WorldWideScience

Sample records for vibration absorber performance

  1. Performance of nonlinear mechanical, resonant-shunted piezoelectric, and electronic vibration absorbers for multi-degree-of-freedom structures

    Science.gov (United States)

    Agnes, Gregory Stephen

    Linear vibration absorbers are a valuable tool used to suppress vibrations due to harmonic excitation in structural systems. Limited evaluation of the performance of nonlinear vibration absorbers for nonlinear structures exists in the current literature. The state of the art is extended in this work to vibration absorbers in their three major physical implementations: the mechanical vibration absorber, the inductive-resistive shunted piezoelectric vibration absorber, and the electronic vibration absorber (also denoted a positive position feedback controller). A single, consistent, physically similar model capable of examining the response of all three devices is developed. The performance of vibration absorbers attached to single-degree-of-freedom structures is next examined for performance, robustness, and stability. Perturbation techniques and numerical analysis combine to yield insight into the tuning of nonlinear vibration absorbers for both linear and nonlinear structures. The results both clarify and validate the existing literature on mechanical vibration absorbers. Several new results, including an analytical expression for the suppression region's location and bandwidth and requirements for its robust performance, are derived. Nonlinear multiple-degree-of-freedom structures are next evaluated. The theory of Non-linear Normal Modes is extended to include consideration of modal damping, excitation, and small linear coupling, allowing estimation of vibration absorber performance. The dynamics of the N+1-degree-of-freedom system reduce to those of a two-degree-of-freedom system on a four-dimensional nonlinear modal manifold, thereby simplifying the analysis. Quantitative agreement is shown to require a higher order model which is recommended for future investigation. Finally, experimental investigation on both single and multi-degree-of-freedom systems is performed since few experiments on this topic are reported in the literature. The experimental results

  2. Dynamical Performances of a Vibration Absorber for Continuous Structure considering Time-Delay Coupling

    Directory of Open Access Journals (Sweden)

    Xiuting Sun

    2016-01-01

    Full Text Available The nonlinear effect incurred by time delay in vibration control is investigated in this study via a vibration absorber coupled with a continuous beam structure. The stability of the vibration absorber coupled structure system with time-delay coupling is firstly studied, which provides a general guideline for the potential time delay to be introduced to the system. Then it is shown that there is a specific region for the time delay which can bring bifurcation modes to the dynamic response of the coupling system, and the vibration energy at low frequencies can be transferred or absorbed due to the bifurcation mode and the vibration in the corresponding frequency range is thus suppressed. The nonlinear mechanism of this vibration suppression incurred by the coupling time delay is discussed in detail, which provides a novel and alternative approach to the analysis, design, and control of vibration absorbers in engineering practice.

  3. Design of a nonlinear torsional vibration absorber

    Science.gov (United States)

    Tahir, Ammaar Bin

    Tuned mass dampers (TMD) utilizing linear spring mechanisms to mitigate destructive vibrations are commonly used in practice. A TMD is usually tuned for a specific resonant frequency or an operating frequency of a system. Recently, nonlinear vibration absorbers attracted attention of researchers due to some potential advantages they possess over the TMDs. The nonlinear vibration absorber, or the nonlinear energy sink (NES), has an advantage of being effective over a broad range of excitation frequencies, which makes it more suitable for systems with several resonant frequencies, or for a system with varying excitation frequency. Vibration dissipation mechanism in an NES is passive and ensures that there is no energy backflow to the primary system. In this study, an experimental setup of a rotational system has been designed for validation of the concept of nonlinear torsional vibration absorber with geometrically induced cubic stiffness nonlinearity. Dimensions of the primary system have been optimized so as to get the first natural frequency of the system to be fairly low. This was done in order to excite the dynamic system for torsional vibration response by the available motor. Experiments have been performed to obtain the modal parameters of the system. Based on the obtained modal parameters, the design optimization of the nonlinear torsional vibration absorber was carried out using an equivalent 2-DOF modal model. The optimality criterion was chosen to be maximization of energy dissipation in the nonlinear absorber attached to the equivalent 2-DOF system. The optimized design parameters of the nonlinear absorber were tested on the original 5-DOF system numerically. A comparison was made between the performance of linear and nonlinear absorbers using the numerical models. The comparison showed the superiority of the nonlinear absorber over its linear counterpart for the given set of primary system parameters as the vibration energy dissipation in the former is

  4. Vibration analysis on compact car shock absorber

    Science.gov (United States)

    Tan, W. H.; Cheah, J. X.; Lam, C. K.; Lim, E. A.; Chuah, H. G.; Khor, C. Y.

    2017-10-01

    Shock absorber is a part of the suspension system which provides comfort experience while driving. Resonance, a phenomenon where forced frequency is coinciding with the natural frequency has significant effect on the shock absorber itself. Thus, in this study, natural frequencies of the shock absorber in a 2 degree-of-freedom system were investigated using Wolfram Mathematica 11, CATIA, and ANSYS. Both theoretical and simulation study how will the resonance affect the car shock absorber. The parametric study on the performance of shock absorber also had been conducted. It is found that the failure tends to occur on coil sprung of the shock absorber before the body of the shock absorber is fail. From mathematical modelling, it can also be seen that higher vibration level occurred on un-sprung mass compare to spring mass. This is due to the weight of sprung mass which could stabilize as compared with the weight of un-sprung mass. Besides that, two natural frequencies had been obtained which are 1.0 Hz and 9.1 Hz for sprung mass and un-sprung mass respectively where the acceleration is recorded as maximum. In conclusion, ANSYS can be used to validate with theoretical results with complete model in order to match with mathematical modelling.

  5. Vibration Attenuation of Plate Using Multiple Vibration Absorbers

    Directory of Open Access Journals (Sweden)

    Zaman Izzuddin

    2014-07-01

    Full Text Available Vibrations are undesired phenomenon and it can cause harm, distress and unsettling influence to the systems or structures, for example, aircraft, automobile, machinery and building. One of the approach to limit this vibration by introducing passive vibration absorber attached to the structure. In this paper, the adequacy of utilizing passive vibration absorbers are investigated. The vibration absorber system is designed to minimize the vibration of a thin plate fixed along edges. The plate’s vibration characteristics, such as, natural frequency and mode shape are determined using three techniques: theoretical equations, finite element (FE analysis and experiment. The results demonstrate that the first four natural frequencies of fixed-fixed ends plate are 48, 121, 193 and 242 Hz, and these results are corroborated well with theoretical, FE simulation and experiment. The experiment work is further carried out with attached single and multiple vibration absorbers onto plate by tuning the absorber’s frequency to match with the excitation frequency. The outcomes depict that multiple vibration absorbers are more viable in lessening the global structural vibration.

  6. Actual behaviour of a ball vibration absorber

    Czech Academy of Sciences Publication Activity Database

    Pirner, Miroš

    2002-01-01

    Roč. 90, č. 8 (2002), s. 987-1005 ISSN 0167-6105 R&D Projects: GA ČR(CZ) GV103/96/K034 Institutional support: RVO:68378297 Keywords : TV towers * wind-excited vibrations * vibration absorbers * pendulum absorber Subject RIV: JM - Building Engineering Impact factor: 0.513, year: 2002 http://www.sciencedirect.com/science/article/pii/S0167610502002155#

  7. Practical design of a nonlinear tuned vibration absorber

    DEFF Research Database (Denmark)

    Grappasonni, C.; Habib, G.; Detroux, T.

    2014-01-01

    The aim of the paper is to develop a new nonlinear tuned vibration absorber (NLTVA) capable of mitigating the vibrations of nonlinear systems which are known to exhibit frequency-energy-dependent oscillations. A nonlinear generalization of Den Hartog's equal-peak method is proposed to ensure equal...... peaks in the nonlinear frequency response for a large range of forcing amplitudes. An analytical tuning procedure is developed and provides the load-deflection characteristic of the NLTVA. Based on this prescribed relation, the NLTVA design is performed by two different approaches, namely thanks to (i...

  8. Stiffness control of magnetorheological gels for adaptive tunable vibration absorber

    Science.gov (United States)

    Kim, Hyun Kee; Kim, Hye Shin; Kim, Young-Keun

    2017-01-01

    In this study, a stiffness feedback control system for magnetorheological (MR) gel—a smart material of variable stiffness—is proposed, toward the design of a tunable vibration absorber that can adaptively tune to a time varying disturbance in real time. A PID controller was designed to track the required stiffness of the MR gel by controlling the magnitude of the target external magnetic field pervading the MR gel. This paper proposes a novel magnetic field generator that could produce a variable magnetic field with low energy consumption. The performance of the MR gel stiffness control was validated through experiments that showed the MR gel absorber system could be automatically tuned from 56 Hz to 67 Hz under a field of 100 mT to minimize the vibration of the primary system.

  9. Nonlinear vibration absorption for a flexible arm via a virtual vibration absorber

    Science.gov (United States)

    Bian, Yushu; Gao, Zhihui

    2017-07-01

    A semi-active vibration absorption method is put forward to attenuate nonlinear vibration of a flexible arm based on the internal resonance. To maintain the 2:1 internal resonance condition and the desirable damping characteristic, a virtual vibration absorber is suggested. It is mathematically equivalent to a vibration absorber but its frequency and damping coefficients can be readily adjusted by simple control algorithms, thereby replacing those hard-to-implement mechanical designs. Through theoretical analyses and numerical simulations, it is proven that the internal resonance can be successfully established for the flexible arm, and the vibrational energy of flexible arm can be transferred to and dissipated by the virtual vibration absorber. Finally, experimental results are presented to validate the theoretical predictions. Since the proposed method absorbs rather than suppresses vibrational energy of the primary system, it is more convenient to reduce strong vibration than conventional active vibration suppression methods based on smart material actuators with limited energy output. Furthermore, since it aims to establish an internal vibrational energy transfer channel from the primary system to the vibration absorber rather than directly respond to external excitations, it is especially applicable for attenuating nonlinear vibration excited by unpredictable excitations.

  10. Practical design of a nonlinear tuned vibration absorber

    DEFF Research Database (Denmark)

    Grappasonni, C.; Habib, G.; Detroux, T.

    2014-01-01

    The aim of the paper is to develop a new nonlinear tuned vibration absorber (NLTVA) capable of mitigating the vibrations of nonlinear systems which are known to exhibit frequency-energy-dependent oscillations. A nonlinear generalization of Den Hartog's equal-peak method is proposed to ensure equal...

  11. A smart dynamic vibration absorber for suppressing the vibration of a string supported by flexible beams

    Science.gov (United States)

    Nambu, Yohsuke; Yamamoto, Shota; Chiba, Masakatsu

    2014-02-01

    This study aims to effectively and robustly suppress the vibration of tension-stabilized structures (TSSs) using a smart dynamic vibration absorber (DVA). In recent years, a strong need has emerged for high-precision and high-functionality space structural systems for realizing advanced space missions. TSSs have attracted attention in this regard as large yet lightweight structural systems with high storage efficiency. A fundamental issue in the application of TSSs is vibration control of strings, of which TSSs are predominantly composed. In particular, the suppression of microvibrations is difficult because the deformation is almost perpendicular to the direction of vibration. A DVA is an effective device for suppressing microvibrations. However, the damping performance is sensitive to changes in dynamic properties. Furthermore, aging degradation and temperature dependence negatively affect DVA performance. This study aimed to develop a smart, active DVA with self-sensing actuation to improve robustness. A small cantilever with a piezoelectric transducer was utilized as a smart DVA. Numerical simulations and experiments showed that a passive DVA and the smart DVA suppressed vibrations but that the smart DVA showed improved effectiveness and robustness.

  12. Lessons Learned on the Application of Vibration Absorbers for Enhanced Cannon Stabilization

    Directory of Open Access Journals (Sweden)

    Eric Kathe

    2001-01-01

    Full Text Available This paper will summarize the successful application of muzzle-end vibration absorbers to reduce cannon vibration. This technology constitutes a weapons stabilization approach that focuses on passive mechanical structural modification of the cannon, rather than relying upon an external control law to actively cancel vibrations. Challenges encountered during field testing, non-ideal behavior, and performance evaluation using digital signal processing will be highlighted.

  13. Improving Robustness of Tuned Vibration Absorbers Using Shape Memory Alloys

    Directory of Open Access Journals (Sweden)

    Mohammad H. Elahinia

    2005-01-01

    Full Text Available A conventional passive tuned vibration absorber (TVA is effective when it is precisely tuned to the frequency of a vibration mode; otherwise, it may amplify the vibrations of the primary system. In many applications, the frequency often changes over time. For example, adding or subtracting external mass on the existing primary system results in changes in the system’s natural frequency. The frequency changes of the primary system can significantly degrade the performance of TVA. To cope with this problem, many alternative TVAs (such as semiactive, adaptive, and active TVAs have been studied. As another alternative, this paper investigates the use of Shape Memory Alloys (SMAs in passive TVAs in order to improve the robustness of the TVAs subject to mass change in the primary system. The proposed SMA-TVA employs SMA wires, which exhibit variable stiffness, as the spring element of the TVA. This allows us to tune effective stiffness of the TVA to adapt to the changes in the primary system's natural frequency. The simulation model, presented in this paper, contains the dynamics of the TVA along with the SMA wire model that includes phase transformation, heat transfer, and the constitutive relations. Additionally, a PID controller is included for regulating the applied voltage to the SMA wires in order to maintain the desired stiffness. The robustness analysis is then performed on both the SMA-TVA and the equivalent passive TVA. For our robustness analysis, the mass of the primary system is varied by ± 30% of its nominal mass. The simulation results show that the SMA-TVA is more robust than the equivalent passive TVA in reducing peak vibrations in the primary system subject to change of its mass.

  14. MR Damper Controlled Vibration Absorber for Enhanced Mitigation of Harmonic Vibrations

    Directory of Open Access Journals (Sweden)

    Felix Weber

    2016-12-01

    Full Text Available This paper describes a semi-active vibration absorber (SVA concept based on a real-time controlled magnetorheological damper (MR-SVA for the enhanced mitigation of structural vibrations due to harmonic disturbing forces. The force of the MR damper is controlled in real-time to generate the frequency and damping controls according to the behaviour of the undamped vibration absorber for the actual frequency of vibration. As stiffness and damping emulations in semi-active actuators are coupled quantities the control is formulated to prioritize the frequency control by the controlled stiffness. The control algorithm is augmented by a stiffness correction method ensuring precise frequency control when the desired control force is constrained by the semi-active restriction and residual force of the MR damper. The force tracking task is solved by a model-based feed forward with feedback correction. The MR-SVA is numerically and experimentally validated for the primary structure with nominal eigenfrequency and when de-tuning of −10%, −5%, +5% and +10% is present. Both validations demonstrate that the MR-SVA improves the vibration reduction in the primary structure by up to 55% compared to the passive tuned mass damper (TMD. Furthermore, it is shown that the MR-SVA with only 80% of tuned mass leads to approximately the same enhanced performance while the associated increased relative motion amplitude of the tuned mass is more than compensated be the reduced dimensions of the mass. Therefore, the MR-SVA is an appropriate solution for the mitigation of tall buildings where the pendulum mass can be up to several thousands of metric tonnes and space for the pendulum damper is limited.

  15. Responses of Multiple Nonlinear Tuned Vibration Absorbers under Harmonic Excitation

    Science.gov (United States)

    Alsuwaiyan, Abdullah S.

    2017-05-01

    In this paper, a system consisting of multiple perfectly tuned identical translational vibration absorbers, having both hardening and softening springs, attached to a main mass under harmonic excitation is considered. The existence of absorbers’ synchronous and non-synchronous responses is checked. The method of averaging is employed to reach to the averaged autonomous equations of motion that describe the dynamics of the absorbers. A graphical method is then employed to check the existence of different responses of the absorbers. It is found that for absorbers with hardening springs, only one synchronous response of the absorbers occurs and no other responses take place. However, for the case of absorbers with softening springs, other responses were found to exist. These include multi-valued synchronous responses and a jump instability. These findings are in agreement with those of another study by the author where a similar system was considered using different approach.

  16. Robust non-fragile dynamic vibration absorbers with uncertain factors

    Science.gov (United States)

    Zhang, Hui; Shi, Yang; Saadat Mehr, Aryan

    2011-02-01

    In this paper, the design problem for non-fragile dynamic vibration absorbers (DVAs) is investigated. Due to the imprecision of the manufacturing process or the variation during the operation, uncertainty in the parameters of the DVA is unavoidable. The uncertainty may degrade the performance of the designed DVA or even deteriorate the system. Hence, it is practically demanding to propose a design method for a non-fragile DVA, i.e., when the parameters of the DVA vary in an admissible range, an expected vibration suppression level should be guaranteed. The uncertainty of the DVA is feasibly assumed to be norm-bounded. Then, the design problem for the DVA is converted into a static output feedback (SOF) control problem. Sufficient condition for the existence of the non-fragile DVA with a prescribed H∞ level is derived by using a bilinear matrix inequality (BMI). An iterative linear matrix inequality (ILMI) method is employed to solve the BMI condition. Finally, a design example is given to show the effectiveness of the proposed approach.

  17. Optimization of the impact multi-mass vibration absorbers

    Directory of Open Access Journals (Sweden)

    Ivan Kernytskyy

    2017-09-01

    Full Text Available The problem of attaching dynamic vibration absorber (DVA to a discrete multi-degree-of-freedom or continuous structure has been outlined in many papers and monographs. An impact damping system can overcome some limitations by impact as the damping medium and impact mass interaction as the damping mechanism. The paper contemplates the provision of DVA with the several of the impact masses. Such originally designed absorbers reduce vibration selectively in maximum vibration mode without introducing vibration in other modes. An impact damper is a passive control device which takes the form of a freely moving mass, constrained by stops attached to the structure under control, i.e. the primary structure. The damping results from the exchange of momentum during impacts between the mass and the stops as the structure vibrates. The paper contemplates the provision of the impact multi-mass DVA’s with masses collisions for additional damping. For some cases of DVA optimization such a design seems more effective than conventional multi-mass DVA with independent mass moving. A technique is developed to give the optimal DVA’s for the elimination of excessive vibration in harmonic stochastic and impact loaded systems.

  18. Tuneable vibration absorber design to suppress vibrations: An application in boring manufacturing process

    Science.gov (United States)

    Moradi, H.; Bakhtiari-Nejad, F.; Movahhedy, M. R.

    2008-11-01

    Dynamic vibration absorbers are used to reduce the undesirable vibrations in many applications such as electrical transmission lines, helicopters, gas turbines, engines, bridges, etc. Tuneable vibration absorbers (TVA) are also used as semi-active controllers. In this paper, the application of a TVA for suppression of chatter vibrations in the boring manufacturing process is presented. The boring bar is modeled as a cantilever Euler-Bernoulli beam and the TVA is composed of mass, spring and dashpot elements. In addition, the effect of spring mass is considered in this analysis. After formulation of the problem, the optimum specifications of the absorber such as spring stiffness, absorber mass and its position are determined using an algorithm based on the mode summation method. The analog-simulated block diagram of the system is developed and the effects of various excitations such as step, ramp, etc. on the absorbed system are simulated. In addition, chatter stability is analyzed in dominant modes of boring bar. Results show that at higher modes, larger critical widths of cut and consequently more material removal rate (MRR) can be achieved. In the case of self-excited vibration, which is associated with a delay differential equation, the optimum absorber suppresses the chatter and increases the limit of stability.

  19. The Effect of a Vibration Absorber on the Damping Properties of Alpine Skis

    Directory of Open Access Journals (Sweden)

    Stefan Schwanitz

    2018-02-01

    Full Text Available Coupled bending-torsion vibrations at the shovel are a severe problem when running an alpine ski at high velocities on hard or icy slopes. Thus, a major goal for ski manufacturers is to dampen vibrations through a proper multi-material design and/or additional absorbers. The aim of this study was to examine the effectiveness of a particular vibration absorber on a commercial slalom ski through a series of laboratory tests as well as a subjective field evaluation. Therefore, two identical pairs of ski were used and the absorber was deactivated on one pair. Laboratory tests revealed reductions of 5% to 49% of bending vibrations on skis with activated absorber. Subjective evaluation by 6 subjects suggested minor differences in the mean of the evaluated criteria turnablity, edge grip, steering behavior and stability towards a better performance of the skis with activated absorber. Subjects were able to identify the absorber mode with a success rate of 61.1%.

  20. Attenuation of cryocooler induced vibration using multimodal tuned dynamic absorber

    Science.gov (United States)

    Veprik, A.; Babitsky, V.; Tuito, A.

    2017-12-01

    Modern infrared imagers often rely on low Size, Weight and Power split Stirling linear cryocoolers comprised of side-by-side packed compressor and expander units fixedly mounted upon a common frame and interconnected by the configurable transfer line. Imbalanced reciprocation of moving assemblies generates vibration export in the form of tonal force couple producing angular and translational dynamic responses. Resulting line of sight jitter and dynamic defocusing may affect the image quality. The authors explore the concept of multimodal tuned dynamic absorber, the translational and tilting modal frequencies of which are essentially matched to the driving frequency. Dynamic analysis and full-scale testing show that the dynamic reactions (forces and moments) produced by such a device may effectively attenuate both translational and angular components of cryocooler-induced vibration.

  1. Transient vibration analytical modeling and suppressing for vibration absorber system under impulse excitation

    Science.gov (United States)

    Wang, Xi; Yang, Bintang; Yu, Hu; Gao, Yulong

    2017-04-01

    The impulse excitation of mechanism causes transient vibration. In order to achieve adaptive transient vibration control, a method which can exactly model the response need to be proposed. This paper presents an analytical model to obtain the response of the primary system attached with dynamic vibration absorber (DVA) under impulse excitation. The impulse excitation which can be divided into single-impulse excitation and multi-impulse excitation is simplified as sinusoidal wave to establish the analytical model. To decouple the differential governing equations, a transform matrix is applied to convert the response from the physical coordinate to model coordinate. Therefore, the analytical response in the physical coordinate can be obtained by inverse transformation. The numerical Runge-Kutta method and experimental tests have demonstrated the effectiveness of the analytical model proposed. The wavelet of the response indicates that the transient vibration consists of components with multiple frequencies, and it shows that the modeling results coincide with the experiments. The optimizing simulations based on genetic algorithm and experimental tests demonstrate that the transient vibration of the primary system can be decreased by changing the stiffness of the DVA. The results presented in this paper are the foundations for us to develop the adaptive transient vibration absorber in the future.

  2. A Stepwise Optimal Design of a Dynamic Vibration Absorber with Tunable Resonant Frequency

    Directory of Open Access Journals (Sweden)

    Jiejian DI

    2014-08-01

    Full Text Available A new kind of dynamic vibration absorber (DVA with tunable resonant frequency is presented. The kinematics differential equation about it is built and the stepwise optimization is performed. Firstly, four main system parameters involving the ratios of mass m, natural frequency f, vibration frequency g and damping z are solved by small-step-search method to obtain optimal steady state amplitude. Secondly, the sizing optimization of the dynamic vibration absorber is proceeded to search an optimal damping effect based on the optimal parameters (g, m, z, f. And such the damping effect is simulated in a flat structure, and the results show that the working frequency band and damping effect of the DVA after optimization won 20 % of the effect of ascension compared with that before optimization.

  3. Adaptive tuned vibration absorber based on magnetorheological elastomer-shape memory alloy composite

    Science.gov (United States)

    Kumbhar, Samir B.; Chavan, S. P.; Gawade, S. S.

    2018-02-01

    Shape memory alloy (SMA) is an attractive smart material which could be used as stiffness tuning element in adaptive tuned vibration absorber (ATVA). The sharp modulus change in SMA material during phase transformation creates difficulties for smooth tuning to track forcing frequency to minimize vibrations of primary system. However, high hysteresis damping at low temperature martensitic phase degrades performance of vibration absorber. This paper deals with the study of dynamic response of system in which SMA and magnetorheological elastomer (MRE) are combined together to act as a smart spring- mass-damper system in a tuned vibration absorber. This composite is used as two way stiffness tuning element in ATVA for smooth and continuous tuning and to minimize the adverse effect at low temperature by increasing equivalent stiffness. The stiffnesses of SMA element and MRE are varied respectively by changing temperature and strength of external magnetic field. The two way stiffness tuning ability and adaptivity have been demonstrated analytically and experimentally. The experimental results show good agreement with analytical results. The proposed composite is able to shift the stiffness consequently the natural frequency of primary system as well as reduce the vibration level of primary system by substantial mount.

  4. Buck-boost converter for simultaneous semi-active vibration control and energy harvesting for electromagnetic regenerative shock absorber

    Science.gov (United States)

    Li, Peng; Zhang, Chongxiao; Kim, Junyoung; Yu, Liangyao; Zuo, Lei

    2014-04-01

    Regenerative semi-active suspensions can capture the previously dissipated vibration energy and convert it to usable electrical energy for powering on-board electronic devices, while achieve both the better ride comfort and improved road handling performance at the same time when certain control is applied. To achieve this objective, the power electronics interface circuit connecting the energy harvester and the electrical loads, which can perform simultaneous vibration control and energy harvesting function is in need. This paper utilized a buck-boost converter for simultaneous semi-active vibration control and energy harvesting with electromagnetic regenerative shock absorber, which utilizes a rotational generator to converter the vibration energy to electricity. It has been found that when the circuit works in discontinuous current mode (DCM), the ratio between the input voltage and current is only related to the duty cycle of the switch pulse width modulation signal. Using this property, the buck-boost converter can be used to perform semi-active vibration control by controlling the load connected between the terminals of the generator in the electromagnetic shock absorber. While performing the vibration control, the circuit always draw current from the shock absorber and the suspension remain dissipative, and the shock absorber takes no additional energy to perform the vibration control. The working principle and dynamics of the circuit has been analyzed and simulations were performed to validate the concept.

  5. Application of COMSOL Multiphysics in Thermal Effect Analysis of Electromagnetic Active Vibration Absorber

    Science.gov (United States)

    Hang, Su; Xue-tao, Weng

    2017-11-01

    At present, there are some researches in the thermal analysis of electromagnetic absorbers. The heating principle of electromagnetic absorber magnetic circuit is analysed, and the finite element method is used to numerically solve the temperature field in the working process of electromagnetic vibration absorber. The magnetic circuit simulation model of electromagnetic vibration absorber is established in Comsol Multiphysics finite element analysis software. And the grid Division, simulation analysis of the vibration absorber magnetic circuit structure of the internal temperature distribution, you can get the vibration absorber magnetic circuit in the working process of the temperature field of two-dimensional distribution graphics and magnetic circuit structure of different parts of the temperature rise contrast chart. The conclusion provides some theoretical reference for the design and research of electromagnetic active vibration absorber.

  6. Semi-active on-off damping control of a dynamic vibration absorber using Coriolis force

    Science.gov (United States)

    La, Viet Duc

    2012-07-01

    A passive dynamic vibration absorber (DVA) moving along a pendulum can cause the nonlinear Coriolis damping to reduce the pendulum swing. This paper proposes a simple semi-active on-off damping controller to improve the passive Coriolis DVA. The aim of the on-off damping control is to amplify the DVA resonance motion to increase the energy dissipated. Moreover, the paper finds the analytical solution of the harmonic vibration of semi-active controlled system. The accuracy of the analytical formulas and the superior performance of the semi-active DVA are verified by numerical simulations.

  7. Low-frequency vibration control of floating slab tracks using dynamic vibration absorbers

    Science.gov (United States)

    Zhu, Shengyang; Yang, Jizhong; Yan, Hua; Zhang, Longqing; Cai, Chengbiao

    2015-09-01

    This study aims to effectively and robustly suppress the low-frequency vibrations of floating slab tracks (FSTs) using dynamic vibration absorbers (DVAs). First, the optimal locations where the DVAs are attached are determined by modal analysis with a finite element model of the FST. Further, by identifying the equivalent mass of the concerned modes, the optimal stiffness and damping coefficient of each DVA are obtained to minimise the resonant vibration amplitudes based on fixed-point theory. Finally, a three-dimensional coupled dynamic model of a metro vehicle and the FST with the DVAs is developed based on the nonlinear Hertzian contact theory and the modified Kalker linear creep theory. The track irregularities are included and generated by means of a time-frequency transformation technique. The effect of the DVAs on the vibration absorption of the FST subjected to the vehicle dynamic loads is evaluated with the help of the insertion loss in one-third octave frequency bands. The sensitivities of the mass ratio of DVAs and the damping ratio of steel-springs under the floating slab are discussed as well, which provided engineers with the DVA's adjustable room for vibration mitigation. The numerical results show that the proposed DVAs could effectively suppress low-frequency vibrations of the FST when tuned correctly and attached properly. The insertion loss due to the attachment of DVAs increases as the mass ratio increases, whereas it decreases with the increase in the damping ratio of steel-springs.

  8. Development of a semi-active dynamic vibration absorber for longitudinal vibration of propulsion shaft system based on magnetorheological elastomer

    Science.gov (United States)

    Liu, Gaoyu; Lu, Kun; Zou, Donglin; Xie, Zhongliang; Rao, Zhushi; Ta, Na

    2017-07-01

    The control of the longitudinal pulsating force and the vibration generated is very important to improve the stealth performance of a submarine. Magnetorheological elastomer (MRE) is a kind of intelligent composite material, whose mechanical properties can be continuously, rapidly and reversibly controlled by an external magnetic field. It can be used as variable-stiffness components in the design of a semi-active dynamic vibration absorber (SDVA), which is one of the effective means of longitudinal vibration control. In this paper, an SDVA is designed based on the MRE’s magnetic-induced variable stiffness characteristic. Firstly, a mechanical model of the propulsion shaft system with the SDVA is proposed, theoretically discussed and numerically validated. Then, the mechanical performance of the MRE under different magnetic fields is tested. In addition, the magnetic circuit and the overall structure of the SDVA are designed. Furthermore, electromagnetic and thermodynamic simulations are carried out to guarantee the structural design. The frequency shift property of the SDVA is found through dynamic simulations and validated by a frequency shift experiment. Lastly, the vibration absorption capacity of the SDVA is investigated. The results show that the magnetorheological effect of the MRE and the frequency shift of the SDVA are obvious; the SDVA has relatively acceptable vibration absorption capacity.

  9. Analysis of Free Pendulum Vibration Absorber Using Flexible Multi-Body Dynamics

    Directory of Open Access Journals (Sweden)

    Emrah Gumus

    2016-01-01

    Full Text Available Structures which are commonly used in our infrastructures are becoming lighter with progress in material science. These structures due to their light weight and low stiffness have shown potential problem of wind-induced vibrations, a direct outcome of which is fatigue failure. In particular, if the structure is long and flexible, failure by fatigue will be inevitable if not designed properly. The main objective of this paper is to perform theoretical analysis for a novel free pendulum device as a passive vibration absorber. In this paper, the beam-tip mass-free pendulum structure is treated as a flexible multibody dynamic system and the ANCF formulation is used to demonstrate the coupled nonlinear dynamics of a large deflection of a beam with an appendage consisting of a mass-ball system. It is also aimed at showing the complete energy transfer between two modes occurring when the beam frequency is twice the ball frequency, which is known as autoparametric vibration absorption. Results are discussed and compared with findings of MSC ADAMS. This novel free pendulum device is practical and feasible passive vibration absorber in the mitigation of large amplitude wind-induced vibrations in traffic signal structures.

  10. Rapid prototyping tool for tuning of vibration absorbers; Rapid-Prototyping-Tool zur Abstimmung von Schwingungstilgern

    Energy Technology Data Exchange (ETDEWEB)

    Marienfeld, P.M.; Karkosch, H.J. [ContiTech Vibration Control GmbH, Hannover (Germany); Bohn, C. [Technische Univ. Clausthal (Germany); Svaricek, F. [Univ. der Bundeswehr Muenchen (Germany); Knake-Langhorst, S. [Deutsches Zentrum fuer Luft- und Raumfahrt, Braunschweig (Germany)

    2008-07-01

    In the automotive industry passive vibration absorbers are a well established method to reduce structural vibrations in automotive vehicles. Designing a vibration absorber consists of selecting its mechanical properties. Usually extensive tests are necessary with different absorbers in the vehicle and subjective as well as objective evaluation of the results. This requires hardware modifications between different tests. In this paper, an approach is proposed that can assist in the development of vibration absorbers. It is based on tuning an active vibration control system such that it reproduces the behavior of a specified vibration absorber. This behavior can then be changed electronically without modifying the hardware. Two different control approaches are compared. In the first approach, the apparent physical properties of a vibration absorber are directly modified through acceleration, velocity or displacement feedback. In the second approach, a desired dynamic mass transfer function for the vibration absorber is prescribed and an H2-norm optimal model matching problem is solved. Experimental results obtained with this approach are presented. (orig.)

  11. A New Vibration Absorber Design for Under-Chassis Device of a High-Speed Train

    Directory of Open Access Journals (Sweden)

    Yu Sun

    2017-01-01

    Full Text Available To realize the separation of vertical and lateral stiffness of the under-chassis device, a new type of vibration absorber is designed by using the negative stiffness of the disc spring in parallel with the rubber component. To solve its transmission characteristics, harmonic transfer method was used. A rigid-flexible coupling multibody dynamic model of a high-speed train with an elastic car body is established, and the vertical and lateral optimal stiffness of the under-chassis device are calculated. The Sperling index and acceleration PSD of the vehicle with the new vibration absorber and the vehicle with traditional rubber absorber are compared and analyzed. The results show that, with the new vibration absorber, vehicle’s running stability and vibration of the car body are more effective than the vehicle with the traditional rubber absorber.

  12. Evaluation of the Autoparametric Pendulum Vibration Absorber for a Duffing System

    Directory of Open Access Journals (Sweden)

    Benjamın Vazquez-Gonzalez

    2008-01-01

    Full Text Available In this work we study the frequency and dynamic response of a damped Duffing system attached to a parametrically excited pendulum vibration absorber. The multiple scales method is applied to get the autoparametric resonance conditions and the results are compared with a similar application of a pendulum absorber for a linear primary system. The approximate frequency analysis reveals that the nonlinear dynamics of the externally excited system are suppressed by the pendulum absorber and, under this condition, the primary Duffing system yields a time response almost equivalent to that obtained for a linear primary system, although the absorber frequency response is drastically modified and affected by the cubic stiffness, thus modifying the jumps defined by the fixed points. In the absorber frequency response can be appreciated a good absorption capability for certain ranges of nonlinear stiffness and the internal coupling is maintained by the existing damping between the pendulum and the primary system. Moreover, the stability of the coupled system is also affected by some extra fixed points introduced by the cubic stiffness, which is illustrated with several amplitude-force responses. Some numerical simulations of the approximate frequency responses and dynamic behavior are performed to show the steady-state and transient responses.

  13. Sweeping shunted electro-magnetic tuneable vibration absorber: Design and implementation

    Science.gov (United States)

    Turco, E.; Gardonio, P.

    2017-10-01

    This paper presents a study on the design and implementation of a time-varying shunted electro-magnetic Tuneable Vibration Absorber for broad-band vibration control of thin structures. A time-varying RL-shunt is used to harmonically vary the stiffness and damping properties of the Tuneable Vibration Absorber so that its mechanical fundamental natural frequency is continuously swept in a given broad frequency band whereas its mechanical damping is continuously adapted to maximize the vibration absorption from the hosting structure where it is mounted. The paper first recalls the tuning and positioning criteria for the case where a classical Tuneable Vibration Absorber is installed on a thin walled cylindrical structure to reduce the response of a resonating flexural mode. It then discusses the design of the time-varying shunt circuit to produce the desired stiffness and damping variations in the electro-magnetic Tuneable Vibration Absorber. Finally, it presents a numerical study on the flexural vibration and interior sound control effects produced when an array of these shunted electro-magnetic Tuneable Vibration Absorbers are mounted on a thin walled cylinder subject to a rain-on-the-roof stochastic excitation. The study shows that the array of proposed systems effectively controls the cylinder flexural response and interior noise over a broad frequency band without need of tuning and thus system identification of the structure. Therefore, the systems can be successfully used also on structures whose physical properties vary in time because of temperature changes or tensioning effects for example.

  14. Design of three-element dynamic vibration absorber for damped linear structures

    Science.gov (United States)

    Anh, N. D.; Nguyen, N. X.; Hoa, L. T.

    2013-09-01

    The standard type of dynamic vibration absorber (DVA) called the Voigt DVA is a classical model and has long been investigated. In the paper, we will consider an optimization problem of another model of DVA that is called three-element type DVA for damped primary structures. Unlike the standard absorber configuration, the three-element DVA contains two spring elements in which one is connected to a dashpot in series and the other is placed in parallel. There have been some studies on the design of the three-element DVA for undamped primary structures. Those studies have shown that the three-element DVA produces better performance than the Voigt DVA does. When damping is present at the primary system, to the best knowledge of the authors, there has been no study on the three-element dynamic vibration absorber. This work presents a simple approach to determine the approximate analytical solutions for the H∞ optimization of the three-element DVA attached to the damped primary structure. The main idea of the study is based on the criteria of the equivalent linearization method in order to replace approximately the original damped structure by an equivalent undamped one. Then the approximate analytical solution of the DVA's parameters is given by using known results for the undamped structure obtained. The comparisons have been done to verify the effectiveness of the obtained results.

  15. The development of a ball vibration absorber for the use on towers

    Czech Academy of Sciences Publication Activity Database

    Pirner, Miroš; Fischer, Ondřej

    2000-01-01

    Roč. 41, č. 133 (2000), s. 91-98 ISSN 0304-3622 R&D Projects: GA ČR(CZ) GV103/96/K034 Institutional support: RVO:68378297 Keywords : TV towers * wind-excited vibrations * vibration absorbers * pendulum and ball absorber Subject RIV: JM - Building Engineering http://www.iass-structures.org/index.cfm/journal.issue?iID=33

  16. Optimal semi-active vibration absorber for harmonic excitation based on controlled semi-active damper

    Science.gov (United States)

    Weber, F.

    2014-09-01

    The semi-active vibration absorber (SVA) based on controlled semi-active damper is formulated to realize the behaviour of the passive undamped vibration absorber tuned to the actual harmonic disturbing frequency. It is shown that the controlled stiffness force, which is emulated by the semi-active damper to realize the precise real-time frequency tuning of the SVA, is unpreventably combined with the generation of undesirable damping in the semi-active damper whereby the SVA does not behave as targeted. The semi-active stiffness force is therefore optimized for minimum primary structure response. The results point out that the optimal semi-active stiffness force reduces the undesirable energy dissipation in the SVA at the expenses of slight imprecise frequency tuning. Based on these findings, a real-time applicable suboptimal SVA is formulated that also takes the relative motion constraint of real mass dampers into account. The results demonstrate that the performance of the suboptimal SVA is closer to that of the active solution than that of the passive mass damper.

  17. Optimisation of dynamic vibration absorbers to minimise kinetic energy and maximise internal power dissipation

    OpenAIRE

    Zilletti, Michele; Elliott, Stephen J.; Rustighi, Emiliano

    2012-01-01

    The tuning of a dynamic vibration absorber is considered such that either the kinetic energy of the host structure is minimised or the power dissipation within the absorber is maximised. If the host structure is approximated as a damped single degree of freedom, the optimal values for the ratio of the absorber's natural frequency to the host structure and the optimal damping ratio of the absorber are shown to be the same whether the kinetic energy of the host structure is minimised or the pow...

  18. Effect of sound-absorbing coatings on the disturbance evolution in a flow of a mixture of vibrationally excited gases

    Science.gov (United States)

    Reshetova, A. I.; Poplavskaya, T. V.; Kirilovskiy, S. V.; Tsyrulnikov, I. S.

    2017-10-01

    The flow around a solid plate and a plate with a sound-absorbing coating at a non-zero angle of attack in a hypersonic flow (M∞=8.44) of a mixture of vibrationally excited carbon dioxide and nitrogen is considered. Numerical simulations are performed by solving two-dimensional unsteady Navier–Stokes equations with a two-temperature model of relaxing flows. The vibrational energy as a function of time is defined by the Landau–Teller equation. A skeleton model, which is a set of square elements arranged in a staggered order, is used for simulating the porous coating made of foamed nickel with a porosity coefficient of 95%. The distance between the elements is equal to the pore diameter of the real sound-absorbing material. Data on the evolution of disturbances on the solid plate and on the plate with the sound-absorbing coating are presented for various angles of attack and CO2 concentrations in the mixture. The experimental and calculated data on pressure fluctuations on the plate surfaces are found to be in good agreement. The effects of various parameters of the sound-absorbing coating (depth, length, and location at the flat plate) are considered. It is shown that the sound-absorbing coating significantly reduces the intensity of pressure fluctuations on the plate surface as compared to the solid surface (up to 50% depending on the length and location of the sound-absorbing coating).

  19. Designing a hand rest tremor dynamic vibration absorber using H{sub 2} optimization method

    Energy Technology Data Exchange (ETDEWEB)

    Rahnavard, Mostafa; Dizaji, Ahmad F. [Tehran University, Tehran (Iran, Islamic Republic of); Hashemi, Mojtaba [Amirkabir University, Tehran (Iran, Islamic Republic of); Faramand, Farzam [Sharif University, Tehran (Iran, Islamic Republic of)

    2014-05-15

    An optimal single DOF dynamic absorber is presented. A tremor has a random nature and then the system is subjected to a random excitation instead of a sinusoidal one; so the H{sub 2} optimization criterion is probably more desirable than the popular H{sub ∞} optimization method and was implemented in this research. The objective of H{sub 2} optimization criterion is to reduce the total vibration energy of the system for overall frequencies. An objective function, considering the elbow joint angle, θ {sub 2}, tremor suppression as the main goal, was selected. The optimization was done by minimization of this objective function. The optimal system, including the absorber, performance was analyzed in both time and frequency domains. Implementing the optimal absorber, the frequency response amplitude of θ{sub 2} was reduced by more than 98% and 80% at the first and second natural frequencies of the primary system, respectively. A reduction of more than 94% and 78%, was observed for the shoulder joint angle, θ{sub 1}. The objective function also decreased by more than 46%. Then, two types of random inputs were considered. For the first type, θ{sub 1} and θ {sub 2} revealed 60% and 39% reduction in their rms values, whereas for the second type, 33% and 50% decrease was observed.

  20. Vibration mitigation in partially liquid-filled vessel using passive energy absorbers

    Science.gov (United States)

    Farid, M.; Levy, N.; Gendelman, O. V.

    2017-10-01

    We consider possible solutions for vibration mitigation in reduced-order model (ROM) of partially filled liquid tank under impulsive forcing. Such excitations may lead to strong hydraulic impacts applied to the tank inner walls. Finite stiffness of the tank walls is taken into account. In order to mitigate the dangerous internal stresses in the tank walls, we explore both linear (Tuned Mass Damper) and nonlinear (Nonlinear Energy Sink) passive vibration absorbers; mitigation performance in both cases is examined numerically. The liquid sloshing mass is modeled by equivalent mass-spring-dashpot system, which can both perform small-amplitude linear oscillations and hit the vessel walls. We use parameters of the equivalent mass-spring-dashpot system for a well-explored case of cylindrical tanks. The hydraulic impacts are modeled by high-power potential and dissipation functions. Critical location in the tank structure is determined and expression of the corresponding local mechanical stress is derived. We use finite element approach to assess the natural frequencies for specific system parameters. Numerical evaluation criteria are suggested to determine the energy absorption performance.

  1. Nonlinear Dynamical Analysis on Four Semi-Active Dynamic Vibration Absorbers with Time Delay

    Directory of Open Access Journals (Sweden)

    Yongjun Shen

    2013-01-01

    Full Text Available In this paper four semi-active dynamic vibration absorbers (DVAs are analytically studied, where the time delay induced by measurement and execution in control procedure is included in the system. The first-order approximate analytical solutions of the four semi-active DVAs are established by the averaging method, based on the illustrated phase difference of the motion parameters. The comparisons between the analytical and the numerical solutions are carried out, which verify the correctness and satisfactory precision of the approximate analytical solutions. Then the effects of the time delay on the dynamical responses are analyzed, and it is found that the stability conditions for the steady-state responses of the primary systems are all periodic functions of time delay, with the same period as the excitation one. At last the effects of time delay on control performance are discussed.

  2. Vibration reduction of beams under successive traveling loads by means of linear and nonlinear dynamic absorbers

    Science.gov (United States)

    Samani, Farhad S.; Pellicano, Francesco

    2012-05-01

    The goal of the present work is to assess the performances of dynamic vibration absorbers (DVA) in suppressing the vibrations of a simply supported beam subjected to an infinite sequence of regularly spaced concentrated moving loads. In particular, several types of DVA are considered: linear, cubic, higher odd-order monomials and piecewise linear stiffness; linear, cubic and linear-quadratic viscous damping. The purpose is to clarify if nonlinear DVAs show improvements with respect to the classical linear devices. The dynamic scenario is deeply investigated in a wide range of operating conditions, spanning the parameter space of the DVA (damping, stiffness). Nonlinear stiffness can lead to complex dynamics such as quasi-periodic, chaotic and sub-harmonic responses; moreover, acting on the stiffness nonlinearity no improvement is found with respect to the linear DVA. A nonlinear non-symmetric dissipation in the DVA leads to a great reduction of the beam response, the reduction is larger with respect to the linear DVA.

  3. Parameters Optimization for a Kind of Dynamic Vibration Absorber with Negative Stiffness

    Directory of Open Access Journals (Sweden)

    Yongjun Shen

    2016-01-01

    Full Text Available A new type of dynamic vibration absorber (DVA with negative stiffness is studied in detail. At first, the analytical solution of the system is obtained based on the established differential motion equation. Three fixed points are found in the amplitude-frequency curves of the primary system. The design formulae for the optimum tuning ratio and optimum stiffness ratio of DVA are obtained by adjusting the three fixed points to the same height according to the fixed-point theory. Then, the optimum damping ratio is formulated by minimizing the maximum value of the amplitude-frequency curves according to H∞ optimization principle. According to the characteristics of negative stiffness element, the optimum negative stiffness ratio is also established and it could still keep the system stable. In the end, the comparison between the analytical and the numerical solutions verifies the correctness of the analytical solution. The comparisons with three other traditional DVAs under the harmonic and random excitations show that the presented DVA performs better in vibration absorption. This result could provide theoretical basis for optimum parameters design of similar DVAs.

  4. Resonant passive–active vibration absorber with integrated force feedback control

    DEFF Research Database (Denmark)

    Høgsberg, Jan Becker; Brodersen, Mark Laier; Krenk, Steen

    2016-01-01

    A general format of a two-terminal vibration absorber is constructed by placing a passive unit in series with a hybrid unit, composed of an active actuator in parallel with a second passive element. The displacement of the active actuator is controlled by an integrated feedback control with the d...

  5. Integration Design and Optimization Control of a Dynamic Vibration Absorber for Electric Wheels with In-Wheel Motor

    Directory of Open Access Journals (Sweden)

    Mingchun Liu

    2017-12-01

    Full Text Available This paper presents an integration design scheme and an optimization control strategy for electric wheels to suppress the in-wheel vibration and improve vehicle ride comfort. The in-wheel motor is considered as a dynamic vibration absorber (DVA, which is isolated from the unsprung mass by using a spring and a damper. The proposed DVA system is applicable for both the inner-rotor motor and outer-rotor motor. Parameters of the DVA system are optimized for the typical conditions, by using the particle swarm optimization (PSO algorithm, to achieve an acceptable vibration performance. Further, the DVA actuator force is controlled by using the alterable-domain-based fuzzy control method, to adaptively suppress the wheel vibration and reduce the wallop acting on the in-wheel motor (IWM as well. In addition, a suspension actuator force is also controlled, by using the linear quadratic regulator (LQR method, to enhance the suspension performance and meanwhile improve vehicle ride comfort. Simulation results demonstrate that the proposed DVA system effectively suppresses the wheel vibration and simultaneously reduces the wallop acting on the IWM. Also, the alterable-domain-based fuzzy control method performs better than the conventional ones, and the LQR-based suspension exhibits excellent performance in vehicle ride comfort.

  6. Semi-active vibration absorber based on real-time controlled MR damper

    Science.gov (United States)

    Weber, F.

    2014-06-01

    A semi-active vibration absorber with real-time controlled magnetorheological damper (MR-SVA) for the mitigation of harmonic structural vibrations is presented. The MR damper force targets to realize the frequency and damping adaptations to the actual structural frequency according to the principle of the undamped vibration absorber. The relative motion constraint of the MR-SVA is taken into account by an adaptive nonlinear control of the internal damping of the MR-SVA. The MR-SVA is numerically and experimentally validated for harmonic excitation of the primary structure when the natural frequency of the passive mass spring system of the MR-SVA is correctly tuned to the targeted structural resonance frequency and when de-tuning is present. The results demonstrate that the MR-SVA outperforms the passive TMD at structural resonance frequency by at least 12.4% and up to 60.0%.

  7. [Performance of desulfurizing absorbent of roasted navajoite].

    Science.gov (United States)

    Chen, Fang; Yang, Chun-ping; Gan, Hai-ming; Wu, Ting; Chen, Hai-lin; Chen, Hong; Xu, Ke-hui; Xie, Geng-xin

    2010-04-01

    An innovative flue gas desulfurization (FGD) coupling process was proposed in this study to overcome the problems in wet-type limestone/lime processes which include fouling, clogging, and difficulty of selling the by-products and the problems in traditional process for vanadium extraction from navajoite ore such as excessive consumption of sulfuric acid and emissions of pollutants. The performance of a jet bubbling reactor (JBR) at pilot-scale was evaluated using navajoite ore produced in the process of extracting vanadium pentoxide as desulfurization absorbent. Results showed that navajoite ore slurry achieved better desulfurization performance than limestone slurry. When the inlet flue gas pressure drop was 3.0 kPa, the gas flow was about 2350 m3 x h(-1) and the pH of the navajoite ore slurry was higher than 4.5, the desulfurization efficiency was stable about 90%. The SO2 removal efficiency appeared to increase along with the increasing of absorbent cycle-index. The efficiency of the second circulation was improved 3.5% compared to the first circulation. After an operating duration of 40 minutes, the leaching rate of vanadium pentoxide was about 20%, and reached 60% when the by-products were leached with 5% dilute sulfuric acid for 10 hours. The by-product from this process not only could be used to produce vanadium pentoxide which is a valuable industrial product, but also could significantly overcome the pollution problem existing in the traditional refining process of vanadium pentoxide when navajoite ore is used as the feed material. This FGD process using roasted navajoite slurry as absorbent is environmental sound and cost-effective, and shows the potential for application in the field of flue gas desulfurization as well as hydrometallurgy.

  8. Smart panel with time-varying shunted piezoelectric patch absorbers for broadband vibration control

    Science.gov (United States)

    Casagrande, D.; Gardonio, P.; Zilletti, M.

    2017-07-01

    This paper presents a simulation study concerning the low and mid frequencies control of flexural vibration in a lightly damped thin plate equipped with five time-varying shunted piezoelectric patch absorbers. The panel is excited by a rain-on-the-roof broad frequency band stationary disturbance. The absorbers are composed by piezoelectric patches connected to time-varying RL shunt circuits. Discrete or continuous variations over time of the shunts are implemented in such a way as to either switch, between given values, or sweep, within certain ranges, the natural frequency and damping factor of the electro-mechanical absorbers to control either the resonant response of targeted flexural modes of the plate with natural frequency comprised between 30 Hz and 1 kHz or to control the resonant responses of all flexural modes with natural frequencies comprised between 30 Hz and 1 kHz. The proposed system is firstly presented; then, the vibration control effects produced by a single patch and by the array of five patches implementing the switching and sweeping shunts are investigated. Both time-varying operation modes produce significant vibration control effects, with reductions of the resonance peaks of the target resonances or target frequency band up to 12 dB. The piezoelectric patch absorbers with sweeping shunts offer an interesting practical solution since they are operated blindly, thus they do not require a system identification during installation and effectively work without on line tuning also on systems whose response may vary substantially in time.

  9. Investigation on a mechanical vibration absorber with tunable piecewise-linear stiffness

    Science.gov (United States)

    Shui, Xin; Wang, Shimin

    2018-02-01

    The design and characterization of a mechanical vibration absorber are addressed. A distinctive feature of the absorber is its tunable piecewise-linear stiffness, which is realized by means of a slider with two stop-blocks installed constraining the bilateral deflections of the elastic support. A new analytical approach named as the equivalent stiffness technique (EST) is introduced and then employed to obtain the analytical relations of the frequency, amplitude and phase with a view to exhibit a more comprehensive characterization of the absorber. Experiments are conducted to demonstrate the feasibility of the design. The experimental data show good agreement with the analytical results. The final results indicate that the tunable stiffness absorber (TSA) possesses a typical nonlinear characteristic at each given position of the slider, and its stiffness can be tuned in real time over a wide range by adjusting the slider position. Hence the TSA has a large optimum vibration-absorption range together with a wide suppression band around each optimal position, which contributes to its excellent capacity of vibration absorption.

  10. A Novel Magneto-Rheological Shock Absorber for Vibration Control

    National Research Council Canada - National Science Library

    Gordaninejad, Fararmarz

    2001-01-01

    .... Army's High Mobility, Multi-purpose Wheeled Vehicle (HMMWV). New MRF damper designs were developed, fabricated and tested to meet and exceed the performance criteria set forth by the original equipment manufacture (OEM) test results...

  11. Wind-excited vibrations - Solution by passive dynamic vibration absorbers of different types

    Czech Academy of Sciences Publication Activity Database

    Fischer, Ondřej

    2007-01-01

    Roč. 95, 9-11 (2007), s. 1028-1039 ISSN 0167-6105. [EACWE 4. Praha, 11.07.2005-15.07.2005] R&D Projects: GA AV ČR(CZ) IAA200710505; GA AV ČR(CZ) IAA2071401; GA ČR(CZ) GA103/06/0099 Institutional research plan: CEZ:AV0Z20710524 Keywords : wind-excited vibrations * slender structures * vibration absorption Subject RIV: JM - Building Engineering Impact factor: 0.959, year: 2007

  12. Development of Absorbed Blasting Vibration Energy Index for the Evaluation of Human Comfort in Multistorey Buildings

    Directory of Open Access Journals (Sweden)

    Qiang Yao

    2017-01-01

    Full Text Available There have been civil disputes and complaints regarding the negative effects of blasting vibration on buildings around the blasting site. By considering the effect of blasting vibration on a human body as a process of energy transfer and conversion, the human body absorbed blasting vibration energy (ABVE index has been developed for comfort evaluation. Using dynamic monitoring and theoretical analysis, the elevation amplification effect and selective amplification effect on different frequency components of the ABVE have been investigated. The elevation amplification factor and selective amplification coefficients on different frequency components of the ABVE index for a typical 4-storey brick and concrete building have been determined. Based on the results, the magnitude and frequency components of the ABVE index in different parts especially in different storeys for the typical building have been determined. According to the characteristics of human body’s response to vibrations of different frequencies, the frequency-based weighting method of ABVE index has been simplified. By calculating the combined effect of vibrations from all directions, the total human body ABVE and its frequency components at different floors of the building can be determined accurately. This can be used to evaluate the human body comfort against blasting vibration at different floors.

  13. Enhancement of Optical Adaptive Sensing by Using a Dual-Stage Seesaw-Swivel Actuator with a Tunable Vibration Absorber

    Directory of Open Access Journals (Sweden)

    Po-Chien Chou

    2011-05-01

    Full Text Available Technological obstacles to the use of rotary-type swing arm actuators to actuate optical pickup modules in small-form-factor (SFF disk drives stem from a hinge’s skewed actuation, subsequently inducing off-axis aberrations and deteriorating optical quality. This work describes a dual-stage seesaw-swivel actuator for optical pickup actuation. A triple-layered bimorph bender made of piezoelectric materials (PZTs is connected to the suspension of the pickup head, while the tunable vibration absorber (TVA unit is mounted on the seesaw swing arm to offer a balanced force to reduce vibrations in a focusing direction. Both PZT and TVA are designed to satisfy stable focusing operation operational requirements and compensate for the tilt angle or deformation of a disc. Finally, simulation results verify the performance of the dual-stage seesaw-swivel actuator, along with experimental procedures and parametric design optimization confirming the effectiveness of the proposed system.

  14. Suppression of wind-induced vibrations of a seesaw-type oscillator by means of a dynamic absorber

    NARCIS (Netherlands)

    Lumbantobing, H.

    2003-01-01

    In this paper the suppression of wind-induced vibrations of a seesaw-type oscillator by means of a dynamic absorber is considered. With suppression the shift of the critical flow velocity to higher values as well as the reduction of vibration amplitudes is meant. The equations of motion are derived

  15. Parametric study on a collocated PZT beam vibration absorber and power harvester

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Shyh Chin [Mechanical Engineering, Ming Chi University of Technology, New Taipei (China); Tsai, Chao Yang [Mechanical Engineering Army Academy, R.O.C., Taoyuan (China); Liao, Hsiao Hui [LNG Construction and Project Division, CPC Corp., Taipei (China)

    2016-11-15

    The parametric effects of a PZT beam that is simultaneously used as a vibration absorber and a power harvester were investigated in this study. A cantilever beam paved with PZT layers and with added tip mass has been widely used as a harvester or sometimes as a Dynamic vibration absorber (DVA). However, the beam is rarely considered a collocated device. In this study, the first step was theoretical derivation of a distributed beam covered with bimorph PZT layers. Then, the beam was attached to a 1DOF vibratory main system. Two indicators for vibration absorption and power harvesting were defined. Numerical results demonstrated that the lumped mass ratio favored both of the abilities, but that the DVA mass ratio influenced these two abilities in exactly the opposite way. The conjunction of a harvester circuit into a DVA shifted its resonance frequency up to 5 % (an extreme case of open circuit R→∞). Simultaneous power harvesting diminished the absorption capability up to 35 % for each set of mass ratios. To achieve the maximum degree of power harvesting, a corresponding load resistance that somewhat increases with the lumped mass ratio is applied. Experimental results verified the existence of the best load resistance, but the measured harvested curve was lower than the theoretical calculation because of structure damping and deviations of PZT material properties.

  16. Design and Experimental Implementation of a Beam-Type Twin Dynamic Vibration Absorber for a Cantilevered Flexible Structure Carrying an Unbalanced Rotor: Numerical and Experimental Observations

    Directory of Open Access Journals (Sweden)

    Abdullah Özer

    2015-01-01

    Full Text Available This paper presents experimental and numerical results about the effectiveness of a beam-type twin dynamic vibration absorber for a cantilevered flexible structure carrying an unbalanced rotor. An experimental laboratory prototype setup has been built and implemented in our laboratory and numerical investigations have been performed through finite element analysis. The proposed system design consists of a primary cantilevered flexible structure with an attached dual-mass cantilevered secondary dynamic vibration absorber arrangement. In addition, an unbalanced rotor system is attached to the tip of the flexible cantilevered structure to inspect the system response under harmonic excitations. Numerical findings and experimental observations have revealed that significant vibration reductions are possible with the proposed dual-mass, cantilevered dynamic vibration absorber on a flexible cantilevered platform carrying an unbalanced rotor system at its tip. The proposed system is efficient and it can be practically tuned for variety of design and operating conditions. The designed setup and the results in this paper can serve for practicing engineers, researchers and can be used for educational purposes.

  17. Design of a Real-Time Adaptively Tuned Dynamic Vibration Absorber with a Variable Stiffness Property Using Magnetorheological Elastomer

    Directory of Open Access Journals (Sweden)

    Toshihiko Komatsuzaki

    2015-01-01

    Full Text Available An elastomer composite with controllable stiffness, known as a magnetorheological elastomer (MRE, is used in a dynamic vibration absorber whose natural frequency is tuned adaptively to the disturbance frequency through the application of an external magnetic field. The field-dependent property test of the fabricated MRE sample shows that the stiffness changes by more than six times compared to the baseline property value at a 40% iron powder volume concentration. The MRE is then used to fabricate a frequency-tunable dynamic absorber for mitigating transient vibrations of a one-degree-of-freedom system. Investigations show that the proposed absorber outperforms a conventional passive-type absorber throughout the tunable frequency range.

  18. Performance evaluation of CFRP-rubber shock absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Lamanna, Giuseppe, E-mail: giuseppe.lamanna@unina2.it; Sepe, Raffaele, E-mail: giuseppe.lamanna@unina2.it [Department of Industrial and Information Engineering, Second University of Naples, via Roma, 29 - 81031 Aversa (Italy)

    2014-05-15

    In the present work a numerical investigation on the energy absorbing capability of dedicated structural components made of a carbon fiber reinforced polymer and an emulsion polymerised styrene butadiene rubber is reported. The shock absorbers are devices designed to absorb large amounts of energy by sacrificing their own structural integrity. Their aim is to cushion the effects of an impact phenomenon with the intent to preserve other structures from global failure or local damaging. Another important role of shock absorbers is reducing the peak of the acceleration showed during an impact phenomenon. This effect is of considerable interest in the case of vehicles to preserve passengers’ safety. Static and dynamic numerical results are compared with experimental ones in terms of mean crushing forces, energy and peak crushing. The global performance of the absorbers has been evaluated by referencing to a proposed quality index.

  19. Performance evaluation of CFRP-rubber shock absorbers

    Science.gov (United States)

    Lamanna, Giuseppe; Sepe, Raffaele

    2014-05-01

    In the present work a numerical investigation on the energy absorbing capability of dedicated structural components made of a carbon fiber reinforced polymer and an emulsion polymerised styrene butadiene rubber is reported. The shock absorbers are devices designed to absorb large amounts of energy by sacrificing their own structural integrity. Their aim is to cushion the effects of an impact phenomenon with the intent to preserve other structures from global failure or local damaging. Another important role of shock absorbers is reducing the peak of the acceleration showed during an impact phenomenon. This effect is of considerable interest in the case of vehicles to preserve passengers' safety. Static and dynamic numerical results are compared with experimental ones in terms of mean crushing forces, energy and peak crushing. The global performance of the absorbers has been evaluated by referencing to a proposed quality index.

  20. Optimum Tuning of a Gyroscopic Vibration Absorber Using Coupled Gyroscopes for Vibration Control of a Vertical Cantilever Beam

    Directory of Open Access Journals (Sweden)

    F. Ünker

    2016-01-01

    Full Text Available This paper deals with the investigation of optimum values of the stiffness and damping which connect two gyroscopic systems formed by two rotors mounted in gimbal assuming negligible masses for the spring, damper, and gimbal support. These coupled gyroscopes use two gyroscopic flywheels, spinning in opposing directions to have reverse precessions to eliminate the forces due to the torque existing in the torsional spring and the damper between gyroscopes. The system is mounted on a vertical cantilever with the purpose of studying the horizontal and vertical vibrations. The equation of motion of the compound system (gyro-beam system is introduced and solved to find the response measured on the primary system. This is fundamental to design, in some way, the dynamic absorber or neutralizer. On the other hand, the effect of the angular velocities of the gyroscopes are studied, and it is shown that the angular velocity (spin velocity of a gyroscope has a significant effect on the behavior of the dynamic motion. Correctness of the analytical results is verified by numerical simulations. The comparison with the results from the derivation of the corresponding frequency equations shows that the optimized stiffness and damping values are very accurate.

  1. Design of Vibration Absorber using Spring and Rubber for Armored Vehicle 5.56 mm Caliber Rifle

    Directory of Open Access Journals (Sweden)

    Aditya Sukma Nugraha

    2014-12-01

    Full Text Available This paper presents a design of vibration absorber using spring and rubber for 5.56 mm caliber rifle armored vehicle. Such a rifle is used in a Remote-Controlled Weapon System (RCWS or a turret where it is fixed using a two degree of freedom pan-tilt mechanism. A half car lumped mass dynamic model of armored vehicles was derived. Numerical simulation was conducted using fourth order Runge Kutta method. Various types of vibration absorbers using spring and rubber with different configurations are installed in the elevation element. Vibration effects on horizontal direction, vertical direction and angular deviation of the elevation element was investigated. Three modes of fire were applied i.e. single fire, semi-automatic fire and automatic fire. From simulation results, it was concluded that the parallel configuration of damping rubber type 3, which has stiffness of 980,356.04 (N/m2 and damping coefficient of 107.37 (N.s/m, and Carbon steel spring whose stiffness coefficient is 5.547 x 106 (N/m2 provides the best vibration absorption. 

  2. Methods of performing downhole operations using orbital vibrator energy sources

    Science.gov (United States)

    Cole, Jack H.; Weinberg, David M.; Wilson, Dennis R.

    2004-02-17

    Methods of performing down hole operations in a wellbore. A vibrational source is positioned within a tubular member such that an annulus is formed between the vibrational source and an interior surface of the tubular member. A fluid medium, such as high bulk modulus drilling mud, is disposed within the annulus. The vibrational source forms a fluid coupling with the tubular member through the fluid medium to transfer vibrational energy to the tubular member. The vibrational energy may be used, for example, to free a stuck tubular, consolidate a cement slurry and/or detect voids within a cement slurry prior to the curing thereof.

  3. Performance of Closely Spaced Point Absorbers with Constrained Floater Motion

    DEFF Research Database (Denmark)

    De Backer, G.; Vantorre, M.; Beels, C.

    2009-01-01

    The performance of a wave energy converter array of twelve heaving point absorbers has been assessed numerically in a frequency domain model. Each point absorber is assumed to have its own linear power take-off. The impact of slamming, stroke and force restrictions on the power absorption...... is evaluated and optimal power take-off parameters are determined. For multiple bodies optimal control parameters are not only dependent on the incoming waves, but also on the position and behaviour of the other buoys. Applying the optimal control values for one buoy to multiple closely spaced buoys results...... in a suboptimal solution, as will be illustrated. Other ways to determine the power take-off parameters are diagonal optimization and individual optimization. The latter method is found to increase the power absorption with about 14% compared to diagonal optimization....

  4. Vibration transfers to measure the performance of vibration isolated platforms on site using background noise excitation

    NARCIS (Netherlands)

    Segerink, Franciscus B.; Korterik, Jeroen P.; Offerhaus, Herman L.

