WorldWideScience

Sample records for viable microorganisms significantly

  1. Investigation of Removal Capacities of Biofilters for Airborne Viable Micro-Organisms

    Science.gov (United States)

    Soret, Rémi; Fanlo, Jean-Louis; Malhautier, Luc; Geiger, Philippe; Bayle, Sandrine

    2018-01-01

    New emerging issues appears regarding the possible aerosolization of micro-organisms from biofilters to the ambient air. Traditional bioaerosol sampling and cultural methods used in literature offer relative efficiencies. In this study, a new method revolving around a particle counter capable of detecting total and viable particles in real time was used. This counter (BioTrak 9510-BD) uses laser-induced fluorescence (LIF) technology to determine the biological nature of the particle. The concentration of viable particles was measured on two semi-industrial pilot scale biofilters in order to estimate the Removal Efficiency in viable particles (REvp) in stable conditions and to examine the influence of pollutant feeding and relative humidification of the gaseous effluent on the REvp. The REvp of biofilters reached near 80% and highlighted both the stability of that removal and the statistical equivalence between two identical biofilters. Pollutant deprivation periods of 12 h, 48 h and 30 days were shown to have no influence on the biofilters’ removal capacity, demonstrating the robustness and adaptation capacities of the flora. In contrast, a 90-day famine period turned the biofilters into emitters of viable particles. Finally, the humidification of the effluent was shown to negatively influence the removal capacity for viable particles, as drying off the air was shown to increase the REvp from 60 to 85%. PMID:29562709

  2. 40 CFR 180.1011 - Viable spores of the microorganism Bacillus thuringiensis Berliner; exemption from the...

    Science.gov (United States)

    2010-07-01

    ... EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1011 Viable spores of the... characteristics of the parent strain or contamination by other microorganisms. (3) Each lot of spore preparation... production is a Bacillus thuringiensis strain which does not produce β-exotoxin under standard manufacturing...

  3. Viable cold-tolerant iron-reducing microorganisms in geographically diverse subglacial environments

    Science.gov (United States)

    Nixon, Sophie L.; Telling, Jon P.; Wadham, Jemma L.; Cockell, Charles S.

    2017-03-01

    Subglacial environments are known to harbour metabolically diverse microbial communities. These microbial communities drive chemical weathering of underlying bedrock and influence the geochemistry of glacial meltwater. Despite its importance in weathering reactions, the microbial cycling of iron in subglacial environments, in particular the role of microbial iron reduction, is poorly understood. In this study we address the prevalence of viable iron-reducing microorganisms in subglacial sediments from five geographically isolated glaciers. Iron-reducing enrichment cultures were established with sediment from beneath Engabreen (Norway), Finsterwalderbreen (Svalbard), Leverett and Russell glaciers (Greenland), and Lower Wright Glacier (Antarctica). Rates of iron reduction were higher at 4 °C compared with 15 °C in all but one duplicated second-generation enrichment culture, indicative of cold-tolerant and perhaps cold-adapted iron reducers. Analysis of bacterial 16S rRNA genes indicates Desulfosporosinus were the dominant iron-reducing microorganisms in low-temperature Engabreen, Finsterwalderbreen and Lower Wright Glacier enrichments, and Geobacter dominated in Russell and Leverett enrichments. Results from this study suggest microbial iron reduction is widespread in subglacial environments and may have important implications for global biogeochemical iron cycling and export to marine ecosystems.

  4. Concentrations of viable oil-degrading microorganisms are increased in feces from Calanus finmarchicus feeding in petroleum oil dispersions.

    Science.gov (United States)

    Størdal, Ingvild Fladvad; Olsen, Anders Johny; Jenssen, Bjørn Munro; Netzer, Roman; Hansen, Bjørn Henrik; Altin, Dag; Brakstad, Odd Gunnar

    2015-09-15

    Zooplankton are suggested to be biotic contributors to the transport and weathering of oil in marine environments due to their ingestion of oil. In the present experiment, feeding activity and microbial communities in feces from Calanus finmarchicus feeding in oil dispersions were characterized. Feeding activity was significantly reduced in oil dispersions. The microbial communities in clean and oil-containing copepod feces were dominated by Rhodobacteraceae family bacteria (Lesingera, Phaeobacter, Rugeria, and Sulfitobacter), which were suggested to be indigenous to copepod feces. The results also indicated that these bacteria were metabolizing oil compounds, as a significant increase in the concentrations of viable oil degrading microorganisms was observed in oil-containing feces. This study shows that bacteria in feces from copepods feeding in dilute oil dispersions have capacity for degradation of oil. Zooplankton may therefore contribute to weathering of oil by excreting feces with microbial communities already adapted to degradation of oil. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Medical Significance of Microorganisms in Spacecraft Environment

    Science.gov (United States)

    Pierson, Duane L.; Ott, C. Mark

    2007-01-01

    Microorganisms can spoil food supplies, contaminate drinking water, release noxious volatile compounds, initiate allergic responses, contaminate the environment, and cause infectious diseases. International acceptability limits have been established for bacterial and fungal contaminants in air and on surfaces, and environmental monitoring is conducted to ensure compliance. Allowable levels of microorganism in water and food have also been established. Environmental monitoring of the space shuttle, the Mir, and the ISS have allowed for some general conclusions. Generally, the bacteria found in air and on interior surfaces are largely of human origin such as Staphylococcus spp., Micrococcus spp. Common environmental genera such as Bacillus spp. are the most commonly isolated bacteria from all spacecraft. Yeast species associated with humans such as Candida spp. are commonly found. Aspergillus spp., Penicillium spp., and Cladosporium spp. are the most commonly isolated filamentous fungi. Microbial levels in the environment differ significantly depending upon humidity levels, condensate accumulation, and availability of carbon sources. However, human "normal flora" of bacteria and fungi can result in serious, life-threatening diseases if human immunity is compromised. Disease incidence is expected to increase as mission duration increases.

  6. Identification and Characterization of Extremophile Microorganisms with Significance to Astrobiology

    Science.gov (United States)

    Bej, Asim K.

    2003-01-01

    It is now well recognized that microorganisms thrive in extreme ecological conditions such as geothermal vents, polar region, acid and alkaline lakes, and the cold pressurized depth of the ocean floor of this planet. Morphological, physiological, biochemical and genetic adaptations to extreme environments by these extremophile microorganisms have generated immense interest amongst astrobiologists who increasingly believe in the existence of extraterrestrial life. The evidence collected by NASA's space probe Galileo suggested the presence of liquid water and volcanic activity on Mars and Jupiter's satellite Europa. Volcanic activity provides some of the heat necessary to keep the water on Europa from freezing that could provide important dissolved chemicals needed by living organisms. The possibility of the existence of hypersaline alkaline lakes and evaporites confined within closed volcanic basins and impact craters on Mars, and a layer of liquid water under the ice on Europa provide sufficient 'raison d'etre' to study microorganisms in similar extreme environments on Earth, which could provide us with a model that would help establish the existence of extraterrestrial life on other planetary bodies. The objectives of the summer research project were as follows: (1) application of molecular approaches to help establish new species of extremophile microorganisms isolated from a hypersaline alkaline lake; and (2) identification of a major cold-shock gene (cspA) homolog from a psychrotolerant microorganism, PmagG1.

  7. Establishing Drug Resistance in Microorganisms by Mass Spectrometry

    Science.gov (United States)

    Demirev, Plamen A.; Hagan, Nathan S.; Antoine, Miquel D.; Lin, Jeffrey S.; Feldman, Andrew B.

    2013-08-01

    A rapid method to determine drug resistance in bacteria based on mass spectrometry is presented. In it, a mass spectrum of an intact microorganism grown in drug-containing stable isotope-labeled media is compared with a mass spectrum of the intact microorganism grown in non-labeled media without the drug present. Drug resistance is determined by predicting characteristic mass shifts of one or more microorganism biomarkers using bioinformatics algorithms. Observing such characteristic mass shifts indicates that the microorganism is viable even in the presence of the drug, thus incorporating the isotopic label into characteristic biomarker molecules. The performance of the method is illustrated on the example of intact E. coli, grown in control (unlabeled) and 13C-labeled media, and analyzed by MALDI TOF MS. Algorithms for data analysis are presented as well.

  8. MICROORGANISMS IN SELECTED CONFECTIONARY PRODUCTS DURING THE MANUFACTURING PROCESS

    Directory of Open Access Journals (Sweden)

    Jana Petrová

    2015-02-01

    Full Text Available The aim of our study was to evaluate the microbiological quality confectionery products during production. A total of 135 samples were analyzed: 45 samples of the punch balls, 45 Venček samples and 45 samples French cubes from home, school and private production. For microorganism cultivation VRBL agar for the isolation of coliform bacteria, DRBC and DG18 for microscopic fungi and yeasts, Plate Count Agar for total viable count, Meat peptone agar for mesophilic aerobic bacteria, XLD agar for Salmonella sp. and Baird Parker agar for Staphylococcus aureus were used. Following microbiological parameters were tested: total viable count, mesophilic anaerobic microorganisms, coliform bacteria, yeast and microscopic filamentous fungi, Salmonella spp. and Staphylococcus aureus. Products are assessed according to the limit values of the number of microorganisms contained in the Codex Alimentary of the Slovak Republic. The overall assessment of the microbiological quality of the punch balls, we found that two samples from school factory and one sample from private producer did not meet CA SR for the total viable count. Comparing the microbiological quality of Venček with CA SR, we found that one sample of home production did not meet the requirements for this type of product. All the tested samples were Staphylococcus aureus and Salmonella spp. negative. Comparing the results of the samples with French cubes CA SR, we found that all the samples satisfy requirements.

  9. DENTINE CARIES: ACID-TOLERANT MICROORGANISMS AND ASPECTS ON COLLAGEN DEGRADATION.

    Science.gov (United States)

    Lager, Anders Hedenbjörk

    2014-01-01

    . Key findings: Each investigated lesion harbored a unique microbiota in terms of both species composition and numbers of microorganisms. This indicates that various combinations of aciduric microorganisms can colonize, survive in and probably also propagate dentine carious lesions. We also found that solid pH-selective agars can be used successfully to select acid-tolerant microorganisms in caries lesions. This would preserve their phenotypic traits for further study. In Paper III, the relation between salivary levels of matrix metalloproteinase-8 (MMP-8), salivary levels of tissue inhibitor of MMP (TIMP-1), and the presence of manifest caries lesions in a large number of subjects was investigated. Saliva samples were collected and analyzed for concentrations of MMP-8, TIMP-1 and total protein using immunofluorometric assays, enzyme linked immunosorbent assays and Bradford assays, respectively. Key findings: Subjects with manifest caries lesions had significantly elevated levels of salivary MMP-8 compared to subjects without caries lesions. TIMP-1 was not significant in any case. In Paper IV, a new method for generating bioactive demineralized dentine matrix substrate (DDM) was developed using a dialysis system and two different demineralization approaches (acetic acid or EDTA). The generated DDM was subsequently analyzed for the presence of type 1 collagen, active MMP-8 and hydroxyproline (HYP) levels using SDS-PAGE, ELISA or immunofluorescence assay. Key findings: Both demineralization methods produced a substrate rich in collagen and with preserved MMP-8 activity. This report presents new knowledge on the composition of the acid tolerant dentine caries microbiota from three levels in dentine carious lesions and on the efficacy of operative caries removal on the numbers of viable microorganisms in the caries free cavity using two operative methods. Moreover, the basic mechanisms behind collagen degradation in the dentine caries process are studied from both a

  10. Characterization of Microorganisms Isolated from Petroleum Hydrocarbon Polluted Soil

    Directory of Open Access Journals (Sweden)

    Adriana Criste

    2016-02-01

    Full Text Available Bioremediation has received a great deal of attention, and bacteria isolated from polluted soil can be usedin that process. In this study, we performed an evaluation of the physiological groups of microorganisms fromsoil contaminated with petroleum. Bacterial strains were isolated from contaminated soil using the selectiveenrichment technique. Minimal Salt Media was used for serial dilutions to determine viable cell count. Thenumber of total viable cells and different types of microorganisms in the original sample was determined by serialdilution, agar plating procedure using selective media. The plates were incubated at 300C for 24-72 hours. Distinctcolonies growing on each plate were selected, and stored at freezing temperatures. The bacterial colonies werethen identified by Gram staining and biochemical tests. Following our research, it was observed that although thetotal microbial load of soil is relatively close in value, there are differences regarding the physiological group ofmicroorganisms. In the oil contaminated soil sample the largest group of microorganisms was the nitrous nitrifyingbacteria followed by nitrate bacteria. All bacterial strains that were isolated from soil samples contaminated withhydrocarbons but also the Pseudomonas putida and Bacillus subtillis strains can use diesel fuel as a food source.With the increase of diesel fuel concentration from culture medium, the majority of the bacterial strains that wereused in our experiments showed an increased value of absorbance. This fact suggests that these strains can be usedin bioremediation processes.

  11. Necromass as a source of energy to microorganisms in marine sediments.

    Science.gov (United States)

    Bradley, J.; Amend, J.; LaRowe, D.

    2017-12-01

    Marine sediments constitute one of the largest, most energy-limited biospheres on Earth. Despite increasing exploration and interest characterizing microbial communities in marine sediments, the production and role of microbial dead-matter (necromass) has largely been overlooked. Necromass is produced on a global scale, yet its significance as a power source to heterotrophic microorganisms remains unknown. We developed a physical, bio-energetic and geochemical model to quantify the total power supply from necromass oxidation and the total power demand of living microorganisms in marine sediments. This model is first applied to sediments from the oligotrophic South Pacific Gyre (SPG), where organic carbon and biomass concentrations are extremely low, yet microorganisms persist for millions of years in some of the lowest energy states on Earth. We show that necromass does not supply sufficient power to support the total demands of the living community (maintenance demands of microorganisms in marine sediments for up to 60,000 years following burial. Our model assumes that all counted cells are viable. Yet, if only a fraction of counted cells are alive, the role of necromass as an electron donor in fueling microbial metabolisms is even greater. This new insight requires a reassessment of carbon fluxes in the deep biosphere. By extension, we also demonstrate a mechanism for microbial communities to persist by oxidizing necromass over geological timescales, and thereby endure unfavorable, low-energy settings that might be analogous to conditions on early Earth and on other planetary bodies.

  12. Electrokinetic transport of aerobic microorganisms under low-strength electric fields.

    Science.gov (United States)

    Maillacheruvu, Krishnanand Y; Chinchoud, Preethi R

    2011-01-01

    To investigate the feasibility of utilizing low strength electric fields to transport commonly available mixed cultures such as those from an activated sludge process, bench scale batch reactor studies were conducted in sand and sandy loam soils. A readily biodegradable substrate, dextrose, was used to test the activity of the transported microorganisms. Electric field strengths of 7V, 10.5V, and 14V were used. Results from this investigation showed that an electric field strength of 0.46 Volts per cm was sufficient to transport activated sludge microorganisms across a sandy loam soil across a distance of about 8 cm in 72 h. More importantly, the electrokinetically transported microbial culture remained active and viable after the transport process and was biodegrade 44% of the dextrose in the soil medium. Electrokinetic treatment without microorganisms resulted in removal of 37% and the absence of any treatment yielded a removal of about 15%.

  13. A Comprehensive Characterization of Microorganisms and Allergens in Spacecraft Environment

    Science.gov (United States)

    Castro, V.A.; Ott, C.M.; Garcia, V.M.; John, J.; Buttner, M.P.; Cruz, P.; Pierson, D.L.

    2009-01-01

    identification and bacterial fingerprinting have improved NASA s capability to better understand spacecraft environments and determine the source of contamination events. Preflight sampling has been completed for air, surface, and water samples. In-flight sample collection has been completed for a total of 8 air and surface sample collection sessions. In-flight hardware has performed well and the surface sampling device received positive feedback from the crew for its ease of use. While processing and analysis continue for these samples, early results have begun to provide information on the spacecraft environment. Using a method called Denaturing Gradient Gel Electrophoresis (DGGE), several air and samples were evaluated to determine the types of organisms that were present. Using only molecular techniques, DGGE does not depend on any microbial growth on culture media, allowing a more comprehensive assessment of the spacecraft interior. Preliminary results have identified several microorganisms that would not have been isolated using current technology, though none of these organisms would be considered medically significant. Interestingly, the isolation of Gram negative organisms is greater using DGGE than conventional media based isolation. The cause of this finding is unclear, though it may be the result of the technique s ability to isolate both viable and non-viable bacteria. The next phase of the SWAB sample analysis is the use of quantitative polymerase chain reaction (QPCR) to look for specific medically significant organisms. While not as broad as DGGE, QPCR is much more sensitive and may reveal findings that were not seen during the initial evaluation. Together, this information will lead toward an accurate microbial risk assessment to help set flight requirements to protect the safety, health, and performance of the crew.

  14. The deterioration during transport and storage of tomato fruits by microorganisms contaminating the surface and latent infected tissue

    OpenAIRE

    河野, 又四; 寺下, 隆夫

    1988-01-01

    [Author abstract]Deterioration during transport and storage of tomato fruits is generally thought to be caused by microorganisms contaminating the surface and latent infected tissue of apparently healthy fruit. Counts of viable airborne microorganisms showed that there were more in plastic greenhouses than in open culure of tomatoes. Altemaria, Aspergillus niger, Asp. oryzae, Cladosporium, Fusarium, Mucor, Penicillium, Trichoderma, Trichothecium, Bacillus, Erwinia and Pseudomonas were among t...

  15. Separation of viable lactic acid bacteria from fermented milk

    Directory of Open Access Journals (Sweden)

    Tomohiko Nishino

    2018-04-01

    Full Text Available Probiotics are live microorganisms that provide health benefits to humans. Some lactic acid bacteria (LAB are probiotic organisms used in the production of fermented foods, such as yogurt, cheese, and pickles. Given their widespread consumption, it is important to understand the physiological state of LAB in foods such as yogurt. However, this analysis is complicated, as it is difficult to separate the LAB from milk components such as solid curds, which prevent cell separation by dilution or centrifugation. In this study, we successfully separated viable LAB from yogurt by density gradient centrifugation. The recovery rate was >90 %, and separation was performed until the stationary phase. Recovered cells were observable by microscopy, meaning that morphological changes and cell viability could be directly detected at the single-cell level. The results indicate that viable LAB can be easily purified from fermented milk. We expect that this method will be a useful tool for the analysis of various aspects of probiotic cells, including their enzyme activity and protein expression. Keywords: Food analysis, Microbiology

  16. Microorganism immobilization

    Science.gov (United States)

    Compere, Alicia L.; Griffith, William L.

    1981-01-01

    Live metabolically active microorganisms are immobilized on a solid support by contacting particles of aggregate material with a water dispersible polyelectrolyte such as gelatin, crosslinking the polyelectrolyte by reacting it with a crosslinking agent such as glutaraldehyde to provide a crosslinked coating on the particles of aggregate material, contacting the coated particles with live microorganisms and incubating the microorganisms in contact with the crosslinked coating to provide a coating of metabolically active microorganisms. The immobilized microorganisms have continued growth and reproduction functions.

  17. Rapid Classification and Identification of Multiple Microorganisms with Accurate Statistical Significance via High-Resolution Tandem Mass Spectrometry.

    Science.gov (United States)

    Alves, Gelio; Wang, Guanghui; Ogurtsov, Aleksey Y; Drake, Steven K; Gucek, Marjan; Sacks, David B; Yu, Yi-Kuo

    2018-06-05

    Rapid and accurate identification and classification of microorganisms is of paramount importance to public health and safety. With the advance of mass spectrometry (MS) technology, the speed of identification can be greatly improved. However, the increasing number of microbes sequenced is complicating correct microbial identification even in a simple sample due to the large number of candidates present. To properly untwine candidate microbes in samples containing one or more microbes, one needs to go beyond apparent morphology or simple "fingerprinting"; to correctly prioritize the candidate microbes, one needs to have accurate statistical significance in microbial identification. We meet these challenges by using peptide-centric representations of microbes to better separate them and by augmenting our earlier analysis method that yields accurate statistical significance. Here, we present an updated analysis workflow that uses tandem MS (MS/MS) spectra for microbial identification or classification. We have demonstrated, using 226 MS/MS publicly available data files (each containing from 2500 to nearly 100,000 MS/MS spectra) and 4000 additional MS/MS data files, that the updated workflow can correctly identify multiple microbes at the genus and often the species level for samples containing more than one microbe. We have also shown that the proposed workflow computes accurate statistical significances, i.e., E values for identified peptides and unified E values for identified microbes. Our updated analysis workflow MiCId, a freely available software for Microorganism Classification and Identification, is available for download at https://www.ncbi.nlm.nih.gov/CBBresearch/Yu/downloads.html . Graphical Abstract ᅟ.

  18. The environmental impact of mine wastes - roles of microorganisms and their significance in treatment of mine wastes

    International Nuclear Information System (INIS)

    Ledin, M.; Pedersen, K.

    1996-01-01

    Mine wastes constitute a potential source of contamination to the environment, as heavy metals and acid are released in large amounts. A great variety of microorganisms has been found in mine wastes and microbiological processes are usually responsible for the environmental hazard created by mine wastes. However, microorganisms can also be used to retard the adverse impact of mine wastes on the environment. Conventionally, the mine drainage as well as the waste itself can be treated with alkali to increase pH and precipitate metals. The main drawback of this method is that it has to be continuously repeated to be fully effective. There may also be negative effects on beneficial microorganisms. Several other treatment methods have been developed to stop weathering processes thereby reducing the environmental impact of mine wastes. The other main approach is to treat the drainage water. Various methods aim at using microorganisms for this in natural or engineered systems. Recently, much interest has been focused on the use of natural or artificial wetlands for treatment. In general, the activity of microorganisms is neglected in the design of mine waste treatment systems, and the treatments are created merely from a technical point of view. This can result in situations where unexpected microbial processes take over, and, in the worst scenario, the overall effect is opposite to the desired

  19. Antimicrobial activity of potassium hydroxide and lauric acid against microorganisms associated with poultry processing.

    Science.gov (United States)

    Hinton, Arthur; Ingram, Kimberly D

    2006-07-01

    The antimicrobial activity of solutions of potassium hydroxide (KOH) and mixtures of KOH and lauric acid against microorganisms associated with poultry processing was determined. In vitro tests were performed by enumerating viable microorganisms recovered from bacterial cultures suspended in peptone water (control) and in solutions of 0.1% KOH or mixtures of 0.1% KOH and 0.25 or 0.50% lauric acid. Additional studies were conducted to identify changes in the native microbial flora of poultry skin washed in distilled water, KOH, or KOH-lauric acid. Although results of in vitro studies indicated that significantly fewer bacteria (P < or = 0.05) were recovered from cultures suspended in KOH than from cultures suspended in peptone water, there were also significantly fewer bacteria recovered from cultures suspended in KOH-lauric acid than from cultures suspended in KOH. Results of experiments with broiler skin indicated that although rinsates of skin washed in 1.0% KOH solutions contained significantly fewer total aerobic bacteria and enterococci than did skin washed in water, significantly fewer of these microorganisms were generally recovered from rinsates of skin washed in mixtures of 1.0% KOH and 0.5, 1.0, 1.5, or 2.0% lauric acid than from skin washed in KOH alone. Washing of broiler skin in solutions of 0.25 to 1.00% KOH or mixtures containing these concentrations of KOH and two parts lauric acid (wt/vol) also significantly reduced the populations of bacteria and yeasts in the native flora of broiler skin. Enterococci, lactic acid bacteria, and staphylococci in the native flora of the skin had the highest level of resistance to the bactericidal activity of KOH-lauric acid. These findings indicate that the antimicrobial activity of KOH-lauric acid is significantly greater than that of KOH alone in vitro and on poultry skin. Thus, KOH-lauric acid may be useful for reducing the level of microbial contamination associated with poultry processing.

  20. Thermophilic microorganisms in biomining.

    Science.gov (United States)

    Donati, Edgardo Rubén; Castro, Camila; Urbieta, María Sofía

    2016-11-01

    Biomining is an applied biotechnology for mineral processing and metal extraction from ores and concentrates. This alternative technology for recovering metals involves the hydrometallurgical processes known as bioleaching and biooxidation where the metal is directly solubilized or released from the matrix for further solubilization, respectively. Several commercial applications of biomining can be found around the world to recover mainly copper and gold but also other metals; most of them are operating at temperatures below 40-50 °C using mesophilic and moderate thermophilic microorganisms. Although biomining offers an economically viable and cleaner option, its share of the world´s production of metals has not grown as much as it was expected, mainly considering that due to environmental restrictions in many countries smelting and roasting technologies are being eliminated. The slow rate of biomining processes is for sure the main reason of their poor implementation. In this scenario the use of thermophiles could be advantageous because higher operational temperature would increase the rate of the process and in addition it would eliminate the energy input for cooling the system (bioleaching reactions are exothermic causing a serious temperature increase in bioreactors and inside heaps that adversely affects most of the mesophilic microorganisms) and it would decrease the passivation of mineral surfaces. In the last few years many thermophilic bacteria and archaea have been isolated, characterized, and even used for extracting metals. This paper reviews the current status of biomining using thermophiles, describes the main characteristics of thermophilic biominers and discusses the future for this biotechnology.

  1. On-Chip Dielectrophoretic Separation and Concentration of Viable, Non-Viable and Viable but Not Culturable (VBNC) Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Packard, M M; Shusteff, M; Alocilja, E C

    2012-04-12

    Although bacterial culture remains the gold standard for detection of viable bacteria in environmental specimens, the typical time requirement of twenty-four hours can delay and even jeopardize appropriate public health intervention. In addition, culture is incapable of detecting viable but not culturable (VBNC) species. Conversely, nucleic acid and antibody-based methods greatly decrease time to detection but rarely characterize viability of the bacteria detected. Through selection by membrane permeability, the method described in this work employs positive dielectrophoresis (pDEP) for separation and purification of viable and VBNC species from water and allows concentration of bacteria for downstream applications.

  2. Application of molecular techniques for the assessment of microorganism diversity on cultural heritage objects.

    Science.gov (United States)

    Otlewska, Anna; Adamiak, Justyna; Gutarowska, Beata

    2014-01-01

    As a result of their unpredictable ability to adapt to varying environmental conditions, microorganisms inhabit different types of biological niches on Earth. Owing to the key role of microorganisms in many biogeochemical processes, trends in modern microbiology emphasize the need to know and understand the structure and function of complex microbial communities. This is particularly important if the strategy relates to microbial communities that cause biodeterioration of materials that constitute our cultural heritage. Until recently, the detection and identification of microorganisms inhabiting objects of cultural value was based only on cultivation-dependent methods. In spite of many advantages, these methods provide limited information because they identify only viable organisms capable of growth under standard laboratory conditions. However, in order to carry out proper conservation and renovation, it is necessary to know the complete composition of microbial communities and their activity. This paper presents and characterizes modern techniques such as genetic fingerprinting and clone library construction for the assessment of microbial diversity based on molecular biology. Molecular methods represent a favourable alternative to culture-dependent methods and make it possible to assess the biodiversity of microorganisms inhabiting technical materials and cultural heritage objects.

  3. Studies on the radiation sensitivity of food microorganism by high dose irradiation

    International Nuclear Information System (INIS)

    Hwang, Han Joon; Lee, Eun Jung; Yu, Hyun Hee; Lee, Jae Ho

    2010-04-01

    We investigated the radio resistance of pathogenic microorganisms (Bacillus cereus, Staphylococcus aureus, Methicillin resistant Staphylococcus aureus(MRSA) and Escherichia coli O157) in irradiating environments. Their radiation conditions of pathogenic microorganisms varied with pH(3-10), salt concentration(1-15%), temperature(-20, 4 and 25 .deg. C) and atmospheric condition. In addition, the effect of γ-irradiation on the inactivation of pathogenic microorganisms inoculated into food (saengsik, sliced ham, chopped beef) was investigated. The radiation dose ranged from 0 to 3 kGy. The γ--irradiated B.cereus(γ--BC) St.aureus(γ--SA), MRSA(γ--MRSA) and E.coli O157(γ--EC) were then cultured and the viable cell count on plate count agar and D10-values(dose required to inactivate 90% of a microbial population) were calculated. The number of pathogenic microorganisms at pH(3-10) and salt concentration(1-15%), temperature(-20, 4 and 25 .deg. C) and atmospheric condition decreased by 1 log CFU/ml after irradiation. The D 10 -value of γ--SA in the optimum condition was 0.152 kGy, and these of γ--MRSA and γ--EC were 0.346 and 0.240 kGy, respectively. The initial cell counts of pathogenic microorganisms in culture broth were slightly decreased as the decrease of pH and the increase of salt concentration. However, radiation resistance of pathogenic microorganisms was increased at frozen state. Moreover, D 10 -values of these is test strains in saengsik, sliced ham and chopped beef were 0.597, 0.226 , 0.398 and 0.416 kGy, respectively. These results provide the basic information for the in activation of pathogenic microorganisms in foods by irradiation

  4. Studies on the radiation sensitivity of food microorganism by high dose irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Han Joon; Lee, Eun Jung; Yu, Hyun Hee; Lee, Jae Ho [Korea University, Seoul (Korea, Republic of)

    2010-04-15

    We investigated the radio resistance of pathogenic microorganisms (Bacillus cereus, Staphylococcus aureus, Methicillin resistant Staphylococcus aureus(MRSA) and Escherichia coli O157) in irradiating environments. Their radiation conditions of pathogenic microorganisms varied with pH(3-10), salt concentration(1-15%), temperature(-20, 4 and 25 .deg. C) and atmospheric condition. In addition, the effect of {gamma}-irradiation on the inactivation of pathogenic microorganisms inoculated into food (saengsik, sliced ham, chopped beef) was investigated. The radiation dose ranged from 0 to 3 kGy. The {gamma}--irradiated B.cereus({gamma}--BC) St.aureus({gamma}--SA), MRSA({gamma}--MRSA) and E.coli O157({gamma}--EC) were then cultured and the viable cell count on plate count agar and D10-values(dose required to inactivate 90% of a microbial population) were calculated. The number of pathogenic microorganisms at pH(3-10) and salt concentration(1-15%), temperature(-20, 4 and 25 .deg. C) and atmospheric condition decreased by 1 log CFU/ml after irradiation. The D{sub 10}-value of {gamma}--SA in the optimum condition was 0.152 kGy, and these of {gamma}--MRSA and {gamma}--EC were 0.346 and 0.240 kGy, respectively. The initial cell counts of pathogenic microorganisms in culture broth were slightly decreased as the decrease of pH and the increase of salt concentration. However, radiation resistance of pathogenic microorganisms was increased at frozen state. Moreover, D{sub 10}-values of these is test strains in saengsik, sliced ham and chopped beef were 0.597, 0.226 , 0.398 and 0.416 kGy, respectively. These results provide the basic information for the in activation of pathogenic microorganisms in foods by irradiation

  5. Tumor-selective replication herpes simplex virus-based technology significantly improves clinical detection and prognostication of viable circulating tumor cells

    DEFF Research Database (Denmark)

    Zhang, Wen; Bao, Li; Yang, Shaoxing

    2016-01-01

    Detection of circulating tumor cells remains a significant challenge due to their vast physical and biological heterogeneity. We developed a cell-surface-marker-independent technology based on telomerase-specific, replication-selective oncolytic herpes-simplex-virus-1 that targets telomerase......-reverse-transcriptase-positive cancer cells and expresses green-fluorescent-protein that identifies viable CTCs from a broad spectrum of malignancies. Our method recovered 75.5-87.2% of tumor cells spiked into healthy donor blood, as validated by different methods, including single cell sequencing. CTCs were detected in 59-100% of 326...

  6. Tracking microorganisms and gene in the environment

    International Nuclear Information System (INIS)

    Atlas, R.M.; Sayler, G.S.

    1988-01-01

    Studies have been conducted to determine the sensitivities and limitations of various methods for determining the fate of genetically engineered microorganisms (GEMs) and their genes in the environment. Selective viable plate count procedures can be designed to detect the introduced organisms with high sensitivity; but they are restricted by potential mutations affecting the expression of the selective characteristic in the introduced organism, the occurrence of the particular selective characteristic in the indigenous organisms, and the need to culture the organism. The accuracy of this approach is greatly improved by colony hybridization procedures that use a specific gene probe to detect the introduced genes, but this approach is still only as sensitive as the plating procedure. Direct extraction of DNA from environmental samples, coupled with dot blot hybridization with radiolabeled probe DNA or solution hybridization, gives a high degree of both sensitivity and precision. This approach does not require culturing of the organism; and even if an introduced gene moves into a new organism or if the introduced organism is viable but nonculturable, the gene probe methods will detect the persistence of the introduced genes in the environment. Efficient direct DNA extraction methods have been developed and tested following in vitro experimental additions of GEMs to sediment and water samples

  7. Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels

    Energy Technology Data Exchange (ETDEWEB)

    Kuk Lee, Sung; Chou, Howard; Ham, Timothy S.; Soon Lee, Taek; Keasling, Jay D.

    2009-12-02

    The ability to generate microorganisms that can produce biofuels similar to petroleum-based transportation fuels would allow the use of existing engines and infrastructure and would save an enormous amount of capital required for replacing the current infrastructure to accommodate biofuels that have properties significantly different from petroleum-based fuels. Several groups have demonstrated the feasibility of manipulating microbes to produce molecules similar to petroleum-derived products, albeit at relatively low productivity (e.g. maximum butanol production is around 20 g/L). For cost-effective production of biofuels, the fuel-producing hosts and pathways must be engineered and optimized. Advances in metabolic engineering and synthetic biology will provide new tools for metabolic engineers to better understand how to rewire the cell in order to create the desired phenotypes for the production of economically viable biofuels.

  8. Characterization of the Viable but Nonculturable (VBNC State in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Mohammad Salma

    Full Text Available The Viable But Non Culturable (VBNC state has been thoroughly studied in bacteria. In contrast, it has received much less attention in other microorganisms. However, it has been suggested that various yeast species occurring in wine may enter in VBNC following sulfite stress.In order to provide conclusive evidences for the existence of a VBNC state in yeast, the ability of Saccharomyces cerevisiae to enter into a VBNC state by applying sulfite stress was investigated. Viable populations were monitored by flow cytometry while culturable populations were followed by plating on culture medium. Twenty-four hours after the application of the stress, the comparison between the culturable population and the viable population demonstrated the presence of viable cells that were non culturable. In addition, removal of the stress by increasing the pH of the medium at different time intervals into the VBNC state allowed the VBNC S. cerevisiae cells to "resuscitate". The similarity between the cell cycle profiles of VBNC cells and cells exiting the VBNC state together with the generation rate of cells exiting VBNC state demonstrated the absence of cellular multiplication during the exit from the VBNC state. This provides evidence of a true VBNC state. To get further insight into the molecular mechanism pertaining to the VBNC state, we studied the involvement of the SSU1 gene, encoding a sulfite pump in S. cerevisiae. The physiological behavior of wild-type S. cerevisiae was compared to those of a recombinant strain overexpressing SSU1 and null Δssu1 mutant. Our results demonstrated that the SSU1 gene is only implicated in the first stages of sulfite resistance but not per se in the VBNC phenotype. Our study clearly demonstrated the existence of an SO2-induced VBNC state in S. cerevisiae and that the stress removal allows the "resuscitation" of VBNC cells during the VBNC state.

  9. Microbial quality and molecular identification of cultivable microorganisms isolated from an urban drinking water distribution system (Limassol, Cyprus).

    Science.gov (United States)

    Botsaris, George; Kanetis, Loukas; Slaný, Michal; Parpouna, Christiana; Makris, Konstantinos C

    2015-12-01

    Microorganisms can survive and multiply in aged urban drinking water distribution systems, leading to potential health risks. The objective of this work was to investigate the microbial quality of tap water and molecularly identify its predominant cultivable microorganisms. Tap water samples collected from 24 different households scattered in the urban area of Limassol, Cyprus, were microbiologically tested following standard protocols for coliforms, E. coli, Pseudomonas spp., Enterococcus spp., and total viable count at 22 and 37 °C. Molecular identification was performed on isolated predominant single colonies using 16SrRNA sequencing. Approximately 85% of the household water samples were contaminated with one or more microorganisms belonging to the genera of Pseudomonas, Corynebacterium, Agrobacterium, Staphylococcus, Bacillus, Delftia, Acinetobacter, Enterococcus, Enterobacter, and Aeromonas. However, all samples tested were free from E. coli. This is the first report in Cyprus molecularly confirming specific genera of relevant microbial communities in tap water.

  10. [Characteristics of proteins synthesized by hydrogen-oxidizing microorganisms].

    Science.gov (United States)

    Volova, T G; Barashkov, V A

    2010-01-01

    The study was conducted to determine the biological value of proteins synthesized by hydrogen-oxidizing microorganisms--the hydrogen bacteria Alcaligenes eutrophus Z1 and Ralstonia eutropha B5786 and the CO-resistant strain of carboxydobacterium Seliberia carboxydohydrogena Z1062. Based on a number of significant parameters characterizing the biological value of a product, the proteins of hydrogen-oxidizing microorganisms have been found to occupy an intermediate position between traditional animal and plant proteins. The high total protein in biomass of these microorganisms, their complete amino acid content, and availability to proteolytic enzymes allow for us to consider these microorganisms as potential protein producers.

  11. From the lab to the farm: an industrial perspective of plant beneficial microorganisms

    Directory of Open Access Journals (Sweden)

    J. Jacob Parnell

    2016-08-01

    Full Text Available Any successful strategy aimed at enhancing crop productivity with microbial products ultimately relies on the ability to scale at regional to global levels. Microorganisms that show promise in the lab may lack key characteristics for widespread adoption in sustainable and productive agricultural systems. This paper provides an overview of critical considerations involved with taking a strain from discovery to the farmer’s field. This paper will review some of the most effective microbial products on the market today, explore the reasons for their success and outline some of the major challenges involved in industrial production and commercialization of beneficial strains for widespread agricultural application. General processes associated with commercializing viable microbial products are discussed in two broad categories, biofertility inoculants and biocontrol products. Specifically, we will address what farmers desire in potential microbial products, how mode of action informs decisions on product applications, variation in laboratory and field study data, challenges with scaling for mass production, and the importance of consistent efficacy, product stability and quality. In order to make a significant impact on global sustainable agriculture, the implementation of plant beneficial microorganisms will require a more seamless transition between laboratory and farm application. Early attention to the challenges presented here will improve the likelihood of developing effective microbial products that will improve crop yields, decrease disease severity, and help to feed an increasingly hungry planet.

  12. Separation of viable and non-viable tomato (Solanum lycopersicum L.) seeds using single seed near-infrared spectroscopy

    DEFF Research Database (Denmark)

    Shrestha, Santosh; Deleuran, Lise Christina; Gislum, René

    2017-01-01

    Single seed near-infrared (NIR) spectroscopy is a non-destructive technology commonly used for predicting lipids, proteins, carbohydrates and water content of agricultural products. The aim of the current study is to investigate the prospects of NIR spectroscopy in classifying viable and non...... identified as important for classification of viable and non-viable tomato seeds by iPLS-DA. The sensitivity i.e. ability to correctly identify the positive samples and specificity i.e. ability to reject the negative samples of the (iPLS-DA) model on identified spectral regions for prediction of viable......-viable tomato seeds of two cultivars using chemometrics. The data exploration were performed by principal component analysis (PCA). Subsequently, viable and non-viable seeds were classified by partial least squares-discriminant analysis (PLS-DA) and interval PLS-DA (iPLS-DA). The indication of clustering...

  13. Plasma inactivation of food-related microorganisms in liquids

    International Nuclear Information System (INIS)

    Marsili, Lisa; Espie, Steven; Anderson, J.G.John G.; MacGregor, S.J.Scott J.

    2002-01-01

    This paper reports on a plasma process that inactivates microorganisms in liquids through the application of high-voltage pulses. These pulses result in breakdown of the gas and liquid layers, producing many active species such as UV photons, ozone, free radicals and free electrons. Several test microorganisms representing a range of problematic microorganisms were investigated. Significant reductions in microbial population were achieved, demonstrating the effectiveness of using the plasma discharge process to treat contaminated liquids

  14. Micro-Organ Device

    Science.gov (United States)

    Gonda, Steve R. (Inventor); Chang, Robert C. (Inventor); Starly, Binil (Inventor); Culbertson, Christopher (Inventor); Holtorf, Heidi L. (Inventor); Sun, Wei (Inventor); Leslie, Julia (Inventor)

    2013-01-01

    A method for fabricating a micro-organ device comprises providing a microscale support having one or more microfluidic channels and one or more micro-chambers for housing a micro-organ and printing a micro-organ on the microscale support using a cell suspension in a syringe controlled by a computer-aided tissue engineering system, wherein the cell suspension comprises cells suspended in a solution containing a material that functions as a three-dimensional scaffold. The printing is performed with the computer-aided tissue engineering system according to a particular pattern. The micro-organ device comprises at least one micro-chamber each housing a micro-organ; and at least one microfluidic channel connected to the micro-chamber, wherein the micro-organ comprises cells arranged in a configuration that includes microscale spacing between portions of the cells to facilitate diffusion exchange between the cells and a medium supplied from the at least one microfluidic channel.

  15. Strategies for improving production performance of probiotic Pediococcus acidilactici viable cell by overcoming lactic acid inhibition.

    Science.gov (United States)

    Othman, Majdiah; Ariff, Arbakariya B; Wasoh, Helmi; Kapri, Mohd Rizal; Halim, Murni

    2017-11-27

    Lactic acid bacteria are industrially important microorganisms recognized for fermentative ability mostly in their probiotic benefits as well as lactic acid production for various applications. Fermentation conditions such as concentration of initial glucose in the culture, concentration of lactic acid accumulated in the culture, types of pH control strategy, types of aeration mode and different agitation speed had influenced the cultivation performance of batch fermentation of Pediococcus acidilactici. The maximum viable cell concentration obtained in constant fed-batch fermentation at a feeding rate of 0.015 L/h was 6.1 times higher with 1.6 times reduction in lactic acid accumulation compared to batch fermentation. Anion exchange resin, IRA 67 was found to have the highest selectivity towards lactic acid compared to other components studied. Fed-batch fermentation of P. acidilactici coupled with lactic acid removal system using IRA 67 resin showed 55.5 and 9.1 times of improvement in maximum viable cell concentration compared to fermentation without resin for batch and fed-batch mode respectively. The improvement of the P. acidilactici growth in the constant fed-batch fermentation indicated the use of minimal and simple process control equipment is an effective approach for reducing by-product inhibition. Further improvement in the cultivation performance of P. acidilactici in fed-bath fermentation with in situ addition of anion-exchange resin significantly helped to enhance the growth of P. acidilactici by reducing the inhibitory effect of lactic acid and thus increasing probiotic production.

  16. An evaluation of microorganisms for unconventional food regeneration schemes in CELSS - Research recommendations

    Science.gov (United States)

    Stokes, B. O.; Petersen, G. R.

    1982-01-01

    The benefits and deficiencies of various candidates for a controlled ecological life support system (CELSS) for manned spacecraft missions of at least 3-14 yr are discussed. Conventional plants are considered unacceptable due to their inefficient production of foodstuffs and overproduction of stems and leafy matter. The alternate concepts are algae and/or bacteria or chemical synthesis of food. Microorganisms are considered the most promising because of their direct use of CO2 and possible utilization of waste streams. Yeasts are cited as the most viable candidates, since a large data base and experience already exists in the commercial food industry. The addition of hydrogen bactria and solar-grown algae is recommended, together with genetic manipulation experiments to tailor the microorganisms to production of foodstuffs closer to the 70 percent carbohydrate, 20 percent protein, and 10 percent lipid optimal food currently accepted. The yeast strain, Hansenula polymorpha, has been successfully grown in methanol and encouraged to produce a 55 percent carbohydrate content.

  17. Nitrogen acquisition by plants and microorganisms in a temperate grassland.

    Science.gov (United States)

    Liu, Qianyuan; Qiao, Na; Xu, Xingliang; Xin, Xiaoping; Han, Jessie Yc; Tian, Yuqiang; Ouyang, Hua; Kuzyakov, Yakov

    2016-03-10

    Nitrogen (N) limitation is common in most terrestrial ecosystems, often leading to strong competition between microorganisms and plants. The mechanisms of niche differentiation to reduce this competition remain unclear. Short-term (15)N experiments with NH4(+), NO3(-), and glycine were conducted in July, August and September in a temperate grassland to evaluate the chemical, spatial and temporal niche differentiation by competition between plants and microorganisms for N. Microorganisms preferred NH4(+) and NO3(-), while plants preferred NO3(-). Both plants and microorganisms acquired more N in August and September than in July. The soil depth had no significant effects on microbial uptake, but significantly affected plant N uptake. Plants acquired 67% of their N from the 0-5 cm soil layer and 33% from the 5-15 cm layer. The amount of N taken up by microorganisms was at least seven times than plants. Although microorganisms efficiently compete for N with plants, the competition is alleviated through chemical partitioning mainly in deeper soil layer. In the upper soil layer, neither chemical nor temporal niche separation is realized leading to strong competition between plants and microorganisms that modifies N dynamics in grasslands.

  18. Effect of γ-irradiation on the occurrence of pathogenic microorganisms and nutritive value of four principal cereal grains

    International Nuclear Information System (INIS)

    Aziz, N.H.; Souzan, R.M.; Shahin Azza, A.

    2006-01-01

    The effects of 60 Co γ-photon-irradiation on the natural occurrence of pathogenic microorganisms in four principal cereal grains and on amino acids and vitamins in these cereals were investigated. The total numbers of aerobic bacteria were reduced by three logarithmic decades when grains were given a dose of 10 kGy. Coliforms and 'coagulase- positive' staphylococci were inhibited by a dose of 1 kGy, whereas fungi were inhibited by a dose of 5 kGy. The 15 kGy dose eliminated viable microorganisms in cereal grains, and about 10-30 colony-forming units of Clostridium sp. per gram of grain survived after this dose. The dose of 10 kGy did not cause any measurable destruction of total amino acids. Thiamin was reduced by 22-33% and riboflavin by 10-16% after a dose of 10 kGy. Irradiation did not increase the acid values significantly, but did increase the peroxide values, which was not accompanied by the off-odors of cereals. We conclude that the overall dose of 10 kGy is very effective for microbial decontamination of cereal grains, and does not adversely affect the nutritional quality of cereal grains

  19. The Conceptual Mechanism for Viable Organizational Learning Based on Complex System Theory and the Viable System Model

    Science.gov (United States)

    Sung, Dia; You, Yeongmahn; Song, Ji Hoon

    2008-01-01

    The purpose of this research is to explore the possibility of viable learning organizations based on identifying viable organizational learning mechanisms. Two theoretical foundations, complex system theory and viable system theory, have been integrated to provide the rationale for building the sustainable organizational learning mechanism. The…

  20. Polymerase chain reaction-based discrimination of viable from non-viable Mycoplasma gallisepticum

    Directory of Open Access Journals (Sweden)

    Ching Giap Tan

    2014-09-01

    Full Text Available The present study was based on the reverse transcription polymerase chain reaction (RT-PCR of the 16S ribosomal nucleic acid (rRNA of Mycoplasma for detection of viable Mycoplasma gallisepticum. To determine the stability of M. gallisepticum 16S rRNA in vitro, three inactivation methods were used and the suspensions were stored at different temperatures. The 16S rRNA of M. gallisepticum was detected up to approximately 20–25 h at 37 °C, 22–25 h at 16 °C, and 23–27 h at 4 °C. The test, therefore, could detect viable or recently dead M. gallisepticum (< 20 h. The RT-PCR method was applied during an in vivo study of drug efficacy under experimental conditions, where commercial broiler-breeder eggs were inoculated with M. gallisepticum into the yolk. Hatched chicks that had been inoculated in ovo were treated with Macrolide 1. The method was then applied in a flock of day 0 chicks with naturally acquired vertical transmission of M. gallisepticum, treated with Macrolide 2. Swabs of the respiratory tract were obtained for PCR and RT-PCR evaluations to determine the viability of M. gallisepticum. This study proved that the combination of both PCR and RT-PCR enables detection and differentiation of viable from non-viable M. gallisepticum.

  1. PMA-Linked Fluorescence for Rapid Detection of Viable Bacterial Endospores

    Science.gov (United States)

    LaDuc, Myron T.; Venkateswaran, Kasthuri; Mohapatra, Bidyut

    2012-01-01

    The most common approach for assessing the abundance of viable bacterial endospores is the culture-based plating method. However, culture-based approaches are heavily biased and oftentimes incompatible with upstream sample processing strategies, which make viable cells/spores uncultivable. This shortcoming highlights the need for rapid molecular diagnostic tools to assess more accurately the abundance of viable spacecraft-associated microbiota, perhaps most importantly bacterial endospores. Propidium monoazide (PMA) has received a great deal of attention due to its ability to differentiate live, viable bacterial cells from dead ones. PMA gains access to the DNA of dead cells through compromised membranes. Once inside the cell, it intercalates and eventually covalently bonds with the double-helix structures upon photoactivation with visible light. The covalently bound DNA is significantly altered, and unavailable to downstream molecular-based manipulations and analyses. Microbiological samples can be treated with appropriate concentrations of PMA and exposed to visible light prior to undergoing total genomic DNA extraction, resulting in an extract comprised solely of DNA arising from viable cells. This ability to extract DNA selectively from living cells is extremely powerful, and bears great relevance to many microbiological arenas.

  2. Isolation and characterization of Arctic microorganisms decomposing bioplastics.

    Science.gov (United States)

    Urbanek, Aneta K; Rymowicz, Waldemar; Strzelecki, Mateusz C; Kociuba, Waldemar; Franczak, Łukasz; Mirończuk, Aleksandra M

    2017-12-01

    The increasing amount of plastic waste causes significant environmental pollution. In this study, screening of Arctic microorganisms which are able to degrade bioplastics was performed. In total, 313 microorganisms were isolated from 52 soil samples from the Arctic region (Spitsbergen). Among the isolated microorganisms, 121 (38.66%) showed biodegradation activity. The ability of clear zone formation on emulsified poly(butylene succinate-co-adipate) (PBSA) was observed for 116 microorganisms (95.87%), on poly(butylene succinate) (PBS) for 73 microorganisms (60.33%), and on poly(ɛ-caprolactone) (PCL) for 102 microorganisms (84.3%). Moreover, the growth of microorganisms on poly(lactic acid) (PLA) agar plates was observed for 56 microorganisms (46.28%). Based on the 16S rRNA sequence, 10 bacterial strains which showed the highest ability for biodegradation were identified as species belonging to Pseudomonas sp. and Rhodococcus sp. The isolated fungal strains were tested for polycaprolactone films and commercial corn and potato starch bags degradation under laboratory conditions. Strains 16G (based on the analysis of a partial 18S rRNA sequence, identified as Clonostachys rosea) and 16H (identified as Trichoderma sp.) showed the highest capability for biodegradation. A particularly high capability for biodegradation was observed for the strain Clonostachys rosea, which showed 100% degradation of starch films and 52.91% degradation of PCL films in a 30-day shake flask experiment. The main advantage of the microorganisms isolated from Arctic environment is the ability to grow at low temperature and efficient biodegradation under this condition. The data suggest that C. rosea can be used in natural and laboratory conditions for degradations of bioplastics.

  3. FEASIBILITY OF THE AEROSOL-TO-LIQUID PARTICLE EXTRACTION SYSTEM (ALPES) FOR COLLECTION OF VIABLE FRANCISELLA SP.

    Energy Technology Data Exchange (ETDEWEB)

    Heitkamp, M

    2006-08-07

    Several Biowatch monitoring sites in the Houston area have tested positive for Francisella tularensis and there is a need to determine whether natural occurring Francisella-related microorganism(s) may be responsible for these observed positive reactions. The collection, culturing and characterization of Francisella-related natural microorganisms will provide the knowledge base to improve the future selectivity of Biowatch monitoring for Francisella. The aerosol-to-liquid particle extraction system (ALPES) is a high-efficiency, dual mechanism collection system that utilizes a liquid collection medium for capture of airborne microorganisms. Since the viability of microorganisms is preserved better in liquid medium than on air filters, this project was undertaken to determine whether Francisella philomiragia and Francisella tularensis LVS maintain acceptable viability in the continuous liquid recirculation, high direct current voltage and residual ozone concentrations which occur during ALPES operation. Throughout a series of preliminary trial runs with representative gram-negative and gram-positive microorganisms, several design modifications and improvements to the ALPES optimized liquid handling, electrical stability, sampling and overall performance for biological sampling. Initial testing with Francisella philomiragia showed viability was preserved better in PBS buffer than HBSS buffer. Trial runs at starting cell concentrations of 1.8 x 10{sup 6} and 2.5 x 10{sup 4} CFU/L showed less than a 1-log decrease in viability for F. philomiragia after 24 h in the ALPES. Francisella tularensis LVS (live vaccine strain) was used as a surrogate for virulent F. tularensis in ALPES trial runs conducted at starting cell concentrations of 10{sup 4}, 10{sup 5} and 10{sup 6} CFU/L. F. tularensis LVS was slow-growing and required highly selective growth media to prevent overgrowth by collected airborne microorganisms. In addition, one ALPES unit intake was HEPA filtered during

  4. Biosurfactants Produced by Marine Microorganisms with Therapeutic Applications.

    Science.gov (United States)

    Gudiña, Eduardo J; Teixeira, José A; Rodrigues, Lígia R

    2016-02-18

    Marine microorganisms possess unique metabolic and physiological features and are an important source of new biomolecules, such as biosurfactants. Some of these surface-active compounds synthesized by marine microorganisms exhibit antimicrobial, anti-adhesive and anti-biofilm activity against a broad spectrum of human pathogens (including multi-drug resistant pathogens), and could be used instead of existing drugs to treat infections caused by them. In other cases, these biosurfactants show anti-cancer activity, which could be envisaged as an alternative to conventional therapies. However, marine biosurfactants have not been widely explored, mainly due to the difficulties associated with the isolation and growth of their producing microorganisms. Culture-independent techniques (metagenomics) constitute a promising approach to study the genetic resources of otherwise inaccessible marine microorganisms without the requirement of culturing them, and can contribute to the discovery of novel biosurfactants with significant biological activities. This paper reviews the most relevant biosurfactants produced by marine microorganisms with potential therapeutic applications and discusses future perspectives and opportunities to discover novel molecules from marine environments.

  5. Biosurfactants Produced by Marine Microorganisms with Therapeutic Applications

    Directory of Open Access Journals (Sweden)

    Eduardo J. Gudiña

    2016-02-01

    Full Text Available Marine microorganisms possess unique metabolic and physiological features and are an important source of new biomolecules, such as biosurfactants. Some of these surface-active compounds synthesized by marine microorganisms exhibit antimicrobial, anti-adhesive and anti-biofilm activity against a broad spectrum of human pathogens (including multi-drug resistant pathogens, and could be used instead of existing drugs to treat infections caused by them. In other cases, these biosurfactants show anti-cancer activity, which could be envisaged as an alternative to conventional therapies. However, marine biosurfactants have not been widely explored, mainly due to the difficulties associated with the isolation and growth of their producing microorganisms. Culture-independent techniques (metagenomics constitute a promising approach to study the genetic resources of otherwise inaccessible marine microorganisms without the requirement of culturing them, and can contribute to the discovery of novel biosurfactants with significant biological activities. This paper reviews the most relevant biosurfactants produced by marine microorganisms with potential therapeutic applications and discusses future perspectives and opportunities to discover novel molecules from marine environments.

  6. Terrestrial microorganisms at an altitude of 20,000 m in Earth's atmosphere

    Science.gov (United States)

    Griffin, Dale W.

    2004-01-01

    A joint effort between the U.S. Geological Survey's (USGS) Global Desert Dust and NASA's Stratospheric and Cosmic Dust Programs identified culturable microbes from an air sample collected at an altitude of 20,000 m. A total of 4 fungal (Penicillium sp.) and 71 bacteria colonyforming units (70 colonies of Bacillus luciferensis believed to have originated from a single cell collected at altitude and one colony of Bacillus sphaericus) were enumerated, isolated and identified using a morphological key and 16S rDNA sequencing respectively. All of the isolates identified were sporeforming pigmented fungi or bacteria of terrestrial origin and demonstrate that the presence of viable microorganisms in Earth's upper atmosphere may not be uncommon.

  7. Evaluation of the BioVigilant IMD-A, a novel optical spectroscopy technology for the continuous and real-time environmental monitoring of viable and nonviable particles. Part II. Case studies in environmental monitoring during aseptic filling, intervention assessments, and glove integrity testing in manufacturing isolators.

    Science.gov (United States)

    Miller, Michael J; Walsh, Michael R; Shrake, Jerry L; Dukes, Randall E; Hill, Daniel B

    2009-01-01

    This paper describes the use of the BioVigilant IMD-A, a real-time and continuous monitoring technology based on optical spectroscopy, to simultaneously and instantaneously detect, size, and enumerate both viable and nonviable particles in a variety of filling and transfer isolator environments during an aseptic fill, transfer of sterilized components, and filling interventions. Continuous monitoring of three separate isolators for more than 16 h and representing more than 28 m3 of air per isolator (under static conditions) yielded a mean viable particle count of zero (0) per cubic meter. Although the mean count per cubic meter was zero, the detection of very low levels of single viable particles was randomly observed in each of these sampling runs. No viable particles were detected during the manual transfer of sterilized components from transfer isolators into a filling isolator, and similar results were observed during an aseptic fill, a filling needle change-out procedure, and during disassembly, movement, and reassembly of a vibrating stopper bowl. During the continuous monitoring of a sample transfer port and a simulated mousehole, no viable particles were detected; however, when the sampling probe was inserted beyond the isolator-room interface, the IMD-A instantaneously detected and enumerated both viable and nonviable particles originating from the surrounding room. Data from glove pinhole studies showed no viable particles being observed, although significant viable particles were immediately detected when the gloves were removed and a bare hand was allowed to introduce microorganisms into the isolator. The IMD-A technology offers the industry an unprecedented advantage over growth-based bioaerosol samplers for monitoring the state of microbiological control in pharmaceutical manufacturing environments, and represents significant progress toward the acceptance of microbiology process analytical technology solutions for the industry.

  8. Droplet digital PCR improves absolute quantification of viable lactic acid bacteria in faecal samples.

    Science.gov (United States)

    Gobert, Guillaume; Cotillard, Aurélie; Fourmestraux, Candice; Pruvost, Laurence; Miguet, Jean; Boyer, Mickaël

    2018-03-14

    Analysing correlations between the observed health effects of ingested probiotics and their survival in digestive tract allows adapting their preparations for food. Tracking ingested probiotic in faecal samples requires accurate and specific tools to quantify live vs dead cells at strain level. Traditional culture-based methods are simpler to use but they do not allow quantifying viable but non-cultivable (VBNC) cells and they are poorly discriminant below the species level. We have set up a viable PCR (vPCR) assay combining propidium monoazide (PMA) treatment and either real time quantitative PCR (qPCR) or droplet digital PCR (ddPCR) to quantify a Lactobacillus rhamnosus and two Lactobacillus paracasei subsp. paracasei strains in piglet faeces. Adjustments of the PMA treatment conditions and reduction of the faecal sample size were necessary to obtain accurate discrimination between dead and live cells. The study also revealed differences of PMA efficiency among the two L. paracasei strains. Both PCR methods were able to specifically quantify each strain and provided comparable total bacterial counts. However, quantification of lower numbers of viable cells was best achieved with ddPCR, which was characterized by a reduced lower limit of quantification (improvement of up to 1.76 log 10 compared to qPCR). All three strains were able to survive in the piglets' gut with viability losses between 0.78 and 1.59 log 10 /g faeces. This study shows the applicability of PMA-ddPCR to specific quantification of small numbers of viable bacterial cells in the presence of an important background of unwanted microorganisms, and without the need to set up standard curves. It also illustrates the need to adapt PMA protocols according to the final matrix and target strain, even for closely related strains. The PMA-ddPCR approach provides a new tool to quantify bacterial survival in faecal samples from a preclinical and clinical trial. Copyright © 2018 The Authors. Published by

  9. Monitoring of psychrotrophic microorganisms in raw milk

    Directory of Open Access Journals (Sweden)

    Radka Burdychová

    2008-01-01

    Full Text Available The group of psychrotrophic microorganisms belongs to the microorganisms representing a risk for human health as well as a risk of milk and milk products spoilage. Some genus are considered to be significant producers of proteolytic and lipolytic enzymes. In this work, we analysed raw milk samples (n = 109 originated from 26 different suppliers from the area of North and Middle Moravia. The screening was performed from March 2007 to February 2008. The total bacterial counts (TBC ranged between 3.2 × 103 to 8.3 × 106 CFU/ml. The psychrotrophic bacterial counts (PBC ranged between 1.0 × 103 to 8.2 × 106 CFU/ml. Total of 48.62 % and 48.62 % of samples exceeded the hygienic limit in raw milk for TBC and PBC, respectively. The correlation between TBC and PBC was highly significant (r = 0.87.Significantly higher (P < 0.05 numbers of psychrotrophic microorganisms were detected in summer months. The identification of isolates was carried out and all strains were sreened for ability to produce proteolytic and lipolytic enzymes. The most commonly identified genus in raw milk was of the genus Pseudomonas. The ability to produce proteases or lipases was found at 76 % identified bacterial strains.

  10. [DIFFERENTIAL SENSITIVITY OF MICROORGANISMS TO POLYHEXAMETHYLENEGUANIDINE].

    Science.gov (United States)

    Lysytsya, A V; Mandygra, Y M; Bojko, O P; Romanishyna, O O; Mandygra, M S

    2015-01-01

    Factors identified that affect the sensitivity of microorganisms to polyhexamethyleneguanidine (PHMG). Salts of PHMG chloride, valerate, maleate, succinate was to use. Test strains of Esherichia coli, Staphylococcus aureus, Bacillus cereus, Leptospira interrogans, Paenibacillus larvae, Mycobacterium bovis, M. avium, M. fortuitum, Aspergillus niger and some strains of viruses are taken as objects of research. We have determined that the cytoplasm membrane phospholipids is main "target" for the polycation molecules of PHMG. A differential sensitivity of the microorganisms to this drug is primarily determined by relative amount of lipids in membrane and their accessibility. Such trends exist: increase the relative contents of anionic lipids and more negative surface electric potential of membrane, and reduction of the sizes fat acid remainder of lipids bring to increase of microorganism sensitivity. Types of anion salt PHMG just have a certain value. Biocide activity of PHMG chloride is more, than its salts with organic acid. Feasibility of combining PHMG with other biocides in the multicomponent disinfectants studied and analyzed. This combination does not lead to a significant increase in the sensitivity of microorganisms tested in most cases. Most species of pathogenic bacteria can be quickly neutralized by aqueous solutions of PHMG in less than 1% concentrations.

  11. Artificial inorganic Biohybrids: the functional combination of microorganisms and cells with inorganic materials.

    Science.gov (United States)

    Holzmeister, Ib; Schamel, Martha; Groll, Jürgen; Gbureck, Uwe; Vorndran, Elke

    2018-04-23

    Biohybrids can be defined as the functional combination of proteins, viable cells or microorganisms with non-biological materials. This article reviews recent findings on the encapsulation of microorganisms and eukaryotic cells in inorganic matrices such as silica gels or cements. The entrapment of biological entities into a support material is of great benefit for processing since the encapsulation matrix protects sensitive cells from shear forces, unfavourable pH changes, or cytotoxic solvents, avoids culture-washout, and simplifies the separation of formed products. After reflecting general aspects of such an immobilization as well as the chemistry of the inorganic matrices, we focused on manufacturing aspects and the application of such biohybrids in biotechnology, medicine as well as in environmental science and for civil engineering purpose. The encapsulation of living cells and microorganisms became an intensively studied and rapidly expanding research field with manifold applications in medicine, bio- and environmental technology, or civil engineering. Here, the use of silica or cements as encapsulation matrices have the advantage of a higher chemical and mechanical resistance towards harsh environmental conditions during processing compared to their polymeric counterparts. In this perspective, the article gives an overview about the inorganic material systems used for cell encapsulation, followed by reviewing the most important applications. The future may lay in a combination of the currently achieved biohybrid systems with additive manufacturing techniques. In a longer perspective, this would enable the direct printing of cell loaded bioreactor components. Copyright © 2018. Published by Elsevier Ltd.

  12. Determining the relationship between atherosclerosis and periodontopathogenic microorganisms in chronic periodontitis patients.

    Science.gov (United States)

    Bozoglan, Alihan; Ertugrul, Abdullah Seckin; Taspınar, Mehmet; Yuzbasioglu, Betul

    2017-05-01

    The aim of this study is to determine the relationship between atherosclerosis and periodontopathogenic microorganisms in chronic periodontitis patients following periodontal treatment. A total of 40 patients were included in the study. 20 of these patients diagnosed with atherosclerosis and chronic periodontitis formed the test group. The remaining 20 patients were systemically healthy patients diagnosed with chronic periodontitis and formed the control group. All patients had nonsurgical periodontal treatment. The periodontopathogenic microorganism levels were determined at baseline and at 6 months in microbial dental plaque samples and WBC, LDL, HDL, PLT, fibrinogen, creatinine and hs-CRP levels were determined by blood samples. Statistically significant reduction has been achieved in clinical periodontal parameters following non-surgical periodontal treatment in test and control groups. Following periodontal treatment, WBC, LDL, PLT, fibrinogen, creatinine and hs-CRP levels significantly decreased and HDL levels significantly increased in both test and control groups. Similarly, the periodontopathogenic microorganism levels significantly decreased following periodontal treatment in the test and control groups. A statistically significant positive correlation has been determined between the periodontopathogenic microorganism levels and WBC, LDL, PLT, fibrinogen, creatinine, and hs-CRP levels in the test group. The association between hs-CRP, WBC, LDL, PLT, fibrinogen, creatinine, and the amount of periodontopathogenic microorganisms indicates the possibility that periodontal treatment could decrease the risk atherosclerosis. More studies must be conducted in order for these results to be supported.

  13. Antibacterial Effect of Copper on Microorganisms Isolated from Bovine Mastitis

    Science.gov (United States)

    Reyes-Jara, Angelica; Cordero, Ninoska; Aguirre, Juan; Troncoso, Miriam; Figueroa, Guillermo

    2016-01-01

    The antimicrobial properties of copper have been recognized for several years; applying these properties to the prevention of diseases such as bovine mastitis is a new area of research. The aim of the present study was to evaluate in vitro the antimicrobial activity of copper on bacteria isolated from subclinical and clinical mastitis milk samples from two regions in Chile. A total of 327 microorganisms were recovered between March and September 2013, with different prevalence by sample origin (25 and 75% from the central and southern regions of Chile, respectively). In the central region, Escherichia coli and coagulase negative Staphylococci (CNS) were the most frequently detected in clinical mastitis cases (33%), while in the southern region S. uberis, S. aureus, and CNS were detected with frequencies of 22, 21, and 18%, respectively. Antibiotic susceptibility studies revealed that 34% of isolates were resistant to one or more antibiotics and the resistance profile was different between bacterial species and origins of isolation of the bacteria. The minimum inhibitory concentration of copper (MIC-Cu) was evaluated in all the isolates; results revealed that a concentration as low as 250 ppm copper was able to inhibit the great majority of microorganisms analyzed (65% of isolates). The remaining isolates showed a MIC-Cu between 375 and 700 ppm copper, and no growth was observed at 1000 ppm. A linear relationship was found between the logarithm of viable bacteria number and time of contact with copper. With the application of the same concentration of copper (250 ppm), CNS showed the highest tolerance to copper, followed by S. uberis and S. aureus; the least resistant was E. coli. Based on these in vitro results, copper preparations could represent a good alternative to dipping solutions, aimed at preventing the presence and multiplication of potentially pathogenic microorganisms involved in bovine mastitis disease. PMID:27199953

  14. Dynamic size spectrometry of airborne microorganisms: Laboratory evaluation and calibration

    Science.gov (United States)

    Qian, Yinge; Willeke, Klaus; Ulevicius, Vidmantas; Grinshpun, Sergey A.; Donnelly, Jean

    Bioaerosol samplers need to be calibrated for the microorganisms of interest. The Aerosizer, a relatively new aerodynamic size spectrometer, is shown to be a suitable dynamic instrument for the evaluation and calibration of such samplers in the laboratory, prior to their use in the field. It provides the necessary reference count against which the microbiological response of the sampler can be compared. It measures the health-significant aerodynamic diameters of microorganisms down to 0.5 μm, thus including most of the bacteria, fungi and pollen found in outdoor and indoor air environments. Comparison tests with a laser size spectrometer indicate that the suspension of microorganisms needs to be washed several times before aerosolization to avoid coating of the airborne microorganisms with nutrients and microbial slime from the suspension, and to reduce the residue particles to sizes below the lowest size of the aerosolized microorganisms.

  15. Effects of Atrazine on Soil Microorganisms

    Directory of Open Access Journals (Sweden)

    Ljiljana Radivojević

    2006-01-01

    Full Text Available Effects of the herbicide atrazine on soil microorganisms was investigated. Trials were set up in laboratory, on a clay loam soil. Atrazine was applied at 8.0, 40.0 and 80.0 mg/kg soil rates. The abundance of total microorganisms, fungi, actinomycetes, cellulolytic microorganisms and amino-heterotrophs was recorded. Soil samples were collected 1, 7, 14, 21, 30 and 60 days after atrazine treatment for microbiological analyses.The results showed that the intensity of atrazine effect on soil microorganisms depended on treatment rate, exposure time and group of microorganisms. Atrazine had an inhibiting effect on cellulolytic microorganisms and amino-heterotrophs. Initially, it inhibited fungiand actinomycetes but its effect turned into a stimulating one once a population recovered. Atrazine had a stimulating effect on total abundance of microorganisms.

  16. [Relationships between air conditioning, airborne microorganisms and health].

    Science.gov (United States)

    Parat, S; Perdrix, A; Baconnier, P

    1999-01-01

    Concurrently with the increase of air-conditioning, potentially severe or frequent new diseases have emerged, giving rise to social and economical consequences. The first part of this work is a state of the art review of the relationships between air-conditioning, airborne microorganisms and health, through a technical, metrological and medical approach. The second part presents four studies performed in this field. Two of them deal with the relationship between airborne microorganisms and technical features of air-conditioning. Measurements performed on actual sites demonstrated the benefit of using high efficiency filters and low risk components in air-conditioning systems. The third study was aimed to look for a relationship between airborne microorganisms and sick building syndrome symptoms. Statistical analyses of individual data revealed significant associations between airborne bacteria or fungi and symptoms. These results may be the first step in determining a dose-response relationship, in order to define threshold limit values in this field. In the fourth study, the contribution of particle counting in assessing exposure to airborne microorganisms was explored by monitoring simultaneous variations of microbial and particle concentrations. The results showed that associating particle counting may allow to detect microbial variations instantaneously, and therefore improve the assessment of exposure to airborne microorganisms.

  17. Virulence of thermolable haemolysi tlh, gastroenteritis related pathogenicity tdh and trh of the pathogens Vibrio Parahemolyticus in Viable but Non-Culturable (VBNC) state.

    Science.gov (United States)

    Zhong, Huamin; Zhong, Yukui; Deng, Qiulian; Zhou, Zhenwen; Guan, Xiaoshan; Yan, Muxia; Hu, Tingting; Luo, Mingyong

    2017-10-01

    In the Viable but Non-Culturable (VBNC) state, microorganisms may survive under severe external environment. In this study, the specificity and sensitivity of PMA-LAMP assay on the detection of Vibrio Parahemolyticus (V. parahemolyticus) has been developed and evaluated, with further application on a number of food-borne V. parahemolyticus strains. Six primers were designed for recognizing 8 distinct targeting on tlh, tdh and trh gene. Through specific penetration through the damaged cell membrane of dead cells and intercalating into DNA, PMA could prevent DNA amplification of dead bacteria from LAMP, which enabled the differentiation of bacteria between VBNC state and dead state. The established PMA-LAMP showed significant advantage in rapidity, sensitivity and specificity, compared with regular PCR assay. The applicability had also been verified, demonstrating the PMA-LAMP was capable of detection on V. parahaemolyticus. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Microorganisms in food technology

    Energy Technology Data Exchange (ETDEWEB)

    Rose, A H

    1981-11-01

    Man has been using microorganisms for thousands of years to make bread, cheese, beer, wine, etc. Today, microorganisms can be specially grown or genetically manipulated so as to synthesize high-quality proteins even from low-grade basic materials.

