WorldWideScience

Sample records for viable cell multiplicity

  1. Cultivation and multiplication of viable axenic Trypanosoma vivax in ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-09-01

    Sep 1, 2009 ... Cultivation and multiplication of viable axenic. Trypanosoma vivax in vitro and in vivo. O. A. Idowu, A. B. Idowu, C. F. Mafiana and S. O. Sam-Wobo*. Parasitology Laboratory, Department of Biological Sciences, University of Agriculture, Abeokuta, Nigeria. Accepted 13 April, 2006. Trypanosoma vivax was ...

  2. Viable Cell Culture Banking for Biodiversity Characterization and Conservation.

    Science.gov (United States)

    Ryder, Oliver A; Onuma, Manabu

    2018-02-15

    Because living cells can be saved for indefinite periods, unprecedented opportunities for characterizing, cataloging, and conserving biological diversity have emerged as advanced cellular and genetic technologies portend new options for preventing species extinction. Crucial to realizing the potential impacts of stem cells and assisted reproductive technologies on biodiversity conservation is the cryobanking of viable cell cultures from diverse species, especially those identified as vulnerable to extinction in the near future. The advent of in vitro cell culture and cryobanking is reviewed here in the context of biodiversity collections of viable cell cultures that represent the progress and limitations of current efforts. The prospects for incorporating collections of frozen viable cell cultures into efforts to characterize the genetic changes that have produced the diversity of species on Earth and contribute to new initiatives in conservation argue strongly for a global network of facilities for establishing and cryobanking collections of viable cells.

  3. High speed flow cytometric separation of viable cells

    Science.gov (United States)

    Sasaki, Dennis T.; Van den Engh, Gerrit J.; Buckie, Anne-Marie

    1995-01-01

    Hematopoietic cell populations are separated to provide cell sets and subsets as viable cells with high purity and high yields, based on the number of original cells present in the mixture. High-speed flow cytometry is employed using light characteristics of the cells to separate the cells, where high flow speeds are used to reduce the sorting time.

  4. Surface Charge Visualization at Viable Living Cells.

    Science.gov (United States)

    Perry, David; Paulose Nadappuram, Binoy; Momotenko, Dmitry; Voyias, Philip D; Page, Ashley; Tripathi, Gyanendra; Frenguelli, Bruno G; Unwin, Patrick R

    2016-03-09

    Scanning ion conductance microscopy (SICM) is demonstrated to be a powerful technique for quantitative nanoscale surface charge mapping of living cells. Utilizing a bias modulated (BM) scheme, in which the potential between a quasi-reference counter electrode (QRCE) in an electrolyte-filled nanopipette and a QRCE in bulk solution is modulated, it is shown that both the cell topography and the surface charge present at cellular interfaces can be measured simultaneously at high spatial resolution with dynamic potential measurements. Surface charge is elucidated by probing the properties of the diffuse double layer (DDL) at the cellular interface, and the technique is sensitive at both low-ionic strength and under typical physiological (high-ionic strength) conditions. The combination of experiments that incorporate pixel-level self-referencing (calibration) with a robust theoretical model allows for the analysis of local surface charge variations across cellular interfaces, as demonstrated on two important living systems. First, charge mapping at Zea mays root hairs shows that there is a high negative surface charge at the tip of the cell. Second, it is shown that there are distinct surface charge distributions across the surface of human adipocyte cells, whose role is the storage and regulation of lipids in mammalian systems. These are new features, not previously recognized, and their implications for the functioning of these cells are highlighted.

  5. Inkjet printing of viable human dental follicle stem cells

    Directory of Open Access Journals (Sweden)

    Mau Robert

    2015-09-01

    Full Text Available Inkjet printing technology has the potential to be used for seeding of viable cells for tissue engineering approaches. For this reason, a piezoelectrically actuated, drop-on-demand inkjet printing system was applied to deliver viable human dental follicle stem cells (hDFSC of sizes of about 15 μm up to 20 μm in diameter. The purpose of these investigations was to verify the stability of the printing process and to evaluate cell viability post printing. Using a Nanoplotter 2.1 (Gesim, Germany equipped with the piezoelectric printhead NanoTip HV (Gesim, Germany, a concentration of 6.6 ×106 cells ml−1 in DMEM with 10% fetal calf serum (FCS could be dispensed. The piezoelectric printhead has a nominal droplet volume of ~ 400 pl and was set to a voltage of 75 V and a pulse of 50 μs while dosing 50 000 droplets over a time of 100 seconds. The volume and trajectory of the droplet were checked by a stroboscope test right before and after the printing process. It was found that the droplet volume decreases significantly by 35% during printing process, while the trajectory of the droplets remains stable with only an insignificant number of degrees deviation from the vertical line. It is highly probable that some cell sedimentations or agglomerations affect the printing performance. The cell viability post printing was assessed by using the Trypan Blue dye exclusion test. The printing process was found to have no significant influence on cell survival. In conclusion, drop-on-demand inkjet printing can be a potent tool for the seeding of viable cells.

  6. Separable Bilayer Microfiltration Device for Viable Label-free Enrichment of Circulating Tumour Cells

    Science.gov (United States)

    Zhou, Ming-Da; Hao, Sijie; Williams, Anthony J.; Harouaka, Ramdane A.; Schrand, Brett; Rawal, Siddarth; Ao, Zheng; Brennaman, Randall; Gilboa, Eli; Lu, Bo; Wang, Shuwen; Zhu, Jiyue; Datar, Ram; Cote, Richard; Tai, Yu-Chong; Zheng, Si-Yang

    2014-12-01

    The analysis of circulating tumour cells (CTCs) in cancer patients could provide important information for therapeutic management. Enrichment of viable CTCs could permit performance of functional analyses on CTCs to broaden understanding of metastatic disease. However, this has not been widely accomplished. Addressing this challenge, we present a separable bilayer (SB) microfilter for viable size-based CTC capture. Unlike other single-layer CTC microfilters, the precise gap between the two layers and the architecture of pore alignment result in drastic reduction in mechanical stress on CTCs, capturing them viably. Using multiple cancer cell lines spiked in healthy donor blood, the SB microfilter demonstrated high capture efficiency (78-83%), high retention of cell viability (71-74%), high tumour cell enrichment against leukocytes (1.7-2 × 103), and widespread ability to establish cultures post-capture (100% of cell lines tested). In a metastatic mouse model, SB microfilters successfully enriched viable mouse CTCs from 0.4-0.6 mL whole mouse blood samples and established in vitro cultures for further genetic and functional analysis. Our preliminary studies reflect the efficacy of the SB microfilter device to efficiently and reliably enrich viable CTCs in animal model studies, constituting an exciting technology for new insights in cancer research.

  7. The molecularly crowded cytoplasm of bacterialcCells : Dividing cells contrasted with viable but non-culturable (VBNC) bacterial cells

    NARCIS (Netherlands)

    Trevors, J. T.; van Elsas, J. D.; Bej, A. K.

    2013-01-01

    In this perspective, we discuss the cytoplasm in actively growing bacterial cells contrasted with viable but non-culturable (VBNC) cells. Actively growing bacterial cells contain a more molecularly crowded and organized cytoplasm, and are capable of completing their cell cycle resulting in cell

  8. Non-viable antagonist cells are associated with reduced biocontrol performance by viable cells of the yeast Papiliotrema flavescens against Fusarium head blight of wheat.

    Science.gov (United States)

    Microbially-based plant disease control products have achieved commercial market success, but the efficacy of such biocontrol products is sometimes deemed inconsistent. Improper processing of harvested microbial biomass or long-term storage can reduce the proportion of viable cells and necessitate t...

  9. Quantitative assessment of viable cells of Lactobacillus plantarum strains in single, dual and multi-strain biofilms.

    Science.gov (United States)

    Fernández Ramírez, Mónica D; Kostopoulos, Ioannis; Smid, Eddy J; Nierop Groot, Masja N; Abee, Tjakko

    2017-03-06

    Biofilms of Lactobacillus plantarum are a potential source for contamination and recontamination of food products. Although biofilms have been mostly studied using single species or even single strains, it is conceivable that in a range of environmental settings including food processing areas, biofilms are composed of multiple species with each species represented by multiple strains. In this study six spoilage related L. plantarum strains FBR1-FBR6 and the model strain L. plantarum WCFS1 were characterised in single, dual and multiple strain competition models. A quantitative PCR approach was used with added propidium monoazide (PMA) enabling quantification of intact cells in the biofilm, representing the viable cell fraction that determines the food spoilage risk. Our results show that the performance of individual strains in multi-strain cultures generally correlates with their performance in pure culture, and relative strain abundance in multi-strain biofilms positively correlated with the relative strain abundance in suspended (planktonic) cultures. Performance of individual strains in dual-strain biofilms was highly influenced by the presence of the secondary strain, and in most cases no correlation between the relative contributions of viable planktonic cells and viable cells in the biofilm was noted. The total biofilm quantified by CV staining of the dual and multi-strain biofilms formed was mainly correlated to CV values of the dominant strain obtained in single strain studies. However, the combination of strain FBR5 and strain WCFS1 showed significantly higher CV values compared to the individual performances of both strains indicating that total biofilm formation was higher in this specific condition. Notably, L. plantarum FBR5 was able to outgrow all other strains and showed the highest relative abundance in dual and multi-strain biofilms. All the dual and multi-strain biofilms contained a considerable number of viable cells, representing a potential

  10. Modelling the number of viable vegetative cells of Bacillus cereus passing through the stomach

    NARCIS (Netherlands)

    Wijnands, L.M.; Pielaat, A.; Dufrenne, J.B.; Zwietering, M.H.; Leusden, van F.M.

    2009-01-01

    Aims: Model the number of viable vegetative cells of B. cereus surviving the gastric passage after experiments in simulated gastric conditions. Materials and Methods: The inactivation of stationary and exponential phase vegetative cells of twelve different strains of Bacillus cereus, both mesophilic

  11. Combining ethidium monoazide treatment with real-time PCR selectively quantifies viable Batrachochytrium dendrobatidis cells.

    Science.gov (United States)

    Blooi, Mark; Martel, An; Vercammen, Francis; Pasmans, Frank

    2013-02-01

    Detection of the lethal amphibian fungus Batrachochytrium dendrobatidis relies on PCR-based techniques. Although highly accurate and sensitive, these methods fail to distinguish between viable and dead cells. In this study a novel approach combining the DNA intercalating dye ethidium monoazide (EMA) and real-time PCR is presented that allows quantification of viable B. dendrobatidis cells without the need for culturing. The developed method is able to suppress real-time PCR signals of heat-killed B. dendrobatidis zoospores by 99.9 % and is able to discriminate viable from heat-killed B. dendrobatidis zoospores in mixed samples. Furthermore, the novel approach was applied to assess the antifungal activity of the veterinary antiseptic F10(®) Antiseptic Solution. This disinfectant killed B. dendrobatidis zoospores effectively within 1 min at concentrations as low as 1:6400. Copyright © 2013 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  12. A simple way to identify non-viable cells within living plant tissue using confocal microscopy

    Directory of Open Access Journals (Sweden)

    Truernit Elisabeth

    2008-06-01

    Full Text Available Abstract Background Plant cell death is a normal process during plant development. Mutant plants may exhibit misregulation of this process, which can lead to severe growth defects. Simple ways of visualising cell death in living plant tissues can aid the study of plant development and physiology. Results Spectral variants of the fluorescent SYTOX dyes were tested for their usefulness for the detection of non-viable cells within plant embryos and roots using confocal laser-scanning microscopy. The dyes were selective for non-viable cells and showed very little background staining in living cells. Simultaneous detection of SYTOX dye and fluorescent protein (e.g. GFP fluorescence was possible. Conclusion The fluorescent SYTOX dyes are useful for an easy and quick first assay of plant cell viability in living plant samples using fluorescence and confocal laser-scanning microscopy.

  13. Use of propidium monoazide for selective profiling of viable microbial cells during Gouda cheese ripening

    NARCIS (Netherlands)

    Erkus, O.; Jager, V.C. de; Geene, R.T.; Alen-Boerrigter, I.J. van; Hazelwood, L.; Hijum, S.A.F.T. van; Kleerebezem, M; Smid, E.J.

    2016-01-01

    DNA based microbial community profiling of food samples is confounded by the presence of DNA derived from membrane compromised (dead or injured) cells. Selective amplification of DNA from viable (intact) fraction of the community by propidium monoazide (PMA) treatment could circumvent this problem.