    2011-01-01

    This article demonstrates a quick and easy way of quantifying the performance of a vibration-isolated platform. We measure the vibration transfer from floor to table using background noise excitation from the floor. As no excitation device is needed, our setup only requires two identical sensors (in

  5. Simulasi Aplikasi Dynamic Vibration Absorber Sebagai Peredam Getaran Pada Mesin Ignitor Cooling Fan Di PT. PJB UP Gresik

    Directory of Open Access Journals (Sweden)

    Cathlea Selly Ersandi

    2013-09-01

    Full Text Available Semua mesin yang sedang beroperasi pasti akan menghasilkan getaran (vibrasi. Namun seiring dengan bertambahnya usia mesin mengakibatkan getaran yang semakin besar dapat menyebabkan kerusakan pada konstruksi mesin itu sendiri dan pondasi yang menopang mesin tersebut. Untuk dapat meredam getaran pada mesin tersebut dapat dilakukan dengan menambahkan peredam getaran untuk meminimalkan gaya eksitasi yang dihasilkan mesin. Salah satu metode peredaman getaran adalah dengan memasangkan Dynamic Vibration Absorber (DVA pada bagian sistem tersebut. Pada tugas akhir ini akan dilakukan simulasi peredaman getaran menggunakan Dynamic Vibration Absorber (DVA pada mesin Ignitor Cooling Fan di PT. PJB UP Gresik. Simulasi dilakukan dengan mengubah nilai parameter DVA yaitu m, k dan c sehingga didapatkan respon sistem yang terbaik yakni memiliki nilai amplitudo simpangan yang paling rendah. Berdasarkan simulasi yang telah dilakukan diketahui bahwa semakin besar nilai massa maka semakin kecil amplitudo, sebaliknya semakin besar nilai konstanta pegas (k dan redaman (c maka semakin besar nilai amplitudonya. Respon optimumnya berada nilai amplitudo simpangan terendah 0,286. Nilai parameter getaran pada respon tersebut adalah pada massa (M 500 kg, konstanta pegas (k 3000 N/m dan redaman (c 400 N.s/m. Dimana pada nilai paremeter tersebut dapat menurunkan amplitudo simpangan sebesar 63,84%.

  6. VLTI-UT vibrations effort and performances

    Science.gov (United States)

    Poupar, Sébastien; Haguenauer, Pierre; Alonso, Jaime; Schuhler, Nicolas; Henriquez, Juan-Pablo; Berger, Jean-Philippe; Bourget, Pierre; Brillant, Stephane; Castillo, Roberto; Gitton, Philippe; Gonte, Frederic; Di Lieto, Nicola; Lizon, Jean-Louis; Merand, Antoine; Woillez, Julien

    2014-07-01

    The ESO Very Large Telescope Interferometer (VLTI) using the Unit Telescope (UT) was strongly affected by vibrations since the first observations. Investigation by ESO on that subject had started in 2007, with a considerable effort since mid 2008. An important number of investigations on various sub-systems (On telescope: Guiding, Passive supports, Train Coude, insulation of electronics cabinets; On Instruments: dedicated campaign on each instruments with a special attention on the ones equipped with Close Cycle Cooler) were realized. Vibrations were not only recorded and analyzed using the usual accelerometers but also using on use sub-systems as InfRared Image Sensor (IRIS) and Multiple Applications Curvature Adaptive Optics (MACAO) and using a specific tool developed for vibrations measurements Mirror vibrAtion Metrology systeM for the Unit Telescope (MAMMUT). Those tools and systems have been used in order to improve the knowledge on telescope by finding sources. The sources whenever it was possible were damped. As known for years, instruments are still the principal sources of vibrations, for the majority of the UT. A special test in which 2 UTs instruments were completely shut down was realized to determine the minimum Optical Path Length (OPL) achievable. Vibrations is now a part of the instruments interface document and during the installation of any new instrument (KMOS) or system (AOF) a test campaign is realized. As a result some modifications (damping of CCC) can be asked in case of non-compliance. To ensure good operational conditions, levels of vibrations are regularly recorded to control any environmental change.

  7. Bend-absorbing clamp

    Science.gov (United States)

    Abbott, J. R.; Valencia, B., Jr.

    1979-01-01

    Compact, inexpensive clamp for flexible cables or rigid tubes absorbs vibrations and other motion. It accomodates wide range of dimensions, and saves space by eliminating pigtails or bellows commonly used to absorb linear movement or vibrations

  8. Chatter vibrations of high-performance motorcycles

    Science.gov (United States)

    Sharp, R. S.; Watanabe, Y.

    2013-03-01

    Motorcycle racing teams occasionally experience speed-limiting vibrations of around 25 Hz frequency in mid-corner. The nature of the vibrations has not been closely defined yet and the mechanics are currently not properly understood. Conventional motorcycle-dynamics models are shown here to reveal the existence of a vibration mode that aligns with the experience being referred to, suggesting some explanations. Root loci for variations in speed or cornering vigour, demonstrating modal characteristics for small perturbations from trim states, are employed to indicate how the mode responds to changes in operation and design. Modal participation is examined for a lightly damped case. Influences on the natural frequency and damping of the mode are found and a way of stabilising the mode is suggested.

  9. Performance of radar absorbing nanocomposites by waveguide measurements

    Directory of Open Access Journals (Sweden)

    Jefferson Leixas Capitaneo

    2008-09-01

    Full Text Available Sol-gel synthesis has been investigated in order to produce stoichiometric compositions of Ba3Co2Fe24O41 (Co2Z at lower calcination temperatures, using citric acid as quelant complex. Using this method, Co2Z ferrite could be synthesized at 950 °C, about 400 °C lower than that of conventional method. Nanocomposites (80:20% weight of this ferrite with polychloroprene (CR were obtained for the microwave absorption measurements by mixing, molding and curing mixtures of Ba3Co2Fe24O41 powders with polychloroprene and the additives of vulcanization. The microwave absorption measurements was carried out using the Transmission/Reflection method for the S and X-Ku bands and showed the best performance as Radar Absorber Material (RAM in 8.0-16.0 GHz range. Thus, the material can be used by reducing the radar signature of the Brazilian Frigates' superstructures.

  10. Vibration transfers to measure the performance of vibration isolated platforms on site using background noise excitation

    Science.gov (United States)

    Segerink, F. B.; Korterik, J. P.; Offerhaus, H. L.

    2011-06-01

    This article demonstrates a quick and easy way of quantifying the performance of a vibration-isolated platform. We measure the vibration transfer from floor to table using background noise excitation from the floor. As no excitation device is needed, our setup only requires two identical sensors (in our case, low noise accelerometers), a data acquisition system, and processing software. Background noise excitation from the floor has the additional advantage that any non-linearity in the suspension system relevant to the actual vibration amplitudes will be taken into account. Measurement time is typically a few minutes, depending on the amount of background noise. The (coherent) transfer of the vibrations in the floor to the platform, as well as the (non-coherent) acoustical noise pick-up by the platform are measured. Since we use calibrated sensors, the absolute value of the vibration levels is established and can be expressed in vibration criterion curves. Transfer measurements are shown and discussed for two pneumatic isolated optical tables, a spring suspension system, and a simple foam suspension system.

  11. Aeroelastic analysis for helicopter rotors with blade appended pendulum vibration absorbers. Mathematical derivations and program user's manual

    Science.gov (United States)

    Bielawa, R. L.

    1982-01-01

    Mathematical development is presented for the expanded capabilities of the United Technologies Research Center (UTRC) G400 Rotor Aeroelastic Analysis. This expanded analysis, G400PA, simulates the dynamics of teetered rotors, blade pendulum vibration absorbers and the higher harmonic excitations resulting from prescribed vibratory hub motions and higher harmonic blade pitch control. Formulations are also presented for calculating the rotor impedance matrix appropriate to these higher harmonic blade excitations. This impedance matrix and the associated vibratory hub loads are intended as the rotor blade characteristics elements for use in the Simplified Coupled Rotor/Fuselage Vibration Analysis (SIMVIB). Sections are included presenting updates to the development of the original G400 theory, and material appropriate to the user of the G400PA computer program. This material includes: (1) a general descriptionof the tructuring of the G400PA FORTRAN coding, (2) a detaild description of the required input data and other useful information for successfully running the program, and (3) a detailed description of the output results.

  12. Assessment of normal incidence absorption performance of sound absorbing materials

    Directory of Open Access Journals (Sweden)

    Farhad Forouharmajd

    2016-01-01

    Full Text Available Aims: The purpose of the present work was to consider the effect of different samples thicknesses on the acoustic absorption coefficient. Materials and Methods: An impedance tube was built with two microphones accordance to ISO-10534 and the American Society for Testing Materials-E1050 standards. For the measurement of absorption, the study was carried for 25 and 30 mm thicknesses of closed cell polyurethane foam, polystyrene, polyvinyl chloride (PVC, rubber, mineral wool, carpet, and glass samples. Measurements were performed by impedance tube and VA-lab4 software. Results: In carpet and mineral wool with more thickness, the absorption was increased but, the carpet with less thickness showed more sound absorption in the frequency range of 1500-3600 Hz. The peak of the absorption coefficient of 25 mm glass was 0.36 that the amount was reduced to 0.2 in the 30 mm thickness. Furthermore, the difference between the peak absorption of two thicknesses in polystyrene sample was equal to 0.29. In fact, polystyrene with less thickness had better sound absorption. The same situation was happened for glass in frequencies of below 4500 Hz with less thickness. Conclusion: Incident sound energy, which is not absorbed, must be reflected, transmitted, or dissipated. The porous materials had a higher absorption coefficient. Carpet and mineral wool samples had the highest absorption coefficient, but the materials such as polyurethane foam, PVC, and rubber had lower sound absorption.

  13. Time-varying output performances of piezoelectric vibration energy harvesting under nonstationary random vibrations

    Science.gov (United States)

    Yoon, Heonjun; Kim, Miso; Park, Choon-Su; Youn, Byeng D.

    2018-01-01

    Piezoelectric vibration energy harvesting (PVEH) has received much attention as a potential solution that could ultimately realize self-powered wireless sensor networks. Since most ambient vibrations in nature are inherently random and nonstationary, the output performances of PVEH devices also randomly change with time. However, little attention has been paid to investigating the randomly time-varying electroelastic behaviors of PVEH systems both analytically and experimentally. The objective of this study is thus to make a step forward towards a deep understanding of the time-varying performances of PVEH devices under nonstationary random vibrations. Two typical cases of nonstationary random vibration signals are considered: (1) randomly-varying amplitude (amplitude modulation; AM) and (2) randomly-varying amplitude with randomly-varying instantaneous frequency (amplitude and frequency modulation; AM-FM). In both cases, this study pursues well-balanced correlations of analytical predictions and experimental observations to deduce the relationships between the time-varying output performances of the PVEH device and two primary input parameters, such as a central frequency and an external electrical resistance. We introduce three correlation metrics to quantitatively compare analytical prediction and experimental observation, including the normalized root mean square error, the correlation coefficient, and the weighted integrated factor. Analytical predictions are in an excellent agreement with experimental observations both mechanically and electrically. This study provides insightful guidelines for designing PVEH devices to reliably generate electric power under nonstationary random vibrations.

  14. Effect of vibration on visual display terminal work performance.

    Science.gov (United States)

    Hsieh, Yao-Hung; Lin, Chiuhsiang Joe; Chen, Hsiao-Ching

    2007-12-01

    Today electronic visual displays have dramatic use in daily life. Reading these visual displays is subject to their vibration. Using a software-simulation of a vibrated environment, the study investigated the effect of vibration on visual performance and fatigue for several numerical display design characteristics including the font size and the number of digits displayed. Both the frequency and magnitude of vibration had significant effects on the reaction time, accuracy, and visual fatigue. 10 graduate students (23-30 years old; M = 25.6), randomly tested in this experiment, were offered about 25 U.S. dollars for their participation. Numbers in vertical presentation were affected more in vertical vibration than those in horizontal presentation. Analysis showed whenever the display is used in vibration environment, an increased font size may be an effective way to compensate the adverse effect of vibration. The software design of displayed materials must be designed to take the motion effect into consideration to increase the quality of the screen display.

  15. Performance of Different Experimental Absorber Designs in Absorption Heat Pump Cycle Technologies: A Review

    Directory of Open Access Journals (Sweden)

    Jonathan Ibarra-Bahena

    2014-02-01

    Full Text Available The absorber is a major component of absorption cycle systems, and its performance directly impacts the overall size and energy supplies of these devices. Absorption cooling and heating cycles have different absorber design requirements: in absorption cooling systems, the absorber works close to ambient temperature, therefore, the mass transfer is the most important phenomenon in order to reduce the generator size; on the other hand, in heat transformer absorption systems, is important to recover the heat delivered by exothermic reactions produced in the absorber. In this paper a review of the main experimental results of different absorber designs reported in absorption heat pump cycles is presented.

  16. Local vibrations and lift performance of low Reynolds number airfoil

    Directory of Open Access Journals (Sweden)

    TariqAmin Khan

    2017-06-01

    Full Text Available The 2D incompressible Navier-Stokes equations are solved based on the finite volume method and dynamic mesh technique is used to carry out partial fluid structure interaction. The local flexible structure (hereinafter termed as flexible structure vibrates in a single mode located on the upper surface of the airfoil. The Influence of vibration frequency and amplitude are examined and the corresponding fluid flow characteristics are investigated which add complexity to the inherent problem in unsteady flow. The study is conducted for flow over NACA0012 airfoil at 600≤Re≤3000 at a low angle of attack. Vibration of flexible structure induces a secondary vortex which modifies the pressure distribution and lift performance of the airfoil. At some moderate vibration amplitude, frequency synchronization or lock-in phenomenon occurs when the vibration frequency is close to the characteristic frequency of rigid airfoil. Evolution and shedding of vortices corresponding to the deformation of flexible structure depends on the Reynolds number. In the case of Re≤1000, the deformation of flexible structure is considered in-phase with the vortex shedding i.e., increasing maximum lift is linked with the positive deformation of flexible structure. At Re=1500 a phase shift of about 1/π exists while they are out-of-phase at Re>1500. Moreover, the oscillation amplitude of lift coefficient increases with increasing vibration amplitude for Re≤1500 while it decreases with increasing vibration amplitude for Re>1500. As a result of frequency lock-in, the average lift coefficient is increased with increasing vibration amplitude for all investigated Reynolds numbers (Re. The maximum increase in the average lift coefficient is 19.72% within the range of investigated parameters.

  17. Vibration Performance Comparison Study on Current Fiber Optic Connector Technologies

    Science.gov (United States)

    Ott, Melanie N.; Thomes Jr., William J.; LaRocca, Frank V.; Switzer, Robert C.; Chuska, Rick F.; Macmurphy, Shawn L.

    2008-01-01

    Fiber optic cables are increasingly being used in harsh environments where they are subjected to vibration. Understanding the degradation in performance under these conditions is essential for integration of the fibers into the given application. System constraints oftentimes require fiber optic connectors so subsystems can be removed or assembled as needed. In the present work, various types of fiber optic connectors were monitored in-situ during vibration testing to examine the transient change in optical transmission and the steady-state variation following the event. Inspection of the fiber endfaces and connectors was performed at chosen intervals throughout the testing.

  18. Performance evaluation on vibration control of MR landing gear

    Energy Technology Data Exchange (ETDEWEB)

    Lee, D Y; Nam, Y J; Park, M K [Graduate School, Pusan National University, Busan 609-735 (Korea, Republic of); Yamane, R [Kokushikan University, 4-28-1 Setagaya, Setagaya-ku, Tokyo 154-8515 (Japan)], E-mail: ldy5577@yahoo.co.kr, E-mail: mkpark1@pusan.ac.kr

    2009-02-01

    This paper is concerned with the applicability of the developed MR damper to the landing gear system for the attenuating undesired shock and vibration in the landing and taxing phases. First of all, the experimental model of the MR damper is derived based on the results of performance evaluations. Next, a simplified skyhook controller, which is one of the most straightforward, but effective approaches for improving ride comport in vehicles with active suspensions, is formulated. Then, the vibration control performances of the landing gear system using the MR damper are theoretically evaluated in the landing phase of the aircraft. A series of simulation analyses show that the proposed MR damper with the skyhook controller is effective for suppressing undesired vibration of the aircraft body. Finally, the effectiveness of the simulation results are additionally verified via HILS (Hardware-in-the-loop-simulation) method.

  19. Pemodelan dan Analisa Reduksi Respon Getaran Translasi pada Sistem Utama dan Energi Listrik yang Dihasilkan oleh Mekanisme Dynamic Vibration Absorber Metode Cantilever Piezoelectric (CPVA

    Directory of Open Access Journals (Sweden)

    Wahyu Rachma Efendy

    2017-03-01

    Full Text Available Getaran banyak terjadi pada mesin-mesin di industri. Salah satu solusi untuk mereduksi getaran berlebih adalah dengan menambahkan Dynamic Vibration Absorber (DVA. Prinsip kerja dari Dynamic Vibration Absorber adalah penambahan massa absorber dan pegas pada sistem utama. DVA akan mereduksi getaran sistem utama dengan menghasilkan getaran yang arahnya berlawanan dengan arah getar dari sistem utama. Berdasarkan penelitian yang dilakukan oleh Pachpute [1], penggunaan DVA telah terbukti dapat mereduksi getaran dari sistem utama yang dioperasikan di frekuensi natural secara signifikan. Dalam penelitian Tugas Akhir ini telah dirancang sebuah mekanisme alat vibration absorber dan energy harvesting metode Cantilever Piezoelectric Vibration Absorber (CPVA. Sistem utama yang digunakan dalam penelitian ini adalah plat datar yang ditopang oleh empat pegas. Plat tersebut akan menerima gaya eksitasi dari pegas dibawahnya yang dihubungkan dengan massa eksentris pada motor DC. Koefisien pegas yang digunakan untuk menumpu plat datar memiliki nilai yang sama, yaitu sebesar 300 N/m. Sehingga eksitasi yang terjadi pada plat datar hanya ke arah translasi. Pada penelitian ini, dilakukan analisa dengan variasi amplitudo massa eksentris sebesar 0.025 m, 0.030 m, dan 0.035 m. Kecepatan putaran motor sebesar 20.61 rad/s (frekuensi natural, 22.05 rad/s (frekuensi panen, dan 25 rad/s (frekuensi lembah. Sedangkan variasi jumlah cantilever piezoelectric yang digunakan adalah 2600, 2800, dan 3000 buah. Dari simulasi yang telah dilakukan, daya bangkitan dan nilai persentase reduksi terbesar dari CPVA terjadi ketika sistem dioperasikan di frekuensi naturalnya, yaitu sebesar 3.52E-7 watt dan 20.36%. Selain itu, dari simulasi juga didapatkan karakteristik CPVA dengan memvariasikan jumlah piezoelectric, didapatkan rentang jumlah piezoelectric optimum adalah 1400 hingga 2400 buah. Pada rentang tersebut, daya bangkitan dan persentase reduksi perpindahan massa utama terbesar yang

  20. Preparation of hollow microspheres of Ce3+ doped NiCo ferrite with high microwave absorbing performance

    Science.gov (United States)

    Duan, Hong-zhen; Zhou, Fang-ling; Cheng, Xia; Chen, Guo-hong; Li, Qiao-ling

    2017-02-01

    Hollow microspheres of Ce3+ doped NiCo-ferrites were synthesized by template-based-deposition and surface reaction method with carbon sphere as the template. The phase structure, morphology, magnetic properties and wave absorbing properties of the sample were characterized by X-ray powder diffraction(XRD), Scanning electronic microscopy(SEM), Vibration sample magnetometer (VSM) and a network vector analyzer (NVA), respectively. The results indicated that the particle size of the carbon sphere sample prepared by hydrothermal method was about 0.5 μm and the particle size of the Ni0.5Co0.5Fe2O4 sample prepared by template-based method was about 300 nm. The influence of the amount of rare earth element on the magnetic and absorbing properties of sample was studied. The saturation magnetization and coercivity decreased gradually with the increase of the content of Ce. When the content of Ce was 0.02, the maximal saturation magnetization value and coercivity was 75.72 emu•g-1 and 789.88 Oe, respectively. The associated ferrite hollow spheres have good absorbing performance, and the return loss value was -18.8 dB at 5500 MHz.

  1. Performance and Vibration Analyses of Lift-Offset Helicopters

    Directory of Open Access Journals (Sweden)

    Jeong-In Go

    2017-01-01

    Full Text Available A validation study on the performance and vibration analyses of the XH-59A compound helicopter is conducted to establish techniques for the comprehensive analysis of lift-offset compound helicopters. This study considers the XH-59A lift-offset compound helicopter using a rigid coaxial rotor system as a verification model. CAMRAD II (Comprehensive Analytical Method of Rotorcraft Aerodynamics and Dynamics II, a comprehensive analysis code, is used as a tool for the performance, vibration, and loads analyses. A general free wake model, which is a more sophisticated wake model than other wake models, is used to obtain good results for the comprehensive analysis. Performance analyses of the XH-59A helicopter with and without auxiliary propulsion are conducted in various flight conditions. In addition, vibration analyses of the XH-59A compound helicopter configuration are conducted in the forward flight condition. The present comprehensive analysis results are in good agreement with the flight test and previous analyses. Therefore, techniques for the comprehensive analysis of lift-offset compound helicopters are appropriately established. Furthermore, the rotor lifts are calculated for the XH-59A lift-offset compound helicopter in the forward flight condition to investigate the airloads characteristics of the ABC™ (Advancing Blade Concept rotor.

  2. Virtual Shaker Testing: Simulation Technology Improves Vibration Test Performance

    Science.gov (United States)

    Ricci, Stefano; Peeters, Bart; Fetter, Rebecca; Boland, Doug; Debille, Jan

    2008-01-01

    In the field of vibration testing, the interaction between the structure being tested and the instrumentation hardware used to perform the test is a critical issue. This is particularly true when testing massive structures (e.g. satellites), because due to physical design and manufacturing limits, the dynamics of the testing facility often couples with the test specimen one in the frequency range of interest. A further issue in this field is the standard use of a closed loop real-time vibration control scheme, which could potentially shift poles and change damping of the aforementioned coupled system. Virtual shaker testing is a novel approach to deal with these issues. It means performing a simulation which closely represents the real vibration test on the specific facility by taking into account all parameters which might impact the dynamic behavior of the specimen. In this paper, such a virtual shaker testing approach is developed. It consists of the following components: (1) Either a physical-based or an equation-based coupled electro-mechanical lumped parameter shaker model is created. The model parameters are obtained from manufacturer's specifications or by carrying out some dedicated experiments; (2) Existing real-time vibration control algorithm are ported to the virtual simulation environment; and (3) A structural model of the test object is created and after defining proper interface conditions structural modes are computed by means of the well-established Craig-Bampton CMS technique. At this stage, a virtual shaker test has been run, by coupling the three described models (shaker, control loop, structure) in a co-simulation routine. Numerical results have eventually been correlated with experimental ones in order to assess the robustness of the proposed methodology.

  3. Vibration or balance training on neuromuscular performance in osteopenic women.

    Science.gov (United States)

    Stolzenberg, N; Belavý, D L; Rawer, R; Felsenberg, D

    2013-11-01

    Maintaining neuromuscular function in older age is an important topic for aging societies, especially for older women with low bone density who may be at risk of falls and bone fracture. This randomized controlled trial investigated the effect of resistive exercise with either whole-body vibration training (VIB) or coordination/balance training (BAL) on neuromuscular function (countermovement jump, multiple 1-leg hopping, sit-to-stand test). 68 postmenopausal women with osteopenia or osteoporosis were recruited for the study. 57 subjects completed the 9-month, twice weekly, intervention period. All subjects conducted 30 min of resistance exercise each training day. The VIB-group performed additional training on the Galileo vibration exercise device. The BAL-group performed balance training. An "intent-to-treat" analysis showed greater improvement in the VIB-group for peak countermovement power (p=0.004). The mean [95% confidence interval] effect size for this parameter was a  + 0.9[0.3 to 1.5] W/kg greater change in VIB than BAL after 9 months. In multiple 1-leg hopping, a significantly better performance in the VIB-group after the intervention period was seen on a "per-protocol" analysis only. Both groups improved in the sit-to-stand test. The current study provides evidence that short-duration whole-body vibration exercise can have a greater impact on some aspects of neuromuscular function in post-menopausal women with low bone density than proprioceptive training. © Georg Thieme Verlag KG Stuttgart · New York.

  4. Effects of Absorber Emissivity on Thermal Performance of a Solar Cavity Receiver

    Directory of Open Access Journals (Sweden)

    Jiabin Fang

    2014-01-01

    Full Text Available Solar cavity receiver is a key component to realize the light-heat conversion in tower-type solar power system. It usually has an aperture for concentrated sunlight coming in, and the heat loss is unavoidable because of this aperture. Generally, in order to improve the thermal efficiency, a layer of coating having high absorptivity for sunlight would be covered on the surface of the absorber tubes inside the cavity receiver. As a result, it is necessary to investigate the effects of the emissivity of absorber tubes on the thermal performance of the receiver. In the present work, the thermal performances of the receiver with different absorber emissivity were numerically simulated. The results showed that the thermal efficiency increases and the total heat loss decreases with increasing emissivity of absorber tubes. However, the thermal efficiency increases by only 1.6% when the emissivity of tubes varies from 0.2 to 0.8. Therefore, the change of absorber emissivity has slight effect on the thermal performance of the receiver. The reason for variation tendency of performance curves was also carefully analyzed. It was found that the temperature reduction of the cavity walls causes the decrease of the radiative heat loss and the convective heat loss.

  5. Human Factors Assessment of Vibration Effects on Visual Performance During Launch

    Science.gov (United States)

    Holden, Kritina

    2009-01-01

    The Human Factors Assessment of Vibration Effects on Visual Performance During Launch (Visual Performance) investigation will determine visual performance limits during operational vibration and g-loads on the Space Shuttle, specifically through the determination of minimum readable font size during ascent using planned Orion display formats. Research Summary: The aim of the Human Factors Assessment of Vibration Effects on Visual Performance during Launch (Visual Performance) investigation is to provide supplementary data to that collected by the Thrust Oscillation Seat Detailed Technical Objective (DTO) 695 (Crew Seat DTO) which will measure seat acceleration and vibration from one flight deck and two middeck seats during ascent. While the Crew Seat DTO data alone are important in terms of providing a measure of vibration and g-loading, human performance data are required to fully interpret the operational consequences of the vibration values collected during Space Shuttle ascent. During launch, crewmembers will be requested to view placards with varying font sizes and indicate the minimum readable size. In combination with the Crew Seat DTO, the Visual Performance investigation will: Provide flight-validated evidence that will be used to establish vibration limits for visual performance during combined vibration and linear g-loading. o Provide flight data as inputs to ongoing ground-based simulations, which will further validate crew visual performance under vibration loading in a controlled environment. o Provide vibration and performance metrics to help validate procedures for ground tests and analyses of seats, suits, displays and controls, and human-in-the-loop performance.

  6. Whole body vibration improves attention and motor performance in ...

    African Journals Online (AJOL)

    Background: Whole body vibration (WBV) is a form of physical stimulation via mechanical vibrations transmitted to a subject. It is assumed that WBV induces sensory stimulation in cortical brain regions through the activation of skin and muscle receptors responding to the vibration. The effects of WBV on muscle strength are ...

  7. Performance of external cavity mode-locked semiconductor lasers employing reverse biased saturable absorbers

    DEFF Research Database (Denmark)

    Yvind, Kresten; Skovgaard, P.M.W.; Mørk, Jesper

    2002-01-01

    We have experimentally investigated the performance of external cavity mode-locked semiconductor lasers employing reverse biased saturable absorbers. We have measured the magnitude of trailing pulses when varying the chip length and studied the pulse quality when changing the driving conditions...

  8. High-performance terahertz wave absorbers made of silicon-based metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Sheng; Zhu, Jianfei; Jiang, Wei; Yuan, Jun; Yin, Ge; Ma, Yungui, E-mail: yungui@zju.edu.cn [State Key Lab of Modern Optical Instrumentation, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310058 (China); Xu, Wendao; Xie, Lijuan; Ying, Yibin [College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058 (China)

    2015-08-17

    Electromagnetic (EM) wave absorbers with high efficiency in different frequency bands have been extensively investigated for various applications. In this paper, we propose an ultra-broadband and polarization-insensitive terahertz metamaterial absorber based on a patterned lossy silicon substrate. Experimentally, a large absorption efficiency more than 95% in a frequency range of 0.9–2.5 THz was obtained up to a wave incident angle as large as 70°. Much broader absorption bandwidth and excellent oblique incidence absorption performance are numerically demonstrated. The underlying mechanisms due to the combination of a waveguide cavity mode and impedance-matched diffraction are analyzed in terms of the field patterns and the scattering features. The monolithic THz absorber proposed here may find important applications in EM energy harvesting systems such as THz barometer or biosensor.

  9. The influence of longitudinal vibrations on the heat transfer performance of inclined heat pipes

    National Research Council Canada - National Science Library

    Chen, Rong-Horng; Kuo, LW; Lai, Chi-Ming

    2015-01-01

    This study focused on investigating the influence of longitudinal vibrations, the condensation section temperature, and the inclination angles on the heat transfer performance of grooved cylindrical...

  10. Performance Monitoring of Vibration in Belt Conveyor System

    Directory of Open Access Journals (Sweden)

    S.Ojha

    2014-07-01

    Full Text Available We are always using some kind of machines in our daily life starting from fan, refrigerator and washing machines at home. In case of industries of industrial machinery items condition monitoring is important to know onset impending defects. There are so many types of indicating phenomenon such as vibration, heat, debris in oil, noise and sounds which emanate from these in efficiently running machines. This paper presents the vibration related fault identification and maintenance of belt conveyor systems (BCS. After analyzing the spectrum and vibration readings, it was observed that a combination of parallel and angular misalignment between motor & gear box was present causing high axial and radial vibration. The defect was rectified by mechanical maintenance activities and latter the vibration was found reduced within limit. Also the vibration readings were taken after rectification. The above results are presented in this paper.

  11. The influence of seat backrest angle on human performance during whole-body vibration.

    Science.gov (United States)

    Paddan, G S; Holmes, S R; Mansfield, N J; Hutchinson, H; Arrowsmith, C I; King, S K; Jones, R J M; Rimell, A N

    2012-01-01

    This study investigated the effects of reclined backrest angles on cognitive and psycho-motor tasks during exposure to vertical whole-body vibration. Twenty participants were each exposed to three test stimuli of vertical vibration: 2-8 Hz; 8-14 Hz and 14-20 Hz, plus a stationary control condition whilst seated on a vibration platform at five backrest angles: 0° (recumbent, supine) to 90° (upright). The vibration magnitude was 2.0 ms(-2) root-mean-square. The participants were seated at one of the backrest angles and exposed to each of the three vibration stimuli while performing a tracking and choice reaction time tasks; then they completed the NASA-TLX workload scales. Apart from 22.5° seat backrest angle for the tracking task, backrest angle did not adversely affect the performance during vibration. However, participants required increased effort to maintain performance during vibration relative to the stationary condition. These results suggest that undertaking tasks in an environment with vibration could increase workload and risk earlier onset of fatigue. Current vibration standards provide guidance for assessing exposures for seated, standing and recumbent positions, but not for semi-recumbent postures. This paper reports new experimental data systematically investigating the effect of backrest angle on human performance. It demonstrates how workload is elevated with whole-body vibration, without getting affected by backrest angle.

  12. A Study of the Anechoic Performance of Rice Husk-Based, Geometrically Tapered, Hollow Absorbers

    Directory of Open Access Journals (Sweden)

    Muhammad Nadeem Iqbal

    2014-01-01

    Full Text Available Although solid, geometrically tapered microwave absorbers are preferred due to their better performance, they are bulky and must have a thickness on the order of λ or more. The goal of this study was to design lightweight absorbers that can reduce the electromagnetic reflections to less than −10 dB. We used a very simple approach; two waste materials, that is, rice husks and tire dust in powder form, were used to fabricate two independent samples. We measured and used their dielectric properties to determine and compare the propagation constants and quarter-wave thickness. The quarter-wave thickness for the tire dust was 3 mm less than that of the rice husk material, but we preferred the rice-husk material. This preference was based on the fact that our goal was to achieve minimum backward reflections, and the rice-husk material, with its low dielectric constant, high loss factor, large attenuation per unit length, and ease of fabrication, provided a better opportunity to achieve that goal. The performance of the absorbers was found to be better (lower than −20 dB, and comparison of the results proved that the hollow design with 58% less weight was a good alternative to the use of solid absorbers.

  13. Comparison of sound absorbing performances of copper foam and iron foam with the same parameters

    Science.gov (United States)

    Yang, X. C.; Shen, X. M.; Xu, P. J.; Zhang, X. N.; Bai, P. F.; Peng, K.; Yin, Q.; Wang, D.

    2018-01-01

    Sound absorbing performances of the copper foam and the iron foam with the same parameters were investigated by the AWA6128A detector according to standing wave method. Two modes were investigated, which included the pure metal foam mode and the combination mode with the settled thickness of metal foam. In order to legibly compare the sound absorbing coefficients of the two metal foams, the detected sound frequency points were divided into the low frequency range (100 Hz ~ 1000 Hz), the middle frequency range (1000 Hz ~ 3200 Hz), and the high frequency range (3500 Hz ~ 6000 Hz). Sound absorbing performances of the two metal foams in the two modes were discussed within the three frequency ranges in detail. It would be calculated that the average sound absorbing coefficients of copper foam in the pure metal foam mode were 12.6%, 22.7%, 34.6%, 43.6%, 51.1%, and 56.2% when the thickness was 5 mm, 10 mm, 15 mm, 20 mm, 25 mm, and 30 mm. meanwhile, in the combination mode, the average sound absorbing coefficients of copper foam with the thickness of 10 mm were 30.6%, 34.8%, 36.3%, and 35.8% when the cavity was 5 mm, 10 mm, 15 mm, and 20 mm. In addition, those of iron foam in the pure metal foam mode were 13.4%, 20.1%, 34.4%, 43.1%, 49.6%, and 56.1%, and in the combination mode were 25.6%, 30.5%, 34.3%, and 33.4%.

  14. Experimental verification of a high performed multiple-band metamaterial absorber

    Science.gov (United States)

    Zhang, Zhenya; Wang, Saisai

    2017-05-01

    In this paper, a thin-film metamaterial absorber with multiple-band is experimental verified and calculated analysis. Two absorption peaks higher than 99% and 98% are obtained at normal incidence. The resonance of the local surface plasma (LSP) mode and the internal surface plasmon (ISP) mode lead to the two high absorption peaks. The impedance matched condition is obtained behind two high absorption peaks. Measured results indicate that high absorption performed can be observed with different dielectric layer combinations (Al2O3-ZnSe, Al2O3-Al2O3, and ZnSe-ZnSe), which indicates that the designed metamaterial absorber is insensitive to the dielectric layer combination. High absorption performed is obtained under both TE and TM configurations at various incident angles.

  15. The Experimental Performance of an Unglazed PVT Collector with Two Different Absorber Types

    Directory of Open Access Journals (Sweden)

    Jin-Hee Kim

    2012-01-01

    Full Text Available Photovoltaic-thermal collectors combine photovoltaic modules and solar thermal collectors, forming a single device that produces electricity and heat simultaneously. There are two types of liquid-type PVT collectors, depending on the existence or absence of a glass cover over the PV module. The glass-covered (glazed PVT collector produces relatively more thermal energy but has a lower electrical yield, whereas the uncovered (unglazed PVT collector has a relatively low thermal energy and somewhat higher electrical performance. The thermal and electrical performance of liquid-type PVT collectors is related not only to the collector design, such as whether a glass cover is used, but also to the absorber design, that is, whether the absorber is for the sheet-and-tube type or the fully wetted type. The design of the absorber, as it comes into contact with the PV modules and the liquid tubes, is regarded as important, as it is related to the heat transfer from the PV modules to the liquid in the tubes. In this paper, the experimental performance of two liquid-type PVT collectors, a sheet-and-tube type and a fully wetted type, was analyzed.

  16. A Field Performance Evaluation Scheme for Microwave-Absorbing Material Coatings

    Directory of Open Access Journals (Sweden)

    Shaopeng Guan

    2017-03-01

    Full Text Available Performance evaluation is an important aspect in the study of microwave-absorbing material coatings. The reflectivity of the incident wave is usually taken as the performance indicator. There have been various methods to directly or indirectly measure the reflectivity, but existing methods are mostly cumbersome and require a strict testing environment. What is more, they cannot be applied to field measurement. In this paper, we propose a scheme to achieve field performance evaluation of microwave-absorbing materials, which adopts a small H-plane sectoral horn antenna as the testing probe and a small microwave reflectometer as the indicator. When the size of the H-plane sectoral horn antenna is specially designed, the field distribution at the antenna aperture can be approximated as a plane wave similar to the far field of the microwave emitted by a radar unit. Therefore, the reflectivity can be obtained by a near-field measurement. We conducted experiments on a kind of ferrite-based microwave-absorbing material at X band (8.2–12.4 GHz to validate the scheme. The experimental results show that the reflectivity is in agreement with the reference data measured by the conventional method as a whole.

  17. Performance of active vibration control technology: the ACTEX flight experiments

    Science.gov (United States)

    Nye, T. W.; Manning, R. A.; Qassim, K.

    1999-12-01

    This paper discusses the development and results of two intelligent structures space-flight experiments, each of which could affect architecture designs of future spacecraft. The first, the advanced controls technology experiment I (ACTEX I), is a variable stiffness tripod structure riding as a secondary payload on a classified spacecraft. It has been operating well past its expected life since becoming operational in 1996. Over 60 on-orbit experiments have been run on the ACTEX I flight experiment. These experiments form the basis for in-space controller design problems and for concluding lifetime/reliability data on the active control components. Transfer functions taken during the life of ACTEX I have shown consistent predictability and stability in structural behavior, including consistency with those measurements taken on the ground prior to a three year storage period and the launch event. ACTEX I can change its modal characteristics by employing its dynamic change mechanism that varies preloads in portions of its structure. Active control experiments have demonstrated maximum vibration reductions of 29 dB and 16 dB in the first two variable modes of the system, while operating over a remarkable on-orbit temperature range of -80 °C to 129 °C. The second experiment, ACTEX II, was successfully designed, ground-tested, and integrated on an experimental Department of Defense satellite prior to its loss during a launch vehicle failure in 1995. ACTEX II also had variable modal behavior by virtue of a two-axis gimbal and added challenges of structural flexibility by being a large deployable appendage. Although the loss of ACTEX II did not provide space environment experience, ground testing resulted in space qualifying the hardware and demonstrated 21 dB, 14 dB, and 8 dB reductions in amplitude of the first three primary structural modes. ACTEX II could use either active and/or passive techniques to affect vibration suppression. Both experiments trailblazed

  18. Effect Of Vibration On Occupant Driving Performances Measured By Simulated Driving

    Directory of Open Access Journals (Sweden)

    Amzar Azizan

    2015-08-01

    Full Text Available Although the performance of vehicle driver has been well investigated in many types of environments however drowsy driving caused by vibration has received far less attention. Experiment procedures comprised of two 10-minutes simulated driving sessions in no-vibration condition and with-vibration condition. In with-vibration condition volunteers were exposed to a Gaussian random vibration with 1-15 Hz frequency bandwidth at 0.2 ms-2 r.m.s. for 30-minutes. A deviation in lane position and vehicle speed were recorded and analyzed. Volunteers have also rated their subjective drowsiness by giving score using Karolinska Sleepiness Scale KSS every 5-minutes interval. Strong evidence of driving impairment following 30-minutes exposure to vibration were found significant in all volunteers p 0.05.

  19. Performance enhancement of uncooled infrared focal plane array by integrating metamaterial absorber

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Wei; Wen, Yongzheng; Yu, Xiaomei, E-mail: yuxm@pku.edu.cn [National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Institute of Microelectronics, Peking University, Beijing 100871 (China); Feng, Yun; Zhao, Yuejin [Beijing Key Lab for Precision Optoelectronic Measurement Instrument and Technology, School of Optoelectronics, Beijing Institute of Technology, Beijing, 100871 (China)

    2015-03-16

    This letter presents an infrared (IR) focal plane array (FPA) with metamaterial absorber (MMA) integrated to enhance its performance. A glass substrate, on which arrays of bimaterial cantilevers are fabricated as the thermal-sensitive pixels by a polyimide surface sacrificial process, is employed to allow the optical readout from the back side of the substrate. Whereas the IR wave radiates onto the FPA from the front side, which consequently avoids the energy loss caused by the silicon substrate compared with the previous works. This structure also facilitates the integration of MMA by introducing a layer of periodic square resonators atop the SiN{sub x} structural layer to form a metal/dielectric/metal stack with the gold mirror functioning as the ground plane. A comparative experiment was carried out on the FPAs that use MMA and ordinary SiN{sub x} as the absorbers, respectively. The performance improvement was verified by the evaluation of the absorbers as well as the imaging results of both FPAs.

  20. Diode-based microbolometer with performance enhanced by broadband metamaterial absorber.

    Science.gov (United States)

    Ma, Wei; Jia, Delin; Wen, Yongzheng; Yu, Xiaomei; Feng, Yun; Zhao, Yuejin

    2016-07-01

    This Letter reports a microbolometer integrated with a broadband metamaterial absorber (MMA) to enhance its performance, which contains series-connected silicon diodes as the temperature sensor. The broadband MMA is readily integrated into the device by introducing an array of different-sized square resonators on the silicon nitride structural layer, while the widened titanium interconnecting wires between individual diodes serve as the ground plane. In a comparative experiment, the broadband MMA was demonstrated to be superior to the ordinary silicon nitride absorber in a broad spectra range, especially in a long-wavelength IR regime, which directly leads to an increase in IR responsivity by 60%. More importantly, this enhancement in responsivity was achieved with no sacrifice of the response time due to the negligible thermal mass of the introduced resonator array.

  1. Evaluation of Breaking Performance in Vibration-Assisted Electrostatic Surface Induction Actuator

    DEFF Research Database (Denmark)

    Nemoto, Takeru; Zsurzsan, Tiberiu-Gabriel; Yamamoto, Akio

    2015-01-01

    force can be changed by turning on and off the vibrator. The friction change can be utilized for high-performance slider motion control; for example, friction can be increased by switching off the vibrator when the slider needs to stop. In this paper, we evaluated how fast the slider can stop in several...

  2. Experimental and Numerical Study of the Effects of Acoustic Sound Absorbers on the Cooling Performance of Thermally Active Building Systems

    DEFF Research Database (Denmark)

    Domínguez, L. Marcos; Kazanci, Ongun Berk; Rage, Nils

    2017-01-01

    Free-hanging horizontal and vertical sound absorbers are commonly used in buildings for room acoustic control; however, when these sound absorbers are used in combination with Thermally Active Building Systems, they will decrease the cooling performance of Thermally Active Building Systems and th...

  3. SDBI 1904: Human Factors Assessment of Vibration Effects on Visual Performance during Launch

    Science.gov (United States)

    Thompson, Shelby G.; Holden, Kritina; Root, Phillip; Ebert, Douglas; Jones, Jeffery; Adelstein, Bernard

    2009-01-01

    The primary objective of the of Human Factors Short Duration Bioastronautics Investigation (SDBI) 1904 is to determine visual performance limits during operational vibration and g-loads, specifically through the determination of minimal usable font sized using Orion-type display formats. Currently there is little to no data available to quantify human visual performance under these extreme conditions. Existing data on shuttle vibration magnitude and frequency is incomplete, does not address sear and crew vibration in the current configuration, and does not address human visual performance. There have been anecdotal reports of performance decrements from shuttle crews, but no structured data has been collected. The SDBI is a companion effort to the Detailed Test Objective (DTO) 695, which will measure shuttle seat accelerations (vibration) during ascent. Data fro the SDBI will serve an important role in interpreting the DTO vibration data. This data will be collected during the ascent phase of three shuttle missions (STS-119, 127, and 128). Both SDBI1904 and DTO 695 are low impact with respect to flight resources, and combined they represent an efficient and focused problem solving approach. The SDBI and DTO data will be correlated to determine the nature of perceived visual performance under varying vibrations and g-loads. This project will provide: 1) Immediate data for developing preliminary human performance vibration requirements; 2) Flight validated inputs for ongoing and future ground-based research; and 3) Information of functional needs that will drive Orion display format design decisions.

  4. Experimental and numerical characterization of a mid-infrared plasmonic perfect absorber for dual-band enhanced vibrational spectroscopy

    Science.gov (United States)

    Aslan, Erdem; Aslan, Ekin; Turkmen, Mustafa; Saracoglu, Omer Galip

    2017-11-01

    Plasmonic perfect absorbers (PPAs) have promising properties to be utilized in molecular sensing and spectroscopy applications such as surface enhanced infrared absorption (SEIRA) and surface enhanced Raman spectroscopy (SERS). In order to employ these properties and demonstrate the great potential of PPAs, investigation and demonstration of PPA designs and their sensing applications are highly needed. In this context, we present the design, optical characterization, experimental realization and dual-band sensing application of a subwavelength PPA array for infrared detection and surface enhanced spectroscopy applications. We analyze the PPA to investigate the absorption spectra and the fine-tuning mechanism through the parameter sweep simulations and experiments. In order to understand the absorption mechanism, we investigate the charge and current density distribution maps with electric and magnetic field enhancement effects. Additionally, we demonstrate the potential usage and reliability of the proposed PPA by presenting the experimental results of the dual-band detection of a conformal polymethyl methacrylate layer with nanometer-scale thickness atop the PPA. According to the experimental and simulation results of this study, the proposed PPA can be utilized in multiband molecular detection and high sensitive spectroscopy applications.

  5. Design of an Ultrasonic Elliptic-Vibration Shoe and Its Performance in Ultrasonic Elliptic-Vibration-Shoe Centerless Grinding

    Science.gov (United States)

    Fan, Yufeng; Wu, Yongbo; Kato, Masana; Tachibana, Toru; Syoji, Katsuo; Kuriyagawa, Tsunemoto

    We describe the design of an ultrasonic elliptic-vibration shoe and its performance in ultrasonic elliptic-vibration-shoe centerless grinding. First, the vibration modes of the shoe for the bending and longitudinal directions are discussed and determined from the point of view of fixing the support of the shoe. Then the structure and dimensions of the shoe are determined by FEM (Finite Element Method) analysis. In order to clarify the performance of the produced shoe, an evaluation apparatus is built. The elliptic motions under different applied voltages are investigated using laser vibrometers. Finally, workpiece rotational motion control tests and actual grinding operations are carried out. As a result, it is clarified that the workpiece rotational speed changes linearly with variation of the applied voltage. This indicates that the workpiece rotational motion can be precisely controlled by the elliptic motion of the shoe. In addition, the workpiece roundness was clearly improved from an initial value of 25µm to a final value of 0.64µm after grinding, indicating that the produced shoe performed well in actual grinding operations.

  6. PERFORMANCE CHARACTERISTICS OF PARABOLIC SOLAR COLLECTOR WATER HEATER SYSTEM FITTED WITH NAIL TWISTED TAPES ABSORBER

    Directory of Open Access Journals (Sweden)

    K. SYED JAFAR

    2017-03-01

    Full Text Available In this paper, the experimental heat transfer, friction loss and thermal performance data for water flowing through the absorber tube fitted with two different twisted tape configurations in parabolic trough collector (PTC are presented. In the present work, a relative experimental study is carried out to investigate the performance of a PTC influenced by heat transfer through fluidabsorber wall mixing mechanism. The major findings of this experiment show that heat transport enhancement in the nail twisted tape collector perform significantly better than plain twisted tapes and also show that the smallest twisted tape ratio enhances the system performance remarkably maximizing the collector efficiency. The results suggest that the twisted tape and nail twisted tape would be a better option for high thermal energy collection in laminar region of the PTC system.

  7. On the short-term uncertainty in performance f a point absorber wave energy converter

    Energy Technology Data Exchange (ETDEWEB)

    Coe, Ryan Geoffrey [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Michelen, Carlos [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Manuel, Lance [Univ. of Texas, Austin, TX (United States); Canning, Jarred [Univ. of Texas, Austin, TX (United States)

    2016-03-01

    Of interest, in this study, is the quantification of uncertainty in the performance of a two-body wave point absorber (Reference Model 3 or RM3), which serves as a wave energy converter (WEC). We demonstrate how simulation tools may be used to establish short-term relationships between any performance parameter of the WEC device and wave height in individual sea states. We demonstrate this methodology for two sea states. Efficient structural reliability methods, validated using more expensive Monte Carlo sampling, allow the estimation of uncertainty in performance of the device. Such methods, when combined with metocean data quantifying the likelihood of different sea states, can be useful in long-term studies and in reliability-based design.

  8. Enhancing the Performance of the Microwave Absorbing Materials by Using Dielectric Resonator Arrays

    Directory of Open Access Journals (Sweden)

    Omar H. Al-Zoubi

    2017-01-01

    Full Text Available We present a technique for enhancing the performance of microwave absorbing materials in terms of weight, thickness, and bandwidth. The introduced technique is based on fabricating the microwave absorbing (MA material in a structure comprised of an array of circular cylinder dielectric resonators (CDR backed by a perfect electric conductor (PEC ground plane. Numerical electromagnetic methods are employed to study the properties of the proposed MA array structures, where 3D full wave simulation using finite-element method is implemented. The obtained results show that the performance of the MA-CDR arrays significantly outperforms that of a flat layer composed of the same material and having equivalent thickness. A flat layer of MA material with thickness of 5 mm backed by perfect electric conductor (PEC shows as low as -50 dB reflection loss (RL peak and ~3 GHz 10-dB bandwidth, whereas an MA-CDR array, composed of the same MA material, of height of 4 mm can achieve as low as ~−50 dB RL peak and ~12 GHz 10-dB RL bandwidth.

  9. Short Duration Bioastronautics Investigation 1904: Human Factors Assessment of Vibration Effects on Visual Performance during Launch

    Science.gov (United States)

    Thompson, Shelby; Holden, Kritina; Ebert, Douglas; Root, Phillip; Adelstein, Bernard; Jones, Jeffery

    2009-01-01

    The primary objective of the Short Duration Bioastronautics Investigation (SDBI) 1904 was to determine visual performance limits during Shuttle operational vibration and g-loads, specifically through the determination of minimal usable font sizes using Orion-type display formats. Currently there is little to no data available to quantify human visual performance under the extreme g- and vibration conditions of launch. Existing data on shuttle vibration magnitude and frequency is incomplete and does not address human visual performance. There have been anecdotal reports of performance decrements from shuttle crews, but no structured data have been collected. Previous work by NASA on the effects of vibration and linear g-loads on human performance was conducted during the Gemini era, but these experiments were performed using displays and controls that are dramatically different than current concepts being considered by the Constellation Program. Recently, three investigations of visual performance under vibration have been completed at NASA Ames Research Center: the first examining whole-body vibration, the second employing whole-body vibration coupled with a sustained g-load, and a third examining the effects of peak versus extended duration vibration. However, all of these studies were conducted using only a single x-axis direction (eyeballs in/out). Estimates of thrust oscillations from the Constellation Ares-I first stage are driving the need for realistic human performance requirements. SDBI 1904 was an opportunity to address the need for requirements by conducting a highly focused and applied evaluation in a relevant spaceflight environment. The SDBI was a companion effort to Detailed Test Objective (DTO) 695, which measured shuttle seat accelerations (vibration) during ascent. Data from the SDBI will serve an important role in interpreting the DTO vibration data. Both SDBI 1904 and DTO 695 were low impact with respect to flight resources, and combined, they

  10. Effect of Frequency and Vibration Time on Shaker Performance for Mechanized Harvesting of Orange (Thomson cultivar

    Directory of Open Access Journals (Sweden)

    H Ghorbanpour

    2012-09-01

    Full Text Available Manual citrus harvesting is commonly performing hard, expensive and time consuming. In this study, a factorial experiment with a completely randomized design in three replications was performed to find out the effect of frequency (three levels of 5, 7.5 and 10 Hz, vibration time (three levels of 10, 15 and 20 seconds on harvesting capacity and losses of Thomson cultivar of orange. The results indicated that the effect of frequency and vibration time was significant (P≤0.01 on the harvesting capacity and losses, but their interaction effects weren’t significant. The harvesting capacity significantly increased by increasing frequency, and the highest harvesting capacity was 62.8 % at 10 Hz frequency. Although the harvesting capacity increased by increasing the vibration time, but there was no significant difference in vibration times between 15 and 20 seconds at 10 Hz frequency. Also the fruit loss was increased by increasing the vibration time. Due to these reasons, frequency of 10 Hz and vibration time of 15 seconds were selected as the most suitable condition for mechanized harvesting of this cultivar of orange. Finally a linear mathematical model was developed based on the frequency and vibration time for the harvesting capacity and fruit loss of Thomson cultivar of orange.

  11. Performance advantages of CPML over UPML absorbing boundary conditions in FDTD algorithm

    Science.gov (United States)

    Gvozdic, Branko D.; Djurdjevic, Dusan Z.

    2017-01-01

    Implementation of absorbing boundary condition (ABC) has a very important role in simulation performance and accuracy in finite difference time domain (FDTD) method. The perfectly matched layer (PML) is the most efficient type of ABC. The aim of this paper is to give detailed insight in and discussion of boundary conditions and hence to simplify the choice of PML used for termination of computational domain in FDTD method. In particular, we demonstrate that using the convolutional PML (CPML) has significant advantages in terms of implementation in FDTD method and reducing computer resources than using uniaxial PML (UPML). An extensive number of numerical experiments has been performed and results have shown that CPML is more efficient in electromagnetic waves absorption. Numerical code is prepared, several problems are analyzed and relative error is calculated and presented.

  12. Experimental Investigation of the Power Generation Performance of Floating-Point Absorber Wave Energy Systems: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y.; Yu, Y.; Epler, J.; Previsic, M.

    2012-04-01

    The extraction of energy from ocean waves has gained interest in recent years. The floating-point absorber (FPA) is one of the most promising devices among a wide variety of wave energy conversion technologies. Early theoretical studies mainly focused on understanding the hydrodynamics of the system and on predicting the maximum power that could be extracted by a heaving body. These studies evolve from the investigation of floating-body interactions in offshore engineering and naval architecture disciplines. To our best knowledge, no systematic study has been reported about the investigation of the power generation performance of an FPA with a close-to-commercial design. A series of experimental tests was conducted to investigate the power extraction performance of an FPA system.

  13. Performance of a table vibration type coffee grading machine

    Directory of Open Access Journals (Sweden)

    Sukrisno Widyotomo

    2005-05-01

    Full Text Available One of important coffee beans quality is the size uniformity. To confirm with the standart requirement, coffee beans have to be graded before being traded. Until now, grading process is still carried out fully manual, so that the grading cost is very expensive about 40% of total processing cost. Meanwhile, shortage of skill workers is as a limiting factor of the process. Therefore, machine for grading coffee beans is good alternative for grading cost. Indonesian Coffee and Cocoa Research Institute has designed a table vibration type coffee grading machine for grouping of coffee beans in order to consistent quality and reduce grading cost. The machine has dimension of 272 cm length, 126 cm height, and 144 cm width. The machine has three primary components, i.e. grader table, combustion engine, and beam. The machine has three kinds of grader table that each grader table has different holes size, i.e. 7 mm x 7 mm for top grader table, 5 mm x 5 mm for axle grader table, and 4 mm x 4 mm for bottom grader table. Each grader table has dimension of 206 cm length, 105.5 cm height, and 14 cm width. The grading mechanism is by vibration grader table with the power source 5.5 HP combustion engine. The results shown that the outlet are in farms of three grades of coffee beans with connected to each compartement. Assessment of the grading machine reveals that the optimum capacity of 1,406 kg/hour reached when the speed 2,600 rpm and the angle 10O. Economic analysis showed that operational cost for grading one kilogram Robusta coffee beans with moisture content 13—14% wet basis is Rp 7.17.Key words : grading, coffee, quality, vibration table.

  14. The Effects of Vibration Frequencies on Physical, Perceptual and Cognitive Performance

    Science.gov (United States)

    2006-10-01

    l’intégration d’un réseau multicouches de vétronique, dans lequel tous les systèmes pourront être accessibles sur chacun des postes de travail de l’équipe...fournir ainsi un environnement de travail suffisamment stable pour utiliser le réseau de vétronique. Une suspension active absorbe l’énergie dynamique...du sol , l’analyse, puis applique un signal d’énergie équivalent visant à compenser les aspérités du sol , ce qui permet d’amortir les vibrations lors

  15. Enhancement of rowing performance in athletes after focal muscle vibration therapy

    Directory of Open Access Journals (Sweden)

    Francesca Grasso

    2017-06-01

    Full Text Available Muscle vibration has been reported to induce long lasting effects on proprioception when applied on specific body segment. The aim of this study was to evaluate the effect of focal muscle vibration applied on quadriceps and latissimus dorsi muscles in athletes evaluate during rowing test. Sixteen volunteered national level sculling stroke rowers has been randomized in a study group and in a control group (treated with sham vibration. The overall kinematic consistency, joints angular acceleration patterns and performance test has been used as evaluation. Results showed statistical significant values for angular accelerations at the knee and shoulder joints and significant effect of the time course of the trial. Vibration treatment seems to be an useful proprioceptive stimulation in sport activities to improve muscle control and performance.

  16. Determination of carbohydrates by high-performance capillary electrophoresis with indirect absorbance detection.

    Science.gov (United States)

    Lee, Y H; Lin, T I

    1996-05-31

    High-performance capillary electrophoresis (HPCE) methods with indirect absorbance detection (IAD) have been developed for the determination of carbohydrates, e.g. glucose, fructose, rhamnose, ribose, maltose, lactose, sucrose and gluconic acid. The suitability and performance of six background electrolytes (BGEs), i.e., 1-naphthylacetic acid (NAA), 2-naphthalenesulfonic acid, 1,3-dihydroxynaphthalene, phenylacetic acid, p-cresol and sorbic acid, for the IAD method were investigated. The effects of the concentration of the BGE, pH and temperature on the CE separation of these analytes were evaluated. NAA was found to be best suited as the carrier buffer and background absorbance provider for the detection at 222 nm. The optimal CE performance was found when employing 2 mM NAA, pH 12.2, at 25 degrees C. In comparison with the previous method that used sorbate as the BGE, the present method utilizing NAA shows a 3-6 fold increase in the separation efficiency and a 2-5 fold improvement in the detection limit. The calculated number of theoretical plates is in the range of 1.0-3.0 x 10(5). The precision of the present method for most sugar analytes, measured by the coefficient of variation (C.V.), typically, is less than 1% for the migration time and better than 3% for the peak height and peak area (n = 6). The detection limit is about 0.1 mM for all analytes, except for ribose for which it is about 0.2 mM. This new method is fast, accurate and can be readily applied to real biological samples for quantitative determination of selected carbohydrates.

  17. Study on Ballistic Absorbing Energy Character of High Performance Polyethylene Needle Felt

    Science.gov (United States)

    Kailiang, Zhu; Jianqiao, Fu

    2017-11-01

    The ballistic performance of polyethylene needle felt is tested and the failure morphology after test is also observed. The results showed that when the non-dimensionally non-stressed fibers in polyethylene needles are subjected to high-speed projectile, secondary movement such as stretching and twisting occurs first. This secondary movement is very full, it is the main way of ballistic absorbing energy of the polyethylene needle felt which can avoid the polyethylene fiber short-term rapid heating-up and destroyed. Analysis results show that under normal temperature and humidity conditions, the V50 of 6-layer forded polyethylene needle felt sample is 250m/s. At (450 ± 50) m/s speed range of the target missile, the mean value of the penetrative specific energy absorption for 3-layer forded polyethylene needle felt anti-1.1g simulated projectiles (tapered column) reaches 24.1J·m2/kg.

  18. Performance of fast-absorbable suture and histo-glue in closing incisions in Brown trout

    DEFF Research Database (Denmark)

    Jepsen, Niels; Larsen, Martin Hage; Aarestrup, Kim

    2017-01-01

    ways to close incisions, typically for implants of tags under field conditions. Problems are regularly encountered when closing incisions with traditional absorbable or non-absorbable suture, including decreased growth, slow wound healing, erythema and necrosis at sutures. In this study, survival......, growth, tag expulsion rate and incision healing was compared among three groups of dummy transmitter-tagged wild brown trout Salmo trutta where incisions were closed with two types of suture material (absorbable vs. fast absorbable) and Histo-glue. The tagged fish were kept in semi-natural ponds for 20...... days. Survival did not differ between groups, but growth of the tagged fish was lower than that of the control group. Histo-glue gave the best healing, but resulted in high tag loss rate (33%). The fast absorbable suture did not disappear faster than normal absorbable suture, healing and tag loss...

  19. Real-Time Performance of Mechatronic PZT Module Using Active Vibration Feedback Control.

    Science.gov (United States)

    Aggogeri, Francesco; Borboni, Alberto; Merlo, Angelo; Pellegrini, Nicola; Ricatto, Raffaele

    2016-09-25

    This paper proposes an innovative mechatronic piezo-actuated module to control vibrations in modern machine tools. Vibrations represent one of the main issues that seriously compromise the quality of the workpiece. The active vibration control (AVC) device is composed of a host part integrated with sensors and actuators synchronized by a regulator; it is able to make a self-assessment and adjust to alterations in the environment. In particular, an innovative smart actuator has been designed and developed to satisfy machining requirements during active vibration control. This study presents the mechatronic model based on the kinematic and dynamic analysis of the AVC device. To ensure a real time performance, a H2-LQG controller has been developed and validated by simulations involving a machine tool, PZT actuator and controller models. The Hardware in the Loop (HIL) architecture is adopted to control and attenuate the vibrations. A set of experimental tests has been performed to validate the AVC module on a commercial machine tool. The feasibility of the real time vibration damping is demonstrated and the simulation accuracy is evaluated.

  20. Influence of the aspect ratio of magnetic metallic additives on the microwave absorbing performance

    Science.gov (United States)

    de Souza Pinto, Simone; Barros Machado, João Paulo; Gomes, Newton A. S.; Cerqueira Rezende, Mirabel

    2017-09-01

    This work aims to show the behavior of radar absorbing materials (RAM) based on magnetic metallic additives with different aspect ratios. For this, two materials, carbonyl iron, constituted of spherical iron particles, and carbon-steel filaments were used. These additives were characterized considering their morphological and structural features. X-ray diffraction analysis shows that the two additives have the same crystallographic structure, but their morphologies are quite different in micrometer scale. Epoxy resin/metallic additive composites using the neat additives and their mixtures were prepared. The electromagnetic characterization of the composites evaluated the permittivity, permeability and reflectivity behaviors in the frequency range of 8.2-12.4 GHz. The results show that the samples obtained with the mixture of the two additives resulted in composites with high complex parameters of permittivity and permeability. Better RAM performance is observed for samples based on metallic filaments and for more concentrated mixtures containing the two additives (values up to  -14 dB or ~96% of attenuation). The influence of specimen-thickness on the RAM performance is also observed.

  1. Investigation of Gearbox Vibration Transmission Paths on Gear Condition Indicator Performance

    Science.gov (United States)

    Dempsey, Paula J.; Islam, AKM Anwarul; Feldman, Jason; Larsen, Chris

    2013-01-01

    Helicopter health monitoring systems use vibration signatures generated from damaged components to identify transmission faults. For damaged gears, these signatures relate to changes in dynamics due to the meshing of the damaged tooth. These signatures, referred to as condition indicators (CI), can perform differently when measured on different systems, such as a component test rig, or a full-scale transmission test stand, or an aircraft. These differences can result from dissimilarities in systems design and environment under dynamic operating conditions. The static structure can also filter the response between the vibration source and the accelerometer, when the accelerometer is installed on the housing. To assess the utility of static vibration transfer paths for predicting gear CI performance, measurements were taken on the NASA Glenn Spiral Bevel Gear Fatigue Test Rig. The vibration measurements were taken to determine the effect of torque, accelerometer location and gearbox design on accelerometer response. Measurements were taken at the housing and compared while impacting the gear set near mesh. These impacts were made at gear mesh to simulate gear meshing dynamics. Data measured on a helicopter gearbox installed in a static fixture were also compared to the test rig. The behavior of the structure under static conditions was also compared to CI values calculated under dynamic conditions. Results indicate that static vibration transfer path measurements can provide some insight into spiral bevel gear CI performance by identifying structural characteristics unique to each system that can affect specific CI response.

  2. Vibration-induced coherence enhancement of the performance of a biological quantum heat engine.

    Science.gov (United States)

    Chen, Hong-Bin; Chiu, Pin-Yi; Chen, Yueh-Nan

    2016-11-01

    Photosynthesis has been a long-standing research interest due to its fundamental importance. Recently, studies on photosynthesis processes also have inspired attention from a thermodynamical aspect when considering photosynthetic apparatuses as biological quantum heat engines. Quantum coherence is shown to play a crucial role in enhancing the performance of these quantum heat engines. Based on the experimentally reported structure, we propose a quantum heat engine model with a non-Markovian vibrational mode. We show that one can obtain a performance enhancement easily for a wide range of parameters in the presence of the vibrational mode. Our results provide insights into the photosynthetic processes and a design principle mimicking natural organisms.

  3. Vibration-induced coherence enhances the performance of a biological quantum heat engine

    CERN Document Server

    Chen, Hong-Bin; Chen, Yueh-Nan

    2016-01-01

    Photosynthesis has been the long-standing research interest due to its fundamental importance. Recently, studies on photosynthesis processes also inspire attention from thermodynamical aspect when considering photosynthetic apparatuses as biological quantum heat engines. Quantum coherence is shown to play a crucial role in enhancing the performance of these quantum heat engines. Based on the experimentally reported structure, we propose a quantum heat engine model with a non-Markovian vibrational mode. We show that one can obtain a performance enhancement easily for a wide range of parameters in the presence of the vibrational mode. Our results suggest new insights into the photosynthetic processes and a design principle mimicking natural organisms.

  4. Design and Performance Testing of a Novel Three-Dimensional Elliptical Vibration Turning Device

    Directory of Open Access Journals (Sweden)

    Jieqiong Lin

    2017-10-01

    Full Text Available A novel three-dimensional (3D elliptical vibration turning device which is on the basis of the leaf-spring-flexure-hinges-based (LSFH-based double parallel four-bar linkages (DPFLMs has been proposed. In order to evaluate the performance of the developed 3D elliptical vibration cutting generator (EVCG, the off-line tests were carried out to investigate the stroke, dynamic performance, resolution, tracking accuracy and hysteresis along the three vibration axes. Experimental results indicate that the maximum stroke of three vibration axes can reach up to 26 μm. The working bandwidth can reach up to 1889 Hz. The resolution and hysteresis tests show that the developed 3D EVCG has a good tracking accuracy, relative high resolution and low hysteresis, which is appropriate for micro/nano machining. Kinematical modeling is carried out to investigate the tool vibration trajectory. Experimental results shown that the simulation results agree well with the experimental one, which indicate that the developed 3D EVCG can be used as an option for micro/nano machining.