  19. Fossil Microorganisms in Archaean

    Science.gov (United States)

    Astafleva, Marina; Hoover, Richard; Rozanov, Alexei; Vrevskiy, A.

    2006-01-01

    Ancient Archean and Proterozoic rocks are the model objects for investigation of rocks comprising astromaterials. The first of Archean fossil microorganisms from Baltic shield have been reported at the last SPIE Conference in 2005. Since this confeence biomorphic structures have been revealed in Archean rocks of Karelia. It was determined that there are 3 types of such bion structures: 1. structures found in situ, in other words microorganisms even-aged with rock matrix, that is real Archean fossils biomorphic structures, that is to say forms inhabited early formed rocks, and 3. younger than Archean-Protherozoic minerali microorganisms, that is later contamination. We made attempt to differentiate these 3 types of findings and tried to understand of burial of microorganisms. The structures belongs (from our point of view) to the first type, or real Archean, forms were under examination. Practical investigation of ancient microorganisms from Green-Stone-Belt of Northern Karelia turns to be very perspective. It shows that even in such ancient time as Archean ancient diverse world existed. Moreover probably such relatively highly organized cyanobacteria and perhaps eukaryotic formes existed in Archean world.

  20. Biosurfactants from marine microorganisms

    Directory of Open Access Journals (Sweden)

    Suppasil Maneerat

    2005-11-01

    Full Text Available Biosurfactants are the surface-active molecules synthesized by microorganisms. With the advantage of environmental compatibility, the demand for biosurfactants has been steadily increasing and may eventually replace their chemically synthesized counterparts. Marine biosurfactants produced by some marine microorganisms have been paid more attention, particularly for the bioremediation of the sea polluted by crude oil. This review describes screening of biosurfactant-producing microorganisms, the determination of biosurfactant activity as well as the recovery of marine surfactant. The uses of marine biosurfactants for bioremediation are also discussed.

  1. Managing Viable Knowledge

    NARCIS (Netherlands)

    Achterbergh, J.M.I.M.; Vriens, D.J.

    2002-01-01

    In this paper, Beer's Viable System Model (VSM) is applied to knowledge management. Based on the VSM, domains of knowledge are identified that an organization should possess to maintain its viability. The logic of the VSM is also used to support the diagnosis, design and implementation of the

  2. A Comparative Evaluation of Adherence of Microorganism to Different Types of Brackets: A Scanning Electron Microscopic Study.

    Science.gov (United States)

    Shashidhar, E P; Sahitya, M; Sunil, T; Murthy, Anup R; Rani, M S

    2015-09-01

    The purpose of this study was to evaluate and compare the adherence of microorganism to different types of brackets using the scanning electron microscope (SEM). A double-blinded study was undertaken to evaluate and adherence of microorganisms to different types of brackets using SEM. At random, 12 patients reporting for treatment to the department of Orthodontics VS Dental College and Hospital were selected. Four types of brackets were included in the present study stainless steel, titanium, composite, and ceramic. Brackets were bonded to teeth of the patient on all the four quadrants. The teeth included for bonding were lateral incisor, canine, first premolar, and second premolar. The brackets were left for 72 h. After 72 h brackets were debonded, and they were evaluated by SEM for adherence of microorganism in the slot and tie wings surface. The SEM images were graded, and the adherence of microorganism to the brackets in the surfaces and the four different quadrants were recorded. There is a significant difference in adherence of microorganisms to the various types of brackets (P 0.05) included in the study. The interaction of bracket/surface, bracket/quadrant, surface/quadrants was analyzed, there was no significance of comparison of bracket/surfaces/quadrant but the interaction of bracket/quadrant was found to be significant (bracket/surfaces/quadrant was also found to be significant (bracket material and the least adherence of microorganisms was observed with the titanium bracket material. The adherence of microorganisms is relatively more in the slot area, when compare to the tie wings surface maximum adherence of microorganism is observed in the upper left quadrant and least adherence of microorganism is observed in the lower right quadrant. There is a significant difference in adherence of microorganisms to various types of brackets and the surfaces included in the study. There is no significant difference in the adherence of microorganism to the bracket

  3. Characteristics of airborne micro-organisms in a neurological intensive care unit: Results from China.

    Science.gov (United States)

    Yu, Yao; Yin, Sufeng; Kuan, Yi; Xu, Yingjun; Gao, Xuguang

    2015-06-01

    To describe the characteristics of airborne micro-organisms in the environment in a Chinese neurological intensive care unit (NICU). This prospective study monitored the air environment in two wards (large and small) of an NICU in a tertiary hospital in China for 12 months, using an LWC-1 centrifugal air sampler. Airborne micro-organisms were identified using standard microbiology techniques. The mean ± SD number of airborne bacteria was significantly higher in the large ward than in the small ward (200 ± 51 colony-forming units [CFU]/m(3) versus 110 ± 40 CFU/m(3), respectively). In the large ward only, the mean number of airborne bacteria in the autumn was significantly higher than in any of the other three seasons. A total of 279 airborne micro-organisms were identified (large ward: 195; small ward: 84). There was no significant difference in the type and distribution of airborne micro-organisms between the large and small wards. The majority of airborne micro-organisms were Gram-positive cocci in both wards. These findings suggest that the number of airborne micro-organisms was related to the number of patients on the NICU ward. © The Author(s) 2015 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  4. Microorganisms involved in MIC

    Energy Technology Data Exchange (ETDEWEB)

    Sorensen, K. [Danish Technological Institute (Denmark)

    2011-07-01

    Microbiologically influenced corrosion (MIC) is a widespread problem that is difficult to detect and assess because of its complex mechanism. This paper presents the involvement of microorganisms in MIC. Some of the mechanisms that cause MIC include hydrogen consumption, production of acids, anode-cathode formation and electron shuttling. A classic bio-corrosive microorganism in the oil and gas industry is sulphate-reducing prokaryotes (SRP). Methanogens also increase corrosion rates in metals. Some of the phylogenetic orders detected while studying SRP and methanogens are archaeoglobales, clostridiales, methanosarcinales and methanothermococcus. There were some implications, such as growth of SRP not being correlated with growth of methanogens; methanogens were included in MIC risk assessment. A few examples are used to display how microorganisms are involved in topside corrosion and microbial community in producing wells. From the study, it can be concluded that, MIC risk assessment includes system data and empirical knowledge of the distribution and number of microorganisms in the system.

  5. Investigation of biosurfactant-producing indigenous microorganisms that enhance residue oil recovery in an oil reservoir after polymer flooding.

    Science.gov (United States)

    She, Yue-Hui; Zhang, Fan; Xia, Jing-Jing; Kong, Shu-Qiong; Wang, Zheng-Liang; Shu, Fu-Chang; Hu, Ji-Ming

    2011-01-01

    Three biosurfactant-producing indigenous microorganisms (XDS1, XDS2, XDS3) were isolated from a petroleum reservoir in the Daqing Oilfield (China) after polymer flooding. Their metabolic, biochemical, and oil-degradation characteristics, as well as their oil displacement in the core were studied. These indigenous microorganisms were identified as short rod bacillus bacteria with white color, round shape, a protruding structure, and a rough surface. Strains have peritrichous flagella, are able to produce endospores, are sporangia, and are clearly swollen and terminal. Bacterial cultures show that the oil-spreading values of the fermentation fluid containing all three strains are more than 4.5 cm (diameter) with an approximate 25 mN/m surface tension. The hydrocarbon degradation rates of each of the three strains exceeded 50%, with the highest achieving 84%. Several oil recovery agents were produced following degradation. At the same time, the heavy components of crude oil were degraded into light components, and their flow characteristics were also improved. The surface tension and viscosity of the crude oil decreased after being treated by the three strains of microorganisms. The core-flooding tests showed that the incremental oil recoveries were 4.89-6.96%. Thus, XDS123 treatment may represent a viable method for microbial-enhanced oil recovery.

  6. Radioresistant microorganisms and food irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ito, H [Japan Atomic Energy Research Inst., Takasaki, Gunma. Takasaki Radiation Chemistry Research Establishment

    1976-01-01

    This paper deals with Micrococcus radiodurans, Arthrobacter radiotolerance, etc., which were isolated and discovered as radioresistant microorganisms. As for the explanation of the mechanism of radioresistance of these microorganisms, the consideration that these organisms have marked repair power of the damaged DNA and have many opportunity to repair the damaged DNA because of their long fission term were cited. The relationship between the radioresistance of microorganisms and food irradiation was also mentioned.

  7. Association of viable Mycobacterium leprae with Type 1 reaction in leprosy.

    Science.gov (United States)

    Save, Mrudula Prakash; Dighe, Anju Rajaram; Natrajan, Mohan; Shetty, Vanaja Prabhakaran

    2016-03-01

    The working hypothesis is that, viable Mycobacterium leprae (M. leprae) play a crucial role in the precipitation of Type 1 reaction (T1R) in leprosy. A total of 165 new multibacillary patients were studied. To demonstrate presence of viable M. leprae in reactional lesion (T1R+), three tests were used concurrently viz. growth in the mouse foot pad (MFP), immunohistochemical detection of M. leprae secretory protein Ag85, and 16s rRNA--using in situ RT-PCR. Mirror biopsies and non reactional lesions served as controls (T1R-). A significantly higher proportion of lesion biopsy homogenates obtained at onset, from T1R(+) cases have shown unequivocal growth in MFP, proving the presence of viable bacteria, as compared to T1R(-) (P leprae is a component/prerequisite and the secretory protein Ag 85, might be the trigger for precipitation of T1R.

  8. Improved Culture Medium (TiKa) for Mycobacterium avium Subspecies Paratuberculosis (MAP) Matches qPCR Sensitivity and Reveals Significant Proportions of Non-viable MAP in Lymphoid Tissue of Vaccinated MAP Challenged Animals

    DEFF Research Database (Denmark)

    Bull, Tim J.; Munshil, Tulika; Melvang, Heidi Mikkelsen

    2017-01-01

    The quantitative detection of viable pathogen load is an important tool in determining the degree of infection in animals and contamination of foodstuffs. Current conventional culture methods are limited in their ability to determine these levels in Mycobacterium avium subspecies paratuberculosis......Ka culture equates well with qPCR and provides important evidence that accuracy in estimating viable MAP load using DNA tests alone may vary significantly between samples of mucosal and lymphatic origin....... (MAP) due to slow growth, clumping and low recoverability issues. The principle goal of this study was to evaluate a novel culturing process (TiKa) with unique ability to stimulate MAP growth from low sample loads and dilutions. We demonstrate it was able to stimulate a mean 29-fold increase...

  9. Mini-review: Inhibition of biofouling by marine microorganisms.

    Science.gov (United States)

    Dobretsov, Sergey; Abed, Raeid M M; Teplitski, Max

    2013-01-01

    Any natural or artificial substratum exposed to seawater is quickly fouled by marine microorganisms and later by macrofouling species. Microfouling organisms on the surface of a substratum form heterogenic biofilms, which are composed of multiple species of heterotrophic bacteria, cyanobacteria, diatoms, protozoa and fungi. Biofilms on artificial structures create serious problems for industries worldwide, with effects including an increase in drag force and metal corrosion as well as a reduction in heat transfer efficiency. Additionally, microorganisms produce chemical compounds that may induce or inhibit settlement and growth of other fouling organisms. Since the last review by the first author on inhibition of biofouling by marine microbes in 2006, significant progress has been made in the field. Several antimicrobial, antialgal and antilarval compounds have been isolated from heterotrophic marine bacteria, cyanobacteria and fungi. Some of these compounds have multiple bioactivities. Microorganisms are able to disrupt biofilms by inhibition of bacterial signalling and production of enzymes that degrade bacterial signals and polymers. Epibiotic microorganisms associated with marine algae and invertebrates have a high antifouling (AF) potential, which can be used to solve biofouling problems in industry. However, more information about the production of AF compounds by marine microorganisms in situ and their mechanisms of action needs to be obtained. This review focuses on the AF activity of marine heterotrophic bacteria, cyanobacteria and fungi and covers publications from 2006 up to the end of 2012.

  10. 40 CFR 725.85 - Microorganism identity.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Microorganism identity. 725.85 Section... to Information § 725.85 Microorganism identity. (a) Claims applicable to the period prior to... specific microorganism identity at the time of submission of the information. This claim will apply only to...

  11. A New Approach on Sampling Microorganisms from the Lower Stratosphere

    Science.gov (United States)

    Gunawan, B.; Lehnen, J. N.; Prince, J.; Bering, E., III; Rodrigues, D.

    2017-12-01

    University of Houston's Undergraduate Student Instrumentation Project (USIP) astrobiology group will attempt to provide a cross-sectional analysis of microorganisms in the lower stratosphere by collecting living microbial samples using a sterile and lightweight balloon-borne payload. Refer to poster by Dr. Edgar Bering in session ED032. The purpose of this research is two-fold: first, to design a new system that is capable of greater mass air intake, unlike the previous iterations where heavy and power-intensive pumps are used; and second, to provide proof of concept that live samples are accumulated in the upper atmosphere and are viable for extensive studies and consequent examination for their potential weather-altering characteristics. Multiple balloon deployments will be conducted to increase accuracy and to provide larger set of data. This paper will also discuss visual presentation of the payload along with analyzed information of the captured samples. Design details will be presented to NASA investigators for professional studies

  12. Enumeration of viable and non-viable larvated Ascaris eggs with quantitative PCR

    Science.gov (United States)

    Aims: The goal of the study was to further develop an incubation-qPCR method for quantifying viable Ascaris eggs. The specific objectives were to characterize the detection limit and number of template copies per egg, determine the specificity of the method, and test the method w...

  13. Survival or revival: long-term preservation induces a reversible viable but non-culturable state in methane-oxidizing bacteria.

    Directory of Open Access Journals (Sweden)

    Sven Hoefman

    Full Text Available Knowledge on long-term preservation of micro-organisms is limited and research in the field is scarce despite its importance for microbial biodiversity and biotechnological innovation. Preservation of fastidious organisms such as methane-oxidizing bacteria (MOB has proven difficult. Most MOB do not survive lyophilization and only some can be cryopreserved successfully for short periods. A large-scale study was designed for a diverse set of MOB applying fifteen cryopreservation or lyophilization conditions. After three, six and twelve months of preservation, the viability (via live-dead flow cytometry and culturability (via most-probable number analysis and plating of the cells were assessed. All strains could be cryopreserved without a significant loss in culturability using 1% trehalose in 10-fold diluted TSB (TT as preservation medium and 5% DMSO as cryoprotectant. Several other cryopreservation and lyophilization conditions, all of which involved the use of TT medium, also allowed successful preservation but showed a considerable loss in culturability. We demonstrate here that most of these non-culturables survived preservation according to viability assessment indicating that preservation induces a viable but non-culturable (VBNC state in a significant fraction of cells. Since this state is reversible, these findings have major implications shifting the emphasis from survival to revival of cells in a preservation protocol. We showed that MOB cells could be significantly resuscitated from the VBNC state using the TT preservation medium.

  14. Activation of inoculum microorganism from dairy cattle feces

    Science.gov (United States)

    Ayuningtyas, Widya D.; Ridwan, Roni; Joni, I. M.; Marlina, E. T.; Harlia, Ellin

    2018-02-01

    Coal produces Coal Bed Methane (CBM) which is formed both biogenically and thermogenically. Lignite is not utilized optimally because it has low heat content and productivity time limit that decreases CBM production. In order to utilize lignite waste, adding inoculum consortium microorganism from dairy cattle waste as starter for biogas process can be a solution. This study aimed to produce inoculum consortium microorganism as biogas starter from dairy cattle feces through in vitro activation process by Theoudorou modification method. The research used complete randomized design with 3 replications. The treatments were blank (R0), 100% concentrate (R1), 70% concentrate+30% grass (R2), 70% grass+30% concentrate (R3) and 100% grass (R4). All treatments were added by buffer solution and feces with ratio of 2:1 into 100 ml serum injection bottle with anaerobic conditions. The parameters observed were gas production, pH and gas kinetics (orskov's equation) for 2, 4, 6, 8, 10, 12, 24 and 48 hours. The results showed that the treatment had significant effect (P <0.05) on the observed parameters. The highest total gas production was for R2 and R3 treatments with total production of 91.17 ml and 101.17 ml, pH (6.62 and 6.57), maximum gas production (94.03 and 97.62 ml), speed of gas production (0.066 and 0.084 ml/hour). There is not a significant difference for both the treatments. The source of inoculum consortium microorganisms for biogas starter selected based on the observed parameters and potential availability of proteolytic and fibrocytic microorganisms is R2 (70% concentrate +30% grass).

  15. On the use of the serial dilution culture method to enumerate viable phytoplankton in natural communities of plankton subjected to ballast water treatment.

    Science.gov (United States)

    Cullen, John J; MacIntyre, Hugh L

    2016-01-01

    Discharge standards for ballast water treatment (BWT) systems are based on concentrations of living cells, for example, as determined with vital stains. Ultraviolet radiation (UV) stops the reproduction of microorganisms without killing them outright; they are living, but not viable, and ecologically as good as dead. Consequently, UV-treated discharge can be compliant with the intent of regulation while failing a live/dead test. An alternative evaluation of BWT can be proposed based on the assessment of viable, rather than living, cells in discharge water. In principle, the serial dilution culture-most probable number (SDC-MPN) method provides the appropriate measure for phytoplankton. But, the method has been criticized, particularly because it is thought that many phytoplankton species cannot be cultured. A review of the literature shows that although SDC-MPN has been used for more than 50 years-generally to identify and count phytoplankton species that cannot be preserved-its application to enumerate total viable phytoplankton seems to be new, putting past criticisms of the method in a different light. Importantly, viable cells need to grow only enough to be detected, not to be brought into sustained culture, and competition between species in a dilution tube is irrelevant as long as the winner is detectable. Thorough consideration of sources of error leads to recommendations for minimizing and quantifying uncertainties by optimizing growth conditions and conducting systematic comparisons. We conclude that with careful evaluation, SDC-MPN is potentially an effective method for assessing the viability of phytoplankton after BWT.

  16. Stimulation of soil microorganisms in pesticide-contaminated soil using organic materials

    OpenAIRE

    Ima Yudha Perwira; Kiwako S. Araki; Motoki Kubo; Dinesh Adhikari

    2016-01-01

    Agrochemicals such as pesticides have contributed to significant increases in crop yields; however, they can also be linked to adverse effects on human health and soil microorganisms. For efficient bioremediation of pesticides accumulated in agricultural fields, stimulation of microorganisms is necessary. In this study, we investigated the relationships between bacterial biomass and total carbon (TC) and total nitrogen (TN) in 427 agricultural soils. The soil bacterial biomass was generally p...

  17. Bioplastics from microorganisms.

    Science.gov (United States)

    Luengo, José M; García, Belén; Sandoval, Angel; Naharro, Germán; Olivera, Elías R

    2003-06-01

    The term 'biomaterials' includes chemically unrelated products that are synthesised by microorganisms (or part of them) under different environmental conditions. One important family of biomaterials is bioplastics. These are polyesters that are widely distributed in nature and accumulate intracellularly in microorganisms in the form of storage granules, with physico-chemical properties resembling petrochemical plastics. These polymers are usually built from hydroxy-acyl-CoA derivatives via different metabolic pathways. Depending on their microbial origin, bioplastics differ in their monomer composition, macromolecular structure and physical properties. Most of them are biodegradable and biocompatible, which makes them extremely interesting from the biotechnological point of view.

  18. A combination of direct viable count and fluorescence in situ hybridization for specific enumeration of viable Lactobacillus delbrueckii subsp.bulgaricus and Streptococcus thermophilus.

    Science.gov (United States)

    García-Hernández, J; Moreno, Y; Amorocho, C M; Hernández, M

    2012-03-01

    We have developed a direct viable count (DVC)-FISH procedure for quickly and easily discriminating between viable and nonviable cells of Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus strains, the traditional yogurt bacteria. direct viable count method has been modified and adapted for Lact. delbrueckii subsp. bulgaricus and Strep. thermophilus analysis by testing different times of incubation and concentrations of DNA-gyrase inhibitors. DVC procedure has been combined with fluorescent in situ hybridization (FISH) for the specific detection of viable cells of both bacteria with specific rRNA oligonucleotide probes (DVC-FISH). Of the four antibiotics tested (novobiocin, nalidixic acid, pipemidic acid and ciprofloxacin), novobiocin was the most effective for DVC method and the optimum incubation time was 7 h for both bacteria. The number of viable cells was obtained by the enumeration of specific hybridized cells that were elongated at least twice their original length for Lactobacillus and twice their original size for Streptococcus. This technique was successfully applied to detect viable cells in inoculated faeces. Results showed that this DVC-FISH procedure is a quick and culture-independent useful method to specifically detect viable Lact. delbrueckii subsp. bulgaricus and Strep. thermophilus in different samples, being applied for the first time to lactic acid bacteria. © 2011 The Authors. Letters in Applied Microbiology © 2011 The Society for Applied Microbiology.

  19. Microorganism identification technique using radioactive and fluorescent agent

    International Nuclear Information System (INIS)

    Silman, R.E.

    1983-01-01

    A method for identifying microorganisms is claimed. An emissive agent is added to a specimen of microorganisms to produce a mix of emissive products. These products are detected and characteristic pattern functioning as an identifier for the microorganisms is derived. The identifier is then compared with identifiers representing known microorganisms

  20. Synthesis of biogenic silicon/silica (Si/SiO2) nanocomposites from rice husks and wheat bran through various microorganisms

    Science.gov (United States)

    Kaur, Taranjot; Pal Singh, Gurwinder; Kaur, Gurneet; Kaur, Sukhvir; Gill, Prabhjot Kaur

    2016-08-01

    Biosilification is an economically viable, energy saving and green approach for the commercial scale synthesis of oxide nanomaterials. The room temperature synthesis of oxide nanocomposites from cost effective agro-based waste is a particular example of biosilification. In this study, synthesis of Si/SiO2 nanocomposites from inexpensive agro-based waste material i.e. rice husks (RH) and wheat bran (WB) has been carried out by means of various eukaryotic microorganisms, i.e. Actinomycete, Fusarium oxysporum, Aspergillus niger, Trichoderma sp. and Penicillium sp., under ambient conditions. The XRD diffrectrograms represents that the synthesized nanomaterials exhibits silicon, amorphous silica and other crystal arrays such as cristobalite, trydimite and quartz, depending upon the type microorganism and time period used for extraction. All of the aforesaid microorganism bio transformed the naturally occurring amorphous silica to crystalline structures within the period of 24 h. However, the Actinomycete and Trichoderma sp. took 48 h in case of rice husks for biotransformation of naturally occurring plant silica to crystalline nanocomposite. While in case of wheat bran, Actinomycete and Trichoderma sp. took 24 h for biotransformation. The extracted nanocomposites exhibits band edge in the range 230-250 nm and blue emission. The procedure described in study can be used for commercial level production of Si/SiO2 nanocomposites from agro based waste materials.

  1. Predictors of viable germ cell tumor in postchemotherapeutic residual retroperitoneal masses

    Directory of Open Access Journals (Sweden)

    Khalid Al Othman

    2014-01-01

    Full Text Available Objective: The aim of this study was to identify predictors of viable germ cell tumor (GCT in postchemotherapeutic residual retroperitoneal masses. Materials and Methods: The pertinent clinical and pathologic data of 16 male patients who underwent postchemotherapeutic retroperitoneal lymph node dissection (PC-RPLND at King Faisal Specialist Hospital and Research Centre between 1994 and 2005 were reviewed retrospectively. It was found that all patients received cisplatin-based chemotherapy for advanced testicular GCT. Results: Out of the 16 male patients, 2 (13%, 8 (50%, and 6 (37% had viable GCT, fibrosis, and teratoma, respectively. Ten (10 of the patients with prechemotherapeutic S1 tumor markers did not have viable GCT, and two of the six patients who had prechemotherapeutic S2 tumor markers have viable GCT. All tumor marker levels normalized after chemotherapy even in patients with viable GCT. Four patients had vascular invasion without viable GCT. Furthermore, four patients had more than 60% embryonal elements in the original pathology, but only 1 had viable GCT at PC-RPLND. Four of the five patients with immature teratoma had teratoma at PC-RPLND but no viable GCT; however, out of the four patients with mature teratoma, one had viable GCT and two had teratoma at PC-RPLND. Of the two patients with viable GCT, one had 100% embryonal cancer in the original pathology, prechemotherapeutic S2 tumor markers, history of orchiopexy, and no vascular invasion; the other patient had yolk sac tumor with 25% embryonal elements and 40% teratoma in the original pathology, and prechemotherapeutic S2 tumor markers. Conclusion: None of the clinical or pathological parameters showed a strong correlation with the presence of viable GCT in PC-RPLND. However, patients with ≥S2 may be at higher risk to have viable GCT. Further studies are needed to clarify this.

  2. [Succession of chitinolytic microorganisms in chernozem soil].

    Science.gov (United States)

    Manucharova, N A; Belova, E V; Vorob'ev, A V; Polianskaia, L M; Stepanov, A L

    2005-01-01

    The chitinolytic prokaryotic and eukaryotic microbial complex of chernozem soil has been investigated in the course of a succession initiated by the introduction of chitin and humidification. The dynamics of the cell numbers of chitinolytic microorganisms and of their biomass was assessed by fluorescent microscopy and by inoculation of selective media. Emission of carbon dioxide and nitrous oxide, as well as dinitrogen fixation, was assessed by gas chromatography. It was found that, when the succession was initiated by the introduction of both chitin and humidification, it resulted in greater cell numbers and biomass of chitinolytic microorganisms and higher levels of CO2 and N2O emission and of nitrogen fixation than when the succession was initiated by humidification alone. As compared to the control samples, a significant (twofold) increase in the prokaryote cell number and biomass was found on the fourth day of the succession initiated by humidification and introduction of chitin. One week after the initiation of succession, the fungal biomass and length of mycelium were twice as high as those in the control samples. These results led to the conclusion that chitin utilization in chernozem soil starts during the initial stages of succession and is performed by both prokaryotic and eukaryotic microorganisms.

  3. Extracellular electron transfer mechanisms between microorganisms and minerals

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Liang; Dong, Hailiang; Reguera, Gemma; Beyenal, Haluk; Lu, Anhuai; Liu, Juan; Yu, Han-Qing; Fredrickson, James K.

    2016-08-30

    Electrons can be transferred from microorganisms to multivalent metal ions that are associated with minerals and vice versa. As the microbial cell envelope is neither physically permeable to minerals nor electrically conductive, microorganisms have evolved strategies to exchange electrons with extracellular minerals. In this Review, we discuss the molecular mechanisms that underlie the ability of microorganisms to exchange electrons, such as c-type cytochromes and microbial nanowires, with extracellular minerals and with microorganisms of the same or different species. Microorganisms that have extracellular electron transfer capability can be used for biotechnological applications, including bioremediation, biomining and the production of biofuels and nanomaterials.

  4. Ecological aspects of microorganisms inhabiting uranium mill tailings

    Science.gov (United States)

    Miller, C.L.; Landa, E.R.; Updegraff, D.M.

    1987-01-01

    Numbers and types of microorganisms in uranium mill tailings were determined using culturing techniques. Arthrobacter were found to be the predominant microorganism inhabiting the sandy tailings, whereas Bacillus and fungi predominated in the slime tailings. Sulfate-reducing bacteria, capable of leaching radium, were isolated in low numbers from tailings samples but were isolated in significantly high numbers from topsoil in contact with the tailings. The results are placed in the context of the magnitude of uranium mill tailings in the United States, the hazards posed by the tailings, and how such hazards could be enhanced or diminished by microbial activities. Patterns in the composition of the microbial population are evaluated with respect to the ecological variables that influence microbial growth. ?? 1987 Springer-Verlag New York Inc.

  5. Soybean oil and linseed oil supplementation affect profiles of ruminal microorganisms in dairy cows.

    Science.gov (United States)

    Yang, S L; Bu, D P; Wang, J Q; Hu, Z Y; Li, D; Wei, H Y; Zhou, L Y; Loor, J J

    2009-11-01

    The objective of this study was to evaluate changes in ruminal microorganisms and fermentation parameters due to dietary supplementation of soybean and linseed oil alone or in combination. Four dietary treatments were tested in a Latin square designed experiment using four primiparous rumen-cannulated dairy cows. Treatments were control (C, 60 : 40 forage to concentrate) or C with 4% soybean oil (S), 4% linseed oil (L) or 2% soybean oil plus 2% linseed oil (SL) in a 4 × 4 Latin square with four periods of 21 days. Forage and concentrate mixtures were fed at 0800 and 2000 h daily. Ruminal fluid was collected every 2 h over a 12-h period on day 19 of each experimental period and pH was measured immediately. Samples were prepared for analyses of concentrations of volatile fatty acids (VFA) by GLC and ammonia. Counts of total and individual bacterial groups (cellulolytic, proteolytic, amylolytic bacteria and total viable bacteria) were performed using the roll-tube technique, and protozoa counts were measured via microscopy in ruminal fluid collected at 0, 4 and 8 h after the morning feeding. Content of ruminal digesta was obtained via the rumen cannula before the morning feeding and used immediately for DNA extraction and quantity of specific bacterial species was obtained using real- time PCR. Ruminal pH did not differ but total VFA (110 v. 105 mmol/l) were lower (P ruminal NH3-N (4.4 v. 5.6 mmol/l) was greater (P ruminal fluid was substantially lower (P ruminal microorganisms, except proteolytic bacteria, are highly susceptible to dietary unsaturated fatty acids supplementation, particularly when linolenic acid rich oils were fed. Dietary oil effects on ruminal fermentation parameters seemed associated with the profile of ruminal microorganisms.

  6. Variation of microorganism concentrations in urban stormwater runoff with land use and seasons.

    Science.gov (United States)

    Selvakumar, Ariamalar; Borst, Michael

    2006-03-01

    Stormwater runoff samples were collected from outfalls draining small municipal separate storm sewer systems. The samples were collected from three different land use areas based on local designation (high-density residential, low-density residential and landscaped commercial). The concentrations of microorganisms in the stormwater runoff were found to be similar in magnitude to, but less variable than, those reported in the stormwater National Pollutant Discharge Elimination System (NPDES) database. Microorganism concentrations from high-density residential areas were higher than those associated with low-density residential and landscaped commercial areas. Since the outfalls were free of sanitary wastewater cross-connections, the major sources of microorganisms to the stormwater runoff were most likely from the feces of domestic animals and wildlife. Concentrations of microorganisms were significantly affected by the season during which the samples were collected. The lowest concentrations were observed during winter except for Staphylococcus aureus. The Pearson correlation coefficients among different indicators showed weak linear relationships and the relationships were statistically significant. However, the relationships between indicators and pathogens were poorly correlated and were not statistically significant, suggesting the use of indicators as evidence of the presence of pathogens is not appropriate. Further, the correlation between the concentration of the traditionally monitored indicators (total coliforms and fecal coliforms) and the suggested substitutes (enterococci and E. coli) is weak, but statistically significant, suggesting that historical time series will be only a qualitative indicator of impaired waters under the revised criteria for recreational water quality by the US EPA.

  7. Defined Combinations of Cryomedia and Thawing Extenders Influence the Viable X-Y Boar Sperm Ratio in Vitro.

    Science.gov (United States)

    Korchunjit, W; Kaeoket, K; Kitiyanant, Y; Taylor, J; Wongtawan, T

    It is believed that plasma membrane X- and Y-chromosome bearing sperm are different; therefore the freezing and thawing process may affect X- and Y-sperm differently. The objective of this study was to investigate the effect of cryomedia and thawing extenders on the survival of X and Y-sperm. Three different cryomedia and thawing extenders were compared. Viable motile sperm were separated using a swim-up technique. Real-time PCR was used to identify the sperm type. Using CryoA for freezing and Beltsville-Thawing-Solution (BTS) as the thawing extender yielded significantly higher numbers of viable motile Y sperm (64 percent) than control (48 percent) (P semen freezing with CryoC and thawing with Androstar Plus gave a significantly lower number of viable motile Y sperm (32 percent) than control (51 percent). Our results revealed that defined combinations of cryomedia and thawing extenders significantly altered the survival ratio of frozen-thawed X-Y sperm in vitro, which has potential implications for artificial insemination.

  8. Airborne microorganisms from waste containers.

    Science.gov (United States)

    Jedlicka, Sabrina S; Stravitz, David M; Lyman, Charles E

    2012-01-01

    In physician's offices and biomedical labs, biological waste is handled every day. This waste is disposed of in waste containers designed for holding red autoclave bags. The containers used in these environments are closed hands-free containers, often with a step pedal. While these containers protect the user from surface-borne microorganisms, the containers may allow airborne microorganisms to escape via the open/close mechanism because of the air current produced upon open/close cycles. In this study, the air current was shown to be sufficient to allow airborne escape of microorganisms held in the container, including Aspergillus niger. However, bacterial cultures, such as Escherichia coli and Lactococcus lactis did not escape. This may be due to the choice of bacterial cultures and the absence of solid waste, such as dust or other particulate matter in the waste containers, that such strains of bacteria could travel on during aerosolization. We compared these results to those obtained using a re-designed receptacle, which mimimizes air currents, and detected no escaping microorganisms. This study highlights one potential source of airborne contamination in labs, hospitals, and other environments that dispose of biological waste.

  9. Quantitative assessment of viable Cryptosporidium parvum load in commercial oysters (Crassostrea virginica) in the Chesapeake Bay.

    Science.gov (United States)

    Graczyk, Thaddeus K; Lewis, Earl J; Glass, Gregory; Dasilva, Alexandre J; Tamang, Leena; Girouard, Autumn S; Curriero, Frank C

    2007-01-01

    The epidemiological importance of increasing reports worldwide on Cryptosporidium contamination of oysters remains unknown in relation to foodborne cryptosporidiosis. Thirty market-size oysters (Crassostrea virginica), collected from each of 53 commercial harvesting sites in Chesapeake Bay, MD, were quantitatively tested in groups of six for Cryptosporidium sp. oocysts by immunofluorescent antibody (IFA). After IFA analysis, the samples were retrospectively retested for viable Cryptosporidium parvum oocysts by combined fluorescent in situ hybridization (FISH) and IFA. The mean cumulative numbers of Cryptosporidium sp. oocysts in six oysters (overall, 42.1+/-4.1) were significantly higher than in the numbers of viable C. parvum oocysts (overall, 28.0+/-2.9). Of 265 oyster groups, 221 (83.4%) contained viable C. parvum oocysts, and overall, from 10-32% (mean, 23%) of the total viable oocysts were identified in the hemolymph as distinct from gill washings. The amount of viable C. parvum oocysts was not related to oyster size or to the level of fecal coliforms at the sampling site. This study demonstrated that, although oysters are frequently contaminated with oocysts, the levels of viable oocysts may be too low to cause infection in healthy individuals. FISH assay for identification can be retrospectively applied to properly stored samples.

  10. Doppler speedometer for micro-organisms

    International Nuclear Information System (INIS)

    Penkov, F.; Tuleushev, A.; Lisitsyn, V.; Kim, S.; Tuleushev, Yu.

    1996-01-01

    Objective of Investigations: Development and creation of the Doppler speedometer for micro-organisms which allows to evaluate, in a real temporal scale, variations in the state of water suspension of micro-organisms under the effect of chemical, physical and other external actions. Statement of the Problem The main problem is absence of reliable, accessible for users and simple, in view of application, Doppler speedometers for micro-organisms. Nevertheless, correlation Doppler spectrometry in the regime of heterodyning the supporting and cell-scattered laser radiation is welt known. The main idea is that the correlation function of photo-current pulses bears an information on the averages over the assembly of cell velocities. For solving the biological problems, construction of auto-correlation function in the real-time regime with the delay time values comprising, function in the real-time regime with the delay time values comprising, nearly, 100 me (10 khz) or higher is needed. Computers of high class manage this problem using but the program software. Due to this, one can simplify applications of the proposed techniques provided he creates the Doppler speedometer for micro-organism on a base of the P entium . Expected Result Manufactured operable mock-up of the Doppler speedometer for micro-organisms in a form of the auxiliary computer block which allows to receive an information, in the real time scale, on the results of external effects of various nature on the cell assembly in transparent medium with a small volume of the studied cell suspension

  11. Inactivation of Microorganisms

    Science.gov (United States)

    Alzamora, Stella Maris; Guerrero, Sandra N.; Schenk, Marcela; Raffellini, Silvia; López-Malo, Aurelio

    Minimal processing techniques for food preservation allow better retention of product flavor, texture, color, and nutrient content than comparable conventional treatments. A wide range of novel alternative physical factors have been intensely investigated in the last two decades. These physical factors can cause inactivation of microorganisms at ambient or sublethal temperatures (e.g., high hydrostatic pressure, pulsed electric fields, ultrasound, pulsed light, and ultraviolet light). These technologies have been reported to reduce microorganism population in foods while avoiding the deleterious effects of severe heating on quality. Among technologies, high-energy ultrasound (i.e., intensities higher than 1 W/cm2, frequencies between 18 and 100 kHz) has attracted considerable interest for food preservation applications (Mason et al., 1996; Povey and Mason, 1998).

  12. Biofouling of marbles by oxygenic photosynthetic microorganisms.

    Science.gov (United States)

    Karaca, Zeki; Öztürk, Ayten; Çolak, Emel

    2015-08-01

    Phototrophic microorganisms disfigure the surfaces of different types of stone. Stone structure is damaged by the activity of photoautotrophic and other microorganisms. However, to date few, investigations have been undertaken into the relationship between microorganisms and the properties of different types of marble. In this study, biological activity of photoautotrophic microorganisms on three types of marble (Yatagan White, Giallo Anticato and Afyon White) was investigated under laboratory conditions over a short period of time. The three types of marble supported the growth of phototrophic microbial communities on their outer and inner layers, turning their original colour from white to a yellowish green colour. The porosity of the marble types facilitated filamentous microbial growth in the presence of water. Scanning electron microscope analysis revealed the accumulation of aggregates such as small spherical, fibrillar, calcified globular bodies on the inner surfaces of the marbles. This suggests that the microscopic characteristics of particular marble types may stimulate the growth of certain types of microorganisms.

  13. Experimental studies of biodegradation of asphalt by microorganisms

    International Nuclear Information System (INIS)

    Mine, Tatsuya; Mihara, Morihiro; Ooi, Takao; Lin, Kong-hua; Kawakami, Yasushi

    2000-04-01

    On the geological disposal system of the radioactive wastes, the activities of the microorganisms that could degrade the asphalt might be significant for the assessment of the system performance. As the main effects of the biodegradation of the asphalt, the fluctuation of leaching behavior of the nuclides included in asphalt waste has been indicated. In this study, the asphalt biodegradation test was carried out. The microorganism of which asphalt degradation ability was comparatively higher under aerobic condition and anaerobic condition was used. The asphalt biodegradation rate was calculated and it was evaluated whether the asphalt biodegradation in this system could occur. The results show that the asphalt biodegradation rate under anaerobic and high alkali condition will be 300 times lower than under aerobic and neutral pH. (author)

  14. Radiation resistance of microorganisms on unsterilized infusion sets

    DEFF Research Database (Denmark)

    Christensen, E. Ahrensburg; Kristensen, H.; Hoborn, J.

    1991-01-01

    Three different methods were used for detecting and isolating microorganisms with high radiation resistance from the microbial contamination on infusion sets prior to sterilization. By all three methods, microorganisms with a radiation resistance high enough to be a critical factor in a steriliza......Three different methods were used for detecting and isolating microorganisms with high radiation resistance from the microbial contamination on infusion sets prior to sterilization. By all three methods, microorganisms with a radiation resistance high enough to be a critical factor...

  15. Grazing of particle-associated bacteria-an elimination of the non-viable fraction.

    Science.gov (United States)

    Gonsalves, Maria-Judith; Fernandes, Sheryl Oliveira; Priya, Madasamy Lakshmi; LokaBharathi, Ponnapakkam Adikesavan

    Quantification of bacteria being grazed by microzooplankton is gaining importance since they serve as energy subsidies for higher trophic levels which consequently influence fish production. Hence, grazing pressure on viable and non-viable fraction of free and particle-associated bacteria in a tropical estuary controlled mainly by protist grazers was estimated using the seawater dilution technique. In vitro incubations over a period of 42h showed that at the end of 24h, growth coefficient (k) of particle-associated bacteria was 9 times higher at 0.546 than that of free forms. Further, 'k' value of viable cells on particles was double that of free forms at 0.016 and 0.007, respectively. While bacteria associated with particles were grazed (coefficient of removal (g)=0.564), the free forms were relatively less grazed indicating that particle-associated bacteria were exposed to grazers in these waters. Among the viable and non-viable forms, 'g' of non-viable fraction (particle-associated bacteria=0.615, Free=0.0086) was much greater than the viable fraction (particle-associated bacteria=0.056, Free=0.068). Thus, grazing on viable cells was relatively low in both the free and attached states. These observations suggest that non-viable forms of particle-associated bacteria were more prone to grazing and were weeded out leaving the viable cells to replenish the bacterial standing stock. Particle colonization could thus be a temporary refuge for the "persistent variants" where the viable fraction multiply and release their progeny. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  16. Grazing of particle-associated bacteria-an elimination of the non-viable fraction

    Directory of Open Access Journals (Sweden)

    Maria-Judith Gonsalves

    Full Text Available Abstract Quantification of bacteria being grazed by microzooplankton is gaining importance since they serve as energy subsidies for higher trophic levels which consequently influence fish production. Hence, grazing pressure on viable and non-viable fraction of free and particle-associated bacteria in a tropical estuary controlled mainly by protist grazers was estimated using the seawater dilution technique. In vitro incubations over a period of 42 h showed that at the end of 24 h, growth coefficient (k of particle-associated bacteria was 9 times higher at 0.546 than that of free forms. Further, ‘k’ value of viable cells on particles was double that of free forms at 0.016 and 0.007, respectively. While bacteria associated with particles were grazed (coefficient of removal (g = 0.564, the free forms were relatively less grazed indicating that particle-associated bacteria were exposed to grazers in these waters. Among the viable and non-viable forms, ‘g’ of non-viable fraction (particle-associated bacteria = 0.615, Free = 0.0086 was much greater than the viable fraction (particle-associated bacteria = 0.056, Free = 0.068. Thus, grazing on viable cells was relatively low in both the free and attached states. These observations suggest that non-viable forms of particle-associated bacteria were more prone to grazing and were weeded out leaving the viable cells to replenish the bacterial standing stock. Particle colonization could thus be a temporary refuge for the “persistent variants” where the viable fraction multiply and release their progeny.

  17. Regulation of Viable and Optimal Cohorts

    Energy Technology Data Exchange (ETDEWEB)

    Aubin, Jean-Pierre, E-mail: aubin.jp@gmail.com [VIMADES (Viabilité, Marchés, Automatique, Décisions) (France)

    2015-10-15

    This study deals with the evolution of (scalar) attributes (resources or income in evolutionary demography or economics, position in traffic management, etc.) of a population of “mobiles” (economic agents, vehicles, etc.). The set of mobiles sharing the same attributes is regarded as an instantaneous cohort described by the number of its elements. The union of instantaneous cohorts during a mobile window between two attributes is a cohort. Given a measure defining the number of instantaneous cohorts, the accumulation of the mobile attributes on a evolving mobile window is the measure of the cohort on this temporal mobile window. Imposing accumulation constraints and departure conditions, this study is devoted to the regulation of the evolutions of the attributes which are1.viable in the sense that the accumulations constraints are satisfied at each instant;2.and, among them, optimal, in the sense that both the duration of the temporal mobile window is maximum and that the accumulation on this temporal mobile window is the largest viable one. This value is the “accumulation valuation” function. Viable and optimal evolutions under accumulation constraints are regulated by an “implicit Volterra integro-differential inclusion” built from the accumulation valuation function, solution to an Hamilton–Jacobi–Bellman partial differential equation under constraints which is constructed for this purpose.

  18. Changes in total viable count and TVB-N content in marinated chicken breast fillets during storage

    Science.gov (United States)

    Baltić, T.; Ćirić, J.; Velebit, B.; Petronijević, R.; Lakićević, B.; Đorđević, V.; Janković, V.

    2017-09-01

    Marination is a popular technique for enhancing meat properties. Depending on the marinade type and ingredients added, marination can improve sensory, chemical and microbiological quality of meat products. In this study, the total viable count and total volatile basic nitrogen (TVB-N) content in marinated chicken breast fillets were investigated. The possible correlation between bacterial growth and formation of TVB-N was also tested. Chicken breast fillets were immersed in a solution of table salt (as a control) orthree different marinades,which consisted of table salt, sodium tripolyphosphate and/or sodium citrate, and stored in air for nine days at 4±1°C. Analyses of the total viable count and TVB-N were performed on days0, 3, 6 and 9 day of storage. The total viable count gradually increased in all examined groups, and statistically significant differences (pchicken were significantly higher (pchicken marinated with sodium citrate was established (pchicken marinated with sodium tripolyphosphate.

  19. Functional microorganisms for functional food quality.

    Science.gov (United States)

    Gobbetti, M; Cagno, R Di; De Angelis, M

    2010-09-01

    Functional microorganisms and health benefits represent a binomial with great potential for fermented functional foods. The health benefits of fermented functional foods are expressed either directly through the interactions of ingested live microorganisms with the host (probiotic effect) or indirectly as the result of the ingestion of microbial metabolites synthesized during fermentation (biogenic effect). Since the importance of high viability for probiotic effect, two major options are currently pursued for improving it--to enhance bacterial stress response and to use alternative products for incorporating probiotics (e.g., ice cream, cheeses, cereals, fruit juices, vegetables, and soy beans). Further, it seems that quorum sensing signal molecules released by probiotics may interact with human epithelial cells from intestine thus modulating several physiological functions. Under optimal processing conditions, functional microorganisms contribute to food functionality through their enzyme portfolio and the release of metabolites. Overproduction of free amino acids and vitamins are two classical examples. Besides, bioactive compounds (e.g., peptides, γ-amino butyric acid, and conjugated linoleic acid) may be released during food processing above the physiological threshold and they may exert various in vivo health benefits. Functional microorganisms are even more used in novel strategies for decreasing phenomenon of food intolerance (e.g., gluten intolerance) and allergy. By a critical approach, this review will aim at showing the potential of functional microorganisms for the quality of functional foods.

  20. Mechanisms of nickel toxicity in microorganisms

    Science.gov (United States)

    Macomber, Lee

    2014-01-01

    Summary Nickel has long been known to be an important human toxicant, including having the ability to form carcinomas, but until recently nickel was believed to be an issue only to microorganisms living in nickel-rich serpentine soils or areas contaminated by industrial pollution. This assumption was overturned by the discovery of a nickel defense system (RcnR/RcnA) found in microorganisms that live in a wide range of environmental niches, suggesting that nickel homeostasis is a general biological concern. To date, the mechanisms of nickel toxicity in microorganisms and higher eukaryotes are poorly understood. In this review, we summarize nickel homeostasis processes used by microorganisms and highlight in vivo and in vitro effects of exposure to elevated concentrations of nickel. On the basis of this evidence we propose four mechanisms of nickel toxicity: 1) nickel replaces the essential metal of metalloproteins, 2) nickel binds to catalytic residues of non-metalloenzymes; 3) nickel binds outside the catalytic site of an enzyme to inhibit allosterically, and 4) nickel indirectly causes oxidative stress. PMID:21799955

  1. Bisphenol A Removal by Submerged Macrophytes and the Contribution of Epiphytic Microorganisms to the Removal Process.

    Science.gov (United States)

    Zhang, Guosen; Wang, Yu; Jiang, Jinhui; Yang, Shao

    2017-06-01

    Bisphenol A (BPA), a typical endocrine disruptor, has been found in global aquatic environments, causing great concern. The capabilities of five common submerged macrophytes to remove BPA from water and the contributions of epiphytic microorganisms were investigated. Macrophytes removed 62%-100% of total BPA (5 mg/L) over 12 days; much higher rates than that observed in the control (2%, F = 261.511, p = 0.000). Ceratophyllum demersum was the most efficient species. C. demersum samples from lakes with different water qualities showed no significant differences in BPA removal rates. Moreover, removal, inhibition or re-colonization of epiphytic microorganisms did not significantly change the BPA removal rates of C. demersum. Therefore, the contributions of epiphytic microorganisms to the BPA removal process were negligible. The rate of BPA accumulation in C. demersum was 0.1%, indicating that BPA was mainly biodegraded by the macrophyte. Hence, submerged macrophytes, rather than epiphytic microorganisms, substantially contribute to the biodegradation of BPA in water.

  2. Final technical report for project titled Quantitative Characterization of Cell Aggregation/Adhesion as Predictor for Distribution and Transport of Microorganisms in Subsurface Environment

    Energy Technology Data Exchange (ETDEWEB)

    Gu, April Z. [Northeastern Univ., Boston, MA (United States); Wan, Kai-tak [Northeastern Univ., Boston, MA (United States)

    2014-09-02

    This project aims to explore and develop enabling methodology and techniques for nano-scale characterization of microbe cell surface contact mechanics, interactions and adhesion quantities that allow for identification and quantification of indicative properties related to microorganism migration and transport behavior in porous media and in subsurface environments. Microbe transport has wide impact and therefore is of great interest in various environmental applications such as in situ or enhanced subsurface bioremediation,filtration processes for water and wastewater treatments and protection of drinking water supplies. Although great progress has been made towards understanding the identities and activities of these microorganisms in the subsurface, to date, little is known of the mechanisms that govern the mobility and transport of microorganisms in DOE’s contaminated sites, making the outcomes of in situ natural attenuation or contaminant stability enhancement unpredictable. Conventionally, movement of microorganisms was believed to follows the rules governing solute (particle) transport. However, recent studies revealed that cell surface properties, especially those pertaining to cell attachment/adhesion and aggregation behavior, can cause the microbe behavior to deviate from non-viable particles and hence greatly influence the mobility and distribution of microorganisms in porous media.This complexity highlights the need to obtain detailed information of cell-cell and cell-surface interactions in order to improve and refine the conceptual and quantitative model development for fate and transport of microorganisms and contaminant in subsurface. Traditional cell surface characterization methods are not sufficient to fully predict the deposition rates and transport behaviors of microorganism observed. A breakthrough of methodology that would allow for quantitative and molecular-level description of intrinsic cell surface properties indicative for cell

  3. Electrode Cultivation and Interfacial Electron Transport in Subsurface Microorganisms

    Science.gov (United States)

    Karbelkar, A. A.; Jangir, Y.; Reese, B. K.; Wanger, G.; Anderson, C.; El-Naggar, M.; Amend, J.

    2016-12-01

    Continental subsurface environments can present significant energetic challenges to the resident microorganisms. While these environments are geologically diverse, potentially allowing energy harvesting by microorganisms that catalyze redox reactions, many of the abundant electron donors and acceptors are insoluble and therefore not directly bioavailable. Microbes can use extracellular electron transfer (EET) as a metabolic strategy to interact with redox active surfaces. This process can be mimicked on electrode surfaces and hence can lead to enrichment and quantification of subsurface microorganisms A primary bioelectrochemical enrichment with different oxidizing and reducing potentials set up in a single bioreactor was applied in situ to subsurface microorganisms residing in iron oxide rich deposits in the Sanford Underground Research Facility. Secondary enrichment revealed a plethora of classified and unclassified subsurface microbiota on both oxidizing and reducing potentials. From this enrichment, we have isolated a Gram-positive Bacillus along with Gram-negative Cupriavidus and Anaerospora strains (as electrode reducers) and Comamonas (as an electrode oxidizer). The Bacillus and Comamonas isolates were subjected to a detailed electrochemical characterization in half-reactors at anodic and cathodic potentials, respectively. An increase in cathodic current upon inoculation and cyclic voltammetry measurements confirm the hypothesis that Comamonas is capable of electron uptake from electrodes. In addition, measurements of Bacillus on anodes hint towards novel mechanisms that allow EET from Gram-positive bacteria. This study suggests that electrochemical approaches are well positioned to dissect such extracellular interactions that may be prevalent in the subsurface, while using physical electrodes to emulate the microhabitats, redox and geochemical gradients, and the spatially dependent interspecies interactions encountered in the subsurface. Electrochemical

  4. Comparison of culture-based, vital stain and PMA-qPCR methods for the quantitative detection of viable hookworm ova.

    Science.gov (United States)

    Gyawali, P; Sidhu, J P S; Ahmed, W; Jagals, P; Toze, S

    2017-06-01

    Accurate quantitative measurement of viable hookworm ova from environmental samples is the key to controlling hookworm re-infections in the endemic regions. In this study, the accuracy of three quantitative detection methods [culture-based, vital stain and propidium monoazide-quantitative polymerase chain reaction (PMA-qPCR)] was evaluated by enumerating 1,000 ± 50 Ancylostoma caninum ova in the laboratory. The culture-based method was able to quantify an average of 397 ± 59 viable hookworm ova. Similarly, vital stain and PMA-qPCR methods quantified 644 ± 87 and 587 ± 91 viable ova, respectively. The numbers of viable ova estimated by the culture-based method were significantly (P methods. Therefore, both PMA-qPCR and vital stain methods appear to be suitable for the quantitative detection of viable hookworm ova. However, PMA-qPCR would be preferable over the vital stain method in scenarios where ova speciation is needed.

  5. Asouzu's Complementary Ontology as a Foundation for a Viable ...

    African Journals Online (AJOL)

    This paper on “Asouzu's Complementary Ontology as a foundation for a viable Ethic of the Environment”, posits that an ethic of the environment can be seen as viable if it considers the whole of reality as ontologically relevant. This point of view would free environmental ethics of anthropocentric bias and its attendant ...

  6. Application endophytic microorganisms in agriculture and production of substances of economic interest Aplicação de microrganismos endofíticos na agricultura e na produção de substâncias de interesse econômico

    Directory of Open Access Journals (Sweden)

    Taides Tavares dos Santos

    2011-12-01

    Full Text Available Endophytic microorganisms are mainly fungi and bacteria that live inside plants, generally inhabiting aerial parts such as leaves and stems, without causing any apparent damage to their hosts. In addition to many important functions for the host, the endophytic microorganisms are potentially useful in agriculture and industry, especially in pharmaceuticals and agrochemicals. By forming themselves into substitutes for chemicals by exercising stock biocontrol and/or promotion of plant growth, favoring theenvironmental preservation, has been appointed as a viable alternative agricultural production systems for environmentally and economically sustainable. Obtaining substances of economic interest, such as enzymes, antibiotics and other drugs from endophytic microorganisms has often been reported in the scientific literature. One example is taxol, a powerful anti-cancer substance that was previously obtained only from the exploitation of the plant Taxus brevifolia, and can now be obtained from different genera of endophytic fungi. Advances like this reinforce the great biotechnological potential of such microorganisms. This study presents an overview of potential applications of endophyticmicroorganisms in agriculture and production of substances of economic interest.

  7. Two-dimensional tracking of a motile micro-organism allowing high-resolution observation with various imaging techniques

    International Nuclear Information System (INIS)

    Oku, H.; Ogawa, N.; Ishikawa, M.; Hashimoto, K.

    2005-01-01

    In this article, a micro-organism tracking system using a high-speed vision system is reported. This system two dimensionally tracks a freely swimming micro-organism within the field of an optical microscope by moving a chamber of target micro-organisms based on high-speed visual feedback. The system we developed could track a paramecium using various imaging techniques, including bright-field illumination, dark-field illumination, and differential interference contrast, at magnifications of 5 times and 20 times. A maximum tracking duration of 300 s was demonstrated. Also, the system could track an object with a velocity of up to 35 000 μm/s (175 diameters/s), which is significantly faster than swimming micro-organisms

  8. Decomposition of diesel oil by various microorganisms

    Energy Technology Data Exchange (ETDEWEB)

    Suess, A; Netzsch-Lehner, A

    1969-01-01

    Previous experiments demonstrated the decomposition of diesel oil in different soils. In this experiment the decomposition of /sup 14/C-n-Hexadecane labelled diesel oil by special microorganisms was studied. The results were as follows: (1) In the experimental soils the microorganisms Mycoccus ruber, Mycobacterium luteum and Trichoderma hamatum are responsible for the diesel oil decomposition. (2) By adding microorganisms to the soil an increase of the decomposition rate was found only in the beginning of the experiments. (3) Maximum decomposition of diesel oil was reached 2-3 weeks after incubation.

  9. Antimicrobial Compounds from Marine Invertebrates-Derived Microorganisms.

    Science.gov (United States)

    Liu, Juan; Jung, Jee H; Liu, Yonghong

    2016-01-01

    It is known that marine invertebrates, including sponges, tunicates, cnidaria or mollusks, host affluent and various communities of symbiotic microorganisms. The microorganisms associated with the invertebrates metabolized various biologically active compounds, which could be an important resource for the discovery and development of potentially novel drugs. In this review, the new compounds with antimicrobial activity isolated from marine invertebrate-derived microorganisms in the last decade (2004-2014) will be presented, with focus on the relevant antimicrobial activities, origin of isolation, and information of strain species. New compounds without antimicrobial activity were not revealed.

  10. Transformation of the insecticide teflubenzuron by microorganisms

    NARCIS (Netherlands)

    Finkelstein, Z.I.; Baskunov, B.P.; Rietjens, I.M.C.M.; Boersma, M.G.; Vervoort, J.; Golovleva, L.A.

    2001-01-01

    Transformation of teflubenzuron, the active component in the insecticide commercialized as Nomolt, by soil microorganisms was studied. It was shown that microorganisms, belonging to Bacillus, Alcaligenes, Pseudomonas and Acinetobacter genera are capable to perform the hydrolytic cleavage of the

  11. Advantageous direct quantification of viable closely related probiotics in petit-suisse cheeses under in vitro gastrointestinal conditions by Propidium Monoazide--qPCR.

    Directory of Open Access Journals (Sweden)

    Martha Lissete Morales Villarreal

    Full Text Available Species-specific Quantitative Real Time PCR (qPCR alone and combined with the use of propidium monoazide (PMA were used along with the plate count method to evaluate the survival of the probiotic strains Lactobacillus acidophilus La-5 and Bifidobacterium animalis subsp. lactis Bb-12, and the bacteriocinogenic and potentially probiotic strain Lactobacillus sakei subsp. sakei 2a in synbiotic (F1 and probiotic (F2 petit-suisse cheeses exposed throughout shelf-life to in vitro simulated gastrointestinal tract conditions. The three strains studied showed a reduction in their viability after the 6 h assay. Bb-12 displayed the highest survival capacity, above 72.6 and 74.6% of the initial populations, respectively, by plate count and PMA-qPCR, maintaining population levels in the range or above 6 log CFU/g. The prebiotic mix of inulin and FOS did not offer any additional protection for the strains against the simulated gastrointestinal environment. The microorganisms' populations were comparable among the three methods at the initial time of the assay, confirming the presence of mainly viable and culturable cells. However, with the intensification of the stress induced throughout the various stages of the in vitro test, the differences among the methods increased. The qPCR was not a reliable enumeration method for the quantification of intact bacterial populations, mixed with large numbers of injured and dead bacteria, as confirmed by the scanning electron microscopy results. Furthermore, bacteria plate counts were much lower (P<0.05 than with the PMA-qPCR method, suggesting the accumulation of stressed or dead microorganisms unable to form colonies. The use of PMA overcame the qPCR inability to differentiate between dead and alive cells. The combination of PMA and species-specific qPCR in this study allowed a quick and unequivocal way of enumeration of viable closely related species incorporated into probiotic and synbiotic petit-suisse cheeses and

  12. Isolation and identification of the microorganisms most prevalent in ...

    African Journals Online (AJOL)

    Infections of the external eye account for a significant percentage of ocular inflammations, some of which lead to visual losses as result of corneal involvement. This study purely isolated and identified the microorganisms most prevalent in external eye infections in Owerri urban (as seen Mercy Eye clinic). With the aid of ...

  13. Earthworm-microorganism interactions: a strategy to stabilize domestic wastewater sludge.

    Science.gov (United States)

    Zhao, Limin; Wang, Yayi; Yang, Jian; Xing, Meiyan; Li, Xiaowei; Yi, Danghao; Deng, Dehan

    2010-04-01

    The performance of a conventional biofilter (BF) and a vermifilter containing the earthworm, Eisenia foetida, (VF) for the treatment of domestic wastewater sludge were compared with the earthworm-microorganism interaction mechanisms involved in sludge stabilization. The results revealed that the presence of earthworms in the VF led to significant stabilization of the sludge by enhancing the reduction in volatile suspended solids (VSS) by 25.1%. Digestion by earthworms and the earthworm-microorganism interactions were responsible for 54% and 46% of this increase, respectively. Specifically, earthworms in the VF were capable of transforming insoluble organic materials to a soluble form and then selectively digesting the sludge particles of 10-200 microm to finer particles of 0-2 microm, which led to the further degradation of organic materials by the microorganisms in the reactor. Additionally, denaturing gradient gel electrophoresis (DGGE) profiles showed that there was an intensified bacterial diversity in the vermifilter due to the presence of earthworms, especially in response to the nutrients in their casts. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  14. Viable Mycobacterium avium ssp. paratuberculosis isolated from calf milk replacer.

    Science.gov (United States)

    Grant, Irene R; Foddai, Antonio C G; Tarrant, James C; Kunkel, Brenna; Hartmann, Faye A; McGuirk, Sheila; Hansen, Chungyi; Talaat, Adel M; Collins, Michael T

    2017-12-01

    When advising farmers on how to control Johne's disease in an infected herd, one of the main recommendations is to avoid feeding waste milk to calves and instead feed calf milk replacer (CMR). This advice is based on the assumption that CMR is free of viable Mycobacterium avium ssp. paratuberculosis (MAP) cells, an assumption that has not previously been challenged. We tested commercial CMR products (n = 83) obtained from dairy farms around the United States by the peptide-mediated magnetic separation (PMS)-phage assay, PMS followed by liquid culture (PMS-culture), and direct IS900 quantitative PCR (qPCR). Conventional microbiological analyses for total mesophilic bacterial counts, coliforms, Salmonella, coagulase-negative staphylococci, streptococci, nonhemolytic Corynebacterium spp., and Bacillus spp. were also performed to assess the overall microbiological quality of the CMR. Twenty-six (31.3%) of the 83 CMR samples showed evidence of the presence of MAP. Seventeen (20.5%) tested positive for viable MAP by the PMS-phage assay, with plaque counts ranging from 6 to 1,212 pfu/50 mL of reconstituted CMR (average 248.5 pfu/50 mL). Twelve (14.5%) CMR samples tested positive for viable MAP by PMS-culture; isolates from all 12 of these samples were subsequently confirmed by whole-genome sequencing to be different cattle strains of MAP. Seven (8.4%) CMR samples tested positive for MAP DNA by IS900 qPCR. Four CMR samples tested positive by both PMS-based tests and 5 CMR samples tested positive by IS900 qPCR plus one or other of the PMS-based tests, but only one CMR sample tested positive by all 3 MAP detection tests applied. All conventional microbiology results were within current standards for whole milk powders. A significant association existed between higher total bacterial counts and presence of viable MAP indicated by either of the PMS-based assays. This represents the first published report of the isolation of viable MAP from CMR. Our findings raise concerns

  15. Fate of indicator microorganisms under nutrient management plan conditions.

    Science.gov (United States)

    Bradford, Scott A; Segal, Eran

    2009-01-01

    Nutrient management plans (NMPs) for application of wastewater from concentrated animal feeding operations are designed to meet crop water and nutrient requirements, but implicitly assume that pathogenic microorganisms in the wastewater will be retained and die-off in the root zone. A NMP was implemented on a field plot to test this assumption by monitoring the fate of several fecal indicator microorganisms (Enterococcus, fecal coliforms, somatic coliphage, and total Escherichia coli). When well-water and wastewater were applied to meet measured evapotranspiration (ET), little advective transport of the indicator microorganisms occurred below the root zone and the remaining microorganisms rapidly died-off (within 1 mo). Additional experiments were conducted in the laboratory to better quantify microorganism transport and survival in the field soil. Batch survival experiments revealed much more rapid die-off rates for the bacterial indicator microorganisms in native than in sterilized soil, suggesting that biotic factors controlled survival. Saturated column experiments with packed field soil, demonstrated much greater transport potential for somatic coliphage than bacterial indicators (Enterococcus and total E. coli) and that the retention rates for the indicator microorganisms were not log-linear with depth. A worst case transport scenario of ponded infiltration on a large undistributed soil column from the field was also initiated and indicator microorganisms were not detected in the column outflow or in the soil at a depth of 65 cm. All of these observations support the hypothesis that a NMP at this site will protect groundwater supplies from microorganism contamination, especially when applied water and wastewater meet ET.

  16. Effects of soil microorganisms on uptake of 89Sr by ryegrass and bahia grass

    International Nuclear Information System (INIS)

    Zhong Weiliang; Liu Kexing

    2006-01-01

    In present study, 60 Co γ-rays was used to irradiate soil with doses of 3.0 kGy and 25.0 kGy, respectively, to discriminate between arbuscular mycorrhizal (AM) fungi and other soil microorganisms, while soil without irradiation was used as control to study the effects of soil microorganisms on uptake of 89 Sr by ryegrass and bahia grass. The results showed that the AM infection rates in ryegrass and bahia grass were 48.0% and 28.0% in the control soil, respectively which indicated that both grass species were prone to forming AM symbiosis with AM fungi. Although AM fungi and other soil microorganisms had no significant effect on above ground biomass in ryegrass and bahia grass, both AM fungi and other soil microorganisms decreased the uptake of 89 Sr in the two grass species, though to a more or less extant. (authors)

  17. Modelling and application of the inactivation of microorganism

    International Nuclear Information System (INIS)

    Oğuzhan, P.; Yangılar, F.

    2013-01-01

    Prevention of consuming contaminated food with toxic microorganisms causing infections and consideration of food protection and new microbial inactivation methods are obligatory situations. Food microbiology is mainly related with unwanted microorganisms spoiling foods during processing and transporting stages and causing diseases. Determination of pathogen microorganisms is important for human health to define and prevent dangers and elongate shelf life. Inactivation of pathogen microorganisms can provide food security and reduce nutrient losses. Microbial inactivation which is using methods of food protection such as food safety and fresh. With this aim, various methods are used such as classical thermal processes (pasteurisation, sterilisation), pressured electrical field (PEF), ionised radiation, high pressure, ultrasonic waves and plasma sterilisation. Microbial inactivation modelling is a secure and effective method in food production. A new microbiological application can give useful results for risk assessment in food, inactivation of microorganisms and improvement of shelf life. Application and control methods should be developed and supported by scientific research and industrial applications

  18. Impacts of Triclosan in Grey water on Soil Microorganisms

    International Nuclear Information System (INIS)

    Harrow, D.I; Felker, J.M; Baker, K.H

    2011-01-01

    The use of grey water for irrigation is becoming a common practice in arid regions such as the Southwestern US, the Middle East, Australia, and China. While grey water supplies nutrients to soil ecosystems, the possible impact of trace contaminants, particularly pharmaceuticals and personal care products, has not been determined. This paper examined the impact of triclosan, an antibacterial agent commonly added to consumer products, on microbial populations and microbial diversity in soil irrigated with grey water. While there was no change in the total number of heterotrophic microorganisms in the soil, both the types and the antibiotic resistance of the microorganisms were significantly influenced by triclosan. The proportion of the microbial isolates resistant to antibiotics increased while at the same time, overall diversity of the microbial community decreased.

  19. Artifical Microorganism Infection in Aviation Kerosene

    Directory of Open Access Journals (Sweden)

    Dušan Vallo

    2004-12-01

    Full Text Available The fuel used in the aviation engineering has to be clean and dry, it may not contain mechanical impurities and water. Water inaviation kerosene may occur in soluble and insoluble form. The danger inheres in the insoluble form, which may drop out in the crystallineform and cause various failures, such as those caused by mechanical impurities. The water assists in the biological matter formation createdby various species of microorganisms (bacteria, mould fungi and yeast. The microorganisms, present in water phase occurring on thebottom of tanks or on the interface water phase – kerosene, grow and reproduce and subsequently may pollute (impair the fuel by thebiomass or by the products of their metabolism. There is a possibility to infect the fuel artificially by a selected reference microorganismstrain, which usually occur in contaminated fuel, or by microorganisms which cause a biological contamination of aviation kerosene.Out of the selected reference strains used in the experiments, the reference strains of Proteus vulgaris, Sacharamyces cerevisiae andClostridium perfringens were not cultivated in the sterile aviation kerosene and the propagating nutrient medium. The aviation kerosene actsas a biocide medium for the presented reference microorganism strains.

  20. A multicenter study of viable PCR using propidium monoazide to detect Legionella in water samples.

    Science.gov (United States)

    Scaturro, Maria; Fontana, Stefano; Dell'eva, Italo; Helfer, Fabrizia; Marchio, Michele; Stefanetti, Maria Vittoria; Cavallaro, Mario; Miglietta, Marilena; Montagna, Maria Teresa; De Giglio, Osvalda; Cuna, Teresa; Chetti, Leonarda; Sabattini, Maria Antonietta Bucci; Carlotti, Michela; Viggiani, Mariagabriella; Stenico, Alberta; Romanin, Elisa; Bonanni, Emma; Ottaviano, Claudio; Franzin, Laura; Avanzini, Claudio; Demarie, Valerio; Corbella, Marta; Cambieri, Patrizia; Marone, Piero; Rota, Maria Cristina; Bella, Antonino; Ricci, Maria Luisa

    2016-07-01

    Legionella quantification in environmental samples is overestimated by qPCR. Combination with a viable dye, such as Propidium monoazide (PMA), could make qPCR (named then vPCR) very reliable. In this multicentre study 717 artificial water samples, spiked with fixed concentrations of Legionella and interfering bacterial flora, were analysed by qPCR, vPCR and culture and data were compared by statistical analysis. A heat-treatment at 55 °C for 10 minutes was also performed to obtain viable and not-viable bacteria. When data of vPCR were compared with those of culture and qPCR, statistical analysis showed significant differences (P 0.05). Overall this study provided a good experimental reproducibility of vPCR but also highlighted limits of PMA in the discriminating capability of dead and live bacteria, making vPCR not completely reliable. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Viable group A streptococci in macrophages during acute soft tissue infection.

