the eigenvalues of the vibration signal information matrix for the learning phase, but not for the control phase. The overall conclusion is that the LMS adaptive inverse control method can form a robust vibration control system, but will require some tuning of the input sensor gains, the stability gain matrix, and the amount of control relaxation to be used. The learning curve of the controller during the learning phase is shown to be quantitatively close to that predicted by averaging the learning curves of the normal modes. It is shown that the best selections of the stability gain matrix elements and the amount of control relaxation is basically a compromise between slow, stable convergence and fast convergence with increased possibility of unstable identification.
Active control of noise radiation from vibrating structures
DEFF Research Database (Denmark)
Mørkholt, Jakob
The thesis is concerned with the active control of randomly vibrating structures by means of feedback control, with particular emphasis on reducing the sound radiation from such structures. A time domain model of the structural and radiation dynamics of an actively controlled plate has been...... optimal and robust discrete-time feedback controllers for active vibration control of multimodal structures have been compared. They have been showed to yield controllers with identical frequency response characteristics, even though they employ completely different methods of numerical solutions...... developed, based on the theory of radiation filters for estimating the sound radiation from multimodal vibrations. This model has then been used in simulations of optimal feedback control, with special emphasis of the stability margins of the optimal control scheme. Two different methods of designing...
Vibration Control via Stiffness Switching of Magnetostrictive Transducers
Scheidler, Justin J.; Asnani, Vivake M.; Dapino, Marcelo J.
2016-01-01
In this paper, a computational study is presented of structural vibration control that is realized by switching a magnetostrictive transducer between high and low stiffness states. Switching is accomplished by either changing the applied magnetic field with a voltage excitation or changing the shunt impedance on the transducer's coil (i.e., the magnetostrictive material's magnetic boundary condition). Switched-stiffness vibration control is simulated using a lumped mass supported by a damper and the magnetostrictive transducer (mount), which is represented by a nonlinear, electromechanical model. Free vibration of the mass is calculated while varying the mount's stiffness according to a reference switched-stiffness vibration control law. The results reveal that switching the magnetic field produces the desired change in stiffness, but also an undesired actuation force that can significantly degrade the vibration control. Hence, a modified switched-stiffness control law that accounts for the actuation force is proposed and implemented for voltage-controlled stiffness switching. The influence of the magneto-mechanical bias condition is also discussed. Voltage-controlled stiffness switching is found to introduce damping equivalent to a viscous damping factor up to about 0.13; this is shown to primarily result from active vibration reduction caused by the actuation force. The merit of magnetostrictive switched-stiffness vibration control is then quantified by comparing the results of voltage- and shunt-controlled stiffness switching to the performance of optimal magnetostrictive shunt damping. For the cases considered, optimal resistive shunt damping performed considerably better than both voltage- and shunt-controlled stiffness switching.
DESIGN OF VIBRATION AND NOISE CONTROL SYSTEM FOR FLEXIBLE STRUCTURES
Directory of Open Access Journals (Sweden)
В. Макаренко
2012-04-01
Full Text Available In the article the control system is created, which is able to reduce steady-state vibration response of thinwalled flexible structure in the wide band of low frequencies. It is supposed, that the flexible structure is subject to external harmonic force with variable frequencies, and parameters of that force are available for the usage by the control system. The control system is based on pattern search algorithm and suggestion about the dependence of signal, which is formed by the control system, from the steady-state vibration response of the flexible structure. Developed software allows to use pattern search algorithm as the control system for plate vibration in real-time. The influence on control system operation of signal delay of executive device of compensating path and transition process after the change of control signal parameters is done by the usage of the additional idle time. During idle time the control signal is supported. It has parameters that have taken place before the beginning of idle mode. Step reset option for resuming of search after the long-term steady-state vibration of flexible structure do not derange control system operation, because step change take place only after polling cycle termination. The efficiency of proposed system is illustrated experimentally on the example of clamped plate. Experimental results analysis showed the necessity of multiple compensating devices application for vibration reduction in wide frequency range.
Analysis of Piezoelectric Actuator for Vibration Control of Composite plate
Gomaa, Ahmed R.; Hai, Huang
2017-07-01
Vibration analysis is studied numerically in this paper for a simply supported composite plate subjected to external loadings. Vibrations are controlled by using piezoelectric patches. Finite element method (ANSYS) is used for obtaining finite element model of the smart plate structure, a layered composite plate is manufactured experimentally and tested to obtain the structure mechanical properties. Different piezoelectric patch areas and different applied gain voltage effects on vibration attenuation is studied. The numerical solution is compared with the experimental work, a good agreement achieved.
MR Damper Controlled Vibration Absorber for Enhanced Mitigation of Harmonic Vibrations
Directory of Open Access Journals (Sweden)
Felix Weber
2016-12-01
Full Text Available This paper describes a semi-active vibration absorber (SVA concept based on a real-time controlled magnetorheological damper (MR-SVA for the enhanced mitigation of structural vibrations due to harmonic disturbing forces. The force of the MR damper is controlled in real-time to generate the frequency and damping controls according to the behaviour of the undamped vibration absorber for the actual frequency of vibration. As stiffness and damping emulations in semi-active actuators are coupled quantities the control is formulated to prioritize the frequency control by the controlled stiffness. The control algorithm is augmented by a stiffness correction method ensuring precise frequency control when the desired control force is constrained by the semi-active restriction and residual force of the MR damper. The force tracking task is solved by a model-based feed forward with feedback correction. The MR-SVA is numerically and experimentally validated for the primary structure with nominal eigenfrequency and when de-tuning of −10%, −5%, +5% and +10% is present. Both validations demonstrate that the MR-SVA improves the vibration reduction in the primary structure by up to 55% compared to the passive tuned mass damper (TMD. Furthermore, it is shown that the MR-SVA with only 80% of tuned mass leads to approximately the same enhanced performance while the associated increased relative motion amplitude of the tuned mass is more than compensated be the reduced dimensions of the mass. Therefore, the MR-SVA is an appropriate solution for the mitigation of tall buildings where the pendulum mass can be up to several thousands of metric tonnes and space for the pendulum damper is limited.
The CFVib Experiment: Control of Fluids in Microgravity with Vibrations
Fernandez, J.; Sánchez, P. Salgado; Tinao, I.; Porter, J.; Ezquerro, J. M.
2017-10-01
The Control of Fluids in Microgravity with Vibrations (CFVib) experiment was selected for the 2016 Fly Your Thesis! programme as part of the 65th ESA Parabolic Flight Campaign. The aim of the project is to observe the potentially complex behaviour of vibrated liquids in weightless environments and to investigate the extent to which small-amplitude vibrations can be used to influence and control this behaviour. Piezoelectric materials are used to generate high-frequency vibrations to drive surface waves and large-scale reorientation of the interface. The theory of vibroequilibria, which treats the quasi-stationary surface configurations achieved by this reorientation, was used to predict interesting parameter regimes and interpret fluid behaviour. Here we describe the scientific motivation, objectives, and design of the experiment.
Zhang, Zisheng; Li, Yanhu; Li, Jiaojiao; Liu, Zhiqiang; Li, Qing
2013-03-01
In order to improve the reliability, stability and automation of electrostatic precipitator, circuits of vibration motor for ESP and vibration control ladder diagram program are investigated using Schneider PLC with high performance and programming software of Twidosoft. Operational results show that after adopting PLC, vibration motor can run automatically; compared with traditional control system of vibration based on single-chip microcomputer, it has higher reliability, better stability and higher dust removal rate, when dust emission concentrations <= 50 mg m-3, providing a new method for vibration controlling of ESP.
Cooperative Control Method of Active and Semiactive Control: New Framework for Vibration Control
Kazuhiko Hiramoto
2014-01-01
A new control design framework for vibration control, the cooperative control of active and semiactive control, is proposed in the paper. In the cooperative control, a structural system having both of an actuator and a semiactive control device, for example, MR damper and so forth, is defined as the control object. In the proposed control approach, the higher control performance is aimed by the cooperative control between the active control with the actuator and the semiactive control with th...
Wireless sensing and vibration control with increased redundancy and robustness design.
Li, Peng; Li, Luyu; Song, Gangbing; Yu, Yan
2014-11-01
Control systems with long distance sensor and actuator wiring have the problem of high system cost and increased sensor noise. Wireless sensor network (WSN)-based control systems are an alternative solution involving lower setup and maintenance costs and reduced sensor noise. However, WSN-based control systems also encounter problems such as possible data loss, irregular sampling periods (due to the uncertainty of the wireless channel), and the possibility of sensor breakdown (due to the increased complexity of the overall control system). In this paper, a wireless microcontroller-based control system is designed and implemented to wirelessly perform vibration control. The wireless microcontroller-based system is quite different from regular control systems due to its limited speed and computational power. Hardware, software, and control algorithm design are described in detail to demonstrate this prototype. Model and system state compensation is used in the wireless control system to solve the problems of data loss and sensor breakdown. A positive position feedback controller is used as the control law for the task of active vibration suppression. Both wired and wireless controllers are implemented. The results show that the WSN-based control system can be successfully used to suppress the vibration and produces resilient results in the presence of sensor failure.
Passive and Active Vibration Control of Renewable Energy Structures
DEFF Research Database (Denmark)
Zhang, Zili
The present thesis deals with fundamental researches on passive and active vibration control of renewable energy structures, and provides useful models for practical applications. Effective and robust vibration control methods have been explored for mitigating the lightly damped edgewise blade...... solutions for wave energy point absorbers, in order to maximize the mean absorbed power and to deliver more smooth power to the grid. A novel suboptimal causal control law has been established for controlling the motion of the point absorber, and a new type of point absorber has also been proposed...
Development and evaluation of a generic active helicopter vibration controller
Davis, M. W.
1984-01-01
A computerized generic active controller is developed, which alleviates helicopter vibration by closed-loop implementation of higher harmonic control (HHC). In the system, the higher harmonic blade pitch is input through a standard helicopter swashplate; for a four-blade helicopter rotor the 4/rev vibration in the rotorcraft is minimized by inducing cyclic pitch motions at 3, 4, and 5/rev in the rotating system. The controller employs the deterministic, cautious, and dual control approaches and two linear system models (local and global), as well as several methods of limiting control. Based on model testing, performed at moderate to high values of forward velocity and rotor thrust, reductions in the rotor test apparatus vibration from 75 to 95 percent are predicted, with HHC pitch amplitudes of less than one degree. Good performance is also noted for short-duration maneuvers.
Modern Data Analysis techniques in Noise and Vibration Problems
1981-11-01
ce cours (commun a l’acoustique et aux vibrations) conduit de fagon naturelle a presenter, parallelement aux methodologies, les aspects fondamentaux...without knowledge to first order of the shear stress and entropy fluctuations. Finally, when mean motion is appreciable, convection of the stress...some right-hand side "equivalent source" terms to the left-hand side to represent these mean convection effects as distinct from "generation
Li, Bo; Rui, Xiaoting
2018-01-01
Poor dispersion characteristics of rockets due to the vibration of Multiple Launch Rocket System (MLRS) have always restricted the MLRS development for several decades. Vibration control is a key technique to improve the dispersion characteristics of rockets. For a mechanical system such as MLRS, the major difficulty in designing an appropriate control strategy that can achieve the desired vibration control performance is to guarantee the robustness and stability of the control system under the occurrence of uncertainties and nonlinearities. To approach this problem, a computed torque controller integrated with a radial basis function neural network is proposed to achieve the high-precision vibration control for MLRS. In this paper, the vibration response of a computed torque controlled MLRS is described. The azimuth and elevation mechanisms of the MLRS are driven by permanent magnet synchronous motors and supposed to be rigid. First, the dynamic model of motor-mechanism coupling system is established using Lagrange method and field-oriented control theory. Then, in order to deal with the nonlinearities, a computed torque controller is designed to control the vibration of the MLRS when it is firing a salvo of rockets. Furthermore, to compensate for the lumped uncertainty due to parametric variations and un-modeled dynamics in the design of the computed torque controller, a radial basis function neural network estimator is developed to adapt the uncertainty based on Lyapunov stability theory. Finally, the simulated results demonstrate the effectiveness of the proposed control system and show that the proposed controller is robust with regard to the uncertainty.
Performance evaluation on vibration control of MR landing gear
Energy Technology Data Exchange (ETDEWEB)
Lee, D Y; Nam, Y J; Park, M K [Graduate School, Pusan National University, Busan 609-735 (Korea, Republic of); Yamane, R [Kokushikan University, 4-28-1 Setagaya, Setagaya-ku, Tokyo 154-8515 (Japan)], E-mail: ldy5577@yahoo.co.kr, E-mail: mkpark1@pusan.ac.kr
2009-02-01
This paper is concerned with the applicability of the developed MR damper to the landing gear system for the attenuating undesired shock and vibration in the landing and taxing phases. First of all, the experimental model of the MR damper is derived based on the results of performance evaluations. Next, a simplified skyhook controller, which is one of the most straightforward, but effective approaches for improving ride comport in vehicles with active suspensions, is formulated. Then, the vibration control performances of the landing gear system using the MR damper are theoretically evaluated in the landing phase of the aircraft. A series of simulation analyses show that the proposed MR damper with the skyhook controller is effective for suppressing undesired vibration of the aircraft body. Finally, the effectiveness of the simulation results are additionally verified via HILS (Hardware-in-the-loop-simulation) method.
Smart helicopter rotors optimization and piezoelectric vibration control
Ganguli, Ranjan; Viswamurthy, Sathyamangalam Ramanarayanan
2016-01-01
Exploiting the properties of piezoelectric materials to minimize vibration in rotor-blade actuators, this book demonstrates the potential of smart helicopter rotors to achieve the smoothness of ride associated with jet-engined, fixed-wing aircraft. Vibration control is effected using the concepts of trailing-edge flaps and active-twist. The authors’ optimization-based approach shows the advantage of multiple trailing-edge flaps and algorithms for full-authority control of dual trailing-edge-flap actuators are presented. Hysteresis nonlinearity in piezoelectric stack actuators is highlighted and compensated by use of another algorithm. The idea of response surfaces provides for optimal placement of trailing-edge flaps. The concept of active twist involves the employment of piezoelectrically induced shear actuation in rotating beams. Shear is then demonstrated for a thin-walled aerofoil-section rotor blade under feedback-control vibration minimization. Active twist is shown to be significant in reducing vibra...
Modeling of Axial Spring Stiffness in Active Vibration Controlled Drilling
Directory of Open Access Journals (Sweden)
Pao William
2014-07-01
Full Text Available During drilling process, substantial amount of vibration and shock are induced to the drill string. Active vibration controlled drilling is introduced to reduce the vibration and increase the efficiency of drilling process. In this system, two main components that determine the damping coefficient are magnetorheological (MR damper and spring assembly. Performance of vibration damping system is depending on the viscosity of MR fluid in the damper and spring constant of spring assembly. One of the key issues that are unclear from the design is the correlation between the axial spring stiffness configuration and the damping force which needs to be tuned actively. There has been lack of studies on how the viscosity of MR fluid on the active vibration damper affects the damping stiffness of the whole system. The objective of the project is to extract the correlations for the viscous damping coefficient, equivalent spring stiffness and power input to the system. Simplified vibration model is thus created using Simulink, together with experimental data fed from APS Technology’s in-house team. Inputs of the simulation such as force exerted, mass of mandrel, spring constant and step time are based on the experimental data and can be adjusted to suit different experiments. By having the model, behavior of the system can be studied and analyzed. From the simulation, it is also observed that the relationship between damping coefficient and power input of the system is linear.
... urinaria puede ocurrir tanto en hombres como en mujeres. • Puede ser un problema temporal o a largo ... tercio de los hombres mayores y todas las mujeres tienen algún problema de control de la vejiga ...
Similitude design for the vibration problems of plates and shells: A review
Zhu, Yunpeng; Wang, You; Luo, Zhong; Han, Qingkai; Wang, Deyou
2017-06-01
Similitude design plays a vital role in the analysis of vibration and shock problems encountered in large engineering equipment. Similitude design, including dimensional analysis and governing equation method, is founded on the dynamic similitude theory. This study reviews the application of similitude design methods in engineering practice and summarizes the major achievements of the dynamic similitude theory in structural vibration and shock problems in different fields, including marine structures, civil engineering structures, and large power equipment. This study also reviews the dynamic similitude design methods for thin-walled and composite material plates and shells, including the most recent work published by the authors. Structure sensitivity analysis is used to evaluate the scaling factors to attain accurate distorted scaling laws. Finally, this study discusses the existing problems and the potential of the dynamic similitude theory for the analysis of vibration and shock problems of structures.
A novel technique for active vibration control, based on optimal tracking control
Kheiri Sarabi, Behrouz; Sharma, Manu; Kaur, Damanjeet
2017-08-01
In the last few decades, researchers have proposed many control techniques to suppress unwanted vibrations in a structure. In this work, a novel and simple technique is proposed for the active vibration control. In this technique, an optimal tracking control is employed to suppress vibrations in a structure by simultaneously tracking zero references for modes of vibration. To illustrate the technique, a two-degrees of freedom spring-mass-damper system is considered as a test system. The mathematical model of the system is derived and then converted into a state-space model. A linear quadratic tracking control law is then used to make the disturbed system track zero references.
Adaptive Semiactive Cable Vibration Control: A Frequency Domain Perspective
Directory of Open Access Journals (Sweden)
Z. H. Chen
2017-01-01
Full Text Available An adaptive solution to semiactive control of cable vibration is formulated by extending the linear quadratic Gaussian (LQG control from time domain to frequency domain. Frequency shaping is introduced via the frequency dependent weights in the cost function to address the control effectiveness and robustness. The Hilbert-Huang transform (HHT technique is further synthesized for online tuning of the controller gain adaptively to track the cable vibration evolution, which also obviates the iterative optimal gain selection for the trade-off between control performance and energy in the conventional time domain LQG (T-LQG control. The developed adaptive frequency-shaped LQG (AF-LQG control is realized by collocated self-sensing magnetorheological (MR dampers considering the nonlinear damper dynamics for force tracking control. Performance of the AF-LQG control is numerically validated on a bridge cable transversely attached with a self-sensing MR damper. The results demonstrate the adaptivity in gain tuning of the AF-LQG control to target for the dominant cable mode for vibration energy dissipation, as well as its enhanced control efficacy over the optimal passive MR damping control and the T-LQG control for different excitation modes and damper locations.
Performance of active vibration control technology: the ACTEX flight experiments
Nye, T. W.; Manning, R. A.; Qassim, K.
1999-12-01
This paper discusses the development and results of two intelligent structures space-flight experiments, each of which could affect architecture designs of future spacecraft. The first, the advanced controls technology experiment I (ACTEX I), is a variable stiffness tripod structure riding as a secondary payload on a classified spacecraft. It has been operating well past its expected life since becoming operational in 1996. Over 60 on-orbit experiments have been run on the ACTEX I flight experiment. These experiments form the basis for in-space controller design problems and for concluding lifetime/reliability data on the active control components. Transfer functions taken during the life of ACTEX I have shown consistent predictability and stability in structural behavior, including consistency with those measurements taken on the ground prior to a three year storage period and the launch event. ACTEX I can change its modal characteristics by employing its dynamic change mechanism that varies preloads in portions of its structure. Active control experiments have demonstrated maximum vibration reductions of 29 dB and 16 dB in the first two variable modes of the system, while operating over a remarkable on-orbit temperature range of -80 °C to 129 °C. The second experiment, ACTEX II, was successfully designed, ground-tested, and integrated on an experimental Department of Defense satellite prior to its loss during a launch vehicle failure in 1995. ACTEX II also had variable modal behavior by virtue of a two-axis gimbal and added challenges of structural flexibility by being a large deployable appendage. Although the loss of ACTEX II did not provide space environment experience, ground testing resulted in space qualifying the hardware and demonstrated 21 dB, 14 dB, and 8 dB reductions in amplitude of the first three primary structural modes. ACTEX II could use either active and/or passive techniques to affect vibration suppression. Both experiments trailblazed
Adaptive control of an active seat for occupant vibration reduction
Gan, Zengkang; Hillis, Andrew J.; Darling, Jocelyn
2015-08-01
The harmful effects on human performance and health caused by unwanted vibration from vehicle seats are of increasing concern. This paper presents an active seat system to reduce the vibration level transmitted to the seat pan and the occupants' body under low frequency periodic excitation. Firstly, the detail of the mechanical structure is given and the active seat dynamics without external load are characterized by vibration transmissibility and frequency responses under different excitation forces. Owing the nonlinear and time-varying behaviour of the proposed system, a Filtered-x least-mean-square (FXLMS) adaptive control algorithm with on-line Fast-block LMS (FBLMS) identification process is employed to manage the system operation for high vibration cancellation performance. The effectiveness of the active seat system is assessed through real-time experimental tests using different excitation profiles. The system identification results show that an accurate estimation of the secondary path is achieved by using the FBLMS on-line technique. Substantial reduction is found for cancelling periodic vibration containing single and multiple frequencies. Additionally, the robustness and stability of the control system are validated through transient switching frequency tests.
Vibration effect and control of In-Wheel Switched Reluctance Motor for electric vehicle
Sun, Wei; Li, Yinong; Huang, Jingying; Zhang, Nong
2015-03-01
The Switched Reluctance Motor (SRM) processes favorable driving capacity and great application potential in In-Wheel Motor (IWM) Electric Vehicle (EV). However vibration and noise problems are always the disadvantages of SRM. This paper investigates the vibration and noise issues and corresponding control methodology for the IWM application of SRM. By utilizing the analytical Fourier fitting method, a convenience method for modeling In-Wheel Switched Reluctance Motor (IW SRM) is proposed and the characteristics of the unbalanced residual lateral force related to vibration excitation are analyzed. Then the dynamic negative effect of IW SRM on vehicle is analyzed with a quarter driving and vibration vehicle model. It is found that the vertical shock occurs under the vehicle starting condition and high frequency force excitation exists under the constant speed condition. To address these issues, corresponding control methods are proposed, modified and compared. The proposed combined vibration feedback control of current chopping with PWM can effectively reduce the SRM residual force and ensure the required vehicle speed, though some slight low frequency forces are induced.
Quantum control of vibrational excitations in a heteronuclear ...
Indian Academy of Sciences (India)
WINTEC
Quantum control of vibrational excitations in a heteronuclear diatomic molecule. SITANSH SHARMA, PURSHOTAM SHARMA and HARJINDER SINGH* ... electric field is calculated and used for the subsequent quantum dynamics, within the dipole approxima- tion. ... properties of interference of dynamical paths to regulate ...
Numerical analysis using state space method for vibration control of ...
African Journals Online (AJOL)
ATHARVA
Numerical analysis using state space method for vibration control of car seat by employing passive and semi active dampers. Udit S. Kotagi1, G.U. Raju1, V.B. Patil2, Krishnaraja G. Kodancha1*. 1Department of Mechanical Engineering, B.V. Bhoomaraddi College of Engineering & Technology, Hubli, Karnataka, INDIA.
Use of electro-magnetic damping for vibration control
DEFF Research Database (Denmark)
Stein, George Juraj; Darula, Radoslav; Sorokin, Sergey
2012-01-01
Vibration of machines is an unwanted phenomenon, and it is usually of interest to eliminate it. There are various means to be used in order to reach the goal, where the utilization of the electromagnet augmented by an external shunt circuit is analyzed in the paper. The magnetic force is used...... to introduce additional electromagnetic damping into vibrating mechanical system. The hysteretic losses and eddy currents are included in the model, to take into account more realistic dynamic behaviour of the system. The mathematical model of the controller is derived using lumped parameter approach...
On a Non-Symmetric Eigenvalue Problem Governing Interior Structural–Acoustic Vibrations
Directory of Open Access Journals (Sweden)
Heinrich Voss
2016-06-01
Full Text Available Small amplitude vibrations of a structure completely filled with a fluid are considered. Describing the structure by displacements and the fluid by its pressure field, the free vibrations are governed by a non-self-adjoint eigenvalue problem. This survey reports on a framework for taking advantage of the structure of the non-symmetric eigenvalue problem allowing for a variational characterization of its eigenvalues. Structure-preserving iterative projection methods of the the Arnoldi and of the Jacobi–Davidson type and an automated multi-level sub-structuring method are reviewed. The reliability and efficiency of the methods are demonstrated by a numerical example.
Vibration control of active structures an introduction
Preumont, Andre
2002-01-01
This text is an introduction to the dynamics of active structures and to the feedback control of lightly damped flexible structures. The emphasis is placed on basic issues and simple control strategies that work.
A Family of Resonant Vibration Control Formats
DEFF Research Database (Denmark)
Krenk, Steen; Høgsberg, Jan Becker
Resonant control makes use of a controller with a resonance frequency and an equivalent damping ratio. A simple explicit calibration procedure is presented for a family of resonant controllers in which the frequency is tuned to the natural frequency of the targeted mode in such a way that the two...
Tuning of active vibration controllers for ACTEX by genetic algorithm
Kwak, Moon K.; Denoyer, Keith K.
1999-06-01
This paper is concerned with the optimal tuning of digitally programmable analog controllers on the ACTEX-1 smart structures flight experiment. The programmable controllers for each channel include a third order Strain Rate Feedback (SRF) controller, a fifth order SRF controller, a second order Positive Position Feedback (PPF) controller, and a fourth order PPF controller. Optimal manual tuning of several control parameters can be a difficult task even though the closed-loop control characteristics of each controller are well known. Hence, the automatic tuning of individual control parameters using Genetic Algorithms is proposed in this paper. The optimal control parameters of each control law are obtained by imposing a constraint on the closed-loop frequency response functions using the ACTEX mathematical model. The tuned control parameters are then uploaded to the ACTEX electronic control electronics and experiments on the active vibration control are carried out in space. The experimental results on ACTEX will be presented.
Bladder Control Problems in Women
... Incontinence) Bladder Control Problems in Women (Urinary Incontinence) Kegel Exercises Cystocele (Prolapsed Bladder) Bladder Infection (Urinary Tract ... Pelvic floor muscle exercises. Pelvic floor muscle, or Kegel, exercises involve strengthening pelvic floor muscles. Strong pelvic ...
Bladder Control Problems in Men
... Incontinence) Bladder Control Problems in Women (Urinary Incontinence) Kegel Exercises Cystocele (Prolapsed Bladder) Bladder Infection (Urinary Tract ... Pelvic floor muscle exercises. Pelvic floor muscle, or Kegel, exercises involve strengthening pelvic floor muscles. Strong pelvic ...
Bowel Control Problems (Fecal Incontinence)
... System & How it Works Zollinger-Ellison Syndrome Bowel Control Problems (Fecal Incontinence) View or Print All Sections ... NIDDK would like to thank: William E. Whitehead, Ph.D., University of North Carolina School of Medicine ...
Stiffness control of magnetorheological gels for adaptive tunable vibration absorber
Kim, Hyun Kee; Kim, Hye Shin; Kim, Young-Keun
2017-01-01
In this study, a stiffness feedback control system for magnetorheological (MR) gel—a smart material of variable stiffness—is proposed, toward the design of a tunable vibration absorber that can adaptively tune to a time varying disturbance in real time. A PID controller was designed to track the required stiffness of the MR gel by controlling the magnitude of the target external magnetic field pervading the MR gel. This paper proposes a novel magnetic field generator that could produce a variable magnetic field with low energy consumption. The performance of the MR gel stiffness control was validated through experiments that showed the MR gel absorber system could be automatically tuned from 56 Hz to 67 Hz under a field of 100 mT to minimize the vibration of the primary system.
Actively Controlled Landing Gear for Aircraft Vibration Reduction
Horta, Lucas G.; Daugherty, Robert H.; Martinson, Veloria J.
1999-01-01
Concepts for long-range air travel are characterized by airframe designs with long, slender, relatively flexible fuselages. One aspect often overlooked is ground induced vibration of these aircraft. This paper presents an analytical and experimental study of reducing ground-induced aircraft vibration loads using actively controlled landing gears. A facility has been developed to test various active landing gear control concepts and their performance. The facility uses a NAVY A6-intruder landing gear fitted with an auxiliary hydraulic supply electronically controlled by servo valves. An analytical model of the gear is presented including modifications to actuate the gear externally and test data is used to validate the model. The control design is described and closed-loop test and analysis comparisons are presented.
ER fluid applications to vibration control devices and an adaptive neural-net controller
Morishita, Shin; Ura, Tamaki
1993-07-01
Four applications of electrorheological (ER) fluid to vibration control actuators and an adaptive neural-net control system suitable for the controller of ER actuators are described: a shock absorber system for automobiles, a squeeze film damper bearing for rotational machines, a dynamic damper for multidegree-of-freedom structures, and a vibration isolator. An adaptive neural-net control system composed of a forward model network for structural identification and a controller network is introduced for the control system of these ER actuators. As an example study of intelligent vibration control systems, an experiment was performed in which the ER dynamic damper was attached to a beam structure and controlled by the present neural-net controller so that the vibration in several modes of the beam was reduced with a single dynamic damper.
Fuzzy Semiactive Vibration Control of Structures Using Magnetorheological Elastomer
Directory of Open Access Journals (Sweden)
Xuan Bao Nguyen
2017-01-01
Full Text Available In this research, a novel variable stiffness vibration isolator that uses magnetorheological elastomers (MREs accompanied with a fuzzy semiactive vibration control was developed. Firstly, the viscoelastic characteristics of MREs in shear mode were clarified systematically in order to achieve a mathematical basis for the controller development. Secondly, the fuzzy semiactive vibration control with a strategy based on the Lyapunov theory and dynamic characteristic of MREs was proposed for minimizing the movement of the isolator. In the conventional semiactive algorithm, the command applied current of MRE-based isolator is set at either minimum or maximum value which causes high acceleration and jerk peaks periodically, thus leading to the degeneration of the overall system quality. However, the fuzzy semiactive algorithm presented here is able to produce the sufficient applied current and thus viscoelastic force is desirably produced. The effectiveness of the developed isolator was evaluated numerically by MATLAB simulation and experimentally in comparison with the performances of a passive system and a system with on-off type semiactive controller. The results showed that the developed controller was successful in overcoming the disadvantages of conventional on-off semiactive control.
Semi-decentralized Strategies in Structural Vibration Control
Directory of Open Access Journals (Sweden)
F. Palacios-Quiñonero
2011-04-01
Full Text Available In this work, the main ideas involved in the design of overlapping and multi-overlapping controllers via the Inclusion Principle are discussed and illustrated in the context of the Structural Vibration Control of tall buildings under seismic excitation. A detailed theoretical background on the Inclusion Principle and the design of overlapping controllers is provided. Overlapping and multi-overlapping LQR controllers are designed for a simplified five-story building model. Numerical simulations are conducted to asses the performance of the proposed semi-decentralized controllers with positive results.
Is the Coupling of C3V Internal Rotation and Normal Vibrations a Tractable Problem?
Pearson, John; Groner, Peter; Daly, Adam M.
2016-06-01
The solution of a C3V internal rotation problem for the torsional manifold of an isolated vibrational state such as the ground state is well established. However, once an interacting small amplitude vibrational state is involved the path to a solution becomes far less clear and there is little guidance in the literature on how to proceed. The fundamental challenge is that the torsional problem and the internal axis system are unique to each torsional manifold of a specific vibrational state. In an asymmetric top molecule vibrational angular momentum can be rotated away, but this sort of rotation changes the angle between the internal rotation axis and the principle axis when there is an internal rotor. This means that there is an angle between the internal axis systems of each torsional manifold of a vibrational state. The net result is that the coupling between the two states must account for the difference in internal axis angle and will have some significant consequences to the selection rules and interactions. Two cases will be discussed, methanol and ethyl cyanide.
Inverse Problem for the Vibrating Beam in the Free/Clamped Configuration,
1979-01-01
such as in seismic prospecting wherr this stripping-off is usually carried out in the time domain (Berkhout & van Wulfften Palthe , 1979). The Stielties...multiplicity of solutions of the inverse problem for a vibrating beam. SIAM 37, 605-613. Berkhout, A.J. & van Wulfften Palthe , D. W. 1979 Migration in
Application of HPEM to investigate the response and stability of nonlinear problems in vibration
DEFF Research Database (Denmark)
Mohammadi, M.H.; Mohammadi, A.; Kimiaeifar, A.
2010-01-01
In this work, a powerful analytical method, called He's Parameter Expanding Methods (HPEM) is used to obtain the exact solution of nonlinear problems in nonlinear vibration. In this work, the governing equation is obtained by using Lagrange method, then the nonlinear governing equation is solved ...
Novel controller design demonstration for vibration alleviation of helicopter rotor blades
Ulker, Fatma Demet; Nitzsche, Fred
2012-04-01
This paper presents an advanced controller design methodology for vibration alleviation of helicopter rotor sys- tems. Particularly, vibration alleviation in a forward ight regime where the rotor blades experience periodically varying aerodynamic loading was investigated. Controller synthesis was carried out under the time-periodic H2 and H∞ framework and the synthesis problem was solved based on both periodic Riccati and Linear Matrix Inequality (LMI) formulations. The closed-loop stability was analyzed using Floquet-Lyapunov theory, and the controller's performance was validated by closed-loop high-delity aeroelastic simulations. To validate the con- troller's performance an actively controlled trailing edge ap strategy was implemented. Computational cost was compared for both formulations.
A New Vibration Measurement Procedure for On-Line Quality Control of Electronic Devices
Directory of Open Access Journals (Sweden)
Gian Marco Revel
2002-01-01
Full Text Available In this paper the problem of experimentally testing the mechanical reliability of electronic components for quality control is approached. In general, many tests are performed on electronic devices (personal computers, power supply units, lamps, etc., according to the relevant international standards (IEC, in order to verify their resistance to shock and vibrations, but these are mainly “go no-go” experiments, performed on few samples taken from the production batches.
METHOD OF COMPENSATING LOADS FOR SHALLOW SHELLS. VIBRATION AND STABILITY PROBLEMS
Directory of Open Access Journals (Sweden)
Tran Duc Chinh
2015-12-01
Full Text Available Based on the integral representation of the displacements functions through Green's functions, the author proposed a method to solve the system of differential equations of the given problem. The equations were solved approximately by reducing to algebraic equations by finite difference techniques in Samarsky scheme. Some examples are given for calculation of eigenvalues of shallow shell vibration problem, which are compared with results received by Onyashvili using Galerkin method.
Rotation in vibration, optimization, and aeroelastic stability problems. Ph.D. Thesis
Kaza, K. R. V.
1974-01-01
The effects of rotation in the areas of vibrations, dynamic stability, optimization, and aeroelasticity were studied. The governing equations of motion for the study of vibration and dynamic stability of a rapidly rotating deformable body were developed starting from the nonlinear theory of elasticity. Some common features such as the limitations of the classical theory of elasticity, the choice of axis system, the property of self-adjointness, the phenomenon of frequency splitting, shortcomings of stability methods as applied to gyroscopic systems, and the effect of internal and external damping on stability in gyroscopic systems are identified and discussed, and are then applied to three specific problems.
T-S Fuzzy Control of Uncertain Chaotic Vibration
Directory of Open Access Journals (Sweden)
Abdelkrim Boukabou
2012-01-01
Full Text Available We present in this paper a novel and unified control approach that combines intelligent fuzzy logic methodology with predictive method for controlling chaotic vibration of a class of uncertain chaotic systems. We first introduce prediction into each subsystem of Takagi Sugeno (T-S fuzzy IF-THEN rules and then present a unified T-S predictive fuzzy model for chaos control. The proposed controller can successfully stabilize the chaos and track the desired targets. The simulation results illustrate its effectiveness.
A distributed parameter systems view of control problems in drilling
Di Meglio, Florent; Aarsnes, Ulf Jakob Flø
2015-01-01
We give a detailed view of estimation and control problems raised by the drilling process where the distributed nature of the system cannot be ignored. In particular, we focus on the transport phenomena in Managed Pressure Drilling (MPD) and UnderBalanced Operations (UBO), as well as the time-delay mechanisms of the mechanical stick-slip vibrations. These industrial challenges raise increasingly difficult control questions for hyperbolic systems.
A distributed parameter systems view of control problems in drilling
Di Meglio, Florent; Aarsnes, Ulf Jakob Flø
2015-01-01
We give a detailed view of estimation and control problems raised by the drilling process where the distributed nature of the system cannot be ignored. In particular, we focus on the transport phenomena in Managed Pressure Drilling (MPD) and UnderBalanced Operations (UBO), as well as the time-delay mechanisms of the mechanical stick-slip vibrations. These industrial challenges raise increasingly difficult control questions for hyperbolic systems. This is the authors' accepted and refereed ...
The use of Classical Rolling Pendulum Bearings (CRPB for vibration control of stay-cables
Directory of Open Access Journals (Sweden)
Papastergiou Georgia
2018-01-01
Full Text Available Cables are efficient structural elements that are used in cable-stayed bridges, suspension bridges and other cable structures. A significant problem which arose from the praxis is the cables’ rain-wind induced vibrations as these cables are subjected to environmental excitations. Rain-wind induced stay-cable vibrations may occur at different cable eigenfrequencies. Large amplitude Rain-Wind-Induced-Vibrations (RWIV of stay cables are a challenging problem in the design of cable-stayed bridges. Several methods, including aerodynamic or structural means, have been investigated in order to control the vibrations of bridge’s stay-cables. The present research focuses on the effectiveness of a movable anchorage system with a Classical Rolling Pendulum Bearing (CRPB device. An analytical model of cable-damper system is developed based on the taut string representation of the cable. The gathered integral-differential equations are solved through the use of the Lagrange transformation. . Finally, a case study with realistic geometrical parameters is also presented to establish the validity of the proposed system.
Active Vibration Control of a Monopile Offshore Structure
DEFF Research Database (Denmark)
Nielsen, Søren R. K.; Kirkegaard, Poul Henning; Thesbjerg, L.
1999-01-01
of the fluid velocity relative to the platform, and only this quantity need to be measured, which is easily performed by a flow meter fixed to the platform. The efficiency of the described closed loop control system has been verified by model tests in a wave flume in both regular and irregular wave conditions......In the Danish part of the North Sea monopile platforms with a cylindrical shaft have been used at the exploitation of marginal fields. In the paper a new principle for active vibration control of such structures is suggested. The principle is based on a control of the boundary layer flow around...
A Study of Active Rotor-Blade Vibration Control using Electro-Magnetic Actuation - Part I: Theory
DEFF Research Database (Denmark)
Christensen, Rene Hardam; Santos, Ilmar
2004-01-01
actuators fixed directly in the blades. However, due to the impracticability and problems by fixing actuators in the rotating blades, it is for practical application of great interest to study whether the vibrations can be controlled using shaft-based actuators, i.e. electro-magnetic bearings......This is the first paper in a two-part study on active rotor-blade vibration control. Blade faults are a major problem in bladed machines, such as turbines and compressors. Moreover, increasing demands for higher efficiency, lower weight and higher speed imply that blades become even more...... susceptible to vibrational problems. Passive damping methods, such as frictional damping, are typically used for this kind of machines, working very well at the specific design conditions. However, when the running conditions exceed the design specification, then passive damping devices become inefficient...
Active Control of Parametric Vibrations in Coupled Rotor-Blade Systems
DEFF Research Database (Denmark)
Christensen, Rene Hardam; Santos, Ilmar
2003-01-01
In rotor-blade systems basis as well as parametric vibration modes will appear due to the vibration coupling among flexible rotating blades and hub rigid body motion. Parametric vibration will typically occur when the hub operates at a constant angular velocity. Operating at constant velocity...... the model becomes periodic-variant. In order to reduce basis as well as parametric vibrations by means of active control in such systems a time-variant control strategy has to be adopted. This paper presents a methodology for designing an active controller to reduce vibrations in a coupled rotor......-blade system. The main aim is to control blade as well as hub vibrations in such a system by means of active control with focus on reducing the parametric vibration. A periodic state feedback controller is designed by transforming the system into a linear time-invariant form. Using this a controller...
Li, Shengquan; Li, Juan; Mo, Yueping; Zhao, Rong
2014-01-01
A novel active method for multi-mode vibration control of an all-clamped stiffened plate (ACSP) is proposed in this paper, using the extended-state-observer (ESO) approach based on non-collocated acceleration sensors and piezoelectric actuators. Considering the estimated capacity of ESO for system state variables, output superposition and control coupling of other modes, external excitation, and model uncertainties simultaneously, a composite control method, i.e., the ESO based vibration control scheme, is employed to ensure the lumped disturbances and uncertainty rejection of the closed-loop system. The phenomenon of phase hysteresis and time delay, caused by non-collocated sensor/actuator pairs, degrades the performance of the control system, even inducing instability. To solve this problem, a simple proportional differential (PD) controller and acceleration feed-forward with an output predictor design produce the control law for each vibration mode. The modal frequencies, phase hysteresis loops and phase lag values due to non-collocated placement of the acceleration sensor and piezoelectric patch actuator are experimentally obtained, and the phase lag is compensated by using the Smith Predictor technology. In order to improve the vibration control performance, the chaos optimization method based on logistic mapping is employed to auto-tune the parameters of the feedback channel. The experimental control system for the ACSP is tested using the dSPACE real-time simulation platform. Experimental results demonstrate that the proposed composite active control algorithm is an effective approach for suppressing multi-modal vibrations.
Magnetic suspension motorized spindle-cutting system dynamics analysis and vibration control review
Directory of Open Access Journals (Sweden)
Xiaoli QIAO
2016-10-01
Full Text Available The performance of high-speed spindle directly determines the development of high-end machine tools. The cutting system's dynamic characteristics and vibration control effect are inseparable with the performance of the spindle,which influence each other, synergistic effect together the cutting efficiency, the surface quality of the workpiece and tool life in machining process. So, the review status on magnetic suspension motorized spindle, magnetic suspension bearing-flexible rotor system dynamics modeling theory and status of active control technology of flexible magnetic suspension motorized spindle rotor vibration are studied, and the problems which present in the magnetic suspension flexible motorized spindle rotor systems are refined, and the development trend of magnetic levitation motorized spindle and the application prospect is forecasted.
Active Vibration Control in a Rotor System by an Active Suspension with Linear Actuators
Directory of Open Access Journals (Sweden)
M. Arias-Montiel
2014-10-01
Full Text Available In this paper the problem of modeling, analysis and unbalance response control of a rotor system with two disks in an asymmetrical configuration is treated. The Finite Element Method (FEM is used to get the system model including the gyroscopic effects and then, the obtained model is experimentally validated. Rotordynamic analysis is carried out using the finite element model obtaining the Campbell diagram, the natural frequencies and the critical speeds of the rotor system. An asymptotic observer is designed to estimate the full state vector which is used to synthesize a Linear Quadratic Regulator (LQR to reduce the vibration amplitudes when the system passes through the first critical speed. Some numerical simulations are carried out to verify the closed-loop system behavior. The active vibration control scheme is experimentally validated using an active suspension with electromechanical linear actuators, obtaining significant reductions in the resonant peak.
Lattice Metamaterials with Mechanically Tunable Poisson's Ratio for Vibration Control
Chen, Yanyu; Li, Tiantian; Scarpa, Fabrizio; Wang, Lifeng
2017-02-01
Metamaterials with artificially designed architectures are increasingly considered as new paradigmatic material systems with unusual physical properties. Here, we report a class of architected lattice metamaterials with mechanically tunable negative Poisson's ratios and vibration-mitigation capability. The proposed lattice metamaterials are built by replacing regular straight beams with sinusoidally shaped ones, which are highly stretchable under uniaxial tension. Our experimental and numerical results indicate that the proposed lattices exhibit extreme Poisson's-ratio variations between -0.7 and 0.5 over large tensile deformations up to 50%. This large variation of Poisson's-ratio values is attributed to the deformation pattern switching from bending to stretching within the sinusoidally shaped beams. The interplay between the multiscale (ligament and cell) architecture and wave propagation also enables remarkable broadband vibration-mitigation capability of the lattice metamaterials, which can be dynamically tuned by an external mechanical stimulus. The material design strategy provides insights into the development of classes of architected metamaterials with potential applications including energy absorption, tunable acoustics, vibration control, responsive devices, soft robotics, and stretchable electronics.
Adaptive Vibration Control System for MR Damper Faults
Directory of Open Access Journals (Sweden)
Juan C. Tudón-Martínez
2015-01-01
Full Text Available Several methods have been proposed to estimate the force of a semiactive damper, particularly of a magnetorheological damper because of its importance in automotive and civil engineering. Usually, all models have been proposed assuming experimental data in nominal operating conditions and some of them are estimated for control purposes. Because dampers are prone to fail, fault estimation is useful to design adaptive vibration controllers to accommodate the malfunction in the suspension system. This paper deals with the diagnosis and estimation of faults in an automotive magnetorheological damper. A robust LPV observer is proposed to estimate the lack of force caused by a damper leakage in a vehicle corner. Once the faulty damper is isolated in the vehicle and the fault is estimated, an Adaptive Vibration Control System is proposed to reduce the fault effect using compensation forces from the remaining healthy dampers. To fulfill the semiactive damper constraints in the fault adaptation, an LPV controller is designed for vehicle comfort and road holding. Simulation results show that the fault observer has good performance with robustness to noise and road disturbances and the proposed AVCS improves the comfort up to 24% with respect to a controlled suspension without fault tolerance features.
Asami, Takuya; Tamada, Yosuke; Higuchi, Yusuke; Miura, Hikaru
2017-07-01
Conventional ultrasonic metal welding for joining dissimilar metals uses a linear vibration locus, although this method suffers from problems such as low overall weld strength. Our previous studies have shown that ultrasonic welding with a planar vibration locus improves the weld strength. However, the vibration source in our previous studies had problems in longitudinal-torsional vibration controllability and small welding tip. Therefore, the study of the optimal shape of the vibration locus was difficult. Furthermore, improvement of weld strength cannot be expected. We have developed a new ultrasonic vibration source that can control the longitudinal-torsional vibration and can connect to a large welding tip. In this study, we clarified the longitudinal-torsional vibration controllability of the developed ultrasonic vibration source. Moreover, we clarified that using the planar locus of the developed vibration source produced a higher weld strength than our previous studies, and clarified the optimal shape of the vibration locus.
Zhu, Qiao; Yue, Jun-Zhou; Liu, Wei-Qun; Wang, Xu-Dong; Chen, Jun; Hu, Guang-Di
2017-04-01
This work is focused on the active vibration control of piezoelectric cantilever beam, where an adaptive feedforward controller (AFC) is utilized to reject the vibration with unknown multiple frequencies. First, the experiment setup and its mathematical model are introduced. Due to that the channel between the disturbance and the vibration output is unknown in practice, a concept of equivalent input disturbance (EID) is employed to put an equivalent disturbance into the input channel. In this situation, the vibration control can be achieved by setting the control input be the identified EID. Then, for the EID with known multiple frequencies, the AFC is introduced to perfectly reject the vibration but is sensitive to the frequencies. In order to accurately identify the unknown frequencies of EID in presence of the random disturbances and un-modeled nonlinear dynamics, the time-frequency-analysis (TFA) method is employed to precisely identify the unknown frequencies. Consequently, a TFA-based AFC algorithm is proposed to the active vibration control with unknown frequencies. Finally, four cases are given to illustrate the efficiency of the proposed TFA-based AFC algorithm by experiment.
Optimal Vibration Control for Half-Car Suspension on In-Vehicle Networks in Delta Domain
Directory of Open Access Journals (Sweden)
Jing Lei
2013-01-01
Full Text Available The paper explores the optimal vibration control design problem for a half-car suspension working on in-vehicle networks in delta domain. First, the original suspension system with ECU-actuator delay and sensor-ECU delay is modeled. By using delta operators, the original system is transformed into an associated sampled-data system with time delays in delta domain. After model transformation, the sampled-data system equation is reduced to one without actuator delays and convenient to calculate the states with nonintegral time delay. Therefore, the sampled-data optimal vibration control law can be easily obtained deriving from a Riccati equation and a Stein equation of delta domain. The feedforward control term and the control memory terms designed in the control law ensure the compensation for the effects produced by disturbance and actuator delay, respectively. Moreover, an observer is constructed to implement the physical realizability of the feedforward term and solve the immeasurability problem of some state variables. A half-car suspension model with delays is applied to simulate the responses through the designed controller. Simulation results illustrate the effectiveness of the proposed controller and the simplicity of the designing approach.