  5. Design and performance simulation of a segmented-absorber based muon detection system for high energy heavy ion collision experiments

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, S. [University of Kashmir, Srinagar (India); Bhaduri, P.P. [Variable Energy Cyclotron Centre, Kolkata (India); Jahan, H. [Aligarh Muslim University, Aligarh (India); Senger, A. [GSI Helmholtzzentrum fur Schwerionenforschung GmbH, Darmstadt (Germany); Adak, R.; Samanta, S. [Bose Institute, Kolkata (India); Prakash, A. [Banaras Hindu University, Varanasi (India); Dey, K. [Gauhati University, Guwahati (India); Lebedev, A. [Institute für Kernphysik, Goethe Universität Frankfurt, Frankfurt (Germany); Kryshen, E. [Petersburg Nuclear Physics Institute (PNPI) NRC Kurchatov Institute, Gatchina (Russian Federation); Chattopadhyay, S., E-mail: sub@vecc.gov.in [Variable Energy Cyclotron Centre, Kolkata (India); Senger, P. [GSI Helmholtzzentrum fur Schwerionenforschung GmbH, Darmstadt (Germany); Bhattacharjee, B. [Gauhati University, Guwahati (India); Ghosh, S.K.; Raha, S. [Bose Institute, Kolkata (India); Irfan, M.; Ahmad, N. [Aligarh Muslim University, Aligarh (India); Farooq, M. [University of Kashmir, Srinagar (India); Singh, B. [Banaras Hindu University, Varanasi (India)

    2015-03-01

    A muon detection system (MUCH) based on a novel concept using a segmented and instrumented absorber has been designed for high-energy heavy-ion collision experiments. The system consists of 6 hadron absorber blocks and 6 tracking detector triplets. Behind each absorber block a detector triplet is located which measures the tracks of charged particles traversing the absorber. The performance of such a system has been simulated for the CBM experiment at FAIR (Germany) that is scheduled to start taking data in heavy ion collisions in the beam energy range of 6–45 A GeV from 2019. The muon detection system is mounted downstream to a Silicon Tracking System (STS) that is located in a large aperture dipole magnet which provides momentum information of the charged particle tracks. The reconstructed tracks from the STS are to be matched to the hits measured by the muon detector triplets behind the absorber segments. This method allows the identification of muon tracks over a broad range of momenta including tracks of soft muons which do not pass through all the absorber layers. Pairs of oppositely charged muons identified by MUCH could therefore be combined to measure the invariant masses in a wide range starting from low mass vector mesons (LMVM) up to charmonia. The properties of the absorber (material, thickness, position) and of the tracking chambers (granularity, geometry) have been varied in simulations of heavy-ion collision events generated with the UrQMD generator and propagated through the setup using the GEANT3, the particle transport code. The tracks are reconstructed by a Cellular Automaton algorithm followed by a Kalman Filter. The simulations demonstrate that low mass vector mesons and charmonia can be clearly identified in central Au+Au collisions at beam energies provided by the international Facility for Antiproton and Ion Research (FAIR)

  6. Transient performance and design aspects of low boron PWR cores with increased utilization of burnable absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Papukchiev, Angel [GRS mbH Forschungsinstitute, Garching (Germany); Schaefer, Anselm [ISaR GmbH, Garching (Germany)

    2008-07-01

    In conventional pressurized water reactor (PWR) designs, soluble boron is used for reactivity control over core fuel cycle. As high boron concentrations have significant impact on reactivity feedback properties and core transient behaviour, design changes to reduce boron concentration in the reactor coolant are of general interest in view of improving PWR inherent safety. In order to assess the potential advantages of such strategies in current PWRs, two low boron core configurations based on fuel with increased utilization of gadolinium and erbium burnable absorbers have been developed. The new PWR designs permit to reduce the natural boron concentration in reactor coolant at begin of cycle to 518 (Gd) and 805 (Er) ppm. An innovative low boron core design methodology was implemented combining a simplified reactivity balance search procedure with a core design approach based on detailed 3D diffusion calculations. Fuel cross sections needed for nuclear libraries were generated using the 2D lattice code HELIOS [2] and full core configurations were modelled with the 3D diffusion code QUABOX/CUBBOX [3]. For dynamic 3D calculations, the coupled code system ATHLET - QUABOX/CUBBOX was used [4]. The new cores meet German acceptance criteria regarding stuck rod, departure from nucleate boiling ratio (DNBR), shutdown margin, and maximal linear power. For the assessment of potential safety advantages of the new cores, comparative analyses were performed for three PWR core designs: the already mentioned two low boron designs and a standard design. The improved safety performance of the low boron cores in anticipated transients without scram (ATWS), boron dilution scenarios and beyond design basis accidents (BDBA) has already been reported in [1, 2 and 3]. This paper gives a short reminder on the results obtained. Moreover, it deals not only with the potential advantages, but also addresses the drawbacks of the new PWR configurations - complex core design, increased power

  7. Theory of vibration protection

    CERN Document Server

    Karnovsky, Igor A

    2016-01-01

    This text is an advancement of the theory of vibration protection of mechanical systems with lumped and distributed parameters. The book offers various concepts and methods of solving vibration protection problems, discusses the advantages and disadvantages of different methods, and the fields of their effective applications. Fundamental approaches of vibration protection, which are considered in this book, are the passive, parametric and optimal active vibration protection. The passive vibration protection is based on vibration isolation, vibration damping and dynamic absorbers. Parametric vibration protection theory is based on the Shchipanov-Luzin invariance principle. Optimal active vibration protection theory is based on the Pontryagin principle and the Krein moment method. The book also contains special topics such as suppression of vibrations at the source of their occurrence and the harmful influence of vibrations on humans. Numerous examples, which illustrate the theoretical ideas of each chapter, ar...

  8. Induced vibrations increase performance of a winged self-righting robot

    Science.gov (United States)

    Othayoth, Ratan; Xuan, Qihan; Li, Chen

    When upside down, cockroaches can open their wings to dynamically self-right. In this process, an animal often has to perform multiple unsuccessful maneuvers to eventually right, and often flails its legs. Here, we developed a cockroach-inspired winged self-righting robot capable of controlled body vibrations to test the hypothesis that vibrations assist self-righting transitions. Robot body vibrations were induced by an oscillating mass (10% of body mass) and varied by changing oscillation frequency. We discovered that, as the robot's body vibrations increased, righting probability increased, and righting time decreased (P <0.0001, ANOVA), confirming our hypothesis. To begin to understand the underlying physics, we developed a locomotion energy landscape model. Our model revealed that the kinetic energy fluctuations due to vibrations were comparable to the potential energy barriers required to transition from a metastable overturned orientation to an upright orientation. Our study supports the plausibility of locomotion energy landscapes for understanding locomotor transitions, but highlights the need for further stochastic modeling to capture the uncertain nature of when righting maneuvers result in successful righting.

  9. Coupling Hollow Fe3O4-Fe Nanoparticles with Graphene Sheets for High-Performance Electromagnetic Wave Absorbing Material.

    Science.gov (United States)

    Qu, Bin; Zhu, Chunling; Li, Chunyan; Zhang, Xitian; Chen, Yujin

    2016-02-17

    We developed a strategy for coupling hollow Fe3O4-Fe nanoparticles with graphene sheets for high-performance electromagnetic wave absorbing material. The hollow Fe3O4-Fe nanoparticles with average diameter and shell thickness of 20 and 8 nm, respectively, were uniformly anchored on the graphene sheets without obvious aggregation. The minimal reflection loss RL values of the composite could reach -30 dB at the absorber thickness ranging from 2.0 to 5.0 mm, greatly superior to the solid Fe3O4-Fe/G composite and most magnetic EM wave absorbing materials recently reported. Moreover, the addition amount of the composite into paraffin matrix was only 18 wt %.

  10. High-performance mushroom plasmonic metamaterial absorbers for infrared polarimetric imaging

    Science.gov (United States)

    Ogawa, Shinpei; Fujisawa, Daisuke; Hata, Hisatoshi; Uetsuki, Mitsuharu; Kuboyama, Takafumi; Kimata, Masafumi

    2017-02-01

    Infrared (IR) polarimetric imaging is a promising approach to enhance object recognition with conventional IR imaging for applications such as artificial object recognition from the natural environment and facial recognition. However, typical infrared polarimetric imaging requires the attachment of polarizers to an IR camera or sensor, which leads to high cost and lower performance caused by their own IR radiation. We have developed asymmetric mushroom plasmonic metamaterial absorbers (A-MPMAs) to address this challenge. The A-MPMAs have an all-Al construction that consists of micropatches and a reflector layer connected with hollow rectangular posts. The asymmetric-shaped micropatches lead to strong polarization-selective IR absorption due to localized surface plasmon resonance at the micropatches. The operating wavelength region can be controlled mainly by the micropatch and the hollow rectangular post size. AMPMAs are complicated three-dimensional structures, the fabrication of which is challenging. Hollow rectangular post structures are introduced to enable simple fabrication using conventional surface micromachining techniques, such as sacrificial layer etching, with no degradation of the optical properties. The A-MPMAs have a smaller thermal mass than metal-insulator-metal based metamaterials and no influence of the strong non-linear dispersion relation of the insulator materials constant, which produces a gap in the wavelength region and additional absorption insensitive to polarization. A-MPMAs are therefore promising candidates for uncooled IR polarimetric image sensors in terms of both their optical properties and ease of fabrication. The results presented here are expected to contribute to the development of highperformance polarimetric uncooled IR image sensors that do not require polarizers.

  11. COMPARING THE EFFECTS OF VARIOUS WHOLE-BODY VIBRATION ACCELERATIONS ON COUNTER-MOVEMENT JUMP PERFORMANCE

    Directory of Open Access Journals (Sweden)

    David M. Bazett-Jones

    2008-03-01

    Full Text Available While it seems that whole body vibration (WBV might be an effective modality to enhance physical performance, the proper prescription of WBV for performance enhancement remains unknown. The purpose of this study was to compare the immediate effect of various WBV accelerations on counter movement jump (CMJ height, the duration of any effect, and differences between men and women. Forty-four participants (33 men, 11 women participated in no less than four CMJ familiarization sessions and completed all vibration sessions. Participants performed a pre-test (three maximal CMJs, followed randomly by one of five WBV accelerations; 1g (no-WBV control, 2.16g, 2.80g, 4.87g, and 5.83g. Participants performed three maximal CMJs immediately, five, and 10 minutes following each 45 sec WBV session. The mean of the three performances was used and calculated as a percentage of the pre-vibration mean value. A Repeated Measures Analysis of Variance (ANOVA; acceleration x time x gender model was used to analyze the data. The two-way interactions of acceleration-gender (p = 0.033 and time-gender (p = 0.050 were significant. Women performed significantly better following the 2.80g (p = 0.0064 and 5.83g (p = 0. 0125 WBV sessions compared to the 1g (control session. Men, however, did not experience performance enhancing effects following any of the vibration sessions. While significant differences did not occur between time in either gender, the effects of the 45 sec WBV session in women were transient, lasting approximately five minutes. During the prescription of WBV, gender should be considered given that the results of this study seem to indicate that men and women respond differently to WBV. The results of this study suggest that WBV might be a useful modality as applied during the pre-competition warm-up

  12. Parameter definition using vibration prediction software leads to significant drilling performance improvements

    Energy Technology Data Exchange (ETDEWEB)

    Amorim, Dalmo; Hanley, Chris Hanley; Fonseca, Isaac; Santos, Juliana [National Oilwell Varco, Houston TX (United States); Leite, Daltro J.; Borella, Augusto; Gozzi, Danilo [Petroleo Brasileiro S.A. (PETROBRAS), Rio de Janeiro, RJ (Brazil)

    2012-07-01

    The understanding and mitigation of downhole vibration has been a heavily researched subject in the oil industry as it results in more expensive drilling operations, as vibrations significantly diminish the amount of effective drilling energy available to the bit and generate forces that can push the bit or the Bottom Hole Assembly (BHA) off its concentric axis of rotation, producing high magnitude impacts with the borehole wall. In order to drill ahead, a sufficient amount of energy must be supplied by the rig to overcome the resistance of the drilling system, including the reactive torque of the system, drag forces, fluid pressure losses and energy dissipated by downhole vibrations, then providing the bit with the energy required to fail the rock. If the drill string enters resonant modes of vibration, not only does it decreases the amount of available energy to drill, but increases the potential for catastrophic downhole equipment and drilling bit failures. In this sense, the mitigation of downhole vibrations will result in faster, smoother, and cheaper drilling operations. A software tool using Finite Element Analysis (FEA) has been developed to provide better understanding of downhole vibration phenomena in drilling environments. The software tool calculates the response of the drilling system at various input conditions, based on the design of the wellbore along with the geometry of the Bottom Hole Assembly (BHA) and the drill string. It identifies where undesired levels of resonant vibration will be driven by certain combinations of specific drilling parameters, and also which combinations of drilling parameters will result in lower levels of vibration, so the least shocks, the highest penetration rate and the lowest cost per foot can be achieved. With the growing performance of personal computers, complex software systems modeling the drilling vibrations using FEA has been accessible to a wider audience of field users, further complimenting with real time

  13. Study of the Mechanical Properties and Vibration Isolation Performance of a Molecular Spring Isolator

    Directory of Open Access Journals (Sweden)

    Muchun Yu

    2016-01-01

    Full Text Available Molecular Spring Isolator (MSI is a novel passive vibration isolation technique, providing High-Static-Low-Dynamic (HSLD stiffness based on the use of molecular spring material. The molecular spring material is a solid-liquid mixture consisting of water and hydrophobic nanoporous materials. Under a certain level of external pressure, water molecules can intrude into the hydrophobic pores of nanoporous materials, developing an additional solid-liquid interface. Such interfaces are able to store, release, and transform mechanical energy, providing properties like mechanical spring. Having been only recently developed, the basic mechanic properties of a MSI have not been studied in depth. This paper focuses on the stiffness influence factors, the dynamic frequency response, and the vibration isolation performance of a MSI; these properties help engineers to design MSIs for different engineering applications. First, the working mechanism of a MSI is introduced from a three-dimensional general view of the water infiltration massive hydrophobic nanoporous pores. Next, a wide range of influence factors on the stiffness properties of MSI are studied. In addition, the frequency response functions (FRFs of the MSI vibration isolation system are studied utilizing the matching method based on equivalent piecewise linear (EPL system. Finally, the vibration isolation properties of MSI are evaluated by force transmissibility.

  14. Small and inconsistent effects of whole body vibration on athletic performance : a systematic review and meta-analysis

    NARCIS (Netherlands)

    Hortobagyi, Tibor; Lesinski, Melanie; Fernandez-del-Olmo, Miguel; Granacher, Urs

    We quantified the acute and chronic effects of whole body vibration on athletic performance or its proxy measures in competitive and/or elite athletes. Systematic literature review and meta-analysis. Whole body vibration combined with exercise had an overall 0.3 % acute effect on maximal voluntary

  15. In vitro performance of prefilled CO2 absorbers with the Zeus®.

    Science.gov (United States)

    Omer, Mohab; Hendrickx, Jan F A; De Ridder, Simon; De Houwer, Alexander; Carette, Rik; De Cooman, Sofie; De Wolf, Andre M

    2017-12-13

    Low fresh gas flows (FGFs) decrease the use of anesthetic gases, but increase CO2 absorbent usage. CO2 absorbent usage remains poorly quantified. The goal of this study is to determine canister life of 8 commercially available CO2 absorbent prepacks with the Zeus®. Pre-packed CO2 canisters of 8 different brands were tested in vitro: Amsorb Plus, Spherasorb, LoFloSorb, LithoLyme, SpiraLith, SpheraSorb, Drägersorb 800+, Drägersorb Free, and CO2ntrol. CO2 (160 mL min- 1) flowed into the tip of a 2 L breathing bag that was ventilated with a tidal volume of 500 mL, a respiratory rate of 10/min, and an I:E ratio of 1:1 using the controlled mechanical ventilation mode of the Zeus® (Dräger, Lubeck, Germany). In part I, canister life of 5 canisters each of 2 different lots of each brand was determined with a 350 mL min- 1 FGF. Canister life is the time it takes for the inspired CO2 concentration (FICO2) to rise to 0.5%. In part II, canister life was measured accross a FGF range of 0.25 to 4 L min- 1 for Drägersorb 800+ (2 lots) and SpiraLith (1 lot). In part III, the calculated canister life per 100 g fresh granule content of the different brands was compared between the Zeus and (previously published data for) the Aisys. In vitro canister life of prefilled CO2 absorber canisters differed between brands, and depended on the amount of CO2 absorbent and chemical composition. Canister life expressed as FCU0.5 (the fraction of the canister used per hour) was proportional to FGF over 0.2-2 L min-1 range only, but was non-linear with higher FGF: FCU0.5 was larger than expected with FGF > 2 L min-1, and even with FGF > minute ventilation FCU0.5 did not become zero, indicating some CO2 was being absorbed. Canister life on a per weight basis of the same brand is higher with the Zeus than the Aisys. Canister life of prefilled CO2 absorber canisters differs between brands. The FCU0.5-FGF relationship is not linear across the entire FGF range. Canister

  16. High-damping-performance magnetorheological material for passive or active vibration control

    Science.gov (United States)

    Liu, Taixiang; Yang, Ke; Yan, Hongwei; Yuan, Xiaodong; Xu, Yangguang

    2016-10-01

    Optical assembly and alignment system plays a crucial role for the construction of high-power or high-energy laser facility, which attempts to ignite fusion reaction and go further to make fusion energy usable. In the optical assembly and alignment system, the vibration control is a key problem needs to be well handled and a material with higher damping performance is much desirable. Recently, a new kind of smart magneto-sensitive polymeric composite material, named magnetorheological plastomer (MRP), was synthesized and reported as a high-performance magnetorheological material and this material has a magneto-enhanced high-damping performance. The MRP behaves usually in an intermediate state between fluid-like magnetorheological fluid and solid-like magnetorheological elastomer. The state of MRP, as well as the damping performance of MRP, can be tuned by adjusting the ratio of hard segments and soft segments, which are ingredients to synthesize the polymeric matrix. In this work, a series of MRP are prepared by dispersing micron-sized, magneto-sensitive carbonyl iron powders with related additives into polyurethane-based, magnetically insensitive matrix. It is found that the damping performance of MRP depends much on magnetic strength, shear rate, carbonyl iron content and shear strain amplitude. Especially, the damping capacity of MRP can be tuned in a large range by adjusting external magnetic field. It is promising that the MRP will have much application in passive and active vibration control, such as vibration reduction in optical assembly and alignment system, vibration isolation or absorption in vehicle suspension system, etc.

  17. Performance analysis of solar air heater with jet impingement on corrugated absorber plate

    Directory of Open Access Journals (Sweden)

    Alsanossi M. Aboghrara

    2017-09-01

    Full Text Available This paper deals with the experimental investigation outlet temperature and efficiency, of Solar Air heater (SAH. The experimental test set up designed and fabricated to study the effect of jet impingement on the corrugated absorber plate, through circular jets in a duct flow of solar air heater, and compared with conventional solar air heater on flat plat absorber. Under effect of mass flow rate (ṁ of air and solar radiation on outlet air temperature, and efficiency, are analyzed. Results show the flow jet impingement on corrugated plat absorber is a strong function of heat transfer enhancement. The present investigation concludes that the mass flow rate of air substantially influences the heat transfer on solar air heaters. And the thermal efficiency of proposed design duct is observed almost 14% more as compare to the smooth duct. At solar radiation 500–1000 (W/M2, 308 K ambient temperature and 0.01–0.03 (Kg/S mass flow rate

  18. EFFECTS OF WHOLE-BODY VIBRATION TRAINING ON SPRINT RUNNING KINEMATICS AND EXPLOSIVE STRENGTH PERFORMANCE

    Directory of Open Access Journals (Sweden)

    Giorgos Paradisis

    2007-03-01

    Full Text Available The aim of this study was to investigate the effect of 6 wk of whole body vibration (WBV training on sprint running kinematics and explosive strength performance. Twenty-four volunteers (12 women and 12 men participated in the study and were randomised (n = 12 into the experimental and control groups. The WBV group performed a 6-wk program (16-30 min·d-1, 3 times a week on a vibration platform. The amplitude of the vibration platform was 2.5 mm and the acceleration was 2.28 g. The control group did not participate in any training. Tests were performed Pre and post the training period. Sprint running performance was measured during a 60 m sprint where running time, running speed, step length and step rate were calculated. Explosive strength performance was measured during a counter movement jump (CMJ test, where jump height and total number of jumps performed in a period of 30 s (30CVJT. Performance in 10 m, 20 m, 40 m, 50 m and 60 m improved significantly after 6 wk of WBV training with an overall improvement of 2.7%. The step length and running speed improved by 5.1% and 3.6%, and the step rate decreased by 3.4%. The countermovement jump height increased by 3.3%, and the explosive strength endurance improved overall by 7.8%. The WBV training period of 6 wk produced significant changes in sprint running kinematics and explosive strength performance

  19. Dataset demonstrating the modeling of a high performance Cu(In,GaSe2 absorber based thin film photovoltaic cell

    Directory of Open Access Journals (Sweden)

    Md. Asaduzzaman

    2017-04-01

    Full Text Available The physical data of the semiconductor materials used in the design of a CIGS absorber based thin film photovoltaic cell have been presented in this data article. Besides, the values of the contact parameter and operating conditions of the cell have been reported. Furthermore, by conducting the simulation with data corresponding to the device structure: soda-lime glass (SLG substrate/Mo back-contact/CIGS absorber/CdS buffer/intrinsic ZnO/Al-doped ZnO window/Al-grid front-contact, the solar cell performance parameters such as open circuit voltage (Voc, short circuit current density Jsc, fill factor (FF, efficiency (η, and collection efficiency ηc have been analyzed.

  20. Sound vibration signal processing for detection and identification detonation (knock) to optimize performance Otto engine

    Science.gov (United States)

    Sujono, A.; Santoso, B.; Juwana, W. E.

    2016-03-01

    Problems of detonation (knock) on Otto engine (petrol engine) is completely unresolved problem until now, especially if want to improve the performance. This research did sound vibration signal processing engine with a microphone sensor, for the detection and identification of detonation. A microphone that can be mounted is not attached to the cylinder block, that's high temperature, so that its performance will be more stable, durable and inexpensive. However, the method of analysis is not very easy, because a lot of noise (interference). Therefore the use of new methods of pattern recognition, through filtration, and the regression function normalized envelope. The result is quite good, can achieve a success rate of about 95%.

  1. Prédiction des vibrations du stator d'une machine à réluctance variable en fonction du courant absorbé

    Science.gov (United States)

    Camus, F.; Gabsi, M.; Multon, B.

    1997-02-01

    In order to predict the radial vibration of the stator core of a Doubly Salient Switched Reluctance Motor (D.S.S.R.M.), different causes of vibrations are considered. In this kind of machine, electromagnetic stress is found to be the most significant cause of vibrations. The local magnetic stress distribution, depending on magnetic field and finally on the phase current, is calculated in the case of an unsatured operation. This magnetic stress acts in two ways: a tangential force (torque) and a radial attractive force. This radial force excites the vibration modes of the stator, this vibration behaviour is measured in the aligned position and is identified as a transfert function. Finally several experiments show the good accuracy of this simple model. This model will be later used to study the effect of phase current and of static converter on vibration and acoustic noise emitted by the D.S.S.R.M. L'étude du bruit et des vibrations dans le matériel électrique fait intervenir plusieurs systèmes physiques couplés. Le modèle complet est complexe et ne permet pas d'études paramétriques simples de la structure de la machine, de son alimentation et cela pour différents points de fonctionnement. Dans cet article est présenté un modèle simple permettant de prédire l'accélération radiale d'un Moteur à Réluctance Variable à Double Saillance (M.R.V.D.S.) en fonction du courant d'alimentation. Ce modèle permettra d'étudier ultérieurement l'influence de l'alimentation sur le comportement vibratoire de la machine. En premier lieu, les différentes sources de vibrations d'une machine tournante sont évoquées, pour finalement ne s'intéresser qu'aux efforts d'origine magnétique qui sont prépondérants dans les M.R.V.D.S. Le calcul de ces efforts en fonction du courant est présenté dans le cas d'une machine fonctionnant en régime linéaire (sans saturation magnétique). Ces efforts sont décomposés en une force tangentielle créant le couple de rotation

  2. Effect of vibration frequency on microstructure and performance of high chromium cast iron prepared by lost foam casting

    Directory of Open Access Journals (Sweden)

    Wen-qi Zou

    2016-07-01

    Full Text Available In the present research, high chromium cast irons (HCCIs were prepared using the lost foam casting (LFC process. To improve the wear resistance of the high chromium cast irons (HCCIs, mechanical vibration was employed during the solidification of the HCCIs. The effects of vibration frequency on the microstructure and performance of the HCCIs under as-cast, as-quenched and as-tempered conditions were investigated. The results indicated that the microstructures of the LFC-produced HCCIs were refined due to the introduction of mechanical vibration, and the hardness was improved compared to that of the alloy without vibration. However, only a slight improvement in hardness was found in spite of the increase of vibration frequency. In contrast, the impact toughness of the as-tempered HCCIs increased with an increase in the vibration frequency. In addition, the wear resistance of the HCCIs was improved as a result of the introduction of vibration and increased with an increase in the vibration frequency.

  3. An experimental study of vibration attenuation performance of several on-grade slab configurations

    Science.gov (United States)

    Amick, H.; Wongprasert, N.; Montgomery, J.; Haswell, P.; Lynch, D.

    2005-08-01

    There are several instances in the literature in which particular positions are taken regarding the nature of the floor supporting sensitive equipment such as advanced electron microscopes. Assertions are made that one methodology is better than another at reducing vibrations. However, very little experimental evidence has been provided to support those positions. This paper presents the results of an experimental in situ study of several slab configurations at a single location-the site of a nanotechnology facility that was about to be constructed at the University of Alberta. Three configurations were constructed: (a) a large solid slab of moderate thickness; (b) a smaller slab "island" of greater thickness (900 mm) surrounded by a thinner slab, both resting directly on soil and separated by a gap; and (c) another island of the same dimensions, but resting on four concrete piles. The three locations were instrumented and measurements taken allowing comparison of the performance of these configurations at attenuating ambient vibrations and vibrations due to a nearby heel-drop impulse. The ranking of the three must be based upon excitation type and frequency range of concern.

  4. The influence of longitudinal vibrations on the heat transfer performance of inclined heat pipes

    Directory of Open Access Journals (Sweden)

    Rong-Horng Chen

    2015-02-01

    Full Text Available This study focused on investigating the influence of longitudinal vibrations, the condensation section temperature, and the inclination angles on the heat transfer performance of grooved cylindrical copper heat pipes with lengths of 600 and 150 mm and an outer diameter of 8 mm. The inclination angles of the tested heat pipes were 0°, ±45°, and ±90°. Longitudinal vibrations with frequencies of 3, 4, 5, 6, and 9 Hz and amplitudes of 2.8, 5, 10, 15, 20, and 25 mm, which resulted in accelerations between 0.1 and 1.01 g, were experimentally tested. The condensation section temperatures were set at 20°C, 30°C, and 40°C. A heating jacket and a cooling sleeve were installed at the evaporation and condensation sections of the test cell to simulate a constant heat flux and a constant temperature boundary, respectively. The results showed that with the heat pipe placed with the condensation section on top and the evaporation section on bottom, a fairly low and constant thermal resistance (approximately 0.25 K/W for the 600-mm heat pipe and 0.75–1.2 K/W for the 150-mm heat pipe was obtained, both with and without heat pipe vibration and regardless of the condensation section temperature.

  5. Effects of whole body vibration training on muscle strength and sprint performance in sprint-trained athletes.

    Science.gov (United States)

    Delecluse, C; Roelants, M; Diels, R; Koninckx, E; Verschueren, S

    2005-10-01

    Despite the expanding use of Whole Body Vibration training among athletes, it is not known whether adding Whole Body Vibration training to the conventional training of sprint-trained athletes will improve speed-strength performance. Twenty experienced sprint-trained athletes (13 male symbol, 7 female symbol, 17-30 years old) were randomly assigned to a Whole Body Vibration group (n=10: 6 male symbol and 4 female symbol) or a Control group (n=10: 7 male symbol, 3 female symbol). During a 5-week experimental period all subjects continued their conventional training program, but the subjects of the Whole Body Vibration group additionally performed three times weekly a Whole Body Vibration training prior to their conventional training program. The Whole Body Vibration program consisted of unloaded static and dynamic leg exercises on a vibration platform (35-40 Hz, 1.7-2.5 mm, Power Plate). Pre and post isometric and dynamic (100 degrees/s) knee-extensor and -flexor strength and knee-extension velocity at fixed resistances were measured by means of a motor-driven dynamometer (Rev 9000, Technogym). Vertical jump performance was measured by means of a contact mat. Force-time characteristics of the start action were assessed using a load cell mounted on each starting block. Sprint running velocity was recorded by means of a laser system. Isometric and dynamic knee-extensor and knee-flexor strength were unaffected (p>0.05) in the Whole Body Vibration group and the Control group. As well, knee-extension velocity remained unchanged (p>0.05). The duration of the start action, the resulting start velocity, start acceleration, and sprint running velocity did not change (>0.05) in either group. In conclusion, this specific Whole Body Vibration protocol of 5 weeks had no surplus value upon the conventional training program to improve speed-strength performance in sprint-trained athletes.

  6. Analysis of the vibration of the vehicle body with the elimination of the influence of tires

    Directory of Open Access Journals (Sweden)

    Łukasz KONIECZNY

    2015-09-01

    Full Text Available The article presented the results of vibration measurements of selected elements of the vehicle during the test vibration carried out on a bench with a harmonic kinematic extortion. The results of research carried out for the car when replacing tire and wheels steel tripod eliminating the influence of elasticity and damping tires. The tests were performed at various values of the shock absorber fluid filling (from 100% to 50% of the shock absorber fluid. For registered vibration acceleration STFT analysis was performed.

  7. Absorbance detector for high-performance liquid chromatography based on light-emitting diodes for the deep-ultraviolet range.

    Science.gov (United States)

    Bomastyk, Benjamin; Petrovic, Igor; Hauser, Peter C

    2011-06-17

    A HPLC-detector has been designed which employs light-emitting diodes in the deep-UV-range below 300 nm as wavelength specific radiation sources and special UV-photodiodes for measuring the signal. A monochromator is therefore not needed. The design features a beam splitter and a reference photodiode, precision mechanics for adjustment of the light beams and electronics for stabilization of the LED-current. The processing of the photodiode currents is carried out with a high performance log-ratio amplifier which allows direct absorbance measurements. The optical and electronic performance of the detector was characterised and high precision over several absorbance units was obtained. Testing of analytical separation methods in isocratic as well as gradient modes employing UV-detection at 255 and 280 nm showed a very similar performance to a commercial photodiode-array detector used in the fixed wavelength mode in terms of linearity, precision and detection limits. The chief advantages of the new device are small size, low power consumption, and low cost. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Whole-Body Vibration Training Effect on Physical Performance and Obesity in Mice

    OpenAIRE

    Huang, Chi-Chang; Tseng, Tzu-Ling; Huang, Wen-Ching; Chung, Yi-Hsiu; Chuang, Hsiao-Li; Wu, Jyh-Horng

    2014-01-01

    The purpose of this study was to verify the beneficial effects of whole-body vibration (WBV) training on exercise performance, physical fatigue and obesity in mice with obesity induced by a high-fat diet (HFD). Male C57BL/6 mice were randomly divided into two groups: normal group (n=6), fed standard diet (control), and experimental group (n=18), fed a HFD. After 4-week induction, followed by 6-week WBV of 5 days per week, the 18 obese mice were divided into 3 groups (n=6 per group): HFD with ...

  9. High Performance Infrared Plasmonic Metamaterial Absorbers and Their Applications to Thin-film Sensing

    KAUST Repository

    Yue, Weisheng

    2016-04-07

    Plasmonic metamaterial absorbers (PMAs) have attracted considerable attention for developing various sensing devices. In this work, we design, fabricate and characterize PMAs of different geometrical shapes operating in mid-infrared frequencies, and explore the applications of the PMAs as sensor for thin films. The PMAs, consisting of metal-insulator-metal stacks with patterned gold nanostructured surfaces (resonators), demonstrated high absorption efficiency (87 to 98 %) of electromagnetic waves in the infrared regime. The position and efficiency of resonance absorption are dependent on the shape of the resonators. Furthermore, the resonance wavelength of PMAs was sensitive to the thin film coated on the surface of the PMAs, which was tested using aluminum oxide (Al2O3) as the film. With increase of the Al2O3 thickness, the position of resonance absorption shifted to longer wavelengths. The dependence of the resonant wavelength on thin film thickness makes PMAs a suitable candidate as a sensor for thin films. Using this sensing strategy, PMAs have potential as a new method for thin film detection and in situ monitoring of surface reactions. © 2016 Springer Science+Business Media New York

  10. Performance of a Tethered Point Wave-Energy Absorber in Regular and Irregular Waves

    KAUST Repository

    Bachynski, Erin E.

    2010-01-01

    The importance of the mooring system on the dynamic response of a point-absorber type ocean-wave energy converter (WEC) is investigated using a frequency-domain approach. In order to ensure the safety of WECs, careful consideration of the response and resonance frequencies in all motions must be evaluated, including the effects of the mooring system. In this study, a WEC floater with a closed, flat bottom is modeled as a rigid vertical cylinder tethered by elastic mooring lines. The WEC hydrodynamic added mass and damping are obtained using established potential-flow methods, with additional damping provided by the energy-extraction system. The results show that the response of the WEC, and the corresponding power takeoff, varies with the diameter-to-draft (D=T) ratio, mooring system stiffness, and mass distribution. For a given wave climate in Northern California, near San Francisco, the heave energy extraction is found to be best for a shallow WEC with a soft mooring system, compared to other systems that were examined. This result assumes a physical limit (cap) on the motion which is related to the significant wave height to draft ratio. Shallow draft designs, however, may experience excessive pitch motions and relatively larger viscous damping. In order to mitigate the pitch response, the pitch radius of gyration should be small and the center of mass should be low. Copyright © 2010 by ASME.

  11. The Impact of Traffic-Induced Bridge Vibration on Rapid Repairing High-Performance Concrete for Bridge Deck Pavement Repairs

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2014-01-01

    Full Text Available Based on forced vibration tests for high-performance concrete (HPC, the influence of bridge vibration induced by traveling vehicle on compressive strength and durability of HPC has been studied. It is concluded that 1 d and 2 d compressive strength of HPC decreased significantly, and the maximum reduction rate is 9.1%, while 28 d compressive strength of HPC had a slight lower with a 3% maximal drop under the action of two simple harmonic vibrations with 2 Hz, 3 mm amplitude, and 4 Hz, 3 mm amplitude. Moreover, the vibration had a slight effect on the compressive strength of HPC when the simple harmonic vibration had 4 Hz and 1 mm amplitude; it is indicated that the amplitude exerts a more prominent influence on the earlier compressive strength with the comparison of the frequency. In addition, the impact of simple harmonic vibration on durability of HPC can be ignored; this shows the self-healing function of concrete resulting from later hydration reaction. Thus, the research achievements mentioned above can contribute to learning the laws by which bridge vibration affects the properties of concrete and provide technical support for the design and construction of the bridge deck pavement maintenance.

  12. Aperiodic-metamaterial-based absorber

    OpenAIRE

    Quanlong Yang; Xieyu Chen; Yanfeng Li; Xueqian Zhang; Yuehong Xu; Zhen Tian; Chunmei Ouyang; Jianqiang Gu; Jiaguang Han; Weili Zhang

    2017-01-01

    The periodic-metamaterial-based perfect absorber has been studied broadly. Conversely, if the unit cell in the metamaterial-based absorber is arranged aperiodically (aperiodic-metamaterial-based absorber), how does it perform? Inspired by this, here we present a systematic study of the aperiodic-metamaterial-based absorber. By investigating the response of metamaterial absorbers based on periodic, Fibonacci, Thue-Morse, and quasicrystal lattices, we found that aperiodic-metamaterial-based abs...

  13. A comparative performance study of a photovoltaic concentrator system with discrete mirror and continuos profile for two different absorber shapes

    Energy Technology Data Exchange (ETDEWEB)

    H, Saiful; Rezau, K.M [University of Dhaka, Dhaka (Bangladesh)

    2000-07-01

    Profiles of parabolic concentrators of discrete mirror and continuos surface mirror have been designed for combined electrical thermal photovoltaic systems. In the design the changes of concentration ratio, effect of reflection, angle of incidence over the absorber have been taken into account for maximum energy collection. The performances of the system are studied for solar cells of modified grid finger for illuminations from 1-10 sun. The local concentration ratio (LCR) distribution over the absorbers for both the concentrator, the optical efficiency, thermal efficiency, electrical and thermal power output and overall efficiency have been evaluated for different values of beam radiation concentration ratio and focal distance. [Spanish] Se han disenado perfiles de concentradores parabolicos de espejo discreto y de superficie continua para sistemas fotovoltaicos combinados electricos y termicos. En el diseno los cambios de la proporcion de concentracion, del efecto de la reflexion, del angulo de incidencia sobre el observador se han tenido en cuenta para una maxima recoleccion de energia. Los rendimientos del sistema se han estudiado para celdas solares de parrilla modificada para iluminaciones solares de 1-10. Han sido evaluados para diferentes valores de la proporcion de la concentracion de la radiacion en el rayo y la distancia focal la proporcion de concentracion local (LCR) de la distribucion en los absorbedores, para el concentrador la eficiencia optica, la eficiencia termica, electrica, la produccion de energia termica y electrica y la eficiencia total.

  14. Estimate of the effect of micro-vibration on the performance of the Algerian satellite (Alsat-1B) imager

    Science.gov (United States)

    Serief, Chahira

    2017-11-01

    Alsat-1B, launched into a 670 km sun-synchronous orbit on board the PSLV launch vehicle from the Sriharikota launch site in India on 26 September 2016, is a medium resolution Earth Observation satellite with a mass of 100 kg. Alsat-1B will be used for agricultural and resource monitoring, disaster management, land use mapping and urban planning. It is based on the SSTL-100 platform, and flies a 24 m multispectral imager and a 12 m panchromatic imager delivering images with a swath width of 140 km. One of the main factors affecting the performance of satellite-borne optical imaging systems is micro-vibration. Micro-vibration is a low level mechanical disturbance inevitably generated from moving parts on a satellite and exceptionally difficult to be controlled by the attitude and orbital control system (AOCS) of a spacecraft. Micro-vibration usually causes problems for optical imaging systems onboard Earth Observation satellites. The major effect of micro-vibration is the excitation of the support structures for the optical elements during imaging operations which can result in severe degradation of image quality by smearing and distortion. Quantitative characterization of image degradation caused by micro-vibration is thus quite useful and important as part of system level analysis which can help preventing micro-vibration influence by proper design and restoring the degraded image. The aim of this work is to provide quantitative estimates of the effect of micro-vibration on the performance of Alsat-1B imager, which may be experienced operationally, in terms of the modulation transfer function (MTF) and based on ground micro-vibration tests results.

  15. Determining the optimal whole-body vibration dose-response relationship for muscle performance.

    Science.gov (United States)

    Da Silva-Grigoletto, Marzo E; De Hoyo, Moisés; Sañudo, Borja; Carrasco, Luis; García-Manso, Juan M

    2011-12-01

    Da Silva-Grigoletto, ME, de Hoyo, M, Sañudo, B, Corrales, L, and García-Manso, JM. Determining the optimal whole-body vibration dose-response relationship for muscle performance. J Strength Cond Res 25(12): 3326-3333, 2011-The aim of this investigation was twofold: first, to determine the optimal duration of a single whole-body vibration (WBV) exposure (phase 1) and second to find out the ideal number of sets per intervention to maximize muscle performance (phase 2). All participants were young (age: 19.4 ± 1.6 years), healthy, physically active men. In both studies, a 30-Hz frequency and a 4-mm peak-to-peak displacement were used. In phase 1, subjects (n = 30) underwent 3 sets of different durations (30, 60, and 90 seconds), whereas in phase 2, subjects (n = 27) underwent 3 interventions where the duration remained fixed at 60 seconds, and the number of sets performed (3, 6, or 9) was modified. The recovery time between sets was set at 2 minutes. In all interventions, each set consisted of 1 isometric repetition in a squat position with knees flexed at 100°. Before and after each session, jump height (countermovement jump [CMJ] and squat jump [SJ]) and power output in half squat (90° knee flexion) were assessed. In phase 1, an improvement in jump ability and power output was observed after the 30- and 60-second intervention (p effect for the program of 6 sets (p < 0.05). In conclusion, a WBV intervention consisting of six 60-second sets produces improved muscle performance measured by SJ, CMJ, and power output.

  16. Active vibration control for a smart panel with enhanced acoustic performances

    Science.gov (United States)

    Ripamonti, Francesco; Baro, Simone; Molgora, Manuel

    2017-04-01

    The spread of smart structures has recorded a significant increase during the last decades. Nowadays these solutions are applied in various fields such as aerospace, automotive and civil constructions. This kind of structures was born in the past in order to cope with the high vibrations that every lightweight structure has to face. In order to reduce weight designers usually decide to use very thin and lightweight structures. In the automotive field, for example, a reduced fuel consumption is obtained employing lightweight materials. However, in general a worsening of the vibroacoustic comfort is obtained with undesired vibrations that can be really annoying for passengers and dangerous for the structure itself. This work presents an innovative smart plate that is able to actively vary its dynamic properties, by means of an IMSC control logic, in order to improve the acoustic performances. An investigation about the system response in the high frequency range allowed to assess the behavior in terms of absorption, reflection coefficient and transmission loss.

  17. Lumped mass model of a 1D metastructure for vibration suppression with no additional mass

    Science.gov (United States)

    Reichl, Katherine K.; Inman, Daniel J.

    2017-09-01

    The article examines the effectiveness of metastructures for vibration suppression from a weight standpoint. Metastructures, a metamaterial inspired concept, are structures with distributed vibration absorbers. In automotive and aerospace industries, it is critical to have low levels of vibrations while also using lightweight materials. Previous work has shown that metastructures are effective at mitigating vibrations, but do not consider the effects of mass. This work takes mass into consideration by comparing a structure with vibration absorbers to a structure of equal mass with no absorbers. These structures are modeled as one-dimensional lumped mass models, chosen for simplicity. Results compare both the steady-state and the transient responses. As a quantitative performance measure, the H2 norm, which is related to the area under the frequency response function, is calculated and compared for both the metastructure and the baseline structure. These results show that it is possible to obtain a favorable vibration response without adding additional mass to the structure. Additionally, the performance measure is utilized to optimize the geometry of the structure, determine the optimal ratio of mass in the absorber to mass of the host structure, and determine the frequencies of the absorbers. The dynamic response of this model is verified using a finite element analysis.

  18. Performance of Polycrystalline Photovoltaic and Thermal Collector (PVT on Serpentine-Parallel Absorbers Design

    Directory of Open Access Journals (Sweden)

    Mustofa Mustofa

    2017-03-01

    Full Text Available This paper presents the performance of an unglazed polycrystalline photovoltaic-thermal PVT on 0.045 kg/s mass flow rate. PVT combine photovoltaic modules and solar thermal collectors, forming a single device that receive solar radiation and produces heat and electricity simultaneously. The collector figures out serpentine-parallel tubes that can prolong fluid heat conductivity from morning till afternoon. During testing, cell PV, inlet and outlet fluid temperaturs were recorded by thermocouple digital LM35 Arduino Mega 2560. Panel voltage and electric current were also noted in which they were connected to computer and presented each second data recorded. But, in this performance only shows in the certain significant time data. This because the electric current was only noted by multimeter device not the digital one. Based on these testing data, average cell efficieny was about 19%, while thermal efficiency of above 50% and correspondeng cell efficiency of 11%, respectively

  19. Comparative Evaluation of Biological Performance, Biosecurity, and Availability of Cellulose-Based Absorbable Hemostats.

    Science.gov (United States)

    Wu, Yadong; Wang, Fang; Huang, Yudong

    2018-01-01

    Hemorrhage remains a leading cause of death after trauma, and developing a hemostat with excellent performance and good biosecurity is an extremely active area of research and commercial product development. Although oxidized regenerated cellulose (ORC) has been developed to address these problems, it is not always efficient and its biosecurity is not perfect. We aimed to refine ORC via a simple and mild neutralization method. The prepared neutralized oxidized regenerated cellulose (NORC) showed a superior gel property due to its chemical structure. The biological performance of both ORC and NORC was systematically evaluated; the results showed that ORC would induce erythema and edema in the irritation test, whereas NORC did not cause any adverse inflammation, indicating NORC had desirable biocompatibility. We further demonstrated that NORC confirmed to the toxicity requirements of International Organization for Standardization (ISO) standards; however, ORC showed an unacceptable cytotoxicity. The rabbit hepatic defect model stated that NORC exhibited better ability of hemostasis, which was attributed to its significant gel performance in physiological environment.

  20. Effects Of Whole Body Vibration On Vertical Jump Performance Following Exercise Induced Muscle Damage

    Directory of Open Access Journals (Sweden)

    Nicole C. Dabbs

    2014-01-01

    Full Text Available Enhancing vertical jump performance is critical for many sports. Following high intensity training, individuals often experience exercise induced muscle damage (EIMD. Many recovery modalities have been tested with conflicting results. The purpose of this investigation was to determine the effect of whole-body vibration (WBV on vertical jump performance following EIMD. 27 females volunteered for 7 sessions and were randomly assigned to a treatment or control group and administered each testing day. Vertical jump performance was assessed via vertical jump height (VJH, peak power output (PPO, rate of force development (RFD, relative ground reaction force (GRFz, and peak activation ratio of the vastus medialis (VM via electromyography (EMG before and after 3 days of EIMD via split squats. Two testing sets were collected each day, consisting of pre measures followed by WBV or control, and then post second measures. A 2x8 (group x time mixed factor analysis of variance (ANOVA was conducted for each variable. No significant interactions or group differences were found in any variable. Significant main effects for time were found in any variable, indicating performance declined following muscle damage. These results indicate that WBV does not aid in muscle recovery or vertical jump performance following EIMD.

  1. Performance of Hollow Fiber Membrane Gas-Liquid Contactors to Absorb CO2 Using Diethanolamine (Dea as a Solvent

    Directory of Open Access Journals (Sweden)

    Sutrasno Kartohardjono

    2010-10-01

    Full Text Available This study uses DEA solution to absorb CO2 from the gas flow through the hollow fiber membrane contactors. This study aims to evaluate the performance of hollow fiber membrane contactors to absorb CO2 gas using DEA solution as solvent through mass transfer and hydrodynamics studies. The use of DEA solution is to reduce the mass transfer resistance in the liquid phase, and on the other side, the large contact area of the membrane surface can cover the disadvantage of membrane contactors; additional mass transfer resistance in the membrane phase. During experiments, CO2 feed flows through the fiber lumens, while the 0.01 M DEA solution flows in the shell side of membrane contactors. Experimental results show that the mass transfer coefficients and fluxes of CO2 increase with an increase in both water and DEA solution flow rates. Increasing the amount of fibers in the contactors will decrease the mass transfer and fluxes at the same DEA solution flow rate. Mass transfer coefficients and CO2 fluxes using DEA solution can achieve 28,000 and 7.6 million times greater than using water as solvent, respectively. Hydrodynamics studies show that the liquid pressure drops in the contactors increase with increasing liquid flow rate and number of fibers in the contactors. The friction between water and the fibers in the contactor was more pronounced at lower velocities, and therefore, the value of the friction factor is also higher at lower velocities.

  2. Absorber and gain chip optimization to improve performance from a passively modelocked electrically pumped vertical external cavity surface emitting laser

    Energy Technology Data Exchange (ETDEWEB)

    Zaugg, C. A., E-mail: zauggc@phys.ethz.ch; Mangold, M.; Pallmann, W. P.; Golling, M.; Tilma, B. W.; Keller, U. [Department of Physics, Institute for Quantum Electronics, ETH Zürich, 8093 Zürich (Switzerland); Gronenborn, S.; Moench, H.; Weichmann, U. [Philips Technologie GmbH Photonics Aachen, Steinbachstrasse 15, 52074 Aachen (Germany); Miller, M. [Philips Technologie GmbH U-L-M Photonics, Lise-Meitner-Strasse 13, 89081 Ulm (Germany)

    2014-03-24

    We present an electrically pumped vertical-external-cavity surface-emitting laser (EP-VECSEL) modelocked with a semiconductor saturable absorber mirror (SESAM) with significantly improved performance. In different cavity configurations, we present the shortest pulses (2.5 ps), highest average output power (53.2 mW), highest repetition rate (18.2 GHz), and highest peak power (4.7 W) to date. The simple and low-cost concept of EP-VECSELs is very attractive for mass-market applications such as optical communication and clocking. The improvements result from an optimized gain chip from Philips Technologie GmbH and a SESAM, specifically designed for EP-VECSELs. For the gain chip, we found a better trade-off between electrical and optical losses with an optimized doping scheme in the substrate to increase the average output power. Furthermore, the device's bottom contact diameter (60 μm) is smaller than the oxide aperture diameter (100 μm), which favors electro-optical conversion into a TEM{sub 00} mode. Compared to optically pumped VECSELs we have to increase the field enhancement in the active region of an EP-VECSEL which requires a SESAM with lower saturation fluence and higher modulation depth for modelocking. We therefore used a resonant quantum well SESAM with a 3.5-pair dielectric top-coating (SiN{sub x} and SiO{sub 2}) to enhance the field in the absorber at the lasing wavelength of 980 nm. The absorption bandedge at room temperature is detuned (965 nm) compared to the resonance (980 nm), which enables temperature-tuning of the modulation depth and saturation fluence from approximately 2.5% up to 15% and from 20 μJ/cm{sup 2} to 1.1 μJ/cm{sup 2}, respectively.

  3. EXPLORING THE EFFECTS OF A 20-WEEK WHOLE-BODY VIBRATION TRAINING PROGRAMME ON LEG MUSCLE PERFORMANCE AND FUNCTION IN PERSONS WITH MULTIPLE SCLEROSIS

    OpenAIRE

    BROEKMANS, Tom; Roelants, Machteld; ALDERS, Geert; FEYS, Peter; THIJS, Herbert; OP 'T EIJNDE, Bert

    2010-01-01

    Objective To investigate the acute effects of long term whole body vibration on leg muscle performance and functional capacity in persons with multiple sclerosis Design A randomized controlled trial Subjects Twenty five patients with multiple sclerosis (mean age 47 9 +/- 1 9 years Expanded Disability Status Scale 4 3 +/- 0 2) were assigned randomly to whole body vibration training (n = 11) or to a control group (n = 14) Methods The whole body vibration group performed static and dynamic leg s...

  4. The effects of using of mineral and organic toxin absorbents on broiler performance and internal organs weight in experimental aflatoxicosis

    Directory of Open Access Journals (Sweden)

    Behnam Heidarpour

    2016-04-01

    Full Text Available Introduction The occurrence of mycotoxins in foods and feeds is a problem of major concern in all over the world. Profitability of poultry production can be greatly affected due to the frequency of feed contamination and the detrimental effects of these toxins on the performance. Aflatoxins, a group of closely related and biologically active mycotoxins, are produced by strains of Aspergillus flavus and Aspergillus parasiticus. They commonly occur as natural contaminant of poultry feeds. Domestic animal species such as chickens, ducks, cattle and turkeys consuming sublethal doses of aflatoxins for several days developed a toxic syndrome in which liver damage was the most significant change. The biological effects of aflatoxins could be categorized into two groups, long term and short term effects. Long term effects included chronic toxicity, cancer, birth defects and genetic alterations. Aflatoxins affected all poultry species, although they generally take relatively high levels to cause mortality, low levels can be detrimental if continually fed. Material and Methods This study was conducted to determine the efficacy of mineral, organic toxin absorbents, humic acid and yeast cell wall on performance and internal organs weight of broilers in experimental aflatoxicosis. This study was conducted in a completely randomize design with 432 Ross-308 broilers with 9 treatments, 4 replicates and 12 broilers in each replicate. Treatments included diet without aflatoxin, 2: diet contaminated with aflatoxin, 3: diet contaminated with aflatoxin and supplemented with 0.20 Humic acid, 4: diet contaminated with aflatoxin and supplemented with 0.40 Humic acid, 5: diet contaminated with aflatoxin and supplemented with 0.60 Humic acid, 5: diet contaminated with aflatoxin and supplemented with 0.80 Humic acid, 6: diet contaminated with aflatoxin and supplemented with 0.80 Humic acid, 7: diet contaminated with aflatoxin and supplemented with 1.00 Humic acid, 8: diet

  5. Effects of vibration on occupant driving performance under simulated driving conditions.

    Science.gov (United States)

    Azizan, Amzar; Fard, M; Azari, Michael F; Jazar, Reza

    2017-04-01

    Although much research has been devoted to the characterization of the effects of whole-body vibration on seated occupants' comfort, drowsiness induced by vibration has received less attention to date. There are also little validated measurement methods available to quantify whole body vibration-induced drowsiness. Here, the effects of vibration on drowsiness were investigated. Twenty male volunteers were recruited for this experiment. Drowsiness was measured in a driving simulator, before and after 30-min exposure to vibration. Gaussian random vibration, with 1-15 Hz frequency bandwidth was used for excitation. During the driving session, volunteers were required to obey the speed limit of 100 kph and maintain a steady position on the left-hand lane. A deviation in lane position, steering angle variability, and speed deviation were recorded and analysed. Alternatively, volunteers rated their subjective drowsiness by Karolinska Sleepiness Scale (KSS) scores every 5-min. Following 30-min of exposure to vibration, a significant increase of lane deviation, steering angle variability, and KSS scores were observed in all volunteers suggesting the adverse effects of vibration on human alertness level. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Optimal deployment schedule of an active twist rotor for performance enhancement and vibration reduction in high-speed flights

    Directory of Open Access Journals (Sweden)

    Young H. YOU

    2017-08-01

    Full Text Available The best active twist schedules exploiting various waveform types are sought taking advantage of the global search algorithm for the reduction of hub vibration and/or power required of a rotor in high-speed conditions. The active twist schedules include two non-harmonic inputs formed based on segmented step functions as well as the simple harmonic waveform input. An advanced Particle Swarm assisted Genetic Algorithm (PSGA is employed for the optimizer. A rotorcraft Computational Structural Dynamics (CSD code CAMRAD II is used to perform the rotor aeromechanics analysis. A Computation Fluid Dynamics (CFD code is coupled with CSD for verification and some physical insights. The PSGA optimization results are verified against the parameter sweep study performed using the harmonic actuation. The optimum twist schedules according to the performance and/or vibration reduction strategy are obtained and their optimization gains are compared between the actuation cases. A two-phase non-harmonic actuation schedule demonstrates the best outcome in decreasing the power required while a four-phase non-harmonic schedule results in the best vibration reduction as well as the simultaneous reductions in the power required and vibration. The mechanism of reduction to the performance gains is identified illustrating the section airloads, angle-of-attack distribution, and elastic twist deformation predicted by the present approaches.

  7. Enhancement of Energy Harvesting Performance by a Coupled Bluff Splitter Body and PVEH Plate through Vortex Induced Vibration near Resonance

    Directory of Open Access Journals (Sweden)

    Wei Ken Chin

    2017-09-01

    Full Text Available Inspired by vortex induced vibration energy harvesting development as a new source of renewable energy, a T-shaped design vibration energy harvester is introduced with the aim of enhancing its performance through vortex induced vibration at near resonance conditions. The T-shaped structural model designed consists of a fixed boundary aluminum bluff splitter body coupled with a cantilever piezoelectric vibration energy harvesters (PVEH plate model which is a piezoelectric bimorph plate made of a brass plate sandwiched between 2 lead zirconate titanate (PZT plates. A 3-dimensional Fluid-Structure Interaction simulation analysis is carried out with Reynolds Stress Turbulence Model under wind speed of 7, 10, 12, 14, 16, 18, 19, 20, 22.5, and 25 m/s. The results showed that with 19 m/s wind speed, the model generates 75.758 Hz of vortex frequency near to the structural model’s natural frequency of 76.9 Hz. Resonance lock-in therefore occurred, generating a maximum displacement amplitude of 2.09 mm or a 49.76% increment relatively in vibrational amplitude. Under the effect of resonance at the PVEH plate’s fundamental natural frequency, it is able to generate the largest normalized power of 13.44 mW/cm3g2.

  8. Small and inconsistent effects of whole body vibration on athletic performance: a systematic review and meta-analysis.

    Science.gov (United States)

    Hortobágyi, Tibor; Lesinski, Melanie; Fernandez-Del-Olmo, Miguel; Granacher, Urs

    2015-08-01

    We quantified the acute and chronic effects of whole body vibration on athletic performance or its proxy measures in competitive and/or elite athletes. Systematic literature review and meta-analysis. Whole body vibration combined with exercise had an overall 0.3 % acute effect on maximal voluntary leg force (-6.4 %, effect size = -0.43, 1 study), leg power (4.7 %, weighted mean effect size = 0.30, 6 studies), flexibility (4.6 %, effect size = -0.12 to 0.22, 2 studies), and athletic performance (-1.9 %, weighted mean effect size = 0.26, 6 studies) in 191 (103 male, 88 female) athletes representing eight sports (overall effect size = 0.28). Whole body vibration combined with exercise had an overall 10.2 % chronic effect on maximal voluntary leg force (14.6 %, weighted mean effect size = 0.44, 5 studies), leg power (10.7 %, weighted mean effect size = 0.42, 9 studies), flexibility (16.5 %, effect size = 0.57 to 0.61, 2 studies), and athletic performance (-1.2 %, weighted mean effect size = 0.45, 5 studies) in 437 (169 male, 268 female) athletes (overall effect size = 0.44). Whole body vibration has small and inconsistent acute and chronic effects on athletic performance in competitive and/or elite athletes. These findings lead to the hypothesis that neuromuscular adaptive processes following whole body vibration are not specific enough to enhance athletic performance. Thus, other types of exercise programs (e.g., resistance training) are recommended if the goal is to improve athletic performance.

  9. Sound Absorbers

    Science.gov (United States)

    Fuchs, H. V.; Möser, M.

    Sound absorption indicates the transformation of sound energy into heat. It is, for instance, employed to design the acoustics in rooms. The noise emitted by machinery and plants shall be reduced before arriving at a workplace; auditoria such as lecture rooms or concert halls require a certain reverberation time. Such design goals are realised by installing absorbing components at the walls with well-defined absorption characteristics, which are adjusted for corresponding demands. Sound absorbers also play an important role in acoustic capsules, ducts and screens to avoid sound immission from noise intensive environments into the neighbourhood.

  10. Whole-body vibration applied during upper body exercise improves performance.

    Science.gov (United States)

    Marín, Pedro J; Herrero, Azael J; Milton, John G; Hazell, Tom J; García-López, David

    2013-07-01

    Whole-body vibration (WBV) training has exercisers perform static and dynamic resistance training exercises on a ground-based platform. Exposure to WBV exposure has demonstrated benefits and no effect on lower body strength, power, and performance. The aim of this study was to determine if WBV exposure (50 Hz, 2.51 mm) has any potentiating effects postexercise by measuring the kinematic variables of a set of upper body elbow-extensor exercise (70% one-repetition maximum [1RM]) to volitional exhaustion. Sixteen recreationally active students (12 male and 4 female) performed 3 different experimental conditions on separate days. Each condition had the subjects perform 1 set of elbow-extension exercise to fatigue with 1 of 3 WBV treatments: WBV simultaneously during the set (AE); 60 seconds after application of WBV for 30 seconds (RE); and no WBV (CTRL). Kinematic parameters of each repetition were monitored by linking a rotary encoder to the highest load plate. The mean velocity and acceleration throughout the set and perceived exertion were analyzed. A significant increase (p < 0.05) was observed in the mean velocity for the whole set in the AE condition vs. the CTRL condition. The mean acceleration was significantly higher (p < 0.05) in the AE condition in comparison with RE (increased by 45.3%) and CTRL (increased by 50.4%) conditions. The positive effect induced by WBV on upper-limb performance is only achieved when the stimulus is applied during the exercise. However, WBV applied 60 seconds before upper body exercise results in no benefit.

  11. EFFECTS OF WHOLE BODY VIBRATION ON STRENGTH AND JUMPING PERFORMANCE IN VOLLEYBALL AND BEACH VOLLEYBALL PLAYERS

    Science.gov (United States)

    Zmijewski, P.; Jimenez-Olmedo, J.M.; Jové-Tossi, M.A.; Martínez-Carbonell, A.; Suárez-Llorca, C.; Andreu-Cabrera, E.

    2014-01-01

    The primary aim of this study was to examine the effects of 6-week strength training with whole body vibration (WBV) on leg strength and jumping performance in volleyball and beach volleyball players. Twenty-three sub-elite male volleyball (VB; n=12) and beach volleyball players (BVB; n=11) aged 21.2±3.0 years were divided into two groups and subjected to 6 weeks of strength training (three one-hour sessions per week): (I) 12 players (6 VB and 6 BVB players) underwent training with WBV (30-40 Hz, 1.7-2.5 mm, 3.0-5.7 g), and (II) 11 players (6 VB and 5 BVB players) underwent traditional strength training. Squat jump (SJ) and countermovement squat jump (CMJ) measurements by the Ergo Tester contact platform and maximum leg press test (1RM) were conducted. Three-factor (2 time x 2 WBV use x 2 discipline) analysis of variance for SJ, CMJ and 1RM revealed a significant time main effect (pvolleyball and beach volleyball players increases leg strength more and leads to greater improvement in jump performance than traditional strength training, but greater improvements can be expected in beach volleyball players than in volleyball players. PMID:25187676

  12. Whole-body vibration training effect on physical performance and obesity in mice.

    Science.gov (United States)

    Huang, Chi-Chang; Tseng, Tzu-Ling; Huang, Wen-Ching; Chung, Yi-Hsiu; Chuang, Hsiao-Li; Wu, Jyh-Horng

    2014-01-01

    The purpose of this study was to verify the beneficial effects of whole-body vibration (WBV) training on exercise performance, physical fatigue and obesity in mice with obesity induced by a high-fat diet (HFD). Male C57BL/6 mice were randomly divided into two groups: normal group (n=6), fed standard diet (control), and experimental group (n=18), fed a HFD. After 4-week induction, followed by 6-week WBV of 5 days per week, the 18 obese mice were divided into 3 groups (n=6 per group): HFD with sedentary control (HFD), HFD with WBV at relatively low-intensity (5.6 Hz, 0.13 g) (HFD+VL) or high-intensity (13 Hz, 0.68 g) (HFD+VH). A trend analysis revealed that WBV increased the grip strength in mice. WBV also dose-dependently decreased serum lactate, ammonia and CK levels and increased glucose level after the swimming test. WBV slightly decreased final body weight and dose-dependently decreased weights of epididymal, retroperitoneal and perirenal fat pads and fasting serum levels of alanine aminotransferase, CK, glucose, total cholesterol and triacylglycerol. Therefore, WBV could improve exercise performance and fatigue and prevent fat accumulation and obesity-associated biochemical alterations in obese mice. It may be an effective intervention for health promotion and prevention of HFD-induced obesity.

  13. Harvesting microalgal biomass using a magnetically induced membrane vibration (MMV) system: filtration performance and energy consumption.

    Science.gov (United States)

    Bilad, M R; Discart, V; Vandamme, D; Foubert, I; Muylaert, K; Vankelecom, Ivo F J

    2013-06-01

    This study was performed to investigate the effectiveness of submerged microfiltration to harvest both a marine diatom Phaeodactylum tricornutum and a Chlorella vulgaris in a recently developed magnetically induced membrane vibrating (MMV) system. We assess the filtration performance by conducting the improved flux step method (IFM), fed-batch concentration filtrations and membrane fouling autopsy using two lab-made membranes with different porosity. The full-scale energy consumption was also estimated. Overall results suggest that the MMV offers a good fouling control and the process was proven to be economically attractive. By combining the membrane filtration (15× concentration) with centrifugation to reach a final concentration of 25% w/v, the energy consumption to harvest P. tricornutum and C. vulgaris was, respectively, as low as 0.84 and 0.77kWh/m(3), corresponding to 1.46 and 1.39 kWh/kg of the harvested biomass. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Actuator design for vibration assisted machining of high performance materials with ultrasonically modulated cutting speed

    Science.gov (United States)

    Rinck, Philipp M.; Sitzberger, Sebastian; Zaeh, Michael F.

    2017-06-01

    In vibration assisted machining, an additional high-frequency oscillation is superimposed on the kinematics of the conventional machining process. This generates oscillations on the cutting edge in the range of a few micrometers, thereby causing a high-frequency change in the cutting speed or the feed. Consequently, a reduction of cutting forces, an increase of the tool life as well as an improvement of the workpiece quality can be achieved. In milling and grinding it has been shown that these effects are already partially present in the case of a vibration excitation in axial direction relative to the workpiece, which is perpendicular to the cutting direction. Further improvements of the process results can be achieved by superimposing a vibration in cutting direction and thus modifying the cutting speed at high frequency. The presented work shows the design of an ultrasonic actuator that enables vibration-assisted milling and grinding with ultrasonically modulated cutting speed. The actuator system superimposes a longitudinal torsional ultrasonic oscillation to the milling or grinding tool. It uses a bolt clamped Langevin transducer and a helically slotted horn, which degenerates the longitudinal vibration into a combined longitudinal torsional (L-T) vibration at the output surface. A finite element analysis is used to determine the vibration resonance frequency and mode shapes to maximize the torsional output. Afterwards, the simulation has been experimentally validated.