    Directory of Open Access Journals (Sweden)

    Pontus Thulin

    2006-03-01

    Full Text Available Group A streptococcal severe soft tissue infections, such as necrotizing fasciitis, are rapidly progressive infections associated with high mortality. Group A streptococcus is typically considered an extracellular pathogen, but has been shown to reside intracellularly in host cells.We characterized in vivo interactions between group A streptococci (GAS and cells involved in innate immune responses, using human biopsies (n = 70 collected from 17 patients with soft tissue infections. Immunostaining and in situ image analysis revealed high amounts of bacteria in the biopsies, even in those collected after prolonged antibiotic therapy. Viability of the streptococci was assessed by use of a bacterial viability stain, which demonstrated viable bacteria in 74% of the biopsies. GAS were present both extracellularly and intracellularly within phagocytic cells, primarily within macrophages. Intracellular GAS were predominantly noted in biopsies from newly involved tissue characterized by lower inflammation and bacterial load, whereas purely extracellular GAS or a combination of intra- and extracellular GAS dominated in severely inflamed tissue. The latter tissue was also associated with a significantly increased amount of the cysteine protease streptococcal pyrogenic exotoxin SpeB. In vitro studies confirmed that macrophages serve as reservoirs for viable GAS, and infection with a speB-deletion mutant produced significantly lower frequencies of cells with viable GAS following infection as compared to the wild-type bacteria.This is the first study to demonstrate that GAS survive intracellularly in macrophages during acute invasive infections. This intracellular presence may have evolved as a mechanism to avoid antibiotic eradication, which may explain our finding that high bacterial load is present even in tissue collected after prolonged intravenous antibiotic therapy. This new insight into the pathogenesis of streptococcal soft tissue infections

  2. Viable Group A Streptococci in Macrophages during Acute Soft Tissue Infection.

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available BACKGROUND: Group A streptococcal severe soft tissue infections, such as necrotizing fasciitis, are rapidly progressive infections associated with high mortality. Group A streptococcus is typically considered an extracellular pathogen, but has been shown to reside intracellularly in host cells. METHODS AND FINDINGS: We characterized in vivo interactions between group A streptococci (GAS and cells involved in innate immune responses, using human biopsies (n = 70 collected from 17 patients with soft tissue infections. Immunostaining and in situ image analysis revealed high amounts of bacteria in the biopsies, even in those collected after prolonged antibiotic therapy. Viability of the streptococci was assessed by use of a bacterial viability stain, which demonstrated viable bacteria in 74% of the biopsies. GAS were present both extracellularly and intracellularly within phagocytic cells, primarily within macrophages. Intracellular GAS were predominantly noted in biopsies from newly involved tissue characterized by lower inflammation and bacterial load, whereas purely extracellular GAS or a combination of intra- and extracellular GAS dominated in severely inflamed tissue. The latter tissue was also associated with a significantly increased amount of the cysteine protease streptococcal pyrogenic exotoxin SpeB. In vitro studies confirmed that macrophages serve as reservoirs for viable GAS, and infection with a speB-deletion mutant produced significantly lower frequencies of cells with viable GAS following infection as compared to the wild-type bacteria. CONCLUSIONS: This is the first study to demonstrate that GAS survive intracellularly in macrophages during acute invasive infections. This intracellular presence may have evolved as a mechanism to avoid antibiotic eradication, which may explain our finding that high bacterial load is present even in tissue collected after prolonged intravenous antibiotic therapy. This new insight into the pathogenesis

  3. Ionic liquid-tolerant microorganisms and microbial communities for lignocellulose conversion to bioproducts.

    Science.gov (United States)

    Yu, Chaowei; Simmons, Blake A; Singer, Steven W; Thelen, Michael P; VanderGheynst, Jean S

    2016-12-01

    Chemical and physical pretreatment of biomass is a critical step in the conversion of lignocellulose to biofuels and bioproducts. Ionic liquid (IL) pretreatment has attracted significant attention due to the unique ability of certain ILs to solubilize some or all components of the plant cell wall. However, these ILs inhibit not only the enzyme activities but also the growth and productivity of microorganisms used in downstream hydrolysis and fermentation processes. While pretreated biomass can be washed to remove residual IL and reduce inhibition, extensive washing is costly and not feasible in large-scale processes. IL-tolerant microorganisms and microbial communities have been discovered from environmental samples and studies begun to elucidate mechanisms of IL tolerance. The discovery of IL tolerance in environmental microbial communities and individual microbes has lead to the proposal of molecular mechanisms of resistance. In this article, we review recent progress on discovering IL-tolerant microorganisms, identifying metabolic pathways and mechanisms of tolerance, and engineering microorganisms for IL tolerance. Research in these areas will yield new approaches to overcome inhibition in lignocellulosic biomass bioconversion processes and increase opportunities for the use of ILs in biomass pretreatment.

  4. Metal-microorganism interactions

    International Nuclear Information System (INIS)

    Andres, Y.; Thouand, G.; Redercher, S.; Boualam, M.; Texier, A.Cl.; Hoeffer, R.

    1997-01-01

    The physico-chemical procedures of treating the metalliferous effluents are not always adapted to de polluting the slightly concentrated industrial wastes. An alternative idea was advanced, implying the ability of some microorganisms to fix in considerable amounts the metal ions present in aqueous solutions, possibly in a selective way. This approach has been investigated thoroughly during the last 30 years, particularly from a mechanistic point of view. The advantage of the microorganisms lies mainly in the large diversity of bacteria and in their chemical state dependent interaction with metals, as well as, in the possibilities of developing their selective and quantitative separation properties. A biomass from Mycobacterium smegmatis, an acidic alcoholic resistant bacteria, has been used to prepare a bio-sorption support allowing the preferential sorption of thorium as compared to uranium and lanthanum. These studies have been extended to biological polymers such as chitosan and to studies related to bioaccumulation mechanisms and/or to the microbial resistances towards metals

  5. Controlled field release of a bioluminescent genetically engineered microorganism for bioremediation process monitoring and control

    Energy Technology Data Exchange (ETDEWEB)

    Ripp, S.; Nivens, D.E.; Ahn, Y.; Werner, C.; Jarrell, J. IV; Easter, J.P.; Cox, C.D.; Burlage, R.S.; Sayler, G.S.

    2000-03-01

    Pseudomonas fluorescens HK44 represents the first genetically engineered microorganism approved for field testing in the United States for bioremediation purposes. Strain HK44 harbors an introduced lux gene fused within a naphthalene degradative pathway, thereby allowing this recombinant microbe to bioluminescent as it degrades specific polyaromatic hydrocarbons such as naphthalene. The bioremediation process can therefore be monitored by the detection of light. P. fluorescens HK44 was inoculated into the vadose zone of intermediate-scale, semicontained soil lysimeters contaminated with naphthalene, anthracene, and phenanthrene, and the population dynamics were followed over an approximate 2-year period in order to assess the long-term efficacy of using strain HK44 for monitoring and controlling bioremediation processes. Results showed that P. fluorescens HK44 was capable of surviving initial inoculation into both hydrocarbon contaminated and uncontaminated soils and was recoverable from these soils 660 days post inoculation. It was also demonstrated that strain HK44 was capable of generating bioluminescence in response to soil hydrocarbon bioavailability. Bioluminescence approaching 166,000 counts/s was detected in fiber optic-based biosensor devices responding to volatile polyaromatic hydrocarbons, while a portable photomultiplier module detected bioluminescence at an average of 4300 counts/s directly from soil-borne HK44 cells within localized treatment areas. The utilization of lux-based bioreporter microorganisms therefore promises to be a viable option for in situ determination of environmental contaminant bioavailability and biodegradation process monitoring and control.

  6. Esterase screening using whole cells of Brazilian soil microorganisms

    Energy Technology Data Exchange (ETDEWEB)

    Mantovani, Simone M.; Oliveira, Luciana G. de; Marsaioli, Anita J., E-mail: anita@iqm.unicamp.b [Universidade Estadual de Campinas (IQ/UNICAMP), SP (Brazil). Inst. de Quimica

    2010-07-01

    A miniaturized enzymatic assay using fluorescent probes to reveal esterase producing microorganisms was optimized and applied to screen 64 soil bacterial strains. The best results were validated using traditional non-fluorogenic assays with acetyl and propanoyl phenylethanol to confirm the miniaturized results. The most active microorganisms belong to the genus Bacillus showing esterase activity and good enantiomeric ratios for the resolution of phenylethanol derivatives (E > 30). Part of the microorganisms are kept in our laboratory in glycerol or freezedried and the best microorganisms will be deposited in the CBMAI/CPQBA/UNICAMP culture collection. (author)

  7. Pathogenic and opportunistic microorganisms in caves

    Directory of Open Access Journals (Sweden)

    Sanchez-Moral Sergio

    2010-01-01

    Full Text Available With today’s leisure tourism, the frequency of visits to many caves makes it necessary to know about possible potentially pathogenic microorganisms in caves, determine their reservoirs, and inform the public about the consequences of such visits. Our data reveal that caves could be a potential danger to visitors because of the presence of opportunistic microorganisms, whose existence and possible development in humans is currently unknown.

  8. PROBIOTICS BASED ON TRANSGENIC MICROORGANISMS

    Directory of Open Access Journals (Sweden)

    S. А. Starovoitova

    2012-02-01

    Full Text Available Modern tendencies of recombinant microorganisms creation for obtaining on their basis a new effective biopreparations (probiotics with wider spectrum of biological and therapeutic properties were considered. A lot of attention was focused on the main genera of perspective bacteria for creation of recombinant probiotics particularly: Lactococcus, Bifidobac terium,Bacillus, Escherichia. The main created Ukrainian and foreign gene-modified strains, that are widely used today in creation of effective recombinant biopreparations were characterized. Some fundamental directions and methods of gene-modified strains obtaining, which are used in getting effective biopreparations that used for therapy and prophylactic illness were reported, under which this group of pharmaceutical drugs were not used earlier. The safety matters of probiotics using on basis of genemodified strains were examined. Medical and veterinary biopreparations on basis of recombinant microorganisms could be used directly and effectively for therapy and prophylaxis of different illness, beginning from disbacteriosis up to cardiovascular diseases. It is related with some probiotic microorganisms ability for lowering of serum cholesterol at the host organism.

  9. Secondary metabolites from marine microorganisms.

    Science.gov (United States)

    Kelecom, Alphonse

    2002-03-01

    After 40 years of intensive research, chemistry of marine natural products has become a mature field. Since 1995, there are signals of decreased interest in the search of new metabolites from traditional sources such as macroalgae and octocorals, and the number of annual reports on marine sponges stabilized. On the contrary, metabolites from microorganisms is a rapidly growing field, due, at least in part, to the suspicion that a number of metabolites obtained from algae and invertebrates may be produced by associated microorganisms. Studies are concerned with bacteria and fungi, isolated from seawater, sediments, algae, fish and mainly from marine invertebrates such as sponges, mollusks, tunicates, coelenterates and crustaceans. Although it is still to early to define tendencies, it may be stated that the metabolites from microorganisms are in most cases quite different from those produced by the invertebrate hosts. Nitrogenated metabolites predominate over acetate derivatives, and terpenes are uncommon. Among the latter, sesquiterpenes, diterpenes and carotenes have been isolated; among nitrogenated metabolites, amides, cyclic peptides and indole alkaloids predominate.

  10. Secondary metabolites from marine microorganisms

    Directory of Open Access Journals (Sweden)

    KELECOM ALPHONSE

    2002-01-01

    Full Text Available After 40 years of intensive research, chemistry of marine natural products has become a mature field. Since 1995, there are signals of decreased interest in the search of new metabolites from traditional sources such as macroalgae and octocorals, and the number of annual reports on marine sponges stabilized. On the contrary, metabolites from microorganisms is a rapidly growing field, due, at least in part, to the suspicion that a number of metabolites obtained from algae and invertebrates may be produced by associated microorganisms. Studies are concerned with bacteria and fungi, isolated from seawater, sediments, algae, fish and mainly from marine invertebrates such as sponges, mollusks, tunicates, coelenterates and crustaceans. Although it is still to early to define tendencies, it may be stated that the metabolites from microorganisms are in most cases quite different from those produced by the invertebrate hosts. Nitrogenated metabolites predominate over acetate derivatives, and terpenes are uncommon. Among the latter, sesquiterpenes, diterpenes and carotenes have been isolated; among nitrogenated metabolites, amides, cyclic peptides and indole alkaloids predominate.

  11. Microorganisms as sources of oils

    Directory of Open Access Journals (Sweden)

    Thevenieau France

    2013-11-01

    Full Text Available A number of microorganism belonging to the genera of yeast, fungi, bacteria and microalgae have ability to accumulate substantial amounts of oil, sometimes up to an even in excess of 70% of their biomass weight under specific cultivation conditions. For nearly 100 years, the commercial opportunities of using microorganisms as sources of oils have been continuously examined. Although it was evident that microbial oils could never compete commercially with the major commodity plant oils, there were commercially opportunities for the production of some of the higher valued oils. Today, with the great progress of metabolic and genetic engineering, the developments are focus on the high value oils containing important polyunsaturated or specific fatty acids. Such oils have the potential to be used in different applications area as food, feed and oleochemistry. This review is covering the related researches about different oleaginous microorganisms for lipids production and microbial oils biosynthesis process. In add, the lipid metabolism, metabolic engineering strategies to increase lipid production and the economics of microbial oils production are introduced.

  12. Microorganisms and methods for producing pyruvate, ethanol, and other compounds

    Energy Technology Data Exchange (ETDEWEB)

    Reed, Jennifer L.; Zhang, Xiaolin

    2017-12-26

    Microorganisms comprising modifications for producing pyruvate, ethanol, and other compounds. The microorganisms comprise modifications that reduce or ablate activity of one or more of pyruvate dehydrogenase, 2-oxoglutarate dehydrogenase, phosphate acetyltransferase, acetate kinase, pyruvate oxidase, lactate dehydrogenase, cytochrome terminal oxidase, succinate dehydrogenase, 6-phosphogluconate dehydrogenase, glutamate dehydrogenase, pyruvate formate lyase, pyruvate formate lyase activating enzyme, and isocitrate lyase. The microorganisms optionally comprise modifications that enhance expression or activity of pyruvate decarboxylase and alcohol dehydrogenase. The microorganisms are optionally evolved in defined media to enhance specific production of one or more compounds. Methods of producing compounds with the microorganisms are provided.

  13. System for identification of microorganism and detection of infectious disorder

    DEFF Research Database (Denmark)

    2013-01-01

    Methods for the identification of microorganisms or infectious disorders are disclosed, comprising obtaining a suitable sample from sources such as persons, animals, plants, food, water or soil. The methods also comprise providing tailored nucleic acid substrate(s) designed to react with a type 1...... topoisomerase from one or more microorganism(s) or infectious agent(s), and incubating said substrate with said sample, or extracts or preparations from the sample, so that the substrate is processed by said topoisomerase if said microorganism(s) or infectious agent(s) is present in the sample. Finally......, processed substrates are identified and potentially quantified by one or more of a range of standard molecular biology methods and read-out systems. The identification and potential quantification of microorganisms and infectious agents, including but not limited to Plasmodium falciparum and Mycobacterium...

  14. Blood flow, flow reserve, and glucose utilization in viable and nonviable myocardium in patients with ischemic cardiomyopathy.

    Science.gov (United States)

    Zhang, Xiaoli; Schindler, Thomas H; Prior, John O; Sayre, James; Dahlbom, Magnus; Huang, Sung-Cheng; Schelbert, Heinrich R

    2013-04-01

    The aim of the study was to determine whether glucose uptake in viable myocardium of ischemic cardiomyopathy patients depends on rest myocardial blood flow (MBF) and the residual myocardial flow reserve (MFR). Thirty-six patients with ischemic cardiomyopathy (left ventricular ejection fraction 25 ± 10 %) were studied with (13)N-ammonia and (18)F-fluorodeoxyglucose (FDG) positron emission tomography (PET). Twenty age-matched normals served as controls. Regional MBF was determined at rest and during dipyridamole hyperemia and regional FDG extraction was estimated from regional FDG to (13)N-ammonia activity ratios. Rest MBF was reduced in viable (0.42 ± 0.18 ml/min per g) and nonviable regions (0.32 ± 0.09 ml/min per g) relative to remote regions (0.68 ± 0.23 ml/min per g, p MFRs did not differ significantly (p > 0.05). Compared to MFR in remote myocardium, MFRs in viable regions were similar (1.39 ± 0.56 vs 1.70 ± 0.45, p > 0.05) but were significantly lower in nonviable regions (1.23 ± 0.43, p MFRs (r =-0.424, p MFRs in viable myocardium are associated with increasing glucose extraction that likely reflects a metabolic adaptation of remodeling hibernating myocytes.

  15. THE ASPECTS OF INVESTIGATION OF MICROORGANISM ANTIBIOTIC RESISTANCE AT THE PRESENT STAGE

    Directory of Open Access Journals (Sweden)

    Andreeva I.A.

    2015-05-01

    Full Text Available Introduction. At the present stage for ensuring epidemic safety and prevention of nosocomial infections the complex of analytical study and managerial procedure to improve the epidemiological supervision over nosocomial infections through the introduction of infection control in health care practice are using. The microbiological monitoring is part of the infectious control and allows supervising circulation of microorganisms and their antimicrobial resistance by dynamic observation over structure and level of resistance to antibiotics that are used in the given particular hospital. Materials and methods. For the dynamic observation of the structure and the level of resistance of microorganisms to antimicrobial agents the computer software WHONET recommended by WHO has been used. With using WHONET in Dnepropetrovsk Children's Hospital № 3 the computer database has been created. In this database the information about each patient, hospital department, samples under test and the date of its excretion, the data about the detected microorganism and its sensitivity/resistance to antimicrobial agents have been stored. The examination and analysis of antibiotic resistance of microorganisms has been provided for 2010- 2014 years, in total the data on 6168 isolates from 3876 patients have been analyzed. Results and discussion. By the total data the isolates belong to a wide spectrum of microorganisms (more than 40 different types. By means of the analysis of isolating of clinically significant microorganisms it has been established that one of the most frequent isolated were Escherichia coli (1-20 %, Klebsiella pneumoniae (4-18 %, Staphylococcus epidermidis (1-12 %, S. aureus (1-10 %, Enterobacter cloacae (2-9 %, Pseudomonas aeruginosa (1-8 %. Detection of other microorganisms was irregular and its frequency is varied from 0 % to 10 %. As a result of examining the sensitivity of microorganisms it has been shown that tested strains of bacteria were

  16. Effects of a vinasse-microorganism blend application on a Vertisol with sugarcane

    Directory of Open Access Journals (Sweden)

    Gallego Blanco Jose Miller

    2012-04-01

    Full Text Available

    The effect of a second dose of vinasse on some physical and chemical properties of a Vertisol was evaluated with cut sugarcane in Valle del Cauca, Colombia. We analyzed the expression of any possible toxicity in foliar tissue samples at the end of the cycle. Vinasse treatments added with two different mixtures of microorganisms were established in a randomized complete block with five replicates: soil without vinasse and no microorganisms; soils with a dose of vinasse, soils with two doses of vinasse; soils with a single dose of vinasse separately evaluated with two different mixtures of microorganisms and soils with two doses of vinasse separately evaluated with two different mixtures of microorganisms. The chemical properties evaluated were pH, soil organic matter content, C, N, P, Ca, Mg, Na, and K content, cation exchange capacity CEC and electrical conductivity EC. The physical properties determined were bulk density, particle density and porosity. There were no significant differences in the physical and chemical properties of the soil for the evaluated cultivation cycle with the application of one or two doses of vinasse with and without microorganisms. Leaf tissue analysis did not show a nutritional imbalance due to the second application.

  17. Electrochemically active microorganisms from an acid mine drainage-affected site promote cathode oxidation in microbial fuel cells

    KAUST Repository

    Rojas, Claudia; Vargas, Ignacio T.; Bruns, Mary Ann; Regan, John M.

    2017-01-01

    The limited database of acidophilic or acidotolerant electrochemically active microorganisms prevents advancements on microbial fuel cells (MFCs) operated under low pH. In this study, three MFCs were used to enrich cathodic biofilms using acid mine drainage (AMD) sediments as inoculum. Linear sweep voltammetry showed cathodic current plateaus of 5.5 (± 0.7) mA at about − 170 mV vs Ag/AgCl and 8.5 (± 0.9) mA between − 500 mV to − 450 mV vs Ag/AgCl for biofilms developed on small graphite fiber brushes. After gamma irradiation, biocathodes exhibited a decrease in current density approaching that of abiotic controls. Electrochemical impedance spectroscopy showed six-fold lower charge transfer resistance with viable biofilm. Pyrosequencing data showed that Proteobacteria and Firmicutes dominated the biofilms. Acidithiobacillus representatives were enriched in some biocathodes, supporting the potential importance of these known iron and sulfur oxidizers as cathodic biocatalysts. Other acidophilic chemolithoautotrophs identified included Sulfobacillus and Leptospirillum species. The presence of chemoautotrophs was consistent with functional capabilities predicted by PICRUSt related to carbon fixation pathways in prokaryotic microorganisms. Acidophilic or acidotolerant heterotrophs were also abundant; however, their contribution to cathodic performance is unknown. This study directs subsequent research efforts to particular groups of AMD-associated bacteria that are electrochemically active on cathodes.

  18. Electrochemically active microorganisms from an acid mine drainage-affected site promote cathode oxidation in microbial fuel cells

    KAUST Repository

    Rojas, Claudia

    2017-08-03

    The limited database of acidophilic or acidotolerant electrochemically active microorganisms prevents advancements on microbial fuel cells (MFCs) operated under low pH. In this study, three MFCs were used to enrich cathodic biofilms using acid mine drainage (AMD) sediments as inoculum. Linear sweep voltammetry showed cathodic current plateaus of 5.5 (± 0.7) mA at about − 170 mV vs Ag/AgCl and 8.5 (± 0.9) mA between − 500 mV to − 450 mV vs Ag/AgCl for biofilms developed on small graphite fiber brushes. After gamma irradiation, biocathodes exhibited a decrease in current density approaching that of abiotic controls. Electrochemical impedance spectroscopy showed six-fold lower charge transfer resistance with viable biofilm. Pyrosequencing data showed that Proteobacteria and Firmicutes dominated the biofilms. Acidithiobacillus representatives were enriched in some biocathodes, supporting the potential importance of these known iron and sulfur oxidizers as cathodic biocatalysts. Other acidophilic chemolithoautotrophs identified included Sulfobacillus and Leptospirillum species. The presence of chemoautotrophs was consistent with functional capabilities predicted by PICRUSt related to carbon fixation pathways in prokaryotic microorganisms. Acidophilic or acidotolerant heterotrophs were also abundant; however, their contribution to cathodic performance is unknown. This study directs subsequent research efforts to particular groups of AMD-associated bacteria that are electrochemically active on cathodes.

  19. Microorganisms of Grape Berries

    Directory of Open Access Journals (Sweden)

    Kántor Attila

    2017-12-01

    Full Text Available Grape surface is an unstable habitat that changes greatly according to the stage of grape ripening. Different bacteria and yeasts can colonise the surface of grape berry and the diversity of microorganisms depends on the stage of ripening, pesticide application and health condition. The aim of this study was to study the microflora of the surface of grape berries. Altogether, 19 grape samples from Slovakia were collected. The spread plate method was applied and a 100 μL inoculum of each dilution (10−2, 10−3 was plated on TSA, MEA, and MRS agar for isolation of microorganisms from grapes. Proteins were extracted from cells by ethanol/formic acid extraction procedure. MALDI-TOF Mass Spectrometry was used for identification of microorganisms. In total, 11 genera of Gram-negative bacteria, 11 of Gram-positive bacteria and nine of yeasts were identified. Among 200 isolates, Gram-negative, Gram-positive bacteria and yeasts represented 11%, 27% and 62% of the total number of isolates studied. The most common genera of isolated yeasts were Hanseniaspora (37%, Metschnikowia (31%, and Rhodotorula (10%. The most frequently isolated among Gram-negative bacteria were Acinetobacter (22%, Pseudomonas (22% and Sphingomonas (13%. The most common genera of Gram-positive bacteria were Bacillus (20%, Lactobacillus (19%, Leuconostoc and Staphylococcus (11%, respectively.

  20. Interactions of phytoplankton, zooplankton and microorganisms

    Science.gov (United States)

    Pomeroy, L. R.; Paffenhöfer, G.-A.; Yoder, J. A.

    We present evidence that there are significant interactions between heterotrophic microorganisms, doliolids and Fritillaria within intrusions of nutrient-rich Gulf Stream water stranding on the continental shelf. During the summer of 1981 cold, nutrient-rich water from below the surface of the Gulf Stream was repeatedly intruded and stranded on the continental shelf off northeastern Florida. On August 6 old, stranded Gulf Stream water depleted of nitrate occupied the lower layer on the outer shelf. The upper water was continental shelf water, older but of undefined age. On August 6 free-living bacteria were >10 6ml -1 everywhere at all depths, an order of magnitude greater than normal bacterial numbers on the northeastern Florida continental shelf. Over 10 days the numbers of free bacteria doubled while bacteria attached to particles increased by a factor of four. The adenylate/chlorophyll ratio showed that phytoplankton dominated the lower layers of intruded water, while the surface water became increasingly dominated by heterotrophic microorganisms (bacteria and protozoa) over 10 days. There were significant, negative correlations between bacteria and doliolids and between bacteria and Fritillaria. Regions of maximum bacterial numbers did not coincide with locations of salp swarms. The increased numbers of bacteria at all depths in a highly stratified system in which most phytoplankton are in the lower layer suggests a diverse source of bacterial growth substrates, some of which involve zooplankton as intermediaries. Production of autotrophs is more than twice that of microheterotrophs on average, but because of their differential distribution, microheterotrophs are the dominant biomass in much of the surface water and may be significant in energy flux to metazoan consumers as well as competitors for mutually useable sources of nutrition.

  1. Physiologically anaerobic microorganisms of the deep subsurface

    International Nuclear Information System (INIS)

    Stevens, S.E. Jr.; Chung, K.T.

    1993-10-01

    Anaerobic bacteria were isolated from deep subsurface sediment samples taken at study sites in Idaho (INEL) and Washington (HR) by culturing on dilute and concentrated medium. Morphologically distinct colonies were purified, and their responses to 21 selected physiological tests were determined. Although the number of isolates was small (18 INEL, 27 HR) some general patterns could be determined. Most strains could utilize all the carbon sources, however the glycerol and melizitose utilization was positive for 50% or less of the HR isolates. Catalase activity (27.78% at INEL, 74.07% at HR) and tryptophan metabolism (11.12% at INEL, 40.74% at HR) were significantly different between the two study sites. MPN and viable counts indicate that sediments near the water table yield the greatest numbers of anaerobes. Deeper sediments also appear to be more selective with the greatest number of viable counts on low-nutrient mediums. Likewise, only strictly obligate anaerobes were found in the deepest sediment samples. Selective media indicated the presence of methanogens, acetogens, and sulfate reducers at only the HR site

  2. Immunization against chlamydial genital infection in guinea pigs with UV-inactivated and viable chlamydiae administered by different routes

    International Nuclear Information System (INIS)

    Rank, R.G.; Batteiger, B.E.; Soderberg, L.S.

    1990-01-01

    Female guinea pigs were immunized with viable or UV light-inactivated chlamydiae, belonging to the species Chlamydia psittaci, by intravenous, subcutaneous, oral, or ocular routes. All animals were then inoculated vaginally with viable chlamydiae to determine the extent of protection against challenge infection induced by the various regimens. The course of genital infection was significantly reduced in intensity in all groups of animals except the unimmunized controls and those animals immunized orally with inactivated antigen. Guinea pigs immunized with viable antigen were more likely to develop resistance to challenge infection and, in general, had a significantly greater degree of protection than animals immunized with inactivated antigen. No one route seemed superior in producing a protective response. Animals in all groups demonstrating protection developed serum and secretion immunoglobulin G antibody responses to chlamydiae. Lymphocyte proliferative reactions to chlamydial antigen were variable among groups. Immunoblot analysis of serum and secretions indicated a wide range of antibody specificities, but most protected animals produced antibodies to the major outer membrane protein, lipopolysaccharide, and the 61-kilodalton protein. No definitive associations could be made between the increased ability of immunization with viable organisms to produce resistance to challenge infection and a particular immune parameter. These data indicate that viable chlamydiae given by various routes are able to induce a strong immune response which can provide resistance against reinfection in some cases or at least reduce the degree of infection to a greater degree than inactivated antigen. However, complete resistance to genital tract infection may be difficult to obtain and alternate immunizations strategies may have to be developed

  3. Effects of Hangeshashinto on Growth of Oral Microorganisms

    Directory of Open Access Journals (Sweden)

    Haruka Fukamachi

    2015-01-01

    Full Text Available Oral mucositis (OM in cancer patients induced by chemotherapy or radiotherapy has a significant impact on quality of life, and causes considerable morbidity. Oral microorganisms are likely to intensify the inflammatory process and aggravate the formation of ulcers. Hangeshashinto (HST, a Japanese kampo medicine, has been reported to be effective when used as a gargle for the treatment of OM. To clarify the effects of HST on oral microorganisms, we assessed its antimicrobial activity against 27 microbial species, including 19 oral bacteria and one fungus. HST extract inhibited the growth of Gram-negative bacteria, including Fusobacterium nucleatum, Porphyromonas gingivalis, Porphyromonas endodontalis, Prevotella intermedia, Prevotella melaninogenica, Tannerella forsythia, Treponema denticola, and Porphyromonas asaccharolytica, though inhibitory effects were less pronounced for Gram-positive bacteria and the fungal strain. We then investigated the effects of antibacterial activities on 15 purified ingredients of HST and determined that baicalein, berberine, coptisine, [6]-shogaol, and homogentisic acid actively inhibited the growth of these bacteria. These findings showed that HST inhibits the growth of specific Gram-negative periodontopathogenic bacteria, which are significant pathogens in OM, without disturbing the normal oral flora. Our data suggest that HST may be a useful treatment for OM in patients undergoing anticancer treatment.

  4. [Effects of copper on biodegradation mechanism of trichloroethylene by mixed microorganisms].

    Science.gov (United States)

    Gao, Yanhui; Zhao, Tiantao; Xing, Zhilin; He, Zhi; Zhang, Lijie; Peng, Xuya

    2016-05-25

    We isolated and enriched mixed microorganisms SWA1 from landfill cover soils supplemented with trichloroethylene (TCE). The microbial mixture could degrade TCE effectively under aerobic conditions. Then, we investigated the effect of copper ion (0 to 15 μmol/L) on TCE biodegradation. Results show that the maximum TCE degradation speed was 29.60 nmol/min with 95.75% degradation when copper ion was at 0.03 μmol/L. In addition, genes encoding key enzymes during biodegradation were analyzed by Real-time quantitative reverse transcription PCR (RT-qPCR). The relative expression abundance of pmoA gene (4.22E-03) and mmoX gene (9.30E-06) was the highest when copper ion was at 0.03 μmol/L. Finally, we also used MiSeq pyrosequencing to investigate the diversity of microbial community. Methylocystaceae that can co-metabolic degrade TCE were the dominant microorganisms; other microorganisms with the function of direct oxidation of TCE were also included in SWA1 and the microbial diversity decreased significantly along with increasing of copper ion concentration. Based on the above results, variation of copper ion concentration affected the composition of SWA1 and degradation mechanism of TCE. The degradation mechanism of TCE included co-metabolism degradation of methanotrophs and oxidation metabolism directly at copper ion of 0.03 μmol/L. When copper ion at 5 μmol/L (biodegradation was 84.75%), the degradation mechanism of TCE included direct-degradation and co-metabolism degradation of methanotrophs and microorganisms containing phenol hydroxylase. Therefore, biodegradation of TCE by microorganisms was a complicated process, the degradation mechanism included co-metabolism degradation of methanotrophs and bio-oxidation of non-methanotrophs.

  5. Soil microorganisms determine the sorption of radionuclides within organic soil systems

    International Nuclear Information System (INIS)

    Parekh, N.R.; Poskitt, J.M.; Dodd, B.A.; Potter, E.D.; Sanchez, A.

    2008-01-01

    The potential of soil microorganisms to enhance the retention of 137 Cs and 85 Sr in organic systems was assessed in a series of experiments. A biologically active, 'mineral-free', organic material, produced under laboratory conditions from leaves, was used as the uptake matrix in all experiments to minimise potential interference from competing clay minerals. Biological uptake and release were differentiated from abiotic processes by comparing the sorption of radionuclides in sterilised organic material with sterile material inoculated with soil extracts or single fungal strains. Our results show conclusively that living components of soil systems are of primary importance in the uptake of radionuclides in organic material. The presence of soil microorganisms significantly enhanced the retention of Cs in organic systems and ∼70% of the Cs spike was strongly (irreversibly) bound (remained non-extractable) in the presence of microorganisms compared to only ∼10% in abiotic systems. Sorption of 85 Sr was not significantly influenced by the presence of soil microorganisms. A non-linear temperature response was observed for the retention in biotic systems with increased uptake at between 10 and 30 deg. C and lower retention at temperatures above or below the optimum range. The optimum temperatures for biological uptake were between 15 and 20 deg. C for Cs, and 25 and 30 deg. C for Sr. Our results indicate that single strains of soil and saprotrophic fungi make an important contribution to the sorption of Cs and Sr in organic systems, but can only account for part of the strong, irreversible binding observed in biotic systems. Single strains of soil fungi increased the amount of non-extractable 137 Cs (by ∼30%) and 85 Sr (by ∼20%) in the organic systems as compared to abiotic systems, but the major fraction of 137 Cs and 85 Sr sorbed in systems inoculated with saprotrophic fungi remained extractable

  6. Collateral circulation as a marker of the presence of viable myocardium in patients with recent myocardial infarction

    International Nuclear Information System (INIS)

    Fujita, M.; Ohno, A.; Wada, O.; Miwa, K.; Nozawa, T.; Yamanishi, K.; Sasayama, S.

    1991-01-01

    The relationship between the presence of viable myocardium and the extent of coronary collateral circulation to the infarct area was evaluated in 20 patients with a recent anterior myocardial infarction who had complete obstruction of the left anterior descending coronary artery. The viability of myocardial tissue was assessed by exercise thallium-201 myocardial scintigraphy, and the collateral circulation was angiographically evaluated by means of a collateral index ranging from 0 to 3. Patients were divided into two groups according to the presence (group 1, n = 10) or absence (group 2, n = 10) of viable myocardium in the perfusion territory of the infarct-related artery. The collateral index in group 1 was 2.5 ± 0.5 (SD), which was significantly higher than the 0.7 ± 0.8 in group 2. These findings indicate that the presence of ischemic but viable myocardium is intimately related to the development of collateral circulation in patients with myocardial infarction, and the existence of well-developed collateral channels predicts the presence of viable myocardium in the infarct area

  7. Biodiesel production by various oleaginous microorganisms from organic wastes.

    Science.gov (United States)

    Cho, Hyun Uk; Park, Jong Moon

    2018-05-01

    Biodiesel is a biodegradable and renewable fuel. A large amount of research has considered microbial oil production using oleaginous microorganisms, but the commercialization of microbial lipids produced in this way remains uncertain due to the high cost of feedstock or low lipid yield. Microbial lipids can be typically produced by microalgae, yeasts, and bacteria; the lipid yields of these microorganisms can be improved by using sufficient concentrations of organic carbon sources. Therefore, combining low-cost organic compounds contained in organic wastes with cultivation of oleaginous microorganisms can be a promising approach to obtain commercial viability. However, to achieve effective bioconversion of low-cost substrates to microbial lipids, the characteristics of each microorganism and each substrate should be considered simultaneously. This article discusses recent approaches to developing cost-effective microbial lipid production processes that use various oleaginous microorganisms and organic wastes. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Glyphosate-Degrading Microorganisms from Industrial Activated Sludge

    OpenAIRE

    Balthazor, Terry M.; Hallas, Laurence E.

    1986-01-01

    A plating medium was developed to isolate N-phosphonomethylglycine (glyphosate)-degrading microorganisms, with glyphosate as the sole phosphorus source. Two industrial biosystems treating glyphosate wastes contained elevated microbial counts on the medium. One purified isolate metabolized glyphosate to aminomethylphosphonic acid, mineralizing this accumulating intermediate during log growth. This microorganism has been identified as a Flavobacterium species.

  9. Bioremediation of Industrial Waste Through Enzyme Producing Marine Microorganisms.

    Science.gov (United States)

    Sivaperumal, P; Kamala, K; Rajaram, R

    Bioremediation process using microorganisms is a kind of nature-friendly and cost-effective clean green technology. Recently, biodegradation of industrial wastes using enzymes from marine microorganisms has been reported worldwide. The prospectus research activity in remediation area would contribute toward the development of advanced bioprocess technology. To minimize industrial wastes, marine enzymes could constitute a novel alternative in terms of waste treatment. Nowadays, the evidence on the mechanisms of bioremediation-related enzymes from marine microorganisms has been extensively studied. This review also will provide information about enzymes from various marine microorganisms and their complexity in the biodegradation of comprehensive range of industrial wastes. © 2017 Elsevier Inc. All rights reserved.

  10. SELECTION OF MICROORGANISMS FOR FERMENTATION OF MEAT MATERIALS

    Directory of Open Access Journals (Sweden)

    Danylenko S. G.

    2014-08-01

    Full Text Available Principal criteria for the selection of microorganisms with a wide range of biological and technological properties for fermentation of raw meats are considered. Attention is paid to the main groups of microorganisms such as Micrococсus, Staphylococcus, Lactobacillus, Bifidobacterium and Propionibacterium which are promising for creation of bacterial preparations. To create bacterial preparations, the basic criteria of selection for microorganisms were determined as follows: the ability of microorganisms to be developed within the specific ecological niche (raw meat materials and their influence on flavor characteristics of the final product under the conditions of intensification of production technologies of meat products. Methods used for search and retrieval of technologically promising strains from different natural sources (fresh meats, minced meats, meat, dairy and sour-milk products, vegetables, fruit, brines and mixtures for salting are considered.

  11. Inhibition of viability of microorganisms in [18F]-labeled radiopharmaceuticals

    International Nuclear Information System (INIS)

    Jörg, G.; Fosselmann, M.; Leis, W.; Oberdorfer, F.; Fehsenfeld, Ch.

    2017-01-01

    Introduction: Good manufacturing practice (GMP)-compliant production of radiopharmaceuticals for parenteral application requires great efforts in maintenance of clean room infrastructure and equipment in order to reliably guarantee the constant hygienic quality of the product (sterility). Terminal sterilization of the product is not always possible due to short half-life or due to thermal instability of the compound. The typical method for sterilization in these cases is sterile filtration prior to dispensing (distribution of product solution from bulk to patient vials). Therefore, aseptic processing techniques have to be in place in order to ensure sterility. Still, there remains some risk of microbial contamination of the product, and hence a risk for the patient to suffer from infection. Due to the short half-life of the labeling radionuclides, this aspect is aggravated by only retrospectively possible testing for sterility. This work investigated the potential of [ 18 F]-radiation to intrinsically inactivate microorganisms (MO) that might have slipped through the aseptic process. Methods: Defined numbers of viable cells of different bacterial strains and molds were incubated with defined amounts of [ 18 F]-activity. After decay of radiation the number of surviving viable cells was determined, D 10 -values were calculated and evaluated. Results: The MOs tested exhibit a broad range of [ 18 F]-radiation susceptibility, D 10 -values range from a sensitive 114 MBq/mL (46 Gy) to a durable 2,048 MBq/mL (790 Gy). Conclusion: The intrinsic [ 18 F]-radiation in radiopharmaceuticals is no safe measure to generally ensure sterility of the product solution in terms of “autosterilization”, because of dependence on various parameters. Advances in knowledge and implications for patient care: This work presents for the first time experimental data on the influence of [ 18 F]-radiation on MOs. The results suggest, that aseptic processing techniques are essential and that

  12. Comparison of viable plate count, turbidity measurement and real-time PCR for quantification of Porphyromonas gingivalis.

    Science.gov (United States)

    Clais, S; Boulet, G; Van Kerckhoven, M; Lanckacker, E; Delputte, P; Maes, L; Cos, P

    2015-01-01

    The viable plate count (VPC) is considered as the reference method for bacterial enumeration in periodontal microbiology but shows some important limitations for anaerobic bacteria. As anaerobes such as Porphyromonas gingivalis are difficult to culture, VPC becomes time-consuming and less sensitive. Hence, efficient normalization of experimental data to bacterial cell count requires alternative rapid and reliable quantification methods. This study compared the performance of VPC with that of turbidity measurement and real-time PCR (qPCR) in an experimental context using highly concentrated bacterial suspensions. Our TaqMan-based qPCR assay for P. gingivalis 16S rRNA proved to be sensitive and specific. Turbidity measurements offer a fast method to assess P. gingivalis growth, but suffer from high variability and a limited dynamic range. VPC was very time-consuming and less repeatable than qPCR. Our study concludes that qPCR provides the most rapid and precise approach for P. gingivalis quantification. Although our data were gathered in a specific research context, we believe that our conclusions on the inferior performance of VPC and turbidity measurements in comparison to qPCR can be extended to other research and clinical settings and even to other difficult-to-culture micro-organisms. Various clinical and research settings require fast and reliable quantification of bacterial suspensions. The viable plate count method (VPC) is generally seen as 'the gold standard' for bacterial enumeration. However, VPC-based quantification of anaerobes such as Porphyromonas gingivalis is time-consuming due to their stringent growth requirements and shows poor repeatability. Comparison of VPC, turbidity measurement and TaqMan-based qPCR demonstrated that qPCR possesses important advantages regarding speed, accuracy and repeatability. © 2014 The Society for Applied Microbiology.

  13. Application of thermotolerant microorganisms for biofertilizer preparation.

    Science.gov (United States)

    Chen, Kuo-Shu; Lin, Yann-Shying; Yang, Shang-Shyng

    2007-12-01

    Intensive agriculture is practised in Taiwan, and compost application is very popular as a means of improving the soil physical properties and supplying plant nutrition. We tested the potential of inoculation with thermotolerant microorganisms to shorten the maturity and improve the quality of biofertilizer prepared by composting. Thermotolerant microorganisms were isolated from compost and reinoculated for the preparation of biofertilizer. The physical, chemical and biological properties of the biofertilizer were determined during composting. The effects of biofertilizer application on the growth and yield of rape were also studied. Among 3823 colonies of thermotolerant microorganisms, Streptomyces thermonitrificans NTU-88, Streptococcus sp. NTU-130 and Aspergillus fumigatus NTU-132 exhibited high growth rates and cellulolytic and proteolytic activities. When a mixture of rice straw and swine manure were inoculated with these isolates and composted for 61 days, substrate temperature increased initially and then decreased gradually during composting. Substrate pH increased from 7.3 to 8.5. Microbial inoculation enhanced the rate of maturity, and increased the content of ash and total and immobilized nitrogen, improved the germination rate of alfalfa seed, and decreased the content of total organic carbon and the carbon/nitrogen ratio. Biofertilizer application increased the growth and yield of rape. Inoculation of thermotolerant and thermophilic microorganisms to agricultural waste for biofertilizer preparation enhances the rate of maturity and improves the quality of the resulting biofertilizer. Inoculation of appropriate microorganisms in biofertilizer preparation might be usefully applied to agricultural situations.

  14. Mechanisms of nickel toxicity in microorganisms

    OpenAIRE

    Macomber, Lee; Hausinger, Robert P.

    2011-01-01

    Nickel has long been known to be an important human toxicant, including having the ability to form carcinomas, but until recently nickel was believed to be an issue only to microorganisms living in nickel-rich serpentine soils or areas contaminated by industrial pollution. This assumption was overturned by the discovery of a nickel defense system (RcnR/RcnA) found in microorganisms that live in a wide range of environmental niches, suggesting that nickel homeostasis is a general biological co...

  15. Transfer Rates of Enteric Microorganisms in Recycled Water during Machine Clothes Washing▿

    Science.gov (United States)

    O'Toole, Joanne; Sinclair, Martha; Leder, Karin

    2009-01-01

    Approximately 15% of overall Australian household water usage is in the laundry; hence, a significant reduction in household drinking water demand could be achieved if potable-quality water used for clothes washing is replaced with recycled water. To investigate the microbiological safety of using recycled water in washing machines, bacteriophages MS-2 and PRD-1, Escherichia coli, and Cryptosporidium parvum oocysts were used in a series of experiments to investigate the transfer efficiency of enteric microorganisms from washing machine water to objects including hands, environmental surfaces, air, and fabric swatches. By determining the transference efficiency, it is possible to estimate the numbers of microorganisms that the user will be exposed to if recycled water with various levels of residual microorganisms is used in washing machines. Results, expressed as transfer rates to a given surface area per object, showed that the mean transfer efficiency of E. coli, bacteriophages MS-2 and PRD-1, and C. parvum oocysts from seeded water to fabric swatches ranged from 0.001% to 0.090%. Greatest exposure to microorganisms occurred through direct contact of hands with seeded water and via hand contact with contaminated fabric swatches. No microorganisms were detected in the air samples during the washing machine spin cycle, and transfer rates of bacteriophages from water to environmental surfaces were 100-fold less than from water directly to hands. Findings from this study provide relevant information that can be used to refine regulations governing recycled water and to allay public concerns about the use of recycled water. PMID:19124592

  16. Properties of thermophilic microorganisms

    International Nuclear Information System (INIS)

    Ljungdahl, L.G.

    1984-01-01

    Microorganisms are called thermophilic or extreme thermophilic (caldo-active) if they grow and reproduce over 47 0 C and 70 0 C, respectively. A survey of growth characteristics of thermophiles is presented and it includes those which also live at extreme pH. The prevalent but not completely emcompassing theory of the ability of thermophiles to grow at high temperatures is that they have macromolecules and cell organelles with high thermostability. Work on some proteins and cell organelles from thermophiles is reviewed. The thermostabilities of these components are compared with those of the living cells, and factors which may govern optimum as well as minimum growth temperatures of microorganisms are discussed. Examples are from the literature but also include enzymes involved in tetrahydrofolate metabolism and other proteins of acetogenic therhmophilic bacteria which are presently studied in the author's laboratory

  17. Enhancement of uranium-accumulating ability of microorganisms by irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Sakaguchi, Takashi; Nakajima, Akira; Tsuruta, Takehiko [Miyazaki Medical Coll., Kiyotake (Japan)

    1998-01-01

    Some microorganisms having excellent ability to accumulate uranium were isolated, from soil and water systems in and around the Ningyo-toge Station of Power Reactor and Nuclear Fuel Development Corporation. The enhancement of uranium-accumulating ability of microorganisms by electron-beam irradiation was examined, and the ability of JW-046 was increased 3-5% by the irradiation. The irradiation affect the growth of some of microorganisms tested. (author)

  18. the economic importance of microorganism in food processing

    African Journals Online (AJOL)

    BSN

    This paper attempts to highlight the Economic Importance of microorganisms in food processing and manufacturing; it goes further to differentiate between the desirable ... Desirable importance are those cost saving and revenue generating activities ... Microorganism (yeast) play very useful role in the Bakery industries.

  19. Influence of microorganisms on the alteration of glasses

    International Nuclear Information System (INIS)

    Besnainou, B.; Libert, M.F.

    1997-01-01

    Under specific conditions, microorganisms may enhance the alteration process of basaltic glass. However bacterial activity in the near field of a glass container would be possible only in environmental conditions provide nutrients and energetic substrates for bacterial growth. Depending of these conditions, microorganisms can: - modify the pH or the medium, - consume or produce soluble organic acids. To qualify the long term behaviour of glass, in presence of microorganisms, a qualitative and quantitative estimation of microbial activity potentialities and their consequences is needed. This must be achieved in studying the availability of the chemical species in the environment. (authors)

  20. Coal liquefaction becomes viable

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-11-15

    In 2003 the May/June issue of CoalTrans International speculated that coal liquefaction would become viable due to falling coal prices. This has not proved the case but the sustained high oil price is sparking new interest. A survey by Energy Intelligence and Marketing Research during November 2005 revealed a growth in the number of projects under development or at the feasibility stage. The article reports projects in China, the USA, Australia, New Zealand, the Philippines and India. China is commissioning the first wave of large liquefaction plants. The key question is whether other countries, particularly the USA, will follow.

  1. Effect of micro-organism and particle size on fermentation of ...

    African Journals Online (AJOL)

    Aziwo Niba

    2013-06-26

    Jun 26, 2013 ... Full Length Research Paper. Effect of micro-organism and particle size on ... fermentation for pH, sugar and organic acids analysis. Significant reductions in the pH of maize and sorghum .... Raw sorghum was milled in a hammer mill to pass through a 3 mm screen while equal quantities of raw maize were ...

  2. Assessment of soil properties by organic matter and EM-microorganism incorporation

    Directory of Open Access Journals (Sweden)

    Valarini P. J.

    2003-01-01

    Full Text Available Properties of a claim loam soil, collected in Aranjuez (Madrid and enriched with organic matter and microorganisms, were evaluated under controlled temperature and moisture conditions, over a period of three months. The following treatments were carried out: soil (control; soil + 50 t ha-1 of animal manure (E50; soil + 50 t ha-1 of animal manure + 30 L ha-1 of effective microorganisms (E50EM; soil + 30 t ha-1 of the combination of various green crop residues and weeds (RC30 and soil + 30 t ha-1 of the combination of various green crop residues and weeds + 30 L ha-1 of effective microorganisms (RC30EM. Soil samples were taken before and after incubation and their physical, chemical, and microbiological parameters analyzed. Significant increase was observed in the production of exopolysaccharides and basic phosphatase and esterase enzyme activities in the treatments E50EM and RC30EM, in correlation with the humification of organic matter, water retention at field capacity, and the cationic exchange capacity (CEC of the same treatments. The conclusion was drawn that the incorporation of a mixture of effective microorganisms (EM intensified the biological soil activity and improved physical and chemical soil properties, contributing to a quick humification of fresh organic matter. These findings were illustrated by the microbiological activities of exopolysaccharides and by alkaline phosphatase and esterase enzymes, which can be used as early and integrated soil health indicators.

  3. Ice Recrystallization Inhibiting Polymers Enable Glycerol-Free Cryopreservation of Micro-organisms.

    Science.gov (United States)

    Hasan, Muhammad; Fayter, Alice E R; Gibson, Matthew I

    2018-06-22

    All modern molecular biology and microbiology is underpinned not only by the tools to handle and manipulate microorganisms, but also those to store, bank and transport them. Glycerol is the current gold-standard cryoprotectant but it is intrinsically toxic to most micro-organisms: only a fraction of cells survive freezing and the presence of glycerol can impact down-stream applications and assays. Extremophile organisms survive repeated freeze/thaw cycles by producing antifreeze proteins which are potent ice recrystallization inhibitors. Here we introduce a new concept for the storage/transport of micro-organisms by using ice recrystallization inhibiting poly(vinyl alcohol) in tandem with poly(ethylene glycol). This cryopreserving formulation is shown to result in a 4-fold increase in E. coli yield post-thaw, compared to glycerol, utilizing lower concentrations, with successful cryopreservation at just 1.1 weight percent of additive. The mechanism of protection is demonstrated to be linked to inhibiting ice recrystallization (by comparison to a recombinant antifreeze protein) but also to the significantly lower toxicity of the polymers compared to glycerol. Optimized formulations are presented and shown to be broadly applicable to the cryopreservation of a panel of Gram negative, Gram positive and Mycobacteria strains. This represents a step-change in how micro-organisms will be stored by the design of new macromolecular ice growth inhibitors; it should enable a transition from traditional solvent-based to macromolecular microbiology storage methods.

  4. Atmospheric Sampling of Microorganisms with UAS

    Science.gov (United States)

    Schmale, D. G., III

    2017-12-01

    Many microorganisms relevant to crops, domestic animals, and humans are transported over long distances through the atmosphere. Some of these atmospheric microbes catalyze the freezing of water at higher temperatures and facilitate the onset of precipitation. A few have crossed continents. New technologies are needed to study the movement of microorganisms in the atmosphere. We have used unmanned aircraft systems (UAS) to study the transport of microorganisms tens to hundreds of meters above the ground. These UAS are equipped with unique devices for collecting microbes in the atmosphere during flight. Autonomous systems enable teams of UAS to perform complex atmospheric sampling tasks, and coordinate flight missions with one another. Data collected with UAS can be used to validate and improve disease forecasting models along highways in the sky, connecting transport scales across farms, states, and continents. Though terrestrial environments are often considered a major contributor to atmospheric microbial aerosols, little is known about aquatic sources of microbial aerosols. Droplets containing microorganisms can aerosolize from the water surface, liberating them into the atmosphere. We are using teams of unmanned surface vehicles (USVs) and UAS to study the aerosolization of microbes from aquatic environments. Controlled flume studies using highspeed video have allowed us to observe unique aerosolization phenomena that can launch microbes out of the water and into the air. Unmanned systems may be used to excite the next generation of biologists and engineers, and raise important ethical considerations about the future of human-robot interactions.

  5. Biogenic amines degradation by microorganisms isolated from cheese

    Directory of Open Access Journals (Sweden)

    Irena Butor

    2017-01-01

    Full Text Available The aim of this study was the isolation and characterization of microorganisms able to degrade biogenic amines and their identification. Individual microorganisms were obtained by isolation from commercially available foodstuffs and food produced in the technological laboratories of Faculty of Technology, Tomas Bata University in Zlín and subsequently identified by MALDI-TOF MS. The results of MALDI-TOF MS identification were verified by 16S rRNA sequenation. In this work was studied the ability of 5 bacterial strains positive to biogenic amines degradation isolated from dairy products to decrease biogenic amines content in vitro and quantified reduction in the concentration of biogenic amines tryptamine, β-phenylethylamine, putrescine, cadaverine, histamine and tyramine. The level of degradation (decrease of biogenic amines was determined on the base of the ability to grow in media with biogenic amines as the sole source carbon and nitrogen. The isolated strains with the ability of degradation of one or more biogenic amines were cultured in medium supplemented with relevant biogenic amines, the media derivatized with dansyl chloride and these amines separated by HPLC at a wavelength of 254 nm. From five tested strains identified as Bacillus subtilis, Bacillus pumilus, Enterobacter cloacae, Rhizobium radiobacter and Acinetobacter pitii, isolated from gouda type cheese, the greatest ability of degradation was observed in Bacillus subtilis, which was capable to degrade almost all amount of histamine, cadaverine and putrescine. Other four strains showed a lower rate of degradation than Bacillus subtilis, but the ability to degrade biogenic amines with these microorganisms was still significant.

  6. [Ants as carriers of microorganisms in hospital environments].

    Science.gov (United States)

    Pereira, Rogério Dos Santos; Ueno, Mariko

    2008-01-01

    Concern exists regarding the real possibility of public health threats caused by pathogenic agents that are carried by urban ants. The present study had the objective of isolating and identifying the microorganisms that are associated with ants in hospital environments. One hundred and twenty-five ants of the same species were collected from different units of a university hospital. Each ant was collected using a swab soaked with physiological solution and was transferred to a tube containing brain heart infusion broth and incubated at 35 degrees C for 24 hours. From each tube, with growth, inoculations were made into specific culturing media, to isolate any microorganisms. The ants presented a high capacity for carrying microorganism groups: spore-producing Gram-positive bacilli 63.5%, Gram-negative bacilli 6.3%, Gram-positive cocci 23.1%, filamentous fungi 6.7% and yeast 0.5%. Thus, it can be inferred that ants may be one of the agents responsible for disseminating microorganisms in hospital environments.

  7. Multiorganismal insects: diversity and function of resident microorganisms.

    Science.gov (United States)

    Douglas, Angela E

    2015-01-07

    All insects are colonized by microorganisms on the insect exoskeleton, in the gut and hemocoel, and within insect cells. The insect microbiota is generally different from microorganisms in the external environment, including ingested food. Specifically, certain microbial taxa are favored by the conditions and resources in the insect habitat, by their tolerance of insect immunity, and by specific mechanisms for their transmission. The resident microorganisms can promote insect fitness by contributing to nutrition, especially by providing essential amino acids, B vitamins, and, for fungal partners, sterols. Some microorganisms protect their insect hosts against pathogens, parasitoids, and other parasites by synthesizing specific toxins or modifying the insect immune system. Priorities for future research include elucidation of microbial contributions to detoxification, especially of plant allelochemicals in phytophagous insects, and resistance to pathogens; as well as their role in among-insect communication; and the potential value of manipulation of the microbiota to control insect pests.

  8. Food fermentations: Microorganisms with technological beneficial use

    DEFF Research Database (Denmark)

    Bourdichon, François; Casaregola, Serge; Farrokh, Choreh

    2012-01-01

    Microbial food cultures have directly or indirectly come under various regulatory frameworks in the course of the last decades. Several of those regulatory frameworks put emphasis on “the history of use”, “traditional food”, or “general recognition of safety”. Authoritative lists of microorganism......, legumes, cereals, beverages, and vinegar). We have also reviewed and updated the taxonomy of the microorganisms used in food fermentations in order to bring the taxonomy in agreement with the current standing in nomenclature....... cultures in practical use. However, as the focus mainly was on commercially available dairy cultures, there was an unmet need for a list with a wider scope. We present an updated inventory of microorganisms used in food fermentations covering a wide range of food matrices (dairy, meat, fish, vegetables...

  9. Strengthening Agricultural Research Capacity for Viable Extension ...

    African Journals Online (AJOL)

    Strengthening Agricultural Research Capacity for Viable Extension Policies in Nigeria: An Exploration of Ricoeur's Hermeneutic Theory for Analysing Extension Research. ... Progressively more, researchers use hermeneutic philosophy to inform the conduct of interpretive research. Analogy between the philosophical ...

  10. Lateral gene exchanges shape the genomes of amoeba-resisting microorganisms

    Directory of Open Access Journals (Sweden)

    Claire eBertelli

    2012-08-01

    Full Text Available Based on Darwin’s concept of the tree of life, vertical inheritance was thought to be dominant, and mutations, deletions and duplication were streaming the genomes of living organisms. In the current genomic era, increasing data indicated that both vertical and lateral gene inheritance interact in space and time to trigger genome evolution, particularly among microorganisms sharing a given ecological niche. As a paradigm to their diversity and their survival in a variety of cell types, intracellular microorganisms, and notably intracellular bacteria, were considered as less prone to lateral genetic exchanges. Such specialized microorganisms generally have a smaller gene repertoire because they do rely on their host’s factors for some basic regulatory and metabolic functions. Here we review events of lateral gene transfer (LGT that illustrate the genetic exchanges among intra-amoebal microorganisms or between the microorganism and its amoebal host. We tentatively investigate the functions of laterally transferred genes in the light of the interaction with their host as they should confer a selective advantage and success to the amoeba-resisting microorganisms.

  11. Producing Biosurfactants from Purified Microorganisms Obtained from Oil-contaminated Soil

    Directory of Open Access Journals (Sweden)

    Nader Mokhtarian

    2010-09-01

    Full Text Available Contamination of soil by crude oil can pose serious problems to ecosystems. Soil washing by solutions containing biosurfactants is one of the most efficient methods for the remediation of contaminated soil by crude oil because it removes not only the crude oil but also heavy metals. In this study, five soil samples were taken from fields exposed to oil compounds over the years in order to produce biosurfactants from microorganisms that were capable of degrading oil compounds. Sixteen such microorganisms were isolated. After cultivation, their emulsification strength was examined using E24 test. From among the experimental microorganisms, a gram-negative and rod-shape microorganism called A-12 showed the greatest value of the E24 test index (36%. For each liter of the culture medium containing 365 mg of microorganisms, 3 gr of the biosurfactant compound was produced and separated as dried powder. The purified biosurfactant was used in the soil washing process. Also, the insulated microorganisms were capable of degrading crude oil floating on wastewaters.

  12. Effectiveness of chitosan against wine-related microorganisms.

    Science.gov (United States)

    Bağder Elmaci, Simel; Gülgör, Gökşen; Tokatli, Mehmet; Erten, Hüseyin; İşci, Asli; Özçelik, Filiz

    2015-03-01

    The antimicrobial action of chitosan against wine related microorganisms, including Lactobacillus plantarum, Saccharomyces cerevisiae, Oeonococcus oeni, Lactobacillus hilgardii, Brettanomyces bruxellensis, Hanseniaspora uvarum and Zygosaccharomyces bailii was examined in laboratory media. In order to assess the potential applicability of chitosan as a microbial control agent for wine, the effect of chitosan, applied individually and/or in combination with sulphur dioxide (SO2), on the growth of microorganisms involved in various stages of winemaking and on the fermentative performance of S. cerevisiae was investigated. Of the seven wine-related microorganisms studied, S. cerevisiae exhibited the strongest resistance to antimicrobial action of chitosan in laboratory media with a minimum inhibitory concentration (MIC) greater than 2 g/L. L. hilgardii, O. oeni and B. bruxellensis were the most susceptible to chitosan since they were completely inactivated by chitosan at 0.2 g/L. The MIC of chitosan for L. plantarum, H. uvarum and Z. bailii was 2, 0.4 and 0.4 g/L, respectively. In wine experiments, it was found that chitosan had a retarding effect on alcoholic fermentation without significantly altering the viability and the fermentative performance of S. cerevisiae. With regard to non-Saccharomyces yeasts (H. uvarum and Z. bailii) involved in winemaking, the early deaths of these yeasts in mixed cultures with S. cerevisiae were not probably due to the antimicrobial action of chitosan but rather due to ethanol produced by the yeasts. The complex interactions between chitosan and wine ingredients as well as microbial interactions during wine fermentation considerably affect the efficacy of chitosan. It was concluded that chitosan was worthy of further investigation as an alternative or complementary preservative to SO2 in wine industry.

  13. Influence of environmental pollution with creosote oil or its vapors on biomass and selected physiological groups of microorganisms

    Science.gov (United States)

    Krzyśko-Łupicka, Teresa; Cybulska, Krystyna; Kołosowski, Paweł; Telesiński, Arkadiusz; Sudoł, Adam

    2017-11-01

    Survival of microorganisms in soils from treatment facility and landfill of wooden railway sleepers contaminated with creosote oil as well as in two types of soils with different content of organic carbon, treated with creosote oil vapors, was assessed. Microbiological assays including determination of: the biomass of living microorganisms method and the number of proteolytic, lipolytic and amylolytic microorganisms were carried out under laboratory conditions. Chromatography analysis of the soil extract from railway sleepers treatment facility was performed using GC/MS. The highest biomass and the number of tested microorganisms were determined in soils from wooden railway sleepers landfill, while the lowest in soil from the railway sleepers treatment facility. Vapors of creosote oil, regardless of the soil type, significantly increased only the number of lipolytic bacteria.

  14. Functional Basis of Microorganism Classification.

    Science.gov (United States)

    Zhu, Chengsheng; Delmont, Tom O; Vogel, Timothy M; Bromberg, Yana

    2015-08-01

    Correctly identifying nearest "neighbors" of a given microorganism is important in industrial and clinical applications where close relationships imply similar treatment. Microbial classification based on similarity of physiological and genetic organism traits (polyphasic similarity) is experimentally difficult and, arguably, subjective. Evolutionary relatedness, inferred from phylogenetic markers, facilitates classification but does not guarantee functional identity between members of the same taxon or lack of similarity between different taxa. Using over thirteen hundred sequenced bacterial genomes, we built a novel function-based microorganism classification scheme, functional-repertoire similarity-based organism network (FuSiON; flattened to fusion). Our scheme is phenetic, based on a network of quantitatively defined organism relationships across the known prokaryotic space. It correlates significantly with the current taxonomy, but the observed discrepancies reveal both (1) the inconsistency of functional diversity levels among different taxa and (2) an (unsurprising) bias towards prioritizing, for classification purposes, relatively minor traits of particular interest to humans. Our dynamic network-based organism classification is independent of the arbitrary pairwise organism similarity cut-offs traditionally applied to establish taxonomic identity. Instead, it reveals natural, functionally defined organism groupings and is thus robust in handling organism diversity. Additionally, fusion can use organism meta-data to highlight the specific environmental factors that drive microbial diversification. Our approach provides a complementary view to cladistic assignments and holds important clues for further exploration of microbial lifestyles. Fusion is a more practical fit for biomedical, industrial, and ecological applications, as many of these rely on understanding the functional capabilities of the microbes in their environment and are less concerned with

  15. Synergistic interface behavior of strontium adsorption using mixed microorganisms.

    Science.gov (United States)

    Hu, Wenyuan; Dong, Faqin; Yang, Guangmin; Peng, Xin; Huang, Xiaojun; Liu, Mingxue; Zhang, Jing

    2017-08-10

    The proper handling of low-level radioactive waste is crucial to promote the sustainable development of nuclear power. Research into the mechanism for interactions between bacterium and radionuclides is the starting point for achieving successful remediation of radionuclides with microorganisms. Using Sr(II) as a simulation radionuclide and the mixed microorganisms of Saccharomyces cerevisiae and Bacillus subtilis as the biological adsorbent, this study investigates behavior at the interface between Sr(II) and the microorganisms as well as the mechanisms governing that behavior. The results show that the optimal ratio of mixed microorganisms is S. cerevisiae 2.0 g L -1 to B. subtilis 0.05 g L -1 , and the optimal pH is about 6.3. Sr(II) biosorption onto the mixed microorganisms is spontaneous and endothermic in nature. The kinetics and the equilibrium isotherm data of the biosorption process can be described with pseudo-second-order equation and the Langmuir isotherm equation, respectively. The key interaction between the biological adsorbent and Sr(II) involves shared electronic pairs arising from chemical reactions via bond complexation or electronic exchange, and spectral and energy spectrum analysis show that functional groups (e.g., hydroxyl, carboxyl, amino, amide) at the interface between the radionuclide and the mixed microorganisms are the main active sites of the interface reactions.

  16. Stimulation of soil microorganisms in pesticide-contaminated soil using organic materials

    Directory of Open Access Journals (Sweden)

    Ima Yudha Perwira

    2016-08-01

    Full Text Available Agrochemicals such as pesticides have contributed to significant increases in crop yields; however, they can also be linked to adverse effects on human health and soil microorganisms. For efficient bioremediation of pesticides accumulated in agricultural fields, stimulation of microorganisms is necessary. In this study, we investigated the relationships between bacterial biomass and total carbon (TC and total nitrogen (TN in 427 agricultural soils. The soil bacterial biomass was generally positively correlated with TC and TN contents in the soil, but some soils had a low bacterial biomass despite containing high amounts of TC and TN. Soils of two fields (fields A and B with low bacterial biomass but high TC and TN contents were investigated. Long-term pesticide use (dichloropropane-dichloropropene and fosthiazate in field A and chloropicrin in field B appeared to have contributed to the low bacterial biomass observed in these soils. Soil from field A was treated with different organic materials and incubated for 1 month under laboratory conditions. The bacterial biomass in field A soil was enhanced in treatments containing organic materials rich in TN. Application of organic materials stimulated the growth of microorganisms with the potential to bioremediate pesticide-polluted soils.

  17. Assessment of impact of culture conditions on capability of wastewater's microorganisms to flocculation

    Directory of Open Access Journals (Sweden)

    Il'inskiy V. V.

    2017-06-01

    Full Text Available Wastewater is one of the significant sources of pollution of the aquatic ecosystems of the Kola North. Sewage coming to the ground waters, surface waters and near shore marine basin have a complex negative impact on the biocenosis of water objects. Considering the fact that basin self-purification process in climatic environment of the Far North is slow, it seems to be current problem to research influence of external factors on the native microorganisms involved in the biological transformation of most pollutants. Along with oxygenizing activity microorganisms are able to accumulate pollutant in the cells and to form floccules. As a result, microorganisms fix the dissolved contaminants that may be mechanically derived from water. Using the data on the chemical makeup of some urban and domestic sewage, nutrient media have been developed where microorganisms isolated from effluents have been cultivated. As major characteristics of the cultivation media affecting the intensity and direction of metabolic processes in microorganisms, the ratios C / N, C / P and N / P have been chosen. Intensity growth of bacteria in experimental nutrient media has been studied and the flocculating activity of bacterial suspensions has been determined. The rate of these microorganisms (Pseudomonas spp. and cultures of bacteria of Enterobacteriaceae family average has been 70∙103 and 117∙103 cells/h respectively. The growth rate of each culture on different composition nutrient media has varied within three orders, and has correlated with the relative content of phosphates in the nutrient media. The flocculating potential does not depend on the ratio of biogenic elements C / N, C / P and N / P. Both cultures have shown the ability to precipitate suspended matter at the level of 50 % or more after cultivation on nutrient media similar in composition to habitat conditions.

  18. Microorganisms associated with the spoilage of avocado pear ...

    African Journals Online (AJOL)

    The microorganisms associated with the spoilage of Avocado pear, Persea americana fruits, purchased fresh from various markets in Benin City were investigated. The pour plate method was used for the isolation. A total of nine species of microorganisms were isolated and identified in this study. They comprise of seven ...

  19. Molecular identification of microorganisms associated to the rhizosphere of vanilla plants in Colombia

    International Nuclear Information System (INIS)

    Alvarez Lopez, Claudia Lucia; Osorio Vega, Nelson Walter; Marin Montoya, Mauricio Alejandro

    2013-01-01

    The cultivation of vanilla (Vanilla planifolia) is highly promising in Colombia, but more research is needed on its agronomical management and beneficial microorganisms that grow associated to its rhizosphere, on which the plant depends for its nutrition and growth. This study involved the identification of microorganisms associated to the rhizosphere of vanilla plants in a crop located in Sopetran, Colombia. The microbes were isolated in selective media for functional groups such as cellulolytic, proteolytic, inorganic and organic phosphate (phytate) solubilizers, and asymbiotic nitrogen fixing bacteria. After isolation and purification, 109 microbial isolates were obtained. DNA was extracted from 52 selected isolates for molecular identification based on its and 16s RDNA sequencing, for fungi and bacteria, respectively. The diversity of rhizosphere microorganisms found was significant. Bacteria such as Bacillus Megaterium, Pseudomonas koreensis and Acinetobacter sp., and the Fungus Plectosphaerella sp., may have a high potential to be used as biofertilizers to improve vanilla plant nutrition and growth.

  20. Method and apparatus for detecting micro-organisms

    International Nuclear Information System (INIS)

    Mirsky, J.

    1976-01-01

    A method and apparatus is described for determining the presence and quantity of microorganisms, such as bacteria, fungi and yeast, in a given sample. The apparatus includes two sealed containers, a portion of which may be penetrated by a sharp instrument, as for example, glass vials with flexible septum tops. One container includes a radioactive nutrient medium which is capable of supporting the life process of the microorganism whose presence is being tested. The second container includes a liquid scintillation solution which absorbs the product of metabolism of the organisms. The sample is introduced into the first sealed container, for example, by means of a standard syringe. Any microorganisms present will consume the radioactive nutrient and as a result produce radioactive waste. Means are then applied to penetrate the containers and allow the flow of the radioactive metabolic product from the first container to the second container while preventing any contamination from the ambient. The liquid scintillation solution will emit light in proportion to the amount of the product of metabolism collected from the first container. This light may be detected by standard liquid scintillation counters, thus providing a qualitative and quantitative measure of the microorganism in the tested sample

  1. Pesticides in Soil: Effects on Microorganisms

    Directory of Open Access Journals (Sweden)

    Ljiljana Radivojević

    2007-01-01

    Full Text Available Since their discovery to the present day, pesticides have been an inevitable segment of agricultural production and efforts have been made to synthesize compounds that would share a required efficacy along with selectivity, sufficient persistence on the object of protection and favourable toxicological and ecotoxicological characteristics so as to minimize their effect on the environment.When a pesticide gets into soil after application, it takes part in a number of physical, chemical and biological processes that depend not only on the compound itself, but a number of other factors as well, such as: physical, chemical and biological characteristics of soil; climatic factors, equipment used, method of application, method of storage, handling and disposal of waste, site characteristics (proximity of ground and underground waters, biodiversity and sensitivity of the environment. Microorganisms play an important role in pesticide degradation as they are able to utilize the biogenic elements from those compounds, as well as energy for their physiological processes. On the other hand, pesticides are more or less toxic substances that can have adverse effect on populations of microorganisms and prevent their development, reduce their abundance, deplete their taxonomic complexity and create communities with a lower level of diversity and reduced physiological activity.The article discusses complex interactions between pesticides and microorganisms in soil immediately after application and over the ensuing period. Data on changes in the abundance of some systematic and physiological groups of microorganisms, their microbial biomass and enzymatic activity caused under pesticide activity are discussed as indicators of these processes.

  2. Biodegradation of international jet A-1 aviation fuel by microorganisms isolated from aircraft tank and joint hydrant storage systems.

    Science.gov (United States)

    Itah, A Y; Brooks, A A; Ogar, B O; Okure, A B

    2009-09-01

    Microorganisms contaminating international Jet A-1 aircraft fuel and fuel preserved in Joint Hydrant Storage Tank (JHST) were isolated, characterized and identified. The isolates were Bacillus subtillis, Bacillus megaterium, Flavobacterium oderatum, Sarcina flava, Micrococcus varians, Pseudomonas aeruginosa, Bacillus licheniformis, Bacillus cereus and Bacillus brevis. Others included Candida tropicalis, Candida albicans, Saccharomyces estuari, Saccharomyces cerevisiae, Schizosaccharomyces pombe, Aspergillus flavus, Aspergillus niger, Aspergillus fumigatus, Cladosporium resinae, Penicillium citrinum and Penicillium frequentans. The viable plate count of microorganisms in the Aircraft Tank ranged from 1.3 (+/-0.01) x 104 cfu/mL to 2.2 (+/-1.6) x 104 cfu/mL for bacteria and 102 cfu/mL to 1.68 (+/-0.32) x 103 cfu/mL for fungi. Total bacterial counts of 1.79 (+/-0.2) x 104 cfu/mL to 2.58 (+/-0.04) x 104 cfu/mL and total fungal count of 2.1 (+/-0.1) x 103 cfu/mL to 2.28 (+/-0.5) x 103 cfu/mL were obtained for JHST. Selected isolates were re-inoculated into filter sterilized aircraft fuels and biodegradation studies carried out. After 14 days incubation, Cladosporium resinae exhibited the highest degradation rate with a percentage weight loss of 66 followed by Candida albicans (60.6) while Penicillium citrinum was the least degrader with a weight loss of 41.6%. The ability of the isolates to utilize the fuel as their sole source of carbon and energy was examined and found to vary in growth profile between the isolates. The results imply that aviation fuel could be biodegraded by hydrocarbonoclastic microorganisms. To avert a possible deterioration of fuel quality during storage, fuel pipe clogging and failure, engine component damage, wing tank corrosion and aircraft disaster, efficient routine monitoring of aircraft fuel systems is advocated.