  14. In vitro and in vivo bioluminescent quantification of viable stem cells in engineered constructs.

    Science.gov (United States)

    Logeart-Avramoglou, Delphine; Oudina, Karim; Bourguignon, Marianne; Delpierre, Laetitia; Nicola, Marie-Anne; Bensidhoum, Morad; Arnaud, Eric; Petite, Herve

    2010-06-01

    Bioluminescent quantification of viable cells inside three-dimensional porous scaffolds was performed in vitro and in vivo. The assay quantified the bioluminescence of murine stem (C3H10T1/2) cells tagged with the luciferase gene reporter and distributed inside scaffolds of either soft, translucent, AN69 polymeric hydrogel or hard, opaque, coral ceramic materials. Quantitative evaluation of bioluminescence emitted from tagged cells adhering to these scaffolds was performed in situ using either cell lysates and a luminometer or intact cells and a bioluminescence imaging system. Despite attenuation of the signal when compared to cells alone, the bioluminescence correlated with the number of cells (up to 1.5 x 10(5)) present on each material scaffold tested, both in vitro and noninvasively in vivo (subcutaneous implants in the mouse model). The noninvasive bioluminescence measurement technique proved to be comparable to the cell-destructive bioluminescence measurement technique. Monitoring the kinetics of luciferase expression via bioluminescence enabled real-time assessment of cell survival and proliferation on the scaffolds tested over prolonged (up to 59 days) periods of time. This novel, sensitive, easy, fast-to-implement, quantitative bioluminescence assay has great, though untapped, potential for screening and determining noninvasively the presence of viable cells on biomaterial constructs in the tissue engineering and tissue regeneration fields.

  15. Mobilization of Viable Tumor Cells Into the Circulation During Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Olga A. [Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, East Melbourne, VIC (Australia); Molecular Radiation Biology Laboratory, Peter MacCallum Cancer Centre, East Melbourne, VIC (Australia); The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC (Australia); Anderson, Robin L. [The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC (Australia); Metastasis Research Laboratory, Peter MacCallum Cancer Centre, East Melbourne, VIC (Australia); Russell, Prudence A. [Department of Anatomical Pathology, St. Vincent Hospital, Fitzroy, VIC (Australia); Ashley Cox, R. [Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, East Melbourne, VIC (Australia); Ivashkevich, Alesia [Molecular Radiation Biology Laboratory, Peter MacCallum Cancer Centre, East Melbourne, VIC (Australia); Laboratory of DNA Repair and Genomics, Centre for Innate Immunity and Infectious Disease, Monash Institute for Medical Research, Monash University, Clayton, VIC (Australia); Swierczak, Agnieszka; Doherty, Judy P. [Metastasis Research Laboratory, Peter MacCallum Cancer Centre, East Melbourne, VIC (Australia); Jacobs, Daphne H.M. [Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, East Melbourne, VIC (Australia); Smith, Jai [Molecular Radiation Biology Laboratory, Peter MacCallum Cancer Centre, East Melbourne, VIC (Australia); Siva, Shankar; Daly, Patricia E. [Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, East Melbourne, VIC (Australia); Ball, David L. [Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, East Melbourne, VIC (Australia); The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC (Australia); and others

    2014-02-01

    Purpose: To determine whether radiation therapy (RT) could mobilize viable tumor cells into the circulation of non-small cell lung cancer (NSCLC) patients. Methods and Materials: We enumerated circulating tumor cells (CTCs) by fluorescence microscopy of blood samples immunostained with conventional CTC markers. We measured their DNA damage levels using γ-H2AX, a biomarker for radiation-induced DNA double-strand breaks, either by fluorescence-activated cell sorting or by immunofluorescence microscopy. Results: Twenty-seven RT-treated NSCLC patients had blood samples analyzed by 1 or more methods. We identified increased CTC numbers after commencement of RT in 7 of 9 patients treated with palliative RT, and in 4 of 8 patients treated with curative-intent RT. Circulating tumor cells were also identified, singly and in clumps in large numbers, during RT by cytopathologic examination (in all 5 cases studied). Elevated γ-H2AX signal in post-RT blood samples signified the presence of CTCs derived from irradiated tumors. Blood taken after the commencement of RT contained tumor cells that proliferated extensively in vitro (in all 6 cases studied). Circulating tumor cells formed γ-H2AX foci in response to ex vivo irradiation, providing further evidence of their viability. Conclusions: Our findings provide a rationale for the development of strategies to reduce the concentration of viable CTCs by modulating RT fractionation or by coadministering systemic therapies.

  16. Cellular bone matrices: viable stem cell-containing bone graft substitutes.

    Science.gov (United States)

    Skovrlj, Branko; Guzman, Javier Z; Al Maaieh, Motasem; Cho, Samuel K; Iatridis, James C; Qureshi, Sheeraz A

    2014-11-01

    Advances in the field of stem cell technology have stimulated the development and increased use of allogenic bone grafts containing live mesenchymal stem cells (MSCs), also known as cellular bone matrices (CBMs). It is estimated that CBMs comprise greater than 17% of all bone grafts and bone graft substitutes used. To critically evaluate CBMs, specifically their technical specifications, existing published data supporting their use, US Food and Drug Administration (FDA) regulation, cost, potential pitfalls, and other aspects pertaining to their use. Areview of literature. A series of Ovid, Medline, and Pubmed-National Library of Medicine/National Institutes of Health (www.ncbi.nlm.nih.gov) searches were performed. Only articles in English journals or published with English language translations were included. Level of evidence of the selected articles was assessed. Specific technical information on each CBM was obtained by direct communication from the companies marketing the individual products. Five different CBMs are currently available for use in spinal fusion surgery. There is a wide variation between the products with regard to the average donor age at harvest, total cellular concentration, percentage of MSCs, shelf life, and cell viability after defrosting. Three retrospective studies evaluating CBMs and fusion have shown fusion rates ranging from 90.2% to 92.3%, and multiple industry-sponsored trials are underway. No independent studies evaluating spinal fusion rates with the use of CBMs exist. All the commercially available CBMs claim to meet the FDA criteria under Section 361, 21 CFR Part 1271, and are not undergoing FDA premarket review. The CBMs claim to provide viable MSCs and are offered at a premium cost. Numerous challenges exist in regard to MSCs' survival, function, osteoblastic potential, and cytokine production once implanted into the intended host. Cellular bone matrices may be a promising bone augmentation technology in spinal fusion surgery

  17. Desiccation induces viable but Non-Culturable cells in Sinorhizobium meliloti 1021.

    Science.gov (United States)

    Vriezen, Jan Ac; de Bruijn, Frans J; Nüsslein, Klaus R

    2012-01-20

    Sinorhizobium meliloti is a microorganism commercially used in the production of e.g. Medicago sativa seed inocula. Many inocula are powder-based and production includes a drying step. Although S. meliloti survives drying well, the quality of the inocula is reduced during this process. In this study we determined survival during desiccation of the commercial strains 102F84 and 102F85 as well as the model strain USDA1021.The survival of S. meliloti 1021 was estimated during nine weeks at 22% relative humidity. We found that after an initial rapid decline of colony forming units, the decline slowed to a steady 10-fold reduction in colony forming units every 22 days. In spite of the reduction in colony forming units, the fraction of the population identified as viable (42-54%) based on the Baclight live/dead stain did not change significantly over time. This change in the ability of viable cells to form colonies shows (i) an underestimation of the survival of rhizobial cells using plating methods, and that (ii) in a part of the population desiccation induces a Viable But Non Culturable (VBNC)-like state, which has not been reported before. Resuscitation attempts did not lead to a higher recovery of colony forming units indicating the VBNC state is stable under the conditions tested. This observation has important consequences for the use of rhizobia. Finding methods to resuscitate this fraction may increase the quality of powder-based seed inocula.

  18. Mathematical modelling of the viable epidermis: impact of cell shape and vertical arrangement

    KAUST Repository

    Wittum, Rebecca

    2017-12-07

    In-silico methods are valuable tools for understanding the barrier function of the skin. The key benefit is that mathematical modelling allows the interplay between cell shape and function to be elucidated. This study focuses on the viable (living) epidermis. For this region, previous works suggested a diffusion model and an approximation of the cells by hexagonal prisms. The work at hand extends this in three ways. First, the extracellular space is treated with full spatial resolution. This induces a decrease of permeability by about 10%. Second, cells of tetrakaidecahedral shape are considered, in addition to the original hexagonal prisms. For both cell types, the resulting membrane permeabilities are compared. Third, for the first time, the influence of cell stacking in the vertical direction is considered. This is particularly important for the stratum granulosum, where tight junctions are present.

  19. Progress in biocatalysis with immobilized viable whole cells: systems development, reaction engineering and applications.

    Science.gov (United States)

    Polakovič, Milan; Švitel, Juraj; Bučko, Marek; Filip, Jaroslav; Neděla, Vilém; Ansorge-Schumacher, Marion B; Gemeiner, Peter

    2017-05-01

    Viable microbial cells are important biocatalysts in the production of fine chemicals and biofuels, in environmental applications and also in emerging applications such as biosensors or medicine. Their increasing significance is driven mainly by the intensive development of high performance recombinant strains supplying multienzyme cascade reaction pathways, and by advances in preservation of the native state and stability of whole-cell biocatalysts throughout their application. In many cases, the stability and performance of whole-cell biocatalysts can be highly improved by controlled immobilization techniques. This review summarizes the current progress in the development of immobilized whole-cell biocatalysts, the immobilization methods as well as in the bioreaction engineering aspects and economical aspects of their biocatalytic applications.

  20. Basilic vein transposition: A viable alternative for multiple failed arteriovenous fistulas - A single center experience

    Directory of Open Access Journals (Sweden)

    Saurabh Sudhir Chipde

    2017-01-01

    Full Text Available Primary use of the autogenous arteriovenous access is recommended by the National Kidney Foundation-Dialysis Outcomes Quality Initiative guidelines. In spite of troublesome comorbidities associated with basilic vein transposition (BVT, it is still the most preferred technique when autologous veins are not suitable to construct radio-cephalic fistula (RCF and brachiocephalic fistula (BCF, arteriovenous fistula (AVF. The present study highlights our experience with BVT, with small incision technique, over a period of two years with excellent outcome. This retrospective study included all the patients who underwent BVT at our tertiary care center between March 2013 and March 2015. It was performed in patients with failed previous RCF or BCF or who had small caliber or thrombosed cephalic veins. The patients with minimum 3 mm basilic vein diameter on Doppler were only included in the study. A 3-cm horizontal incision was made in antecubital fossa to expose brachial artery and basilic vein. Multiple longitudinal separate second skin incisions (2–3 cm were made to explore proximal part of basilic vein. Side branches of the vein were isolated and ligated. The divided basilic vein in antecubital fossa was brought over fascia through newly created subcutaneous tunnel followed by end-to-side anastomosis. A total of 18 (12 males and 6 females underwent BVT in the two years period. The mean fistula maturation time was 42 ± 10 days. Maturation rate was 100%, and the postoperative flow rate was 290 ± 22 (mL/min. No bleeding, thrombosis, failure, pseudo aneurysm, or rupture occurred in our patients. Arm edema occurred in ix (33% patients, infection in three (17%, and lymphorrhea in five (28%. The mean follow-up was six months. BVT is an alternative method with excellent initial maturation and functional patency rates requiring less extensive skin incision and surgical dissection. It is the most durable hemodialysis access procedure for those patients

  1. Trypan blue dye enters viable cells incubated with the pore-forming toxin HlyII of Bacillus cereus.

    Directory of Open Access Journals (Sweden)

    Seav-Ly Tran

    Full Text Available Trypan blue is a dye that has been widely used for selective staining of dead tissues or cells. Here, we show that the pore-forming toxin HlyII of Bacillus cereus allows trypan blue staining of macrophage cells, despite the cells remaining viable and metabolically active. These findings suggest that the dye enters viable cells through the pores. To our knowledge, this is the first demonstration that trypan blue may enter viable cells. Consequently, the use of trypan blue staining as a marker of vital status should be interpreted with caution. The blue coloration does not necessarily indicate cell lysis, but may rather indicate pore formation in the cell membranes and more generally increased membrane permeability.

  2. IN-VITRO BIOREDUCTION OF HEXAVALENT CHROMIUM BY VIABLE WHOLE CELLS OF Arthrobacter sp. SUK 1201

    Directory of Open Access Journals (Sweden)

    Satarupa Dey

    2014-08-01

    Full Text Available A chromium resistant and reducing bacterium Arthrobacter sp. SUK 1201 was isolated from chromite mine overburden dumps of Orissa, India. Viable whole cells of this isolate was capable of completely reducing 100 µM Cr(VI in chemically defined MS medium within 28 h of incubation under batch cultivation. Reduction of chromate increased with increased cell density and was maximum at a density of 1010 cells/ml, but the reduction potential of the suspended cells decreased with increase in Cr(VI concentration in the medium. Chromate reducing efficiency was promoted when glycerol and glucose was used as electron donors, while the optimum pH and temperature of Cr(VI reduction was found to be 7.0 and 35°C respectively. The reduction process was inhibited by divalent cations Ni, Co and Cd, but not by Cu and Fe. Similarly, carbonyl cyanide m-chlorophenylhydrazone (CCCP, N,N,-Di cyclohexyl carboiimide (DCC, sodium azide and sodium fluoride were inhibitory to chromate reduction, while in presence of 2,4 dinitrophenol (2,4 DNP chromate reduction by SUK 1201 cells remained unaffected.