  15. Experimental investigation of torsional vibration isolation using Magneto Rheological Elastomer

    Directory of Open Access Journals (Sweden)

    Praveen Shenoy K

    2018-01-01

    Full Text Available Rotating systems suffer from lateral and torsional vibrations which have detrimental effect on the roto-dynamic performance. Many available technologies such as vibration isolators and vibration absorbers deal with the torsional vibrations to a certain extent, however passive isolators and absorbers find less application when the input conditions are dynamic. The present work discusses use of a smart material called as Magneto Rheological Elastomer (MRE, whose properties can be changed based on magnetic field input, as a potential isolator for torsional vibrations under dynamic loading conditions. Carbonyl Iron Particles (CIP of average size 5 μm were mixed with RTV Silicone rubber to form the MRE. The effect of magnetic field on the system parameters was comprehended under impulse loading conditions using a custom built in-house system. Series arrangement of accelerometers were used to differentiate between the torsional and the bending modes of vibration of the system. Impact hammer tests were carried out on the torsional system to study its response, in the presence and absence of magnetic field. The tests revealed a shift in torsional frequency in the presence of magnetic field which elucidates the ability of MRE to work as a potential vibration isolator for torsional systems.

  16. Multimodal tuned dynamic absorber for split Stirling linear cryocooler

    Science.gov (United States)

    Veprik, A.; Tuito, A.

    2017-02-01

    Forthcoming low size, weight, power and price split Stirling linear cryocoolers may rely on electro-dynamically driven single-piston compressors and pneumatically driven expanders interconnected by the configurable transfer line. For compactness, compressor and expander units may be placed in a side-by-side manner, thus producing tonal vibration export comprising force and moment components. In vibration sensitive applications, this may result in excessive angular line of sight jitter and translational defocusing affecting the image quality. The authors present Multimodal Tuned Dynamic Absorber (MTDA), having one translational and two tilting modes essentially tuned to the driving frequency. The dynamic reactions (force and moment) produced by such a MTDA are simultaneously counterbalancing force and moment vibration export produced by the cryocooler. The authors reveal the design details, the method of fine modal tuning and outcomes of numerical simulation on attainable performance.

  17. Determination of ng/mL levetiracetam using ultra-high-performance liquid chromatography-photodiode absorbance.

    Science.gov (United States)

    Oláh, E; Bacsói, Gy; Fekete, J; Sharma, V K

    2012-03-01

    This paper demonstrates the analysis of levetiracetam, a new chiral antiepileptic drug, at ng/mL levels using an ultra-high-performance liquid chromatography (UHPLC)-photodiode absorbance (PDA) method. Three different sample preparation methods, liquid-liquid extraction with Extrelut, solid phase extraction (SPE) with Oasis HLB and Oasis MAX SPE cartridges, and protein precipitation with organic solvents were carried out. The last preparatory method is the simplest and provides the best recoveries: between 97.1% and 100.4% with RSD value below 5%. The column for separation is BEH C18 column (1.7 µm particle size and 100 × 2.1 mm i.d.) and acetonitrile-phosphate buffer (pH = 6.6; 0.01 M) (10/90 v/v) is the mobile phase. The results obtained are compared to analysis conducted by the HPLC method. The UHPLC method was validated in the range of 2-100 µg/mL levetiracetam concentration (R(2) = 0.9997). LOD and LOQ are 10 ng/mL and 33 ng/mL, respectively. The developed UHPLC method was applied to plasma samples of patient with epilepsy.

  18. Performance and design optimization of a heaving point absorber for the exploitation of wave energy in the Italian Seas

    Science.gov (United States)

    Archetti, Renata; Moreno Miquel, Adrià; Bozzi, Silvia; Antonini, Alessandro; Passoni, Giuseppe

    2017-04-01

    The presentation aims to assess the potential for wave energy production in the Italian seas by the deployment of a heaving point absorbers, specifically optimized for mild climates. We model a single-body WEC, consisting of a cylindrical heaving buoy, attached to a linear electric generator placed on the seabed. The model includes both hydrodynamic and electromechanical forces. Two different version of the device are modeled, a two-body device consisting in a floating buoy attached to a linear generator placed at the sea bed and a three-body device, which also includes a submerged sphere located halfway from the float and the generator, which increases the performance by going easily to resonance. For each version of the device, the model takes into account either the heave only or the heave and surge combined. The devices have been tuned according to the Mediterranean Sea wave climate, taking particular attention to the floaters dimensioning and to the geometrical design of the PTO, which has been adapted to particular working conditions introduced by the surge mode. The Annual Energy production is estimeted, showing encouraging results and enlarge the perspective on wave energy production in the Italian and Mediterranean Seas. In the last part of the work the feasibility of supplying electricity through energy produced by wave by the described device in array at a small Italian island will be presented.

  19. Modelling of in-vitro and in-vivo performance of aerosol emitted from different vibrating mesh nebulisers in non-invasive ventilation circuit.

    Science.gov (United States)

    Rabea, Hoda; Ali, Ahmed M A; Salah Eldin, Randa; Abdelrahman, Maha M; Said, Amira S A; Abdelrahim, Mohamed E

    2017-01-15

    Substituting nebulisers by another in non-invasive ventilation circuit (NIV) involves many process variables which must be adjusted to ensure patient optimum therapy. However, there is a doubt when nebulisers use the same technology. Data mining technology based on artificial neural networks and genetic algorithms were used here to model in-vitro inhalation process and predict bioavailability from inhaled doses delivered by three different vibrating mesh nebulisers (VMNs) in NIV. Modelling of data indicated that in-vitro performance of VMNs was dependent mainly on fine particle fraction, mass median aerodynamic diameter (MMAD), total emitted dose (TED) and to lesser extent on nebuliser type. Ex-vivo model indicated that amount of salbutamol collected on facemask filter was directly affected by TED. In-vivo model showed that amount of salbutamol deposited into the lung (0.5hQ) and amount absorbed systemically (24hQ) were dependent directly on MMAD and TED. Female patients showed higher 24hQ values than males. Nebuliser type affected TED, 0.5hQ but not 24hQ values. Results indicate suitability of VMNs in achieving appropriate in-vitro inhalation performance model. The results also, indicate that the three VMNs are comparable and can be interchanged with no fear of any additional toxicity. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Various performance-enhancing effects from the same intensity of whole-body vibration training

    Directory of Open Access Journals (Sweden)

    Paohung Chung

    2017-09-01

    Conclusion: All frequency and amplitude settings in the 8-week whole-body vibration training increased muscle strength, but different settings resulted in various neuromuscular adaptations despite the same intensity.

  1. Whole-Body Vibration Training and Its Application to Age-Related Performance Decrements: An Exploratory Analysis.

    Science.gov (United States)

    Hawkey, Adam; Griffiths, Katie; Babraj, John; Cobley, James N

    2016-02-01

    Middle age is associated with a pronounced decline in power and flexibility. Whilst whole-body vibration training (WBVT) improves performance in a range of populations, whether WBVT can improve muscle power and flexibility in a middle-aged population is not known. The present study aimed to determine the influence of 5 weeks progressive WBVT in middle-aged (45-55 years) and younger (20-30 years) recreationally active females. Participants in each age group were randomly allocated to an intervention (WBVT) or control group. The WBVT groups trained for 5 weeks on a vibration platform, while the control groups performed identical exercises, with no vibration. Prior to, and after, the 5-week study vertical countermovement jump (VCMJ) and range of motion (ROM) performance were measured. WBVT significantly (p = 0.001) improved VCMJ performance when compared to the control groups. This improvement was significantly (p = 0.001) greater in the middle-aged compared with the younger WBVT group. WBVT significantly (p = 0.001) improved ROM irrespective of age. Taken together, these results suggest that WBVT can off-set age related performance decrements, which has therapeutic implications for musculoskeletal aging. Therefore, WBVT could be undertaken to minimise age-related performance deterioration in middle-aged female populations.

  2. A modular wideband sound absorber

    Science.gov (United States)

    Plumb, G. D.

    The absorption coefficients were measured of various depths of RW2 grade Rockwool laid directly on the floor of the ISO-Standard reverberation room at BBC Research Department. The Rockwool was very effective as a wideband sound absorber. A new absorber was designed and tested, having the dimensions of the existing BBC type A modular absorbers and containing RW2 Rockwool. The new absorber has a smoother absorption coefficient curve, a less complicated construction, and weighs less than the existing BBC wideband absorber (type A8/A9). It has been named type A11 and has an equivalent performance to that of BBC type A2 and A3 absorbers combined. It complements, very well, the performance of the A10 very low frequency absorber, described in a companion Report (BBC RD No. 1992/10).

  3. Energy absorber

    Energy Technology Data Exchange (ETDEWEB)

    Heyen, J.

    1980-03-04

    The collection of solar energy, radiated onto roofs, is the goal of this invention, to supply a heating system. The invention is based on the utilization of sealing webs. The prefered material for such energy absorbers is ethylen-copolymer-bitumen. Two each of the bitumen sheets are bonded together to form a bag flown through bag the heat transfer medium. The bag simultaneously serves for roof sealing.

  4. EFFECTS OF WHOLE BODY VIBRATION ON STRENGTH AND JUMPING PERFORMANCE IN VOLLEYBALL AND BEACH VOLLEYBALL PLAYERS

    Directory of Open Access Journals (Sweden)

    J.A. Pérez-Turpin

    2014-10-01

    Full Text Available The primary aim of this study was to examine the effects of 6-week strength training with whole body vibration (WBV on leg strength and jumping performance in volleyball and beach volleyball players. Twenty-three sub-elite male volleyball (VB; n=12 and beach volleyball players (BVB; n=11 aged 21.2±3.0 years were divided into two groups and subjected to 6 weeks of strength training (three one-hour sessions per week: (I 12 players (6 VB and 6 BVB players underwent training with WBV (30-40 Hz, 1.7-2.5 mm, 3.0-5.7 g, and (II 11 players (6 VB and 5 BVB players underwent traditional strength training. Squat jump (SJ and countermovement squat jump (CMJ measurements by the Ergo Tester contact platform and maximum leg press test (1RM were conducted. Three-factor (2 time x 2 WBV use x 2 discipline analysis of variance for SJ, CMJ and 1RM revealed a significant time main effect (p<0.001, a WBV use effect (p<0.001 and a discipline effect (p<0.001. Significantly greater improvements in the SJ (p<0.001 and CMJ (p<0.001 and in 1RM (p<0.001 were found in the WBV training groups than in traditional training groups. Significant 3-way interaction effects (training, WBV use, discipline kind were also found for SJ, CMJ and 1RM (p=0.001, p<0.001, p=0.001, respectively. It can be concluded that implementation of 6-week WBV training in routine practice in volleyball and beach volleyball players increases leg strength more and leads to greater improvement in jump performance than traditional strength training, but greater improvements can be expected in beach volleyball players than in volleyball players.

  5. Effect of whole-body vibration training on body composition, exercise performance and biochemical responses in middle-aged mice.

    Science.gov (United States)

    Lin, Ching-I; Huang, Wen-Ching; Chen, Wen-Chyuan; Kan, Nai-Wen; Wei, Li; Chiu, Yen-Shuo; Huang, Chi-Chang

    2015-09-01

    Whole-body vibration (WBV) is a well-known light-resistance exercise by automatic adaptations to rapid and repeated oscillations from a vibrating platform, which is also a simple and convenient exercise for older adults. However, the potential benefits of WBV on aging-associated changes in body composition, exercise performance, and fatigue are currently unclear. The objective of the study is to investigate the beneficial effects of WBV training on body composition, exercise performance, and physical fatigue-related and biochemical responses in middle-aged mice. In total, 24 male C57BL/6 mice aged 15 months old were randomly divided into 3 groups (n=8 per group): sedentary control (SC), relatively low-frequency WBV (5.6 Hz, 2 mm, 0.13 g) (LV), and relatively high-frequency WBV (13 Hz, 2 mm, 0.68 g) (HV). Mice in the LV and HV groups were placed inside a vibration platform and vibrated at different frequencies and fixed amplitude (2 mm) for 15 min, 5 days/week for 4 weeks. Exercise performance, core temperature and anti-fatigue function were evaluated by forelimb grip strength and levels of serum lactate, ammonia, glucose, and creatine kinase (CK) after a 15-min swimming exercise, as were changes in body composition and biochemical variables at the end of the experiment. Relative muscle and brown adipose tissue weight (%) was significantly higher for the HV than SC mice, but relative liver weight (%) was lower. On trend analysis, WBV increased grip strength, aerobic endurance and core temperature in mice. As well, serum lactate, ammonia and CK levels were dose-dependently decreased with vibration frequency after the swimming test. Fasting serum levels of albumin and total protein were increased and serum levels of alkaline phosphatase and creatinine decreased dose-dependently with vibration frequency. Moreover, WBV training improved the age-related abnormal morphology of skeletal muscle, liver and kidney tissues. Therefore, it could improve exercise performance and

  6. Performance of improved magnetostrictive vibrational power generator, simple and high power output for practical applications

    Science.gov (United States)

    Ueno, Toshiyuki

    2015-05-01

    Vibration based power generation technology is utilized effectively in various fields. Author has invented novel vibrational power generation device using magnetostrictive material. The device is based on parallel beam structure consisting of a rod of iron-gallium alloy wound with coil and yoke accompanied with permanent magnet. When bending force is applied on the tip of the device, the magnetization inside the rod varies with induced stress due to the inverse magnetostrictive effect. In vibration, the time variation of the magnetization generates voltage on the wound coil. The magnetostrictive type is advantageous over conventional such using piezoelectric or moving magnet types in high efficiency and high robustness, and low electrical impedance. Here, author has established device configuration, simple, rigid, and high power output endurable for practical applications. In addition, the improved device is lower cost using less volume of Fe-Ga and permanent magnet compared to our conventional, and its assembly by soldering is easy and fast suitable for mass production. Average power of 3 mW/cm3 under resonant vibration of 212 Hz and 1.2 G was obtained in miniature prototype using Fe-Ga rod of 2 × 0.5× 7 mm3. Furthermore, the damping effect was observed, which demonstrates high energy conversion of the generator.

  7. An Intelligent Optimization Method for Vortex-Induced Vibration Reducing and Performance Improving in a Large Francis Turbine

    Directory of Open Access Journals (Sweden)

    Xuanlin Peng

    2017-11-01

    Full Text Available In this paper, a new methodology is proposed to reduce the vortex-induced vibration (VIV and improve the performance of the stay vane in a 200-MW Francis turbine. The process can be divided into two parts. Firstly, a diagnosis method for stay vane vibration based on field experiments and a finite element method (FEM is presented. It is found that the resonance between the Kármán vortex and the stay vane is the main cause for the undesired vibration. Then, we focus on establishing an intelligent optimization model of the stay vane’s trailing edge profile. To this end, an approach combining factorial experiments, extreme learning machine (ELM and particle swarm optimization (PSO is implemented. Three kinds of improved profiles of the stay vane are proposed and compared. Finally, the profile with a Donaldson trailing edge is adopted as the best solution for the stay vane, and verifications such as computational fluid dynamics (CFD simulations, structural analysis and fatigue analysis are performed to validate the optimized geometry.

  8. Investigation of the performances of PZT vs rare earth (BaLaTiO3 vibration based energy harvester

    Directory of Open Access Journals (Sweden)

    Pak Nehemiah

    2017-01-01

    Full Text Available This study proposes the investigation of two piezoelectric material namely PZT and Lanthanum Doped Barium Titanate (BaLaTiO3 performance as a vibration based energy harvester. The piezoelectric material when applied mechanical stress or strain produces electricity through the piezoelectric effect. The vibration energy would exude mechanical energy and thus apply mechanical force on the energy harvester. The energy harvester would be designed and simulated using the piezoelectric material individually. The studied outputs are divided to frequency response, the load dependence, and the acceleration dependence whereby measurement are observed and taken at maximum power output. The simulation is done using the cantilevers design which employs d31 type of constants. Three different simulations to study the dependence of output power on the resonant frequency response, load and acceleration have found that material that exhibit highest power generation was the BaLaTiO3.

  9. GOES-R Active Vibration Damping Controller Design, Implementation, and On-Orbit Performance

    Science.gov (United States)

    Clapp, Brian R.; Weigl, Harald J.; Goodzeit, Neil E.; Carter, Delano R.; Rood, Timothy J.

    2017-01-01

    GOES-R series spacecraft feature a number of flexible appendages with modal frequencies below 3.0 Hz which, if excited by spacecraft disturbances, can be sources of undesirable jitter perturbing spacecraft pointing. In order to meet GOES-R pointing stability requirements, the spacecraft flight software implements an Active Vibration Damping (AVD) rate control law which acts in parallel with the nadir point attitude control law. The AVD controller commands spacecraft reaction wheel actuators based upon Inertial Measurement Unit (IMU) inputs to provide additional damping for spacecraft structural modes below 3.0 Hz which vary with solar wing angle. A GOES-R spacecraft dynamics and attitude control system identified model is constructed from pseudo-random reaction wheel torque commands and IMU angular rate response measurements occurring over a single orbit during spacecraft post-deployment activities. The identified Fourier model is computed on the ground, uplinked to the spacecraft flight computer, and the AVD controller filter coefficients are periodically computed on-board from the Fourier model. Consequently, the AVD controller formulation is based not upon pre-launch simulation model estimates but upon on-orbit nadir point attitude control and time-varying spacecraft dynamics. GOES-R high-fidelity time domain simulation results herein demonstrate the accuracy of the AVD identified Fourier model relative to the pre-launch spacecraft dynamics and control truth model. The AVD controller on-board the GOES-16 spacecraft achieves more than a ten-fold increase in structural mode damping of the fundamental solar wing mode while maintaining controller stability margins and ensuring that the nadir point attitude control bandwidth does not fall below 0.02 Hz. On-orbit GOES-16 spacecraft appendage modal frequencies and damping ratios are quantified based upon the AVD system identification, and the increase in modal damping provided by the AVD controller for each structural

  10. WHOLE-BODY VIBRATION TRAINING COMPARED WITH RESISTANCE TRAINING: EFFECT ON SPASTICITY, MUSCLE STRENGTH AND MOTOR PERFORMANCE IN ADULTS WITH CEREBRAL PALSY

    National Research Council Canada - National Science Library

    Ahlborg, Lotta; Andersson, Christina; Julin, Per

    2006-01-01

    Objective: The aim of this study was to evaluate the effect on spasticity, muscle strength and motor performance after 8 weeks of whole-body vibration training compared with resistance training in adults with cerebral palsy. Methods...

  11. Plasmonic titanium nitride nanostructures for perfect absorbers

    DEFF Research Database (Denmark)

    Guler, Urcan; Li, Wen-Wei; Kinsey, Nathaniel

    2013-01-01

    We propose a metamaterial based perfect absorber in the visible region, and investigate the performance of titanium nitride as an alternative plasmonic material. Numerical and experimental results reveal that titanium nitride performs better than gold as a plasmonic absorbing material...

  12. Ultrasonic vibration imposed on nanoparticle-based ZnO film improves the performance of the ensuing perovskite solar cell

    Science.gov (United States)

    Miao, Yihe; Du, Peng; Wang, Zhiyu; Chen, Qianli; Eslamian, Morteza

    2018-02-01

    This work focuses on the development of nearly annealing-free ZnO-based perovskite solar cells (PSCs), suitable for low-cost manufacturing of PSCs on flexible substrates. To this end, thin film of ZnO nanoparticles is employed as the electron transporting layer (ETL), because of its low-temperature solution-processability and high electron mobility. In order to remove the structural and surface defects, ultrasonic vibration is imposed on the substrate of the as-spun wet ZnO films for a short duration of 3 min. It is shown that the ultrasonic excitation bridges the ZnO nanoparticles (cold sintering), and brings about significant improvement in the ZnO film nanostructure and functionality. In addition, ethyl acetate (EA), as an emerging volatile anti-solvent, is employed to deposit the methylammonium (MA) lead halide perovskite thin film atop the ZnO ETL, in order to prepare perovskite layers that only need an annealing time of 30 s. The ZnO-based PSCs, with a simple structure and free of additional treatments, except for the ultrasonic vibration, exhibit a promising performance with a power conversion efficiency (PCE) of over 11%, 40% higher than that of the control device. The ultrasonic vibration treatment is facile, low-cost, environmentally friendly, and compatible with the scalable coating and printing techniques, such as spray and blade coating.

  13. Performance testing of diesel engines using vibrational-acoustical diagnostic methods

    Energy Technology Data Exchange (ETDEWEB)

    Maack, H.H.; Neumann, G.

    1982-01-01

    Vibroacoustic condition monitoring is based on the measurement, processing and analysis of the solid-borne and airborne vibration signals emanating from a machine. Several assemblies belonging to diesel engines have a characteristic signal structure induced by impact excitation. The author proceeds from a generalised condition monitoring process to discuss the problem of the origin, transmission, measurement and analysis of vibroacoustic signals from diesel engines and presents a procedure based on a combination of frequency analysis in the temporary elimination of signal components.

  14. Effectiveness of Different Rest Intervals Following Whole-Body Vibration on Vertical Jump Performance between College Athletes and Recreationally Trained Females

    Directory of Open Access Journals (Sweden)

    Nicole C. Dabbs

    2015-09-01

    Full Text Available The purpose of this study was to evaluate the effect of different rest intervals following whole-body vibration on counter-movement vertical jump performance. Sixteen females, eight recreationally trained and eight varsity athletes volunteered to participate in four testing visits separated by 24 h. Visit one acted as a familiarization visit where subjects were introduced to the counter-movement vertical jump and whole-body vibration protocols. Visits 2–4 contained 2 randomized conditions. Whole-body vibration was administered in four bouts of 30 s with 30 s rest between bouts. During whole-body vibration subjects performed a quarter squat every 5 s, simulating a counter-movement vertical jump. Whole-body vibration was followed by three counter-movement vertical jumps with five different rest intervals between the vibration exposure and jumping. For a control condition, subjects performed squats with no whole-body vibration. There was a significant (p < 0.05 main effect for time for vertical jump height, peak power output, and relative ground reaction forces, where a majority of individuals max jump from all whole-body vibration conditions was greater than the control condition. There were significant (p < 0.05 group differences, showing that varsity athletes had a greater vertical jump height and peak power output compared to recreationally trained females. There were no significant (p > 0.05 group differences for relative ground reaction forces. Practitioners and/or strength and conditioning coaches may utilize whole-body vibration to enhance acute counter-movement vertical jump performance after identifying individuals optimal rest time in order to maximize the potentiating effects.

  15. Aperiodic-metamaterial-based absorber

    Directory of Open Access Journals (Sweden)

    Quanlong Yang

    2017-09-01

    Full Text Available The periodic-metamaterial-based perfect absorber has been studied broadly. Conversely, if the unit cell in the metamaterial-based absorber is arranged aperiodically (aperiodic-metamaterial-based absorber, how does it perform? Inspired by this, here we present a systematic study of the aperiodic-metamaterial-based absorber. By investigating the response of metamaterial absorbers based on periodic, Fibonacci, Thue-Morse, and quasicrystal lattices, we found that aperiodic-metamaterial-based absorbers could display similar absorption behaviors as the periodic one in one hand. However, their absorption behaviors show different tendency depending on the thicknesses of the spacer. Further studies on the angle and polarization dependence of the absorption behavior are also presented.

  16. Aperiodic-metamaterial-based absorber

    Science.gov (United States)

    Yang, Quanlong; Chen, Xieyu; Li, Yanfeng; Zhang, Xueqian; Xu, Yuehong; Tian, Zhen; Ouyang, Chunmei; Gu, Jianqiang; Han, Jiaguang; Zhang, Weili

    2017-09-01

    The periodic-metamaterial-based perfect absorber has been studied broadly. Conversely, if the unit cell in the metamaterial-based absorber is arranged aperiodically (aperiodic-metamaterial-based absorber), how does it perform? Inspired by this, here we present a systematic study of the aperiodic-metamaterial-based absorber. By investigating the response of metamaterial absorbers based on periodic, Fibonacci, Thue-Morse, and quasicrystal lattices, we found that aperiodic-metamaterial-based absorbers could display similar absorption behaviors as the periodic one in one hand. However, their absorption behaviors show different tendency depending on the thicknesses of the spacer. Further studies on the angle and polarization dependence of the absorption behavior are also presented.

  17. Effects of Adding of Two Commercial Absorbent Materials and Natural Zeolite to the Diets Contaminated with Aflatoxin B1 on Broiler Performance and their

    Directory of Open Access Journals (Sweden)

    J. Azimi

    2013-03-01

    Full Text Available This study was conducted to evaluate the effect of adding of two commercial absorbent products in feeds and to compare the results with the effect of adding of natural zeolite in reducing the adverse effects of aflatoxin B1 on broiler growth, performance and immune system. In this study, 200 one day old Arian 386 broiler chickens were used in a completely randomized design with 5 treatments, 4 replications and 10 chicks per each treatment. Experimental groups were as follows: negative control fed basal diet; positive control fed basal diet plus 1 mg aflatoxin B1 kg-1 diet; and three other groups fed 25g/kg Milbond-TX, Polysorb and Zeolite with 1 mg/kg aflatoxin B1, respectively. Feed intake did not significantly differ between the groups. The body weight gain and feed conversion ratio of birds fed contaminated diets were significantly decreased and increased, respectively but adding of the absorbent materials to contaminated feed caused a significant improvement in body weight gain and feed conversion. Among the internal organs, the spleen relative weights increased by consumption of aflatoxin B1contaminated feed. Aflatoxin B1 use without absorbent materials significantly decreased antibody production against Newcastle disease vaccine in 21 day. In addition, produced antibodies against sheep red blood cells in 35 day of age in birds fed aflatoxin B1 contaminated diets were reduced. The results of this study showed that the adding of natural zeolite and commercial absorbents in feeds contaminated with aflatoxin B1 causes improved performance and immune system compared with the group that received the aflatoxin B1 alone.

  18. Vibration analysis of cryocoolers

    Science.gov (United States)

    Tomaru, Takayuki; Suzuki, Toshikazu; Haruyama, Tomiyoshi; Shintomi, Takakazu; Yamamoto, Akira; Koyama, Tomohiro; Li, Rui

    2004-05-01

    The vibrations of Gifford-McMahon (GM) and pulse-tube (PT) cryocoolers were measured and analyzed. The vibrations of the cold-stage and cold-head were measured separately to investigate their vibration mechanisms. The measurements were performed while maintaining the thermal conditions of the cryocoolers at a steady state. We found that the vibration of the cold-head for the 4 K PT cryocooler was two orders of magnitude smaller than that of the 4 K GM cryocooler. On the other hand, the vibration of the cold-stages for both cryocoolers was of the same order of magnitude. From a spectral analysis of the vibrations and a simulation, we concluded that the vibration of the cold-stage is caused by an elastic deformation of the pulse tubes (or cylinders) due to the pressure oscillation of the working gas.

  19. Vibration analysis of cryocoolers

    Energy Technology Data Exchange (ETDEWEB)

    Tomaru, Takayuki; Suzuki, Toshikazu; Haruyama, Tomiyoshi; Shintomi, Takakazu; Yamamoto, Akira [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki (Japan); Koyama, Tomohiro; Rui Li [Sumitomo Heavy Industries Ltd., Tokyo (Japan)

    2004-05-01

    The vibrations of Gifford-McMahon (GM) and pulse-tube (PT) cryocoolers were measured and analyzed. The vibrations of the cold-stage and cold-head were measured separately to investigate their vibration mechanisms. The measurements were performed while maintaining the thermal conditions of the cryocoolers at a steady state. We found that the vibration of the cold-head for the 4 K PT cryocooler was two orders of magnitude smaller than that of the 4 K GM cryocooler. On the other hand, the vibration of the cold-stages for both cryocoolers was of the same order of magnitude. From a spectral analysis of the vibrations and a simulation, we concluded that the vibration of the cold-stage is caused by an elastic deformation of the pulse tubes (or cylinders) due to the pressure oscillation of the working gas. (Author)

  20. The effects of suspension particle size on the performance of air-jet, ultrasonic and vibrating-mesh nebulisers.

    Science.gov (United States)

    Najlah, Mohammad; Parveen, Ishrat; Alhnan, Mohamed Albed; Ahmed, Waqar; Faheem, Ahmed; Phoenix, David A; Taylor, Kevin M G; Elhissi, Abdelbary

    2014-01-30

    Using latex microspheres as model suspensions, the influence of suspension particle size (1, 4.5 and 10 μm) on the properties of aerosols produced using Pari LC Sprint (air-jet), Polygreen (ultrasonic), Aeroneb Pro (actively vibrating-mesh) and Omron MicroAir NE-U22 (passively vibrating-mesh) nebulisers was investigated. The performance of the Pari nebuliser was independent of latex spheres particle size. For both Polygreen and Aeroneb Pro nebulizers, total aerosol output increased when the size of latex spheres increased, with highest fine particle fraction (FPF) values being recorded. However, following nebulisation of 1 or 4.5 μm suspensions with the Polygreen device, no particles were detected in the aerosols deposited in a two-stage impinger, suggesting that the aerosols generated from this device consisted mainly of the continuous phase while the dispersed microspheres were excluded and remained in the nebuliser. The Omron nebuliser efficiently nebulised the 1 μm latex spheres, with high output rate and no particle aggregation. However, this device functioned inefficiently when delivering 4.5 or 10 μm suspensions, which was attributed to the mild vibrations of its mesh and/or the blockage of the mesh apertures by the microspheres. The Aeroneb Pro fragmented latex spheres into smaller particles, but uncontrolled aggregation occurred upon nebulisation. This study has shown that the design of the nebuliser influenced the aerosol properties using latex spheres as model suspensions. Moreover, for the recently marketed mesh nebulisers, the performance of the Aeroneb Pro device was less dependent on particle size of the suspension compared with the Omron MicroAir nebuliser. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Attenuation of cryocooler induced vibration in spaceborne infrared payloads

    Science.gov (United States)

    Veprik, A.; Twitto, A.

    2014-01-01

    Recent advancement of operational responsive space programs calls for a development of compact, reliable, low power and vibration free cryogenic cooling for sophisticated infrared payloads. The refrigeration in a typical closed cycle split Stirling linear cryocooler is achieved by a cyclic compression and expansion of a gaseous working agent due to a synchronized reciprocation of electro-dynamically and pneumatically actuated compressor and expander pistons. Attenuation of the cryocooler induced vibration usually relies on the concept of actively assisted momentum cancellation. In a typical dual-piston compressor this objective is achieved by actively synchronizing the motion of oppositely moving piston assemblies; a typical single-piston expander may be counterbalanced by a motorized counter-balancer. The above approach produces complexity, weight, size, high incurred costs and affects reliability. The authors analyze the case of passive attenuation the vibration export induced by the split Stirling linear cryocooler comprised of inline mounted single-piston compressor and expander. Placement of all the moving components onto a common axis results in a single axis consolidation of vibration export and enables use of single tuned dynamic absorber and low frequency vibration mount. From theoretical analysis and full-scale testing, the performance of such vibration protection arrangement is similar to known systems of active vibration cancellation.

  2. Performance of an in-plane detection cell with integrated waveguides for UV/Vis absorbance measurements on microfluidic separation devices

    DEFF Research Database (Denmark)

    Petersen, Nickolaj Jacob; Mogensen, Klaus Bo; Kutter, Jörg Peter

    2002-01-01

    A microfluidic device with integrated waveguides and a long path length detection cell for UV/Vis absorbance detection is presented. The 750 mum U-cell detection geometry was evaluated in terms of its optical performance as well as its influence on efficiency for electrophoretic separations...... in the microdevice. Stray light was found to have a strong effect on both, the sensitivity of the detection and the available linear range. The long path length U-cell showed a 9 times higher sensitivity when compared to a conventional capillary electrophoresis (CE) system with a 75 mum inner diameter (ID) capillary...

  3. ZnO thin film piezoelectric MEMS vibration energy harvesters with two piezoelectric elements for higher output performance.

    Science.gov (United States)

    Wang, Peihong; Du, Hejun

    2015-07-01

    Zinc oxide (ZnO) thin film piezoelectric microelectromechanical systems (MEMS) based vibration energy harvesters with two different designs are presented. These harvesters consist of a silicon cantilever, a silicon proof mass, and a ZnO piezoelectric layer. Design I has a large ZnO piezoelectric element and Design II has two smaller and equally sized ZnO piezoelectric elements; however, the total area of ZnO thin film in two designs is equal. The ZnO thin film is deposited by means of radio-frequency magnetron sputtering method and is characterized by means of XRD and SEM techniques. These ZnO energy harvesters are fabricated by using MEMS micromachining. The natural frequencies of the fabricated ZnO energy harvesters are simulated and tested. The test results show that these two energy harvesters with different designs have almost the same natural frequency. Then, the output performance of different ZnO energy harvesters is tested in detail. The effects of series connection and parallel connection of two ZnO elements on the load voltage and power are also analyzed. The experimental results show that the energy harvester with two ZnO piezoelectric elements in parallel connection in Design II has higher load voltage and higher load power than the fabricated energy harvesters with other designs. Its load voltage is 2.06 V under load resistance of 1 MΩ and its maximal load power is 1.25 μW under load resistance of 0.6 MΩ, when it is excited by an external vibration with frequency of 1300.1 Hz and acceleration of 10 m/s(2). By contrast, the load voltage of the energy harvester of Design I is 1.77 V under 1 MΩ resistance and its maximal load power is 0.98 μW under 0.38 MΩ load resistance when it is excited by the same vibration.

  4. Optimal Sound Absorbing Structures

    CERN Document Server

    Yang, Min; Fu, Caixing; Sheng, Ping

    2016-01-01

    Causal nature of the acoustic response, for any materials or structures, dictates an inequality that relates the absorption spectrum of the sample to its thickness. We present a general recipe for constructing sound-absorbing structures that can attain near-equality for the causal relation with very high absorption performance; such structures are denoted optimal. Our strategy involves using carefully designed acoustic metamaterials as backing to a thin layer of conventional sound absorbing material, e.g., acoustic sponge. By using this design approach, we have realized a 12 cm-thick structure that exhibits broadband, near-perfect flat absorption spectrum starting at around 400 Hz. From the causal relation, the calculated minimum sample thickness is 11.5 cm for the observed absorption spectrum. We present the theory that underlies such absorption performance, involving the evanescent waves and their interaction with a dissipative medium, and show the excellent agreement with the experiment.

  5. Comparison of whole-body vibration exercise and plyometric exercise to improve isokinetic muscular strength, jumping performance and balance of female volleyball players

    Science.gov (United States)

    Kim, Yong-Youn; Park, Si-Eun

    2016-01-01

    [Purpose] The purpose of this study was to assess the effect of whole-body vibration exercise and plyometric exercise on female volleyball players. [Subjects and Methods] Subjects were randomly allocated to two exercise groups (whole-body vibration exercise group and plyometric exercise group). The exercise was conducted three times each week for 8 weeks. Isokinetic muscular strength, jumping performance, and balance were measured before starting the exercise and after finishing the 8 weeks of exercise. [Results] Measurements of isokinetic muscular strength revealed that the whole-body vibration exercise group showed significant increase after the exercise. However, the plyometric exercise group had no significant increase in lumbar flexion, extension, and knee flexion. Measurements of vertical jumping revealed that, the whole-body vibration exercise group had no significant increase after the exercise. However, the plyometric exercise group showed significant increase. Measurements of balance revealed that, the whole-body vibration exercise group showed significant increase. However, the plyometric exercise group showed no significant increase. [Conclusion] Although both whole-body vibration and plyometric exercises are effective intervention methods, the two methods have different effects on the improvement of isokinetic muscular strength, jumping performance, and balance of female volleyball players. PMID:27942136

  6. The Effects of Whole Body Vibration Training and Creatine Supplementation on Lower Extremity Performance and Balance in Elderly Males

    Directory of Open Access Journals (Sweden)

    Mostafa Rahimi

    2011-04-01

    Full Text Available Objectives: The purpose of this study was to investigate the effects of whole body vibration training (WBVT and creatine (Cr supplementation on lower extremity performance and balance in elderly males. Methods & Materials: In this semi-experimental study, twenty two eligible males from the members of an elderly daycare center with more than 60 years of age were enrolled and were divided into three groups randomly, WBVT+Cr(n=7, WBVT+Pgroup (n=7, and control group (n=8. In WBVT+Cr and WBVT+P groups exercises were performed on the whole body vibration device for 10 days with 30-35 Hz intensity and 5 mm amplitude. The WBVT+Cr group consumed 20g/day Crsupplement for the first 5 days followed by 5g/days for the next 5 days of protocol. The WBVT+P group consumed dexterous. The control group neither did any exercise nor consumed any supplement during the protocol. Static balance by standing time on one leg, dynamic balance by TUG test and lower extremity performance by 30-meter walking test, sit and stand test and tandem gait test weremeasured. Paired sample t-test and one way ANOVAwere used for data analysis (α=0.05. Results: Our results showed that dynamic balance, lower body performance in 30- meter walking and tandem gait improved in experimental groups. However, ANOVA did not show any significant increase in static balance (P=0.514, dynamic balance (P=0.153, lower body performance in 30-meter walking test (P=0.339, sit and stand test (P=0.578 and tandem gait (P=0.151. Conclusion: In conclusion, it seems that WBVT plus Cr supplementation improves some of the motor fitness factors in elderly males during a short time.

  7. Absorbable and biodegradable polymers

    CERN Document Server

    Shalaby, Shalaby W

    2003-01-01

    INTRODUCTION NOTES: Absorbable/Biodegradable Polymers: Technology Evolution. DEVELOPMENT AND APPLICATIONOF NEW SYSTEMS: Segmented Copolyesters with Prolonged Strength Retention Profiles. Polyaxial Crystalline Fiber-Forming Copolyester. Polyethylene Glycol-Based Copolyesters. Cyanoacrylate-Based Systems as Tissue Adhesives. Chitosan-Based Systems. Hyaluronic Acid-Based Systems. DEVELOPMENTS IN PREPARATIVE, PROCESSING, AND EVALUATION METHODS: New Approaches to the Synthesis of Crystalline. Fiber-Forming Aliphatic Copolyesters. Advances in Morphological Development to Tailor the Performance of Me

  8. Absorbance detector for high performance liquid chromatography based on a deep-UV light-emitting diode at 235nm.

    Science.gov (United States)

    da Silveira Petruci, João Flavio; Liebetanz, Michael G; Cardoso, Arnaldo Alves; Hauser, Peter C

    2017-08-25

    In this communication, we describe a flow-through optical absorption detector for HPLC using for the first time a deep-UV light-emitting diode with an emission band at 235nm as light source. The detector is also comprised of a UV-sensitive photodiode positioned to enable measurement of radiation through a flow-through cuvette with round aperture of 1mm diameter and optical path length of 10mm, and a second one positioned as reference photodiode; a beam splitter and a power supply. The absorbance was measured and related to the analyte concentration by emulating the Lambert-Beer law with a log-ratio amplifier circuitry. This detector showed noise levels of 0.30mAU, which is comparable with our previous LED-based detectors employing LEDs at 280 and 255nm. The detector was coupled to a HPLC system and successfully evaluated for the determination of the anti-diabetic drugs pioglitazone and glimepiride in an isocratic separation and the benzodiazepines flurazepam, oxazepam and clobazam in a gradient elution. Good linearities (r>0.99), a precision better than 0.85% and limits of detection at sub-ppm levels were achieved. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Insight into magnetorheological shock absorbers

    CERN Document Server

    Gołdasz, Janusz

    2015-01-01

    This book deals with magnetorheological fluid theory, modeling and applications of automotive magnetorheological dampers. On the theoretical side a review of MR fluid compositions and key factors affecting the characteristics of these fluids is followed by a description of existing applications in the area of vibration isolation and flow-mode shock absorbers in particular. As a majority of existing magnetorheological devices operates in a so-called flow mode a critical review is carried out in that regard. Specifically, the authors highlight common configurations of flow-mode magnetorheological shock absorbers, or so-called MR dampers that have been considered by the automotive industry for controlled chassis applications. The authors focus on single-tube dampers utilizing a piston assembly with one coil or multiple coils and at least one annular flow channel in the piston.

  10. Effect of whole-body vibration on neuromuscular performance and body composition for females 65 years and older: a randomized-controlled trial.

    Science.gov (United States)

    von Stengel, S; Kemmler, W; Engelke, K; Kalender, W A

    2012-02-01

    We examined whether the effect of multipurpose exercise can be enhanced by whole-body vibration (WBV). One hundred and fifty-one post-menopausal women (68.5 ± 3.1 years) were randomly assigned to three groups: (1) a training group (TG); (2) training including vibration (VTG); and (3) a wellness control group (CG). TG and VTG performed the same training program twice weekly (60 min), consisting of aerobic and strength exercises, with the only difference that leg strength exercises (15 min) were performed with (VTG) or without (TG) vibration. CG performed a low-intensity "wellness" program. At baseline and after 18 months, body composition was determined using dual-X-ray-absorptiometry. Maximum isometric strength was determined for the legs and the trunk region. Leg power was measured by countermovement jumps using a force-measuring plate. In the TG lean body mass, total body fat, and abdominal fat were favorably affected, but no additive effects were generated by the vibration stimulus. However, concerning muscle strength and power, there was a tendency in favor of the VTG. Only vibration training resulted in a significant increase of leg and trunk flexion strength compared with CG. In summary, WBV embedded in a multipurpose exercise program showed minor additive effects on body composition and neuromuscular performance. © 2010 John Wiley & Sons A/S.

  11. Performance Evaluation of a Solar Dryer with Finny, Perforated Absorber Plate Collector Equipped with an Air Temperature Control System for Dill Drying

    Directory of Open Access Journals (Sweden)

    M Razmipour

    2015-03-01

    Full Text Available Dill is one of the most important plants in the world because of its medicinal properties and it is widely used as a vegetable in the most parts of Iran. In the present study a new solar dryer with finny, perforated absorber plate collector was utilized to dry fresh dill. The dryer was comprised of a solar collector, a product container, a fan and a drying air temperature controller. The temperature controller was used as a control system to regulate the drying air temperature. Thermal performance of the dryer with finny, perforated solar collector was compared with that of a simple flat plate solar collector at different airflow rates. The effect of drying air temperature at three levels (45, 55 and 65 °C, the product size at three lengths (3, 5 and 7 cm and two different modes of drying (mixed and indirect on the dryer performance was investigated. The results showed that the finny, perforated absorber plate solar collector could improve the thermal efficiency about 11% in comparison with the flat plate collector and the highest thermal efficiency was achieved at the maximum airflow rate. Meanwhile, increasing the air temperature and decreasing the product size caused a significant reduction in energy consumption. Solar fraction reduced by increasing the air temperature. Finally a maximum dryer efficiency of 70% was observed at air temperature of 65 oC, product size of 3 cm with mixed mode drying.

  12. Understanding how the placement of an asymmetric vibration damping tool within drilling while underreaming can influence performance and reliability

    Energy Technology Data Exchange (ETDEWEB)

    Kabbara, Alan; McCarthy, John; Burnett, Timm; Forster, Ian [National Oilwell Varco Downhole Ltd. (NOV), Houston, TX (United States)

    2012-07-01

    This paper describes the work, on test rigs and full-scale drilling rigs, carried out with respect to placement of an Asymmetric Vibration Damping Tool (AVDT) within drilling while under reaming operations. An AVDT, by virtue of the forward synchronous motion imposed on the drill string, offers benefits in minimizing down hole vibration-related tool failures and therefore maximizing rate of penetration (ROP). Of interest in using the AVDT is the tendency to minimize stick slip by means of the parasitic torque it generates. This is of particular importance during under reaming operations. While under reaming, stick slip can result in low (ROP) and potentially an increased incidence of down hole tool failures. The use of an AVDT in these operations has been shown to significantly reduce stick slip. However, due to the forward synchronous motion caused by the AVDT, there is the potential to cause eccentric wear to the Bottom Hole Assembly (BHA) components in the vicinity of the AVDT. If allowed to progress, this eccentric wear can cause a reduction in down hole tool life and drilling performance. Eliminating eccentric wear would be beneficial in reducing repair costs, extending component life and further improving drilling performance. To minimize eccentric wear and maximize drilling performance, the placement of the AVDT within the BHA is critical. This paper describes how the placement of intermediate stabilizers between the AVDT and the under reamer can minimize eccentric wear to the under reamer and the adjacent drill string due to the forward synchronous whirl induced by the AVDT. This approach allows the full benefits of the AVDT to be recognized while reducing the potentially damaging effects of eccentric wear to other BHA components. The work has drawn upon small-scale rig testing, full-scale testing at the Ullrigg test facility in Norway and from real-world drilling and under reaming operations in the USA. (author)

  13. Performance enhancement of a rotational energy harvester utilizing wind-induced vibration of an inclined stay cable

    Science.gov (United States)

    Kim, In-Ho; Jang, Seon-Jun; Jung, Hyung-Jo

    2013-07-01

    In this paper, an innovative strategy for improving the performance of a recently developed rotational energy harvester is proposed. Its performance can be considerably enhanced by replacing the electromagnetic induction part, consisting of moving permanent magnets and a fixed solenoid coil, with a moving mass and a rotational generator (i.e., an electric motor). The proposed system is easily tuned to the natural frequency of a target structure using the position change of a proof mass. Owing to the high efficiency of the rotational generator, the device can more effectively harness electrical energy from the wind-induced vibration of a stay cable. Also, this new configuration makes the device more compact and geometrically tunable. In order to validate the effectiveness of the new configuration, a series of laboratory and field tests are carried out with the prototype of the proposed device, which is designed and fabricated based on the dynamic characteristics of the vibration of a stay cable installed in an in-service cable-stayed bridge. From the field test, it is observed that the normalized output power of the proposed system is 35.67 mW (m s-2)-2, while that of the original device is just 5.47 mW (m s-2)-2. These results show that the proposed device generates much more electrical energy than the original device. Moreover, it is verified that the proposed device can generate sufficient electricity to power a wireless sensor node placed on a cable under gentle-moderate wind conditions.

  14. Changes in muscle cross-sectional area, muscle force, and jump performance during 6 weeks of progressive whole-body vibration combined with progressive, high intensity resistance training

    Science.gov (United States)

    Rosenberger, A.; Beijer, Å.; Johannes, B.; Schoenau, E.; Mester, J.; Rittweger, J.; Zange, J.

    2017-01-01

    Objectives: We hypothesized that progressive whole-body vibration (WBV) superimposed to progressive high intensity resistance training has greater effects on muscle cross-sectional area (CSA), muscle force of leg muscles, and jump performance than progressive high intensity resistance training alone. Methods: Two groups of healthy male subjects performed either 6 weeks of Resistive Vibration Exercise (RVE, squats and heel raises with WBV, n=13) or Resistive Exercise (RE, squats and heel raises without WBV, n=13). Squats under RVE required indispensable weight loading on the forefoot to damp harmful vibrations to the head. Time, intervention, and interaction effects were analyzed. Results: After 6 weeks of training, knee extensor CSA, isometric knee extension force, and counter movement jump height increased equally in both groups (time effect, Ptraining effects than RE only in plantar flexor muscles. RVE seems to be suitable in professional sports with a special focus on calf muscles. PMID:28574410

  15. Gel performance in rheology and profile control under low-frequency vibration: coupling application of physical and chemical EOR techniques.

    Science.gov (United States)

    Zheng, Li Ming; Pu, Chun Sheng; Liu, Jing; Ma, Bo; Khan, Nasir

    2017-01-01

    Flowing gel plugging and low-frequency vibration oil extraction technology have been widely applied in low-permeability formation. High probability of overlapping in action spheres of two technologies might lead to poor operating efficiency during gel injection. Study on flowing gel rheological properties under low-frequency vibration was essential, which was carried out indoor with viscosity measurement. Potential dynamic mechanisms were analyzed for the rheological variation. Under low-frequency vibration, gel rheological properties were found to be obviously influenced, with vibration delaying gel cross-linking in induction period, causing a two-stage gel viscosity change in acceleration period, and decreasing gel strength in stable period. Surface of gel system under vibration presented different fluctuating phenomenon from initial harmonic vibrating to heterogeneous fluctuating (droplet separation might appear) to final harmonic vibrating again. Dynamic displacement in unconsolidated sand pack revealed that low-frequency vibration during gel injection might be a measure to achieve deep profile control, with the gel injection depth increased by 65.8 % compared with the vibration-free sample. At last, suggestions for field test were given in the paper to achieve lower injection friction and better gel plugging efficiency.

  16. Adding whole body vibration to preconditioning exercise increases subsequent on-ice sprint performance in ice-hockey players.

    Science.gov (United States)

    Rønnestad, Bent R; Slettaløkken, Gunnar; Ellefsen, Stian

    2016-04-01

    The phenomenon postactivation potentiation can possibly be used to acutely improve sprint performance. The purpose of this study was to investigate the effect of body-loaded half-squats with added whole body vibration (WBV) on subsequent 20 m on-ice sprint performance. Fifteen male ice-hockey players performed 4 test sessions on separate days and in a randomized order. Two of this test sessions were with WBV and 2 were with noWBV and the best sprint time was used to determine effectiveness. Each test session included preconditioning 30 seconds half-squat exercise, 2 of which were supplemented with 50 Hz WBV at a amplitude of 3 mm. One minute after the cessation of the preconditioning exercise, the 20 m sprint test was performed. Intermediate time was sampled after 10 m. Preconditioning exercise performed with 50 Hz WBV resulted in superior 10 m and 20 m sprint performance compared to preconditioning exercise performed without WBV (1.84 6 0.10 seconds vs. 1.89 6 0.10 seconds and 3.14 6 0.13 vs. 3.17 6 0.13 seconds, respectively, p # 0.01). There was no difference between the protocols in perceived well-being of the legs before the warm-up or after the warm up (p = 0.3). However, there was an improved well-being in the legs immediately after the preconditioning exercise with WBV (p , 0.05). In conclusion, preconditioning exercise performed with WBV at 50 Hz seems to enhance on-ice sprint performance in ice-hockey players. This suggests that coaches can incorporate such exercise into the preparation to specific sprint training to improve the quality of the training.

  17. The Effect of Whole Body Vibration Training and Detraining Periods on Neuromuscular Performance in Male Older People

    Directory of Open Access Journals (Sweden)

    Ali Abbasi

    2011-07-01

    Full Text Available Objectives: This study aimed to evaluatethe the effect of eight weeks whole body vibration training (WBVT and detraining periods on neuromuscular performance male healthy older people. Methods & Materials: Thirty male subjects (70±9.6 years old were randomly allocated into two groups of WBVT and control (n=15 per group. Timed Up & Go and 5-Chair stand tests, as indicators of neuromuscular performance in older subjects, were taken as pretest and posttest and also after four, six, and eight weeks of detraining. Results: Results of Repeated-measure ANOVA and one-way ANOVA showed that neuromuscular performance improved significantly in WBVT group (P<0.05. There were also significant differences between posttest and six and eight weeks of detraining periods in WBVTgroup (P<0.05. Conclusion: WBVT could affect neuromuscular performance in healthy subjects and reduce the probability of falling among them. However, the effects of this training are not persistent, goes back to the early levels after six weeks of detraining. Hence, it is possible that WBVT can be recommended as a safe balance training to older people.

  18. Absorbed in the task : Personality measures predict engagement during task performance as tracked by error negativity and asymmetrical frontal activity

    NARCIS (Netherlands)

    Tops, Mattie; Boksem, Maarten A. S.

    2010-01-01

    We hypothesized that interactions between traits and context predict task engagement, as measured by the amplitude of the error-related negativity (ERN), performance, and relative frontal activity asymmetry (RFA). In Study 1, we found that drive for reward, absorption, and constraint independently

  19. Evaluating vibration performance of a subsea pump module by full-scale testing and numerical modelling

    NARCIS (Netherlands)

    Beek, P.J.G. van; Pereboom, H.P.; Slot, H.J.

    2016-01-01

    Prior to subsea installation, a subsea system has to be tested to verify whether it performs in accordance with specifications and component specific performance evaluation criteria. It is important to verify that the assembled components work in accordance with the assumptions and design criteria

  20. Absorbed in the task: Personality measures predict engagement during task performance as tracked by error negativity and asymmetrical frontal activity.

    Science.gov (United States)

    Tops, Mattie; Boksem, Maarten A S

    2010-12-01

    We hypothesized that interactions between traits and context predict task engagement, as measured by the amplitude of the error-related negativity (ERN), performance, and relative frontal activity asymmetry (RFA). In Study 1, we found that drive for reward, absorption, and constraint independently predicted self-reported persistence. We hypothesized that, during a prolonged monotonous task, absorption would predict initial ERN amplitudes, constraint would delay declines in ERN amplitudes and deterioration of performance, and drive for reward would predict left RFA when a reward could be obtained. Study 2, employing EEG recordings, confirmed our predictions. The results showed that most traits that have in previous research been related to ERN amplitudes have a relationship with the motivational trait persistence in common. In addition, trait-context combinations that are likely associated with increased engagement predict larger ERN amplitudes and RFA. Together, these results support the hypothesis that engagement may be a common underlying factor predicting ERN amplitude.

  1. Effect of stochastic resonance whole body vibration on functional performance in the frail elderly: A pilot study.

    Science.gov (United States)

    Kessler, Jessica; Radlinger, Lorenz; Baur, Heiner; Rogan, Slavko

    2014-01-01

    The aim of this pilot study was to evaluate the feasibility and the effect size of a four-week stochastic resonance whole body vibration (SR-WBV) intervention on functional performance and strength in frail elderly individuals. Twenty-seven participants have been recruited and randomly distributed in an intervention group (IG) and a sham group (SG). Primary outcomes were feasibility objectives like recruitment, compliance and safety. Secondary outcomes were short physical performance battery (SPPB), isometric maximum voluntary contraction (IMVC) and isometric rate of force development (IRFD). The intervention was feasible and safe. Furthermore it showed significant effects (p=0.035) and medium effect size (0.43) within the IG in SPPB. SR-WBV training over four weeks with frail elderly individuals is a safe intervention method. The compliance was good and SR-WBV intervention seems to improve functional performance. Further research over a longer time frame for the strength measurements (IMVC and IRFD) is needed to detect potential intervention effects in the force measurements as well. Clinical Trial register: NTC01704976. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  2. Slow-Absorbing Modified Starch before and during Prolonged Cycling Increases Fat Oxidation and Gastrointestinal Distress without Changing Performance

    Directory of Open Access Journals (Sweden)

    Daniel A. Baur

    2016-06-01

    Full Text Available While prior research reported altered fuel utilization stemming from pre-exercise modified starch ingestion, the practical value of this starch for endurance athletes who consume carbohydrates both before and during exercise is yet to be examined. The purpose of this study was to determine the effects of ingesting a hydrothermally-modified starch supplement (HMS before and during cycling on performance, metabolism, and gastrointestinal comfort. In a crossover design, 10 male cyclists underwent three nutritional interventions: (1 a commercially available sucrose/glucose supplement (G 30 min before (60 g carbohydrate and every 15 min during exercise (60 g∙h−1; (2 HMS consumed at the same time points before and during exercise in isocaloric amounts to G (Iso HMS; and (3 HMS 30 min before (60 g carbohydrate and every 60 min during exercise (30 g·h−1; Low HMS. The exercise protocol (~3 h consisted of 1 h at 50% Wmax, 8 × 2-min intervals at 80% Wmax, and 10 maximal sprints. There were no differences in sprint performance with Iso HMS vs. G, while both G and Iso HMS likely resulted in small performance enhancements (5.0%; 90% confidence interval = ±5.3% and 4.4%; ±3.2%, respectively relative to Low HMS. Iso HMS and Low HMS enhanced fat oxidation (31.6%; ±20.1%; very likely (Iso; 20.9%; ±16.1%; likely (Low, and reduced carbohydrate oxidation (−19.2%; ±7.6%; most likely; −22.1%; ±12.9%; very likely during exercise relative to G. However, nausea was increased during repeated sprints with ingestion of Iso HMS (17 scale units; ±18; likely and Low HMS (18; ±14; likely vs. G. Covariate analysis revealed that gastrointestinal distress was associated with reductions in performance with Low HMS vs. G (likely, but this relationship was unclear with Iso HMS vs. G. In conclusion, pre- and during-exercise ingestion of HMS increases fat oxidation relative to G. However, changes do not translate to performance improvements, possibly owing to HMS

  3. Slow-Absorbing Modified Starch before and during Prolonged Cycling Increases Fat Oxidation and Gastrointestinal Distress without Changing Performance.

    Science.gov (United States)

    Baur, Daniel A; Vargas, Fernanda de C S; Bach, Christopher W; Garvey, Jordan A; Ormsbee, Michael J

    2016-06-25

    While prior research reported altered fuel utilization stemming from pre-exercise modified starch ingestion, the practical value of this starch for endurance athletes who consume carbohydrates both before and during exercise is yet to be examined. The purpose of this study was to determine the effects of ingesting a hydrothermally-modified starch supplement (HMS) before and during cycling on performance, metabolism, and gastrointestinal comfort. In a crossover design, 10 male cyclists underwent three nutritional interventions: (1) a commercially available sucrose/glucose supplement (G) 30 min before (60 g carbohydrate) and every 15 min during exercise (60 g∙h(-1)); (2) HMS consumed at the same time points before and during exercise in isocaloric amounts to G (Iso HMS); and (3) HMS 30 min before (60 g carbohydrate) and every 60 min during exercise (30 g·h(-1); Low HMS). The exercise protocol (~3 h) consisted of 1 h at 50% Wmax, 8 × 2-min intervals at 80% Wmax, and 10 maximal sprints. There were no differences in sprint performance with Iso HMS vs. G, while both G and Iso HMS likely resulted in small performance enhancements (5.0%; 90% confidence interval = ±5.3% and 4.4%; ±3.2%, respectively) relative to Low HMS. Iso HMS and Low HMS enhanced fat oxidation (31.6%; ±20.1%; very likely (Iso); 20.9%; ±16.1%; likely (Low), and reduced carbohydrate oxidation (-19.2%; ±7.6%; most likely; -22.1%; ±12.9%; very likely) during exercise relative to G. However, nausea was increased during repeated sprints with ingestion of Iso HMS (17 scale units; ±18; likely) and Low HMS (18; ±14; likely) vs. G. Covariate analysis revealed that gastrointestinal distress was associated with reductions in performance with Low HMS vs. G (likely), but this relationship was unclear with Iso HMS vs. G. In conclusion, pre- and during-exercise ingestion of HMS increases fat oxidation relative to G. However, changes do not translate to performance improvements, possibly owing to HMS

  4. Analysis of electrophoretic soil humic acids fractions by reversed-phase high performance liquid chromatography with on-line absorbance and fluorescence detection.

    Science.gov (United States)

    Trubetskoj, Oleg A; Richard, Claire; Guyot, Ghislain; Voyard, Guillaume; Trubetskaya, Olga E

    2012-06-22

    A combination of reversed-phase high performance liquid chromatography (RP HPLC) with on-line absorbance and fluorescence detection was used for analysis of chernozem soil humic acids (HAs) and their fractions A, B and C+D with different electrophoretic mobility (EM) and molecular size (MS). Samples were injected onto the column at the identical volume and absorbance. All chromatograms exhibit the resolution of seven peaks. The estimation of relative recovery of HAs and fractions from the reverse-phase column has been done. High MS fraction A, which possesses the low EM, is essentially more hydrophobic (73% of the fraction amount remained adsorbed on the column) and aliphatic than medium MS and EM fraction B (33% of the fraction amount remained adsorbed on the column). The most hydrophilic and aromatic properties belong to low MS fraction C+D, which possess the highest EM and practically was not adsorbed on the column. The hydrophobicity of the bulk HAs lies within the range of fractions hydrophobicity. The absorption spectra of bulk HAs, electrophoretic fractions A, B, C+D and corresponding RP HPLC peaks were featureless but had differences in the values of absorbance ratio at 300 and 400 nm (A3/A4). For fractions A and B this ratio gradually decreased from peak 1 to 7 (from 3.05 to 2.80 and 3.00 to 2.40, respectively). This trend was less pronounced in HAs and practically absent in fraction C+D, where ratio A3/A4 varied within a small range. The strong relationship between fluorescence properties, EM, MS, polarity and aliphaticity/aromaticity of HAs fractions was found. Humic and protein-like fluorescence had different polarity nature. The protein-like fluorescence is located in humic material which irreversibly adsorbed on the reverse-phase column and not subjected to RP HPLC characterization. The humic-like fluorescence at Ex/Em 270/450 nm is mostly located in the hydrophilic peak of low MS fraction C+D. Taking into account that high MS fraction A consisted

  5. Influence of Fe{sub 3}O{sub 4}/Fe-phthalocyanine decorated graphene oxide on the microwave absorbing performance

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jingwei; Wei, Junji; Pu, Zejun; Xu, Mingzhen; Jia, Kun, E-mail: jiakun@uestc.edu.cn; Liu, Xiaobo, E-mail: liuxb@uestc.edu.cn

    2016-02-01

    Novel graphene oxide@Fe{sub 3}O{sub 4}/iron phthalocyanine (GO@Fe{sub 3}O{sub 4}/FePc) hybrid materials were prepared through a facile one-step solvothermal method with graphene oxide (GO) sheets as template in ethylene glycol. The morphology and structure of the hybrid materials were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectrophotometer (FTIR) and X-ray diffraction (XRD), respectively. The results indicated that the monodispersed Fe{sub 3}O{sub 4}/FePc hybrid microspheres were uniformly self-assembled along the surface of GO sheets through electrostatic attraction and the morphology can be tuned by controlling the amount of 4,4′-bis(3,4-dicyanophenoxy)biphenyl (BPH). As the BPH content increases, magnetization measurement of the GO@Fe{sub 3}O{sub 4}/FePc hybrid materials showed that the coercivity increased, while saturation magnetizations decreased. Electromagnetic properties of the hybrid materials were measured in the range of 0.5–18.0 GHz. The microwave absorbing performance enhanced with the increase of BPH content and a maximum reflection loss of −27.92 dB was obtained at 10.8 GHz when the matching thickness was 2.5 mm. Therefore, the novel electromagnetic hybrid materials can be considered as potential materials in the microwave absorbing field. - Highlights: • Graphene oxide was employed to support Fe{sub 3}O{sub 4}/iron phthalocyanine hybrid particles. • The morphology and magnetic properties of obtained particles can be readily tuned. • A maximum microwave reflection loss of −27.92 dB was obtained at 10.8 GHz.

  6. Vibration isolation performance of an ultra-low frequency folded pendulum resonator

    Science.gov (United States)

    Liu, Jiangfeng; Ju, Li; Blair, David G.

    1997-02-01

    We present an analysis of the transfer function of a very low frequency folded pendulum resonator. It is shown that performance depends critically on centre of percussion tuning of the pendulum arms. Experimental measurements of the transfer function are shown to agree well with theory. The isolator achieves 90 dB isolation at 7 Hz.

  7. ER fluid applications to vibration control devices and an adaptive neural-net controller

    Science.gov (United States)

    Morishita, Shin; Ura, Tamaki

    1993-07-01

    Four applications of electrorheological (ER) fluid to vibration control actuators and an adaptive neural-net control system suitable for the controller of ER actuators are described: a shock absorber system for automobiles, a squeeze film damper bearing for rotational machines, a dynamic damper for multidegree-of-freedom structures, and a vibration isolator. An adaptive neural-net control system composed of a forward model network for structural identification and a controller network is introduced for the control system of these ER actuators. As an example study of intelligent vibration control systems, an experiment was performed in which the ER dynamic damper was attached to a beam structure and controlled by the present neural-net controller so that the vibration in several modes of the beam was reduced with a single dynamic damper.

  8. Performance Analysis of Wind-Induced Piezoelectric Vibration Bimorph Cantilever for Rotating Machinery

    OpenAIRE

    Gongbo Zhou; Houlian Wang; Zhencai Zhu; Linghua Huang; Wei Li

    2015-01-01

    Harvesting the energy contained in the running environment of rotating machinery would be a good way to supplement energy to the wireless sensor. In this paper, we take piezoelectric bimorph cantilever beam with parallel connection mode as energy collector and analyze the factors which can influence the generation performance. First, a modal response theory model is built. Second, the static analysis, modal analysis, and piezoelectric harmonic response analysis of the wind-induced piezoelectr...

  9. Perfect selective metamaterial solar absorbers.

    Science.gov (United States)

    Wang, Hao; Wang, Liping

    2013-11-04

    In this work, we numerically investigate the radiative properties of metamaterial nanostructures made of two-dimensional tungsten gratings on a thin dielectric spacer and an opaque tungsten film from UV to mid-infrared region as potential selective solar absorbers. The metamaterial absorber with single-sized tungsten patches exhibits high absorptance in the visible and near-infrared region due to several mechanisms such as surface plasmon polaritons, magnetic polaritons, and intrinsic bandgap absorption of tungsten. Geometric effects on the resonance wavelengths and the absorptance spectra are studied, and the physical mechanisms are elucidated in detail. The absorptance could be further enhanced in a broader spectral range with double-sized metamaterial absorbers. The total solar absorptance of the optimized metamaterial absorbers at normal incidence could be more than 88%, while the total emittance is less than 3% at 100°C, resulting in total photon-to-heat conversion efficiency of 86% without any optical concentration. Moreover, the metamaterial solar absorbers exhibit quasi-diffuse behaviors as well as polarization independence. The results here will facilitate the design of novel highly efficient solar absorbers to enhance the performance of various solar energy conversion systems.

  10. Effect of whole-body vibration on muscle strength, spasticity, and motor performance in spastic diplegic cerebral palsy children

    Directory of Open Access Journals (Sweden)

    Marwa M. Ibrahim

    2014-04-01

    Conclusion: The obtained results suggest that 12-weeks’ intervention of whole-body vibration training can increase knee extensors strength and decrease spasticity with beneficial effects on walking speed and motor development in spastic diplegic CP children.

  11. Absorbing Property of Multi-layered Short Carbon Fiber Absorbing Coating

    OpenAIRE

    Liu, Zhaohui; Tao, Rui; Ban, Guodong; Luo, Ping

    2017-01-01

    The radar absorbing coating was prepared with short carbon fiber asabsorbent and waterborne polyurethane (WPU) as matrix resin. The coating’s absorbing property was tested with vectornetwork analyzer, using aramid honeycomb as air layer which was matched withcarbon fiber coating. The results demonstrate that the single-layered carbonfiber absorbing coating presented relatively poor absorbing property when thelayer was thin, and the performance was slightly improved after the matched airlayer ...