  3. Mapping In Vivo Tumor Oxygenation within Viable Tumor by 19F-MRI and Multispectral Analysis

    Directory of Open Access Journals (Sweden)

    Yunzhou Shi

    2013-11-01

    Full Text Available Quantifying oxygenation in viable tumor remains a major obstacle toward a better understanding of the tumor microenvironment and improving treatment strategies. Current techniques are often complicated by tumor heterogeneity. Herein, a novel in vivo approach that combines 19F magnetic resonance imaging (19F-MRIR1 mapping with diffusionbased multispectral (MS analysis is introduced. This approach restricts the partial pressure of oxygen (pO2 measurements to viable tumor, the tissue of therapeutic interest. The technique exhibited sufficient sensitivity to detect a breathing gas challenge in a xenograft tumor model, and the hypoxic region measured by MS 19F-MRI was strongly correlated with histologic estimates of hypoxia. This approach was then applied to address the effects of antivascular agents on tumor oxygenation, which is a research question that is still under debate. The technique was used to monitor longitudinal pO2 changes in response to an antibody to vascular endothelial growth factor (B20.4.1.1 and a selective dual phosphoinositide 3-kinase/mammalian target of rapamycin inhibitor (GDC-0980. GDC-0980 reduced viable tumor pO2 during a 3-day treatment period, and a significant reduction was also produced by B20.4.1.1. Overall, this method provides an unprecedented view of viable tumor pO2 and contributes to a greater understanding of the effects of antivascular therapies on the tumor's microenvironment.

  4. Risk Assessment of Genetically Modified Microorganisms

    DEFF Research Database (Denmark)

    Jacobsen, B. L.; Wilcks, Andrea

    2001-01-01

    the industry, national administration and research institutions were gathered to discuss which elements should be considered in a risk assessment of genetically modified microorganisms used as food or food ingredients. The existing EU and national regulations were presented, together with the experiences......The rapid development of recombinant DNA techniques for food organisms urges for an ongoing discussion on the risk assessment of both new as traditional use of microorganisms in food production. This report, supported by the Nordic Council of Ministers, is the result of a workshop where people from...... with risk assessment of these organisms in each Nordic country....

  5. Compost supplementation with nutrients and microorganisms in composting process.

    Science.gov (United States)

    Sánchez, Óscar J; Ospina, Diego A; Montoya, Sandra

    2017-11-01

    The composting is an aerobic, microorganism-mediated, solid-state fermentation process by which different organic materials are transformed into more stable compounds. The product obtained is the compost, which contributes to the improvement of physical, chemical and microbiological properties of the soil. However, the compost usage in agriculture is constrained because of its long-time action and reduced supply of nutrients to the crops. To enhance the content of nutrients assimilable by the plants in the compost, its supplementation with nutrients and inoculation with microorganisms have been proposed. The objective of this work was to review the state of the art on compost supplementation with nutrients and the role played by the microorganisms involved (or added) in their transformation during the composting process. The phases of composting are briefly compiled and different strategies for supplementation are analyzed. The utilization of nitrogenous materials and addition of microorganisms fixing nitrogen from the atmosphere or oxidizing ammonia into more assimilable for plants nitrogenous forms are analyzed. Several strategies for nitrogen conservation during composting are presented as well. The supplementation with phosphorus and utilization of microorganisms solubilizing phosphorus and potassium are also discussed. Main groups of microorganisms relevant during the composting process are described as well as most important strategies to identify them. In general, the development of this type of nutrient-enriched bio-inputs requires research and development not only in the supplementation of compost itself, but also in the isolation and identification of microorganisms and genes allowing the degradation and conversion of nitrogenous substances and materials containing potassium and phosphorus present in the feedstocks undergoing the composting process. In this sense, most important research trends and strategies to increase nutrient content in the compost

  6. COUNTS OF MICROORGANISMS CAUSING BOVINE MASTITIS AND STUDY OF ANTIMICROBIAL ACTION

    Directory of Open Access Journals (Sweden)

    Wanessa Oliveira Ribeiro

    2014-02-01

    Full Text Available Mastitis is an inflammation of the mammary gland caused mainly by microorganisms, altering the characteristics of milk and results in significant economic losses for this production complex. The study aimed to determine the main causative agents of bovine mastitis in a dairy farm in Rio Pomba city, Minas Gerais state, Brazil, and evaluate the use of plant extract and antibiotics commonly used in the control of microorganisms that cause this disease. Raw milk samples coming from 47 dairy cow were individually collected for microbiological evaluation. We also evaluated the sensitivity of isolates from the plant extract and the antibiotics commonly used in the farm. It was found that 17.0 %, 31.9 %, 85.4 % and 38.3 % of the samples presented, respectively, Staphylococcus aureus, coliforms, faecal coliforms and Escherichia coli. Furthermore, most of the samples showed counts of aerobic mesophilic microorganisms and Streptococcus sp. between 104 and 105 CFU.mL-1, while the counts of S. aureus ranged between 102 and 103 CFU.mL-1 in most of samples. A higher efficacy of tetracycline on the isolates of S. aureus was verified and of ampicillin on the E. coli isolates. All isolates of the latter bacteria were resistant to plant extract. Due to the high incidence of microorganisms, we emphasize the need for implementation of Good Agricultural Practices in milk production, because these bacteria are coming from hair, skin, mucous membranes of animals and/or belonging to the enteric microbiota of mammals, respectively.

  7. Volatilization of Po by microorganisms at laboratory culture experiments

    International Nuclear Information System (INIS)

    Momoshima, N.; Ishida, A.; Yoshinaga, C.; Fukuda, A.

    2005-01-01

    The previous experiments proved the volatility of polonium form culture medium in which microorganisms were propagated from seed of seawater, river water or pond water, therefore we did not know what kind of species are responsible to Po volatility. To search microorganisms, which concerned with Po emission we carried out culture experiments using known microorganisms. Three microorganisms were examined; Escherichia coli K-12, Bacillus subtilis and Chromobacterium violaceum. The microorganisms were pre-cultured in LB medium at 30 degree C and a small portion of the pre-cultured was transferred to a culture bottle in which LB medium and 208 Po tracer were contained. The culture was done at 30 degree C with shaking the culture bottle and air passed through a filter was introduced. The Po volatilized was transferred into the trap vials in which scintillator for liquid scintillation counting (LSC) was contained. The Po activity was measured by LSC. All of the microorganisms examined volatilized Po but their ability was quite different each other. Highest ability was observed on Chromobacterium violaceum and then Escherichia coli K-12 followed by Bacillus subtilis, the relative magnitude of the ability was 10 2 , 10, 1, respectively. Chromobacterium violaceum and Escherichia coli K-12 showed high volatility for the first 24 h but Escherichia coli K-12 showed a decrease thereafter. However high volatility was continued on Chromobacterium violaceum during the culture. The low culture temperature suppressed Po volatility, supporting biologically mediated Po emission from the culture.

  8. Evaluation of dispersion methods for enumeration of microorganisms from peat and activated carbon biofilters treating volatile organic compounds.

    Science.gov (United States)

    Khammar, Nadia; Malhautier, Luc; Degrange, Valérie; Lensi, Robert; Fanlo, Jean-Louis

    2004-01-01

    To enumerate microorganisms having colonized biofilters treating volatile organic compounds, it is necessary firstly to evaluate dispersion methods. Crushing, shaking and sonication were then tested for the removal of microflora from biofilters packing materials (peat and activated carbon). Continuous or discontinuous procedures, and addition of glass beads had no effect on the number of microorganisms removed from peat particles. The duration of treatment also had no effect for shaking and crushing, but the number of microorganisms after 60 min of treatment with ultrasound was significantly higher than that obtained after 0.5 min. The comparison between these methods showed that crushing was the most efficient for the removal of microorganisms from both peat and activated carbon. The comparison between three chemical dispersion agents showed that 1% Na-pyrophosphate was less efficient, compared with 200 mM phosphate buffer or 1% Na-hexametaphosphate. To optimize the cultivation of microorganisms, three different agar media were compared. Tryptic soy agar tenfold diluted (TSA 1/10) was the most suitable medium for the culture of microflora from a peat biofilter. For the activated carbon biofilter, there was no significant difference between Luria Bertoni, TSA 1/10, and plate count agar. The optimized extraction and enumeration protocols were used to perform a quantitative characterization of microbial populations in an operating laboratory activated carbon biofilter and in two parallel peat biofilters.

  9. Microscale interactions between earthworms and microorganisms: a review

    Directory of Open Access Journals (Sweden)

    Zirbes, L.

    2012-01-01

    Full Text Available Microorganisms are well adapted to their soil microhabitat where they live together in consortia, interacting with other living members, including earthworms. This literature review consists of four sections that focus on microscale interactions between earthworms and microorganisms. The first part is devoted to nephridia symbiosis. Recent discoveries show that Verminephrobacter spp. is present as a symbiont in earthworm nephridia. The second section deals with earthworm food preference and focuses on the major hypotheses of foraging strategies. The third section presents evidence of gut symbionts and highlights the need for additional studies in this field. The last section of this review explains why microorganism activities are enhanced in burrows and casts of earthworms.

  10. Microbial genome-enabled insights into plant-microorganism interactions.

    Science.gov (United States)

    Guttman, David S; McHardy, Alice C; Schulze-Lefert, Paul

    2014-12-01

    Advances in genome-based studies on plant-associated microorganisms have transformed our understanding of many plant pathogens and are beginning to greatly widen our knowledge of plant interactions with mutualistic and commensal microorganisms. Pathogenomics has revealed how pathogenic microorganisms adapt to particular hosts, subvert innate immune responses and change host range, as well as how new pathogen species emerge. Similarly, culture-independent community profiling methods, coupled with metagenomic and metatranscriptomic studies, have provided the first insights into the emerging field of research on plant-associated microbial communities. Together, these approaches have the potential to bridge the gap between plant microbial ecology and plant pathology, which have traditionally been two distinct research fields.

  11. Color-Removal by Microorganisms Isolated from Human Hands

    Directory of Open Access Journals (Sweden)

    Tsukasa Ito

    2013-08-01

    Full Text Available Microorganisms are essential for human life. Microorganisms decompose the carbon compounds in dead animals and plants and convert them into carbon dioxide. Intestinal bacteria assist in food digestion. Some vitamins are produced by bacteria that live in the intestines. Sewage and industrial wastewater are treated by activated sludge composed of microbial communities. All of these are due to the ability of microbes to produce many enzymes that can degrade chemicals. How do teachers make students understand that microorganisms are always associated with humans, and that microorganisms have the ability to degrade chemicals? The presence of microorganisms on humans can be shown by incubating agar plates after they are touched by the hands of students. The ability of microorganisms to degrade chemicals can be shown by an analytical measurement of the degradation of chemicals. When the chemicals are dyes (colorants in water, microbial activity on degradation of dyes can be demonstrated by observing a decreasing degree of color as a result of the enzymatic activity (e.g., azoreductase. Dyes are widely used in the textile, food, and cosmetic industries. They are generally resistant to conventional biological wastewater treatment systems such as the activated sludge process (4. The discharge of wastewater containing dye pollutes surface water. The ability of microorganisms to decolorize and degrade dyes has been widely investigated to use for bioremediation purposes (5. The goal of this tip is to understand the presence of bacteria on human skin and the ability of bacteria to degrade colorant chemicals (decolorization. In this tip, students first cultivate and isolate bacteria on their hands, and then examine potential decolorization activity of each bacterium by observing the degree of color of the liquid in tubes in which bacteria isolated from students’ hands were inoculated. Decolorization activity of bacterial isolates from human skin has been

  12. Prevalence Of Micro-Organisms In Flies And Meat Cuts In Uyo ...

    African Journals Online (AJOL)

    Prevalence Of Micro-Organisms In Flies And Meat Cuts In Uyo Abattoir, Akwa Ibom State. ... A total of 100 samples, 50 each of fresh meat cuts and flies were aseptically collected from Iba-Oku Abattoir in Uyo, Akwa Ibom State periodically and ... The public health significance of these findings are discussed in the paper.

  13. Dye Sensitized Solar Cells for Economically Viable Photovoltaic Systems.

    Science.gov (United States)

    Jung, Hyun Suk; Lee, Jung-Kun

    2013-05-16

    TiO2 nanoparticle-based dye sensitized solar cells (DSSCs) have attracted a significant level of scientific and technological interest for their potential as economically viable photovoltaic devices. While DSSCs have multiple benefits such as material abundance, a short energy payback period, constant power output, and compatibility with flexible applications, there are still several challenges that hold back large scale commercialization. Critical factors determining the future of DSSCs involve energy conversion efficiency, long-term stability, and production cost. Continuous advancement of their long-term stability suggests that state-of-the-art DSSCs will operate for over 20 years without a significant decrease in performance. Nevertheless, key questions remain in regards to energy conversion efficiency improvements and material cost reduction. In this Perspective, the present state of the field and the ongoing efforts to address the requirements of DSSCs are summarized with views on the future of DSSCs.

  14. Viable-but-Nonculturable Listeria monocytogenes and Salmonella enterica Serovar Thompson Induced by Chlorine Stress Remain Infectious

    Directory of Open Access Journals (Sweden)

    Callum J. Highmore

    2018-04-01

    Full Text Available The microbiological safety of fresh produce is monitored almost exclusively by culture-based detection methods. However, bacterial food-borne pathogens are known to enter a viable-but-nonculturable (VBNC state in response to environmental stresses such as chlorine, which is commonly used for fresh produce decontamination. Here, complete VBNC induction of green fluorescent protein-tagged Listeria monocytogenes and Salmonella enterica serovar Thompson was achieved by exposure to 12 and 3 ppm chlorine, respectively. The pathogens were subjected to chlorine washing following incubation on spinach leaves. Culture data revealed that total viable L. monocytogenes and Salmonella Thompson populations became VBNC by 50 and 100 ppm chlorine, respectively, while enumeration by direct viable counting found that chlorine caused a <1-log reduction in viability. The pathogenicity of chlorine-induced VBNC L. monocytogenes and Salmonella Thompson was assessed by using Caenorhabditis elegans. Ingestion of VBNC pathogens by C. elegans resulted in a significant life span reduction (P = 0.0064 and P < 0.0001, and no significant difference between the life span reductions caused by the VBNC and culturable L. monocytogenes treatments was observed. L. monocytogenes was visualized beyond the nematode intestinal lumen, indicating resuscitation and cell invasion. These data emphasize the risk that VBNC food-borne pathogens could pose to public health should they continue to go undetected.

  15. Cybernetic modeling of adaptive prediction of environmental changes by microorganisms.

    Science.gov (United States)

    Mandli, Aravinda R; Modak, Jayant M

    2014-02-01

    Microorganisms exhibit varied regulatory strategies such as direct regulation, symmetric anticipatory regulation, asymmetric anticipatory regulation, etc. Current mathematical modeling frameworks for the growth of microorganisms either do not incorporate regulation or assume that the microorganisms utilize the direct regulation strategy. In the present study, we extend the cybernetic modeling framework to account for asymmetric anticipatory regulation strategy. The extended model accurately captures various experimental observations. We use the developed model to explore the fitness advantage provided by the asymmetric anticipatory regulation strategy and observe that the optimal extent of asymmetric regulation depends on the selective pressure that the microorganisms experience. We also explore the importance of timing the response in anticipatory regulation and find that there is an optimal time, dependent on the extent of asymmetric regulation, at which microorganisms should respond anticipatorily to maximize their fitness. We then discuss the advantages offered by the cybernetic modeling framework over other modeling frameworks in modeling the asymmetric anticipatory regulation strategy. Copyright © 2013. Published by Elsevier Inc.

  16. Microorganism Utilization for Synthetic Milk

    Science.gov (United States)

    Morford, Megan A.; Khodadad, Christina L.; Caro, Janicce I.; Spencer, LaShelle E.; Richards, Jeffery T.; Strayer, Richard F.; Birmele, Michele N.; Wheeler, Raymond M.

    2014-01-01

    A desired architecture for long duration spaceflight, like aboard the International Space Station or for future missions to Mars, is to provide a supply of fresh food crops for the astronauts. However, some crops can create a high proportion of inedible plant waste. The main goal of the Synthetic Biology project, Cow in a Column, was to produce the components of milk (sugar, lipid, protein) from inedible plant waste by utilizing microorganisms (fungi, yeast, bacteria). Of particular interest was utilizing the valuable polysaccharide, cellulose, found in plant waste, to naturally fuel-through microorganism cellular metabolism- the creation of sugar (glucose), lipid (milk fat), and protein (casein) in order to produce a synthetic edible food product. Environmental conditions such as pH, temperature, carbon source, aeration, and choice microorganisms were optimized in the laboratory and the desired end-products, sugars and lipids, were analyzed. Trichoderma reesei, a known cellulolytic fungus, was utilized to drive the production of glucose, with the intent that the produced glucose would serve as the carbon source for milk fat production and be a substitute for the milk sugar lactose. Lipid production would be carried out by Rhodosporidium toruloides, yeast known to accumulate those lipids that are typically found in milk fat. Results showed that glucose and total lipid content were below what was expected during this phase of experimentation. In addition, individual analysis of six fatty acids revealed that the percentage of each fatty acid was lower than naturally produced bovine milk. Overall, this research indicates that microorganisms could be utilized to breakdown inedible solid waste to produce useable products. For future work, the production of the casein protein for milk would require the development of a genetically modified organism, which was beyond the scope of the original project. Additional trials would be needed to further refine the required

  17. DMPD: Signaling pathways activated by microorganisms. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17303405 Signaling pathways activated by microorganisms. Takeuchi O, Akira S. Curr ...Opin Cell Biol. 2007 Apr;19(2):185-91. Epub 2007 Feb 15. (.png) (.svg) (.html) (.csml) Show Signaling pathways activated by microorg...anisms. PubmedID 17303405 Title Signaling pathways activated by microorganisms. Auth

  18. Spatiotemporal Dynamics of Total Viable Vibrio spp. in a NW Mediterranean Coastal Area.

    Science.gov (United States)

    Girard, Léa; Peuchet, Sébastien; Servais, Pierre; Henry, Annabelle; Charni-Ben-Tabassi, Nadine; Baudart, Julia

    2017-09-27

    A cellular approach combining Direct Viable Counting and Fluorescent In Situ Hybridization using a one-step multiple-probe technique and Solid Phase Cytometry (DVC-FISH-SPC) was developed to monitor total viable vibrios and cover the detection of a large diversity of vibrios. FISH combined three probes in the same assay and targeted sequences located at different positions on the 16S rRNA of Vibrio and Aliivibrio members. We performed a 10-month in situ study to investigate the weekly dynamics of viable vibrios relative to culturable counts at two northwestern Mediterranean coastal sites, and identified the key physicochemical factors for their occurrence in water using a multivariate analysis. Total viable and culturable cell counts showed the same temporal pattern during the warmer season, whereas the ratios between both methods were inverted during the colder seasons (<15°C), indicating that some of the vibrio community had entered into a viable but non-culturable (VBNC) state. We confirmed that Seawater Surface Temperature explained 51-62% of the total variance in culturable counts, and also showed that the occurrence of viable vibrios is controlled by two variables, pheopigment (15%) and phosphate (12%) concentrations, suggesting that other unidentified factors play a role in maintaining viability.

  19. Cellular and soluble components decrease the viable pathogen counts in milk from dairy cows with subclinical mastitis.

    Science.gov (United States)

    Koshiishi, Tomoko; Watanabe, Masako; Miyake, Hajime; Hisaeda, Keiichi; Isobe, Naoki

    2017-08-10

    The present study was undertaken to clarify the factors that reduce the viable pathogen count in milk collected from the udders of subclinical mastitic cows during preservation. Milk was centrifuged to divide somatic cells (cellular components, precipitates) and antimicrobial peptides (soluble components, supernatants without fat layer); each fraction was cultured with bacteria, and the number of viable bacteria was assessed prior to and after culture. In 28.8% of milk samples, we noted no viable bacteria immediately after collection; this value increased significantly after a 5-hr incubation of milk with cellular components but not with soluble components (48.1 and 28.8%, respectively). After culture with cellular components, the numbers of bacteria (excluding Staphylococcus aureus and Streptococcus uberis) and yeast decreased dramatically, although the differences were not statistically significant. After cultivation with soluble components, only yeasts showed a tendency toward decreased mean viability, whereas the mean bacterial counts of S. uberis and T. pyogenes tended to increase after 5-hr preservation with soluble components. These results suggest that most pathogens in high somatic cell count (SCC) milk decreased during preservation at 15 to 25°C, due to both the cellular components and antimicrobial components in the milk. Particularly, the cellular components more potently reduced bacterial counts during preservation.

  20. 9 CFR 113.26 - Detection of viable bacteria and fungi except in live vaccine.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Detection of viable bacteria and fungi... VECTORS STANDARD REQUIREMENTS Standard Procedures § 113.26 Detection of viable bacteria and fungi except... required to be free of viable bacteria and fungi, they shall also be tested as prescribed in this section...

  1. Can Malin's gravitational-field equations be modified to obtain a viable theory of gravity to obtain a viable theory of gravity to obtain a viable theory of gravity

    International Nuclear Information System (INIS)

    Smalley, L.L.; Prestage, J.

    1976-01-01

    Malin's gravitational theory, which was recently shown by Lindblom and Nester to be incorrect, is modified by means of a recently proposed method for obtaining viable gravitational theories. The resulting self-consistent theory, which is in effect a Rastall-type modification of the Einstein theory, exhibits nonconservation of momentum, yet agrees with all experimental limits known to date within the PPN framework

  2. [Initial stages of steel biocorrosion].

    Science.gov (United States)

    Zhigletsova, S K; Rodin, V B; Kobelev, V S; Aleksandrova, N V; Rasulova, G E; Kholodenko, V P

    2000-01-01

    Initial stages of corrosion of mild steel induced by Klebsiela rhinoscleromatis BO2 were studied in various media. The effect of the microorganism was detected 8-10 h after inoculation. The number of viable cells were virtually unchanged within one month in all media, but the corrosive activity of the strain decreased. The corrosive activity of microorganisms can be determined by spectrophotometry even only after incubation for 24 h. At a low level of organic substrate, even strong colonization with microorganisms does not inevitably result in a significant damage to metals.

  3. Monotone viable trajectories for functional differential inclusions

    Science.gov (United States)

    Haddad, Georges

    This paper is a study on functional differential inclusions with memory which represent the multivalued version of retarded functional differential equations. The main result gives a necessary and sufficient equations. The main result gives a necessary and sufficient condition ensuring the existence of viable trajectories; that means trajectories remaining in a given nonempty closed convex set defined by given constraints the system must satisfy to be viable. Some motivations for this paper can be found in control theory where F( t, φ) = { f( t, φ, u)} uɛU is the set of possible velocities of the system at time t, depending on the past history represented by the function φ and on a control u ranging over a set U of controls. Other motivations can be found in planning procedures in microeconomics and in biological evolutions where problems with memory do effectively appear in a multivalued version. All these models require viability constraints represented by a closed convex set.

  4. Competition between roots and microorganisms for nitrogen: mechanisms and ecological relevance

    Science.gov (United States)

    Kuzyakov, Yakov; Xu, Xingliang

    2014-05-01

    Demand of all living organisms on the same nutrients forms the basis for interspecific competition between plants and microorganisms in soils. This competition is especially strong in the rhizosphere. To evaluate competitive and mutualistic interactions between plants and microorganisms and to analyse ecological consequences of these interactions, we analysed 424 data pairs from 41 15N-labelling studies that investigated 15N redistribution between roots and microorganisms. Calculated Michaelis-Menten kinetics based on Km (Michaelis constant) and Vmax (maximum uptake capacity) values from 77 studies on the uptake of nitrate, ammonia, and amino acids by roots and microorganisms clearly showed that, shortly after nitrogen (N) mobilization from soil organic matter and litter, microorganisms take up most N. Lower Km values of microorganisms suggest that they are especially efficient at low N concentrations, but can also acquire more N at higher N concentrations (Vmax) compared with roots. Because of the unidirectional flow of nutrients from soil to roots, plants are the winners for N acquisition in the long run. Therefore, despite strong competition between roots and microorganisms for N, a temporal niche differentiation reflecting their generation times leads to mutualistic relationships in the rhizosphere. This temporal niche differentiation is highly relevant ecologically because it: protects ecosystems from N losses by leaching during periods of slow or no root uptake; continuously provides roots with available N according to plant demand; and contributes to the evolutionary development of mutualistic interactions between roots and microorganisms.

  5. The application of powerful promoters to enhance gene expression in industrial microorganisms.

    Science.gov (United States)

    Zhou, Shenghu; Du, Guocheng; Kang, Zhen; Li, Jianghua; Chen, Jian; Li, Huazhong; Zhou, Jingwen

    2017-02-01

    Production of useful chemicals by industrial microorganisms has been attracting more and more attention. Microorganisms screened from their natural environment usually suffer from low productivity, low stress resistance, and accumulation of by-products. In order to overcome these disadvantages, rational engineering of microorganisms to achieve specific industrial goals has become routine. Rapid development of metabolic engineering and synthetic biology strategies provide novel methods to improve the performance of industrial microorganisms. Rational regulation of gene expression by specific promoters is essential to engineer industrial microorganisms for high-efficiency production of target chemicals. Identification, modification, and application of suitable promoters could provide powerful switches at the transcriptional level for fine-tuning of a single gene or a group of genes, which are essential for the reconstruction of pathways. In this review, the characteristics of promoters from eukaryotic, prokaryotic, and archaea microorganisms are briefly introduced. Identification of promoters based on both traditional biochemical and systems biology routes are summarized. Besides rational modification, de novo design of promoters to achieve gradient, dynamic, and logic gate regulation are also introduced. Furthermore, flexible application of static and dynamic promoters for the rational engineering of industrial microorganisms is highlighted. From the perspective of powerful promoters in industrial microorganisms, this review will provide an extensive description of how to regulate gene expression in industrial microorganisms to achieve more useful goals.

  6. Functional Basis of Microorganism Classification

    Science.gov (United States)

    Zhu, Chengsheng; Delmont, Tom O.; Vogel, Timothy M.; Bromberg, Yana

    2015-01-01

    Correctly identifying nearest “neighbors” of a given microorganism is important in industrial and clinical applications where close relationships imply similar treatment. Microbial classification based on similarity of physiological and genetic organism traits (polyphasic similarity) is experimentally difficult and, arguably, subjective. Evolutionary relatedness, inferred from phylogenetic markers, facilitates classification but does not guarantee functional identity between members of the same taxon or lack of similarity between different taxa. Using over thirteen hundred sequenced bacterial genomes, we built a novel function-based microorganism classification scheme, functional-repertoire similarity-based organism network (FuSiON; flattened to fusion). Our scheme is phenetic, based on a network of quantitatively defined organism relationships across the known prokaryotic space. It correlates significantly with the current taxonomy, but the observed discrepancies reveal both (1) the inconsistency of functional diversity levels among different taxa and (2) an (unsurprising) bias towards prioritizing, for classification purposes, relatively minor traits of particular interest to humans. Our dynamic network-based organism classification is independent of the arbitrary pairwise organism similarity cut-offs traditionally applied to establish taxonomic identity. Instead, it reveals natural, functionally defined organism groupings and is thus robust in handling organism diversity. Additionally, fusion can use organism meta-data to highlight the specific environmental factors that drive microbial diversification. Our approach provides a complementary view to cladistic assignments and holds important clues for further exploration of microbial lifestyles. Fusion is a more practical fit for biomedical, industrial, and ecological applications, as many of these rely on understanding the functional capabilities of the microbes in their environment and are less concerned

  7. Bioprospecting of lipolytic microorganisms obtained from industrial effluents

    Directory of Open Access Journals (Sweden)

    GREICE H.S. PEIL

    2016-01-01

    Full Text Available ABSTRACT The lipases have ability to catalyze diverse reactions and are important in different biotechnological applications. The aim of this work was to isolate and characterize microorganisms that produce lipases, from different food industry effluents localized in Pelotas, RS/Brazil. Bacteria were identified using Gram stain and biochemical tests (Vitek 2(r. Fungi were identified according to macro and micromorphology characteristics. The extracellular lipase production was evaluated using the Rhodamine B test and the enzymatic activity by titration. Twenty-one bacteria were isolated and identified as Klebsiella pneumoniae ssp. pneumoniae, Serratia marcescens, Enterobacter aerogenes, Raoultella ornithinolytica and Raoultella planticola. Were characterized isolated filamentous fungi by the following genera: Alternaria sp., Fusarium sp., Geotrichum sp., Gliocladium sp., Mucor sp., Paecilomyces sp. and Trichoderma sp. Extracellular lipase production was observed in 71.43% of the bacteria and 57.14% of the fungi. The bacterium that presented better promising enzymatic activity was E. aerogenes (1.54 U/ml however between fungi there was not significant difference between the four isolates. This study indicated that microorganisms lipase producers are present in the industrial effluents, as well as these enzymes have potential of biodegradation of lipid compounds.

  8. Bioprospecting of lipolytic microorganisms obtained from industrial effluents.

    Science.gov (United States)

    Peil, Greice H S; Kuss, Anelise V; Rave, Andrés F G; Villarreal, José P V; Hernandes, Yohana M L; Nascente, Patrícia S

    2016-01-01

    The lipases have ability to catalyze diverse reactions and are important in different biotechnological applications. The aim of this work was to isolate and characterize microorganisms that produce lipases, from different food industry effluents localized in Pelotas, RS/Brazil. Bacteria were identified using Gram stain and biochemical tests (Vitek 2(r)). Fungi were identified according to macro and micromorphology characteristics. The extracellular lipase production was evaluated using the Rhodamine B test and the enzymatic activity by titration. Twenty-one bacteria were isolated and identified as Klebsiella pneumoniae ssp. pneumoniae, Serratia marcescens, Enterobacter aerogenes, Raoultella ornithinolytica and Raoultella planticola. Were characterized isolated filamentous fungi by the following genera: Alternaria sp., Fusarium sp., Geotrichum sp., Gliocladium sp., Mucor sp., Paecilomyces sp. and Trichoderma sp. Extracellular lipase production was observed in 71.43% of the bacteria and 57.14% of the fungi. The bacterium that presented better promising enzymatic activity was E. aerogenes (1.54 U/ml) however between fungi there was not significant difference between the four isolates. This study indicated that microorganisms lipase producers are present in the industrial effluents, as well as these enzymes have potential of biodegradation of lipid compounds.

  9. Effects of heat-activated persulfate oxidation on soil microorganisms

    DEFF Research Database (Denmark)

    Tsitonaki, Aikaterini; Smets, Barth F.; Bjerg, Poul Løgstrup

    2008-01-01

    /L). The results emphasize the necessity of using multiple toxicity assays and indigenous cultures in order to realistically assess the potential effects of in situ chemical oxidation on soil microorganisms. A comparison to other studies suggests that the effects of activated persulfate on soil microorganisms...

  10. The pathogenic microorganisms in papanicolaou vaginal smears and correlation with inflammation.

    Directory of Open Access Journals (Sweden)

    Esmat Barouti

    2013-03-01

    Full Text Available Non-specific cervicitis or inflammatory changes in a smear report are common which are usually unclear for clinical approaches. To investigate the frequency of inflammation and pathogenic vaginal microorganisms in cervical smears among an Iranian population sample.This cross-sectional study was carried out on Pap smear samples of women referred to gynecological clinic of Taleghani Hospital in Tehran, Iran, between October 2008 and March 2009. This study was conducted on 528 conventional Papanicolaou cervical smears. The frequency and severity of inflammation and prevalence of bacterial vaginosis (BV, Trichomonas vaginalis (TV, and vaginal candidiasis (VC was determined in the samples. Also co-infection of the microorganisms in Pap samples was evaluated. percentage, mean±standard deviation of the outcome parameters were calculated. The comparison between data was performed with the Pearson's chi square or Fisher's exact test.The prevalence of BV, VC, and TV in Pap samples was 17%, 11%, and 0.4% respectively. Overall, the prevalence of these microorganisms in women of reproductive age was higher than menopausal women. There was a significant association between VC and the presence of inflammation in our samples.Based on our results, inflammation in the Pap smears can suggest an infection of VC and the patients should be considered for proper VC treatment.

  11. Biosurfactants, bioemulsifiers and exopolysaccharides from marine microorganisms.

    Science.gov (United States)

    Satpute, Surekha K; Banat, Ibrahim M; Dhakephalkar, Prashant K; Banpurkar, Arun G; Chopade, Balu A

    2010-01-01

    Marine biosphere offers wealthy flora and fauna, which represents a vast natural resource of imperative functional commercial grade products. Among the various bioactive compounds, biosurfactant (BS)/bioemulsifiers (BE) are attracting major interest and attention due to their structural and functional diversity. The versatile properties of surface active molecules find numerous applications in various industries. Marine microorganisms such as Acinetobacter, Arthrobacter, Pseudomonas, Halomonas, Myroides, Corynebacteria, Bacillus, Alteromonas sp. have been studied for production of BS/BE and exopolysaccharides (EPS). Due to the enormity of marine biosphere, most of the marine microbial world remains unexplored. The discovery of potent BS/BE producing marine microorganism would enhance the use of environmental biodegradable surface active molecule and hopefully reduce total dependence or number of new application oriented towards the chemical synthetic surfactant industry. Our present review gives comprehensive information on BS/BE which has been reported to be produced by marine microorganisms and their possible potential future applications.

  12. In Vitro Control of Uropathogenic Microorganisms with the Ethanolic Extract from the Leaves of Cochlospermum regium (Schrank Pilger

    Directory of Open Access Journals (Sweden)

    Danny Ellen Meireles Leme

    2017-01-01

    Full Text Available The roots of Cochlospermum regium, popularly known as “algodãozinho-do-cerrado,” are used for the treatment of genitourinary infections. However, the removal of their subterranean structures results in the death of the plant, and the use of the leaves becomes a viable alternative. Therefore, the antimicrobial activity of Cochlospermum regium leaf’s ethanolic extract and its action on the biofilm formation of microorganisms associated with urinary infection were evaluated. The total phenolic compounds, flavoids, and tannins were quantified using the reagents Folin-Ciocalteu, aluminum chloride, and vanillin, respectively. The antimicrobial activity was evaluated by the broth microdilution method and the effect of the extract in the biofilm treatment was measured by the drop plate method. Cytotoxicity was evaluated by the method based on the reduction of MTS and the mutagenicity by the Ames test. The ethanolic extract of C. regium leaves presented 87.4 mg/EQ of flavonoids, 167.2 mg/EAG of total phenolic compounds, and 21.7 mg/ECA of condensed tannins. It presented reduction of the biofilm formation for E. coli and C. tropicalis and antimicrobial action of 1 mg/mL and 0.5 mg/mL, respectively. The extract showed no cytotoxicity and mutagenicity at the concentrations tested. This study demonstrated that C. regium leaves are a viable option for the treatment of genitourinary infections and for the species preservation.

  13. Viable Techniques, Leontief’s Closed Model, and Sraffa’s Subsistence Economies

    Directory of Open Access Journals (Sweden)

    Alberto Benítez

    2014-11-01

    Full Text Available This paper studies the production techniques employed in economies that reproduce themselves. Special attention is paid to the distinction usually made between those that do not produce a surplus and those that do, which are referred to as first and second class economies, respectively. Based on this, we present a new definition of viable economies and show that every viable economy of the second class can be represented as a viable economy of the first class under two different forms, Leontief‘s closed model and Sraffa’s subsistence economies. This allows us to present some remarks concerning the economic interpretation of the two models. On the one hand, we argue that the participation of each good in the production of every good can be considered as a normal characteristic of the first model and, on the other hand, we provide a justification for the same condition to be considered a characteristic of the second model. Furthermore, we discuss three definitions of viable techniques advanced by other authors and show that they differ from ours because they admit economies that do not reproduce themselves completely.

  14. 78 FR 42451 - Animal Feeds Contaminated With Salmonella Microorganisms

    Science.gov (United States)

    2013-07-16

    .... FDA-2013-N-0253] Animal Feeds Contaminated With Salmonella Microorganisms AGENCY: Food and Drug... revoking an advisory opinion on animal feeds contaminated with Salmonella microorganisms. This action is... articulated in a final compliance policy guide (CPG) on Salmonella in food for animals. DATES: This rule is...

  15. Competition between roots and microorganisms for nitrogen: mechanisms and ecological relevance.

    Science.gov (United States)

    Kuzyakov, Yakov; Xu, Xingliang

    2013-05-01

    Demand of all living organisms on the same nutrients forms the basis for interspecific competition between plants and microorganisms in soils. This competition is especially strong in the rhizosphere. To evaluate competitive and mutualistic interactions between plants and microorganisms and to analyse ecological consequences of these interactions, we analysed 424 data pairs from 41 (15)N-labelling studies that investigated (15)N redistribution between roots and microorganisms. Calculated Michaelis-Menten kinetics based on K(m) (Michaelis constant) and V(max) (maximum uptake capacity) values from 77 studies on the uptake of nitrate, ammonia, and amino acids by roots and microorganisms clearly showed that, shortly after nitrogen (N) mobilization from soil organic matter and litter, microorganisms take up most N. Lower K(m) values of microorganisms suggest that they are especially efficient at low N concentrations, but can also acquire more N at higher N concentrations (V(max)) compared with roots. Because of the unidirectional flow of nutrients from soil to roots, plants are the winners for N acquisition in the long run. Therefore, despite strong competition between roots and microorganisms for N, a temporal niche differentiation reflecting their generation times leads to mutualistic relationships in the rhizosphere. This temporal niche differentiation is highly relevant ecologically because it: protects ecosystems from N losses by leaching during periods of slow or no root uptake; continuously provides roots with available N according to plant demand; and contributes to the evolutionary development of mutualistic interactions between roots and microorganisms. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  16. Fossil Microorganisms and Formation of Early Precambrian Weathering Profiles

    Science.gov (United States)

    Rozanov, A. Yu; Astafieva, M. M.; Vrevsky, A. B.; Alfimova, N. A.; Matrenichev, V. A.; Hoover, R. B.

    2009-01-01

    Weathering crusts are the only reliable evidences of the existence of continental conditions. Often they are the only source of information about exogenous processes and subsequently about conditions under which the development of the biosphere occurred. A complex of diverse fossil microorganisms was discovered as a result of Scanning Electron Microscope investigations. The chemical composition of the discovered fossils is identical to that of the host rocks and is represented by Si, Al, Fe, Ca and Mg. Probably, the microorganisms fixed in rocks played the role of catalyst. The decomposition of minerals comprising the rocks and their transformation into clayey (argillaceous) minerals, most likely occurred under the influence of microorganisms. And may be unique weathering crusts of Early Precambrian were formed due to interaction between specific composition of microorganism assemblage and conditions of hypergene transformations. So it is possible to speak about colonization of land by microbes already at that time and about existence of single raw from weathering crusts (Primitive soils) to real soils.

  17. Functional Properties of Microorganisms in Fermented Foods

    Directory of Open Access Journals (Sweden)

    Jyoti Prakash Tamang

    2016-04-01

    Full Text Available Fermented foods have unique functional properties imparting some health benefits to consumers due to presence of functional microorganisms, which possess probiotics properties, antimicrobial, antioxidant, peptide production, etc. Health benefits of some global fermented foods are synthesis of nutrients, prevention of cardiovascular disease, prevention of cancer, gastrointestinal disorders, allergic reactions, diabetes, among others. The present paper is aimed to review the information on some functional properties of the microorganisms associated with fermented foods and beverages, and their health-promoting benefits to consumers.

  18. Role of Microorganisms in the Removal of Radionuclides from Soil

    International Nuclear Information System (INIS)

    Bashandy, A.S.

    2007-01-01

    Resistance to radio nuclides and their accumulation by bacteria is a wide spread phenomenon that can be explored for the improvement of the environment. Metal resistant bacteria have developed very efficient and varying mechanisms for tolerating high levels of. toxic metals and thus hold potential for controlling heavy metal pollution. This property has been successfully applied for metal removal from soil. A total of 59 microorganisms were isolated from 5 locations in Sinai Desert. The microorganisms were examined for resistance to strontium, cobalt and cesium by spot technique on two kinds of media containing metals, Nutrient agar and King B agar. The resistant microorganisms were identified morphologically by Gram stain. The microorganisms were resistant to Sr and Cs at concentrations up to 200 mg/I and while Co proved to be toxic at a concentration of 100 mg/ I. The mechanisms of metal resistance to high concentrations were studied. Evidence show that the isolated microorganisms can uptake high concentrations of the studied elements. The results also, indicated that no binding proteins are released in the environment of the studied isolate

  19. [Effects of soil pH on the competitive uptake of amino acids by maize and microorganisms].

    Science.gov (United States)

    Ma, Qing Xu; Wang, Jun; Cao, Xiao Chuang; Sun, Yan; Sun, Tao; Wu, Liang Huan

    2017-07-18

    Organic nitrogen can play an important role in plant growth, and soil pH changed greatly due to the over-use of chemical fertilizers, but the effects of soil pH on the competitive uptake of amino acids by plants and rhizosphere microorganisms are lack of detailed research. To study the effects of soil pH on the uptake of amino acids by maize and soil microorganisms, two soils from Hangzhou and Tieling were selected, and the soil pH was changed by the electrokinesis, then the 15 N-labeled glycine was injected to the centrifuge tube with a short-term uptake of 4 h. Soil pH had a significant effect on the shoot and root biomass, and the optimal pH for maize shoot growth was 6.48 for Hangzhou red soil, while it was 7.65 for Tieling brown soil. For Hangzhou soil, the 15 N abundance of maize shoots under pH=6.48 was significantly higher than under other treatments, and the uptake amount of 15 N-glycine was also much higher. However, the 15 N abundance of maize shoots and roots under pH=7.65 Tieling soil was significantly lower than it under pH=5.78, but the uptake amount of 15 N-glycine under pH=7.65 was much higher. The microbial biomass C was much higher in pH=6.48 Hangzhou soil, while it was much lower in pH=7.65 Tieling soil. According to the results of root uptake, root to shoot transportation, and the competition with microorganisms, we suggested that although facing the fierce competition with microorganisms, the maize grown in pH=6.48 Hangzhou soil increased the uptake of glycine by increasing its root uptake and root to shoot transportation. While in pH=7.65 Tieling soil, the activity of microorganisms was decreased, which decreased the competition with maize for glycine, and increased the uptake of glycine by maize.

  20. [Correlation between distribution of rhizospheric microorganisms and contents of steroidal saponins of Paris polyphylla var. yunnanensis].

    Science.gov (United States)

    Zhou, Nong; Qi, Wen-hua; Xiao, Guo-sheng; Ding, Bo; Zhang, Hua; Guo, Dong-qin; Shen, Wei

    2015-03-01

    In this paper, the varying pattern of the amount of rhizospheric microorganisms, including bacteria, actinomycetes and fungus, was observed during the cultivation of Paris polyphylla var. yunnanensis. And the correlations between number of rhizospheric microorganisms and the quality of P. polyphylla var. yunnanensis were also studied. The results showed that the rhizospheric microorganism source of P. polyphylla var. yunnanensis was rich. The distribution of rhizospheric microorganisms (soil bacteria, fungus, actinomycetes, potassium-solubilizing bacteria, inorganic phosphorus-solubilizing bacteria, organic phosphorus-solubilizing bacteria) collected from different origin places existed significant difference (P the amount of actinomycetes > the amount of fungus. The medicinal quality of P. polyphylla var. yunnanensis was influenced by their habits, and the increase of cultivation years caused the obvious decrease of the quality of P. polyphylla var. yunnanensis. Therefore, the increase of cultivation years will cause the variation of the soil micro-ecology flora, and decrease the nutrient absorption and the utilization of P. polyphylla var. yunnanensis, which will make the decrease of the medical quality of P. polyphylla var. yunnanensis.

  1. [Prevalence of associated microorganisms in genital discharge, Argentina].

    Science.gov (United States)

    Di Bartolomeo, Susana; Rodriguez Fermepin, Marcelo; Sauka, Diego H; Alberto de Torres, Ramón

    2002-10-01

    There was a significant increase in the number of women demanding gynecological care in public hospital of the Great Buenos Aires, Argentina, between 1997 and 1998. It was necessary to update the prevalence of associated microorganisms in order to review the laboratory support and adjust prevention and control guidelines. Samples from vaginal and endocervical discharge, from total cases: 84 adolescents (15 to 19 years) and 784 adults (20-60 years) attended in 1997-1998, were studied. Neisseria gonorrhoeae, Streptococcus agalactiae, Trichomonas vaginalis, Candida spp, and bacterial vaginosis, were diagnosed applying direct detection methods and specific culture isolation. Chlamydia trachomatis (antigen detection), Ureaplasma urealyticum and Mycoplasma hominis (culture) were also studied in part of the population. Patient care increased steadily from 1997 and there was an increase of 2.1 times from the first semester to the last one in 1998. Bacterial vaginosis was the most prevalent disease in the adult group, with 23.8%; followed by Candida spp 17.8%; S. agalactiae 5.6%; T.vaginalis 2.4%. In 50.3% of total adult cases neither bacterial vaginosis or presence of any sought microorganisms, was detected. In the adolescents group the most frequent detection was Candida spp with a 29.7%; bacterial vaginosis in 17.8%; followed by S. agalactiae 3.6%, T.vaginalis 2.4%. Also in this group on an important number of cases, 46.4%, none bacterial vaginosis or the presence of the sought microorganism were found. In some of the adult group, C. trachomatis (7/400) 1.76%, U. urealyticum (209/340) 61.4% and M. hominis (45/272) 16.5% were detected. Bacterial vaginosis and Candida spp prevalence is important in both groups. The absence of N. gonorrhoeae and lower prevalence of T. vaginalis and C. trachomatis is remarkable. A high prevalence of U. urealyticum and M. hominis were also detected, but the actual pathogenic role in adult women is still under discussion. The significant

  2. Biodegradation of oil palm empty fruit bunch by composite micro-organisms

    International Nuclear Information System (INIS)

    Yusri Atan; Mat Rasol Awang; Mohammed Omar; Azizah Hashim; Tamikazu Kume; Shoji Hashimoto

    1998-01-01

    A comparison study on the comparative biodegradation ability on EFB by five groups of composite micro-organisms [Organomine, Thomas, Ohres C, Ohres II and micro-organisms from POME (palm oil mill effluent)] has been performed with the aim of producing a compost at a faster rate than that by natural biodegradation. The experiment was carried out by mixing 50 gram EFB (dry weight basis) with 3% ammonium sulphate to which was added 1% composite micro-organisms and water to produce a composting media of moisture content about 60%. Respiration of composite micro-organisms as well as from decomposition of EFB releasing CO sub 2. The choice of useful micro-organisms was based on its ability to degrade EFB as reflected by higher evolution rate of CO sub 2 released and retaining higher percentage of nitrogen in the final product

  3. Cummins L10G in Kenworth truck 'viable today'

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    As the culmination of five years of developmental work by Cummins Engines, BC Research Inc., and BC Gas Utility Ltd., a T800 Kenworth truck was outfitted with a new Cummins L10G natural gas engine, and two lightweight fully -wrapped Dynetek cylinders; it was pronounced to be 'a viable clean truck today'. The L10G spark-ignited engine operates at a relatively high peak efficiency of 37 per cent and is commercially available to meet the current California Air Resources Board heavy duty vehicle emission standards without the use of a catalytic converter. The L10G engine produces no particulate emissions, a very significant advantage, in view of the fact that particulate emissions have been identified as major contributors to respiratory ailments

  4. Biofuel production by recombinant microorganisms

    Science.gov (United States)

    Liao, James C.; Atsumi, Shota; Cann, Anthony F.

    2017-07-04

    Provided herein are metabolically-modified microorganisms useful for producing biofuels. More specifically, provided herein are methods of producing high alcohols including isobutanol, 1-butanol, 1-propanol, 2-methyl-1-butanol, 3-methyl-1-butanol and 2-phenylethanol from a suitable substrate.

  5. [Correlation analysis of nutrients and microorganisms in soils with polyphenols and total flavonoids of Houttuynia cordata].

    Science.gov (United States)

    Wu, Dan; Luo, Shi-qiong; Yang, Zhan-nan; Ma, Jing; Hong, Liang

    2015-04-01

    The relationship of nutrients and microorganisms in soils with polyphenols and total flavonoids of Houttuynia cordata were investigated by measuring nutrients, enzyme activity, pH, concentrations of microbe phospholipid fatty acids (PLFAs) in soils, and determining concentrations of polyphenols and total flavonoids of H. cordata. The research is aimed to understand characteristics of the planting soils and improve the quality of cultivated H. cordata. The soils at different sample sites varied greatly in nutrients, enzyme activity, pH, microbic PLFAs and polyphenols and all flavonoids. The content of total PLFAs in sample sites was following: bacteria > fungi > actinomyces > nematode. The content of bacteria PLFAs was 37.5%-65.0% at different sample sites. Activities of polyphenol oxidease, concentrations of available P and content of PLFAs of bacteria, actinomyces and total microorganisms in soils were significantly and positively related to the concentrations of polyphenols and total flavonoids of H. cordata, respectively (P soils was significantly and negatively related to concentrations of polyphenols and total flavonoids of H. cordata, respectively (P soil nutrient, which may be improved due to transformation of soil microorganisms and enzymes to N and P in the soils, was beneficial to adaptation of H. cordata adapted to different soil conditions, and significantly affects metabolic accumulation of polyphenols and flavonoids of H. cordata.

  6. Physiologically anaerobic microorganisms of the deep subsurface

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, S.E. Jr.; Chung, K.T.

    1991-06-01

    This study seeks to determine numbers, diversity, and morphology of anaerobic microorganisms in 15 samples of subsurface material from the Idaho National Engineering Laboratory, in 18 samples from the Hanford Reservation and in 1 rock sample from the Nevada Test Site; set up long term experiments on the chemical activities of anaerobic microorganisms based on these same samples; work to improve methods for the micro-scale determination of in situ anaerobic microbial activity;and to begin to isolate anaerobes from these samples into axenic culture with identification of the axenic isolates.

  7. Magnetotaxy in microorganisms of Rio de Janeiro region: an overview

    International Nuclear Information System (INIS)

    Barros, H.G. de P.L. de; Esquivel, D.M.S.

    1983-01-01

    Some characteristics of several magnetotactic microorganisms found in sediments collected in Rio de Janeiro region are presented. The study of magnetic characteristics of these microorganisms indicate some general properties of the magnetotaxy phenomenons. (L.C.) [pt

  8. Evaluation of the influence of sprinkling powdered slaked lime on microorganisms for the prevention of domestic animal infectious diseases.

    Science.gov (United States)

    Mori, Miho; Sakagami, Yoshikazu; Hamazaki, Yousuke; Jojima, Toru

    2018-04-23

    When infectious diseases arise in domestic animals, a large amount of slaked lime is sprinkled on cattle sheds and their surroundings for disinfection and prevention. However, optimal sprinkling methods, standard and upper limit of slaked lime, and influence of slaked lime on non-target microorganisms remain unclear. In this study, we clarified detailed microbicidal effects of slaked lime via in vitro experiments and the influence of sprinkling powdered slaked lime (PSL) in field soil on microorganisms. In vitro disinfection tests assessing the appropriate amount of water and ventilation conditions were also performed in sterilized glass bottles with soil and Salmonella enterica subsp. enterica serovar Typhimurium. Under conditions with a small amount of water relative to the amount of PSL, the bactericidal effect and sustainability of powdered slaked lime (PSL) tended to be lower than those without spraying water. Moreover, the sterilization effect markedly decreased after 7 days under conditions with abundant water. These results indicate that the amount of sprayed water is very important for the bactericidal effect and persistence of PSL. A field experiment showed that the pH and exchange calcium (Ca) content of the soil sprinkled with over 1000 g m -2 PSL remained high even after a long period (≥1 year), with values of approximately 0.5-1.0 and approximately 3-11 times the level without PSL, respectively. However, sprinkling PSL did not influence viable microbial counts at any concentration.

  9. Some estimates of the continuous cultivation of microorganisms

    Directory of Open Access Journals (Sweden)

    G. V. Alekseev

    2017-01-01

    Full Text Available The proteins, fats and carbohydrates received by the person traditionally from animal and vegetable sources don't cover all increasing needs of mankind any more today. At the same time proteins and fats of microorganisms with success can replace proteins and fats of a traditional origin. As protein producers microorganisms at the high content of protein in biomass and high growth rate of microorganisms have certain advantages. The present article is devoted to questions of numerical modeling of processes of cultivation of microorganisms. On the basis of the known model offered Mono in which saturation of growth rate of culture at increase in initial concentration of a substratum of S0 is considered the system of the differential equations describing the happening processes in that number before achievement of stationarity is written down. At the same time dependence of separate sizes, the systems entering the equations is insufficiently studied at change of parameters of process. The behavior of all system at violation of regulations is of interest or at unauthorized change of one of parameters. For studying of these questions numerical modeling is carried out and the basic picture of change of chemostate curves in these conditions is received

  10. Is arsenic biotransformation a detoxification mechanism for microorganisms?

    International Nuclear Information System (INIS)

    Rahman, M. Azizur; Hassler, Christel

    2014-01-01

    Arsenic (As) is extremely toxic to living organisms at high concentration. In aquatic systems, As exists in different chemical forms. The two major inorganic As (iAs) species are As V , which is thermodynamically stable in oxic waters, and As III , which is predominant in anoxic conditions. Photosynthetic microorganisms (e.g., phytoplankton and cyanobacteria) take up As V , biotransform it to As III , then biomethylate it to methylarsenic (MetAs) forms. Although As III is more toxic than As V , As III is much more easily excreted from the cells than As V . Therefore, majority of researchers consider the reduction of As V to As III as a detoxification process. The biomethylation process results in the conversion of toxic iAs to the less toxic pentavalent MetAs forms (monomethylarsonate; MMA V , dimethylarsonate; DMA V , and trimethylarsenic oxide; TMAO V ) and trimethylarsine (TMAO III ). However, biomethylation by microorganisms also produces monomethylarsenite (MMA III ) and dimethylarsenite (DMA III ), which are more toxic than iAs, as a result of biomethylation by the microorganisms, demonstrates the need to reconsider to what extent As biomethylation contributes to a detoxification process. In this review, we focused on the discussion of whether the biotransformation of As species in microorganisms is really a detoxification process with recent data

  11. 40 CFR 725.67 - Applications to exempt new microorganisms from this part.

    Science.gov (United States)

    2010-07-01

    ...) The effects of the new microorganism on health and the environment. (ii) The magnitude of exposure of human beings and the environment to the new microorganism. (iii) The benefits of the new microorganism... economic consequences of granting or denying the exemption, including effects on the national economy...

  12. Fake Journals: Their Features and Some Viable Ways to Distinguishing Them

    DEFF Research Database (Denmark)

    Hemmat Esfe, Mohammad; Wongwises, Somchai; Asadi, Amin

    2015-01-01

    In this paper, we aim to discuss the fake journals and their advertisement and publication techniques. These types of journals mostly start and continue their activities by using the name of some indexed journals and establishing fake websites. The fake journals and publishers, while asking...... the authors for a significant amount of money for publishing their papers, have no peer-review process, publish the papers without any revision on the fake sites, and put the scientific reputation and prestige of the researchers in jeopardy. In the rest of the paper, we present some viable techniques in order...

  13. Motion of magnetotactic microorganisms

    International Nuclear Information System (INIS)

    Esquivel, D.M.S.; Barros, H.G. de P.L. de.

    1985-01-01

    Magnetic moments for different magnetotactic microorganisms are obtained by electron microscopy analyses and studies of motion by optical microscopy. The results are analysed in terms of a model due to C.Bean. The considerations presented suggest that magnetotaxy is an efficient mechanism for orientation only if the time for reorientation is smaller than the cycles of environmental perturbations. (Author) [pt

  14. Evolution, Metabolism and Biotechnological Usage of Methylotrophic Microorganisms

    OpenAIRE

    Oleg Mosin; Ignat Ignatov

    2014-01-01

    Methylotrophs – aerobic chemoheterotrophic microorganisms submitted by cocci and bacilli mobile forms, are inhabitants of reservoirs and soils of various type, where there are going on various processes of decomposition of organic substances with formation of the one-carbon С1-compounds and some С2-, and С3-compounds, capable to be assimilated by methylotrophs. These microorganisms assimilating carbon on ribuloso-5-monophospate and serine pathways, are allocated from soil ground, the sewage c...

  15. Screening of microorganisms for microbial enhanced oil recovery processes

    Energy Technology Data Exchange (ETDEWEB)

    Yonebayashi, H. [Japan National Oil Corp., Tokyo (Japan); Yoshida, S. [Japan Food Research Laboratiories, Tokyo (Japan). Div. of Microbiology; Ono, K. [Japan National Oil Corp., Chiba (Japan). Tech. Research Center; Enomoto, H. [Tohoku University, Sendai (Japan). Dept. of Geoscience and Tech.

    2000-01-01

    The objective of this study is to screen effective microorganisms for the Microbial Enhanced Oil Recovery process (or simply as MEOR). Samples of drilling cuttings, formation water, and soil were collected from domestic drilling sites and oil fields. Moreover, samples of activated-sludge and compost were collected from domestic sewage treatment facility and food treatment facility. At first, microorganisms in samples were investigated by incubation with different media; then they were isolated. By two stage-screening based on metabolizing ability, 4 strains (Bacillus licheniformis TRC-18-2-a, Enterobacter cloacae TRC-322, Bacillus subtilis TRC-4118, and Bacillus subtilis TRC-4126) were isolated as effective microorganisms for oil recovery. B. licheniformis TRC-18-2-a is a multifunctional microorganism possessing excellent surfactant productivity, and in addition it has gas, acid and polymer productivities. E. cloacae TRC-332 has gas and acid producing abilities. B. subtilis TRC-4118 and TRC-4126 are effective biosurfactant producers, and they reduce the interfacial tension to 0.04 and 0.12 dyne/cm, respectively. (author)

  16. A model of the transmission of micro-organisms in a public setting and its correlation to pathogen infection risks.

    Science.gov (United States)

    Gerhardts, A; Hammer, T R; Balluff, C; Mucha, H; Hoefer, D

    2012-03-01

    Gastro-intestinal infections are widespread in the community and have considerable economic consequences. In this study, we followed chains of infection from a public toilet scenario, looking at infection risks by correlating the transmission of bacteria, fungi and viruses to our current knowledge of infectious doses. Transmission of Escherichia coli, Bacillus atrophaeus spores, Candida albicans and bacteriophage MS2 from hands to surfaces was examined in a transmission model, that is toilet brush, door handle to water tap. The load of viable pathogens was significantly reduced during transfer from hands to objects. Nevertheless, it was shown that pathogens were successfully transferred to other people in contagious doses by contact with contaminated surfaces. Our results suggest that infection risks are mainly dependent on current infectious doses of pathogens. For enteritic viruses or bacteria, for example Norovirus or EHEC, only a few particles or cells are sufficient for infection in public lavatories, thus bearing a high risk of infection for other persons. However, there seems to be only a low probability of becoming infected with pathogens that have a high infectious dose whilst sharing the same bathroom. The transmission model for micro-organisms enables a risk assessment of gastro-intestinal infections on the basis of a practical approach. © 2012 The Authors. Journal of Applied Microbiology © 2012 The Society for Applied Microbiology.

  17. Integrated evaluation of soil quality after the incorporation of organic matter and microorganisms

    Directory of Open Access Journals (Sweden)

    Valarini Pedro J.

    2002-01-01

    Full Text Available The soil quality was evaluated following the addition of organic matter and microorganisms to a clay loam soil collected in Aranjuez (Madrid under controlled conditions of temperature and moisture, and over a period of three months. The following treatments were carried out: soil (control; soil + 50 t/ha of animal manure (E50; soil + 50 t/ha of animal manure + 30l/ha of effective microorganisms (E50EM; soil + 30 t/ha of combination of various green crop residues and weeds (RC30 and soil + 30 t/ha of combination of various green crop residues and weeds + 30l/ha of effective microorganisms (RC30EM. The soil samples were taken before and after the incubation and analysed using physical, chemical and microbiological parameters. A significant increase in the production of polysaccharides and alkaline phosphatase and esterase enzymes in the treatments E50EM and RC30EM was observed, being in direct correlation with the humification of the organic matter, with the water retention at field capacity, and with the cationic exchange capacity (CEC. It can be concluded that the incorporation of microorganisms EM potentialized the soil biological activity and improved physico-chemical soil properties, contributing to a quick humification of fresh organic matter. Those findings were proved by microbiological activities of exopolysaccharides by alcaline phosphatase and esterase enzymes, which can be used as earlier and integral soil health indicators.

  18. PMA-PhyloChip DNA Microarray to Elucidate Viable Microbial Community Structure

    Science.gov (United States)

    Venkateswaran, Kasthuri J.; Stam, Christina N.; Andersen, Gary L.; DeSantis, Todd

    2011-01-01

    Since the Viking missions in the mid-1970s, traditional culture-based methods have been used for microbial enumeration by various NASA programs. Viable microbes are of particular concern for spacecraft cleanliness, for forward contamination of extraterrestrial bodies (proliferation of microbes), and for crew health/safety (viable pathogenic microbes). However, a "true" estimation of viable microbial population and differentiation from their dead cells using the most sensitive molecular methods is a challenge, because of the stability of DNA from dead cells. The goal of this research is to evaluate a rapid and sensitive microbial detection concept that will selectively estimate viable microbes. Nucleic acid amplification approaches such as the polymerase chain reaction (PCR) have shown promise for reducing time to detection for a wide range of applications. The proposed method is based on the use of a fluorescent DNA intercalating agent, propidium monoazide (PMA), which can only penetrate the membrane of dead cells. The PMA-quenched reaction mixtures can be screened, where only the DNA from live cells will be available for subsequent PCR reaction and microarray detection, and be identified as part of the viable microbial community. An additional advantage of the proposed rapid method is that it will detect viable microbes and differentiate from dead cells in only a few hours, as opposed to less comprehensive culture-based assays, which take days to complete. This novel combination approach is called the PMA-Microarray method. DNA intercalating agents such as PMA have previously been used to selectively distinguish between viable and dead bacterial cells. Once in the cell, the dye intercalates with the DNA and, upon photolysis under visible light, produces stable DNA adducts. DNA cross-linked in this way is unavailable for PCR. Environmental samples suspected of containing a mixture of live and dead microbial cells/spores will be treated with PMA, and then incubated

  19. The Effect of High Hydrostatic Pressure on Microorganisms in Food Preservation

    OpenAIRE

    M. Arici

    2006-01-01

    High hydrostatic pressure is a new food preservation technology known for its capacity to inactivate spoilage and pathogenic microorganisms. High-pressure treatments are receiving a great deal of attention for the inactivation of microorganisms in food processing, pressure instead of temperature is used as stabilizing factor. High hydrostatic pressure treatment is the most studied alternative process, many works reported successful results in inactivating a wide range of microorganisms under ...

  20. Root Canal Microorganism Profiles on Upper Anterior Teeth of Apical Periodontitis

    OpenAIRE

    Riuwpassa, E. Irene

    2013-01-01

    Microorganisms are the main causative agents on the development of apical periodontitis. Microorganisms infecting the root canal system are colonized in communities as biofilm. These bacterial communities show distinct pattern related to the different forms of apical periodontitis which are determined by species richness and abundance.this study is aimed to examine the root canal microorganisms on upper anterior teeth of asymptomatic apical periodontitis and chronic apical abscess. Samples we...

  1. Root Canal Microorganisms Profiles of Upper Anterior Teeth with Periapical Lesion

    OpenAIRE

    Maria Tanumiharja; Irene E. Riewpassa; Mansjur Nasir; Burhanuddin D. Pasiga

    2014-01-01

    Microorganisms are the main causative agents on the development of apical periodontitis. Microorganisms infecting the root canal system are colonized in communities as biofilm. These bacterial communities show distinct pattern related to the different forms of apical periodontitis which are determined by species richness and abundance. Objective: This study is aimed to examine the root canal microorganisms on upper anterior teeth of asymptomatic apical periodontitis and chronic apical abscess...

  2. Polysaccharides from Extremophilic Microorganisms

    Science.gov (United States)

    Nicolaus, B.; Moriello, V. Schiano; Lama, L.; Poli, A.; Gambacorta, A.

    2004-02-01

    Several marine thermophilic strains were analyzed for exopolysaccharide production. The screening process revealed that a significant number of thermophilic microorganisms were able to produce biopolymers, and some of them also revealed interesting chemical compositions. We have identified four new polysaccharides from thermophilic marine bacteria, with complex primary structures and with different repetitive units: a galacto-mannane type from strain number 4004 and mannane type for the other strains. The thermophilic Bacillus thermantarcticus produces two exocellular polysaccharides (EPS 1, EPS 2) that give the colonies a typical mucous character. The exopolysaccharide fraction was produced with all substrates assayed, although a higher yield 400 mg liter-1 was obtained with mannose as carbon and energy source. NMR spectra confirmed that EPS 1 was a heteropolysaccharide of which the repeating unit was constituted by four different α-D-mannoses and three different β-D-glucoses. It seems to be close to some xantan polymers. EPS 2 was a mannan. Four different α-D-mannoses were found as the repeating unit. Production and chemical studies of biopolymers produced by halophilic archaea, Haloarcula species were also reported.

  3. Ecological significance of compatible solute accumulation by micro-organisms: from single cells to global climate.

    Science.gov (United States)

    Welsh, D T

    2000-07-01

    The osmoadaptation of most micro-organisms involves the accumulation of K(+) ions and one or more of a restricted range of low molecular mass organic solutes, collectively termed 'compatible solutes'. These solutes are accumulated to high intracellular concentrations, in order to balance the osmotic pressure of the growth medium and maintain cell turgor pressure, which provides the driving force for cell extension growth. In this review, I discuss the alternative roles which compatible solutes may also play as intracellular reserves of carbon, energy and nitrogen, and as more general stress metabolites involved in protection of cells against other environmental stresses including heat, desiccation and freezing. Thus, the evolutionary selection for the accumulation of a specific compatible solute may not depend solely upon its function during osmoadaptation, but also upon the secondary benefits its accumulation provides, such as increased tolerance of other environmental stresses prevalent in the organism's niche or even anti-herbivory or dispersal functions in the case of dimethylsulfoniopropionate (DMSP). In the second part of the review, I discuss the ecological consequences of the release of compatible solutes to the environment, where they can provide sources of compatible solutes, carbon, nitrogen and energy for other members of the micro-flora. Finally, at the global scale the metabolism of specific compatible solutes (betaines and DMSP) in brackish water, marine and hypersaline environments may influence global climate, due to the production of the trace gases, methane and dimethylsulfide (DMS) and in the case of DMS, also couple the marine and terrestrial sulfur cycles.

  4. The Ecology of Acidophilic Microorganisms in the Corroding Concrete Sewer Environment

    Directory of Open Access Journals (Sweden)

    Guangming Jiang

    2017-04-01

    Full Text Available Concrete corrosion is one of the most significant problems affecting valuable sewer infrastructure on a global scale. This problem occurs in the aerobic zone of the sewer, where a layer of surface corrosion develops on the exposed concrete and the surface pH is typically lowered from around 11–10 (pristine concrete to pH 2–4. Acidophilic microorganisms become established as biofilms within the concrete corrosion layer and enhance the loss of concrete mass. Until recently, the acidophilic community was considered to comprise relatively few species of microorganisms, however, the biodiversity of the corrosion community is now recognized as being extensive and varying from different sewer environmental conditions. The diversity of acidophiles in the corrosion communities includes chemolithoautotrophs, chemolithoheterotrophs, and chemoorganoheterotrophs. The activity of these microorganisms is strongly affected by H2S levels in the sewer gas phase, although CO2, organic matter, and iron in the corrosion layer influence this acidic ecosystem. This paper briefly presents the conditions within the sewer that lead to the development of concrete corrosion in that environment. The review focuses on the acidophilic microorganisms detected in sewer corrosion environments, and then summarizes their proposed functions and physiology, especially in relation to the corrosion process. To our knowledge, this is the first review of acidophilic corrosion microbial communities, in which, the ecology and the environmental conditions (when available are considered. Ecological studies of sewer corrosion are limited, however, where possible, we summarize the important metabolic functions of the different acidophilic species detected in sewer concrete corrosion layers. It is evident that microbial functions in the acidic sewer corrosion environment can be linked to those occurring in the analogous acidic environments of acid mine drainage and bioleaching.

  5. Factors Determining the Biodiversity of Halophilic Microorganisms on Historic Masonry Buildings

    Science.gov (United States)

    Otlewska, Anna; Adamiak, Justyna; Stryszewska, Teresa; Kańka, Stanisław; Gutarowska, Beata

    2017-01-01

    The aim of the present study was to obtain insights into the relationship between the chemical (salt content and pH) and physico-mechanical (humidity and compressive strength) properties of mineral-based materials from historic buildings with salt efflorescence and the growth and biodiversity of halophilic microorganisms. Samples were mainly characterized by pH 6.5–8.5 and a moisture content of between 0.12 and 3.3%. Significant variations were also found in the salt content (sulfates, chlorides, and nitrates) of the materials. An SEM/EDS analysis of material surfaces revealed the presence of halite, calcite, gypsum, sodium sulfate, and potassium-sodium sulfate. Culture-dependent and culture-independent (clone library construction) approaches were both applied to detect halophilic microorganisms. Results derived from culturable methods and the materials analysis revealed a correlation between the total halophile count and pH value as well as sulfate content. A correlation was not observed between the concentration of chlorides or nitrates and the number of halophilic microorganisms. The materials studied were inhabited by the culturable halophilic bacteria Halobacillus sp., Virgibacillus sp., and Marinococcus sp. as well as the yeast Sterigmatomyces sp., which was isolated for the first time from mineral materials. Culture-independent techniques revealed the following bacterial species: Salinibacterium, Salinisphaera, Rubrobacter, Rubricoccus, Halomonas, Halorhodospira, Solirubrobacter, Salinicoccus, and Salinibacter. Biodiversity was the highest in materials with high or moderate salinity. PMID:28592721

  6. Factors Determining the Biodiversity of Halophilic Microorganisms on Historic Masonry Buildings.

    Science.gov (United States)

    Otlewska, Anna; Adamiak, Justyna; Stryszewska, Teresa; Kańka, Stanisław; Gutarowska, Beata

    2017-06-24

    The aim of the present study was to obtain insights into the relationship between the chemical (salt content and pH) and physico-mechanical (humidity and compressive strength) properties of mineral-based materials from historic buildings with salt efflorescence and the growth and biodiversity of halophilic microorganisms. Samples were mainly characterized by pH 6.5-8.5 and a moisture content of between 0.12 and 3.3%. Significant variations were also found in the salt content (sulfates, chlorides, and nitrates) of the materials. An SEM/EDS analysis of material surfaces revealed the presence of halite, calcite, gypsum, sodium sulfate, and potassium-sodium sulfate. Culture-dependent and culture-independent (clone library construction) approaches were both applied to detect halophilic microorganisms. Results derived from culturable methods and the materials analysis revealed a correlation between the total halophile count and pH value as well as sulfate content. A correlation was not observed between the concentration of chlorides or nitrates and the number of halophilic microorganisms. The materials studied were inhabited by the culturable halophilic bacteria Halobacillus sp., Virgibacillus sp., and Marinococcus sp. as well as the yeast Sterigmatomyces sp., which was isolated for the first time from mineral materials. Culture-independent techniques revealed the following bacterial species: Salinibacterium, Salinisphaera, Rubrobacter, Rubricoccus, Halomonas, Halorhodospira, Solirubrobacter, Salinicoccus, and Salinibacter. Biodiversity was the highest in materials with high or moderate salinity.