  3. Viable bacteria associated with red blood cells and plasma in freshly drawn blood donations.

    Directory of Open Access Journals (Sweden)

    Christian Damgaard

    Full Text Available Infection remains a leading cause of post-transfusion mortality and morbidity. Bacterial contamination is, however, detected in less than 0.1% of blood units tested. The aim of the study was to identify viable bacteria in standard blood-pack units, with particular focus on bacteria from the oral cavity, and to determine the distribution of bacteria revealed in plasma and in the red blood cell (RBC-fraction.Cross-sectional study. Blood were separated into plasma and RBC-suspensions, which were incubated anaerobically or aerobically for 7 days on trypticase soy blood agar (TSA or blue lactose plates. For identification colony PCR was performed using primers targeting 16S rDNA.Blood donors attending Capital Region Blood Bank, Copenhagen University Hospital, Rigshospitalet, Hvidovre, Denmark, October 29th to December 10th 2013.60 donors (≥50 years old, self-reported medically healthy.Bacterial growth was observed on plates inoculated with plasma or RBCs from 62% of the blood donations. Growth was evident in 21 (35% of 60 RBC-fractions and in 32 (53% of 60 plasma-fractions versus 8 of 60 negative controls (p = 0.005 and p = 2.6x10-6, respectively. Propionibacterium acnes was found in 23% of the donations, and Staphylococcus epidermidis in 38%. The majority of bacteria identified in the present study were either facultative anaerobic (59.5% or anaerobic (27.8% species, which are not likely to be detected during current routine screening.Viable bacteria are present in blood from donors self-reported as medically healthy, indicating that conventional test systems employed by blood banks insufficiently detect bacteria in plasma. Further investigation is needed to determine whether routine testing for anaerobic bacteria and testing of RBC-fractions for adherent bacteria should be recommended.

  4. Abnormal human chorionic gonadotropin (hCG) trends after transfer of multiple embryos resulting in viable singleton pregnancies.

    Science.gov (United States)

    Brady, Paula C; Farland, Leslie V; Missmer, Stacey A; Racowsky, Catherine; Fox, Janis H

    2017-12-19

    The purpose of this study is to investigate whether abnormal hCG trends occur at a higher incidence among women conceiving singleton pregnancies following transfer of multiple (two or more) embryos (MET), as compared to those having a single embryo transfer (SET). Retrospective cohort study was performed of women who conceived singleton pregnancies following fresh or frozen autologous IVF/ICSI cycles with day 3 or day 5 embryo transfers between 2007 and 2014 at a single academic medical center. Cycles resulting in one gestational sac on ultrasound followed by singleton live birth beyond 24 weeks of gestation were included. Logistic regression models adjusted a priori for patient age at oocyte retrieval and day of embryo transfer were used to estimate the Odds Ratio of having an abnormal hCG rise (defined as a rise or hCG rises between the first and second measurements, compared to 2.7% (n = 17) of patients undergoing SET (OR 2.16, 95% CI 1.26-3.71). Among patients with initially abnormal hCG rises who had a third level checked (89%), three-quarters had normal hCG rises between the second and third measurements. Patients who deliver singletons following MET were more likely to have suboptimal initial hCG rises, potentially due to transient implantation of other non-viable embryo(s). While useful for counseling, these findings should not change standard management of abnormal hCG rises following IVF. The third hCG measurements may clarify pregnancy prognosis.

  5. Increasing Vero viable cell densities for yellow fever virus production in stirred-tank bioreactors using serum-free medium.

    Science.gov (United States)

    Mattos, Diogo A; Silva, Marlon V; Gaspar, Luciane P; Castilho, Leda R

    2015-08-20

    In this work, changes in Vero cell cultivation methods have been employed in order to improve cell growth conditions to obtain higher viable cell densities and to increase viral titers. The propagation of the 17DD yellow fever virus (YFV) in Vero cells grown on Cytodex I microcarriers was evaluated in 3-L bioreactor vessels. Prior to the current changes, Vero cells were repeatedly displaying insufficient microcarrier colonization. A modified cultivation process with four changes has resulted in higher cell densities and higher virus titers than previously observed for 17DD YFV. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Viable Cancer Cells in the Remnant Stomach are a Potential Source of Peritoneal Metastasis after Curative Distal Gastrectomy for Gastric Cancer.

    Science.gov (United States)

    Murata, Satoshi; Yamamoto, Hiroshi; Yamaguchi, Tsuyoshi; Kaida, Sachiko; Ishida, Mitsuaki; Kodama, Hirokazu; Takebayashi, Katsushi; Shimizu, Tomoharu; Miyake, Toru; Tani, Tohru; Kushima, Ryoji; Tani, Masaji

    2016-09-01

    The mechanisms underlying peritoneal metastasis (PM) after curative gastrectomy for gastric cancer (GC) are not well elucidated. This study assessed whether viable cancer cells, including cancer stemlike cells (CSCs), were present in the remnant stomach immediately before gastrointestinal (GI) tract reconstruction because these could be a source of PM after gastrectomy. Saline fluid used for remnant stomach lumen irrigation before GI reconstruction was prospectively collected from 142 consecutive patients undergoing distal gastrectomy for GC and cytologically examined. Proliferative activity (Ki67 staining) and stemness (expression of the CSC surface markers CD44s or CD44v6) were evaluated in detected cancer cells. Viable cancer cells were detected in 33 (23.2 %) of the 142 remnant stomachs. These cells formed clusters and stained positively for Ki67, indicating proliferation. Cancer cells in remnant stomachs and surface cancer cells in primary GCs from 10 (30.3 %) of these 33 cases also stained positively for CD44s or CD44v6. In a multiple logistic regression analysis, advanced cancer (odds ratio [OR], 4.65; 95 % confidence interval [CI], 1.32-16.4; P = 0.017), tumor size of 40 mm or larger (OR, 3.78; 95 % CI, 1.12-12.8; P = 0.033), and histologic differentiation (OR, 3.10; 95 % CI, 1.30-7.40; P = 0.011) were associated independently with the presence of cancer cells in the remnant stomach. Viable, proliferative, and clustered cancer cells, including CSCs, were found in remnant gastric lumens immediately before GI reconstruction, indicating a possible cellular source of PM after curative gastrectomy for GC. Dissemination of gastric contents into the peritoneal cavity should be avoided during GI reconstruction.

  7. Combined bromodeoxyuridine immunohistochemistry and Masson trichrome staining: facilitated detection of cell proliferation in viable vs. infarcted myocardium.

    Science.gov (United States)

    Lazarous, D F; Shou, M; Unger, E F

    1992-09-01

    Cells in the S-phase of the cell cycle can be identified in tissue sections by immunohistochemical localization of the thymidine analogue bromodeoxyuridine (BrdU). Generally, a single counterstain is used to visualize the underlying tissue; however, interpretation of morphologic detail is often difficult. We have utilized BrdU to localize proliferating cells in myocardium exposed to angiogenic mitogens. To facilitate identification of labelled nuclei in the context of infarcted vs. viable myocardium, BrdU immunohistochemistry was followed by a modified Masson trichrome stain. The time of exposure to the counterstains and the wash protocol were re-revised, permitting clear identification of the labelled brown nuclei against a background of red viable myocardium vs. blue infarct. The combined technique also provides color contrast suitable for computer-based image analysis.

  8. A multimodality imaging model to track viable breast cancer cells from single arrest to metastasis in the mouse brain

    Science.gov (United States)

    Parkins, Katie M.; Hamilton, Amanda M.; Makela, Ashley V.; Chen, Yuanxin; Foster, Paula J.; Ronald, John A.

    2016-10-01

    Cellular MRI involves sensitive visualization of iron-labeled cells in vivo but cannot differentiate between dead and viable cells. Bioluminescence imaging (BLI) measures cellular viability, and thus we explored combining these tools to provide a more holistic view of metastatic cancer cell fate in mice. Human breast carcinoma cells stably expressing Firefly luciferase were loaded with iron particles, injected into the left ventricle, and BLI and MRI were performed on days 0, 8, 21 and 28. The number of brain MR signal voids (i.e., iron-loaded cells) on day 0 significantly correlated with BLI signal. Both BLI and MRI signals decreased from day 0 to day 8, indicating a loss of viable cells rather than a loss of iron label. Total brain MR tumour volume on day 28 also correlated with BLI signal. Overall, BLI complemented our sensitive cellular MRI technologies well, allowing us for the first time to screen animals for successful injections, and, in addition to MR measures of cell arrest and tumor burden, provided longitudinal measures of cancer cell viability in individual animals. We predict this novel multimodality molecular imaging framework will be useful for evaluating the efficacy of emerging anti-cancer drugs at different stages of the metastatic cascade.

  9. Viable cell yield from active dry yeast products and effects of storage temperature and diluent on yeast cell viability.

    Science.gov (United States)

    Sullivan, M L; Bradford, B J

    2011-01-01

    Active dry yeast (ADY) products are commonly fed in the dairy industry, but research regarding quality control for such products is limited. The objectives of this study were to determine yeast viability in field samples relative to manufacturers' guarantees (experiment 1), measure the effects of high-temperature storage on yeast viability (experiment 1), and determine the effect of vitamin-trace mineral (VTM) premix on yeast viability (experiment 2). Commercially available ADY products were acquired in triplicate through normal distribution channels and stored at 4°C upon receipt. Initial samples were evaluated for colony-forming units and compared with product label guarantees. Only 1 of the 6 products sampled in experiment 1 met product guarantees for all 3 samples. To determine effects of storage temperature and duration on viability, ADY samples were stored in an incubator at 40°C with ambient humidity for 1, 2, and 3 mo. High-temperature storage significantly decreased viability over the 3-mo period; approximately 90% of viable cells were lost each month. Three of the 5 products sampled in experiment 2 met product guarantees. Fresh samples of 4 of these 5 ADY products were mixed in duplicate with ground corn (GC) or a VTM premix to achieve a target concentration of 2.2×10(8) cfu/g. For each product, GC and VTM samples were stored at ambient temperature (22°C) and at an elevated temperature (40°C) for 2 wk. No differences in viable yeast count were observed between GC and VTM samples immediately after mixing or after storage at ambient temperature. Yeast viability in GC and VTM samples decreased during storage at an elevated temperature. There also was a significant interaction of diluent and storage temperature; VTM samples had higher cell viability than GC samples when subjected to high-temperature storage. Results suggest that (1) ADY products failed to consistently meet product guarantees; (2) viability of ADY products was greatly diminished during

  10. Sensitive and Specific Biomimetic Lipid Coated Microfluidics to Isolate Viable Circulating Tumor Cells and Microemboli for Cancer Detection.

    Directory of Open Access Journals (Sweden)

    Jia-Yang Chen

    Full Text Available Here we presented a simple and effective membrane mimetic microfluidic device with antibody conjugated supported lipid bilayer (SLB "smart coating" to capture viable circulating tumor cells (CTCs and circulating tumor microemboli (CTM directly from whole blood of all stage clinical cancer patients. The non-covalently bound SLB was able to promote dynamic clustering of lipid-tethered antibodies to CTC antigens and minimized non-specific blood cells retention through its non-fouling nature. A gentle flow further flushed away loosely-bound blood cells to achieve high purity of CTCs, and a stream of air foam injected disintegrate the SLB assemblies to release intact and viable CTCs from the chip. Human blood spiked cancer cell line test showed the ~95% overall efficiency to recover both CTCs and CTMs. Live/dead assay showed that at least 86% of recovered cells maintain viability. By using 2 mL of peripheral blood, the CTCs and CTMs counts of 63 healthy and colorectal cancer donors were positively correlated with the cancer progression. In summary, a simple and effective strategy utilizing biomimetic principle was developed to retrieve viable CTCs for enumeration, molecular analysis, as well as ex vivo culture over weeks. Due to the high sensitivity and specificity, it is the first time to show the high detection rates and quantity of CTCs in non-metastatic cancer patients. This work offers the values in both early cancer detection and prognosis of CTC and provides an accurate non-invasive strategy for routine clinical investigation on CTCs.

  11. Viable cell sorting of dinoflagellates by multi-parametric flow cytometry.

    Science.gov (United States)

    Electronic cell sorting for isolation and culture of dinoflagellates and other marine eukaryotic phytoplankton was compared to the traditional method of manually picking of cells using a micropipette. Trauma to electronically sorted cells was not a limiting factor as fragile dinoflagellates, such a...

  12. Fuel cells are a commercially viable alternative for the production of "clean" energy.

    Science.gov (United States)

    Niakolas, Dimitris K; Daletou, Maria; Neophytides, Stylianos G; Vayenas, Constantinos G

    2016-01-01

    Fuel cells present a highly efficient and environmentally friendly alternative technology for decentralized energy production. The scope of the present study is to provide an overview of the technological and commercialization readiness level of fuel cells. Specifically, there is a brief description of their general advantages and weaknesses in correlation with various technological actions and political strategies, which are adopted towards their proper positioning in the global market. Some of the most important key performance indicators are also discussed, alongside with a few examples of broad commercialization. It is concluded that the increasing number of companies which utilize and invest on this technology, in combination with the supply chain improvements and the concomitant technological maturity and recognition, reinforce the fuel cell industry so as to become well-aligned for global success.