  12. Performance Study of a Cylindrical Parabolic Concentrating Solar Water Heater with Nail Type Twisted Tape Inserts in the Copper Absorber Tube

    Directory of Open Access Journals (Sweden)

    Amit K. Bhakta

    2018-01-01

    Full Text Available This paper reports the overall thermal performance of a cylindrical parabolic concentrating solar water heater (CPCSWH with inserting nail type twisted tape (NTT in the copper absorber tube for the nail twist pitch ratios, 4.787, 6.914 and 9.042, respectively. The experiments are conducted for a constant volumetric water flow rate and during the time period 9:00 a.m. to 15:00 p.m. The useful heat gain, hourly solar energy collected and hourly solar energy stored in this solar water heater were found to be higher for the nail twist pitch ratio 4.787. The above said parameters were found to be at a peak at noon and observed to follow the path of variation of solar intensity. At the start of the experiment, the value of charging efficiency was observed to be maximum, whereas the maximum values of instantaneous efficiency and overall thermal efficiency were observed at noon. The key finding is that the nail twist pitch ratio enhances the overall thermal performance of the CPCSWH.

  13. Parallel microscope-based fluorescence, absorbance and time-of-flight mass spectrometry detection for high performance liquid chromatography and determination of glucosamine in urine.

    Science.gov (United States)

    Xiong, Bo; Wang, Ling-Ling; Li, Qiong; Nie, Yu-Ting; Cheng, Shuang-Shuang; Zhang, Hui; Sun, Ren-Qiang; Wang, Yu-Jiao; Zhou, Hong-Bin

    2015-11-01

    A parallel microscope-based laser-induced fluorescence (LIF), ultraviolet-visible absorbance (UV) and time-of-flight mass spectrometry (TOF-MS) detection for high performance liquid chromatography (HPLC) was achieved and used to determine glucosamine in urines. First, a reliable and convenient LIF detection was developed based on an inverted microscope and corresponding modulations. Parallel HPLC-LIF/UV/TOF-MS detection was developed by the combination of preceding Microscope-based LIF detection and HPLC coupled with UV and TOF-MS. The proposed setup, due to its parallel scheme, was free of the influence from photo bleaching in LIF detection. Rhodamine B, glutamic acid and glucosamine have been determined to evaluate its performance. Moreover, the proposed strategy was used to determine the glucosamine in urines, and subsequent results suggested that glucosamine, which was widely used in the prevention of the bone arthritis, was metabolized to urines within 4h. Furthermore, its concentration in urines decreased to 5.4mM at 12h. Efficient glucosamine detection was achieved based on a sensitive quantification (LIF), a universal detection (UV) and structural characterizations (TOF-MS). This application indicated that the proposed strategy was sensitive, universal and versatile, and it was capable of improved analysis, especially for analytes with low concentrations in complex samples, compared with conventional HPLC-UV/TOF-MS. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Linear static structural and vibration analysis on high-performance computers

    Science.gov (United States)

    Baddourah, M. A.; Storaasli, O. O.; Bostic, S. W.

    1993-01-01

    Parallel computers offer the oppurtunity to significantly reduce the computation time necessary to analyze large-scale aerospace structures. This paper presents algorithms developed for and implemented on massively-parallel computers hereafter referred to as Scalable High-Performance Computers (SHPC), for the most computationally intensive tasks involved in structural analysis, namely, generation and assembly of system matrices, solution of systems of equations and calculation of the eigenvalues and eigenvectors. Results on SHPC are presented for large-scale structural problems (i.e. models for High-Speed Civil Transport). The goal of this research is to develop a new, efficient technique which extends structural analysis to SHPC and makes large-scale structural analyses tractable.

  15. Hybrid Vibration Control under Broadband Excitation and Variable Temperature Using Viscoelastic Neutralizer and Adaptive Feedforward Approach

    Directory of Open Access Journals (Sweden)

    João C. O. Marra

    2016-01-01

    Full Text Available Vibratory phenomena have always surrounded human life. The need for more knowledge and domain of such phenomena increases more and more, especially in the modern society where the human-machine integration becomes closer day after day. In that context, this work deals with the development and practical implementation of a hybrid (passive-active/adaptive vibration control system over a metallic beam excited by a broadband signal and under variable temperature, between 5 and 35°C. Since temperature variations affect directly and considerably the performance of the passive control system, composed of a viscoelastic dynamic vibration neutralizer (also called a viscoelastic dynamic vibration absorber, the associative strategy of using an active-adaptive vibration control system (based on a feedforward approach with the use of the FXLMS algorithm working together with the passive one has shown to be a good option to compensate the neutralizer loss of performance and generally maintain the extended overall level of vibration control. As an additional gain, the association of both vibration control systems (passive and active-adaptive has improved the attenuation of vibration levels. Some key steps matured over years of research on this experimental setup are presented in this paper.

  16. Performance Analysis of Wind-Induced Piezoelectric Vibration Bimorph Cantilever for Rotating Machinery

    Directory of Open Access Journals (Sweden)

    Gongbo Zhou

    2015-01-01

    Full Text Available Harvesting the energy contained in the running environment of rotating machinery would be a good way to supplement energy to the wireless sensor. In this paper, we take piezoelectric bimorph cantilever beam with parallel connection mode as energy collector and analyze the factors which can influence the generation performance. First, a modal response theory model is built. Second, the static analysis, modal analysis, and piezoelectric harmonic response analysis of the wind-induced piezoelectric bimorph cantilever beam are given in detail. Finally, an experiment is also conducted. The results show that wind-induced piezoelectric bimorph cantilever beam has low resonant frequency and stable output under the first modal mode and can achieve the maximum output voltage under the resonant condition. The output voltage increases with the increase of the length and width of wind-induced piezoelectric bimorph cantilever beam, but the latter increasing amplitude is relatively smaller. In addition, the output voltage decreases with the increase of the thickness and the ratio of metal substrate to piezoelectric patches thickness. The experiment showed that the voltage amplitude generated by the piezoelectric bimorph cantilever beam can reach the value simulated in ANSYS, which is suitable for actual working conditions.

  17. Testing and performance of a new friction damper for seismic vibration control

    Science.gov (United States)

    Martínez, Carlos A.; Curadelli, Oscar

    2017-07-01

    In the last two decades, great efforts were carried out to reduce the seismic demand on structures through the concept of energy dissipation instead of increasing the stiffness and strength. Several devices based on different energy dissipation principles have been developed and implemented worldwide, however, most of the dissipation devices are usually installed using diagonal braces, which entail certain drawbacks on apertures for circulation, lighting or ventilation and architectural or functional requirements often preclude this type of installations. In this work, a conceptual development of a novel energy dissipation device, called Multiple Friction Damper (MFD), is proposed and examined. To verify its characteristics and performance, the MFD was implemented on a single storey steel frame experimental model and tested under different conditions of normal force and real time acceleration records. Experimental results demonstrated that the new MFD constitutes an effective and reliable alternative to control the structural response in terms of displacement and acceleration. A mathematical formulation based on the Wen's model reflecting the nonlinear behaviour of the device is also presented.

  18. Electronically Switchable Broadband Metamaterial Absorber.

    Science.gov (United States)

    Lee, Dongju; Jeong, Heijun; Lim, Sungjoon

    2017-07-07

    In this study, the novel electronically switchable broadband metamaterial absorber, using a PIN diode, is proposed. The unit cell of the absorber was designed with a Jerusalem-cross resonator and an additive ring structure, based on the FR-4 dielectric substrate. Chip resistors and PIN diodes were used to provide both a broadband characteristic and a switching capability. To satisfy the polarization insensitivity, the unit cell was designed as a symmetrical structure, including the DC bias network, electronic devices, and conductor patterns. The performance of the proposed absorber was verified using full-wave simulation and measurements. When the PIN diode was in the ON state, the proposed absorber had a 90% absorption bandwidth from 8.45-9.3 GHz. Moreover, when the PIN diode was in the OFF state, the 90% absorption bandwidth was 9.2-10.45 GHz. Therefore, the absorption band was successfully switched between the low-frequency band and the high-frequency band as the PIN diode was switched between the ON and OFF states. Furthermore, the unit cell of the proposed absorber was designed as a symmetrical structure, and its performance showed insensitivity with respect to the polarization angle.

  19. Performance Characteristics of Vibration-Controlled Transient Elastography for Evaluation of Non-Alcoholic Fatty Liver Disease.

    Science.gov (United States)

    Vuppalanchi, Raj; Siddiqui, Mohammad S; Van Natta, Mark L; Hallinan, Erin; Brandman, Danielle; Kowdley, Kris; Neuschwander-Tetri, Brent A; Loomba, Rohit; Dasarathy, Srinivas; Abdelmalek, Manal; Doo, Edward; Tonascia, James A; Kleiner, David E; Sanyal, Arun J; Chalasani, Naga

    2017-08-31

    Vibration-controlled transient elastography (VCTE) estimates liver stiffness measurement (LSM) and controlled attenuation parameter (CAP) which are noninvasive assessments of hepatic fibrosis and steatosis respectively. However, prior VCTE studies reported high failure rate in patients with non-alcoholic fatty liver disease (NAFLD). To examine the performance characteristics of Fibroscan 502 Touch with two probes, medium (M+) and extra-large (XL+), in patients with NAFLD in a multicenter setting. A total of 1696 exams were attempted in 992 patients (BMI: 33.6 ± 6.5 kg/m(2) ) with histologically confirmed NAFLD. Simultaneous assessment of LSM and CAP was performed using Fibroscan 502 Touch with an automatic probe selection tool. Testing was conducted twice in patients by either a single operator (88%) or two operators (12%). Failure was defined as the inability to obtain a valid examination. An examination was considered unreliable if LSM IQR/median was >30%. Significant disagreement between two readings was defined as greater than >95% limits of agreement between two readings. A total of 1641 examinations yielded valid results with a failure rate of 3.2% (55/1696). The proportion of unreliable scans for LSM was 2.4%. The proportion of unreliable scans with operator experience in the top quartile (≥ 59 procedures) was significantly lower than lower three quarters combined (1.6% vs.4.7%, p=0.01 by Fisher's Exact test). The significant disagreement between first and second readings for LSM and CAP when obtained back to back was 18% and 11% respectively. VCTE for estimation of LSM and CAP can be successfully deployed in a multicenter setting with low failure (3.2%) and high reliability (>95%) rates and high reproducibility. This article is protected by copyright. All rights reserved. © 2017 by the American Association for the Study of Liver Diseases.

  20. A Six-Fold Symmetric Metamaterial Absorber.

    Science.gov (United States)

    Fernández Álvarez, Humberto; de Cos Gómez, María Elena; Las-Heras, Fernando

    2015-04-03

    A novel microwave metamaterial absorber design is introduced along with its manufacturing and characterization. Significant results considering both bandwidth and angular stability are achieved. Parametric analysis and simplified equivalent circuit are provided to give an insight on the key elements influencing the absorber performance. In addition, the constitutive parameters of the effective medium model are obtained and related to the absorber resonant behavior. Moreover, a new thinner and more flexible absorber version, preserving broad bandwidth and angular insensitive performance, is simulated, and an 8 × 8 unit-cells prototype is manufactured and measured for a limited angular margin in an anechoic chamber.

  1. A Six-Fold Symmetric Metamaterial Absorber

    Directory of Open Access Journals (Sweden)

    Humberto Fernández Álvarez

    2015-04-01

    Full Text Available A novel microwave metamaterial absorber design is introduced along with its manufacturing and characterization. Significant results considering both bandwidth and angular stability are achieved. Parametric analysis and simplified equivalent circuit are provided to give an insight on the key elements influencing the absorber performance. In addition, the constitutive parameters of the effective medium model are obtained and related to the absorber resonant behavior. Moreover, a new thinner and more flexible absorber version, preserving broad bandwidth and angular insensitive performance, is simulated, and an 8 × 8 unit-cells prototype is manufactured and measured for a limited angular margin in an anechoic chamber.

  2. Fe-Substitution for Ni in Misch Metal-Based Superlattice Hydrogen Absorbing Alloys—Part 2. Ni/MH Battery Performance and Failure Mechanisms

    Directory of Open Access Journals (Sweden)

    Tiejun Meng

    2017-09-01

    Full Text Available The electrochemical performance and failure mechanisms of Ni/MH batteries made with a series of the Fe-substituted A2B7 superlattice alloys as the negative electrodes were investigated. The incorporation of Fe does not lead to improved cell capacity or cycle life at either room or low temperature, although Fe promotes the formation of a favorable Ce2Ni7 phase. Fe-substitution was found to inhibit leaching of Al from the metal hydride negative electrode and promote leaching of Co, which could potentially extend the cycle life of the positive electrode. The failure mechanisms of the cycled cells with the Fe-substituted superlattice hydrogen absorbing alloys were analyzed by scanning electron microscopy, energy dispersive spectroscopy and inductively coupled plasma analysis. The failure of cells with Fe-free and low Fe-content alloys is mainly attributed to the pulverization of the metal hydride alloy. Meanwhile, severe oxidation/corrosion of the negative electrode is observed for cells with high Fe-content alloys, resulting in increased internal cell resistance, formation of micro-shortages in the separator and eventual cell failure.

  3. A Six-Fold Symmetric Metamaterial Absorber

    OpenAIRE

    Álvarez, Humberto Fernández; Gómez, María de Cos; Las-Heras, Fernando

    2015-01-01

    A novel microwave metamaterial absorber design is introduced along with its manufacturing and characterization. Significant results considering both bandwidth and angular stability are achieved. Parametric analysis and simplified equivalent circuit are provided to give an insight on the key elements influencing the absorber performance. In addition, the constitutive parameters of the effective medium model are obtained and related to the absorber resonant behavior. Moreover, a new thinner an...

  4. Seismic Performance and Ice-Induced Vibration Control of Offshore Platform Structures Based on the ISO-PFD-SMA Brace System

    Directory of Open Access Journals (Sweden)

    Jigang Zhang

    2017-01-01

    Full Text Available Pall-typed frictional damper (PFD has higher capacity of energy dissipation, whereas shape memory alloy (SMA has excellent superelastic performance. Therefore, combining PFD and SMA together as a brace system has a great prospect in vibration control of structures. This paper investigates the performance of offshore platform with three structural configurations including the SMA brace system, the ISO-SMA (where ISO stands for isolation brace system, and the ISO-PFD-SMA brace system, which are subjected to seismic and ice-induced excitations. In this study, PFD-SMA brace system is installed on the isolation layer of jacket platform, which is under earthquake excitations and ice loading. Then, the reduction of vibration is evaluated by using ANSYS program. The results show that the PFD-SMA brace system is useful in reducing the seismic response and ice-induced response of offshore platform structures; meanwhile, it also demonstrates excellent energy dissipation and hysteretic behavior.

  5. Comparison of the performance of different DFT methods in the calculations of the molecular structure and vibration spectra of serotonin (5-hydroxytryptamine, 5-HT)

    Science.gov (United States)

    Yang, Yue; Gao, Hongwei

    2012-04-01

    Serotonin (5-hydroxytryptamine, 5-HT) is a monoamine neurotransmitter which plays an important role in treating acute or clinical stress. The comparative performance of different density functional theory (DFT) methods at various basis sets in predicting the molecular structure and vibration spectra of serotonin was reported. The calculation results of different methods including mPW1PW91, HCTH, SVWN, PBEPBE, B3PW91 and B3LYP with various basis sets including LANL2DZ, SDD, LANL2MB, 6-31G, 6-311++G and 6-311+G* were compared with the experimental data. It is remarkable that the SVWN/6-311++G and SVWN/6-311+G* levels afford the best quality to predict the structure of serotonin. The results also indicate that PBEPBE/LANL2DZ level show better performance in the vibration spectra prediction of serotonin than other DFT methods.

  6. Metamaterial electromagnetic wave absorbers.

    Science.gov (United States)

    Watts, Claire M; Liu, Xianliang; Padilla, Willie J

    2012-06-19

    The advent of negative index materials has spawned extensive research into metamaterials over the past decade. Metamaterials are attractive not only for their exotic electromagnetic properties, but also their promise for applications. A particular branch-the metamaterial perfect absorber (MPA)-has garnered interest due to the fact that it can achieve unity absorptivity of electromagnetic waves. Since its first experimental demonstration in 2008, the MPA has progressed significantly with designs shown across the electromagnetic spectrum, from microwave to optical. In this Progress Report we give an overview of the field and discuss a selection of examples and related applications. The ability of the MPA to exhibit extreme performance flexibility will be discussed and the theory underlying their operation and limitations will be established. Insight is given into what we can expect from this rapidly expanding field and future challenges will be addressed. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Carbon Absorber Retrofit Equipment (CARE)

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Eric [Neumann Systems Group, Incorporated, Colorado Springs, CO (United States)

    2015-12-23

    During Project DE-FE0007528, CARE (Carbon Absorber Retrofit Equipment), Neumann Systems Group (NSG) designed, installed and tested a 0.5MW NeuStream® carbon dioxide (CO2) capture system using the patented NeuStream® absorber equipment and concentrated (6 molal) piperazine (PZ) as the solvent at Colorado Springs Utilities’ (CSU’s) Martin Drake pulverized coal (PC) power plant. The 36 month project included design, build and test phases. The 0.5MW NeuStream® CO2 capture system was successfully tested on flue gas from both coal and natural gas combustion sources and was shown to meet project objectives. Ninety percent CO2 removal was achieved with greater than 95% CO2product purity. The absorbers tested support a 90% reduction in absorber volume compared to packed towers and with an absorber parasitic power of less than 1% when configured for operation with a 550MW coal plant. The preliminary techno-economic analysis (TEA) performed by the Energy and Environmental Research Center (EERC) predicted an over-the-fence cost of $25.73/tonne of CO2 captured from a sub-critical PC plant.

  8. Methods for absorbing neutrons

    Science.gov (United States)

    Guillen, Donna P [Idaho Falls, ID; Longhurst, Glen R [Idaho Falls, ID; Porter, Douglas L [Idaho Falls, ID; Parry, James R [Idaho Falls, ID

    2012-07-24

    A conduction cooled neutron absorber may include a metal matrix composite that comprises a metal having a thermal neutron cross-section of at least about 50 barns and a metal having a thermal conductivity of at least about 1 W/cmK. Apparatus for providing a neutron flux having a high fast-to-thermal neutron ratio may include a source of neutrons that produces fast neutrons and thermal neutrons. A neutron absorber positioned adjacent the neutron source absorbs at least some of the thermal neutrons so that a region adjacent the neutron absorber has a fast-to-thermal neutron ratio of at least about 15. A coolant in thermal contact with the neutron absorber removes heat from the neutron absorber.

  9. Multispectral metamaterial absorber

    OpenAIRE

    Grant, James; McCrindle, I.J.H.; Li, C; D. R. S. Cumming

    2014-01-01

    We present the simulation, implementation, and measurement of a multispectral metamaterial absorber (MSMMA) and show that we can realize a simple absorber structure that operates in the mid-IR and terahertz (THz) bands. By embedding an IR metamaterial absorber layer into a standard THz metamaterial absorber stack, a narrowband resonance is induced at a wavelength of 4.3 μm. This resonance is in addition to the THz metamaterial absorption resonance at 109 μm (2.75 THz). We demonstrate the inhe...

  10. Application of Finite Element Based Simulation and Modal Testing Methods to Improve Vehicle Powertrain Idle Vibration

    Directory of Open Access Journals (Sweden)

    Polat Sendur

    2017-01-01

    Full Text Available Current practice of analytical and test methods related to the analysis, testing and improvement of vehicle vibrations is overviewed. The methods are illustrated on the determination and improvement of powertrain induced steering wheel vibration of a heavy commercial truck. More specifically, the transmissibility of powertrain idle vibration to cabin is investigated with respect to powertrain rigid body modes and modal alignment of the steering column/wheel system is considered. It is found out that roll mode of the powertrain is not separated from idle excitation for effective vibration isolation as well as steering wheel column mode is close to the 3rd engine excitation frequency order, which results in high vibration levels. Powertrain roll mode is optimized by tuning the powertrain mount stiffness to improve the performance. Steering column mode is also separated from the 3rd engine excitation frequency by the application of a mass absorber. It is concluded that the use of analytical and test methods to address the complex relation between design parameters and powertrain idle response is effective to optimize the system performance and evaluate the trade-offs in the vehicle design such as vibration performance and weight. Reference Number: www.asrongo.org/doi:4.2017.2.1.10

  11. Toward an adjustable nonlinear low frequency acoustic absorber

    Science.gov (United States)

    Mariani, R.; Bellizzi, S.; Cochelin, B.; Herzog, P.; Mattei, P. O.

    2011-10-01

    A study of the targeted energy transfer (TET) phenomenon between an acoustic resonator and a thin viscoelastic membrane has recently been presented in the paper [R. Bellet et al., Experimental study of targeted energy transfer from an acoustic system to a nonlinear membrane absorber, Journal of Sound and Vibration 329 (2010) 2768-2791], providing a new path to passive sound control in the low frequency domain where no efficient dissipative device exists. This paper presents experimental results showing that a loudspeaker used as a suspended piston working outside its range of linearity can also be used as a nonlinear acoustic absorber. The main advantage of this technology of absorber is the perspective to adjust independently the device parameters (mass, nonlinear stiffness and damping) according to the operational conditions. To achieve this purpose, quasi-static and dynamic tests have been performed on three types of commercial devices (one with structural modifications), in order to define the constructive characteristics that it should present. An experimental setup has been developed using a one-dimensional acoustic linear system coupled through a box (acting as a weak spring) to a loudspeaker used as a suspended piston acting as an essentially nonlinear oscillator. The tests carried out on the whole vibro-acoustic system have showed the occurrence of the acoustic TET from the acoustic media to the suspended piston and demonstrated the efficiency of this new kind of absorber at low frequencies over a wide frequency range. Moreover, the experimental analyses conducted with different NES masses have confirmed that it is possible to optimize the noise absorption with respect to the excitation level of the acoustic resonator.

  12. Passive and Active Vibration Control of Renewable Energy Structures

    DEFF Research Database (Denmark)

    Zhang, Zili

    The present thesis deals with fundamental researches on passive and active vibration control of renewable energy structures, and provides useful models for practical applications. Effective and robust vibration control methods have been explored for mitigating the lightly damped edgewise blade...... solutions for wave energy point absorbers, in order to maximize the mean absorbed power and to deliver more smooth power to the grid. A novel suboptimal causal control law has been established for controlling the motion of the point absorber, and a new type of point absorber has also been proposed...

  13. Effect of shelf aging on vibration transmissibility of anti-vibration gloves.

    Science.gov (United States)

    Shibata, Nobuyuki

    2017-10-05

    Anti-vibration gloves have been used in real workplaces to reduce vibration transmitted through hand-held power tools to the hand. Generally materials used for vibration attenuation in gloves are resilient materials composed of certain synthetic and/or composite polymers. The mechanical characteristics of the resilient materials used in anti-vibration gloves are prone to be influenced by environmental conditions such as temperature, humidity, and photo-irradiation, which cause material degradation and aging. This study focused on the influence of shelf aging on the vibration attenuation performance of air-packaged anti-vibration gloves following 2 years of shelf aging. Effects of shelf aging on the vibration attenuation performance of anti-vibration gloves were examined according to the Japan industrial standard JIS T8114 test protocol. The findings indicate that shelf aging induces the reduction of vibration attenuation performance in air-packaged anti-vibration gloves.

  14. Monitoring vibrations

    Energy Technology Data Exchange (ETDEWEB)

    Tiryaki, B. [Hacettepe University (Turkey). Dept. of Mining Engineering

    2003-12-01

    The paper examines the prediction and optimisation of machine vibrations in longwall shearers. Underground studies were carried out at the Middle Anatolian Lignite Mine, between 1993 and 1997. Several shearer drums with different pick lacing arrangements were designed and tested on double-ended ranging longwall shearers employed at the mine. A computer program called the Vibration Analysis Program (VAP) was developed for analysing machine vibrations in longwall shearers. Shearer drums that were tested underground, as well as some provided by leading manufacturers, were analyzed using these programs. The results of the experiments and computer analyses are given in the article. 4 refs., 9 figs.

  15. Shock and vibration effects on performance reliability and mechanical integrity of proton exchange membrane fuel cells: A critical review and discussion

    Science.gov (United States)

    Haji Hosseinloo, Ashkan; Ehteshami, Mohsen Mousavi

    2017-10-01

    Performance reliability and mechanical integrity are the main bottlenecks in mass commercialization of PEMFCs for applications with inherent harsh environment such as automotive and aerospace applications. Imparted shock and vibration to the fuel cell in such applications could bring about numerous issues including clamping torque loosening, gas leakage, increased electrical resistance, and structural damage and breakage. Here, we provide a comprehensive review and critique of the literature focusing on the effects of mechanically harsh environment on PEMFCs, and at the end, we suggest two main future directions in FC technology research that need immediate attention: (i) developing a generic and adequately accurate dynamic model of PEMFCs to assess the dynamic response of FC devices, and (ii) designing effective and robust shock and vibration protection systems based on the developed models in (i).

  16. Electromagnetic behavior of radar absorbing materials based on Ca hexaferrite modified with Co-Ti ions and doped with La

    Directory of Open Access Journals (Sweden)

    Valdirene Aparecida da Silva

    2009-06-01

    Full Text Available Radar Absorbing Materials (RAM are compounds that absorb incidental electromagnetic radiation in tuned frequencies and dissipate it as heat. Its preparation involves the adequate processing of polymeric matrices filled with compounds that act as radar absorbing centers in the microwave range. This work shows the electromagnetic evaluation of RAM based on CoTi and La doped Ca hexaferrite. Vibrating Sample Magnetization analyses show that ion substitution promoted low values for the parameters of saturation magnetization (123.65 Am2/kg and coercive field (0.07 T indicating ferrite softening. RAM samples obtained using different hexaferrite concentrations (40-80 per cent, w/w show variations in complex permeability and permittivity parameters and also in the performance of incidental radiation attenuation. Microwave attenuation values between 40 and 98 per cent were obtained.

  17. The effect of whole body vibration on balance, gait performance and mobility in people with stroke: a systematic review and meta-analysis.

    Science.gov (United States)

    Yang, Xiaotian; Wang, Pu; Liu, Chuan; He, Chengqi; Reinhardt, Jan D

    2015-07-01

    To examine the effect of whole body vibration on balance, gait performance and mobility among people with stroke. A systematic review was conducted by two independent reviewers who completed the article search and selection. We included randomized controlled trials published in English examining effects of whole body vibration on balance, gait, mobility, muscle strength and muscle tone in adults with a clinical diagnosis of stroke. Articles were excluded if they were research studies on people with other primary diagnosis, abstracts published in the conferences or books. The Cochrane risk of bias tool was used to assess the methodological quality of the selected studies. Sources included Cochrane Central Register of Controlled Trials, Pubmed, MEDLINE, CINAHL, EMBASE, PEDro, PsycINFO, Science Citation Index, ClinicalTrials.gov, Current Controlled Trials, Stroke Trials Registry, and reference lists of all relevant articles. Eight randomized controlled trials (nine articles) involving 271 participants were included in this meta-analysis. No significant improvement was found regarding Berg balance scale (SMD=-0.08, 95%CI=-1.35 to 1.19, P=0.91), mobility (SMD=0.45, 95%CI=-0.46 to 1.37, P=0.33), maximal isometric contracion of knee extension strength (SMD=0.23, 95%CI=-0.27 to 0.74, P=0.36), and maximal isometric contracion of knee extension strength (SMD=0.09, 95%CI=-0.38 to 0.56, P=0.71). There was no evidence for effects of whole body vibration on balance in people with stroke. Effects of whole body vibration on mobility and gait performance remain inconclusive. More large and high-quality trials are required. © The Author(s) 2014.

  18. Multispectral metamaterial absorber.

    Science.gov (United States)

    Grant, J; McCrindle, I J H; Li, C; Cumming, D R S

    2014-03-01

    We present the simulation, implementation, and measurement of a multispectral metamaterial absorber (MSMMA) and show that we can realize a simple absorber structure that operates in the mid-IR and terahertz (THz) bands. By embedding an IR metamaterial absorber layer into a standard THz metamaterial absorber stack, a narrowband resonance is induced at a wavelength of 4.3 μm. This resonance is in addition to the THz metamaterial absorption resonance at 109 μm (2.75 THz). We demonstrate the inherent scalability and versatility of our MSMMA by describing a second device whereby the MM-induced IR absorption peak frequency is tuned by varying the IR absorber geometry. Such a MSMMA could be coupled with a suitable sensor and formed into a focal plane array, enabling multispectral imaging.

  19. Oscillatory whole-body vibration improves exercise capacity and physical performance in pulmonary arterial hypertension: a randomised clinical study.

    Science.gov (United States)

    Gerhardt, Felix; Dumitrescu, Daniel; Gärtner, Carina; Beccard, Ralf; Viethen, Thomas; Kramer, Tilmann; Baldus, Stephan; Hellmich, Martin; Schönau, Eckhard; Rosenkranz, Stephan

    2017-04-01

    In patients with pulmonary arterial hypertension (PAH), supportive therapies may be beneficial in addition to targeted medical treatment. Here, we evaluated the effectiveness and safety of oscillatory whole-body vibration (WBV) in patients on stable PAH therapy. Twenty-two patients with PAH (mean PAP≥25 mm Hg and pulmonary arterial wedge pressure (PAWP)≤15 mm Hg) who were in world health organization (WHO)-Functional Class II or III and on stable PAH therapy for≥3 months, were randomised to receive WBV (16 sessions of 1-hour duration within 4 weeks) or to a control group, that subsequently received WBV. Follow-up measures included the 6-min walking distance (6MWD), cardiopulmonary exercise testing (CPET), echocardiography, muscle-power, and health-related quality of life (HRQoL; SF-36 and LPH questionnaires). When compared to the control group, patients receiving WBV exhibited a significant improvement in the primary endpoint, the 6MWD (+35.4±10.9 vs -4.4±7.6 m), resulting in a net benefit of 39.7±7.8 m (p=0.004). WBV was also associated with substantial improvements in CPET variables, muscle power, and HRQoL. The combined analysis of all patients (n=22) indicated significant net improvements versus baseline in the 6MWD (+38.6 m), peakVO2 (+65.7 mL/min), anaerobic threshold (+40.9 mL VO2/min), muscle power (+4.4%), and HRQoL (SF-36 +9.7, LPH -11.5 points) (all p<0.05). WBV was well tolerated in all patients, and no procedure-related severe adverse events (SAEs) occurred. WBV substantially improves exercise capacity, physical performance, and HRQoL in patients with PAH who are on stable targeted therapy. This methodology may be utilised in structured training programmes, and may be feasible for continuous long-term physical exercise in these patients. NCT01763112; Results. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  20. Vibrational Diver

    Science.gov (United States)

    Kozlov, Victor; Ivanova, Alevtina; Schipitsyn, Vitalii; Stambouli, Moncef

    2014-10-01

    The paper is concerned with dynamics of light solid in cavity with liquid subjected to rotational vibration in the external force field. New vibrational phenomenon - diving of a light cylinder to the cavity bottom is found. The experimental investigation of a horizontal annulus with a partition has shown that under vibration a light body situated in the upper part of the layer is displaced in a threshold manner some distance away from the boundary. In this case the body executes symmetric tangential oscillations. An increase of the vibration intensity leads to a tangential displacement of the body near the external boundary. This displacement is caused by the tangential component of the vibrational lift force, which appears as soon as the oscillations lose symmetry. In this case the trajectory of the body oscillatory motion has the form of a loop. The tangential lift force makes stable the position of the body on the inclined section of the layer and even in its lower part. A theoretical interpretation has been proposed, which explains stabilization of a quasi-equilibrium state of a light body near the cavity bottom in the framework of vibrational hydromechanics.

  1. Imaging performance comparison between CMOS and sCMOS detectors in a vibration test on large areas using digital holographic interferometry

    Science.gov (United States)

    Flores-Morenoa, J. M.; Torre I., Manuel H. De la; Aguayo, Daniel D.; Fernando Mendoza, S.

    2014-05-01

    A comparison of the interferometric imaging performance of two different cameras during a vibration study is presented. One of the cameras has a high speed CMOS sensor and the second one uses a high resolution (scientific) sCMOS sensor. This comparison is based on the interferometric response as a merit parameter of these sensors which is not a conventional procedure. Even when the current standard for image quality is on the signal to noise ratio calculations, an interferometric test to evaluate the fringe pattern visibility is equivalent to the contrast to noise ratio value. An out of plane digital holographic interferometer is used to test each camera once at the time with the same experimental conditions. The object under study is a metallically framed table with a Formica cover with an observable area of 1.1 m2. The sample is deformed by means of a controlled vibration induced by a tip ended linear step motor. Results from each camera are presented as the retrieved optical phase during the vibration. Finally, some conclusions based on the post processed images are presented suggesting a smoother optical phase obtained with the sCMOS camera.

  2. Vibrating vaginal balls to improve pelvic floor muscle performance in women after childbirth: a protocol for a randomised controlled feasibility trial.

    Science.gov (United States)

    Oblasser, Claudia; McCourt, Christine; Hanzal, Engelbert; Christie, Janice

    2016-04-01

    This paper presents a feasibility trial protocol the purpose of which is to prepare for a future randomised controlled trial to determine the effectiveness of vibrating vaginal pelvic floor training balls for postpartum pelvic floor muscle rehabilitation. Vibrating vaginal pelvic floor training balls are available in Austria to enhance women's pelvic floor muscles and thus prevent or treat urinary incontinence and other pelvic floor problems following childbirth. Nonetheless, there is currently little empirical knowledge to substantiate their use or assess their relative effectiveness in comparison to current standard care, which involves pelvic floor muscle exercises. Single blind, randomised controlled feasibility trial with two parallel groups. It is planned to recruit 56 postpartum women in Vienna, who will be randomised into one of two intervention groups to use either vibrating vaginal balls or a comparator pelvic floor muscle exercises for 12 weeks. As this is a feasibility study, study design features (recruitment, selection, randomisation, intervention concordance, data collection methods and tools) will be assessed and participants' views and experiences will be surveyed. Tested outcome measures, collected before and after the intervention, will be pelvic floor muscle performance as reported by participants and measured by perineometry. Descriptive and inferential statistics and content analysis will serve the preparation of the future trial. The results of this feasibility trial will inform the design and conduct of a full randomised controlled trial and provide insight into the experiences of women regarding the interventions and study participation. © 2015 John Wiley & Sons Ltd.

  3. Research on Electromagnetic Force Distribution and Vibration Performance of A Novel 10/4 Switched Reluctance Motor

    Science.gov (United States)

    Fu, Ziyu; Wang, Xinyu; Cao, Cheng; Liu, Meng; Wang, Kangxi

    2017-06-01

    Radial electromagnetic force is one of the main reasons causing the vibration and noise of the switched reluctance motor. Based on this, the novel structure of 10/4 pole switched reluctance motor is proposed, which increases the air gap flux and electromagnetic torque by increasing the number of stator poles. In addition, the excitation current of the stator winding is reduced by early turn-off angle. Through the finite element modelling analysis, the results show the superiority of the new type of switched reluctance motor. In the end, the vibration characteristics of the conventional motor and the new motor are compared and analysed, and the effect of the structure of this new type of switched reluctance motor is verified.

  4. Internal absorber solar collector

    Science.gov (United States)

    Sletten, Carlyle J.; Herskovitz, Sheldon B.; Holt, F. S.; Sletten, E. J.

    1981-01-01

    Thin solar collecting panels are described made from arrays of small rod collectors consisting of a refracting dielectric rod lens with an absorber imbedded within it and a reflecting mirror coated on the back side of the dielectric rod. Non-tracking collector panels on vertical walls or roof tops receive approximately 90% of solar radiation within an acceptance zone 60.degree. in elevation angle by 120.degree. or more in the azimuth sectors with a collector concentration ratio of approximately 3.0. Miniaturized construction of the circular dielectric rods with internal absorbers reduces the weight per area of glass, plastic and metal used in the collector panels. No external parts or insulation are needed as heat losses are low due to partial vacuum or low conductivity gas surrounding heated portions of the collector. The miniature internal absorbers are generally made of solid copper with black selective surface and the collected solar heat is extracted at the collector ends by thermal conductivity along the absorber rods. Heat is removed from end fittings by use of liquid circulants. Several alternate constructions are provided for simplifying collector panel fabrication and for preventing the thermal expansion and contraction of the heated absorber or circulant tubes from damaging vacuum seals. In a modified version of the internal absorber collector, oil with temperature dependent viscosity is pumped through a segmented absorber which is now composed of closely spaced insulated metal tubes. In this way the circulant is automatically diverted through heated portions of the absorber giving higher collector concentration ratios than theoretically possible for an unsegmented absorber.

  5. Combination of multivariate curve resolution and multivariate classification techniques for comprehensive high-performance liquid chromatography-diode array absorbance detection fingerprints analysis of Salvia reuterana extracts.

    Science.gov (United States)

    Hakimzadeh, Neda; Parastar, Hadi; Fattahi, Mohammad

    2014-01-24

    In this study, multivariate curve resolution (MCR) and multivariate classification methods are proposed to develop a new chemometric strategy for comprehensive analysis of high-performance liquid chromatography-diode array absorbance detection (HPLC-DAD) fingerprints of sixty Salvia reuterana samples from five different geographical regions. Different chromatographic problems occurred during HPLC-DAD analysis of S. reuterana samples, such as baseline/background contribution and noise, low signal-to-noise ratio (S/N), asymmetric peaks, elution time shifts, and peak overlap are handled using the proposed strategy. In this way, chromatographic fingerprints of sixty samples are properly segmented to ten common chromatographic regions using local rank analysis and then, the corresponding segments are column-wise augmented for subsequent MCR analysis. Extended multivariate curve resolution-alternating least squares (MCR-ALS) is used to obtain pure component profiles in each segment. In general, thirty-one chemical components were resolved using MCR-ALS in sixty S. reuterana samples and the lack of fit (LOF) values of MCR-ALS models were below 10.0% in all cases. Pure spectral profiles are considered for identification of chemical components by comparing their resolved spectra with the standard ones and twenty-four components out of thirty-one components were identified. Additionally, pure elution profiles are used to obtain relative concentrations of chemical components in different samples for multivariate classification analysis by principal component analysis (PCA) and k-nearest neighbors (kNN). Inspection of the PCA score plot (explaining 76.1% of variance accounted for three PCs) showed that S. reuterana samples belong to four clusters. The degree of class separation (DCS) which quantifies the distance separating clusters in relation to the scatter within each cluster is calculated for four clusters and it was in the range of 1.6-5.8. These results are then

  6. An ultrathin dual-band metamaterial absorber

    Science.gov (United States)

    Zhang, Yong; Duan, Junping; Zhang, Wendong; Wang, Wanjun; Zhang, Binzhen

    2016-10-01

    The design and preparation of an ultrathin dual-band metamaterial absorber whose resonant frequency located at radar wave (20 GHz-60 GHz) is presented in this paper. The absorber is composed of a 2-D periodic sandwich featured with two concentric annuluses. The influence on the absorber's performance produced by resonant cell's structure size and material parameters was numerically simulated and analyzed based on the standard full wave finite integration technology in CST. Laser ablation process was adopted to prepare the designed absorber on epoxy resin board coated with on double plane of copper with a thickness that is 1/30 and 1/50 of the resonant wavelength at a resonant frequency of 30.51 GHz and 48.15 GHz. The full width at half maximum (FWHM) reached 2.2 GHz and 2.35 GHz and the peak of the absorptance reached 99.977%. The ultrathin absorber is nearly omnidirectional for all polarizations. The test results of prepared sample testify the designed absorber's excellent absorbing performance forcefully. The absorber expands inspirations of radar stealth in military domain due to its flexible design, cost-effective and other outstanding properties.

  7. TOMS Absorbing Aerosol Index

    Data.gov (United States)

    Washington University St Louis — TOMS_AI_G is an aerosol related dataset derived from the Total Ozone Monitoring Satellite (TOMS) Sensor. The TOMS aerosol index arises from absorbing aerosols such...

  8. A 5-week whole body vibration training improves peak torque performance but has no effect on stretch reflex in healthy adults: a randomized controlled trial.

    Science.gov (United States)

    Yeung, S S; Yeung, E W

    2015-05-01

    This study aimed to investigate the neuromuscular adaptation following a 5-week high frequency and low amplitude whole body vibration (WBV) exercise training. The study is a prospective, double blind, randomized controlled intervention design with a total of 19 subjects volunteered to participate in the study. They were randomly assigned either to WBV exercise training or control group. Both groups participated in a 5-week training program. The intervention group received WBV in semi-squat position on a device with an amplitude of 0.76 mm, frequency of 40Hz, and peak acceleration of 23.9 m/s2. Each vibration training session consisted of 6 series of 60s on with 30s rest period in between. The control group underwent the same statically mini-squatting position without exposure to WBV. The effectiveness of the vibration program was evaluated by vertical jump test and the isokinetic knee extensor peak torque. The possible neural factors that contributed to the improved muscular performance were evaluated by the stretch induced knee jerk reflex. WBV training significantly enhanced the isokinetic knee extensor peak torque performance. Two-way mixed repeated measures analysis of variance revealed significant time effect of the changes in the peak torque (P=0.043) and the effect was significantly different between the intervention and control group (P=0.042). WBV did not affect vertical jump height, reflex latency of VL, EMGVL, and knee jerk angle. The results of this study do not support the hypothesis that the improvement in the muscular performance when subjects exposed to WBV training is attributed by neuromuscular efficiency via modulation of the muscle spindle sensitivity.

  9. A Multilayer Rubber Board Radar Absorbing Material

    Directory of Open Access Journals (Sweden)

    HE Shan

    2016-08-01

    Full Text Available Based on the theory of impedance matching, a multilayer absorbing material with the "pitfall" structure was designed. The multilayer absorbing material with 5 layers was obtained by optimization of the schemes, and the material shows 2 absorbing peaks in the broadband of 2~18 GHz frequencies. The peak in high frequencies can be adjusted with no effect on the peak in low frequencies through changing the thickness of the fifth layer. The changes of input impedances were displayed by analyzing the impedance chart. The prepared multilayer absorbing material was named JB-5, which processes the reflectivity no more than -12 dB in 6~17 GHz with the thickness no more than 5 mm and a good performance of standing the environment. The absorbing material can be produced in laboratory and pasted on surfaces of target with special adhesive by trimmed into required shapes so as to reduce the reflection of electromagnetic waves effectively.

  10. Porous absorber for solar air heaters

    Energy Technology Data Exchange (ETDEWEB)

    Finch, J.A.

    1980-09-10

    A general discussion of the factors affecting solar collector performance is presented. Bench scale tests done to try to determine the heat transfer characteristics of various screen materials are explained. The design, performance, and evaluation of a crude collector with a simple screen stack absorber is treated. The more sophisticated absorber concept, and its first experimental approximation is examined. A short summary of future plans for the collector concept is included. (MHR)

  11. Man-Induced Vibrations

    DEFF Research Database (Denmark)

    Jönsson, Jeppe; Hansen, Lars Pilegaard

    1994-01-01

    concerned with spectator-induced vertical vibrations on grandstands. The idea is to use impulse response analysis and base the load description on the load impulse. If the method is feasable, it could be used in connection with the formulation of requirements in building codes. During the last two decades...... work has been done on the measurement of the exact load functions and related reponse analysis. A recent work using a spectral description has been performed by Per-Erik Erikson and includes a good literature survey. Bachmann and Ammann give a good overview of vibrations caused by human activity. Other...

  12. Vibration Sensitive Keystroke Analysis

    NARCIS (Netherlands)

    Lopatka, M.; Peetz, M.-H.; van Erp, M.; Stehouwer, H.; van Zaanen, M.

    2009-01-01

    We present a novel method for performing non-invasive biometric analysis on habitual keystroke patterns using a vibration-based feature space. With the increasing availability of 3-D accelerometer chips in laptop computers, conventional methods using time vectors may be augmented using a distinct

  13. Vibrating minds

    CERN Document Server

    2009-01-01

    Ed Witten is one of the leading scientists in the field of string theory, the theory that describes elementary particles as vibrating strings. This week he leaves CERN after having spent a few months here on sabbatical. His wish is that the LHC will unveil supersymmetry.

  14. Digital Alloy Absorber for Photodetectors

    Science.gov (United States)

    Hill, Cory J. (Inventor); Ting, David Z. (Inventor); Gunapala, Sarath D. (Inventor)

    2016-01-01

    In order to increase the spectral response range and improve the mobility of the photo-generated carriers (e.g. in an nBn photodetector), a digital alloy absorber may be employed by embedding one (or fraction thereof) to several monolayers of a semiconductor material (insert layers) periodically into a different host semiconductor material of the absorber layer. The semiconductor material of the insert layer and the host semiconductor materials may have lattice constants that are substantially mismatched. For example, this may performed by periodically embedding monolayers of InSb into an InAsSb host as the absorption region to extend the cutoff wavelength of InAsSb photodetectors, such as InAsSb based nBn devices. The described technique allows for simultaneous control of alloy composition and net strain, which are both key parameters for the photodetector operation.

  15. A new isolator for vibration control

    Science.gov (United States)

    Behrooz, Majid; Sutrisno, Joko; Wang, Xiaojie; Fyda, Robert; Fuchs, Alan; Gordaninejad, Faramarz

    2011-03-01

    This study presents the feasibility of a new variable stiffness and damping isolator (VSDI) in an integrated vibratory system. The integrated system comprised of two VSDIs, a connecting plate and a mass. The proposed VSDI consists of a traditional steel-rubber vibration absorber, as the passive element, and a magneto-rheological elastomer (MRE), with a controllable (or variable) stiffness and damping, as the semi-active element. MREs' stiffness and damping properties can be altered by a magnetic field. Dynamic testing on this integrated system has been performed to investigate the effectiveness of the VSDIs for vibration control. Experimental results show significant shift in natural frequency, when activating the VSDIs. Transmissibility and natural frequency of the integrated system are obtained from properties of single device. The experimental and predicted results show good agreement between the values of the natural frequency of the system at both off and on states. However, system damping predictions are different from experimental results. This might be due to unforeseen effects of pre-stressed MREs and nonlinear material properties.

  16. Sensing Performance Analysis on Quartz Tuning Fork-Probe at the High Order Vibration Mode for Multi-Frequency Scanning Probe Microscopy

    Directory of Open Access Journals (Sweden)

    Xiaofei Zhang

    2018-01-01

    Full Text Available Multi-frequency scanning near-field optical microscopy, based on a quartz tuning fork-probe (QTF-p sensor using the first two orders of in-plane bending symmetrical vibration modes, has recently been developed. This method can simultaneously achieve positional feedback (based on the 1st in-plane mode called the low mode and detect near-field optically induced forces (based on the 2nd in-plane mode called the high mode. Particularly, the high mode sensing performance of the QTF-p is an important issue for characterizing the tip-sample interactions and achieving higher resolution microscopic imaging but the related researches are insufficient. Here, we investigate the vibration performance of QTF-p at high mode based on the experiment and finite element method. The frequency spectrum characteristics are obtained by our homemade laser Doppler vibrometer system. The effects of the properties of the connecting glue layer and the probe features on the dynamic response of the QTF-p sensor at the high mode are investigated for optimization design. Finally, compared with the low mode, an obvious improvement of quality factor, of almost 50%, is obtained at the high mode. Meanwhile, the QTF-p sensor has a high force sensing sensitivity and a large sensing range at the high mode, indicating a broad application prospect for force sensing.

  17. Sensing Performance Analysis on Quartz Tuning Fork-Probe at the High Order Vibration Mode for Multi-Frequency Scanning Probe Microscopy.

    Science.gov (United States)

    Zhang, Xiaofei; Gao, Fengli; Li, Xide

    2018-01-24

    Multi-frequency scanning near-field optical microscopy, based on a quartz tuning fork-probe (QTF-p) sensor using the first two orders of in-plane bending symmetrical vibration modes, has recently been developed. This method can simultaneously achieve positional feedback (based on the 1st in-plane mode called the low mode) and detect near-field optically induced forces (based on the 2nd in-plane mode called the high mode). Particularly, the high mode sensing performance of the QTF-p is an important issue for characterizing the tip-sample interactions and achieving higher resolution microscopic imaging but the related researches are insufficient. Here, we investigate the vibration performance of QTF-p at high mode based on the experiment and finite element method. The frequency spectrum characteristics are obtained by our homemade laser Doppler vibrometer system. The effects of the properties of the connecting glue layer and the probe features on the dynamic response of the QTF-p sensor at the high mode are investigated for optimization design. Finally, compared with the low mode, an obvious improvement of quality factor, of almost 50%, is obtained at the high mode. Meanwhile, the QTF-p sensor has a high force sensing sensitivity and a large sensing range at the high mode, indicating a broad application prospect for force sensing.

  18. Conformal metamaterial absorber for curved surface.

    Science.gov (United States)

    Jang, Youngsoo; Yoo, Minyeong; Lim, Sungjoon

    2013-10-07

    In this paper, three different unit cells are designed on the basis split-ring-cross resonators, and each unit cell has an absorption rate greater than 90% at incident angles of 0°, 30°, and 45°, respectively. They are non-periodically placed in three different zones on the curved surface. Therefore, the proposed conformal metamaterial absorber can achieve a high absorption rate. The performance of the proposed absorber is compared with that of a metallic curved surface and a conformal metamaterial absorber with the same unit cells.

  19. Solar concentrator/absorber

    Science.gov (United States)

    Von Tiesenhausen, G. F.

    1976-01-01

    Collector/energy converter, consisting of dual-slope optical concentrator and counterflow thermal energy absorber, is attached to multiaxis support structure. Efficient over wide range of illumination levels, device may be used to generate high temperature steam, serve as solar powered dryer, or power absorption cycle cooler.

  20. NOISE AND VIBRATION DAMPING FOR YACHT INTERIOR

    Directory of Open Access Journals (Sweden)

    Murat Aydın

    2016-12-01

    Full Text Available Vibration damping and sound insulation are essential for all vehicles. Because moving parts and external factors such as wind, tracks, etc. can cause vibration and noise. Wave which is a dynamic force, drive system and HVAC systems are the main vibration and noise generators in a vessel. These all can affect comfort level on board yachts. Different types of isolators and absorbers such as sylomer®, cork panels, etc. are used to reduce these effects. Comfort level on board yachts can be increased using these types of materials. Otherwise, discomfort of passenger and crew may increase. These materials not only reduce structure-borne and air-borne noise and vibrations from waves, air, engines, pumps, generators and HVAC systems but also protect vibration sensitive interior or fittings. Noise and vibration evaluation is an important issue for this reason. And, measurement tools must be used not only to minimize this problem but also fulfill the regulations such as “comfort class”. Besides, providing quiet and low vibration increases the costs too. From this point of view, this study aims to explain clearly how noise and vibration damping can be done in a yacht.

  1. Thin film absorber for a solar collector

    Science.gov (United States)

    Wilhelm, William G.

    1985-01-01

    This invention pertains to energy absorbers for solar collectors, and more particularly to high performance thin film absorbers. The solar collectors comprising the absorber of this invention overcome several problems seen in current systems, such as excessive hardware, high cost and unreliability. In the preferred form, the apparatus features a substantially rigid planar frame with a thin film window bonded to one planar side of the frame. An absorber in accordance with the present invention is comprised of two thin film layers that are sealed perimetrically. In a preferred embodiment, thin film layers are formed from a metal/plastic laminate. The layers define a fluid-tight planar envelope of large surface area to volume through which a heat transfer fluid flows. The absorber is bonded to the other planar side of the frame. The thin film construction of the absorber assures substantially full envelope wetting and thus good efficiency. The window and absorber films stress the frame adding to the overall strength of the collector.

  2. Laser geodynamic satellite thermal/optical/vibrational analyses and testing, volume 2, book 1 technical report. [retroreflector performance

    Science.gov (United States)

    1975-01-01

    The results are presented of a retroreflector performance improvement program. The following areas of the program are discussed: retroreflector dimensional verification, initial optical performance analysis, LAGEOS test retroreflector rework, final optical performance analysis, optical performance tests, evaluations and conclusions, and laser wavelength evaluation and dihedral angle selection. Data tables, diagrams, graphs, and photographs are included.

  3. Universal metamaterial absorbe

    CERN Document Server

    Smaali, Rafik; Moreau, Antoine; Taliercio, Thierry; Centeno, Emmanuel

    2016-01-01

    We propose a design for an universal absorber, characterized by a resonance frequency that can be tuned from visible to microwave frequencies independently of the choice of the metal and the dielectrics involved. An almost resonant perfect absorption up to 99.8 % is demonstrated at resonance for all polarization states of light and for a very wide angular aperture. These properties originate from a magnetic Fabry-Perot mode that is confined in a dielectric spacer of $\\lambda/100$ thickness by a metamaterial layer and a mirror. An extraordinary large funneling through nano-slits explains how light can be trapped in the structure. Simple scaling laws can be used as a recipe to design ultra-thin perfect absorbers whatever the materials and the desired resonance wavelength, making our design truly universal.

  4. Urban vibrations

    DEFF Research Database (Denmark)

    Morrison, Ann; Knudsen, L.; Andersen, Hans Jørgen

    2012-01-01

      lab   studies   in   that   we   found   a   decreased   detection   rate   in   busy   environments.   Here   we   test   with   a   much   larger   sample   and   age   range,   and   contribute   with   the   first   vibration  sensitivity  testing  outside  the  lab  in  an  urban   public...

  5. Resonant Inerter Based Absorbers for a Selected Global Mode

    DEFF Research Database (Denmark)

    Krenk, Steen

    2016-01-01

    The paper presents calibration and efficiency analyses for two different configurations of a resonant vibration absorber consisting of a spring, a damper and an inerter element. In the two configurations the damper is either in parallel with the spring or with the inerter element. A calibration......-resonant modes. The calibration procedure is given a unified format for the two absorber types, and the high efficiency – evaluated as the ability to reproduce the selected dynamic amplification level of the resonant mode – is demonstrated....

  6. Absorber for terahertz radiation management

    Science.gov (United States)

    Biallas, George Herman; Apeldoorn, Cornelis; Williams, Gwyn P.; Benson, Stephen V.; Shinn, Michelle D.; Heckman, John D.

    2015-12-08

    A method and apparatus for minimizing the degradation of power in a free electron laser (FEL) generating terahertz (THz) radiation. The method includes inserting an absorber ring in the FEL beam path for absorbing any irregular THz radiation and thus minimizes the degradation of downstream optics and the resulting degradation of the FEL output power. The absorber ring includes an upstream side, a downstream side, and a plurality of wedges spaced radially around the absorber ring. The wedges form a scallop-like feature on the innermost edges of the absorber ring that acts as an apodizer, stopping diffractive focusing of the THz radiation that is not intercepted by the absorber. Spacing between the scallop-like features and the shape of the features approximates the Bartlett apodization function. The absorber ring provides a smooth intensity distribution, rather than one that is peaked on-center, thereby eliminating minor distortion downstream of the absorber.

  7. THE NEUROPHYSIOLOGICAL EFFECTS OF WHOLE BODY VIBRATION TRAINING

    OpenAIRE

    KOÇ, Gözde; K. Alparslan ERMAN

    2012-01-01

    Whole body vibration training, the person’s entire body on a platform, creates a vibration that may affect the muscles and bones. Despite the vibration used of massage and treatment since ancient times, it was used as a training method in recent years and became very popular and has attracted the attention of researchers. Whole body vibration training used both sport science with the aim to improve performance and in the fields of medicine for sports therapy. Whole body vibration training bri...

  8. Corrosion resistant neutron absorbing coatings

    Science.gov (United States)

    Choi, Jor-Shan [El Cerrito, CA; Farmer, Joseph C [Tracy, CA; Lee, Chuck K [Hayward, CA; Walker, Jeffrey [Gaithersburg, MD; Russell, Paige [Las Vegas, NV; Kirkwood, Jon [Saint Leonard, MD; Yang, Nancy [Lafayette, CA; Champagne, Victor [Oxford, PA

    2012-05-29

    A method of forming a corrosion resistant neutron absorbing coating comprising the steps of spray or deposition or sputtering or welding processing to form a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material. Also a corrosion resistant neutron absorbing coating comprising a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material.

  9. Multi-band terahertz metasurface absorber

    Science.gov (United States)

    Wang, Xuying; Wang, Qingmin; Dong, Guoyan; Hao, Yanan; Lei, Ming; Bi, Ke

    2017-12-01

    A terahertz metasurface perfect absorber with multi-band performance is demonstrated. The absorber is composed of a ground plane and four split-ring resonators (SRRs) with different dimensions, separated by a dielectric spacer. The numerical simulation results illustrate that the proposed absorber has four distinct absorption peaks at resonance frequencies of 4.24, 5.66, 7.22, and 8.97 THz, with absorption rates of 96.8%, 99.3%, 97.3%, and 99.9%, respectively. Moreover, the corresponding full width at half-maximum (FWHM) values are about 0.27, 0.35, 0.32, and 0.42 THz, respectively, which are much broader than those of previously reported absorbers. Besides, the calculated magnetic field distributions allow us to understand the absorption mechanism in detail. The effects of incident angle and azimuthal angle on the absorber are also investigated. The results show that the proposed absorber is partially sensitive to the incident angle, which makes this design promising for practical applications in terahertz imagers and detectors.

  10. Radar Absorbing Materials for Cube Stealth Satellite

    Science.gov (United States)

    Micheli, D.; Pastore, R.; Vricella, A.; Marchetti, M.

    A Cube Stealth Satellite is proposed for potential applications in defense system. Particularly, the faces of the satellite exposed to the Earth are made of nanostructured materials able to absorb radar surveillance electromagnetic waves, conferring stealth capability to the cube satellite. Microwave absorbing and shielding material tiles are proposed using composite materials consisting in epoxy-resin and carbon nanotubes filler. The electric permittivity of the composite nanostructured materials is measured and discussed. Such data are used by the modeling algorithm to design the microwave absorbing and the shielding faces of the cube satellite. The electromagnetic modeling takes into account for several incidence angles (0-80°), extended frequency band (2-18 GHz), and for the minimization of the electromagnetic reflection coefficient. The evolutionary algorithm used for microwave layered microwave absorber modeling is the recently developed Winning Particle Optimization. The mathematical model of the absorbing structure is finally experimentally validated by comparing the electromagnetic simulation to the measurement of the manufactured radar absorber tile. Nanostructured composite materials manufacturing process and electromagnetic reflection measurements methods are described. Finally, a finite element method analysis of the electromagnetic scattering by cube stealth satellite is performed.

  11. A Perfect Terahertz Metamaterial Absorber

    OpenAIRE

    Bagheri, Alireza; Moradi, Gholamreza

    2015-01-01

    In this paper the design for an absorbing metamaterial with near unity absorbance in terahertz region is presented. The absorber's unit cell structure consists of two metamaterial resonators that couple to electric and magnetic fields separately. The structure allows us to maximize absorption by varying dielectric material and thickness and, hence the effective electrical permittivity and magnetic permeability.

  12. Absorber Alignment Measurement Tool for Solar Parabolic Trough Collectors: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Stynes, J. K.; Ihas, B.

    2012-04-01

    As we pursue efforts to lower the capital and installation costs of parabolic trough solar collectors, it is essential to maintain high optical performance. While there are many optical tools available to measure the reflector slope errors of parabolic trough solar collectors, there are few tools to measure the absorber alignment. A new method is presented here to measure the absorber alignment in two dimensions to within 0.5 cm. The absorber alignment is measured using a digital camera and four photogrammetric targets. Physical contact with the receiver absorber or glass is not necessary. The alignment of the absorber is measured along its full length so that sagging of the absorber can be quantified with this technique. The resulting absorber alignment measurement provides critical information required to accurately determine the intercept factor of a collector.

  13. Solar radiation absorbing material

    Science.gov (United States)

    Googin, John M.; Schmitt, Charles R.; Schreyer, James M.; Whitehead, Harlan D.

    1977-01-01

    Solar energy absorbing means in solar collectors are provided by a solar selective carbon surface. A solar selective carbon surface is a microporous carbon surface having pores within the range of 0.2 to 2 micrometers. Such a surface is provided in a microporous carbon article by controlling the pore size. A thermally conductive substrate is provided with a solar selective surface by adhering an array of carbon particles in a suitable binder to the substrate, a majority of said particles having diameters within the range of about 0.2-10 microns.

  14. Ruggedizing Printed Circuit Boards Using a Wideband Dynamic Absorber

    Directory of Open Access Journals (Sweden)

    V.C. Ho

    2003-01-01

    Full Text Available The existing approaches to ruggedizing inherently fragile and sensitive critical components of electronic equipment such as printed circuit boards (PCB for use in hostile industrial and military environment are either insufficient or expensive. This paper addresses a novel approach towards ruggedizing commercial-off-the-shelf PCBs using a miniature wideband dynamic absorber. The optimisation technique used relies on the experimentally measured vibration spectra and complex receptance of the original PCB.

  15. Metamaterial absorber for molecular detection and identification (Conference Presentation)

    Science.gov (United States)

    Tanaka, Takuo

    2017-03-01

    Metamaterial absorber was used for a background-suppressed surface-enhanced molecular detection technique. By utilizing the resonant coupling between plasmonic modes of a metamaterial absorber and infrared (IR) vibrational modes of a self-assembled monolayer (SAM), attomole level molecular sensitivity was experimentally demonstrated. IR absorption spectroscopy of molecular vibrations is of importance in chemical, material, medical science and so on, since it provides essential information of the molecular structure, composition, and orientation. In the vibrational spectroscopic techniques, in addition to the weak signals from the molecules, strong background degrades the signal-to-noise ratio, and suppression of the background is crucial for the further improvement of the sensitivity. Here, we demonstrate low-background resonant Surface enhanced IR absorption (SEIRA) by using the metamaterial IR absorber that offers significant background suppression as well as plasmonic enhancement. By using mask-less laser lithography technique, metamaterial absorber which consisted of 1D array of Au micro-ribbons on a thick Au film separated by a transparent gap layer made of MgF2 was fabricated. This metamaterial structure was designed to exhibit an anomalous IR absorption at 3000 cm-1, which spectrally overlapped with C-H stretching vibrational modes. 16-Mercaptohexadecanoic acid (16-MHDA) was used as a test molecule, which formed a 2-nm thick SAM with their thiol head-group chemisorbed on the Au surface. In the FTIR measurements, the symmetric and asymmetric C-H stretching modes were clearly observed as reflection peaks within a broad plasmonic absorption of the metamaterial, and 1.8 attomole molecular sensitivity was experimentally demonstrated.

  16. Metamaterial saturable absorber mirror.

    Science.gov (United States)

    Dayal, Govind; Ramakrishna, S Anantha

    2013-02-01

    We propose a metamaterial saturable absorber mirror at midinfrared wavelengths that can show a saturation of absorption with intensity of incident light and switch to a reflecting state. The design consists of an array of circular metallic disks separated by a thin film of vanadium dioxide (VO(2)) from a continuous metallic film. The heating due to the absorption in the absorptive state causes the VO(2) to transit to a metallic phase from the low temperature insulating phase. The metamaterial switches from an absorptive state (R≃0.1%) to a reflective state (R>95%) for a specific threshold intensity of the incident radiation corresponding to the phase transition of VO(2), resulting in the saturation of absorption in the metamaterial. The computer simulations show over 99.9% peak absorbance, a resonant bandwidth of about 0.8 μm at 10.22 μm wavelengths, and saturation intensity of 140 mW cm(-2) for undoped VO(2) at room temperature. We also carried out numerical simulations to investigate the effects of localized heating and temperature distribution by solving the heat diffusion problem.

  17. High-performance liquid chromatography - Ultraviolet method for the determination of total specific migration of nine ultraviolet absorbers in food simulants based on 1,1,3,3-Tetramethylguanidine and organic phase anion exchange solid phase extraction to remove glyceride.

    Science.gov (United States)

    Wang, Jianling; Xiao, Xiaofeng; Chen, Tong; Liu, Tingfei; Tao, Huaming; He, Jun

    2016-06-17

    The glyceride in oil food simulant usually causes serious interferences to target analytes and leads to failure of the normal function of the RP-HPLC column. In this work, a convenient HPLC-UV method for the determination of the total specific migration of nine ultraviolet (UV) absorbers in food simulants was developed based on 1,1,3,3-tetramethylguanidine (TMG) and organic phase anion exchange (OPAE) SPE to efficiently remove glyceride in olive oil simulant. In contrast to the normal ion exchange carried out in an aqueous solution or aqueous phase environment, the OPAE SPE was performed in the organic phase environments, and the time-consuming and challenging extraction of the nine UV absorbers from vegetable oil with aqueous solution could be readily omitted. The method was proved to have good linearity (r≥0.99992), precision (intra-day RSD≤3.3%), and accuracy(91.0%≤recoveries≤107%); furthermore, the lower limit of quantifications (0.05-0.2mg/kg) in five types of food simulants(10% ethanol, 3% acetic acid, 20% ethanol, 50% ethanol and olive oil) was observed. The method was found to be well suited for quantitative determination of the total specific migration of the nine UV absorbers both in aqueous and vegetable oil simulant according to Commission Regulation (EU) No. 10/2011. Migration levels of the nine UV absorbers were determined in 31 plastic samples, and UV-24, UV-531, HHBP and UV-326 were frequently detected, especially in olive oil simulant for UV-326 in PE samples. In addition, the OPAE SPE procedure was also been applied to efficiently enrich or purify seven antioxidants in olive oil simulant. Results indicate that this procedure will have more extensive applications in the enriching or purification of the extremely weak acidic compounds with phenol hydroxyl group that are relatively stable in TMG n-hexane solution and that can be barely extracted from vegetable oil. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Optical analysis of solar energy tubular absorbers.

    Science.gov (United States)

    Saltiel, C; Sokolov, M

    1982-11-15

    The energy absorbed by a solar energy tubular receiver element for a single incident ray is derived. Two types of receiver elements were analyzed: (1) an inner tube with an absorbing coating surrounded by a semitransparent cover tube, and (2) a semitransparent inner tube filled with an absorbing fluid surrounded by a semitransparent cover tube. The formation of ray cascades in the semitransparent tubes is considered. A numerical simulation to investigate the influence of the angle of incidence, sizing, thickness, and coefficient of extinction of the tubes was performed. A comparison was made between receiver elements with and without cover tubes. Ray tracing analyses in which rays were followed within the tubular receiver element as well as throughout the rest of the collector were performed for parabolic and circular trough concentrating collectors.