  7. Differentiation and detection of microorganisms using Fourier transform infrared photoacoustic spectroscopy

    Science.gov (United States)

    Irudayaraj, Joseph; Yang, Hong; Sakhamuri, Sivakesava

    2002-03-01

    Fourier transform infrared photoacoustic spectroscopy (FTIR-PAS) was used to differentiate and identify microorganisms on a food (apple) surface. Microorganisms considered include bacteria (Lactobacillus casei, Bacillus cereus, and Escherichia coli), yeast (Saccharomyces cerevisiae), and fungi (Aspergillus niger and Fusarium verticilliodes). Discriminant analysis was used to differentiate apples contaminated with the different microorganisms from uncontaminated apple. Mahalanobis distances were calculated to quantify the differences. The higher the value of the Mahalanobis distance metric between different microorganisms, the greater is their difference. Additionally, pathogenic (O157:H7) E. coli was successfully differentiated from non-pathogenic strains. Results demonstrate that FTIR-PAS spectroscopy has the potential to become a non-destructive analysis tool in food safety related research.

  8. Progress in decontamination by halophilic microorganisms in saline wastewater and soil

    International Nuclear Information System (INIS)

    Zhuang Xuliang; Han Zhen; Bai Zhihui; Zhuang Guoqiang; Shim Hojae

    2010-01-01

    Environments with high-salt concentrations are often populated by dense microbial communities. Halophilic microorganisms can be isolated from different saline environments and different strains even belonging to the same genus have various applications. Wastewater and soil rich in both organic matter and salt are difficult to treat using conventional microorganisms typically found in wastewater treatment and soil bioremediation facilities. Studies on decontaminative capabilities and decontamination pathways of organic contaminants (i.e., aromatic compounds benzoate, cinnamate, 3-phenylpropionate, 4-hydroxybenzoic acid), heavy metals (i.e., tellurium, vanadium), and nutrients in the biological treatment of saline wastewater and soil by halophilic microorganisms are discussed in this review. - Review on the decontaminative capabilities of halophilic microorganisms in saline wastewater and soil.

  9. Progress in decontamination by halophilic microorganisms in saline wastewater and soil

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang Xuliang, E-mail: xlzhuang@rcees.ac.c [Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085 (China); Bureau of Science and Technology for Resources and Environment, Chinese Academy of Sciences, Beijing 100864 (China); Han Zhen [Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085 (China); Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); Bai Zhihui; Zhuang Guoqiang [Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085 (China); Shim Hojae [Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau (China)

    2010-05-15

    Environments with high-salt concentrations are often populated by dense microbial communities. Halophilic microorganisms can be isolated from different saline environments and different strains even belonging to the same genus have various applications. Wastewater and soil rich in both organic matter and salt are difficult to treat using conventional microorganisms typically found in wastewater treatment and soil bioremediation facilities. Studies on decontaminative capabilities and decontamination pathways of organic contaminants (i.e., aromatic compounds benzoate, cinnamate, 3-phenylpropionate, 4-hydroxybenzoic acid), heavy metals (i.e., tellurium, vanadium), and nutrients in the biological treatment of saline wastewater and soil by halophilic microorganisms are discussed in this review. - Review on the decontaminative capabilities of halophilic microorganisms in saline wastewater and soil.

  10. Accelerating sample preparation through enzyme-assisted microfiltration of Salmonella in chicken extract

    Science.gov (United States)

    Microfiltration of chicken extracts has the potential to significantly decrease the time required to detect Salmonella, as long as the extract can be efficiently filtered and the pathogenic microorganisms kept in a viable state during this process. We present conditions that enable microfiltration ...

  11. Calculation of the radiative properties of photosynthetic microorganisms

    International Nuclear Information System (INIS)

    Dauchet, Jérémi; Blanco, Stéphane; Cornet, Jean-François; Fournier, Richard

    2015-01-01

    A generic methodological chain for the predictive calculation of the light-scattering and absorption properties of photosynthetic microorganisms within the visible spectrum is presented here. This methodology has been developed in order to provide the radiative properties needed for the analysis of radiative transfer within photobioreactor processes, with a view to enable their optimization for large-scale sustainable production of chemicals for energy and chemistry. It gathers an electromagnetic model of light-particle interaction along with detailed and validated protocols for the determination of input parameters: morphological and structural characteristics of the studied microorganisms as well as their photosynthetic-pigment content. The microorganisms are described as homogeneous equivalent-particles whose shape and size distribution is characterized by image analysis. The imaginary part of their refractive index is obtained thanks to a new and quite extended database of the in vivo absorption spectra of photosynthetic pigments (that is made available to the reader). The real part of the refractive index is then calculated by using the singly subtractive Kramers–Krönig approximation, for which the anchor point is determined with the Bruggeman mixing rule, based on the volume fraction of the microorganism internal-structures and their refractive indices (extracted from a database). Afterwards, the radiative properties are estimated using the Schiff approximation for spheroidal or cylindrical particles, as a first step toward the description of the complexity and diversity of the shapes encountered within the microbial world. Finally, these predictive results are confronted to experimental normal-hemispherical transmittance spectra for validation. This entire procedure is implemented for Rhodospirillum rubrum, Arthrospira platensis and Chlamydomonas reinhardtii, each representative of the main three kinds of photosynthetic microorganisms, i.e. respectively

  12. Calculation of the radiative properties of photosynthetic microorganisms

    Science.gov (United States)

    Dauchet, Jérémi; Blanco, Stéphane; Cornet, Jean-François; Fournier, Richard

    2015-08-01

    A generic methodological chain for the predictive calculation of the light-scattering and absorption properties of photosynthetic microorganisms within the visible spectrum is presented here. This methodology has been developed in order to provide the radiative properties needed for the analysis of radiative transfer within photobioreactor processes, with a view to enable their optimization for large-scale sustainable production of chemicals for energy and chemistry. It gathers an electromagnetic model of light-particle interaction along with detailed and validated protocols for the determination of input parameters: morphological and structural characteristics of the studied microorganisms as well as their photosynthetic-pigment content. The microorganisms are described as homogeneous equivalent-particles whose shape and size distribution is characterized by image analysis. The imaginary part of their refractive index is obtained thanks to a new and quite extended database of the in vivo absorption spectra of photosynthetic pigments (that is made available to the reader). The real part of the refractive index is then calculated by using the singly subtractive Kramers-Krönig approximation, for which the anchor point is determined with the Bruggeman mixing rule, based on the volume fraction of the microorganism internal-structures and their refractive indices (extracted from a database). Afterwards, the radiative properties are estimated using the Schiff approximation for spheroidal or cylindrical particles, as a first step toward the description of the complexity and diversity of the shapes encountered within the microbial world. Finally, these predictive results are confronted to experimental normal-hemispherical transmittance spectra for validation. This entire procedure is implemented for Rhodospirillum rubrum, Arthrospira platensis and Chlamydomonas reinhardtii, each representative of the main three kinds of photosynthetic microorganisms, i.e. respectively

  13. Microorganisms having enhanced tolerance to inhibitors and stress

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Steven D.; Yang, Shihui

    2014-07-29

    The present invention provides genetically modified strains of microorganisms that display enhanced tolerance to stress and/or inhibitors such as sodium acetate and vanillin. The enhanced tolerance can be achieved by increasing the expression of a protein of the Sm-like superfamily such as a bacterial Hfq protein and a fungal Sm or Lsm protein. Further, the present invention provides methods of producing alcohol from biomass materials by using the genetically modified microorganisms of the present invention.

  14. Genomics-Based Identifcation of Microorganisms in Human Ocular Body Fluid

    DEFF Research Database (Denmark)

    Kirstahler, Philipp; Solborg Bjerrum, Søren; Friis-Møller, Alice

    2018-01-01

    genomes and (iii) the environment. Our metagenomic read classification revealed in nearly all cases the same microorganism that was determined in cultivation- and mass spectrometry-based analyses. For some patients, we identified the sequence type of the microorganism and antibiotic resistance genes...

  15. Organotins and microorganisms. Yuki suzu kagobutsu to biseibutsu

    Energy Technology Data Exchange (ETDEWEB)

    Shinoda, S.; Onogi, H. (Okayama Univ., Okayama (Japan). Faculty of Pharmaceutical Sciences)

    1992-08-10

    Tributyltin (TBT) and triphenyltin have higher toxicity than other organotin compounds and are used as biocides, but in recent years the pollution of water and aquatic organisms has become a social problem. This paper describes the interaction between organotin compounds and microorganisms, centering on the decomposition of TBT. Part of microalgae whose activity is promoted by light or nutritive salts within an aquatic environment play an important role in TBT decomposition. Diatoms, and dinoflagellataes are mentioned as the examples. Moreover, an example in which microorganisms promote the transformation of inorganotin compounds to dimethyltin or trimethyltin is given. However, it is pointed out in this paper that the action of microorganisms relates greatly to the continuance of existence of organotins in environments, but the degradation efficiency is considered to be very low and prevention against pollution is of primary importance. 32 refs., 2 figs., 3 tabs.

  16. Influence of TiO2 Nanoparticles on Growth and Phenolic Compounds Production in Photosynthetic Microorganisms

    Directory of Open Access Journals (Sweden)

    Mattia Comotto

    2014-01-01

    Full Text Available The influence of titanium dioxide nanoparticles (pure anatase and 15% N doped anatase on the growth of Chlorella vulgaris, Haematococcus pluvialis, and Arthrospira platensis was investigated. Results showed that pure anatase can lead to a significant growth inhibition of C. vulgaris and A. platensis (17.0 and 74.1%, resp., while for H. pluvialis the nanoparticles do not cause a significant inhibition. Since in these stress conditions photosynthetic microorganisms can produce antioxidant compounds in order to prevent cell damages, we evaluated the polyphenols content either inside the cells or released in the medium. Although results did not show a significant difference in C. vulgaris, the phenolic concentrations of two other microorganisms were statistically affected by the presence of titanium dioxide. In particular, 15% N doped anatase resulted in a higher production of extracellular antioxidant compounds, reaching the concentration of 65.2 and 68.0 mg gDB-1 for H. pluvialis and A. platensis, respectively.

  17. The Characterization of Psychrophilic Microorganisms and their potentially useful Cold-Active Glycosidases Final Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Brenchly, Jean E.

    2008-06-30

    Our studies of novel, cold-loving microorganisms have focused on two distinct extreme environments. The first is an ice core sample from a 120,000 year old Greenland glacier. The results of this study are particularly exciting and have been highlighted with press releases and additional coverage. The first press release in 2004 was based on our presentation at the General Meeting of the American Society for Microbiology and was augmented by coverage of our publication (Appl. Environ. Microbiol. 2005. Vol. 71:7806) in the Current Topics section of the ASM news journal, “Microbe.” Of special interest for this report was the isolation of numerous, phylogenetically distinct and potentially novel ultrasmall microorganisms. The detection and isolation of members of the ultrasmall population is significant because these cells pass through 0.2 micron pore filters that are generally used to trap microorganisms from environmental samples. Thus, analyses by other investigators that examined only cells captured on the filters would have missed a significant portion of this population. Only a few ultrasmall isolates had been obtained prior to our examination of the ice core samples. Our development of a filtration enrichment and subsequent cultivation of these organisms has added extensively to the collection of, and knowledge about, this important population in the microbial world.

  18. Effects of nickel(II) addition on the activity of activated sludge microorganisms and activated sludge process

    International Nuclear Information System (INIS)

    Ong, Soon-An; Toorisaka, Eiichi; Hirata, Makoto; Hano, Tadashi

    2004-01-01

    The effects of Ni(II) in a synthetic wastewater on the activity of activated sludge microorganisms and sequencing batch reactor (SBR) treatment process were investigated. Two parallel lab-scale SBR systems were operated. One was used as a control unit, while the other received Ni(II) concentrations equal to 5 and 10 mg/l. The SBR systems were operated with FILL, REACT, SETTLE, DRAW and IDLE modes in the time ratio of 0.5:3.5:1.0:0.75:0.25 for a cycle time of 6 h. The addition of Ni(II) into SBR system caused drastically dropped in TOC removal rate (k) and specific oxygen uptake rate (SOUR) by activated sludge microorganisms due to the inhibitory effects of Ni(II) on the bioactivity of microorganisms. The addition of 5 mg/l Ni(II) caused a slight reduction in TOC removal efficiency, whereas 10 mg/l Ni(II) addition significantly affected the SBR performance in terms of suspended solids and TOC removal efficiency. Termination of Ni(II) addition led to almost full recovery of the bioactivity in microorganisms as shown in the increase of specific oxygen uptake rate (SOUR) and SBR treatment performance

  19. Identification of beer spoilage microorganisms using the MALDI Biotyper platform.

    Science.gov (United States)

    Turvey, Michelle Elizabeth; Weiland, Florian; Meneses, Jon; Sterenberg, Nick; Hoffmann, Peter

    2016-03-01

    Beer spoilage microorganisms present a major risk for the brewing industry and can lead to cost-intensive recall of contaminated products and damage to brand reputation. The applicability of molecular profiling using matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS) in combination with Biotyper software was investigated for the identification of beer spoilage microorganisms from routine brewery quality control samples. Reference mass spectrum profiles for three of the most common bacterial beer spoilage microorganisms (Lactobacillus lindneri, Lactobacillus brevis and Pediococcus damnosus), four commercially available brewing yeast strains (top- and bottom-fermenting) and Dekkera/Brettanomyces bruxellensis wild yeast were established, incorporated into the Biotyper reference library and validated by successful identification after inoculation into beer. Each bacterial species could be accurately identified and distinguished from one another and from over 5600 other microorganisms present in the Biotyper database. In addition, wild yeast contaminations were rapidly detected and distinguished from top- and bottom-fermenting brewing strains. The applicability and integration of mass spectrometry profiling using the Biotyper platform into existing brewery quality assurance practices within industry were assessed by analysing routine microbiology control samples from a local brewery, where contaminating microorganisms could be reliably identified. Brewery-isolated microorganisms not present in the Biotyper database were further analysed for identification using LC-MS/MS methods. This renders the Biotyper platform a promising candidate for biological quality control testing within the brewing industry as a more rapid, high-throughput and cost-effective technology that can be tailored for the detection of brewery-specific spoilage organisms from the local environment.

  20. Sycamore produces viable seed after six years

    Science.gov (United States)

    A. F. Ike

    1966-01-01

    In the early stages of any tree improvement program it is desirable to know how soon progenies of selected parents can themselves be included in a breeding program. How soon will they produce viable pollen and seed? In the case of sycamore (Platanus occidentalis L.), the information is meager: the Woody- Plant Seed Manual lists the minimum commercial seedbearing age...

  1. Gut Microorganisms Found Necessary for Successful Cancer Therapy | Poster

    Science.gov (United States)

    By Nancy Parrish, Staff Writer Humans play host to trillions of microorganisms that help our bodies perform basic functions, like digestion, growth, and fighting disease. In fact, bacterial cells outnumber the human cells in our bodies by 10 to 1.1 The tens of trillions of microorganisms thriving in our intestines are known as gut microbiota, and those that are not harmful to

  2. Is arsenic biotransformation a detoxification mechanism for microorganisms?

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, M. Azizur, E-mail: Mohammad.Rahman@uts.edu.au [Centre for Environmental Sustainability, School of the Environment, Faculty of Science, University of Technology, P.O. Box 123, Broadway, Sydney, NSW 2007 (Australia); Hassler, Christel [Marine and Lake Biogeochemistry, Institute F. A. Forel, University of Geneva, 10 rte de Suisse, Versoix, 1290 Switzerland (Switzerland)

    2014-01-15

    Arsenic (As) is extremely toxic to living organisms at high concentration. In aquatic systems, As exists in different chemical forms. The two major inorganic As (iAs) species are As{sup V}, which is thermodynamically stable in oxic waters, and As{sup III}, which is predominant in anoxic conditions. Photosynthetic microorganisms (e.g., phytoplankton and cyanobacteria) take up As{sup V}, biotransform it to As{sup III}, then biomethylate it to methylarsenic (MetAs) forms. Although As{sup III} is more toxic than As{sup V}, As{sup III} is much more easily excreted from the cells than As{sup V}. Therefore, majority of researchers consider the reduction of As{sup V} to As{sup III} as a detoxification process. The biomethylation process results in the conversion of toxic iAs to the less toxic pentavalent MetAs forms (monomethylarsonate; MMA{sup V}, dimethylarsonate; DMA{sup V}, and trimethylarsenic oxide; TMAO{sup V}) and trimethylarsine (TMAO{sup III}). However, biomethylation by microorganisms also produces monomethylarsenite (MMA{sup III}) and dimethylarsenite (DMA{sup III}), which are more toxic than iAs, as a result of biomethylation by the microorganisms, demonstrates the need to reconsider to what extent As biomethylation contributes to a detoxification process. In this review, we focused on the discussion of whether the biotransformation of As species in microorganisms is really a detoxification process with recent data.

  3. Use of Maldi-Tof Mass spectrometry in direct microorganism identification in clinical laboratories

    Directory of Open Access Journals (Sweden)

    Tamara Brunelli

    2010-09-01

    Full Text Available Mass Spectrometry is an old technique that has recently been introduced in the clinical microbiology laboratory as Matrix Assisted Laser Desorption Ionization Time of Flight Mass Spectrometry (MALDI-TOF MS. MALDI is a soft ionization technique used in mass spectrometry that allows the analysis of biomolecules and large organic molecules which tend to be fragile and fragment when ionized.To obtain ions biological specimens are mixed with a matrix which specifically absorbs the ionization source (a laser beam. The high energy impact is followed by the formation of ions which are extract through an elastic field, focussed and detected as mass/charge (m/z spectrum.The differences between ions are seen with TOF, a revelation system that relates the time of flight of a ion to the charge/mass value: ion with a higher m/z have are slower (a bigger time of flight than ions with lower m/z. MALDI-TOF MS, in clinical microbiology laboratory, is used to identify bacteria and fungi directly from samples. The identification of microorganisms can be performed directly from body fluids (e.g. urine, blood culture, after centrifugation and recovery of microorganisms or from colonies (after cultivation. The rapidity of identification is of great importance in blood cultures. Positive cultures with one microorganism are processed in a different way than those with more than one microorganism. In positive monomicrobial cultures, after separation of microbs from blood cells,we can perform an immediate identification with MALDI-TOF MS that we can communicate to the clinician, and that gives indication to perform the correct antibiogram. Major problems are present when more than one microorganism are in the culture: in this case we have to use the method of subcultivation and then the identification with mass-spectrometry can be performed. MALDI-TOF MS is a rapid, reliable and low cost technique, that can identify a growing number of microorganisms. This technique can

  4. Issues of organizational cybernetics and viability beyond Beer's viable systems model

    Science.gov (United States)

    Nechansky, Helmut

    2013-11-01

    The paper starts summarizing the claims of Beer's viable systems model to identify five issues any viable organizations has to deal with in an unequivocal hierarchical structure of five interrelated systems. Then the evidence is introduced for additional issues and related viable structures of organizations, which deviate from Beer's model. These issues are: (1) the establishment and (2) evolution of an organization; (3) systems for independent top-down control (like "Six Sigma"); (4) systems for independent bottom-up correction of performance problems (like "Kaizen"), both working outside a hierarchical structure; (5) pull production systems ("Just in Time") and (6) systems for checks and balances of top-level power (like boards and shareholder meetings). Based on that an evolutionary approach to organizational cybernetics is outlined, addressing the establishment of organizations and possible courses of developments, including recent developments in quality and production engineering, as well as problems of setting and changing goal values determining organizational policies.

  5. Formas cocoides de Helicobacter pylori: viables o degenerativas

    Directory of Open Access Journals (Sweden)

    Felipe Cava

    2003-06-01

    Full Text Available De los trabajos presentados acerca de las formas cocoides de Helicobacter pylori se deduce una controversia mucho mayor que la resultante del mero estudio clínico de este microorganismo. Parece claro que existe una conversión tanto in vivo como in vitro de las formas espirales a las formas cocoides inducida por varios motivos, como cultivos prolongados, estrés físico y químico, y agentes antimicrobianos. En esta revisión repasamos los puntos de vista que han dividido a investigadores de esta área en dos grupos bien definidos: Los que consideran a estas formas cocoides como un producto no viable de degeneración celular y los que piensan que estas formas son estructuras viables,durmientes o de resistencia frente a condiciones ambientales adversas. Esta discrepancia conlleva a que interrogantes sobre la relación entre la transmisión de la enfermedad y estas formas cocoides permanezcan sin respuesta todavía.

  6. Antimicrobial efficacy of oral topical agents on microorganisms associated with radiated head and neck cancer patients: an in vitro study.

    Science.gov (United States)

    Bidra, Avinash S; Tarrand, Jeffery J; Roberts, Dianna B; Rolston, Kenneth V; Chambers, Mark S

    2011-04-01

    A variety of oral topical agents have been used for prevention and management of radiotherapy-induced adverse effects. The antimicrobial nature of some of the commonly used agents is unknown. The purpose of this study was to evaluate antimicrobial efficacies of various oral topical agents on common microorganisms associated with radiated head and neck cancer patients. Seven commonly used topical oral agents-0.12% chlorhexidine with alcohol, 0.12% chlorhexidine without alcohol, baking soda-salt rinse, 0.4% stannous fluoride gel, 0.63% stannous fluoride rinse, calcium phosphate mouthrinse, and acemannan hydrogel (aloe vera) rinse-were evaluated in vitro for their antimicrobial efficacies against four common microorganisms. A combination of baking soda-salt rinse and 0.4% stannous fluoride gel was evaluated as the eighth agent. The microorganisms used were Staphylococcus aureus, group B Streptococcus, Escherichia coli, and Candida albicans. An ELISA reader was used to measure the turbidity of microbial culture wells and optical density (OD) values for each of the 960 wells recorded. Mean OD values were rank ordered based on their turbidity. One-way ANOVA with Tukey HSD post hoc analysis was used to study differences in OD values (P baking soda- salt, calcium phosphate rinse, and the combination of baking soda-salt and stannous fluoride gel. Mean OD values classified for microorganisms from lowest to highest were Escherichia coli, Staphylococcus aureus, group B Streptococcus, and Candida albicans. A significant difference among the antimicrobial efficacies of topical agents was evident for each of four microorganisms (P < .05). There was also a significant difference among the antimicrobial efficacies of the same topical agent on the four microorganisms tested (P < .05).

  7. Marine microorganisms as potential biofactories for synthesis of metallic nanoparticles.

    Science.gov (United States)

    Manivasagan, Panchanathan; Nam, Seung Yun; Oh, Junghwan

    2016-11-01

    The use of marine microorganisms as potential biofactories for green synthesis of metallic nanoparticles is a relatively new field of research with considerable prospects. This method is eco-friendly, time saving, and inexpensive and can be easily scaled up for large-scale synthesis. The increasing need to develop simple, nontoxic, clean, and environmentally safe production methods for nanoparticles and to decrease environmental impact, minimize waste, and increase energy productivity has become important in this field. Marine microorganisms are tiny organisms that live in marine ecosystems and account for >98% of biomass of the world's ocean. Marine microorganisms synthesize metallic nanoparticles either intracellularly or extracellularly. Marine microbially-produced metallic nanoparticles have received considerable attention in recent years because of their expected impact on various applications such as medicine, energy, electronic, and space industries. The present review discusses marine microorganisms as potential biofactories for the green synthesis of metallic nanoparticles and their potential applications.

  8. Antibiotic cytotoxic effects of microorganisms isolated from Jachymov uranium mines

    International Nuclear Information System (INIS)

    Fuska, J.; Fuskova, A.

    1982-01-01

    Microorganisms were isolated from old relinquished uranium mines in Jachymov; they had been growing for several decades in darkness in temperatures of 5 to 12 degC and relative humidity from 80 to 100%. The concentration of uranium salts in mine waters varied from 10 -4 to 10 -5 g.l -1 , that of Rn in the atmosphere was from 0.04 to 40 Bq.l -1 . Of 324 cultures, 18.8% inhibited the growth of Bacillus subtilis, Escherichia coli and Candida pseudotropicalis and 16.6% that of HeLa cells. The frequency of microorganisms inhibiting the growth of HeLa or Ehrlich ascites cells was markedly higher in this set of cultures than among microorganisms kept in culture collections or isolated from other natural habitats. About 10% of the isolated cultures were mycelia sterilia. The following antibiotics were isolated from microorganisms obtained from uranium mines: frequentin, vermiculin, vermicillin, vermistatin, cytostipin and duclauxin. (author)

  9. Antibiotic cytotoxic effects of microorganisms isolated from Jachymov uranium mines

    Energy Technology Data Exchange (ETDEWEB)

    Fuska, J.; Fuskova, A. (Slovenska Vysoka Skola Technicka, Bratislava (Czechoslovakia). Chemickotechnologicka Fakulta); Jilek, R. (Vyzkumny Ustav Veterinarniho Lekarstvi, Brno-Medlanky (Czechoslovakia))

    1982-01-01

    Microorganisms were isolated from old relinquished uranium mines in Jachymov; they had been growing for several decades in darkness in temperatures of 5 to 12 degC and relative humidity from 80 to 100%. The concentration of uranium salts in mine waters varied from 10/sup -4/ to 10/sup -5/ g.l/sup -1/, that of Rn in the atmosphere was from 0.04 to 40 Bq.l/sup -1/. Of 324 cultures, 18.8% inhibited the growth of Bacillus subtilis, Escherichia coli and Candida pseudotropicalis and 16.6% that of HeLa cells. The frequency of microorganisms inhibiting the growth of HeLa or Ehrlich ascites cells was markedly higher in this set of cultures than among microorganisms kept in culture collections or isolated from other natural habitats. About 10% of the isolated cultures were mycelia sterilia. The following antibiotics were isolated from microorganisms obtained from uranium mines: frequentin, vermiculin, vermicillin, vermistatin, cytostipin and duclauxin.

  10. Use of Probiotic Microorganisms for Bio-Protective Aims

    Directory of Open Access Journals (Sweden)

    Filiz YANGILAR

    2015-03-01

    Full Text Available It was known that some diseases can be treated as the result of the use of antibiotics in certain periods and at certain dosages while inactivating and deteriorating normal microorganisms performing useful activities in human metabolism (in especially intestinal flora. It was occured that after the use of antibiotics, some defects can be seen resulting from antibiotics (such as allergy, diarrhea, gas formation etc. With this aim, nutraceutics and functional food have gained importance over the last years and consumers began to be interested in probiotics, natural antioxidants, dietary fibres, products with low calorie and cholesterol contents, especially the products containing probioticbacteria. Bacteriocins produced by probiotic bacteria can play important roles as food protective and safeguarding since they can compete with unwanted or pathogen microorganisms survive in the media and colonize in intestines. In this review, is aimed to emphasis bioprotective compounds, advantages and disadvantages of biopreservation method and the importance of the mechanisms of probiotic microorganisms.

  11. Determination of bacteriocin activity with bioassays carried out on solid and liquid substrates: assessing the factor "indicator microorganism"

    Directory of Open Access Journals (Sweden)

    Ambrosiadis Ioannis

    2006-10-01

    Full Text Available Abstract Background Successful application of growth inhibition techniques for quantitative determination of bacteriocins relies on the sensitivity of the applied indicator microorganism to the bacteriocin to which is exposed. However, information on indicator microorganisms' performance and comparisons in bacteriocin determination with bioassays is almost non-existing in the literature. The aim of the present work was to evaluate the parameter "indicator microorganism" in bioassays carried out on solid -agar diffusion assay- and liquid -turbidometric assay- substrates, applied in the quantification of the most studied bacteriocin nisin. Results The performance of characterized microorganisms of known sources, belonging to the genera of Lactobacillus, Pediococcus, Micrococcus and Leuconostoc, has been assessed in this work in the assays of plate agar diffusion and turbidometry. Dose responses and sensitivities were examined and compared over a range of assay variables in standard bacteriocin solutions, fermentation broth filtrates and processed food samples. Measurements on inhibition zones produced on agar plates were made by means of digital image analysis. The data produced were analyzed statistically using the ANOVA technique and pairwise comparisons tests. Sensitivity limits and linearity of responses to bacteriocin varied significantly among different test-microorganisms in both applied methods, the lower sensitivity limits depending on both the test-microorganism and the applied method. In both methods, however, only two of the nine tested microorganisms (Lactobacillus curvatus ATCC 51436 and Pediococcus acidilactici ATCC 25740 were sensitive to very low concentrations of the bacteriocin and produced a linear-type of response in all kinds of samples used in this work. In all cases, very low bacteriocin concentrations, e.g. 1 IU/ml nisin, were more accurately determined in the turbidometric assay. Conclusion The present work shows that in

  12. Effect of the antimicrobial photodynamic therapy on microorganism reduction in deep caries lesions: a systematic review and meta-analysis

    Science.gov (United States)

    Ornellas, Pâmela Oliveira; Antunes, Leonardo Santos; Fontes, Karla Bianca Fernandes da Costa; Póvoa, Helvécio Cardoso Corrêa; Küchler, Erika Calvano; Iorio, Natalia Lopes Pontes; Antunes, Lívia Azeredo Alves

    2016-09-01

    This study aimed to perform a systematic review to assess the effectiveness of antimicrobial photodynamic therapy (aPDT) in the reduction of microorganisms in deep carious lesions. An electronic search was conducted in Pubmed, Web of Science, Scopus, Lilacs, and Cochrane Library, followed by a manual search. The MeSH terms, MeSH synonyms, related terms, and free terms were used in the search. As eligibility criteria, only clinical studies were included. Initially, 227 articles were identified in the electronic search, and 152 studies remained after analysis and exclusion of the duplicated studies; 6 remained after application of the eligibility criteria; and 3 additional studies were found in the manual search. After access to the full articles, three were excluded, leaving six for evaluation by the criteria of the Cochrane Collaboration's tool for assessing risk of bias. Of these, five had some risk of punctuated bias. All results from the selected studies showed a significant reduction of microorganisms in deep carious lesions for both primary and permanent teeth. The meta-analysis demonstrated a significant reduction in microorganism counts in all analyses (p<0.00001). Based on these findings, there is scientific evidence emphasizing the effectiveness of aPDT in reducing microorganisms in deep carious lesions.

  13. Modelling the Ozone-Based Treatments for Inactivation of Microorganisms

    Directory of Open Access Journals (Sweden)

    Agnieszka Joanna Brodowska

    2017-10-01

    Full Text Available The paper presents the development of a model for ozone treatment in a dynamic bed of different microorganisms (Bacillus subtilis, B. cereus, B. pumilus, Escherichia coli, Pseudomonas fluorescens, Aspergillus niger, Eupenicillium cinnamopurpureum on a heterogeneous matrix (juniper berries, cardamom seeds initially treated with numerous ozone doses during various contact times was studied. Taking into account various microorganism susceptibility to ozone, it was of great importance to develop a sufficiently effective ozone dose to preserve food products using different strains based on the microbial model. For this purpose, we have chosen the Weibull model to describe the survival curves of different microorganisms. Based on the results of microorganism survival modelling after ozone treatment and considering the least susceptible strains to ozone, we selected the critical ones. Among tested strains, those from genus Bacillus were recognized as the most critical strains. In particular, B. subtilis and B. pumilus possessed the highest resistance to ozone treatment because the time needed to achieve the lowest level of its survival was the longest (up to 17.04 min and 16.89 min for B. pumilus reduction on juniper berry and cardamom seed matrix, respectively. Ozone treatment allow inactivate microorganisms to achieving lower survival rates by ozone dose (20.0 g O3/m3 O2, with a flow rate of 0.4 L/min and contact time (up to 20 min. The results demonstrated that a linear correlation between parameters p and k in Weibull distribution, providing an opportunity to calculate a fitted equation of the process.

  14. Modelling the Ozone-Based Treatments for Inactivation of Microorganisms

    Science.gov (United States)

    Brodowska, Agnieszka Joanna; Nowak, Agnieszka; Kondratiuk-Janyska, Alina; Piątkowski, Marcin; Śmigielski, Krzysztof

    2017-01-01

    The paper presents the development of a model for ozone treatment in a dynamic bed of different microorganisms (Bacillus subtilis, B. cereus, B. pumilus, Escherichia coli, Pseudomonas fluorescens, Aspergillus niger, Eupenicillium cinnamopurpureum) on a heterogeneous matrix (juniper berries, cardamom seeds) initially treated with numerous ozone doses during various contact times was studied. Taking into account various microorganism susceptibility to ozone, it was of great importance to develop a sufficiently effective ozone dose to preserve food products using different strains based on the microbial model. For this purpose, we have chosen the Weibull model to describe the survival curves of different microorganisms. Based on the results of microorganism survival modelling after ozone treatment and considering the least susceptible strains to ozone, we selected the critical ones. Among tested strains, those from genus Bacillus were recognized as the most critical strains. In particular, B. subtilis and B. pumilus possessed the highest resistance to ozone treatment because the time needed to achieve the lowest level of its survival was the longest (up to 17.04 min and 16.89 min for B. pumilus reduction on juniper berry and cardamom seed matrix, respectively). Ozone treatment allow inactivate microorganisms to achieving lower survival rates by ozone dose (20.0 g O3/m3 O2, with a flow rate of 0.4 L/min) and contact time (up to 20 min). The results demonstrated that a linear correlation between parameters p and k in Weibull distribution, providing an opportunity to calculate a fitted equation of the process. PMID:28991199

  15. Microorganisms' mediated reduction of β-ketoesters

    African Journals Online (AJOL)

    STORAGESEVER

    2008-10-20

    Oct 20, 2008 ... Whole cells usually express a multitude of enzymatic activities; therefore an ... Each microorganism was cultivated for the biomass development on specific medium ..... Ketoester reductase for conversion of keto acid esters to ...

  16. Threshold Dynamics of a Stochastic Chemostat Model with Two Nutrients and One Microorganism

    Directory of Open Access Journals (Sweden)

    Jian Zhang

    2017-01-01

    Full Text Available A new stochastic chemostat model with two substitutable nutrients and one microorganism is proposed and investigated. Firstly, for the corresponding deterministic model, the threshold for extinction and permanence of the microorganism is obtained by analyzing the stability of the equilibria. Then, for the stochastic model, the threshold of the stochastic chemostat for extinction and permanence of the microorganism is explored. Difference of the threshold of the deterministic model and the stochastic model shows that a large stochastic disturbance can affect the persistence of the microorganism and is harmful to the cultivation of the microorganism. To illustrate this phenomenon, we give some computer simulations with different intensity of stochastic noise disturbance.

  17. Fake Journals: Their Features and Some Viable Ways to Distinguishing Them.

    Science.gov (United States)

    Hemmat Esfe, Mohammad; Wongwises, Somchai; Asadi, Amin; Akbari, Mohammad

    2015-08-01

    In this paper, we aim to discuss the fake journals and their advertisement and publication techniques. These types of journals mostly start and continue their activities by using the name of some indexed journals and establishing fake websites. The fake journals and publishers, while asking the authors for a significant amount of money for publishing their papers, have no peer-review process, publish the papers without any revision on the fake sites, and put the scientific reputation and prestige of the researchers in jeopardy. In the rest of the paper, we present some viable techniques in order for researchers and students to identify these journals.

  18. Zn(II)-cyclam based chromogenic sensors for recognition of ATP in aqueous solution under physiological conditions and their application as viable staining agents for microorganism.

    Science.gov (United States)

    Mahato, Prasenjit; Ghosh, Amrita; Mishra, Sanjiv K; Shrivastav, Anupama; Mishra, Sandhya; Das, Amitava

    2011-05-02

    Two chromogenic complexes, L.Zn (where L is (E)-4-((4-(1,4,8,11-tetraazacyclotetradecan-1-ylsulfonyl)phenyl)diazenyl)-N,N-dimethylaniline) and its [2]pseudorotaxane form (α-CD.L.Zn), were found to bind preferentially to adenosine triphosphate (ATP), among all other common anions and biologically important phosphate (AMP, ADP, pyrophosphate, and phosphate) ions in aqueous HEPES buffer medium of pH 7.2. Studies with live cell cultures of prokaryotic microbes revealed that binding of these two reagents to intercellular ATP, produced in situ, could be used in delineating the gram-positive and the gram-negative bacteria. More importantly, these dyes were found to be nontoxic to living microbes (eukaryotes and prokaryotes) and could be used for studying the cell growth dynamics. Binding to these two viable staining agents to intercellular ATP was also confirmed by spectroscopic studies on cell growth in the presence of different respiratory inhibitors that influence the intercellular ATP generation. © 2011 American Chemical Society

  19. Soil Microorganisms Alleviate the Allelochemical Effects of a Thyme Monoterpene on the Performance of an Associated Grass Species

    Science.gov (United States)

    Ehlers, Bodil K.

    2011-01-01

    Background Plant allelochemicals released into the soil can significantly impact the performance of associated plant species thereby affecting their competitive ability. Soil microbes can potentially affect the interaction between plant and plant chemicals by degrading the allelochemicals. However, most often plant-plant chemical interactions are studied using filter paper bioassays examining the pair-wise interaction between a plant and a plant chemical, not taking into account the potential role of soil microorganisms. Methodology/Principal findings To explore if the allelopathic effects on a grass by the common thyme monoterpene “carvacrol” are affected by soil microorganisms. Seedlings of the grass Agrostis capillaris originating from 3 different thyme sites were raised in the greenhouse. Seedlings were grown under four different soil treatments in a 2*2 fully factorial experiment. The monoterpene carvacrol was either added to standard greenhouse soil or left out, and soil was either sterilized (no soil microorganisms) or not (soil microorganisms present in soil). The presence of carvacrol in the soil strongly increased mortality of Agrostis plants, and this increase was highest on sterile soil. Plant biomass was reduced on soil amended with carvacrol, but only when the soil was also sterilized. Plants originating from sites where thyme produces essential oils containing mostly carvacrol had higher survival on soil treated with that monoterpene than plants originating from a site where thyme produced different types of terpenes, suggesting an adaptive response to the locally occurring terpene. Conclusions/Significance The study shows that presence of soil microorganisms can alleviate the negative effect of a common thyme monoterpene on the performance of an associated plant species, emphasizing the role of soil microbes in modulating plant-plant chemical interactions. PMID:22125596

  20. Selection of Suitable Microorganism for Biocatalytic Oxidation Reaction of Racemic Propranolol

    Directory of Open Access Journals (Sweden)

    Rahime SONGÜR

    2017-12-01

    Full Text Available Propranolol is one of the β-blockers which are pharmaceutically important, especially used for treatment of cardiovasculer disease. In this study, the production of enantiomerically pure propranolol was aimed via biocatalytic deracemization including tandem oxidation-reduction reactions of racemic propranolol. Within this content, firstly suitable microorganism for the oxidation of racemic propranolol was investigated. Alcohol dehydrogenase (ADH enzyme for oxidation of propranolol and NADH oxidase enzyme for cofactor regeneration were necessary for the oxidation reactions. For this reason, ADH and NADH oxidase enzymes activities of different microorganisms were measured to select the microorganism for using as enzyme source. These microorganisms are Lactobacillus kefir NRRL B-1839, Rhodotorula glutunis DSM 70398, Rhizopus oryzae CBS 111718, Rhizopus arhizus. The highest ADH and NADH oxidase activities were obtained for L. kefir.

  1. The effect of adhesion on survival and growth of microorganisms

    International Nuclear Information System (INIS)

    Bar-Or, Y.

    1990-01-01

    Adhesion of microorganisms to solid surfaces or water/air interfaces can significantly influence cellular metabolic activity, development and viability. Attachment is of advantage particularly for organisms growing under oligotrophic or otherwise extreme conditions. However, the ability to detach and migrate is of vital importance when prevailing conditions become too harsh or in situations of population explosion. Adhesion can cause alterations in the physical and chemical properties of substratum surfaces as well, by means of degradation, aggregation, emulsification etc. (author) 48 refs

  2. Cytotoxicity of Brazilian plant extracts against oral microorganisms of interest to dentistry.

    Science.gov (United States)

    de Oliveira, Jonatas Rafael; de Castro, Vinicius Carlos; das Graças Figueiredo Vilela, Polyana; Camargo, Samira Esteves Afonso; Carvalho, Cláudio Antonio Talge; Jorge, Antonio Olavo Cardoso; de Oliveira, Luciane Dias

    2013-08-15

    With the emergence of strains resistant to conventional antibiotics, it is important to carry studies using alternative methods to control these microorganisms causing important infections, such as the use of products of plant origin that has demonstrated effective antimicrobial activity besides biocompatibility. Therefore, this study aimed to evaluate the antimicrobial activity of plant extracts of Equisetum arvense L., Glycyrrhiza glabra L., Punica granatum L. and Stryphnodendron barbatimam Mart. against Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus mutans, Candida albicans, Candida tropicalis, and Candida glabrata, and to analyze the cytotoxicity of these extracts in cultured murine macrophages (RAW 264.7). Antimicrobial activity of plant extracts was evaluated by microdilution method based on Clinical and Laboratory Standards Institute (CLSI), M7-A6 and M27-A2 standards. The cytotoxicity of concentrations that eliminated the microorganisms was evaluated by MTT colorimetric method and by quantification of proinflammatory cytokines (IL-1β and TNF-α) using ELISA. In determining the minimum microbicidal concentration, E. arvense L., P. granatum L., and S. barbatimam Mart. extracts at a concentration of 50 mg/mL and G. glabra L. extract at a concentration of 100 mg/mL, were effective against all microorganisms tested. Regarding cell viability, values were 48% for E. arvense L., 76% for P. granatum L, 86% for S. barbatimam Mart. and 79% for G. glabra L. at the same concentrations. About cytokine production after stimulation with the most effective concentrations of the extracts, there was a significant increase of IL-1β in macrophage cultures treated with S. barbatimam Mart. (3.98 pg/mL) and P. granatum L. (7.72 pg/mL) compared to control (2.20 pg/mL) and a significant decrease of TNF-α was observed in cultures treated with G. glabra L. (4.92 pg/mL), S. barbatimam Mart. (0.85 pg/mL), E. arvense L. (0.83 pg/mL), and P. granatum L. (0.00 pg

  3. Microorganisms present on peripheral intravenous needleless connectors in the clinical environment.

    Science.gov (United States)

    Slater, Karen; Cooke, Marie; Whitby, Michael; Fullerton, Fiona; Douglas, Joel; Hay, Jennine; Rickard, Claire

    2017-08-01

    The aim of this study was to quantify culturable microorganisms on needleless connectors (NCs) attached to peripheral intravenous catheters in hospitalized adult medical patients. Half (50%) of 40 NCs were contaminated with microorganisms commonly found on the skin or mouth. Staphylococcus capitis and Staphylococcus epidermidis were most commonly isolated. Emergency department insertion and higher patient dependency were statistically associated with positive NC microorganism growth. These results reaffirm the need for NC decontamination prior to access. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  4. Uric acid in plants and microorganisms: Biological applications and genetics - A review.

    Science.gov (United States)

    Hafez, Rehab M; Abdel-Rahman, Tahany M; Naguib, Rasha M

    2017-09-01

    Uric acid increased accumulation and/or reduced excretion in human bodies is closely related to pathogenesis of gout and hyperuricemia. It is highly affected by the high intake of food rich in purine. Uric acid is present in both higher plants and microorganisms with species dependent concentration. Urate-degrading enzymes are found both in plants and microorganisms but the mechanisms by which plant degrade uric acid was found to be different among them. Higher plants produce various metabolites which could inhibit xanthine oxidase and xanthine oxidoreductase, so prohibit the oxidation of hypoxanthine to xanthine then to uric acid in the purine metabolism. However, microorganisms produce group of degrading enzymes uricase, allantoinase, allantoicase and urease, which catalyze the degradation of uric acid to the ammonia. In humans, researchers found that several mutations caused a pseudogenization (silencing) of the uricase gene in ancestral apes which exist as an insoluble crystalloid in peroxisomes. This is in contrast to microorganisms in which uricases are soluble and exist either in cytoplasm or peroxisomes. Moreover, many recombinant uricases with higher activity than the wild type uricases could be induced successfully in many microorganisms. The present review deals with the occurrence of uric acid in plants and other organisms specially microorganisms in addition to the mechanisms by which plant extracts, metabolites and enzymes could reduce uric acid in blood. The genetic and genes encoding for uric acid in plants and microorganisms are also presented.

  5. Uric acid in plants and microorganisms: Biological applications and genetics - A review

    Directory of Open Access Journals (Sweden)

    Rehab M. Hafez

    2017-09-01

    Full Text Available Uric acid increased accumulation and/or reduced excretion in human bodies is closely related to pathogenesis of gout and hyperuricemia. It is highly affected by the high intake of food rich in purine. Uric acid is present in both higher plants and microorganisms with species dependent concentration. Urate-degrading enzymes are found both in plants and microorganisms but the mechanisms by which plant degrade uric acid was found to be different among them. Higher plants produce various metabolites which could inhibit xanthine oxidase and xanthine oxidoreductase, so prohibit the oxidation of hypoxanthine to xanthine then to uric acid in the purine metabolism. However, microorganisms produce group of degrading enzymes uricase, allantoinase, allantoicase and urease, which catalyze the degradation of uric acid to the ammonia. In humans, researchers found that several mutations caused a pseudogenization (silencing of the uricase gene in ancestral apes which exist as an insoluble crystalloid in peroxisomes. This is in contrast to microorganisms in which uricases are soluble and exist either in cytoplasm or peroxisomes. Moreover, many recombinant uricases with higher activity than the wild type uricases could be induced successfully in many microorganisms. The present review deals with the occurrence of uric acid in plants and other organisms specially microorganisms in addition to the mechanisms by which plant extracts, metabolites and enzymes could reduce uric acid in blood. The genetic and genes encoding for uric acid in plants and microorganisms are also presented.

  6. The useful micro-organism

    International Nuclear Information System (INIS)

    1970-01-01

    Can man survive civilization? Academician Ivan Malek, Director of the Institute of Microbiology in Prague, a member of the Agency's Scientific Advisory Committee and for many years an adviser to the Food and Agriculture Organization, the World Health Organization and UNESCO, believes he can, But he also considers that if man is to survive he must study and use all the resources at his disposal - including the micro-organisms of the planet earth. (author)

  7. Stethoscopes as potential intrahospital carriers of pathogenic microorganisms.

    Science.gov (United States)

    Campos-Murguía, Alejandro; León-Lara, Ximena; Muñoz, Juan M; Macías, Alejandro E; Alvarez, José A

    2014-01-01

    Stethoscopes can take part in the transmission of health care-associated infections. We cultured 112 stethoscopes by direct imprint on blood agar to estimate the prevalence of potentially pathogenic microorganisms. Forty-eight (47%) produced 50 potentially pathogenic microorganisms; from these, 43 (86%) were Staphylococcus aureus, of which 18 (42%) were methicillin-resistant S. aureus. We concluded that stethoscopes should be considered as potential fomites and must be disinfected routinely before and after each patient contact. Copyright © 2014 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Mosby, Inc. All rights reserved.

  8. Extremely thermophilic microorganisms and their polymer-hidrolytic enzymes

    Directory of Open Access Journals (Sweden)

    Andrade Carolina M.M.C.

    1999-01-01

    Full Text Available Thermophilic and hyperthermophilic microorganisms are found as normal inhabitants of continental and submarine volcanic areas, geothermally heated sea-sediments and hydrothermal vents and thus are considered extremophiles. Several present or potential applications of extremophilic enzymes are reviewed, especially polymer-hydrolysing enzymes, such as amylolytic and hemicellulolytic enzymes. The purpose of this review is to present the range of morphological and metabolic features among those microorganisms growing from 70oC to 100°C and to indicate potential opportunities for useful applications derived from these features.

  9. Measurement methods and strategies for non-infectious microbial components in bioaerosols at the workplace.

    Science.gov (United States)

    Eduard, W

    1996-09-01

    Exposure to micro-organisms can be measured by different methods. Traditionally, viable methods and light microscopy have been used for detection of micro-organisms. Most viable methods measure micro-organisms that are able to grow in culture, and these methods are also common for the identification of micro-organisms. More recently, non-viable methods have been developed for the measurement of bioaerosol components originating from micro-organisms that are based on microscopic techniques, bioassays, immunoassays and chemical methods. These methods are important for the assessment of exposure to bioaerosols in work environments as non-infectious micro-organisms and microbial components may cause allergic and toxic reactions independent of viability. It is not clear to what extent micro-organisms should be identified because exposure-response data are limited and many different micro-organisms and microbial components may cause similar health effects. Viable methods have also been used in indoor environments for the detection of specific organisms as markers of indoor growth of micro-organisms. At present, the validity of measurement methods can only be assessed by comparative laboratory and field studies because standard materials of microbial bioaerosol components are not available. Systematic errors may occur especially when results obtained by different methods are compared. Differences between laboratories that use the same methods may also occur as quality assurance schemes of analytical methods for bioaerosol components do not exist. Measurement methods may also have poor precision, especially the viable methods. It therefore seems difficult to meet the criteria for accuracy of measurement methods of workplace exposure that have recently been adopted by the CEN. Risk assessment is limited by the lack of generally accepted reference values or guidelines for microbial bioaerosol components. The cost of measurements of exposure to microbial bioaerosol components

  10. ROOT CANAL MICROORGANISMS PROFILES O F UPPER ANTERIOR TEETH WITH APICAL PERIODONTITIS

    OpenAIRE

    Tanumihardja, Maria; Riewpassa, Irene E; Mansjurnasir; Burhanuddin, DP

    2013-01-01

    Microorganisms are the main causative agents on the development of apical periodontitis. Microorganisms infecting the root canal system are colonized in communities as biofilm. These bacterial communities show distinct pattern related to the different forms of apical periodontitis which are determined by species richness and abundance. This study is aimed to examine the root canal microorganisms on upper anterior teeth of asymptomatic apical periodontitis and ch ronic api...

  11. Marine microorganisms. Umi no biseibutsu

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, U. (Hiroshima University, Hiroshima (Japan). Faculty of Applied Biological Science)

    1992-11-10

    This paper explains properties, interactions, and activities of marine microorganisms. Marine bacteria include bacteria of vibrio family of arteromonas genus, luminous bacteria, and aerobic photosynthetic bacteria. Majority of marine bacteria is halophilic, and many proliferate at 5[degree]C or lower. Some of them can proliferate at 20[degree]C to 30[degree]C, or as high temperature as 80[degree]C and higher. Spongiaria and tumicata have many symbiotic microorganisms, and genes equivalent to luminous bacteria genes were discovered in DNA of light emitting organs in luminous fishes. It was verified that animal groups in upwelling zones are supported by bacteria that assimilate inorganics supplied from ocean bottoms. Marine bacteria decompose almost all of organics brought in from land to sea, and those produced in sea. Marine bacteria engage in complex interrelations with other organisms for competition, antagonism, parasitism, and symbiosis. The bacteria make antibacterial substances, anti-algae bacteria, enzyme inhibitors, toxins, pharmacologically active substances, and such physiologically active substances as deposition promoting substances to undersea structures including shells and barnacles, and deposition blocking substances. 53 refs., 3 figs.

  12. Assessing the transport and fate of bioengineered microorganisms in the environment

    International Nuclear Information System (INIS)

    Barnthouse, L.W.; Palumbo, A.V.

    1985-01-01

    We review the methods currently available for quantifying the transport and fate of microbes in atmospheric and aqueous media and assess their adequacy for purposes of risk assessment. We review the literature on transport and fate of microorganisms, including studies of: (1) pathways of migration, (2) the survival of microorganisms during transport and fate. In addition, we review the transport and fate models that have been used in environmental risk assessments for radionuclides and toxic chemicals and evaluate their applicability to the problem of assessing environmental risks of bioengineered microorganisms

  13. Inquiry-Based Laboratory Activity to Investigate Physical Growth Requirements of Microorganisms

    Directory of Open Access Journals (Sweden)

    Michelle Furlong

    2014-08-01

    Full Text Available Standard "cookbook" laboratory activities that are used to teach students the optimal physical growth conditions of microorganisms should be modified so that they more effectively foster student's higher order cognitive skills and attract student interest.  This paper describes a laboratory activity that engages students in an inquiry-based approach to studying the physical growth requirements of microorganisms.  In this activity, students design and implement an experiment to obtain pure cultures of specific microorganisms, with distinct growth properties, that are provided to them in a mixed culture.

  14. Survival of Spoilage and Pathogenic Microorganisms on Cardboard and Plastic Packaging Materials

    Directory of Open Access Journals (Sweden)

    Lorenzo Siroli

    2017-12-01

    Full Text Available The aim of this work was to study the interaction of corrugated and plastic materials with pathogenic and spoiling microorganisms frequently associated to fresh produce. The effect of the two packaging materials on the survival during the storage of microorganisms belonging to the species Escherichia coli, Listeria monocytogenes, Salmonella enteritidis, Saccharomyces cerevisiae, Lactobacillus plantarum, Pseudomonas fluorescens, and Aspergillus flavus was studied through traditional plate counting and scanning electron microscopy (SEM. The results obtained showed that cardboard materials, if correctly stored, reduced the potential of packaging to cross-contaminate food due to a faster viability loss by spoilage and pathogenic microorganisms compared to the plastic ones. In fact, the cell loads of the pathogenic species considered decreased over time independently on the inoculation level and packaging material used. However, the superficial viability losses were significantly faster in cardboard compared to plastic materials. The same behavior was observed for the spoilage microorganisms considered. The SEM microphotographs indicate that the reduction of superficial contamination on cardboard surfaces was due to the entrapping of the microbial cells within the fibers and the pores of this material. In addition, SEM data showed that the entrapped cells were subjected to more or less rapid lyses, depending on the species, due to the absence of water and nutrients, with the exception of molds. The latter spoilers were able to proliferate inside the cardboard fibers only when the absorption of water was not prevented during the storage. In conclusion, the findings of this work showed the reduction of cross-contamination potential of corrugated compared to plastic packaging materials used in fruit and vegetable sector. However, the findings outlined the importance of hygiene and low humidity during cardboard storage to prevent the mold growth on

  15. In vivo investigations of genetically modified microorganisms using germ-free rats

    DEFF Research Database (Denmark)

    Lund jacobsen, Bodil

    Risk evaluation of genetically modified microorganism (GMMO) in relation to human health effects brings into consideration the ability of the microorganism to survive and colonise the gastrointestinal tract and the potential gene transfer to the resident microbiota. Different biological containment...

  16. Swimming of Microorganisms Viewed from String and Membrane Theories

    OpenAIRE

    Kawamura, Masako; Sugamoto, Akio; Nojiri, Shin'ichi

    1993-01-01

    Swimming of microorganisms is studied from a viewpoint of extended objects (strings and membranes) swimming in the incompressible f luid of low Reynolds number. The flagellated motion is analyzed in two dimensional fluid, by using the method developed in the ciliated motion with the Joukowski transformation. Discussion is given on the conserved charges and the algebra which are associated with the area (volume)- preserving diffeomorphisms giving the swimming motion of microorganisms. It is al...

  17. Selection of mesophilic microorganisms with biodesulfuration capacity

    International Nuclear Information System (INIS)

    Madero, A; Mogollon, L. I; Mora, A.L; Osorio, L.F

    1998-01-01

    The development of bio desulfurization (BDS) processes for hydrocarbons requires fast and reliable methods for the screening of microorganisms. This work shows the results of the screening process for indigenous Colombian strains with a BDS potential capacity. The main criteria for the screening were the qualitative and quantitative determination of 2-hydroxybiphenyl (2-HBP) as the typical metabolite of the 4S specific pathway. Microorganisms were cultured by two methodologies, A and B, using DBT as the model compound. The quantitative determination of metabolites was made by HPLC. Thirteen strains were evaluated, including the strain Rhodococcus rhodocrous IGTS8, by methods A and B. In method A, the inoculum was exposed to DBT since the beginning of the culture. Method B, employed two stages: (i) Growth period under limiting sulfur conditions, (ii) Transforming period, in which the pre-grown inoculum was exposed to the organic sulfur substrate. The culture of mesophilic microorganisms isolated by method B, served to find a mechanism for the organic sulfur metabolism, and the evaluation of the sulfur removal capability of five indigenous strains. In the cultures of these strains, 2- hydroxybiphenyl (2-HBP) was detected as a byproduct of DBT metabolism, both qualitatively and quantitatively

  18. Mercury methylation rates of biofilm and plankton microorganisms from a hydroelectric reservoir in French Guiana.

    Science.gov (United States)

    Huguet, L; Castelle, S; Schäfer, J; Blanc, G; Maury-Brachet, R; Reynouard, C; Jorand, F

    2010-02-15

    The Petit-Saut ecosystem is a hydroelectric reservoir covering 365km(2) of flooded tropical forest. This reservoir and the Sinnamary Estuary downstream of the dam are subject to significant mercury methylation. The mercury methylation potential of plankton and biofilm microorganisms/components from different depths in the anoxic reservoir water column and from two different sites along the estuary was assessed. For this, reservoir water and samples of epiphytic biofilms from the trunk of a submerged tree in the anoxic water column and from submerged branches in the estuary were batch-incubated from 1h to 3 months with a nominal 1000ng/L spike of Hg(II) chloride enriched in (199)Hg. Methylation rates were determined for different reservoir and estuarine communities under natural nutrient (reservoir water, estuary freshwater) and artificial nutrient (culture medium) conditions. Methylation rates in reservoir water incubations were the highest with plankton microorganisms sampled at -9.5m depth (0.5%/d) without addition of biofilm components. Mercury methylation rates of incubated biofilm components were strongly enhanced by nutrient addition. The results suggested that plankton microorganisms strongly contribute to the total Hg methylation in the Petit-Saut reservoir and in the Sinnamary Estuary. Moreover, specific methylation efficiencies (%Me(199)Hg(net)/cell) suggested that plankton microorganisms could be more efficient methylating actors than biofilm consortia and that their methylation efficiency may be reduced in the presence of biofilm components. Extrapolation to the reservoir scale of the experimentally determined preliminary methylation efficiencies suggested that plankton microorganisms in the anoxic water column could produce up to 27mol MeHg/year. Taking into account that (i) demethylation probably occurs in the reservoir and (ii) that the presence of biofilm components may limit the methylation efficiency of plankton microorganisms, this result is

  19. Antibacterial effect of grapefruit seed extract (GSE) on Makgeolli-brewing microorganisms and its application in the preservation of fresh Makgeolli.

    Science.gov (United States)

    Choi, Jae-Suk; Lee, Yu-Ri; Ha, Yu-Mi; Seo, Hyo Ju; Kim, Young Hun; Park, Sun-Mee; Sohn, Jae Hak

    2014-06-01

    To develop a new preservation method, the antimicrobial activity of grapefruit seed extract (GSE) against Makgeolli-brewing microorganisms and food-borne pathogens was assessed, and a general analysis and sensory evaluation of fresh Makgeolli with added GSE was made. The minimum inhibitory concentration (MIC) values of GSE against 10 strains of Makgeolli-brewing microorganism were 0.0122 to 1.5625 μL/mL. The MIC values against 6 strains of food-borne pathogens were 0.0061 to 0.7813 μL/mL. On addition of 0.1% (v/v) and 0.2% GSE in bottled fresh Makgeolli, no significant difference in the pH, or the contents of total acids, ethanol, or methanol in the Makgeolli, were observed compared with control Makgeolli (with no GSE), during the preservation period (8 weeks) at 10 °C. In the Makgeolli with 0.1% and 0.2% GSE, the total bacterial counts decreased significantly by 4.9% (P grapefruit seed extract (GSE) was developed. As fresh Makgeolli contains live microorganisms, the preservation period is 1 wk, which is relatively short. GSE controls the growth of Makgeolli-brewing and Makgeolli-spoiling microorganisms. 0.1% to 0.2% GSE is optimum for prolonging the shelf life (2 wk) of bottled fresh Makgeolli, and has no adverse effect on overall acceptability. We demonstrated that GSE is an effective natural additive that prolongs the shelf life of fresh Makgeolli with no significant loss in quality. © 2014 Institute of Food Technologists®

  20. Preparation of microorganism free carrier for biofertilizer product

    International Nuclear Information System (INIS)

    Latiffah Norddin; Maizatul Akmam Mhd Nasir; Phua Choo Kwai Hoe

    2007-01-01

    Biofertilizer has been identified as an alternative or complementary to chemical fertilizer to increase soil fertility and crop production in sustainable farming. Biofertilizers are products containing living cells of different types of known microorganisms that may increase crop productivity through N2 fixation, phosphate solubilization or stimulation of plant growth by synthesising phytohormones. A good biofertilizer product needs a good carrier or substrate. A good carrier is free from microbial contamination and can optimise the growth of the biofertilizer microorganisms. Compost is commonly used as carrier or substrate for biofertilizer microorganisms. In the present study, compost produced by Nuclear Malaysia using the Natural Farming was used as a carrier for the biofertilizer products. Gamma irradiation has been used to produce a ?clean? or sterile carrier. The sterilization effect of the carrier was checked by using serial dilution technique. Carriers that were irradiated at 50 kGy of gamma irradiation were found to be sterile. The shelf life of the sterile carriers was also determined. After six months the compost carriers were still free from microbial contamination. (Author)

  1. Selection of potential microorganism for sago starch fermentation

    Directory of Open Access Journals (Sweden)

    RUTH MELLIAWATI

    2006-02-01

    Full Text Available Fermentation process of sago starch for the production of bioproduct requires potential microorganism that have ability to hydrolyze sago starch. The purpose of this research was to get the potential of amylolytic microorganisms for their capability of amyloglucosidase activity and to know the sugar strains of the fermentation result. Eleven amylolytic microorganisms (9 strains of mold and 2 strains of yeast were obtained from the collection Research Centre for Biotechnology – Indonesian Institute of Sciences (LIPI, Cibinong-Bogor were used. The selection step was carried out based on their capability of starch hydrolysis to reducing sugar. The best result indicates that the production of reducing sugar reached the highest 18.485 ppm and amyloglucosidase activities was 3.583 units by KTU-1 strain. The highest total acid obtained was 5.85 mg/mL by Rhizopus IFO.R5442. The cell biomass was obtained between 0.5 to 1.74 g dry weight/100 mL and pH of the final fermentation (72 h were 3.57 to 8.38.

  2. Effect of phosphate solubilizing microorganisms on quantitative and qualitative characteristics of maize (Zea mays L.) under water deficit stress.

    Science.gov (United States)

    Ehteshami, S M R; Aghaalikhani, M; Khavazi, K; Chaichi, M R

    2007-10-15

    The effect of seed inoculation by phosphate solubilizing microorganisms on growth, yield and nutrient uptake of maize (Zea mays L. SC. 704) was studied in a field experiment. Positive effect on plant growth, nutrient uptake, grain yield and yield components in maize plants was recorded in the treatment receiving mixed inoculum of Glomus intraradices (AM) and Pseudomonas fluorescens (Pf). Co-inoculation treatment significantly increased grain yield, yield components, harvest index, grain N and P, soil available P, root colonization percentage and crop WUE under water deficit stress. In some of investigated characteristics under well-watered conditions, chemical fertilizer treatment was higher than double inoculated treatments, but this difference was not significant. Seed inoculation only with AM positively affected the measured parameters as amount as co-inoculated treatments. According to the results showed in contrast to the inoculated treatments with AM+Pf and AM, the application of alone Pf caused a comparatively poor response. Therefore, this microorganism needs to a complement for its activity in soil. All of measured parameters in inoculated treatments were higher than uninoculated treatments under water deficit stress conditions. Furthermore, the investigated characteristics of co-inoculated plants under severe water deficit stress conditions were significantly lower than co-inoculated plants under well-watered and moderate-stressed conditions. Therefore it could be stated, these microorganisms need more time to fix and establishing themselves in soil. The present finding showed that phosphate-solubilizing microorganisms can interact positively in promoting plant growth as well as P uptake of maize plants, leading to plant tolerance improving under water deficit stress conditions.

  3. Lignite microorganisms

    Energy Technology Data Exchange (ETDEWEB)

    Bulankina, M.A.; Lysak, L.V.; Zvyagintsev, D.G. [Moscow MV Lomonosov State University, Moscow (Russian Federation). Faculty of Soil Science

    2007-03-15

    The first demonstration that samples of lignite at a depth of 10 m are considerably enriched in bacteria is reported. According to direct microscopy, the abundance of bacteria was about 10{sup 7} cells/g. About 70% of cells had intact cell membranes and small size, which points to their anabiotic state. The fungal mycelium length was no more than 1 m. Lignite inoculation onto solid glucose-yeast-peptone medium allowed us to isolate bacteria of the genera Bacillus, Rhodococcus, Arthrobacter, Micrococcus, Spirillum, and Cytophaga. Representatives of the genera Penicillium and Trichoderma were identified on Czapek medium. Moistening of lignite powder increased the microbial respiration rate and microbial and fungal abundance but did not increase their generic diversity. This finding suggests that the studied microorganisms are autochthonous to lignite.

  4. Expression of proposed implantation marker genes CDX2 and HOXB7 in the blastocyst does not distinguish viable from non-viable human embryos

    DEFF Research Database (Denmark)

    Kirkegaard, Kirstine; Hindkjær, Johnny Juhl; Ingerslev, Hans Jakob

    2012-01-01

    expression differs between viable and non-viable embryos in both human and non-humans, suggesting transcriptome analysis of trophectoderm (TE) as a novel method of improving embryo selection. Potential candidate marker genes have been identified with array studies on animal blastocysts. The aim of this study...... was to investigate the expression of selected genes in human blastocysts in relation to the outcome of implantation. Materials and methods: Embryos from 10 oatients undergoing in vitro fertilization treatment were included in the project. A single blastocyst was chosen for biopsy on the morning of day 5 after oocyte...... of 15 key genes associated with developmental competence in animals were evaluated in high quality human embryos with monogenic or chromosomal disorders from a pre-implantation genetic disorder program. Triplicate cDNA amplifications for quantitative (q) RT-PCR were performed using pre-designed gene...

  5. Super-long Anabiosis of Ancient Microorganisms in Ice and Terrestrial Models for Development of Methods to Search for Life on Mars, Europa and other Planetary Bodies

    Science.gov (United States)

    Abyzov, S. S.; Duxbury, N. S.; Bobin, N. E.; Fukuchi, M.; Hoover, R. B.; Kanda, H.; Mitskevich, I. N.; Mulyukin, A. L.; Naganuma, T.; Poglazova, M. N.; hide

    2007-01-01

    Successful missions to Mars, Europe and other bodies of the Solar system have created a prerequisite to search for extraterrestrial life. The first attempts of microbial life detection on the Martian surface by the Viking landed missions gave no biological results. Microbiological investigations of the Martian subsurface ground ice layers seem to be more promising. It is well substantiated to consider the Antarctic ice sheet and the Antarctic and Arctic permafrost as terrestrial analogues of Martian habitats. The results of our long-standing microbiological studies of the Antarctic ice would provide the basis for detection of viable microbial cells on Mars. Our microbiological investigations of the deepest and thus most ancient strata of the Antarctic ice sheet for the first time gave evidence for the natural phenomenon of long-term anabiosis (preservation of viability and vitality for millennia years). A combination of classical microbiological methods, epifluorescence microscopy, SEM, TEM, molecular diagnostics, radioisotope labeling and other techniques made it possible for us to obtain convincing proof of the presence of pro- and eukaryotes in the Antarctic ice sheet. In this communication, we will review and discuss some critical issues related to the detection of viable microorganisms in cold terrestrial environments with regard to future searches for microbial life and/or its biological signatures on extraterrestrial objects.

  6. Assessment of cellulolytic microorganisms in soils of Nevados Park, Colombia.

    Science.gov (United States)

    Avellaneda-Torres, Lizeth Manuela; Pulido, Claudia Patricia Guevara; Rojas, Esperanza Torres

    2014-01-01

    A systematized survey was conducted to find soil-borne microbes that degrade cellulose in soils from unique ecosystems, such as the Superpáramo, Páramo, and the High Andean Forest in the Nevados National Natural Park (NNNP), Colombia. These high mountain ecosystems represent extreme environments, such as high levels of solar radiation, low atmospheric pressure, and extreme daily changes in temperature. Cellulolytic activity of the microorganisms was evaluated using qualitative tests, such as growth in selective media followed by staining with congo red and iodine, and quantitative tests to determine the activity of endoglucanase, β-glucosidase, exoglucanase, and total cellulase. Microorganisms were identified using molecular markers, such as the 16S rRNA gene for bacteria and the internal transcribed spacer region (ITS) of ribosomal DNA for fungi. Multivariate statistical analysis (MVA) was used to select microorganisms with high cellulolytic capacity. A total of 108 microorganisms were isolated from the soils and, in general, the enzymatic activities of fungi were higher than those of bacteria. Our results also found that none of the organisms studied were able to degrade all the components of the cellulose and it is therefore suggested that a combination of bacteria and/or fungi with various enzymatic activities be used to obtain high total cellulolytic activity. This study gives an overview of the potential microorganism that could be used for cellulose degradation in various biotechnological applications and for sustainable agricultural waste treatment.

  7. Assessment of cellulolytic microorganisms in soils of Nevados Park, Colombia

    Directory of Open Access Journals (Sweden)

    Lizeth Manuela Avellaneda-Torres

    2014-12-01

    Full Text Available A systematized survey was conducted to find soil-borne microbes that degrade cellulose in soils from unique ecosystems, such as the Superpáramo, Páramo, and the High Andean Forest in the Nevados National Natural Park (NNNP, Colombia. These high mountain ecosystems represent extreme environments, such as high levels of solar radiation, low atmospheric pressure, and extreme daily changes in temperature. Cellulolytic activity of the microorganisms was evaluated using qualitative tests, such as growth in selective media followed by staining with congo red and iodine, and quantitative tests to determine the activity of endoglucanase, β-glucosidase, exoglucanase, and total cellulase. Microorganisms were identified using molecular markers, such as the 16S rRNA gene for bacteria and the internal transcribed spacer region (ITS of ribosomal DNA for fungi. Multivariate statistical analysis (MVA was used to select microorganisms with high cellulolytic capacity. A total of 108 microorganisms were isolated from the soils and, in general, the enzymatic activities of fungi were higher than those of bacteria. Our results also found that none of the organisms studied were able to degrade all the components of the cellulose and it is therefore suggested that a combination of bacteria and/or fungi with various enzymatic activities be used to obtain high total cellulolytic activity. This study gives an overview of the potential microorganism that could be used for cellulose degradation in various biotechnological applications and for sustainable agricultural waste treatment.

  8. IgG antibodies against microorganisms and atopic disease in Danish adults

    DEFF Research Database (Denmark)

    Linneberg, Allan; Ostergaard, Christian; Tvede, Michael

    2003-01-01

    BACKGROUND: Seropositivity to food-borne and orofecal microorganisms (hepatitis A virus, Helicobacter pylori, and Toxoplasma gondii ), which are considered to be markers of poor hygiene, has been reported to be associated with a lower prevalence of atopy. In contrast, colonization of the gut...... with Clostridium difficile, a potential intestinal bacterial pathogen, in early childhood may be associated with a higher prevalence of atopy. OBJECTIVE: The objective of this study was to investigate the association between atopy and exposure to 2 groups of food-borne and orofecal microorganisms: (1) markers...... to microorganisms was assessed as IgG seropositivity to microorganisms. RESULTS: Seropositivity to 2 or 3 markers of poor hygiene (hepatitis A virus, H pylori, and T gondii ) was associated with a lower prevalence of atopy (adjusted odds ratio, 0.5; 95% CI, 0.3 to 0.8). In contrast, seropositivity to 2 or 3...

  9. Nutrition quality test of fermented waste vegetables by bioactivator local microorganisms (MOL) and effective microorganism (EM4)

    Science.gov (United States)

    Mirwandono, E.; Sitepu, M.; Wahyuni, T. H.; Hasnudi; Ginting, N.; Siregar, G. AW; Sembiring, I.

    2018-02-01

    Livestock feed mostly used waste which has low nutrition content and one way to improve feed content by fermentation. The objective of this study was to evaluate the effect of bioactifator types on fermented vegetables waste for animal feed.The research was conducted in Nutrition and Animal Feed Laboratory, Universitas Sumatera Utara from May until July 2016. The research was factorial completely randomized design of 3 x 3 with 3 replications. Factor I were bioactivator types which were control, local bioactivator and EM4 (Effective Microorganisms 4). Factor II were time of incubation 3, 5 and 7 days. Parameters were moisture content, ash, Nitrogen Free Extract (NFE) and Total Digestible Nutrient (TDN). The results showed that bioactivator types either local activator or EM4 has highly significantly different effect (P<0,01) on water content, NFE and TDN on vegetables waste while there was no different between local bioactifator with EM4 on all parameters. Time of incubation 7 days has highly significantly different effect (P<0,01) on NFE, TDN and significant different (P<0,05) on water content and ash. In conclusion local bioactifators could improve animal feed by fermenting vegetables waste and it is more available for livestockers.