  13. A viable electrode material for use in microbial fuel cells for tropical regions

    DEFF Research Database (Denmark)

    Offei, Felix; Thygesen, Anders; Mensah, Moses

    2016-01-01

    Electrode materials are critical for microbial fuel cells (MFC) since they influence the construction and operational costs. This study introduces a simple and efficient electrode material in the form of palm kernel shell activated carbon (AC) obtained in tropical regions. The novel introduction...

  14. Progress in emerging techniques for characterization of immobilized viable whole-cell biocatalysts

    Czech Academy of Sciences Publication Activity Database

    Bučko, M.; Vikartovská, A.; Schenkmayerová, A.; Tkáč, J.; Filip, J.; Chorvát Jr., D.; Neděla, Vilém; Ansorge-Schumacher, M.B.; Gemeiner, P.

    2017-01-01

    Roč. 71, č. 11 (2017), s. 2309-2324 ISSN 0366-6352 Institutional support: RVO:68081731 Keywords : bioelectrocatalysis * imaging techniques * immobilized whole- cell biocatalyst * multienzyme cascade reactions * online kinetics Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.258, year: 2016

  15. Progress in biocatalysis with immobilized viable whole cells: systems development, reaction engineering and applications

    Czech Academy of Sciences Publication Activity Database

    Polakovič, M.; Švitel, J.; Bučko, M.; Filip, J.; Neděla, Vilém; Ansorge-Schumacher, M.B.; Gemeiner, P.

    2017-01-01

    Roč. 39, č. 5 (2017), s. 667-683 ISSN 0141-5492 Institutional support: RVO:68081731 Keywords : biocatalysis * immobilization methods * immobilized whole-cell biocatalyst * multienzyme cascade reactions * process economics * reaction engineering Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.730, year: 2016

  16. Identifying viable regulatory and innovation pathways for regenerative medicine: a case study of cultured red blood cells.

    Science.gov (United States)

    Mittra, J; Tait, J; Mastroeni, M; Turner, M L; Mountford, J C; Bruce, K

    2015-01-25

    The creation of red blood cells for the blood transfusion markets represents a highly innovative application of regenerative medicine with a medium term (5-10 year) prospect for first clinical studies. This article describes a case study analysis of a project to derive red blood cells from human embryonic stem cells, including the systemic challenges arising from (i) the selection of appropriate and viable regulatory protocols and (ii) technological constraints related to stem cell manufacture and scale up to clinical Good Manufacturing Practice (GMP) standard. The method used for case study analysis (Analysis of Life Science Innovation Systems (ALSIS)) is also innovative, demonstrating a new approach to social and natural science collaboration to foresight product development pathways. Issues arising along the development pathway include cell manufacture and scale-up challenges, affected by regulatory demands emerging from the innovation ecosystem (preclinical testing and clinical trials). Our discussion reflects on the efforts being made by regulators to adapt the current pharmaceuticals-based regulatory model to an allogeneic regenerative medicine product and the broader lessons from this case study for successful innovation and translation of regenerative medicine therapies, including the role of methodological and regulatory innovation in future development in the field. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  17. Real-Time PCR Methodology for Selective Detection of Viable Escherichia coli O157:H7 Cells by Targeting Z3276 as a Genetic Marker

    Science.gov (United States)

    Chen, Jin-Qiang

    2012-01-01

    The goal of this study was to develop a sensitive, specific, and accurate method for the selective detection of viable Escherichia coli O157:H7 cells in foods. A unique open reading frame (ORF), Z3276, was identified as a specific genetic marker for the detection of E. coli O157:H7. We developed a real-time PCR assay with primers and probe targeting ORF Z3276 and confirmed that this assay was sensitive and specific for E. coli O157:H7 strains (n = 298). Using this assay, we can detect amounts of genomic DNA of E. coli O157:H7 as low as a few CFU equivalents. Moreover, we have developed a new propidium monoazide (PMA)–real-time PCR protocol that allows for the clear differentiation of viable from dead cells. In addition, the protocol was adapted to a 96-well plate format for easy and consistent handling of a large number of samples. Amplification of DNA from PMA-treated dead cells was almost completely inhibited, in contrast to the virtually unaffected amplification of DNA from PMA-treated viable cells. With beef spiked simultaneously with 8 × 107 dead cells/g and 80 CFU viable cells/g, we were able to selectively detect viable E. coli O157:H7 cells with an 8-h enrichment. In conclusion, this PMA–real-time PCR assay offers a sensitive and specific means to selectively detect viable E. coli O157:H7 cells in spiked beef. It also has the potential for high-throughput selective detection of viable E. coli O157:H7 cells in other food matrices and, thus, will have an impact on the accurate microbiological and epidemiological monitoring of food safety and environmental sources. PMID:22635992

  18. Viable Bacteria Associated with Red Blood Cells and Plasma in Freshly Drawn Blood Donations

    DEFF Research Database (Denmark)

    Damgaard, Christian; Magnussen, Karin; Enevold, Christian

    2015-01-01

    the oral cavity, and to determine the distribution of bacteria revealed in plasma and in the red blood cell (RBC)-fraction. DESIGN: Cross-sectional study. Blood were separated into plasma and RBC-suspensions, which were incubated anaerobically or aerobically for 7 days on trypticase soy blood agar (TSA......), self-reported medically healthy. RESULTS: Bacterial growth was observed on plates inoculated with plasma or RBCs from 62% of the blood donations. Growth was evident in 21 (35%) of 60 RBC-fractions and in 32 (53%) of 60 plasma-fractions versus 8 of 60 negative controls (p = 0.005 and p = 2.6x10...... of RBC-fractions for adherent bacteria should be recommended....

  19. Poor Hematopoietic Stem Cell Mobilizers in Multiple Myeloma: a Single Institution Experience.

    Science.gov (United States)

    Ruiz-Delgado, Guillermo J.; López-Otero, Avril; Hernandez-Arizpe, Ana; Ramirez-Medina, Aura; Ruiz-Argüelles., Guillermo J.

    2010-01-01

    In a single institution, in a group of 28 myeloma patients deemed eligible for autologous transplant, stem cell mobilization was attempted using filgrastim: 26 individuals were given 31 autografts employing 1–4 (median three) apheresis sessions, to obtain a target stem cell dose of 1 x 106 CD34 +ve viable cells / Kg of the recipient. The median number of grafted CD34 cells was 7.56 x 106 / Kg of the recipient; the range being 0.92 to 14.8. By defining as poor mobilizers individuals in which a cell collection of 1 x 106 CD34 +ve viable cells / Kg was better (80% at 80 months) than those grafted with < 1 x 106 CD34 +ve viable cells / Kg (67% at 76 months). Methods to improve stem cell mobilization are needed and may result in obtaining better results when autografting multiple myeloma patients. PMID:21415967

  20. POOR HEMOPOIETIC STEM CELL MOBILIZERS IN MULTIPLE MYELOMA : A SINGLE INSTITUTION EXPERIENCE

    Directory of Open Access Journals (Sweden)

    Guillermo Jose Ruiz-Delgado

    2010-06-01

    Full Text Available In a single institution, in a group of 28 myeloma patients deemed eligible for autologous transplant, stem cell mobilization was attempted using filgrastim: 26 individuals were given 31 autografts employing 1-4 (median three apheresis sessions, to obtain a target stem cell dose of 1 x 106 CD34 viable cells / Kg of the recipient. The median number of grafted CD34 cells was 7.56 x 106  / Kg of the recipient; the range being 0.92 to 14.8.  By defining as poor mobilizers individuals in which a cell collection of 1 x 106 CD34 viable cells / Kg was better (80% at 80 months than those grafted with < 1 x 106 CD34 viable cells / Kg (67% at 76 months. Methods to improve stem cell mobilization are needed and may result in obtaining better results when autografting multiple myeloma patients.

  1. A Viable Electrode Material for Use in Microbial Fuel Cells for Tropical Regions

    Directory of Open Access Journals (Sweden)

    Felix Offei

    2016-01-01

    Full Text Available Electrode materials are critical for microbial fuel cells (MFC since they influence the construction and operational costs. This study introduces a simple and efficient electrode material in the form of palm kernel shell activated carbon (AC obtained in tropical regions. The novel introduction of this material is also targeted at introducing an inexpensive and durable electrode material, which can be produced in rural communities to improve the viability of MFCs. The maximum voltage and power density obtained (under 1000 Ω load using an H-shaped MFC with AC as both anode and cathode electrode material was 0.66 V and 1.74 W/m3, respectively. The power generated by AC was as high as 86% of the value obtained with the extensively used carbon paper. Scanning electron microscopy and Denaturing Gradient Gel Electrophoresis (DGGE analysis of AC anode biofilms confirmed that electrogenic bacteria were present on the electrode surface for substrate oxidation and the formation of nanowires.

  2. Response of Listeria monocytogenes to disinfection stress at the single-cell and population levels as monitored by intracellular pH measurements and viable-cell counts

    DEFF Research Database (Denmark)

    Kastbjerg, Vicky Gaedt; Nielsen, Dennis S.; Arneborg, Nils

    2009-01-01

    .05). The protective effect of NaCl was reflected by viable-cell counts at a higher concentration of Incimaxx (0.0031%), where the salt-grown population survived better than the population grown without NaCl (P ... that a population of L. monocytogenes cells, whether planktonic or attached, is homogenous with respect to sensitivity to an acidic disinfectant studied on the single-cell level. Hence a major subpopulation more tolerant to disinfectants, and hence more persistent, does not appear to be present....

  3. A factor converting viable but nonculturable Vibrio cholerae to a culturable state in eukaryotic cells is a human catalase.

    Science.gov (United States)

    Senoh, Mitsutoshi; Hamabata, Takashi; Takeda, Yoshifumi

    2015-08-01

    In our previous work, we demonstrated that viable but nonculturable (VBNC) Vibrio cholerae O1 and O139 were converted to culturable by coculture with eukaryotic cells. Furthermore, we isolated a factor converting VBNC V. cholerae to culturable (FCVC) from a eukaryotic cell line, HT-29. In this study, we purified FCVC by successive column chromatographies comprising UNO Q-6 anion exchange, Bio-Scale CHT2-1 hydroxyapatite, and Superdex 200 10/300 GL. Homogeneity of the purified FCVC was demonstrated by SDS-PAGE. Nano-LC MS/MS analysis showed that the purified FCVC was a human catalase. An experiment of RNAi knockdown of catalase mRNA from HT-29 cells and treatment of the purified FCVC with a catalase inhibitor, 3-amino-1,2,4-triazole confirmed that the FCVC was a catalase. A possible role of the catalase in converting a VBNC V. cholerae to a culturable state in the human intestine is discussed. © 2015 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  4. Drugs with anti-oxidant properties can interfere with cell viability measurements by assays that rely on the reducing property of viable cells.

    Science.gov (United States)

    Shenoy, Niraj; Stenson, Mary; Lawson, Joshua; Abeykoon, Jithma; Patnaik, Mrinal; Wu, Xiaosheng; Witzig, Thomas

    2017-02-27

    Cell viability assays such as Cell Titer Blue and Alamar Blue rely on the reducing property of viable cells to reduce the reagent dye to a product which gives a fluorescent signal. The current manufacture-recommended protocols do not take into account the possibility of the reagent substrate being reduced directly to the fluorescent product by drugs with an anti-oxidant property. After suspecting spurious results while determining the cytotoxic potential of a drug of interest (DOI) with known anti-oxidant property against a renal cell cancer (RCC) cell line, we aimed to establish that drugs with anti-oxidant property can indeed cause false-negative results with the current protocols of these assays by direct reduction of the reagent substrate. We also aimed to counter the same with a simple modification added to the protocol. Through our experiments, we conclusively demonstrate that drugs with anti-oxidant properties can indeed interfere with cell viability measurements by assays that rely on the reducing property of viable cells. A simple modification in the protocol, as elaborated in the manuscript, can prevent spurious results with these otherwise convenient assays.Laboratory Investigation advance online publication, 27 February 2017; doi:10.1038/labinvest.2017.18.

  5. A Novel Application for Low Frequency Electrochemical Impedance Spectroscopy as an Online Process Monitoring Tool for Viable Cell Concentrations

    Directory of Open Access Journals (Sweden)

    Christoph Slouka

    2016-11-01

    Full Text Available New approaches in process monitoring during industrial fermentations are not only limited to classical pH, dO2 and offgas analysis, but use different in situ and online sensors based on different physical principles to determine biomass, product quality, lysis and far more. One of the very important approaches is the in situ accessibility of viable cell concentration (VCC. This knowledge provides increased efficiency in monitoring and controlling strategies during cultivations. Electrochemical impedance spectroscopy—EIS—is used to monitor biomass in a fermentation of E. coli BL21(DE3, producing a recombinant protein using a fed batch-based approach. Increases in the double layer capacitance (Cdl, determined at frequencies below 1 kHz, are proportional to the increase of biomass in the batch and fed batch phase, monitored in offline and online modes for different cultivations. A good correlation of Cdl with cell density is found and in order to get an appropriate verification of this method, different state-of-the-art biomass measurements are performed and compared. Since measurements in this frequency range are largely determined by the double layer region between the electrode and media, rather minor interferences with process parameters (aeration, stirring are to be expected. It is shown that impedance spectroscopy at low frequencies is a powerful tool for cultivation monitoring.