  19. Impact Vibration Attenuation for a Flexible Robotic Manipulator through Transfer and Dissipation of Energy

    Directory of Open Access Journals (Sweden)

    Yushu Bian

    2013-01-01

    Full Text Available Due to the presence of system flexibility, impact can excite severe large amplitude vibration responses of the flexible robotic manipulator. This impact vibration exhibits characteristics of remarkable nonlinearity and strong energy. The main goal of this study is to put forward an energy-based control method to absorb and attenuate large amplitude impact vibration of the flexible robotic manipulator. The method takes advantage of internal resonance and is implemented through a vibration absorber based on the transfer and dissipation of energy. The addition of the vibration absorber to the flexible arm generates a coupling effect between vibration modes of the system. By means of analysis on 2:1 internal resonance, the exchange of energy is proven to be existent. The impact vibrational energy can be transferred from the arm to the absorber and dissipated through the damping of the absorber. The results of numerical simulations are promising and preliminarily verify that the method is feasible and can be used to combat large amplitude impact vibration of the flexible manipulator undergoing rigid motion.

  20. Monitoring Vibration of A Model of Rotating Machine

    Directory of Open Access Journals (Sweden)

    Arko Djajadi

    2012-03-01

    Full Text Available Mechanical movement or motion of a rotating machine normally causes additional vibration. A vibration sensing device must be added to constantly monitor vibration level of the system having a rotating machine, since the vibration frequency and amplitude cannot be measured quantitatively by only sight or touch. If the vibration signals from the machine have a lot of noise, there are possibilities that the rotating machine has defects that can lead to failure. In this experimental research project, a vibration structure is constructed in a scaled model to simulate vibration and to monitor system performance in term of vibration level in case of rotation with balanced and unbalanced condition. In this scaled model, the output signal of the vibration sensor is processed in a microcontroller and then transferred to a computer via a serial communication medium, and plotted on the screen with data plotter software developed using C language. The signal waveform of the vibration is displayed to allow further analysis of the vibration. Vibration level monitor can be set in the microcontroller to allow shutdown of the rotating machine in case of excessive vibration to protect the rotating machine from further damage. Experiment results show the agreement with theory that unbalance condition on a rotating machine can lead to larger vibration amplitude compared to balance condition. Adding and reducing the mass for balancing can be performed to obtain lower vibration level. 

  1. The Effect of Rail Fastening System Modifications on Tram Traffic Noise and Vibration

    Directory of Open Access Journals (Sweden)

    Stjepan Lakušić

    2016-01-01

    Full Text Available Tram system is a backbone of public transportation in the City of Zagreb. In the last decade, its fleet has been renewed by 142 new low-floor trams. Shortly after their introduction, it was observed that they have a negative impact on the exploitation behavior of tram infrastructure, primarily on the durability of rail fastening systems. Because of that, it was decided to modify existing rail fastening systems to the new track exploitation conditions. When the (reconstruction of tram infrastructure is carried out by applying new systems and technologies, it is necessary to take into account their impact on the future propagation of noise and vibration in the environment. This paper gives a short overview of the characteristics of the two newly developed rail fastening systems for Zagreb tram tracks, their application in construction of experimental track section, and performance and comparison of noise and vibration measurements results. Measured data on track vibrations and noise occurring during passage of the tram vehicles is analyzed in terms of track decay rates and equivalent noise levels of passing referent vehicle. Vibroacoustic performance of new fastening systems is evaluated and compared to referent fastening system, in order to investigate their ability to absorb vibration energy induced by tram operation and to reduce noise emission.

  2. Investigations of models and experimental studies of a stationary regime for a laser with a saturable absorber

    Energy Technology Data Exchange (ETDEWEB)

    Zambon, B.; De Tomasi, F.; Hennequin, D.; Arimondo, E. (Dipartimento di Fisica, Universita delgi Studi di Pisa, piazza Torricelli 2, 56100 Pisa, Italy (IT))

    1989-10-01

    The laser with saturable absorber (LSA) with level structures in amplifier and absorber media has been modeled in a rate-equation approach introducing memory functions. This approach has been applied to vibrational structures in a CO{sub 2} medium and rotovibrational structures in molecular absorbers. Experimental results for the LSA regimes with inhomogeneously and homogeneously broadened absorbers are presented. The theoretical results for the laser threshold and the Hopf bifurcation are derived by the model through a fitting of the laser-absorber coupling parameters.

  3. Side-Alternating Vibration Training Improves Muscle Performance in a Patient with Late-Onset Pompe Disease

    Directory of Open Access Journals (Sweden)

    Aneal Khan

    2009-01-01

    joint kinematics and kinetics. Her functional ability measured through the Rotterdam 9-item score was unchanged at 19/36. There were no elevations in serum creatine kinase or lactate. This is the first report, to our knowledge, of a performance improvement in a patient with Pompe disease using SAVT.

  4. Dual broadband metamaterial absorber.

    Science.gov (United States)

    Kim, Young Ju; Yoo, Young Joon; Kim, Ki Won; Rhee, Joo Yull; Kim, Yong Hwan; Lee, YoungPak

    2015-02-23

    We propose polarization-independent and dual-broadband metamaterial absorbers at microwave frequencies. This is a periodic meta-atom array consisting of metal-dielectric-multilayer truncated cones. We demonstrate not only one broadband absorption from the fundamental magnetic resonances but additional broadband absorption in high-frequency range using the third-harmonic resonance, by both simulation and experiment. In simulation, the absorption was over 90% in 3.93-6.05 GHz, and 11.64-14.55 GHz. The corresponding experimental absorption bands over 90% were 3.88-6.08 GHz, 9.95-10.46 GHz and 11.86-13.84 GHz, respectively. The origin of absorption bands was elucidated. Furthermore, it is independent of polarization angle owing to the multilayered circular structures. The design is scalable to smaller size for the infrared and the visible ranges.

  5. Comparison of artificial absorbing boundaries for acoustic wave equation modelling

    Science.gov (United States)

    Gao, Yingjie; Song, Hanjie; Zhang, Jinhai; Yao, Zhenxing

    2017-12-01

    Absorbing boundary conditions are necessary in numerical simulation for reducing the artificial reflections from model boundaries. In this paper, we overview the most important and typical absorbing boundary conditions developed throughout history. We first derive the wave equations of similar methods in unified forms; then, we compare their absorbing performance via theoretical analyses and numerical experiments. The Higdon boundary condition is shown to be the best one among the three main absorbing boundary conditions that are based on a one-way wave equation. The Clayton and Engquist boundary is a special case of the Higdon boundary but has difficulty in dealing with the corner points in implementaion. The Reynolds boundary does not have this problem but its absorbing performance is the poorest among these three methods. The sponge boundary has difficulties in determining the optimal parameters in advance and too many layers are required to achieve a good enough absorbing performance. The hybrid absorbing boundary condition (hybrid ABC) has a better absorbing performance than the Higdon boundary does; however, it is still less efficient for absorbing nearly grazing waves since it is based on the one-way wave equation. In contrast, the perfectly matched layer (PML) can perform much better using a few layers. For example, the 10-layer PML would perform well for absorbing most reflected waves except the nearly grazing incident waves. The 20-layer PML is suggested for most practical applications. For nearly grazing incident waves, convolutional PML shows superiority over the PML when the source is close to the boundary for large-scale models. The Higdon boundary and hybrid ABC are preferred when the computational cost is high and high-level absorbing performance is not required, such as migration and migration velocity analyses, since they are not as sensitive to the amplitude errors as the full waveform inversion.

  6. Impact of patterned anti-reflection coating on the performance of Broadband Blackbody Absorber Based on Dielectric-Thin Metal Film Multilayers

    Science.gov (United States)

    Guo, Shyhauh; Sushkov, Andrei; Drew, Dennis; Phaneuf, Raymond

    2013-03-01

    We present results from measurements on double period structures of alternating dielectric and thin metal layer coated with micro-patterned anti-reflection layer to improve absorption in mid-infrared range. We examine the effect on performance of patterns' period and the correlation with the effective medium theory. We find that the numerical results agree with the measured absorption spectra. We also investigate the limit of pattern feature size to achieve performance suggested by effective medium theory. Laboratory for Physical Sciences, College Park, MD

  7. Design of multiband metamaterial absorber based on artificial magnetic conductor

    Science.gov (United States)

    Dang, Kezheng; He, Zijian; Li, Zhigang; Miao, Lei; Liu, Hao

    2015-10-01

    We present a general method to design multiband absorber by replacing the ground plane in a conventional metamaterial absorber with an artificial magnetic conductor. Due to its unique property of in-phase reflection at some specific frequency, the artificial magnetic conductor is used to introduce new absorption in the operation band. Meanwhile, out of the in-phase reflection band, the original absorbing capability of the absorber is reserved. To demonstrate it, we design a metamaterial absorber comprising three layers which are grids patterned resistive frequency selective surface, dielectric layer and the ground plane respectively. With an appropriate design, the absorber performs an absorbing peak at about 10 GHz. Then, we utilize a single band artificial magnetic conductor at 6.25 GHz and a dual-band one at 6.27 GHz and 8.17 GHz, which are both lossy and comprised of patches array varying in periodic size with a thickness of 0.6 mm, to replace the ground plane in the metamaterial absorber separately. The reflectivity of these multiband absorbers are simulated, and experiments are carried out later. Experimental results agree well with the simulations. All results verified that the method presented at the beginning is effective. The results show that additional absorptions exist at the frequencies where microwaves are nearly reflected in phase on the artificial magnetic conductor. Meanwhile the original absorbing capability of the metamaterial absorber has been preserved mostly. Based on the artificial magnetic conductor, the multiband absorber performs better with an increasing absorption bandwidth from 8.5 GHz to 10 GHz compared to the metamaterial absorber.

  8. Vibroacoustic properties of thin micro-perforated panel absorbers.

    Science.gov (United States)

    Bravo, Teresa; Maury, Cédric; Pinhède, Cédric

    2012-08-01

    This paper presents theoretical and experimental results on the influence of panel vibrations on the sound absorption properties of thin micro-perforated panel absorbers (MPPA). Measurements show that the absorption performance of thin MPPAs generates extra absorption peaks or dips that cannot be understood assuming a rigid MPPA. A theoretical model is established that accounts for structural-acoustic interaction between the micro-perforated panel and the backing cavity, assuming uniform conservative boundary conditions for the panel and separable coordinates for the cavity cross-section. This model is verified experimentally against impedance tube measurements and laser vibrometric scans of the cavity-backed panel response. It is shown analytically and experimentally that the air-frame relative velocity is a key factor that alters the input acoustic impedance of thin MPPAs. Coupled mode analysis reveals that the two first resonances of an elastic MPPA are either panel-cavity, hole-cavity, or panel-controlled resonances, depending on whether the effective air mass of the perforations is greater or lower than the first panel modal mass. A critical value of the perforation ratio is found through which the MPPA resonances experience a frequency "jump" and that determines two absorption mechanisms operating out of the transitional region.

  9. MODELING AND SIMULATION OF INDUSTRIAL FORMALDEHYDE ABSORBERS

    NARCIS (Netherlands)

    WINKELMAN, JGM; SIJBRING, H; BEENACKERS, AACM; DEVRIES, ET

    1992-01-01

    The industrially important process of formaldehyde absorption in water constitutes a case of multicomponent mass transfer with multiple reactions and considerable heat effects. A stable solution algorithm is developed to simulate the performance of industrial absorbers for this process using a

  10. Durability of Polymeric Glazing and Absorber Materials

    Energy Technology Data Exchange (ETDEWEB)

    Jorgensen, G.; Terwilliger, K.; Bingham, C.; Lindquist, C.; Milbourne, M.

    2005-11-01

    The Solar Heating and Lighting Program has set the goal of reducing the cost of solar water heating systems by at least 50%. An attractive approach to such large cost reduction is to replace glass and metal parts with less-expensive, lighter-weight, more-integrated polymeric components. The key challenge with polymers is to maintain performance and assure requisite durability for extended lifetimes. We have begun evaluation of several new UV-screened polycarbonate sheet glazing constructions. This has involved interactions with several major polymer industry companies to obtain improved candidate samples. Proposed absorber materials were tested for UV resistance, and appear adequate for unglazed ICS absorbers.

  11. Identifying the perfect absorption of metamaterial absorbers

    Science.gov (United States)

    Duan, G.; Schalch, J.; Zhao, X.; Zhang, J.; Averitt, R. D.; Zhang, X.

    2018-01-01

    We present a detailed analysis of the conditions that result in unity absorption in metamaterial absorbers to guide the design and optimization of this important class of functional electromagnetic composites. Multilayer absorbers consisting of a metamaterial layer, dielectric spacer, and ground plane are specifically considered. Using interference theory, the dielectric spacer thickness and resonant frequency for unity absorption can be numerically determined from the functional dependence of the relative phase shift of the total reflection. Further, using transmission line theory in combination with interference theory we obtain analytical expressions for the unity absorption resonance frequency and corresponding spacer layer thickness in terms of the bare resonant frequency of the metamaterial layer and metallic and dielectric losses within the absorber structure. These simple expressions reveal a redshift of the unity absorption frequency with increasing loss that, in turn, necessitates an increase in the thickness of the dielectric spacer. The results of our analysis are experimentally confirmed by performing reflection-based terahertz time-domain spectroscopy on fabricated absorber structures covering a range of dielectric spacer thicknesses with careful control of the loss accomplished through water absorption in a semiporous polyimide dielectric spacer. Our findings can be widely applied to guide the design and optimization of the metamaterial absorbers and sensors.

  12. Ferrite HOM Absorber for the RHIC ERL

    Energy Technology Data Exchange (ETDEWEB)

    Hahn,H.; Choi, E.M.; Hammons, L.

    2008-10-01

    A superconducting Energy Recovery Linac is under construction at Brookhaven National Laboratory to serve as test bed for RHIC upgrades. The damping of higher-order modes in the superconducting five-cell cavity for the Energy-Recovery linac at RHIC is performed exclusively by two ferrite absorbers. The ferrite properties have been measured in ferrite-loaded pill box cavities resulting in the permeability values given by a first-order Debye model for the tiled absorber structure and an equivalent permeability value for computer simulations with solid ring dampers. Measured and simulated results for the higher-order modes in the prototype copper cavity are discussed. First room-temperature measurements of the finished niobium cavity are presented which confirm the effective damping of higher-order modes in the ERL. by the ferrite absorbers.

  13. Integrated optical NIR-evanescent wave absorbance sensorfor chemical analysis.

    Science.gov (United States)

    Bürck, J; Zimmermann, B; Mayer, J; Ache, H J

    1996-01-01

    A new, long-path integrated optical (IO) sensor for the detection of non-polar organic substances is described. The sensing layer deposited on a planar multimode IO structure is built by a suitable silicone polymer with lower refractive index (RI). It acts as a hydrophobic matrix for the reversible enrichment of non-polar organic contaminants from water or air. Light from the near-infrared (NIR) range is coupled into the planar structure and the evanescent wave part of the light field penetrating into the silicone layer interacts with the enriched organic species. As a result, light is absorbed at the characteristic frequencies of the corresponding C-H, N-H or O-H overtone and combination band vibrations of the analytes. To perform evanescent field absorbance (EFA) measurements, the arc-shaped strip waveguide structure of 172 mm interaction length was adapted to a tungsten-halogen lamp and an InGaAs diode array spectrograph over gradient index fibers. Dimethyl-co-methly(phenyl)polysiloxanes with varying degrees of phenylation were prepared and used as sensitive coating materials for the IO structure. Light attenuation in the arc-shaped waveguides is high and typical insertion losses in the range of 14-18 dB were obtained. When the coated sensors were brought in contact with aqueous samples, the light transmission decreases, which is due to the formation of H(2)O micro-emulsions in the silicone superstrates. Nevertheless, after reaching constant light transmissions, absorbance spectra of aqueous trichloroethene samples were successfully collected. For gas measurements, where water cross sensitivity problems are absent, the sensitivity of the IO device for trichloroethene was tested as a function of the RI of the silicone superstrate. The slope of the TCE calibration function increases by a factor of 10 by using a poly(methylphenylsiloxane) layer with a RI of 1.449 instead of poly(dimethylsiloxane) (RI: 1.41). A comparison of the IO-EFA and an earlier developed fiber

  14. Effect of combining passive muscle stretching and whole body vibration on spasticity and physical performance of children and adolescents with cerebral palsy.

    Science.gov (United States)

    Tupimai, Teeraporn; Peungsuwan, Punnee; Prasertnoo, Jitlada; Yamauchi, Juinichiro

    2016-01-01

    [Purpose] This study evaluated the immediate and short-term effects of a combination of prolonged passive muscle stretching (PMS) and whole body vibration (WBV) on the spasticity, strength and balance of children and adolescents with cerebral palsy. [Subjects and Methods] A randomized two-period crossover trial was designed. Twelve subjects with cerebral palsy aged 10.6 ± 2.4 years received both PMS alone as a control group (CG) and a combination of PMS and WBV as an experimental group (EG). After random allocation to the trial schedules of either EG-CG or CG-EG, CG received prolonged PMS while standing on a tilt-table for 40 minutes/day, and EG received prolonged PMS for 30 minutes, followed by 10 minutes WBV. Both CG and EG received the treatment 5 days/week for 6 weeks. [Results] Immediately after one treatment, EG resulted in better improvement in scores on the Modified Ashworth Scale than CG. After the 6-week intervention, EG also showed significantly decreased scores on the Modified Ashworth Scale compared to CG. Both CG and EG showed significantly reduced the performance times in the five times sit to stand test, and EG also showed significantly increased scores on the pediatric balance scale. [Conclusion] This study showed that 6 weeks of combined prolonged PMS and WBV had beneficial effects on the spasticity, muscle strength and balance of children and adolescents with CP.

  15. Investigating the optimal passive and active vibration controls of adjacent buildings based on performance indices using genetic algorithms

    Science.gov (United States)

    Hadi, Muhammad N. S.; Uz, Mehmet E.

    2015-02-01

    This study proposes the optimal passive and active damper parameters for achieving the best results in seismic response mitigation of coupled buildings connected to each other by dampers. The optimization to minimize the H2 and H∞ norms in the performance indices is carried out by genetic algorithms (GAs). The final passive and active damper parameters are checked for adjacent buildings connected to each other under El Centro NS 1940 and Kobe NS 1995 excitations. Using real coded GA in H∞ norm, the optimal controller gain is obtained by different combinations of the measurement as the feedback for designing the control force between the buildings. The proposed method is more effective than other metaheuristic methods and more feasible, although the control force increased. The results in the active control system show that the response of adjacent buildings is reduced in an efficient manner.

  16. Wideband microwave absorber design using micro and nanomaterials

    Science.gov (United States)

    Abraham, Jose K.; Shami, T. C.; Dixit, Alok K.; Dubey, Rama; Jain, Abhinandan; Varadan, Vijay K.; Rao, K. U. B.

    2007-04-01

    In this paper, we present the design and experimental results of wide-band composite microwave absorber fabricated using thermoplastic polyurethane, carbon fibers, glass microballoons, micro and nano size magnetic materials. Ni-Zn ferrite and carbonyl iron powders of nano and micrometer size particles were used along with carbon fibers and microbaloons for the development of the absorber. It is found that both Ni-Zn ferrite and carbonyl iron powders and their ratio in the composite plays critical role in the absorber performance. Measured results show that a reflectivity reduction of 15 dB from 5 to 18 GHz is possible using this composite absorber.

  17. Flexible liquid metal-filled metamaterial absorber on polydimethylsiloxane (PDMS).

    Science.gov (United States)

    Ling, Kenyu; Kim, Kyeoungseob; Lim, Sungjoon

    2015-08-10

    In this paper, we propose a novel flexible metamaterial (MM) absorber. The conductive pattern consists of liquid metal eutectic gallium indium alloy (EGaIn) enclosed in elastomeric microfluidic channels. Polydimethylsiloxane (PDMS) material is used as a supporting substrate. The proposed MM absorber is flexible because of its liquid metal and PDMS substrate. Numerical simulations and experimental results are presented when the microfluidic channels are filled with liquid metal. In order to evaluate the proposed MM absorber's performance, the fabricated absorber prototype is tested with rectangular waveguides. Almost perfect absorptivity is achieved at a resonant frequency of 8.22 GHz.

  18. Study of Novel EUV Absorber : Nickel and Nickel Oxide

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Dong Gon; Kim, Jung Hwan; Kim, Jung Sik; Hong, Seongchul; Ahn, Jinho [Hanyang University, Seoul (Korea, Republic of)

    2017-03-15

    The shadowing effect is one of the most urgent issues yet to be solved in high-volume manufacturing using extreme ultraviolet lithography (EUVL). Many studies have been conducted to mitigate the unexpected results caused by shadowing effects. The simplest way to mitigate the shadowing effect is to reduce the thickness of the absorber. Since nickel has high extinction coefficients in the EUV wavelengths, it is one of more promising absorber material candidates. A Ni based absorber exhibited imaging performance comparable to a Tantalum nitride absorber. However, the Ni-based absorber showed a dramatic reduction in horizontal-vertical critical dimension (H-V CD) bias. Therefore, limitations in fabricating a EUV mask can be mitigated by using the Ni based absorber.

  19. Analysis of quinapril by two solvent-saving methods: application of capillary column high-performance liquid chromatography with ultraviolet absorbance detection and LDI-TOF-MS.

    Science.gov (United States)

    Lu, Chi-Yu; Wang, Yi-Rou; Chen, Su-Hwei; Feng, Chia-Hsien

    2010-01-01

    A capillary column high-performance liquid chromatography (CapLC) method and a laser desorption ionization-time of flight (LDI-TOF)-MS method are described for the determination of quinapril, an angiotensin-converting enzyme inhibitor. Effective separation was achieved by using a C18 capillary column at a flow rate of 10 microL/min. For CapLC, quinapril and 7-hydroxycoumarin (internal standard) were detected at 210 and 320 nm, respectively. Phenformin replaced 7-hydroxycoumarin as the internal standard for the LDI-TOF-MS method successfully developed to detect quinapril. The calibration curves showed good linearity in the range of 1-100 micro/mL in these two methods. For high throughput purposes, the LDI-TOF-MS method was simpler and faster than the CapLC method. Both green methods were suitably validated and successfully applied to determine quinapril in commercial tablets.

  20. An analysis of dissolved organic matter from freshwater Karelian Lakes using reversed-phase high-performance liquid chromatography with online absorbance and fluorescence analysis

    Science.gov (United States)

    Khundzhua, D. A.; Patsaeva, S. V.; Trubetskoj, O. A.; Trubetskaya, O. E.

    2017-01-01

    The spectral and optical properties of the fractionated components of dissolved organic matter (DOM) of three freshwater lakes in Karelia were studied using reversed-phase high-performance liquid chromatography (RP-HPLC) with online detection of fluorescence and absorption spectra. It is shown that the DOM fractions are qualitatively similar, but differ quantitatively in the ratio of components and consist of at least three types of fluorophores: (1) hydrophilic "humic-like" fluorophore(s) with the emission maximum in the region of 420 nm and an absorption band at 260-270 nm; (2) hydrophobic "humic-like" fluorophore(s) with the emission maximum at approximately 450 nm that has no characteristic absorption maxima in the region from 220 to 400 nm; and (3) a "protein-like" fluorophore with the emission maximum in the region of 340-350 nm, which is typical of proteins and peptides containing tryptophan.

  1. Treatment outcomes of implants performed after regenerative treatment of absorbed alveolar bone due to the severe periodontal disease and endoscopic surgery for maxillary sinus lift without bone grafts.

    Science.gov (United States)

    Kiyokawa, Kensuke; Rikimaru, Hideaki; Kiyokawa, Munekatsu; Fukaya, Hajime; Sakaguchi, Shinji

    2013-09-01

    We have developed a regenerative medicine therapy for the alveolar bone and endoscopic surgery for maxillary sinus lift without bone grafts, in patients experiencing severe periodontal disease with significant absorption of the maxillary alveolar bone, in which more than 10 mm of bone thickness in the maxillary bone was attained, with satisfactory results. The objective of this study was to examine the treatment outcomes of implants that were performed after these therapies. The participants were 36 patients with severe periodontal disease, who cannot be cured with any other treatments except the extirpation of all teeth. The 36 patients are all patients who underwent regenerative treatment of the alveolar bone through tooth replantation and transplantation of the iliac cancellous bone (the bone marrow) as well as endoscopic surgery for maxillary sinus lift from May 2003 to July 2007 in our clinic. A total of 120 implants were placed in these patients when the replanted teeth fell out because of root resorption, and the success rate was examined. The success rates of the implants were 16 of 33 (48%) in the group when surveyed less than 2 years after the surgery and 84 of 87 (96.5%) in the group when surveyed more than 2 years after the surgery. A statistically significant difference was found between the 2 groups (Chi-squared test, P bones in the maxillary sinus floor, augmented through endoscopic surgery for maxillary sinus lift, to attain the thickness and hardness required for implant placement. Therefore, although the implant treatment should be performed later than 2 years after surgery, chewing is possible during this period, with the replanted teeth that were used for regenerative treatment of the alveolar bone. It is believed that this is an extremely effective treatment method to improve the patients' quality of life.

  2. Rapid quantitation of fluoxetine and norfluoxetine in serum by micro-disc solid-phase extraction with high-performance liquid chromatography-ultraviolet absorbance detection.

    Science.gov (United States)

    Li, Kong M; Thompson, Murray R; McGregor, Iain S

    2004-05-25

    A rapid, robust and sensitive method for the extraction and quantitative analysis of serum fluoxetine (FLX) and norfluoxetine (N-FLX) using a solid-phase extraction (SPE) column and high-performance liquid chromatography (HPLC) with ultraviolet (UV) detection was developed and validated. The sample clean-up step was performed by simple micro-disc mixed-mode (non-polar and strong cation exchange (SCX)) SPE cartridges. Separation of analytes and internal standard (IS) clomipramine (CLO) from endogenous matrix interference was achieved using a Waters Symmetry C(8) (150 mm x 2.1 mm i.d., 5 microm) reversed-phase narrow bore column. The relative retention times were 8.5, 9.6 and 10.5 min for FLX, N-FLX and CLO, respectively with a low isocratic flow rate of 0.3 ml/min. Chromatographic run time was completed in 15 min and peak area ratios of analytes to IS were used for regression analysis of the calibration curve. The latter was linear from 10 to 4000 nmol/l using 0.5 ml sample volume of serum. The average recovery was 95.5% for FLX and 96.9% for N-FLX. The lowest limit of quantitation (LLOQ) for serum FLX and N-FLX was 10 nmol/l (on-column amount of 200 fmol). The method described was used to analyse serum samples obtained from rats given chronic FLX treatment and to examine the relationship between steady state serum drug concentrations and neurochemical changes in several brain regions.

  3. The feasibility of whole body vibration in institutionalised elderly persons and its influence on muscle performance, balance and mobility: a randomised controlled trial [ISRCTN62535013

    Directory of Open Access Journals (Sweden)

    Van Hees Ellen

    2005-12-01

    Full Text Available Abstract Background Fatigue or lack of interest can reduce the feasibility of intensive physical exercise in nursing home residents. Low-volume exercise interventions with similar training effects might be an alternative. The aim of this randomised controlled trial was to investigate the feasibility of Whole Body Vibration (WBV in institutionalised elderly, and its impact on functional capacity and muscle performance. Methods Twenty-four nursing home residents (15 female, 9 male; mean age 77.5 ± 11.0 years were randomised (stratification for age, gender and ADL-category to 6 weeks static WBV exercise (WBV+, N = 13 or control (only static exercise; N = 11. Outcome measures were exercise compliance, timed up-and-go, Tinetti-test, back scratch, chair sit-and-reach, handgrip strength and linear isokinetic leg extension. Results At baseline, WBV+ and control groups were similar for all outcome variables. Twenty-one participants completed the program and attended respectively 96% and 86% of the exercise sessions for the WBV+ and control groups. Training-induced changes in timed up-and-go and Tinetti-test were better for WBV+ compared to control (p = 0.029 for timed up-and-go, p = 0.001 and p = 0.002 for Tinetti body balance and total score respectively. In an alternative analysis (Worst Rank Score & Last Observation Carried Forward the differences in change remained significant on the Tinetti body balance and total score. No other significant differences in change between both groups were observed. Conclusion In nursing home residents with limited functional dependency, six weeks static WBV exercise is feasible, and is beneficial for balance and mobility. The supplementary benefit of WBV on muscle performance compared to classic exercise remains to be explored further.

  4. Thermally tunable water-substrate broadband metamaterial absorbers

    Science.gov (United States)

    Pang, Yongqiang; Wang, Jiafu; Cheng, Qiang; Xia, Song; Zhou, Xiao Yang; Xu, Zhuo; Cui, Tie Jun; Qu, Shaobo

    2017-03-01

    The naturally occurring water has frequency dispersive permittivity at microwave frequencies and thus is a promising constituent material for broadband absorbers. Here, we develop water as the dielectric spacer in the substrate of metal-backed metamaterial (MM) absorbers. The designed substrate is a hybrid of water and a low-permittivity dielectric material. Such a design allows tight packaging of water and easy fabrication of the absorber. We obtain broadband absorption at temperatures of interest by designing the hybrid substrate and MM inclusions. Additionally, the absorption performance of the water-substrate MM absorbers could be tunable according to the environment temperature. We experimentally demonstrate the broadband and thermally tunable absorption performance. We expect that water could replace dielectric layers in other structural MM absorbers to achieve the broadband and thermally tunable absorption performance.

  5. Control of light absorbance using plasmonic grating based perfect absorber at visible and near-infrared wavelengths.

    Science.gov (United States)

    Nguyen, Duc Minh; Lee, Dasol; Rho, Junsuk

    2017-06-01

    Conventional metamaterial absorbers have multilayer designs, where the dielectric interlayer is sandwiched between a top patterned metallic structure and bottom metallic film. Here, we demonstrate that a highly polarization-sensitive perfect absorber canbe realized by replacing the bottom metallic film with a plasmonic grating. Designs for broadband and narrowband of wavelength are proposed and numerically investigated. The designed absorbers perform high light absorption, which is above 90% over the wavelength range of 0.4-1.4 µm for the broadband absorber and 98% for the absorption peak in case of the narrowband design, with a specific polarization of incident light. We find that the absorption is tunable by changing the polarization. Such absorbers offer new approach for active control of light absorbance with strong impacts for solar energy harvesting, light emitting and sensing.

  6. Exchanging Ohmic losses in metamaterial absorbers with useful optical absorption for photovoltaics.

    Science.gov (United States)

    Vora, Ankit; Gwamuri, Jephias; Pala, Nezih; Kulkarni, Anand; Pearce, Joshua M; Güney, Durdu Ö

    2014-05-09

    Using metamaterial absorbers, we have shown that metallic layers in the absorbers do not necessarily constitute undesired resistive heating problem for photovoltaics. Tailoring the geometric skin depth of metals and employing the natural bulk absorbance characteristics of the semiconductors in those absorbers can enable the exchange of undesired resistive losses with the useful optical absorbance in the active semiconductors. Thus, Ohmic loss dominated metamaterial absorbers can be converted into photovoltaic near-perfect absorbers with the advantage of harvesting the full potential of light management offered by the metamaterial absorbers. Based on experimental permittivity data for indium gallium nitride, we have shown that between 75%-95% absorbance can be achieved in the semiconductor layers of the converted metamaterial absorbers. Besides other metamaterial and plasmonic devices, our results may also apply to photodectors and other metal or semiconductor based optical devices where resistive losses and power consumption are important pertaining to the device performance.

  7. Exchanging Ohmic Losses in Metamaterial Absorbers with Useful Optical Absorption for Photovoltaics

    Science.gov (United States)

    Vora, Ankit; Gwamuri, Jephias; Pala, Nezih; Kulkarni, Anand; Pearce, Joshua M.; Güney, Durdu Ö.

    2014-01-01

    Using metamaterial absorbers, we have shown that metallic layers in the absorbers do not necessarily constitute undesired resistive heating problem for photovoltaics. Tailoring the geometric skin depth of metals and employing the natural bulk absorbance characteristics of the semiconductors in those absorbers can enable the exchange of undesired resistive losses with the useful optical absorbance in the active semiconductors. Thus, Ohmic loss dominated metamaterial absorbers can be converted into photovoltaic near-perfect absorbers with the advantage of harvesting the full potential of light management offered by the metamaterial absorbers. Based on experimental permittivity data for indium gallium nitride, we have shown that between 75%–95% absorbance can be achieved in the semiconductor layers of the converted metamaterial absorbers. Besides other metamaterial and plasmonic devices, our results may also apply to photodectors and other metal or semiconductor based optical devices where resistive losses and power consumption are important pertaining to the device performance. PMID:24811322

  8. Characterization of host response, resorption, and strength properties, and performance in the presence of bacteria for fully absorbable biomaterials for soft tissue repair.

    Science.gov (United States)

    Stoikes, N F N; Scott, J R; Badhwar, A; Deeken, C R; Voeller, G R

    2017-10-01

    The objective was to evaluate the host response, resorption, and strength properties, and to assess the performance in the presence of bacteria for Phasix™ Mesh (Phasix™) and Gore(®) Bio-A(®) Tissue Reinforcement (Bio-A(®)) in preclinical models. In a rat model, one mesh (2 × 2 cm) was implanted subcutaneously in n = 60 rats. Animals were euthanized after 2, 4, 8, 12, 16, or 24 weeks (n = 5/mesh/time point), and implant sites were assessed for host inflammatory response and overall fibrotic repair thickness. In a rabbit model, meshes (3.8 cm diameter) were bilaterally implanted in subcutaneous pockets in n = 20 rabbits (n = 10 rabbits/mesh) and inoculated with 10(8) CFU clinically isolated methicillin-resistant Staphylococcus aureus (MRSA). One mesh type was implanted per animal. Animals were euthanized after 7 days, and implants were assessed for abscess formation, bacterial colonization, and mechanical strength. In the rat study, Phasix™ and Bio-A(®) exhibited similar biocompatibility, although Bio-A(®) demonstrated a significantly greater inflammatory response at 4 weeks compared to Phasix™ (p strength than Bio-A(®) (p strength, and bacterial colonization suggest a more stable and favorable outcome for monofilament, macroporous devices such as Phasix™ relative to multifilament, microporous devices such as Bio-A(®) over time.

  9. THE POTENTIAL NEURAL MECHANISMS OF ACUTE INDIRECT VIBRATION

    Directory of Open Access Journals (Sweden)

    Darryl J. Cochrane

    2011-03-01

    Full Text Available There is strong evidence to suggest that acute indirect vibration acts on muscle to enhance force, power, flexibility, balance and proprioception suggesting neural enhancement. Nevertheless, the neural mechanism(s of vibration and its potentiating effect have received little attention. One proposal suggests that spinal reflexes enhance muscle contraction through a reflex activity known as tonic vibration stretch reflex (TVR, which increases muscle activation. However, TVR is based on direct, brief, and high frequency vibration (>100 Hz which differs to indirect vibration, which is applied to the whole body or body parts at lower vibration frequency (5-45 Hz. Likewise, muscle tuning and neuromuscular aspects are other candidate mechanisms used to explain the vibration phenomenon. But there is much debate in terms of identifying which neural mechanism(s are responsible for acute vibration; due to a number of studies using various vibration testing protocols. These protocols include: different methods of application, vibration variables, training duration, exercise types and a range of population groups. Therefore, the neural mechanism of acute vibration remain equivocal, but spinal reflexes, muscle tuning and neuromuscular aspects are all viable factors that may contribute in different ways to increasing muscular performance. Additional research is encouraged to determine which neural mechanism(s and their contributions are responsible for acute vibration. Testing variables and vibration applications need to be standardised before reaching a consensus on which neural mechanism(s occur during and post-vibration

  10. Optical table with embedded active vibration dampers (smart table)

    Science.gov (United States)

    Ryaboy, Vyacheslav M.; Kasturi, Prakash S.; Nastase, Adrian S.; Rigney, Thomas K.

    2005-05-01

    This paper describes the actively damped optical table developed and introduced as a standard product, ST series SmartTable(TM), by Newport Corporation. The active damping system is self-adjusting and robust with respect to changes in payload and vibration environment. It outperforms not only the broadband damped optical tables, but also the top-of-the-line tables equipped with tuned passive vibration absorbers. The maximum resonance vibration amplitudes are reduced about ten times. Additionally, the user has the benefit of being able to monitor and analyze vibration of the table by the conditioned low-noise signals from the embedded vibration sensors. Theoretical background, analysis, design rationale and experimental verification of the system are presented, with emphasis on sensor-actuator pairs architecture, signal processing and adaptive controls.

  11. Leaf absorbance and photosynthesis

    Science.gov (United States)

    Schurer, Kees

    1994-01-01

    The absorption spectrum of a leaf is often thought to contain some clues to the photosynthetic action spectrum of chlorophyll. Of course, absorption of photons is needed for photosynthesis, but the reverse, photosynthesis when there is absorption, is not necessarily true. As a check on the existence of absorption limits we measured spectra for a few different leaves. Two techniques for measuring absorption have been used, viz. the separate determination of the diffuse reflectance and the diffuse transmittance with the leaf at a port of an integrating sphere and the direct determination of the non-absorbed fraction with the leaf in the sphere. In a cross-check both methods yielded the same results for the absorption spectrum. The spectrum of a Fuchsia leaf, covering the short-wave region from 350 to 2500 nm, shows a high absorption in UV, blue and red, the well known dip in the green and a steep fall-off at 700 nm. Absorption drops to virtually zero in the near infrared, with subsequent absorptions, corresponding to the water absorption bands. In more detailed spectra, taken at 5 nm intervals with a 5 nm bandwidth, differences in chlorophyll content show in the different depths of the dip around 550 nm and in a small shift of the absorption edge at 700 nm. Spectra for Geranium (Pelargonium zonale) and Hibiscus (with a higher chlorophyll content) show that the upper limit for photosynthesis can not be much above 700 nm. No evidence, however, is to be seen of a lower limit for photosynthesis and, in fact, some experiments down to 300 nm still did not show a decrease of the absorption although it is well recognized that no photosynthesis results with 300 nm wavelengths.

  12. Investigation and analysis the vibration of handles of chainsaw without cutting

    OpenAIRE

    M Feyzi; A Jafari; H Ahmadi

    2016-01-01

    Introduction: Nowadays most of the agricultural and industrial tasks are performed using different machines and almost any people are exposed to the vibration of these machines. Just as sound can be either music to the ear or irritating noise, human vibrations can either be pleasant or unpleasant. Whole-body vibration and hand-arm vibration are two main types of unpleasant vibration. The hand-arm transmitted vibration can cause complex vascular, neurological and musculoskeletal disorder, coll...

  13. THE THEORETICAL FOUNDATIONS OF VIBRATION DAMPERS BY ROLLING FRICTION

    Directory of Open Access Journals (Sweden)

    L. M. Bondarenko

    2015-06-01

    Full Text Available Purpose. There are some unresolved issues in vibration damping – the lack of engineering calculations for the vibration dampers by rolling friction; the absence of evidence of their application appropriateness. Considering this fact, the authors suggest to prove that the dampers based on rolling friction, are similar in rate of oscillation damping by hydraulic shock absorbers. At the same time, they are easier for the hydraulic design, and easily amenable to manual adjustment, both in automatic and manual mode. Methodology. Fixed techniques of practice in order to determine amplitudes of the oscillations of a shock absorber led to a predetermined result and will apply this theory in the calculation of other vibration dampers. Findings. Analysis of the formulas and graphs leads to the following conclusions and recommendations: 1 the nature of the oscillation damping at vibration dampers by rolling friction is close to their decay in the viscous resistance; 2 when conducting the necessary experiments the shock absorber rolling can be recommended as alternatives to hydraulic ones. The research results of this task will help implement the new trend in reduction of dynamic loads in vehicles. Originality. With the help of theoretical curves to determine the coefficients of rolling friction the dependences for determining the amplitudes of the oscillations in the vertical movement of cargo were obtained. At the same time, the previously proposed analytical dependence for determining the coefficient of rolling friction contains only conventional mechanical constants of the contacting bodies and there geometrical dimensions. Practical value. Due to the existing well-known disadvantages of hydraulic shock absorbers it would be logical to apply shock absorbers that are technologically convenient in manufacturing and easy to adjust the damping rate. The proposed theory can be used in the design of shock absorbers rolling as an alternative to the hydraulic

  14. Immediate effects after stochastic resonance whole-body vibration on physical performance on frail elderly for skilling-up training: a blind cross-over randomised pilot study.

    Science.gov (United States)

    Rogan, Slavko; Schmidtbleicher, Dietmar; Radlinger, Lorenz

    2014-10-01

    This pilot study examined the feasibility outcome recruitment, safety and compliance of the investigation for stochastic resonance whole-body vibration (SR-WBV) training. Another aim was to evaluate the effect size of one SR-WBV intervention session on Short Physical Performance Battery (SPPB), Expanded Timed Get Up-and-Go (ETGUG), isometric maximal voluntary contraction (IMVC) and rate of force development (IRFD) and chair rising (CR). Randomised double-blinded controlled cross-over pilot study. Feasibility outcomes included recruitment, safety and compliance. For secondary outcomes, SPPB, ETGUG, IMVC, IRFD and CR were measured before and 2-min after intervention. Nonparametric Rank-Order Tests of Puri and Sen L Statistics to Ranked Data were proposed. Wilcoxon signed-ranked tests were used to analyse the differences after SR-WBV intervention and sham intervention. Treatment effects between the interventions were compared by a Mann-Whitney U test. Among 24 eligible frail elderly, 12 agreed to participate and 3 drop out. The adherence was 15 of 24 intervention sessions. For secondary outcome, effect sizes (ES) for SR-WBV intervention on SPPB, ETGUG and CR were determined. This pilot study indicate that the training protocol used in this form for frail elderly individuals is feasible but with modification due to the fact that not all defined feasibility outcomes target was met. SR-WBV with 6 Hz, noise level 4 shows benefit improvements on SPPB (ES 0.52), ETGUG (part sit-to-stand movement: ES 0.81; total time: ES 0.85) and CR (ES 0.66). Further research is desired to determine whether a new adapted training protocol is necessary for SR-WBV in the "skilling up" phase in frail elderly individuals.

  15. Properties of InGaAs quantum dot saturable absorbers in monolithic mode-locked lasers

    DEFF Research Database (Denmark)

    Thompson, M.G.; Marinelli, C.; Chu, Y.

    Saturable absorbers properties are characterised in monolithic mode-locked InGaAs quantum dot lasers. We analyse the impact of weak quantum confined Stark effect, fast absorber recovery time and low absorber saturation power on the mode-locking performance.......Saturable absorbers properties are characterised in monolithic mode-locked InGaAs quantum dot lasers. We analyse the impact of weak quantum confined Stark effect, fast absorber recovery time and low absorber saturation power on the mode-locking performance....

  16. Tunable Passive Vibration Suppressor

    Science.gov (United States)

    Boechler, Nicholas (Inventor); Dillon, Robert Peter (Inventor); Daraio, Chiara (Inventor); Davis, Gregory L. (Inventor); Shapiro, Andrew A. (Inventor); Borgonia, John Paul C. (Inventor); Kahn, Daniel Louis (Inventor)

    2016-01-01

    An apparatus and method for vibration suppression using a granular particle chain. The granular particle chain is statically compressed and the end particles of the chain are attached to a payload and vibration source. The properties of the granular particles along with the amount of static compression are chosen to provide desired filtering of vibrations.

  17. Vibrations and Eigenvalues

    Indian Academy of Sciences (India)

    We make music by causing strings, membranes, or air columns to vibrate. Engineers design safe structures by control- ling vibrations. I will describe to you a very simple vibrating system and the mathematics needed to analyse it. The ideas were born in the work of Joseph-Louis Lagrange (1736–1813), and I begin by quot-.

  18. Analysis of the effect of ultrasonic vibrations on the performance of micro-electrical discharge machining of A2 tool steel

    DEFF Research Database (Denmark)

    Puthumana, Govindan

    2016-01-01

    a systematic analysis of the influence of kinetic effects of the ultrasonic vibrations on the material removal rate (MRR) and tool electrode wear rate (TWR). The tool wear ratio was estimated for the process at all processing conditions. The maximum variation in tool wear ratio is observed to be 82%. Therefore......The application of ultrasonic vibrations to a workpiece or tool is a novel hybrid approach in micro-electrical discharge machining. The advantages of this method include effective flushing out of debris, higher machining efficiency and lesser short-circuits during machining. This paper presents...

  19. Ultra-light weight undamped tuned dynamic absorber for cryogenically cooled infrared electro-optic payload

    Science.gov (United States)

    Veprik, Alexander; Babitsky, Vladimir

    2017-04-01

    Attenuation of tonal cryocooler induced vibration in infrared electro-optical payloads may be achieved by using of Tuned Dynamic Absorber (TDA) which is, generally speaking, a passive, weakly damped mass-spring system the resonant frequency of which is precisely matched with the driving frequency. Added TDA results in a favorable modification of the frequency response functions of combined structure. In particular, a favorable antiresonant notch appears at the frequency of tonal excitation along with the adjacent secondary resonance, the width and depth of which along with its closeness to the secondary resonance are strongly dependent on the mass and damping ratios. Using heavier TDA favorably results in wider and deeper antiresonant notch along with increased gap between antiresonant and resonant frequencies. Lowering damping in TDA favorably results in deepening the antiresonant notch. The weight of TDA is usually subjected to tight design constrains. Use of lightweight TDA not only diminishes the attainable performance but also complicates the procedure of frequency matching. Along these lines, even minor frequency deviations may negate the TDA performance and even result in TDA failure in case of resonant build up. The authors are presenting theoretical and practical aspects of designing and constructing ultra-light weight TDA in application to vibration attenuation of electro-optical infrared payload relying on Split Stirling linear cryocooler, the driving frequency of which is fixed and may be accurately tuned and maintained using a digital controller over the entire range of working conditions and lifetime; the lack of mass ratio is compensated by minimizing the damping ratio. In one particular case, in excess of 100-fold vibration attenuation has been achieved by adding as little as 5% to the payload weight.

  20. Sound insulation and vibration tests for lightweight steel framing floors

    OpenAIRE

    Shi, Wanqing; Edfast, Fredrik; Ågren, Anders

    2000-01-01

    An experimental study of sound insulation and vibrations of lightweight steel framing floors due to different floor construction set up were performed. Floors with 3m, 5m and 7.2m span were tested. The impact and airborne sound insulation for 3m span floor were measured based on ISO 140 in lab condition. Vibration tests were carried out on all three different spans. The vibration transmission loss of the structure was determined from the surface vibration measurements. The fundamental natural...

  1. The Flexible Bass Absorber

    DEFF Research Database (Denmark)

    Adelman-Larsen, Niels Werner; Thompson, Eric Robert; Gade, Anders Christian

    2007-01-01

    Multi-purpose concert halls face a dilemma. They host different performance types that require significantly different acoustic conditions in order to provide the best sound quality to both the performers, sound engineers and the audience. Pop and rock music often contains high levels of bass sound...

  2. The Flexible Bass Absorber

    DEFF Research Database (Denmark)

    Adelman-Larsen, Niels Werner; Thompson, Eric Robert; Gade, Anders Christian

    2007-01-01

    Multi-purpose concert halls face a dilemma. They host different performance types that require significantly different acoustic conditions in order to provide the best sound quality to both the performers, sound engineers and the audience. Pop and rock music often contain high levels of bass sound...

  3. Diagnostic Performance of MR Elastography and Vibration-controlled Transient Elastography in the Detection of Hepatic Fibrosis in Patients with Severe to Morbid Obesity.

    Science.gov (United States)

    Chen, Jun; Yin, Meng; Talwalkar, Jayant A; Oudry, Jennifer; Glaser, Kevin J; Smyrk, Thomas C; Miette, Véronique; Sandrin, Laurent; Ehman, Richard L

    2017-05-01

    Purpose To evaluate the diagnostic performance and examination success rate of magnetic resonance (MR) elastography and vibration-controlled transient elastography (VCTE) in the detection of hepatic fibrosis in patients with severe to morbid obesity. Materials and Methods This prospective and HIPAA-compliant study was approved by the institutional review board. A total of 111 patients (71 women, 40 men) participated. Written informed consent was obtained from all patients. Patients underwent MR elastography with two readers and VCTE with three observers to acquire liver stiffness measurements for liver fibrosis assessment. The results were compared with those from liver biopsy. Each pathology specimen was evaluated by two hepatopathologists according to the METAVIR scoring system or Brunt classification when appropriate. All imaging observers were blinded to the biopsy results, and all hepatopathologists were blinded to the imaging results. Examination success rate, interobserver agreement, and diagnostic accuracy for fibrosis detection were assessed. Results In this obese patient population (mean body mass index = 40.3 kg/m2; 95% confidence interval [CI]: 38.7 kg/m2, 41.8 kg/m2]), the examination success rate was 95.8% (92 of 96 patients) for MR elastography and 81.3% (78 of 96 patients) or 88.5% (85 of 96 patients) for VCTE. Interobserver agreement was higher with MR elastography than with biopsy (intraclass correlation coefficient, 0.95 vs 0.89). In patients with successful MR elastography and VCTE examinations (excluding unreliable VCTE examinations), both MR elastography and VCTE had excellent diagnostic accuracy in the detection of clinically significant hepatic fibrosis (stage F2-F4) (mean area under the curve: 0.93 [95% CI: 0.85, 0.97] vs 0.91 [95% CI: 0.83, 0.96]; P = .551). Conclusion In this obese patient population, both MR elastography and VCTE had excellent diagnostic performance for assessing hepatic fibrosis; MR elastography was more technically

  4. Vibration of hydraulic machinery

    CERN Document Server

    Wu, Yulin; Liu, Shuhong; Dou, Hua-Shu; Qian, Zhongdong

    2013-01-01

    Vibration of Hydraulic Machinery deals with the vibration problem which has significant influence on the safety and reliable operation of hydraulic machinery. It provides new achievements and the latest developments in these areas, even in the basic areas of this subject. The present book covers the fundamentals of mechanical vibration and rotordynamics as well as their main numerical models and analysis methods for the vibration prediction. The mechanical and hydraulic excitations to the vibration are analyzed, and the pressure fluctuations induced by the unsteady turbulent flow is predicted in order to obtain the unsteady loads. This book also discusses the loads, constraint conditions and the elastic and damping characters of the mechanical system, the structure dynamic analysis, the rotor dynamic analysis and the system instability of hydraulic machines, including the illustration of monitoring system for the instability and the vibration in hydraulic units. All the problems are necessary for vibration pr...

  5. Reusable collapsible impact energy absorber

    Energy Technology Data Exchange (ETDEWEB)

    Alghamdi, A.A.A. [Dept. of Mechanical Engineering, King Abdulaziz Univ., Jeddah (Saudi Arabia)

    2003-07-01

    In this paper experimental study of plastic deformation of aluminum frusta when reinverted is presented. Effects of changing the angle of frustum as well as frustum wall thickness on the absorbed energy are investigated. The details of the experimental plastic inversion and reinversion are given. Obtained results show that it is possible to use the inverted aluminum frusta several times, thus they are reusable collapsible absorbers. (orig.)

  6. Review of magnetostrictive vibration energy harvesters

    Science.gov (United States)

    Deng, Zhangxian; Dapino, Marcelo J.

    2017-10-01

    The field of energy harvesting has grown concurrently with the rapid development of portable and wireless electronics in which reliable and long-lasting power sources are required. Electrochemical batteries have a limited lifespan and require periodic recharging. In contrast, vibration energy harvesters can supply uninterrupted power by scavenging useful electrical energy from ambient structural vibrations. This article reviews the current state of vibration energy harvesters based on magnetostrictive materials, especially Terfenol-D and Galfenol. Existing magnetostrictive harvester designs are compared in terms of various performance metrics. Advanced techniques that can reduce device size and improve performance are presented. Models for magnetostrictive devices are summarized to guide future harvester designs.

  7. Disposable Diaper Absorbency: Improvements via Advanced Designs.

    Science.gov (United States)

    Helmes, C Tucker; O'Connor, Robert; Sawyer, Larry; Young, Sharon

    2014-08-01

    Absorbency effectiveness in diapers has improved significantly in recent years with the advent of new ingredient combinations and advanced design features. With these features, many leading products maintain their dryness performance overnight. Considering the importance of holding liquid away from the skin, ongoing research in diaper construction focuses on strategies to increase the effectiveness to capture liquid and help avoid rewetting of infant skin. The layout and design of a disposable diaper allows for distribution of absorbency features where they can provide the optimal benefit. Clinical evidence indicates materials can keep moisture away from the skin in the diapered area, helping maintain proper skin hydration, minimizing irritation, and contributing to reduced rates of diaper rash. © The Author(s) 2014.

  8. Additive manufacturing of RF absorbers

    Science.gov (United States)

    Mills, Matthew S.

    The ability of additive manufacturing techniques to fabricate integrated electromagnetic absorbers tuned for specific radio frequency bands within structural composites allows for unique combinations of mechanical and electromagnetic properties. These composites and films can be used for RF shielding of sensitive electromagnetic components through in-plane and out-of-plane RF absorption. Structural composites are a common building block of many commercial platforms. These platforms may be placed in situations in which there is a need for embedded RF absorbing properties along with structural properties. Instead of adding radar absorbing treatments to the external surface of existing structures, which adds increased size, weight and cost; it could prove to be advantageous to integrate the microwave absorbing properties directly into the composite during the fabrication process. In this thesis, a method based on additive manufacturing techniques of composites structures with prescribed electromagnetic loss, within the frequency range 1 to 26GHz, is presented. This method utilizes screen printing and nScrypt micro dispensing to pattern a carbon based ink onto low loss substrates. The materials chosen for this study will be presented, and the fabrication technique that these materials went through to create RF absorbing structures will be described. The calibration methods used, the modeling of the RF structures, and the applications in which this technology can be utilized will also be presented.

  9. Bevel Gearbox Fault Diagnosis using Vibration Measurements

    Directory of Open Access Journals (Sweden)

    Hartono Dennis

    2016-01-01

    Full Text Available The use of vibration measurementanalysis has been proven to be effective for gearbox fault diagnosis. However, the complexity of vibration signals observed from a gearbox makes it difficult to accurately detectfaults in the gearbox. This work is based on a comparative studyof several time-frequency signal processing methods that can be used to extract information from transient vibration signals containing useful diagnostic information. Experiments were performed on a bevel gearbox test rig using vibration measurements obtained from accelerometers. Initially, thediscrete wavelet transform was implementedfor vibration signal analysis to extract the frequency content of signal from the relevant frequency region. Several time-frequency signal processing methods werethen incorporated to extract the fault features of vibration signals and their diagnostic performances were compared. It was shown thatthe Short Time Fourier Transform (STFT could not offer a good time resolution to detect the periodicity of the faulty gear tooth due the difficulty in choosing an appropriate window length to capture the impulse signal. The Continuous Wavelet Transform (CWT, on the other hand, was suitable to detection of vibration transients generated by localized fault from a gearbox due to its multi-scale property. However, both methods still require a thorough visual inspection. In contrast, it was shown from the experiments that the diagnostic method using the Cepstrumanalysis could provide a direct indication of the faulty tooth without the need of a thorough visual inspection as required by CWT and STFT.

  10. Vibration for Pain Reduction in a Plastic Surgery Clinic.

    Science.gov (United States)

    Eichhorn, Mitchell George; Karadsheh, Murad Jehad; Krebiehl, Johanna Ruth; Ford, Dawn Marie; Ford, Ronald D

    2016-01-01

    Patients can experience significant pain during routine procedures in the plastic surgery clinic. Methods for clinical pain reduction are often impractical, time-consuming, or ineffective. Vibration is a safe, inexpensive, and highly applicable modality for pain reduction that can be readily utilized for a wide variety of procedures. This study evaluated the use of vibration as a viable pain-reduction strategy in the clinical plastic surgery setting. Patients requiring at least 2 consecutive procedures that are considered painful were enrolled in the study. These included injections, staple removal, and suture removal. In the same patient, one half of the procedures were performed without vibration and the other half with vibration. After completing the procedures, the patients rated their pain with vibration and without vibration. The patient and the researcher also described the experience with a short questionnaire. Twenty-eight patients were enrolled in the study. Patients reported significantly less pain on the Numeric Rating Scale pain scale when vibration was used compared with the control group (p vibration and 1.93 with vibration, and vibration with injections resulted in the greatest improvement. Eighty-six percent of the patients claimed that vibration significantly reduced their pain. Vibration is an effective method of pain reduction. It significantly reduces the pain experienced by patients during minor office procedures. Given its practicality and ease of use, it is a welcome tool in the plastic surgery clinic.

  11. Innovative Anti Crash Absorber for a Crashworthy Landing Gear

    Science.gov (United States)

    Guida, Michele; Marulo, Francesco; Montesarchio, Bruno; Bruno, Massimiliano

    2014-06-01

    This paper defines an innovative concept to anti-crash absorber in composite material to be integrated on the landing gear as an energy-absorbing device in crash conditions to absorb the impact energy. A composite cylinder tube in carbon fiber material is installed coaxially to the shock absorber cylinder and, in an emergency landing gear condition, collapses in order to enhance the energy absorption performance of the landing system. This mechanism has been developed as an alternative solution to a high-pressure chamber installed on the Agusta A129 CBT helicopter, which can be considered dangerous when the helicopter operates in hard and/or crash landing. The characteristics of the anti-crash device are presented and the structural layout of a crashworthy landing gear adopting the developed additional energy absorbing stage is outlined. Experimental and numerical results relevant to the material characterization and the force peaks evaluation of the system development are reported. The anti-crash prototype was designed, analysed, optimized, made and finally the potential performances of a landing gear with the additional anti-crash absorber system are tested by drop test and then correlated with a similar test without the anti-crash system, showing that appreciable energy absorbing capabilities and efficiencies can be obtained in crash conditions.

  12. Vibration Suppression of an Axially Moving String with Transverse Wind Loadings by a Nonlinear Energy Sink

    Directory of Open Access Journals (Sweden)

    Ye-Wei Zhang

    2013-01-01

    Full Text Available Nonlinear targeted energy transfer (TET is applied to suppress the excessive vibration of an axially moving string with transverse wind loads. The coupling dynamic equations used are modeled by a nonlinear energy sink (NES attached to the string to absorb vibrational energy. By a two-term Galerkin procedure, the equations are discretized, and the effects of vibration suppression by numerical methods are demonstrated. Results show that the NES can effectively suppress the vibration of the axially moving string with transverse wind loadings, thereby protecting the string from excessive movement.

  13. Safety and performance of the DRug-Eluting Absorbable Metal Scaffold (DREAMS) in patients with de novo coronary lesions: 3-year results of the prospective, multicentre, first-in-man BIOSOLVE-I trial.

    Science.gov (United States)

    Haude, Michael; Erbel, Raimund; Erne, Paul; Verheye, Stefan; Degen, Hubertus; Vermeersch, Paul; Weissman, Neil; Prati, Francesco; Bruining, Nico; Waksman, Ron; Koolen, Jacques

    2016-06-12

    Bioresorbable scaffolds were designed to overcome the limitations of permanent stents. In the BIOSOLVE-I study we aimed to assess the long-term safety and performance of a drug-eluting absorbable metal scaffold (DREAMS) at three years. In this prospective, multicentre first-in-man study, 46 patients with 47 de novo lesions were enrolled. We report the final results at three-year follow-up. Mean age was 65.3±9.7 years, lesions were 2.73±0.48 mm in diameter and 10.99±4.59 mm long. Follow-up at three years was available for 44 patients (one patient died of a non-cardiac cause and one patient withdrew consent). Three target lesion failures (TLF) occurred (6.6%), consisting of two clinically driven target lesion revascularisations at scheduled six-month angiography (4.3%) and one myocardial infarction after drug-eluting balloon treatment in a non-target lesion but target vessel at 12-month angiography (2.2%). No cardiac death or scaffold thrombosis occurred. Seven patients had additional angiographic follow-up at 28±4 months: in-scaffold late lumen loss had improved from 0.51±0.46 mm (median 0.28 mm) at 12 months to 0.32±0.32 mm (median 0.20 mm). The BIOSOLVE-I study showed excellent long-term outcomes at three years with a low TLF rate and no cardiac death or scaffold thrombosis. No TLF event was observed beyond 377 days.

  14. Polarization insensitive terahertz metamaterial absorber.

    Science.gov (United States)

    Grant, J; Ma, Y; Saha, S; Lok, L B; Khalid, A; Cumming, D R S

    2011-04-15

    We present the simulation, implementation, and measurement of a polarization insensitive resonant metamaterial absorber in the terahertz region. The device consists of a metal/dielectric-spacer/metal structure allowing us to maximize absorption by varying the dielectric material and thickness and, hence, the effective electrical permittivity and magnetic permeability. Experimental absorption of 77% and 65% at 2.12 THz (in the operating frequency range of terahertz quantum cascade lasers) is observed for a spacer of polyimide or silicon dioxide respectively. These metamaterials are promising candidates as absorbing elements for thermally based terahertz imaging.

  15. Power Absorption by Closely Spaced Point Absorbers in Constrained Conditions

    DEFF Research Database (Denmark)

    De Backer, G.; Vantorre, M.; Beels, C.

    2010-01-01

    The performance of an array of closely spaced point absorbers is numerically assessed in a frequency domain model Each point absorber is restricted to the heave mode and is assumed to have its own linear power take-off (PTO) system Unidirectional irregular incident waves are considered, represent......The performance of an array of closely spaced point absorbers is numerically assessed in a frequency domain model Each point absorber is restricted to the heave mode and is assumed to have its own linear power take-off (PTO) system Unidirectional irregular incident waves are considered......, representing the wave climate at Westhinder on the Belgian Continental Shelf The impact of slamming, stroke and force restrictions on the power absorption is evaluated and optimal PTO parameters are determined For multiple bodies optimal control parameters (CP) are not only dependent on the incoming waves...

  16. Thin wideband absorber with optimal thickness

    OpenAIRE

    Kazemzadeh, Alireza

    2010-01-01

    The known methods for designing nonmagnetic absorbers usually aim for either the reduction of total thickness or increase of absorption bandwidth by sacrificing the other parameter. The conventional circuit analog absorbers aim for large bandwidths whereas the newly proposed meta-material or optimized geometry designs try to reduce the thickness of the absorber. By the aid of the capacitive circuit absorber approach, an optimal method for designing thin absorbers with practical bandwidths is...

  17. Oil and fat absorbing polymers

    Science.gov (United States)

    Marsh, H. E., Jr. (Inventor)

    1977-01-01

    A method is described for forming a solid network polymer having a minimal amount of crosslinking for use in absorbing fats and oils. The polymer remains solid at a swelling ratio in oil or fat of at least ten and provides an oil absorption greater than 900 weight percent.

  18. Absorbing-and-diffusing coating

    OpenAIRE

    Tkalich, N. V.; Mokeev, Yu. G.; Onipko, A. F.; Vashchenko, V. F.; Topchev, M. D.; Glebov, V. V.; Ivanchenko, Dmitrij D.; Kolchigin, Nikolay N.; Yevdokimov, V. V.

    2003-01-01

    The paper presents the results of complex experimental research of the absorbing-and-diffusing material "Contrast". It is shown to be an efficient wideband-camouflage material in the radiolocation and the video bands. Ways for improving the material characteristics are outlined.

  19. Determination of the optimal statistical uncertainty to perform electron-beam Monte Carlo absorbed dose estimation in the target volume; Determination de l'incertitude statistique optimale pour realiser un calcul de dose dans le volume cible en utilisant la methode de Monte Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Isambert, A.; Lefkopoulos, D. [Institut Gustave-Roussy, Medical Physics Dept., 94 - Villejuif (France); Brualla, L. [NCTeam, Strahlenklinik, Universitatsklinikum Essen (Germany); Benkebil, M. [DOSIsoft, 94 - Cachan (France)

    2010-04-15

    Purpose of study Monte Carlo based treatment planning system are known to be more accurate than analytical methods for performing absorbed dose estimation, particularly in and near heterogeneities. However, the required computation time can still be an issue. The present study focused on the determination of the optimum statistical uncertainty in order to minimise computation time while keeping the reliability of the absorbed dose estimation in treatments planned with electron-beams. Materials and methods Three radiotherapy plans (medulloblastoma, breast and gynaecological) were used to investigate the influence of the statistical uncertainty of the absorbed dose on the target volume dose-volume histograms (spinal cord, intra-mammary nodes and pelvic lymph nodes, respectively). Results The study of the dose-volume histograms showed that for statistical uncertainty levels (1 S.D.) above 2 to 3%, the standard deviation of the mean dose in the target volume calculated from the dose-volume histograms increases by at least 6%, reflecting the gradual flattening of the dose-volume histograms. Conclusions This work suggests that, in clinical context, Monte Carlo based absorbed dose estimations should be performed with a maximum statistical uncertainty of 2 to 3%. (authors)

  20. Damage monitoring and impact detection using optical fiber vibration sensors

    Science.gov (United States)

    Yang, Y. C.; Han, K. S.

    2002-06-01

    Intensity-based optical fiber vibrations sensors (OFVSs) are used in damage monitoring of fiber-reinforced plastics, in vibration sensing, and location of impacts. OFVSs were constructed by placing two cleaved fiber ends in a capillary tube. This sensor is able to monitor structural vibrations. For vibration sensing, the optical fiber sensor was mounted on the carbon fiber reinforced composite beam, and its response was investigated for free and forced vibration. For locating impact points, four OFVSs were placed at chosen positions and the different arrival times of impact-generated vibration signals were recorded. The impact location can be determined from these time delays. Indentation and tensile tests were performed with the measurement of the optical signal and acoustic emission (AE). The OFVSs accurately detected both free and forced vibration signals. Accurate locations of impact were determined on an acrylate plate. It was found that damage information, comparable in quality to AE data, could be obtained from the OFVS signals.