  10. Effects of the Atrazine herbicide over the diazotrophic microorganisms associated with corn in a Saldana soil (Tolima)

    International Nuclear Information System (INIS)

    Ordonez, Alba R; Lozano de Yunda, A; Fuentes, C

    1999-01-01

    In this study, it was evaluated, at greenhouse in soil pots, the effect of the herbicide atrazine in different dose (corresponding to o, 0.75, 1.5 and 3.0 kg of soil hectare) over time (15, 30, 45, 60 and 90 days after the application) on the diazotrophic micro-organisms associated with rhizosphere soil and root of a corn cultivation in a clay loam soil of Saldana - Tolima. It was determined the population of diazotrophic microorganisms in soil by the most probable number technique; also it was observed the characteristic growth in the specific cultivation semisolid Nfb-malic acid medium and was evaluated the nitrogenase activity by means of the acetylene reduction technique. Of the same form, it was observed the characteristic growth and it was evaluated the nitrogenase activity of direct fragment sowings of root in the Nfb-malic acid medium. The 60.8% of soil isolates presented characteristic cultural growth in the form of whitish pellicle under the surface of the medium. in the root 83.3% showed this type of growth. The population of diazotrophic microorganisms of soil did not present significant differences (α = 0.05) between treatments neither over time the nitrogenase activity of soil dilutions demonstrated that there is no a significant effect (α = 0.05) of the treatments (dose) but if there is significant effect of the time. The highest values were presented to 45 days of application of the herbicide, with the application of the highest dose. the nitrogenase activity in the root to what is long of the time was different from rhizosphere soil. The treatment without application of atrazine presented greater values to what is long of the time, however, also in this case were not presented significant differences (α = 0.05) between the treatments (dose) neither to what is long of the time. For so much, as a conclusion, they were not presented effects on the population and the nitrogenase activity of the diazotrophic microorganisms until 90 days of after the

  11. Using natural biomass microorganisms for drinking water denitrification.

    Science.gov (United States)

    Costa, Darleila Damasceno; Gomes, Anderson Albino; Fernandes, Mylena; Lopes da Costa Bortoluzzi, Roseli; Magalhães, Maria de Lourdes Borba; Skoronski, Everton

    2018-07-01

    Among the methods that are studied to eliminate nitrate from drinking water, biological denitrification is an attractive strategy. Although several studies report the use of denitrifying bacteria for nitrate removal, they usually involve the use of sewage sludge as biomass to obtain the microbiota. In the present study, denitrifying bacteria was isolated from bamboo, and variable parameters were controlled focusing on optimal bacterial performance followed by physicochemical analysis of water adequacy. In this way, bamboo was used as a source of denitrifying microorganisms, using either Immobilized Microorganisms (IM) or Suspended Microorganisms (SM) for nitrate removal. Denitrification parameters optimization was carried out by analysis of denitrification at different pH values, temperature, nitrate concentrations, carbon sources as well as different C/N ratios. In addition, operational stability and denitrification kinetics were evaluated. Microorganisms present in the biomass responsible for denitrification were identified as Proteus mirabilis. The denitrified water was submitted to physicochemical treatment such as coagulation and flocculation to adjust to the parameters of color and turbidity to drinking water standards. Denitrification using IM occurred with 73% efficiency in the absence of an external carbon source. The use of SM provided superior denitrification efficiency using ethanol (96.46%), glucose (98.58%) or glycerol (98.5%) as carbon source. The evaluation of the operational stability allowed 12 cycles of biomass reuse using the IM and 9 cycles using the SM. After physical-chemical treatment, only SM denitrified water remained within drinking water standards parameters of color and turbidity. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Influence of autochthonous micro-organisms on sorption and remobilization of technetium and selenium in different aquifer materials. Final report

    International Nuclear Information System (INIS)

    Rueden, H.; Maue, G.; Stroetmann, I.; Hornemann, C.; Seichter, M.; Pekdeger, A.; Taute, T.; Winkler, A.; Lange, D.; Majerczyk, D.; Meyer, T.

    1998-01-01

    In this research project the influence of autochthonous micro-organisms on immobilisation and remobilization of Technetium and Selenium was investigated. Both radionuclides are part of the nuclear fuel waste (Tc app. 6%). Former investigations have shown, that immobilisation behaviour of both elements can be influenced by micro-organisms. The autochthonous population of micro-organisms in deep sediments and their influence on immobilisation of Tc and Se was investigated in this study. For this reason recirculation column tests were carried out. Absolutely sterile and anaerobic handling is necessary handling the sediments and waters used for the experiments. Special methods for sampling, storage and handling were developed. More than 30 sediments have been investigated. The number of colony forming units (CFU) has always been relatively low (less than E+06 CFU). The results of recirculation column tests with autochthonous micro-organisms were compared with sterilized (Co-60) parallel tests and were verified with the results of hydrochemical equilibration code PHREEQUE. Instead of the allochthonous micro-orgamisms the autochthonous organisms showed no significant fixation of the radionuclides due to microbial activity. This is true for various temperatures of 10 C (aquifer temperature) and 20 C (normal laboratory temperature). An addition of an inoculum of the autochthonous micro-organisms developed at breeding temperature of 10 and 20 C had no influence on the radionuclide mobility. Performing conventional laboratory experiments you have to consider an overestimated retardation capacity because of an inevitable contamination with allochthonous micro-organisms. (orig.) [de

  13. Isolation of microorganisms for biological control the moniliophthora roreri

    OpenAIRE

    suarez contreras, liliana yanet; Rangel Riaño, Alba Luz

    2014-01-01

    Moniliophlhora roreri is the causal agent of cocoa Moniliasis, which produces losses of up to 60% of the crop, as it affects only its commercial product, the cob. Biological control appears as an alternative management, using endophytic microorganisms. The reason because of this research came up was that it was aimed to isolate microorganisms with antagonist potential for biological control towards the phytopathogen M. roreri in Norte de Santander. This is done through isolation and identifica...

  14. 2.3. Global-scale atmospheric dispersion of microorganisms

    Science.gov (United States)

    Griffin, Dale W.; Gonzalez-Martin, Cristina; Hoose, C.; Smith, D.J.; Delort, Anne-Marie; Amato, Pierre

    2018-01-01

    This chapter addresses long-range dispersion and the survival of microorganisms across a wide range of altitudes in Earth's atmosphere. Topics include mechanisms of dispersion, survivability of microorganisms known to be associated with long-range transport, natural and artificial sources of bioaerosols, residence time estimation through the use of proxy aerosols, transport and emission models, and monitoring assays (both culture and molecular based). We conclude with a discussion of the known limits for Earth's biosphere boundary, relating aerobiology studies to planetary exploration given the large degree of overlapping requirements for in situ studies (including low biomass life detection and contamination control).

  15. Screening of biosurfactants from cloud microorganisms

    Science.gov (United States)

    Sancelme, Martine; Canet, Isabelle; Traikia, Mounir; Uhliarikova, Yveta; Capek, Peter; Matulova, Maria; Delort, Anne-Marie; Amato, Pierre

    2015-04-01

    The formation of cloud droplets from aerosol particles in the atmosphere is still not well understood and a main source of uncertainties in the climate budget today. One of the principal parameters in these processes is the surface tension of atmospheric particles, which can be strongly affected by trace compounds called surfactants. Within a project devoted to bring information on atmospheric surfactants and their effects on cloud droplet formation, we focused on surfactants produced by microorganisms present in atmospheric waters. From our unique collection of microorganisms, isolated from cloud water collected at the Puy-de-Dôme (France),1 we undertook a screening of this bank for biosurfactant producers. After extraction of the supernatants of the pure cultures, surface tension of crude extracts was determined by the hanging drop technique. Results showed that a wide variety of microorganisms are able to produce biosurfactants, some of them exhibiting strong surfactant properties as the resulting tension surface decreases to values less then 35 mN.m-1. Preliminary analytical characterization of biosurfactants, obtained after isolation from overproducing cultures of Rhodococcus sp. and Pseudomonas sp., allowed us to identify them as belonging to two main classes, namely glycolipids and glycopeptides. 1. Vaïtilingom, M.; Attard, E.; Gaiani, N.; Sancelme, M.; Deguillaume, L.; Flossmann, A. I.; Amato, P.; Delort, A. M. Long-term features of cloud microbiology at the puy de Dôme (France). Atmos. Environ. 2012, 56, 88-100. Acknowledgements: This work is supported by the French-USA ANR SONATA program and the French-Slovakia programs Stefanik and CNRS exchange.

  16. Diversity and adaptations of deep-sea microorganisms

    Digital Repository Service at National Institute of Oceanography (India)

    Raghukumar, C.

    -tolerant enzymes, natural products of potential use in human health management and environmental bioremediation using solvent-tolerant microorganisms are some of the potential biotechnological applications of these deep-sea microbes....

  17. Modelling the morphology of filamentous microorganisms

    DEFF Research Database (Denmark)

    Nielsen, Jens Bredal

    1996-01-01

    The rapid development in image analysis techniques has made it possible to study the growth kinetics of filamentous microorganisms in more detail than previously, However, owing to the many different processes that influence the morphology it is important to apply mathematical models to extract...

  18. Engineering of microorganisms towards recovery of rare metal ions

    Energy Technology Data Exchange (ETDEWEB)

    Kuroda, Kouichi; Ueda, Mitsuyoshi [Kyoto Univ. (Japan). Div. of Applied Life Sciences

    2010-06-15

    The bioadsorption of metal ions using microorganisms is an attractive technology for the recovery of rare metal ions as well as removal of toxic heavy metal ions from aqueous solution. In initial attempts, microorganisms with the ability to accumulate metal ions were isolated from nature and intracellular accumulation was enhanced by the overproduction of metal-binding proteins in the cytoplasm. As an alternative, the cell surface design of microorganisms by cell surface engineering is an emerging strategy for bioadsorption and recovery of metal ions. Cell surface engineering was firstly applied to the construction of a bioadsorbent to adsorb heavy metal ions for bioremediation. Cell surface adsorption of metal ions is rapid and reversible. Therefore, adsorbed metal ions can be easily recovered without cell breakage, and the bioadsorbent can be reused or regenerated. These advantages are suitable for the recovery of rare metal ions. Actually, the cell surface display of a molybdate-binding protein on yeast led to the enhanced adsorption of molybdate, one of the rare metal ions. An additional advantage is that the cell surface display system allows high-throughput screening of protein/peptide libraries owing to the direct evaluation of the displayed protein/peptide without purification and concentration. Therefore, the creation of novel metal-binding protein/ peptide and engineering of microorganisms towards the recovery of rare metal ions could be simultaneously achieved. (orig.)

  19. Tapping uncultured microorganisms through metagenomics for drug ...

    African Journals Online (AJOL)

    African Journal of Biotechnology ... Microorganisms are major source of bioactive natural products, and several ... This review highlights the recent methodologies, limitations, and applications of metagenomics for the discovery of new drugs.

  20. Survival of microorganisms representing the three Domains of life inside the International Space Station

    Science.gov (United States)

    Francesco, Canganella; Giovanna, Bianconi

    2007-09-01

    The present work was mainly focused to study the response of representative non pathogenic microorganisms to the environment inside the space vehicle at different mission stages (10, 56, and 226 days) within the frame of the Italian ENEIDE mission, from Feb to Oct 2005. Microorganisms were chosen according to their phylogenetic position and cell structures; they were representatives of the three taxonomic domains and belonged to different ecosystems (food, soil, intestinal tract, plants, deep-sea). They were the followings: Thermococcus guaymasensis (Domain Archaea); Saccharomyces cerevisiae (Domain Eucarya); Escherichia coli, Bacillus subtilis, Lactobacillus acidophilus, Enterococcus faecium, Pseudomonas fluorescens, and Rhizobium tropici (Domain Bacteria). As main environmental parameters we were interested in: a) space radiations; b) microgravity; c) temperature. The response of microorganisms was investigated in terms of survival rates, cell structure modifications, and genomic damages. The survival of cells was affected by both radiation doses and intrinsec cell features. As expected, only samples kept on the ISS for 226 days showed significant levels of mortality. Asfar as regard the effect on cell structures, these samples showed also remarkable morphological changes, particularly for Escherichia coli, Enterococcus faecium, and Saccharomyces cerevisiae. The data collected allowed to get new insights into the biological traits of microorganisms exposed to space environment during the flight on a spacecraft. Moreover, the result obtained may be important for the improvement of human conditions aboard space vehicles (nutraceuticals for astronauts and disinfections of ISS modules) and also for the potential development of closed systems devoted to vegetable productions and organic recycling.

  1. Skills training workshops as a viable strategy for improving ...

    African Journals Online (AJOL)

    Skills training workshops as a viable strategy for improving smallholder and cooperative agribusiness management: A case study of Vhembe District, Limpopo Province, South Africa. ... South African Journal of Agricultural Extension ... Empirical evidence from this study shows that six months after attending the workshops, ...

  2. Detection of extracellular enzymatic activity in microorganisms ...

    African Journals Online (AJOL)

    Detection of extracellular enzymatic activity in microorganisms isolated from waste vegetable oil contaminated soil using plate methodologies. Eugenia G. Ortiz Lechuga, Isela Quintero Zapata, Katiushka Arévalo Niño ...

  3. Detection of extracellular enzymatic activity in microorganisms ...

    African Journals Online (AJOL)

    sunny t

    2015-09-18

    Sep 18, 2015 ... microorganisms with all three enzymatic activities, thereby establishing these techniques as ... supplemented at 1% with vegetable oils, including olive (OLI) ..... cepacia lipase for biodiesel fuel production from soybean oil.

  4. Microorganisms and their influence on radionuclide migration in igneous rock environments

    International Nuclear Information System (INIS)

    Pedersen, Karsten

    2005-01-01

    Microorganisms interact with their surroundings and in some cases they greatly modify the characteristics of their environment. Several such interactions may have a significant influence on the behaviour of radionuclides possibly escaping from underground radioactive waste repositories. Microbes can mobilise trace elements. Unattached microbes may act as large colloids, transporting radionuclides on their cell surfaces with the groundwater flow. Many microbes produce ligands that can mobilise trace elements from solid phases and that can inhibit trace element sorption to solid phases. Bacterial species from the deep subsurface have demonstrated a significant effect on the mobilization of 59 Fe(III), 147 Pm(III), 234 Th(IV) and 241 Am(III) under varying redox conditions. The extent of bacterial immobilisation of radionuclides has been investigated under in situ conditions. Experiments have demonstrated this effect with 60 Co, 147 Pm, 234 Th, 237 Np, and 232 U. A large group of microbes catalyse the formation of iron oxides from dissolved ferrous iron in groundwater that reaches an oxidising environment. Such biological iron oxide systems (BIOS) will have a retardation effect on many radionuclides. Microorganisms execute an important influence on the chemical situation in groundwater. Especially, they may catalyse reactions that stabilise the redox potential in groundwater at a low and, therefore, beneficial level for a radioactive waste repository. (author)

  5. Talons and beaks are viable but underutilized samples for detecting ...

    African Journals Online (AJOL)

    Talons and beaks are viable but underutilized samples for detecting organophosphorus and carbamate pesticide poisoning in raptors. Ngaio Richards, Irene Zorrilla, Joseph Lalah, Peter Otieno, Isabel Fernandez, Monica Calvino, Joaquin Garcia ...

  6. Bioemulsan Production by Iranian Oil Reservoirs Microorganisms

    Directory of Open Access Journals (Sweden)

    A Amiriyan, M Mazaheri Assadi, VA Saggadian, A Noohi

    2004-10-01

    Full Text Available The biosurfactants are believed to be surface active components that are shed into the surrounding medium during the growth of the microorganisms. The oil degrading microorganism Acinetobacter calcoaceticus RAG-1 produces a poly-anionic biosurfactant, hetero-polysaccharide bioemulsifier termed as emulsan which forms and stabilizes oil-water emulsions with a variety of hydrophobic substrates. In the present paper results of the possibility of biosurfactant (Emulsan production by microorganisms isolated from Iranian oil reservoirs is presented. Fourthy three gram negative and gram positive, non fermentative, rod bacilli and coccobacilli shaped baceria were isolated from the oil wells of Bibi Hakimeh, Siri, Maroon, Ilam , East Paydar and West Paydar. Out of the isolated strains, 39 bacterial strains showed beta haemolytic activity, further screening revealed the emulsifying activity and surface tension. 11 out of 43 tested emulsifiers were identified as possible biosurfactant producers and two isolates produced large surface tension reduction, indicating the high probability of biosurfactant production. Further investigation revealed that, two gram negative, oxidase negative, aerobic and coccoid rods isolates were the best producers and hence designated as IL-1, PAY-4. Whole culture broth of isolates reduced surface tension from 68 mN /m to 30 and 29.1mN/m, respectively, and were stable during exposure to high salinity (10%NaCl and elevated temperatures(120C for 15 min .

  7. Ultra-violet radiation for the inactivation of microorganisms in hydroponics

    International Nuclear Information System (INIS)

    Buyanosvsky, G.; Gale, J.; Degani, N.

    1981-01-01

    The growth of microorganisms in the nutrient solution of a circulating hydroponic system was suppressed by ultra-violet radiation. Applied for three hours daily (572 Jm -2 h -1 ) throughout experiments in which tomato and corn were grown, it was effective in reducing the population of microorganisms from between 500-800 x 10 3 to 10-50 x 10 3 cells per ml. (orig.)

  8. Ultra-violet radiation for the inactivation of microorganisms in hydroponics

    Energy Technology Data Exchange (ETDEWEB)

    Buyanosvsky, G; Gale, J [Ben-Gurion Univ. of the Negev, Beersheva (Israel). Jacob Blaustein Inst. for Desert Research; Degani, N [Israel Atomic Energy Commission, Beersheba. Nuclear Research Center-Negev

    1981-01-01

    The growth of microorganisms in the nutrient solution of a circulating hydroponic system was suppressed by ultra-violet radiation. Applied for three hours daily (572 Jm/sup -2/h/sup -1/) throughout experiments in which tomato and corn were grown, it was effective in reducing the population of microorganisms from between 500-800 x 10/sup 3/ to 10-50 x 10/sup 3/ cells per ml.

  9. Coal Enrichment Methods by Using Microorganisms and Their Metabolites

    Directory of Open Access Journals (Sweden)

    Małgorzata Deska

    2018-03-01

    Full Text Available The aim of this study is to review the literature on the methods of low-rank coal enrichment by using microorganisms and their metabolites. Effective bio-beneficiation technologies for low-rank coals in the future are also suggested throughout this paper. An extensive literature review highlights recent advances in bio-beneficiation technologies for low rank coals. This paper presents the state of the art in the field of the bio-beneficiation technology - carbon leaching with the aid of microorganisms, especially fungi. The knowledge of the low-rank coals leaching is an important step to meet the carbon eco-requirements and improve the economics of mining companies. There are several reasons to investigate microbial activities towards coal. This paper presents the current state of knowledge concerning bioleaching of coal. Thus, in view of the increasing importance of hard coal as a raw material and energy source, it seems hopeful to study the potential of microorganisms to modify the low-rank coal structure.

  10. Genetic fingerprint of microorganisms associated with the ...

    Indian Academy of Sciences (India)

    inviting range of elements which microorganisms use in their ... ization and degradation of organic binders leading to struc- tural damage (Herrera et al. 2004). Microbial solubilization of materials involves the produc- ... architectural cement.

  11. Antimicrobial activity of different disinfectants against cariogenic microorganisms

    Directory of Open Access Journals (Sweden)

    Esra UZER CELIK

    Full Text Available Abstract The aim of this study was to assess the in vitro antimicrobial effects of chlorhexidine digluconate (CHX, polyhexamethylene biguanide (PHBM, and octenidine dihydrochloride (OCT on cariogenic microorganisms by using their minimum inhibitory concentration (MIC and minimum bactericidal concentration (MBC. CHX, PHBM, and OCT were diluted in distilled water to the final test concentrations. Using the in-tube dilution method, Streptococcus mutans, Lactobacillus acidophilus, Lactobacillus rhamnosus, and Actinomyces viscosus were cultivated on blood agar and Mueller–Hinton broth (MHB at 37°C for 48 h. They were read using a spectrophotometer to detect MIC. To determine MBC, samples in the range of the turbidity threshold after 24 h were transferred onto blood agar and evaluated for growth after 24 h. Different MICs and MBCs were observed in all disinfectants against each microorganism. The lowest MIC and MBC against S. mutans (60 mg/L were obtained from PHBM. The lowest values against L. rhamnosus (15 mg/L, 30 mg/L, A. viscosus (30 mg/L, and L. acidophilus (15 mg/L, 30 mg/L were determined by OCT. PHBM and OCT have the potential to be replaced with CHX because they were effective against cariogenic microorganisms.

  12. Removal of triazine herbicides from freshwater systems using photosynthetic microorganisms

    International Nuclear Information System (INIS)

    Gonzalez-Barreiro, O.; Rioboo, C.; Herrero, C.; Cid, A.

    2006-01-01

    The uptake of the triazine herbicides, atrazine and terbutryn, was determined for two freshwater photosynthetic microorganisms, the green microalga Chlorella vulgaris and the cyanobacterium Synechococcus elongatus. An extremely rapid uptake of both pesticides was recorded, although uptake rate was lower for the cyanobacterium, mainly for atrazine. Other parameters related to the herbicide bioconcentration capacity of these microorganisms were also studied. Growth rate, biomass, and cell viability in cultures containing herbicide were clearly affected by herbicide uptake. Herbicide toxicity and microalgae sensitivity were used to determine the effectiveness of the bioconcentration process and the stability of herbicide removal. C. vulgaris showed higher bioconcentration capability for these two triazine herbicides than S. elongatus, especially with regard to terbutryn. This study supports the usefulness of such microorganisms, as a bioremediation technique in freshwater systems polluted with triazine herbicides

  13. Removal of triazine herbicides from freshwater systems using photosynthetic microorganisms

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Barreiro, O. [Laboratorio de Microbiologia, Facultad de Ciencias, Universidad de A Coruna, Campus da Zapateira s/n. 15071 A Coruna (Spain); Rioboo, C. [Laboratorio de Microbiologia, Facultad de Ciencias, Universidad de A Coruna, Campus da Zapateira s/n. 15071 A Coruna (Spain); Herrero, C. [Laboratorio de Microbiologia, Facultad de Ciencias, Universidad de A Coruna, Campus da Zapateira s/n. 15071 A Coruna (Spain); Cid, A. [Laboratorio de Microbiologia, Facultad de Ciencias, Universidad de A Coruna, Campus da Zapateira s/n. 15071 A Coruna (Spain)]. E-mail: cid@udc.es

    2006-11-15

    The uptake of the triazine herbicides, atrazine and terbutryn, was determined for two freshwater photosynthetic microorganisms, the green microalga Chlorella vulgaris and the cyanobacterium Synechococcus elongatus. An extremely rapid uptake of both pesticides was recorded, although uptake rate was lower for the cyanobacterium, mainly for atrazine. Other parameters related to the herbicide bioconcentration capacity of these microorganisms were also studied. Growth rate, biomass, and cell viability in cultures containing herbicide were clearly affected by herbicide uptake. Herbicide toxicity and microalgae sensitivity were used to determine the effectiveness of the bioconcentration process and the stability of herbicide removal. C. vulgaris showed higher bioconcentration capability for these two triazine herbicides than S. elongatus, especially with regard to terbutryn. This study supports the usefulness of such microorganisms, as a bioremediation technique in freshwater systems polluted with triazine herbicides.

  14. Collective Motion of Micro-organisms from Field Theoretical Viewpoint

    OpenAIRE

    Nojiri, Shin'ichi; Kawamura, Masako; Sugamoto, Akio

    1995-01-01

    We analyze the collective motion of micro-organisms in the fluid and consider the problem of the red tide. The red tide is produced by the condensation of the micro-organisms, which might be a similar phenomenon to the condensation of the strings. We propose a model of the generation of the red tide. By considering the interaction between the micro- organisms mediated by the velocity fields in the fluid, we derive the Van der Waals type equation of state, where the generation of the red tide ...

  15. Effects of pulsed electric fields on pathogenic microorganisms of major concern in fluid foods: a review.

    Science.gov (United States)

    Mosqueda-Melgar, Jonathan; Elez-Martínez, Pedro; Raybaudi-Massilia, Rosa M; Martín-Belloso, Olga

    2008-09-01

    Pathogenic microorganisms such as Escherichia coli O157:H7, Salmonella spp., Listeria monocytogenes, Bacillus cereus, Staphylococcus aureus, Yersinia enterocolitica, and Campylobacter jejuni have been implicated in foodborne diseases and outbreaks worldwide. These bacteria have been associated with the consumption of fresh fruit juices, milk, and dairy products, which are foodstuff, highly demanded by consumers in retails and supermarkets. Nowadays, consumers require high quality, fresh-like, and safe foods. Pulsed electric field (PEF) is a non-thermal preservation method, able to inactivate pathogenic microorganisms without significant loss of the organoleptic and nutritional properties of food. The PEF treatment effectiveness to destroy bacteria such as Listeria innocua, E. coli, Salmonella Typhimurium, E. coli O157:H7 and E. coli 8739 at pasteurization levels (> or = 5.0 log(10) cycles) in some fluid foods was reported. However, data on the inactivation of some microorganisms such as Bacillus cereus, Staphylococcus aureus, Yersinia enterocolitica, and Campylobacter jejuni in fluid foods by PEF processing is very limited. Therefore, future works should be focused toward the inactivation of these pathogenic bacteria in real foods.

  16. Enhancement of Biodegradation of Palm Oil Mill Effluents by Local Isolated Microorganisms.

    Science.gov (United States)

    Soleimaninanadegani, Mohammadreza; Manshad, Soheila

    2014-01-01

    This study was designed to investigate the microorganisms associated with palm oil mill effluent (POME) in Johor Bahru state, Malaysia. Biodegradation of palm oil mill effluents (POME) was conducted to measure the discarded POME based on physicochemical quality. The bacteria that were isolated are Micrococcus species, Bacillus species, Pseudomonas species, and Staphylococcus aureus, while the fungi that were isolated are Aspergillus niger, Aspergillus fumigatus, Candida species, Fusarium species, Mucor species, and Penicillium species. The autoclaved and unautoclaved raw POME samples were incubated for 7 days and the activities of the microorganisms were observed each 12 hours. The supernatants of the digested POME were investigated for the removal of chemical oxygen demand (COD), color (ADMI), and biochemical oxygen demand (BOD) at the end of each digestion cycle. The results showed that the unautoclaved raw POME sample degraded better than the inoculated POME sample and this suggests that the microorganisms that are indigenous in the POME are more effective than the introduced microorganisms. This result, however, indicates the prospect of isolating indigenous microorganisms in the POME for effective biodegradation of POME. Moreover, the effective treatment of POME yields useful products such as reduction of BOD, COD, and color.

  17. Enhancement of Biodegradation of Palm Oil Mill Effluents by Local Isolated Microorganisms

    Science.gov (United States)

    Soleimaninanadegani, Mohammadreza

    2014-01-01

    This study was designed to investigate the microorganisms associated with palm oil mill effluent (POME) in Johor Bahru state, Malaysia. Biodegradation of palm oil mill effluents (POME) was conducted to measure the discarded POME based on physicochemical quality. The bacteria that were isolated are Micrococcus species, Bacillus species, Pseudomonas species, and Staphylococcus aureus, while the fungi that were isolated are Aspergillus niger, Aspergillus fumigatus, Candida species, Fusarium species, Mucor species, and Penicillium species. The autoclaved and unautoclaved raw POME samples were incubated for 7 days and the activities of the microorganisms were observed each 12 hours. The supernatants of the digested POME were investigated for the removal of chemical oxygen demand (COD), color (ADMI), and biochemical oxygen demand (BOD) at the end of each digestion cycle. The results showed that the unautoclaved raw POME sample degraded better than the inoculated POME sample and this suggests that the microorganisms that are indigenous in the POME are more effective than the introduced microorganisms. This result, however, indicates the prospect of isolating indigenous microorganisms in the POME for effective biodegradation of POME. Moreover, the effective treatment of POME yields useful products such as reduction of BOD, COD, and color. PMID:27433516

  18. Bacterial community analysis of an industrial wastewater treatment plant in Colombia with screening for lipid-degrading microorganisms.

    Science.gov (United States)

    Silva-Bedoya, Lina Marcela; Sánchez-Pinzón, María Solange; Cadavid-Restrepo, Gloria Ester; Moreno-Herrera, Claudia Ximena

    2016-11-01

    The operation of wastewater treatment technologies depends on a combination of physical, chemical and biological factors. Microorganisms present in wastewater treatment plants play essential roles in the degradation and removal of organic waste and xenobiotic pollutants. Several microorganisms have been used in complementary treatments to process effluents rich in fats and oils. Microbial lipases have received significant industrial attention because of their stability, broad substrate specificity, high yields, and regular supply, as well as the fact that the microorganisms producing them grow rapidly on inexpensive media. In Colombia, bacterial community studies have focused on populations of cultivable nitrifying, heterotrophic and nitrogen-fixing bacteria present in constructed wetlands. In this study, culture-dependent methods, culture-independent methods (TTGE, RISA) and enzymatic methods were used to estimate bacterial diversity, to monitor temporal and spatial changes in bacterial communities, and to screen microorganisms that presented lipolytic activity. The dominant microorganisms in the Wastewater Treatment Plant (WWTP) examined in this study belonged to the phyla Firmicutes, Proteobacteria and Bacteroidetes. The enzymatic studies performed indicated that five bacterial isolates and three fungal isolates possessed the ability to degrade lipids; additionally, the Serratia, Kosakonia and Mucor genera presented lipase-mediated transesterification activity. The implications of these findings in regard to possible applications are discussed later in this paper. Our results indicate that there is a wide diversity of aerobic Gram-negative bacteria inhabiting the different sections of the WWTP, which could indicate its ecological condition, functioning and general efficiency. Copyright © 2016 Elsevier GmbH. All rights reserved.

  19. Profiling micro-organic contaminants in groundwater using multi-level piezometers

    OpenAIRE

    White, Debbie; Lapworth, Dan; Stuart, Marianne; Williams, Peter

    2015-01-01

    The presence of micro-organic pollutants, including ‘emerging contaminants’ within groundwater is of increasing interest. Robust protocols are required to minimise the introduction of contamination during the sampling process. Below we discuss the sampling protocols used to reduce inputs of plasticisers during the sampling process, as well as the techniques used to characterise the distribution of micro-organic pollutants in the subsurface. In this study multi-level piezometers...

  20. Method for treating wastewater using microorganisms and vascular aquatic plants

    Science.gov (United States)

    Wolverton, B. C. (Inventor)

    1983-01-01

    A method for treating wastewater compresses subjecting the wastewater to an anaerobic setting step for at least 6 hours and passing the liquid effluent from the anaerobic settling step through a filter cell in an upflow manner. There the effluent is subjected first to the action of anaerobic and facultative microorganisms, and then to the action of aerobic microorganisms and the roots of at least one vascular aquatic plant.

  1. Ecology and metagenomics of soil microorganisms

    Czech Academy of Sciences Publication Activity Database

    Baldrian, Petr; Head, I. M.; Prosser, J. I.; Schloter, M.; Smalla, K.; Tebbe, C. C.

    2011-01-01

    Roč. 78, č. 1 (2011), s. 1-2 ISSN 0168-6496 R&D Projects: GA MŠk LC06066; GA MŠk(CZ) LA10001 Institutional research plan: CEZ:AV0Z50200510 Keywords : microorganism * bioremediation * biogenesis of soil Subject RIV: EE - Microbiology, Virology Impact factor: 3.408, year: 2011

  2. Novel genome alteration system for microorganisms

    NARCIS (Netherlands)

    Daran, J.G.; Geertman, J.M.; Bolat, I.

    2015-01-01

    The invention relates to a set of targeting constructs, comprising a first construct comprising a recognition site for an endonuclease, a first region of homology with a target gene of a microorganism, and a first part of a selection marker, and a second construct comprising a second part of the

  3. Solar System constraints on a cosmologically viable f(R) theory

    Energy Technology Data Exchange (ETDEWEB)

    Bisabr, Yousef, E-mail: y-bisabr@srttu.ed [Department of Physics, Shahid Rajaee Teacher Training University, Lavizan, Tehran 16788 (Iran, Islamic Republic of)

    2010-01-18

    Recently, a model f(R) theory is proposed (Miranda et al. (2009)) which is cosmologically viable and distinguishable from LAMBDACDM. We use chameleon mechanism to investigate viability of the model in terms of Solar System experiments.

  4. Potentially pathogenic amoeba-associated microorganisms in cooling towers and their control.

    Science.gov (United States)

    Pagnier, Isabelle; Merchat, Michèle; La Scola, Bernard

    2009-06-01

    Cooling towers provide a favorable environment for the proliferation of microorganisms. Cooling towers generate a biofilm and often aerosolize contaminated water, thereby increasing the risk of microorganism dissemination by human inhalation. This pathogen dissemination was first revealed by the epidemics of Legionnaires' disease that were directly related to the presence of cooling towers, and since then, the ecology of Legionella pneumophila has been well studied. Each country has specific standards regarding the acceptable amount of microorganisms in cooling tower systems. However, those standards typically only concern L. pneumophila, even though many other microorganisms can also be isolated from cooling towers, including protozoa, bacteria and viruses. Microbiological control of the cooling tower system can be principally achieved by chemical treatments and also by improving the system's construction. Several new treatments are being studied to improve the efficiency of disinfection. However, as most of these treatments continue to focus solely on L. pneumophila, reports of other types of pathogens continue to increase. Therefore, how their dissemination affects the human populous health should be addressed now.

  5. Root Canal Microorganisms Profiles of Upper Anterior Teeth with Periapical Lesion

    Directory of Open Access Journals (Sweden)

    Maria Tanumiharja

    2014-12-01

    Full Text Available Microorganisms are the main causative agents on the development of apical periodontitis. Microorganisms infecting the root canal system are colonized in communities as biofilm. These bacterial communities show distinct pattern related to the different forms of apical periodontitis which are determined by species richness and abundance. Objective: This study is aimed to examine the root canal microorganisms on upper anterior teeth of asymptomatic apical periodontitis and chronic apical abscess. Methods: Samples were collected from patients referring to Endodontic Department of Hasanuddin University Dental Hospital from July 2013 to September 2013. Twenty two samples, aged 17-40 were collected from 16 patients with asymptomatic apical periodontitis, and 36 samples, aged 18-50 were collected from 36 patients with chronic apical abscess. Microorganisms were evaluated using cultural technique. Results: The results showed predominant bacteria in asymptomatic apical periodontitis is Porhyromonas spp while in chronic apical abscess both Streptococcus spp and Porhyromonas spp showed similar frequencies. Conclusion: This study shows Porhyromonas spp play dominant role in apical periodontitis either in asymptomatic apical periodontitis or chronic apical abscess.

  6. Halophilic microorganisms in deteriorated historic buildings: insights into their characteristics.

    Science.gov (United States)

    Adamiak, Justyna; Otlewska, Anna; Gutarowska, Beata; Pietrzak, Anna

    2016-01-01

    Historic buildings are constantly being exposed to numerous climatic changes such as damp and rainwater. Water migration into and out of the material's pores can lead to salt precipitation and the so-called efflorescence. The structure of the material may be seriously threatened by salt crystallization. A huge pressure is produced when salt hydrates occupy larger spaces, which leads at the end to cracking, detachment and material loss. Halophilic microorganisms have the ability to adapt to high salinity because of the mechanisms of inorganic salt (KCl or NaCl) accumulation in their cells at concentrations isotonic to the environment, or compatible solutes uptake or synthesis. In this study, we focused our attention on the determination of optimal growth conditions of halophilic microorganisms isolated from historical buildings in terms of salinity, pH and temperature ranges, as well as biochemical properties and antagonistic abilities. Halophilic microorganisms studied in this paper could be categorized as a halotolerant group, as they grow in the absence of NaCl, as well as tolerate higher salt concentrations (Staphylococcus succinus, Virgibacillus halodenitrificans). Halophilic microorganisms have been also observed (Halobacillus styriensis, H. hunanensis, H. naozhouensis, H. litoralis, Marinococcus halophilus and yeast Sterigmatomyces halophilus). With respect to their physiological characteristics, cultivation at a temperature of 25-30°C, pH 6-7, NaCl concentration for halotolerant and halophilic microorganisms, 0-10% and 15-30%, respectively, provides the most convenient conditions. Halophiles described in this study displayed lipolytic, glycolytic and proteolytic activities. Staphylococcus succinus and Marinococcus halophilus showed strong antagonistic potential towards bacteria from the Bacillus genus, while Halobacillus litoralis displayed an inhibiting ability against other halophiles.

  7. Interactions Between Beneficial and Harmful Microorganisms: From the Composting Process to Compost Application

    OpenAIRE

    Fuchs, Jacques G.

    2010-01-01

    Numerous microorganisms are involved in the composting process, but their precise roles are often unknown. Compost microorganisms are influenced by the composition of the substrate and by the temperature in the compost pile. In addition, different microorganisms also influence each other, e.g. through competition. In the first phase of composting, microbial activity increase drastically, leading to a rise in temperature. The initial bacterial dominance is replaced by a fungal one during compo...

  8. Production of gaba (γ - aminobutyric acid by microorganisms: a review

    Directory of Open Access Journals (Sweden)

    Radhika Dhakal

    2012-12-01

    Full Text Available GABA (γ-aminobutyric acid is a four carbon non-protein amino acid that is widely distributed in plants, animals and microorganisms. As a metabolic product of plants and microorganisms produced by the decarboxylation of glutamic acid, GABA functions as an inhibitory neurotransmitter in the brain that directly affects the personality and the stress management. A wide range of traditional foods produced by microbial fermentation contain GABA, in which GABA is safe and eco-friendly, and also has the possibility of providing new health-benefited products enriched with GABA. Synthesis of GABA is catalyzed by glutamate decarboxylase, therefore, the optimal fermentation condition is mainly based on the biochemical properties of the enzyme. Major GABA producing microorganisms are lactic acid bacteria (LAB, which make food spoilage pathogens unable to grow and act as probiotics in the gastrointestinal tract. The major factors affecting the production of GABA by microbial fermentation are temperature, pH, fermentation time and different media additives, therefore, these factors are summarized to provide the most up-dated information for effective GABA synthesis. There has been a huge accumulation of knowledge on GABA application for human health accompanying with a demand on natural GABA supply. Only the GABA production by microorganisms can fulfill the demand with GABA-enriched health beneficial foods.

  9. Production of gaba (γ - Aminobutyric acid) by microorganisms: a review.

    Science.gov (United States)

    Dhakal, Radhika; Bajpai, Vivek K; Baek, Kwang-Hyun

    2012-10-01

    GABA (γ-aminobutyric acid) is a four carbon non-protein amino acid that is widely distributed in plants, animals and microorganisms. As a metabolic product of plants and microorganisms produced by the decarboxylation of glutamic acid, GABA functions as an inhibitory neurotransmitter in the brain that directly affects the personality and the stress management. A wide range of traditional foods produced by microbial fermentation contain GABA, in which GABA is safe and eco-friendly, and also has the possibility of providing new health-benefited products enriched with GABA. Synthesis of GABA is catalyzed by glutamate decarboxylase, therefore, the optimal fermentation condition is mainly based on the biochemical properties of the enzyme. Major GABA producing microorganisms are lactic acid bacteria (LAB), which make food spoilage pathogens unable to grow and act as probiotics in the gastrointestinal tract. The major factors affecting the production of GABA by microbial fermentation are temperature, pH, fermentation time and different media additives, therefore, these factors are summarized to provide the most up-dated information for effective GABA synthesis. There has been a huge accumulation of knowledge on GABA application for human health accompanying with a demand on natural GABA supply. Only the GABA production by microorganisms can fulfill the demand with GABA-enriched health beneficial foods.

  10. Identification of anaerobic microorganisms for converting kitchen waste to biogas

    International Nuclear Information System (INIS)

    Amirhossein Malakahmad; Shahrom Mohd Zain; Noor Ezlin Ahmad Basri; Shamsul Rahman Mohamed Kutty; Mohd Hasnain Isa

    2010-01-01

    Anaerobic digestion process is one of the alternative methods to convert organic waste into methane gas which is a fuel and energy source. Activities of various kinds of microorganisms are the main factor for anaerobic digestion which produces methane gas. Therefore, in this study a modified Anaerobic Baffled Reactor (ABR) with working volume of 50 liters was designed to identify the microorganisms through biogas production. The mixture of 75% kitchen waste and 25% sewage sludge was used as substrate. Observations on microorganisms in the ABR showed that there exists a small amount of protozoa (5%) and fungi (2%) in the system, but almost 93% of the microorganism population consists of bacteria. It is definitely clear that bacteria are responsible for anaerobic biodegradation of kitchen waste. Results show that in the acidification zone of the ABR (front compartments of reactor) fast growing bacteria capable of growth at high substrate levels and reduced pH was dominant. A shift to slower growing scavenging bacteria that grow better at higher pH was occurring towards the end of the reactor. Due to the ability of activity in acetate environment the percentages of Methanococcus, Methanosarcina and Methanotrix were higher than other kinds of methane former in the system. (Author)

  11. Solar System constraints on a cosmologically viable f(R) theory

    International Nuclear Information System (INIS)

    Bisabr, Yousef

    2010-01-01

    Recently, a model f(R) theory is proposed (Miranda et al. (2009)) which is cosmologically viable and distinguishable from ΛCDM. We use chameleon mechanism to investigate viability of the model in terms of Solar System experiments.

  12. 77 FR 35331 - Trichoderma reesei; Proposed Significant New Use Rule

    Science.gov (United States)

    2012-06-13

    ... Trichoderma reesei; Proposed Significant New Use Rule AGENCY: Environmental Protection Agency (EPA). ACTION... Control Act (TSCA) for the genetically modified microorganism identified generically as Trichoderma reesei...: Trichoderma reesei (MCAN J-10-2) (generic). Chemical Abstracts Service (CAS) Registry Number: Not available...

  13. Non-viable antagonist cells are associated with reduced biocontrol performance by viable cells of the yeast Papiliotrema flavescens against Fusarium head blight of wheat.

    Science.gov (United States)

    Microbially-based plant disease control products have achieved commercial market success, but the efficacy of such biocontrol products is sometimes deemed inconsistent. Improper processing of harvested microbial biomass or long-term storage can reduce the proportion of viable cells and necessitate t...

  14. Classification of root canal microorganisms using electronic-nose and discriminant analysis

    Directory of Open Access Journals (Sweden)

    Özbilge Hatice

    2010-11-01

    Full Text Available Abstract Background Root canal treatment is a debridement process which disrupts and removes entire microorganisms from the root canal system. Identification of microorganisms may help clinicians decide on treatment alternatives such as using different irrigants, intracanal medicaments and antibiotics. However, the difficulty in cultivation and the complexity in isolation of predominant anaerobic microorganisms make clinicians resort to empirical medical treatments. For this reason, identification of microorganisms is not a routinely used procedure in root canal treatment. In this study, we aimed at classifying 7 different standard microorganism strains which are frequently seen in root canal infections, using odor data collected using an electronic nose instrument. Method Our microorganism odor data set consisted of 5 repeated samples from 7 different classes at 4 concentration levels. For each concentration, 35 samples were classified using 3 different discriminant analysis methods. In order to determine an optimal setting for using electronic-nose in such an application, we have tried 3 different approaches in evaluating sensor responses. Moreover, we have used 3 different sensor baseline values in normalizing sensor responses. Since the number of sensors is relatively large compared to sample size, we have also investigated the influence of two different dimension reduction methods on classification performance. Results We have found that quadratic type dicriminant analysis outperforms other varieties of this method. We have also observed that classification performance decreases as the concentration decreases. Among different baseline values used for pre-processing the sensor responses, the model where the minimum values of sensor readings in the sample were accepted as the baseline yields better classification performance. Corresponding to this optimal choice of baseline value, we have noted that among different sensor response model and

  15. Microorganisms -indicators of the level of soil pollution with lead

    OpenAIRE

    Stavreva Veselinovska, Snezana

    2011-01-01

    Environmental pollution with heavy metals present a real threat to wildlife because the metals cannot be naturally decomposed as is the case with organic pollutants, and as such they can survive in the environment while accumulating the heavy metals in different parts. Pollution with metals can affect different organisms in the environment, such as microorganisms, plants and animals, but the degree of toxicity depends on the species. Microorganisms have different mechanisms of coping with...

  16. Three-dimensional motion measurements of free-swimming microorganisms using digital holographic microscopy

    International Nuclear Information System (INIS)

    Lee, Sang Joon; Seo, Kyung Won; Choi, Yong Seok; Sohn, Myong Hwan

    2011-01-01

    A digital holographic microscope is employed to measure the 3D motion of free-swimming microorganisms. The focus function used to quantify image sharpness provides a better depth-directional accuracy with a smaller depth-of-focus compared with the intensity method in determining the depth-directional position of spherical particles of various diameters. The focus function is then applied to measure the 3D positions of free-swimming microorganisms, namely dinoflagellates C. polykrikoides and P. minimum. Both automatic segmentation and proper selection of a focus function for a selected segment are important processes in measuring the positional information of two free-swimming microorganisms of different shapes with various width-to-length ratios. The digital holographic microscopy technique improved in this work is useful for measuring 3D swimming trajectories, velocities and attitudes of hundreds of microorganisms simultaneously. It also exhibits exceptional depth-directional accuracy

  17. Selective detection of viable seed-borne Acidovorax citrulli by real-time PCR with propidium monoazide.

    Science.gov (United States)

    Tian, Qian; Feng, Jian-Jun; Hu, Jie; Zhao, Wen-Jun

    2016-10-14

    In recent years, use of the DNA-intercalating dye propidium monoazide (PMA) in real-time PCR has been reported as a novel method to detect viable bacteria in different types of samples, such as food, environmental, and microbiological samples. In this study, viable cells of Acidovorax citrulli, the causal agent of bacterial seedling blight and fruit blotch, were selectively detected and differentiated from dead cells by real-time fluorescent polymerase chain reaction amplification after the bacterial solution was treated with the DNA-binding dye PMA. The primers and TaqMan probe were based on the A. citrulli genome (Aave_1909, Gene ID: 4669443) and were highly specific for A. citrulli. The detection threshold of this assay was 10 3 colony-forming units per mL (CFU/mL) in pure cell suspensions containing viable and dead cells and infected watermelon seeds. Application of this assay enables the selective detection of viable cells of A. citrulli and facilitates monitoring of the pathogen in watermelon and melon seeds.

  18. Defensive properties of pyrrolizidine alkaloids against microorganisms

    NARCIS (Netherlands)

    Joosten, L.; Van Veen, J.A.

    2011-01-01

    The understanding of the selection factors that drive chemical diversification of secondary metabolites of constitutive defence systems in plants, such as pyrrolizidine alkaloids (PAs), is still incomplete. Historically, plants always have been confronted with microorganisms. Long before herbivores

  19. Exposure to airborne microorganisms and endotoxin in herb processing plants.

    Science.gov (United States)

    Dutkiewicz, J; Krysińska-Traczyk, E; Skórska, C; Sitkowska, J; Prazmo, Z; Golec, M

    2001-01-01

    Microbiological air sampling was performed in two herb processing plants located in eastern Poland. Air samples for determination of the levels of bacteria, fungi, dust and endotoxin were collected at 14 sites during cleaning, cutting, grinding, sieving, sorting and packing of 11 kinds of herbs (nettle, caraway, birch, celandine, marjoram, mint, peppermint, sage, St. John's wort, calamus, yarrow), used for production of medications, cosmetics and spices. It was found that processing of herbs was associated with a very high pollution of the air with bacteria, fungi, dust and endotoxin. The numbers of microorganisms (bacteria and fungi) in the air of herb processing plants ranged within 40.6-627.4 x 10(3) cfu/m3 (mean +/- S.D = 231.4 +/- 181.0 x 10(3) cfu/m3). The greatest concentrations were noted at the initial stages of production cycle, during cleaning, cutting and grinding of herbs. The numbers of airborne microorganisms were also significantly (pnettle, yarrow and mint. The values of the respirable fraction of airborne microflora in the examined facilities varied within a fairly wide range and were between 14.7-67.7%. The dominant microorganisms in the air of herb processing plants were mesophilic bacteria, among which endospore-forming bacilli (Bacillus spp.) and actinomycetes of the species Streptomyces albus were most numerous. Among Gram-negative bacteria, the most common was endotoxin-producing species Alcaligenes faecalis. Altogether, 37 species or genera of bacteria and 23 species or genera of fungi were identified in the air of herb processing plants, of these, 11 and 10 species or genera respectively were reported as having allergenic and/or immunotoxic properties. The concentrations of dust and bacterial endotoxin in the air of herb processing plants were large with extremely high levels at some sampling sites. The concentrations of airborne dust ranged within 3.2-946.0 mg/m3 (median 18.1 mg/m3), exceeding at 13 out of 14 sampling sites the Polish OEL

  20. UV inactivation of pathogenic and indicator microorganisms

    International Nuclear Information System (INIS)

    Chang, J.C.; Ossoff, S.F.; Lobe, D.C.; Dorfman, M.H.; Dumais, C.M.; Qualls, R.G.; Johnson, J.D.

    1985-01-01

    Survival was measured as a function of the dose of germicidal UV light for the bacteria Escherichia coli, Salmonella typhi, Shigella sonnei, Streptococcus faecalis, Staphylococcus aureus, and Bacillus subtilis spores, the enteric viruses poliovirus type 1 and simian rotavirus SA11, the cysts of the protozoan Acanthamoeba castellanii, as well as for total coliforms and standard plate count microorganisms from secondary effluent. The doses of UV light necessary for a 99.9% inactivation of the cultured vegetative bacteria, total coliforms, and standard plate count microorganisms were comparable. However, the viruses, the bacterial spores, and the amoebic cysts required about 3 to 4 times, 9 times, and 15 times, respectively, the dose required for E. coli. These ratios covered a narrower relative dose range than that previously reported for chlorine disinfection of E. coli, viruses, spores, and cysts

  1. UV inactivation of pathogenic and indicator microorganisms

    Energy Technology Data Exchange (ETDEWEB)

    Chang, J.C.; Ossoff, S.F.; Lobe, D.C.; Dorfman, M.H.; Dumais, C.M.; Qualls, R.G.; Johnson, J.D.

    1985-06-01

    Survival was measured as a function of the dose of germicidal UV light for the bacteria Escherichia coli, Salmonella typhi, Shigella sonnei, Streptococcus faecalis, Staphylococcus aureus, and Bacillus subtilis spores, the enteric viruses poliovirus type 1 and simian rotavirus SA11, the cysts of the protozoan Acanthamoeba castellanii, as well as for total coliforms and standard plate count microorganisms from secondary effluent. The doses of UV light necessary for a 99.9% inactivation of the cultured vegetative bacteria, total coliforms, and standard plate count microorganisms were comparable. However, the viruses, the bacterial spores, and the amoebic cysts required about 3 to 4 times, 9 times, and 15 times, respectively, the dose required for E. coli. These ratios covered a narrower relative dose range than that previously reported for chlorine disinfection of E. coli, viruses, spores, and cysts.

  2. Effects of phosphate-solubilizing bacteria, native microorganisms, and rock dust on Jatropha curcas L. growth.

    Science.gov (United States)

    Santana, E B; Marques, E L S; Dias, J C T

    2016-10-05

    Microorganisms with the ability to release nutrients to the soil from insoluble sources may be useful for plant cultivation. We evaluated the growth-promoting effect on Jatropha curcas L. of phosphate-solubilizing bacteria (PSB) and the native microbiota in soil with or without rock dust. J. curcas L. is important for biodiesel production. The experiments were performed in a greenhouse under a random-statistical design with 14 replicates. The soil received increasing dosages of rock dust. The presence of resident microorganisms and PSB inoculum was correlated with plant height, biomass production, and phosphorus content in plants for 120 days. Native soil microorganisms were detected and identified using denaturing gradient gel electrophoresis and DNA sequence analysis. Several bacterial populations belonged to the genus Bacillus. Populations associated with the phyla Chytridiomycota and Ascomycota were detected among the fungi. The best results for the variable plant height were correlated with the presence of resident microbiota and rock dust until the end of the experiment. The largest biomass production and the highest content of phosphorus occurred in the presence of soil-resident microbiota only up to 120 days. No significant effects were observed for biomass production with the use of PSB combined with rock dust. J. curcas L. under the influence of only resident microbiota showed the best plant growth results. Future research will focus on the specificity of resident microbiota activity in plant growth promotion and the isolation of these microorganisms to produce a new inoculum to be tested in various plants.

  3. A viable real estate economy with disruption and blockchain

    NARCIS (Netherlands)

    Veuger, Jan

    2017-01-01

    Two titles in one cover. On page 56-112 there's the English version of the book: 'A viable real estate economy with disruption and blockchain. Does real estate still have the value that it had, or is the valuation of real estate going to change due to surprising products and services, innovative

  4. Environment purification using microorganisms. Biseibutsu ni yoru kankyo joka

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, H [Asahi Glass Co. Ltd., Tokyo (Japan); Harada, S

    1993-12-01

    Technologies to purify polluted soils vary with kinds of pollutants, spread of pollution, and shapes of water veins. A method is used often that several wells are drilled in a polluted area, and water is circulated between upstream wells and downstream wells, where activities of microorganisms living in that particular environment are utilized to biodegrade the pollutants. This technology is called bioremediation. This paper deals with soil pollution by chemical substances, and describes development of a technology to remove pollution caused by PCB and petroleum which is thought difficult to apply the bioremediation technology among environment purifying technologies using microorganisms. The bioremediation of petroleum pollution assumes petroleum pollution on seashores. Discussions have been given on separation from sea water of petroleum decomposing microorganisms to be used in the bioremediation, and the number of petroleum decomposing bacteria in seas near Japan. As a result, it was made clear that a few kinds of bacteria will suffice for decomposition of main components in a mixture as complex as petroleum. 5 refs., 4 figs.

  5. Promoting Women Participation in Aquaculture as a Viable Tool for ...

    African Journals Online (AJOL)

    Promoting Women Participation in Aquaculture as a Viable Tool for Poverty Alleviation in the Rural Areas of Nigeria. ... Open Access DOWNLOAD FULL TEXT ... a source of income, also the paper focus on the roles of women in aquaculture, ...

  6. Investigations of subterranean microorganisms. Their importance for performance assessment of radioactive waste disposal

    International Nuclear Information System (INIS)

    Pedersen, K.

    1995-06-01

    This report presents a broad and thorough description of how microorganisms may influence safety of repositories for radioactive waste. First, an overview of the Swedish concepts for disposal is given, including a discussion of the geological, chemical and hydrological conditions in repositories. Then the limiting and stimulating factors for life of microorganisms are reviewed, such as relations to oxygen, temperature, pH, radiation, pressure, water and nutrients availability. Bacteria in the cycles of carbon, nitrogen, sulfur, iron, manganese and hydrogen are also discussed. A literature review of subterranean bacteria is given in chapter 4. Chapter 5 treats investigations of microorganisms in repository-like environments, and microbial corrosion and redox processes relevant for materials in the repository and for the mobility of radionuclides. Possibilities to predict the activity and presence of microorganisms through mathematical models are discussed in chapter 6. Chapter 7 summarizes the conclusion drawn in the report, how microorganisms may influence performance safety assessment of radioactive waste disposal, and also identifies research needs. 293 refs, 43 figs, 36 tabs

  7. Investigations of subterranean microorganisms. Their importance for performance assessment of radioactive waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Pedersen, K [Goeteborg Univ. (Sweden). General and Marine Microbiology; Karlsson, Fred [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)

    1995-06-01

    This report presents a broad and thorough description of how microorganisms may influence safety of repositories for radioactive waste. First, an overview of the Swedish concepts for disposal is given, including a discussion of the geological, chemical and hydrological conditions in repositories. Then the limiting and stimulating factors for life of microorganisms are reviewed, such as relations to oxygen, temperature, pH, radiation, pressure, water and nutrients availability. Bacteria in the cycles of carbon, nitrogen, sulfur, iron, manganese and hydrogen are also discussed. A literature review of subterranean bacteria is given in chapter 4. Chapter 5 treats investigations of microorganisms in repository-like environments, and microbial corrosion and redox processes relevant for materials in the repository and for the mobility of radionuclides. Possibilities to predict the activity and presence of microorganisms through mathematical models are discussed in chapter 6. Chapter 7 summarizes the conclusion drawn in the report, how microorganisms may influence performance safety assessment of radioactive waste disposal, and also identifies research needs. 293 refs, 43 figs, 36 tabs.

  8. The use of the neutron radiography in the diagnosis of microorganisms contamination

    International Nuclear Information System (INIS)

    Wacha, Reinaldo; Crispim, Verginia R.; Lage, Claudia

    2000-01-01

    This work aims to present a new method of microorganism detection in several culture medium, such as potable water and corporal fluids. After the steps of processes of growth in culture medium, separation and resuspension in a boron based lid solution, the microorganisms are deposited in lines detectors and at last submitted to a thermal neutrons beam (≡ 2,2 x 10 5 n/cm 2 .s). The latent tracks registered by the alpha particles coming from the B(n,α)Li reaction are analyzed by an optical microscope, allowing the detection of microorganisms existence. (author)

  9. The functional role of microorganisms in soil biocenoses in Ignalina NPP region

    International Nuclear Information System (INIS)

    Bagdanavichiene, Z.; Budavichiene, I.; Ramanauskiene, Z.

    1995-01-01

    Studies on group structure of soil microorganisms as well as regularities of changes in cellulotic activity in marsh biotopes of pine and birch forests in the littoral district of lake Drukshiai were carried out. The activity and directness of microorganisms, as well as dissociation rate of cellulose in soil depending on the changes of climatic conditions were evaluated. The effect of climate factors and thermal pollution on the activity of microorganisms and rate of cellulose degradation in soil was revealed in the standard area (Shashkai) near the disposal canal of Ignalina NPP. (author). 11 refs., 2 tabs., 3 figs

  10. Entry of Vibrio harveyi and Vibrio fischeri into the viable but nonculturable state.

    Science.gov (United States)

    Ramaiah, N; Ravel, J; Straube, W L; Hill, R T; Colwell, R R

    2002-01-01

    Physiological responses of marine luminous bacteria, Vibrio harveyi (ATCC 14216) and V. fischeri (UM1373) to nutrient-limited normal strength (35 ppt iso-osmolarity) and low (10 ppt hypo-osmolarity) salinity conditions were determined. Plate counts, direct viable counts, actively respiring cell counts, nucleoid-containing cell counts, and total counts were determined. Vibrio harveyi incubated at 22 degrees C in nutrient-limited artificial seawater (ASW) became nonculturable after approximately 62 and 45 d in microcosms of 35 ppt and 10 ppt ASW, respectively. In contrast, V. fischeri became nonculturable at approximately 55 and 31 d in similar microcosms. Recovery of both culturability and luminescence of cells in the viable but nonculturable state was achieved by addition of nutrient broth or nutrient broth supplemented with a carbon source, including luminescence-stimulating compounds. Temperature upshift from 22 degrees C to 30 degrees C or 37 degrees C did not result in recovery from nonculturability. The study confirms entry of V. harveyi and V. fischeri into the viable but nonculturable state under low-nutrient conditions and demonstrates nutrient-dependent resuscitation from this state. This study confirms loss of luminescence of V. harveyi and V. fischeri on entry into the viable but nonculturable state and suggests that enumeration of luminescent cells in water samples may be a rapid method to deduce the nutrient status of a water sample.

  11. Combined evaluation of rest-redistribution thallium-201 tomography and low-dose dobutamine echocardiography enhances the identification of viable myocardium in patients with chronic coronary artery disease

    International Nuclear Information System (INIS)

    Pace, L.; Cuocolo, A.; Salvatore, M.; Perrone-Filardi, P.; Prastaro, M.; Vezzuto, P.; Crisci, T.; Dellegrottaglie, S.; Piscione, F.; Chiariello, M.; Mainenti, P.P.; Varrone, A.

    1998-01-01

    The purpose of this study was to evaluate whether combined evaluation by discriminant analysis of rest-redistribution thallium-201 tomography and low-dose dobutamine echocardiography enhances the accuracy in identifying viable myocardium in patients with chronic coronary artery disease. Rest-redistribution 201 Tl has high sensitivity but low specificity in identifying viable myocardium, while the opposite is true for low-dose dobutamine echocardiography. Forty-six patients underwent low-dose dobutamine echocardiography and rest-redistribution 201 Tl tomography on the same day. Rest echocardiography was repeated at least 30 days (mean 40±20) after myocardial revascularization. Discriminant analysis was applied to the results of 201 Tl tomography and dobutamine echocardiography to classify a/dyskinetic segments as viable or non-viable. In 92 a/dyskinetic segments that were revascularized, rest-redistribution 201 Tl tomography yielded an accuracy of 75%, while the accuracy of dobutamine echocardiography was 70% (P 201 Tl imaging are useful and complementary techniques for identifying viable myocardium in patients with chronic coronary artery disease. Combined evaluation by discriminant analysis significantly improves accuracy, although the cost-effectiveness of such an approach remains to be determined. (orig.)

  12. Effects of a phosphinothricin based herbicide on selected groups of soil microorganisms.

    Science.gov (United States)

    Pampulha, M E; Ferreira, M A S S; Oliveira, A

    2007-08-01

    The effects of the herbicide glufosinate-ammonium on soil microbial populations and activity were observed in a laboratory microcosms over a 40 day period. Culturable aerobic bacteria, fungi and actinomycetes, the fundamental groups of heterotrophic microorganisms, were studied. Nitrifiers, considered a very sensitive group to these compounds were also evaluated. Since herbicides have been found to inhibit decomposition of cellulose in the soil, the effects of glufosinate on cellulolytic bacteria and fungi were determined. Dehydrogenase activity as a measure of microbial activity was another parameter considered. Both stimulating and inhibitory effects on microbial populations were observed, depending on concentration of the herbicide and the period of incubation. A severe inhibiting effect of glufosinate on dehydrogenase activity was found. We concluded that the widespread use of this herbicide may have possible injurious effects on soil microorganisms and their activities. The toxicity exerted by glufosinate may lead to a shift in microbial community structure tending toward a significant loss in functional diversity. Dehydrogenase activity was shown to be an important indicator of glufosinate side-effects.

  13. Host Defense against Opportunist Microorganisms Following Trauma.

    Science.gov (United States)

    1979-06-01

    Guide for Laboratory Animal, Resources, National Academy of Sciences - National Research Council. I ii t ___ ii A- KNOWLEDMENT The investigators express...and Candida albicans are the microorganisms which are most frequently associated with septic complica- tions in thermally injured patients. Management

  14. Identification of specific microorganisms in fresh squeezed street vended fruit juices

    Directory of Open Access Journals (Sweden)

    K Sahithi Reddy

    2016-01-01

    Full Text Available Introduction: In developing country like India, street foods such as salads and fresh cut fruits are widely consumed. Among all street foods, fruit juices are common beverages, consumed more because of higher consumer preference both in terms of taste and health. Moreover, there is a dearth of Indian studies on contamination of street vended fruit juices. Aim: To determine the pH and specific microorganisms in freshly squeezed street vended fruit juices. Materials and Methods: Four fruit juices i.e., Grapes, Sweet Lime, Pineapple and Sapota were chosen for the study. Juices were collected in summer season in months between April and June 2013. Ten samples of 50 ml each fruit juice was collected in sterile bottles from various street vendors of Dilshuknagar area of Hyderabad city. Transportation of samples to Food Toxicology laboratory, National Institute of Nutrition was done in the ice box and processing was done within 2–4 h. Results: All juices showed bacterial contamination except one sample of grape juice. Pineapple juice samples showed the high bacterial contamination with all samples positive for fecal coliforms and Shigella spp. (100%. Salmonella spp. was detected only in one sample of Sapota juice (10%. Significant difference among fruit juices for prevalence of microorganisms was seen only for Escherichia coli (P = 0.03 with least count in Grape juice (20%. Conclusion: Freshly squeezed street vended fruit juices were contaminated with pathogenic bacteria, which significantly attributed to public health problem.

  15. How energetic and environmental constraints of microorganisms determine the carbon turnover in soils

    Science.gov (United States)

    Don, A.; Rödenbeck, C.; Gleixner, G.

    2012-04-01

    Microorganisms are the main catalysts driving carbon fluxes from soils. Traditional concepts of soil carbon stabilization failed to account for environmental and energy constraints of microorganisms. The distribution and density of organic carbon in the soil profile maybe a key factor determining the carbon stability and carbon flux. Decomposition is a two-step process following the Michaelis Menten kinetics: In a first step enzyme and substrate form a joint complex and then the decomposition reaction is catalyzed. Thus, biological decomposition relies on the encounter of substrate and the degradation catalyst, the microorganisms. Lower substrate concentration decreases the likelihood of an enzyme to hit a substrate molecule, to form an enzyme-substrate complex, and thus to catalyze the reaction. However, it was unproofen if this concept can be appliued to soils also. A long-term lab experiment revealed that the soil carbon turnover decreased with increasing carbon dilution due to mixture with soil minerals. The ability of microorganisms to move towards substrate in soils seems to be limited. To elucidate the effect of concentration-controlled carbon turnover, we devised the simple simulation model SCAMP based on the two-step kinetic with microorganism and carbon particles been simulated explicitly. The SCAMP model was able to simulate soil carbon profiles and age profiles in a realistic manner. The only carbon stabilization mechanism implemented in the model is the distribution of microorganisms and carbon particles in the soil and thus the availability of carbon for microorganism, which is especially important for subsoil carbon dynamics. The experiments and the model help to explain why large fractions of soil carbon have been stabilized for millennia and decoupled from the global carbon cycle.

  16. The microorganisms as a renewable source of ecological clean fuel

    International Nuclear Information System (INIS)

    Shalygo, N.V.; Mel'nikov, S.S.; Manankina, E.E.; Budakova, E.A.; Kolyago, V.M.

    2006-01-01

    Five families of microorganisms (Bacillaceae, Rhodospirillaceae, Cyanophyceae, Chlorophyceae and Euglenophyceae) as hydrogen producers were tested and the conditions that are necessary for hydrogen photoproduction were investigated. It was shown, that the most effective producers of hydrogen were Rhodobacter spheroides, Clostridium sp.; Euglena gracilis var. bacillaris and Chlamydomonas reinhardtii. Addition of glucose, iron and vanadium salts resulted in the increase of hydrogen production. Polycultures consisted of two or three microorganisms were more effective hydrogen producers compared to separate monocultures. (authors)

  17. Cybernetically sound organizational structures II: Relating de Sitter's design theory to Beer's viable system model

    NARCIS (Netherlands)

    Achterbergh, J.M.I.M.; Vriens, D.J.

    2011-01-01

    - Purpose – The purpose of this paper is to show how the viable system model (VSM) and de Sitter's design theory can complement each other in the context of the diagnosis and design of viable organizations. - Design/methodology/approach – Key concepts from Beer's model and de Sitter's design theory

  18. Introduce of Viable But Nonculturable Bacteria

    Directory of Open Access Journals (Sweden)

    Mehdi Hassanshahian

    2008-03-01

    Full Text Available Viable-But-Nonculturable-State (VBNC is the condition in which bacteria fail to grow on their routine bacteriological media where they would normally grow and develop into colonies, but are still alive and capable of renewed metabolic activity. VBNC state is useful for evaluating public health and for ascertaining the sterility of drinking water, pharmaceuticals, and foodstuff. A number of bacteria, mostly pathogenic to humans, have been proved to enter into this state in response to natural stresses such as starvation, incubation out of optimum growth temperature, increased osmotic pressure, etc. Once in the VBNC state, they undergo various physiological, structural, and genetic alterations. These alterations result in reduced cell size, conversion from bacilli to coccid, thickened cell walls, and peptidoglycan gaining many cross links. Metabolic changes also occur that include reductions in growth, nutrient transport, and respiratory rate; biosynthesis of new protein, and ATP remaining at a constant level. It has been shown that in the VBNC state, some pathogens conserve their virulence properties. Gene expression continues in the VBNC cell. Nucleic acids remain intact in the early VBNC phase but they gradually undergo degradation with prolonged VBNC. Cytological methods such as direct viable count and reduction of tetrazolium salts, and molecular methods such as reverse transcription polymerase chain reaction and green fluorescent protein have been used for the study of VBNC. Resuscitation from VBNC state starts when the inducing factor(s is/are lifted. Factors that help the resuscitation of VBNC bacteria include addition of certain nutrients and chemicals, introduction of a few culturable cells into the VBNC cell population, and passage through the animal host. As virulence properties are sustained during the VBNC phase, special care must be paid when evaluating sterility of drinking water.

  19. Potential applications of plant probiotic microorganisms in agriculture and forestry

    Directory of Open Access Journals (Sweden)

    Luciana Porto de Souza Vandenberghe

    2017-07-01

    Full Text Available Agriculture producers, pushed by the need for high productivity, have stimulated the intensive use of pesticides and fertilizers. Unfortunately, negative effects on water, soil, and human and animal health have appeared as a consequence of this indiscriminate practice. Plant probiotic microorganisms (PPM, also known as bioprotectants, biocontrollers, biofertilizers, or biostimulants, are beneficial microorganisms that offer a promising alternative and reduce health and environmental problems. These microorganisms are involved in either a symbiotic or free-living association with plants and act in different ways, sometimes with specific functions, to achieve satisfactory plant development. This review deals with PPM presentation and their description and function in different applications. PPM includes the plant growth promoters (PGP group, which contain bacteria and fungi that stimulate plant growth through different mechanisms. Soil microflora mediate many biogeochemical processes. The use of plant probiotics as an alternative soil fertilization source has been the focus of several studies; their use in agriculture improves nutrient supply and conserves field management and causes no adverse effects. The species related to organic matter and pollutant biodegradation in soil and abiotic stress tolerance are then presented. As an important way to understand not only the ecological role of PPM and their interaction with plants but also the biotechnological application of these cultures to crop management, two main approaches are elucidated: the culture-dependent approach where the microorganisms contained in the plant material are isolated by culturing and are identified by a combination of phenotypic and molecular methods; and the culture-independent approach where microorganisms are detected without cultivating them, based on extraction and analyses of DNA. These methods combine to give a thorough knowledge of the microbiology of the studied

  20. P contribution derived from phosphate solubilizing microorganism activity, rock phosphate and SP-36 determination by isotope "3"2P technique

    International Nuclear Information System (INIS)

    Anggi Nico Flatian; Iswandi Anas; Atang Sutandi; Ishak

    2016-01-01

    The "3"2P isotope technique has been used to trace P nutrients in the soil and soil-plant systems. The use of the isotope "3"2P has made it possible to differentiate the P contribution derived from phosphate solubilizing microorganism activity and the fertilizer P in the soil. The aims of the study were to obtain the quantitative data of P contribution derived from phosphate-solubilizing microorganism activity (Aspergillus niger and Burkholderia cepacia), rock phosphate and SP-36 through P uptake by the plants using isotope "3"2P technique and also to study the effects on growth and production of corn plants. The results were showed that phosphate-solubilizing microorganism, rock phosphate and SP-36 was produced specific activity ("3"2P) lower than control. The results were indicated that all treatments could contribute P for the plants. The lower specific activity was caused by supply P from rock phosphate and SP-36, and also was caused by solubilized of unavailable "3"1P from PSM activity, which decreased specific activity on labeled soil. The combination of phosphate-solubilizing microorganism and SP-36 treatments produced the highest P contribution, significantly higher than control and SP-36 only. Phosphate derived from combination of microorganism and SP-36 treatments ranging from 56.06% - 68.54% after 50 days planting, after 35 days planting, 51.96% - 59.65% on stover, 46.33% - 47.70% on grain and 53.02% - 59.87% on corn cob. In addition, the treatments could significantly support the plant growth and yield. It is expressed by increased number of leave at 35 days after planting, dry weight of leave at 35 days after planting and dry weight of grain. (author)

  1. Periodontal Microorganisms and Cardiovascular Risk Markers in Youth With Type 1 Diabetes and Without Diabetes.

    Science.gov (United States)

    Merchant, Anwar T; Nahhas, Georges J; Wadwa, R Paul; Zhang, Jiajia; Tang, Yifan; Johnson, Lonnie R; Maahs, David M; Bishop, Franziska; Teles, Ricardo; Morrato, Elaine H

    2016-04-01

    A subset of periodontal microorganisms has been associated with cardiovascular disease (CVD), which is the leading complication of type 1 diabetes (t1DM). The authors therefore evaluated the association between periodontal microorganism groups and early markers of CVD in youth with t1DM. A cross-sectional analysis was conducted among youth aged 12 to 19 years at enrollment; 105 had t1DM for ≥5 years and were seeking care at the Barbara Davis Center, University of Colorado, from 2009 to 2011, and 71 did not have diabetes. Subgingival plaque samples were assessed for counts of 41 periodontal microorganisms using DNA-DNA hybridization. Microorganisms were classified using cluster analysis into four groups named red-orange, orange-green, blue/other, and yellow/other, modified from Socransky's color scheme for periodontal microorganisms. Subsamples (54 with t1DM and 48 without diabetes) also received a periodontal examination at the University of Colorado School of Dental Medicine. Participants were ≈15 years old on average, and 74% were white. Mean periodontal probing depth was 2 mm (SE 0.02), and 17% had bleeding on probing. In multivariable analyses, glycated hemoglobin (HbA1c) was inversely associated with the yellow/other cluster (microorganisms that are not associated with periodontal disease) among youth with t1DM. Blood pressure, triglycerides, low-density lipoprotein, high-density lipoprotein, and total cholesterol were not associated with microorganism clusters in this group. HbA1c was not associated with periodontal microorganism clusters among youth without diabetes. Among youth with t1DM who had good oral health, periodontal microorganisms were not associated with CVD risk factors.