  6. A viable foal obtained by equine somatic cell nuclear transfer using oocytes recovered from immature follicles of live mares.

    Science.gov (United States)

    Choi, Young-Ho; Norris, Jody D; Velez, Isabel C; Jacobson, Candace C; Hartman, David L; Hinrichs, Katrin

    2013-03-15

    The presence of heterogenous mitochondria from the host ooplast affects the acceptance of offspring obtained by somatic cell nuclear transfer. This might be avoided by obtaining oocytes from selected females, but is then complicated by low numbers of available oocytes. We examined the efficiency of equine somatic cell nuclear transfer using oocytes recovered by transvaginal aspiration of immature follicles from 11 mares. Use of metaphase I oocytes as cytoplasts and of scriptaid (a histone deacetylase inhibitor) treatment during oocyte activation were evaluated to determine if these approaches would increase blastocyst production. In experiment 1, blastocyst development was 0/14 for metaphase I oocytes and 4/103 (4%) for metaphase II oocytes. Three blastocysts were transferred to recipient mares, resulting in two pregnancies and one live foal, which died shortly after birth. In experiment 2, blastocyst development was 2/47 (4%) for control oocytes and 1/83 (1%) for scriptaid-treated oocytes. No foals were born from two blastocysts transferred in the control group. The blastocyst from the scriptaid treatment resulted in birth of a live foal. In conclusion, this is apparently the first report of production of a viable cloned foal from oocytes collected from immature follicles of live mares, supporting the possibility of cloning using oocytes from selected mares. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Clinical validation of an ultra high-throughput spiral microfluidics for the detection and enrichment of viable circulating tumor cells.

    Directory of Open Access Journals (Sweden)

    Bee Luan Khoo

    Full Text Available Circulating tumor cells (CTCs are cancer cells that can be isolated via liquid biopsy from blood and can be phenotypically and genetically characterized to provide critical information for guiding cancer treatment. Current analysis of CTCs is hindered by the throughput, selectivity and specificity of devices or assays used in CTC detection and isolation.Here, we enriched and characterized putative CTCs from blood samples of patients with both advanced stage metastatic breast and lung cancers using a novel multiplexed spiral microfluidic chip. This system detected putative CTCs under high sensitivity (100%, n = 56 (Breast cancer samples: 12-1275 CTCs/ml; Lung cancer samples: 10-1535 CTCs/ml rapidly from clinically relevant blood volumes (7.5 ml under 5 min. Blood samples were completely separated into plasma, CTCs and PBMCs components and each fraction were characterized with immunophenotyping (Pan-cytokeratin/CD45, CD44/CD24, EpCAM, fluorescence in-situ hybridization (FISH (EML4-ALK or targeted somatic mutation analysis. We used an ultra-sensitive mass spectrometry based system to highlight the presence of an EGFR-activating mutation in both isolated CTCs and plasma cell-free DNA (cf-DNA, and demonstrate concordance with the original tumor-biopsy samples.We have clinically validated our multiplexed microfluidic chip for the ultra high-throughput, low-cost and label-free enrichment of CTCs. Retrieved cells were unlabeled and viable, enabling potential propagation and real-time downstream analysis using next generation sequencing (NGS or proteomic analysis.

  8. Quantitation of viable Coxiella burnetii in milk using an integrated cell culture-polymerase chain reaction (ICC-PCR) assay.

    Science.gov (United States)

    Stewart, Diana; Shieh, Y-Carol; Tortorello, Mary; Kukreja, Ankush; Shazer, Arlette; Schlesser, Joseph

    2015-11-01

    The obligate intracellular pathogen Coxiella burnetii has long been considered the most heat resistant pathogen in raw milk, making it the reference pathogen for determining pasteurisation conditions for milk products. New milk formulations and novel non-thermal processes require validation of effectiveness which requires a more practical method for analysis than using the currently used animal model for assessing Coxiella survival. Also, there is an interest in better characterising thermal inactivation of Coxiella in various milk formulations. To avoid the use of the guinea pig model for evaluating Coxiella survival, an Integrated Cell Culture-PCR (ICC-PCR) method was developed for determining Coxiella viability in milk. Vero cell cultures were directly infected from Coxiella-contaminated milk in duplicate 24-well plates. Viability of the Coxiella in milk was shown by a ≥ 0.5 log genome equivalent (ge)/ml increase in the quantity of IS111a gene from the baseline post-infection (day 0) level after 9-11 d propagation. Coxiella in skim, 2%, and whole milk, and half and half successfully infected Vero cells and increased in number by at least 2 logs using a 48-h infection period followed by 9-d propagation time. As few as 125 Coxiella ge/ml in whole milk was shown to infect and propagate at least 2 logs in the optimised ICC-PCR assay, though variable confirmation of propagation was shown for as low as 25 Coxiella ge/ml. Applicability of the ICC-PCR method was further proven in an MPN format to quantitate the number of viable Coxiella remaining in whole milk after 60 °C thermal treatment at 0, 20, 40, 60 and 90 min.

  9. Polyelectrolyte Complex Beads by Novel Two-Step Process for Improved Performance of Viable Whole-Cell Baeyer-Villiger Monoxygenase by Immobilization

    Directory of Open Access Journals (Sweden)

    Tomáš Krajčovič

    2017-11-01

    Full Text Available A novel immobilization matrix for the entrapment of viable whole-cell Baeyer–Villiger monooxygenase was developed. Viable recombinant Escherichia coli cells overexpressing cyclohexanone monooxygenase were entrapped in polyelectrolyte complex beads prepared by a two-step reaction of oppositely-charged polymers including highly defined cellulose sulphate. Immobilized cells exhibited higher operational stability than free cells during 10 repeated cycles of Baeyer–Villiger biooxidations of rac-bicyclo[3.2.0]hept-2-en-6-one to the corresponding lactones (1R,5S-3-oxabicyclo-[3.3.0]oct-6-en-3-one and (1S,5R-2-oxabicyclo-[3.3.0]oct-6-en-3-one. The morphology of polyelectrolyte complex beads was characterised by environmental scanning electron microscopy; the spatial distribution of polymers in the beads and cell viability were examined using confocal laser scanning microscopy, and the texture was characterised by the mechanical resistance measurements.

  10. Enhanced inhibition of murine prostatic carcinoma growth by immunization with or administration of viable human umbilical vein endothelial cells and CRM197

    Directory of Open Access Journals (Sweden)

    Zhang Huiyong

    2011-02-01

    Full Text Available Vaccination with xenogeneic and syngeneic endothelial cells is effective for inhibiting tumor growth. Nontoxic diphtheria toxin (CRM197, as an immunogen or as a specific inhibitor of heparin-binding EGF-like growth factor, has shown promising antitumor activity. Therefore, immunization with or administration of viable human umbilical vein endothelial cells (HUVECs combined with CRM197 could have an enhanced antitumor effect. Six-week-old C57BL/6J male mice were vaccinated with viable HUVECs, 1 x 10(6 viable HUVECs combined with 100 μg CRM197, or 100 μg CRM197 alone by ip injections once a week for 4 consecutive weeks. RM-1 cells (5 x 10(5 were inoculated by sc injection as a preventive procedure. During the therapeutic procedure, 6-week-old male C57BL/6J mice were challenged with 1 x 10(5 RM-1 cells, then injected sc with 1 x 10(6 viable HUVECs, 1 x 10(6 viable HUVECs + 100 μg CRM197, and 100 μg CRM197 alone twice a week for 4 consecutive weeks. Tumor volume and life span were monitored. We also investigated the effects of immunization with HUVECs on the aortic arch wall and on wound healing. Vaccination with or administration of viable HUVECs+CRM197 enhanced the inhibition of RM-1 prostatic carcinoma by 24 and 29%, respectively, and prolonged the life span for 3 and 4 days, respectively, compared with those of only vaccination or administration with viable HUVECs of tumor-bearing C57BL/6J mice. Furthermore, HUVEC immunization caused some damage to the aortic arch wall but did not have remarkable effects on the rate of wound healing; the wounds healed in approximately 13 days. Treatment with CRM197 in combination with viable HUVECs resulted in a marked enhancement of the antitumor effect in the preventive or therapeutic treatment for prostatic carcinoma in vivo, suggesting a novel combination for anti-cancer therapy.

  11. Assessing prognosis and optimizing treatment in patients with postchemotherapy viable nonseminomatous germ-cell tumors (NSGCT): results of the sCR2 international study

    DEFF Research Database (Denmark)

    Fizazi, K.; Oldenburg, J.; Dunant, A.

    2008-01-01

    malignant cells, and a good International Germ Cell Consensus Classification group at presentation. Patients were assigned to one of three risk groups defined in sCR1: no risk factor (good risk), one risk factor (intermediate risk) and two to three risk factors (poor risk group). The 5-year PFS rate was 92...... with surveillance and treatment only at relapse. CONCLUSION: In patients with postchemotherapy viable NSGCT, a complete resection of residual masses should be rigorously pursued. These data validate the sCR1 prognostic index. Given their excellent outcome, patients in the favorable group may not require......BACKGROUND: The purpose of this study was to validate a prognostic index [surgical complete response 1 (sCR1)] in patients with postchemotherapy viable nonseminomatous germ-cell tumors (NSGCT). PATIENTS AND METHODS: Data and specimens from 61 patients with normalized tumor markers...

  12. Designing primers and evaluation of the efficiency of propidium monoazide – Quantitative polymerase chain reaction for counting the viable cells of Lactobacillus gasseri and Lactobacillus salivarius

    Directory of Open Access Journals (Sweden)

    Chieh-Hsien Lai

    2017-07-01

    Full Text Available The purpose of this study is to evaluate the efficiency of using propidium monoazide (PMA real-time quantitative polymerase chain reaction (qPCR to count the viable cells of Lactobacillus gasseri and Lactobacillus salivarius in probiotic products. Based on the internal transcription spacer and 23S rRNA genes, two primer sets specific for these two Lactobacillus species were designed. For a probiotic product, the total deMan Rogosa Sharpe plate count was 8.65±0.69 log CFU/g, while for qPCR, the cell counts of L. gasseri and L. salivarius were 8.39±0.14 log CFU/g and 8.57±0.24 log CFU/g, respectively. Under the same conditions, for its heat-killed product, qPCR counts for L. gasseri and L. salivarius were 6.70±0.16 log cells/g and 7.67±0.20 log cells/g, while PMA-qPCR counts were 5.33±0.18 log cells/g and 5.05±0.23 log cells/g, respectively. For cell dilutions with a viable cell count of 8.5 log CFU/mL for L. gasseri and L. salivarius, after heat killing, the PMA-qPCR count for both Lactobacillus species was near 5.5 log cells/mL. When the PMA-qPCR counts of these cell dilutions were compared before and after heat killing, although some DNA might be lost during the heat killing, significant qPCR signals from dead cells, i.e., about 4–5 log cells/mL, could not be reduced by PMA treatment. Increasing PMA concentrations from 100 μM to 200 μM or light exposure time from 5 minutes to 15 minutes had no or, if any, only minor effect on the reduction of qPCR signals from their dead cells. Thus, to differentiate viable lactic acid bacterial cells from dead cells using the PMA-qPCR method, the efficiency of PMA to reduce the qPCR signals from dead cells should be notable.

  13. Designing primers and evaluation of the efficiency of propidium monoazide - Quantitative polymerase chain reaction for counting the viable cells of Lactobacillus gasseri and Lactobacillus salivarius.

    Science.gov (United States)

    Lai, Chieh-Hsien; Wu, Sih-Rong; Pang, Jen-Chieh; Ramireddy, Latha; Chiang, Yu-Cheng; Lin, Chien-Ku; Tsen, Hau-Yang

    2017-07-01

    The purpose of this study is to evaluate the efficiency of using propidium monoazide (PMA) real-time quantitative polymerase chain reaction (qPCR) to count the viable cells of Lactobacillus gasseri and Lactobacillus salivarius in probiotic products. Based on the internal transcription spacer and 23S rRNA genes, two primer sets specific for these two Lactobacillus species were designed. For a probiotic product, the total deMan Rogosa Sharpe plate count was 8.65±0.69 log CFU/g, while for qPCR, the cell counts of L. gasseri and L. salivarius were 8.39±0.14 log CFU/g and 8.57±0.24 log CFU/g, respectively. Under the same conditions, for its heat-killed product, qPCR counts for L. gasseri and L. salivarius were 6.70±0.16 log cells/g and 7.67±0.20 log cells/g, while PMA-qPCR counts were 5.33±0.18 log cells/g and 5.05±0.23 log cells/g, respectively. For cell dilutions with a viable cell count of 8.5 log CFU/mL for L. gasseri and L. salivarius, after heat killing, the PMA-qPCR count for both Lactobacillus species was near 5.5 log cells/mL. When the PMA-qPCR counts of these cell dilutions were compared before and after heat killing, although some DNA might be lost during the heat killing, significant qPCR signals from dead cells, i.e., about 4-5 log cells/mL, could not be reduced by PMA treatment. Increasing PMA concentrations from 100 μM to 200 μM or light exposure time from 5 minutes to 15 minutes had no or, if any, only minor effect on the reduction of qPCR signals from their dead cells. Thus, to differentiate viable lactic acid bacterial cells from dead cells using the PMA-qPCR method, the efficiency of PMA to reduce the qPCR signals from dead cells should be notable. Copyright © 2016. Published by Elsevier B.V.