Directory of Open Access Journals (Sweden)
Douglas Domingues Bueno
2008-01-01
Full Text Available This paper deals with the study of algorithms for robust active vibration control in flexible structures considering uncertainties in system parameters. It became an area of enormous interest, mainly due to the countless demands of optimal performance in mechanical systems as aircraft, aerospace, and automotive structures. An important and difficult problem for designing active vibration control is to get a representative dynamic model. Generally, this model can be obtained using finite element method (FEM or an identification method using experimental data. Actuators and sensors may affect the dynamics properties of the structure, for instance, electromechanical coupling of piezoelectric material must be considered in FEM formulation for flexible and lightly damping structure. The nonlinearities and uncertainties involved in these structures make it a difficult task, mainly for complex structures as spatial truss structures. On the other hand, by using an identification method, it is possible to obtain the dynamic model represented through a state space realization considering this coupling. This paper proposes an experimental methodology for vibration control in a 3D truss structure using PZT wafer stacks and a robust control algorithm solved by linear matrix inequalities.
Vibration control of a flexible structure with electromagnetic actuators
DEFF Research Database (Denmark)
Gruzman, Maurício; Santos, Ilmar
2016-01-01
This work presents the model of a shear-frame-type structure composed of six flexible beams and three rigid masses. Fixed on the ground, outside the structure, two voltage-controlled electromagnetic actuators are used for vibration control. To model the flexible beams, unidimensional finite...... elements were used. Nonlinear equations for the actuator electromagnetic force, noise in the position sensor, time delays for the control signal update and voltage saturation were also considered in the model. For controlling purposes, a discrete linear quadratic regulator combined with a predictive full......-order discrete linear observer was employed. Results of numerical simulations, where the structure is submitted to an impulsive disturbance force and to a harmonic force, show that the oscillations can be significantly reduced with the use of the electromagnetic actuators....
Ulker, Fatma Demet
In forward flight, helicopter rotor blades function within a highly complex aerodynamic environment that includes both near-blade and far-blade aerodynamic phenomena. These aerodynamic phenomena cause fluctuating aerodynamic loads on the rotor blades. These loads when coupled with the dynamic characteristics and elastic motion of the blade create excessive amount of vibration. These vibrations degrade helicopter performance, passenger comfort and contributes to high cost maintenance problems. In an effort to suppress helicopter vibration, recent studies have developed active control strategies using active pitch links, flaps, twist actuation and higher harmonic control of the swash plate. In active helicopter vibration control, designing a controller in a computationally efficient way requires accurate reduced-order models of complex helicopter aeroelasticity. In previous studies, controllers were designed using aeroelastic models that were obtained by coupling independently reduced aerodynamic and structural dynamic models. Unfortunately, these controllers could not satisfy stability and performance criteria when implemented in high-fidelity computer simulations or real-time experiments. In this thesis, we present a novel approach that provides accurate time-periodic reduced-order models and time-periodic H2 and H infinity controllers that satisfy the stability and performance criteria. Computational efficiency and the necessity of using the approach were validated by implementing an actively controlled flap strategy. In this proposed approach, the reduced-order models were directly identified from high-fidelity coupled aeroelastic analysis by using the time-periodic subspace identification method. Time-periodic H2 and Hinfinity controllers that update the control actuation at every time step were designed. The control synthesis problem was solved using Linear Matrix Inequality and periodic Riccati Equation based formulations, for which an in-house periodic
Robust control of novel pendulum-type vibration isolation system
Tsai, Meng-Shiun; Sun, Yann-Shuoh; Liu, Chun-Hsieh
2011-08-01
A novel pendulum-type vibration isolation system is proposed consisting of three active cables with embedded piezoelectric actuators and a passive elastomer layer. The dynamic response of the isolation module in the vertical and horizontal directions is modeled using the Lagrangian approach. The validity of the dynamic model is confirmed by comparing the simulation results for the frequency response in the vertical and horizontal directions with the experimental results. An approximate model is proposed to take into account system uncertainties such as payload changes and hysteresis effects. A robust quantitative feedback theory (QFT)-based active controller is then designed to ensure that the active control can achieve a high level of disturbance rejection in the low-frequency range even under variable loading conditions. It is shown that the controller achieves average disturbance rejection of -14 dB in the 2-60 Hz bandwidth range and -35 dB at the resonance frequency. The experimental results confirm that the proposed system achieves a robust vibration isolation performance under the payload in the range of 40-60 kg.
Directory of Open Access Journals (Sweden)
Asan Gani
2010-09-01
Full Text Available Active vibration control of the first three modes of a vibrating cantilever beam using collocated piezoelectric sensor and actuator is examined in this paper. To achieve this, a model based on Euler-Bernoulli beam equation is adopted and extended to the case of three bonded piezoelectric patches that act as sensor, actuator and exciter respectively. A compensated inverse PID controller has been designed and developed to damp first three modes of vibration. Controllers have been designed for each mode and these are later combined in parallel to damp any of the three modes. Individual controller gives better reduction in sensor output for the second and third modes while the combined controller performs better for the first mode. Simulation studies are carried out using MATLAB. These results are compared and verified experimentally and the real-time implementation is carried out with xPC-target toolbox in MATLAB
Berkhoff, Arthur P.; Wesselink, J.M.
2011-01-01
Model errors in multiple-input multiple-output adaptive controllers for reduction of broadband noise and vibrations may lead to unstable systems or increased error signals. In this paper, a combination of high-authority control(HAC)and low-authority control (LAC)is considered for improved
Active Vibration Control of a Monopile Offshore Structure
DEFF Research Database (Denmark)
Nielsen, Søren R. K.; Kirkegaard, Poul Henning; Thesbjerg, L.
1996-01-01
coefficient should be obtained in order to have a relatively small excitation on the cylinder. The drag coefficient can be controlled if the separation points of the boundary layers can be controlled. It is proposed to control the separation points by blowing compressed air out of the holes in the cylinder....... If the natura1 separation points of the boundary layers are rejected by blowing air out of the holes the drag coefficient will increase while it will decrease if it is possible to attach the boundary layer. The results from the experimental test have shown that it is possible to increase the drag coefficient...... with a factor 1.5-2 by blowing air out of the holes in a cylinder vibrating in a stationary water flow....
Inverse problem of the vibrational band gap of periodically supported beam
Shi, Xiaona; Shu, Haisheng; Dong, Fuzhen; Zhao, Lei
2017-04-01
The researches of periodic structures have a long history with the main contents confined in the field of forward problem. In this paper, the inverse problem is considered and an overall frame is proposed which includes two main stages, i.e., the band gap criterion and its optimization. As a preliminary investigation, the inverse problem of the flexural vibrational band gap of a periodically supported beam is analyzed. According to existing knowledge of its forward problem, the band gap criterion is given in implicit form. Then, two cases with three independent parameters, namely the double supported case and the triple one, are studied in detail and the explicit expressions of the feasible domain are constructed by numerical fitting. Finally, the parameter optimization of the double supported case with three variables is conducted using genetic algorithm aiming for the best mean attenuation within specified frequency band.
'NASA Invention of the Year' Controls Noise and Vibration
2007-01-01
Developed at NASA's Langley Research Center, the Macro-Fiber Composite (MFC) is designed to control vibration, noise, and deflections in composite structural beams and panels. Smart Material Corporation specializes in the development of piezocomposite components, and licensed the MFC technology from Langley in 2002. To date, Smart Material Corporation has sold MFCs to over 120 customers, including such industry giants as Volkswagen, Toyota, Honda, BMW, General Electric, and the tennis company, HEAD. The company estimates that its customers have filed at least 100 patents for their various unique uses of the technology. In addition, the company's product portfolio has grown to include piezoceramic fibers and fiber composites, piezoceramic actuators and sensors, and test equipment for these products. It also offers a compact, lightweight power system for MFC testing and validation. Consumer applications already on the market include piezoelectric systems as part of audio speakers, phonograph cartridges and microphones, and recreational products requiring vibration control, such as skis, snowboards, baseball bats, hockey sticks, and tennis racquets.
Fu-yao Zhao; Er-xiang Song; Jun Yang
2015-01-01
The rotary vibration of rigid friction pile can be seen approximately as a central symmetry plane problem in elasticity. The stress general solution of central symmetry plane problem in elasticity can be constructed by technique such as the Laurent expansion of the volume force. This solution has some decoupling, generalized, and convergent properties, and it can be used in stress analysis of the rotary vibration of pile. The analysis results show that the maximum value of displacement will n...
Directory of Open Access Journals (Sweden)
Hakan Yazici
2016-01-01
Full Text Available This paper deals with the design of an observed based optimal state feedback controller having pole location constraints for an active vibration mitigation problem of an aircraft system. An eleven-degree-of-freedom detailed full aircraft mathematical model having active landing gears and a seated pilot body is developed to control and analyze aircraft vibrations caused by runway excitation, when the aircraft is taxiing. Ground induced vibration can contribute to the reduction of pilot’s capability to control the aircraft and cause the safety problem before take-off and after landing. Since the state variables of the pilot body are not available for measurement in practice, an observed based optimal controller is designed via Linear Matrix Inequalities (LMIs approach. In addition, classical LQR controller is designed to investigate effectiveness of the proposed controller. The system is then simulated against the bump and random runway excitation. The simulation results demonstrate that the proposed controller provides significant improvements in reducing vibration amplitudes of aircraft fuselage and pilot’s head and maintains the safety requirements in terms of suspension stroke and tire deflection.
Passive vibration control: a structure-immittance approach
Zhang, Sara Ying; Jiang, Jason Zheng; Neild, Simon A.
2017-05-01
Linear passive vibration absorbers, such as tuned mass dampers, often contain springs, dampers and masses, although recently there has been a growing trend to employ or supplement the mass elements with inerters. When considering possible configurations with these elements broadly, two approaches are normally used: one structure-based and one immittance-based. Both approaches have their advantages and disadvantages. In this paper, a new approach is proposed: the structure-immittance approach. Using this approach, a full set of possible series-parallel networks with predetermined numbers of each element type can be represented by structural immittances, obtained via a proposed general formulation process. Using the structural immittances, both the ability to investigate a class of absorber possibilities together (advantage of the immittance-based approach), and the ability to control the complexity, topology and element values in resulting absorber configurations (advantages of the structure-based approach) are provided at the same time. The advantages of the proposed approach are demonstrated through two case studies on building vibration suppression and automotive suspension design, respectively.
Optimal and robust feedback controller estimation for a vibrating plate
Fraanje, P.R.; Verhaegen, M.; Doelman, N.J.; Berkhoff, A.
2004-01-01
This paper presents a method to estimate the H2 optimal and a robust feedback controller by means of Subspace Model Identification using the internal model control (IMC) approach. Using IMC an equivalent feed forward control problem is obtained, which is solved by the Causal Wiener filter for the H2
Yu, Chang Ho; Seo, Shin Bae; Kang, Seung Rok; Kim, Kyung; Kwon, Tae Kyu
2015-01-01
This study shows the improvement of muscle activity and muscle strength imbalance in the lower extremities through independent exercise loads in vibration platform. Twenty females of age 20 participated in this study. The subjects were divided into WBV group, with more than 10% of muscle strength imbalance between left and right the lower extremities, and control group, with less than 10% of muscle strength imbalance between left and right the lower extremities. As the prior experiment showed, different exercise postures provide different muscular activities. As a result, the highest muscular activity was found to be in the low squat posture. Therefore, the LS posture was selected for the exercise in this experiment. Vibration intensities were applied to dominant muscle and non-dominant muscle, and the vibration frequency was fixed at 25Hz for the WBV group. The control group was asked to perform the same exercise as the WBV group, without stimulated vibration. This exercise was conducted for a total of 4 weeks. As a result, the WBV group which showed an average deviation of 16% before the experiment, tended to decrease approximately to 5%. In this study, vibration exercise using load deviation is shown to be effective in improving the muscle strength imbalance.
Zhen, Chong; Jiffri, Shakir; Li, Daochun; Xiang, Jinwu; Mottershead, John E.
2018-01-01
New output feedback-linearisation theory is presented for the treatment of nonlinear vibration problems by a receptance-based approach. An important aspect is a new formulation for investigating the stability of the zero dynamics. The overall methodology possesses the usual benefits of the receptance method, namely that the system matrices (with associated assumptions and approximations) do not have to be known. In addition, it has the distinction of not requiring the form and parameter values of the nonlinearity when the input and output degrees of freedom are away from the nonlinearity itself. This represents a valuable advance over the conventional time-domain feedback linearisation approach.
Low-frequency vibration control of floating slab tracks using dynamic vibration absorbers
Zhu, Shengyang; Yang, Jizhong; Yan, Hua; Zhang, Longqing; Cai, Chengbiao
2015-09-01
This study aims to effectively and robustly suppress the low-frequency vibrations of floating slab tracks (FSTs) using dynamic vibration absorbers (DVAs). First, the optimal locations where the DVAs are attached are determined by modal analysis with a finite element model of the FST. Further, by identifying the equivalent mass of the concerned modes, the optimal stiffness and damping coefficient of each DVA are obtained to minimise the resonant vibration amplitudes based on fixed-point theory. Finally, a three-dimensional coupled dynamic model of a metro vehicle and the FST with the DVAs is developed based on the nonlinear Hertzian contact theory and the modified Kalker linear creep theory. The track irregularities are included and generated by means of a time-frequency transformation technique. The effect of the DVAs on the vibration absorption of the FST subjected to the vehicle dynamic loads is evaluated with the help of the insertion loss in one-third octave frequency bands. The sensitivities of the mass ratio of DVAs and the damping ratio of steel-springs under the floating slab are discussed as well, which provided engineers with the DVA's adjustable room for vibration mitigation. The numerical results show that the proposed DVAs could effectively suppress low-frequency vibrations of the FST when tuned correctly and attached properly. The insertion loss due to the attachment of DVAs increases as the mass ratio increases, whereas it decreases with the increase in the damping ratio of steel-springs.
Marichal, N.; Tomas-Rodriguez, M.; Hernandez, A.; Castillo, S; Campoy, P.
2014-01-01
In this paper, an intelligent control approach based on neuro-fuzzy systems performance is presented, with the objective of counteracting the vibrations that affect the low-cost vision platform onboard an unmanned aerial system of rotating nature. A scaled dynamical model of a helicopter is used to simulate vibrations on its fuselage. The impact of these vibrations on the low-cost vision system will be assessed and an intelligent control approach will be derived in order to reduce its detrime...
Cheatham, Scott W; Stull, Kyle R; Kolber, Morey J
2017-08-08
The use of foam rollers to provide soft-tissue massage has become a common intervention among health and fitness professionals. Recently, manufacturers have merged the science of vibration therapy and foam rolling with the development of vibrating foam rollers. To date, no peer reviewed investigations have been published on this technology. The purpose of this study was to compare the effects of a vibrating roller and non-vibrating roller intervention on prone knee flexion passive range of motion (ROM) and pressure pain thresholds (PPT) of the quadriceps musculature. Forty-five recreationally active adults were randomly allocated to one of three groups: vibrating roller, non-vibrating roller, and control. Each roll intervention lasted a total of 2 minutes. The control group did not roll. Dependent variables included prone knee flexion ROM and PPT measures. Statistical analysis included parametric and non-parametric tests to measure changes among groups. The vibrating roller demonstrated the greatest increase in PPT (180kPa, p< 0.001), followed by the non-vibrating roller (112kPa, p< 0.001), and control (61kPa, p<0.001). For knee ROM, the vibrating roller demonstrated the greatest increase in ROM (7 degrees, p< 0.001), followed by the non-vibrating roller (5 degrees, p< 0.001), and control (2 degrees, p<0.001). Between groups, there was significant difference in PPT between the vibrating and non-vibrating roller (p=.03) and vibrating roller and control (p<.001). There was also a significant difference between the non-vibrating roller and control (p<.001). For knee ROM, there was no significant difference between the vibrating and non-vibrating roller (p=.31). A significant difference was found between the vibrating roller and control group (p<.001) and non-vibrating roller and control (p<.001). The results suggest that a vibrating roller may increase an individual's tolerance to pain greater than a non-vibrating roller. This investigation should be considered
Dzung Nguyen, Sy; Kim, Wanho; Park, Jhinha; Choi, Seung-Bok
2017-04-01
Vibration control systems using smart dampers (SmDs) such as magnetorheological and electrorheological dampers (MRD and ERD), which are classified as the integrated structure-SmD control systems (ISSmDCSs), have been actively researched and widely used. This work proposes a new controller for a class of ISSmDCSs in which high accuracy of SmD models as well as increment of control ability to deal with uncertainty and time delay are to be expected. In order to achieve this goal, two formualtion steps are required; a non-parametric SmD model based on an adaptive neuro-fuzzy inference system (ANFIS) and a novel fuzzy sliding mode controller (FSMC) which can weaken the model error of the ISSmDCSs and hence provide enhanced vibration control performances. As for the formulation of the proposed controller, first, an ANFIS controller is desgned to identify SmDs using the improved control algorithm named improved establishing neuro-fuzzy system (establishing neuro-fuzzy system). Second, a new control law for the FSMC is designed via Lyapunov stability analysis. An application to a semi-active MRD vehicle suspension system is then undertaken to illustrate and evaluate the effectiveness of the proposed control method. It is demonstrated through an experimental realization that the FSMC proposed in this work shows superior vibration control performance of the vehicle suspension compared to other surveyed controller which have similar structures to the FSMC, such as fuzzy logic and sliding mode control.
Fu, Jie; Li, Peidong; Wang, Yuan; Liao, Guanyao; Yu, Miao
2016-03-01
This paper addresses the problem of micro-vibration control of a precision vibration isolation system with a magnetorheological elastomer (MRE) isolator and fuzzy control strategy. Firstly, a polyurethane matrix MRE isolator working in the shear-compression mixed mode is introduced. The dynamic characteristic is experimentally tested, and the range of the frequency shift and the model parameters of the MRE isolator are obtained from experimental results. Secondly, a new semi-active control law is proposed, which uses isolation structure displacement and relative displacement between the isolation structure and base as the inputs. Considering the nonlinearity of the MRE isolator and the excitation uncertainty of an isolation system, the designed semi-active fuzzy logic controller (FLC) is independent of a system model and is robust. Finally, the numerical simulations and experiments are conducted to evaluate the performance of the FLC with single-frequency and multiple-frequency excitation, respectively, and the experimental results show that the acceleration transmissibility is reduced by 54.04% at most, which verifies the effectiveness of the designed semi-active FLC. Moreover, the advantages of the approach are demonstrated in comparison to the passive control and ON-OFF control.
Huynh, B. H.; Tjahjowidodo, T.; Zhong, Z.-W.; Wang, Y.; Srikanth, N.
2018-01-01
Vortex induced vibration based energy harvesting systems have gained interests in these recent years due to its potential as a low water current energy source. However, the effectiveness of the system is limited only at a certain water current due to the resonance principle that governs the concept. In order to extend the working range, a bistable spring to support the structure is introduced on the system. The improvement on the performance is essentially dependent on the bistable gap as one of the main parameters of the nonlinear spring. A sufficiently large bistable gap will result in a significant performance improvement. Unfortunately, a large bistable gap might also increase a chance of chaotic responses, which in turn will result in diminutive harvested power. To mitigate the problem, an appropriate control structure is required to stabilize the chaotic vibrations of a VIV energy converter with the bistable supporting structure. Based on the nature of the double-well potential energy in a bistable spring, the ideal control structure will attempt to drive the responses to inter-well periodic vibrations in order to maximize the harvested power. In this paper, the OGY control algorithm is designed and implemented to the system. The control strategy is selected since it requires only a small perturbation in a structural parameter to execute the control effort, thus, minimum power is needed to drive the control input. Facilitated by a wake oscillator model, the bistable VIV system is modelled as a 4-dimensional autonomous continuous-time dynamical system. To implement the controller strategy, the system is discretized at a period estimated from the subspace hyperplane intersecting to the chaotic trajectory, whereas the fixed points that correspond to the desired periodic orbits are estimated by the recurrence method. Simultaneously, the Jacobian and sensitivity matrices are estimated by the least square regression method. Based on the defined fixed point and the
High-damping-performance magnetorheological material for passive or active vibration control
Liu, Taixiang; Yang, Ke; Yan, Hongwei; Yuan, Xiaodong; Xu, Yangguang
2016-10-01
Optical assembly and alignment system plays a crucial role for the construction of high-power or high-energy laser facility, which attempts to ignite fusion reaction and go further to make fusion energy usable. In the optical assembly and alignment system, the vibration control is a key problem needs to be well handled and a material with higher damping performance is much desirable. Recently, a new kind of smart magneto-sensitive polymeric composite material, named magnetorheological plastomer (MRP), was synthesized and reported as a high-performance magnetorheological material and this material has a magneto-enhanced high-damping performance. The MRP behaves usually in an intermediate state between fluid-like magnetorheological fluid and solid-like magnetorheological elastomer. The state of MRP, as well as the damping performance of MRP, can be tuned by adjusting the ratio of hard segments and soft segments, which are ingredients to synthesize the polymeric matrix. In this work, a series of MRP are prepared by dispersing micron-sized, magneto-sensitive carbonyl iron powders with related additives into polyurethane-based, magnetically insensitive matrix. It is found that the damping performance of MRP depends much on magnetic strength, shear rate, carbonyl iron content and shear strain amplitude. Especially, the damping capacity of MRP can be tuned in a large range by adjusting external magnetic field. It is promising that the MRP will have much application in passive and active vibration control, such as vibration reduction in optical assembly and alignment system, vibration isolation or absorption in vehicle suspension system, etc.
Position and vibration control of flexible space robots
Lim, Seungchul
This dissertation is concerned with the position and vibration control of flexible articulated space robots consisting of a rigid platform, two flexible arms, and a rigid end-effector carrying a payload, all components being serially connected through revolute joints. The mission is to carry a payload over a prescribed trajectory in the inertial space, while suppressing the elastic vibration of the arms and the rigid-body perturbations. The equations of motion governing the robot dynamics are derived by means of Lagrangian mechanics and they include actuator dynamics. Based on the assumption that the elastic deformations and the rigid-body perturbations are small relative to the nominal trajectory-following rigid-body motions, a perturbation approach is adopted to separate the equations into nonlinear rigid-body equations and linear perturbation equations. The nominal trajectory is planned to conserve the limited actuator resources and keep the platform attitude stationary, by eliminating the inherent kinematic redundancy of the manipulator. By assuming perfect sensing, i.e., all the states are completely accessible, two kinds of controls are designed in discrete time. First, a feedforward control is designed to minimize the persistent disturbance resulting from the nominal motions. Next, a feedback control is synthesized based on the Linear Quadratic Regulator (LQR) theory with a prescribed degree of stability to make the system stable and further enhance the disturbance-rejection performances. These controls are subsequently applied to the case in which only the sensor outputs are available, and they are noisy. A finite number of sensors is assumed. A Kalman filter is designed to estimate the state on the assumption of zero-mean Gaussian white plant and measurement noise. In the real situation, controls are applied to the original plant rather than the linearized model, so that the Linear Quadratic Gaussian (LQG) control combined with robustness recovery methods
Active vibration control using state space LQG and internal model control methods
DEFF Research Database (Denmark)
Mørkholt, Jakob; Elliott, S.J.
1998-01-01
Two ways of designing discrete time robust H2-controllers for feedback broadband active vibration control are compared through computer simulations. The methods are based on different models of disturbance and plant transfer functions, but yield controllers with identical properties. Two simple...... ways of introducing robustness into the H2-design are compared, and finally an efficient way of designing a practical IIR-controller is proposed....
METİN, Muzaffer; GÜÇLÜ, Rahmi
2014-01-01
In this study, a conventional PID type fuzzy controller and parameter adaptive fuzzy controller are designed to control vibrations actively of a light rail transport vehicle which modeled as 6 degree-of-freedom system and compared performances of these two controllers. Rail vehicle model consists of a passenger seat and its suspension system, vehicle body, bogie, primary and secondary suspensions and wheels. The similarity between mathematical model and real system is shown by compar...
Turner, Sarah; Torode, Margaret; Climstein, Mike; Naughton, Geraldine; Greene, David; Baker, Michael K.; Fiatarone Singh, Maria A.
2011-01-01
Purpose. To examine the effects of two doses of low-frequency (12 Hz), low-magnitude (0.3 g), whole body vibration on markers of bone formation and resorption in postmenopausal women. Methods. Women were recruited and randomized into a sham vibration control group, one time per week vibration group (1×/week), or three times per week vibration group (3×/week). Vibration exposure consisted of 20 minutes of intermittent vibration for the 1×/week and 3×/week groups, and sham vibration (vibration group but not in the 1×/wk vibration group compared with sham control (P vibration 3×/week for eight weeks in postmenopausal women results in a significant reduction in NTx/Cr, a marker of bone resorption, when compared with sham vibration exposure. PMID:21772975
Meng, Fanwei; Liu, Chengying; Li, Zhijun; Wang, Liping
2013-01-01
Due to low damping ratio, flat permanent magnet linear synchronous motor's vibration is difficult to be damped and the accuracy is limited. The vibration suppressing results are not good enough in the existing research because only the longitudinal direction vibration is considered while the normal direction vibration is neglected. The parameters of the direct-axis current controller are set to be the same as those of the quadrature-axis current controller commonly. This causes contradiction between signal noise and response. To suppress the vibration, the electromagnetic force model of the flat permanent magnet synchronous linear motor is formulated first. Through the analysis of the effect that direct-axis current noise and quadrature-axis current noise have on both direction vibration, it can be declared that the conclusion that longitudinal direction vibration is only related to the quadrature-axis current noise while the normal direction vibration is related to both the quadrature-axis current noise and direct-axis current noise. Then, the simulation test on current loop with a low-pass filter is conducted and the results show that the low-pass filter can not suppress the vibration but makes the vibration more severe. So a vibration suppressing strategy that the proportional gain of direct-axis current controller adapted according to quadrature-axis reference current is proposed. This control strategy can suppress motor vibration by suppressing direct-axis current noise. The experiments results about the effect of K p and T i on normal direction vibration, longitudinal vibration and the position step response show that this strategy suppresses vibration effectively while the motor's motion performance is not affected. The maximum reduction of vibration can be up to 40%. In addition, current test under rated load condition is also conducted and the results show that the control strategy can avoid the conflict between the direct-axis current and the quadrature
Vibration control using a variable coil-based friction damper
Amjadian, Mohsen; Agrawal, Anil K.
2017-04-01
This paper is focused on the analytical model, design, and simulation of a variable coil-based friction damper (VCBFD) for vibration control of structures. The proposed VCBFD is composed of a soft ferromagnetic plate, made of a linear magnetic material, and two identical thick rectangular air-core coils connected in parallel, each one attached to the plate through a friction pad. The friction force is provided by a normal force produced through an attractive electromagnetic interaction between the air-core coils (ACs) and the soft ferromagnetic plate when sliding relative to each other. The magnitude of the normal force in the damper is varied by a semi-active controller that controls the command current passing through the ACs. To demonstrate the efficiency of the proposed VCBFD and its semi-active controller, it has been implemented on a two-degree-of-freedom (2DOF) base-isolated model subjected to the acceleration components of three records of strong earthquakes. The results show that the performance of the proposed VCBFD in its passive-on mode is overshadowed by the undesirable effects of stick-slip motion. However, the damper in its semi-active mode is more successful in not only reducing the displacement of the base-floor but also avoiding stick-slip motion, due to acting completely in its sliding phase.
Active vibration and noise control of vibro-acoustic system by using PID controller
Li, Yunlong; Wang, Xiaojun; Huang, Ren; Qiu, Zhiping
2015-07-01
Active control simulation of the acoustic and vibration response of a vibro-acoustic cavity of an airplane based on a PID controller is presented. A full numerical vibro-acoustic model is developed by using an Eulerian model, which is a coupled model based on the finite element formulation. The reduced order model, which is used to design the closed-loop control system, is obtained by the combination of modal expansion and variable substitution. Some physical experiments are made to validate and update the full-order and the reduced-order numerical models. Optimization of the actuator placement is employed in order to get an effective closed-loop control system. For the controller design, an iterative method is used to determine the optimal parameters of the PID controller. The process is illustrated by the design of an active noise and vibration control system for a cavity structure. The numerical and experimental results show that a PID-based active control system can effectively suppress the noise inside the cavity using a sound pressure signal as the controller input. It is also possible to control the noise by suppressing the vibration of the structure using the structural displacement signal as the controller input. For an airplane cavity structure, considering the issue of space-saving, the latter is more suitable.
Control concepts for an active vibration isolation system
Kerber, F.; Hurlebaus, S.; Beadle, B. M.; Stobener, U.
2007-01-01
In the fields of high-resolution metrology and manufacturing, effective anti-vibration measures are required to obtain precise and repeatable results. This is particularly true when the amplitudes of ambient vibration and the dimensions of the investigated or manufactured structure are comparable,
Directory of Open Access Journals (Sweden)
Qing-hua Zu
2015-01-01
Full Text Available The damping characteristics of the traditional dual mass flywheel (DMF cannot be changed and can only meet one of the damping requirements. Given that the traditional DMF cannot avoid the resonance interval in start/stop conditions, it tends to generate high-resonance amplitude, which reduces the lifetime of a vehicle’s parts and leads to vehicle vibration and noise. The problems associated with the traditional DMF can be solved through the magnetorheological fluid dual mass flywheel (MRF-DMF, which was designed in this study with adjustable damping performance under different conditions. The MRF-DMF is designed based on the rheological behavior of the magnetorheological fluid (MRF, which can be changed by magnetic field strength. The damping torque of the MRF-DMF, which is generated by the MRF effect, is derived in detail. Thus, the cosimulation between the drivetrain model built in AMESim and the control system model developed in Simulink is conducted. The controller of MRF-DMF is developed, after which the torsional vibration control test of drivetrain is carried out. The cosimulation and test results indicate that MRF-DMF with the controller effectively isolates torque fluctuation of the engine in the driving condition and exhibits high performance in suppressing the resonance amplitude in the start/stop conditions.
Control of Rotor-Blade Coupled Vibrations Using Shaft-Based Actuation
DEFF Research Database (Denmark)
Christensen, Rene H.; Santos, Ilmar
2006-01-01
When implementing active control into bladed rotating machines aiming at reducing blade vibrations, it can be shown that blade as well as rotor vibrations can in fact be controlled by the use of only shaft-based actuation. Thus the blades have to be deliberately mistuned. This paper investigates...... of modal controllability and observability converge toward steady levels as the degree of mistuning is increased. Finally, experimental control results are presented to prove the theoretical conclusions and to show the feasibility of controlling rotor and blade vibrations by means of shaft-based actuation...
SOLUTION TO THE PROBLEM OF THERMOELASTIC VIBRATION OF A PLATE IN SPECIAL BOUNDARY CONDITIONS
Directory of Open Access Journals (Sweden)
Egorychev Oleg Aleksandrovich
2012-10-01
Full Text Available Operating conditions of uneven non-stationary heating can cause changes in physical and mechanical properties of materials. The awareness of the value and nature of thermal stresses is needed to perform a comprehensive analysis of structural strength. The authors provide their solution to the problem of identification of natural frequencies of vibrations of rectangular plates, whenever a thermal factor is taken into account. In the introductory section of the paper, the authors provide the equation describing the thermoelastic vibration of a plate and set the initial and boundary conditions. Furthermore, the authors provide a frequency equation derivation for the problem that has an analytical solution available (if all edges are simply supported at zero temperature. The equation derived by the authors has no analytical solution and can be solved only numerically. In the middle of the paper, the authors describe a method of frequency equation derivation for plates exposed to special boundary conditions, if the two opposite edges are simply supported at zero temperature, while the two other edges have arbitrary types of fixation and arbitrary thermal modes. For this boundary condition derived as a general solution, varying fixation of the two edges makes it possible to obtain transcendental trigonometric equations reducible to algebraic frequency equations by using expending in series. Thus, the obtaining frequency equations different from the general solution becomes possible for different types of boundary conditions. The final section of the paper covers the practical testing of the described method for the problem that has an analytical solution (all edges are simply supported at zero temperature as solved above. An approximate equation provided in the research leads to the analytical solution that is already available.
Piezoelectric actuators in the active vibration control system of journal bearings
Tůma, J.; Šimek, J.; Mahdal, M.; Pawlenka, M.; Wagnerova, R.
2017-07-01
The advantage of journal hydrodynamic bearings is high radial load capacity and operation at high speeds. The disadvantage is the excitation of vibrations, called an oil whirl, after crossing a certain threshold of the rotational speed. The mentioned vibrations can be suppressed using the system of the active vibration control with piezoactuators which move the bearing bushing. The motion of the bearing bushing is controlled by a feedback controller, which responds to the change in position of the bearing journal which is sensed by a pair of capacitive sensors. Two stacked linear piezoactuators are used to actuate the position of the bearing journal. This new bearing enables not only to damp vibrations but also serves to maintain the desired bearing journal position with an accuracy of micrometers. The paper will focus on the effect of active vibration control on the performance characteristics of the journal bearing.
Advances in structural vibration control application of magneto-rheological visco-elastomer
Directory of Open Access Journals (Sweden)
Zuguang Ying
2017-03-01
Full Text Available Magneto-rheological visco-elastomer (MRVE as a new smart material developed in recent years has several significant advantages over magneto-rheological liquid. The adjustability of structural dynamics to random environmental excitations is required in vibration control. MRVE can supply considerably adjustable damping and stiffness for structures, and the adjustment of dynamic properties is achieved only by applied magnetic fields with changeless structure design. Increasing researches on MRVE dynamic properties, modeling, and vibration control application are presented. Recent advances in MRVE dynamic properties and structural vibration control application including composite structural vibration mitigation under uniform magnetic fields, vibration response characteristics improvement through harmonic parameter distribution, and optimal bounded parametric control design based on the dynamical programming principle are reviewed. Relevant main methods and results introduced are beneficial to understanding and researches on MRVE application and development.
Active automotive engine vibration isolation using feedback control
Olsson, Claes
2006-06-01
Large frequency band feedback active automotive engine vibration isolation is considered. A MIMO (multi-input multi-output) controller design for an active engine suspension system has been performed making use of a virtual development environment for design, analysis, and co-simulation based closed-loop verification. Utilising relevant control object dynamic modelling, this design strategy provides a powerful opportunity to deal with various plant dynamics, such as structural flexibility and nonlinear characteristics where the main objective is to approach the actual physical characteristics for design and verification in early design phases where no prototypes are yet physically available. H2 loop shaping technique proves to be powerful when achieving the desired frequency dependent loop gain while ensuring closed-loop stability. However, to achieve closed-loop stability two kinds of nonlinearities have to be taken into account. Those are nonlinear material characteristics of the engine mounts and large angular engine displacements. It is demonstrated how the adopted design strategy facilitates the investigation of the latter nonlinearity's impact on closed-loop characteristics. To deal with the nonlinearities, gain scheduling has been used.
Active vibration control of a single-stage spur gearbox
Dogruer, C. U.; Pirsoltan, Abbas K.
2017-02-01
The dynamic transmission error between driving and driven gears of a gear mechanism with torsional mode is induced by periodic time-varying mesh stiffness. In this study, to minimize the adverse effect of this time-varying mesh stiffness, a nonlinear controller which adjusts the torque acting on the driving gear is proposed. The basic approach is to modulate the input torque such that it compensates the periodic change in mesh stiffness. It is assumed that gears are assembled with high precision and gearbox is analyzed by a finite element software to calculate the mesh stiffness curve. Thus, change in the mesh stiffness, which is inherently nonlinear, can be predicted and canceled by a feed-forward loop. Then, remaining linear dynamics is controlled by pole placement techniques. Under these premises, it is claimed that any acceleration and velocity profile of the input shaft can be tracked accurately. Thereby, dynamic transmission error is kept to a minimum possible value and a spur gearbox, which does not emit much noise and vibration, is designed.
Vibration control of rotor-bearing system by controlled squeeze-film damper bearings
He, Erming; Gu, Jialiu
1992-07-01
A new vibration control scheme for rotor-bearing systems is presented which offers many advantages over the scheme proposed by Gu (1990). Due to the nonlinear state feedback, closed-loop control becomes possible. Thus control can be readily adjusted in accordance with transient state information. Optimal structure parameters are determined by the optimal control law. The control force is applied on line; by merely adjusting CSFDB structure parameters, control forces can be applied to the system. The feasibility of the present design is confirmed by simulation, which is performed for a flexible Jeffcott rotor elastically supported at both ends on identical CSFDBs.
Vibration Control of Buildings Using Magnetorheological Damper: A New Control Algorithm
Directory of Open Access Journals (Sweden)
Aly Mousaad Aly
2013-01-01
Full Text Available This paper presents vibration control of a building model under earthquake loads. A magnetorheological (MR damper is placed in the building between the first floor and ground for seismic response reduction. A new control algorithm to command the MR damper is proposed. The approach is inspired by a quasi-bang-bang controller; however, the proposed technique gives weights to control commands in a fashion that is similar to a fuzzy logic controller. Several control algorithms including decentralized bang-bang controller, Lyapunov controller, modulated homogeneous friction controller, maximum energy dissipation controller, and clipped-optimal controller are used for comparison. The new controller achieved the best reduction in maximum interstory drifts and maximum absolute accelerations over all the control algorithms presented. This reveals that the proposed controller with the MR damper is promising and may provide the best protection to the building and its contents.
The Comparative Study of Vibration Control of Flexible Structure Using Smart Materials
Directory of Open Access Journals (Sweden)
Juntao Fei
2010-01-01
Full Text Available Considerable attention has been devoted to active vibration control using intelligent materials as PZT actuators. This paper presents results on active control schemes for vibration suppression of flexible steel cantilever beam with bonded piezoelectric actuators. The PZT patches are surface bonded near the fixed end of flexible steel cantilever beam. The dynamic model of the flexible steel cantilever beam is derived. Active vibration control methods: optimal PID control, strain rate feedback control (SRF, and positive position feedback control (PPF are investigated and implemented using xPC Target real-time system. Experimental results demonstrate that the SRF and PPF controls have better performance in suppressing the vibration of cantilever steel beam than the optimal PID control.
Yang, Jingyu; Lin, Jiahui; Liu, Yuejun; Yang, Kang; Zhou, Lanwei; Chen, Guoping
2017-08-01
It is well known that intelligent control theory has been used in many research fields, novel modeling method (DROMM) is used for flexible rectangular active vibration control, and then the validity of new model is confirmed by comparing finite element model with new model. In this paper, taking advantage of the dynamics of flexible rectangular plate, a two-loop sliding mode (TSM) MIMO approach is introduced for designing multiple-input multiple-output continuous vibration control system, which can overcome uncertainties, disturbances or unstable dynamics. An illustrative example is given in order to show the feasibility of the method. Numerical simulations and experiment confirm the effectiveness of the proposed TSM MIMO controller.
Active Vibration Control of the Smart Plate Using Artificial Neural Network Controller
Directory of Open Access Journals (Sweden)
Mohit
2015-01-01
Full Text Available The active vibration control (AVC of a rectangular plate with single input and single output approach is investigated using artificial neural network. The cantilever plate of finite length, breadth, and thickness having piezoelectric patches as sensors/actuators fixed at the upper and lower surface of the metal plate is considered for examination. The finite element model of the cantilever plate is utilized to formulate the whole strategy. The compact RIO and MATLAB simulation software are exercised to get the appropriate results. The cantilever plate is subjected to impulse input and uniform white noise disturbance. The neural network is trained offline and tuned with LQR controller. The various training algorithms to tune the neural network are exercised. The best efficient algorithm is finally considered to tune the neural network controller designed for active vibration control of the smart plate.
Nyawako, Donald; Reynolds, Paul; Hudson, Emma
2016-04-01
Feedback control strategies are desirable for disturbance rejection of human-induced vibrations in civil engineering structures as human walking forces cannot easily be measured. In relation to human-induced vibration control studies, most past researches have focused on floors and footbridges and the widely used linear controller implemented in the trials has been the direct velocity feedback (DVF) scheme. With appropriate compensation to enhance its robustness, it has been shown to be effective at damping out the problematic modes of vibration of the structures in which the active vibration control systems have been implemented. The work presented here introduces a disturbance observer (DOB) that is used with an outer-loop DVF controller. Results of analytical studies presented in this work based on the dynamic properties of a walkway bridge structure demonstrate the potential of this approach for enhancing the vibration mitigation performance offered by a purely DVF controller. For example, estimates of controlled frequency response functions indicate improved attenuation of vibration around the dominant frequency of the walkway bridge structure as well as at higher resonant frequencies. Controlled responses from three synthesized walking excitation forces on a walkway bridge structure model show that the inclusion of the disturbance observer with an outer loop DVF has potential to improve on the vibration mitigation performance by about 3.5% at resonance and 6-10% off-resonance. These are realised with hard constraints being imposed on the low frequency actuator displacements.
Active Vibration Control of a Railway Vehicle Carbody Using Piezoelectric Elements
Molatefi, Habibollah; Ayoubi, Pejman; Mozafari, Hozhabr
2017-07-01
In recent years and according to modern transportation development, rail vehicles are manufactured lighter to achieve higher speed and lower transportation costs. On the other hand, weight reduction of rail vehicles leads to increase the structural vibration. In this study, Active Vibration Control of a rail vehicle using piezoelectric elements is investigated. The optimal control employed as the control approach regard to the first two modes of vibration. A simplified Car body structure is modeled in Matlab using the finite element theory by considering six DOF beam element and then the Eigen functions and mode shapes are derived. The surface roughness of different classes of rail tracks have been obtained using random vibration theory and applied to the secondary suspension as the excitation of the structure; Then piezoelectric mounted where the greatest moments were captured. The effectiveness of Piezoelectric in structural vibrations attenuation of car body is demonstrated through the state space equations and its effect on modal coefficient.
Vibration Control of Novel Passive Multi-joints Rotational Friction Dampers
DEFF Research Database (Denmark)
Mualla, Imad H.; Koss, Holger
2017-01-01
This work presents a novel passive friction damper for vibration control of structures. The device is designed to dissipate input energy and protect buildings, especially large and tall buildings from structural and non-structural damage during moderate and severe vibration caused by earthquakes...
DEFF Research Database (Denmark)
Nicoletti, Rodrigo; Santos, Ilmar
2002-01-01
The use of fluid power to reduce and control rotor vibration in rotating machines is investigated. An active hybrid bearing is studied, whose main objective is to reduce wear and vibration between rotating and stationary machinery parts. By injecting pressurised oil into the oil film, through ori...
Balanced calibration of resonant shunt circuits for piezoelectric vibration control
DEFF Research Database (Denmark)
Høgsberg, Jan; Krenk, Steen
2012-01-01
Shunting of piezoelectric transducers and suitable electric circuits constitutes an effective passive approach to resonant vibration damping of structures. Most common design concepts for resonant resistor-inductor (RL) shunt circuits rely on either maximization of the attainable modal damping...
Analysis and control of the vibration of doubly fed wind turbine
Yu, Manye; Lin, Ying
2017-01-01
The fault phenomena of the violent vibration of certain doubly-fed wind turbine were researched comprehensively, and the dynamic characteristics, load and fault conditions of the system were discussed. Firstly, the structural dynamics analysis of wind turbine is made, and the dynamics mold is built. Secondly, the vibration testing of wind turbine is done with the German test and analysis systems BBM. Thirdly, signal should be analyzed and dealt with. Based on the experiment, spectrum analysis of the motor dynamic balance can be made by using signal processing toolbox of MATLAB software, and the analysis conclusions show that the vibration of wind turbine is caused by dynamic imbalance. The results show that integrating mechanical system dynamics theory with advanced test technology can solve the vibration problem more successfully, which is important in vibration diagnosis of mechanical equipment.
Effect of Vibration on Pain Response to Heel Lance: A Pilot Randomized Control Trial.
McGinnis, Kate; Murray, Eileen; Cherven, Brooke; McCracken, Courtney; Travers, Curtis
2016-12-01
Applied mechanical vibration in pediatric and adult populations has been shown to be an effective analgesic for acute and chronic pain, including needle pain. Studies among the neonatal population are lacking. According to the Gate Control Theory, it is expected that applied mechanical vibration will have a summative effect with standard nonpharmacologic pain control strategies, reducing behavioral and physiologic pain responses to heel lancing. To determine the safety and efficacy of mechanical vibration for relief of heel lance pain among neonates. In this parallel design randomized controlled trial, eligible enrolled term or term-corrected neonates (n = 56) in a level IV neonatal intensive care unit were randomized to receive either sucrose and swaddling or sucrose, swaddling, and vibration for heel lance analgesia. Vibration was applied using a handheld battery-powered vibrator (Norco MiniVibrator, Hz = 92) to the lateral aspect of the lower leg along the sural dermatome throughout the heel lance procedure. Neonatal Pain, Agitation, and Sedation Scale (N-PASS) scores, heart rate, and oxygen saturations were collected at defined intervals surrounding heel lancing. Infants in the vibration group (n = 30) had significantly lower N-PASS scores and more stable heart rates during heel stick (P = .006, P = .037) and 2 minutes after heel lance (P = .002, P = .016) than those in the nonvibration group. There were no adverse behavioral or physiologic responses to applied vibration in the sample. Applied mechanical vibration is a safe and effective method for managing heel lance pain. This pilot study suggests that mechanical vibration warrants further exploration as a nonpharmacologic pain management tool among the neonatal population.
Kim, Heung Soo; Sohn, Jung Woo; Jeon, Juncheol; Choi, Seung-Bok
2013-02-06
In this work, active vibration control of an underwater cylindrical shell structure was investigated, to suppress structural vibration and structure-borne noise in water. Finite element modeling of the submerged cylindrical shell structure was developed, and experimentally evaluated. Modal reduction was conducted to obtain the reduced system equation for the active feedback control algorithm. Three Macro Fiber Composites (MFCs) were used as actuators and sensors. One MFC was used as an exciter. The optimum control algorithm was designed based on the reduced system equations. The active control performance was then evaluated using the lab scale underwater cylindrical shell structure. Structural vibration and structure-borne noise of the underwater cylindrical shell structure were reduced significantly by activating the optimal controller associated with the MFC actuators. The results provide that active vibration control of the underwater structure is a useful means to reduce structure-borne noise in water.
Directory of Open Access Journals (Sweden)
Seung-Bok Choi
2013-02-01
Full Text Available In this work, active vibration control of an underwater cylindrical shell structure was investigated, to suppress structural vibration and structure-borne noise in water. Finite element modeling of the submerged cylindrical shell structure was developed, and experimentally evaluated. Modal reduction was conducted to obtain the reduced system equation for the active feedback control algorithm. Three Macro Fiber Composites (MFCs were used as actuators and sensors. One MFC was used as an exciter. The optimum control algorithm was designed based on the reduced system equations. The active control performance was then evaluated using the lab scale underwater cylindrical shell structure. Structural vibration and structure-borne noise of the underwater cylindrical shell structure were reduced significantly by activating the optimal controller associated with the MFC actuators. The results provide that active vibration control of the underwater structure is a useful means to reduce structure-borne noise in water.
Directory of Open Access Journals (Sweden)
Ze Zhang
2014-01-01
Full Text Available A feedback control method based on an extended state observer (ESO method is implemented to vibration reduction in a typical semiactive suspension (SAS system using a magnetorheological (MR damper as actuator. By considering the dynamic equations of the SAS system and the MR damper model, an active disturbance rejection control (ADRC is designed based on the ESO. Numerical simulation and real-time experiments are carried out with similar vibration disturbances. Both the simulation and experimental results illustrate the effectiveness of the proposed controller in vibration suppression for a SAS system.