  2. Detection and Quantification of Viable and Nonviable Trypanosoma cruzi Parasites by a Propidium Monoazide Real-Time Polymerase Chain Reaction Assay

    Science.gov (United States)

    Cancino-Faure, Beatriz; Fisa, Roser; Alcover, M. Magdalena; Jimenez-Marco, Teresa; Riera, Cristina

    2016-01-01

    Molecular techniques based on real-time polymerase chain reaction (qPCR) allow the detection and quantification of DNA but are unable to distinguish between signals from dead or live cells. Because of the lack of simple techniques to differentiate between viable and nonviable cells, the aim of this study was to optimize and evaluate a straightforward test based on propidium monoazide (PMA) dye action combined with a qPCR assay (PMA-qPCR) for the selective quantification of viable/nonviable epimastigotes of Trypanosoma cruzi. PMA has the ability to penetrate the plasma membrane of dead cells and covalently cross-link to the DNA during exposure to bright visible light, thereby inhibiting PCR amplification. Different concentrations of PMA (50–200 μM) and epimastigotes of the Maracay strain of T. cruzi (1 × 105–10 parasites/mL) were assayed; viable and nonviable parasites were tested and quantified by qPCR with a TaqMan probe specific for T. cruzi. In the PMA-qPCR assay optimized at 100 μM PMA, a significant qPCR signal reduction was observed in the nonviable versus viable epimastigotes treated with PMA, with a mean signal reduction of 2.5 logarithm units and a percentage of signal reduction > 98%, in all concentrations of parasites assayed. This signal reduction was also observed when PMA-qPCR was applied to a mixture of live/dead parasites, which allowed the detection of live cells, except when the concentration of live parasites was low (10 parasites/mL). The PMA-qPCR developed allows differentiation between viable and nonviable epimastigotes of T. cruzi and could thus be a potential method of parasite viability assessment and quantification. PMID:27139452

  3. New micro-organism

    Energy Technology Data Exchange (ETDEWEB)

    Takakuwa, Masayoshi; Hashimoto, Gotaro

    1987-09-12

    Invention relates with a new organism for the coal liquefying desulfurization. This micro-organism conducts a good sporulation on a culture medium which contains a coal as an only carbon source. It belongs to Penicillium and named Penicillium MT-6001 registered at Fermentation Research Institute No. 8463. Coal powder is thrown into a reaction vessel which accommodated a culture solution of this bacteria, and the surface of the solution is covered with liquid paraffin; coal powder is treated of liquefaction for about 5 hours while maintaining the anaerobic condition and slowly agitating to form a transparent solution layer on the surface of the reactor together with liquid paraffin. Liquefied product shows an analysis pattern similar to naphthenic petroleum containing a lipid with polar radical. (2 figs)

  4. [Sorption of microorganisms by fiber materials].

    Science.gov (United States)

    Nikovskaia, G N; Gordienko, A S; Globa, L I

    1986-01-01

    Candida guilliermondii and Escherichia coli cells were adsorbed on glass and basalt fibres with a similar specific surface, but with a different charge. The quantity of adsorbed microorganisms did not depend on the type and charge of a fibre surface. However, cells were adsorbed faster and more firmly on positively charged and uncharged fibres than on negatively charged fibres.

  5. Preliminary applied study of assessment ischemic/viable myocardium by 99Tcm-HL91

    International Nuclear Information System (INIS)

    Liu Gang; Wu Hua

    2004-01-01

    Objective: To investigate the representation of 99 Tc m -HL91 in the ischemic myocardium, evaluate the diagnosis value of 99 Tc m -HL91 on hypoxic but viable myocardium. Methods: Six patients with cardiac infarction all underwent 99 Tc m -MIBI SPECT and 99 Tc m -HL91 SPECT. Average radioactivity of ischemic area and normal area were respectively obtained by ROI (2 x 2 pixels) on heart minor axis of images, And the radioactivity ratios of target (ischemic area)-to-non target(normal area)were calculated. Results: In image of 99 Tc m -HL91 SPECT, two patients who's radioactivity coloboma of 99 Tc m -MIBI image could be filled with 99 Tc m -HL91, four patients were not caught sight of obvious filling up. Conclusion 99 Tc m -HL91 can be selectively uptaken by ischemic and hypoxic but viable myocardium. it combination of 99 Tc m -MIBI SPECT may be good for accurate diagnosis and differentiation of viable myocardium. (authors)

  6. Turbulence from a microorganism's perspective: Does the open ocean feel different than a coral reef?

    Science.gov (United States)

    Pepper, Rachel; Variano, Evan; Koehl, M. A. R.

    2012-11-01

    Microorganisms in the ocean live in turbulent flows. Swimming microorganisms navigate through the water (e.g. larvae land on suitable substrata, predators find patches of prey), but the mechanisms by which they do so in turbulent flow are poorly understood as are the roles of passive transport versus active behaviors. Because microorganisms are smaller than the Kolmagorov length (the smallest scale of eddies in turbulent flow), they experience turbulence as a series of linear gradients in the velocity that vary in time. While the average strength of these gradients and a timescale can be computed from some typical characteristics of the flow, such as the turbulent kinetic energy or the dissipation rate, there are indications that organisms are disproportionally affected by rare, extreme events. Understanding the frequency of such events in different environments will be critical to understanding how microorganisms respond to and navigate in turbulence. To understand the hydrodynamic cues that microorganisms experience in the ocean we must measure velocity gradients in realistic turbulent flow on the spatial and temporal scales encountered by microorganisms. We have been exploring the effect of the spatial resolution of PIV and DNS of turbulent flow on the presence of velocity gradients of different magnitudes at the scale of microorganisms. Here we present some results of PIV taken at different resolutions in turbulent flow over rough biological substrata to illustrate the challenges of quantifying the fluctuations in velocity gradients encountered by aquatic microorganisms.

  7. Identification of Microorganisms by Modern Analytical Techniques.

    Science.gov (United States)

    Buszewski, Bogusław; Rogowska, Agnieszka; Pomastowski, Paweł; Złoch, Michał; Railean-Plugaru, Viorica

    2017-11-01

    Rapid detection and identification of microorganisms is a challenging and important aspect in a wide range of fields, from medical to industrial, affecting human lives. Unfortunately, classical methods of microorganism identification are based on time-consuming and labor-intensive approaches. Screening techniques require the rapid and cheap grouping of bacterial isolates; however, modern bioanalytics demand comprehensive bacterial studies at a molecular level. Modern approaches for the rapid identification of bacteria use molecular techniques, such as 16S ribosomal RNA gene sequencing based on polymerase chain reaction or electromigration, especially capillary zone electrophoresis and capillary isoelectric focusing. However, there are still several challenges with the analysis of microbial complexes using electromigration technology, such as uncontrolled aggregation and/or adhesion to the capillary surface. Thus, an approach using capillary electrophoresis of microbial aggregates with UV and matrix-assisted laser desorption ionization time-of-flight MS detection is presented.

  8. Effectiveness of current disinfection procedures against biofilm on contaminated GI endoscopes.

    Science.gov (United States)

    Neves, Marcelo S; da Silva, Marlei Gomes; Ventura, Grasiella M; Côrtes, Patrícia Barbur; Duarte, Rafael Silva; de Souza, Heitor S

    2016-05-01

    Attention to patient safety has increased recently due to outbreaks of nosocomial infections associated with GI endoscopy. The aim of this study was to evaluate current cleaning and disinfection procedures of endoscope channels with high bioburden and biofilm analysis, including the use of resistant mycobacteria associated with postsurgical infections in Brazil. Twenty-seven original endoscope channels were contaminated with organic soil containing 10(8) colony-forming units/mL of Pseudomonas aeruginosa, Staphylococcus aureus, or Mycobacterium abscessus subsp bolletii. Biofilms with the same microorganisms were developed on the inner surface of channels with the initial inoculum of 10(5) colony-forming units/mL. Channels were reprocessed following current protocol, and samples from cleaning and disinfection steps were analyzed by bioluminescence for adenosine triphosphate, cultures for viable microorganisms, and confocal microscopy. After contamination, adenosine triphosphate levels increased dramatically, and high bacterial growth was observed in all cultures. After cleaning, adenosine triphosphate levels decreased to values comparable to precontamination levels, and bacterial growth was demonstrated in 5 of 27 catheters, 2 with P aeruginosa and 3 with M abscessus. With regard to induced biofilm, a remarkable reduction occurred after cleaning, but significant microbial growth inhibition occurred only after disinfection. Nevertheless, viable microorganisms within the biofilm were still detected by confocal microscopy, more so with glutaraldehyde than with peracetic acid or O-phataladehyde. After the complete disinfection procedure, viable microorganisms could still be detected within the biofilm on endoscope channels. Prevention of biofilm development within endoscope channels should be a priority in disinfection procedures, particularly for ERCP and EUS. Copyright © 2016 American Society for Gastrointestinal Endoscopy. Published by Elsevier Inc. All rights

  9. Studies on chlorophyll and viable mutations in green gram (Vigna radiata L. Wilczek) II: Response to mutagen

    Energy Technology Data Exchange (ETDEWEB)

    Krishnaswami, S; Rathinam, M [Tamil Nadu Agricultural Univ., Coimbatore (India). Dept. of Agricultural Botany

    1980-09-01

    The frequency and spectrum of chlorophyll and viable mutations in relation to type and dose of mutagen and cluster progenies were studied in four green gram cultivars viz., Kopergaon, Pusa Baisakhi, L. 24/2 and Sel. 122 subjected to two levels of EMS and gamma irradiation, severally and in conjunction. While chlorophyll mutations did not vary with the mutagen dose, viable mutations exhibited a direct relationship. Combinations of the mutagens were more effective in mutation induction. While no difference was manifested between the cluster families in respect of chlorophyll mutations, progenies of the second cluster recorded less viable mutations than either the first or the third. Viridis and xanthoviridis among chlorophyll mutations, and those affecting plant duration and stature among viable were more predominant.

  10. Evaluation of a Mixing versus a Cycling Strategy of Antibiotic Use in Critically-Ill Medical Patients: Impact on Acquisition of Resistant Microorganisms and Clinical Outcomes.

    Directory of Open Access Journals (Sweden)

    Nazaret Cobos-Trigueros

    Full Text Available To compare the effect of two strategies of antibiotic use (mixing vs. cycling on the acquisition of resistant microorganisms, infections and other clinical outcomes.Prospective cohort study in an 8-bed intensive care unit during 35- months in which a mixing-cycling policy of antipseudomonal beta-lactams (meropenem, ceftazidime/piperacillin-tazobactam and fluoroquinolones was operative. Nasopharyngeal and rectal swabs and respiratory secretions were obtained within 48h of admission and thrice weekly thereafter. Target microorganisms included methicillin-resistant S. aureus, vancomycin-resistant enterococci, third-generation cephalosporin-resistant Enterobacteriaceae and non-fermenters.A total of 409 (42% patients were included in mixing and 560 (58% in cycling. Exposure to ceftazidime/piperacillin-tazobactam and fluoroquinolones was significantly higher in mixing while exposure to meropenem was higher in cycling, although overall use of antipseudomonals was not significantly different (37.5/100 patient-days vs. 38.1/100 patient-days. There was a barely higher acquisition rate of microorganisms during mixing, but this difference lost its significance when the cases due to an exogenous Burkholderia cepacia outbreak were excluded (19.3% vs. 15.4%, OR 0.8, CI 0.5-1.1. Acquisition of Pseudomonas aeruginosa resistant to the intervention antibiotics or with multiple-drug resistance was similar. There were no significant differences between mixing and cycling in the proportion of patients acquiring any infection (16.6% vs. 14.5%, OR 0.9, CI 0.6-1.2, any infection due to target microorganisms (5.9% vs. 5.2%, OR 0.9, CI 0.5-1.5, length of stay (median 5 d for both groups or mortality (13.9 vs. 14.3%, OR 1.03, CI 0.7-1.3.A cycling strategy of antibiotic use with a 6-week cycle duration is similar to mixing in terms of acquisition of resistant microorganisms, infections, length of stay and mortality.

  11. Northern blot analysis to investigate the abundance of microorganisms

    International Nuclear Information System (INIS)

    Krause, D.O.

    2005-01-01

    Modern molecular microbial ecology has its origins in the analysis of informative macromolecules. Zuckerkandl and Pauling proposed that certain macromolecules are relatively free from evolutionary pressure and may be considered a molecular document of the evolutionary history of the organism that carries the molecule. In their paper, they proposed that the sequence difference of a molecule is proportional to the evolutionary distance between the organisms; the greater the sequence differences the greater the evolutionary distance. A significant breakthrough with this approach in microbial systematics resulted from the work of Woese and Fox who used oligonucleotide cataloguing of 16S-rRNA to delineate the phylogenetic relationships between microorganisms. By using this approach, it was possible to demonstrate that all life on earth could be divided into three kingdoms: eukarya, procarya and archaea. The unique findings of this research was that the archaea, made up of many methanogenic and thermophilic microorganisms, were probably the most ancient life forms on earth and were not bacteria at all. One of the first applications of rRNA genes was the recovery of unique 5S-rRNA sequences from the Yellowstone hot spring. Even though the statistical utility of the short 5S sequences was limited, it demonstrated that there was a great deal of uncultured diversity within the ecosystem. This uncultured diversity was demonstrated to be highly significant when clone libraries were constructed from the Yellowstone hot spring. Universal PCR primers were used to amplify 16S-rDNA from the microbial community, and these mixed amplicons were cloned into a vector. Each insert, potentially representing a different species, was sequenced giving a snapshot of microbial diversity in the sample. A unique feature of the rRNAs is that they are hierarchical molecules. This means that there are regions where the molecules is highly conserved, others where the sequence is variable, and even

  12. Growth response of microorganisms to different molecular fractions of lignite

    Energy Technology Data Exchange (ETDEWEB)

    Polman, J.K.; Breckenridge, C.R.; Dugan, P.R.; Quigley, D.R.

    1990-01-01

    Our research is primarily concerned with isolating and characterizing microbes which are able to dissimilate coal and convert it to other useful chemicals. This quarter, general growth responses of microorganisms cultivated in the presence of different molecular weight fractions of lignite coal were examined. Aerobic and anaerobic environmental samples from a variety of ecological niches were used as inocula. Growth of the microorganisms in these samples on the following types of media was tested: COAL medium, containing alkali-solubilized whole coal; THFI medium, containing the alkali-solubilized, tetrahydrofuran-insoluble, macromolecular portion of whole coal; THFS medium, containing the THF-soluble, low molecular weight portion of whole coal; and CON medium, void of any coal constituent. Overall results indicated that the presence of the THF-soluble, low molecular weight coal fraction enhanced the growth yield and the variety of aerobic microorganisms compared to the other coal fractions or the control medium. Conversely, anaerobic microbes grew best on media which contained the macromolecular fraction. 12 refs., 5 tabs.

  13. Biobased production of alkanes and alkenes through metabolic engineering of microorganisms

    DEFF Research Database (Denmark)

    Kang, Min Kyoung; Nielsen, Jens

    2017-01-01

    Advancement in metabolic engineering of microorganisms has enabled bio-based production of a range of chemicals, and such engineered microorganism can be used for sustainable production leading to reduced carbon dioxide emission there. One area that has attained much interest is microbial...... hydrocarbon biosynthesis, and in particular, alkanes and alkenes are important high-value chemicals as they can be utilized for a broad range of industrial purposes as well as ‘drop-in’ biofuels. Some microorganisms have the ability to biosynthesize alkanes and alkenes naturally, but their production level...... is extremely low. Therefore, there have been various attempts to recruit other microbial cell factories for production of alkanes and alkenes by applying metabolic engineering strategies. Here we review different pathways and involved enzymes for alkane and alkene production and discuss bottlenecks...

  14. The influence of selected nanomaterials on microorganisms

    Czech Academy of Sciences Publication Activity Database

    Brandeburová, P.; Birošová, L.; Vojs, M.; Kromka, Alexander; Gál, M.; Tichý, J.; Híveš, J.; Mackul´ak, T.

    2017-01-01

    Roč. 148, č. 3 (2017), s. 525-530 ISSN 0026-9247 R&D Projects: GA ČR GA15-01687S Institutional support: RVO:68378271 Keywords : nanomaterials * nanotechnologies * microorganisms * toxicity Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 1.282, year: 2016

  15. Evaluation of PCR and DNA hybridization protocols for detection of viable enterotoxigenic Clostridium perfringens in irradiated beef

    International Nuclear Information System (INIS)

    Baez, L.A.; Juneja, V.K.; Thayer, D.W.; Sackitey, S.

    1997-01-01

    The sensitivity of DNA hybridization and polymerase chain reaction (PCR), was evaluated in irradiated cooked and raw beef samples. A membrane-based colony hybridization assay and a PCR protocol, both with specificity for the enterotoxin A gene of Clostridium perfringens, were compared with viable plate counts. The results of the colony hybridization procedure were in agreement with viable plate counts for detection and enumeration of enterotoxigenic C. perfringens. The PCR procedure combined a 4 h enrichment followed by a nucleic acid extraction step and assessed the amplification of 183 and 750 base pair enterotoxin gene targets. Detection of C. perfringens by PCR did not show a reliable correlation with viable plate counts or the colony hybridization assay. C. perfringens killed by irradiation were not detected by the plate count or colony hybridization methods; however, killed cells were detected with the PCR technique. By relying on the growth of viable cells for detection and/or enumeration, the colony hybridization and plate count methods provided a direct correlation with the presence of viable bacteria

  16. Antimicrobial activity of jasmine oil against oral microorganisms

    Science.gov (United States)

    Thaweboon, S.; Thaweboon, B.; Kaypetch, R.

    2018-02-01

    Jasmine sambac is a species of jasmine indigenous to the tropical and warm temperature regions in particular West and Southeast Asia. Essential oil extracted from the flowers of J. sambac has been shown to have anti-oxidant activity. However, very little information regarding antimicrobial activity especially oral microorganisms exists. Objective: To investigate antimicrobial effect of essential oil extracted from flowers of J. sambac against various oral microorganisms. Materials and Methods: Oral microbial strains used in the study were Streptococcus mutans KPSK2, Staphylococcus aureus ATCC 5638, Lactobacillus casei ATCC 6363, Klebsiella pneumoniae (clinical isolate), Escherichia coli ATCC 25922, Candida albicans ATCC 10231, Candida krusei ATCC 6258, Candida parapsilosis ATCC 22019, Candida tropicalis (clinical isolate), Candida glabrata ATCC 90030, Candida pseudotropicalis (clinical isolate) and Candida stellatoidia (clinical isolate). The potential of microbial growth inhibition of the oil was firstly screened by Kirby-Bauer disk diffusion method and then the minimum inhibitory concentration (MIC) was determined by agar dilution method. Results: Jasmine oil showed antimicrobial activities against S. mutans, L. casei, E. coli and all strains of Candida species with the zones of inhibition ranging from 9 to 26 mm and MIC values of 0.19-1.56 %v/v. Conclusion: Results from the present study are scientific evidence to demonstrate that jasmine oil could be employed as a natural antimicrobial agent against oral microorganisms.

  17. Detection of extracellular proteases from microorganisms on agar plates

    Directory of Open Access Journals (Sweden)

    Alane Beatriz Vermelho

    1996-12-01

    Full Text Available We present herein an improved assay for detecting the presence of extracellular proteases from microorganisms on agar plates. Using different substrates (gelatin, BSA, hemoglobin incorporated into the agar and varying the culture medium composition, we were able to detect proteolytic activities from Pseudomonas aeruginosa, Micrococcus luteus and Serratia marcescens as well as the influence that these components displayed in the expression of these enzymes. For all microorganisms tested we found that in agar-BHI or yeast extract medium containing gelatin the sensitivity of proteinase detection was considerably greater than in BSA-agar or hemoglobin-agar. However, when BSA or hemoglobin were added to the culture medium, there was an increase in growth along with a marked reduction in the amount of proteinase production. In the case of M. luteus the incorporation of glycerol in BHI or yeast extract gelatin-agar induced protease liberation. Our results indicate that the technique described here is of value for detecting extracellular proteases directly in the culture medium, by means of a qualitative assay, simple, inexpensive, straight forward method to assess the presence of the proteolytic activity of a given microorganism colony with great freedom in substrate selection.

  18. Undersized description on motile gyrotactic micro-organisms individualities in MHD stratified water-based Newtonian nanofluid

    Science.gov (United States)

    Rehman, Khalil Ur; Malik, Aneeqa Ashfaq; Tahir, M.; Malik, M. Y.

    2018-03-01

    The current pagination summarized the influence of bio-convection Schmidt number, bio-convection Peclet number and micro-organisms concentration difference parameter on the density of motile gyrotactic micro-organisms when they have interaction with the thermally stratified magneto-nanofluid flow past a vertical stretching surface. It is observed that the density of motile microorganisms is the decreasing function of the bio-convection Schmidt and Peclet numbers. It is trusted that the outcomes of present analysis will serve as a helping source for the upcoming developments regarding individualities of motile gyrotactic micro-organisms subject to boundary layer flows induced by stretching surfaces.

  19. Membrane Lipids as Indicators for Viable Bacterial Communities Inhabiting Petroleum Systems.

    Science.gov (United States)

    Gruner, Andrea; Mangelsdorf, Kai; Vieth-Hillebrand, Andrea; Horsfield, Brian; van der Kraan, Geert M; Köhler, Thomas; Janka, Christoph; Morris, Brandon E L; Wilkes, Heinz

    2017-08-01

    Microbial activity in petroleum reservoirs has been implicated in a suite of detrimental effects including deterioration of petroleum quality, increases in oil sulfur content, biofouling of steel pipelines and other infrastructures, and well plugging. Here, we present a biogeochemical approach, using phospholipid fatty acids (PLFAs), for detecting viable bacteria in petroleum systems. Variations within the bacterial community along water flow paths (producing well, topside facilities, and injection well) can be elucidated in the field using the same technique, as shown here within oil production plants in the Molasse Basin of Upper Austria. The abundance of PLFAs is compared to total cellular numbers, as detected by qPCR of the 16S rDNA gene, to give an overall comparison between the resolutions of both methods in a true field setting. Additionally, the influence of biocide applications on lipid- and DNA-based quantification was investigated. The first oil field, Trattnach, showed significant PLFA abundances and cell numbers within the reservoir and topside facilities. In contrast, the second field (Engenfeld) showed very low PLFA levels overall, likely due to continuous treatment of the topside facilities with a glutaraldehyde-based antimicrobial. In comparison, Trattnach is dosed once per week in a batch fashion. Changes within PLFA compositions across the flow path, throughout the petroleum production plants, point to cellular adaptation within the system and may be linked to shifts in the dominance of certain bacterial types in oil reservoirs versus topside facilities. Overall, PLFA-based monitoring provides a useful tool to assess the abundance and high-level taxonomic diversity of viable microbial populations in oil production wells, topside infrastructure, pipelines, and other related facilities.

  20. Biotransformation of Spanish coals by microorganisms; Biotransformacion de Carbones Espanoles por Microorganismos

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    some newly isolated microorganisms could solubilized different kinds of Spanish coals (hard coal, subbituminous coal and lignite). Certain fungi and bacteria could solubilized lignite when growing in a mineral medium. However, to solubilized higher rank coals (hard coal and subbituminous coal) microorganisms require a complete medium. Microorganisms, which showed higher capacity to solubilized coal, were incubated in the presence of coal (hard coal, subbituminous coal and lignite) at the optimal conditions to get coal liquefaction/solubilization. The resultant products were analysed by IR and UV/visible spectrometry. No major differences among the original coal, solubilized/liquefied coal and residual coal were detected. However, an increase in metallic carboxylate and a decrease in OH'- carboxylic groups were observed in the liquefied lignite. Humic acids derived from original lignite residual lignite and liquefied/solubilized lignite by microorganisms were analysed. Several differences were observed in the humic acids extracted from the liquefied lignite, such as an increase in the total acidity and in the proportion of the phenolic groups. Differences on the humic acid molecular weight were observed too. Several fungal and bacterial strains were able to grow using humic acids as sole carbon source. Microorganisms growing in humic acid were observed by Scanning Electron Microscopy. Besides, the coal solubilization capacity of several fungal strains (M2, m$ and AGI) growing in different culture media was assayed. In order to get some insight into the mechanisms of the liquefaction/solubilization of Spanish coals (hard coal, subbituminous coal and lignite) by these microorganisms, some features in the culture supernatants were studied: pH values; extracellular specific proteins; enzyme activities possibly related with coal solubilization and the presence of oxalate. M2 and M4 fungal strains grown in the presence of coal produced some specific extracellular proteins

  1. Biotransformation of Spanish coals by microorganisms; Biotransformacion de Carbones Espanoles por Microorganismos

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    some newly isolated microorganisms could solubilized different kinds of Spanish coals (hard coal, subbituminous coal and lignite). Certain fungi and bacteria could solubilized lignite when growing in a mineral medium. However, to solubilized higher rank coals (hard coal and subbituminous coal) microorganisms require a complete medium. Microorganisms, which showed higher capacity to solubilized coal, were incubated in the presence of coal (hard coal, subbituminous coal and lignite) at the optimal conditions to get coal liquefaction/solubilization. The resultant products were analysed by IR and UV/visible spectrometry. No major differences among the original coal, solubilized/liquefied coal and residual coal were detected. However, an increase in metallic carboxylate and a decrease in OH'- carboxylic groups were observed in the liquefied lignite. Humic acids derived from original lignite residual lignite and liquefied/solubilized lignite by microorganisms were analysed. Several differences were observed in the humic acids extracted from the liquefied lignite, such as an increase in the total acidity and in the proportion of the phenolic groups. Differences on the humic acid molecular weight were observed too. Several fungal and bacterial strains were able to grow using humic acids as sole carbon source. Microorganisms growing in humic acid were observed by Scanning Electron Microscopy. Besides, the coal solubilization capacity of several fungal strains (M2, m$ and AGI) growing in different culture media was assayed. In order to get some insight into the mechanisms of the liquefaction/solubilization of Spanish coals (hard coal, subbituminous coal and lignite) by these microorganisms, some features in the culture supernatants were studied: pH values; extracellular specific proteins; enzyme activities possibly related with coal solubilization and the presence of oxalate. M2 and M4 fungal strains grown in the presence of coal produced some specific extracellular

  2. Effect of enhanced UV-B radiation on motile microorganisms

    International Nuclear Information System (INIS)

    Haeder, D.P.

    1985-02-01

    The effect of slightly increased UV-B radiation was studied in four taxonomically very different microorganisms: the gliding prokaryotic cyanobacterium, Phormidium, the unicellular green alga Cosmarium, the flagellate Euglena and the cellular slime mold Dictyostelium. UV-B doses which can be expected as a result of a slight decrease of the protective ozone layer in the stratosphere, do not kill or damage the microorganisms visibly. However, such UV-B doses impair the development, motility and photoorientation of these organisms. Due to the inhibition of these physiological important parameters the organisms cannot respond adequately to the changing factors in their environment, which prevents the survival of the populations. (orig.) [de

  3. False identification of other microorganisms as Staphylococcus ...

    African Journals Online (AJOL)

    Methods: 507 microorganisms which have been previously identified as S. aureus in 8 States in Southern Nigeria through characteristic morphology on blood agar, Gram staining, growth and fermentation on Mannitol Salt Agar and coagulase formation were collected. All the isolates were identified in this study through ...

  4. Ecophysiology of microorganisms in microbial elctrolysis cells

    NARCIS (Netherlands)

    Croese, E.

    2012-01-01

    One of the main challenges for improvement of the microbial electrolysis cell (MEC) has been the reduction of the cost of the cathode catalyst. As catalyst at the cathode, microorganisms offer great possibilities. Previous research has shown the principle possibilities for the biocathode for H2

  5. Acupuntura un tratamiento viable para las adicciones en Colombia

    Directory of Open Access Journals (Sweden)

    Hernán López Seuscún

    2013-07-01

    Los tratamientos con auriculoterapia, como el protocolo NADA (National Acupuncture Detoxification Association, son los métodos más usados para las adicciones en el mundo, y aunque no se ha logrado evidenciar su efectividad, por su costo, facilidad y el poco riesgo de efectos adversos se hace viable en un país con pocos recursos económicos como Colombia.

  6. Growth response and nutrient uptake of blue pine (Pinus wallichiana seedlings inoculated with rhizosphere microorganisms under temperate nursery conditions

    Directory of Open Access Journals (Sweden)

    M.A. Ahangar

    2012-11-01

    Full Text Available Microbial inoculants (Trichoderma harzianum, Pseudomonas fluorescens,Laccaria laccata inoculated either individually or in combinationsignificantly improved the growth and biomass of blue pine seedlings. The ECM fungus Laccaria laccata, when inoculated individually, showed significantly higher plant growth, followed by Pseudomonas fluorescens and Trichoderma harzianum. The combined inoculation of rhizosphere microorganisms showed synergistic growth promoting action and proved superior in enhancing the growth of blue pine than individual inoculation. Co-inoculation of L. laccata with P. fluorescens resulted in higher ectomycorrhizal root colonization. Uptake of nutrients (N, P, K was significantly improved by microbial inoculants, tested individually or in combination. Combined inoculation of L. laccata with T. harzianum and P. fluorescens significantly increased in N, P and K contents in blue pine seedlings as compared to control. Acid phosphatase activity in the rhizosphere of blue pine seedlings was also enhanced by these microorganisms. L. laccata exhibited higher acid phosphatase activity followed by P. fluorescens.

  7. Microorganisms as bioindicators of pollutants in soil

    Directory of Open Access Journals (Sweden)

    Milošević Nada

    2010-01-01

    Full Text Available Microorganisms are the predominant portion of the soil's biological phase and they are indicators of soil health and quality. Soil microorganisms a take part in degradation of organic and inorganic compounds, b their activity, number and diversity may serve as bioindicators of toxic effects on soil biological activity, c some microbial species may be used for soil bioremediation and d some sensitive microbes are used in eco-toxicity tests. The primary microbial population starts to decompose herbicides several days after their arrival into the soil. The secondary population produces induced enzymes and decomposes herbicides after a period of adaptation. Certain microbial groups are indifferent to the applied herbicides. Effect of heavy metals on soil microbial activity depends on the element, their concentration, microbial species, as well as physical and chemical soil properties. Toxic level of individual pollutants depends on their origin and composition. However, combined application of chemicals makes room for the occurrence of synergistic toxic effects detrimental for the ecosystem and human health. .

  8. Raft-like membrane domains in pathogenic microorganisms.

    Science.gov (United States)

    Farnoud, Amir M; Toledo, Alvaro M; Konopka, James B; Del Poeta, Maurizio; London, Erwin

    2015-01-01

    The lipid bilayer of the plasma membrane is thought to be compartmentalized by the presence of lipid-protein microdomains. In eukaryotic cells, microdomains composed of sterols and sphingolipids, commonly known as lipid rafts, are believed to exist, and reports on the presence of sterol- or protein-mediated microdomains in bacterial cell membranes are also appearing. Despite increasing attention, little is known about microdomains in the plasma membrane of pathogenic microorganisms. This review attempts to provide an overview of the current state of knowledge of lipid rafts in pathogenic fungi and bacteria. The current literature on characterization of microdomains in pathogens is reviewed, and their potential role in growth, pathogenesis, and drug resistance is discussed. Better insight into the structure and function of membrane microdomains in pathogenic microorganisms might lead to a better understanding of their pathogenesis and development of raft-mediated approaches for therapy. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Assessment of microorganisms from Indonesian Oil Fields

    Energy Technology Data Exchange (ETDEWEB)

    Kadarwati, S.; Udiharto, M.; Rahman, M.; Jasjfi, E.; Legowo, E.H. [Research and Development Centre for Oil and Gas Technology LEMIGAS, Jakarta Selatan (Indonesia)

    1995-12-31

    Petroleum resources have been the mainstay of the national development in Indonesia. However, resources are being depleted after over a century of exploitation, while the demand continues to grow with the rapid economic development of the country. In facing the problem, EOR has been applied in Indonesia, such as the steamflooding project in Duri field, but a more energy efficient technology would be preferable. Therefore, MEOR has been recommended as a promising solution. Our study, aimed at finding indigenous microorganisms which can be developed for application in MEOR, has isolated microbes from some oil fields of Indonesia. These microorganisms have been identified, their activities studied, and the effects of their metabolisms examined. This paper describes the research carried out by LEMIGAS in this respect, giving details on the methods of sampling, incubation, identification, and activation of the microbes as well as tests on the effects of their metabolites, with particular attention to those with potential for application in MEOR.

  10. The impact of permafrost-associated microorganisms on hydrate formation kinetics

    Science.gov (United States)

    Luzi-Helbing, Manja; Liebner, Susanne; Spangenberg, Erik; Wagner, Dirk; Schicks, Judith M.

    2016-04-01

    The relationship between gas hydrates, microorganisms and the surrounding sediment is extremely complex: On the one hand, microorganisms producing methane provide the prerequisite for gas hydrate formation. As it is known most of the gas incorporated into natural gas hydrates originates from biogenic sources. On the other hand, as a result of microbial activity gas hydrates are surrounded by a great variety of organic compounds which are not incorporated into the hydrate structure but may influence the formation or degradation process. For gas hydrate samples from marine environments such as the Gulf of Mexico a direct association between microbes and gas hydrates was shown by Lanoil et al. 2001. It is further assumed that microorganisms living within the gas hydrate stability zone produce biosurfactants which were found to enhance the hydrate formation process significantly and act as nucleation centres (Roger et al. 2007). Another source of organic compounds is sediment organic matter (SOM) originating from plant material or animal remains which may also enhance hydrate growth. So far, the studies regarding this relationship were focused on a marine environment. The scope of this work is to extend the investigations to microbes originating from permafrost areas. To understand the influence of microbial activity in a permafrost environment on the methane hydrate formation process and the stability conditions of the resulting hydrate phase we will perform laboratory studies. Thereby, we mimic gas hydrate formation in the presence and absence of methanogenic archaea (e.g. Methanosarcina soligelidi) and other psychrophilic bacteria isolated from permafrost environments of the Arctic and Antarctic to investigate their impact on hydrate induction time and formation rates. Our results may contribute to understand and predict the occurrences and behaviour of potential gas hydrates within or adjacent to the permafrost. Lanoil BD, Sassen R, La Duc MT, Sweet ST, Nealson KH

  11. Genome-Based Studies of Marine Microorganisms to Maximize the Diversity of Natural Products Discovery for Medical Treatments

    Directory of Open Access Journals (Sweden)

    Xin-Qing Zhao

    2011-01-01

    Full Text Available Marine microorganisms are rich source for natural products which play important roles in pharmaceutical industry. Over the past decade, genome-based studies of marine microorganisms have unveiled the tremendous diversity of the producers of natural products and also contributed to the efficiency of harness the strain diversity and chemical diversity, as well as the genetic diversity of marine microorganisms for the rapid discovery and generation of new natural products. In the meantime, genomic information retrieved from marine symbiotic microorganisms can also be employed for the discovery of new medical molecules from yet-unculturable microorganisms. In this paper, the recent progress in the genomic research of marine microorganisms is reviewed; new tools of genome mining as well as the advance in the activation of orphan pathways and metagenomic studies are summarized. Genome-based research of marine microorganisms will maximize the biodiscovery process and solve the problems of supply and sustainability of drug molecules for medical treatments.

  12. Development of genetic methods for detection of pathogenic microorganisms in irradiated food

    International Nuclear Information System (INIS)

    2010-01-01

    The existence of injured microorganisms in food and their recovery during culturing procedures is critical. Injured microorganisms present a potential threat in food safety since they may repair themselves under suitable conditions. This study provides development of recovery methods for detection of injured foodborne microorganisms, after irradiation treatment at different doses. For this purpose, iniatially the methods of recovery were compared at different irradiation doses. At the second step, antibiotic resistance of foodborne pathogens was determined. After determination of antibiotic resistance, recovery methods were modified for reversibly injured foodborne pathogens at different doses after irradiation treatment . Finally, damages of DNA were detected by a spectrophotometric method after 1.0 kGy irradiation treatment

  13. Isolation of Electrogenic Microorganisms with Potential to Reduce Hexavalent Chromium

    Directory of Open Access Journals (Sweden)

    Alexander Mora Collazos

    2017-01-01

    Full Text Available Isolation of cultivable microorganisms was made from the biofilm formed on the anode of a microbial fuel cell put into operation for 30 days; isolated microorganisms were evaluated for their ability to produce energy and reduce the hexavalent chromium Cr (VI. Five microorganisms were isolated, which were characterized by analysis of 16S rRNA gene, placing them in four bacterial genera: Exiguobacterium (CrMFC1, Acinetobacter (CrMFC2, Aeromonas (CrMFC3 and CrMFC5 and Serratia (CrMFC4. All isolates showed electrogenic activity and ability to reduce hexavalent chromium; the Acinetobacter CrMFC1 strain showed the best electrochemical performance registering a maximum power density of 18.61 mW/m2; the other strains showed values of maximum power density between 4.6 mW/m2and 7.1 mW/m2. Strains Aeromonas CrMFC5 and Exiguobacterium CrMFC1 showed the best rates of chromium reduction being able to reduce 100 % of the Cr (VI in less than 24 hours, the Aeromonas CrMFC5 strain was the most efficient, reducing 100 % of Cr (VI in 10 hours; the other strains reduced 100% of the contaminant after 28 to 30 hours. The microorganisms isolated in this study are hardly known for their electrogenic capacity and for reducing Cr (VI; however, show promise for their use in combined systems involving energy production system coupled to bioremediation of chromium contaminated water.

  14. Opportunistic microorganisms in patients undergoing antibiotic therapy for pulmonary tuberculosis

    Directory of Open Access Journals (Sweden)

    Silvia Maria Rodrigues Querido

    2011-12-01

    Full Text Available Antimicrobial therapy may cause changes in the resident oral microbiota, with the increase of opportunistic pathogens. The aim of this study was to compare the prevalence of Candida, Staphylococcus, Pseudomonas and Enterobacteriaceae in the oral cavity of fifty patients undergoing antibiotic therapy for pulmonary tuberculosis and systemically healthy controls. Oral rinsing and subgingival samples were obtained, plated in Sabouraud dextrose agar with chloramphenicol, mannitol agar and MacConkey agar, and incubated for 48 h at 37ºC. Candida spp. and coagulase-positive staphylococci were identified by phenotypic tests, C. dubliniensis, by multiplex PCR, and coagulase-negative staphylococci, Enterobacteriaceae and Pseudomonas spp., by the API systems. The number of Candida spp. was significantly higher in tuberculosis patients, and C. albicans was the most prevalent specie. No significant differences in the prevalence of other microorganisms were observed. In conclusion, the antimicrobial therapy for pulmonary tuberculosis induced significant increase only in the amounts of Candida spp.

  15. Production of gaba (γ – Aminobutyric acid) by microorganisms: a review

    Science.gov (United States)

    Dhakal, Radhika; Bajpai, Vivek K.; Baek, Kwang-Hyun

    2012-01-01

    GABA (γ-aminobutyric acid) is a four carbon non-protein amino acid that is widely distributed in plants, animals and microorganisms. As a metabolic product of plants and microorganisms produced by the decarboxylation of glutamic acid, GABA functions as an inhibitory neurotransmitter in the brain that directly affects the personality and the stress management. A wide range of traditional foods produced by microbial fermentation contain GABA, in which GABA is safe and eco-friendly, and also has the possibility of providing new health-benefited products enriched with GABA. Synthesis of GABA is catalyzed by glutamate decarboxylase, therefore, the optimal fermentation condition is mainly based on the biochemical properties of the enzyme. Major GABA producing microorganisms are lactic acid bacteria (LAB), which make food spoilage pathogens unable to grow and act as probiotics in the gastrointestinal tract. The major factors affecting the production of GABA by microbial fermentation are temperature, pH, fermentation time and different media additives, therefore, these factors are summarized to provide the most up-dated information for effective GABA synthesis. There has been a huge accumulation of knowledge on GABA application for human health accompanying with a demand on natural GABA supply. Only the GABA production by microorganisms can fulfill the demand with GABA-enriched health beneficial foods. PMID:24031948

  16. Identification of selected microorganisms from activated sludge capable of benzothiazole and benzotriazole transformation.

    Science.gov (United States)

    Kowalska, Katarzyna; Felis, Ewa

    2015-01-01

    Benzothiazole (BT) and benzotriazole (BTA) are present in the environment - especially in urban and industrial areas, usually as anthropogenic micropollutants. BT and BTA have been found in the municipal and industrial wastewater, rivers, soil, groundwater, sediments and sludge. The origins of those substances' presence in the environment are various industry branches (food, chemical, metallurgical, electrical), households and surface runoff from industrial areas. Increasingly strict regulations on water quality and the fact that the discussed compounds are poorly biodegradable, make them a serious problem in the environment. Considering this, it is important to look for environmentally friendly and socially acceptable ways to remove BT and BTA. The aim of this study was to identify microorganisms capable of BT and BTA transformation or/and degradation in aquatic environment. Selected microorganisms were isolated from activated sludge. The identification of microorganisms capable of BT and BTA removal was possible using molecular biology techniques (PCR, DNA sequencing). Among isolated microorganisms of activated sludge are bacteria potentially capable of BT and BTA biotransformation and/or removal. The most common bacteria capable of BT and BTA transformation were Rhodococcus sp., Enterobacter sp., Arthrobacter sp. They can grow in a medium with BT and BTA as the only carbon source. Microorganisms previously adapted to the presence of the studied substances at a concentration of 10 mg/l, showed a greater rate of growth of colonies on media than microorganisms unconditioned to the presence of such compounds. Results of the biodegradation test suggest that BT was degraded to a greater extent than BTA, 98-100% and 11-19%, respectively.

  17. Pore-level flow, transport, agglomeration, and reaction kinetics of microorganisms

    International Nuclear Information System (INIS)

    Fauci, L.; Gaver, D.; Moore, P.; Papadopoulos, K.; Sharma, B.

    1993-01-01

    The overall goal of this research project is to improve the characterization and assessment techniques currently being used to evaluate bioremediation alternatives. This will be accomplished by investigating the phenomena and processes that affect the fate and transport of pollutants and microorganisms at the microscopic level. The specific research objectives are: Quantify the physical constants relevant to the interfacial adsorption of bacteria; Examine the bacteriological properties associated with the bioremediation of a toxin using a microscopic viewpoint; and Determine the detailed pore-level behavior of contaminants and microorganisms in a system with adsorbed contamination

  18. Soil microorganisms alleviate the allelochemical effects of a thyme monoterpene on the performance of an associated grass species.

    Science.gov (United States)

    Ehlers, Bodil K

    2011-01-01

    Plant allelochemicals released into the soil can significantly impact the performance of associated plant species thereby affecting their competitive ability. Soil microbes can potentially affect the interaction between plant and plant chemicals by degrading the allelochemicals. However, most often plant-plant chemical interactions are studied using filter paper bioassays examining the pair-wise interaction between a plant and a plant chemical, not taking into account the potential role of soil microorganisms. To explore if the allelopathic effects on a grass by the common thyme monoterpene "carvacrol" are affected by soil microorganisms. Seedlings of the grass Agrostis capillaris originating from 3 different thyme sites were raised in the greenhouse. Seedlings were grown under four different soil treatments in a 2*2 fully factorial experiment. The monoterpene carvacrol was either added to standard greenhouse soil or left out, and soil was either sterilized (no soil microorganisms) or not (soil microorganisms present in soil). The presence of carvacrol in the soil strongly increased mortality of Agrostis plants, and this increase was highest on sterile soil. Plant biomass was reduced on soil amended with carvacrol, but only when the soil was also sterilized. Plants originating from sites where thyme produces essential oils containing mostly carvacrol had higher survival on soil treated with that monoterpene than plants originating from a site where thyme produced different types of terpenes, suggesting an adaptive response to the locally occurring terpene. The study shows that presence of soil microorganisms can alleviate the negative effect of a common thyme monoterpene on the performance of an associated plant species, emphasizing the role of soil microbes in modulating plant-plant chemical interactions.

  19. Soil microorganisms alleviate the allelochemical effects of a thyme monoterpene on the performance of an associated grass species.

    Directory of Open Access Journals (Sweden)

    Bodil K Ehlers

    Full Text Available Plant allelochemicals released into the soil can significantly impact the performance of associated plant species thereby affecting their competitive ability. Soil microbes can potentially affect the interaction between plant and plant chemicals by degrading the allelochemicals. However, most often plant-plant chemical interactions are studied using filter paper bioassays examining the pair-wise interaction between a plant and a plant chemical, not taking into account the potential role of soil microorganisms.To explore if the allelopathic effects on a grass by the common thyme monoterpene "carvacrol" are affected by soil microorganisms. Seedlings of the grass Agrostis capillaris originating from 3 different thyme sites were raised in the greenhouse. Seedlings were grown under four different soil treatments in a 2*2 fully factorial experiment. The monoterpene carvacrol was either added to standard greenhouse soil or left out, and soil was either sterilized (no soil microorganisms or not (soil microorganisms present in soil. The presence of carvacrol in the soil strongly increased mortality of Agrostis plants, and this increase was highest on sterile soil. Plant biomass was reduced on soil amended with carvacrol, but only when the soil was also sterilized. Plants originating from sites where thyme produces essential oils containing mostly carvacrol had higher survival on soil treated with that monoterpene than plants originating from a site where thyme produced different types of terpenes, suggesting an adaptive response to the locally occurring terpene.The study shows that presence of soil microorganisms can alleviate the negative effect of a common thyme monoterpene on the performance of an associated plant species, emphasizing the role of soil microbes in modulating plant-plant chemical interactions.

  20. The search for viable local government system in Nigeria: an ...

    African Journals Online (AJOL)

    The history of the Nigerian local government system has been one long episode of trails and errors aimed at achieving viable local government institution without much success. Local government in the country began its long series of reforms from the colonial period when the colonial government attempted to ...

  1. Viable Syntax: Rethinking Minimalist Architecture

    Directory of Open Access Journals (Sweden)

    Ken Safir

    2010-03-01

    Full Text Available Hauser et al. (2002 suggest that the human language faculty emerged as a genetic innovation in the form of what is called here a ‘keystone factor’—a single, simple, formal mental capability that, interacting with the pre-existing faculties of hominid ancestors, caused a cascade of effects resulting in the language faculty in modern humans. They take Merge to be the keystone factor, but instead it is posited here that Merge is the pre-existing mechanism of thought made viable by a principle that permits relations interpretable at the interfaces to be mapped onto c-command. The simplified minimalist architecture proposed here respects the keystone factor as closely as possible, but is justified on the basis of linguistic analyses it makes available, including a relativized intervention theory applicable across Case, scope, agreement, selection and linearization, a derivation of the A/A’-distinction from Case theory, and predictions such as why in situ wh-interpretation is island-insensitive, but susceptible to intervention effects.

  2. Biobased production of alkanes and alkenes through metabolic engineering of microorganisms

    OpenAIRE

    Kang, Min Kyoung; Nielsen, Jens

    2017-01-01

    Advancement in metabolic engineering of microorganisms has enabled bio-based production of a range of chemicals, and such engineered microorganism can be used for sustainable production leading to reduced carbon dioxide emission there. One area that has attained much interest is microbial hydrocarbon biosynthesis, and in particular, alkanes and alkenes are important high-value chemicals as they can be utilized for a broad range of industrial purposes as well as ?drop-in? biofuels. Some microo...

  3. Surfactant producing TNT-degrading microorganisms for bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Vorobyov, A.; Marchenko, A.; Rudneva, O.; Borovick, R. [Research Center for Toxicology and Hygienic Regulation of Biopreparations, Serpukhov, Moscow region (Russian Federation); Radosevich, M. [Univ. of Delaware, Newark (United States). Dept. of Plant and Soil Sciences

    2003-07-01

    In general the biodegradation of nitroaromatic hydrocarbons is influenced by their bioavailability. 2,4,6-trinitrotoluene is very poorly soluble in water. TNT is easily adsorbed to clay or humus fractions in the soil, and pass very slowly to the aqueous phase, where microorganisms metabolize it. Biosurfactants that increase TNT solubility and improve its bioavailability can thereby accelerate degradation. Pure cultures of microorganisms-TNT degraders were isolated by the method of enrichment cultures from samples of different-type soil contaminated by TNT (soddy-podzol, black earth, and gray forest ones). From 28 soil samples 35 isolates of microorganisms degrading TNT were taken. The isolated soil samples had been tested for availability of microbial activity towards TNT. By10 g of air-dried soil, 10 ml of distilled water, and 2 mg of TNT were placed into 750 ml shaken flasks. The flasks were incubated at 150 rev/min and 24 C. Glucose, sodium succinate or sodium acetate had been used as co-substrates. The ability of the strains to produce surfactants was studied by drop collapsing test and direct measuring of surface tension of cultural liquid after cultivation with TNT. Cells of the strains were cultivated on solid and liquid nutrient media. For drop collapsing test the cells were cultivated on solid nutrient media; the separated colonies were suspended in distilled water. Drop sustainability test ws conducted on a standard 96-well plates coated with a thin layer of vaseline oil. Surface tension of cultural liquid ws measured after cultivation of strains in the presence of TNT with the use of a ring tensiometer. Before measuring of surface tension microbial cells were collected from liquid culture by centrifugation. (orig.)

  4. Analysis of growth behavior of survived microorganisms from decontaminated spices within meat products

    International Nuclear Information System (INIS)

    Furuta, Masakazu; Ishikawa, Etsuko; Hoshina, Miyuki; Tomii, Enami; Koike, Kazuko; Ukai, Mitsuko

    2010-01-01

    The purpose of the study is to investigate the condition of microbial growth recovery from the damage of killing stresses such as heating and 60 Co-gamma irradiation especially within the processed meat products. Black pepper powder treated by each process in which less than 1000 microbial loads was enumerated by aerobic counts was mixed with minced sausage and incubated at 30degC for several days. Outgrowth of microorganism was monitored according to the procedure described by Japanese Food Hygiene Law. Sausage samples containing the treated black pepper powder showed the similar microbial growth from less than 1000 CFU/g of the sample to approximately the order of 10 9 CPU/g of the sample during the incubation at 30degC, irrespective of gamma-irradiation or superheated-steam treatment. There were no significant differences between gamma-irradiation and superheated-steam treatment in outgrowth of the surviving microorganisms when the treated black pepper or sage was mixed and pulverized with sausage. In case paprika, growth delay of the super-steamed survivors was observed within 1 day after incubation. (author)

  5. Influence of temperature on the fixation and penetration of silver during the chalcopyrite leaching using moderate thermophilic microorganisms

    International Nuclear Information System (INIS)

    Cancho, L.; Blazquez, M. L.; Munoz, J. A.; Gonzalez, F.; Ballester, A.

    2004-01-01

    Bio leaching of chalcopyrite using mesophilic microorganisms considerable improves in the presence of silver. However, the studies carried out with moderate thermophilic microorganisms do not show a significant improvement with regard to the use of mesophilic bacteria. The main objective of the present work has been to study the silver fixation on chalcopyrite ar 35 and 45 degree centigree and its influence on the microbiological attack. Different observations using SEM, EDS microanalysis and concentration profiles using electron microprobe have been carried out. The study of the different samples showed that silver fixation was more favourable at 35 degree centigree than at 45 degree centigree. In addition, bacterial action improved silver penetration through attack cracks. (Author)

  6. Glioma Surgical Aspirate: A Viable Source of Tumor Tissue for Experimental Research

    International Nuclear Information System (INIS)

    Day, Bryan W.; Stringer, Brett W.; Wilson, John; Jeffree, Rosalind L.; Jamieson, Paul R.

    2013-01-01

    Brain cancer research has been hampered by a paucity of viable clinical tissue of sufficient quality and quantity for experimental research. This has driven researchers to rely heavily on long term cultured cells which no longer represent the cancers from which they were derived. Resection of brain tumors, particularly at the interface between normal and tumorigenic tissue, can be carried out using an ultrasonic surgical aspirator (CUSA) that deposits liquid (blood and irrigation fluid) and resected tissue into a sterile bottle for disposal. To determine the utility of CUSA-derived glioma tissue for experimental research, we collected 48 CUSA specimen bottles from glioma patients and analyzed both the solid tissue fragments and dissociated tumor cells suspended in the liquid waste fraction. We investigated if these fractions would be useful for analyzing tumor heterogeneity, using IHC and multi-parameter flow cytometry; we also assessed culture generation and orthotopic xenograft potential. Both cell sources proved to be an abundant, highly viable source of live tumor cells for cytometric analysis, animal studies and in-vitro studies. Our findings demonstrate that CUSA tissue represents an abundant viable source to conduct experimental research and to carry out diagnostic analyses by flow cytometry or other molecular diagnostic procedures

  7. El modelo de sistema viable: un instrumento para la organización efectiva

    Directory of Open Access Journals (Sweden)

    Norlando Sánchez Rueda

    2015-05-01

    Full Text Available RESUMEN En este ensayo se presenta una interpretación teórica del denominado Modelo de Sistema Viable (MSV, de Stafford Beer y su Potencial Aplicación en Tareas de Diagnóstico  y diseño empresarial, al igual que para Mejorar las capacidades Organizacionales de Auto- Regulación  y Auto- Organización. Se explica como el Modelo del Sistema Viable permite conocer e interpretar  los mecanismos de estabilidad y adaptabilidad de las organizaciones, pilares para el crecimiento de una verdadera organización Efectiva.

  8. isolation and identification of the microorganisms most prevalent

    African Journals Online (AJOL)

    problems presenting in eye clinics on a daily basis. With one or two ... microorganisms most prevalent in external eye infections in Owerri urban (as seen Mercy Eye clinic). With the aid of sterile .... through personal contacts. Consequently, the.

  9. Air sampling to assess potential generation of aerosolized viable bacteria during flow cytometric analysis of unfixed bacterial suspensions

    Science.gov (United States)

    Carson, Christine F; Inglis, Timothy JJ

    2018-01-01

    This study investigated aerosolized viable bacteria in a university research laboratory during operation of an acoustic-assisted flow cytometer for antimicrobial susceptibility testing by sampling room air before, during and after flow cytometer use. The aim was to assess the risk associated with use of an acoustic-assisted flow cytometer analyzing unfixed bacterial suspensions. Air sampling in a nearby clinical laboratory was conducted during the same period to provide context for the existing background of microorganisms that would be detected in the air. The three species of bacteria undergoing analysis by flow cytometer in the research laboratory were Klebsiella pneumoniae, Burkholderia thailandensis and Streptococcus pneumoniae. None of these was detected from multiple 1000 L air samples acquired in the research laboratory environment. The main cultured bacteria in both locations were skin commensal and environmental bacteria, presumed to have been disturbed or dispersed in laboratory air by personnel movements during routine laboratory activities. The concentrations of bacteria detected in research laboratory air samples were reduced after interventional cleaning measures were introduced and were lower than those in the diagnostic clinical microbiology laboratory. We conclude that our flow cytometric analyses of unfixed suspensions of K. pneumoniae, B. thailandensis and S. pneumoniae do not pose a risk to cytometer operators or other personnel in the laboratory but caution against extrapolation of our results to other bacteria and/or different flow cytometric experimental procedures. PMID:29608197

  10. Effect of Azotobacter croococcum on productive traits and microorganisms in sugar beet rhizosphere

    Directory of Open Access Journals (Sweden)

    Kuzevski Janja

    2011-01-01

    Full Text Available The aim of this study was to determine the effects of three different inoculation methods with selected Azotobacter chroococcum strains on productive and technological traits of sugar beet, as well as on the total number of microorganisms and azotobacter in rhizosphere. The results of this two-year study showed that effectiveness of the tested inoculation methods in increasing root yield and sugar content varies greatly, depending on year and azotobacter strains. Effectiveness of inoculation methods was not largely impacted by year on granulated sugar. Achieved granulated sugar yield was significantly higher by using pre-sowing azotobacter application, than by using seed inoculation. A significantly increased number of microorganisms in sugar beet rhizosphere was determined, not only by using pre-sowing azotobacter application but also by using sugar beet seed inoculation. Pre-sowing azotobacter application and inter-row cultivation both caused an equal increase in the number of these bacteria in sugar beet rhizosphere (42.2% and 46.9%. Use of sugar beet seed inoculation caused an increase of 33.7% in the number of azotobacter. In order to achieve higher effectiveness in applying azotobacter on productive and technological traits of sugar beet, and considering determined interaction between a certain year, an inoculation method and a strain, it is necessary for future research to focus on determining efficiency of these strains when they are in a mixture.

  11. Isolation of radioresistant microorganisms from a Co/sup 60/ irradiation plant

    International Nuclear Information System (INIS)

    Lezcano, Graciela

    1982-01-01

    The continuos exposition to low doses of gamma irradiation can produce changes in the microflora's radioresistance. In order to obtain information about these possible modifications, the water from the pool used as shielding of the source, as well as the air and the dust in the irradiation chamber of the semi-industrial irradiation plant existing at the Ezeiza Atomic Center were analyzed. The number of microorganisms was determined by filtration techniques and by dilutions. Radioresistance studies of the contaminating microflora were performed. The value of the D/sub 10/ dose was determined in the conditions of highest resistance. A pronounced decrease in the number of microorganisms was observed as a radiation effect in the samples of water and dust, but not in the air samples, this as a consequence of the extractors' action that continually renews the air and the flora in the chamber, thus preventing high-dose exposure. In the air samples no increase of the microorganisms' radioresistance was observed. In the pool water flora, the development of a great radioresistance was observed. A microorganism whose inactivation curve shows a shoulder of 3.2 Mrad was isolated. This high radioresistance could be the result of the continous exposure to low doses during six years. Contrarily, the microorganims of the irradiation chamber's dust did not increase their radioresistance wiht regard to the common contaminants. In the flora of the dust used as a target, two microorganims whose D/sub 10/ were in excess of 400 krad were found; these could be ocassional contaminants. The radioresistant microorganims were isolated and characterized according to Cowan's scheme, the water microorganisms being identified as belonging to the genus Corynebacterium and the earth ones to the genera Micrococcus and Corynebacterium. (author) [es

  12. Antibiotic Sensitivity Pattern of Microorganisms Isolated from ...

    African Journals Online (AJOL)

    Antibiotic sensitivity pattern of microorganisms isolated from smoked and frozen fishes sold in Benin and Warri metropolis were investigated. Adopting microbiological standard techniques, the results of the bacterial counts and fungal counts ranged from 5.4 x 106 (Ekpan market) to 25.1 x 106 (Ekpan market) and 1.1 x 105 ...

  13. Novel Industrial Enzymes from Uncultured Arctic Microorganisms

    DEFF Research Database (Denmark)

    Vester, Jan Kjølhede

    , and reduce the risk of contaminations. Cold- and alkaline-active enzymes can be found in microorganisms adapted to living in natural environments with these conditions, which are extremely rare but found in the unique ikaite columns from SW Greenland (4-6 °C, pH >10). It is estimated that less than 1...

  14. Axenic isolation of viable Giardia muris trophozoites.

    Science.gov (United States)

    Tillotson, K D; Buret, A; Olson, M E

    1991-06-01

    Large numbers of viable Giardia muris trophozoites were isolated from the duodenum of experimentally infected mice 6 days after inoculation with 1,000 G. muris cysts. A series of shaking, incubation, and washing steps in the presence of the broad-spectrum antibiotic piperacillin readily provided 4.9 +/- 1.5 x 10(5) G. muris trophozoites per mouse, free of detectable contaminant organisms. Anaerobic and microaerophilic culturing and scanning electron microscopy demonstrated axenic status and high purity of the isolates. The viability of trophozoites was 98 +/- 2%. Application of this technique should permit novel immunological and epidemiological analyses of G. muris infection and biochemical investigations of this protozoan parasite.

  15. Biofiltration as a Viable Alternative for Air Pollution Control at Department of Defense Surface Coating Facilities

    Science.gov (United States)

    2007-03-01

    Bacteria, fungi , algae, protozoa and viral organisms are all present in compost. The presence of these microorganisms precludes the need for their...effectiveness of cow and pig manure, wheat bran, and bagasse (fibrous material extracted from the juice of crushed stalks of sugar cane) (Chou and...countless types of microorganisms known to exist; those associated with biodegradation typically appear as either bacteria, fungi , or algae. For

  16. Quantification of viable bacteria in wastewater treatment plants by using propidium monoazide combined with quantitative PCR (PMA-qPCR).

    Science.gov (United States)

    Li, Dan; Tong, Tiezheng; Zeng, Siyu; Lin, Yiwen; Wu, Shuxu; He, Miao

    2014-02-01

    The detection of viable bacteria in wastewater treatment plants (WWTPs) is very important for public health, as WWTPs are a medium with a high potential for waterborne disease transmission. The aim of this study was to use propidium monoazide (PMA) combined with the quantitative polymerase chain reaction (PMA-qPCR) to selectively detect and quantify viable bacteria cells in full-scale WWTPs in China. PMA was added to the concentrated WWTP samples at a final concentration of 100 micromol/L and the samples were incubated in the dark for 5 min, and then lighted for 4 min prior to DNA extraction and qPCR with specific primers for Escherichia coli and Enterococci, respectively. The results showed that PMA treatment removed more than 99% of DNA from non-viable cells in all the WWTP samples, while matrices in sludge samples markedly reduced the effectiveness of PMA treatment. Compared to qPCR, PMA-qPCR results were similar and highly linearly correlated to those obtained by culture assay, indicating that DNA from non-viable cells present in WWTP samples can be eliminated by PMA treatment, and that PMA-qPCR is a reliable method for detection of viable bacteria in environmental samples. This study demonstrated that PMA-qPCR is a rapid and selective detection method for viable bacteria in WWTP samples, and that WWTPs have an obvious function in removing both viable and non-viable bacteria. The results proved that PMA-qPCR is a promising detection method that has a high potential for application as a complementary method to the standard culture-based method in the future.

  17. MICROORGANISMS ANTIBIOTIC SENSITIVITY DETERMINATION IN URINARY TRACT INFECTIONS

    Directory of Open Access Journals (Sweden)

    Shapovalova O.V.

    2016-06-01

    Full Text Available Introduction. Nowadays Urinary tract infections (UTI are considered to be the most common bacterial infections. Escherichia coli is the most frequently uropathogen. Other microorganisms of the genera Enterococcus, Klebsiella, Enterobacter, Proteus, Morganella, Citrobacter, Serratia, Pseudomonas, Streptococcus, Staphylococcus, Candida are also isolated with variable frequency. In recent years there has been a decreasing tendency of the causative agents of UTI sensitivity to various antibiotics, which causes growth of an inefficiency treatment risk. In connection with the above the investigations were carried out with the purpose to identify the actual causative agents of bacteriuria and their sensitivity to antibiotics and antifungal drugs. Materials and methods. Bacteriological examination of urine was performed at 42 patients of SI "Sytenko Institute of Spine and Joint Pathology, AMS of Ukraine" clinic. The bacteriological method for determining the number of bacteria in the test material, cultural and bacterioscopic methods for identifying microorganisms and disk-diffusion method for sensitivity of microorganisms to antibiotics determining were used. The clinical material for the study was an average portion of the morning urine or urine collected by catheter. The biological material collection and bacteriological examination was carried by quantitative method, the isolated microorganisms identification and their sensitivity to antibiotics determining was performed by standard methods in accordance with current guidelines. We used the following antibiotics group to determine the microorganisms sensitivity: penicillin, cephalosporin, karbapenems, tetracyclines, aminoglycoside, fluoroquinolones, oxazolidinones, macrolides, lincosamides, glycopeptides, antifungal antibiotics. Results and discussion. During the biological material study 55 isolates of bacterial and fungal pathogens were obtained. The microorganisms’ concentration in urine was in

  18. Sorption and precipitation of Mn2+ by viable and autoclaved Shewanella putrefaciens: Effect of contact time

    KAUST Repository

    Chubar, Natalia

    2013-01-01

    The sorption of Mn(II) by viable and inactivated cells of Shewanella putrefaciens, a non-pathogenic, facultative anaerobic, gram-negative bacterium characterised as a Mn(IV) and Fe(III) reducer, was studied under aerobic conditions, as a function of pH, bacterial density and metal loading. During a short contact time (3-24h), the adsorptive behaviour of live and dead bacteria toward Mn(II) was sufficiently similar, an observation that was reflected in the studies on adsorption kinetics at various metal loadings, effects of pH, bacteria density, isotherms and drifting of pH during adsorption. Continuing the experiment for an additional 2-30days demonstrated that the Mn(II) sorption by suspensions of viable and autoclaved cells differed significantly from one another. The sorption to dead cells was characterised by a rapid equilibration and was described by an isotherm. In contrast, the sorption (uptake) to live bacteria exhibited a complex time-dependent uptake. This uptake began as adsorption and ion exchange processes followed by bioprecipitation, and it was accompanied by the formation of polymeric sugars (EPS) and the release of dissolved organic substances. FTIR, EXAFS/XANES and XPS demonstrated that manganese(II) phosphate was the main precipitate formed in 125ml batches, which is the first evidence of the ability of microbes to synthesise manganese phosphates. XPS and XANES spectra did not detect Mn(II) oxidation. Although the release of protein-like compounds by the viable bacteria increased in the presence of Mn2+ (and, by contrast, the release of carbohydrates did not change), electrochemical analyses did not indicate any aqueous complexation of Mn(II) by the organic ligands. © 2012 Elsevier Ltd.

  19. The amount of viable and dyssynchronous myocardium is associated with response to cardiac resynchronization therapy: initial clinical results using multiparametric ECG-gated [{sup 18}F]FDG PET

    Energy Technology Data Exchange (ETDEWEB)

    Lehner, Sebastian; Uebleis, Christopher; Haug, Alexander; Bartenstein, Peter [University of Munich, Department of Nuclear Medicine, Munich (Germany); Schuessler, Franziska; Kaeaeb, Stefan; Estner, Heidi [University of Munich, Medical Department I, Munich (Germany); Van Kriekinge, Serge D.; Germano, Guido [UCLA, Cedars-Sinai Medical Center, Los Angeles and David Geffen School of Medicine, Los Angeles, CA (United States); Hacker, Marcus [Medical University of Vienna, Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Theraphy, Vienna (Austria)

    2013-12-15

    There is still a significant amount of patients who do not sufficiently respond to cardiac resynchronization therapy (CRT). Previous studies demonstrated that the amount of dyssynchronous myocardium was predictive of response to CRT. Otherwise, non-response is frequently associated with high amounts of scar tissue. The combination of these parameters might yield a more accurate prediction of response. We hypothesized that the probability of a CRT response increases with the presence of high amounts of ''viable and dyssynchronous'' myocardium. A total of 19 patients (17 male, 61 {+-} 10 years) underwent ECG-gated [{sup 18}F]fluorodeoxyglucose (FDG) myocardial positron emission tomography (PET) before CRT device implantation and were followed for 6 months. Response to CRT was defined as clinical improvement of at least one New York Heart Association (NYHA) class in combination with left ventricular (LV) ejection fraction (EF) improvement of >5 %. Twelve responders (71 %) and seven non-responders (29 %) were identified. For each patient bullseye maps of FDG uptake and phase analysis were calculated (QPS/QGS 2012, Cedars-Sinai, Los Angeles, CA, USA) and fused. Amounts of myocardium representing ''viable and synchronous'', ''scar and synchronous'', viable and dyssynchronous or ''scar and dyssynchronous'' myocardium were quantified by planimetric measurements of the fused bullseye maps. Responders by definition showed significant decrease in NYHA class and significant increase of LVEF. Furthermore, a significantly higher amount of viable and dyssynchronous myocardium was found as compared to non-responders (21 {+-} 13 % vs 6 {+-} 5 %; p < 0.05). Combined assessment of myocardial viability and LV dyssynchrony is feasible using multiparametric [{sup 18}F]FDG PET and could improve conventional response prediction criteria for CRT. (orig.)

  20. [Evolution of pathogenic micro-organisms as a challenge for medicine].

    Science.gov (United States)

    Vaara, Martti

    2009-01-01

    Successful parasitic micro-organisms are able to adapt to the circumstances of the host's organ system, and it is usually not expedient for them to kill their host. Under selection pressure, the evolution of micro-organisms is vastly quicker that that of man. The selection pressure brought about by rapid ecological changes and alterations associated with human action provides for the development of new, dangerous pathogens and transformation of familiar pathogens to become more dangerous. Progress in molecular biology has thus far not yielded as many new tools for the treatment of infectious diseases as the hopes were in the early 2000's.