  14. Not single but periodic injections of synovial mesenchymal stem cells maintain viable cells in knees and inhibit osteoarthritis progression in rats.

    Science.gov (United States)

    Ozeki, N; Muneta, T; Koga, H; Nakagawa, Y; Mizuno, M; Tsuji, K; Mabuchi, Y; Akazawa, C; Kobayashi, E; Matsumoto, K; Futamura, K; Saito, T; Sekiya, I

    2016-06-01

    We investigated the effects of single or repetitive intra-articular injections of synovial mesenchymal stem cells (MSCs) on a rat osteoarthritis (OA) model, and elucidated the behaviors and underlying mechanisms of the stem cells after the injection. One week after the transection of the anterior cruciate ligament (ACL) of wild type Lewis rats, one million synovial MSCs were injected into the knee joint every week. Cartilage degeneration was evaluated with safranin-o staining after the first injection. To analyze cell kinetics or MSC properties, luciferase, LacZ, and GFP expressing synovial MSCs were used. To confirm the role of MSCs, species-specific microarray and PCR analyses were performed using human synovial MSCs. Histological analysis for femoral and tibial cartilage showed that a single injection was ineffective but weekly injections had significant chondroprotective effects for 12 weeks. Histological and flow-cytometric analyses of LacZ and GFP expressing synovial MSCs revealed that injected MSCs migrated mainly into the synovium and most of them retained their undifferentiated MSC properties though the migrated cells rapidly decreased. In vivo imaging analysis revealed that MSCs maintained in knees while weekly injection. Species-specific microarray and PCR analyses showed that the human mRNAs on day 1 for 21 genes increased over 50-fold, and increased the expressions of PRG-4, BMP-2, and BMP-6 genes encoding chondroprotective proteins, and TSG-6 encoding an anti-inflammatory one. Not single but periodic injections of synovial MSCs maintained viable cells without losing their MSC properties in knees and inhibited osteoarthritis (OA) progression by secretion of trophic factors. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Macrophage conditioned medium induced cellular network formation in MCF-7 cells through enhanced tunneling nanotube formation and tunneling nanotube mediated release of viable cytoplasmic fragments

    Energy Technology Data Exchange (ETDEWEB)

    Patheja, Pooja, E-mail: pooja.patheja8@gmail.com [Laser Biomedical Applications Section, Raja Ramanna Centre for Advanced Technology, Indore 452013, Madhya Pradesh (India); Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, Maharashtra (India); Sahu, Khageswar [Laser Biomedical Applications Section, Raja Ramanna Centre for Advanced Technology, Indore 452013, Madhya Pradesh (India)

    2017-06-15

    Infiltrating macrophages in tumor microenvironment, through their secreted cytokines and growth factors, regulate several processes of cancer progression such as cancer cell survival, proliferation, invasion, metastasis and angiogenesis. Recently, intercellular cytoplasmic bridges between cancer cells referred as tunneling nanotubes (TNTs) have been recognized as novel mode of intercellular communication between cancer cells. In this study, we investigated the effect of inflammatory mediators present in conditioned medium derived from macrophages on the formation of TNTs in breast adenocarcinoma cells MCF-7. Results show that treatment with macrophage conditioned medium (MφCM) not only enhanced TNT formation between cells but also stimulated the release of independently migrating viable cytoplasmic fragments, referred to as microplasts, from MCF-7 cells. Time lapse microscopy revealed that microplasts were released from parent cancer cells in extracellular space through formation of TNT-like structures. Mitochondria, vesicles and cytoplasm could be transferred from parent cell body to microplasts through connecting TNTs. The microplasts could also be resorbed into the parent cell body by retraction of the connecting TNTs. Microplast formation inhibited in presence cell migration inhibitor, cytochalasin-B. Notably by utilizing migratory machinery within microplasts, distantly located MCF-7 cells formed several TNT based intercellular connections, leading to formation of physically connected network of cells. Together, these results demonstrate novel role of TNTs in microplast formation, novel modes of TNT formation mediated by microplasts and stimulatory effect of MφCM on cellular network formation in MCF-7 cells mediated through enhanced TNT and microplast formation.

  16. Bacillus subtilis mutants with knockouts of the genes encoding ribonucleases RNase Y and RNase J1 are viable, with major defects in cell morphology, sporulation, and competence.

    Science.gov (United States)

    Figaro, Sabine; Durand, Sylvain; Gilet, Laetitia; Cayet, Nadège; Sachse, Martin; Condon, Ciarán

    2013-05-01

    The genes encoding the ribonucleases RNase J1 and RNase Y have long been considered essential for Bacillus subtilis cell viability, even before there was concrete knowledge of their function as two of the most important enzymes for RNA turnover in this organism. Here we show that this characterization is incorrect and that ΔrnjA and Δrny mutants are both viable. As expected, both strains grow relatively slowly, with doubling times in the hour range in rich medium. Knockout mutants have major defects in their sporulation and competence development programs. Both mutants are hypersensitive to a wide range of antibiotics and have dramatic alterations to their cell morphologies, suggestive of cell envelope defects. Indeed, RNase Y mutants are significantly smaller in diameter than wild-type strains and have a very disordered peptidoglycan layer. Strains lacking RNase J1 form long filaments in tight spirals, reminiscent of mutants of the actin-like proteins (Mre) involved in cell shape determination. Finally, we combined the rnjA and rny mutations with mutations in other components of the degradation machinery and show that many of these strains are also viable. The implications for the two known RNA degradation pathways of B. subtilis are discussed.

  17. Effects of the oral administration of viable and heat-killed Streptococcus bovis HC5 cells to pre-sensitized BALB/c mice.

    Directory of Open Access Journals (Sweden)

    Aline D Paiva

    Full Text Available Antimicrobial peptides have been suggested as an alternative to classical antibiotics in livestock production and bacteriocin-producing bacteria could be added to animal feeds to deliver bacteriocins in the gastrointestinal (GI tract of ruminant and monogastric animals. In this study, viable (V and heat-killed (HK Streptococcus bovis HC5 cells were orally administered to pre-sensitized mice in order to assess the effects of a bacteriocin-producing bacteria on histological parameters and the immune response of the GI tract of monogastric animals. The administration of V and HK S. bovis HC5 cells during 58 days to BALB/c mice did not affect weight gain, but an increase in gut permeability was detected in animals receiving the HK cells. Viable and heat killed cells caused similar morphological alterations in the GI tract of the animals, but the most prominent effects were detected in the small intestine. The oral administration of S. bovis HC5 also influenced cytokine production in the small intestine, and the immune-mediated activity differed between V and HK cells. The relative expression of IL-12 and INF-γ was significantly higher in the small intestine of mice treated with V cells, while an increase in IL-5, IL-13 and TNF-α expression was only detected in mice treated with HK cells. Considering that even under a condition of severe challenge (pre-sensitization followed by daily exposure to the same bacterial immunogen the general health of the animals was maintained, it appears that oral administration of S. bovis HC5 cells could be a useful route to deliver bacteriocin in the GI tract of livestock animals.

  18. A non-aggressive, highly efficient, enzymatic method for dissociation of human brain-tumors and brain-tissues to viable single-cells.

    Science.gov (United States)

    Volovitz, Ilan; Shapira, Netanel; Ezer, Haim; Gafni, Aviv; Lustgarten, Merav; Alter, Tal; Ben-Horin, Idan; Barzilai, Ori; Shahar, Tal; Kanner, Andrew; Fried, Itzhak; Veshchev, Igor; Grossman, Rachel; Ram, Zvi

    2016-06-01

    Conducting research on the molecular biology, immunology, and physiology of brain tumors (BTs) and primary brain tissues requires the use of viably dissociated single cells. Inadequate methods for tissue dissociation generate considerable loss in the quantity of single cells produced and in the produced cells' viability. Improper dissociation may also demote the quality of data attained in functional and molecular assays due to the presence of large quantities cellular debris containing immune-activatory danger associated molecular patterns, and due to the increased quantities of degraded proteins and RNA. Over 40 resected BTs and non-tumorous brain tissue samples were dissociated into single cells by mechanical dissociation or by mechanical and enzymatic dissociation. The quality of dissociation was compared for all frequently used dissociation enzymes (collagenase, DNase, hyaluronidase, papain, dispase) and for neutral protease (NP) from Clostridium histolyticum. Single-cell-dissociated cell mixtures were evaluated for cellular viability and for the cell-mixture dissociation quality. Dissociation quality was graded by the quantity of subcellular debris, non-dissociated cell clumps, and DNA released from dead cells. Of all enzymes or enzyme combinations examined, NP (an enzyme previously not evaluated on brain tissues) produced dissociated cell mixtures with the highest mean cellular viability: 93 % in gliomas, 85 % in brain metastases, and 89 % in non-tumorous brain tissue. NP also produced cell mixtures with significantly less cellular debris than other enzymes tested. Dissociation using NP was non-aggressive over time-no changes in cell viability or dissociation quality were found when comparing 2-h dissociation at 37 °C to overnight dissociation at ambient temperature. The use of NP allows for the most effective dissociation of viable single cells from human BTs or brain tissue. Its non-aggressive dissociative capacity may enable ambient

  19. Prognostic impact of the number of viable circulating cells with high telomerase activity in gastric cancer patients: a prospective study.

    Science.gov (United States)

    Ito, Hiroaki; Inoue, Haruhiro; Kimura, Satoshi; Ohmori, Tohru; Ishikawa, Fumihiro; Gohda, Keigo; Sato, Jun

    2014-07-01

    The identification of circulating tumor cells (CTCs) in peripheral blood is a useful approach to estimate prognosis, monitor disease progression and measure treatment effects in several types of malignancies. We have previously used OBP-401, a telomerase-specific, replication-selective, oncolytic adenoviral agent carrying the green fluorescent protein (GFP) gene. GFP-positive cells (GFP+ cells) were counted under a fluorescence microscope. Our results showed that the number of at least 7.735 µm in diameter GFP+ cells (L-GFP+ cells) in the peripheral blood was a significant marker of prognosis in gastric cancer patients. However, tumor cells undergoing epithelial-mesenchymal transition (EMT) have been reported to be smaller in size than cells without EMT features; thus, CTCs undergoing EMT may escape detection with this technique. Therefore, in this study, we analyzed the relationship between patient outcome and the number of GFP+ cells of any size. We obtained peripheral blood samples from 65 patients with gastric cancer. After infection of OBP-401, GFP+ cells were counted and measured. The relationship between the number of GFP+ cells and surgical outcome was analyzed. The median follow-up period of the surviving patients was 36 months. A significant difference in overall survival was found between patients with 0-5 and patients with ≥6 L-GFP+ cells. No clear relationship was established between the number of small-sized GFP+ cells and patient prognosis. The number of L-GFP+ cells was significantly related to overall survival in patients with gastric cancer. The detection of L-GFP+ cells using OBP-401 may be a useful prognostic marker in gastric cancer.

  20. Binding of CLL subset 4 B-cell receptor immunoglobulins to viable human memory B lymphocytes requires a distinctive IGKV somatic mutation.

    Science.gov (United States)

    Catera, Rosa; Liu, Yun; Gao, Chao; Yan, Xiao-Jie; Magli, Amanda; Allen, Steven L; Kolitz, Jonathan E; Rai, Kanti R; Chu, Charles C; Feizi, Ten; Stamatopoulos, Kostas; Chiorazzi, Nicholas

    2017-01-12

    Amino acid replacement mutations in certain CLL stereotyped B-cell receptor (BCR) immunoglobulins (IGs) at defined positions within antigen-binding sites strongly imply antigen selection. Prime examples of this are CLL subset 4 BCR IGs using IGHV4-34/IGHD5-18/IGHJ6 and IGKV2-30/IGKJ2 rearrangements. Conspicuously and unlike most CLL IGs, subset 4 IGs do not bind apoptotic cells. By testing the (auto)antigenic reactivities of subset 4 IGs toward viable lymphoid-lineage cells and specific autoantigens typically bound by IGHV4-34+ IGs, we found IGs from both subset 4 and non-subset 4 IGHV4-34-expressing CLL cases bind naïve B cells. However, only subset 4 IGs react with memory B cells. Furthermore, subset 4 IGs do not bind DNA nor i or I carbohydrate antigens, common targets of IGHV4-34-utilizing antibodies in systemic lupus erythematosus and cold agglutinin disease, respectively. Notably, we found that subset 4 IG binding to memory B lymphocytes depends on an aspartic acid at position 66 of FR3 in the rearranged IGKV2-30 gene; this amino acid residue is acquired by somatic mutation. Our findings illustrate the importance of positive and negative selection criteria for structural elements in CLL IGs and suggest that autoantigens driving normal B cells to become subset 4 CLL cells differ from those driving IGHV4-34+ B cells in other diseases.