Cazzulani, Gabriele; Resta, Ferruccio; Ripamonti, Francesco
2012-04-01
Large mechanical structures are often affected by high level vibrations due to their flexibility. These vibrations can reduce the system performances and lifetime and the use of active vibration control strategies becomes very attractive. In this paper a combination of resonant control and a disturbance estimator is proposed. This solution is able to improve the system performances during the transient motion and also to reject the disturbance forces acting on the system. Both control logics are based on a modal approach, since it allows to describe the structure dynamics considering only few degrees of freedom.
Wind-Induced Vibration Control of Dalian International Trade Mansion by Tuned Liquid Dampers
Directory of Open Access Journals (Sweden)
Hong-Nan Li
2012-01-01
Full Text Available This paper focuses on the wind-induced vibration control of the Dalian international trade mansion (DITM by using the tuned liquid dampers (TLDs. To avoid the intensive computationally demanding problem caused by tens of thousand of degrees of freedom (DOF of the structure in the numerical analysis, the three-dimension finite element model of the DITM is first simplified to the equivalent series multi-DOF system. The wind loading is subsequently simulated by the Davenport model according to the structural environmental condition where the actual samples of wind speed are measured. Following that, the shallow- and deep-water wave theories are applied to model the liquid sloshing inside TLDs, the tank sizing, and required water depth, and numbers of TLDs are given according to the numerical results of different cases. Comparisons between uncontrolled and controlled displacement and acceleration responses of the DITM under wind forces show that the designed shallow tank has higher efficiency than the deep one, which can effectively reduce the structural response amplitudes and enhance the comfortableness of the mansion. The preliminary TLD design procedure presented in this paper could be applied as a reference to the analysis and design of the wind-induced vibration for high-rise buildings using the TLD.
Active vibrations and noise control for turboprop application research program activities
Paonessa, A.; Concilio, A.; Lecce, Leonardo V.
1992-01-01
The objectives of this work include the following: (1) development of active noise control techniques to alleviate inefficiencies and drawbacks of passive noise control approach especially at low frequencies; (2) reduction of structurally radiated noise applying external forces to the vibrating structure by means of force actuators made of piezoelectric material; and (3) reduction of fuselage vibration levels in propeller driven aircraft by means of distributed piezoelectric actuators that are actively controlled.
Active Vibration Control of Plate Partly Treated with ACLD Using Hybrid Control
Directory of Open Access Journals (Sweden)
Dongdong Zhang
2014-01-01
Full Text Available A finite element model of plate partly treated with ACLD treatments is developed based on the constitutive equations of elastic, piezoelectric, viscoelastic materials and Hamilton’s principle. The Golla-Hughes-Mctavish (GHM method is employed to describe the frequency-dependent characteristics of viscoelastic material (VEM. A model reduction is completed by using iterative dynamic condensation and balance model reduction method to design an effective control system. The emphasis is concerned on hybrid (combined feedback/feedforward control system to attenuate the vibration of plates with ACLD treatments. The optimal linear quadratic Gaussian (LQG controller is considered as a feedback channel and the adaptive filtered-reference LMS (FxLMS controller is used as a feedforward channel. They can be utilized individually or in a hybrid way to suppress the vibration of plate/ACLD system. The results show that the hybrid controller which combines feedback/feedforward together can reduce the displacement amplitude of plate/ACLD system subjected to a complicated disturbance substantially without requiring more control effort. Furthermore, the hybrid controller has more rapid and stable convergence rate than the adaptive feedforward FxLMS controller. Meanwhile, perfect robustness to phase error of the cancellation path in feedforward controller and the weight matrices in feedback LQG controller is demonstrated in proposed hybrid controller. Therefore, its application in structural engineering can be highly appreciated.
Directory of Open Access Journals (Sweden)
João C. O. Marra
2016-01-01
Full Text Available Vibratory phenomena have always surrounded human life. The need for more knowledge and domain of such phenomena increases more and more, especially in the modern society where the human-machine integration becomes closer day after day. In that context, this work deals with the development and practical implementation of a hybrid (passive-active/adaptive vibration control system over a metallic beam excited by a broadband signal and under variable temperature, between 5 and 35°C. Since temperature variations affect directly and considerably the performance of the passive control system, composed of a viscoelastic dynamic vibration neutralizer (also called a viscoelastic dynamic vibration absorber, the associative strategy of using an active-adaptive vibration control system (based on a feedforward approach with the use of the FXLMS algorithm working together with the passive one has shown to be a good option to compensate the neutralizer loss of performance and generally maintain the extended overall level of vibration control. As an additional gain, the association of both vibration control systems (passive and active-adaptive has improved the attenuation of vibration levels. Some key steps matured over years of research on this experimental setup are presented in this paper.
Predator control problems in Alaska
US Fish and Wildlife Service, Department of the Interior — One of the important wildlife management activities in Alaska is that of predator control. This simple statement requires some explanation. In the course of these...
Discrete Control Processes, Dynamic Games and Multicriterion Control Problems
Directory of Open Access Journals (Sweden)
Dumitru Lozovanu
2002-07-01
Full Text Available The discrete control processes with state evaluation in time of dynamical system is considered. A general model of control problems with integral-time cost criterion by a trajectory is studied and a general scheme for solving such classes of problems is proposed. In addition the game-theoretical and multicriterion models for control problems are formulated and studied.
Effect of nonlinearity of connecting dampers on vibration control of connected building structures
Directory of Open Access Journals (Sweden)
Masatoshi eKasagi
2016-01-01
Full Text Available The connection of two building structures with dampers is one of effective vibration control systems. In this vibration control system, both buildings have to possess different vibration properties in order to provide a higher vibration reduction performance. In addition to such condition of different vibration properties of both buildings, the connecting dampers also play an important role in the vibration control mechanism. In this paper, the effect of nonlinearity of connecting dampers on the vibration control of connected building structures is investigated in detail. A high-damping rubber damper and an oil damper with and without relief mechanism are treated. It is shown that, while the high-damping rubber damper is effective in a rather small deformation level, the linear oil damper is effective in a relatively large deformation level. It is further shown that, while the oil dampers reduce the response in the same phase as the case without dampers, the high-damping rubber dampers change the phase. The merit is that the high-damping rubber can reduce the damper deformation and keep the sufficient space between both buildings. This can mitigate the risk of building pounding.
Self-Tuning Vibration Control of a Rotational Flexible Timoshenko Arm Using Neural Networks
Directory of Open Access Journals (Sweden)
Minoru Sasaki
2012-01-01
Full Text Available A self-tuning vibration control of a rotational flexible arm using neural networks is presented. To the self-tuning control system, the control scheme consists of gain tuning neural networks and a variable-gain feedback controller. The neural networks are trained so as to make the root moment zero. In the process, the neural networks learn the optimal gain of the feedback controller. The feedback controller is designed based on Lyapunov's direct method. The feedback control of the vibration of the flexible system is derived by considering the time rate of change of the total energy of the system. This approach has the advantage over the conventional methods in the respect that it allows one to deal directly with the system's partial differential equations without resorting to approximations. Numerical and experimental results for the vibration control of a rotational flexible arm are discussed. It verifies that the proposed control system is effective at controlling flexible dynamical systems.
Optimal Placement of Piezoelectric Plates to Control Multimode Vibrations of a Beam
Directory of Open Access Journals (Sweden)
Fabio Botta
2013-01-01
Full Text Available Damping of vibrations is often required to improve both the performance and the integrity of engineering structures, for example, gas turbine blades. In this paper, we explore the possibility of using piezoelectric plates to control the multimode vibrations of a cantilever beam. To develop an effective control strategy and optimize the placement of the active piezoelectric elements in terms of vibrations amplitude reduction, a procedure has been developed and a new analytical solution has been proposed. The results obtained have been corroborated by comparison with the results from a multiphysics finite elements package (COMSOL, results available in the literature, and experimental investigations carried out by the authors.
National Research Council Canada - National Science Library
Wang, Kon-Well
2006-01-01
The objective of this research is to advance the state of the art of vibration control of mistuned periodic structures utilizing the electromechanical coupling and damping characteristics of piezoelectric networking...
Vibration Reduction Methods and Techniques for Rotorcraft Utilizing On-Blade Active Control Project
National Aeronautics and Space Administration — Rotor blades adapted for vibration control have the added benefit of extended blade and rotor life, as well as improved passenger comfort. Approaches that have been...
Spherical tuned liquid damper for vibration control in wind turbines
DEFF Research Database (Denmark)
Chen, Jun-Ling; Georgakis, Christos T.
2015-01-01
A tuned liquid damper (TLD), which consisted of two-layer hemispherical containers, partially filled with water, was investigated as a cost-effective method to reduce the wind-induced vibration of wind turbines. A 1/20 scaled test model was designed to investigate its performance on the shaking...... table. Three groups of equivalent ground accelerations were inputted to simulate the wind-induced dynamic response under different load cases. The influence of rotors and nacelle was assumed to be a concentrated tip mass. A series of free and forced vibration experiments were performed on the shaking...
Directory of Open Access Journals (Sweden)
Ehsan Maani Miandoab
2013-01-01
Full Text Available Two different control methods, namely, adaptive sliding mode control and impulse damper, are used to control the chaotic vibration of a block on a belt system due to the rate-dependent friction. In the first method, using the sliding mode control technique and based on the Lyapunov stability theory, a sliding surface is determined, and an adaptive control law is established which stabilizes the chaotic response of the system. In the second control method, the vibration of this system is controlled by an impulse damper. In this method, an impulsive force is applied to the system by expanding and contracting the PZT stack according to efficient control law. Numerical simulations demonstrate the effectiveness of both methods in controlling the chaotic vibration of the system. It is shown that the settling time of the controlled system using impulse damper is less than that one controlled by adaptive sliding mode control; however, it needs more control effort.
Feed-forward control of gear mesh vibration using piezoelectric actuators
Montague, Gerald T.; Kascak, Albert F.; Palazzolo, Alan; Manchala, Daniel; Thomas, Erwin
1994-01-01
This paper presents a novel means for suppressing gear mesh-related vibrations. The key components in this approach are piezoelectric actuators and a high-frequency, analog feed-forward controller. Test results are presented and show up to a 70-percent reduction in gear mesh acceleration and vibration control up to 4500 Hz. The principle of the approach is explained by an analysis of a harmonically excited, general linear vibratory system.
di Cagno, Alessandra; Giombini, Arrigo; Iuliano, Enzo; Moffa, Stefano; Caliandro, Tiziana; Parisi, Attilio; Borrione, Paolo; Calcagno, Giuseppe; Fiorilli, Giovanni
2017-07-11
The purpose of this study was to investigate the acute effects of whole body vibration at optimal frequency, on postural control in blind subjects. Twenty-four participants, 12 congenital blind males (Experimental Group), and 12 non-disabled males with no visual impairment (Control Groups) were recruited. The area of the ellipse and the total distance of the center of pressure displacements, as postural control parameters, were evaluated at baseline (T0), immediately after the vibration (T1), after 10 min (T10) and after 20 min (T20). Whole body vibration protocol consisted into 5 sets of 1 min for each vibration, with 1 min rest between each set on a vibrating platform. The total distance of center of pressure showed a significant difference (p static balance were found after an acute bout of whole body vibration at optimal frequency in blind subjects and, consequently, whole body vibration may be considered as a safe application in individuals who are blind.
Zapateiro, M.; Luo, N.; Karimi, H. R.; Vehí, J.
2009-08-01
In this paper, we address the problem of designing the semiactive controller for a class of vehicle suspension system that employs a magnetorheological (MR) damper as the actuator. As the first step, an adequate model of the MR damper must be developed. Most of the models found in literature are based on the mechanical behavior of the device, with the Bingham and Bouc-Wen models being the most popular ones. These models can estimate the damping force of the device taking the control voltage and velocity inputs as variables. However, the inverse model, i.e., the model that computes the control variable (generally the voltage) is even more difficult to find due to the numerical complexity that implies the inverse of the nonlinear forward model. In our case, we develop a neural network being able to estimate the control voltage input to the MR damper, which is necessary for producing the optimal force predicted by the controller so as to reduce the vibrations. The controller is designed following the standard backstepping technique. The performance of the control system is evaluated by means of simulations in MATLAB/Simulink.
Summary of semi-initiative and initiative control automobile engine vibration
Qu, Wei; Qu, Zhou
2009-07-01
Engine vibration accounts for around 55% of automobile vibration, separating the engine vibration from transmitting to automobile to the utmost extent is significant for improving NVH performance. Semi-initiative and initiative control of engine vibration is one of the hot spots of technical research in domestic and foreign automobile industry, especially luxury automobiles which adopt this technology to improve amenity and competitiveness. This article refers to a large amount of domestic and foreign related materials, fully introduces the research status of semi-initiative and initiative control suspension of engine vibration suspension and many kinds of structural style, and provides control policy and method of semi-initiative and initiative control suspension system. Compare and analyze the structural style of semi-initiative and initiative control and merits and demerits of current structures of semi-initiative and initiative control of mechanic electrorheological, magnetorheological, electromagnetic actuator, piezoelectric ceramics, electrostriction material, pneumatic actuator etc. Models of power assembly mounting system was classified.Calculation example indicated that reasonable selection of engine mounting system parameters is useful to reduce engine vibration transmission and to increase ride comfort. Finally we brought forward semi-initiative and initiative suspension which might be applied for automobiles, and which has a promising future.
Real-Time Performance of Mechatronic PZT Module Using Active Vibration Feedback Control.
Aggogeri, Francesco; Borboni, Alberto; Merlo, Angelo; Pellegrini, Nicola; Ricatto, Raffaele
2016-09-25
This paper proposes an innovative mechatronic piezo-actuated module to control vibrations in modern machine tools. Vibrations represent one of the main issues that seriously compromise the quality of the workpiece. The active vibration control (AVC) device is composed of a host part integrated with sensors and actuators synchronized by a regulator; it is able to make a self-assessment and adjust to alterations in the environment. In particular, an innovative smart actuator has been designed and developed to satisfy machining requirements during active vibration control. This study presents the mechatronic model based on the kinematic and dynamic analysis of the AVC device. To ensure a real time performance, a H2-LQG controller has been developed and validated by simulations involving a machine tool, PZT actuator and controller models. The Hardware in the Loop (HIL) architecture is adopted to control and attenuate the vibrations. A set of experimental tests has been performed to validate the AVC module on a commercial machine tool. The feasibility of the real time vibration damping is demonstrated and the simulation accuracy is evaluated.
Vibration control of an elastic strip by a singular force
Indian Academy of Sciences (India)
MS received 10 September 2008; revised 27 August 2009; accepted 17 December. 2009. Abstract. Vibration characteristics of an elastic plate in the shape of an infinite strip are changed by applying a lateral concentrated force to the plate. The homo- geneous, isotropic, elastic plate is infinite in the x-direction and the sides ...
Vibration control of an elastic strip by a singular force
Indian Academy of Sciences (India)
Vibration characteristics of an elastic plate in the shape of an inﬁnite strip are changed by applying a lateral concentrated force to the plate. The homogeneous, isotropic, elastic plate is inﬁnite in the -direction and the sides are simply supported. The size of the force is changed in proportion to the displacement measured at ...
Actuator Control of Edgewise Vibrations in Wind Turbine Blades
DEFF Research Database (Denmark)
Staino, A.; Basu, B.; Nielsen, Søren R.K.
2012-01-01
Edgewise vibrations with low aerodynamic damping are of particular concern in modern multi-megawatt wind turbines, as large amplitude cyclic oscillations may signiﬁcantly shorten the life-time of wind turbine components, and even lead to structural damages or failures. In this paper, a new blade ...
Semiactive Vibration Control of a Wind Turbine Tower using an MR Damper
DEFF Research Database (Denmark)
Kirkegaard, Poul Henning; Nielsen, Søren R. K.; Poulsen, B. L.
2002-01-01
For fatigue vibration reduction modern wind turbines are installed with different kind of passive systems such as a tuned mass damper or a tuned liquid damper. However, passive control systems are limited because they cannot adapt to broadbanded loading conditions, i.e. they perform well...... or semiactive system for reducing the fatigue will be more optimal than a passive control system. This paper presents a numerically and experimentally investigation of semiactive vibration control of wind turbine tower vibrations by using a magnetorheological (MR) fluid damper. Numerical simulations as well...... as experimental laboratory results indicate that the MR damper approach is superior to a traditional tuned mass damper for reducing the vibration of wind turbine towers....
Control model for dampening hand vibrations using information of internal and external coordinates.
Togo, Shunta; Kagawa, Takahiro; Uno, Yoji
2015-01-01
In the present study, we investigate a control mechanism that dampens hand vibrations. Here, we propose a control method with two components to suppress hand vibrations. The first is a passive suppression method that lowers the joint stiffness to passively dampen the hand vibrations. The second is an active suppression method that adjusts an equilibrium point based on skyhook control to actively dampen the hand vibrations. In a simulation experiment, we applied these two methods to dampen hand vibrations during the shoulder's horizontal oscillation. We also conducted a measurement experiment wherein a subject's shoulder was sinusoidally oscillated by a platform that generated horizontal oscillations. The results of the measurement experiments showed that the jerk of each part of the arm in a task using a cup filled with water was smaller than the shoulder jerk and that in a task with a cup filled with stones was larger than the shoulder jerk. Moreover, the amplitude of the hand trajectory in both horizontal and vertical directions was smaller in a task using a cup filled with water than in a task using a cup filled with stones. The results of the measurement experiments were accurately reproduced by the active suppression method based on skyhook control. These results suggest that humans dampen hand vibrations by controlling the equilibrium point through the information of the external workspace and the internal body state rather than by lowering joint stiffness only by using internal information.
Control model for dampening hand vibrations using information of internal and external coordinates.
Directory of Open Access Journals (Sweden)
Shunta Togo
Full Text Available In the present study, we investigate a control mechanism that dampens hand vibrations. Here, we propose a control method with two components to suppress hand vibrations. The first is a passive suppression method that lowers the joint stiffness to passively dampen the hand vibrations. The second is an active suppression method that adjusts an equilibrium point based on skyhook control to actively dampen the hand vibrations. In a simulation experiment, we applied these two methods to dampen hand vibrations during the shoulder's horizontal oscillation. We also conducted a measurement experiment wherein a subject's shoulder was sinusoidally oscillated by a platform that generated horizontal oscillations. The results of the measurement experiments showed that the jerk of each part of the arm in a task using a cup filled with water was smaller than the shoulder jerk and that in a task with a cup filled with stones was larger than the shoulder jerk. Moreover, the amplitude of the hand trajectory in both horizontal and vertical directions was smaller in a task using a cup filled with water than in a task using a cup filled with stones. The results of the measurement experiments were accurately reproduced by the active suppression method based on skyhook control. These results suggest that humans dampen hand vibrations by controlling the equilibrium point through the information of the external workspace and the internal body state rather than by lowering joint stiffness only by using internal information.
Flight Control of Biomimetic Air Vehicles Using Vibrational Control and Averaging
Tahmasian, Sevak; Woolsey, Craig A.
2017-08-01
A combination of vibrational inputs and state feedback is applied to control the flight of a biomimetic air vehicle. First, a control strategy is developed for longitudinal flight, using a quasi-steady aerodynamic model and neglecting wing inertial effects. Vertical and forward motion is controlled by modulating the wings' stroke and feather angles, respectively. Stabilizing control parameter values are determined using the time-averaged dynamic model. Simulations of a system resembling a hawkmoth show that the proposed controller can overcome modeling error associated with the wing inertia and small parameter uncertainties when following a prescribed trajectory. After introducing the approach through an application to longitudinal flight, the control strategy is extended to address flight in three-dimensional space.
Off-resonant vibrational excitation: Orientational dependence and spatial control of photofragments
DEFF Research Database (Denmark)
Machholm, Mette; Henriksen, Niels Engholm
2000-01-01
-dependent response to the IR fields is due to the anharmonicity of the potential. A subsequent ultraviolet laser pulse in resonance at the outer turning point of the vibrational motion can then dissociate the oscillating molecules, all with the same orientation, leading to spatial control of the photofragment......Off-resonant and resonant vibrational excitation with short intense infrared (IR) laser pulses creates localized oscillating wave packets, but differs by the efficiency of the excitation and surprisingly by the orientational dependence. Orientational selectivity of the vibrational excitation...
Rice, David A; McNair, Peter J; Lewis, Gwyn N
2011-01-01
A consequence of knee joint osteoarthritis (OA) is an inability to fully activate the quadriceps muscles, a problem termed arthrogenic muscle inhibition (AMI). AMI leads to marked quadriceps weakness that impairs physical function and may hasten disease progression. The purpose of the present study was to determine whether γ-loop dysfunction contributes to AMI in people with knee joint OA. Fifteen subjects with knee joint OA and 15 controls with no history of knee joint pathology participated in this study. Quadriceps and hamstrings peak isometric torque (Nm) and electromyography (EMG) amplitude were collected before and after 20 minutes of 50 Hz vibration applied to the infrapatellar tendon. Between-group differences in pre-vibration torque were analysed using a one-way analysis of covariance, with age, gender and body mass (kg) as the covariates. If the γ-loop is intact, vibration should decrease torque and EMG levels in the target muscle; if dysfunctional, then torque and EMG levels should not change following vibration. One-sample t tests were thus undertaken to analyse whether percentage changes in torque and EMG differed from zero after vibration in each group. In addition, analyses of covariance were utilised to analyse between-group differences in the percentage changes in torque and EMG following vibration. Pre-vibration quadriceps torque was significantly lower in the OA group compared with the control group (P = 0.005). Following tendon vibration, quadriceps torque (P 0.299). Hamstrings torque and EMG amplitude were unchanged in both groups (all P > 0.204). The vibration-induced changes in quadriceps torque and EMG were significantly different between the OA and control groups (all P torque or EMG (all P > 0.554). γ-loop dysfunction may contribute to AMI in individuals with knee joint OA, partially explaining the marked quadriceps weakness and atrophy that is often observed in this population.
Sohn, Jung Woo; Jeon, Juncheol; Choi, Seung-Bok
2014-10-01
Vibration control performance of the ring-stiffened cylindrical shell structure is experimentally evaluated in this work. In order to achieve high control performance, advanced flexible piezoelectric actuator whose commercial name is Macro-Fiber Composite (MFC) is adapted to the shell structure. Governing equation is derived by finite element method and dynamic characteristics are investigated from the modal analysis results. Ring-stiffened cylindrical shell structure is then manufactured and modal test is conducted to verify modal analysis results. An optimal controller is designed and experimentally realized to the proposed shell structure system. Vibration control performance is experimentally evaluated in time domain and verified by simulated control results.
Wibowo, Zakaria, Lambang, Lullus; Triyono, Muhayat, Nurul
2016-03-01
The most effective chassis control system for improving vehicle safety during severe braking is anti-lock braking system (ABS). Antilock effect can be gained by vibrate the pad brake at 7 to 20 cycle per second. The aim of this study is to design a new method of antilock braking system with membrane elastic vibrated by solenoid. The influence of the pressure fluctuations of brake fluid is investigated. Vibration data is collected using a small portable accelerometer-slam stick. The experiment results that the vibration of brake pad caused by controlled solenoid excitation at 10 Hz is obtained by our new method. The result of measurements can be altered by varying brake fluid pressure.
Energy Technology Data Exchange (ETDEWEB)
Wibowo,, E-mail: wibowo-uns@yahoo.com; Zakaria,, E-mail: zakaaria27@gmail.com; Lambang, Lullus, E-mail: lulus-l@yahoo.com; Triyono,, E-mail: tyon-bila@yahoo.co.id; Muhayat, Nurul, E-mail: nurulmuhayat@ymail.com [Mechanical Engineering Department, Sebelas Maret University, Surakarta 57128 (Indonesia)
2016-03-29
The most effective chassis control system for improving vehicle safety during severe braking is anti-lock braking system (ABS). Antilock effect can be gained by vibrate the pad brake at 7 to 20 cycle per second. The aim of this study is to design a new method of antilock braking system with membrane elastic vibrated by solenoid. The influence of the pressure fluctuations of brake fluid is investigated. Vibration data is collected using a small portable accelerometer-slam stick. The experiment results that the vibration of brake pad caused by controlled solenoid excitation at 10 Hz is obtained by our new method. The result of measurements can be altered by varying brake fluid pressure.
Fabrication of Biocompatible, Vibrational Magnetoelastic Materials for Controlling Cellular Adhesion
Directory of Open Access Journals (Sweden)
Rupak M. Rajachar
2012-02-01
Full Text Available This paper describes the functionalization of magnetoelastic (ME materials with Parylene-C coating to improve the surface reactivity to cellular response. Previous study has demonstrated that vibrating ME materials were capable of modulating cellular adhesion when activated by an externally applied AC magnetic field. However, since ME materials are not inherently biocompatible, surface modifications are needed for their implementation in biological settings. Here, the long-term stability of the ME material in an aqueous and biological environment is achieved by chemical-vapor deposition of a conformal Parylene-C layer, and further functionalized by methods of oxygen plasma etching and protein adsorption. In vitro cytotoxicity measurement and characterization of the vibrational behavior of the ME materials showed that Parylene-C coatings of 10 µm or greater could prevent hydrolytic degradation without sacrificing the vibrational behavior of the ME material. This work allows for long-term durability and functionality of ME materials in an aqueous and biological environment and makes the potential use of this technology in monitoring and modulating cellular behavior at the surface of implantable devices feasible.
VIBRATION REDUCTION ON SINGLE-LINK FLEXIBLE MANIPULATOR USING H∞ CONTROL
Directory of Open Access Journals (Sweden)
Roberd Saragih
2012-06-01
Full Text Available This paper is concerned with the vibration and position control of a single link flexible manipulator. Robot link manipulators are widely used in various industrial applications. It is desirable to build light weight flexible manipulators. Light flexible manipulators have a variety of applications, most significantly in space exploration,manufacturing automation, construction, mining, and hazardous operation. Timoshenko beam theory is used to derive mathematical model of a flexible manipulator. The dynamic equations of motion are obtained using the Lagrange's formulation of dynamics.The H∞ controller is designed for vibration and position control of the system. Simulations are presented and show that vibration and position control of a single flexible link can be controlled with the designed H∞ controller.
Birs, Isabela R.; Folea, Silviu; Copot, Dana; Prodan, Ovidiu; Muresan, Cristina-I.
2017-01-01
The smart beam is widely used as a means of studying the dynamics and active vibration suppression possibilities in aircraft wings. The advantages obtained through this approach are numerous, among them being aircraft stability and manoeuvrability, turbulence immunity, passenger safety and reduced fatigue damage. The paper presents the tuning of two controllers: Linear Quadratic Regulator and Fractional Order Proportional Derivative controller. The active vibration control methods were tested on a smart beam, vibrations being mitigated through piezoelectric patches. The obtained experimental results are compared in terms of settling time and control effort, experimentally proving that both types of controllers can be successfully used to reduce oscillations. The analysis in this paper provides for a necessary premise regarding the tuning of a fractional order enhanced Linear Quadratic Regulator, by combining the advantages of both control strategies.
Petrenko, Taras; Rauhut, Guntram
2017-03-28
Vibrational configuration interaction theory is a common method for calculating vibrational levels and associated IR and Raman spectra of small and medium-sized molecules. When combined with appropriate configuration selection procedures, the method allows the treatment of configuration spaces with up to 1010 configurations. In general, this approach pursues the construction of the eigenstates with significant contributions of physically relevant configurations. The corresponding eigenfunctions are evaluated in the subspace of selected configurations. However, it can easily reach the dimension which is not tractable for conventional eigenvalue solvers. Although Davidson and Lanczos methods are the methods of choice for calculating exterior eigenvalues, they usually fall into stagnation when applied to interior states. The latter are commonly treated by the Jacobi-Davidson method. This approach in conjunction with matrix factorization for solving the correction equation (CE) is prohibitive for larger problems, and it has limited efficiency if the solution of the CE is based on Krylov's subspace algorithms. We propose an iterative subspace method that targets the eigenvectors with significant contributions to a given reference vector and is based on the optimality condition for the residual norm corresponding to the error in the solution vector. The subspace extraction and expansion are modified according to these principles which allow very efficient calculation of interior vibrational states with a strong multireference character in different vibrational structure problems. The convergence behavior of the method and its performance in comparison with the aforementioned algorithms are investigated in a set of benchmark calculations.
Petrenko, Taras; Rauhut, Guntram
2017-03-01
Vibrational configuration interaction theory is a common method for calculating vibrational levels and associated IR and Raman spectra of small and medium-sized molecules. When combined with appropriate configuration selection procedures, the method allows the treatment of configuration spaces with up to 1010 configurations. In general, this approach pursues the construction of the eigenstates with significant contributions of physically relevant configurations. The corresponding eigenfunctions are evaluated in the subspace of selected configurations. However, it can easily reach the dimension which is not tractable for conventional eigenvalue solvers. Although Davidson and Lanczos methods are the methods of choice for calculating exterior eigenvalues, they usually fall into stagnation when applied to interior states. The latter are commonly treated by the Jacobi-Davidson method. This approach in conjunction with matrix factorization for solving the correction equation (CE) is prohibitive for larger problems, and it has limited efficiency if the solution of the CE is based on Krylov's subspace algorithms. We propose an iterative subspace method that targets the eigenvectors with significant contributions to a given reference vector and is based on the optimality condition for the residual norm corresponding to the error in the solution vector. The subspace extraction and expansion are modified according to these principles which allow very efficient calculation of interior vibrational states with a strong multireference character in different vibrational structure problems. The convergence behavior of the method and its performance in comparison with the aforementioned algorithms are investigated in a set of benchmark calculations.
DEFF Research Database (Denmark)
Olsen, Thomas; Schiøtz, Jakob
2010-01-01
We propose a mechanism which allows one to control the transmission of single electrons through a molecular junction. The principle utilizes the emergence of transmission sidebands when molecular vibrational modes are coupled to the electronic state mediating the transmission. We will show that i....... As an example we perform a density-functional theory analysis of a benzene molecule between two Au(111) contacts and show that exciting a particular vibrational mode can give rise to transmission of a single electron....
Chen, G.; Zheng, Q.; Coleman, M.; Weerakoon, S.
1983-01-01
This paper briefly reviews convergent finite difference schemes for hyperbolic initial boundary value problems and their applications to boundary control systems of hyperbolic type which arise in the modelling of vibrations. These difference schemes are combined with the primal and the dual approaches to compute the optimal control in the unconstrained case, as well as the case when the control is subject to inequality constraints. Some of the preliminary numerical results are also presented.
Directory of Open Access Journals (Sweden)
Ming-Chang Pai
2012-01-01
Full Text Available Input shaping technique is widely used in reducing or eliminating residual vibration of flexible structures. The exact elimination of the residual vibration via input shaping technique depends on the amplitudes and instants of impulse application. However, systems always have parameter uncertainties which can lead to performance degradation. In this paper, a closed-loop input shaping control scheme is developed for uncertain flexible structures. The algorithm is based on input shaping control and adaptive sliding mode control. The proposed scheme does not need a priori knowledge of upper bounds on the norm of the uncertainties, but estimates them by using the adaptation technique. This scheme guarantees closed-loop system stability, and yields good performance and robustness in the presence of parameter uncertainties and external disturbances as well. Furthermore, it is shown that increasing the robustness to parameter uncertainties does not lengthen the duration of the impulse sequence. Simulation results demonstrate the efficacy of the proposed closed-loop input shaping control scheme.
Positioning and Microvibration Control by Electromagnets of an Air Spring Vibration Isolation System
Watanabe, Katsuhide; Cui, Weimin; Haga, Takahide; Kanemitsu, Yoichi; Yano, Kenichi
1996-01-01
Active positioning and microvibration control has been attempted by electromagnets equipped in a bellows-type, air-spring vibration isolation system. Performance tests have been carried out to study the effects. The main components of the system's isolation table were four electromagnetic actuators and controllers. The vibration isolation table was also equipped with six acceleration sensors for detecting microvibration of the table. The electromagnetic actuators were equipped with bellows-type air springs for passive support of the weight of the item placed on the table, with electromagnets for active positioning, as well as for microvibration control, and relative displacement sensors. The controller constituted a relative feedback system for positioning control and an absolute feedback system for vibration isolation control. In the performance test, a 1,490 kg load (net weight of 1,820 kg) was placed on the vibration isolation table, and both the positioning and microvibration control were carried out electromagnetically. Test results revealed that the vibration transmission was reduced by 95%.
Solved problems in dynamical systems and control
Tenreiro-Machado, J; Valério, Duarte; Galhano, Alexandra M
2016-01-01
This book presents a collection of exercises on dynamical systems, modelling and control. Each topic covered includes a summary of the theoretical background, problems with solutions, and further exercises.
Controller placement problem in industrial networks
Macián Ribera, Sergi
2016-01-01
SDN is the new trend in networks, for next Mobile and optical networks. Dimensioning, design and optimization of Software Defined Optical Networks. To be done at Technical University Munich (TUM) In this work the Controller Placement Problem (CPP) for SDN architecture is studied when it is applied to industrial networks. En este trabajo se estudia el problema CPP (controller placement problem) para la arquitectura SDN, aplicado a redes industriales. En aquest treball s'estudia el pro...
DEFF Research Database (Denmark)
Stein, George Juraj; Darula, Radoslav; Sorokin, Sergey
2012-01-01
A theoretical analysis of an electromagnetic vibration controller is presented. The analyzed device consists of a pot-type iron core with a coil and a permanent magnet as a source of constant magnetic flux. The magnetic circuit is closed by a yoke, excited by an external harmonic mechanical force....... The so generated magnetic flux variation induces alternating voltage in the electric circuit, which is dissipated in a shunt resistor. The induced current driven through the coil generates magnetic force, which damps the excitation force and changes the damped natural frequency of the oscillatory system...
Vibration Control of Structures using Vibro-Impact Nonlinear Energy Sinks
Directory of Open Access Journals (Sweden)
M. Ahmadi
2016-09-01
Full Text Available Using Vibro-Impact Nonlinear Energy Sinks (VI NESs is one of the novel strategies to control structural vibrations and mitigate their seismic response. In this system, a mass is tuned on the structure floor, so that it has a specific distance from an inelastic constraint connected to the floor mass. In case of structure stimulation, the displaced VI NES mass collides with the inelastic constraint and upon impacts, energy is dissipated. In the present work, VI NES is studied when its parameters, including clearance and stiffness ratio, are simultaneously optimized. Harmony search as a recent meta-heuristic algorithm is efficiently specialized and utilized for the aforementioned continuous optimization problem. The optimized attached VI NES is thus shown to be capable of interacting with the primary structure over a wide range of frequencies. The resulting controlled response is then investigated, in a variety of low and medium rise steel moment frames, via nonlinear dynamic time history analyses. Capability of the VI NES to dissipate siesmic input energy of earthquakes and their capabilitiy in reducing response of srtructures effectively, through vibro-impacts between the energy sink’s mass and the floor mass, is discussed by extracting several performance indices and the corresponding Fourier spectra. Results of the numerical simulations done on some structural model examples reveal that the optimized VI NES has caused successive redistribution of energy from low-frequency high-amplitude vibration modes to high-frequency low-amplitude modes, bringing about the desired attenuation of the structural responses.
Hopkins, David James [Livermore, CA
2008-05-13
A control system and method for actively reducing vibration in a spindle housing caused by unbalance forces on a rotating spindle, by measuring the force-induced spindle-housing motion, determining control signals based on synchronous demodulation, and provide compensation for the measured displacement to cancel or otherwise reduce or attenuate the vibration. In particular, the synchronous demodulation technique is performed to recover a measured spindle housing displacement signal related only to the rotation of a machine tool spindle, and consequently rejects measured displacement not related to spindle motion or synchronous to a cycle of revolution. Furthermore, the controller actuates at least one voice-coil (VC) motor, to cancel the original force-induced motion, and adapts the magnitude of voice coil signal until this measured displacement signal is brought to a null. In order to adjust the signal to a null, it must have the correct phase relative to the spindle angle. The feedback phase signal is used to adjust a common (to both outputs) commutation offset register (offset relative to spindle encoder angle) to force the feedback phase signal output to a null. Once both of these feedback signals are null, the system is compensating properly for the spindle-induced motion.
Chi, Feng; Zhou, Jun; Zhang, Qi; Wang, Yong; Huang, Panling
2017-03-08
The vibration control of a construction vehicle must be carried out in order to meet the aims of sustainable environmental development and to avoid the potential human health hazards. In this paper, based on market feedback, the driver seat vibration of a type of wheel loader in the left and right direction, is found to be significant over a certain speed range. In order to find abnormal vibration components, the order tracking technique (OTT) and transmission path analysis (TPA) were used to analyze the vibration sources of the wheel loader. Through this analysis, it can be seen that the abnormal vibration comes from the interaction between the tire tread and the road, and this is because the vibration was amplified by the cab mount, which was eventually transmitted to the cab seat. Finally, the seat vibration amplitudes were decreased by up to 50.8%, after implementing the vibration reduction strategy.
Identification for Active Vibration Control of Flexible Structure Based on Prony Algorithm
Directory of Open Access Journals (Sweden)
Xianjun Sheng
2016-01-01
Full Text Available Flexible structures have been widely used in many fields due to the advantages of light quality, small damping, and strong flexibility. However, flexible structures exhibit the vibration in the process of manipulation, which reduces the pointing precision of the system and causes fatigue of the machine. So, this paper focuses on the identification method for active vibration control of flexible structure. The modal parameters and transfer function of the system are identified from the step response signal based on Prony algorithm, while the vibration is attenuated by using the input shaping technique designed according to the parameters identified from the Prony algorithm. Eventually, the proposed approach is applied to the most common flexible structure, a piezoelectric cantilever beam actuated by Macro Fiber Composite (MFC. The experimental results demonstrate that the Prony algorithm is very effective and accurate on the dynamic modeling of flexible structure and input shaper could significantly reduce the vibration and improve the response speed of system.
A concept for semi-active vibration control with a serial-stiffness-switch system
Min, Chaoqing; Dahlmann, Martin; Sattel, Thomas
2017-09-01
This work deals with a new semi-active vibration control concept with a serial-stiffness-switch system (SSSS), which can be seen as one and a half degree-of-freedom system. The proposed switched system is mainly composed of two serial elements, each of which consists of one spring and one switch in parallel with each other. This mechanical structure benefits from a specified switching law based on the zero crossing of velocity in order to realize vibration reduction. In contrast with conventional ways, the new system is capable of harvesting vibration energy as potential energy stored in springs, and then applies it to vibration reduction. In this paper, the concept is characterized, simulated, evaluated, and proven to be able to improve the system response. The equivalent stiffness and natural frequency of the switched system are mathematically formulated and verified.
Development of a Self-Powered Magnetorheological Damper System for Cable Vibration Control
Directory of Open Access Journals (Sweden)
Zhihao Wang
2018-01-01
Full Text Available A new self-powered magnetorheological (MR damper control system was developed to mitigate cable vibration. The power source of the MR damper is directly harvested from vibration energy through a rotary permanent magnet direct current (DC generator. The generator itself can also serve as an electromagnetic damper. The proposed smart passive system also incorporates a roller chain and sprocket, transforming the linear motion of the cable into the rotational motion of the DC generator. The vibration mitigation performance of the presented self-powered MR damper system was evaluated by model tests with a 21.6 m long cable. A series of free vibration tests of the cable with a passively operated MR damper with constant voltage, an electromagnetic damper alone, and a self-powered MR damper system were performed. Finally, the vibration control mechanisms of the self-powered MR damper system were investigated. The experimental results indicate that the supplemental modal damping ratios of the cable in the first four modes can be significantly enhanced by the self-powered MR damper system, demonstrating the feasibility and effectiveness of the new smart passive system. The results also show that both the self-powered MR damper and the generator are quite similar to a combination of a traditional linear viscous damper and a negative stiffness device, and the negative stiffness can enhance the mitigation efficiency against cable vibration.
Semi-active on-off damping control of a dynamic vibration absorber using Coriolis force
La, Viet Duc
2012-07-01
A passive dynamic vibration absorber (DVA) moving along a pendulum can cause the nonlinear Coriolis damping to reduce the pendulum swing. This paper proposes a simple semi-active on-off damping controller to improve the passive Coriolis DVA. The aim of the on-off damping control is to amplify the DVA resonance motion to increase the energy dissipated. Moreover, the paper finds the analytical solution of the harmonic vibration of semi-active controlled system. The accuracy of the analytical formulas and the superior performance of the semi-active DVA are verified by numerical simulations.
Reduction of Structural Vibrations by Passive and Semiactively Controlled Friction Dampers
Directory of Open Access Journals (Sweden)
L. Gaul
2014-01-01
Full Text Available Reduction of structural vibrations is of major interest in mechanical engineering for lowering sound emission of vibrating structures, improving accuracy of machines, and increasing structure durability. Besides optimization of the mechanical design or various types of passive damping treatments, active structural vibration control concepts are efficient means to reduce unwanted vibrations. In this contribution, two different semiactive control concepts for vibration reduction are proposed that adapt to the normal force of attached friction dampers. Thereby, semiactive control concepts generally possess the advantage over active control in that the closed loop is intrinsically stable and that less energy is required for the actuation than in active control. In the chosen experimental implementation, a piezoelectric stack actuator is used to apply adjustable normal forces between a structure and an attached friction damper. Simulation and experimental results of a benchmark structure with passive and semiactively controlled friction dampers are compared for stationary narrowband excitation. For simulations of the control performance, transient simulations must be employed to predict the achieved vibration damping. It is well known that transient simulation of systems with friction and normal contact requires excessive computational power due to the nonlinear constitutive laws and the high contact stiffnesses involved. However, commercial finite-element codes do not allow simulating feedback control in a general way. As a remedy, a special simulation framework is developed which allows efficiently modeling interfaces with friction and normal contact by appropriate constitutive laws which are implemented by contact elements in a finite-element model. Furthermore, special model reduction techniques using a substructuring approach are employed for faster simulation.
Li, W. P.; Luo, B.; Huang, H.
2016-02-01
This paper presents a vibration control strategy for a two-link Flexible Joint Manipulator (FJM) with a Hexapod Active Manipulator (HAM). A dynamic model of the multi-body, rigid-flexible system composed of an FJM, a HAM and a spacecraft was built. A hybrid controller was proposed by combining the Input Shaping (IS) technique with an Adaptive-Parameter Auto Disturbance Rejection Controller (APADRC). The controller was used to suppress the vibration caused by external disturbances and input motions. Parameters of the APADRC were adaptively adjusted to ensure the characteristic of the closed loop system to be a given reference system, even if the configuration of the manipulator significantly changes during motion. Because precise parameters of the flexible manipulator are not required in the IS system, the operation of the controller was sufficiently robust to accommodate uncertainties in system parameters. Simulations results verified the effectiveness of the HAM scheme and controller in the vibration suppression of FJM during operation.
Directory of Open Access Journals (Sweden)
Guangjian Dong
2016-01-01
Full Text Available Drill string vibrations and shocks (V&S can limit the optimization of drilling performance, which is a key problem for trajectory optimizing, wellbore design, increasing drill tools life, rate of penetration, and intelligent drilling. The directional wells and other special trajectory drilling technologies are often used in deep water, deep well, hard rock, and brittle shale formations. In drilling these complex wells, the cost caused by V&S increases. According to past theories, indoor experiments, and field studies, the relations among ten kinds of V&S, which contain basic forms, response frequency, and amplitude, are summarized and discussed. Two evaluation methods are compared systematically, such as theoretical and measurement methods. Typical vibration measurement tools are investigated and discussed. The control technologies for drill string V&S are divided into passive control, active control, and semiactive control. Key methods for and critical equipment of three control types are compared. Based on the past development, a controlling program of drill string V&S is devised. Application technologies of the drill string V&S are discussed, such as improving the rate of penetration, controlling borehole trajectory, finding source of seismic while drilling, and reducing the friction of drill string. Related discussions and recommendations for evaluating, controlling, and applying the drill string V&S are made.
High accuracy position adjustment and vibration isolation actuator with the controlled ferrofluid
Wu, Shuai; Li, Chunfang; Zhao, Xiangyu; Jiao, Zongxia
2017-11-01
An actuator for microposition adjustment and vibration isolation using the controlled ferrofluid is reported in this letter. The proposed actuator levitates on the ferrofluid which is affected by the combined dynamic magnetic field which is formed by coupling a permanent magnetic field with a controlled electromagnetic field. A controlled electromagnetic field is superposed on the permanent magnetic field in order to change the shape of the ferrofluid to ultimately move the actuator. The experimental results indicate that the proposed actuator can adjust the position with high accuracy and has a good dynamic performance. The proposed actuator can bear over 2 N loads, and the positioning accuracy is within 0.1 μ m. The stroke of the actuator is about of ±30 μ m with no load, and the stroke increases to ±75 μ m at 2 N load. Its dynamic band with -3 dB amplitude attenuation and -90° phase is over 40 Hz. In addition, the displacement has a very good linear relationship with the input current. The results also demonstrate that the actuator can isolate vibration in a wide frequency range, as the low frequency vibration can be compensated by the active motion control, while the high frequency vibration can be attenuated by the elasticity and damping effects of the ferrofluid. Consequently, the proposed actuator has a significant potential for applications where the high accuracy micro-position adjustment and vibration isolation are needed.
Directory of Open Access Journals (Sweden)
Wei Zhu
2014-01-01
Full Text Available A vibration control system is put forward using a magnetorheological damper (MRD and a magnetorheological elastomer (MRE connected in series. In order to model the hysteresis of the MRD, a Bouc-Wen model and a corresponding parameter identification method are developed for the MRD. The experimental results validate the proposed Bouc-Wen model that can predict the hysteretic behavior of the MRD accurately. The role of the MRE is illustrated by an example of a single degree-of-freedom system. A semiactive vibration control strategy of the proposed vibration control system is proposed. To validate this new approach, experiments are conducted and the results highlight significantly improved vibration reduction effect of the proposed vibration control system than the vibration control system only using the MRD.
Elfering, Achim; Thomann, Jan; Schade, Volker; Radlinger, Lorenz
2011-12-18
To examined the effects of stochastic resonance whole-body vibration training on musculoskeletal pain in young healthy individuals. Participants were 43 undergraduate students of a Swiss University. The study was designed as a randomized controlled trial (RCT) with randomized group allocation. The RCT consisted of two groups each given 12 training sessions during four weeks with either 5 Hz- Training frequency (training condition) or 1.5 Hz Training frequency (control condition). Outcome was current musculoskeletal pain assessed in the evening on each day during the four week training period. Multilevel regression analysis showed musculoskeletal pain was significantly decreased in the training condition whereas there was no change in the control condition (B = -0.023, SE = 0.010, P = 0.021). Decrease in current musculoskeletal pain over four weeks was linear. Stochastic resonance whole-body vibration reduced musculoskeletal pain in young healthy individuals. Stochastic resonance vibration and not any other exercise component within training caused pain reduction.
Tuned rolling-ball dampers for vibration control in wind turbines
DEFF Research Database (Denmark)
Chen, Junling; Georgakis, Christos T.
2013-01-01
With wind turbines growing in size and cost, it is necessary to reduce their dynamic responses and improve their fatigue lifetime. A passive tuned-mass damper (TMD) is a very efficient solution for vibration control in structures subjected to wind excitations. In this study, a tuned rolling......-ball damper characterized by single or multiple steel balls rolling in a spherical container is proposed to be mounted on the top of wind turbines to reduce the wind-induced vibration. A 1/20 scale shaking table model was developed to evaluate the control effectiveness of the damper. The wind-induced dynamic...... responses of the test model with and without TMD were obtained from the shaking table tests. The test results indicated that the rolling-ball dampers could effectively suppress the wind-induced vibration of wind turbines. The damper with three balls in one container had better control effectiveness than...