  1. Vibration Transmission in a Multi-Storey Lightweight Building

    DEFF Research Database (Denmark)

    Niu, Bin; Andersen, Lars Vabbersgaard; Kiel, Nikolaj

    2012-01-01

    This paper develops a parametric modelling and analysis approach to investigate the vibration transmission in lightweight buildings. The main focus of the research is to investigate the influence of geometry and configuration of the building on the vibration transmission. A building with a single...... the modelling of different connections between panels in the building [2]. Using this parametric building model, free vibration analysis is first performed to obtain the distribution of Eigen frequencies of the building. Then the forced vibration of the building subjected to a mechanical excitation is analysed...... to investigate the transmission of vibration. The influence of different excitation frequencies on the vibration transmission is studied and discussed. The vibration response in two different receiving rooms, one near the source and one far from the source, is illustrated and discussed for the various geometric...

  2. Thin-film absorber for a solar collector

    Energy Technology Data Exchange (ETDEWEB)

    Wilhelm, W.G.

    1982-02-09

    This invention pertains to energy absorbers for solar collectors, and more particularly to high performance thin film absorbers. The solar collectors comprising the absorber of this invention overcome several problems seen in current systems, such as excessive hardware, high cost and unreliability. In the preferred form, the apparatus features a substantially rigid planar frame with a thin film window bonded to one planar side of the frame. An absorber in accordance with the present invention is comprised of two thin film layers that are sealed perimetrically. In a preferred embodiment, thin film layers are formed from a metal/plastic laminate. The layers define a fluid-tight planar envelope of large surface area to volume through which a heat transfer fluid flows. The absorber is bonded to the other planar side of the frame. The thin film construction of the absorber assures substantially full envelope wetting and thus good efficiency. The window and absorber films stress the frame adding to the overall strength of the collector.

  3. Model Indepedent Vibration Control

    OpenAIRE

    Yuan, Jing

    2010-01-01

    A NMIFC system is proposed for broadband vibration control. It has two important features. Feature F1 is that the NMIFC is stable without introducing any invasive effects, such as probing signals or controller perturbations, into the vibration system; feature F2 is

  4. Vibration Theory, Vol. 3

    DEFF Research Database (Denmark)

    Nielsen, Søren R. K.

    The present textbook has been written based on previous lecture notes for a course on stochastic vibration theory that is being given on the 9th semester at Aalborg University for M. Sc. students in structural engineering. The present 4th edition of this textbook on linear stochastic vibration...

  5. Vibration Theory, Vol. 3

    DEFF Research Database (Denmark)

    Nielsen, Søren R. K.

    The present textbook has been written based on previous lecture notes for a course on stochastic vibration theory that is being given on the 9th semester at Aalborg University for M. Sc. students in structural engineering. The present 2nd edition of this textbook on linear stochastic vibration...

  6. Hydroelastic Vibrations of Ships

    DEFF Research Database (Denmark)

    Jensen, Jørgen Juncher; Folsø, Rasmus

    2002-01-01

    A formula for the necessary hull girder bending stiffness required to avoid serious springing vibrations is derived. The expression takes into account the zero crossing period of the waves, the ship speed and main dimensions. For whipping vibrations the probability of exceedance for the combined...

  7. Gearbox vibration diagnostic analyzer

    Science.gov (United States)

    1992-01-01

    This report describes the Gearbox Vibration Diagnostic Analyzer installed in the NASA Lewis Research Center's 500 HP Helicopter Transmission Test Stand to monitor gearbox testing. The vibration of the gearbox is analyzed using diagnostic algorithms to calculate a parameter indicating damaged components.

  8. Mechanical vibration and shock analysis, sinusoidal vibration

    CERN Document Server

    Lalanne, Christian

    2014-01-01

    Everything engineers need to know about mechanical vibration and shock...in one authoritative reference work! This fully updated and revised 3rd edition addresses the entire field of mechanical vibration and shock as one of the most important types of load and stress applied to structures, machines and components in the real world. Examples include everything from the regular and predictable loads applied to turbines, motors or helicopters by the spinning of their constituent parts to the ability of buildings to withstand damage from wind loads or explosions, and the need for cars to m

  9. Vibrations of rotating machinery

    CERN Document Server

    Matsushita, Osami; Kanki, Hiroshi; Kobayashi, Masao; Keogh, Patrick

    2017-01-01

    This book opens with an explanation of the vibrations of a single degree-of-freedom (dof) system for all beginners. Subsequently, vibration analysis of multi-dof systems is explained by modal analysis. Mode synthesis modeling is then introduced for system reduction, which aids understanding in a simplified manner of how complicated rotors behave. Rotor balancing techniques are offered for rigid and flexible rotors through several examples. Consideration of gyroscopic influences on the rotordynamics is then provided and vibration evaluation of a rotor-bearing system is emphasized in terms of forward and backward whirl rotor motions through eigenvalue (natural frequency and damping ratio) analysis. In addition to these rotordynamics concerning rotating shaft vibration measured in a stationary reference frame, blade vibrations are analyzed with Coriolis forces expressed in a rotating reference frame. Other phenomena that may be assessed in stationary and rotating reference frames include stability characteristic...

  10. Absorbable versus non-absorbable sutures for skin closure after carpal tunnel decompression surgery.

    Science.gov (United States)

    Wade, Ryckie G; Wormald, Justin Cr; Figus, Andrea

    2018-02-01

    Carpal tunnel syndrome is a common problem and surgical decompression of the carpal tunnel is the most effective treatment. After surgical decompression, the palmar skin may be closed using either absorbable or non-absorbable sutures. To date, there is conflicting evidence regarding the ideal suture material and this formed the rationale for our review. To assess the effects of absorbable versus non-absorbable sutures for skin closure after elective carpal tunnel decompression surgery in adults on postoperative pain, hand function, scar satisfaction, wound inflammation and adverse events. We searched the following databases on 30 October 2017: the Cochrane Neuromuscular Specialised Register, CENTRAL, MEDLINE, and Embase. We searched two clinical trials registries on 30 October 2017. We considered all randomised or quasi-randomised controlled trials comparing absorbable and non-absorbable sutures for skin closure after any form of carpal tunnel decompression surgery in adults. The unit of analysis was the hand rather than the patient. We performed meta-analysis of direct comparisons to generate standardised mean differences (SMDs) with 95% confidence intervals (CIs) in pain scores and risk ratios (RRs) with 95% CIs for dichotomous outcomes, such as wound inflammation. The primary outcome was postoperative pain. Secondary outcomes included hand function, scar satisfaction, scar inflammation and adverse events (complications). We assessed the quality of evidence for key outcomes using GRADE. We included five randomised trials (255 participants). The trials were all European (UK, Republic of Ireland, Denmark and the Netherlands). Where quoted, the mean age of participants was between 48 and 53 years. The trials measured outcomes between one and 12 weeks postoperatively.Meta-analysis of postoperative pain scores for absorbable versus non-absorbable sutures at 10 days following open carpal tunnel decompression (OCTD) produced a SMD of 0.03 (95% CI -0.43 to 0.48; 3

  11. Simulation study of MEMS piezoelectric vibration energy harvester based on c-axis tilted AlN thin film for performance improvement

    Directory of Open Access Journals (Sweden)

    Lingfeng Kong

    2016-12-01

    Full Text Available In this paper, a MEMS piezoelectric cantilevered vibration energy harvester based on c-axis tilted AlN thin film is investigated. Based on basic piezoelectric equations and static analysis of cantilever beam, the equations for generated energy (E and open circuit voltage (Vo were derived, and simulations were carried out to study the effects of geometry parameters and c-axis tilted angle. Results show that E and Vo of energy harvesters are greatly dependent on c-axis tilted angle and geometry parameters, while the coupling between c-axis tilted angle and geometry parameters is not strong. For a given structure size, E and Vo can be almost simultaneously improved by controlling c-axis tilted angle; compared with the case of normal c-axis angle, E with optimal c-axis tilted angle can be amplified by more than 3 times, and the Vo is amplified by about 2 times. E or Vo could be further improved by geometry parameters, while there is trade-off between them. These results can be used for the design and application of piezoelectric cantilevered vibration energy harvester.

  12. Simulation study of MEMS piezoelectric vibration energy harvester based on c-axis tilted AlN thin film for performance improvement

    Science.gov (United States)

    Kong, Lingfeng; Zhang, Jinhui; Wang, Huiyuan; Ma, Shenglin; Li, Fang; Wang, Qing-Ming; Qin, Lifeng

    2016-12-01

    In this paper, a MEMS piezoelectric cantilevered vibration energy harvester based on c-axis tilted AlN thin film is investigated. Based on basic piezoelectric equations and static analysis of cantilever beam, the equations for generated energy (E) and open circuit voltage (Vo) were derived, and simulations were carried out to study the effects of geometry parameters and c-axis tilted angle. Results show that E and Vo of energy harvesters are greatly dependent on c-axis tilted angle and geometry parameters, while the coupling between c-axis tilted angle and geometry parameters is not strong. For a given structure size, E and Vo can be almost simultaneously improved by controlling c-axis tilted angle; compared with the case of normal c-axis angle, E with optimal c-axis tilted angle can be amplified by more than 3 times, and the Vo is amplified by about 2 times. E or Vo could be further improved by geometry parameters, while there is trade-off between them. These results can be used for the design and application of piezoelectric cantilevered vibration energy harvester.

  13. Biobjective Optimization of Vibration Performance of Steel-Spring Floating Slab Tracks by Four-Pole Parameter Method Coupled with Ant Colony Optimization

    Directory of Open Access Journals (Sweden)

    Hao Jin

    2015-01-01

    Full Text Available Steel-spring floating slab tracks are one of the most effective methods to reduce vibrations from underground railways, which has drawn more and more attention in scientific communities. In this paper, the steel-spring floating slab track located in Track Vibration Abatement and Control Laboratory was modeled with four-pole parameter method. The influences of the fastener damping ratio, the fastener stiffness, the steel-spring damping ratio, and the steel-spring stiffness were researched for the rail displacement and the foundation acceleration. Results show that the rail displacement and the foundation acceleration will decrease with the increase of the fastener stiffness or the steel-spring damping ratio. However, the rail displacement and the foundation acceleration have the opposite variation tendency for the fastener damping ratio and the steel-spring stiffness. In order to optimize the rail displacement and the foundation acceleration affected by the fastener damping ratio and the steel-spring stiffness at the same time, a multiobjective ant colony optimization (ACO was employed. Eventually, Pareto optimal frontier of the rail displacement and the foundation acceleration was derived. Furthermore, the desirable values of the fastener damping ratio and the steel-spring stiffness can be obtained according to the corresponding Pareto optimal solution set.

  14. A study on the evaluation of vibration effect and the development of vibration reduction method for Wolsung unit 1 main steam piping

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyun; Kim, Yeon Whan [Korea Electric Power Corp. (KEPCO), Taejon (Korea, Republic of). Research Center; Kim, Tae Ryong; Park, Jin Ho [Korea Atomic Energy Research Inst., Daeduk (Korea, Republic of)

    1996-08-01

    The main steam piping of nuclear power plant which runs between steam generator and high pressure turbine has been experienced to have a severe effect on the safe operation of the plant due to the vibration induced by the steam flowing inside the piping. The imposed cyclic loads by the vibration could result in the degradation of the related structures such as connection parts between main instruments, valves, pipe supports and building. The objective of the study is to reduce the vibration level of Wolsung nuclear power plant unit 1 main steam pipeline by analyzing vibration characteristics of the piping, identifying sources of the vibration and developing a vibration reduction method .The location of the maximum vibration is piping between the main steam header and steam chest .The stress level was found to be within the allowable limit .The main vibration frequency was found to be 4{approx}6 Hz which is the same as the natural frequency from model test .A vibration reduction method using pipe supports of energy absorbing type(WEAR)is selected .The measured vibration level after WEAR installation was reduced about 36{approx}77% in displacement unit (author). 36 refs., 188 figs.

  15. Vibrations and alternated stresses in turbomachineries; Vibrations et contraintes alternees dans les turbomachines

    Energy Technology Data Exchange (ETDEWEB)

    Naudin, M. [Conservatoire National des Arts et Metiers (CNAM), 75 - Paris (France)]|[FRAMATOME, 92 - Paris-La-Defense (France); Pugnet, J.M. [Conservatoire National des Arts et Metiers (CNAM), Grenoble-1 Univ., 38 (France)]|[FRAMATOME, 92 - Paris-La-Defense (France)

    1999-07-01

    Vibration phenomena are sources of mechanical incidents in turbomachineries. A calculation of the Eigenmodes of machine parts and a knowledge of their possible excitation during the machine operation can greatly improve the reliability and availability of the equipments. The development of computer tools and in particular the use of finite-element codes has allowed a more and more precise calculation of Eigenmodes and Eigenfrequencies. However, the analysis of excitation sources remains sometimes insufficient to explain and anticipate some complex vibrational phenomena encountered in rotative machines. The aim of this paper is to present, using two different examples, the methodology to be used in order to perform a complete vibrational analysis of mechanical components. The following aspects are reviewed successively: 1 - the damped vibrational system: study of the free motion, study of the response to an harmonic forced excitation; 2 - vibrational analysis of turbine blades: steam turbine blades, Eigenmodes of mobile blades, excitation sources, Campbell diagram, calculation of static and dynamical stresses, Haigh diagram, acceptance criteria and safety coefficient, influence of corrosion; 3 - dynamical analysis of the bending of a lineshaft: different flexion Eigenmodes, stiffness and damping of bearings, calculation of flexion Eigenmodes, excitation sources, vibrational stability of the lineshaft and vibration level; 3 - generalization: vibration of blades, shaft dynamics, alternative machines. (J.S.) 10 refs.

  16. DHCAL with Minimal Absorber: Measurements with Positrons

    CERN Document Server

    Freund, B; Repond, J.; Schlereth, J.; Xia, L.; Dotti, A.; Grefe, C.; Ivantchenko, V.; Antequera, J.Berenguer; Calvo Alamillo, E.; Fouz, M.C.; Marin, J.; Puerta-Pelayo, J.; Verdugo, A.; Brianne, E.; Ebrahimi, A.; Gadow, K.; Göttlicher, P.; Günter, C.; Hartbrich, O.; Hermberg, B.; Irles, A.; Krivan, F.; Krüger, K.; Kvasnicka, J.; Lu, S.; Lutz, B.; Morgunov, V.; Provenza, A.; Reinecke, M.; Sefkow, F.; Schuwalow, S.; Tran, H.L.; Garutti, E.; Laurien, S.; Matysek, M.; Ramilli, M.; Schroeder, S.; Bilki, B.; Norbeck, E.; Northacker, D.; Onel, Y.; Cvach, J.; Gallus, P.; Havranek, M.; Janata, M.; Kovalcuk, M.; Kvasnicka, J.; Lednicky, D.; Marcisovsky, M.; Polak, I.; Popule, J.; Tomasek, L.; Tomasek, M.; Sicho, P.; Smolik, J.; Vrba, V.; Zalesak, J.; van Doren, B.; Wilson, G.W.; Kawagoe, K.; Hirai, H.; Sudo, Y.; Suehara, T.; Sumida, H.; Takada, S.; Tomita, T.; Yoshioka, T.; Bilokin, S.; Bonis, J.; Cornebise, P.; Pöschl, R.; Richard, F.; Thiebault, A.; Zerwas, D.; Hostachy, J.Y.; Morin, L.; Besson, D.; Chadeeva, M.; Danilov, M.; Markin, O.; Popova, E.; Gabriel, M.; Goecke, P.; Kiesling, C.; Kolk, N.van der; Simon, F.; Szalay, M.; Corriveau, F.; Blazey, G.C.; Dyshkant, A.; Francis, K.; Zutshi, V.; Kotera, K.; Ono, H.; Takeshita, T.; Ieki, S.; Kamiya, Y.; Ootani, W.; Shibata, N.; Jeans, D.; Komamiya, S.; Nakanishi, H.

    2016-01-01

    In special tests, the active layers of the CALICE Digital Hadron Calorimeter prototype, the DHCAL, were exposed to low energy particle beams, without being interleaved by absorber plates. The thickness of each layer corresponded approximately to 0.29 radiation lengths or 0.034 nuclear interaction lengths, defined mostly by the copper and steel skins of the detector cassettes. This paper reports on measurements performed with this device in the Fermilab test beam with positrons in the energy range of 1 to 10 GeV. The measurements are compared to simulations based on GEANT4 and a standalone program to emulate the detailed response of the active elements.

  17. Microstructured extremely thin absorber solar cells

    DEFF Research Database (Denmark)

    Biancardo, Matteo; Krebs, Frederik C

    2007-01-01

    In this paper we present the realization of extremely thin absorber (ETA) solar cells employing conductive glass substrates functionalized with TiO2 microstructures produced by embossing. Nanocrystalline or compact TiO2 films on Indium doped tin oxide (ITO) glass substrates were embossed...... by pressing a silicon stamp containing a mu m size raised grid structure into the TiO2 by use of a hydraulic press (1 ton/50 cm(2)). The performance of these microstructured substrates in a ETA cell sensitized by a thermally evaporated or chemical bath deposited PbS film and completed by a PEDOT:PSS hole...

  18. Metamaterial-based perfect absorber: polarization insensitivity and broadband

    Science.gov (United States)

    Hien Nguyen, Thi; Bui, Son Tung; Nguyen, Trong Tuan; Nguyen, Thanh Tung; Lee, YoungPak; Nguyen, Manh An; Vu, Dinh Lam

    2014-06-01

    We report the design and simulation of a microwave metamaterials-based perfect absorber using a simple and highly symmetric structure. The basic structure consists of three functional layers: the middle is a dielectric, the back is a metallic plane and the front is a ring of metal. The influence of structural parameters on the absorbance and absorption frequency were investigated. The results show an exceptional absorption performance of near unity around 16 GHz. In addition, the absorption is insensitive to the polarization of the incident beam due to the highly symmetric structure. Finally, four and nine rings with different sizes are arranged appropriately in a unit cell in order to construct a broadband absorber. A polarization-insensitive absorbance of above 90% is achieved over a bandwidth of 15%.

  19. Evaluation of electromagnetic absorbing capacity of materials in foundry industry

    Directory of Open Access Journals (Sweden)

    D. Nowak

    2010-01-01

    Full Text Available In the paper, a research on determining the standing wave ratio as a measure of electromagnetic absorbing capacity of moulding materials is presented. Preliminary tests performed using a microwave strip line showed that high-silica, chromite and magnesite moulding sands are characterised by low absorbing capacity of microwaves. It was demonstrated that microwave absorbing capacity is significantly affected by chemical compounds included in the examined substrates. It was found that use of a microwave strip line permits precise determining characteristic microwave absorbing capacities of various moulding materials and thus their suitability for microwave drying/hardening of moulds and cores or for other foundry processes. Such a microwave drier can be applied for identifying mass components and for determining e.g. base granularity by means of precisely determined reflection ratios |Γ| and positions of minimum signal values.

  20. Long-range vibration sensor based on correlation analysis of optical frequency-domain reflectometry signals.

    Science.gov (United States)

    Ding, Zhenyang; Yao, X Steve; Liu, Tiegen; Du, Yang; Liu, Kun; Han, Qun; Meng, Zhuo; Chen, Hongxin

    2012-12-17

    We present a novel method to achieve a space-resolved long- range vibration detection system based on the correlation analysis of the optical frequency-domain reflectometry (OFDR) signals. By performing two separate measurements of the vibrated and non-vibrated states on a test fiber, the vibration frequency and position of a vibration event can be obtained by analyzing the cross-correlation between beat signals of the vibrated and non-vibrated states in a spatial domain, where the beat signals are generated from interferences between local Rayleigh backscattering signals of the test fiber and local light oscillator. Using the proposed technique, we constructed a standard single-mode fiber based vibration sensor that can have a dynamic range of 12 km and a measurable vibration frequency up to 2 kHz with a spatial resolution of 5 m. Moreover, preliminarily investigation results of two vibration events located at different positions along the test fiber are also reported.

  1. Slow light in saturable absorbers

    OpenAIRE

    Macke, Bruno; Ségard, Bernard

    2008-01-01

    International audience; In connection with the experiments recently achieved on doped crystals, biological samples, doped optical fibers and semiconductor heterostructures, we revisit the theory of the propagation of a pulse-modulated light in a saturable absorber. Explicit analytical expressions of the transmitted pulse are obtained, enabling us to determine the parameters optimizing the time-delay of the transmitted pulse with respect to the incident pulse. We finally compare the maximum fr...

  2. Acoustic Properties of Absorbent Asphalts

    Science.gov (United States)

    Trematerra, Amelia; Lombardi, Ilaria

    2017-08-01

    Road traffic is one of the greater cause of noise pollution in urban centers; a prolonged exposure to this source of noise disturbs populations subjected to it. In this paper is reported a study on the absorbent coefficients of asphalt. The acoustic measurements are carried out with a impedance tube (tube of Kundt). The sample are measured in three conditions: with dry material (traditional), “wet” asphalt and “dirty” asphalt.

  3. Vertical vibration control system for PC cable-stayed bridge during cantilever construction; Shuketa jogedo seishin sochi ni yoru haridashi sekoji no PC shachokyo no seishin

    Energy Technology Data Exchange (ETDEWEB)

    Oshio, M.; Nakano, R.; Niihara, Y.; Yano, K.; Takeda, T. [Kajima Corp., Tokyo (Japan)

    1995-12-20

    A PC cable-stayed bridge under extension construction having long span length may have long-cycle vibration generated because of wind. The vibration puts workers working on main girders into a state of seasick causing the workability to drop. Therefore, with an objective to reduce vibration occurring on the main girders during construction, discussions were given on application of an active type vertical vibration absorbing device. The vibration absorbing device is an active system that a weight is driven vertically by a hydraulic actuator. The device was developed with a target that damping ratio when a maximum extension is 120 m becomes three times that when no vibration is absorbed for a 5-span continuous PC cable-stayed bridge with a length of 675 m, a central span of 260 m, and a width of 11 m. A cage housing the weight is connected with the actuator at its top by using pins, and the weight is supported being suspended from the top of the actuator. Vibration is absorbed by utilizing reactive force generated when the weight is driven vertically by the hydraulic actuator. The hydraulic actuator contains a gas spring that supports the dead weight of the weight. Experiments have verified the effectiveness of the vertical vibration absorbing device. 4 refs., 12 figs., 3 tabs.

  4. Structural Stability and Vibration

    DEFF Research Database (Denmark)

    Wiggers, Sine Leergaard; Pedersen, Pauli

    This book offers an integrated introduction to the topic of stability and vibration. Strikingly, it describes stability as a function of boundary conditions and eigenfrequency as a function of both boundary conditions and column force. Based on a post graduate course held by the author at the Uni......This book offers an integrated introduction to the topic of stability and vibration. Strikingly, it describes stability as a function of boundary conditions and eigenfrequency as a function of both boundary conditions and column force. Based on a post graduate course held by the author...... and their derivation, thus stimulating them to write interactive and dynamic programs to analyze instability and vibrational modes....

  5. THz-SAR Vibrating Target Imaging via the Bayesian Method

    Directory of Open Access Journals (Sweden)

    Bin Deng

    2017-01-01

    Full Text Available Target vibration bears important information for target recognition, and terahertz, due to significant micro-Doppler effects, has strong advantages for remotely sensing vibrations. In this paper, the imaging characteristics of vibrating targets with THz-SAR are at first analyzed. An improved algorithm based on an excellent Bayesian approach, that is, the expansion-compression variance-component (ExCoV method, has been proposed for reconstructing scattering coefficients of vibrating targets, which provides more robust and efficient initialization and overcomes the deficiencies of sidelobes as well as artifacts arising from the traditional correlation method. A real vibration measurement experiment of idle cars was performed to validate the range model. Simulated SAR data of vibrating targets and a tank model in a real background in 220 GHz show good performance at low SNR. Rapidly evolving high-power terahertz devices will offer viable THz-SAR application at a distance of several kilometers.

  6. Vibrational circular dichroism spectroscopy of a spin-triplet bis-(biuretato) cobaltate(III) coordination compound with low-lying electronic transitions

    DEFF Research Database (Denmark)

    Johannessen, Christian; Thulstrup, Peter W.

    2007-01-01

    Vibrational absorption (VA) and vibrational circular dichroism (VCD) spectroscopy was applied in the analysis of vibrational and low lying electronic transitions of a triplet ground state cobalt(III) coordination compound. The spectroscopic measurements were performed on the tetrabutylammonium salt...

  7. Vibration Analysis and the Accelerometer

    Science.gov (United States)

    Hammer, Paul

    2011-01-01

    Have you ever put your hand on an electric motor or motor-driven electric appliance and felt it vibrate? Ever wonder why it vibrates? What is there about the operation of the motor, or the object to which it is attached, that causes the vibrations? Is there anything "regular" about the vibrations, or are they the result of random causes? In this…

  8. Fabrication of efficient graphene-doped polymer/fullerene bilayer organic solar cells in air using spin coating followed by ultrasonic vibration post treatment

    Science.gov (United States)

    Zabihi, Fatemeh; Chen, Qianli; Xie, Yu; Eslamian, Morteza

    2016-12-01

    In this work, in an attempt to improve the performance and lifetime of organic solar cells, P3HT photon absorbing polymer was doped with graphene (G) nano-sheets, to make light harvesting G-P3HT composite thin film. The composite this film was then employed as the donor of a bilayer organic solar cell with the structure of glass/ITO/PEDOT:PSS/G-P3HT/C60/Al. The reference P3HT:PCBM bulk heterojunction solar cell was also fabricated for comparison. All solution-processed layers were made by spin coating in humid air (Shanghai, China); C60 and Al were deposited by thermal evaporation. An effective mechanical treatment approach developed by the authors, i.e. the application of forced ultrasonic vibration on the wet spun-on films, was used to improve the dispersion of graphene in G-P3HT composite films to obtain a uniform nanostructure. This mechanical method eliminates tedious and expensive chemical steps, currently performed to engineer the structure of organic solar cells. It is evidenced that the G-P3HT composite thin films, post treated by ultrasonic vibration at the optimum vibration duration, possess superior electrical conductivity, charge carrier mobility and density, uniform surface potential distribution, and lower surface roughness, compared to those of P3HT and G-P3HT thin films made without vibration. The results show significant improvement in the power conversion efficiency (PCE) of vibration-treated G-P3HT/C60 cell (PCE = 5.17%, the highest reported for this structure), substantiating the strong positive effect of using graphene and forced vibration for the fabrication of P3HT active layer in the bilayer cell structure.

  9. Simultaneous passive broadband vibration suppression and energy harvesting with multifunctional metastructures

    Science.gov (United States)

    Hobeck, Jared D.; Inman, Daniel J.

    2017-04-01

    The research presented in this paper focuses on a unique multifunctional structural design that not only absorbs vibration at desired frequency bands, but also extracts significant amounts of electrical energy. This is accomplished by first designing an array of low-frequency resonators to be integrated into a larger host structure. This array of resonators can contribute not only to static requirements, e.g., stiffness, strength, mass, etc., of the host structure but the array also functions as a distributed system of passive vibration absorbers. Structures having these distributed vibration absorber systems are known as metastructures. Here, the authors present a unique absorber design referred to as a zigzag beam, which can have a natural frequency an order of magnitude lower than that of a basic cantilever beam of the same scale. It will be shown that the zigzag beams can be designed with an added layer of piezoelectric material, which allows them to harvest significant amounts of electrical power as they suppress vibration of the host structure. This paper includes details of the fully-coupled electromechanical analytical and numerical models for energy harvesting metastructures. Experimental results used to validate the proposed modeling methods will be discussed. Lastly, results of a multi-objective design optimization will be presented and discussed. Results of the optimization study were able to show that allowing only an 82 % increase in the host structure vibration could yield more than a 1500 % increase in total power output. Other results show that the power output (or absorber motion) could be increased 241% without increasing host structure vibrations due to multiple design solutions existing at fixed host structure vibration levels.

  10. Vibrations and Stability

    DEFF Research Database (Denmark)

    Thomsen, Jon Juel

    About this textbook An ideal text for students that ties together classical and modern topics of advanced vibration analysis in an interesting and lucid manner. It provides students with a background in elementary vibrations with the tools necessary for understanding and analyzing more complex...... dynamical phenomena that can be encountered in engineering and scientific practice. It progresses steadily from linear vibration theory over various levels of nonlinearity to bifurcation analysis, global dynamics and chaotic vibrations. It trains the student to analyze simple models, recognize nonlinear...... phenomena and work with advanced tools such as perturbation analysis and bifurcation analysis. Explaining theory in terms of relevant examples from real systems, this book is user-friendly and meets the increasing interest in non-linear dynamics in mechanical/structural engineering and applied mathematics...

  11. Sustainable composite super absorbents made from polysaccharides

    OpenAIRE

    Ye, Zhuoliang; Tang, Mi; Hong, Xiaoting; K. S. Hui

    2016-01-01

    Compared to traditional super absorbent polymers using raw materials from petrochemical industry, natural polymer absorbents are more favorable because they are sustainable and biodegradable. In this study, composite absorbents were developed by crosslinking carrageenan with sodium alginate using calcium chloride. Effect of composition on absorption was tested. Absorption was improved by increasing carrageenan content. The super absorbent exhibited the maximal swelling ratio of 13.1 g/g in 0....

  12. Vibrational spectroscopy in the electron microscope.

    Science.gov (United States)

    Krivanek, Ondrej L; Lovejoy, Tracy C; Dellby, Niklas; Aoki, Toshihiro; Carpenter, R W; Rez, Peter; Soignard, Emmanuel; Zhu, Jiangtao; Batson, Philip E; Lagos, Maureen J; Egerton, Ray F; Crozier, Peter A

    2014-10-09

    Vibrational spectroscopies using infrared radiation, Raman scattering, neutrons, low-energy electrons and inelastic electron tunnelling are powerful techniques that can analyse bonding arrangements, identify chemical compounds and probe many other important properties of materials. The spatial resolution of these spectroscopies is typically one micrometre or more, although it can reach a few tens of nanometres or even a few ångströms when enhanced by the presence of a sharp metallic tip. If vibrational spectroscopy could be combined with the spatial resolution and flexibility of the transmission electron microscope, it would open up the study of vibrational modes in many different types of nanostructures. Unfortunately, the energy resolution of electron energy loss spectroscopy performed in the electron microscope has until now been too poor to allow such a combination. Recent developments that have improved the attainable energy resolution of electron energy loss spectroscopy in a scanning transmission electron microscope to around ten millielectronvolts now allow vibrational spectroscopy to be carried out in the electron microscope. Here we describe the innovations responsible for the progress, and present examples of applications in inorganic and organic materials, including the detection of hydrogen. We also demonstrate that the vibrational signal has both high- and low-spatial-resolution components, that the first component can be used to map vibrational features at nanometre-level resolution, and that the second component can be used for analysis carried out with the beam positioned just outside the sample--that is, for 'aloof' spectroscopy that largely avoids radiation damage.

  13. Selective solar absorber emittance measurement at elevated temperature

    Science.gov (United States)

    Giraud, Philémon; Braillon, Julien; Raccurt, Olivier

    2017-06-01

    Durability of solar components for CSP (Concentrated Solar Power Plant) technologies is a key point to lower cost and ensure their large deployment. These technologies concentrated the solar radiation by means of mirrors on a receiver tube where it is collected as thermal energy. The absorbers are submitted to strong environmental constraints and the degradation of their optical properties (emittance and solar absorbance) have a direct impact on performance. The characterization of a material in such condition is complicated and requires advanced apparatuses, and different measurement methods exist for the determination of the two quantities of relevance regarding an absorber, which are its emittance and its solar absorbance. The objective is to develop new optical equipment for measure the emittance of this solar absorber at elevated temperature. In this paper, we present an optical bench developed for emittance measurement on absorbers is conditions of use. Results will be shown, with a discussion of some factors of influence over this measurement and how to control them.

  14. Wideband-Switchable Metamaterial Absorber Using Injected Liquid Metal.

    Science.gov (United States)

    Kim, Hyung Ki; Lee, Dongju; Lim, Sungjoon

    2016-08-22

    Metamaterial absorbers can provide good solutions for radar-cross-section (RCS) reduction. In spite of their attractive features of thinness, lightness, and low cost, resonant metamaterial absorbers have a drawback of narrow bandwidth. For practical radar applications, wideband absorbers are necessary. In this paper, we propose a wideband-switchable metamaterial absorber using liquid metal. In order to reduce RCS both for X-band and C-band, the switchable Jerusalem cross (JC) resonator is introduced. The JC resonator consists of slotted circular rings, chip resistors, and microfluidic channels. The JC resonator is etched on a flexible printed circuit board (FPCB), and the microfluidic channels are laser-etched on a polydimethylsiloxane (PDMS) material. The proposed absorber can switch the absorption frequency band by injecting a liquid metal alloy into the channels. The performance of the absorber was demonstrated through full-wave simulation and through measurements employing prototypes. The experimental results showed absorption ratios of over 90% from 7.43 GHz to 14.34 GHz, and from 5.62 GHz to 7.3 GHz, with empty channels and liquid metal-filled channels, respectively. Therefore, the absorption band was successfully switched between the C-band (4-8 GHz) and the X-band (8-12 GHz) by injecting liquid metal eutectic gallium indium alloy (EGaIn) into the channels.

  15. Wideband-Switchable Metamaterial Absorber Using Injected Liquid Metal

    Science.gov (United States)

    Kim, Hyung Ki; Lee, Dongju; Lim, Sungjoon

    2016-08-01

    Metamaterial absorbers can provide good solutions for radar-cross-section (RCS) reduction. In spite of their attractive features of thinness, lightness, and low cost, resonant metamaterial absorbers have a drawback of narrow bandwidth. For practical radar applications, wideband absorbers are necessary. In this paper, we propose a wideband-switchable metamaterial absorber using liquid metal. In order to reduce RCS both for X-band and C-band, the switchable Jerusalem cross (JC) resonator is introduced. The JC resonator consists of slotted circular rings, chip resistors, and microfluidic channels. The JC resonator is etched on a flexible printed circuit board (FPCB), and the microfluidic channels are laser-etched on a polydimethylsiloxane (PDMS) material. The proposed absorber can switch the absorption frequency band by injecting a liquid metal alloy into the channels. The performance of the absorber was demonstrated through full-wave simulation and through measurements employing prototypes. The experimental results showed absorption ratios of over 90% from 7.43 GHz to 14.34 GHz, and from 5.62 GHz to 7.3 GHz, with empty channels and liquid metal-filled channels, respectively. Therefore, the absorption band was successfully switched between the C-band (4-8 GHz) and the X-band (8-12 GHz) by injecting liquid metal eutectic gallium indium alloy (EGaIn) into the channels.

  16. Effects of vibration on flexibility: a meta-analysis.

    Science.gov (United States)

    Osawa, Y; Oguma, Y

    2013-12-01

    Exogenous stimulation of skeletal muscle or tendon is often used to improve range of motion. Despite substantial research efforts, however, the effects of vibration on flexibility have not been clarified. In this review, we investigated the effects of acute and chronic intervention programs which used vibration to improve flexibility in young healthy individuals. Effect size was calculated using data from a total of 600 participants in 19 studies before and after the introduction of vibration-based intervention, and a total of 324 participants in 13 studies on the additive effects of vibration compared with the identical conditions without vibration. Sub-group analyses were performed based on intervention period, type of exercise, and type of vibration. Meta-analysis showed that vibration interventions had significant effects on flexibility (standardized mean difference [SMD]=-0.79, 95% confidence interval [CI]=-1.14- -0.43; panalysis revealed a significant additive effect of vibration on flexibility compared with the identical condition without vibration (SMD=0.25, 95%CI=0.03-0.48; P=0.03), with small heterogeneity (I(2)=0%). The risk of publication bias was low judged from Kendall's τ statistic. We concluded that the use of vibration might lead to additive improvements in flexibility.

  17. High-Q plasmonic infrared absorber for sensing of molecular resonances in hybrid lead halide perovskites

    Science.gov (United States)

    Dayal, Govind; Solanki, Ankur; Chin, Xin Yu; Sum, Tze Chien; Soci, Cesare; Singh, Ranjan

    2017-08-01

    Plasmonic resonances in sub-wavelength metal-dielectric-metal cavities have been shown to exhibit strong optical field enhancement. The large field enhancements that occur in sub-wavelength regions of the cavity can drastically boost the performance of microcavity based detectors, electromagnetic wave absorbers, metasurface hologram, and nonlinear response of the material in a cavity. The performance efficiencies of these plasmonic devices can be further improved by designing tunable narrow-band high-Q cavities. Here, we experimentally and numerically demonstrate high-Q resonances in metal-dielectric-metal cavity consisting of an array of conductively coupled annular and rectangular apertures separated from the bottom continuous metal film by a thin dielectric spacer. Both, the in-plane and out of plane coupling between the resonators and the continuous metal film have been shown to support fundamental and higher order plasmonic resonances which result in high-Q response at mid-infrared frequencies. As a sensor application of the high-Q cavity, we sense the vibrational resonances of an ultrathin layer of solution-processed organic-inorganic hybrid lead halide perovskites.

  18. Proposal of the Sound Insulating Measures for Vibrational Sorter and Verification of the Effectiveness Measures

    Directory of Open Access Journals (Sweden)

    Pavol Liptai

    2017-09-01

    Full Text Available The paper describes a specific design of the sound insulating enclosure of the vibrating sorter. Recycling aspects have also been taken into account when designing the enclosure, because recycled foam has been applied as a sound-absorbing material. Acoustic camera was used to measure, analyze, evaluate and for sound sources localization and identification. The visualization method was used to locate the critical locations of the device and then quantify them. To evaluate the effectiveness of the proposed enclosure, the measurements of the sound parameters were performed before and after the realization soundproofing measure. The measured results show the requested efficiency of the sound insulating enclosure in terms of noise reduction as well as dust in the vicinity of the sorter.

  19. Spectroscopy of Vibrational States in Diatomic Iodine Molecules

    Science.gov (United States)

    Mulholland, Mary; Harrill, Charles H.; Smith, R. Seth

    2015-04-01

    This project is focused on understanding the vibrational structure of iodine, which is a homonuclear diatomic molecule. A 20 mW, 532 nm cw diode laser was used to selectively excite neutral iodine molecules to a higher energy electronic state. By performing spectroscopy on the transitions from this state to a lower energy electronic state, the data only showed those vibrational bands which connect the two electronic states. Since a number of vibrational levels are populated in the higher energy electronic state, the transitions to all of the allowed vibrational levels in the lower energy electronic state provided sufficient data to determine the vibrational structures of both states. Emission spectra were collected with an Ocean Optics USB4000 Compact CCD Spectrometer. The spectrometer had a range of 500 - 770 nm with a resolution of approximately 0.5 nm and was sensitive enough to resolve the vibrational states in diatomic iodine molecules. The results were compared to a simple harmonic oscillator model.

  20. Noise and Vibration Modeling for Anti-Lock Brake Systems

    Science.gov (United States)

    Zhan, Wei

    A new methodology is proposed for noise and vibration analysis for Anti-Lock Brake Systems (ABS). First, a correlation between noise and vibration measurement data and simulation results need to be established. This relationship allows the engineers to focus on modeling and simulation instead of noise and vibration testing. A comprehensive ABS model is derived for noise and vibration study. The model can be set up to do different types of simulations for noise and vibration analysis. If some data is available from actual testing, then the test data can be easily imported into the model as an input to replace the corresponding part in the model. It is especially useful when the design needs to be modified, or trade-off between ABS performance and noise and vibration is necessary. The model can greatly reduce the time to market for ABS products. It also makes system level optimization possible.

  1. Damping Estimation Using Free Decays and Ambient Vibration Tests

    DEFF Research Database (Denmark)

    Magalhães, Filipe; Brincker, Rune; Cunha, Álvaro

    2007-01-01

    The accurate identification of modal damping ratios of Civil Engineering structures is a subject of major importance, as the amplitude of structural vibrations in resonance is inversely proportional to these coefficients. Their experimental identification can be performed either from ambient...... vibration or from free vibration tests. In the last case, the structural response after application of an impulse or after the application of harmonic loads can be used. Ambient vibration tests have the strong advantage of being more practical and economical. However, recent applications of both approaches...

  2. Design of metamaterial surfaces with broadband absorbance.

    Science.gov (United States)

    Wu, Chihhui; Shvets, Gennady

    2012-02-01

    A simple design paradigm for making broadband ultrathin plasmonic absorbers is introduced. The absorber's unit cell is composed of subunits of various sizes, resulting in nearly 100% absorbance at multiple adjacent frequencies and high absorbance over a broad frequency range. A simple theoretical model for designing broadband absorbers is presented. It uses a single-resonance model to describe the optical response of each subunit and employs the series circuit model to predict the overall response. Validity of the circuit model relies on short propagation lengths of the surface plasmons.

  3. Multi-channel coherent perfect absorbers

    KAUST Repository

    Bai, Ping

    2016-05-18

    The absorption efficiency of a coherent perfect absorber usually depends on the phase coherence of the incident waves on the surfaces. Here, we present a scheme to create a multi-channel coherent perfect absorber in which the constraint of phase coherence is loosened. The scheme has a multi-layer structure such that incident waves in different channels with different angular momenta can be simultaneously and perfectly absorbed. This absorber is robust in achieving high absorption efficiency even if the incident waves become "incoherent" and possess "random" wave fronts. Our work demonstrates a unique approach to designing highly efficient metamaterial absorbers. © CopyrightEPLA, 2016.

  4. Graphene based salisbury screen for terahertz absorber

    Science.gov (United States)

    Min Woo, Jeong; Kim, Min-Sik; Woong Kim, Hyun; Jang, Jae-Hyung

    2014-02-01

    A graphene-based, multiband absorber operating in terahertz (THz) frequency range was demonstrated. Graphene film was transferred onto the top of a flexible polymer substrate backed with a gold reflector. The graphene acts as a resistive film that partially attenuates and reflects THz waves. The destructive interference between THz waves reflected from graphene and backside reflector gives rise to perfect absorbance at multiple frequencies. To enhance the absorbance on/off ratio (AR), the conductivity of graphene was varied using a chemical doping method. The resulting p-doped, graphene-based THz absorber exhibited absorbance at maxima and AR higher than 0.95 and 25 dB, respectively.

  5. Toroidal-dipole induced plasmonic perfect absorber

    Science.gov (United States)

    Li, Jie; Wang, Ying-hua; Jin, Ren-chao; Li, Jia-qi; Dong, Zheng-gao

    2017-12-01

    We present a new kind of perfect absorber which roots in a toroidal dipole resonance. The toroidal metastructure consists of a metallic circular groove with a depth asymmetry, which couples to the toroidal dipole field in the near-infrared region and thus realizes nearly unit absorbance, acting as a perfect absorber. Moreover, this absorber owns a high sensitivity of 609.6 nm/RIU to the dielectric surroundings. Furthermore, by tuning the geometric parameters, both the toroidal dipole resonance and perfect absorbance characteristics are insensitive to the circular groove width, providing profound fabrication tolerance in future experiments.

  6. Metamaterial perfect absorber based hot electron photodetection.

    Science.gov (United States)

    Li, Wei; Valentine, Jason

    2014-06-11

    While the nonradiative decay of surface plasmons was once thought to be only a parasitic process that limits the performance of plasmonic devices, it has recently been shown that it can be harnessed in the form of hot electrons for use in photocatalysis, photovoltaics, and photodetectors. Unfortunately, the quantum efficiency of hot electron devices remains low due to poor electron injection and in some cases low optical absorption. Here, we demonstrate how metamaterial perfect absorbers can be used to achieve near-unity optical absorption using ultrathin plasmonic nanostructures with thicknesses of 15 nm, smaller than the hot electron diffusion length. By integrating the metamaterial with a silicon substrate, we experimentally demonstrate a broadband and omnidirectional hot electron photodetector with a photoresponsivity that is among the highest yet reported. We also show how the spectral bandwidth and polarization-sensitivity can be manipulated through engineering the geometry of the metamaterial unit cell. These perfect absorber photodetectors could open a pathway for enhancing hot electron based photovoltaic, sensing, and photocatalysis systems.

  7. Design of electromagnetic shock absorbers for automotive suspensions

    Science.gov (United States)

    Amati, Nicola; Festini, Andrea; Tonoli, Andrea

    2011-12-01

    Electromechanical dampers seem to be a valid alternative to conventional shock absorbers for automotive suspensions. They are based on linear or rotative electric motors. If they are of the DC-brushless type, the shock absorber can be devised by shunting its electric terminals with a resistive load. The damping force can be modified by acting on the added resistance. To supply the required damping force without exceeding in size and weight, a mechanical or hydraulic system that amplifies the speed is required. This paper illustrates the modelling and design of such electromechanical shock absorbers. This paper is devoted to describe an integrated design procedure of the electrical and mechanical parameters with the objective of optimising the device performance. The application to a C class front suspension car has shown promising results in terms of size, weight and performance.

  8. Transverse vibration of nematic elastomer Timoshenko beams.

    Science.gov (United States)

    Zhao, Dong; Liu, Ying; Liu, Chuang

    2017-01-01

    Being a rubber-like liquid crystalline elastomer, a nematic elastomer (NE) is anisotropic viscoelastic, and displays dynamic soft elasticity. In this paper, the transverse vibration of a NE Timoshenko beam is studied based on the linear viscoelasticity theory of nematic elastomers. The governing equation of motion for the transverse vibration of a NE Timoshenko beam is derived. A complex modal analysis method is used to obtain the natural frequencies and decrement coefficients of NE beams. The influences of the nematic director rotation, the rubber relaxation time, and the director rotation time on the vibration characteristic of NE Timoshenko beams are discussed in detail. The sensitivity of the dynamic performance of NE beams to director initial angle and relaxation times provides a possibility of intelligent controlling of their dynamic performance.

  9. Sensor fusion for active vibration isolation in precision equipment

    NARCIS (Netherlands)

    Tjepkema, D.; van Dijk, Johannes; Soemers, Herman

    2012-01-01

    Sensor fusion is a promising control strategy to improve the performance of active vibration isolation systems that are used in precision equipment. Normally, those vibration isolation systems are only capable of realizing a low transmissibility. Additional objectives are to increase the damping

  10. Active hard mount vibration isolation for precision equipment

    NARCIS (Netherlands)

    Tjepkema, D.

    2012-01-01

    Floor vibrations and acoustic excitation may limit the performance of precision equipment, that is used for example to produce computer chips or to make images of very tiny structures. Therefore, it is common to mount a vibration isolator in the suspension of such equipment to isolate it from these

  11. Vibration suppression during input tracking of a flexible manipulator ...

    Indian Academy of Sciences (India)

    The aim of this paper is to investigate the performance of the hybrid controller for end-point vibration suppression of a flexible manipulator, while it is tracking a desired input profile. Due to large structural vibrations, precise control of flexible manipulators is a challenging task. A hybrid controller is used to track large ...

  12. A hybrid nonlinear vibration energy harvester

    Science.gov (United States)

    Yang, Wei; Towfighian, Shahrzad

    2017-06-01

    Vibration energy harvesting converts mechanical energy from ambient sources to electricity to power remote sensors. Compared to linear resonators that have poor performance away from their natural frequency, nonlinear vibration energy harvesters perform better because they use vibration energy over a broader spectrum. We present a hybrid nonlinear energy harvester that combines bi-stability with internal resonance to increase the frequency bandwidth. A two-fold increase in the frequency bandwidth can be obtained compared to a bi-stable system with fixed magnets. The harvester consists of a piezoelectric cantilever beam carrying a movable magnet facing a fixed magnet. A spring allows the magnet to move along the beam and it provides an extra stored energy to further increase the amplitude of vibration acting as a mechanical amplifier. An electromechanically coupled mathematical model of the system is presented to obtain the dynamic response of the cantilever beam, the movable magnet and the output voltage. The perturbation method of multiple scales is applied to solve these equations and obtain approximate analytical solutions. The effects of various system parameters on the frequency responses are investigated. The numerical approaches of the long time integration (Runge-Kutta method) and the shooting technique are used to verify the analytical results. The results of this study can be used to improve efficiency in converting wasted mechanical vibration to useful electrical energy by broadening the frequency bandwidth.

  13. Analyzing the Effect of Capillary Force on Vibrational Performance of the Cantilever of an Atomic Force Microscope in Tapping Mode with Double Piezoelectric Layers in an Air Environment.

    Science.gov (United States)

    Nahavandi, Amir; Korayem, Moharam Habibnejad

    2015-10-01

    The aim of this paper is to determine the effects of forces exerted on the cantilever probe tip of an atomic force microscope (AFM). These forces vary according to the separation distance between the probe tip and the surface of the sample being examined. Hence, at a distance away from the surface (farther than d(on)), these forces have an attractive nature and are of Van der Waals type, and when the probe tip is situated in the range of a₀≤ d(ts) ≤ d(on), the capillary force is added to the Van der Waals force. At a distance of d(ts) ≤ a₀, the Van der Waals and capillary forces remain constant at intermolecular distances, and the contact repulsive force repels the probe tip from the surface of sample. The capillary force emerges due to the contact of thin water films with a thickness of h(c) which have accumulated on the sample and probe. Under environmental conditions a layer of water or hydrocarbon often forms between the probe tip and sample. The capillary meniscus can grow until the rate of evaporation equals the rate of condensation. For each of the above forces, different models are presented. The smoothness or roughness of the surfaces and the geometry of the cantilever tip have a significant effect on the modeling of forces applied on the probe tip. Van der Waals and the repulsive forces are considered to be the same in all the simulations, and only the capillary force is altered in order to evaluate the role of this force in the AFM-based modeling. Therefore, in view of the remarkable advantages of the piezoelectric microcantilever and also the extensive applications of the tapping mode, we investigate vibrational motion of the piezoelectric microcantilever in the tapping mode. The cantilever mentioned is entirely covered by two piezoelectric layers that carry out both the actuation of the probe tip and the measuringof its position.

  14. Energy-Absorbing Beam Member

    Science.gov (United States)

    Littell, Justin D. (Inventor)

    2017-01-01

    An energy-absorbing (EA) beam member and having a cell core structure is positioned in an aircraft fuselage proximate to the floor of the aircraft. The cell core structure has a length oriented along a width of the fuselage, a width oriented along a length of the fuselage, and a depth extending away from the floor. The cell core structure also includes cell walls that collectively define a repeating conusoidal pattern of alternating respective larger and smaller first and second radii along the length of the cell core structure. The cell walls slope away from a direction of flight of the aircraft at a calibrated lean angle. An EA beam member may include the cell core structure and first and second plates along the length of the cell core structure on opposite edges of the cell material.

  15. Liquid crystal tunable metamaterial absorber.

    Science.gov (United States)

    Shrekenhamer, David; Chen, Wen-Chen; Padilla, Willie J

    2013-04-26

    We present an experimental demonstration of electronically tunable metamaterial absorbers in the terahertz regime. By incorporation of active liquid crystal into strategic locations within the metamaterial unit cell, we are able to modify the absorption by 30% at 2.62 THz, as well as tune the resonant absorption over 4% in bandwidth. Numerical full-wave simulations match well to experiments and clarify the underlying mechanism, i.e., a simultaneous tuning of both the electric and magnetic response that allows for the preservation of the resonant absorption. These results show that fundamental light interactions of surfaces can be dynamically controlled by all-electronic means and provide a path forward for realization of novel applications.

  16. Vibrational spectroscopy of resveratrol

    Science.gov (United States)

    Billes, Ferenc; Mohammed-Ziegler, Ildikó; Mikosch, Hans; Tyihák, Ernő

    2007-11-01

    In this article the authors deal with the experimental and theoretical interpretation of the vibrational spectra of trans-resveratrol (3,5,4'-trihydroxy- trans-stilbene) of diverse beneficial biological activity. Infrared and Raman spectra of the compound were recorded; density functional calculations were carried out resulting in the optimized geometry and several properties of the molecule. Based on the calculated force constants, a normal coordinate analysis yielded the character of the vibrational modes and the assignment of the measured spectral bands.

  17. Bumblebee vibration activated foraging

    OpenAIRE

    Su, Dan Kuan-Nien

    2009-01-01

    The ability use vibrational signals to activate nestmate foraging is found in the highly social bees, stingless bees and honey bees, and has been hypothesized to exist in the closely related, primitively eusocial bumble bees. We provide the first strong and direct evidence that this is correct. Inside the nest, bumble bee foragers produce brief bursts of vibration (foraging activation pulses) at 594.5 Hz for 63±26 ms (velocityRMS=0.46±0.02mm/s, forceRMS=0.8±0.2 mN. Production of these vibrati...

  18. Vibrations and waves

    CERN Document Server

    Kaliski, S

    2013-01-01

    This book gives a comprehensive overview of wave phenomena in different media with interacting mechanical, electromagnetic and other fields. Equations describing wave propagation in linear and non-linear elastic media are followed by equations of rheological models, models with internal rotational degrees of freedom and non-local interactions. Equations for coupled fields: thermal, elastic, electromagnetic, piezoelectric, and magneto-spin with adequate boundary conditions are also included. Together with its companion volume Vibrations and Waves. Part A: Vibrations this work provides a wealth

  19. Simulation on photoacoustic conversion efficiency of optical fiber-based ultrasound generator using different absorbing film materials

    Science.gov (United States)

    Sun, Kai; Wu, Nan; Tian, Ye; Wang, Xingwei

    2011-04-01

    The low energy-conversion efficiency in photoacoustic generation is the most critical hurdle preventing its wide applications. In recent studies, it was found that the selection of the energy-absorbing layer material and design of the acoustic generator structure both determine the photoacoustic conversion efficiency. The selection of the absorbing material is based on its optical, thermal, and mechanical properties. In this research, we calculated and compared the conversion efficiencies of six different absorbing film materials: bulk aluminum, bulk gold, graphite foil, graphite powder-resin mixture, gold nanospheres, and gold nanorods. The calculations were carried out by a finite element modeling (FEM) software, COMSOL Multiphysics. A 2D-axisymmetric model in COMSOL was built up to simulate a 3-layer structure: optical fiber tip, light absorbing film, and surrounding water. Three equations governed the thermo-elastic generation of ultrasonic waves: the heat conduction, thermal expansion and acoustic wave equations. In "thick-film" generation regime, majority of the laser energy is absorbed by the film and converted to high-frequency film vibration, and the vibration excites the ultrasound wave in the adjacent water, while the water would not be heated directly by the laser. From the results of this FEM simulation, the acoustic signal generated by gold nanosphere (or nanorod) film is over two times stronger than that generated by graphite powder-resin film of the same thickness. This simulation provides a strong support to the absorbing material selection for our proposed fiber ultrasound generator.

  20. Corundum-based transparent infrared absorbers

    KAUST Repository

    Schwingenschlögl, Udo

    2009-10-01

    Hypothetical corundum-based compounds are studied by electronic structure calculations. One quarter of the Al atoms in Al2O3 is replaced by a 3d transition metal from the M = Ti, ..., Zn (d1, ..., d9) series. Structure optimisations are performed for all the M-Al2O3 compounds and the electronic states are evaluated. Due to the M substitutes, narrow partially filled bands are formed at the Fermi energy. Beyond, for M = Ni and M = Cu the optical properties of Al2O3 in the visible range are conserved, while for M = Ti, ..., Co the systems form high accuracy optical filters. Since the compounds absorb the infrared radiation, the M = Ni and M = Cu systems are good candidates for heat-protective coatings. © 2009 Elsevier B.V. All rights reserved.

  1. Experimental dermatoplasty of skin defects with an absorbable bioplastic preparation.

    Science.gov (United States)

    Bornemisza, G; Ladányi, J; Mikó, I

    1979-01-01

    Experimental dermatoplasty was performed with fibrin sponge preparation in the rabbit, during the course of which the whole skin thickness was substituted. The fibrin sponge was fixed to the skin-edges with surgical adhesive. The gradually absorbed fibrin was replaced by the migrating epithelium such that epithelization developed gradually. In special cases this method can be recommended for clinical purposes.

  2. Absorbable Implant to Treat Nasal Valve Collapse.

    Science.gov (United States)

    San Nicoló, Marion; Stelter, Klaus; Sadick, Haneen; Bas, Murat; Berghaus, Alexander

    2017-04-01

    Objective To evaluate the safety and effectiveness of an absorbable implant for lateral cartilage support in subjects with nasal valve collapse (NVC) with 12 months follow-up. Methods Thirty subjects with Nasal Obstruction Symptom Evaluation (NOSE) score ≥ 55 and isolated NVC were treated; 14 cases were performed in an operating suite under general anesthesia and 16 cases were performed in a clinic-based setting under local anesthesia. The implant, a polylactic acid copolymer, was placed with a delivery tool within the nasal wall to provide lateral cartilage support. Subjects were followed up through 12 months postprocedure. Results Fifty-six implants were placed in 30 subjects. The mean preoperative NOSE score was 76.7 ± 14.8, with a range of 55 to 100. At 12 months, the mean score was 35.2 ± 29.2, reflecting an average within-patient reduction of -40.9 ± 31.2 points. The majority (76%) of the subjects were responders defined as having at least one NOSE class improvement or a NOSE score reduction of at least 20%. There were no adverse changes in cosmetic appearance at 12 months postprocedure. Three implants in three subjects required retrieval within 30 days postprocedure and resulted in no clinical sequelae. Conclusion This study demonstrates safety and effectiveness of an absorbable implant for lateral cartilage support in subjects with NVC at 12 months postprocedure. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  3. Heterogeneous Dynamics of Coupled Vibrations

    NARCIS (Netherlands)

    Cringus, Dan; Jansen, Thomas I. C.; Pshenichnikov, Maxim S.; Schoenlein, RW; Corkum, P; DeSilvestri, S; Nelson, KA; Riedle, E

    2009-01-01

    Frequency-dependent dynamics of coupled stretch vibrations of a water molecule are revealed by 2D IR correlation spectroscopy. These are caused by non-Gaussian fluctuations of the environment around the individual OH stretch vibrations.

  4. Whole body vibration in sport: a critical review.

    Science.gov (United States)

    Costantino, C; Gimigliano, R; Olvirri, S; Gimigliano, F

    2014-12-01

    Whole body vibration training is a recent area of study in athletic conditioning, health and rehabilitation. This paper provides a review of the effectiveness of this type of training in sport. A search was conducted across several electronic databases and studies on effects of whole body vibration training on sport performance were reviewed. Thirteen articles were included in the final analysis. The following variables were considered: participants investigated (sex and age), characteristics of the vibration (frequency and amplitude), training (type of sport, exposure time and intensity, tests used, type of study, effects examined and results obtained). This review considers proposed neural mechanisms and identifies studies that have demonstrated the effectiveness of WBV in sports. It considers where WBV might act and suggests that vibration can be an effective training stimulus. Future studies should focus on evaluating the long-term effects of vibration training and identify optimum frequency and amplitude, improve strength and muscular performance.

  5. Absorbance enhancement in microplate wells for improved-sensitivity biosensors.

    Science.gov (United States)

    Suárez, Guillaume; Santschi, Christian; Plateel, Gregory; Martin, Olivier J F; Riediker, Michael

    2014-06-15

    A generic optical biosensing strategy was developed that relies on the absorbance enhancement phenomenon occurring in a multiple scattering matrix. Experimentally, inserts made of glass fiber membrane were placed into microplate wells in order to significantly lengthen the trajectory of the incident light through the sample and therefore increase the corresponding absorbance. Enhancement factor was calculated by comparing the absorbance values measured for a given amount of dye with and without the absorbance-enhancing inserts in the wells. Moreover, the dilution of dye in solutions with different refractive indices (RI) clearly revealed that the enhancement factor increased with the ΔRI between the membrane and the surrounding medium, reaching a maximum value (EF>25) when the membranes were dried. On this basis, two H2O2-biosensing systems were developed based on the biofunctionalization of the glass fiber inserts either with cytochrome c or horseradish peroxidase (HRP) and the analytical performances were systematically compared with the corresponding bioassay in solution. The efficiency of the absorbance-enhancement approach was particularly clear in the case of the cytochrome c-based biosensor with a sensitivity gain of 40 folds and wider dynamic range. Therefore, the developed strategy represents a promising way to convert standard colorimetric bioassays into optical biosensors with improved sensitivity. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Measurement of Dynamic Viscoelasticity of Full-Size Wood Composite Panels Using a Vibration Testing Method

    Science.gov (United States)

    Cheng Guan; Houjiang Zhang; John F. Hunt; Lujing Zhou; Dan Feng

    2016-01-01

    The dynamic viscoelasticity of full-size wood composite panels (WCPs) under the free-free vibrational state were determined by a vibration testing method. Vibration detection tests were performed on 194 pieces of three types of full-size WCPs (particleboard, medium density fiberboard, and plywood (PW)). The dynamic viscoelasticity from smaller specimens cut from the...

  7. Optical Measurement of Cable and String Vibration

    Directory of Open Access Journals (Sweden)

    Y. Achkire

    1998-01-01

    Full Text Available This paper describes a non contacting measurement technique for the transverse vibration of small cables and strings using an analog position sensing detector. On the one hand, the sensor is used to monitor the cable vibrations of a small scale mock-up of a cable structure in order to validate the nonlinear cable dynamics model. On the other hand, the optical sensor is used to evaluate the performance of an active tendon control algorithm with guaranteed stability properties. It is demonstrated experimentally, that a force feedback control law based on a collocated force sensor measuring the tension in the cable is feasible and provides active damping in the cable.

  8. Control of base-excited dynamical systems through piezoelectric energy harvesting absorber

    Science.gov (United States)

    Abdelmoula, H.; Dai, H. L.; Abdelkefi, A.; Wang, L.

    2017-09-01

    The spring-mass absorber usually offers a good control to dynamical systems under direct base excitations for a specific value of the excitation frequency. As the vibrational energy of a primary dynamical system is transferred to the absorber, it gets dissipated. In this study, this energy is no longer dissipated but converted to available electrical power by designing efficient energy harvesters. A novel design of a piezoelectric beam installed inside an elastically-mounted dynamical system undergoing base excitations is considered. A design is carried out in order to determine the properties and dimensions of the energy harvester with the constraint of simultaneously decreasing the oscillating amplitudes of the primary dynamical system and increasing the harvested power of the energy harvesting absorber. An analytical model for the coupled system is constructed using Euler-Lagrange principle and Galerkin discretization. Different strategies for controlling the primary structure displacement and enhancing the harvested power as functions of the electrical load resistance and thickness of the beam substrate are performed. The linear polynomial approximation of the system’s key parameters as a function of the beam’s substrate thickness is first carried out. Then, the gradient method is applied to determine the adequate values of the electrical load resistance and thickness of the substrate under the constraints of minimizing the amplitudes of the primary structure or maximizing the levels of the harvested power. After that, an iterative strategy is considered in order to simultaneously minimize the amplitudes of the primary structure and maximize the levels of the harvested power as functions of the thickness of the substrate and electrical load resistance. In addition to harmonic excitations, the coupled system subjected to a white noise is explored. Through this analysis, the load resistance and thickness of the substrate of the piezoelectric energy harvester

  9. Multiband Negative Permittivity Metamaterials and Absorbers

    Directory of Open Access Journals (Sweden)

    Yiran Tian

    2013-01-01

    Full Text Available Design and characteristics of multiband negative permittivity metamaterial and its absorber configuration are presented in this paper. The proposed multiband metamaterial is composed of a novel multibranch resonator which can possess four electric resonance frequencies. It is shown that, by controlling the length of the main branches of such resonator, the resonant frequencies and corresponding absorbing bands of metamaterial absorber can be shifted in a large frequency band.

  10. A Multilayer Rubber Board Radar Absorbing Material

    OpenAIRE

    He, Shan; LI Yehua; Zhou, Chun

    2016-01-01

    Based on the theory of impedance matching, a multilayer absorbing material with the "pitfall" structure was designed. The multilayer absorbing material with 5 layers was obtained by optimization of the schemes, and the material shows 2 absorbing peaks in the broadband of 2~18 GHz frequencies. The peak in high frequencies can be adjusted with no effect on the peak in low frequencies through changing the thickness of the fifth layer. The changes of input impedances were displayed by analyzing t...

  11. Composite Struts Would Damp Vibrations

    Science.gov (United States)

    Dolgin, Benjamin P.

    1991-01-01

    New design of composite-material (fiber/matrix laminate) struts increases damping of longitudinal vibrations without decreasing longitudinal stiffness or increasing weight significantly. Plies with opposing chevron patterns of fibers convert longitudinal vibrational stresses into shear stresses in intermediate viscoelastic layer, which dissipate vibrational energy. Composite strut stronger than aluminum strut of same weight and stiffness.

  12. Ship Vibration Design Guide

    Science.gov (United States)

    1989-07-01

    Frachtschiffen," Werft Reederie Hafen, 1925. 4-21 Noonan, E. F. "Vibration Considerations for 120,000 CM LNG Ships," NKF: Preliminary Report No. 7107, 25...Ship Response to Ice - A Second Season by C. Daley, J. W. St. John, R. Brown, J. Meyer , and I. Glen 1990 SSC-340 Ice Forces and Ship Response to Ice

  13. Compact Vibration Damper

    Science.gov (United States)

    Ivanco, Thomas G. (Inventor)

    2014-01-01

    A vibration damper includes a rigid base with a mass coupled thereto for linear movement thereon. Springs coupled to the mass compress in response to the linear movement along either of two opposing directions. A converter coupled to the mass converts the linear movement to a corresponding rotational movement. A rotary damper coupled to the converter damps the rotational movement.

  14. Vibrations and Eigenvalues

    Indian Academy of Sciences (India)

    The vibrating string problem is the source of much mathematicsand physics. This article describes Lagrange's formulationof a discretised version of the problem and its solution.This is also the first instance of an eigenvalue problem. Author Affiliations. Rajendra Bhatia1. Ashoka University, Rai, Haryana 131 029, India.

  15. Blade Vibration Measurement System

    Science.gov (United States)

    Platt, Michael J.

    2014-01-01

    The Phase I project successfully demonstrated that an advanced noncontacting stress measurement system (NSMS) could improve classification of blade vibration response in terms of mistuning and closely spaced modes. The Phase II work confirmed the microwave sensor design process, modified the sensor so it is compatible as an upgrade to existing NSMS, and improved and finalized the NSMS software. The result will be stand-alone radar/tip timing radar signal conditioning for current conventional NSMS users (as an upgrade) and new users. The hybrid system will use frequency data and relative mode vibration levels from the radar sensor to provide substantially superior capabilities over current blade-vibration measurement technology. This frequency data, coupled with a reduced number of tip timing probes, will result in a system capable of detecting complex blade vibrations that would confound traditional NSMS systems. The hardware and software package was validated on a compressor rig at Mechanical Solutions, Inc. (MSI). Finally, the hybrid radar/tip timing NSMS software package and associated sensor hardware will be installed for use in the NASA Glenn spin pit test facility.