  1. B Cells and Autoantibodies in Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Anne-Katrin Pröbstel

    2015-07-01

    Full Text Available While over the past decades T cells have been considered key players in the pathogenesis of multiple sclerosis (MS, it has only recently become evident that B cells have a major contributing role. Our understanding of the role of B cells has evolved substantially following the clinical success of B cell-targeting therapies and increasing experimental evidence for significant B cell involvement. Rather than mere antibody-producing cells, it is becoming clear that they are team players with the capacity to prime and regulate T cells, and function both as pro- and anti-inflammatory mediators. However, despite tremendous efforts, the target antigen(s of B cells in MS have yet to be identified. The first part of this review summarizes the clinical evidence and results from animal studies pointing to the relevance of B cells in the pathogenesis of MS. The second part gives an overview of the currently known potential autoantigen targets. The third part recapitulates and critically appraises the currently available B cell-directed therapies.

  2. Fluorescence Quenching Property of C-Phycocyanin from Spirulina platensis and its Binding Efficacy with Viable Cell Components.

    Science.gov (United States)

    Paswan, Meenakshi B; Chudasama, Meghna M; Mitra, Madhusree; Bhayani, Khushbu; George, Basil; Chatterjee, Shruti; Mishra, Sandhya

    2016-03-01

    Phycocyanin is a natural brilliant blue colored, fluorescent protein, which is commonly present in cyanobacteria. In this study, C-phycocyanin was extracted and purified from Spirulina platensis, which are multicellular and filamentous cyanobacteria of greater importance because of its various biological and pharmacological potential. It was analyzed for its binding affinity towards blood cells, algal cells, genomic DNA of microalgae, and bacteria at different temperature and incubation time. It showed good binding affinity with these components even at low concentration of 2.5 μM. The purpose of this study was to evaluate the applicability of C-phycocyanin as a green fluorescent dye substituting carcinogenic chemical dyes.

  3. Managing Viable Knowledge

    NARCIS (Netherlands)

    Achterbergh, J.M.I.M.; Vriens, D.J.

    2002-01-01

    In this paper, Beer's Viable System Model (VSM) is applied to knowledge management. Based on the VSM, domains of knowledge are identified that an organization should possess to maintain its viability. The logic of the VSM is also used to support the diagnosis, design and implementation of the

  4. Determination of Viable Salmonella Typhimurium Cells in Heat Treated Milk By PMA/Real-Time PCR Method

    Directory of Open Access Journals (Sweden)

    Zülal Kesmen

    2017-06-01

    Full Text Available Applying different technological processes during the production of food has a lethal effect on the bacteria but DNA of these bacterial strains may cause false positive results when detected by real time PCR technique because they preserve their existence for a certain period of time. To overcome this shortcoming of the real time PCR technique, a new method has been developed in recent years, based on the removal of dead cell DNA from the medium by treatment with Propodium Monoazide (PMA before DNA extraction. In this study, real-time PCR method was combined with PMA application for the detection of live cells of Salmonella Typhimurium in heat treated milk samples. For this purpose, milk samples inoculated with S. Tyhimurium were heat treated at different temperatures (60, 65, 70 and 75°C and times (15, 60, 300, 900 sec and number of live bacteria was determined comparatively by direct real-time PCR, PMA/real-time PCR and conventional cultural method. As a result, unlike the direct real time PCR technique, PMA/real-time PCR method prevents to a certain extent of false positive results from dead cells at all tested temperatures and times but higher results were obtained from PMA/real-time PCR method when compared to conventional cultural results. Therefore, further studies should be carried out to optimize the conditions of the PMA application in order to eliminate the high positive results detected by the PMA / real-time PCR method

  5. Advances toward regenerative medicine in the central nervous system: challenges in making stem cell therapy a viable clinical strategy.

    Science.gov (United States)

    Stoll, Elizabeth A

    2014-01-01

    Over recent years, there has been a great deal of interest in the prospects of stem cell-based therapies for the treatment of nervous system disorders. The eagerness of scientists, clinicians, and spin-out companies to develop new therapies led to premature clinical trials in human patients, and now the initial excitement has largely turned to skepticism. Rather than embracing a defeatist attitude or pressing blindly ahead, I argue it is time to evaluate the challenges encountered by regenerative medicine in the central nervous system and the progress that is being made to solve these problems. In the twenty years since the adult brain was discovered to have an endogenous regenerative capacity, much basic research has been done to elucidate mechanisms controlling proliferation and cellular identity; how stem cells may be directed into neuronal lineages; genetic, pharmacological, and behavioral interventions that modulate neurogenic activity; and the exact nature of limitations to regeneration in the adult, aged, diseased and injured CNS. These findings should prove valuable in designing realistic clinical strategies to improve the prospects of stem cell-based therapies. In this review, I discuss how basic research continues to play a critical role in identifying both barriers and potential routes to regenerative therapy in the CNS.

  6. Dopamine, T cells and multiple sclerosis (MS).

    Science.gov (United States)

    Levite, Mia; Marino, Franca; Cosentino, Marco

    2017-05-01

    Dopamine is a key neurotransmitter that induces critical effects in the nervous system and in many peripheral organs, via 5 dopamine receptors (DRs): D1R-D5R. Dopamine also induces many direct and very potent effects on many DR-expressing immune cells, primarily T cells and dendritic cells. In this review, we focus only on dopamine receptors, effects and production in T cells. Dopamine by itself (at an optimal concentration of~0.1 nM) induces multiple function of resting normal human T cells, among them: T cell adhesion, chemotactic migration, homing, cytokine secretion and others. Interestingly, dopamine activates resting effector T cells (Teffs), but suppresses regulatory T cells (Tregs), and both effects lead eventually to Teff activation. Dopamine-induced effects on T cells are dynamic, context-sensitive and determined by the: T cell activation state, T cell type, DR type, and dopamine concentration. Dopamine itself, and also few dopaminergic molecules/ drugs that are in clinical use for cardiac, neurological and other non-immune indications, have direct effects on human T cells (summarized in this review). These dopaminergic drugs include: dopamine = intropin, L-DOPA, bromocriptine, pramipexole, pergolide, haloperidol, pimozide, and amantadine. Other dopaminergic drugs were not yet tested for their direct effects on T cells. Extensive evidence in multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE) show dopaminergic dysregulations in T cells in these diseases: D1-like DRs are decreased in Teffs of MS patients, and dopamine does not affect these cells. In contrast, D1-like DRs are increased in Tregs of MS patients, possibly causing functional Treg impairment in MS. Treatment of MS patients with interferon β (IFN-β) increases D1-like DRs and decreases D2-like DRs in Teffs, decreases D1-like DRs in Tregs, and most important: restores responsiveness of patient's Teffs to dopamine. DR agonists and antagonists confer some benefits in

  7. Multiple-Path-Length Optical Absorbance Cell

    Science.gov (United States)

    2001-01-01

    An optical absorbance cell that offers a selection of multiple optical path lengths has been developed as part of a portable spectrometric instrument that measures absorption spectra of small samples of water and that costs less than does a conventional, non-portable laboratory spectrometer. The instrument is intended, more specifically, for use in studying colored dissolved organic matter (CDOM) in seawater, especially in coastal regions. Accurate characterization of CDOM is necessary for building bio-optical mathematical models of seawater. The multiple path lengths of the absorption cell afford a wide range of sensitivity needed for measuring the optical absorbances associated with the wide range of concentrations of CDOM observed in nature. The instrument operates in the wavelength range of 370 to 725 nm. The major subsystems of the instrument (see figure) include a color-balanced light source; the absorption cell; a peristaltic pump; a high-precision, low-noise fiber optic spectrometer; and a laptop or other personal computer. A fiber-optic cable transmits light from the source to the absorption cell. Other optical fibers transmit light from the absorption cell to the spectrometer,

  8. Induction of Viable but Nonculturable Salmonella in Exponentially Grown Cells by Exposure to a Low-Humidity Environment and Their Resuscitation by Catalase.

    Science.gov (United States)

    Morishige, Yuta; Koike, Atsushi; Tamura-Ueyama, Ai; Amano, Fumio

    2017-02-01

    Salmonella is a major cause of foodborne disease that sometimes occurs in massive outbreaks around the world. This pathogen is tolerant of low-humidity conditions. We previously described a method for induction of viable but nonculturable (VBNC) Salmonella enterica serovar Enteritidis by treatment with hydrogen peroxide (H2O2) and subsequent resuscitation with 0.3 mM sodium pyruvate. Here, we report a new method for the induction of the VBNC state in Salmonella Enteritidis cells, one involving dehydration. Exposure of Salmonella Enteritidis cells to dehydration stress under poor nutritional conditions (0.9% [wt/vol] NaCl) and 10 to 20% relative humidity at room temperature decreased the presence of culturable population to 0.0067%, but respiratory and glucose uptake active populations were maintained at 0.46 and 1.12%, respectively, meaning that approximately 1% may have entered the VBNC state. Furthermore, these VBNC cells could be resuscitated to acquire culturability by incubation with catalase in M9 minimal medium without glucose in a manner dependent on the dose of catalase but not sodium pyruvate. These results suggest that a low-humidity environment could cause Salmonella Enteritidis cells to enter the VBNC state and the cells could then be resuscitated for growth by treatment with catalase, suggesting a potential risk of Salmonella Enteritidis to survive in low water activity foods in the VBNC state and to start regrowth for foodborne illness.

  9. Freezing Nitrogen Ethanol Composite May be a Viable Approach for Cryotherapy of Human Giant Cell Tumor of Bone.

    Science.gov (United States)

    Wu, Po-Kuei; Chen, Cheng-Fong; Wang, Jir-You; Chen, Paul Chih-Hsueh; Chang, Ming-Chau; Hung, Shih-Chieh; Chen, Wei-Ming

    2017-06-01

    Liquid nitrogen has been used as adjuvant cryotherapy for treating giant cell tumor (GCT) of bone. However, the liquid phase and ultrafreezing (-196° C) properties increase the risk of damage to the adjacent tissues and may lead to perioperative complications. A novel semisolid cryogen, freezing nitrogen ethanol composite, might mitigate these shortcomings because of less-extreme freezing. We therefore wished to evaluate freezing nitrogen ethanol composite as a coolant to determine its properties in tumor cryoablation. (1) Is freezing nitrogen ethanol composite-mediated freezing effective for tumor cryoablation in an ex vivo model, and if yes, is apoptosis involved in the tumor-killing mechanism? (2) Does freezing nitrogen ethanol composite treatment block neovascularization and neoplastic progression of the grafted GCTs and is it comparable to that of liquid nitrogen in an in vivo chicken model? (3) Can use of freezing nitrogen ethanol composite as an adjuvant to curettage result in successful short-term treatment, defined as absence of GCT recurrence at a minimum of 1 year in a small proof-of-concept clinical series? The cryogenic effect on bone tissue mediated by freezing nitrogen ethanol composite and liquid nitrogen was verified by thermal measurement in a time-course manner. Cryoablation on human GCT tissue was examined ex vivo for effect on morphologic features (cell shrinkage) and DNA fragmentation (apoptosis). The presumed mechanism was investigated by molecular analysis of apoptosis regulatory proteins including caspases 3, 8, and 9 and Bax/Bcl-2. Chicken chorioallantoic membrane was used as an in vivo model to evaluate the effects of freezing nitrogen ethanol composite and liquid nitrogen treatment on GCT-derived neovascularization and tumor neoplasm. A small group of patients with GCT of bone was treated by curettage and adjuvant freezing nitrogen ethanol composite cryotherapy in a proof-of-concept study. Tumor recurrence and perioperative

  10. Quality of raw cow milk in Republic of Macedonia determined through the testing of somatic cell count and total viable count

    Directory of Open Access Journals (Sweden)

    Angelovski Ljupco

    2008-11-01

    Full Text Available Somatic cells count and total viable count are criteria used to estimate the compliance of raw cow milk with the Book of rules for demands for safety and hygiene and procedures for official controls of milk and milk products, Official Gazette of RM 157/2007. According to the given demands, raw milk operators are obliged to conduct all procedures and to guarantee that milk is in compliance with the criteria laid down in Book of rules. At the same time, Republic of Macedonia have to fulfill EU criteria laid down in Directive 92/46 (Council directive 92/46/EEC laying down the health rules for the production and placing on the market of raw milk, heat-treated milk and milkbased products for quality of raw milk as part of implementation of community legislation and milk production. The independent laboratory for milk quality control at FVM-Skopje, in frame of its activities in the period February- August 2008 has conducted a study for obtaining preliminary results for the situation with raw milk quality produced in R. of Macedonia for somatic cells counts and total viable count. In the study we analyzed 2065 samples for TVC and 1625 samples for SCC of raw milk samples produced in different parts of the country. From the tested samples only 41,8% fulfill criteria for SCC and 41,45% criteria for TVC lay down in Book of rules for 2008. Assessment of the results in light of Council Directive it is obvious that only 42,7% of the samples for SCC and 10,7% for TVC fulfill the criteria of Council Directive having in mind different requirements vs. Book of rules.