Application of Time Delay Consideration on Bridge Vibration Control Method with Active Tendons
Directory of Open Access Journals (Sweden)
Lezin Seba MINSILI
2010-12-01
Full Text Available For many years bridge structures have been designed or constructed as passive structures that rely on their mass and solidity to resist external forces, while being incapable of adapting to the dynamics of an ever-changing environment. When the rigidity assumption is not met in particular for high-rise structures like bridge towers, a proper dynamic model should be established and conclusions made on the differential vibration of the tower when it is investigated out of the bridge system. The present work outlines a vibration control method by tendons on the tower of cable supported structures considering time delay effects, based on the discrete-time Linearization of the Feedback Gain Matrix. The efficiency of this vibration control method first proposed on the design process of a local bridge in Cameroon, is more compatible to the control of civil structures and is of great interest in accordance with simulation results.
Resonant passive–active vibration absorber with integrated force feedback control
DEFF Research Database (Denmark)
Høgsberg, Jan Becker; Brodersen, Mark Laier; Krenk, Steen
2016-01-01
A general format of a two-terminal vibration absorber is constructed by placing a passive unit in series with a hybrid unit, composed of an active actuator in parallel with a second passive element. The displacement of the active actuator is controlled by an integrated feedback control with the d...
A unified control strategy for the active reduction of sound and vibration
Doelman, N.J.
1991-01-01
The generalized minimum variance (GMV) control strategy is proposed as an effective strategy for active sound and vibration control systems. The GMV strategy is shown to unify well-known adaptive filtering approaches based on LMS-type algorithms and purely feedback strategies as used in other types
Minimal Time Problem with Impulsive Controls
Energy Technology Data Exchange (ETDEWEB)
Kunisch, Karl, E-mail: karl.kunisch@uni-graz.at [University of Graz, Institute for Mathematics and Scientific Computing (Austria); Rao, Zhiping, E-mail: zhiping.rao@ricam.oeaw.ac.at [Austrian Academy of Sciences, Radon Institute of Computational and Applied Mathematics (Austria)
2017-02-15
Time optimal control problems for systems with impulsive controls are investigated. Sufficient conditions for the existence of time optimal controls are given. A dynamical programming principle is derived and Lipschitz continuity of an appropriately defined value functional is established. The value functional satisfies a Hamilton–Jacobi–Bellman equation in the viscosity sense. A numerical example for a rider-swing system is presented and it is shown that the reachable set is enlargered by allowing for impulsive controls, when compared to nonimpulsive controls.
Elfering, Achim; Schade, Volker; Stoecklin, Lukas; Baur, Simone; Burger, Christian; Radlinger, Lorenz
2014-05-01
Slip, trip, and fall injuries are frequent among health care workers. Stochastic resonance whole-body vibration training was tested to improve postural control. Participants included 124 employees of a Swiss university hospital. The randomized controlled trial included an experimental group given 8 weeks of training and a control group with no intervention. In both groups, postural control was assessed as mediolateral sway on a force plate before and after the 8-week trial. Mediolateral sway was significantly decreased by stochastic resonance whole-body vibration training in the experimental group but not in the control group that received no training (p resonance whole-body vibration training is an option in the primary prevention of balance-related injury at work. Copyright 2014, SLACK Incorporated.
Energy Technology Data Exchange (ETDEWEB)
Hauer, Juergen; Buckup, Tiago [Fachbereich Chemie, Physikalische Chemie, Philipps-Universitaet Marburg, Hans-Meerwein-Strasse, D-35043 Marburg (Germany); Motzkus, Marcus [Fachbereich Chemie, Physikalische Chemie, Philipps-Universitaet Marburg, Hans-Meerwein-Strasse, D-35043 Marburg (Germany)], E-mail: motzkus@staff.uni-marburg.de
2008-06-23
Quantum control spectroscopy (QCS) is used as a tool to study, address selectively and enhance vibrational wavepacket motion in large solvated molecules. By contrasting the application of Fourier-limited and phase-modulated excitation on different electronic states, the interplay between the controllability of vibrational coherence and electronic resonance is revealed. We contrast control on electronic ground and excited state by introducing an additional pump beam prior to a DFWM-sequence (Pump-DFWM). Via phase modulation of this initial pump pulse, coherent control is extended to structural evolution on the vibrationally hot ground state (hot-S{sub 0}) and lowest lying excited state (S{sub 1}) of {beta}-carotene. In an open loop setup, the control scenarios for these different electronic states are compared in their effectiveness and mechanism.
Hybrid Predictive Control for Dynamic Transport Problems
Núñez, Alfredo A; Cortés, Cristián E
2013-01-01
Hybrid Predictive Control for Dynamic Transport Problems develops methods for the design of predictive control strategies for nonlinear-dynamic hybrid discrete-/continuous-variable systems. The methodology is designed for real-time applications, particularly the study of dynamic transport systems. Operational and service policies are considered, as well as cost reduction. The control structure is based on a sound definition of the key variables and their evolution. A flexible objective function able to capture the predictive behaviour of the system variables is described. Coupled with efficient algorithms, mainly drawn from the area of computational intelligence, this is shown to optimize performance indices for real-time applications. The framework of the proposed predictive control methodology is generic and, being able to solve nonlinear mixed-integer optimization problems dynamically, is readily extendable to other industrial processes. The main topics of this book are: ●hybrid predictive control (HPC) ...
Directory of Open Access Journals (Sweden)
Fu-yao Zhao
2015-01-01
Full Text Available The rotary vibration of rigid friction pile can be seen approximately as a central symmetry plane problem in elasticity. The stress general solution of central symmetry plane problem in elasticity can be constructed by technique such as the Laurent expansion of the volume force. This solution has some decoupling, generalized, and convergent properties, and it can be used in stress analysis of the rotary vibration of pile. The analysis results show that the maximum value of displacement will not occur at the edge of the pile and the assumption that pile cross section remains unchanged is no longer applicable, if the value of one dimensionless quantity, reflecting the angular frequency of the rotation, radius, and material properties of the pile, is larger than 1.84. Once the rotary vibration of rigid friction pile happens, the pile may lose its bearing capacity under the comprehensive effect of normal and shear stress of the pile-soil interface and it will be very difficult to recover.
Kwak, Moon K.; Yang, Dong-Ho
2013-09-01
This paper is concerned with the suppression of vibrations and radiated sound of a ring-stiffened circular cylindrical shell in contact with unbounded external fluid by means of piezoelectric sensors and actuators. The dynamic model of a circular cylindrical shell based on the Sanders shell theory was considered together with a ring stiffener model. The mass and stiffness matrices for a ring stiffener were newly derived in this study and added to the mass and stiffness matrices of the cylindrical shell, respectively. The fluid-added mass matrix, which was derived by using the baffled shell theory, was also added to the mass matrix. Finally, the equations representing the piezoelectric sensor measurement and piezoelectric actuation complete the theoretical model for the addressed problem. The natural vibration characteristics of the ring-stiffened cylindrical shell both in air and in water were investigated both theoretically and experimentally. The theoretical predictions were in good agreement with the experimental results. An active vibration controller which can cope with a harmonic disturbance was designed by considering the modified higher harmonic control, which is, in fact, a band rejection filter. An active vibration control experiment on the submerged cylindrical shell was carried out in a water tank and the digital control system was used. The experimental results showed that both vibrations and radiation sound of the submerged cylindrical shell were suppressed by a pair of piezoelectric sensor and actuator.
Cribbs, Richard Clay
This dissertation describes the development of a coupled rotor/flexible fuselage aeroelastic response model including rotor/fuselage aerodynamic interactions. This model is used to investigate fuselage vibrations and their suppression using active control of structural response (ACSR). The fuselage, modeled by a three dimensional structural dynamic finite element model, is combined with a flexible, four-bladed, hingeless rotor. Each rotor blade is structurally modeled as an isotropic Euler-Bernoulli beam with coupled flap-lag-torsional dynamics assuming moderate deflections. A free wake model is incorporated into the aeroelastic response model and is validated against previous studies. Two and three dimensional sources model the fuselage aerodynamics. Direct aerodynamic influences of the rotor and wake on the fuselage are calculated by integrating pressures over the surface of the fuselage. The fuselage distorts the wake and influences the air velocities at the rotor which alters the aerodynamic loading. This produces fully coupled rotor/fuselage aerodynamic interactions. The influence of the aerodynamic refinements on vibrations is studied in detail. Results indicate that a free wake model and the inclusion of fuselage aerodynamic effects on the rotor and wake are necessary for vibration prediction at all forward speeds. The direct influence of rotor and wake aerodynamics on the fuselage plays a minor role in vibrations. Accelerations with the improved aerodynamic model are significantly greater than uniform inflow results. The influence of vertical separation between the rotor and fuselage on vibrations is also studied. An ACSR control algorithm is developed that preferentially reduces accelerations at selected airframe locations of importance. Vibration reduction studies are carried out using this improved control algorithm and a basic algorithm studied previously at UCLA. Both ACSR methods markedly reduce acceleration amplitudes with no impact on the rotor
Ham, N. D.
1985-01-01
The novel active control system presented for helicopter rotor aerodynamic and aeroelastic problems involves the individual control of each blade in the rotating frame over a wide range of frequencies (up to the sixth harmonic of rotor speed). This Individual Blade Control (IBC) system controls blade pitch by means of broadband electrohydraulic actuators attached to the swash plate (in the case of three blades) or individually to each blade, using acceleratometer signals to furnish control commands to the actuators. Attention is given to IBC's application to blade lag, flapping, and bending dynamics. It is shown that gust alleviation, attitude stabilization, vibration alleviation, and air/ground resonance suppression, are all achievable with a conventional helicopter swash plate.
ROBUST MIXED H2/H8 ACTIVE VIBRATION CONTROLLER IN ATTENUATION OF SMART BEAM
Directory of Open Access Journals (Sweden)
Atta Oveisi
2014-12-01
Full Text Available The lack of robustness of the mechanical systems due to the unmodeled dynamics and the external disturbances withholds the performance and optimality of the structures. In this paper, this deficiency is obviated in order to reach the desired robust stability and performance on smart structures. For this purpose a multi-objective robust control strategy is proposed for vibration suppression of a clamped-free smart beam with piezoelectric actuator and vibrometer sensor in an LMI framework which is capable of handling weighted exogenous input signals and provides desired pole placement and robust performance at the same time. An accurate model of a homogeneous beam is derived by means of the finite element modal analysis. Then a low order modal system is considered as the nominal model and remaining modes are left as the multiplicative unstructured uncertainty. Next, a robust controller with a regional pole placement constraint is designed based on the augmented plant composed of the nominal model and its accompanied uncertainty by solving a convex optimization problem. Finally, the robustness of the uncertain closed-loop model and the effect of performance index weights on the system output are investigated both in simulation and practice.
Coupled rotor-fuselage vibration reduction with multiple frequency blade pitch control
Papavassiliou, I.; Friedmann, P. P.; Venkatesan, C.
1991-01-01
A nonlinear coupled rotor/flexible fuselage analysis has been developed and used to study the effects of higher harmonic blade pitch control on the vibratory hub loads and fuselage acceleration levels. Previous results, obtained with this model have shown that conventional higher harmonic control (HHC) inputs aimed at hub shear reduction cause an increase in the fuselage accelerations and vice-versa. It was also found that for simultaneous reduction of hub shears and fuselage accelerations, a pitch input representing a combination of two higher harmonic components of different frequencies was needed. Subsequently, it was found that this input could not be implemented through a conventional swashplate. This paper corrects a mistake originally made in the representation of the multiple frequency pitch input and shows that such a pitch input can be only implemented in the rotating reference frame. A rigorous mathematical solution is found, for the pitch input in the rotating reference frame, which produces simultaneous reduction of hub shears and fuselage acceleration. New insight on vibration reduction in coupled rotor/fuselage systems is obtained from the sensitivity of hub shears to the frequency and amplitude of the open loop HHC signal in the rotating reference frame. Finally the role of fuselage flexibility in this class of problems is determined.
Monitoring and control of vibrations due to blasting in Sumapaz tunnel, granting Bogotá-Girardot
Directory of Open Access Journals (Sweden)
Luis Humberto Pinto-Morales
2013-12-01
Full Text Available This article discusses the most relevant topics of the subject of vibration of the ground, from its generation and monitoring to the control of their effects. We emphasize on the use and interpretation of the dynamic data field, since the theoretical methods and testing laboratory at times are not sufficient to solve applied geotechnical problems; for example, in the case of the assessment of the impact of the blasting in the Sumapaz tunnel, Boquerón area, department of Cundinamarca, Colombia. The work is the result of studies carried out by company I.GEOSOTMINE LTDA., in coordination with the Research Group INGEOFISICA of Universidad Pedagógica y Tecnológica de Colombia, on the exploration of the subsoil, aimed at the monitoring and control of blasting caused by explosive and micro-trepidation, in several Colombian regions.
Vibration Control of Double-Beam System with Multiple Smart Damping Members
Dominik Pisarski; Tomasz Szmidt; Czesław I. Bajer; Bartłomiej Dyniewicz; Jacek M. Bajkowski
2016-01-01
A control method to stabilize vibration of a double cantilever system with a set of smart damping blocks is designed and numerically evaluated. The externally controlled magnetorheological sheared elastomer damping block is considered, but other smart materials can be used as well. The robust bang-bang control law for stabilization the bilinear system is elaborated. The key feature of the closed loop controller is the efficiency for different types of initial excitement. By employing the fini...
Control Application of Piezoelectric Materials to Aeroelastic Self-Excited Vibrations
Directory of Open Access Journals (Sweden)
Mohammad Amin Rashidifar
2014-01-01
Full Text Available A method for application of piezoelectric materials to aeroelasticity of turbomachinery blades is presented. The governing differential equations of an overhung beam are established. The induced voltage in attached piezoelectric sensors due to the strain of the beam is calculated. In aeroelastic self-excited vibrations, the aerodynamic generalized force of a specified mode can be described as a linear function of the generalized coordinate and its derivatives. This simplifies the closed loop system designed for vibration control of the corresponding structure. On the other hand, there is an industrial interest in measurement of displacement, velocity, acceleration, or a contribution of them for machinery condition monitoring. Considering this criterion in quadratic optimal control systems, a special style of performance index is configured. Utilizing the current relations in an aeroelastic case with proper attachment of piezoelectric elements can provide higher margin of instability and lead to lower vibration magnitude.
Semi-active vibration absorber based on real-time controlled MR damper
Weber, F.
2014-06-01
A semi-active vibration absorber with real-time controlled magnetorheological damper (MR-SVA) for the mitigation of harmonic structural vibrations is presented. The MR damper force targets to realize the frequency and damping adaptations to the actual structural frequency according to the principle of the undamped vibration absorber. The relative motion constraint of the MR-SVA is taken into account by an adaptive nonlinear control of the internal damping of the MR-SVA. The MR-SVA is numerically and experimentally validated for harmonic excitation of the primary structure when the natural frequency of the passive mass spring system of the MR-SVA is correctly tuned to the targeted structural resonance frequency and when de-tuning is present. The results demonstrate that the MR-SVA outperforms the passive TMD at structural resonance frequency by at least 12.4% and up to 60.0%.
Optimization procedure to control the coupling of vibration modes in flexible space structures
Walsh, Joanne L.
1987-01-01
As spacecraft structural concepts increase in size and flexibility, the vibration frequencies become more closely-spaced. The identification and control of such closely-spaced frequencies present a significant challenge. To validate system identification and control methods prior to actual flight, simpler space structures will be flown. To challenge the above technologies, it will be necessary to design these structures with closely-spaced or coupled vibration modes. Thus, there exists a need to develop a systematic method to design a structure which has closely-spaced vibration frequencies. This paper describes an optimization procedure which is used to design a large flexible structure to have closely-spaced vibration frequencies. The procedure uses a general-purpose finite element analysis program for the vibration and sensitivity analyses and a general-purpose optimization program. Results are presented from two studies. The first study uses a detailed model of a large flexible structure to design a structure with one pair of closely-spaced frequencies. The second study uses a simple equivalent beam model of a large flexible structure to obtain a design with two pairs of closely-spaced frequencies.
Taylor, R. B.; Zwicke, P. E.; Gold, P.; Miao, W.
1980-01-01
An analytical study was conducted to define the basic configuration of an active control system for helicopter vibration and gust response alleviation. The study culminated in a control system design which has two separate systems: narrow band loop for vibration reduction and wider band loop for gust response alleviation. The narrow band vibration loop utilizes the standard swashplate control configuration to input controller for the vibration loop is based on adaptive optimal control theory and is designed to adapt to any flight condition including maneuvers and transients. The prime characteristics of the vibration control system is its real time capability. The gust alleviation control system studied consists of optimal sampled data feedback gains together with an optimal one-step-ahead prediction. The prediction permits the estimation of the gust disturbance which can then be used to minimize the gust effects on the helicopter.
Prevalence of Multiply Controlled Problem Behavior
Beavers, Gracie A.; Iwata, Brian A.
2011-01-01
We examined articles in the "Journal of Applied Behavior Analysis" in which results of functional analyses indicated that problem behavior was maintained by multiple sources of reinforcement. Data for 88 (16.9%) of 521 subjects reported in 168 studies met the criteria for multiple control. Data for 11 subjects (2.1%) involved a single response…
Tavakolpour-Saleh, A. R.; Haddad, M. A.
2017-03-01
In this paper, a novel robust vibration control scheme, namely, one degree-of-freedom fuzzy active force control (1DOF-FAFC) is applied to a nonlinear electromagnetic-actuated flexible plate system. First, the flexible plate with clamped-free-clamped-free (CFCF) boundary conditions is modeled and simulated. Then, the validity of the simulation platform is evaluated through experiment. A nonlinear electromagnetic actuator is developed and experimentally modeled through a parametric system identification scheme. Next, the obtained nonlinear model of the actuator is applied to the simulation platform and performance of the proposed control technique in suppressing unwanted vibrations is investigated via simulation. A fuzzy controller is applied to the robust 1DOF control scheme to tune the controller gain using acceleration feedback. Consequently, an intelligent self-tuning vibration control strategy based on an inexpensive acceleration sensor is proposed in the paper. Furthermore, it is demonstrated that the proposed acceleration-based control technique owns the benefits of the conventional velocity feedback controllers. Finally, an experimental rig is developed to investigate the effectiveness of the 1DOF-FAFC scheme. It is found that the first, second, and third resonant modes of the flexible system are attenuated up to 74%, 81%, and 90% respectively through which the effectiveness of the proposed control scheme is affirmed.
Robust and fast schemes in broadband active noise and vibration control
Fraanje, P.R.
2004-01-01
This thesis presents robust and fast active control algorithms for the suppression of broadband noise and vibration disturbances. Noise disturbances, e.g., generated by engines in airplanes and cars or by air ow, can be reduced by means of passive or active methods.
Stark, C.; Herkenrath, P.; Hollmann, H.; Waltz, S.; Becker, I.; Hoebing, L.; Semler, O.; Hoyer-Kuhn, H.; Duran, I.; Hero, B.; Hadders-Algra, M.; Schoenau, E.
OBJECTIVES: to investigate feasibility, safety and efficacy of home-based side-alternating whole body vibration (sWBV) to improve motor function in toddlers with cerebral palsy (CP). METHODS: Randomized controlled trial including 24 toddlers with CP (mean age 19 months (SD±3.1); 13 boys).
Wind-Tunnel Tests of a Bridge Model with Active Vibration Control
DEFF Research Database (Denmark)
Hansen, H. I.; Thoft-Christensen, Palle; Mendes, P. A.
The application of active control systems to reduce wind vibrations in bridges is a new area of research. This paper presents the results that were obtained on a set of wind tunnel tests of a bridge model equipped with active movable flaps. Based on the monitored position and motion of the deck...
A review on the gun barrel vibrations and control for a main battle tank
Directory of Open Access Journals (Sweden)
Tolga Dursun
2017-10-01
Full Text Available Achieving high hitting accuracy for a main battle tank is challenging while the tank is on the move. This can be reached by proper design of a weapon control and gun system. In order to design an effective gun system while the tank is moving, better understanding of the dynamic behavior of the gun system is required. In this study, the dynamic behaviour of a gun system is discussed in this respect. Both experimental and numerical applications for the determination of the dynamic behaviour of a tank gun system are investigated. Methods such as the use of muzzle reference system (MRS and vibration absorbers, and active vibration control technology for the control and the reduction of the muzzle tip deflections are also reviewed. For the existing gun systems without making substantial modifications, MRS could be useful in controlling the deflections of gun barrels with estimation/prediction algorithms. The vibration levels could be cut into half by the use of optimised vibration absorbers for an existing gun. A new gun system with a longer barrel can be as accurate as the one with a short barrel with the appropriate structural modifications.
Influence of controlling vibrations on heat transfer in floating zone crystal growth*
Fedyushkin, A. I.
The crystal growth processes of monocrystals are strongly vibrational sensitive systems and in particular it concerns to a floating zone method as presence of a free surface and two fronts of crystallization and melting that aggravate it The given work is devoted to numerical investigations of the influence of controlling vibrations on heat transfer during crystal growth by floating zone technique Normal and weightless environment conditions are considered Mathematical simulation is performed on the numerical solutions of basis unsteady Navier-Stokes equations for incompressible fluid flows and energy equation 2D axisymmetric geometry was used in model Marangoni convection and radiation condition on the curvature free surface were taken in account The calculations of the shape of a free surface of a liquid zone and influences on it of a corner of wetting force of weight and size of factor of a superficial tension are carried out The simulations of convective heat transfer for real curvature free surface of a liquid zone with and without the taking into account of the following factors parameters of radiation rotations natural and Marangoni convection and vibrations are carried out The given calculations are carried out for semiconductors melts with Prandtl number Pr 1 and for oxides Pr 1 The influence of vibrations of a crystal on melt flow and on the wide of dynamic and thermal boundary layers at melt-crystal interface is studied The action of vibrations on an enhancement of heat fluxes at the melt crystal interface is shown
An adaptive left-right eigenvector evolution algorithm for vibration isolation control
Wu, T. Y.
2009-11-01
The purpose of this research is to investigate the feasibility of utilizing an adaptive left and right eigenvector evolution (ALREE) algorithm for active vibration isolation. As depicted in the previous paper presented by Wu and Wang (2008 Smart Mater. Struct. 17 015048), the structural vibration behavior depends on both the disturbance rejection capability and mode shape distributions, which correspond to the left and right eigenvector distributions of the system, respectively. In this paper, a novel adaptive evolution algorithm is developed for finding the optimal combination of left-right eigenvectors of the vibration isolator, which is an improvement over the simultaneous left-right eigenvector assignment (SLREA) method proposed by Wu and Wang (2008 Smart Mater. Struct. 17 015048). The isolation performance index used in the proposed algorithm is defined by combining the orthogonality index of left eigenvectors and the modal energy ratio index of right eigenvectors. Through the proposed ALREE algorithm, both the left and right eigenvectors evolve such that the isolation performance index decreases, and therefore one can find the optimal combination of left-right eigenvectors of the closed-loop system for vibration isolation purposes. The optimal combination of left-right eigenvectors is then synthesized to determine the feedback gain matrix of the closed-loop system. The result of the active isolation control shows that the proposed method can be utilized to improve the vibration isolation performance compared with the previous approaches.
Prediction and Control of Cutting Tool Vibration in Cnc Lathe with Anova and Ann
Directory of Open Access Journals (Sweden)
S. S. Abuthakeer
2011-06-01
Full Text Available Machining is a complex process in which many variables can deleterious the desired results. Among them, cutting tool vibration is the most critical phenomenon which influences dimensional precision of the components machined, functional behavior of the machine tools and life of the cutting tool. In a machining operation, the cutting tool vibrations are mainly influenced by cutting parameters like cutting speed, depth of cut and tool feed rate. In this work, the cutting tool vibrations are controlled using a damping pad made of Neoprene. Experiments were conducted in a CNC lathe where the tool holder is supported with and without damping pad. The cutting tool vibration signals were collected through a data acquisition system supported by LabVIEW software. To increase the buoyancy and reliability of the experiments, a full factorial experimental design was used. Experimental data collected were tested with analysis of variance (ANOVA to understand the influences of the cutting parameters. Empirical models have been developed using analysis of variance (ANOVA. Experimental studies and data analysis have been performed to validate the proposed damping system. Multilayer perceptron neural network model has been constructed with feed forward back-propagation algorithm using the acquired data. On the completion of the experimental test ANN is used to validate the results obtained and also to predict the behavior of the system under any cutting condition within the operating range. The onsite tests show that the proposed system reduces the vibration of cutting tool to a greater extend.
Directory of Open Access Journals (Sweden)
A. Ghorbanpour Arani
2016-03-01
Full Text Available In this research, the vibrational behavior of magnetostrictive plate (MsP as a smart component is studied. The plate is subjected to an external follower force and a magnetic field in which the vibration response of MsP has been investigated for both loading combinations. The velocity feedback gain parameter is evaluated to study the effect of magnetic field which is generated by the coil. Sinusoidal shear deformation theory is utilized due to its accuracy of polynomial function with respect to other plate theories. Equations of motion are derived using Hamilton’s principle and solved by differential quadrature method (DQM considering general boundary conditions. The effects of aspect ratio, thickness ratio, follower force and velocity feedback gain are investigated on the frequency response of MsP. Results indicate that magneto-mechanical coupling in MsM helps to control vibrational behaviors of systems such as electro-hydraulic actuator, wireless linear Motors and sensors.
Vibration Isolation and Trajectory Following Control of a Cable Suspended Stewart Platform
Directory of Open Access Journals (Sweden)
Xuechao Duan
2016-10-01
Full Text Available To achieve high-quality vibration isolation and trajectory following control of a cable driven parallel robot based Stewart platform in the five hundred meter aperture spherical radio telescope (FAST design, the integrated dynamic model of the Stewart platform including the electric cylinder is established in this paper, the globally feedback linearization of the dynamic model is implemented based on the control law partitioning approach. To overcome the disadvantages of the external disturbance on the base and unmodeled flexibility of the mechanism, a PID (Proportional-Derivative-Integral controller with base acceleration feedforward is designed in the operational space of the Stewart platform. Experiments of the vibration isolation and trajectory following control of the cable suspended Stewart platform with presence of the base disturbance is carried out. The experimental results show that the presented control scheme has the advantage of stable dynamics, high accuracy and strong robustness.
Directory of Open Access Journals (Sweden)
Do Xuan Phu
2017-10-01
Full Text Available This work proposes a novel adaptive hybrid controller based on the sliding mode controller and H-infinity control technique, and its effectiveness is verified by implementing it in vibration control of a vehicle seat suspension featuring a magneto-rheological damper. As a first step, a sliding surface of the sliding mode controller is established and used as a bridge to formulate the proposed controller. In this process, two matrices such as Hurwitz constants matrix are used as components of the sliding surface and H-infinity technique are adopted to achieve robust stability. Secondly, a fuzzy logic model based on the interval type 2 fuzzy model which is featured by online clustering is established and integrated to take account for external disturbances. Subsequently, a new adaptive hybrid controller is formulated with a solid proof of the robust stability. Then, the effectiveness is demonstrated by implementing the proposed hybrid controller on the vibration control of a vehicle seat suspension associated with a controllable damper. Vibration control performances are evaluated on bump and random road profiles by presenting both displacement and acceleration on the seat and the driver positions. In addition, a comparative study between the proposed and one of existing controllers is undertaken to highlight some benefits of the hybrid adaptive controller developed in this work.
Directory of Open Access Journals (Sweden)
2016-01-01
Full Text Available The paper presents numerical results analysis of main rotor vibration due to helicopter main rotor thrust pulsation.The calculation method, the object of research and numerical research results with the aim to reduce the amplitude of the vibrations transmitted to the hub from the helicopters main rotor by the individual blade control in azimuth by the installation angle of blades cyclic changes are set out in the article. The individual blades control law for a five-blade main rotor based on the blade frequencies is made. It allows reducing the vibration from thrust. Research takes into account the main rotor including and excluding the blade flapping motion. The minimal vibrations regime is identified.Numerical study of variable loads caused by unsteady flow around the main rotor blades at high relative speeds of flight, which transmitted to the rotor hub, is made. The scheme of a thin lifting surface and the rotor vortex theory are used for simulation of the aerodynamic loads on blades. Non - uniform loads caused by the thrust, decomposed on the blade harmonic and its overtones. The largest values of deviation from the mean amplitude thrust are received. The analysis of variable loads with a traditional control system is made. Algorithms of higher harmonics individual blade control capable of reducing the thrust pulsation under the average value of thrust are developed.Numerical research shows that individual blade control of high harmonics reduces variable loads. The necessary change in the blade installation is about ± 0,2 degree that corresponds to the maximum displacement of the additional con- trol stick is about 1 mm.To receive the overall picture is necessary to consider all six components of forces and moments. Control law with own constants will obtained for each of them. It is supposed, that each of six individual blade control laws have an impact on other components. Thus, the problem reduces to the optimization issue. The
Directory of Open Access Journals (Sweden)
Mahmoud Bayat
Full Text Available This review features a survey of some recent developments in asymptotic techniques and new developments, which are valid not only for weakly nonlinear equations, but also for strongly ones. Further, the achieved approximate analytical solutions are valid for the whole solution domain. The limitations of traditional perturbation methods are illustrated, various modified perturbation techniques are proposed, and some mathematical tools such as variational theory, homotopy technology, and iteration technique are introduced to over-come the shortcomings.In this review we have applied different powerful analytical methods to solve high nonlinear problems in engineering vibrations. Some patterns are given to illustrate the effectiveness and convenience of the methodologies.
Effect of Space Vehicle Structure Vibration on Control Moment Gyroscope Dynamics
Dobrinskaya, Tatiana
2008-01-01
Control Moment Gyroscopes (CMGs) are used for non-propulsive attitude control of satellites and space stations, including the International Space Station (ISS). CMGs could be essential for future long duration space missions due to the fact that they help to save propellant. CMGs were successfully tested on the ground for many years, and have been successfully used on satellites. However, operations have shown that the CMG service life on the ISS is significantly shorter than predicted. Since the dynamic environment of the ISS differs greatly from the nominal environment of satellites, it was important to analyze how operations specific to the station (dockings and undockings, huge solar array motion, crew exercising, robotic operations, etc) can affect the CMG performance. This task became even more important since the first CMG failure onboard the ISS. The CMG failure resulted in the limitation of the attitude control capabilities, more propellant consumption, and additional operational issues. Therefore, the goal of this work was to find out how the vibrations of a space vehicle structure, caused by a variety of onboard operations, can affect the CMG dynamics and performance. The equations of CMG motion were derived and analyzed for the case when the gyro foundation can vibrate in any direction. The analysis was performed for unbalanced CMG gimbals to match the CMG configuration on ISS. The analysis showed that vehicle structure vibrations can amplify and significantly change the CMG motion if the gyro gimbals are unbalanced in flight. The resonance frequencies were found. It was shown that the resonance effect depends on the magnitude of gimbal imbalance, on the direction of a structure vibration, and on gimbal bearing friction. Computer modeling results of CMG dynamics affected by the external vibration are presented. The results can explain some of the CMG vibration telemetry observed on ISS. This work shows that balancing the CMG gimbals decreases the effect
Adaptive Gain Scheduled Semiactive Vibration Control Using a Neural Network
Directory of Open Access Journals (Sweden)
Kazuhiko Hiramoto
2018-01-01
Full Text Available We propose an adaptive gain scheduled semiactive control method using an artificial neural network for structural systems subject to earthquake disturbance. In order to design a semiactive control system with high control performance against earthquakes with different time and/or frequency properties, multiple semiactive control laws with high performance for each of multiple earthquake disturbances are scheduled with an adaptive manner. Each semiactive control law to be scheduled is designed based on the output emulation approach that has been proposed by the authors. As the adaptive gain scheduling mechanism, we introduce an artificial neural network (ANN. Input signals of the ANN are the measured earthquake disturbance itself, for example, the acceleration, velocity, and displacement. The output of the ANN is the parameter for the scheduling of multiple semiactive control laws each of which has been optimized for a single disturbance. Parameters such as weight and bias in the ANN are optimized by the genetic algorithm (GA. The proposed design method is applied to semiactive control design of a base-isolated building with a semiactive damper. With simulation study, the proposed adaptive gain scheduling method realizes control performance exceeding single semiactive control optimizing the average of the control performance subject to various earthquake disturbances.
Maitre, J; Serres, I; Lhuisset, L; Bois, J; Gasnier, Y; Paillard, T
2015-02-01
The aim was to determine in what extent physical activity influences postural control when visual, vestibular, and/or proprioceptive systems are disrupted. Two groups of healthy older women: an active group (74.0 ± 3.8 years) who practiced physical activities and a sedentary group (74.7 ± 6.3 years) who did not, underwent 12 postural conditions consisted in altering information emanating from sensory systems by means of sensory manipulations (i.e., eyes closed, cervical collar, tendon vibration, electromyostimulation, galvanic vestibular stimulation, foam surface). The center of foot pressure velocity was recorded on a force platform. Results indicate that the sensory manipulations altered postural control. The sedentary group was more disturbed than the active group by the use of tendon vibration. There was no clear difference between the two groups in the other conditions. This study suggests that the practice of physical activities is beneficial as a means of limiting the effects of tendon vibration on postural control through a better use of the not manipulated sensory systems and/or a more efficient reweighting to proprioceptive information from regions unaffected by the tendon vibration. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Controlling vibrational cooling with zero-width resonances: An adiabatic Floquet approach
Leclerc, Arnaud; Viennot, David; Jolicard, Georges; Lefebvre, Roland; Atabek, Osman
2016-10-01
In molecular photodissociation, some specific combinations of laser parameters (wavelength and intensity) lead to unexpected zero-width resonances (ZWRs) with, in principle, infinite lifetimes. Their potential to induce basic quenching mechanisms has recently been devised in the laser control of vibrational cooling through filtration strategies [O. Atabek et al., Phys. Rev. A 87, 031403(R) (2013), 10.1103/PhysRevA.87.031403]. A full quantum adiabatic control theory based on the adiabatic Floquet Hamiltonian is developed to show how a laser pulse could be envelope-shaped and frequency-chirped so as to protect a given initial vibrational state against dissociation, taking advantage of its continuous transport on the corresponding ZWR all along the pulse duration. As compared with previous control scenarios that actually suffered from nonadiabatic contamination, drastically different and much more efficient filtration goals are achieved. A semiclassical analysis helps us to find and interpret a complete map of ZWRs in the laser parameter plane. In addition, the choice of a given ZWR path, among the complete series identified by the semiclassical approach, turns out to be crucial for the cooling scheme, targeting a single vibrational state population left at the end of the pulse, while all others have almost completely decayed. The illustrative example, which has the potential to be transposed to other diatomics, is Na2 prepared by photoassociation in vibrationally hot but translationally and rotationally cold states.
Development of flow separation control system to reduce the vibration of wind turbine blades
Kim, Ho-Young; Kim, Ho-Hyun; Han, Jong-Seob; Han, Jae-Hung
2017-04-01
The size of wind turbine blade has been continuously increased. Large-scale wind turbine blades induce loud noise, vibration; and maintenance difficulty is also increased. It causes the eventual increases of the cost of energy. The vibration of wind turbine blade is caused by several reasons such as a blade rotation, tower shadow, wind shear, and flow separation of a wind turbine blade. This wind speed variation changes in local angle of attack of the blades and create the vibration. The variation of local angle of attack influences the lift coefficient and causes the large change of the lift. In this study, we focus on the lift coefficient control using a flow control device to reduce the vibration. DU35-A15 airfoil was employed as baseline model. A plasma actuator was installed to generate the upwind jet in order to control the lift coefficient. Wind tunnel experiment was performed to demonstrate of the performance of the plasma actuator. The results show the plasma actuator can induce the flow separation compared with the baseline model. In addition, the actuator can delay the flow separation depending on the input AC frequency with the same actuator configuration.
Tuma, Margaret L.; Davis, Susan R.; Askins, Bruce R.; Salyer, Blaine H.
2008-01-01
The National Aeronautics and Space Administration (NASA) Ares Projects Office (APO) is continuing to make progress toward the final design of the Ares I crew launch vehicle and Ares V cargo launch vehicle. Ares I and V will form the space launch capabilities necessary to fulfill NASA's exploration strategy of sending human beings to the Moon, Mars, and beyond. As with all new space vehicles there will be a number of tests to ensure the design can be Human Rated. One of these is the Integrated Vehicle Ground Vibration Test (IVGVT) that will be measuring responses of the Ares I as a system. All structural systems possess a basic set of physical characteristics unique to that system. These unique characteristics include items such as mass distribution, frequency and damping. When specified, they allow engineers to understand and predict how a structural system like the Ares I launch vehicle behaves under given loading conditions. These physical properties of launch vehicles may be predicted by analysis or measured through certain types of tests. Generally, these properties are predicted by analysis during the design phase of a launch vehicle and then verified through testing before the vehicle is Human Rated. The IVGVT is intended to measure by test the fundamental dynamic characteristics of Ares I during various phases of operational/flight. This testing includes excitations of the vehicle in lateral, longitudinal, and torsional directions at vehicle configurations representing different trajectory points. During the series of tests, properties such as natural frequencies, mode shapes, and transfer functions are measured directly. These data will then be used to calibrate loads and Guidance, Navigation, and Controls (GN&C) analysis models for verifying analyses of Ares I. NASA launch vehicles from Saturn to Shuttle have undergone Ground Vibration Tests (GVTs) leading to successful launch vehicles. A GVT was not performed on the unmanned Delta III. This vehicle was
Vibration control of a flexible structure with electromagnetic actuators
DEFF Research Database (Denmark)
Gruzman, Maurício; Santos, Ilmar
2016-01-01
elements were used. Nonlinear equations for the actuator electromagnetic force, noise in the position sensor, time delays for the control signal update and voltage saturation were also considered in the model. For controlling purposes, a discrete linear quadratic regulator combined with a predictive full...
Dubay, Rickey; Hassan, Marwan; Li, Chunying; Charest, Meaghan
2014-09-01
This paper presents a unique approach for active vibration control of a one-link flexible manipulator. The method combines a finite element model of the manipulator and an advanced model predictive controller to suppress vibration at its tip. This hybrid methodology improves significantly over the standard application of a predictive controller for vibration control. The finite element model used in place of standard modelling in the control algorithm provides a more accurate prediction of dynamic behavior, resulting in enhanced control. Closed loop control experiments were performed using the flexible manipulator, instrumented with strain gauges and piezoelectric actuators. In all instances, experimental and simulation results demonstrate that the finite element based predictive controller provides improved active vibration suppression in comparison with using a standard predictive control strategy. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Directory of Open Access Journals (Sweden)
Wang Wei
2016-01-01
Full Text Available The related theory and algorithm of adaptive inverse control were presented through the research which pointed out the adaptive inverse control strategy could effectively eliminate the noise influence on the system control. Proposed using a frequency domain filter-X LMS adaptive inverse control algorithm, and the control algorithm was applied to the two-exciter hydraulic vibration test system of random shock vibration control process and summarized the process of the adaptive inverse control strategies in the realization of the random shock vibration test. The self-closed-loop and field test show that using the frequency-domain filter-X LMS adaptive inverse control algorithm can realize high precision control of random shock vibration test.
Expressing emotions through vibration for perception and control
Ur Réhman, Shafiq
2010-01-01
This thesis addresses a challenging problem: “how to let the visually impaired ‘see’ others emotions”. We, human beings, are heavily dependent on facial expressions to express ourselves. A smile shows that the person you are talking to is pleased, amused, relieved etc. People use emotional information from facial expressions to switch between conversation topics and to determine attitudes of individuals. Missing emotional information from facial expressions and head gestures makes the visuall...
Problems in event based engine control
DEFF Research Database (Denmark)
Hendricks, Elbert; Jensen, Michael; Chevalier, Alain Marie Roger
1994-01-01
Physically a four cycle spark ignition engine operates on the basis of four engine processes or events: intake, compression, ignition (or expansion) and exhaust. These events each occupy approximately 180° of crank angle. In conventional engine controllers, it is an accepted practice to sample th...... problems on accurate air/fuel ratio control of a spark ignition (SI) engine....... the engine variables synchronously with these events (or submultiples of them). Such engine controllers are often called event-based systems. Unfortunately the main system noise (or disturbance) is also synchronous with the engine events: the engine pumping fluctuations. Since many electronic engine......Physically a four cycle spark ignition engine operates on the basis of four engine processes or events: intake, compression, ignition (or expansion) and exhaust. These events each occupy approximately 180° of crank angle. In conventional engine controllers, it is an accepted practice to sample...
Cao, Fangfei; Liu, Jinkun
2017-10-01
Considering full state constraints, this paper designs a boundary controller for a two-link rigid-flexible manipulator via Barrier Lyapunov Function. The dynamic model of the two-link rigid-flexible manipulator is described by coupled ordinary differential equations- partial differential equations (ODEs-PDEs). Based on the original model without neglecting the high-frequency modes, boundary controller is proposed to regulate the joint positions and eliminate the elastic vibration simultaneously. To ensure that the full state constraints which include position, speed and vibration constraints are not transgressed, a Barrier Lyapunov Function is employed in the proposed controller. The asymptotic stability of the closed-loop system is rigorously proved by the LaSalle's Invariance Principle. Simulations are given to verify the effectiveness of the proposed controller with state constraints.
Adaptive Model Predictive Vibration Control of a Cantilever Beam with Real-Time Parameter Estimation
Directory of Open Access Journals (Sweden)
Gergely Takács
2014-01-01
Full Text Available This paper presents an adaptive-predictive vibration control system using extended Kalman filtering for the joint estimation of system states and model parameters. A fixed-free cantilever beam equipped with piezoceramic actuators serves as a test platform to validate the proposed control strategy. Deflection readings taken at the end of the beam have been used to reconstruct the position and velocity information for a second-order state-space model. In addition to the states, the dynamic system has been augmented by the unknown model parameters: stiffness, damping constant, and a voltage/force conversion constant, characterizing the actuating effect of the piezoceramic transducers. The states and parameters of this augmented system have been estimated in real time, using the hybrid extended Kalman filter. The estimated model parameters have been applied to define the continuous state-space model of the vibrating system, which in turn is discretized for the predictive controller. The model predictive control algorithm generates state predictions and dual-mode quadratic cost prediction matrices based on the updated discrete state-space models. The resulting cost function is then minimized using quadratic programming to find the sequence of optimal but constrained control inputs. The proposed active vibration control system is implemented and evaluated experimentally to investigate the viability of the control method.
Robust tracking control for linear vibrating mechanical systems
Directory of Open Access Journals (Sweden)
Francisco Beltrán-Carbajal
2015-01-01
Full Text Available Se propone un enfoque de control novedoso para seguimiento por realimentación de la salida para sistemas mecánicos vibratorios del tipo masa-resorte-amortiguador lineales sub-actuados. La metodología de diseño de control que se presenta considera robustez con respecto de dinámicas no modeladas y fuerzas externas. El esquema de control propuesto solamente requiere mediciones de la variable de la salida de posición. Se utiliza compensación integral del error de seguimiento de manera apropiada para evitar la estimación en tiempo real de las perturbaciones. Resultado analíticos y numéricos muestran la efectividad del esquema de control activo de vibración para atenuación de vibraciones resonantes y caóticas afectando la respuesta de la variable de salida.
The Effects of Vibration and Muscle Fatigue on Trunk Sensorimotor Control in Low Back Pain Patients
Abboud, Jacques; Nougarou, François; Normand, Martin C.
2015-01-01
Introduction Changes in sensorimotor function and increased trunk muscle fatigability have been identified in patients with chronic low back pain (cLBP). This study assessed the control of trunk force production in conditions with and without local erector spinae muscle vibration and evaluated the influence of muscle fatigue on trunk sensorimotor control. Methods Twenty non-specific cLBP patients and 20 healthy participants were asked to perform submaximal isometric trunk extension torque with and without local vibration stimulation, before and after a trunk extensor muscle fatigue protocol. Constant error (CE), variable error (VE) as well as absolute error (AE) in peak torque were computed and compared across conditions. Trunk extensor muscle activation during isometric contractions and during the fatigue protocol was measured using surface electromyography (sEMG). Results Force reproduction accuracy of the trunk was significantly lower in the patient group (CE = 9.81 ± 2.23 Nm; AE = 18.16 ± 3.97 Nm) than in healthy participants (CE = 4.44 ± 1.68 Nm; AE = 12.23 ± 2.44 Nm). Local erector spinae vibration induced a significant reduction in CE (4.33 ± 2.14 Nm) and AE (13.71 ± 3.45 Nm) mean scores in the patient group. Healthy participants conversely showed a significant increase in CE (8.17 ± 2.10 Nm) and AE (16.29 ± 2.82 Nm) mean scores under vibration conditions. The fatigue protocol induced erector spinae muscle fatigue as illustrated by a significant decrease in sEMG median time-frequency slopes. Following the fatigue protocol, patients with cLBP showed significant decrease in sEMG root mean square activity at L4-5 level and responded in similar manner with and without vibration stimulation in regard to CE mean scores. Conclusions Patients with cLBP have a less accurate force reproduction sense than healthy participants. Local muscle vibration led to significant trunk neuromuscular control improvements in the cLBP patients before and after a muscle
The Effects of Vibration and Muscle Fatigue on Trunk Sensorimotor Control in Low Back Pain Patients.
Directory of Open Access Journals (Sweden)
Jean-Alexandre Boucher
Full Text Available Changes in sensorimotor function and increased trunk muscle fatigability have been identified in patients with chronic low back pain (cLBP. This study assessed the control of trunk force production in conditions with and without local erector spinae muscle vibration and evaluated the influence of muscle fatigue on trunk sensorimotor control.Twenty non-specific cLBP patients and 20 healthy participants were asked to perform submaximal isometric trunk extension torque with and without local vibration stimulation, before and after a trunk extensor muscle fatigue protocol. Constant error (CE, variable error (VE as well as absolute error (AE in peak torque were computed and compared across conditions. Trunk extensor muscle activation during isometric contractions and during the fatigue protocol was measured using surface electromyography (sEMG.Force reproduction accuracy of the trunk was significantly lower in the patient group (CE = 9.81 ± 2.23 Nm; AE = 18.16 ± 3.97 Nm than in healthy participants (CE = 4.44 ± 1.68 Nm; AE = 12.23 ± 2.44 Nm. Local erector spinae vibration induced a significant reduction in CE (4.33 ± 2.14 Nm and AE (13.71 ± 3.45 Nm mean scores in the patient group. Healthy participants conversely showed a significant increase in CE (8.17 ± 2.10 Nm and AE (16.29 ± 2.82 Nm mean scores under vibration conditions. The fatigue protocol induced erector spinae muscle fatigue as illustrated by a significant decrease in sEMG median time-frequency slopes. Following the fatigue protocol, patients with cLBP showed significant decrease in sEMG root mean square activity at L4-5 level and responded in similar manner with and without vibration stimulation in regard to CE mean scores.Patients with cLBP have a less accurate force reproduction sense than healthy participants. Local muscle vibration led to significant trunk neuromuscular control improvements in the cLBP patients before and after a muscle fatigue protocol. Muscle vibration
The Effects of Vibration and Muscle Fatigue on Trunk Sensorimotor Control in Low Back Pain Patients.