  16. Systematically Controlling for the Influence of Age, Sex, Hertz and Time Post-Whole-Body Vibration Exposure on Four Measures of Physical Performance in Community-Dwelling Older Adults: A Randomized Cross-Over Study

    Directory of Open Access Journals (Sweden)

    Harold L. Merriman

    2011-01-01

    Full Text Available Though popular, there is little agreement on what whole-body vibration (WBV parameters will optimize performance. This study aimed to clarify the effects of age, sex, hertz and time on four physical function indicators in community-dwelling older adults (=32. Participants were exposed to 2 min WBV per session at either 2 Hz or 26 Hz and outcome measures were recorded at 2, 20 and 40 min post-WBV. Timed get up-and-go and chair sit-and-reach performances improved post-WBV for both sexes, were significantly different between 2 Hz and 26 Hz treatments (≤0.05 and showed statistically significant interactions between age and gender (≤0.01. Counter movement jump and timed one-legged stance performances showed a similar but non-significant response to 2 Hz and 26 Hz treatments, though male subjects showed a distinct trended response. Age and gender should be statistically controlled and both 2 Hz and 26 Hz exert a treatment effect.

  17. A variable passive low-frequency absorber

    Science.gov (United States)

    Larsen, Niels Werner; Thompson, Eric R.; Gade, Anders Christian

    2005-04-01

    Multi-purpose concert halls face a dilemma. They can host classical music concerts, rock concerts and spoken word performances in a matter of a short period. These different performance types require significantly different acoustic conditions in order to provide the best sound quality to both the performers and the audience. A recommended reverberation time for classical music may be in the range of 1.5-2 s for empty halls, where rock music sounds best with a reverberation time around 0.8-1 s. Modern rhythmic music often contains high levels of sound energy in the low frequency bands but still requires a high definition for good sound quality. Ideally, the absorption of the hall should be adjustable in all frequency bands in order to provide good sound quality for all types of performances. The mid and high frequency absorption is easily regulated, but adjusting the low-frequency absorption has typically been too expensive or requires too much space to be practical for multi-purpose halls. Measurements were made on a variable low-frequency absorber to develop a practical solution to the dilemma. The paper will present the results of the measurements as well as a possible design.

  18. Vibration fatigue using modal decomposition

    Science.gov (United States)

    Mršnik, Matjaž; Slavič, Janko; Boltežar, Miha

    2018-01-01

    Vibration-fatigue analysis deals with the material fatigue of flexible structures operating close to natural frequencies. Based on the uniaxial stress response, calculated in the frequency domain, the high-cycle fatigue model using the S-N curve material data and the Palmgren-Miner hypothesis of damage accumulation is applied. The multiaxial criterion is used to obtain the equivalent uniaxial stress response followed by the spectral moment approach to the cycle-amplitude probability density estimation. The vibration-fatigue analysis relates the fatigue analysis in the frequency domain to the structural dynamics. However, once the stress response within a node is obtained, the physical model of the structure dictating that response is discarded and does not propagate through the fatigue-analysis procedure. The structural model can be used to evaluate how specific dynamic properties (e.g., damping, modal shapes) affect the damage intensity. A new approach based on modal decomposition is presented in this research that directly links the fatigue-damage intensity with the dynamic properties of the system. It thus offers a valuable insight into how different modes of vibration contribute to the total damage to the material. A numerical study was performed showing good agreement between results obtained using the newly presented approach with those obtained using the classical method, especially with regards to the distribution of damage intensity and critical point location. The presented approach also offers orders of magnitude faster calculation in comparison with the conventional procedure. Furthermore, it can be applied in a straightforward way to strain experimental modal analysis results, taking advantage of experimentally measured strains.

  19. How exciton-vibrational coherences control charge separation in the photosystem II reaction center

    NARCIS (Netherlands)

    Novoderezhkin, V.I.; Romero Mesa, E.; van Grondelle, R.

    2015-01-01

    In photosynthesis absorbed sun light produces collective excitations (excitons) that form a coherent superposition of electronic and vibrational states of the individual pigments. Two-dimensional (2D) electronic spectroscopy allows a visualization of how these coherences are involved in the primary

  20. Recent developments of smart electromagnetic absorbers based polymer-composites at gigahertz frequencies

    Science.gov (United States)

    Idris, Fadzidah Mohd.; Hashim, Mansor; Abbas, Zulkifly; Ismail, Ismayadi; Nazlan, Rodziah; Ibrahim, Idza Riati

    2016-05-01

    The rapid increase in electromagnetic interference has received a serious attention from researchers who responded by producing a variety of radar absorbing materials especially at high gigahertz frequencies. Ongoing investigation is being carried out in order to find the best absorbing materials which can fulfill the requirements for smart absorbing materials which are lightweight, broad bandwidth absorption, stronger absorption etc. Thus, to improve the absorbing capability, several important parameters need to be taken into consideration such as filler type, loading level, type of polymer matrix, physical thickness, grain sizes, layers and bandwidth. Therefore, this article introduces the electromagnetic wave absorption mechanisms and then reveals and reviews those parameters that enhance the absorption performance.

  1. Polarization insensitive metamaterial absorber based on E-shaped all-dielectric structure

    Science.gov (United States)

    Li, Liyang; Wang, Jun; Ma, Hua; Wang, Jiafu; Du, Hongliang; Qu, Shaobo

    2015-04-01

    In this paper, we designed a metamaterial absorber performed in microwave frequency band. This absorber is composed of E-shaped dielectrics which are arranged along different directions. The E-shaped all-dielectric structure is made of microwave ceramics with high permittivity and low loss. Within about 1 GHz frequency band, more than 86% absorption efficiency was observed for this metamaterial absorber. This absorber is polarization insensitive and is stable for incident angles. It is figured out that the polarization insensitive absorption is caused by the nearly located varied resonant modes which are excited by the E-shaped all-dielectric resonators with the same size but in the different direction. The E-shaped dielectric absorber contains intensive resonant points. Our research work paves a way for designing all-dielectric absorber.

  2. A Fluidically Tunable Metasurface Absorber for Flexible Large-Scale Wireless Ethanol Sensor Applications

    Directory of Open Access Journals (Sweden)

    Hyung Ki Kim

    2016-08-01

    Full Text Available In this paper, a novel flexible tunable metasurface absorber is proposed for large-scale remote ethanol sensor applications. The proposed metasurface absorber consists of periodic split-ring-cross resonators (SRCRs and microfluidic channels. The SRCR patterns are inkjet-printed on paper using silver nanoparticle inks. The microfluidic channels are laser-etched on polydimethylsiloxane (PDMS material. The proposed absorber can detect changes in the effective permittivity for different liquids. Therefore, the absorber can be used for a remote chemical sensor by detecting changes in the resonant frequencies. The performance of the proposed absorber is demonstrated with full-wave simulation and measurement results. The experimental results show the resonant frequency increases from 8.9 GHz to 10.04 GHz when the concentration of ethanol is changed from 0% to 100%. In addition, the proposed absorber shows linear frequency shift from 20% to 80% of the different concentrations of ethanol.

  3. Design and analysis of lumped resistor loaded metamaterial absorber with transmission band.

    Science.gov (United States)

    Chen, Xi; Li, Youquan; Fu, Yunqi; Yuan, Naichang

    2012-12-17

    A new type of multi-layer metamaterial (MM) absorber is represented in this paper, which behave as a dielectric slab in transmission band and act as an absorber in another lower band. The equivalent circuit model of each layer in this MM absorber has been established. The transmission line (TL) model is introduced to analysis the mechanism of electromagnetic wave traveling through this MM absorber. Both theoretical and experimental results indicate this MM absorber has a transmission band at 21GHz and an absorptive band from 5GHz to 13GHz. A good match of TL model results and measurement results verified the validity of TL model in analyzing and optimizing the performances of this kind of absorber.

  4. Smart paint sensor for monitoring structural vibrations

    Science.gov (United States)

    Al-Saffar, Y.; Aldraihem, O.; Baz, A.

    2012-04-01

    A class of smart paint sensors is proposed for monitoring the structural vibration of beams. The sensor is manufactured from an epoxy resin which is mixed with carbon black nano-particles to make it electrically conducting and sensitive to mechanical vibrations. A comprehensive theoretical and experimental investigation is presented to understand the underlying phenomena governing the operation of this class of paint sensors and evaluate its performance characteristics. A theoretical model is presented to model the electromechanical behavior of the sensor system using molecular theory. The model is integrated with an amplifier circuit in order to predict the current and voltage developed by the paint sensor when subjected to loading. Furthermore, the sensor/amplifier circuit models are coupled with a finite element model of a base beam to which the sensor is bonded. The resulting multi-field model is utilized to predict the behavior of both the sensor and the beam when subjected to a wide variety of vibration excitations. The predictions of the multi-field finite element model are validated experimentally and the behavior of the sensor is evaluated both in the time and the frequency domains. The performance of the sensor is compared with the performance of conventional strain gages to emphasize its potential and merits. The presented techniques are currently being extended to sensors that can monitor the vibration and structural power flow of two-dimensional structures.

  5. Device for absorbing mechanical shock

    Science.gov (United States)

    Newlon, C.E.

    1979-08-29

    This invention is a comparatively inexpensive but efficient shock-absorbing device having special application to the protection of shipping and storage cylinders. In a typical application, two of the devices are strapped to a cylinder to serve as saddle-type supports for the cylinder during storage and to protect the cylinder in the event it is dropped during lifting or lowering operations. In its preferred form, the invention includes a hardwood plank whose grain runs in the longitudinal direction. The basal portion of the plank is of solid cross-section, whereas the upper face of the plank is cut away to form a concave surface fittable against the sidewall of a storage cylinder. The concave surface is divided into a series of segments by transversely extending, throughgoing relief slots. A layer of elastomeric material is positioned on the concave face, the elastomer being extrudable into slots when pressed against the segments by a preselected pressure characteristic of a high-energy impact. The compressive, tensile, and shear properties of the hardwood and the elastomer are utilized in combination to provide a surprisingly high energy-absorption capability.

  6. Vibration-free stirling cryocooler for high definition microscopy

    Science.gov (United States)

    Riabzev, S. V.; Veprik, A. M.; Vilenchik, H. S.; Pundak, N.; Castiel, E.

    2009-12-01

    The normal operation of high definition Scanning Electronic and Helium Ion microscope tools often relies on maintaining particular components at cryogenic temperatures. This has traditionally been accomplished by using liquid coolants such as liquid Nitrogen. This inherently limits the useful temperature range to above 77 K, produces various operational hazards and typically involves elevated ownership costs, inconvenient logistics and maintenance. Mechanical coolers, over-performing the above traditional method and capable of delivering required (even below 77 K) cooling to the above cooled components, have been well-known elsewhere for many years, but their typical drawbacks, such as high purchasing cost, cooler size, low reliability and high power consumption have so far prevented their wide-spreading. Additional critical drawback is inevitable degradation of imagery performance originated from the wideband vibration export as typical for the operation of the mechanical cooler incorporating numerous movable components. Recent advances in the development of reliable, compact, reasonably priced and dynamically quiet linear cryogenic coolers gave rise to so-called "dry cooling" technologies aimed at eventually replacing the traditional use of outdated liquid Nitrogen cooling facilities. Although much improved these newer cryogenic coolers still produce relatively high vibration export which makes them incompatible with modern high definition microscopy tools. This has motivated further research activity towards developing a vibration free closed-cycle mechanical cryocooler. The authors have successfully adapted the standard low vibration Stirling cryogenic refrigerator (Ricor model K535-LV) delivering 5 W@40 K heat lift for use in vibration-sensitive high definition microscopy. This has been achieved by using passive mechanical counterbalancing of the main portion of the low frequency vibration export in combination with an active feed-forward multi

  7. Animal Communications Through Seismic Vibrations

    Energy Technology Data Exchange (ETDEWEB)

    Hill, Peggy (University of Tulsa)

    2001-05-02

    Substrate vibration has been important to animals as a channel of communication for millions of years, but our literature on vibration in this context of biologically relevant information is only decades old. The jaw mechanism of the earliest land vertebrates allowed them to perceive substrate vibrations as their heads lay on the ground long before airborne sounds could be heard. Although the exact mechanism of vibration production and the precise nature of the wave produced are not always understood, recent development of affordable instrumentation to detect and measure vibrations has allowed researchers to answer increasingly sophisticated questions about how animals send and receive vibration signals. We now know that vibration provides information used in predator defense, prey detection, recruitment to food, mate choice, intrasexual competition, and maternal/brood social interactions in a variety of insect orders, spiders, crabs, scorpions, chameleons, frogs, golden moles, mole rats, kangaroos rats, wallabies, elephants and bison.

  8. Gyroscopic power take-off wave energy point absorber in irregular sea states

    DEFF Research Database (Denmark)

    Zhang, Zili; Chen, Bei; Nielsen, Søren R.K.

    2017-01-01

    Highlights •A GyroPTO wave energy point absorber with magnetic coupling mechanism is proposed. •A 4DOF nonlinear model of the GyroPTO absorber has been derived. •Rational approximations are performed on the radiation damping moments. •Synchronization of the device is more easily maintained in nar...

  9. Free vibration analysis of linear particle chain impact damper

    Science.gov (United States)

    Gharib, Mohamed; Ghani, Saud

    2013-11-01

    produces a smaller contact force for each mass while maintaining the same effect of the single unit impact damper. The analytical and experimental work showed that the multiunit impact damper is more functional than the conventional single unit impact damper in reducing noise and vibration [17]. The bean bag impact damper is considered as another form of multiunit impact damper. It consists of a flexible bag packed with small spherical particles (e.g. lead shots). The resilience of the damper can be varied by adjusting the tightness of the flexible bag. It is found that the bean bag impact damper is better than the conventional impact damper in vibration suppression, contact forces reductions, and noise attenuation [19]. The particle/granular impact damper consists of a cavity(s) filled with ceramic/metal particles or powders with small granule sizes. Better damping performances are achieved when using metal particles with high density (lead or tungsten steel) [23]. Other investigations recommended using multiple particle impact dampers that involve friction, impact and shear mechanisms to achieve optimal damping effect [22]. The resilient impact damper is similar to the conventional impact dampers. The only difference is that the deformation of the impact damper with the stops during the collision is taken into account [24]. The buffered impact damper is an extension of the resilient impact damper by adding a flexible buffer layer to the stops to absorb the energy of the moving mass. The experimental work shows that the buffer zone reduces the impact forces, avoids high acceleration and reduces the contact forces by absorbing more of the impact energy and increasing the contact time [25].

  10. Absorbed radiation dose on LHC interconnects

    CERN Document Server

    Versaci, R; Vlachoudis, V; CERN. Geneva. ATS Department

    2011-01-01

    Here we present the results of our FLUKA simulations devoted to the evaluation of the peak dose absorbed by the busbar insulator in the LHC Interaction Region 7 interconnects. The peak dose absorbed by the cold magnet coils are also presented.

  11. A Flexible Metamaterial Terahertz Perfect Absorber

    Science.gov (United States)

    Chen, X. R.; Zheng, Y. W.; Qin, L. M.; Wei, G. C.; Qin, Z. P.; Zhang, N. G.; Liu, K.; Li, S. Z.; Wang, S. X.

    2017-12-01

    We designed a THz matematerial absorber using metallic wires (MWs) and split resonant rings (SRRs). This matematerial absorber exhibits perfect absorption which up to 96% at 4.03 THz and is capable of wrapped around objects because of flexible polyimide dielectric substrate.

  12. Tuned mass absorber on a flexible structure

    DEFF Research Database (Denmark)

    Krenk, Steen; Høgsberg, Jan Becker

    2014-01-01

    The classic design of a tuned mass absorber is based on a simple two-mass analogy in which the tuned mass is connected to the structural mass with a spring and a viscous damper. In a flexible multi-degree-of-freedom structure the tuned mass absorber is typically introduced to provide damping of a...

  13. 21 CFR 872.6050 - Saliva absorber.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Saliva absorber. 872.6050 Section 872.6050 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6050 Saliva absorber. (a) Identification. A saliva...

  14. EFFECT OF PARTICLE SIZE AND PACKING RATIO OF PID ON VIBRATION AMPLITUDE OF BEAM

    Directory of Open Access Journals (Sweden)

    P.S. Kachare

    2013-06-01

    Full Text Available Everything in the universe that has mass possesses stiffness and intrinsic damping. Owing to the stiffness property, mass will vibrate when excited and its intrinsic damping property will act to stop the vibration. The particle impact damper (PID is a very interesting damper that affects impact and friction effects of particles by means of energy dissipation. PID is a means for achieving high structural damping by using a particle-filled enclosure attached to a structure. The particles absorb the kinetic energy of the structure and convert it into heat through inelastic collisions between the particles themselves and between the particles and the walls of the enclosure. In this work, PID is measured for a cantilever mild steel beam with an enclosure attached to its free end; copper particles are used in this study. The PID is found to be highly nonlinear. The most useful observation is that for a very small weight penalty (about 7% to 8 %, the maximum damped amplitude of vibration at resonance with a PID, is about 9 to 10 times smaller than that without a PID. It is for more than that of with only intrinsic material damping of a majority of structural metals. A satisfactory comparison of damping with and without particles through experimentation is observed. The effect of the size of the particles on the damping performance of the beam and the effective packing ratio can be identified. It is also shown that as the packing ratio changes, the contributions of the phenomena of impact and friction towards damping also change. It is encouraging that despite its deceptive simplicity, the model captures the essential physics of PID.

  15. Effect of the gel elasticity of model skin matrices on the distance/depth-dependent transmission of vibration energy supplied from a cosmetic vibrator.

    Science.gov (United States)

    Jeong, M K; Hwang, C; Nam, H; Cho, Y S; Kang, B Y; Cho, E C

    2017-02-01

    The purpose of this study was to determine how the energies supplied from a cosmetic vibrator are deeply or far transferred into organs and tissues, and how these depths or distances are influenced by tissue elasticity. External vibration energy was applied to model skin surfaces through a facial cleansing vibrator, and we measured a distance- and depth-dependent energy that was transferred to model skin matrices. As model skin matrices, we synthesized hard and soft poly(dimethylsiloxane) (PDMS) gels, as well as hydrogels with a modulus of 2.63 MPa, 0.33 MPa and 21 kPa, respectively, mostly representing those of skin and other organs. The transfer of vibration energy was measured either by increasing the separation distances or by increasing the depth from the vibrator. The energies were transmitted deeper into the hard PDMS than into the soft PDMS and hydrogel matrices. This finding implies that the vibration forces influence a larger area of the gel matrices when the gels are more elastic (or rigid). There were no appreciable differences between the soft PDMS and hydrogel matrices. However, the absorbed energies were more concentrated in the area closest to the vibrator with decreasing elasticity of the matrix. Softer materials absorbed most of the supplied energy around the point of the vibrator. In contrast, harder materials scattered the external energy over a broad area. The current results are the first report in estimating how the external energy is deeply or distantly transferred into a model skins depending on the elastic moduli of the models skins. In doing so, the results would be potentially useful in predicting the health of cells, tissues and organs exposed to various stimuli. © 2016 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  16. Performance evaluation of full-scale tuned liquid dampers (TLDs) for vibration control of large wind turbines using real-time hybrid testing

    DEFF Research Database (Denmark)

    Zhang, Zili; Staino, Andrea; Basu, Biswajit

    2016-01-01

    Highlights •Performance evaluation of full-scale tuned liquid dampers carried out for wind turbines. •Coupled blade-tower model considered in the numerical sub-structure. •Stochastic turbulence due to rotationally sampled spectra considered. •Effect of damping screens experimentally investigated...

  17. Vision Influence on Whole-Body Human Vibration Comfort Levels

    Directory of Open Access Journals (Sweden)

    Maria Lúcia Machado Duarte

    2006-01-01

    Full Text Available The well being of people needs to be a priority in the modern world. In that respect, vibration cannot be one more cause of stress. Besides that, vibration comfort is very important, since high levels may cause health or even tasks' accomplishment problems. Several parameters may influence the levels of vibration a human being supports. Among them, one can mention the influence of gender, age, corporeal mass index (CMI, temperature, humor, anxiety, hearing, posture, vision, etc. The first three parameters mentioned were already investigated in previous studies undertaken by GRAVI (Group of Acoustics and Vibration researchers. In this paper, the influence of vision is evaluated. The main objective with this series of tests performed is to try to quantify in a future the influence of each parameter in a global vibration comfort level. Conclusions are presented for the parameter investigated.

  18. DEGASSING OF ALUMINUM A356 ALLOY USING ULTRASONIC VIBRATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Hanbing [University of Tennessee, Knoxville (UTK); Meek, Thomas T. [University of Tennessee, Knoxville (UTK); Han, Qingyou [ORNL

    2007-01-01

    In order to investigate the effects of ultrasonic vibration on degassing of aluminum alloys, three experimental systems have been designed and built: one for ultrasonic degassing in open air, one for ultrasonic degassing under reduced pressure, and one for ultrasonic degassing with a purging gas. Experiments were first carried out in air to test degassing using ultrasonic vibration alone. The limitations with ultrasonic degassing were outlined. Further experiments were then performed under reduced pressures and in combination with purging argon gas. Experimental results suggest that ultrasonic vibration alone is efficient for degassing a small volume of melt. Ultrasonic vibration can be used for assisting vacuum degassing, making vacuum degassing much faster than that without using ultrasonic vibration. Ultrasonically assisted argon degassing is the fastest method for degassing among the three methods tested in this research. More importantly, dross formation during ultrasonically assisted argon degassing is much less than that during argon degassing. The mechanisms of ultrasonic degassing are discussed.

  19. [Vibrational physical exercises as the rehabilitation in gerontology].

    Science.gov (United States)

    Piatin, V F; Shirolapov, I V; Nikitin, O L

    2009-01-01

    Vibration biomechanical stimulation as the physiological basis of vibration physical exercises (whole body vibration) causes reflecting muscle contractions like tonic vibration reflex. This type of intervention leads to high intensive stimulation of proprioceptors as called muscle spindles which result in alteration in parameters of activity and developments of human physiological functions. This type of training has broad positive influence on organism. Acceleration physical exercises improve muscle performance, flexibility, nervous function, significantly increase bone mineral density, physiological secretion of anabolic hormones, growth and anti-aging factors; normalize/decrease cortisol as anti-stress effect and are beneficial for balance and mobility as well. It is showed acceleration training caused by vibration stimulus is beneficial for people suffering from osteoporosis and obesity, for rehabilitation of nervous and motor function in patients with Parkinson's disease, multiple sclerosis and stroke.

  20. Tactile direction discrimination and vibration detection in diabetic neuropathy.

    Science.gov (United States)

    Löken, Linda S; Lundblad, L C; Elam, M; Olausson, H W

    2010-05-01

    To evaluate the clinical usefulness of quantitative testing of tactile direction discrimination (TDD) in patients with diabetic neuropathy. TDD and vibration detection were examined on the dorsum of the feet in 43 patients with type 1 diabetes mellitus and clinical signs and symptoms indicating mild neuropathy, and abnormal results for neurography, temperature detection, or heart rate variability. Test-retest examination of TDD was performed in nine of the patients. Twenty-six of the patients had abnormal TDD (sensitivity 0.60) and 20 had abnormal vibration detection (sensitivity 0.46). Ten of the patients had abnormal TDD and normal vibration detection. Four of the patients had abnormal vibration detection and normal TDD. Test-retest examination of TDD showed a high degree of reproducibility (r = 0.87). TDD seems more useful than vibration detection in examination of diabetic neuropathy.

  1. Researches Concerning to Minimize Vibrations when Processing Normal Lathe

    Directory of Open Access Journals (Sweden)

    Lenuța Cîndea

    2015-09-01

    Full Text Available In the cutting process, vibration is inevitable appearance, and in situations where the amplitude exceeds the limits of precision dimensional and shape of the surfaces generated vibrator phenomenon is detrimental.Field vibration is an issue of increasingly developed, so the futures will a better understanding of them and their use even in other sectors.The paper developed experimental measurement of vibrations at the lathe machining normal. The scheme described kinematical machine tool, cutting tool, cutting conditions, presenting experimental facility for measuring vibration occurring at turning. Experimental results have followed measurement of amplitude, which occurs during interior turning the knife without silencer incorporated. The tests were performed continuously for different speed, feed and depth of cut.

  2. OPTIMAL AUTOMOBILE MUFFLER VIBRATION AND NOISE ANALYSIS

    Directory of Open Access Journals (Sweden)

    Sujit Kumar Jha

    2013-06-01

    Full Text Available The muffler is the main part of the Automobile Exhaust System, consisting of fibrous and porous materials to absorb noise and vibrations. The exhaust gas mass coming from the engine can produce resonance, which may be the source of fatigue failure in the exhaust pipe due to the presence of continuous resonance. The modes on the muffler should be located away from the engine’s operating frequencies in order to minimise the resonance. The objective of this paper is to determine the frequencies that appear at the modes, which have the more adverse effect during the operation of the automobile. An impact test has been conducted by applying the force using a hard head hammer, and data generated have been used for plotting a graph of the transfer functions using MATLAB. Six points have been selected, namely 1, 2, 3, 4, 7, and 11 on the muffler for the impact test. The collected data from theses six points have been analysed for the addition of damping. Results suggests that increasing the mass increases the damping and lowers the modes of the transfer function. Further research will identify higher strength materials that can withstand the higher gas temperatures as well as the corrosion and erosion by the gas emitted from the engine. muffler, noise, vibration,modal analysis,

  3. Highly Absorbent Antibacterial Hemostatic Dressing for Healing Severe Hemorrhagic Wounds

    Directory of Open Access Journals (Sweden)

    Ting-Ting Li

    2016-09-01

    Full Text Available To accelerate healing of severe hemorrhagic wounds, a novel highly absorbent hemostatic dressing composed of a Tencel®/absorbent-cotton/polylactic acid nonwoven base and chitosan/nanosilver antibacterial agent was fabricated by using a nonwoven processing technique and a freeze-drying technique. This study is the first to investigate the wicking and water-absorbing properties of a nonwoven base by measuring the vertical wicking height and water absorption ratio. Moreover, blood agglutination and hemostatic second tests were conducted to evaluate the hemostatic performance of the resultant wound dressing. The blending ratio of fibers, areal weight, punching density, and fiber orientation, all significantly influenced the vertical moisture wicking property. However, only the first two parameters markedly affected the water absorption ratio. After the nonwoven base absorbed blood, scanning electron microscope (SEM observation showed that erythrocytes were trapped between the fibrin/clot network and nonwoven fibers when coagulation pathways were activated. Prothrombin time (PT and activated partial thromboplastin time (APTT blood agglutination of the resultant dressing decreased to 14.34 and 50.94 s, respectively. In the femoral artery of the rate bleeding model, hemostatic time was saved by 87.2% compared with that of cotton cloth. Therefore, the resultant antibacterial wound dressing demonstrated greater water and blood absorption, as well as hemostatic performance, than the commercially available cotton cloth, especially for healing severe hemorrhagic wounds.

  4. Absorbable Meshes in Inguinal Hernia Surgery

    DEFF Research Database (Denmark)

    Öberg, Stina; Andresen, Kristoffer; Rosenberg, Jacob

    2017-01-01

    PURPOSE: Absorbable meshes used in inguinal hernia repair are believed to result in less chronic pain than permanent meshes, but concerns remain whether absorbable meshes result in an increased risk of recurrence. The aim of this study was to present an overview of the advantages and limitations...... of fully absorbable meshes for the repair of inguinal hernias, focusing mainly on postoperative pain and recurrence. METHODS: This systematic review with meta-analyses is based on searches in PubMed, Embase, Cochrane, and Psychinfo. Included study designs were case series, cohort studies, randomized...... controlled trials (RCTs), and non-RCTs. Studies had to include adult patients undergoing an inguinal hernia repair with a fully absorbable mesh. RESULTS: The meta-analyses showed no difference in recurrence rates (median 18 months follow-up) and chronic pain rates (1 year follow-up) between absorbable...

  5. [Absorbed doses in dental radiology].

    Science.gov (United States)

    Bianchi, S D; Roccuzzo, M; Albrito, F; Ragona, R; Anglesio, S

    1996-01-01

    The growing use of dento-maxillo-facial radiographic examinations has been accompanied by the publication of a large number of studies on dosimetry. A thorough review of the literature is presented in this article. Most studies were carried out on tissue equivalent skull phantoms, while only a few were in vivo. The aim of the present study was to evaluate in vivo absorbed doses during Orthopantomography (OPT). Full Mouth Periapical Examination (FMPE) and Intraoral Tube Panoramic Radiography (ITPR). Measurements were made on 30 patients, reproducing clinical conditions, in 46 anatomical sites, with 24 intra- and 22 extra-oral thermoluminiscent dosimeters (TLDS). The highest doses were measured, in orthopantomography, at the right mandibular angle (1899 mu Gy) in FMPE on the right naso-labial fold (5640 mu Gy and in ITPR on the palatal surface of the left second upper molar (1936 mu Gy). Intraoral doses ranged from 21 mu Gy, in orthopantomography, to 4494 mu Gy in FMPE. Standard errors ranged from 142% in ITPR to 5% in orthopantomography. The highest rate of standard errors was found in FMPE and ITPR. The data collected in this trial are in agreement with others in major literature reports. Disagreements are probably due to different exam acquisition and data collections. Such differences, presented comparison in several sites, justify lower doses in FMPE and ITPR. Advantages and disadvantages of in vivo dosimetry of the maxillary region are discussed, the former being a close resemblance to clinical conditions of examination and the latter the impossibility of collecting values in depth of tissues. Finally, both ITPR and FMPE required lower doses than expected, and can be therefore reconsidered relative to their radiation risk.

  6. Good vibrations. [Hydraulic turbines

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, P.

    1994-07-01

    The latest developments in the Voith Turbine Control and Automation System (VTLS), which couples digital control technology to hydropower plant equipment, are described. Prominent among these is the vibration diagnostics module for hydraulic turbines. It provides machine-specific diagnostic logic for a vibration monitoring and analysis system. Of the two other VTLS modules described, the operation module optimizes the control of a power plant with three or more turbines by considering the individual properties of each in turn, recommending which should be run, and how, in order to partition the load for a required power output. The cavitation module is a diagnostic system which enables the limits of operation of the turbines to be extended to bands just outside those determined by cavitation calculations. (3 figures). (UK)

  7. Experimental study on titanium wire drawing with ultrasonic vibration.

    Science.gov (United States)

    Liu, Shen; Shan, Xiaobiao; Guo, Kai; Yang, Yuancai; Xie, Tao

    2018-02-01

    Titanium and its alloys have been widely used in aerospace and biomedical industries, however, they are classified as difficult-to-machine materials. In this paper, ultrasonic vibration is imposed on the die to overcome the difficulties during conventional titanium wire drawing processes at the room temperature. Numerical simulations were performed to investigate the variation of axial stress within the contacting region and study the change of the drawing stress with several factors in terms of the longitudinal amplitude and frequency of the applied ultrasonic vibration, the diameter reduction ratio, and the drawing force. An experimental testing equipment was established to measure the drawing torque and rotational velocity of the coiler drum during the wire drawing process. The result indicates the drawing force increases with the growth of the drawing velocity and the reduction ratio, whether with or without vibrations. Application of either form of ultrasonic vibrations contributes to the further decrease of the drawing force, especially the longitudinal vibration with larger amplitude. SEM was employed to detect the surface morphology of the processed wires drawn under the three circumstances. The surface quality of the drawn wires with ultrasonic vibrations was apparently improved compared with those using conventional method. In addition, the longitudinal and torsional composite vibration was more effective for surface quality improvement than pure longitudinal vibration, however, at the cost of weakened drawing force reduction effect. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Passive vibration control: a structure-immittance approach

    Science.gov (United States)

    Zhang, Sara Ying; Jiang, Jason Zheng; Neild, Simon A.

    2017-05-01

    Linear passive vibration absorbers, such as tuned mass dampers, often contain springs, dampers and masses, although recently there has been a growing trend to employ or supplement the mass elements with inerters. When considering possible configurations with these elements broadly, two approaches are normally used: one structure-based and one immittance-based. Both approaches have their advantages and disadvantages. In this paper, a new approach is proposed: the structure-immittance approach. Using this approach, a full set of possible series-parallel networks with predetermined numbers of each element type can be represented by structural immittances, obtained via a proposed general formulation process. Using the structural immittances, both the ability to investigate a class of absorber possibilities together (advantage of the immittance-based approach), and the ability to control the complexity, topology and element values in resulting absorber configurations (advantages of the structure-based approach) are provided at the same time. The advantages of the proposed approach are demonstrated through two case studies on building vibration suppression and automotive suspension design, respectively.

  9. Pickin’ up good vibrations

    CERN Multimedia

    Katarina Anthony

    2015-01-01

    In preparation for the civil engineering work on the HL-LHC, vibration measurements were carried out at the LHC’s Point 1 last month. These measurements will help evaluate how civil engineering work could impact the beam, and will provide crucial details about the site’s geological make-up before construction begins.   A seismic truck at Point 1 generated wave-like vibrations measured by EN/MME. From carrying out R&D to produce state-of-the-art magnets to developing innovative, robust materials capable of withstanding beam impact, the HL-LHC is a multi-faceted project involving many groups and teams across CERN’s departments. It was in this framework that the project management mandated CERN's Mechanical and Materials Engineering (EN/MME) group to measure the propagation of vibrations around Point 1. Their question: can civil engineering work for the HL-LHC – the bulk of which is scheduled for LS2 – begin while the LHC is running? Alth...

  10. Vibrational stability of graphene

    Directory of Open Access Journals (Sweden)

    Yangfan Hu

    2013-05-01

    Full Text Available The mechanical stability of graphene as temperature rises is analyzed based on three different self-consistent phonon (SCP models. Compared with three-dimensional (3-D materials, the critical temperature Ti at which instability occurs for graphene is much closer to its melting temperature Tm obtained from Monte Carlo simulation (Ti ≃ 2Tm, K. V. Zakharchenko, A. Fasolino, J. H. Los, and M. I. Katsnelson, J. Phys. Condens. Matter 23, 202202. This suggests that thermal vibration plays a significant role in melting of graphene while melting for 3-D materials is often dominated by topologic defects. This peculiar property of graphene derives from its high structural anisotropy, which is characterized by the vibrational anisotropic coefficient (VAC, defined upon its Lindermann ratios in different directions. For any carbon based material with a graphene-like structure, the VAC value must be smaller than 5.4 to maintain its stability. It is also found that the high VAC value of graphene is responsible for its negative thermal expansion coefficient at low temperature range. We believe that the VAC can be regarded as a new criterion concerning the vibrational stability of any low-dimensional (low-D materials.

  11. [Measurement and analysis of hand-transmitted vibration of vibration tools in workplace for automobile casting and assembly].

    Science.gov (United States)

    Xie, X S; Qi, C; Du, X Y; Shi, W W; Zhang, M

    2016-02-20

    To investigate the features of hand-transmitted vibration of common vibration tools in the workplace for automobile casting and assembly. From September to October, 2014, measurement and spectral analysis were performed for 16 typical hand tools(including percussion drill, pneumatic wrench, grinding machine, internal grinder, and arc welding machine) in 6 workplaces for automobile casting and assembly according to ISO 5349-1-2001 Mechanical vibration-Measurement and evaluation of human exposure to hand-transmitted vibration-part 1: General requirements and ISO 5349-2-2001 Mechanical vibration-Measurement and evaluation of human exposure to hand-transmitted vibration-Part 2: Practical guidance for measurement in the workplace. The vibration acceleration waveforms of shearing machine, arc welding machine, and pneumatic wrench were mainly impact wave and random wave, while those of internal grinder, angle grinder, percussion drill, and grinding machine were mainly long-and short-period waves. The daily exposure duration to vibration of electric wrench, pneumatic wrench, shearing machine, percussion drill, and internal grinder was about 150 minutes, while that of plasma cutting machine, angle grinder, grinding machine, bench grinder, and arc welding machine was about 400 minutes. The range of vibration total value(ahv) was as follows: pneumatic wrench 0.30~11.04 m/s(2), grinding wheel 1.61~8.97 m/s(2), internal grinder 1.46~8.70 m/s(2), percussion drill 11.10~14.50 m/s(2), and arc welding machine 0.21~2.18 m/s(2). The workers engaged in cleaning had the longest daily exposure duration to vibration, and the effective value of 8-hour energy-equivalent frequency-weighted acceleration for them[A(8)] was 8.03 m/s(2), while this value for workers engaged in assembly was 4.78 m/s(2). The frequency spectrogram with an 1/3-time frequency interval showed that grinding machine, angle grinder, and percussion drill had a high vibration acceleration, and the vibration limit curve

  12. High-Performance Reaction Wheel Optimization for Fine-Pointing Space Platforms: Minimizing Induced Vibration Effects on Jitter Performance plus Lessons Learned from Hubble Space Telescope for Current and Future Spacecraft Applications

    Science.gov (United States)

    Hasha, Martin D.

    2016-01-01

    The Hubble Space Telescope (HST) applies large-diameter optics (2.5-m primary mirror) for diffraction-limited resolution spanning an extended wavelength range (approx. 100-2500 nm). Its Pointing Control System (PCS) Reaction Wheel Assemblies (RWAs), in the Support Systems Module (SSM), acquired an unprecedented set of high-sensitivity Induced Vibration (IV) data for 5 flight-certified RWAs: dwelling at set rotation rates. Focused on 4 key ratios, force and moment harmonic values (in 3 local principal directions) are extracted in the RWA operating range (0-3000 RPM). The IV test data, obtained under ambient lab conditions, are investigated in detail, evaluated, compiled, and curve-fitted; variational trends, core causes, and unforeseen anomalies are addressed. In aggregate, these values constitute a statistically-valid basis to quantify ground test-to-test variations and facilitate extrapolations to on-orbit conditions. Accumulated knowledge of bearing-rotor vibrational sources, corresponding harmonic contributions, and salient elements of IV key variability factors are discussed. An evolved methodology is presented for absolute assessments and relative comparisons of macro-level IV signal magnitude due to micro-level construction-assembly geometric details/imperfections stemming from both electrical drive and primary bearing design parameters. Based upon studies of same-size/similar-design momentum wheels' IV changes, upper estimates due to transitions from ground tests to orbital conditions are derived. Recommended HST RWA choices are discussed relative to system optimization/tradeoffs of Line-Of-Sight (LOS) vector-pointing focal-plane error driven by higher IV transmissibilities through low-damped structural dynamics that stimulate optical elements. Unique analytical disturbance results for orbital HST accelerations are described applicable to microgravity efforts. Conclusions, lessons learned, historical context/insights, and perspectives on future applications

  13. Performance analysis of proportional-integral feedback control for the reduction of stick-slip-induced torsional vibrations in oil well drillstrings

    Science.gov (United States)

    Monteiro, Hugo L. S.; Trindade, Marcelo A.

    2017-06-01

    The stick-slip phenomenon, in the process of drilling oil wells, can lead to large fluctuations in drill-bit angular velocity, due to the interaction between drill-bit and rock formation, and, thus, cause irreparable damage to the process. In this work, the performance of control laws applied to the rotary table (responsible for moving the drillstring) is analyzed, in order to reduce stick-slip and drill-bit angular velocity oscillations. The control laws implemented are based on a PI (Proportional-Integral) controller, for which the torque applied to the rotating table has components proportional and integral to the table angular velocity with constant or variable WOB (Weight-On-Bit). For the drillstring, a finite element model with a linear interpolation for the torsional motion was proposed. The torque at drill-bit was modeled considering a non-regularized dry friction model, with parameters that were adjusted using empirical data proposed in literature. Several performance criteria were analyzed and it was observed that a minimization of the mean deviation of the drill-bit angular velocity relative to the target one would provide the best operating condition. Parametric analyses of proportional and integral control gains were performed, yielding level curves for the mean deviation of drill-bit angular velocity. From these curves, stability regions were defined in which the deviation is acceptable. These regions were observed to be wider for smaller values of WOB and higher values of target angular velocity and vice-versa. In addition, the inclusion of a controlled dynamic WOB was proposed leading to reduced levels of mean deviation of angular velocity and, thus, improving stability regions for the drilling process.

  14. Change in Microwave-Absorbing Characteristics during the Oxidation Processes of an Ilmenite Concentrate

    Science.gov (United States)

    Li, Wei; Meng, Binfang; Wang, Xinying; Liu, Yuqi; Zhang, Libo

    2017-09-01

    Microwave-absorbing characteristics of the oxidized ilmenite concentrate were measured by the method of microwave cavity perturbation. The effects of particle size, oxidation temperature and oxidation time on the microwave-absorbing characteristics were investigated. The particle size, oxidation temperature and oxidation time have substantial impact on the microwave-absorbing characteristics of the sample and therefore the microwave heating performance during the oxidation processes of the ilmenite concentrate. Results indicated that at the same oxidation time, the microwave absorbing characteristics decreased as the oxidation temperature increased, and at a constant temperature, the microwave absorbing characteristics of the sample decreased as the oxidation time increased. The microwave absorbing characteristics of the ilmenite concentrate with 80-120 mesh particle size was stronger than that of 200 mesh particle size. The microwave absorbing characteristics of products oxidized at 900 °C for 30 min were slightly weaker than those treated at 800 °C for 30 min and 900 °C for 20 min. The sample becomes less efficient in absorbing microwave energy as the oxidation proceeds. It is therefore recommended strong microwave absorbing materials or conventional heating be applied at the late stage of oxidation to aid microwave heating.

  15. Scalable high-performance algorithm for the simulation of exciton-dynamics. Application to the light harvesting complex II in the presence of resonant vibrational modes

    DEFF Research Database (Denmark)

    Kreisbeck, Christoph; Kramer, Tobias; Aspuru-Guzik, Alán

    2014-01-01

    the exciton dynamics within a density-matrix formalism are known, but are restricted to small systems with less than ten sites due to their computational complexity. To study the excitonic energy transfer in larger systems, we adapt and extend the exact hierarchical equation of motion (HEOM) method to various...... high-performance many-core platforms using the Open Compute Language (OpenCL). For the light-harvesting complex II (LHC II) found in spinach, the HEOM results deviate from predictions of approximate theories and clarify the time-scale of the transfer-process. We investigate the impact of resonantly...

  16. Kinetic analysis of an anion exchange absorbent for CO2 capture from ambient air.

    Science.gov (United States)

    Shi, Xiaoyang; Li, Qibin; Wang, Tao; Lackner, Klaus S

    2017-01-01

    This study reports a preparation method of a new moisture swing sorbent for CO2 capture from air. The new sorbent components include ion exchange resin (IER) and polyvinyl chloride (PVC) as a binder. The IER can absorb CO2 when surrounding is dry and release CO2 when surrounding is wet. The manuscript presents the studies of membrane structure, kinetic model of absorption process, performance of desorption process and the diffusivity of water molecules in the CO2 absorbent. It has been proved that the kinetic performance of CO2 absorption/desorption can be improved by using thin binder and hot water treatment. The fast kinetics of P-100-90C absorbent is due to the thin PVC binder, and high diffusion rate of H2O molecules in the sample. The impressive is this new CO2 absorbent has the fastest CO2 absorption rate among all absorbents which have been reported by other up-to-date literatures.

  17. Constructing multilayers with absorbing materials

    OpenAIRE

    Larruquert, Juan Ignacio; Vidal-Dasilva, M.; García-Cortés, S.; Fernández Perea, Mónica; Méndez, José Antonio; Aznárez, José Antonio

    2010-01-01

    The strong absorption of materials in the extreme ultraviolet (EUV) above ~50 nm has precluded the development of efficient coatings. The development of novel coatings with improved EUV performance is presented. An extensive research was performed on the search and characterization of materials with moderate absorption, such as various lanthanides. Based on this research, novel multilayers based on Yb, Al, and SiO have been developed with a narrowband performance in the 50-92 nm range. Furthe...

  18. Microwave diode switchable metamaterial reflector/absorber

    Science.gov (United States)

    Xu, Wangren; Sonkusale, Sameer

    2013-07-01

    We embed diodes as active circuit elements within a metamaterial to implement a switchable metamaterial reflector/absorber at microwave frequencies. Diodes are placed in series with the unit cells of the metamaterial array. This results in just a pair of control lines to actively tune all the diodes in a metamaterial. Diodes can be tuned on and off to switch the function of the metamaterial between a perfect absorber and a reflector. The design, simulation, and experimental results of a switchable reflector/absorber in 2-6 GHz range are presented.

  19. Absorbed dose by a CMOS in radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Borja H, C. G.; Valero L, C. Y.; Guzman G, K. A.; Banuelos F, A.; Hernandez D, V. M.; Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Calle Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Paredes G, L. C., E-mail: candy_borja@hotmail.com [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2011-10-15

    Absorbed dose by a complementary metal oxide semiconductor (CMOS) circuit as part of a pacemaker, has been estimated using Monte Carlo calculations. For a cancer patient who is a pacemaker carrier, scattered radiation could damage pacemaker CMOS circuits affecting patient's health. Absorbed dose in CMOS circuit due to scattered photons is too small and therefore is not the cause of failures in pacemakers, but neutron calculations shown an absorbed dose that could cause damage in CMOS due to neutron-hydrogen interactions. (Author)

  20. Graphene and Graphene Metamaterials for Terahertz Absorbers

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Pizzocchero, Filippo; Booth, Tim

    2013-01-01

    Graphene, due to the possibility to tune its conductivity, is the promising material for a range of the terahertz (THz) applications, such as tunable reflectors, absorbers, modulators, filters and polarization converters. Subwavelength structuring of graphene in order to form metamaterials allows...... for even more control over the THz waves. In this poster presentation I will show an elegant way to describe the graphene metamaterials and the design of graphene based absorbers. I will also present our recent experimental results on the graphene absorbers characterization....

  1. Angle- and Polarization-Insensitive Metamaterial Absorber using Via Array

    Science.gov (United States)

    Lim, Daecheon; Lee, Dongju; Lim, Sungjoon

    2016-01-01

    In this paper, we propose an angle- and polarization-insensitive metamaterial absorber. We design a metamaterial unit cell that is based on a split ring cross resonator (SRCR). We observe that the absorption frequency and absorption ratio are insensitive to incident angles when a via array surrounds the SRR. We demonstrate the effect of the via array using full-wave simulations by comparing the absorptivity of the SRCR with and without the via array. Because of the symmetric geometry, we also realize polarization insensitivity. We build the proposed absorber on a printed-circuit-board with 30 × 30 unit cells, and we demonstrate its performance experimentally in free space. Under normal incidence, the fabricated absorber shows 99.6% absorptivity at 11.3 GHz for all polarization angles, while for oblique incidence, the fabricated absorber maintains an absorptivity higher than 90% for incident angles up to 70° and 60° for transverse magnetic (TM) and transverse electric (TE) modes, respectively. PMID:28000770

  2. Angle- and Polarization-Insensitive Metamaterial Absorber using Via Array.

    Science.gov (United States)

    Lim, Daecheon; Lee, Dongju; Lim, Sungjoon

    2016-12-21

    In this paper, we propose an angle- and polarization-insensitive metamaterial absorber. We design a metamaterial unit cell that is based on a split ring cross resonator (SRCR). We observe that the absorption frequency and absorption ratio are insensitive to incident angles when a via array surrounds the SRR. We demonstrate the effect of the via array using full-wave simulations by comparing the absorptivity of the SRCR with and without the via array. Because of the symmetric geometry, we also realize polarization insensitivity. We build the proposed absorber on a printed-circuit-board with 30 × 30 unit cells, and we demonstrate its performance experimentally in free space. Under normal incidence, the fabricated absorber shows 99.6% absorptivity at 11.3 GHz for all polarization angles, while for oblique incidence, the fabricated absorber maintains an absorptivity higher than 90% for incident angles up to 70° and 60° for transverse magnetic (TM) and transverse electric (TE) modes, respectively.

  3. Impact of structural heterogeneity in solar absorber layers (Conference Presentation)

    Science.gov (United States)

    Toney, Michael

    2016-09-01

    Impact of structural heterogeneity in solar absorber layers Michael F Toney SLAC National Accelerator Laboratory Structural and morphological heterogeneity is common in thin film and emerging solar cell absorber layers, including organic photovoltaic bulk heterojunctions (OPV BHJs), hybrid organic-inorganic perovskites (HOIP), and Cu2ZnSn(S,Se)4 (CZTSSe), and has a significant impact on the (opto)electronic heterogeneity and hence absorber properties. In this talk I will use X-ray based methods, including scattering and spectroscopies, to characterize and quantify the heterogeneity in OPV BHJs and HOIP absorber layers. The BHJ films are blends of the small molecule X2 and [6,6]-phenyl C71 butyric acid methyl ester (PC71BM) where it has been established that there are three distinct region of the films - pure PC71BM, pure X2 and intimately mixed X2:PC71BM. This talk will show how the absolute concentration of the mixed phase can be used to explain the large PC71BM:X2 composition range where good performance is observed [1]. The talk will also show that spin cast CH3NH3PbI3 films consistent of both crystalline and amorphous regions, which can explain previous heterogeneity in the PL imaging [2]. [1] Huang et al., Adv. Energy Mater. 4, 1301886 (2014). [2] deQuilettes et al., Science 348, 683 (2015).

  4. Management of open abdomen with an absorbable mesh closure.

    Science.gov (United States)

    Prichayudh, Supparerk; Sriussadaporn, Suvit; Samorn, Pasurachate; Pak-Art, Rattaplee; Sriussadaporn, Sukanya; Kritayakirana, Kritaya; Capin, Allan

    2011-01-01

    To examine the methods and results of treatment in patients with an open abdomen (OA) at a single institution where an absorbable mesh closure (AMC) is most commonly used. A retrospective study was performed in OA patients from January 2001 to June 2007. Outcomes were analyzed in terms of enteroatmospheric fistula (EAF) formation and survival. There were 73 OA patients receiving definitive closures (40 trauma and 33 nontrauma). Twenty-four patients were able to undergo a delayed primary fascial closure (DPFC) after initial vacuum pack closure (DPFC rate 33%). The DPFC rate was significantly lower in patients with an associated infection or contamination (9% vs 44%, P = 0.002). The EAF and mortality rates of the DPFC group were 0% and 13%, respectively. Absorbable mesh closure was used in 41 of 49 patients who failed DPFC (84%). There were 9 patients who had EAF (overall EAF rate 12%), 6 of whom were in the AMC group (EAF rate 15%). The overall and AMC group mortality rates were 29% and 37%, respectively. Absorbable mesh closure carries high EAF and mortality rates. Therefore, DPFC should be considered as the primary closure method. Absorbable mesh closure should be reserved for patients who fail DPFC, especially those with peritonitis or contamination.

  5. VIBRATION ISOLATION SYSTEM PROBABILITY ANALYSIS

    Directory of Open Access Journals (Sweden)

    Smirnov Vladimir Alexandrovich

    2012-10-01

    Full Text Available The article deals with the probability analysis for a vibration isolation system of high-precision equipment, which is extremely sensitive to low-frequency oscillations even of submicron amplitude. The external sources of low-frequency vibrations may include the natural city background or internal low-frequency sources inside buildings (pedestrian activity, HVAC. Taking Gauss distribution into account, the author estimates the probability of the relative displacement of the isolated mass being still lower than the vibration criteria. This problem is being solved in the three dimensional space, evolved by the system parameters, including damping and natural frequency. According to this probability distribution, the chance of exceeding the vibration criteria for a vibration isolation system is evaluated. Optimal system parameters - damping and natural frequency - are being developed, thus the possibility of exceeding vibration criteria VC-E and VC-D is assumed to be less than 0.04.

  6. Random vibrations theory and practice

    CERN Document Server

    Wirsching, Paul H; Ortiz, Keith

    1995-01-01

    Random Vibrations: Theory and Practice covers the theory and analysis of mechanical and structural systems undergoing random oscillations due to any number of phenomena— from engine noise, turbulent flow, and acoustic noise to wind, ocean waves, earthquakes, and rough pavement. For systems operating in such environments, a random vibration analysis is essential to the safety and reliability of the system. By far the most comprehensive text available on random vibrations, Random Vibrations: Theory and Practice is designed for readers who are new to the subject as well as those who are familiar with the fundamentals and wish to study a particular topic or use the text as an authoritative reference. It is divided into three major sections: fundamental background, random vibration development and applications to design, and random signal analysis. Introductory chapters cover topics in probability, statistics, and random processes that prepare the reader for the development of the theory of random vibrations a...

  7. DOWNHOLE VIBRATION MONITORING & CONTROL SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Martin E. Cobern

    2005-04-27

    The objective of this program is to develop a system to both monitor the vibration of a bottomhole assembly, and to adjust the properties of an active damper in response to these measured vibrations. Phase I of this program, which entailed modeling and design of the necessary subsystems and design, manufacture and test of a full laboratory prototype, was completed on May 31, 2004. The principal objectives of Phase II are: more extensive laboratory testing, including the evaluation of different feedback algorithms for control of the damper; design and manufacture of a field prototype system; and, testing of the field prototype in drilling laboratories and test wells. As a result of the lower than expected performance of the MR damper noted last quarter, several additional tests were conducted. These dealt with possible causes of the lack of dynamic range observed in the testing: additional damping from the oil in the Belleville springs; changes in properties of the MR fluid; and, residual magnetization of the valve components. Of these, only the last was found to be significant. By using a laboratory demagnetization apparatus between runs, a dynamic range of 10:1 was achieved for the damper, more than adequate to produce the needed improvements in drilling. Additional modeling was also performed to identify a method of increasing the magnetic field in the damper. As a result of the above, several changes were made in the design. Additional circuitry was added to demagnetize the valve as the field is lowered. The valve was located to above the Belleville springs to reduce the load placed upon it and offer a greater range of materials for its construction. In addition, to further increase the field strength, the coils were relocated from the mandrel to the outer housing. At the end of the quarter, the redesign was complete and new parts were on order. The project is approximately three months behind schedule at this time.

  8. Research of vibration controlling based on programmable logic controller for electrostatic precipitator

    Science.gov (United States)

    Zhang, Zisheng; Li, Yanhu; Li, Jiaojiao; Liu, Zhiqiang; Li, Qing

    2013-03-01

    In order to improve the reliability, stability and automation of electrostatic precipitator, circuits of vibration motor for ESP and vibration control ladder diagram program are investigated using Schneider PLC with high performance and programming software of Twidosoft. Operational results show that after adopting PLC, vibration motor can run automatically; compared with traditional control system of vibration based on single-chip microcomputer, it has higher reliability, better stability and higher dust removal rate, when dust emission concentrations <= 50 mg m-3, providing a new method for vibration controlling of ESP.

  9. Do whole-body vibrations affect spatial hearing?

    Science.gov (United States)

    Frissen, Ilja; Guastavino, Catherine

    2014-01-01

    To assist the human operator, modern auditory interfaces increasingly rely on sound spatialisation to display auditory information and warning signals. However, we often operate in environments that apply vibrations to the whole body, e.g. when driving a vehicle. Here, we report three experiments investigating the effect of sinusoidal vibrations along the vertical axis on spatial hearing. The first was a free-field, narrow-band noise localisation experiment with 5- Hz vibration at 0.88 ms(-2). The other experiments used headphone-based sound lateralisation tasks. Experiment 2 investigated the effect of vibration frequency (4 vs. 8 Hz) at two different magnitudes (0.83 vs. 1.65 ms(-2)) on a left-right discrimination one-interval forced-choice task. Experiment 3 assessed the effect on a two-interval forced-choice location discrimination task with respect to the central and two peripheral reference locations. In spite of the broad range of methods, none of the experiments show a reliable effect of whole-body vibrations on localisation performance. We report three experiments that used both free-field localisation and headphone lateralisation tasks to assess their sensitivity to whole-body vibrations at low frequencies. None of the experiments show a reliable effect of either frequency or magnitude of whole-body vibrations on localisation performance.

  10. Research on a Composite Power-Superimposed Ultrasonic Vibrator for Wire Drawing

    Directory of Open Access Journals (Sweden)

    Shen Liu

    2016-01-01

    Full Text Available Vibration power and amplitude are essential factors in ultrasonic drawing processes, especially for difficult-to-draw materials like titanium and its alloys. This paper presents a new composite power-superimposed ultrasonic vibrator for wire drawing which was driven by three separate ultrasonic transducers. The transducers were uniformly distributed around the circular cross section of the vibrator, with their axes along the radial direction and pointing to the center. The vibrator can concentrate the vibrational energy of multiple transducers and transform the radial vibration into a longitudinal vibrator because of the Poisson effect and therefore output larger vibration power and amplitude. In the paper, the four-terminal network method was used to establish the vibration equations of the vibrator. The FE model was established in ANSYS to investigate its characteristics under various excitation conditions. A prototype was manufactured and measurements were performed to verify the validation of FEA results. The results matched well with the theoretical results. It was found that the composite vibrator achieved an amplitude of about 40 μm when driven by square wave signals with 120° in phase difference, which implies a potential way of applying ultrasonic vibration to the processing of difficult-to-draw materials.

  11. Vibrationally Driven Hydrogen Abstraction Reaction by Bromine Radical in Solution

    Science.gov (United States)

    Shin, Jae Yoon; Shalowski, Michael A.; Crim, F. Fleming

    2013-06-01

    Previously, we have shown that preparing reactants in specific vibrational states can affect the product state distribution and branching ratios in gas phase reactions. In the solution phase, however, no vibrational mediation study has been reported to date. In this work, we present our first attempt of vibrationally mediated bimolecular reaction in solution. Hydrogen abstraction from a solvent by a bromine radical can be a good candidate to test the effect of vibrational excitation on reaction dynamics because this reaction is highly endothermic and thus we can suppress any thermally initiated reaction in our experiment. Br radical quickly forms CT (charge transfer) complex with solvent molecule once it is generated from photolysis of a bromine source. The CT complex strongly absorbs visible light, which allows us to use electronic transient absorption for tracking Br radical population. For this experiment, we photolyze bromoform solution in dimethyl sulfoxide (DMSO) solvent with 267 nm to generate Br radical and excite the C-H stretch overtone of DMSO with 1700 nm a few hundred femtoseconds after the photolysis. Then, we monitor the population of Br-DMSO complex with 400 nm as a function of delay time between two pump beams and probe beam. As a preliminary result, we observed the enhancement of loss of Br-DMSO complex population due to the vibrational excitation. We think that increased loss of Br-DMSO complex is attributed to more loss of Br radical that abstracts hydrogen from DMSO and it is the vibrational excitation that promotes the reaction. To make a clear conclusion, we will next utilize infrared probing to directly detect HBr product formation.

  12. Lattice vibrational modes and their frequency shifts in semiconductor nanowires.

    Science.gov (United States)

    Yang, Li; Chou, M Y

    2011-07-13

    We have performed first-principles calculations to study the lattice vibrational modes and their Raman activities in silicon nanowires (SiNWs). Two types of characteristic vibrational modes are examined: high-frequency optical modes and low-frequency confined modes. Their frequencies have opposite size dependence with a red shift for the optical modes and a blue shift for the confined modes as the diameter of SiNWs decreases. In addition, our calculations show that these vibrational modes can be detected by Raman scattering measurements, providing an efficient way to estimate the size of SiNWs.

  13. Airflow induced vibration of the Si-IT prototype

    CERN Document Server

    Dijkstra, H; De Aguiar, V; Rigo, V

    2014-01-01

    In this note we present the results of air-flow induced vibration tests performed on mechanical prototypes of the Si option of the Inner Tracker upgrade. We made a modal analyze where we observed the eigenfrequency of the Si-ladder structure at ∼30 Hz as previously measured at CERN. Flowing dry-air to cool the prototypes we do not observe a lock-in state of the vortex induced vibration (VIV). The maximum observed vibration amplitude is calculated. We conclude that the VIV excites the eigenfrequency almost independently from the air-flow speed, and with an amplitude which does not damage the structure.

  14. Innovation in Active Vibration Control Strategy of Intelligent Structures

    Directory of Open Access Journals (Sweden)

    A. Moutsopoulou

    2014-01-01

    Full Text Available Large amplitudes and attenuating vibration periods result in fatigue, instability, and poor structural performance. In light of past approaches in this field, this paper intends to discuss some innovative approaches in vibration control of intelligent structures, particularly in the case of structures with embedded piezoelectric materials. Control strategies are presented, such as the linear quadratic control theory, as well as more advanced theories, such as robust control theory. The paper presents sufficiently a recognizable advance in knowledge of active vibration control in intelligent structures.

  15. Wind Induced Vibration Control and Energy Harvesting of Electromagnetic Resonant Shunt Tuned Mass-Damper-Inerter for Building Structures

    Directory of Open Access Journals (Sweden)

    Yifan Luo

    2017-01-01

    Full Text Available This paper proposes a novel inerter-based dynamic vibration absorber, namely, electromagnetic resonant shunt tuned mass-damper-inerter (ERS-TMDI. To obtain the performances of the ERS-TMDI, the combined ERS-TMDI and a single degree of freedom system are introduced. H2 criteria performances of the ERS-TMDI are introduced in comparison with the classical tuned mass-damper (TMD, the electromagnetic resonant shunt series TMDs (ERS-TMDs, and series-type double-mass TMDs with the aim to minimize structure damage and simultaneously harvest energy under random wind excitation. The closed form solutions, including the mechanical tuning ratio, the electrical damping ratio, the electrical tuning ratio, and the electromagnetic mechanical coupling coefficient, are obtained. It is shown that the ERS-TMDI is superior to the classical TMD, ERS-TMDs, and series-type double-mass TMDs systems for protection from structure damage. Meanwhile, in the time domain, a case study of Taipei 101 tower is presented to demonstrate the dual functions of vibration suppression and energy harvesting based on the simulation fluctuating wind series, which is generated by the inverse fast Fourier transform method. The effectiveness and robustness of ERS-TMDI in the frequency and time domain are illustrated.

  16. Electrostatic MEMS vibration energy harvester for HVAC applications

    Science.gov (United States)

    Oxaal, J.; Hella, M.; Borca-Tasciuc, D.-A.

    2015-12-01

    This paper reports on an electrostatic MEMS vibration energy harvester with gapclosing interdigitated electrodes, designed for and tested on HVAC air ducts. The device is fabricated on SOI wafers using a custom microfabrication process. A dual-level physical stopper system is implemented in order to control the minimum gap between the electrodes and maximize the power output. It utilizes cantilever beams to absorb a portion of the impact energy as the electrodes approach the impact point, and a film of parylene with nanometer thickness deposited on the electrode sidewalls, which defines the absolute minimum gap and provides electrical insulation. The fabricated device was first tested on a vibration shaker to characterize its resonant behavior. The device exhibits spring hardening behavior due to impacts with the stoppers and spring softening behavior with increasing voltage bias. Testing was carried out on HVAC air duct vibrating with an RMS acceleration of 155 mgRMS and a primary frequency of 60 Hz with a PSD of 7.15·10-2 g2/Hz. The peak power measured is 12nW (0.6 nW RMS) with a PSD of 6.9·10-11 W/Hz at 240 Hz (four times of the primary frequency of 60 Hz), which is the highest output reported for similar vibration conditions and biasing voltages.

  17. On the Optimization of Point Absorber Buoys

    Directory of Open Access Journals (Sweden)

    Linnea Sjökvist

    2014-05-01

    Full Text Available A point absorbing wave energy converter (WEC is a complicated dynamical system. A semi-submerged buoy drives a power take-off device (PTO, which acts as a linear or non-linear damper of the WEC system. The buoy motion depends on the buoy geometry and dimensions, the mass of the moving parts of the system and on the damping force from the generator. The electromagnetic damping in the generator depends on both the generator specifications, the connected load and the buoy velocity. In this paper a velocity ratio has been used to study how the geometric parameters buoy draft and radius, assuming constant generator damping coefficient, affects the motion and the energy absorption of a WEC. It have been concluded that an optimal buoy geometry can be identified for a specific generator damping. The simulated WEC performance have been compared with experimental values from two WECs with similar generators but different buoys. Conclusions have been drawn about their behaviour.

  18. An ultra-broadband multilayered graphene absorber

    KAUST Repository

    Amin, Muhammad

    2013-01-01

    An ultra-broadband multilayered graphene absorber operating at terahertz (THz) frequencies is proposed. The absorber design makes use of three mechanisms: (i) The graphene layers are asymmetrically patterned to support higher order surface plasmon modes that destructively interfere with the dipolar mode and generate electromagnetically induced absorption. (ii) The patterned graphene layers biased at different gate voltages backedup with dielectric substrates are stacked on top of each other. The resulting absorber is polarization dependent but has an ultra-broadband of operation. (iii) Graphene\\'s damping factor is increased by lowering its electron mobility to 1000cm 2=Vs. Indeed, numerical experiments demonstrate that with only three layers, bandwidth of 90% absorption can be extended upto 7THz, which is drastically larger than only few THz of bandwidth that can be achieved with existing metallic/graphene absorbers. © 2013 Optical Society of America.

  19. Research on a multiband metamaterial absorber

    Science.gov (United States)

    Yu, Xiebin; Song, Yaoliang; Fan, Shicheng

    2017-10-01

    This paper describes the design of a multiband metamaterial absorber based on double-gap sheet metal and takes it into simulation by CST microwave studio. The results of simulation show that the metamaterial absorber achieves absorption rate up to 99.6%, 99.8%, 99.9% and 93.5% at 4.64 GHz, 8.67 GHz, 13.93 GHz and 18.53 GHz respectively. The thickness of the metamaterial absorber is just 3.3%, 6.3%, 10.0% and 13.3% of its working wavelength respectively. Finally, the absorption mechanism is analyzed by using the surface current,surface charge and the impedance matching theory. This metamaterial absorber has potential application in multifrequency radar, electromagnetic compatibility of complex electronic platform and so on.

  20. Space Compatible Radar Absorbing Materials Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase 1 project shall investigate novel radar absorbing materials (RAM) for use in space or simulated space environments. These materials are lightweight...