  1. Distribution of microorganisms in herb medicines and their decontamination by gamma-irradiation

    International Nuclear Information System (INIS)

    Ito, Hitoshi

    1999-01-01

    Herb medicines are traditional medicine in Japan and have been used for medical treatment. These herb medicines are contaminating frequently by microorganisms which has possibility to cause opportunistic diseases. Recently, hygienic standard of herb medicines become more strict than before, and it needs to decontaminate microorganisms by some treatments. However, chemical treatments such as by ethylene oxide fumigation leave toxic residues in the herbs while steam sterilization decease medicinal components. From study on the distribution of microorganisms in 31 samples of selected herb medicines, colony forming units of total aerobic bacteria were determined to be l.9 x 10 2 to l.4 x 10 8 per gram in 30 samples. Coliforms were also determined to be 6.9 x 10 2 to 4.3 x 10 6 per gram in 16 samples. The main aerobic bacteria were identified as Bacillus pumilus, B. circulans, B. megaterium, Erwinia, Enterobacter and Acinetobacter, whereas consisted mainly of Enterobacter in coliform counts. Molds were determined to be 6.3 x 10 1 to 1.9 x 10 5 per gram which consisted mainly Aspergillus glaucus group, A. restrictus group, A. flavus group, A. ostianus, A. phoenicis, Penicillium, Tricoderma, Rhizopus and Alternaria in 25 samples. A study on the inactivation of microorganisms at sample No. S18 showed that a gamma-irradiation dose of 20 kGy was required to reduce the total aerobic bacteria and the coliforms below a detectable level, while radiation-resistant bacteria were survived at high doses more than 10 kGy consisted with Acinetobacter and Enterobacter. Molds were inactivated below 8 kGy except Alternaria. However, a dose of 10 kGy should be effective for the sample No. S18 to reduce the spore-forming bacteria, the fecal coliforms and the molds below a detectable level per gram. On the study of inactivation of microorganisms in many samples except the No. 18, all kinds of microorganism were inactivated below a detectable level at 10 kGy irradiation. (author)

  2. Distribution of microorganisms in herb medicines and their decontamination by gamma-irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Hitoshi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Kamakura, Hiroyuki; Sekita, Setuko [National Institute of Health Sciences, Kamiyoga, Tokyo (Japan)

    1999-09-01

    Herb medicines are traditional medicine in Japan and have been used for medical treatment. These herb medicines are contaminating frequently by microorganisms which has possibility to cause opportunistic diseases. Recently, hygienic standard of herb medicines become more strict than before, and it needs to decontaminate microorganisms by some treatments. However, chemical treatments such as by ethylene oxide fumigation leave toxic residues in the herbs while steam sterilization decease medicinal components. From study on the distribution of microorganisms in 31 samples of selected herb medicines, colony forming units of total aerobic bacteria were determined to be l.9 x 10{sup 2} to l.4 x 10{sup 8} per gram in 30 samples. Coliforms were also determined to be 6.9 x 10{sup 2} to 4.3 x 10{sup 6} per gram in 16 samples. The main aerobic bacteria were identified as Bacillus pumilus, B. circulans, B. megaterium, Erwinia, Enterobacter and Acinetobacter, whereas consisted mainly of Enterobacter in coliform counts. Molds were determined to be 6.3 x 10{sup 1} to 1.9 x 10{sup 5} per gram which consisted mainly Aspergillus glaucus group, A. restrictus group, A. flavus group, A. ostianus, A. phoenicis, Penicillium, Tricoderma, Rhizopus and Alternaria in 25 samples. A study on the inactivation of microorganisms at sample No. S18 showed that a gamma-irradiation dose of 20 kGy was required to reduce the total aerobic bacteria and the coliforms below a detectable level, while radiation-resistant bacteria were survived at high doses more than 10 kGy consisted with Acinetobacter and Enterobacter. Molds were inactivated below 8 kGy except Alternaria. However, a dose of 10 kGy should be effective for the sample No. S18 to reduce the spore-forming bacteria, the fecal coliforms and the molds below a detectable level per gram. On the study of inactivation of microorganisms in many samples except the No. 18, all kinds of microorganism were inactivated below a detectable level at 10 k

  3. Efficiency of swimming of micro-organism and singularity in shape space

    OpenAIRE

    Kawamura, Masako

    1996-01-01

    Micro-organisms can be classified into three different types according to their size. We study the efficiency of the swimming of micro-organism in two dimensional fluid as a device for helping the explanation of this hierarchy in the size. We show that the efficiency of flagellate becomes unboundedly large, whereas that of ciliate has the upper bound. The unboundedness is related to the curious feature of the shape space, that is, a singularity at the basic shape of flagellate.

  4. Analysis of boron utilization in sample preparation for microorganisms detection by neutron radiography technique

    International Nuclear Information System (INIS)

    Wacha, Reinaldo; Crispim, Verginia R.

    2000-01-01

    The neutron radiography technique applied to the microorganisms detection is the study of a new and faster alternative for diagnosis of infectious means. This work presents the parameters and the effects involved in the use of the boron as a conversion agent, that convert neutrons in a particles, capable ones of generating latent tracks in a solid state nuclear tracks detector, CR-39. The collected samples are doped with the boron by the incubation method, propitiating an interaction microorganisms/boron, that will guarantee the identification of the images of those microorganisms, through your morphology. (author)

  5. Differential Effect of Viable Versus Necrotic Neutrophils on Mycobacterium tuberculosis Growth and Cytokine Induction in Whole Blood

    Directory of Open Access Journals (Sweden)

    David M. Lowe

    2018-04-01

    Full Text Available Neutrophils exert both positive and negative influences on the host response to tuberculosis, but the mechanisms by which these differential effects are mediated are unknown. We studied the impact of live and dead neutrophils on the control of Mycobacterium tuberculosis using a whole blood bioluminescence-based assay, and assayed supernatant cytokine concentrations using Luminex™ technology and ELISA. CD15+ granulocyte depletion from blood prior to infection with M. tuberculosis-lux impaired control of mycobacteria by 96 h, with a greater effect than depletion of CD4+, CD8+, or CD14+ cells (p < 0.001. Augmentation of blood with viable granulocytes significantly improved control of mycobacteria by 96 h (p = 0.001, but augmentation with necrotic granulocytes had the opposite effect (p = 0.01. Both augmentations decreased supernatant concentrations of tumor necrosis factor and interleukin (IL-12 p40/p70, but necrotic granulocyte augmentation also increased concentrations of IL-10, G-CSF, GM-CSF, and CCL2. Necrotic neutrophil augmentation reduced phagocytosis of FITC-labeled M. bovis BCG by all phagocytes, whereas viable neutrophil augmentation specifically reduced early uptake by CD14+ cells. The immunosuppressive effect of dead neutrophils required necrotic debris rather than supernatant. We conclude that viable neutrophils enhance control of M. tuberculosis in blood, but necrotic neutrophils have the opposite effect—the latter associated with induction of IL-10, growth factors, and chemoattractants. Our findings suggest a mechanism by which necrotic neutrophils may exert detrimental effects on the host response in active tuberculosis.

  6. Real-time PCR detection of aldoxime dehydratase genes in nitrile-degrading microorganisms.

    Science.gov (United States)

    Dooley-Cullinane, Tríona Marie; O'Reilly, Catherine; Coffey, Lee

    2017-02-01

    Aldoxime dehydratase catalyses the conversion of aldoximes to their corresponding nitriles. Utilization of the aldoxime-nitrile metabolising enzyme pathway can facilitate the move towards a greener chemistry. In this work, a real-time PCR assay was developed for the detection of aldoxime dehydratase genes in aldoxime/nitrile metabolising microorganisms which have been purified from environmental sources. A conventional PCR assay was also designed allowing gene confirmation via sequencing. Aldoxime dehydratase genes were identified in 30 microorganisms across 11 genera including some not previously shown to harbour the gene. The assay displayed a limit of detection of 1 pg/μL DNA or 7 CFU/reaction. This real-time PCR assay should prove valuable in the high-throughput screening of micro-organisms for novel aldoxime dehydratase genes towards pharmaceutical and industrial applications.

  7. Fossil micro-organisms evidenced by electronic microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Prashnowsky, A.A.; Oberlies, F.; Burger, K.

    1983-04-01

    Fossil microorganisms in colonies and in the form of isolated cells (iron bacteria, fungi, actinomycetes etc.) were detected by electron microscopy of rocks containing remains of plant roots, carbonaceous substance, and strata of clay iron stone with ooids. These findings suggest an environment favourable to bacterial activity during sedimentation in the Upper Carboniferous and during the later processes of peat and coal formation. They also suggest that bacterial processes are an important factor in coal formation. Accurate data on coal formation can only be obtained by systematic biochemical studies. Analyses of the defined organic substances provide a better understanding of the conversion processes of the original substances. For example, the results of sterine analysis provide information on the mycoplancton, phytoplancton and zooplancton of the Upper Carboniferous. For some types of rock, the ratio of saponifiable to non-saponifiable constituents of the organic compounds yield information on stability under various geochemical conditions. The interactions between the various groups of microorganisms also play a major role in the solution of ecological problems.

  8. Developing Viable Financing Models for Space Tourism

    Science.gov (United States)

    Eilingsfeld, F.; Schaetzler, D.

    2002-01-01

    Increasing commercialization of space services and the impending release of government's control of space access promise to make space ventures more attractive. Still, many investors shy away from going into the space tourism market as long as they do not feel secure that their return expectations will be met. First and foremost, attracting investors from the capital markets requires qualifying financing models. Based on earlier research on the cost of capital for space tourism, this paper gives a brief run-through of commercial, technical and financial due diligence aspects. After that, a closer look is taken at different valuation techniques as well as alternative ways of streamlining financials. Experience from earlier ventures has shown that the high cost of capital represents a significant challenge. Thus, the sophistication and professionalism of business plans and financial models needs to be very high. Special emphasis is given to the optimization of the debt-to-equity ratio over time. The different roles of equity and debt over a venture's life cycle are explained. Based on the latter, guidelines for the design of an optimized loan structure are given. These are then applied to simulating the financial performance of a typical space tourism venture over time, including the calculation of Weighted Average Cost of Capital (WACC) and Net Present Value (NPV). Based on a concluding sensitivity analysis, the lessons learned are presented. If applied properly, these will help to make space tourism economically viable.

  9. Final Technical Report. Origins of subsurface microorganisms: Relating laboratory microcosm studies to a geologic time scale; FINAL

    International Nuclear Information System (INIS)

    Kieft, Thomas; Amy, Penny S.; Phillips, Fred M.

    1998-01-01

    This project was conducted as part of the Department of Energy's Deep Subsurface Science Program. It was part of a larger effort to determine the origins of subsurface microorganisms. Two hypotheses have been suggested for the origins of subsurface microorganisms: (1) microorganisms were deposited at the time of (or shortly after) geologic deposition of rocks and sediments (the in situ survival hypothesis), and (2) microorganisms have been transported from surface environments to subsurface rocks and sediments since the time of geologic deposition (transport hypothesis). These two hypotheses are not mutually exclusive. Depending on the geological setting, either one or both of these hypotheses may best explain microbial origins. Our project focused on the in situ survival hypothesis. We tested the hypothesis that microorganisms (individuals populations and communities) can survive long-term sequestration within subsurface sediments. Other objectives were to identify geologic conditions that favor long-term survival, identify physiological traits of microorganisms that favor long-term survival, and determine which groups of microorganisms are most likely to survive long-term sequestration in subsurface sediments. We tested this hypothesis using a combination of pure culture techniques in laboratory microcosms under controlled conditions and field experiments with buried subsurface sediments

  10. Functional genes and thermophilic microorganisms responsible for arsenite oxidation from the shallow sediment of an untraversed hot spring outlet.

    Science.gov (United States)

    Yang, Ye; Mu, Yao; Zeng, Xian-Chun; Wu, Weiwei; Yuan, Jie; Liu, Yichen; Guoji, E; Luo, Feng; Chen, Xiaoming; Li, Hao; Wang, Jianing

    2017-05-01

    Hot Springs have unique geochemical features. Microorganisms-mediated arsenite oxidation is one of the major biogeochemical processes occurred in some hot springs. This study aimed to understand the diversities of genes and microorganisms involved in arsenite oxidation from the outlet of an untraversed hot spring located at an altitude of 4226 m. Microcosm assay indicated that the microbial community from the hot spring was able to efficiently oxidize As(III) using glucose, lactic acid, yeast extract or sodium bicarbonate as the sole carbon source. The microbial community contained 7 phyla of microorganisms, of which Proteobacteria and Firmicutes are largely dominant; this composition is unique and differs significantly from those of other described hot springs. Twenty one novel arsenite oxidase genes were identified from the samples, which are affiliated with the arsenite oxidase families of α-Proteobacteria, β-Proteobacteria or Archaea; this highlights the high diversity of the arsenite-oxidizing microorganisms from the hot spring. A cultivable arsenite-oxidizer Chelatococcu sp. GHS311 was also isolated from the sample using enrichment technique. It can completely convert 75.0 mg/L As(III) into As(V) in 18 days at 45 °C. The arsenite oxidase of GHS311 shares the maximal sequence identity (84.7%) to that of Hydrogenophaga sp. CL3, a non-thermotolerant bacterium. At the temperature lower than 30 °C or higher than 65 °C, the growth of this strain was completely inhibited. These data help us to better understand the diversity and functional features of the thermophilic arsenite-oxidizing microorganisms from hot springs.

  11. Antimicrobial Effects of Garcinia Mangostana on Cariogenic Microorganisms.

    Science.gov (United States)

    Janardhanan, Sunitha; Mahendra, Jaideep; Girija, A S Smiline; Mahendra, Little; Priyadharsini, Vijayashree

    2017-01-01

    Garcinia mangostana commonly called as Mangosteen fruit has been used as an antibacterial agent since age old times. The mangosteen pericarp has proven to have antibacterial effect, but the effect of the same on cariogenic organisms has not been explored. The present study was an attempt to gain a better understanding of the antibacterial effect of mangosteen pericarp on the cariogenic bacteria, to unravel the therapeutic potential for the same. The aim of the study was to assess the antibacterial efficacy of the crude chloroform extract of mangosteen pericarp against cariogenic bacteria. The study was done under laboratory settings using an in vitro design. The microorganisms namely Streptococcus mutans, Streptococcus sanguis, Streptococcus salivarius, Streptococcus oralis and Lactobacillus acidophilus were procured from American Type Cell Culture (ATCC) and Microbial Type Culture Collection (MTCC) were revived and lawn cultured. The antibacterial effect of mangosteen pericarp was tested using agar well diffusion method on Trypticase Soy Agar-Blood Agar (TSA-BA) and de Man, Rogosa and Sharpe (MRS) agar media. The standard antiplaque agent chlorhexidine was used as the positive control. This cross-sectional, experimental study was done in Central Research laboratory, Meenakshi Ammal Dental College for period of eight weeks. Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) values were determined by microbroth dilution method. Statistical analysis was done by calculating the mean of the zones of inhibition on tested microorganisms. Mann-Whitney test was done to compare the zones of inhibition of mangosteen and chlorhexidine. The antibacterial bioassay showed the highest activity for Lactobacillus acidophilus (13.6 mm) and Streptococcus sanguis (13.6 mm), whereas, it showed a medium and low activity for Streptococcus oralis (11.3 mm), Streptococcus mutans (10.6 mm) and Streptococcus salivarius (3 mm) respectively. The MBC and MIC

  12. Use Of Amino Acid Racemization To Investigate The Metabolic Activity Of ?Dormant? Microorganisms In Siberian Permafrost

    Science.gov (United States)

    Tsapin, A.; McDonald, G.

    2002-12-01

    Permafrost occupies a significant part of North America and Eurasia, and accounts for around 20% of Earth?s land surface. Permafrost represents a temperature-stable environment that allows the prolonged survival of microbial lineages at subzero temperatures. Microorganisms from ancient permafrost have been revived and isolated in pure cultures. Permafrost is a unique environment serving as a "natural gene bank", with many species frozen in time (i.e. preserved in an unchanging evolutionary state). Permafrost presents a golden niche for future biotechnology, and is also a unique environment for studying longevity and survivability microorganisms (pro- and eukaryotes). Permafrost, alone among cold environments, offers a sedimentary column in which, in one borehole made in the thick permafrost, we can observe in the preserved genetic material the history of biological evolution during the last several hundred thousand or maybe even a few million years. A thorough study of the phylogenetic relationships of organisms at each depth, as well as comparisons between different depths of permafrost, using molecular evolution techniques, will give us a unique window into the process of evolution of microbial communities over geologic time. The longevity of (micro)organisms in cold environments is of great interest to astrobiology since cryospheres are common phenomena in the solar system, particularly on satellites, comets and asteroids, and on some of the planets. Recent data from the Mars Global Surveyor mission suggest the possibility of permafrost or perhaps even liquid water under the Martian surface. The probability of finding life on Mars, if it exists, is probably higher in such environments. In addition, the evaluation of the possibility of transfer of living organisms between planets via impact ejecta needs the information on the maximum time over which microorganisms in cold environments can remain dormant and subsequently revive and reproduce. Our strategy for the

  13. Contracting of energy services: often a viable alternative

    International Nuclear Information System (INIS)

    Milic, M.; Bruendler, M.

    2001-01-01

    This article discusses the outsourcing of energy services as a viable alternative to the operation of own energy facilities. The advantages of contracting for enterprises wanting to focus on their core competencies and have their energy infrastructure financed, built, maintained and operated by a third party are discussed. Financial aspects are looked at and examples in connection with the calculation of actual energy costs are given. The article is concluded with tips on the evaluation of offers for contracting services and on the definition of ownership aspects and property boundaries

  14. Plant Growth-Promoting Microorganisms for Environmental Sustainability.

    Science.gov (United States)

    Abhilash, P C; Dubey, Rama Kant; Tripathi, Vishal; Gupta, Vijai K; Singh, Harikesh B

    2016-11-01

    Agrochemicals used to meet the needs of a rapidly growing human population can deteriorate the quality of ecosystems and are not affordable to farmers in low-resource environments. Here, we propose the use of plant growth-promoting microorganisms (PGPMs) as a tool for sustainable food production without compromising ecosystems services. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Anisotropic structures of some microorganisms studied by polarization microscopy

    Czech Academy of Sciences Publication Activity Database

    Žižka, Zdeněk

    2014-01-01

    Roč. 59, č. 5 (2014), s. 363-368 ISSN 0015-5632 Institutional support: RVO:61388971 Keywords : Polarization microscopy * microorganism Subject RIV: EE - Microbiology, Virology Impact factor: 1.000, year: 2014

  16. 9 CFR 381.94 - Contamination with Microorganisms; process control verification criteria and testing; pathogen...

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Contamination with Microorganisms... § 381.94 Contamination with Microorganisms; process control verification criteria and testing; pathogen... maintaining process controls sufficient to prevent fecal contamination. FSIS shall take further action as...

  17. Identification of crude-oil components and microorganisms that cause souring under anaerobic conditions.

    Science.gov (United States)

    Hasegawa, R; Toyama, K; Miyanaga, K; Tanji, Y

    2014-02-01

    Oil souring has important implications with respect to energy resources. Understanding the physiology of the microorganisms that play a role and the biological mechanisms are both important for the maintenance of infrastructure and mitigation of corrosion processes. The objective of this study was to identify crude-oil components and microorganisms in oil-field water that contribute to crude-oil souring. To identify the crude-oil components and microorganisms that are responsible for anaerobic souring in oil reservoirs, biological conversion of crude-oil components under anaerobic conditions was investigated. Microorganisms in oil field water in Akita, Japan degraded alkanes and aromatics to volatile fatty acids (VFAs) under anaerobic conditions, and fermenting bacteria such as Fusibacter sp. were involved in VFA production. Aromatics such as toluene and ethylbenzene were degraded by sulfate-reducing bacteria (Desulfotignum sp.) via the fumarate-addition pathway and not only degradation of VFA but also degradation of aromatics by sulfate-reducing bacteria was the cause of souring. Naphthenic acid and 2,4-xylenol were not converted.

  18. Few microorganisms associated with bacterial vaginosis may constitute the pathologic core

    DEFF Research Database (Denmark)

    Thorsen, Poul; Jensen, Inge Panum; Jeune, Bernard

    1998-01-01

    OBJECTIVE: To evaluate the association between various microorganisms isolated from the genital tract in pregnant women with bacterial vaginosis. STUDY DESIGN: A cross-sectional population-based study among pregnant women addressed at their first antenatal visit before 24 full gestational weeks......) between the microorganisms isolated from the lower genital tract in pregnant women with and without clinical diagnosis of bacterial vaginosis. RESULTS: Three thousand five hundred ninety-six (3596) pregnant women were asked to participate. Of the 3596 pregnant women 3174 (88.4%) agreed to participate...

  19. Transcriptomic analysis on the formation of the viable putative non-culturable state of beer-spoilage Lactobacillus acetotolerans

    OpenAIRE

    Junyan Liu; Yang Deng; Brian M. Peters; Lin Li; Bing Li; Lequn Chen; Zhenbo Xu; Mark E. Shirtliff

    2016-01-01

    Lactic acid bacteria (LAB) are the most common beer-spoilage bacteria regardless of beer type, and thus pose significant problems for the brewery industry. The aim of this study was to investigate the genetic mechanisms involved in the ability of the hard-to-culture beer-spoilage bacterium Lactobacillus acetotolerans to enter into the viable putative non-culturable (VPNC) state. A genome-wide transcriptional analysis of beer-spoilage L. acetotolerans strains BM-LA14526, BM-LA14527, and BM-LA1...

  20. Rapid detection of foodborne microorganisms on food surface using Fourier transform Raman spectroscopy

    Science.gov (United States)

    Yang, Hong; Irudayaraj, Joseph

    2003-02-01

    Fourier transform (FT) Raman spectroscopy was used for non-destructive characterization and differentiation of six different microorganisms including the pathogen Escherichia coli O157:H7 on whole apples. Mahalanobis distance metric was used to evaluate and quantify the statistical differences between the spectra of six different microorganisms. The same procedure was extended to discriminate six different strains of E. coli. The FT-Raman procedure was not only successful in discriminating the different E. coli strain but also accurately differentiated the pathogen from non-pathogens. Results demonstrate that FT-Raman spectroscopy can be an excellent tool for rapid examination of food surfaces for microorganism contamination and for the classification of microbial cultures.

  1. FRUTOS DE UCHUVA (PHYSALIS PERUVIANA L. ECOTIPO ‘COLOMBIA’ MÍNIMAMENTE PROCESADOS, ADICIONADOS CON MICROORGANISMOS PROBIÓTICOS UTILIZANDO LA INGENIERÍA DE MATRICES MINIMALLY PROCESSED CAPE GOOSEBERRY FRUITS (PHYSALIS PERUVIANA L. ‘COLOMBIAN’ ECOTYPE, ADDED WITH PROBIOTIC MICROORGANISMS USING THE MATRIX ENGINEERING

    Directory of Open Access Journals (Sweden)

    Zaira Tatiana Marin Arango

    2010-06-01

    Full Text Available El consumo de alimentos con microorganismos probióticos se ha incrementado en los últimos años debido a los beneficios saludables que estos proporcionan. El desarrollo de nuevos alimentos con probióticos diferentes a los productos lácteos, representa un reto para los investigadores y la industria. El presente estudio desarrolló a nivel piloto frutos de uchuva (Physalis peruviana L. mínimamente procesados con microorganismos probióticos, combinando el efecto benéfico de la cepa comercial Lactobacillus casei ATCC 393 con la aplicación de la Ingeniería de Matrices como metodología de obtención de alimentos funcionales. Se utiliza como líquido de impregnación una solución de glucosa al 14% p/p, con concentración inicial de inóculo de 5 en la escala de McFarland (1,5 x 109 UFC/mL. Las uchuvas recién impregnadas alcanzaron conteos de células viables de 1,95 ± 0,28 x 10(9 UFC/100 g de uchuva fresca (9,28 ± 0,06 x 109 ciclos log UFC/100 g uchuva fresca y a los 15 días de almacenamiento a 4 ºC los conteos de células viables fueron de 2,20 ± 0,59 x 10(9 UFC/100 g de uchuva fresca. (9,32 ± 0,14 x 109 ciclos log UFC/100 g uchuva fresca. Estos niveles de concentración de microorganismos probióticos en la uchuva son similares a los encontrados en los productos lácteos, como el yogurt, helados, quesos, entre otros.Food consumption with probiotic microorganisms has been increased in the last years due to its healthy benefits that they provide. The development of new food with probiotics apart from dairy products represents a challenge for both researchers and industry. The present study developed at pilot level cape gooseberry fruits (Physalis peruviana L. minimally processed with microorganisms probiotics, combining the beneficent effect of the strain commercial Lactobacillus casei ATCC 393 with the application of the matrix Engineering as methodology to obtain functional foods. As liquid of impregnation a solution of glucose at

  2. Anti-microorganism contamination measures for crude drugs utilizing radiation sterilization

    International Nuclear Information System (INIS)

    Kimura, Syojiro

    1998-01-01

    Crude drugs are manufactured by simple processing of natural mineral, animal or plant part materials, and are used in Chinese medicine. Because these components are originated by nature, they tend to have a much higher level of contaminating microorganisms than chemically synthesized compound. Many plant-derived crude drugs contain bacteria; 10 3 -10 5 cells/g and fungi; 10 2 -10 4 spores/g. Some animal-derived crude drugs contain bacteria levels of up to 10 8 cells/g, including dangerous varieties like E. coli or Salmonella. The survival rate and the required dose can be quantified as follows: N/No=e -kD and SD=D 10 x log (No/SAL), respectively. Where, k is the sterilization constant of microorganism, No is the initial count of bacteria, D is the absorbed dose, D 10 is the dose required to decrease the count to 1/10 and SAL is the count limit or sterilization assurance. The D 10 value for general microorganism is approximately 2 kGy for bacteria, 1 kGy for fungi, and 3-4 kGy for spore-forming bacteria. The results of our past studies have shown that the dose of 5-7 kGy is necessary to sterilize general microorganism that are attached to crude drugs. Besides, the D 10 value of specific bacteria ranges from 0.1 to 0.8 kGy, so the above dose should be sufficient for sterilizing the specific microorganism (SAL; 10 -6 ). The stability of crude drugs can be quantified be the following formula, C/Co=e -k'D . Where, C/Co is the residual rate of drug components, and k' is the loss coefficient. The value of k is 1-2, but that of k' is three to four figures smaller. The C/Co ratio of most drug components is more than 0.99 with a dose of 5-7 kGy. Furthermore, radiolysis materials that are decomposed by radiation are similar to compounds that are decomposed by ultraviolet rays or sunlight. 60 Co ray are suitable for sterilizing raw materials. On the other hand, electron beams are used to sterilize a thin layer of pulverized specimens, and can be incorporated into the

  3. Generation of PHB from Spent Sulfite Liquor Using Halophilic Microorganisms.

    Science.gov (United States)

    Weissgram, Michaela; Gstöttner, Janina; Lorantfy, Bettina; Tenhaken, Raimund; Herwig, Christoph; Weber, Hedda K

    2015-06-08

    Halophilic microorganisms thrive at elevated concentrations of sodium chloride up to saturation and are capable of growing on a wide variety of carbon sources like various organic acids, hexose and also pentose sugars. Hence, the biotechnological application of these microorganisms can cover many aspects, such as the treatment of hypersaline waste streams of different origin. Due to the fact that the high osmotic pressure of hypersaline environments reduces the risk of contamination, the capacity for cost-effective non-sterile cultivation can make extreme halophilic microorganisms potentially valuable organisms for biotechnological applications. In this contribution, the stepwise use of screening approaches, employing design of experiment (DoE) on model media and subsequently using industrial waste as substrate have been implemented to investigate the applicability of halophiles to generate PHB from the industrial waste stream spent sulfite liquor (SSL). The production of PHB on model media as well as dilutions of industrial substrate in a complex medium has been screened for by fluorescence microscopy using Nile Blue staining. Screening was used to investigate the ability of halophilic microorganisms to withstand the inhibiting substances of the waste stream without negatively affecting PHB production. It could be shown that neither single inhibiting substances nor a mixture thereof inhibited growth in the investigated range, hence, leaving the question on the inhibiting mechanisms open. However, it could be demonstrated that some haloarchaea and halophilic bacteria are able to produce PHB when cultivated on 3.3% w/w dry matter spent sulfite liquor, whereas H. halophila was even able to thrive on 6.6% w/w dry matter spent sulfite liquor and still produce PHB.

  4. [Increasing incidence of community-acquired pneumonia caused by atypical microorganisms].

    Science.gov (United States)

    Tazón-Varela, M A; Alonso-Valle, H; Muñoz-Cacho, P; Gallo-Terán, J; Piris-García, X; Pérez-Mier, L A

    2017-09-01

    Knowing the most common microorganisms in our environment can help us to make proper empirical treatment decisions. The aim is to identify those microorganisms causing community-acquired pneumonia. An observational, descriptive and prospective study was conducted, including patients over 14 years with a clinical and radiographic diagnosis of community-acquired pneumonia during a 383 consecutive day period. A record was made of sociodemographic variables, personal history, prognostic severity scales, progress, and pathogenic agents. The aetiological diagnosis was made using blood cultures, detection of Streptococcus pneumoniae and Legionella pneumophila urinary antigens, sputum culture, influenza virus and Streptococcus pyogenes detection. Categorical variables are presented as absolute values and percentages, and continuous variables as their means and standard deviations. Of the 287 patients included in the study (42% women, mean age 66±22 years), 10.45% died and 70% required hospital admission. An aetiological diagnosis was achieved in 43 patients (14.98%), with 16 microorganisms found in 59 positive samples. The most frequently isolated pathogen was Streptococcus pneumonia (24/59, 41%), followed by gram-negative enteric bacilli, Klebsiella pneumonia, Escherichia coli, Serratia marcescens and Enterobacter cloacae isolated in 20% of the samples (12/59), influenza virus (5/59, 9%), methicillin-resistant Staphylococcus aureus (3/59, 5%), Pseudomonas aeruginosa (2/59, 3%), Moraxella catarrhalis (2/59, 3%), Legionella pneumophila (2/59, 3%), and Haemophilus influenza (2/59, 3%). Polymicrobial infections accounted for 14% (8/59). A high percentage of atypical microorganisms causing community-acquired pneumonia were found. Copyright © 2016 Sociedad Española de Médicos de Atención Primaria (SEMERGEN). Publicado por Elsevier España, S.L.U. All rights reserved.

  5. Two stage study of wound microorganisms affecting burns and plastic surgery inpatients.

    Science.gov (United States)

    Miranda, Benjamin H; Ali, Syed N; Jeffery, Steven L A; Thomas, Sunil S

    2008-01-01

    This study was designed to identify wound microorganisms and the reasons for differing prevalence between the wards, burns unit and intensive care unit (ICU) in a regional centre for burns and plastic surgery. Antibiotic sensitivities of the 10 most prevalent microorganisms cultured from inpatient wound swabs were also investigated. Inpatient wound swab data were collected retrospectively using notes and departmental database information between January and June 2007. Data were analyzed using chi-squared tests and P-values. Eight hundred five positive wound swabs from 204 swab positive inpatients were analyzed. Stage 1 of this study demonstrated 917 positive swab episodes and 30 varieties of organism. The five most prevalent organisms cultured were Staphylococcus (23.9%), Acinetobacter (21.2%), Methicillin Resistant Staphylococcus aureus (MRSA) (20.8%), Pseudomonas (9.7%) and Enterococcus (5.2%). Stage 2 revealed that Acinetobacter baumanni (ABAU) was significantly more prevalent in military over civilian inpatients (P < .001) and that military inpatients had a significantly greater proportion of ABAU over civilian inpatients within the first 24 hours after admission (P < .001). ABAU episodes were significantly higher on the ICU over the burns unit and on the wards (P < .001). MRSA was significantly more prevalent in military inpatients (P < .001); however, no significant difference was observed within the first 24 hours after admission (P = .440). MRSA was more prevalent on the ICU over the burns unit (P = .023). Pseudomonas aeruginosa (PAER) was significantly more prevalent in military inpatients over civilian inpatients (P < .001), and on the ICU over the burns unit and wards (P = .018). Stage 1 generated a comprehensive, up to date cross section of bacterial flora, with corresponding percentage antibiotic sensitivities, in a regional burns and plastic surgery centre. This will give clinicians a snapshot of organisms affecting inpatient wounds in advance of

  6. Nanomaterials-based biosensors for detection of microorganisms and microbial toxins.

    Science.gov (United States)

    Sutarlie, Laura; Ow, Sian Yang; Su, Xiaodi

    2017-04-01

    Detection of microorganisms and microbial toxins is important for health and safety. Due to their unique physical and chemical properties, nanomaterials have been extensively used to develop biosensors for rapid detection of microorganisms with microbial cells and toxins as target analytes. In this paper, the design principles of nanomaterials-based biosensors for four selected analyte categories (bacteria cells, toxins, mycotoxins, and protozoa cells), closely associated with the target analytes' properties is reviewed. Five signal transducing methods that are less equipment intensive (colorimetric, fluorimetric, surface enhanced Raman scattering, electrochemical, and magnetic relaxometry methods) is described and compared for their sensory performance (in term oflimit of detection, dynamic range, and response time) for all analyte categories. In the end, the suitability of these five sensing principles for on-site or field applications is discussed. With a comprehensive coverage of nanomaterials, design principles, sensing principles, and assessment on the sensory performance and suitability for on-site application, this review offers valuable insight and perspective for designing suitable nanomaterials-based microorganism biosensors for a given application. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Periodontopathic microorganisms in peripheric blood after scaling and root planing.

    Science.gov (United States)

    Lafaurie, Gloria Inés; Mayorga-Fayad, Isabel; Torres, María Fernanda; Castillo, Diana Marcela; Aya, Maria Rosario; Barón, Alexandra; Hurtado, Paola Andrea

    2007-10-01

    The objective of this study was to evaluate the frequency of periodontopathic and other subgingival anaerobic and facultative bacteria in the bloodstream following scaling and root planing (SRP). Forty-two patients with severe generalized chronic periodontitis (GChP) and generalized aggressive periodontitis (GAgP) were included in the study. Four samples of peripheric blood were drawn from the cubital vein at different times: Pre-treatment: immediately before the SRP procedure (T1), immediately after treatment (T2), 15 min. post-treatment (T3) and 30 min. post-treatment (T4). In order to identify the presence of microorganisms in blood, subcultures were conducted under anaerobic conditions. 80.9% of the patients presented positive cultures after SRP and it occurred more frequently immediately after treatment; however, 19% of the patients still had microorganisms in the bloodstream 30 min. after the procedure. The periodontopathic microorganisms more frequently identified were Porphyromonas gingivalis and Micromonas micros. Campylobacter spp., Eikenella corrodens, Tannerella forsythensis, Fusobacterium spp. and Prevotella intermedia were isolated less often. Actinomyces spp. were also found frequently during bacteraemia after SRP. SRP induced bacteraemia associated with anaerobic bacteria, especially in patients with periodontal disease.

  8. Interaction of species traits and environmental disturbance predicts invasion success of aquatic microorganisms.

    Directory of Open Access Journals (Sweden)

    Elvira Mächler

    Full Text Available Factors such as increased mobility of humans, global trade and climate change are affecting the range of many species, and cause large-scale translocations of species beyond their native range. Many introduced species have a strong negative influence on the new local environment and lead to high economic costs. There is a strong interest to understand why some species are successful in invading new environments and others not. Most of our understanding and generalizations thereof, however, are based on studies of plants and animals, and little is known on invasion processes of microorganisms. We conducted a microcosm experiment to understand factors promoting the success of biological invasions of aquatic microorganisms. In a controlled lab experiment, protist and rotifer species originally isolated in North America invaded into a natural, field-collected community of microorganisms of European origin. To identify the importance of environmental disturbances on invasion success, we either repeatedly disturbed the local patches, or kept them as undisturbed controls. We measured both short-term establishment and long-term invasion success, and correlated it with species-specific life-history traits. We found that environmental disturbances significantly affected invasion success. Depending on the invading species' identity, disturbances were either promoting or decreasing invasion success. The interaction between habitat disturbance and species identity was especially pronounced for long-term invasion success. Growth rate was the most important trait promoting invasion success, especially when the species invaded into a disturbed local community. We conclude that neither species traits nor environmental factors alone conclusively predict invasion success, but an integration of both of them is necessary.

  9. Allogeneic human dermal fibroblasts are viable in peripheral blood mononuclear co-culture

    Directory of Open Access Journals (Sweden)

    Restu Syamsul Hadi

    2014-08-01

    Full Text Available Background Transplanted allogeneic dermal fibroblasts retain stem cell subpopulations, and are easily isolated, expanded and stored using standard techniques. Their potential for regenerative therapy of chronic wounds should be evaluated. The aim of this study was to determine allogeneic fibroblast viability in the presence of peripheral blood mononuclear cells (PBMC. Methods In this experimental study, fibroblasts were isolated from foreskin explants, expanded in the presence of serum, and stored using slow-freezing. We used one intervention group of allogeneic fibroblasts co-cultured with PBMC and 2 control groups of separate fibroblast and PBMC cultures.Fibroblasts were characterized by their collagen secretion and octamer-binding transcription factor 4 (OCT4 expression. Viability was evaluated using water soluble tetrazolium-1 (WST-1 proliferation assay. Absorbances were measured at 450 nm. Data analysis was performed by student’s paired t-test. Results Dermal fibroblasts were shown to secrete collagen, express OCT4, be recoverable after cryopreservation, and become attached to the culture dish in a co-culture with PBMC. Co-cultured and control fibroblasts had no significantly different cell viabilities (p>0.05. Calculated viable cell numbers increased 1.8 and 5.1-fold, respectively, at days 2 and 4 in vitro. Both groups showed comparable doubling times at days 2 and 4 in vitro. PBMC did not interfere with allogeneic fibroblast viability and proliferative capacity Conclusions Allogeneic fibroblasts remain viable and proliferate in the presence of host PBMC. Future research should evaluate allogeneic human dermal fibroblast competency in clinical settings. Dermal fibroblasts are a potential source for cell therapy in chronic wound management.

  10. General Purpose Segmentation for Microorganisms in Microscopy Images

    DEFF Research Database (Denmark)

    Jensen, Sebastian H. Nesgaard; Moeslund, Thomas B.; Rankl, Christian

    2014-01-01

    In this paper, we propose an approach for achieving generalized segmentation of microorganisms in mi- croscopy images. It employs a pixel-wise classification strategy based on local features. Multilayer percep- trons are utilized for classification of the local features and is trained for each sp...

  11. Biotechnologies for Marine Oil Spill Cleanup: Indissoluble Ties with Microorganisms

    KAUST Repository

    Mapelli, Francesca; Scoma, Alberto; Michoud, Gregoire; Aulenta, Federico; Boon, Nico; Borin, Sara; Kalogerakis, Nicolas; Daffonchio, Daniele

    2017-01-01

    The ubiquitous exploitation of petroleum hydrocarbons (HCs) has been accompanied by accidental spills and chronic pollution in marine ecosystems, including the deep ocean. Physicochemical technologies are available for oil spill cleanup, but HCs must ultimately be mineralized by microorganisms. How environmental factors drive the assembly and activity of HC-degrading microbial communities remains unknown, limiting our capacity to integrate microorganism-based cleanup strategies with current physicochemical remediation technologies. In this review, we summarize recent findings about microbial physiology, metabolism and ecology and describe how microbes can be exploited to create improved biotechnological solutions to clean up marine surface and deep waters, sediments and beaches.

  12. Biotechnologies for Marine Oil Spill Cleanup: Indissoluble Ties with Microorganisms

    KAUST Repository

    Mapelli, Francesca

    2017-05-13

    The ubiquitous exploitation of petroleum hydrocarbons (HCs) has been accompanied by accidental spills and chronic pollution in marine ecosystems, including the deep ocean. Physicochemical technologies are available for oil spill cleanup, but HCs must ultimately be mineralized by microorganisms. How environmental factors drive the assembly and activity of HC-degrading microbial communities remains unknown, limiting our capacity to integrate microorganism-based cleanup strategies with current physicochemical remediation technologies. In this review, we summarize recent findings about microbial physiology, metabolism and ecology and describe how microbes can be exploited to create improved biotechnological solutions to clean up marine surface and deep waters, sediments and beaches.

  13. The plastic-associated microorganisms of the North Pacific Gyre

    International Nuclear Information System (INIS)

    Carson, Henry S.; Nerheim, Magnus S.; Carroll, Katherine A.; Eriksen, Marcus

    2013-01-01

    Highlights: • Microorganisms mediate processes affecting the fate and impacts of marine plastic. • North Pacific Gyre (NPG) plastics were examined with scanning-electron microscopy. • Bacillus bacteria and pennate diatoms dominated the NPG plastic fouling community. • Bacterial abundance was patchily distributed but increased on foamed polystyrene. • Diatom abundance increased on rough surfaces and at sites with high plastic density. -- Abstract: Microorganisms likely mediate processes affecting the fate and impacts of marine plastic pollution, including degradation, chemical adsorption, and colonization or ingestion by macroorganisms. We investigated the relationship between plastic-associated microorganism communities and factors such as location, temperature, salinity, plankton abundance, plastic concentration, item size, surface roughness, and polymer type. Small plastic items from the surface of the North Pacific Gyre in 2011 were examined using scanning electron microscopy. Bacillus bacteria (mean 1664 ± 247 individuals mm −2 ) and pennate diatoms (1097 ± 154 mm −2 ) were most abundant, with coccoid bacteria, centric diatoms, dinoflagellates, coccolithophores, and radiolarians present. Bacterial abundance was patchy, but increased on foamed polystyrene. Diatom abundance increased on items with rough surfaces and at sites with high plastic concentrations. Morphotype richness increased slightly on larger fragments, and a biogeographic transition occurred between pennate diatom groups. Better characterizing this community will aid in understanding how it interacts with plastic pollution

  14. Effect of solar radiation and predacious microorganisms on survival of fecal and other bacteria.

    OpenAIRE

    McCambridge, J; McMeekin, T A

    1981-01-01

    The effect of solar radiation and predacious microorganisms on the survival of bacteria of fecal and plant origin was studied. The decline in the numbers of Escherichia coli cells in estuarine water samples was found to be significantly greater in the presence of both naturally occurring microbial predators and solar radiation than when each of these factors was acting independently. The effect of solar radiation on microbial predators was negligible, whereas the susceptibility of bacteria to...

  15. Development of microorganisms for cellulose-biofuel consolidated bioprocessings: metabolic engineers’ tricks

    Directory of Open Access Journals (Sweden)

    Roberto Mazzoli

    2012-10-01

    Full Text Available Cellulose waste biomass is the most abundant and attractive substrate for "biorefinery strategies" that are aimed to produce high-value products (e.g. solvents, fuels, building blocks by economically and environmentally sustainable fermentation processes. However, cellulose is highly recalcitrant to biodegradation and its conversion by biotechnological strategies currently requires economically inefficient multistep industrial processes. The need for dedicated cellulase production continues to be a major constraint to cost-effective processing of cellulosic biomass.Research efforts have been aimed at developing recombinant microorganisms with suitable characteristics for single step biomass fermentation (consolidated bioprocessing, CBP. Two paradigms have been applied for such, so far unsuccessful, attempts: a “native cellulolytic strategies”, aimed at conferring high-value product properties to natural cellulolytic microorganisms; b “recombinant cellulolytic strategies”, aimed to confer cellulolytic ability to microorganisms exhibiting high product yields and titers.By starting from the description of natural enzyme systems for plant biomass degradation and natural metabolic pathways for some of the most valuable product (i.e. butanol, ethanol, and hydrogen biosynthesis, this review describes state-of-the-art bottlenecks and solutions for the development of recombinant microbial strains for cellulosic biofuel CBP by metabolic engineering. Complexed cellulases (i.e. cellulosomes benefit from stronger proximity effects and show enhanced synergy on insoluble substrates (i.e. crystalline cellulose with respect to free enzymes. For this reason, special attention was held on strategies involving cellulosome/designer cellulosome-bearing recombinant microorganisms.

  16. Role of soil micro-organisms in the sorption of radionuclides in organic systems

    International Nuclear Information System (INIS)

    Parekh, N.R.; Potter, E.D.; Poskitt, J.M.; Dodd, B.A.; Sanchez, A.

    2004-01-01

    Although the fraction of radionuclides linked to soil organic matter and soil microorganisms may be relatively small when compared to the amount bound to the mineral constituents, (mostly irreversibly bound), this fraction is of great importance as it remains readily exchangeable and is thus available for plant uptake. Many studies have measured the uptake of radionuclides by organic soils but the role of soil micro-organisms may have been masked by the presence of even small amounts of clay minerals occurring in these soils. We have carried out a series of experiments using a biologically active, 'mineral-free' organic soil produced under laboratory conditions, to determine the potential of soil micro-organisms to accumulate radionuclides Cs-134 and Sr-85. Biological uptake and release was differentiated from abiotic processes by comparing experimental results with inoculated and non-inoculated sterile organic material. We have investigated the role of different clay minerals, competing potassium and calcium ions, and changes in temperature on the sorption of Cs and Sr isotopes. The results from studies so far show conclusively that living components of soil systems are of primary importance in the uptake of radionuclides in organic material, microorganisms also influence the importance of chemical factors (e.g. adsorption to clay minerals) which may play a secondary role in these highly organic systems. In further experiments we hope to define the precise role of specific soil micro-organisms in these organic systems. (author)

  17. Antimicrobial activity of Calendula officinalis, Camellia sinensis and chlorhexidine against the adherence of microorganisms to sutures after extraction of unerupted third molars

    Directory of Open Access Journals (Sweden)

    Raquel Lourdes Faria

    2011-10-01

    Full Text Available OBJECTIVE: The objective of this study was to compare the antimicrobial effect of mouthwashes containing Calendula officinalis L., Camellia sinensis (L. Kuntze and 0.12% chlorhexidine digluconate on the adherence of microorganisms to suture materials after extraction of unerupted third molars. MATERIAL AND METHODS: Eighteen patients with unerupted maxillary third molars indicated for extraction were selected (n=6 per mouthwash. First, the patients were subjected to extraction of the left tooth and instructed not to use any type of antiseptic solution at the site of surgery (control group. After 15 days, the right tooth was extracted and the patients were instructed to use the Calendula officinalis, Camellia sinensis or chlorhexidine mouthwash during 1 week (experimental group. For each surgery, the sutures were removed on postoperative day 7 and placed in sterile phosphate-buffered saline. Next, serial dilutions were prepared and seeded onto different culture media for the growth of the following microorganisms: blood agar for total microorganism growth; Mitis Salivarius bacitracin sucrose agar for mutans group streptococci; mannitol agar for Staphylococcus spp.; MacConkey agar for enterobacteria and Pseudomonas spp., and Sabouraud dextrose agar containing chloramphenicol for Candida spp. The plates were incubated during 24-48 h at 37ºC for microorganism count (CFU/mL. RESULTS: The three mouthwashes tested reduced the number of microorganisms adhered to the sutures compared to the control group. However, significant differences between the control and experimental groups were only observed for the mouthwash containing 0.12% chlorhexidine digluconate. CONCLUSIONS: Calendula officinalis L. and Camellia sinensis (L. Kuntze presented antimicrobial activity against the adherence of microorganisms to sutures but were not as efficient as chlorhexidine digluconate.

  18. Improved Method for Direct Detection of Environmental Microorganisms Using an Amplification of 16S rDNA Region

    Science.gov (United States)

    Tsujimura, M.; Akutsu, J.; Zhang, Z.; Sasaki, M.; Tajima, H.; Kawarabayasi, Y.

    2004-12-01

    The thermostable proteins or enzymes were expected to be capable to be utilized in many areas of industries. Many thermophilic microorganisms, which possess the thermostable proteins or enzymes, were identified from the extreme environment. However, many unidentified and uncultivable microorganisms are still remaining in the environment on the earth. It is generally said that the cultivable microorganisms are less than 1% of entire microorganisms living in the earth, remaining over 99% are still uncultivable. As an approach to the uncultivable microorganisms, the PCR amplification of 16S rDNA region using primer sets designed from the conserved region has been generally utilized for detection and community analysis of microorganism in the environment. However, the facts, that PCR amplification introduces the mutation in the amplified DNA fragment and efficiency of PCR amplification is depend on the sequences of primer sets, indicated that the improving of PCR analysis was necessary for more correct detection of microorganisms. As the result of evaluation for the quality of DNA polymerases, sequences of primers used for amplification and conditions of PCR amplification, the DNA polymerase, the primer set and the conditions for amplification, which did not amplify the DNA fragment from the DNA contaminated within the DNA polymerase itself, were successfully selected. Also the rate of mutation in the DNA fragment amplified was evaluated using this conditions and the genomic DNA from cultivable microbes as a template. The result indicated the rate of mutation introduced by PCR was approximately 0.1% to 0.125%. The improved method using these conditions and error rate calculated was applied for the analysis of microorganisms in the geothermal environment. The result indicated that four kinds of dominant microorganisms, including both of bacteria and archaea, were alive within soil in the hot spring in Tohoku Area. We would like to apply this improved method to detection

  19. Chemosensing in microorganisms to practical biosensors

    OpenAIRE

    Ghosh, Surya K.; Kundu, Tapanendu; Sain, Anirban

    2012-01-01

    Microorganisms like bacteria can sense concentration of chemo-attractants in its medium very accurately. They achieve this through interaction between the receptors on their cell surface and the chemo-attractant molecules (like sugar). But the physical processes like diffusion set some limits on the accuracy of detection which was discussed by Berg and Purcell in the late seventies. We have a re-look at their work in order to assess what insight it may offer towards making efficient, practica...

  20. Mitigating cyanobacterial blooms: how effective are 'effective microorganisms'?

    NARCIS (Netherlands)

    Lürling, M.F.L.L.W.; Tolman, Y.; Euwe, M.

    2009-01-01

    This study examined the effects of 'Effective Microorganisms (EM)' on the growth of cyanobacteria, and their ability to terminate cyanobacterial blooms. The EM was tested in the form of 'mudballs' or 'Bokashi-balls', and as a suspension (EM-A) in laboratory experiments. No growth inhibition was

  1. Diagnostic Evasion of Highly-Resistant Microorganisms: A Critical Factor in Nosocomial Outbreaks.

    Science.gov (United States)

    Zhou, Xuewei; Friedrich, Alexander W; Bathoorn, Erik

    2017-01-01

    Highly resistant microorganisms (HRMOs) may evade screening strategies used in routine diagnostics. Bacteria that have evolved to evade diagnostic tests may have a selective advantage in the nosocomial environment. Evasion of resistance detection can result from the following mechanisms: low-level expression of resistance genes not resulting in detectable resistance, slow growing variants, mimicry of wild-type-resistance, and resistance mechanisms that are only detected if induced by antibiotic pressure. We reviewed reports on hospital outbreaks in the Netherlands over the past 5 years. Remarkably, many outbreaks including major nation-wide outbreaks were caused by microorganisms able to evade resistance detection by diagnostic screening tests. We describe various examples of diagnostic evasion by several HRMOs and discuss this in a broad and international perspective. The epidemiology of hospital-associated bacteria may strongly be affected by diagnostic screening strategies. This may result in an increasing reservoir of resistance genes in hospital populations that is unnoticed. The resistance elements may horizontally transfer to hosts with systems for high-level expression, resulting in a clinically significant resistance problem. We advise to communicate the identification of HRMOs that evade diagnostics within national and regional networks. Such signaling networks may prevent inter-hospital outbreaks, and allow collaborative development of adapted diagnostic tests.

  2. Role and functions of beneficial microorganisms in sustainable aquaculture.

    Science.gov (United States)

    Zhou, Qunlan; Li, Kangmin; Jun, Xie; Bo, Liu

    2009-08-01

    This paper aims to review the development of scientific concepts of microecology and ecology of microbes and the role and functions of beneficial microorganisms in aquaculture and mariculture. Beneficial microorganisms play a great role in natural and man-made aquatic ecosystems based on the co-evolution theory in living biosphere on earth. Their functions are to adjust algal population in water bodies so as to avoid unwanted algal bloom; to speed up decomposition of organic matter and to reduce CODmn, NH3-N and NO2-N in water and sediments so as to improve water quality; to suppress fish/shrimp diseases and water-borne pathogens; to enhance immune system of cultured aquatic animals and to produce bioactive compounds such as vitamins, hormones and enzymes that stimulate growth, thus to decrease the FCR of feed.

  3. Food environments select microorganisms based on selfish energetic behavior

    Directory of Open Access Journals (Sweden)

    Diego eMora

    2013-11-01

    Full Text Available Nutrient richness, and specifically the abundance of mono- and disaccharides that characterize several food matrixes, such as milk and grape juice, has allowed the speciation of lactic acid bacteria and yeasts with a high fermentation capacity instead of energetically favorable respiratory metabolism. In these environmental contexts, rapid sugar consumption and lactic acid or ethanol production, accumulation and tolerance, together with the ability to propagate in the absence of oxygen, are several of the ‘winning’ traits that have apparently evolved and become specialized to perfection in these fermenting microorganisms. Here, we summarize and discuss the evolutionary context that has driven energetic metabolism in food-associated microorganisms, using the dairy species Lactococcus lactis and Streptococcus thermophilus among prokaryotes and the bakers’ yeast Saccharomyces cerevisiae among eukaryotes as model organisms.

  4. Biosynthesis of Nanoparticles by Microorganisms and Their Applications

    Directory of Open Access Journals (Sweden)

    Xiangqian Li

    2011-01-01

    Full Text Available The development of eco-friendly technologies in material synthesis is of considerable importance to expand their biological applications. Nowadays, a variety of inorganic nanoparticles with well-defined chemical composition, size, and morphology have been synthesized by using different microorganisms, and their applications in many cutting-edge technological areas have been explored. This paper highlights the recent developments of the biosynthesis of inorganic nanoparticles including metallic nanoparticles, oxide nanoparticles, sulfide nanoparticles, and other typical nanoparticles. Different formation mechanisms of these nanoparticles will be discussed as well. The conditions to control the size/shape and stability of particles are summarized. The applications of these biosynthesized nanoparticles in a wide spectrum of potential areas are presented including targeted drug delivery, cancer treatment, gene therapy and DNA analysis, antibacterial agents, biosensors, enhancing reaction rates, separation science, and magnetic resonance imaging (MRI. The current limitations and future prospects for the synthesis of inorganic nanoparticles by microorganisms are discussed.

  5. Potential of cold-adapted microorganisms for bioremediation of oil-polluted Alpine soils

    International Nuclear Information System (INIS)

    Margesin, R.

    2000-01-01

    The environmental contamination by organic pollutants is a widespread problem in all climates. The most widely distributed pollution can be attributed to oil contamination. Bioremediation methods can provide efficient, inexpensive and environmentally safe cleanup tools. The role of cold-adapted microorganisms for the bioremediation of experimentally and chronically oil-contaminated Alpine soils was evaluated in the studies described. The results demonstrated that there is a considerable potential for oil bioremediation in Alpine soils. Oil biodegradation can be significantly enhanced by biostimulation (inorganic nutrient supply), but a complete oil elimination is not possible by employing biological decontamination alone. (Author)

  6. New Approach to Inactivation of Harmful and Pathogenic Microorganisms by Photosensitization

    Directory of Open Access Journals (Sweden)

    Živile Lukšiene

    2005-01-01

    Full Text Available Photosensitization is a treatment involving the administration of a photoactive compound that selectively accumulates in the target cells or microorganisms and is followed by irradiation with visible light. The combination of the two absolutely nontoxic elements, drug and light, in the presence of oxygen results in the selective destruction of target microorganism. It is important to note that truly major advances have been made in photosensitized antimicrobial chemotherapy, in particular disinfection of the blood and blood products, or treating local infections. By no means, prevention of any disease by microbial control of environment, including food manufacturing, is of greatest importance. Thus, development of new antimicrobial methods is necessary. In this context, photosensitization has been shown to be really effective: different microorganisms such as drug-resistant bacteria, yeasts, viruses and parasites can be inactivated by this method. So far, a photosensitization phenomenon can open new and interesting avenues for the development of novel, effective and ecologically friendly antimicrobial treatment, which might be applied to increase food safety.

  7. Fate of viable but non-culturable Listeria monocytogenes in pig manure microcosms

    Directory of Open Access Journals (Sweden)

    Jeremy eDesneux

    2016-03-01

    Full Text Available The fate of two strains of L. monocytogenes and their ability to become viable but non-culturable (VBNC was investigated in microcosms containing piggery effluents (two raw manures and two biologically treated manures stored for two months at 8°C and 20°C. Levels of L. monocytogenes were estimated using the culture method, qPCR, and propidium monoazide treatment combined with qPCR (qPCRPMA. The chemical composition and the microbial community structure of the manures were also analysed. The strains showed similar decline rates and persisted up to 63 days. At day zero, the percentage of VBNC cells among viable cells was higher in raw manures (81.5-94.8% than in treated manures (67.8-79.2%. The changes in their proportion over time depended on the temperature and on the type of effluent: the biggest increase was observed in treated manures at 20°C and the smallest increase in raw manures at 8°C. The chemical parameters had no influence on the behaviour of the strains, but decrease of the persistence of viable cells was associated with an increase in the microbial richness of the manures. This study demonstrated that storing manure altered the culturability of L. monocytogenes, which rapidly entered the VBNC state, and underlines the importance of including VBNC cells when estimating the persistence of the pathogens in farm effluents.

  8. Nanofluid bioconvection in water-based suspensions containing nanoparticles and oxytactic microorganisms: oscillatory instability

    Directory of Open Access Journals (Sweden)

    Kuznetsov Andrey

    2011-01-01

    Full Text Available Abstract The aim of this article is to propose a novel type of a nanofluid that contains both nanoparticles and motile (oxytactic microorganisms. The benefits of adding motile microorganisms to the suspension include enhanced mass transfer, microscale mixing, and anticipated improved stability of the nanofluid. In order to understand the behavior of such a suspension at the fundamental level, this article investigates its stability when it occupies a shallow horizontal layer. The oscillatory mode of nanofluid bioconvection may be induced by the interaction of three competing agencies: oxytactic microorganisms, heating or cooling from the bottom, and top or bottom-heavy nanoparticle distribution. The model includes equations expressing conservation of total mass, momentum, thermal energy, nanoparticles, microorganisms, and oxygen. Physical mechanisms responsible for the slip velocity between the nanoparticles and the base fluid, such as Brownian motion and thermophoresis, are accounted for in the model. An approximate analytical solution of the eigenvalue problem is obtained using the Galerkin method. The obtained solution provides important physical insights into the behavior of this system; it also explains when the oscillatory mode of instability is possible in such system.

  9. The responses of an anaerobic microorganism, Yersinia intermedia MASE-LG-1 to individual and combined simulated Martian stresses.

    Directory of Open Access Journals (Sweden)

    Kristina Beblo-Vranesevic

    Full Text Available The limits of life of aerobic microorganisms are well understood, but the responses of anaerobic microorganisms to individual and combined extreme stressors are less well known. Motivated by an interest in understanding the survivability of anaerobic microorganisms under Martian conditions, we investigated the responses of a new isolate, Yersinia intermedia MASE-LG-1 to individual and combined stresses associated with the Martian surface. This organism belongs to an adaptable and persistent genus of anaerobic microorganisms found in many environments worldwide. The effects of desiccation, low pressure, ionizing radiation, varying temperature, osmotic pressure, and oxidizing chemical compounds were investigated. The strain showed a high tolerance to desiccation, with a decline of survivability by four orders of magnitude during a storage time of 85 days. Exposure to X-rays resulted in dose-dependent inactivation for exposure up to 600 Gy while applied doses above 750 Gy led to complete inactivation. The effects of the combination of desiccation and irradiation were additive and the survivability was influenced by the order in which they were imposed. Ionizing irradiation and subsequent desiccation was more deleterious than vice versa. By contrast, the presence of perchlorates was not found to significantly affect the survival of the Yersinia strain after ionizing radiation. These data show that the organism has the capacity to survive and grow in physical and chemical stresses, imposed individually or in combination that are associated with Martian environment. Eventually it lost its viability showing that many of the most adaptable anaerobic organisms on Earth would be killed on Mars today.

  10. The responses of an anaerobic microorganism, Yersinia intermedia MASE-LG-1 to individual and combined simulated Martian stresses

    Science.gov (United States)

    Bohmeier, Maria; Perras, Alexandra K.; Schwendner, Petra; Rabbow, Elke; Moissl-Eichinger, Christine; Cockell, Charles S.; Pukall, Rüdiger; Vannier, Pauline; Marteinsson, Viggo T.; Monaghan, Euan P.; Ehrenfreund, Pascale; Garcia-Descalzo, Laura; Gómez, Felipe; Malki, Moustafa; Amils, Ricardo; Gaboyer, Frédéric; Westall, Frances; Cabezas, Patricia; Walter, Nicolas; Rettberg, Petra

    2017-01-01

    The limits of life of aerobic microorganisms are well understood, but the responses of anaerobic microorganisms to individual and combined extreme stressors are less well known. Motivated by an interest in understanding the survivability of anaerobic microorganisms under Martian conditions, we investigated the responses of a new isolate, Yersinia intermedia MASE-LG-1 to individual and combined stresses associated with the Martian surface. This organism belongs to an adaptable and persistent genus of anaerobic microorganisms found in many environments worldwide. The effects of desiccation, low pressure, ionizing radiation, varying temperature, osmotic pressure, and oxidizing chemical compounds were investigated. The strain showed a high tolerance to desiccation, with a decline of survivability by four orders of magnitude during a storage time of 85 days. Exposure to X-rays resulted in dose-dependent inactivation for exposure up to 600 Gy while applied doses above 750 Gy led to complete inactivation. The effects of the combination of desiccation and irradiation were additive and the survivability was influenced by the order in which they were imposed. Ionizing irradiation and subsequent desiccation was more deleterious than vice versa. By contrast, the presence of perchlorates was not found to significantly affect the survival of the Yersinia strain after ionizing radiation. These data show that the organism has the capacity to survive and grow in physical and chemical stresses, imposed individually or in combination that are associated with Martian environment. Eventually it lost its viability showing that many of the most adaptable anaerobic organisms on Earth would be killed on Mars today. PMID:29069099

  11. Monitoring of viable airborne SARS virus in ambient air

    Science.gov (United States)

    Agranovski, Igor E.; Safatov, Alexander S.; Pyankov, Oleg V.; Sergeev, Alexander N.; Agafonov, Alexander P.; Ignatiev, Georgy M.; Ryabchikova, Elena I.; Borodulin, Alexander I.; Sergeev, Artemii A.; Doerr, Hans W.; Rabenau, Holger F.; Agranovski, Victoria

    Due to recent SARS related issues (Science 300 (5624) 1394; Nature 423 (2003) 240; Science 300 (5627) 1966), the development of reliable airborne virus monitoring procedures has become galvanized by an exceptional sense of urgency and is presently in a high demand (In: Cox, C.S., Wathers, C.M. (Eds.), Bioaerosols Handbook, Lewis Publishers, Boca Raton, FL, 1995, pp. 247-267). Based on engineering control method (Aerosol Science and Technology 31 (1999) 249; 35 (2001) 852), which was previously applied to the removal of particles from gas carriers, a new personal bioaerosol sampler has been developed. Contaminated air is bubbled through porous medium submerged into liquid and subsequently split into multitude of very small bubbles. The particulates are scavenged by these bubbles, and, thus, effectively removed. The current study explores its feasibility for monitoring of viable airborne SARS virus. It was found that the natural decay of such virus in the collection fluid was around 0.75 and 1.76 lg during 2 and 4 h of continuous operation, respectively. Theoretical microbial recovery rates of higher than 55 and 19% were calculated for 1 and 2 h of operation, respectively. Thus, the new sampling method of direct non-violent collection of viable airborne SARS virus into the appropriate liquid environment was found suitable for monitoring of such stress sensitive virus.

  12. Insolubilization of technetium by microorganisms in waterlogged soils

    International Nuclear Information System (INIS)

    Ishii, Nobuyoshi; Tagami, Keiko

    2003-01-01

    In order to clarify the technetium behavior in paddy field ecosystem, insolubilization of technetium in the water covering waterlogged soils was studied. Fourteen soils collected from paddy fields (9 samples) and upland fields (5 samples) were waterlogged for 7 days. After the collection of water covering the waterlogged soils, a radio tracer 95m TcO 4 - was added to the water. After 4 days incubation of the water, the tracer was separated into four fractions: insoluble, pertechnetate, cationic, and other forms of technetium. On an average, 13% of the 95m TcO 4 - changed to insoluble forms and the maximum ratio of the insolubilization was 76%. This result shows that insolubilization of technetium can occur in the water covering the waterlogged soils. Subsequently, mechanisms of Tc insolubilization were studied using the sample that showed the maximum insolubilization of Tc among the soil samples. When microorganisms were removed from the water by filtration, insoluble forms of Tc decreased to 3.6%. In contrast, the insolubilization ratio increased to 86% by the addition of organic substrates. The insolubilization, therefore, was caused by microorganisms. Furthermore, the addition of antibiotics on bacteria resulted in 23% of the insolubilization, while the antibiotic on fungi did not affect on the insolubilization. If the insolubilization were caused by biosorption, the insolubilization ratio would not decrease for the sample added antibiotics on bacteria. Therefore, these results suggest that the insolubilization of technetium is caused by bioaccumulation of living bacteria. Because the cultures with 95m TcO 4 - were incubated under aerobic conditions, technetium-insolubilizing microorganisms would presumably be aerobic bacteria. (author)

  13. Soaking grapevine cuttings in water: a potential source of cross contamination by micro-organisms

    Directory of Open Access Journals (Sweden)

    Helen WAITE

    2013-09-01

    Full Text Available Grapevine nurseries soak cuttings in water during propagation to compensate for dehydration and promote root initiation. However, trunk disease pathogens have been isolated from soaking water, indicating cross contamination. Cuttings of Vitis vinifera cv. Sunmuscat and V. berlandieri x V. rupestris rootstock cv. 140 Ruggeri were immersed in sterilized, deionised water for 1, 2, 4, 8 and 16 h. The soaking water was cultured (25°C for 3 days on non-specific and specific media for fungi and bacteria. The base of each cutting was debarked and trimmed and three 3 mm thick, contiguous, transverse slices of wood cultured at 25°C for 3 days. The soaking water for both cultivars became contaminated with microorganisms within the first hour. Numbers of fungi iso-lated from the wood slices soaked for one hour were significantly greater than those from non-soaked cuttings. The number of bacterial colonies growing from the wood slices increased after soaking for 2‒4 h in Sunmuscat. In a second experiment Shiraz cuttings were soaked for 1, 2, 4, 8 and 24 h. The soaking water became contaminated within the first hour but only the bacterial count increased significantly over time. Microorganisms also established on the container surfaces within the first hour although there were no significant increases over 24 h. These results confirm that soaking cuttings is a potential cause of cross contamination and demonstrate contamination of cuttings occurs after relatively short periods of soaking. Avoiding exposing cuttings to water will reduce the transmission of trunk diseases in propagation.

  14. SURVIVAL OF MICROORGANISMS FROM MODERN PROBIOTICS IN MODEL CONDITIONS OF THE INTESTINE

    Directory of Open Access Journals (Sweden)

    Kabluchko TV

    2017-03-01

    .3, later after centrifugation and washing, they were incubated for 3 hours in intestinal model environment (bile salts 3% pancreatin 0.1%, pH 7.0. Inoculation was performed before incubation, after incubation in the gastric medium and after incubation in intestinal medium. We used the medium corresponding to the studied genus of bacteria - MRS-environment for lactobacilli, bifidum for Bifidobacterium, sabouraud medium for the isolation of yeasts and fungi and endo agar for the isolation of Enterobacteriaceae. We assessed the quantity of CFU before and after impact. Results and discussion. After incubation in a simulated gastric environment, bacteria of the type Lactobacillus and Bifidobacterium did not survive and were not defined. Only Bacillus coagulans and Saccharomyces boulardii were resistant. These microorganisms grew after incubation in the same amount as before incubation - 105-6 and 107-8 CFU respectively. Bacillus clausii also survived in these conditions, but to a lesser extent: initially - 107 CFU, after incubation - 105 CFU. After staying in model environment of the duodenum Bacillus coagulans and Saccharomyces boulardii were still fully viable, and the number of germinating Bacillus clausii bacteria decreased by an order - up to 104 CFU. Conclusion. The probiotics containing Bacillus coagulans and Saccharomyces boulardii showed complete resistance to the impact of the model environment of the stomach and duodenum, Bacillus clausii was partially resistant. It leads to conclusion that probiotic drugs containing lactobacilli and bifidobacteria, cannot withstand the aggressive environmental influence of the stomach and duodenum and become inactivated under their influence. Probiotic drugs Enterol containing yeast Saccharomyces boulardii, and Laktovit Forte containing the spore-forming bacterium Bacillus coagulans are completely resistant to the action of the model environment of the stomach and duodenum.

  15. High throughput screening method for assessing heterogeneity of microorganisms

    NARCIS (Netherlands)

    Ingham, C.J.; Sprenkels, A.J.; van Hylckama Vlieg, J.E.T.; Bomer, Johan G.; de Vos, W.M.; van den Berg, Albert

    2006-01-01

    The invention relates to the field of microbiology. Provided is a method which is particularly powerful for High Throughput Screening (HTS) purposes. More specific a high throughput method for determining heterogeneity or interactions of microorganisms is provided.

  16. Isolation and screening of microorganisms from a gari fermentation ...

    African Journals Online (AJOL)

    Isolation and screening of microorganisms from a gari fermentation process for starter culture development. Vinodh A Edward, Moutairou Egounlety, Melanie Huch, Petrus J Van Zyl, Suren Singh, Naledzani D Nesengani, Vetja M Haakuria, Charles MAP Franz ...

  17. Impact of microorganism on polonium volatilization

    International Nuclear Information System (INIS)

    Momoshima, N.; Ishida, A.; Fukuda, A.; Yoshinaga, C.

    2007-01-01

    Volatilization of polonium by microorganisms, Chromobacterium violaceum, Escherichia coli and Bacillus subtilis was examined for pure cultures in LB medium at 30 deg C, showing relative Po emission intensity 100, 10 and 1, respectively. Chromobacterium violaceum pre-cultured in LB medium without Po and suspended in water with Po showed high Po volatilization in spite of poor nutriment condition. Antibiotics inhibit volatilization of Po and cultivation at low temperature greatly reduced volatilization. The results strongly support the biological effects on Po volatilization. (author)

  18. SCREENING OF THERMOPHYLIC MICROORGANISM FROM IJEN CRATER BANYUWANGI AS PHYTASE ENZYME PRODUCER

    Directory of Open Access Journals (Sweden)

    Aline Puspita Kusumadjaja

    2010-06-01

    Full Text Available Phytase is enzyme which hydrolysis phytic acid to anorganic phosphate and myo-inositol pentakis-, tetrakis-, tris-, bis-, and monophosphate. The use of phytase in feed industry can overcome environment and nutrition problems which were arisen from unmetabolism phytic acid or its salt by poultry, swine and fish. The feed industry needs a thermostable enzyme due to the need of high temperature in pelleting process, i.e. 81 °C. By using thermostabile phytase, the pelleting process will not affect the enzyme activity. Thermostabile phytase can be isolated from microorganism live in hot spring water or volcano crater. In this study, the screening of thermophylic microorganism having thermostabile phytase activity in Ijen Crater, Banyuwangi, has been done. From this process, it was obtained 33 isolates that produce phytase enzyme. Isolate was code by AP-17 yields highest phytase activity, that is 0.0296 U/mL, so this isolate was choosen for further study. The activity of crude phytase enzyme was measured based on the amount of anorganic phosphate that was produced in enzymatic reaction using UV-VIS spectrophotometer at 392 nm. Based on morphology test to identify the gram type of microorganism, isolate AP-17 has a bacill cell type and identified as positive gram bacteria. This isolate was assumed as Bacillus type.   Keywords: Phytase, thermophilic microorganism, phytase activity

  19. Methylamine as a nitrogen source for microorganisms from a coastal marine environment.

    Science.gov (United States)

    Taubert, Martin; Grob, Carolina; Howat, Alexandra M; Burns, Oliver J; Pratscher, Jennifer; Jehmlich, Nico; von Bergen, Martin; Richnow, Hans H; Chen, Yin; Murrell, J Colin

    2017-06-01

    Nitrogen is a key limiting resource for biomass production in the marine environment. Methylated amines, released from the degradation of osmolytes, could provide a nitrogen source for marine microbes. Thus far, studies in aquatic habitats on the utilization of methylamine, the simplest methylated amine, have mainly focussed on the fate of the carbon from this compound. Various groups of methylotrophs, microorganisms that can grow on one-carbon compounds, use methylamine as a carbon source. Non-methylotrophic microorganisms may also utilize methylamine as a nitrogen source, but little is known about their diversity, especially in the marine environment. In this proof-of-concept study, stable isotope probing (SIP) was used to identify microorganisms from a coastal environment that assimilate nitrogen from methylamine. SIP experiments using 15 N methylamine combined with metagenomics and metaproteomics facilitated identification of active methylamine-utilizing Alpha- and Gammaproteobacteria. The draft genomes of two methylamine utilizers were obtained and their metabolism with respect to methylamine was examined. Both bacteria identified in these SIP experiments used the γ-glutamyl-methylamide pathway, found in both methylotrophs and non-methylotrophs, to metabolize methylamine. The utilization of 15 N methylamine also led to the release of 15 N ammonium that was used as nitrogen source by other microorganisms not directly using methylamine. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  20. Roots of success: cultivating viable community forestry

    Energy Technology Data Exchange (ETDEWEB)

    MacQueen, Duncan

    2009-05-15

    Is community forestry emerging from the shadows? The evidence shows that locally controlled enterprises can be economically viable, and often build on stronger social and environmental foundations than the big private-sector players. Certainly this is an industry in need of a shakeup. Many forests have become flashpoints where agro-industry, large-scale logging concerns and conservation interests clash, while forest-dependent communities are left out in the cold. Meanwhile, governments – driven by concerns over the climate impacts of deforestation – are having to gear up for legal, sustainable forestry production. Community forestry could be crucial to solving many of these challenges. By building on local core capabilities and developing strategic partnerships, they are forging key new business models that could transform the sector.