Boucher, Jean-Alexandre; Abboud, Jacques; Nougarou, François; Normand, Martin C; Descarreaux, Martin
2015-01-01
Changes in sensorimotor function and increased trunk muscle fatigability have been identified in patients with chronic low back pain (cLBP). This study assessed the control of trunk force production in conditions with and without local erector spinae muscle vibration and evaluated the influence of muscle fatigue on trunk sensorimotor control. Twenty non-specific cLBP patients and 20 healthy participants were asked to perform submaximal isometric trunk extension torque with and without local vibration stimulation, before and after a trunk extensor muscle fatigue protocol. Constant error (CE), variable error (VE) as well as absolute error (AE) in peak torque were computed and compared across conditions. Trunk extensor muscle activation during isometric contractions and during the fatigue protocol was measured using surface electromyography (sEMG). Force reproduction accuracy of the trunk was significantly lower in the patient group (CE = 9.81 ± 2.23 Nm; AE = 18.16 ± 3.97 Nm) than in healthy participants (CE = 4.44 ± 1.68 Nm; AE = 12.23 ± 2.44 Nm). Local erector spinae vibration induced a significant reduction in CE (4.33 ± 2.14 Nm) and AE (13.71 ± 3.45 Nm) mean scores in the patient group. Healthy participants conversely showed a significant increase in CE (8.17 ± 2.10 Nm) and AE (16.29 ± 2.82 Nm) mean scores under vibration conditions. The fatigue protocol induced erector spinae muscle fatigue as illustrated by a significant decrease in sEMG median time-frequency slopes. Following the fatigue protocol, patients with cLBP showed significant decrease in sEMG root mean square activity at L4-5 level and responded in similar manner with and without vibration stimulation in regard to CE mean scores. Patients with cLBP have a less accurate force reproduction sense than healthy participants. Local muscle vibration led to significant trunk neuromuscular control improvements in the cLBP patients before and after a muscle fatigue protocol. Muscle vibration stimulation
Improved Object Detection Using a Robotic Sensing Antenna with Vibration Damping Control.
Feliu-Batlle, Vicente; Feliu-Talegon, Daniel; Castillo-Berrio, Claudia Fernanda
2017-04-13
Some insects or mammals use antennae or whiskers to detect by the sense of touch obstacles or recognize objects in environments in which other senses like vision cannot work. Artificial flexible antennae can be used in robotics to mimic this sense of touch in these recognition tasks. We have designed and built a two-degree of freedom (2DOF) flexible antenna sensor device to perform robot navigation tasks. This device is composed of a flexible beam, two servomotors that drive the beam and a load cell sensor that detects the contact of the beam with an object. It is found that the efficiency of such a device strongly depends on the speed and accuracy achieved by the antenna positioning system. These issues are severely impaired by the vibrations that appear in the antenna during its movement. However, these antennae are usually moved without taking care of these undesired vibrations. This article proposes a new closed-loop control schema that cancels vibrations and improves the free movements of the antenna. Moreover, algorithms to estimate the 3D beam position and the instant and point of contact with an object are proposed. Experiments are reported that illustrate the efficiency of these proposed algorithms and the improvements achieved in object detection tasks using a control system that cancels beam vibrations.
Miura, Takahiro; Ikeda, Masao; Hoshijima, Kohta
High productivity is commonly required in manufacturing processes. For this purpose, we need to run machines at high speed. However, high-speed motion usually generates vibration in positioning and then makes the settling time long. For this reason, various control strategies have been proposed for high-speed motion and vibration suppression at the same time. In this paper, we deal with a mechanical transfer system with a loading beam, which is widely used in manufacturing processes. We represent the system as composed of three rigid bodies, that is, a driving unit, a hand, and a work. The driving unit and the hand are connected by an elastic link, and slide on a smooth floor. The work is loaded on a flexible beam which is connected rigidly to the hand. When the driving unit moves on the floor, the work is vibrated not only in the translational motion but also in the bending motion because of the flexibility of the beam. Under polytopic uncertainties of the stiffness and damping parameters in the link and the beam, we apply the idea of jerk reduction control to the hand for vibration suppression of the work and shortening the settling time in positioning. We show the effectiveness of jerk reduction of the hand by numerical simulations for a finite element model.
Vibration reduction in helicopter rotors using an active control surface located on the blade
Millott, T. A.; Friedmann, P. P.
1992-01-01
A feasibility study of vibration reduction in a four-bladed helicopter rotor using individual blade control (IBC), which is implemented by an individually controlled aerodynamic surface located on each blade, is presented. For this exploratory study, a simple offset-hinged spring restrained model of the blade is used with fully coupled flap-lag-torsional dynamics for each blade. Deterministic controllers based on local and global system models are implemented to reduce 4/rev hub loads using both an actively controlled aerodynamic surface on each blade as well as conventional IBC, where the complete blade undergoes cyclic pitch change. The effectiveness of the two approaches for simultaneous reduction of the 4/rev hub shears and hub moments is compared. Conventional IBC requires considerably more power to achieve approximately the same level of vibration reduction as that obtained by implementing IBC using an active control surface located on the outboard segment of the blade. The effect of blade torsional flexibility on the vibration reduction effectiveness of the actively controlled surface was also considered and it was found that this parameter has a very substantial influence.
The use of hybrid automata for fault-tolerant vibration control for parametric failures
Byreddy, Chakradhar; Frampton, Kenneth D.; Yongmin, Kim
2006-03-01
The purpose of this work is to make use of hybrid automata for vibration control reconfiguration under system failures. Fault detection and isolation (FDI) filters are used to monitor an active vibration control system. When system failures occur (specifically parametric faults) the FDI filters detect and identify the specific failure. In this work we are specifically interested in parametric faults such as changes in system physical parameters; however this approach works equally well with additive faults such as sensor or actuator failures. The FDI filter output is used to drive a hybrid automaton, which selects the appropriate controller and FDI filter from a library. The hybrid automata also implements switching between controllers and filters in order to maintain optimal performance under faulty operating conditions. The biggest challenge in developing this system is managing the switching and in maintaining stability during the discontinuous switches. Therefore, in addition to vibration control, the stability associated with switching compensators and FDI filters is studied. Furthermore, the performance of two types of FDI filters is compared: filters based on parameter estimation methods and so called "Beard-Jones" filters. Finally, these simulations help in understanding the use of hybrid automata for fault-tolerant control.
Directory of Open Access Journals (Sweden)
Gangolu Vijay Kumar
2012-01-01
Full Text Available A four-node composite facet-shell element is developed, accounting for electromechanical coupling of Macrofiber Composite (MFC and conventional PZT patches. Further a warping correction is included in order to capture correctly the induced strain of conformable MFC, surface bonded on a cylindrical shell. The element performance to model the relations between in-plane electric field to normal strains is examined with the help of experiment and ANSYS analysis. In ANSYS, a simple modeling scheme is proposed for MFC using a parallel capacitors concept. The independent modal space control technique has been revisited to address the control of combination resonances through a selective modal space control scheme, where two or more modes can be combined to form the vibrating system or plant in modal domain. The developed control schemes are implemented in a digital processor using DS1104 and the closed-loop vibration control experiments are conducted on a CFRP shell structure. The influence of directionally induced actuation of MFC actuators on elastic couplings of composite shell is studied theoretically and is subsequently demonstrated in experiments. MFC actuators provide the much needed optimization domain for achieving the vibration control of combination resonances of elastically coupled deep-shell structure.
Effects of aerobic exercise and whole body vibration on glycaemia control in type 2 diabetic males.
Behboudi, Lale; Azarbayjani, Mohammad-Ali; Aghaalinejad, Hamid; Salavati, Mahyar
2011-06-01
Aerobic exercise has been identified as the main treatment for type 2 diabetic patients. Such an exercise, however, is usually repined by some of patients who suffer from lack of stamina. Therefore, whole body vibration has recently been introduced as a passive intervention. The present study aimed at comparing how aerobic exercise and whole body vibration affect glycaemia control in type 2 diabetic males. Thirty diabetic males were divided into three groups, namely aerobic exercise (AE), whole body vibration (WBV), and control. Aerobic exercise schedule consisted of three walking sessions a week, each for 30-60 minutes and in 60-70% of maximum stock heartbeat. Vibration exercise was composed of 8-12-min stand-up and semi-squat positioning in frequency of 30 Hz and amplitude of 2 mm. Concentrations of fasting glycosylated hemoglobin, fasting glucose, and insulin were measured in the beginning of the trial, after the fourth week, and after the eighth week. After 8 weeks of exercise, no significant difference was detected in concentrations of fasting glycosylated hemoglobin and insulin between the groups (P=0.83, P=0.12). There were no significant differences in any of the variables between AE and WBV (P>0.05). But a more significant decrease in fasting glucose was observed in exercise groups (AE and WBV) compared with control group (P=0.02). The present study showed that AE and WBV identically stimulate metabolic system. Thus, it can be concluded that type 2 diabetic patients lacking stamina for aerobic exercise can opt for vibration exercise as an effective substitute.
Rahman, Md. Saifur; Lee, Yiu-Yin
2017-10-01
In this study, a new modified multi-level residue harmonic balance method is presented and adopted to investigate the forced nonlinear vibrations of axially loaded double beams. Although numerous nonlinear beam or linear double-beam problems have been tackled and solved, there have been few studies of this nonlinear double-beam problem. The geometric nonlinear formulations for a double-beam model are developed. The main advantage of the proposed method is that a set of decoupled nonlinear algebraic equations is generated at each solution level. This heavily reduces the computational effort compared with solving the coupled nonlinear algebraic equations generated in the classical harmonic balance method. The proposed method can generate the higher-level nonlinear solutions that are neglected by the previous modified harmonic balance method. The results from the proposed method agree reasonably well with those from the classical harmonic balance method. The effects of damping, axial force, and excitation magnitude on the nonlinear vibrational behaviour are examined.
Quantum coherent control of the vibrational dynamics of a ...
Indian Academy of Sciences (India)
2014-02-12
Feb 12, 2014 ... We simulate adaptive feedback control to coherently shape a femtosecond infrared laser pulse by means of a 4f-spatial light modulator in order to selectively excite the rovibrational modes of a polyatomic molecule. We preferentially populate an arbitrarily chosen upper rovibrational level by only employing ...
Directory of Open Access Journals (Sweden)
Ting Zhang
2014-01-01
Full Text Available This paper presents various experimental verifications for the theoretical analysis results of vibration suppression to a smart flexible beam bonded with a piezoelectric actuator by a velocity feedback controller and an extended state observer (ESO. During the state feedback control (SFC design process for the smart flexible beam with the pole placement theory, in the state feedback gain matrix, the velocity feedback gain is much more than the displacement feedback gain. For the difference between the velocity feedback gain and the displacement feedback gain, a modified velocity feedback controller is applied based on a dynamical model with the Hamilton principle to the smart beam. In addition, the feedback velocity is attained with the extended state observer and the displacement is acquired by the foil gauge on the root of the smart flexible beam. The control voltage is calculated by the designed velocity feedback gain multiplied by the feedback velocity. Through some experiment verifications for simulation results, it is indicated that the suppressed amplitude of free vibration is up to 62.13% while the attenuated magnitude of its velocity is up to 61.31%. Therefore, it is demonstrated that the modified velocity feedback control with the extended state observer is feasible to reduce free vibration.
Smart panel with time-varying shunted piezoelectric patch absorbers for broadband vibration control
Casagrande, D.; Gardonio, P.; Zilletti, M.
2017-07-01
This paper presents a simulation study concerning the low and mid frequencies control of flexural vibration in a lightly damped thin plate equipped with five time-varying shunted piezoelectric patch absorbers. The panel is excited by a rain-on-the-roof broad frequency band stationary disturbance. The absorbers are composed by piezoelectric patches connected to time-varying RL shunt circuits. Discrete or continuous variations over time of the shunts are implemented in such a way as to either switch, between given values, or sweep, within certain ranges, the natural frequency and damping factor of the electro-mechanical absorbers to control either the resonant response of targeted flexural modes of the plate with natural frequency comprised between 30 Hz and 1 kHz or to control the resonant responses of all flexural modes with natural frequencies comprised between 30 Hz and 1 kHz. The proposed system is firstly presented; then, the vibration control effects produced by a single patch and by the array of five patches implementing the switching and sweeping shunts are investigated. Both time-varying operation modes produce significant vibration control effects, with reductions of the resonance peaks of the target resonances or target frequency band up to 12 dB. The piezoelectric patch absorbers with sweeping shunts offer an interesting practical solution since they are operated blindly, thus they do not require a system identification during installation and effectively work without on line tuning also on systems whose response may vary substantially in time.
Li, Peng; Zhang, Chongxiao; Kim, Junyoung; Yu, Liangyao; Zuo, Lei
2014-04-01
Regenerative semi-active suspensions can capture the previously dissipated vibration energy and convert it to usable electrical energy for powering on-board electronic devices, while achieve both the better ride comfort and improved road handling performance at the same time when certain control is applied. To achieve this objective, the power electronics interface circuit connecting the energy harvester and the electrical loads, which can perform simultaneous vibration control and energy harvesting function is in need. This paper utilized a buck-boost converter for simultaneous semi-active vibration control and energy harvesting with electromagnetic regenerative shock absorber, which utilizes a rotational generator to converter the vibration energy to electricity. It has been found that when the circuit works in discontinuous current mode (DCM), the ratio between the input voltage and current is only related to the duty cycle of the switch pulse width modulation signal. Using this property, the buck-boost converter can be used to perform semi-active vibration control by controlling the load connected between the terminals of the generator in the electromagnetic shock absorber. While performing the vibration control, the circuit always draw current from the shock absorber and the suspension remain dissipative, and the shock absorber takes no additional energy to perform the vibration control. The working principle and dynamics of the circuit has been analyzed and simulations were performed to validate the concept.
Theory of vibration protection
Karnovsky, Igor A
2016-01-01
This text is an advancement of the theory of vibration protection of mechanical systems with lumped and distributed parameters. The book offers various concepts and methods of solving vibration protection problems, discusses the advantages and disadvantages of different methods, and the fields of their effective applications. Fundamental approaches of vibration protection, which are considered in this book, are the passive, parametric and optimal active vibration protection. The passive vibration protection is based on vibration isolation, vibration damping and dynamic absorbers. Parametric vibration protection theory is based on the Shchipanov-Luzin invariance principle. Optimal active vibration protection theory is based on the Pontryagin principle and the Krein moment method. The book also contains special topics such as suppression of vibrations at the source of their occurrence and the harmful influence of vibrations on humans. Numerous examples, which illustrate the theoretical ideas of each chapter, ar...
Tomigashi, Yoshio; Okonogi, Akira; Kishimoto, Keiji
Drum-type washer/dryers are becoming more common in Japan, but the vibration created by unequally distributed clothes is a significant problem in this type of machine. We have developed a vibration control that prevents this imbalance by re-arranging the balancer fluid on the opposite side of the heavier distribution when there is unequal distribution. The drum, which has a large inertia, must be decelerated rapidly to enable the balancer fluid to shift. When a permanent magnetic synchronous motor is decelerated using an inverter, the machine's energy is converted into electrical energy, which regenerates the power supply. A control method has been developed that adjusts the input power of the motor to zero, thereby eliminating the need for a discharge circuit. However, it is not easy to achieve this method with an inexpensive microcomputer. In this paper, a practical braking method in which energy does not regenerate the power supply is examined. First, a simple method in which non-regenerative braking is possible with low input power is proposed, even though the input power is not zero. The effectiveness of this non-regenerative deceleration control is verified by theoretical numerical analysis and by an experiment. The borderline of the voltage vector for the non-generative braking is affected by dead time, and the experimental results differ from the theoretically calculated results. However, it is experimentally confirmed that the proposed non-regenerative deceleration control can be achieved by correcting the impressed voltage vector based on experimental results. Finally, this control is applied to the vibration control of the drum-type washer/dryer, and it is confirmed that the balancer fluid moves as designed.
Diagnosis and control of machine induced noise and vibration in steel construction
Energy Technology Data Exchange (ETDEWEB)
Lu, Wei Yu; Wang, Wei Hui [National Taiwan Ocean University, Keelung (China)
2008-11-15
Most high-rise buildings constructed of steel or steel reinforced concrete have to install various vital equipment. Among these equipment machinery noise is especially annoying for accommodation close to them. In attempting to control the machine-induced structure-borne noise and vibration, the methodology by employing mobility functions to identify the dominant frequency band of vibrational power flow transmission and to assess the isolation effectiveness of isolators is established. The proposed method of diagnosis procedure is applied to the structure-borne vibration power flow transmission for a steel construction parking tower. After proper check and replacement of the isolators of the power unit platform of the mechanical parking tower, the improvement results in a substantial structure-borne noise reduction of 16 dB(NC). The unique parts of the paper include the establishment of the relation of mobility functions with respect to four-pole parameters for a coupled machine/mount/foundation system. Also expressions to represent the vibrational input power, the output power and the transmitted power in relation to mobility functions are clarified
Active vibration control activities at the LaRC - Present and future
Newsom, J. R.
1990-01-01
The NASA Controls-Structures-Interaction (CSI) program is presented with a description of the ground testing element objectives and approach. The goal of the CSI program is to develop and validate the technology required to design, verify and operate space systems in which the structure and the controls interact beneficially to meet the needs of future NASA missions. The operational Mini-Mast ground testbed and some sample active vibration control experimental results are discussed along with a description of the CSI Evolutionary Model testbed presently under development. Initial results indicate that embedded sensors and actuators are effective in controlling a large truss/reflector structure.
Directory of Open Access Journals (Sweden)
Teerawat Sangpet
2014-01-01
Full Text Available Noncollocated control of flexible structures results in nonminimum-phase systems because the separation between the actuator and the sensor creates an input-output delay. The delay can deteriorate stability of closed-loop systems. This paper presents a simple approach to improve the delay-margin of the noncollocated vibration control of piezo-actuated flexible beams using a fractional-order controller. Results of real life experiments illustrate efficiency of the controller and show that the fractional-order controller has better stability robustness than the integer-order controller.
Optimal location of piezoelectric patches for active vibration control
Labanie, Mohammad F.; Ali, J. S. Mohamed; Shaik Dawood, M. S. I.
2017-03-01
This paper focuses on finding the optimal location for a piezoelectric patch for minimizing the settling time of an excited isotropic and orthotropic plate. COMSOL Multiphysics has been used to design and model the plate with PID controller. Classical Optimization tool called Parametric Sweep has been used to achieve the objective of the experiment. Five different stacking sequences were used in the study of orthotropic plate. The results obtained by the FEA software indicated that by placing the piezoelectric patches at the optimal location, the settling time of a plate can decrease by 40% compared to placing it at the centre of the fixed end.
Directory of Open Access Journals (Sweden)
M. Rinchi
2004-01-01
Full Text Available Active control of vibrations in mechanical systems has recently benefited of the remarkable development of robust control techniques. These control techniques are able to guarantee performances in spite of unavoidable modeling errors. They have been successfully codified and implemented for vibrating structures whose uncertain parameters could be assumed to be time-invariant. Unfortunately a wide class of mechanical systems, such as machine tools with carriage motion realized by a ball-screw, are characterized by time varying modal parameters. The focus of this paper is on modeling and controlling the vibrations of such systems. A test rig for active vibration control is presented. An analytical model of the test rig is synthesized starting by design data. Through experimental modal analysis, parametric identification and updating procedures, the model has been refined and a control system has been synthesized.
Minimum variance control for mitigation of vibrations in adaptive optics systems.
Escárate, Pedro; Carvajal, Rodrigo; Close, Laird; Males, Jared; Morzinski, Katie; Agüero, Juan C
2017-07-01
In this paper, we address the design of a minimum variance controller (MVC) for the mitigation of vibrations in modern telescope adaptive optics (AO) systems. It is widely accepted that a main source of non-turbulent perturbations is the mechanical resonance induced by the wind or the instrumentation systems, such as fans and cooling pumps. To adequately mitigate vibrations, the application of frequency-based controllers has been considered in the past decade. In this work, we express the system model in terms of the tracking of a zero-input signal via the MVC. We show that the MVC is an equivalent representation of the linear quadratic Gaussian (LQG) controller for the AO system. We also show that by developing the MVC, we can obtain different expressions, in terms of transfer functions, that offer insights into the behavior and expected performance of the controller in the frequency domain. In addition, we analyze the impact of the accuracy of the system and perturbations model on the mitigation of vibrations.
Semi-active vibration control in cable-stayed bridges under the condition of random wind load
Heo, G.; Joonryong, Jeon
2014-07-01
This paper aims at an experimental study on the real-time vibration control of bridge structures using a semi-active vibration control method that has been in the spotlight recently. As structures are becoming larger and larger, structural harmful vibration caused by unspecified external forces such as earthquakes, gusts of wind, and collisions has been brought to attention as an important issue. These harmful vibrations can cause not only user anxiety but also severe structural damage or even complete failure of structures. Therefore, in view of structural safety and economical long-term maintenance, real-time control technology of the harmful structural vibration is urgently required. In this paper, a laboratory-scale model of a cable-stayed bridge was built, and a shear-type MR damper and a semi-active vibration control algorithm (Lyapunov and clipped optimal) were applied for the control of harmful vibration of the model bridge, in real time. On the basis of the test results, each semi-active control algorithm was verified quantitatively.
Zheng, Li Ming; Pu, Chun Sheng; Liu, Jing; Ma, Bo; Khan, Nasir
2017-01-01
Flowing gel plugging and low-frequency vibration oil extraction technology have been widely applied in low-permeability formation. High probability of overlapping in action spheres of two technologies might lead to poor operating efficiency during gel injection. Study on flowing gel rheological properties under low-frequency vibration was essential, which was carried out indoor with viscosity measurement. Potential dynamic mechanisms were analyzed for the rheological variation. Under low-frequency vibration, gel rheological properties were found to be obviously influenced, with vibration delaying gel cross-linking in induction period, causing a two-stage gel viscosity change in acceleration period, and decreasing gel strength in stable period. Surface of gel system under vibration presented different fluctuating phenomenon from initial harmonic vibrating to heterogeneous fluctuating (droplet separation might appear) to final harmonic vibrating again. Dynamic displacement in unconsolidated sand pack revealed that low-frequency vibration during gel injection might be a measure to achieve deep profile control, with the gel injection depth increased by 65.8 % compared with the vibration-free sample. At last, suggestions for field test were given in the paper to achieve lower injection friction and better gel plugging efficiency.
Piezoelectric actuator models for active sound and vibration control of cylinders
Lester, Harold C.; Lefebvre, Sylvie
1993-07-01
Analytical models for piezoelectric actuators, adapted from flat plate concepts, are developed for noise and vibration control applications associated with vibrating circular cylinders. The loadings applied to the cylinder by the piezoelectric actuators for the bending and in-plane force models are approximated by line moment and line force distributions, respectively, acting on the perimeter of the actuator patch area. Coupling between the cylinder and interior acoustic cavity is examined by studying the modal spectra, particularly for the low-order cylinder modes that couple efficiently with the cavity at low frequencies. Within the scope of this study, the in-plane force model produced a more favorable distribution of low-order modes, necessary for efficient interior noise control, than did the bending model.
Correa, D. A. P.; Silva, W. M. da; Nabeta, S. I.; Chabu, I. E.
2011-01-01
Despite its robustness the Switched Reluctance Motors (SRMs) present some inconvenient drawbacks as a major torque ripple, vibration and acoustic noise when compared to other types of motors. These characteristics are usually related to factors such as the salient poles in the stator and in the rotor, the switched feeding and the control strategy imposed by the electronic converter. In this paper a Special Switched Reluctance Motor for fractional horsepower and high speed hand tool was studie...
Recentering Shape Memory Alloy Passive Damper for Structural Vibration Control
Directory of Open Access Journals (Sweden)
Hui Qian
2013-01-01
Full Text Available This paper presents a preliminary study on the evaluation of an innovative energy dissipation system with shape memory alloys (SMAs for structural seismic protection. A recentering shape memory alloy damper (RSMAD, in which superelastic nitinol wires are utilized as energy dissipation components, is proposed. Improved constitutive equations based on Graesser and Cozzarelli model are proposed for superelastic nitinol wires used in the damper. Cyclic tensile-compressive tests on the damper with various prestrain under different loading frequencies and displacement amplitudes were conducted. The results show that the hysteretic behaviors of the damper can be modified to best fit the needs for passive structural control applications by adjusting the pretension of the nitinol wires, and the damper performance is not sensitive to frequencies greater than 0.5 Hz. To assess the effectiveness of the dampers for structural seismic protection, nonlinear time history analysis on a ten-story steel frame with and without the dampers subjected to representative earthquake ground motions was performed. The simulation results indicate that superelastic SMA dampers are effective in mitigating the structural response of building structures subjected to strong earthquakes.
Directory of Open Access Journals (Sweden)
M Pomarède
2016-09-01
Full Text Available Numerical simulation of Vortex-Induced-Vibrations (VIV of a rigid circular elastically-mounted cylinder submitted to a fluid cross-flow has been extensively studied over the past decades, both experimentally and numerically, because of its theoretical and practical interest for understanding Flow-Induced-Vibrations (FIV problems. In this context, the present article aims to expose a numerical study based on fully-coupled fluid-solid computations compared to previously published work [34], [36]. The computational procedure relies on a partitioned method ensuring the coupling between fluid and structure solvers. The fluid solver involves a moving mesh formulation for simulation of the fluid structure interface motion. Energy exchanges between fluid and solid models are ensured through convenient numerical schemes. The present study is devoted to a low Reynolds number configuration. Cylinder motion magnitude, hydrodynamic forces, oscillation frequency and fluid vortex shedding modes are investigated and the “lock-in” phenomenon is reproduced numerically. These numerical results are proposed for code validation purposes before investigating larger industrial applications such as configurations involving tube arrays under cross-flows [4].
Earthquake Vibration Control of Structures using Tuned Liquid Dampers: Experimental Studies
Directory of Open Access Journals (Sweden)
Pradipta Banerji
2010-12-01
Full Text Available Earlier studies have shown conclusively that a Tuned Liquid Damper (TLD is effective for controlling vibrations in structures subjected to narrow-banded wind excitations. A recent numerical study has shown that if the design parameters of a TLD are properly set, this device could also be very effective for controlling structural vibration to broad-banded earthquake excitations. Here the results of a reasonably comprehensive set of experiments are presented to investigate the overall effectiveness of TLDs and the specific effect of TLD parameters (depth and mass ratios for earthquake vibration control of structures. Effects of various earthquake ground motions parameters such as amplitude, frequency content, duration of excitation etc. are also evaluated. It is shown that there is good agreement between the numerical simulation and experimental results. This experimental study conclusively shows that a properly designed TLD reduces structural response to broad-band earthquake excitations. It is also observed that effectiveness of TLD increases with increase in mass ratio, depth ratio and amplitude of ground motion.
Vibration Control of Flexible Mode for a Beam-Type Substrate Transport Robot
Directory of Open Access Journals (Sweden)
Cheol Hoon Park
2013-07-01
Full Text Available Beam-type substrate transport robots are widely used to handle substrates, especially in the solar cell manufacturing process. To reduce the takt time and increase productivity, accurate position control becomes increasingly important as the size of the substrate increases. However, the vibration caused by the flexible forks in beam-type robots interferes with accurate positioning, which results in long takt times in the manufacturing process. To minimize the vibration and transport substrates on the fork as fast as possible, the trajectories should be prevented from exciting the flexible modes of the forks. For this purpose, a fifth-order polynomial trajectory generator and input shaping were incorporated into the controller of the beam-type robot in this study. The flexible modes of the forks were identified by measuring the frequency response function (FRF, and the input shaping was designed so as not to excite the flexible modes. The controller was implemented by using MATLAB/xPC Target. In this paper, the design procedure of input shaping and its effectiveness for vibration attenuation in both “no load” and “load” cases is presented.
Active Vibration Control of a Nonlinear Beam with Self- and External Excitations
Directory of Open Access Journals (Sweden)
J. Warminski
2013-01-01
Full Text Available An application of the nonlinear saturation control (NSC algorithm for a self-excited strongly nonlinear beam structure driven by an external force is presented in the paper. The mathematical model accounts for an Euler-Bernoulli beam with nonlinear curvature, reduced to first mode oscillations. It is assumed that the beam vibrates in the presence of a harmonic excitation close to the first natural frequency of the beam, and additionally the beam is self-excited by fluid flow, which is modelled by a nonlinear Rayleigh term for self-excitation. The self- and externally excited vibrations have been reduced by the application of an active, saturation-based controller. The approximate analytical solutions for a full structure have been found by the multiple time scales method, up to the first-order approximation. The analytical solutions have been compared with numerical results obtained from direct integration of the ordinary differential equations of motion. Finally, the influence of a negative damping term and the controller's parameters for effective vibrations suppression are presented.
Ultrafast Control of the electronic phase of a manganite viamode-selective vibrational excitation
Energy Technology Data Exchange (ETDEWEB)
Rini, Matteo; Tobey, Ra' anan I.; Dean, Nicky; Tokura, Yoshinori; Schoenlein, Robert W.; Cavalleri, Andrea
2007-05-01
Controlling a phase of matter by coherently manipulatingspecific vibrational modes has long been an attractive (yet elusive) goalfor ultrafast science. Solids with strongly correlated electrons, inwhich even subtle crystallographic distortions can result in colossalchanges of the electronic and magnetic properties, could be directedbetween competing phases by such selective vibrational excitation. Inthis way, the dynamics of the electronic ground state of the systembecome accessible, and new insight into the underlying physics might begained. Here we report the ultrafast switching of the electronic phase ofa magnetoresistive manganite via direct excitation of a phonon mode at 71meV (17 THz). A prompt, five-order-of-magnitude drop in resistivity isobserved, associated with a non-equilibrium transition from the stableinsulating phase to a metastable metallic phase. In contrast withlight-induced, and current-driven phase transitions, the vibrationallydriven bandgap collapse observed here is not related to hot-carrierinjection and is uniquely attributed to a large-amplitude Mn-Odistortion. This corresponds to a perturbation of theperovskite-structure tolerance factor, which in turn controls theelectronic bandwidth via inter-site orbital overlap. Phase control bycoherent manipulation of selected metal--oxygen phonons should findextensive application in other complex solids--notably in copper oxidesuperconductors, in which the role of Cu-O vibrations on the electronicproperties is currently controversial.
Supharat, Suthep
2016-01-01
Permanent magnet synchronous motor has been widely used in variable speed drive system for various fields, such as industry, household applications, etc., The merits of PMSM are rugged construction, high efficiency, high torque to current ratio, low inertia, etc. Recently, PMSM driven air-conditioners and refrigerators are obviously increased. However, the compressors used in the air-conditioners have the problem that vibration occurs due to the torque pulsation. The frame vibration results i...
Adaptive active control of structural vibration by minimisation of total supplied power
DEFF Research Database (Denmark)
Henriksen, Eigil
1996-01-01
Active control of vibration by minimisation of total supplied power is an attractive approach from a theoretical point of view. In this practical study of the method two secondary sources were applied to control the sinusoidal excitation of an aluminium beam from a single primary source....... The control algorithm was able to reduce the total supplied source power in a frequency band ranging from 50 to 500 Hz. The algorithm is surprisingly insensitive to measurement errors. However, very precise estimates of the power from the individual sources are required to quantify the total supplied power....
The control of drilling vibrations: A coupled PDE-ODE modeling approach
Directory of Open Access Journals (Sweden)
Saldivar Belem
2016-06-01
Full Text Available The main purpose of this contribution is the control of both torsional and axial vibrations occurring along a rotary oilwell drilling system. The model considered consists of a wave equation coupled to an ordinary differential equation (ODE through a nonlinear function describing the rock-bit interaction. We propose a systematic method to design feedback controllers guaranteeing ultimate boundedness of the system trajectories and leading consequently to the suppression of harmful dynamics. The proposal of a Lyapunov-Krasovskii functional provides stability conditions stated in terms of the solution of a set of linear and bilinear matrix inequalities (LMIs, BMIs. Numerical simulations illustrate the efficiency of the obtained control laws.
Stolzenberg, Nils; Belavý, Daniel L; Rawer, Rainer; Felsenberg, Dieter
2013-07-01
To prevent falls in the elderly, especially those with low bone density, is it necessary to maintain muscle coordination and balance. The aim of this study was to examine the effect of classical balance training (BAL) and whole-body vibration training (VIB) on postural control in post-menopausal women with low bone density. Sixty-eight subjects began the study and 57 completed the nine-month intervention program. All subjects performed resistive exercise and were randomized to either the BAL- (N=31) or VIB-group (N=26). The BAL-group performed progressive balance and coordination training and the VIB-group underwent, in total, four minutes of vibration (depending on exercise; 24-26Hz and 4-8mm range) on the Galileo Fitness. Every month, the performance of a single leg stance task on a standard unstable surface (Posturomed) was tested. At baseline and end of the study only, single leg stance, Romberg-stance, semi-tandem-stance and tandem-stance were tested on a ground reaction force platform (Leonardo). The velocity of movement on the Posturomed improved by 28.3 (36.1%) (p<0.001) in the VIB-group and 18.5 (31.5%) (p<0.001) in the BAL-group by the end of the nine-month intervention period, but no differences were seen between the two groups (p=0.45). Balance tests performed on the Leonardo device did not show any significantly different responses between the two groups after nine months (p≥0.09). Strength training combined with either proprioceptive training or whole-body vibration was associated with improvements in some, but not all, measures of postural control in post-menopausal women with low bone density. The current study could not provide evidence for a significantly different impact of whole-body vibration or balance training on postural control. Copyright © 2013 Elsevier B.V. All rights reserved.
Malaria control: achievements, problems and strategies.
Nájera, J A
2001-06-01
scale was steered by the Malaria Commission of the League of Nations and greatly supported by the Rockefeller Foundation. Perhaps the most important contribution of this period was the development of malaria epidemiology, including the study of the genesis of epidemics and their possible forecasting and prevention. Although the great effectiveness of DDT was perhaps the main determinant for proposing the global eradication of the disease in the 1950s, it was the confidence in the epidemiological knowledge and the prestige of malariology, which gave credibility to the proposal at the political level. The second part deals with the global malaria eradication campaign of the 1950s and 1960s. It recognises the enormous impact of the eradication effort in the consolidation of the control successes of the first half of the century, as well as its influence in the development of planning of health programmes. Nevertheless, it also stresses the negative influence that the failure to achieve its utopian expectations had on the general disappointment and slow progress of malaria control, which characterised the last third of the century. The paper then analyses the evolution of malaria control funding, which often appears out of tune with political statements. The fourth part is devoted to the search for realistic approaches to malaria control, leading to the adoption of the global malaria control strategy in Amsterdam in 1992, and the challenge, at the end of the century, to rally forces commensurate with the magnitude of the problem, while aiming at realistic objectives. After discussing the conflicting views on the relations between malaria and socio-economic development and the desirable integration of malaria control into sustainable development, the paper ends with some considerations on the perspectives of malaria control, as seen by the author in early 1998, just before the launching of the current Roll Back Malaria initiative by WHO.
Lee, Soo Han
1988-01-01
The efficiency and positional accuracy of a lightweight flexible manipulator are limited by its flexural vibrations, which last after a gross motion is completed. The vibration delays subsequent operations. In the proposed work, the vibration is suppressed by inertial force of a small arm in addition to the joint actuators and passive damping treatment. The proposed approach is: (1) Dynamic modeling of a combined system, a large flexible manipulator and a small arm, (2) Determination of optimal sensor location and controller algorithm, and (3) Verification of the fitness of model and the performance of controller.
DEFF Research Database (Denmark)
Darula, Radoslav; Stein, George Juraj; Kallesøe, Carsten Skovmose
2012-01-01
Electromechanical systems for vibration control exhibit complex non-linear behaviour. Therefore advanced mathematical tools and appropriate simplifications are required for their modelling. To properly understand the dynamics of such a non-linear system, it is necessary to identify the parameters...... of the electromagnetic circuit in its various operational regimes. The parametric identification supplements mathematical derivations. The analyzed mechanical system is essentially a Single Degree-Of-Freedom (SDOF) oscillatory system augmented by magnetic force influence. The additional magnetic force is generated...... by an electromagnet with armature. The electromagnet is energized by a constant voltage source. The SDOF system is excited by a harmonic force causing vibration of the armature. Due to the reluctance variation of the air gap of the magnetic circuit alternating voltage is generated across the coil terminals...
Deboli, R; Miccoli, G; Rossi, G L
1999-06-01
A first application of a new measurement technique to detect vibration transmitted to the human body in working conditions is presented. The technique is based on the use of a laser scanning vibrometer. It was previously developed, analysed and tested using laboratory test benches with electrodynamical exciters, and comparisons with traditional measurement techniques based on accelerometers were made. First, results of tests performed using a real machine generating vibration are illustrated. The machine used is a pedestrian-controlled tractor working in a fixed position. Reference measurements by using the accelerometer have been simultaneously performed while scanning the hand surface by the laser-based measurement system. Results achieved by means of both measurement techniques have been processed, analysed, compared and used to calculate transmissibility maps of the hands of three subjects.
Vibration Control of a Flexible Rotor Using Shape Memory Alloy Wires
DEFF Research Database (Denmark)
Alves, Marco Túlio Santana; Enemark, Søren; Steffen Jr, Valdar
2015-01-01
In the present contribution, a theoretical model of a test rig containing a flexible rotor is simulated considering pseudoelastic SMA (Shape Memory Alloy) wires connected to a bearing in order to dissipate energy and consequently reduce vibration. SMAs have characteristics of shape memory...... of rotor and SMA wires are coupled. The chosen constitutive model that governs the SMA behaviour is a modified version of the model by Brinson for the one-dimensional case. Both transient and steady-state tests arenumerically simulated. The first one, a run-up test, is performed only at room temperature....... In the second, the unbalancedrotor runs at the first critical speed and two cases are considered: i) room temperature; ii) time-varying temperature.The results from these evaluations show that SMA can be an interesting alternative for vibration control in rotating machinery....
Directory of Open Access Journals (Sweden)
G. J. Sheu
2012-01-01
Full Text Available Intelligent structures with built-in piezoelectric sensor and actuator that can actively change their physical geometry and/or properties have been known preferable in vibration control. However, it is often arguable to determine if measurement of piezoelectric sensor is strain rate, displacement, or velocity signal. This paper presents a neural sensor design to simulate the sensor dynamics. An artificial neural network with error backpropagation algorithm is developed such that the embedded and attached piezoelectric sensor can faithfully measure the displacement and velocity without any signal conditioning circuitry. Experimental verification shows that the neural sensor is effective to vibration suppression of a smart structure by embedded sensor/actuator and a building structure by surface-attached piezoelectric sensor and active mass damper.
Neff, Daniel J.; Britcher, Colin P.
1996-01-01
This paper discusses the recommissioning of the Annular Suspension and Pointing System (ASPS), originally developed in the mid 1970's for pointing and vibration isolation of space experiments. The hardware was developed for NASA Langley Research Center by Sperry Flight Systems (now Honeywell Satellite Systems), was delivered to NASA in 1983. Recently, the hardware was loaned to Old Dominion University (ODU). The ASPS includes coarse gimbal assemblies and a Vernier Pointing Assembly (VPA) that utilize magnetic suspension to provide noncontacting vibration isolation and vernier pointing of the payload. The VPA is the main focus of this research. At ODU, the system has been modified such that it can now be operated in a l-g environment without a gravity offload. Suspension of the annular iron rotor in five degrees-of-freedom has been achieved with the use of modern switching power amplifiers and a digital controller implemented on a 486-class PC.
Lecoq, D.; Pézerat, C.; Thomas, J.-H.; Bi, W. P.
2014-06-01
An improvement of the Force Analysis Technique (FAT), an inverse method of vibration, is proposed to identify the low wavenumbers including the acoustic component of a turbulent flow that excites a plate. This method is a significant progress since the usual techniques of measurements with flush-mounted sensors are not able to separate the acoustic and the aerodynamic energies of the excitation because the aerodynamic component is too high. Moreover, the main cause of vibration or acoustic radiation of the structure might be due to the acoustic part by a phenomenon of spatial coincidence between the acoustic wavelengths and those of the plate. This underlines the need to extract the acoustic part. In this work, numerical experiments are performed to solve both the direct and inverse problems of vibration. The excitation is a turbulent boundary layer and combines the pressure field of the Corcos model and a diffuse acoustic field. These pressures are obtained by a synthesis method based on the Cholesky decomposition of the cross-spectra matrices and are used to excite a plate. Thus, the application of the inverse problem FAT that requires only the vibration data shows that the method is able to identify and to isolate the acoustic part of the excitation. Indeed, the discretization of the inverse operator (motion equation of the plate) acts as a low-pass wavenumber filter. In addition, this method is simple to implement because it can be applied locally (no need to know the boundary conditions), and measurements can be carried out on the opposite side of the plate without affecting the flow. Finally, an improvement of FAT is proposed. It regularizes optimally and automatically the inverse problem by analyzing the mean quadratic pressure of the reconstructed force distribution. This optimized FAT, in the case of the turbulent flow, has the advantage of measuring the acoustic component up to higher frequencies even in the presence of noise. the aerodynamic component
Investigation of an energy harvesting MR damper in a vibration control system
Sapiński, Bogdan; Rosół, Maciej; Węgrzynowski, Marcin
2016-12-01
In this paper the authors investigate the performance of an energy harvesting MR damper (EH-MRD) employed in a semi-active vibration control system (SVCS) and used in a single DOF mechanical structure configuration. Main components of the newly proposed SCVS include the MR damper and an electromagnetic vibration energy harvester based on the Faraday’s law (EVEH) that converts vibration energy into electrical energy and delivers electrical power supplying the MR damper. The main objective of the study is to indicate that the SVCS, controlled by the specially designed embedded system, is feasible and presents good performance at the present stage of the research. The work describes investigation the unique features of the EH-MRD, i.e. its self-powering and self-sensing capabilities. Two cases were considered and the testing was done accordingly. In the case 1, only the self-powered capability was investigated. It was found out that harvested energy is sufficient to power the EH-MRD damper and to adjust it to structural vibration. The results confirmed the adequacy of the SVCS and demonstrated a significant reduction of the resonance peak. In the case 2, both the self-powering and self-sensing capabilities were investigated. Due to the self-sensing capability, the SCVS does not require any sensor. It appeared that thus harvested energy is sufficient to power the EH-MRD and enables self-sensing action since the signal of voltage induced by EVEH agrees with the relative velocity signal across the device. Similar to case 1, the resonance peak is significantly reduced.
Chung, Pao-Hung; Lin, Guan-Lun; Liu, Chiang; Chuang, Long-Ren; Shiang, Tzyy-Yuang
2013-01-01
The aim of this study was to determine whether performing Tai Chi Chuan on a customized vibration platform could enhance balance control and lower extremity muscle power more efficiently than Tai Chi Chuan alone in an untrained young population. Forty-eight healthy young adults were randomly assigned to the following three groups: a Tai Chi Chuan combined with vibration training group (TCV), a Tai Chi Chuan group (TCC) or a control group. The TCV group underwent 30 minutes of a reformed Tai Chi Chuan program on a customized vibration platform (32 Hz, 1 mm) three times a week for eight weeks, whereas the TCC group was trained without vibration stimuli. A force platform was used to measure the moving area of a static single leg stance and the heights of two consecutive countermovement jumps. The activation of the knee extensor and flexor was also measured synchronously by surface electromyography in all tests. The results showed that the moving area in the TCV group was significantly decreased by 15.3%. The second jump height in the TCV group was significantly increased by 8.14%, and the activation of the knee extensor/flexor was significantly decreased in the first jump. In conclusion, Tai Chi Chuan combined with vibration training can more efficiently improve balance control, and the positive training effect on the lower extremity muscle power induced by vibration stimuli still remains significant because there is no cross-interaction between the two different types of training methods. Key points Eight weeks of Tai Chi Chuan combined with vibration training can more efficiently improve balance control for an untrained young population. The positive training effect on the lower extremity muscle power induced by vibration stimuli during Tai Chi Chuan movements still remains significant because of SSC mechanism. Combining Tai Chi Chuan with vibration training is more efficient and does not decrease the overall training effects due to a cross-interaction of each other
Chung, Pao-Hung; Lin, Guan-Lun; Liu, Chiang; Chuang, Long-Ren; Shiang, Tzyy-Yuang
2013-01-01
The aim of this study was to determine whether performing Tai Chi Chuan on a customized vibration platform could enhance balance control and lower extremity muscle power more efficiently than Tai Chi Chuan alone in an untrained young population. Forty-eight healthy young adults were randomly assigned to the following three groups: a Tai Chi Chuan combined with vibration training group (TCV), a Tai Chi Chuan group (TCC) or a control group. The TCV group underwent 30 minutes of a reformed Tai Chi Chuan program on a customized vibration platform (32 Hz, 1 mm) three times a week for eight weeks, whereas the TCC group was trained without vibration stimuli. A force platform was used to measure the moving area of a static single leg stance and the heights of two consecutive countermovement jumps. The activation of the knee extensor and flexor was also measured synchronously by surface electromyography in all tests. The results showed that the moving area in the TCV group was significantly decreased by 15.3%. The second jump height in the TCV group was significantly increased by 8.14%, and the activation of the knee extensor/flexor was significantly decreased in the first jump. In conclusion, Tai Chi Chuan combined with vibration training can more efficiently improve balance control, and the positive training effect on the lower extremity muscle power induced by vibration stimuli still remains significant because there is no cross-interaction between the two different types of training methods. Key pointsEight weeks of Tai Chi Chuan combined with vibration training can more efficiently improve balance control for an untrained young population.The positive training effect on the lower extremity muscle power induced by vibration stimuli during Tai Chi Chuan movements still remains significant because of SSC mechanism.Combining Tai Chi Chuan with vibration training is more efficient and does not decrease the overall training effects due to a cross-interaction of each other.
Controlling alcohol-related global health problems.
Lam, Tai Hing; Chim, David
2010-07-01
Alcohol's adverse public health impact includes disease, injury, violence, disability, social problems, psychiatric illness, drunk driving, drug use, unsafe sex, and premature death. Furthermore, alcohol is a confirmed human carcinogen. The International Agency for Research on Cancer concluded that alcohol causes cancer of the oral cavity, pharynx, larynx, esophagus, liver, colon-rectum, and breast. World Cancer Research Fund/American Institute for Cancer Research concluded that the evidence justifies recommending avoidance of consuming any alcohol, even in small quantities. Despite being responsible for 3.8% of global deaths (2,255,000 deaths) and 4.6% of global disability-adjusted life years in 2004, alcohol consumption is increasing rapidly in China and Asia. Contrary to the World Health Assembly's call for global control action, Hong Kong has reduced wine and beer taxes to zero since 2008. An International Framework Convention on Alcohol Control is urgently needed. Increasing alcohol taxation and banning alcohol advertisement and promotion are among the most effective policies.
Vibration Control of Double-Beam System with Multiple Smart Damping Members
Directory of Open Access Journals (Sweden)
Dominik Pisarski
2016-01-01
Full Text Available A control method to stabilize vibration of a double cantilever system with a set of smart damping blocks is designed and numerically evaluated. The externally controlled magnetorheological sheared elastomer damping block is considered, but other smart materials can be used as well. The robust bang-bang control law for stabilization the bilinear system is elaborated. The key feature of the closed loop controller is the efficiency for different types of initial excitement. By employing the finite element model, the performance of the controller is validated for strong wind blow load and concentrated impact excitement of the particular point of one of the beams. For each of the excitations, the closed loop control outperforms the optimal passive damping case by over 27% for the considered energy metric.
Billot, Maxime; Handrigan, Grant A; Simoneau, Martin; Teasdale, Normand
2015-02-01
The aim of this study was to investigate if sensory reweighting occurred to control balance when the sensitivity of the plantar sole is reduced using cooling. To address this question, visual information was manipulated and/or ankle proprioception was altered by Achilles tendon vibration. It was expected that Achilles tendon vibration and vision deprivation would induce greater center of pressure (CoP) excursions and/or increase of electromyographic (EMG) activity of the ankle muscles (triceps surea and tibialis anterior) with than without cooling of the plantar sole. To verify these hypotheses, the CoP and EMG activity of the ankle muscles were simultaneously recorded during quiet standing trials of 30s before and after feet cooling procedure. Results showed that plantar sole sensitivity alteration did not lead to larger CoP excursions even during Achilles tendon vibration in absence of vision. This could be explained by an increase in the EMG activity of the triceps surae after the cooling procedure without modification of tibialis anterior EMG activity. This study suggests that to compensate alteration in plantar sole sensitivity, the central nervous system increased the muscular activity of the triceps surae to limit CoP excursions. Copyright © 2014 Elsevier Ltd. All rights reserved.
Mastoid vibration affects dynamic postural control during gait in healthy older adults
Chien, Jung Hung; Mukherjee, Mukul; Kent, Jenny; Stergiou, Nicholas
2017-01-01
Vestibular disorders are difficult to diagnose early due to the lack of a systematic assessment. Our previous work has developed a reliable experimental design and the result shows promising results that vestibular sensory input while walking could be affected through mastoid vibration (MV) and changes are in the direction of motion. In the present paper, we wanted to extend this work to older adults and investigate how manipulating sensory input through mastoid vibration (MV) could affect dynamic postural control during walking. Three levels of MV (none, unilateral, and bilateral) applied via vibrating elements placed on the mastoid processes were combined with the Locomotor Sensory Organization Test (LSOT) paradigm to challenge the visual and somatosensory systems. We hypothesized that the MV would affect sway variability during walking in older adults. Our results revealed that MV significantly not only increased the amount of sway variability but also decreased the temporal structure of sway variability only in anterior-posterior direction. Importantly, the bilateral MV stimulation generally produced larger effects than the unilateral. This is an important finding that confirmed our experimental design and the results produced could guide a more reliable screening of vestibular system deterioration.
Simulations and Experiments on Vibration Control of Aerospace Thin-Walled Parts via Preload
Directory of Open Access Journals (Sweden)
Qiong Wu
2017-01-01
Full Text Available Thin-walled parts primarily comprise the entire piece of rough machining, and the material removal rate can surpass 95%. Numerous components with thin-walled structures are preferred in the aerospace industry for their light weight, high strength, and other advantages. In aerospace thin-walled workpiece machining processes and practical applications, they are excited by the vibration. The preload changing the modal stiffness of the part is found and this change causes continuous changes in the natural frequency. Researching on the influence of pretightening force on dynamic characteristics of thin-walled components is highly significant for controlling vibration. In this study, the typical aviation thin-walled part is the research object. Finite element numerical simulation and experimental verification are employed to analyze the dynamic characteristics of 7075 aluminum alloy thin-walled plates under different preloads for exploring the relationship between natural frequency and preload. The relationship is validated by comparative results. Both the simulation and experimental results show that the natural frequencies of plates increase following the augmentation of the preload. Thus, this research introduces the method where vibration of aerospace thin-walled parts is reduced by preload. For practical engineering application, a program showing the relationship between natural frequency and preload is written using Visual Basic language.
Directory of Open Access Journals (Sweden)
Yuwen Hu
2017-07-01
Full Text Available There has been a significant increase in attention toward designing smart structures and vibration control of structures in recent decades, and numerous methods and algorithms have been developed and experimentally investigated. However, the majority of these studies used the shear frame models to represent structures. Since the simplified models do not reflect the realistic behavior of those structures with irregularity in plan and elevation, the traditional methods for designing an optimal control that guarantees a desirable performance is impossible. In this study, the behavior of a 10-story irregular steel frame building is investigated with and without controlling systems. Two pairs of eccentrically placed MR dampers on each story are used in order to mitigate the coupled translational–torsional vibration. The controlling forces are determined using active, passive-off, passive-on, and clipped optimal controls based on the linear quadratic regulator (LQR algorithm. The results demonstrate that using pairs of magneto-rheological (MR dampers with an appropriate distance on lower story levels significantly reduces the inter-story drifts for the corner columns, as well as the roof displacements and accelerations.
Vibration Control by a Shear Type Semi-active Damper Using Magnetorheological Grease
Shiraishi, Toshihiko; Misaki, Hirotaka
2016-09-01
This paper describes semi-active vibration control by a controllable damper with high reliability and wide dynamic range using magnetorheological (MR) grease. Some types of cylindrical controllable dampers based on pressure difference between chambers in the dampers using “MR fluid”, whose rheological properties can be varied by applying a magnetic field, have been reported as a semi-active device. However, there are some challenging issues of them. One is to improve dispersion stability. The particles dispersed in MR fluid would make sedimentation after a period. Another is to expand dynamic range. Since cylindrical dampers require sealing elements because of pressure difference in the dampers, the dynamic range between the maximum and minimum damping force according to a magnetic field is reduced. In this study, a controllable damper using the MR effect was proposed and its performance was experimentally verified to improve the dispersion stability by using “MR grease”, which includes grease as the carrier of magnetic particles, and to expand the dynamic range by adopting a shear type structure not requiring sealing elements. Furthermore, semiactive vibration control experiments by the MR grease damper using a simple algorithm based on the skyhook damper scheme were conducted and its performance was investigated.
Adaptive filtering and feed-forward control for suppression of vibration and jitter
Anderson, Eric H.; Blankinship, Ross L.; Fowler, Leslie P.; Glaese, Roger M.; Janzen, Paul C.
2007-04-01
This paper describes the use of adaptive filtering to control vibration and optical jitter. Adaptive filtering is a class of signal processing techniques developed over the last several decades and applied since to applications ranging from communications to image processing. Basic concepts in adaptive filtering and feedforward control are reviewed. A series of examples in vibration, motion and jitter control, including cryocoolers, ground-based active optics systems, flight motion simulators, wind turbines and airborne optical beam control systems, illustrates the effectiveness of the adaptive methods. These applications make use of information and signals that originate from system disturbances and minimize the correlations between disturbance information and error and performance measures. The examples incorporate a variety of disturbance types including periodic, multi-tonal, broadband stationary and non-stationary. Control effectiveness with slowly-varying narrowband disturbances originating from cryocoolers can be extraordinary, reaching 60 dB of reduction or rejection. In other cases, performance improvements are only 30-50%, but such reductions effectively complement feedback servo performance in many applications.
Directory of Open Access Journals (Sweden)
M. Sanbi
2015-01-01
Full Text Available Theoretical and numerical results of the modeling of a smart plate are presented for optimal active vibration control. The smart plate consists of a rectangular aluminum piezocomposite plate modeled in cantilever configuration with surface bonded thermopiezoelectric patches. The patches are symmetrically bonded on top and bottom surfaces. A generic thermopiezoelastic theory for piezocomposite plate is derived, using linear thermopiezoelastic theory and Kirchhoff assumptions. Finite element equations for the thermopiezoelastic medium are obtained by using the linear constitutive equations in Hamilton’s principle together with the finite element approximations. The structure is modelled analytically and then numerically and the results of simulations are presented in order to visualize the states of their dynamics and the state of control. The optimal control LQG-Kalman filter is applied. By using this model, the study first gives the influences of the actuator/sensor pair placement and size on the response of the smart plate. Second, the effects of thermoelastic and pyroelectric couplings on the dynamics of the structure and on the control procedure are studied and discussed. It is shown that the effectiveness of the control is not affected by the applied thermal gradient and can be applied with or without this gradient at any time of plate vibrations.
MIMO active vibration control of magnetically suspended flywheels for satellite IPAC service
Park, Junyoung
Theory and simulation results have demonstrated that four, variable speed flywheels could potentially provide the energy storage and attitude control functions of existing batteries and control moment gyros (CMGs) on a satellite. Past modeling and control algorithms were based on the assumption of rigidity in the flywheel's bearings and the satellite structure. This dissertation provides simulation results and theory which eliminates this assumption utilizing control algorithms for active vibration control (AVC), flywheel shaft levitation and integrated power transfer and attitude control (IPAC) that are effective even with low stiffness active magnetic bearings (AMB), and flexible satellite appendages. The flywheel AVC and levitation tasks are provided by a multi input multi output (MIMO) control law that enhances stability by reducing the dependence of the forward and backward gyroscopic poles with changes in flywheel speed. The control law is shown to be effective even for (1) Large polar to transverse inertia ratios which increases the stored energy density while causing the poles to become more speed dependent and, (2) Low bandwidth controllers shaped to suppress high frequency noise. These two main tasks could be successfully achieved by MIMO (Gyroscopic) control algorithm, which is unique approach. The vibration control mass (VCM) is designed to reduce the vibrations of flexible appendages of the satellite. During IPAC maneuver, the oscillation of flywheel spin speeds, torque motions and satellite appendages are significantly reduced compared without VCM. Several different properties are demonstrated to obtain optimal VCM. Notch, band-pass and low-pass filters are implemented in the AMB system to reduce and cancel high frequency, dynamic bearing forces and motor torques due to flywheel mass imbalance. The transmitted forces and torques to satellite are considerably decreased in the present of both notch and band-pass filter stages. Successful IPAC simulation
Active control of sound transmission/radiation from elastic plates by vibration inputs. I - Analysis
Fuller, C. R.
1990-01-01
Active control of sound radiation from vibrating plates by oscillating forces applied directly to the structure is analytically studied. The model consists of a plane acoustic wave incident on a clamped elastic circular thin plate. Control is achieved by point forces, and quadratic optimization is used to calculate the optimal control gains necessary to minimize a cost function proportional to the radiated acoustic power (the transmitted field). The results show that global attenuation of broadband radiated sound levels for low to mid-range frequencies can be achieved with one or two control forces, irrespective of whether the system is on or off resonance. The efficiency of the control strategy is demonstrated to be related to the nature of the coupling between the plate modes of response and the radiated field.
The Shock and Vibration Bulletin. Part 4. Underwater Problems, Environments and Measurements
1974-08-01
CENTER OF PERCUSSION ROADARM DESIGN D.D. Ustick, U.S. Army Tank-Automotive Command, Warren, Michigan SYNCHRONIZATION AND PHASE ANGLE OF TWO...OF MECHANICAL IMPEDANCE CONCEPTS TO THE COUPLING PROBLEM OF STRUCTURES IN SHOCK ENVIRONMENT Robert AQUILINA Centre d"Etudes et Recherches...French submarines. Measu- rements are extended to the low frequency range with percussion excitation. HI - MODAL IDENTIFICATION OF THE FIXED BASE
A spectral dynamic stiffness method for free vibration analysis of plane elastodynamic problems
Liu, X.; Banerjee, J. R.
2017-03-01
A highly efficient and accurate analytical spectral dynamic stiffness (SDS) method for modal analysis of plane elastodynamic problems based on both plane stress and plane strain assumptions is presented in this paper. First, the general solution satisfying the governing differential equation exactly is derived by applying two types of one-dimensional modified Fourier series. Then the SDS matrix for an element is formulated symbolically using the general solution. The SDS matrices are assembled directly in a similar way to that of the finite element method, demonstrating the method's capability to model complex structures. Any arbitrary boundary conditions are represented accurately in the form of the modified Fourier series. The Wittrick-Williams algorithm is then used as the solution technique where the mode count problem (J0) of a fully-clamped element is resolved. The proposed method gives highly accurate solutions with remarkable computational efficiency, covering low, medium and high frequency ranges. The method is applied to both plane stress and plane strain problems with simple as well as complex geometries. All results from the theory in this paper are accurate up to the last figures quoted to serve as benchmarks.
González Cornejo, Felipe A.; Cruchaga, Marcela A.; Celentano, Diego J.
2017-11-01
The present work reports a fluid-rigid solid interaction formulation described within the framework of a fixed-mesh technique. The numerical analysis is focussed on the study of a vortex-induced vibration (VIV) of a circular cylinder at low Reynolds number. The proposed numerical scheme encompasses the fluid dynamics computation in an Eulerian domain where the body is embedded using a collection of markers to describe its shape, and the rigid solid's motion is obtained with the well-known Newton's law. The body's velocity is imposed on the fluid domain through a penalty technique on the embedded fluid-solid interface. The fluid tractions acting on the solid are computed from the fluid dynamic solution of the flow around the body. The resulting forces are considered to solve the solid motion. The numerical code is validated by contrasting the obtained results with those reported in the literature using different approaches for simulating the flow past a fixed circular cylinder as a benchmark problem. Moreover, a mesh convergence analysis is also done providing a satisfactory response. In particular, a VIV problem is analyzed, emphasizing the description of the synchronization phenomenon.
Reduction of Helicopter BVI Noise, Vibration, and Power Consumption Through Individual Blade Control
Jacklin, Stephen A.; Blaas, Achim; Teves, Dietrich; Kube, Roland; Warmbrodt, William (Technical Monitor)
1994-01-01
A wind tunnel test was conducted with a full-scale BO 105 helicopter rotor to evaluate the potential of open-loop individual blade control (IBC) to improve rotor performance, to reduce blade vortex interaction (BVI) noise, and to alleviate helicopter vibrations. The wind tunnel test was an international collaborative effort between NASA/U.S. Army AFDD, ZF Luftfahrttechnik, Eurocopter Deutschland, and the German Aerospace Laboratory (DLR) and was conducted under the auspices of the U.S./German MOU on Rotorcraft Aeromechanics. In this test the normal blade pitch links of the rotor were replaced by servo-actuators so that the pitch of each blade could be controlled independently of the other blades. The specially designed servoactuators and IBC control system were designed and manufactured by ZF Luftfahrttechnik, GmbH. The wind tunnel test was conducted in the 40- by 80-Foot Wind Tunnel at the NASA Ames Research Center. An extensive amount of measurement information was acquired for each IBC data point. These data include rotor performance, static and dynamic hub forces and moments, rotor loads, control loads, inboard and outboard blade pitch motion, and BVI noise data. The data indicated very significant (80 percent) simultaneous reductions in both BVI noise and hub vibrations could be obtained using multi-harmonic input at the critical descent (terminal approach) condition. The data also showed that performance improvements of up to 7 percent could be obtained using 2P input at high-speed forward flight conditions.
An Experimental Validated Control Strategy of Maglev Vehicle-Bridge Self-Excited Vibration
Directory of Open Access Journals (Sweden)
Lianchun Wang
2017-01-01
Full Text Available This study discusses an experimentally validated control strategy of maglev vehicle-bridge vibration, which degrades the stability of the suspension control, deteriorates the ride comfort, and limits the cost of the magnetic levitation system. First, a comparison between the current-loop and magnetic flux feedback is carried out and a minimum model including flexible bridge and electromagnetic levitation system is proposed. Then, advantages and disadvantages of the traditional feedback architecture with the displacement feedback of electromagnet yE and bridge yB in pairs are explored. The results indicate that removing the feedback of the bridge’s displacement yB from the pairs (yE − yB measured by the eddy-current sensor is beneficial for the passivity of the levitation system and the control of the self-excited vibration. In this situation, the signal acquisition of the electromagnet’s displacement yE is discussed for the engineering application. Finally, to validate the effectiveness of the aforementioned control strategy, numerical validations are carried out and the experimental data are provided and analyzed.
Energy Technology Data Exchange (ETDEWEB)
Farajpour, A., E-mail: ariobarzan.oderj@gmail.com; Rastgoo, A.; Mohammadi, M.
2017-03-15
Piezoelectric nanomaterials such as zinc oxide (ZnO) are of low toxicity and have many biomedical applications including optical imaging, drug delivery, biosensing and harvesting biomechanical energy using hybrid nanogenerators. In this paper, the vibration, buckling and smart control of microtubules (MTs) embedded in an elastic medium in thermal environment using a piezoelectric nanoshell (PNS) are investigated. The MT and PNS are considered to be coupled by a filament network. The PNS is subjected to thermal loads and an external electric voltage which operates to control the mechanical behavior of the MT. Using the nonlocal continuum mechanics, the governing differential equations are derived. An exact solution is presented for simply supported boundary conditions. The differential quadrature method is also used to solve the governing equations for other boundary conditions. A detailed parametric study is conducted to investigate the effects of the elastic constants of surrounding medium and internal filament matrix, scale coefficient, electric voltage, the radius-to-thickness ratio of PNSs and temperature change on the smart control of MTs. It is found that the applied electric voltage can be used as an effective controlling parameter for the vibration and buckling of MTs.
Farajpour, A.; Rastgoo, A.; Mohammadi, M.
2017-03-01
Piezoelectric nanomaterials such as zinc oxide (ZnO) are of low toxicity and have many biomedical applications including optical imaging, drug delivery, biosensing and harvesting biomechanical energy using hybrid nanogenerators. In this paper, the vibration, buckling and smart control of microtubules (MTs) embedded in an elastic medium in thermal environment using a piezoelectric nanoshell (PNS) are investigated. The MT and PNS are considered to be coupled by a filament network. The PNS is subjected to thermal loads and an external electric voltage which operates to control the mechanical behavior of the MT. Using the nonlocal continuum mechanics, the governing differential equations are derived. An exact solution is presented for simply supported boundary conditions. The differential quadrature method is also used to solve the governing equations for other boundary conditions. A detailed parametric study is conducted to investigate the effects of the elastic constants of surrounding medium and internal filament matrix, scale coefficient, electric voltage, the radius-to-thickness ratio of PNSs and temperature change on the smart control of MTs. It is found that the applied electric voltage can be used as an effective controlling parameter for the vibration and buckling of MTs.
Lyashko, A. D.
2017-11-01
A new analytical presentation of the solution for steady-state oscillations of orthotopic rectangular prism is found. The corresponding infinite system of linear algebraic equations has been deduced by the superposition method. A countable set of precise eigenfrequencies and elementary eigenforms is found. The identities are found which make it possible to improve the convergence of all the infinite series in the solution of the problem. All the infinite series in presentation of solution are analytically summed up. Numerical calculations of stresses in the rectangular orthotropic prism with a uniform along the border and harmonic in time load on two opposite faces have been performed.
An Integral Equation Method for the First-Passage Problem in Random Vibration
DEFF Research Database (Denmark)
Madsen, Peter Hauge; Krenk, Steen
1984-01-01
The first-passage problem for a nonstationary stochastic process is formulated as an integral identity, which produces known bounds and series expansions as special cases, while approximation of the kernel leads to an integral equation for the first-passage probability density function. An accurate......, explicit approximation formula for the kernel is derived, and the influence of uni or multi modal frequency content of the process is investigated. Numerical results provide comparisons with simulation results and alternative methods for narrow band processes, and also the case of a multimodal...
Directory of Open Access Journals (Sweden)
Bingfeng Ju
2011-03-01
Full Text Available In this paper, a feedback control mechanism and its optimization for rotating disk vibration/flutter via changes of air-coupled pressure generated using piezoelectric patch actuators are studied. A thin disk rotates in an enclosure, which is equipped with a feedback control loop consisting of a micro-sensor, a signal processor, a power amplifier, and several piezoelectric (PZT actuator patches distributed on the cover of the enclosure. The actuator patches are mounted on the inner or the outer surfaces of the enclosure to produce necessary control force required through the airflow around the disk. The control mechanism for rotating disk flutter using enclosure surfaces bonded with sensors and piezoelectric actuators is thoroughly studied through analytical simulations. The sensor output is used to determine the amount of input to the actuator for controlling the response of the disk in a closed loop configuration. The dynamic stability of the disk-enclosure system, together with the feedback control loop, is analyzed as a complex eigenvalue problem, which is solved using Galerkin’s discretization procedure. The results show that the disk flutter can be reduced effectively with proper configurations of the control gain and the phase shift through the actuations of PZT patches. The effectiveness of different feedback control methods in altering system characteristics and system response has been investigated. The control capability, in terms of control gain, phase shift, and especially the physical configuration of actuator patches, are also evaluated by calculating the complex eigenvalues and the maximum displacement produced by the actuators. To achieve a optimal control performance, sizes, positions and shapes of PZT patches used need to be optimized and such optimization has been achieved through numerical simulations.
Active Vibration Control of a Microactuator for the Hard Disk Drive Using Self-Sensing Actuation
Directory of Open Access Journals (Sweden)
Minoru Sasaki
2012-01-01
Full Text Available This paper presents the self-sensing control of a microactuator for hard disk drives. The microactuator uses a PZT actuator pair installed on the suspension assembly. The self-sensing microactuator forms a combined sensing and actuation mechanism. Direct velocity feedback and positive position feedback are used in this paper. Our experimental results show that both strategies are effective in suppressing vibrational modes and successfully demonstrate the feasibility of using a self-sensing actuator on an HDD suspension assembly.
Uncertainty modeling in vibration, control and fuzzy analysis of structural systems
Halder, Achintya; Ayyub, Bilal M
1997-01-01
This book gives an overview of the current state of uncertainty modeling in vibration, control, and fuzzy analysis of structural and mechanical systems. It is a coherent compendium written by leading experts and offers the reader a sampling of exciting research areas in several fast-growing branches in this field. Uncertainty modeling and analysis are becoming an integral part of system definition and modeling in many fields. The book consists of ten chapters that report the work of researchers, scientists and engineers on theoretical developments and diversified applications in engineering sy
Vibration control of a flexible rotor on variable parameter squeeze film damper
Wang, Chuanfa; Zhang, Azhou; Huang, Taiping
1993-03-01
In this paper, the effectiveness of VPSFD (Variable Parameter Squeeze Film Damper) parameter change on control of resonant amplitude of a simple rotor system, which has one disk at the center of the span on one squirrel-cage elastic bearing with VPSFD, is investigated. On the basis of steady state tests, the vibration suppression of the rotor through the first two critical speeds has been done. The results show that the first two resonant amplitudes will be greatly decreased and the rotor system will run smoothly through the first two critical speeds.
Reliability-based optimization of an active vibration controller using evolutionary algorithms
Saraygord Afshari, Sajad; Pourtakdoust, Seid H.
2017-04-01
Many modern industrialized systems such as aircrafts, rotating turbines, satellite booms, etc. cannot perform their desired tasks accurately if their uninhibited structural vibrations are not controlled properly. Structural health monitoring and online reliability calculations are emerging new means to handle system imposed uncertainties. As stochastic forcing are unavoidable, in most engineering systems, it is often needed to take them into the account for the control design process. In this research, smart material technology is utilized for structural health monitoring and control in order to keep the system in a reliable performance range. In this regard, a reliability-based cost function is assigned for both controller gain optimization as well as sensor placement. The proposed scheme is implemented and verified for a wing section. Comparison of results for the frequency responses is considered to show potential applicability of the presented technique.
Directory of Open Access Journals (Sweden)
Zili Zhang
2014-11-01
Full Text Available Lateral tower vibrations of offshore wind turbines are normally lightly damped, and large amplitude vibrations induced by wind and wave loads in this direction may significantly shorten the fatigue life of the tower. This paper proposes the modeling and control of lateral tower vibrations in offshore wind turbines using active generator torque. To implement the active control algorithm, both the mechanical and power electronic aspects have been taken into consideration. A 13-degrees-of-freedom aeroelastic wind turbine model with generator and pitch controllers is derived using the Euler–Lagrangian approach. The model displays important features of wind turbines, such as mixed moving frame and fixed frame-defined degrees-of-freedom, couplings of the tower-blade-drivetrain vibrations, as well as aerodynamic damping present in different modes of motions. The load transfer mechanisms from the drivetrain and the generator to the nacelle are derived, and the interaction between the generator torque and the lateral tower vibration are presented in a generalized manner. A three-dimensional rotational sampled turbulence field is generated and applied to the rotor, and the tower is excited by a first order wave load in the lateral direction. Next, a simple active control algorithm is proposed based on active generator torques with feedback from the measured lateral tower vibrations. A full-scale power converter configuration with a cascaded loop control structure is also introduced to produce the feedback control torque in real time. Numerical simulations have been carried out using data calibrated to the referential 5-MW NREL (National Renewable Energy Laboratory offshore wind turbine. Cases of drivetrains with a gearbox and direct drive to the generator are considered using the same time series for the wave and turbulence loadings. Results show that by using active generator torque control, lateral tower vibrations can be significantly mitigated for
An Inverse Eigenvalue Problem for a Vibrating String with Two Dirichlet Spectra
Rundell, William
2013-04-23
A classical inverse problem is "can you hear the density of a string clamped at both ends?" The mathematical model gives rise to an inverse Sturm-Liouville problem for the unknown density ñ, and it is well known that the answer is negative: the Dirichlet spectrum from the clamped end-point conditions is insufficient. There are many known ways to add additional information to gain a positive answer, and these include changing one of the boundary conditions and recomputing the spectrum or giving the energy in each eigenmode-the so-called norming constants. We make the assumption that neither of these changes are possible. Instead we will add known mass-densities to the string in a way we can prescribe and remeasure the Dirichlet spectrum. We will not be able to answer the uniqueness question in its most general form, but will give some insight to what "added masses" should be chosen and how this can lead to a reconstruction of the original string density. © 2013 Society for Industrial and Applied Mathematics.
Directory of Open Access Journals (Sweden)
Pao-Hung Chung
2013-03-01
Full Text Available The aim of this study was to determine whether performing Tai Chi Chuan on a customized vibration platform could enhance balance control and lower extremity muscle power more efficiently than Tai Chi Chuan alone in an untrained young population. Forty-eight healthy young adults were randomly assigned to the following three groups: a Tai Chi Chuan combined with vibration training group (TCV, a Tai Chi Chuan group (TCC or a control group. The TCV group underwent 30 minutes of a reformed Tai Chi Chuan program on a customized vibration platform (32 Hz, 1 mm three times a week for eight weeks, whereas the TCC group was trained without vibration stimuli. A force platform was used to measure the moving area of a static single leg stance and the heights of two consecutive countermovement jumps. The activation of the knee extensor and flexor was also measured synchronously by surface electromyography in all tests. The results showed that the moving area in the TCV group was significantly decreased by 15.3%. The second jump height in the TCV group was significantly increased by 8.14%, and the activation of the knee extensor/flexor was significantly decreased in the first jump. In conclusion, Tai Chi Chuan combined with vibration training can more efficiently improve balance control, and the positive training effect on the lower extremity muscle power induced by vibration stimuli still remains significant because there is no cross-interaction between the two different types of training methods.
14th International Conference on Acoustics and Vibration of Mechanical Structures
Marinca, Vasile
2018-01-01
This book is a collection of papers presented at Acoustics and Vibration of Mechanical Structures 2017 – AVMS 2017 – highlighting the current trends and state-of-the-art developments in the field. It covers a broad range of topics, such as noise and vibration control, noise and vibration generation and propagation, the effects of noise and vibration, condition monitoring and vibration testing, modeling, prediction and simulation of noise and vibration, environmental and occupational noise and vibration, noise and vibration attenuators, as well as biomechanics and bioacoustics. The book also presents analytical, numerical and experimental techniques for evaluating linear and non-linear noise and vibration problems (including strong nonlinearity). It is primarily intended for academics, researchers and professionals, as well as PhD students in various fields of the acoustics and vibration of mechanical structures.
Plattenburg, Joseph; Dreyer, Jason T.; Singh, Rajendra
2017-07-01
This article extends a recent publication [MSSP (2016), 176-196] by developing a Rayleigh-Ritz model of a thin cylindrical shell to predict its response subject to concurrent active and passive damping treatments. These take the form of piezoelectric patches and a distributed cardboard liner, since the effects of such combined treatments are yet to be investigated. Furthermore, prior literature typically considers only the ;bimorph; active patch configuration (with patches on the inner and outer shell surfaces), which is not feasible with an interior passive liner treatment. Therefore, a novel configuration-termed as ;unimorph;-is proposed and included in the model. Experiments are performed on a shell with active patches (under harmonic excitation from 200 to 2000 Hz) in both the bimorph and unimorph configurations to provide evidence for the analytical model predictions. The proposed model is then employed to assess competing control system designs by examining local vs. global control schemes as well as considering several alternate active patch locations, both with and without the passive damping. Non-dimensional performance metrics are devised to facilitate comparisons of vibration attenuation among different designs. Finally, insertion loss values are measured under single-frequency excitation to evaluate several vibration control designs, and to compare the effects of alternate damping treatments.
Shape and vibration control of active laminated plates for RF and optical applications
Punhani, Amitesh; Washington, Gregory N.
2006-03-01
Active shape and vibration control of large structures have long been desired for many practical applications. PVDF being one of the most suitable materials for these applications due to its strong piezoelectric properties and availability in thin sheets has been the focal point of most researchers in this area. Most of the research has been done to find an open loop solution, which would be able to shape the structure as per the desired requirements in an ideal atmosphere. Unmodeled dynamics and external disturbances prevent the open loop (no feedback) solution from achieving the desired shape. This research develops a dynamic model of a laminated plate consisting of two layers of PVDF film joined with a layer of epoxy. The orthotropic properties of PVDF have been modeled and the epoxy layer is considered to be isotropic. A general control model is developed, which would work for most boundary conditions and developed for a simply supported beam with patch actuators. The methodology is then extended for a simply supported laminated plate. This model could be used for real time dynamic disturbance rejection and shape and vibration control of the structure.
Vibration control of buildings by using partial floor loads as multiple tuned mass
Directory of Open Access Journals (Sweden)
Tharwat A. Sakr
2017-08-01
Full Text Available Tuned mass dampers (TMDs are considered as the most common control devices used for protecting high-rise buildings from vibrations. Because of their simplicity and efficiency, they have found wide practical applications in high-rise buildings around the world. This paper proposes an innovative technique for using partial floor loads as multiple TMDs at limited number of floors. This technique eliminates complications resulting from the addition of huge masses required for response control and maintains the mass of the original structure without any added loads. The effects of using partial loads of limited floors starting from the top as TMDs on the vibration response of buildings to wind and earthquakes are investigated. The effects of applying the proposed technique to buildings with different heights and characteristics are also investigated. A parametric study is carried out to illustrate how the behavior of a building is affected by the number of stories and the portion of the floor utilized as TMDs. Results indicate the effectiveness of the proposed control technique in enhancing the drift, acceleration, and force response of buildings to wind and earthquakes. The response of buildings to wind and earthquakes was observed to be more enhanced by increasing the story-mass ratios and the number of floor utilized as TMDs.
Millott, T. A.; Friedmann, P. P.
1994-06-01
This report describes an analytical study of vibration reduction in a four-bladed helicopter rotor using an actively controlled, partial span, trailing edge flap located on the blade. The vibration reduction produced by the actively controlled flap (ACF) is compared with that obtained using individual blade control (IBC), in which the entire blade is oscillated in pitch. For both cases a deterministic feedback controller is implemented to reduce the 4/rev hub loads. For all cases considered, the ACF produced vibration reduction comparable with that obtained using IBC, but consumed only 10-30% of the power required to implement IBC. A careful parametric study is conducted to determine the influence of blade torsional stiffness, spanwise location of the control flap, and hinge moment correction on the vibration reduction characteristics of the ACF. The results clearly demonstrate the feasibility of this new approach to vibration reduction. It should be emphasized than the ACF, used together with a conventional swashplate, is completely decoupled from the primary flight control system and thus it has no influence on the airworthiness of the helicopter. This attribute is potentially a significant advantage when compared to IBC.
Oblasser, Claudia; McCourt, Christine; Hanzal, Engelbert; Christie, Janice
2016-04-01
This paper presents a feasibility trial protocol the purpose of which is to prepare for a future randomised controlled trial to determine the effectiveness of vibrating vaginal pelvic floor training balls for postpartum pelvic floor muscle rehabilitation. Vibrating vaginal pelvic floor training balls are available in Austria to enhance women's pelvic floor muscles and thus prevent or treat urinary incontinence and other pelvic floor problems following childbirth. Nonetheless, there is currently little empirical knowledge to substantiate their use or assess their relative effectiveness in comparison to current standard care, which involves pelvic floor muscle exercises. Single blind, randomised controlled feasibility trial with two parallel groups. It is planned to recruit 56 postpartum women in Vienna, who will be randomised into one of two intervention groups to use either vibrating vaginal balls or a comparator pelvic floor muscle exercises for 12 weeks. As this is a feasibility study, study design features (recruitment, selection, randomisation, intervention concordance, data collection methods and tools) will be assessed and participants' views and experiences will be surveyed. Tested outcome measures, collected before and after the intervention, will be pelvic floor muscle performance as reported by participants and measured by perineometry. Descriptive and inferential statistics and content analysis will serve the preparation of the future trial. The results of this feasibility trial will inform the design and conduct of a full randomised controlled trial and provide insight into the experiences of women regarding the interventions and study participation. © 2015 John Wiley & Sons Ltd.
Schwenke, David W.
1992-01-01
The optimization of the wave functions is considered for coupled vibrations represented by linear combinations of products of functions depending only on a single vibrational coordinate. The functions themselves are optimized as well as configuration list. For the H2O molecule highly accurate results are obtained for the lowest 15 levels using significantly shorter expansions than would otherwise be possible.
Weber, F.
2014-09-01
The semi-active vibration absorber (SVA) based on controlled semi-active damper is formulated to realize the behaviour of the passive undamped vibration absorber tuned to the actual harmonic disturbing frequency. It is shown that the controlled stiffness force, which is emulated by the semi-active damper to realize the precise real-time frequency tuning of the SVA, is unpreventably combined with the generation of undesirable damping in the semi-active damper whereby the SVA does not behave as targeted. The semi-active stiffness force is therefore optimized for minimum primary structure response. The results point out that the optimal semi-active stiffness force reduces the undesirable energy dissipation in the SVA at the expenses of slight imprecise frequency tuning. Based on these findings, a real-time applicable suboptimal SVA is formulated that also takes the relative motion constraint of real mass dampers into account. The results demonstrate that the performance of the suboptimal SVA is closer to that of the active solution than that of the passive mass damper.
Portnov, Alexander; Epshtein, Michael; Bar, Ilana
2017-06-01
Nonadiabatic processes, dominated by dynamic passage of reactive fluxes through conical intersections (CIs) are considered to be appealing means for manipulating reaction paths. One approach that is considered to be effective in controlling the course of dissociation processes is the selective excitation of vibrational modes containing a considerable component of motion. Here, we have chosen to study the predissociation of the model test molecule, methylamine and its deuterated isotopologues, excited to well-characterized quantum states on the first excited electronic state, S_{1}, by following the N-H(D) bond fission dynamics through sensitive H(D) photofragment probing. The branching ratios between slow and fast H(D) photofragments, the internal energies of their counter radical photofragments and the anisotropy parameters for fast H photofragments, confirm correlated anomalies for predissociation initiated from specific rovibronic states, reflecting the existence of a dynamic resonance in each molecule. This resonance strongly depends on the energy of the initially excited rovibronic states, the evolving vibrational mode on the repulsive S_{1} part during N-H(D) bond elongation, and the manipulated passage through the CI that leads to radicals excited with C-N-H(D) bending and preferential perpendicular bond breaking, relative to the photolyzing laser polarization, in molecules containing the NH_{2} group. The indicated resonance plays an important role in the bifurcation dynamics at the CI and can be foreseen to exist in other photoinitiated processes and to control their outcome.
Directory of Open Access Journals (Sweden)
Mingchun Liu
2017-12-01
Full Text Available This paper presents an integration design scheme and an optimization control strategy for electric wheels to suppress the in-wheel vibration and improve vehicle ride comfort. The in-wheel motor is considered as a dynamic vibration absorber (DVA, which is isolated from the unsprung mass by using a spring and a damper. The proposed DVA system is applicable for both the inner-rotor motor and outer-rotor motor. Parameters of the DVA system are optimized for the typical conditions, by using the particle swarm optimization (PSO algorithm, to achieve an acceptable vibration performance. Further, the DVA actuator force is controlled by using the alterable-domain-based fuzzy control method, to adaptively suppress the wheel vibration and reduce the wallop acting on the in-wheel motor (IWM as well. In addition, a suspension actuator force is also controlled, by using the linear quadratic regulator (LQR method, to enhance the suspension performance and meanwhile improve vehicle ride comfort. Simulation results demonstrate that the proposed DVA system effectively suppresses the wheel vibration and simultaneously reduces the wallop acting on the IWM. Also, the alterable-domain-based fuzzy control method performs better than the conventional ones, and the LQR-based suspension exhibits excellent performance in vehicle ride comfort.
Ding, Ruqi; Xu, Bing; Zhang, Junhui; Cheng, Min
2017-08-01
Independent metering control systems are promising fluid power technologies compared with traditional valve controlled systems. By breaking the mechanical coupling between the inlet and outlet, the meter-out valve can open as large as possible to reduce energy consumptions. However, the lack of damping in outlet causes stronger vibrations. To address the problem, the paper designs a hybrid control method combining dynamic pressure-feedback and active damping control. The innovation resides in the optimization of damping by introducing pressure feedback to make trade-offs between high stability and fast response. To achieve this goal, the dynamic response pertaining to the control parameters consisting of feedback gain and cut-off frequency, are analyzed via pole-zero locations. Accordingly, these parameters are tuned online in terms of guaranteed dominant pole placement such that the optimal damping can be accurately captured under a considerable variation of operating conditions. The experiment is deployed in a mini-excavator. The results pertaining to different control parameters confirm the theoretical expectations via pole-zero locations. By using proposed self-tuning controller, the vibrations are almost eliminated after only one overshoot for different operation conditions. The overshoots are also reduced with less decrease of the response time. In addition, the energy-saving capability of independent metering system is still not affected by the improvement of controllability.
Take control of font problems in Leopard
Zardetto, Sharon
2009-01-01
Are you suffering from mysterious font problems using Microsoft Office, the Adobe Creative Suite, or other programs in Mac OS X Leopard? Help is at hand, with troubleshooting steps and real-world advice that help you solve problems fast. If you've experienced seemingly inexplicable trouble with characters displaying incorrectly, being unable to type a particular character, fonts missing from Font menus, Font Book crashing, or Character Palette misbehaving, turn to font expert Sharon Zardetto for help. Read this ebook to find the answers to questions such as: Where do fonts belong on my hard
Energy Technology Data Exchange (ETDEWEB)
Teng, C. [Carrier Corp., Indianapolis, IN (United States); Reynolds, D.D. [Univ. of Nevada, Las Vegas, NV (United States). Dept. of Mechanical Engineering
1998-10-01
Vibration modes associated with a fan impeller, motor, and motor mounting assembly in small air-conditioning units can be excited by motor torque pulsations in single-phase motors. Experimental procedures were developed that can be used to measure the torsional resonance frequencies of the stationary parts (motor stator and motor mounting assembly) and the rotating parts (fan impeller and motor rotor and shaft assembly) of a propeller fan assembly. Impact test procedures, test procedures in which the fan motor is set up to act as a torsional shaker, and procedures that employ the use of a microphone in an anechoic room are presented in this paper.
Eliminating Problem Behaviors with Positive Controls.
Stoi, Margaret
A teacher describes her efforts to deal with an 11-year-old severely emotionally impaired girl in a classroom with other acting out, aggressive students. The girl's behavior problems included breaking, tearing, spitting, swearing, running, and sexual aggression. A positive reinforcedment system was found to be primarily responsible for success in…
Inverse and Control Problems in Electromagnetics
1994-10-14
Fernandes. Automatic adjustments for the removal of irregular frequencies in frce.-surface two-dimensional problems, Int. Symp. in Offshore Eng., Rio de...arbitrary cross seccion shape, IEEE Trants. Antennas and Propagation AP-13 (1965) 334-341. [16] A. Roger, Newton -Kantorovitch algorithm applied to an
Hong, Fan; Pang, Chee Khiang
2012-11-01
This paper presents an improved indirect-driven self-sensing actuation circuit for robust vibration control of piezoelectrically-actuated flexible structures in mechatronic systems. The circuit acts as a high-pass filter and provides better self-sensing strain signals with wider sensing bandwidth and higher signal-to-noise ratio. An adaptive non-model-based control is used to compensate for the structural vibrations using the strain signals from the circuit. The proposed scheme is implemented in a PZT-actuated suspension of a commercial dual-stage hard disk drive. Experimental results show improvements of 50% and 75% in the vibration suppression at 5.4kHz and 21kHz respectively, compared to the conventional PI control. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.
Duclos, Noémie C; Maynard, Luc; Abbas, Djawad; Mesure, Serge
2015-11-02
Right brain damage (RBD) following stroke often causes significant postural instability. In standing (without vision), patients with RBD are more unstable than those with left brain damage (LBD). We hypothesised that this postural instability would relate to the cortical integration of proprioceptive afferents. The aim of this study was to use tendon vibration to investigate whether these changes were specific to the paretic or non-paretic limbs. 14 LBD, 12 RBD patients and 20 healthy subjects were included. Displacement of the Centre of Pressure (CoP) was recorded during quiet standing, then during 3 vibration conditions (80 Hz - 20s): paretic limb, non-paretic limb (left and right limbs for control subjects) and bilateral. Vibration was applied separately to the peroneal and Achilles tendons. Mean antero-posterior position of the CoP, variability and velocity were calculated before (4s), during and after (24s) vibration. For all parameters, the strongest perturbation was during Achilles vibrations. The Achilles non-paretic condition induced a larger backward displacement than the Achilles paretic condition. This condition caused specific behaviour on the velocity: the LBD group was perturbed at the onset of the vibrations, but gradually recovered their stability; the RBD group was significantly perturbed thereafter. After bilateral Achilles vibration, RBD patients required the most time to restore initial posture. The reduction in use of information from the paretic limb may be a central strategy to deal with risk-of-fall situations such as during Achilles vibration. The postural behaviour is profoundly altered by lesions of the right hemisphere when proprioception is perturbed. Copyright © 2015 Elsevier B.V. All rights reserved.
Active vibration control for a smart panel with enhanced acoustic performances
Ripamonti, Francesco; Baro, Simone; Molgora, Manuel
2017-04-01
The spread of smart structures has recorded a significant increase during the last decades. Nowadays these solutions are applied in various fields such as aerospace, automotive and civil constructions. This kind of structures was born in the past in order to cope with the high vibrations that every lightweight structure has to face. In order to reduce weight designers usually decide to use very thin and lightweight structures. In the automotive field, for example, a reduced fuel consumption is obtained employing lightweight materials. However, in general a worsening of the vibroacoustic comfort is obtained with undesired vibrations that can be really annoying for passengers and dangerous for the structure itself. This work presents an innovative smart plate that is able to actively vary its dynamic properties, by means of an IMSC control logic, in order to improve the acoustic performances. An investigation about the system response in the high frequency range allowed to assess the behavior in terms of absorption, reflection coefficient and transmission loss.
Vibration of hydraulic machinery
Wu, Yulin; Liu, Shuhong; Dou, Hua-Shu; Qian, Zhongdong
2013-01-01
Vibration of Hydraulic Machinery deals with the vibration problem which has significant influence on the safety and reliable operation of hydraulic machinery. It provides new achievements and the latest developments in these areas, even in the basic areas of this subject. The present book covers the fundamentals of mechanical vibration and rotordynamics as well as their main numerical models and analysis methods for the vibration prediction. The mechanical and hydraulic excitations to the vibration are analyzed, and the pressure fluctuations induced by the unsteady turbulent flow is predicted in order to obtain the unsteady loads. This book also discusses the loads, constraint conditions and the elastic and damping characters of the mechanical system, the structure dynamic analysis, the rotor dynamic analysis and the system instability of hydraulic machines, including the illustration of monitoring system for the instability and the vibration in hydraulic units. All the problems are necessary for vibration pr...
Hand-Arm vibration assessment among tiller operator
Directory of Open Access Journals (Sweden)
P. Nassiri
2013-08-01
Result: Results of the present study indicated that in all measured situations, exposure to hand arm vibration was higher than the standard limit suggested by Iranian occupational health committee and there was risk of vibration-induced disorders. The maximum exposure to vibration is in plowing ground. Exposure to hand arm vibration in three modes of plowing, transmission and natural, were respectively 16.95, 14.16 and 8.65 meters per second squared. Additionally, in all situations, vibration exposure was highest in the X-axis in comparison with Z- and Y-axes. .Conclusion: This study emphasizes on the need to provide intervention and controlling and managing strategies in order to eliminate or reduce vibration transmitted from tiller to operators hand and arm and also prevent to serious problems including neurovascular disorders, discomfort and white finger syndrome. Meanwhile, more studies are necessary to identify the sources of vibration on different models of tiller.
Research on Spillover Effects for Vibration Control of Piezoelectric Smart Structures by ANSYS
Directory of Open Access Journals (Sweden)
Xingjian Dong
2014-01-01
Full Text Available To control vibration of a piezoelectric smart structure, a controller is usually designed based on a reduced order model (ROM of the system. When such a ROM based controller operates in closed loop with the actual structure, spillover phenomenon occurs because the unmodeled dynamics, which are not included in ROM, will be excited. In this paper, a new approach aiming at investigating spillover effects in ANSYS software is presented. By using the ANSYS parametric design language (APDL, the ROM based controller is integrated into finite element model to provide an accurate representation of what will happen when the controller is connected to the real plant. Therefore, the issues of spillover effects can be addressed in the closed loop simulation. Numerical examples are presented for investigating spillover effects of a cantilever piezoelectric plate subjected to various types of loading. The importance of considering spillover effects in closed loop simulation of piezoelectric smart structures is demonstrated. Moreover, the present study may provide an efficient method especially beneficial for preliminary design of piezoelectric smart structure to evaluate the performance of candidate control laws in finite element environment considering spillover effects.
Stania, Magdalena; Chmielewska, Daria; Kwaśna, Krystyna; Smykla, Agnieszka; Taradaj, Jakub; Juras, Grzegorz
2015-10-24
More and more frequently stress urinary incontinence affects young healthy women. Hence, early implementation of effective preventive strategies in nulliparous continent women is essential, including pelvic floor muscle training. An initial evaluation based on the bioelectrical activity of the pelvic floor muscles (PFM) during whole-body vibration (WBV) would help to devise the best individualized training for prevention of stress urinary incontinence in woman. We hypothesized that synchronous WBV enhances bioelectrical activity of the PFM which depends on vibration frequency and peak-to-peak vibration displacement. The sample consisted of 36 nulliparous continent women randomly allocated to three comparative groups. Group I and II subjects participated in synchronous whole-body vibrations on a vibration platform; the frequency and peak-to-peak displacement of vibration were set individually for each group. Control participants performed exercises similar to those used in the study groups but without the concurrent application of vibrations. Pelvic floor surface electromyography (sEMG) activity was recorded using a vaginal probe during three experimental trials limited to 30s, 60s and 90 s. The mean amplitude and variability of the signal were normalized to the Maximal Voluntary Contraction - MVC. Friedman's two-way ANOVA revealed a statistically significant difference in the mean normalized amplitudes (%MVC) of the sEMG signal from the PFM during 60s- and 90 s-trials between the group exposed to high-intensity WBV and control participants (p pelvic floor muscle fatigue. The trial was registered in the Australian and New Zealand Clinical Trials Registry (no. ACTRN12615000966594); registration date: 15/09/2015.
Directory of Open Access Journals (Sweden)
F. Ünker
2016-01-01
Full Text Available This paper deals with the investigation of optimum values of the stiffness and damping which connect two gyroscopic systems formed by two rotors mounted in gimbal assuming negligible masses for the spring, damper, and gimbal support. These coupled gyroscopes use two gyroscopic flywheels, spinning in opposing directions to have reverse precessions to eliminate the forces due to the torque existing in the torsional spring and the damper between gyroscopes. The system is mounted on a vertical cantilever with the purpose of studying the horizontal and vertical vibrations. The equation of motion of the compound system (gyro-beam system is introduced and solved to find the response measured on the primary system. This is fundamental to design, in some way, the dynamic absorber or neutralizer. On the other hand, the effect of the angular velocities of the gyroscopes are studied, and it is shown that the angular velocity (spin velocity of a gyroscope has a significant effect on the behavior of the dynamic motion. Correctness of the analytical results is verified by numerical simulations. The comparison with the results from the derivation of the corresponding frequency equations shows that the optimized stiffness and damping values are very accurate.
Indian Academy of Sciences (India)
We make music by causing strings, membranes, or air columns to vibrate. Engineers design safe structures by control- ling vibrations. I will describe to you a very simple vibrating system and the mathematics needed to analyse it. The ideas were born in the work of Joseph-Louis Lagrange (1736–1813), and I begin by quot-.
Telerobotics - Display, control, and communication problems
Stark, Lawrence; Kim, Won-Soo; Tendick, Frank; Hannaford, Blake; Ellis, Stephen
1987-01-01
An experimental telerobotics simulation is described suitable for studying human operator (HO) performance. Simple manipulator pick-and-place and tracking tasks allowed quantitative comparison of a number of calligraphic display viewing conditions. An enhanced perspective display was effective with a reference line from target to base, with or without a complex three-dimensional grid framing the view. This was true especially if geometrical display parameters such as azimuth and elevation were arranged to be near optimal. Quantitative comparisons were made possible, utilizing control performance measures such as root mean square error. There was a distinct preference for controlling the manipulator in end-effector Cartesian space for the primitive pick-and-place task, rather than controlling joint angles and then, via direct kinematis, the end-effector position. An introduced communication delay was found to produce decrease in performance. In considerable part, this difficulty could be compensated for by preview control information. The fact that neurological control of normal human movement contains a sampled data period of 0.2 s may relate to this robustness of HO control to delay.
Weber, F.; Distl, H.
2015-11-01
This paper derives an approximate collocated control solution for the mitigation of multi-mode cable vibration by semi-active damping with negative stiffness based on the control force characteristics of clipped linear quadratic regulator (LQR). The control parameters are derived from optimal modal viscous damping and corrected in order to guarantee that both the equivalent viscous damping coefficient and the equivalent stiffness coefficient of the semi-active cable damper force are equal to their desired counterparts. The collocated control solution with corrected control parameters is numerically validated by free decay tests of the first four cable modes and combinations of these modes. The results of the single-harmonic tests demonstrate that the novel approach yields 1.86 times more cable damping than optimal modal viscous damping and 1.87 to 2.33 times more damping compared to a passive oil damper whose viscous damper coefficient is optimally tuned to the targeted mode range of the first four modes. The improvement in case of the multi-harmonic vibration tests, i.e. when modes 1 and 3 and modes 2 and 4 are vibrating at the same time, is between 1.55 and 3.81. The results also show that these improvements are obtained almost independent of the cable anti-node amplitude. Thus, the proposed approximate real-time applicable collocated semi-active control solution which can be realized by magnetorheological dampers represents a promising tool for the efficient mitigation of stay cable vibrations.
Directory of Open Access Journals (Sweden)
Kasprzyk Jerzy
2017-06-01
Full Text Available The efficiency of vibration control in an automotive semi-active suspension system depends on the quality of information from sensors installed in the vehicle, including information about deflection of the suspension system. The control algorithm for vibration attenuation of the body takes into account its velocity as well as the relative velocity of the suspension. In this paper it is proposed to use the Linear Variable Differential Transformer (LVDT unit to measure the suspension deflection and then to estimate its relative velocity. This approach is compared with a typical solution implemented in such applications, where the relative velocity is calculated by processing signals acquired from accelerometers placed on the body and on the chassis. The experiments performed for an experimental All-Terrain Vehicle (ATV confirm that using LVDT units allows for improving ride comfort by better vibration attenuation of the body.
Directory of Open Access Journals (Sweden)
Chen Ying Jie
2016-01-01
Full Text Available In this paper, with the principle of least action with variables to solve the problems of forced vibration of the Rectangular plate with three clamped and the other free with concentrated load, and the stable solution can be worked out. We can compare the results with the literate; it also can be proved to be true. So the results by calculating not only it have important academic value, but also it can be directly referred in the actual work.
Djomo Mbong, T. L. M.; Siewe Siewe, M.; Tchawoua, C.
2018-01-01
In this study, the effect of a controllable parametric excitation on both linear and nonlinear vibrational resonances on the dynamic of a buckled beam excited by a combination of uncontrollable low- and high-frequency periodic forces are investigated. First of all, the beam dynamic is assumed to be constrained by two periodic and independent ambient solicitations, such as wind and earthquake. An axial load of the beam represented by a periodic and parametric excitation is used to control the vibrational resonance phenomenon, induced by the presence of the two external excitations. Approximate analytical expressions for the linear response and the high-frequency force amplitude at which linear vibrational resonance occurs are obtained. An analytical expression of the amplitude of the nonlinear response at the superharmonic equal to the double of the low-frequency, is obtained. For all these expressions, we show the effect of the parametric excitation. We compare all the obtained results with the ones of the case where, the parametric force is absent. It is shown that, the presence of the parametric excitation permit the suppression of both linear and nonlinear vibrational resonances. Moreover, the vibration amplitudes of the buckled beam are significantly reduced, around certain threshold values for the amplitude and the frequency of the parametric excitation.
Directory of Open Access Journals (Sweden)
ZhongYi Chu
2015-10-01
Full Text Available This article presents a novel approach for actively suppressing the vibration within a two-link flexible manipulator to adapt the variation in the model parameters, which is composed of an input shaper and multimode adaptive positive position feedback. Input shaper is applied to shape the command to avoid the flexible vibration in the manoeuvre motion, and the residual vibration can be suppressed by a piezo actuator with the adaptive positive position feedback approach. To demonstrate the approach, two sets of piezoelectric actuator/stain gauge sensor pairs are bonded to the surface of the two-link flexible manipulator; slewing of the flexible link induces vibrations in the link that persist long after the motors stop moving. Vibration suppression is achieved through a combined scheme of input shaper–based motor motion control and an adaptive positive position feedback–based piezo actuator controller. Experimental results show the effectiveness of the proposed approach and its suitability for implementation in an existing robot.
Directory of Open Access Journals (Sweden)
Jinhua Xie
2012-01-01
Full Text Available Based on the transmission and equilibrium relationship of vibration energy in beam-like structures, the Galerkin weighted residual method was applied to equation discretization. An equivalent transformation of feedback element was suggested to develop the Energy Finite Element model of a composite piezoelectric cantilever beam driven by harmonic excitation on lateral direction, with both systems with and without time delay being studied and the power input estimation of harmonic excitation was discussed for the resolution of Energy Finite Element function. Then the energy density solutions of the piezoelectric coupling beam through Energy Finite Element Method (EFEM and classical wave theory were compared to verify the EFEM model, which presented a good accordance. Further investigation was undertaken about the influence of control parameters including the feedback gain and arrangement of piezoelectric patches on characteristics of system energy density distribution.
Study of space shuttle environmental control and life support problems
Dibble, K. P.; Riley, F. E.
1971-01-01
Four problem areas were treated: (1) cargo module environmental control and life support systems; (2) space shuttle/space station interfaces; (3) thermal control considerations for payloads; and (4) feasibility of improving system reusability.
Optimal control problem for the extended Fisher–Kolmogorov equation
Indian Academy of Sciences (India)
In this paper, the optimal control problem for the extended Fisher–Kolmogorov equation is studied. The optimal control under boundary condition is given, the existence of optimal solution to the equation is proved and the optimality system is established.
Energy Technology Data Exchange (ETDEWEB)
Cho, Sang Won [University of Western Ontario, London (Canada); Koo, Jeong Hoi [Miami University, Oxford (United States); Jo, Ji Seong [POSCO, Seongnam (Korea, Republic of)
2007-06-15
This paper presents a novel electromagnetic induction (EMI) system integrated in magneto rheological (MR) dampers: The added EMI system converts reciprocal motions of MR damper into electiral energy (electromotive force or emf) according to the Faraday's law of electromagnetic induction. Maximum energy dissipation algorithm (MEDA) is employed to regulate the MR dampers because it strives to simplify a complex design process by employing the Lyapunov's direct approach. The emf signal, produced from the EMI, provides the necessary measurement information (i.e., realtive velocity across the damper) for the MEDA controller. Thus, the EMI acts as a sensor in the proposed MR-EMI system. In order to evaluate the performance and robustness of the MR-EMI sensor system with the MEDA control, this study performed an extensive simulation study using the first generation benchmark cable-stayed bridge. Moreover, it compared the performance and the robustness of proposed system with those of Clipped-Optimal Control (COC) and Sliding Mode Control (SMC), which were previously studied for the benchmark cable-stayed bridge. The results show that the MR-EMI system reduced the vibrations of the bridge structure more than those of COC and SMC and show more robust performance than that of SMC. These results suggest that EMIs can be used cost-effective sensing devices for MR damper control systems without compromising the performance of them.
Directory of Open Access Journals (Sweden)
Gustavo L.C.M. Abreu
2003-01-01
Full Text Available In this paper, a digital regulator is designed and experimentally implemented for a flexible beam type structure containing piezoelectric sensors and actuators by using optimal control design techniques. The controller consists of a linear quadratic regulator with a state estimator, namely a Kalman observer. The structure is a cantilever beam containing a set of sensor/actuator PVDF/PZT ceramic piezoelectric patches bonded to the beam surface at the optimal location obtained for the first three vibration modes. The equations of motion of the beam are developed by using the assumed modes technique for flexible structures in infinite-dimensional models. This paper uses a method of minimizing the effect of the removed higher order modes on the low frequency dynamics of the truncated model by adding a zero frequency term to the low order model of the system. A measure of the controllability and observability of the system based on the modal cost function for flexible structures containing piezoelectric elements (intelligent structures is used. The observability and controllability measures are determined especially to guide the placement of sensors and actuators, respectively. The experimental and numerical transfer functions are adjusted by using an optimization procedure. Experimental results illustrate the optimal control design of a cantilever beam structure.
Phu, Do Xuan; Shin, Do Kyun; Choi, Seung-Bok
2015-08-01
This paper presents a new adaptive fuzzy controller featuring a combination of two different control methodologies: H infinity control technique and sliding mode control. It is known that both controllers are powerful in terms of high performance and robust stability. However, both control methods require an accurate dynamic model to design a state variable based controller in order to maintain their advantages. Thus, in this work a fuzzy control method which does not require an accurate dynamic model is adopted and two control methodologies are integrated to maintain the advantages even in an uncertain environment of the dynamic system. After a brief explanation of the interval type 2 fuzzy logic, a new adaptive fuzzy controller associated with the H infinity control and sliding mode control is formulated on the basis of Lyapunov stability theory. Subsequently, the formulated controller is applied to vibration control of a vehicle seat equipped with magnetorheological fluid damper (MR damper in short). An experimental setup for realization of the proposed controller is established and vibration control performances such as acceleration at the driver’s seat are evaluated. In addition, in order to demonstrate the effectiveness of the proposed controller, a comparative work with two existing controllers is undertaken. It is shown through simulation and experiment that the proposed controller can provide much better vibration control performance than the two existing controllers.
Glück, Martin; Pott, Jörg-Uwe; Sawodny, Oliver
2017-06-01
Adaptive Optics (AO) systems in large telescopes do not only correct atmospheric phase disturbances, but they also telescope structure vibrations induced by wind or telescope motions. Often the additional wavefront error due to mirror vibrations can dominate the disturbance power and contribute significantly to the total tip-tilt Zernike mode error budget. Presently, these vibrations are compensated for by common feedback control laws. However, when observing faint natural guide stars (NGS) at reduced control bandwidth, high-frequency vibrations (>5 Hz) cannot be fully compensated for by feedback control. In this paper, we present an additional accelerometer-based disturbance feedforward control (DFF), which is independent of the NGS wavefront sensor exposure time to enlarge the “effective servo bandwidth”. The DFF is studied in a realistic AO end-to-end simulation and compared with commonly used suppression concepts. For the observation in the faint (>13 mag) NGS regime, we obtain a Strehl ratio by a factor of two to four larger in comparison with a classical feedback control. The simulation realism is verified with real measurement data from the Large Binocular Telescope (LBT); the application for on-sky testing at the LBT and an implementation at the E-ELT in the MICADO instrument is discussed.
Siami, A.; Karimi, H. R.; Cigada, A.; Zappa, E.; Sabbioni, E.
2018-01-01
Preserving cultural heritage against earthquake and ambient vibrations can be an attractive topic in the field of vibration control. This paper proposes a passive vibration isolator methodology based on inerters for improving the performance of the isolation system of the famous statue of Michelangelo Buonarroti Pietà Rondanini. More specifically, a five-degree-of-freedom (5DOF) model of the statue and the anti-seismic and anti-vibration base is presented and experimentally validated. The parameters of this model are tuned according to the experimental tests performed on the assembly of the isolator and the structure. Then, the developed model is used to investigate the impact of actuation devices such as tuned mass-damper (TMD) and tuned mass-damper-inerter (TMDI) in vibration reduction of the structure. The effect of implementation of TMDI on the 5DOF model is shown based on physical limitations of the system parameters. Simulation results are provided to illustrate effectiveness of the passive element of TMDI in reduction of the vibration transmitted to the statue in vertical direction. Moreover, the optimal design parameters of the passive system such as frequency and damping coefficient will be calculated using two different performance indexes. The obtained optimal parameters have been evaluated by using two different optimization algorithms: the sequential quadratic programming method and the Firefly algorithm. The results prove significant reduction in the transmitted vibration to the structure in the presence of the proposed tuned TMDI, without imposing a large amount of mass or modification to the structure of the isolator.
Some control problems of continuously variable belt transmission
Radzymiński, B.
2016-09-01
Control problems of continuously variable belt transmission used in passenger cars have been discussed. Pulley adjustment solutions and choice of control and feedback signals are the main topics. Intention to use such a transmission as part of a complex system containing mechanical energy storage caused that the adjustment transition time become crucial problem.
A hybrid iterative scheme for optimal control problems governed by ...
African Journals Online (AJOL)
MRT
obtaining approximate solutions of optimal control problems governed by some Fredholm integral equations. By some numerical ... Trace of numerical approaches in optimal control problems can be found in many applications and academic literatures. ...... Progress In Electromagnetics Research 78: 361–376. Ghasemi, M.
On a Highly Nonlinear Self-Obstacle Optimal Control Problem
Energy Technology Data Exchange (ETDEWEB)
Di Donato, Daniela, E-mail: daniela.didonato@unitn.it [University of Trento, Department of Mathematics (Italy); Mugnai, Dimitri, E-mail: dimitri.mugnai@unipg.it [Università di Perugia, Dipartimento di Matematica e Informatica (Italy)
2015-10-15
We consider a non-quadratic optimal control problem associated to a nonlinear elliptic variational inequality, where the obstacle is the control itself. We show that, fixed a desired profile, there exists an optimal solution which is not far from it. Detailed characterizations of the optimal solution are given, also in terms of approximating problems.
Topological material layout in plates for vibration suppression and wave propagation control
DEFF Research Database (Denmark)
Larsen, Anders Astrup; Laksafoss, B.; Jensen, Jakob Søndergaard
2009-01-01
plate theory coupled with analytical sensitivity analysis using the adjoint method and an iterative design update procedure based on a mathematical programming tool. We demonstrate the capability of the method by designing bi-material plates that, when subjected to harmonic excitation, either......We propose a topological material layout method to design elastic plates with optimized properties for vibration suppression and guided transport of vibration energy. The gradient-based optimization algorithm is based on a finite element model of the plate vibrations obtained using the Mindlin...... effectively suppress the overall vibration level or alternatively transport energy in predefined paths in the plates, including the realization of a ring wave device....
2014-01-01
Background Low back pain affects approximately 80% of people at some stage in their lives. Exercise therapy is the most widely used nonsurgical intervention for low back pain in practice guidelines. Whole body vibration exercise is becoming increasingly popular for relieving musculoskeletal pain and improving health-related quality of life. However, the efficacy of whole body vibration exercise for low back pain is not without dispute. This study aims to estimate the effect of whole body vibration exercise for chronic low back pain. Methods/Design We will conduct a prospective, single-blind, randomized controlled trial of 120 patients with chronic low back pain. Patients will be randomly assigned into an intervention group and a control group. The intervention group will participate in whole body vibration exercise twice a week for 3 months. The control group will receive general exercise twice a week for 3 months. Primary outcome measures will be the visual analog scale for pain, the Oswestry Disability Index and adverse events. The secondary outcome measures will include muscle strength and endurance of spine, trunk proprioception, transversus abdominis activation capacity, and quality of life. We will conduct intention-to-treat analysis if any participants withdraw from the trial. Discussion Important features of this study include the randomization procedures, single-blind, large sample size, and a standardized protocol for whole body vibration in chronic low back pain. This study aims to determine whether whole body vibration exercise produces more beneficial effects than general exercise for chronic low back pain. Therefore, our results will be useful for patients with chronic low back pain as well as for medical staff and health-care decision makers. Trial registration Chinese Clinical Trial Registry: ChiCTR-TRC-13003708. PMID:24693945
Vibration control of a semi-active railway vehicle suspension with magneto-rheological dampers
Directory of Open Access Journals (Sweden)
Jong-Seok Oh
2016-04-01
Full Text Available This article presents vibration control performances of a semi-active railway vehicle suspension system using a magneto-rheological damper tested on the roller rig. In order to evaluate control performances, a mathematical railway vehicle model with 15 degrees of freedom is first derived to represent the lateral, yaw and roll motions of the car body, bogie frame, and wheel set, respectively. Based on the formulated model, the design parameters of magneto-rheological damper are determined to undertake a compatible comparison with dynamic performances of conventional (existing passive railway vehicle suspension system. The designed magneto-rheological damper is manufactured and its field-dependent damping force characteristics are experimentally evaluated. Subsequently, in order to enhance the ride quality of a railway vehicle suspension equipped with magneto-rheological damper, a skyhook controller associated with an extended Kalman filter is designed in a state space representation. The railway suspension system incorporated with the car body and two bogies is then experimentally set up on the roller rig in order to evaluate the ride quality. It is demonstrated from experimental realization of the controller that the ride quality of the suspension system with magneto-rheological damper can be significantly enhanced compared with the existing passive suspension system.
Vibration control for the parametrically excited van der Pol oscillator by nonlocal feedback
Energy Technology Data Exchange (ETDEWEB)
Maccari, Attilio [Via Alfredo Casella 3, 00013 Mentana, Rome (Italy)
2011-07-01
A nonlocal feedback is used for the control of nonlinear vibrations in a parametrically excited van der Pol oscillator. A nonlocal control force is introduced in order to obtain a third-order nonlinear differential equation (jerk dynamics). Using the asymptotic perturbation method, two slow flow equations on the amplitude and phase of the response are obtained, and subsequently the performance of the control strategy is investigated. Parametric excitation-response and frequency-response curves are shown. Uncontrolled and controlled systems are compared, and the appropriate choices of the feedback gains for reducing the amplitude peak of the response are found. Energy considerations are used in order to study the existence and characteristics of limit cycles of the slow flow equations. A limit cycle corresponds to a two-period modulated motion for the van der Pol oscillator. To exclude the possibility of quasi-periodic motion and to reduce the amplitude peak of the parametric resonance, appropriate choices of the feedback gains are found. Numerical simulation confirms the validity of the new method.
Control and Alcohol-Problem Recognition among College Students
Simons, Raluca M.; Hahn, Austin M.; Simons, Jeffrey S.; Gaster, Sam
2015-01-01
Objective: This study examined negative control (ie, perceived lack of control over life outcomes) and need for control as predictors of alcohol-problem recognition, evaluations (good/bad), and expectancies (likely/unlikely) among college students. The study also explored the interaction between the need for control and alcohol consumption in…
DEFF Research Database (Denmark)
Zhou, Q.; Nielsen, Søren R.K.; Qu, W. L.
2006-01-01
Three-dimensional semi-active vibration control of an inclined sag cable with discrete magnetorheological (MR) dampers is investigated in this paper using the finite difference method (FDM). A modified Dahl model is used to describe the dynamic property of MR damper. The nonlinear equations of mo...
Hulshof, C. T. J.; Verbeek, J. H. A. M.; Braam, I. T. J.; Bovenzi, M.; van Dijk, F. J. H.
2006-01-01
OBJECTIVES: To evaluate process and outcome of a multifaceted occupational health intervention programme on whole-body vibration (WBV) in forklift truck drivers. METHODS: An experimental pretest/post-test control group study design. The authors trained occupational health services (OHS) in the
Refinement from a control problem to program
DEFF Research Database (Denmark)
Schenke, Michael; Ravn, Anders P.
1996-01-01
The distinguishing feature of the presented refinement approach is that it links formalisms from a top level requirements notation down to programs together in a mathematically coherent development trajectory. The approach uses Duration Calculus, a real-time interval logic, to specifyrequirements...... for a control task, exemplified by a steam boiler.The same formalism is used to refine requirements to a functional design.Through a suitable transformation this is taken to an event andaction based formalism. Finally components in this design for a distributedarchitecture are transformed to occam-like programs....
Controlled ecological life support system - biological problems
Moore, B., III (Editor); Macelroy, R. D. (Editor)
1982-01-01
The general processes and controls associated with two distinct experimental paradigms are examined. Specific areas for research related to biotic production (food production) and biotic decomposition (waste management) are explored. The workshop discussions were directed toward Elemental cycles and the biological factors that affect the transformations of nutrients into food, of food material into waste, and of waste into nutrients were discussed. To focus on biological issues, the discussion assumed that (1) food production would be by biological means (thus excluding chemical synthesis), (2) energy would not be a limiting factor, and (3) engineering capacity for composition and leak rate would be adequate.
GOES-R Active Vibration Damping Controller Design, Implementation, and On-Orbit Performance
Clapp, Brian R.; Weigl, Harald J.; Goodzeit, Neil E.; Carter, Delano R.; Rood, Timothy J.
2017-01-01
GOES-R series spacecraft feature a number of flexible appendages with modal frequencies below 3.0 Hz which, if excited by spacecraft disturbances, can be sources of undesirable jitter perturbing spacecraft pointing. In order to meet GOES-R pointing stability requirements, the spacecraft flight software implements an Active Vibration Damping (AVD) rate control law which acts in parallel with the nadir point attitude control law. The AVD controller commands spacecraft reaction wheel actuators based upon Inertial Measurement Unit (IMU) inputs to provide additional damping for spacecraft structural modes below 3.0 Hz which vary with solar wing angle. A GOES-R spacecraft dynamics and attitude control system identified model is constructed from pseudo-random reaction wheel torque commands and IMU angular rate response measurements occurring over a single orbit during spacecraft post-deployment activities. The identified Fourier model is computed on the ground, uplinked to the spacecraft flight computer, and the AVD controller filter coefficients are periodically computed on-board from the Fourier model. Consequently, the AVD controller formulation is based not upon pre-launch simulation model estimates but upon on-orbit nadir point attitude control and time-varying spacecraft dynamics. GOES-R high-fidelity time domain simulation results herein demonstrate the accuracy of the AVD identified Fourier model relative to the pre-launch spacecraft dynamics and control truth model. The AVD controller on-board the GOES-16 spacecraft achieves more than a ten-fold increase in structural mode damping of the fundamental solar wing mode while maintaining controller stability margins and ensuring that the nadir point attitude control bandwidth does not fall below 0.02 Hz. On-orbit GOES-16 spacecraft appendage modal frequencies and damping ratios are quantified based upon the AVD system identification, and the increase in modal damping provided by the AVD controller for each structural
Self-reported impulsivity and inhibitory control in problem gamblers.
Lorains, Felicity K; Stout, Julie C; Bradshaw, John L; Dowling, Nicki A; Enticott, Peter G
2014-01-01
Impulsivity is considered a core feature of problem gambling; however, self-reported impulsivity and inhibitory control may reflect disparate constructs. We examined self-reported impulsivity and inhibitory control in 39 treatment-seeking problem gamblers and 41 matched controls using a range of self-report questionnaires and laboratory inhibitory control tasks. We also investigated differences between treatment-seeking problem gamblers who prefer strategic (e.g., sports betting) and nonstrategic (e.g., electronic gaming machines) gambling activities. Treatment-seeking problem gamblers demonstrated elevated self-reported impulsivity, more go errors on the Stop Signal Task, and a lower gap score on the Random Number Generation task than matched controls. However, overall we did not find strong evidence that treatment-seeking problem gamblers are more impulsive on laboratory inhibitory control measures. Furthermore, strategic and nonstrategic problem gamblers did not differ from their respective controls on either self-reported impulsivity questionnaires or laboratory inhibitory control measures. Contrary to expectations, our results suggest that inhibitory dyscontrol may not be a key component for some treatment-seeking problem gamblers.
Closed-loop control of vibrational population in CO{sup 2+}
Energy Technology Data Exchange (ETDEWEB)
Wells, E; Jochim, Bethany; Gregerson, Neal; Averin, R [Department of Physics, Augustana College, Sioux Falls, SD 57197 (United States); McKenna, J; Sayler, A M; Zohrabi, M; Carnes, K D; Ben-Itzhak, I, E-mail: eric.wells@augie.ed [J R Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, KS 66506 (United States)
2010-01-14
An adaptive closed-loop feedback system is used to determine the optimal pulse shapes for manipulating the branching ratio of CO{sup 2+} following ionization by an intense laser pulse. For this target, selecting between the CO{sup 2+} and C{sup +} + O{sup +} final states requires control of the vibrational population distribution in the transient CO{sup 2+}. The ability to both suppress and enhance CO{sup 2+} relative to C{sup +} + O{sup +} is observed, with shaped pulses surpassing a transform-limited pulse by factors of about 10 for suppression and 2 for enhancement. When optimizing small channels, such as non-dissociative CO{sup 2+}, we demonstrate that a feedback signal obtained via a pulse counting technique is more robust than the more typical current mode signal collection. Furthermore, we demonstrate how the pulse counting technique allows control of a coincidence channel, specifically C{sup +} + O{sup +}, by using logical electronic gates. Using these coincidence signals allows more specific final states to be incorporated into closed-loop control.
Basok, B. I.; Gotsulenko, V. V.; Gotsulenko, V. N.
2012-11-01
The reason for the decrease in the amplitude of longitudinal vibration combustion self-oscillations in the combustion chamber of a liquid-propellant rocket engine by means of antipulse partitions has been justified. A mathematical model of the development of combustion instability in such a chamber on attachment of a Helmholtz resonator to it has been obtained. The character of the damping of vibration combustion self-oscillations excited by the action of the Crocco mechanisms and negative thermal resistance, when varying the acoustic parameters of the resonator and of the pressure head characteristics of combustion chamber is established.
Femtochemistry in the electronic ground state: Dynamic Stark control of vibrational dynamics
DEFF Research Database (Denmark)
Shu, Chuan-Cun; Thomas, Esben Folger; Henriksen, Niels Engholm
2017-01-01
We study the interplay of vibrational and rotational excitation in a diatomic molecule due to the non-resonant dynamic Stark effect. With a fixed peak intensity, optimal Gaussian pulse durations for maximizing vibrational or rotational transitions are obtained analytically and confirmed numerically...
Active vibration control for underwater signature reduction of a navy ship
Basten, T.G.H.; Berkhoff, Arthur P.; Vermeulen, Ruud
2010-01-01
Dutch navy ships are designed and built to have a low underwater signature. For low frequencies however, tonal vibrations of a gearbox can occur, which might lead to increased acoustic signatures. These vibrations are hard to reduce by passive means. To investigate the possibilities of active
Vibration control in forge hammers. [by shock wave damping in foundation platform
Moise, F.; Lazarescu, C.
1974-01-01
Special measures are discussed for calculating, designing and executing a forge hammer foundation, so that the vibrations that occur during its working will not be transmitted to neighboring machinery, workrooms and offices. These vibrations are harmful to the workers near the forge hammer.
Turnpike theory of continuous-time linear optimal control problems
Zaslavski, Alexander J
2015-01-01
Individual turnpike results are of great interest due to their numerous applications in engineering and in economic theory; in this book the study is focused on new results of turnpike phenomenon in linear optimal control problems. The book is intended for engineers as well as for mathematicians interested in the calculus of variations, optimal control, and in applied functional analysis. Two large classes of problems are studied in more depth. The first class studied in Chapter 2 consists of linear control problems with periodic nonsmooth convex integrands. Chapters 3-5 consist of linear control problems with autonomous nonconvex and nonsmooth integrands. Chapter 6 discusses a turnpike property for dynamic zero-sum games with linear constraints. Chapter 7 examines genericity results. In Chapter 8, the description of structure of variational problems with extended-valued integrands is obtained. Chapter 9 ends the exposition with a study of turnpike phenomenon for dynamic games with extended value integran...
Gambling increases self-control strength in problem gamblers.
Bergen, Anne E; Newby-Clark, Ian R; Brown, Andrea
2014-03-01
In two studies it is demonstrated that, in the short-term, slot machine gambling increases self-control strength in problem gamblers. In Study 1 (N = 180), participants were randomly assigned to either play slot machines or engage in a control task (word anagrams) for 15 min. Subsequent self-control strength was measured via persistence on an impossible tracing task. Replicating Bergen et al. (J Gambl Stud, doi: 10.1007/s10899-011-9274-9 , 2011), control condition participants categorized as problem gamblers persisted for less time than did lower gambling risk participants. However, in the slot machine condition, there were no significant differences in persistence amongst participants as a function of their gambling classification. Moreover, problem gambling participants in the slot machine condition persisted at the impossible tracing task longer than did problem gambling participants in the control condition. Study 2 (N = 209) systematically replicated Study 1. All participants initially completed two tasks known to deplete self-control strength and a different control condition (math problems) was used. Study 2 results were highly similar to those of Study 1. The results of the studies have implications for the helping professions. Specifically, helping professionals should be aware that problem gamblers might seek out gambling as a means of increasing self-control strength.
On some control problems of dynamic of reactor
Baskakov, A. V.; Volkov, N. P.
2017-12-01
The paper analyzes controllability of the transient processes in some problems of nuclear reactor dynamics. In this case, the mathematical model of nuclear reactor dynamics is described by a system of integro-differential equations consisting of the non-stationary anisotropic multi-velocity kinetic equation of neutron transport and the balance equation of delayed neutrons. The paper defines the formulation of the linear problem on control of transient processes in nuclear reactors with application of spatially distributed actions on internal neutron sources, and the formulation of the nonlinear problems on control of transient processes with application of spatially distributed actions on the neutron absorption coefficient and the neutron scattering indicatrix. The required control actions depend on the spatial and velocity coordinates. The theorems on existence and uniqueness of these control actions are proved in the paper. To do this, the control problems mentioned above are reduced to equivalent systems of integral equations. Existence and uniqueness of the solution for this system of integral equations is proved by the method of successive approximations, which makes it possible to construct an iterative scheme for numerical analyses of transient processes in a given nuclear reactor with application of the developed mathematical model. Sufficient conditions for controllability of transient processes are also obtained. In conclusion, a connection is made between the control problems and the observation problems, which, by to the given information, allow us to reconstruct either the function of internal neutron sources, or the neutron absorption coefficient, or the neutron scattering indicatrix....
Energy Technology Data Exchange (ETDEWEB)
Rong Bao, E-mail: rongbao_nust@sina.com; Rui Xiaoting [Nanjing University of Science and Technology, Institute of Launch Dynamics (China); Tao Ling [Chinese Academy of Sciences (ASIPP), Institute of Plasma Physics (China)
2012-11-15
In this paper, a dynamic modeling method and an active vibration control scheme for a smart flexible four-bar linkage mechanism featuring piezoelectric actuators and strain gauge sensors are presented. The dynamics of this smart mechanism is described by the Discrete Time Transfer Matrix Method of Multibody System (MS-DTTMM). Then a nonlinear fuzzy neural network control is employed to suppress the vibration of this smart mechanism. For improving the dynamic performance of the fuzzy neural network, a genetic algorithm based on the MS-DTTMM is designed offline to tune the initial parameters of the fuzzy neural network. The MS-DTTMM avoids the global dynamics equations of the system, which results in the matrices involved are always very small, so the computational efficiency of the dynamic analysis and control system optimization can be greatly improved. Formulations of the method as well as a numerical simulation are given to demonstrate the proposed dynamic method and control scheme.
Vibration Pattern Imager (VPI): A control and data acquisition system for scanning laser vibrometers
Rizzi, Stephen A.; Brown, Donald E.; Shaffer, Thomas A.
1993-01-01
The Vibration Pattern Imager (VPI) system was designed to control and acquire data from scanning laser vibrometer sensors. The PC computer based system uses a digital signal processing (DSP) board and an analog I/O board to control the sensor and to process the data. The VPI system was originally developed for use with the Ometron VPI Sensor, but can be readily adapted to any commercially available sensor which provides an analog output signal and requires analog inputs for control of mirror positioning. The sensor itself is not part of the VPI system. A graphical interface program, which runs on a PC under the MS-DOS operating system, functions in an interactive mode and communicates with the DSP and I/O boards in a user-friendly fashion through the aid of pop-up menus. Two types of data may be acquired with the VPI system: single point or 'full field.' In the single point mode, time series data is sampled by the A/D converter on the I/O board (at a user-defined sampling rate for a selectable number of samples) and is stored by the PC. The position of the measuring point (adjusted by mirrors in the sensor) is controlled via a mouse input. The mouse input is translated to output voltages by the D/A converter on the I/O board to control the mirror servos. In the 'full field' mode, the measurement point is moved over a user-selectable rectangular area. The time series data is sampled by the A/D converter on the I/O board (at a user-defined sampling rate for a selectable number of samples) and converted to a root-mean-square (rms) value by the DSP board. The rms 'full field' velocity distribution is then uploaded for display and storage on the PC.
Control and Alcohol-Problem Recognition Among College Students.
Simons, Raluca M; Hahn, Austin M; Simons, Jeffrey S; Gaster, Sam
2015-01-01
This study examined negative control (ie, perceived lack of control over life outcomes) and need for control as predictors of alcohol-problem recognition, evaluations (good/bad), and expectancies (likely/unlikely) among college students. The study also explored the interaction between the need for control and alcohol consumption in alcohol-related outcomes. Participants were a convenience sample of 500 college students from a rural Midwest university. Data were collected during the 2009-2010 academic year. Participants completed a survey assessing control and alcohol-problem recognition, evaluations, and expectancies. Negative control demonstrated a significant positive association with alcohol-problem recognition, evaluations, and expectancies after controlling for gender and alcohol consumption. Need for control did not have a main effect. However, the interaction was significant in that the association between need for control and negative evaluation of alcohol problems was strongest among participants with the highest levels of alcohol consumption. These results demonstrate that individuals' differences in sense of control are associated with alcohol-problem recognition, evaluations, and expectancies in young adults.
Active vibration control testing of the SPICES program: final demonstration article
Dunne, James P.; Jacobs, Jack H.
1996-05-01
The Synthesis and Processing of Intelligent Cost Effective Structures (SPICES) Program is a partnership program sponsored by the Advanced Research Projects Agency. The mission of the program is to develop cost effective material processing and synthesis technologies to enable new products employing active vibration suppression and control devices to be brought to market. The two year program came to fruition in 1995 through the fabrication of the final smart components and testing of an active plate combined with two trapezoidal rails, forming an active mount. Testing of the SPICES combined active mount took place at McDonnell Douglas facilities in St. Louis, MO, in October-December 1995. Approximately 15 dB reduction in overall response of a motor mounted on the active structure was achieved. Further details and results of the SPICES combined active mount demonstration testing are outlined. Results of numerous damping and control strategies that were developed and employed in the testing are presented, as well as aspects of the design and fabrication of the SPICES active mount components.
Passive Vibration Control of a Semi-Submersible Floating Offshore Wind Turbine
Directory of Open Access Journals (Sweden)
Chao Li
2017-05-01
Full Text Available Floating offshore wind turbines have the potential to commercially convert the vast wind resource in deep-water area. Compared with fixed-bottom wind turbines, motions of the floating foundation complicate vibrations and loads of the wind turbine in offshore environment. To alleviate the responses of the wind turbine, this study investigates the use of fore–aft tuned mass damper (TMD in nacelle/tower for passive control of a semi-submersible offshore wind turbine. A simplified structural model, considering the degree-of-freedom of platform pitch and surge, tower tilt and TMD translation, is proposed in the light of motion features of semi-submersible platform. After identifying ten unknown parameters, the correctness of the deterministic model is validated by pitch free decay responses. The mass, stiffness and damping of TMD are optimized using both method of exhaustion and genetic algorithm to avoid local minimum. Six optimized TMD devices are evaluated under three kinds of realistic environment conditions. The control effectiveness is assessed by the extreme and fatigue response reduction ratios. It is found that the high stiffness TMDs that directly dissipate the energy of tower oscillation exhibit an overall stable performance. Similar to the spar-type foundation, the TMDs in the nacelle/tower are capable of extending the service life of floating wind turbines.
Shen, Jinwei
A comprehensive aeroelastic analytical model of helicopter rotors with trailing-edge flaps for primary and vibration controls has been developed. The derivation of system equations is based on Hamilton principles, and implemented with finite element method in space and time. The blade element consists of fifteen degrees of freedom representing blade flap, lag, torsional, and axial deformations. Three aerodynamic models of flapped airfoils were implemented in the present analysis, the unsteady Hariharan-Leishman model for trailing-edge flaps without aerodynamic balance, a quasi-steady Theodorsen theory for an aerodynamic balanced trailing-edge flap, and table lookup based on wind tunnel test data. The trailing-edge flap deflections may be modeled as a degree of freedom so that the actuator dynamics can be captured properly. The coupled trim procedures for swashplateless rotor are solved in either wind tunnel trim or free flight condition. A multicyclic controller is also implemented to calculate the flap control inputs for minimization of vibratory rotor hub loads. The coupled blade equations of motion are linearized by using small perturbations about a steady trimmed solution. The aeroelastic stability characteristics of trailing-edge flap rotors is then determined from an eigenanalysis of the homogeneous equations using Floquet method. The correlation studies of a typical bearingless rotor and an ultralight teetering rotor are respectively based on wind tunnel test data and simulations of another comprehensive analysis (CAMRAD II). Overall, good correlations are obtained. Parametric study identifies that the effect of actuator dynamics cannot be neglected, especially for a torsionally soft smart actuator system. Aeroelastic stability characteristics of a trailing-edge flap rotor system are shown to be sensitive to flap aerodynamic and mass balances. Key parameters of trailing-edge flap system for primary rotor control are identified as blade pitch index angle
Phu, Do Xuan; Choi, Seung-Bok
2015-02-01
In this work, a new high-load magnetorheological (MR) fluid mount system is devised and applied to control vibration in a ship engine. In the investigation of vibration-control performance, a new modified indirect fuzzy sliding mode controller is formulated and realized. The design of the proposed MR mount is based on the flow mode of MR fluid, and it includes two separated coils for generating a magnetic field. An optimization process is carried out to achieve maximal damping force under certain design constraints, such as the allowable height of the mount. As an actuating smart fluid, a new plate-like iron-particle-based MR fluid is used, instead of the conventional spherical iron-particle-based MR fluid. After evaluating the field-dependent yield stress of the MR fluid, the field-dependent damping force required to control unwanted vibration in the ship engine is determined. Subsequently, an appropriate-sized MR mount is manufactured and its damping characteristics are evaluated. After confirming the sufficient damping force level of the manufactured MR mount, a medium-sized ship engine mount system consisting of eight MR mounts is established, and its dynamic governing equations are derived. A new modified indirect fuzzy sliding mode controller is then formulated and applied to the engine mount system. The displacement and velocity responses show that the unwanted vibrations of the ship engine system can be effectively controlled in both the axial and radial directions by applying the proposed control methodology.
Study of control problems for the stationary MHD equations
Brizitskii, R. V.
2017-10-01
The optimal control problems for the stationary magnetohydrodynamic equations under inhomogeneous mixed boundary conditions for a magnetic field are considered. The role of control in control xs under study is played by normal component of the magnetic field on the part of the boundary. In the capacity of cost fucntionals quadratic tracking–type functionals for a velocity, magnetic field or pressure are taken.
A General Theory of Markovian Time Inconsistent Stochastic Control Problems
DEFF Research Database (Denmark)
Björk, Tomas; Murgochi, Agatha
. For a general controlled Markov process and a fairly general objective functional we derive an extension of the standard Hamilton-Jacobi-Bellman equation, in the form of a system of on-linear equations, for the determination for the equilibrium strategy as well as the equilibrium value function. All known......We develop a theory for stochastic control problems which, in various ways, are time inconsistent in the sense that they do not admit a Bellman optimality principle. We attach these problems by viewing them within a game theoretic framework, and we look for Nash subgame perfect equilibrium points...... examples of time inconsistency in the literature are easily seen to be special cases of the present theory. We also prove that for every time inconsistent problem, there exists an associated time consistent problem such that the optimal control and the optimal value function for the consistent problem...
Specificity and structure of regional security control information support problem
Masloboev A. V.; Putilov V. A.
2015-01-01
The paper deals with system analysis of problems of regional economy information security and methods for their solutions at various stages of the crisis situation life-cycle. Specificity and structure of control problems of regional security in the economy as an object of information support have been considered. A set of decision-making information support problems occurred at the strategic, tactical and operational levels of regional security management has been defined. The information su...
Efficient differential evolution algorithms for multimodal optmal control problems
Lopez Cruz, I.L.; Willigenburg, van L.G.; Straten, van G.
2003-01-01
Many methods for solving optimal control problems, whether direct or indirect, rely upon gradient information and therefore may converge to a local optimum. Global optimisation methods like Evolutionary algorithms, overcome this problem. In this work it is investigated how well novel and easy to
Analysis of convergence for control problems governed by evolution ...
African Journals Online (AJOL)
The convergence of a scheme to minimize a class of a system of continuous optimal control problems characterized by a system of evolution equations and a system of linear inequality and equality constraints with multiplier imbedding is considered. The result is applied to some problems and the scheme is found to exhibit ...
Schoenfeld's problem solving theory in a student controlled learning environment
Harskamp, E.; Suhre, C.
2007-01-01
This paper evaluates the effectiveness of a student controlled computer program for high school mathematics based on instruction principles derived from Schoenfeld's theory of problem solving. The computer program allows students to choose problems and to make use of hints during different episodes
Higher-order techniques for some problems of nonlinear control
Directory of Open Access Journals (Sweden)
Sarychev Andrey V.
2002-01-01
Full Text Available A natural first step when dealing with a nonlinear problem is an application of some version of linearization principle. This includes the well known linearization principles for controllability, observability and stability and also first-order optimality conditions such as Lagrange multipliers rule or Pontryagin's maximum principle. In many interesting and important problems of nonlinear control the linearization principle fails to provide a solution. In the present paper we provide some examples of how higher-order methods of differential geometric control theory can be used for the study nonlinear control systems in such cases. The presentation includes: nonlinear systems with impulsive and distribution-like inputs; second-order optimality conditions for bang–bang extremals of optimal control problems; methods of high-order averaging for studying stability and stabilization of time-variant control systems.
Impulsiveness, locus of control, motivation and problem gambling.
Clarke, Dave
2004-01-01
A questionnaire consisting of demographic items, questions about gambling behavior, the South Oaks Gambling Screen (SOGS), a depression inventory, the Eysenck Impulsiveness Questionnaire, Levenson's Internality, Powerful Others and Chance Scales of locus of control and the Gambling Motivation Scale, was completed by a non-random sample of 147 New Zealand university students who gambled for money, median age 24 years. Approximately 17 of the sample was classified as problem gamblers, the rest as non-problem gamblers. Multivariate analysis of variance showed that there were significant differences between problem and non-problem gamblers on gambling frequency, number of activities, parents' gambling, depression, impulsiveness and motivation, but not on locus of control. Amotivation (apathy) and motivation towards stimulation correlated with powerful others and chance locus of control, and motivation to impress others with powerful others locus of control. Hierarchical regression analysis showed that: (1) beyond gambling frequency, number of activities and parents' gambling, motivation explained a substantial proportion of variance in SOGS scores, with impulsiveness accounting for a lesser amount, and (2) predictors of problem gambling included impulsiveness, amotivation and the motivations for accomplishment and tension release. It was concluded that gambling motivation is a more useful construct than locus of control in explaining problem gambling. Suggestions were made for future research, and aspects of gambling motivation were discussed in terms of a treatment program with groups of problem gamblers.
Energy Technology Data Exchange (ETDEWEB)
Uryu, Mitsuru; Terada, Shuji; Shinohara, Takaharu; Yamazaki, Toshihiko; Nakayama, Kazuhiko [Power Reactor and Nuclear Fuel Development Corp., Tokai, Ibaraki (Japan). Tokai Works; Kondo, Toshinari; Hosoya, Hisashi
1997-10-01
The Tokai reprocessing facility buildings are constituted by a lower foundation, vibration controlling layers, and upper structure. At the vibration controlling layer, a laminated rubber aiming support of the building load and extension of the eigenfrequency and a damper aiming absorption of earthquake energy are provided. Of course, the facility buildings are directly supported at the arenaceous shale (Taga Layer) of the Miocene in the Neogene confirmed to the stablest ground, as well the buildings with high vibration resistant importance in Japan. This report shows that when the vibration controlling structure is adopted for the reprocessing facility buildings where such high vibration resistance is required, reduction of input acceleration for equipments and pipings can be achieved and the earthquake resistant safety can also be maintained with sufficient tolerance and reliability. (G.K.)
Hand-arm vibration syndrome. A double-blind case-control study with a new esthesiometer.
Chatterjee, D S
1994-07-01
This double-blind case-control study on hand-arm vibration syndrome was sponsored by the Society of Occupation Medicine Golden Jubilee Travelling Scholarship Committee in 1987. It involved collaborative work between the author and the Department of Clinical Neurosciences, Institute of Occupational Health, Helsinki, Finland. The procedure consisted of administration of a questionnaire, clinical examination of subjects in the study group and depth-sense esthesiometry for all subjects including the controls. Of 34 subjects admitted to the study, 14 out of 15 patients were positively diagnosed as suffering from the syndrome and one out of 19 in the control group had a false positive result. The study showed that the new esthesiometer, although not totally objective, could be regarded as an effective tool for the diagnosis of hand-arm vibration syndrome in clinical and field studies.
DEFF Research Database (Denmark)
Christensen, Rene Hardam; Santos, Ilmar
2004-01-01
mistuning, can easily be generated by substitution or rearranging the blades. Six sets of electro-magnetic actuators are applied to the system in order to control the blades as well as the rotor vibrations. Four sets of actuators are mounted in the rotating disc acting directly onto each one of the blades......This is the second paper in a two-part study on active rotor-blade vibration control. This part presents an experimental contribution into the work of active controller design for rotor-blade systems. The primary aim is to give an experimental validation and show the applicability...... of the theoretical results presented in part 1 of the study. A test rig of a coupled rotor-blade system, where blades flexible motion is coupled to rotor lateral motion, is build for the experimental research. The rig is build by four flexible blades radially attached onto a rotating rigid disc and shaft. The rigid...
Vibration Control on Multilayer Cable Moving through the Crossover Zones on Mine Hoist
National Research Council Canada - National Science Library
Peng, Xia; Gong, Xian-sheng; Liu, Jin-jun
2016-01-01
Mine hoist is an important piece of equipment in mine hoist systems, and we achieve deep mine hoist through the multilayer winding, but the cable always undergoes severe shock and vibration during...
Development of an Anti-Vibration Controller for Magnetic Bearing Cooling Systems Project
National Aeronautics and Space Administration — This proposal outlines a program to develop a vibration-free reverse-Brayton cycle cooling system using specially-tuned magnetic bearings. Such a system is critical...
Identification for Active Vibration Control of Flexible Structure Based on Prony Algorithm
National Research Council Canada - National Science Library
Sheng, Xianjun; Kong, Yuanli; Zhang, Fengyun; Yang, Rui
2016-01-01
.... The modal parameters and transfer function of the system are identified from the step response signal based on Prony algorithm, while the vibration is attenuated by using the input shaping technique...
Specificity and structure of regional security control information support problem
Directory of Open Access Journals (Sweden)
Masloboev A. V.
2015-09-01
Full Text Available The paper deals with system analysis of problems of regional economy information security and methods for their solutions at various stages of the crisis situation life-cycle. Specificity and structure of control problems of regional security in the economy as an object of information support have been considered. A set of decision-making information support problems occurred at the strategic, tactical and operational levels of regional security management has been defined. The information support problem-solving unified methodological and instrumental framework of regional security has been proposed
Stark, C; Herkenrath, P; Hollmann, H; Waltz, S; Becker, I; Hoebing, L; Semler, O; Hoyer-Kuhn, H; Duran, I; Hero, B; Hadders-Algra, M; Schoenau, E
2016-09-07
to investigate feasibility, safety and efficacy of home-based side-alternating whole body vibration (sWBV) to improve motor function in toddlers with cerebral palsy (CP). Randomized controlled trial including 24 toddlers with CP (mean age 19 months (SD±3.1); 13 boys). 14 weeks sWBV with ten 9-minute sessions weekly (non-individualized). Group A started with sWBV, followed by 14 weeks without; in group B this order was reversed. Feasibility (≥70% adherence) and adverse events were recorded; efficacy evaluated with the Gross Motor Function Measure (GMFM-66), Pediatric Evaluation of Disability Inventory (PEDI), at baseline (T0), 14 (T1) and 28 weeks (T2). Developmental change between T0 and T1 was similar in both groups; change scores in group A and B: GMFM-66 2.4 (SD±2.1) and 3.3 (SD±2.9) (p=0.412); PEDI mobility 8.4 (SD±6.6) and 3.5 (SD±9.2) (p=0.148), respectively. In two children muscle tone increased post-sWBV. 24 children received between 67 and 140 sWBV sessions, rate of completed sessions ranged from 48 to 100% and no dropouts were observed. A 14-week home-based sWBV intervention was feasible and safe in toddlers with CP, but was not associated with improvement in gross motor function.
Vibration Analysis and Models of Adjacent Structures Controlled by Magnetorheological Dampers
Directory of Open Access Journals (Sweden)
Michela Basili
2017-01-01
Full Text Available This paper deals with the vibration analysis of adjacent structures controlled by a magnetorheological (MR damper and with the discussion of a numerical procedure for identification and definition of a reliable finite element model. The paper describes an extensive experimental campaign investigating the dynamic response, through shaking table tests, of a tridimensional four-story structure and a two-story structure connected by an MR device. Several base excitations and intensity levels are considered. The structures were tested in nonconnected and connected configuration, with the MR damper operating in passive or semiactive mode. Moreover, the paper illustrates a procedure for the structural identification and the definition of a reliable numerical model valid for adjacent structures connected by MR dampers. The procedure is applied in the original nonconnected configuration, which represents a linear system, and then in the connected configuration, which represents a nonlinear system due to the MR damper. In the end, the updated finite element model is reliable and suitable for all the considered configurations and the mass, damping, and stiffness matrices are derived. The experimental and numerical responses are compared and the results confirm the effectiveness of the identification procedure and the validation of the finite element model.
Ansari, Istafaul Haque; Rivas, Nicolas; Alam, Meheboob
2018-01-01
We report patterns consisting of coexistence of synchronous and asynchronous states [for example, a granular gas co-existing with (i) bouncing bed, (ii) undulatory subharmonic waves, and (iii) Leidenfrost-like states] in experiments on vertically vibrated binary granular mixtures in a Hele-Shaw cell. Most experiments have been carried out with equimolar binary mixtures of glass and steel balls of same diameter by varying the total layer height (F ) for a range of shaking acceleration (Γ ). All patterns as well as the related phase diagram in the (Γ ,F ) plane have been reproduced via molecular dynamics simulations of the same system. The segregation of heavier and lighter particles along the horizontal direction is shown to be the progenitor of such phase-coexisting patterns as confirmed in both experiment and simulation. At strong shaking we uncover a partial convection state in which a pair of convection rolls is found to coexist with a Leidenfrost-like state. The crucial role of the relative number density of two species on controlling the buoyancy-driven granular convection is demonstrated. The onset of horizontal segregation can be explained in terms of an anisotropic diffusion tensor.
Directory of Open Access Journals (Sweden)
Tai-Hong Cheng
2015-01-01
Full Text Available Composite materials are increasingly used in wind blade because of their superior mechanical properties such as high strength-to-weight and stiffness-to-weight ratio. This paper presents vibration and damping analysis of fiberreinforced composite wind turbine blade with viscoelastic damping treatment. The finite element method based on full layerwise displacement theory was employed to analyze the damping, natural frequency, and modal loss factor of composite shell structure. The lamination angle was considered in mathematical modeling. The curved geometry, transverse shear, and normal strains were exactly considered in present layerwise shell model, which can depict the zig-zag in-plane and out-of-plane displacements. The frequency response functions of curved composite shell structure and wind blade were calculated. The results show that the damping ratio of viscoelastic layer is found to be very sensitive to determination of magnitude of composite structures. The frequency response functions with variety of thickness of damping layer were investigated. Moreover, the natural frequency, modal loss factor, and mode shapes of composite fiber reinforced wind blade with viscoelastic damping control were calculated.
Mastoid vibration affects dynamic postural control during gait in healthy older adults
Jung Hung Chien; Mukul Mukherjee; Jenny Kent; Nicholas Stergiou
2017-01-01
Vestibular disorders are difficult to diagnose early due to the lack of a systematic assessment. Our previous work has developed a reliable experimental design and the result shows promising results that vestibular sensory input while walking could be affected through mastoid vibration (MV) and changes are in the direction of motion. In the present paper, we wanted to extend this work to older adults and investigate how manipulating sensory input through mastoid vibration (MV) could affect dy...
Higher harmonic control analysis for vibration reduction of helicopter rotor systems
Nguyen, Khanh Q.
1994-01-01
An advanced higher harmonic control (HHC) analysis has been developed and applied to investigate its effect on vibration reduction levels, blade and control system fatigue loads, rotor performance, and power requirements of servo-actuators. The analysis is based on a finite element method in space and time. A nonlinear time domain unsteady aerodynamic model, based on the indicial response formulation, is used to calculate the airloads. The rotor induced inflow is computed using a free wake model. The vehicle trim controls and blade steady responses are solved as one coupled solution using a modified Newton method. A linear frequency-domain quasi-steady transfer matrix is used to relate the harmonics of the vibratory hub loads to the harmonics of the HHC inputs. Optimal HHC is calculated from the minimization of the vibratory hub loads expressed in term of a quadratic performance index. Predicted vibratory hub shears are correlated with wind tunnel data. The fixed-gain HHC controller suppresses completely the vibratory hub shears for most of steady or quasi-steady flight conditions. HHC actuator amplitudes and power increase significantly at high forward speeds (above 100 knots). Due to the applied HHC, the blade torsional stresses and control loads are increased substantially. For flight conditions where the blades are stalled considerably, the HHC input-output model is quite nonlinear. For such cases, the adaptive-gain controller is effective in suppressing vibratory hub loads, even though HHC may actually increase stall areas on the rotor disk. The fixed-gain controller performs poorly for such flight conditions. Comparison study of different rotor systems indicates that a soft-inplane hingeless rotor requires less actuator power at high speeds (above 130 knots) than an articulated rotor, and a stiff-inplane hingeless rotor generally requires more actuator power than an articulated or a soft-inplane hingeless rotor. Parametric studies for a hingeless rotor
DEFF Research Database (Denmark)
Salazar, Jorge Andrés González; Santos, Ilmar
2015-01-01
The feedback-controlled lubrication regime, based on a model-free designed proportional–derivative controller, is experimentally investigated in a flexible rotor mounted on an actively-lubricated tilting-pad journal bearing. With such a lubrication regime, both the resulting pressure distribution...... over the pads and hence the bearing dynamic properties are dynamically modified. The control strategy is focused on reducing the lateral vibrations of the system around its operational equilibrium within a wide frequency range. To synthesize the proportional–derivative controller gains, an objective...
Koehler, J. R.; Noskov, R. E.; Sukhorukov, A. A.; Novoa, D.; Russell, P. St. J.
2017-12-01
Coherent control of the resonant response in spatially extended optomechanical structures is complicated by the fact that the optical drive is affected by the backaction from the generated phonons. Here we report an approach to coherent control based on stimulated Raman-like scattering, in which the optical pressure can remain unaffected by the induced vibrations even in the regime of strong optomechanical interactions. We demonstrate experimentally coherent control of flexural vibrations simultaneously along the whole length of a dual-nanoweb fiber, by imprinting steps in the relative phase between the components of a two-frequency pump signal, the beat frequency being chosen to match a flexural resonance. Furthermore, sequential switching of the relative phase at time intervals shorter than the lifetime of the vibrations reduces their amplitude to a constant value that is fully adjustable by tuning the phase modulation depth and switching rate. The results may trigger new developments in silicon photonics, since such coherent control uniquely decouples the amplitude of optomechanical oscillations from power-dependent thermal effects and nonlinear optical loss.
Perceived control, adjustment, and communication problems in laryngeal cancer survivors.
Blood, G W; Dineen, M; Kauffman, S M; Raimondi, S C; Simpson, K C
1993-12-01
Health locus of control, adjustment to cancer, and communication experiences after a laryngectomy were investigated in 63 laryngeal cancer survivors. Survivors who showed internal control also scored as better adjusted and had fewer communication problems. Scales were intercorrelated (.68 to .92).
Vibration perception threshold in relation to postural control and fall risk assessment in elderly.
de Mettelinge, Tine Roman; Calders, Patrick; Palmans, Tanneke; Vanden Bossche, Luc; Van Den Noortgate, Nele; Cambier, Dirk
2013-09-01
This study investigates (i) the potential discriminative role of a clinical measure of peripheral neuropathy (PN) in assessing postural performance and fall risk and (ii) whether the integration of a simple screening vibration perception threshold (VPT) for PN in any physical (fall risk) assessment among elderly should be recommended, even if they do not suffer from DM. One hundred and ninety-five elderly were entered in a four-group model: DM with PN (D+; n = 75), DM without PN (D-; n = 28), non-diabetic elderly with idiopathic PN (C+; n = 31) and non-diabetic elderly without PN (C-; n = 61). Posturographic sway parameters were captured during different static balance conditions (AMTI AccuGait, Watertown, MA). VPT, fall data, Mini-Mental State Examination and Clock Drawing Test were registered. Two-factor repeated-measures ANOVA was used to compare between groups and across balance conditions. The groups with PN demonstrated a strikingly comparable, though bigger sway, and a higher prospective fall incidence than their peers without PN. The indication of PN, irrespective of its cause, interferes with postural control and fall incidence. The integration of a simple screening for PN (like bio-thesiometry) in any fall risk assessment among elderly is highly recommended. Implications for Rehabilitation The indication of peripheral neuropathy (PN), irrespective of its cause, interferes with postural control and fall incidence. Therefore, the integration of a simple screening for PN (like bio-thesiometry) in any fall risk assessment among elderly is highly recommended. It might be useful to integrate somatosensory stimulation in rehabilitation programs designed for fall prevention.
ON THE OPTIMAL CONTROL OF A PROBLEM OF ENVIRONMENTAL POLLUTION
Directory of Open Access Journals (Sweden)
José Dávalos Chuquipoma
2016-06-01
Full Text Available This article is studied the optimal control of distributed parameter systems applied to an environmental pollution problem. The model consists of a differential equation partial parabolic modeling of a pollutant transport in a fluid. The model is considered the speed with which the pollutant spreads in the environment and degradation that suffers the contaminant by the presence of a factor biological inhibitor, which breaks the contaminant at a rate that is not dependent on space and time. Using the method of Lagrange multipliers is possible to prove the existence solving the problem of control and obtaining optimality conditions for optimal control.
Optimal control problems for impulsive systems with integral boundary conditions
Directory of Open Access Journals (Sweden)
Allaberen Ashyralyev
2013-03-01
Full Text Available In this article, the optimal control problem is considered when the state of the system is described by the impulsive differential equations with integral boundary conditions. Applying the Banach contraction principle the existence and uniqueness of the solution is proved for the corresponding boundary problem by the fixed admissible control. The first and second variation of the functional is calculated. Various necessary conditions of optimality of the first and second order are obtained by the help of the variation of the controls.
Intimate partner violence, coercive control, and child adjustment problems.
Jouriles, Ernest N; McDonald, Renee
2015-02-01
Coercive control is a relationship dynamic that is theorized to be key for understanding physical intimate partner violence (IPV). This research examines how coercive control in the context of physical IPV may influence child adjustment. Participants were 107 mothers and their children, aged 7 to 10 years. In each family, mothers reported the occurrence of at least one act of physical IPV in the past 6 months. Mothers reported on physical IPV and coercive control, and mothers and children reported on children's externalizing and internalizing problems. Coercive control in the context of physical IPV related positively with both mothers' and children's reports of child externalizing and internalizing problems, after accounting for the frequency of physical IPV, psychological abuse, and mothers' education. This research suggests that couple relationship dynamics underlying physical IPV are potentially important for understanding how physical IPV leads to child adjustment problems. © The Author(s) 2014.
Costantino, Cosimo; Bertuletti, Silvia; Romiti, Davide
2017-06-22
To evaluate whether an 8-week whole-body vibration training program may improve recovery of knee flexion/extension muscular strength in athletes after arthroscopic anterior cruciate ligament (ACL) reconstruction. Randomized controlled trial. Single outpatient rehabilitation center. Thirty-eight female volleyball/basketball players (aged between 20 and 30), randomized into 2 treatment groups. During a standardized six-month rehabilitation program, from week 13 to week 20 after surgery, the whole-body vibration group (n = 19) and the control group (n = 19) performed additional static knee flexor/extensor exercises on a vibration platform. For the whole-body vibration group, the vibration platform was set to 2.5 mm of amplitude and 26 Hz of frequency. The control group followed the same whole-body vibration board training with no vibrations. All patients were evaluated using an isokinetic strength test with a Biodex dynamometer at the beginning and at the end of the additional treatment protocol. The parameters tested were the peak torque and the maximum power of knee flexor and extensor muscles performing strength and endurance tests. No vibration-related side effects were observed. Improvements were noticed in both groups, but increase in knee muscle isokinetic strength values was statistically significant in the whole-body vibration group when compared with the control group (differences in extension: peak torque 11.316/10.263 N·m and maximum power 13.684/11.211 W; flexion: peak torque 9.632/11.105 N·m and maximum power 10.158/9.474 W; P < 0.001). When combined with a standardized rehabilitation program, whole-body vibration may increase muscular strength and be an effective additional treatment option in the rehabilitation of athletes after ACL arthroscopic reconstruction.
Directory of Open Access Journals (Sweden)
Egorychev Oleg Aleksandrovich
2012-10-01
Full Text Available Operating conditions of uneven heating can cause changes in the physical and mechanical properties of materials. Awareness of the values and nature of thermal stresses are required for a comprehensive structural strength analysis. The authors propose their solution to the problem of identification of natural frequencies of vibrations of rectangular plates using a thermal factor. The introductory part of the paper covers the derivation of equations of (a the thermoelastic vibration of a plate, (b initial and boundary conditions. In the next part of the paper, the authors describe a method of frequency equation derivation for plates exposed to special boundary conditions, if the two opposite edges of the plate are simply supported, the temperature of the plate surface is equal to zero degrees Celsius, while the two other edges have an arbitrary type of fixation and an arbitrary thermal mode. The authors have derived a general solution for the above boundary conditions, and by altering the method of fixation of the two edges of a plate, the authors obtain transcendental trigonometric equations reducible to algebraic frequency equations by using expanding in series. Thus, derivation of frequency equations different from the general solution is feasible for various types of boundary conditions. The final part of the paper contains a derivation of the solution to the selected problem using the proposed method. The results demonstrate that the thermoelastic plate has four natural frequencies, two of them being equal to the frequencies of a plate free from the temperature influence, while the other two are close to the frequency of free vibrations of a plate.
Discrete-time infinity control problem with measurement feedback
Stoorvogel, A. A.; Saberi, A.; Chen, B. M.
1992-01-01
The paper is concerned with the discrete-time H(sub infinity) control problem with measurement feedback. The authors extend previous results by having weaker assumptions on the system parameters. The authors also show explicitly the structure of H(sub infinity) controllers. Finally, they show that it is in certain cases possible, without loss of performance, to reduce the dynamical order of the controllers.
The covering method for the solution of terminal control problem
Directory of Open Access Journals (Sweden)
V. N. Chetverikov
2014-01-01
Full Text Available A new method for solving the terminal control problem for dynamical systems is formulated. This problem is to determine a program trajectory and a program control that takes the system from a given initial state to a given final state. The method is based on the addition of equations with control derivative to the source system and reformulation of the problem in the boundary value problem for the augmented system E. Additional equations must be chosen so as to satisfy the following conditions. There is a surjective map (covering from the phase space E to the phase space of some dynamical system Y. The covering takes solutions of E to solutions of Y. Boundary conditions in the final moment are mapped to the boundary conditions on the solutions of Y. Any solution of Y satisfies the boundary conditions in the initial moment. Then the solution of the terminal control problem is as the solution of two Cauchy problems for dynamical systems E and Y. Augmented system E satisfying mentioned properties is called r-closure of the terminal control problem. It is shown that this approach generalizes the well-known method for solving the terminal control problem for flat systems. A flat system is a system whose solutions are uniquely determined by a certain set of functions of time (flat output. The mentioned well-known method is based on polynomial dependence of flat output of time and do not take into account constraints on the system.It is proved that for an arbitrary flat system r-closure can be chosen any determined system of ordinary differential equations of the corresponding order. It is showed how to construct a covering with the above-mentioned properties using the general solution of this system. The properties of the covering are proved only locally, i.e. when the initial time is close to the final time, and the initial conditions are close the final conditions. But this covering may be applicable to other terminal problems with the same final
Vibration control of large linear quadratic symmetric systems. Ph.D. Thesis
Jeon, G. J.
1983-01-01
Some unique properties on a class of the second order lambda matrices were found and applied to determine a damping matrix of the decoupled subsystem in such a way that the damped system would have preassigned eigenvalues without disturbing the stiffness matrix. The resulting system was realized as a time invariant velocity only feedback control system with desired poles. Another approach using optimal control theory was also applied to the decoupled system in such a way that the mode spillover problem could be eliminated. The procedures were tested successfully by numerical examples.
Vision-based stereo ranging as an optimal control problem
Menon, P. K. A.; Sridhar, B.; Chatterji, G. B.
1992-01-01
The recent interest in the use of machine vision for flight vehicle guidance is motivated by the need to automate the nap-of-the-earth flight regime of helicopters. Vision-based stereo ranging problem is cast as an optimal control problem in this paper. A quadratic performance index consisting of the integral of the error between observed image irradiances and those predicted by a Pade approximation of the correspondence hypothesis is then used to define an optimization problem. The necessary conditions for optimality yield a set of linear two-point boundary-value problems. These two-point boundary-value problems are solved in feedback form using a version of the backward sweep method. Application of the ranging algorithm is illustrated using a laboratory image pair.
Behavioral Problems in Iranian Epileptic Children; A Case Control Study
Directory of Open Access Journals (Sweden)
Maryam Aludari
2017-12-01
Full Text Available Background Epilepsy is among the most common neurological disorders in childhood, prevalence of which is increasing. Unpredictable and chronic nature of the disease affects physical, social and mental functions of the children and their family. This study was aimed to compare behavioral problems in epileptic children group versus healthy control group. Materials and Methods This study is a case-control one conducted from January 2013 to June 2016 in Tehran, Iran. The epileptic children in age of 7-10 years old that were diagnosed by neurologist referred to the researcher for further process. Their parents were provided with Child Behavior Checklist (CBCL to be completed. For matching by age and gender, the healthy group was sampled after the epilepsy group. Multivariate Analysis of Variance was used for statistical analysis. Results In this study 94 children with epilepsy and 83 healthy children in age of 7-10 years old were studied. The results indicated that there were significantly higher behavioral problems in the children with epilepsy than in control group in nine categories of seclusiveness, physical complaints, anxiety and depression, social problems, thought problems, attention problems, delinquent behaviors, aggressive behaviors, and other problems. Comparison of two generalized and partial epilepsy groups indicated that there was a significant difference only in attention problems (p = 0.024. Conclusion The present study indicates that the children with epilepsy have more behavioral problems as compared to control group. Therefore, educational and psychological interventions are necessary for supporting desirable psychosocial growth and development of such children.
Infinite Horizon Discrete Time Control Problems for Bounded Processes
Directory of Open Access Journals (Sweden)
2009-03-01
Full Text Available We establish Pontryagin Maximum Principles in the strong form for infinite horizon optimal control problems for bounded processes, for systems governed by difference equations. Results due to Ioffe and Tihomirov are among the tools used to prove our theorems. We write necessary conditions with weakened hypotheses of concavity and without invertibility, and we provide new results on the adjoint variable. We show links between bounded problems and nonbounded ones. We also give sufficient conditions of optimality.
Approximate Solutions to Nonlinear Optimal Control Problems in Astrodynamics
Francesco Topputo; Franco Bernelli-Zazzera
2013-01-01
A method to solve nonlinear optimal control problems is proposed in this work. The method implements an approximating sequence of time-varying linear quadratic regulators that converge to the solution of the original, nonlinear problem. Each subproblem is solved by manipulating the state transition matrix of the state-costate dynamics. Hard, soft, and mixed boundary conditions are handled. The presented method is a modified version of an algorithm known as “approximating sequence of Riccati e...
The problem of the driverless vehicle specified path stability control
Buznikov, S. E.; Endachev, D. V.; Elkin, D. S.; Strukov, V. O.
2018-02-01
Currently the effort of many leading foreign companies is focused on creation of driverless transport for transportation of cargo and passengers. Among many practical problems arising while creating driverless vehicles, the problem of the specified path stability control occupies a central place. The purpose of this paper is formalization of the problem in question in terms of the quadratic functional of the control quality, the comparative analysis of the possible solutions and justification of the choice of the optimum technical solution. As square value of the integral of the deviation from the specified path is proposed as the quadratic functional of the control quality. For generation of the set of software and hardware solution variants the Zwicky “morphological box” method is used within the hardware and software environments. The heading control algorithms use the wheel steering angle data and the deviation from the lane centerline (specified path) calculated based on the navigation data and the data from the video system. Where the video system does not detect the road marking, the control is carried out based on the wheel navigation system data and where recognizable road marking exits – based on to the video system data. The analysis of the test results allows making the conclusion that the application of the combined navigation system algorithms that provide quasi-optimum solution of the problem while meeting the strict functional limits for the technical and economic indicators of the driverless vehicle control system under development is effective.
Effectiveness of Stationary Humans and Tuned Mass Dampers in Controlling Floor vibrations
DEFF Research Database (Denmark)
Pedersen, Lars
2006-01-01
damper) so as to ensure compliance with requirements related to human tolerance to vertical vibrations. However, the paper demonstrates that stationary humans themselves can provide a significant passive damping source due to dynamic interaction between the masses of the stationary humans...... a dynamic excitation generated by humans in motion. The vibration levels are compared with those expected if the else wise empty structures were fitted with a tuned mass damper so as to illustrate the effectiveness of the crowd in mitigating floor vibrations. Since a stationary crowd of people changes...... the dynamic characteristics of the floor which they occupy, the effectiveness of a potential tuned mass damper installation would also be influenced by the crowd's presence, and the paper quantifies the changes in damper effectiveness introduced in this way. From the results presented in the paper is would...
Galerkin approximations of nonlinear optimal control problems in Hilbert spaces
Directory of Open Access Journals (Sweden)
Mickael D. Chekroun
2017-07-01
Full Text Available Nonlinear optimal control problems in Hilbert spaces are considered for which we derive approximation theorems for Galerkin approximations. Approximation theorems are available in the literature. The originality of our approach relies on the identification of a set of natural assumptions that allows us to deal with a broad class of nonlinear evolution equations and cost functionals for which we derive convergence of the value functions associated with the optimal control problem of the Galerkin approximations. This convergence result holds for a broad class of nonlinear control strategies as well. In particular, we show that the framework applies to the optimal control of semilinear heat equations posed on a general compact manifold without boundary. The framework is then shown to apply to geoengineering and mitigation of greenhouse gas emissions formulated here in terms of optimal control of energy balance climate models posed on the sphere $\\mathbb{S}^2$.
Active Tuned Mass Dampers for Control of In-Plane Vibrations of Wind Turbine Blades
DEFF Research Database (Denmark)
Fitzgerald, B.; Basu, Biswajit; Nielsen, Søren R.K.
2013-01-01
This paper investigates the use of active tuned mass dampers (ATMDs) for the mitigation of in-plane vibrations in rotating wind turbine blades. The rotating wind turbine blades with tower interaction represent time-varying dynamical systems with periodically varying mass, stiffness, and damping...... for this purpose, which considers the structural dynamics of the system and the interaction between in-plane and out-of-plane vibrations. Also, the interaction between the blades and the tower including the tuned mass dampers is considered. The wind turbine with tuned mass dampers was subjected to gravity...
Controlling the partial coalescence of a droplet on a vertically vibrated bath.
Gilet, T; Vandewalle, N; Dorbolo, S
2007-09-01
A method is proposed to stop the cascade of partial coalescences of a droplet laid on a liquid bath. The strategy consists of vibrating the bath in the vertical direction in order to keep small droplets bouncing. Since large droplets are not able to bounce, they partially coalesce until they reach a critical size. The system behaves as a low pass filter: droplets smaller than the critical size are selected. This size has been investigated as a function of the acceleration and the frequency of the bath vibration. Results suggest that the limit size for bouncing is related to the first mode of the droplet deformation.
Liu, Jinxin; Chen, Xuefeng; Gao, Jiawei; Zhang, Xingwu
2016-12-01
Air vehicles, space vehicles and underwater vehicles, the cabins of which can be viewed as variable section cylindrical structures, have multiple rotational vibration sources (e.g., engines, propellers, compressors and motors), making the spectrum of noise multiple-harmonic. The suppression of such noise has been a focus of interests in the field of active vibration control (AVC). In this paper, a multiple-source multiple-harmonic (MSMH) active vibration suppression algorithm with feed-forward structure is proposed based on reference amplitude rectification and conjugate gradient method (CGM). An AVC simulation scheme called finite element model in-loop simulation (FEMILS) is also proposed for rapid algorithm verification. Numerical studies of AVC are conducted on a variable section cylindrical structure based on the proposed MSMH algorithm and FEMILS scheme. It can be seen from the numerical studies that: (1) the proposed MSMH algorithm can individually suppress each component of the multiple-harmonic noise with an unified and improved convergence rate; (2) the FEMILS scheme is convenient and straightforward for multiple-source simulations with an acceptable loop time. Moreover, the simulations have similar procedure to real-life control and can be easily extended to physical model platform.
Impulse control in Kalman-like filtering problems
Directory of Open Access Journals (Sweden)
Michael V. Basin
1998-01-01
Full Text Available This paper develops the impulse control approach to the observation process in Kalman-like filtering problems, which is based on impulsive modeling of the transition matrix in an observation equation. The impulse control generates the jumps of the estimate variance from its current position down to zero and, as a result, enables us to obtain the filtering equations for the Kalman estimate with zero variance for all post-jump time moments. The filtering equations for the estimates with zero variances are obtained in the conventional linear filtering problem and in the case of scalar nonlinear state and nonlinear observation equations.
Approximated Solutions of Linear Quadratic Fractional Optimal Control Problems
Directory of Open Access Journals (Sweden)
Soradi Zeid S.
2016-12-01
Full Text Available In this study we apply the Adomian decomposition method (ADM to approximate the solution of fractional optimal control problems (FOCPs where the dynamic of system is a linear control system with constant coefficient and the cost functional is defined in a quadratic form. First we stated the necessary optimality conditions in a form of fractional two point boundary value problem (TPBVP, then the ADM is used to solve the resulting fractional differential equations (FDEs. Some examples are provided to demonstrate the validity and applicability of the proposed method.
Optimal Control Problems for Partial Differential Equations on Reticulated Domains
Kogut, Peter I
2011-01-01
In the development of optimal control, the complexity of the systems to which it is applied has increased significantly, becoming an issue in scientific computing. In order to carry out model-reduction on these systems, the authors of this work have developed a method based on asymptotic analysis. Moving from abstract explanations to examples and applications with a focus on structural network problems, they aim at combining techniques of homogenization and approximation. Optimal Control Problems for Partial Differential Equations on Reticulated Domains is an excellent reference tool for gradu
Sensitivity problems of control system of coal preparation processes
Directory of Open Access Journals (Sweden)
Kaula Roman
2016-01-01
Full Text Available Control of technological processes of coal preparation takes place in the presence of wide disturbances. An important problem is the choice of the controller which is robust for a variety of disturbances. No less important problem in the control process is the tuning of the controller parameters. In the paper the analysis of influence of changes in object model parameters on the course of the controlled value was carried out. For the controller settings, calculated according to model parameters research was carried out on object with other values of parameters. In the studies a sensitivity analysis method was used. The sensitivity analysis for the three methods of tuning PI controller for control systems of coal preparation processes characterized by dynamic properties of the inertial element with time delay was presented. Considerations were performed at various parameters of the object on the basis of the response of the control system for a constant value of the set point. The assessment of the considered tuning methods based on selected indices of control quality was realized.
Gambling Increases Self-Control Strength in Problem Gamblers
Bergen, Anne E.; Newby-Clark, Ian R.; Brown, Andrea
2012-01-01
In two studies it is demonstrated that, in the short-term, slot machine gambling increases self-control strength in problem gamblers. In Study 1 (N = 180), participants were randomly assigned to either play slot machines or engage in a control task (word anagrams) for 15 min. Subsequent self-control strength was measured via persistence on an impossible tracing task. Replicating Bergen et al. (J Gambl Stud, doi:10.1007/s10899-011-9274-9, 2011), control condition participants categorized as pr...
Numerical methods for optimal control problems with state constraints
Pytlak, Radosław
1999-01-01
While optimality conditions for optimal control problems with state constraints have been extensively investigated in the literature the results pertaining to numerical methods are relatively scarce. This book fills the gap by providing a family of new methods. Among others, a novel convergence analysis of optimal control algorithms is introduced. The analysis refers to the topology of relaxed controls only to a limited degree and makes little use of Lagrange multipliers corresponding to state constraints. This approach enables the author to provide global convergence analysis of first order and superlinearly convergent second order methods. Further, the implementation aspects of the methods developed in the book are presented and discussed. The results concerning ordinary differential equations are then extended to control problems described by differential-algebraic equations in a comprehensive way for the first time in the literature.
How exciton-vibrational coherences control charge separation in the photosystem II reaction center
Novoderezhkin, V.I.; Romero Mesa, E.; van Grondelle, R.
2015-01-01
In photosynthesis absorbed sun light produces collective excitations (excitons) that form a coherent superposition of electronic and vibrational states of the individual pigments. Two-dimensional (2D) electronic spectroscopy allows a visualization of how these coherences are involved in the primary
Edgewise vibration control of wind turbine blades using roller and liquid dampers
DEFF Research Database (Denmark)
Zhang, Zili; Nielsen, Søren R.K.
2014-01-01
suppressing edgewise vibrations. The roller dampers are more volumetrically efficient due to the higher mass density of the steel comparing with the liquid. On the other hand, TLCDs have their advantage that it is easier to specify the optimum damping of the damper by changing the opening ratio of the orifice...
VPI - VIBRATION PATTERN IMAGER: A CONTROL AND DATA ACQUISITION SYSTEM FOR SCANNING LASER VIBROMETERS
Rizzi, S. A.
1994-01-01
The Vibration Pattern Imager (VPI) system was designed to control and acquire data from laser vibrometer sensors. The PC computer based system uses a digital signal processing (DSP) board and an analog I/O board to control the sensor and to process the data. The VPI system was originally developed for use with the Ometron VPI Sensor (Ometron Limited, Kelvin House, Worsley Bridge Road, London, SE26 5BX, England), but can be readily adapted to any commercially available sensor which provides an analog output signal and requires analog inputs for control of mirror positioning. VPI's graphical user interface allows the operation of the program to be controlled interactively through keyboard and mouse-selected menu options. The main menu controls all functions for setup, data acquisition, display, file operations, and exiting the program. Two types of data may be acquired with the VPI system: single point or "full field". In the single point mode, time series data is sampled by the A/D converter on the I/O board at a user-defined rate for the selected number of samples. The position of the measuring point, adjusted by mirrors in the sensor, is controlled via a mouse input. In the "full field" mode, the measurement point is moved over a user-selected rectangular area with up to 256 positions in both x and y directions. The time series data is sampled by the A/D converter on the I/O board and converted to a root-mean-square (rms) value by the DSP board. The rms "full field" velocity distribution is then uploaded for display and storage. VPI is written in C language and Texas Instruments' TMS320C30 assembly language for IBM PC series and compatible computers running MS-DOS. The program requires 640K of RAM for execution, and a hard disk with 10Mb or more of disk space is recommended. The program also requires a mouse, a VGA graphics display, a Four Channel analog I/O board (Spectrum Signal Processing, Inc.; Westborough, MA), a break-out box and a Spirit-30 board (Sonitech
Neugebauer, Reimund; Pagel, K.; Bucht, A; Wittstock, V.; Pappe, A.
2010-01-01
Additional piezo-based components in drive trains can significantly improve the dynamic behaviour of machine tools. In this article we present a piezo-based actuator-sensor-unit that is able to reduce uniaxial vibrations in ball screw driven feed axis of machine tools. A complex model of a feed axis including ASU was developed to design a controller. The control concept is based on the direct velocity feedback. A modular test bench was designed, assembled and investigated to verify the ASU's ...
Indian Academy of Sciences (India)
The vibrating string problem is the source of much mathematicsand physics. This article describes Lagrange's formulationof a discretised version of the problem and its solution.This is also the first instance of an eigenvalue problem. Author Affiliations. Rajendra Bhatia1. Ashoka University, Rai, Haryana 131 029, India.
The heat treatment of steel. A mathematical control problem
Energy Technology Data Exchange (ETDEWEB)
Hoemberg, Dietmar; Kern, Daniela
2009-07-21
The goal of this paper is to show how the heat treatment of steel can be modelled in terms of a mathematical optimal control problem. The approach is applied to laser surface hardening and the cooling of a steel slab including mechanical effects. Finally, it is shown how the results can be utilized in industrial practice by a coupling with machine-based control. (orig.)
Incremental planning to control a blackboard-based problem solver
Durfee, E. H.; Lesser, V. R.
1987-01-01
To control problem solving activity, a planner must resolve uncertainty about which specific long-term goals (solutions) to pursue and about which sequences of actions will best achieve those goals. A planner is described that abstracts the problem solving state to recognize possible competing and compatible solutions and to roughly predict the importance and expense of developing these solutions. With this information, the planner plans sequences of problem solving activities that most efficiently resolve its uncertainty about which of the possible solutions to work toward. The planner only details actions for the near future because the results of these actions will influence how (and whether) a plan should be pursued. As problem solving proceeds, the planner adds new details to the plan incrementally, and monitors and repairs the plan to insure it achieves its goals whenever possible. Through experiments, researchers illustrate how these new mechanisms significantly improve problem solving decisions and reduce overall computation. They briefly discuss current research directions, including how these mechanisms can improve a problem solver's real-time response and can enhance cooperation in a distributed problem solving network.
On The Algorithm for Dynamic Restoring Control Problems with ...
African Journals Online (AJOL)
An algorithm is hereby developed to solve a class of control problems constrained by dynamic restoring type with matrix coefficients numerically. The penalty-multiplier method is evolved to obtain an unconstrained discretized formulation. With the bilinear form expression, an associated operator is constructed via a theorem ...
Structural analysis of complex ecological economic optimal control problems
Kiseleva, T.
2011-01-01
This thesis demonstrates the importance and effectiveness of methods of bifurcation theory applied to studying non-convex optimal control problems. It opens up a new methodological approach to investigation of parameterized economic models. While standard analytical methods are not efficient and
A hybrid iterative scheme for optimal control problems governed by ...
African Journals Online (AJOL)
This paper presents an iterative approach based on hybrid of perturbation and parametrization methods for obtaining approximate solutions of optimal control problems governed by some Fredholm integral equations. By some numerical examples, it is emphasized that this scheme is very effective and it produces ...
Social security, self-control problems and unknown preference parameters
Bucciol, A.
2009-01-01
We develop a general equilibrium model with overlapping generations to show that Social Security may increase welfare in dynamically efficient economies where agents are affected by self-control problems à la Gul and Pesendorfer (2001, Econometrica 69, 1403). In calibrating the model to the US
Quadratic Optimization in the Problems of Active Control of Sound
Loncaric, J.; Tsynkov, S. V.; Bushnell, Dennis M. (Technical Monitor)
2002-01-01
We analyze the problem of suppressing the unwanted component of a time-harmonic acoustic field (noise) on a predetermined region of interest. The suppression is rendered by active means, i.e., by introducing the additional acoustic sources called controls that generate the appropriate anti-sound. Previously, we have obtained general solutions for active controls in both continuous and discrete formulations of the problem. We have also obtained optimal solutions that minimize the overall absolute acoustic source strength of active control sources. These optimal solutions happen to be particular layers of monopoles on the perimeter of the protected region. Mathematically, minimization of acoustic source strength is equivalent to minimization in the sense of L(sub 1). By contrast. in the current paper we formulate and study optimization problems that involve quadratic functions of merit. Specifically, we minimize the L(sub 2) norm of the control sources, and we consider both the unconstrained and constrained minimization. The unconstrained L(sub 2) minimization is certainly the easiest problem to address numerically. On the other hand, the constrained approach allows one to analyze sophisticated geometries. In a special case, we call compare our finite-difference optimal solutions to the continuous optimal solutions obtained previously using a semi-analytic technique. We also show that the optima obtained in the sense of L(sub 2) differ drastically from those obtained in the sense of L(sub 1).
Directory of Open Access Journals (Sweden)
Caiyou Zhao
2015-01-01
Full Text Available This research study focused on the effect of using damping chamber elements made from waste tires on railway noise reduction. First, the energy absorption characteristics of damping chamber elements with various gradation combinations and compaction indices were measured in the laboratory using compression testing. The laboratory compression results demonstrated that the optimal gradation combination of damping chamber elements is as follows: the content of fine rubber particles is 10%, the content of coarse granules is 90%, and the optimal compaction index is 0.98. Next, the findings from the laboratory compression-test studies were used to produce damping chamber elements that were applied to a full-scale modern track model in the laboratory. The measurements of the dynamic properties indicated that the damping chamber elements could significantly reduce the vibration levels of the rail head. Finally, the damping chamber elements, which had been proven effective through laboratory dynamic tests, were widely applied to test rail sections in the field. The field tests demonstrated that damping chamber elements can significantly increase the track vibration decay rate in the frequency range of 200–10000 Hz. Therefore, damping chamber elements made from waste tires are able to control rail vibration and noise in modern tram track systems.
Roberts, J. B.; Kaya, F.
1987-03-01
The effectiveness of a sealed squeeze-film damper, as a means of suppressing the vibration response of a rotating flexible power transmission shaft, has been studied experimentally. With the damper at an intermediate span position, comparisons have been made between the measured vibration response and corresponding theoretical predictions. At low speeds, up to a speed just beyond the first critical speed, the results indicated that the squeeze-film damper behaved linearly, with a frequency independent damping coefficient. This coefficient was found to be about four times the value predicted from conventional short-bearing lubrication theory. At higher rotational speeds there was evidence that the damping coefficient tended to increase with increasing rotational speed and complex non-linear behaviour was observed when the speed was about three times the first critical speed. Althouth quantitative prediction of the experimental rotor-bearing system response could not be obtained, at high rotational speeds, it was evident that the squeeze-film device could very adequately control the vibration response over a wide speed range, covering the first three critical speeds.
Directory of Open Access Journals (Sweden)
Byung-Keun Song
2017-10-01
Full Text Available This paper presents a new fuzzy sliding mode controller (FSMC to improve control performances in the presence of uncertainties related to model errors and external disturbance (UAD. As a first step, an adaptive control law is designed using Lyapunov stability analysis. The control law can update control parameters of the FSMC with a disturbance estimator (DE in which the closed-loop stability and finite-time convergence of tracking error are guaranteed. A solution for estimating the compensative quantity of the impact of UAD on a control system and a set of solutions are then presented in order to avoid the singular cases of the fuzzy-based function approximation, increase convergence ability, and reduce the calculating cost. Subsequently, the effectiveness of the proposed controller is verified through the investigation of vibration control performances of a semi-active vehicle suspension system featuring a magnetorheological damper (MRD. It is shown that the proposed controller can provide better control ability of vibration control with lower consumed power compared with two existing fuzzy sliding mode controllers.
Open Problems on Information and Feedback Controlled Systems
Directory of Open Access Journals (Sweden)
Manuel Feito
2012-04-01
Full Text Available Feedback or closed-loop control allows dynamical systems to increase their performance up to a limit imposed by the second law of thermodynamics. It is expected that within this limit, the system performance increases as the controller uses more information about the system. However, despite the relevant progresses made recently, a general and complete formal development to justify this statement using information theory is still lacking. We present here the state-of-the-art and the main open problems that include aspects of the redundancy of correlated operations of feedback control and the continuous operation of feedback control. Complete answers to these questions are required to firmly establish the thermodynamics of feedback controlled systems. Other relevant open questions concern the implications of the theoretical results for the limitations in the performance of feedback controlled flashing ratchets, and for the operation and performance of nanotechnology devices and biological systems.
Directory of Open Access Journals (Sweden)
Burbank F
2013-04-01
Full Text Available Fred Burbank,1 Mark J Buchfuhrer,2 Branko Kopjar31Salt Creek International Women’s Health Foundation, San Clemente, CA, USA; 2Stanford University Center for Sleep Sciences, Downey, CA, USA; 3Department of Health Services, University of Washington, Seattle, WA, USAPurpose: Pooled data from two randomized, double-blind, prospective clinical trials were analyzed (i to determine if vibratory stimulation can safely treat patients with moderately severe restless legs syndrome and (ii to compare two types of shams.Patients and methods: One hundred and fifty-eight patients with at least moderately severe primary restless legs syndrome (a score of 15 or greater on the International Restless Legs Syndrome Study Group rating scale were enrolled at five investigational sites, between April 20, 2009 and February 12, 2010. Patients were randomly assigned to treatment with a vibrating pad or control (sound-producing or light-emitting sham pad. Patients and investigators were blinded to pad assignment type (treatment pad or sham pad. Efficacy was measured as a change in score from baseline to week 4, on the Medical Outcomes Study Sleep Problems Index II, the Johns Hopkins Restless Legs Syndrome Quality of Life summary scale, and the International Restless Legs Syndrome Study Group rating scale. Clinicians were asked to evaluate the effectiveness of the pad assignment and to guess whether treatment or sham therapy had been assigned. Adverse events related to vibrating pad assignment were tabulated.Results: The Medical Outcomes Study Sleep Problems Index II scores improved significantly more for patients receiving a vibrating pad over those receiving a sham pad (P ≤ 0.02 even when corrected for multiplicity (P ≤ 0.04. Clinician evaluation favored patients assigned vibrating pads, and neither patients nor clinicians accurately guessed which pad was assigned. No significant difference in adverse event rates was observed between the vibrating and sham pad
Wang, Ji; Pi, Yangjun; Hu, Yumei; Zhu, Zhencai; Zeng, Lingbin
2017-11-01
In this paper, a new motion and vibration synthesized control system-a linear quadratic regulator/strain rate feedback controller (LQR/SRF) with adaptive disturbance attenuation is presented for a multi flexible-link mechanism subjected to uncertain harmonic disturbances with arbitrary frequencies and unknown magnitudes. In the proposed controller, nodal strain rates are introduced into the model of the multi flexible-link mechanism, based upon which a synthesized LQR controller where both rigid-body motion and elastic deformation are considered is designed. The uncertain harmonic disturbances would be canceled in the feedback loop by its approximated value which is computed online via an adaptive update law. Asymptotic stability of the closed-loop system is proved by the Lyapunov analysis. The effectiveness of the proposed controller is shown via simulation.
DEFF Research Database (Denmark)
Salazar, Jorge Andrés González; Santos, Ilmar
2014-01-01
In this work, the feedback-controlled lubrication regime, based on a model-free designed proportional-derivative (PD) controller, is studied and experimentally tested in a flexible rotor mounted on an actively-lubricated tilting-pad journal bearing (active TPJB). With such a lubrication regime......, both the resulting pressure distribution over the pads and hence the bearing dynamic properties are dynamically modified. The control strategy is focused on reducing the system lateral vibration around its operational equilibrium position in a wide frequency range. For this purpose, servovalves...... are used as actuators and the flexible rotor lateral movements as feedback control signals. To synthesise the PD controller gains an objective function is optimized in the stabilizing gain domain and then chosen from a subdomain imposed by the servovalves restrictions. The D-decomposition approach expanded...
Homotopy Method in Applied Problems of the Anisotropic Control Theory
Directory of Open Access Journals (Sweden)
A. V. Yurchenkov
2014-01-01
Full Text Available The work describes a numerical method of solving the specific systems of matrix equations emerging in the tasks of the modern theory of control. Since the standard tasks of the control theory demand making a number of assumptions about input effect, at the slightest non-compliance the synthesized laws of control become either extremely inefficient or too much power consumable. As opposed to these assumptions, while setting the problem of anisotropic theory of control, it is necessary to know only the average anisotropy level of the input sequence. Consequently, anisotropic regulators are always found to be no worse than standard ones. In synthesis of anisotropic regulator a rather complex algorithm of its construction is the only difficulty. When considering a problem of ensuring robust quality of the control object in case of the structured uncertainty there is a need to solve a system of four connected Riccati equations, equation of a special form, and Lyapunov equation. To solve it by standard methods of convex optimization is impossible. The work shows how the standard mean square Gaussian regulator allows us to obtain as anisotropic regulator to meet requirements of robust quality when there is an imperfect knowledge of mathematical model of object of control, a lack of exact stochastic characteristics of the input control, parametrical uncertainty, etc. The article offers an algorithm based on the homotopy method with the Newtonian iterations to solve a problem of anisotropic optimization. It presents a computing procedure to reach the objective. Using a task of searching the anisotropic regulator to minimize the maximum value of anisotropic norm of transfer function of the control object, the article describes required matrix derivatives of stabilizing solutions of Riccati equations, equation of a special form, and Lyapunov equation. Properties of Kronecker product and matrix differentiation with respect to matrix are given.
Bai, Xian-Xu; Jiang, Peng; Pan, Hui; Qian, Li-Jun
2016-04-01
An integrated semi-active seat suspension for both longitudinal and vertical vibration control is analyzed and tested in this paper. The seat suspension consists of a switching mechanism transforming both longitudinal and vertical motions into a rotary motion and a real-time damping-controllable system-a rotary magnetorheological (MR) damper working in pure shear mode and its corresponding control system. The switching mechanism employs the parallelogram frames as a motion guide which keeps the seat moving longitudinally and vertically. At the same time, both longitudinal and vertical motions are transformed into a reciprocating rotary motion that is transmitted to the rotary MR damper after an amplification by a gear mechanism. Both the longitudinal and vertical vibrations can be attenuated in real time through controlling the damping force (or torque) of the rotary MR damper. The mathematical model of the seat suspension system is established, simulated, and analyzed. The experimental test based on the test rig in Hefei University of Technology is implemented, and the results of simulation and experimental test are compared and analyzed.
Influence of vibration modes on control system stabilization for space shuttle type vehicles
Greiner, H. G.
1972-01-01
An investigation was made to determine the feasibility of using conventional autopilot techniques to stabilize the vibration modes at the liftoff flight condition for two space shuttle configurations. One configuration is called the dual flyback vehicle in which both the orbiter and booster vehicles have wings and complete flyback capability. The other configuration is called the solid motor vehicle win which the orbiter only has flyback. The results of the linear stability analyses for each of the vehicles are summarized.