  11. [Mantle cell lymphoma with multiple extranodal involvement].

    Science.gov (United States)

    Orii, K; Kobayashi, H; Ueno, M; Ishida, F; Saito, H; Hata, S; Aoki, K; Narita, A; Shimodaira, S; Kitano, K; Uchimaru, K; Motokura, T

    1997-06-01

    A 79-year-old male was admitted to our hospital because of general fatigue and night sweat. Physical examination showed generalized superficial lymphadenopathy, marked splenomegaly, and tumors in the conjunctiva and the abdomen. Chest X-ray and computed tomography (CT) revealed pleural effusion and intrathoracic lymphadenopathy. Abdominal ultrasonography and CT showed hepatosplenomegaly and intraperitoneal tumors. Upper gastrointestinal fiberscopy revealed multiple polypoid lesions and ulcers in the duodenum and the stomach. Involvement of relatively small-sized lymphocytes with cleaved nuclei was identified in each biopsied specimen from a cervical lymph node, a tumor in the conjunctiva, gastrointestinal polypoid lesions, and the bone marrow. Surface marker analysis of abnormal lymphocytes in the bone marrow revealed that CD5, CD19, and CD20 were strongly positive, but CD23 was weakly positive. Although (11:14)(q13:q32) translocation was not identified by chromosome analysis of bone marrow cells, Northern blot analysis of bone marrow cells revealed overexpression of the PRAD1 oncogene. Diagnosis of mantle cell lymphoma (MCL) was made. Combination chemotherapy by cyclophosphamide and vincristine was not effective, but etoposide perorally given at a dose of 50 mg per day was effective. In MCL, extranodal involvement of a digestive tract and bone marrow is well known. This case suggests that involvement of multiple organs including lacrimal glands and pleura could be characteristic of MCL cells.

  12. Biologic properties of viable deletion mutants of simian virus 40 (SV40) rescued from the cells of an SV40-induced hamster lymphocytic leukemia.

    Science.gov (United States)

    Diamandopoulos, G T; Carmichael, G

    1983-12-01

    A lymphocytic leukemia induced by the oncogenic DNA simian virus 40 (SV40) in an inbred LSH/SsLak Syrian golden hamster was evoked to produce infectious SV40 by fusion of the leukemia cells with grivet monkey kidney (GMK) cells and by exposure of the leukemia cells to the chemical inducers mitomycin C and cycloheximide. Plaque-purified viable substrains of the rescued SV40 when studied by restriction endonuclease digestion of viral DNA were found to contain small deletions within the Hind III restriction fragment C. These deletions lay near the viral origin of DNA replication. Ten plaque-purified substrains of the rescued virus identified by immunofluorescence as being SV40 were found, when compared to the wild-type SV40, to replicate slowly and to form small plaques. Although these substrains transformed NIH/3T3 cells as efficiently as the wild-type SV40 in tissue culture, they were generally less oncogenic in vivo--7 of the 10 failed to induce tumors. The 3 oncogenic SV40-rescued substrains were not found to exhibit "lymphocytotropism," i.e., the capacity to infect and neoplastically transform preferentially hamster lymphocytes. Thus the hamster lymphocytic leukemia originally induced by the wild-type SV40 was most likely a chance-stochastic event rather than the result of tropism-determinism mediated by the virus, as is usually the case with leukemogenic RNA viruses.

  13. Hematopoietic stem cell transplantation in multiple sclerosis

    DEFF Research Database (Denmark)

    Rogojan, C; Frederiksen, J L

    2009-01-01

    Intensive immunosuppresion followed by hematopoietic stem cell transplantation (HSCT) has been suggested as potential treatment in severe forms of multiple sclerosis (MS). Since 1995 ca. 400 patients have been treated with HSCT. Stabilization or improvement occurred in almost 70% of cases at least...... in restoration of self-tolerance. Relatively young patients with active inflammatory lesions of relatively short duration and rapidly progressive disease, but still low disability scores, unresponsive to conventional therapy seem the best candidates for transplantation. Transplant-related mortality was 6...

  14. Primordial germ cell-mediated chimera technology produces viable pure-line Houbara bustard offspring: potential for repopulating an endangered species.

    Directory of Open Access Journals (Sweden)

    Ulrich Wernery

    2010-12-01

    Full Text Available The Houbara bustard (Chlamydotis undulata is a wild seasonal breeding bird populating arid sandy semi-desert habitats in North Africa and the Middle East. Its population has declined drastically during the last two decades and it is classified as vulnerable. Captive breeding programmes have, hitherto, been unsuccessful in reviving population numbers and thus radical technological solutions are essential for the long term survival of this species. The purpose of this study was to investigate the use of primordial germ cell-mediated chimera technology to produce viable Houbara bustard offspring.Embryonic gonadal tissue was dissected from Houbara bustard embryos at eight days post-incubation. Subsequently, Houbara tissue containing gonadal primordial germ cells (gPGCs was injected into White Leghorn chicken (Gallus gallus domesticus embryos, producing 83/138 surviving male chimeric embryos, of which 35 chimeric roosters reached sexual maturity after 5 months. The incorporation and differentiation of Houbara gPGCs in chimeric chicken testis were assessed by PCR with Houbara-specific primers and 31.3% (5/16 gonads collected from the injected chicken embryos showed the presence of donor Houbara cells. A total of 302 semen samples from 34 chimeric roosters were analyzed and eight were confirmed as germline chimeras. Semen samples from these eight roosters were used to artificially inseminate three female Houbara bustards. Subsequently, 45 Houbara eggs were obtained and incubated, two of which were fertile. One egg hatched as a male live born Houbara; the other was female but died before hatching. Genotyping confirmed that the male chick was a pure-line Houbara derived from a chimeric rooster.This study demonstrates for the first time that Houbara gPGCs can migrate, differentiate and eventually give rise to functional sperm in the chimeric chicken testis. This approach may provide a promising tool for propagation and conservation of endangered avian

  15. Effects of water-filtered infrared-A and of heat on cell death, inflammation, antioxidative potential and of free radical formation in viable skin--first results.

    Science.gov (United States)

    Piazena, Helmut; Pittermann, Wolfgang; Müller, Werner; Jung, Katinka; Kelleher, Debra K; Herrling, Thomas; Meffert, Peter; Uebelhack, Ralf; Kietzmann, Manfred

    2014-09-05

    The effects of water-filtered infrared-A (wIRA) and of convective heat on viability, inflammation, inducible free radicals and antioxidative power were investigated in natural and viable skin using the ex vivo Bovine Udder System (BUS) model. Therefore, skin samples from differently treated parts of the udder of a healthy cow were analyzed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test, by prostaglandin E2 (PGE2) measurement and by electron spin resonance (ESR) spectroscopy. Neither cell viability, the inflammation status, the radical status or the antioxidative defence systems of the skin were significantly affected by wIRA applied within 30 min by using an irradiance of 1900 W m(-2) which is of relevance for clinical use, but which exceeded the maximum solar IR-A irradiance at the Earth's surface more than 5 times and which resulted in a skin surface temperature of about 45 °C without cooling and of about 37 °C with convective cooling by air ventilation. No significant effects on viability and on inflammation were detected when convective heat was applied alone under equivalent conditions in terms of the resulting skin surface temperatures and exposure time. As compared with untreated skin, free radical formation was almost doubled, whereas the antioxidative power was reduced to about 50% after convective heating to about 45 °C. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Of energy and survival incognito: a relationship between viable but non-culturable cells formation and inorganic polyphosphate and formate metabolism in Campylobacter jejuni.

    Science.gov (United States)

    Kassem, Issmat I; Chandrashekhar, Kshipra; Rajashekara, Gireesh

    2013-01-01

    Campylobacter jejuni is a Gram-negative food-borne bacterium that can cause mild to serious diseases in humans. A variety of stress conditions including exposure to formic acid, a weak organic acid, can cause C. jejuni to form viable but non-culturable cells (VBNC), which was proposed as a potential survival mechanism. The inability to detect C. jejuni VBNC using standard culturing techniques may increase the risk of exposure to foods contaminated with this pathogen. However, little is known about the cellular mechanisms and triggers governing VBNC formation. Here, we discuss novel mechanisms that potentially affect VBNC formation in C. jejuni and emphasize the impact of formic acid on this process. Specifically, we highlight findings that show that impairing inorganic polyphosphate (poly-P) metabolism reduces the ability of C. jejuni to form VBNC in a medium containing formic acid. We also discuss the potential effect of poly-P and formate metabolism on energy homeostasis and cognate VBNC formation. The relationship between poly-P metabolism and VBNC formation under acid stress has only recently been identified and may represent a breakthrough in understanding this phenomenon and its impact on food safety.

  17. Stages of Plasma Cell Neoplasms (Including Multiple Myeloma)

    Science.gov (United States)

    ... Treatment Health Professional Plasma Cell Neoplasms Treatment Research Plasma Cell Neoplasms (Including Multiple Myeloma) Treatment (PDQ®)–Patient Version General Information About Plasma Cell Neoplasms Go to Health Professional Version Key ...

  18. SAHA-induced TRAIL-sensitisation of Multiple Myeloma cells is enhanced in 3D cell culture.

    Science.gov (United States)

    Arhoma, A; Chantry, A D; Haywood-Small, S L; Cross, N A

    2017-11-15

    Multiple Myeloma (MM) is currently incurable despite many novel therapies. Tumour Necrosis Factor-Related Apoptosis-Inducing Ligand (TRAIL) is a potential anti-tumour agent although effects as a single agent are limited. In this study, we investigated whether the Histone Deacetylase (HDAC) inhibitor SAHA can enhance TRAIL-induced apoptosis and target TRAIL resistance in both suspension culture, and 3D cell culture as a model of disseminated MM lesions that form in bone. The effects of SAHA and/or TRAIL in 6 Multiple Myeloma cell lines were assessed in both suspension cultures and in an Alginate-based 3D cell culture model. The effect of SAHA and/or TRAIL was assessed on apoptosis by assessment of nuclear morphology using Hoechst 33342/Propidium Iodide staining. Viable cell number was assessed by CellTiter-Glo luminescence assay, Caspase-8 and -9 activities were measured by Caspase-Glo™ assay kit. TRAIL-resistant cells were generated by culture of RPMI 8226 and NCI-H929 by acute exposure to TRAIL followed by selection of TRAIL-resistant cells. TRAIL significantly induced apoptosis in a dose-dependent manner in OPM-2, RPMI 8226, NCI-H929, U266, JJN-3 MM cell lines and ADC-1 plasma cell leukaemia cells. SAHA amplified TRAIL responses in all lines except OPM-2, and enhanced TRAIL responses were both via Caspase-8 and -9. SAHA treatment induced growth inhibition that further increased in the combination treatment with TRAIL in MM cells. The co-treatment of TRAIL and SAHA reduced viable cell numbers all cell lines. TRAIL responses were further potentiated by SAHA in 3D cell culture in NCI-H929, RPMI 8226 and U266 at lower TRAIL + SAHA doses than in suspension culture. However TRAIL responses in cells that had been selected for TRAIL resistance were not further enhanced by SAHA treatment. SAHA is a potent sensitizer of TRAIL responses in both TRAIL sensitive and resistant cell lines, in both suspension and 3D culture, however SAHA did not sensitise TRAIL-sensitive cell

  19. Where Do All the Phytoplankton Go? Challenges in Keeping Track of Viable Cells in Phytoplankton Communities Using Flow Cytometry and Cell Staining

    Science.gov (United States)

    Simmons, L. J.; Fobbe, D. J.; Berges, J. A.

    2016-02-01

    Understanding the dynamics of phytoplankton communities has traditionally focused on differences in growth and related processes among taxa. It is now appreciated that differences in mortality could be equally important in contributing to these dynamics. Studying mortality in communities is difficult, especially on relevant time scales, which could be as short as hours to days. Flow cytometry can potentially provide solutions, because it can allow discrimination of different taxa, and when combined with staining, distinguish live and dead cells. We applied flow cytometry and staining to phytoplankton communities in a model system: a small, well-studied, urban pond in southeastern Wisconsin. Using flow cytometry, it was possible to resolve up to six dominant taxa (most stain also affected other fluorescence channels, requiring compensation. Correlations of numbers of dead cells with environmental factors (e.g. temperature, nutrient concentrations, irradiance) were generally poor, suggesting the greater importance of biotic versus abiotic variables in community mortality dynamics. Ongoing work is focusing on the effects of viral pathogens, grazing and allelopathic interactions using experimental manipulations and individual-based modeling.

  20. Co-infusion of autologous adipose tissue derived neuronal differentiated mesenchymal stem cells and bone marrow derived hematopoietic stem cells, a viable therapy for post-traumatic brachial plexus injury: A case report

    Directory of Open Access Journals (Sweden)

    Umang G Thakkar

    2014-08-01

    Full Text Available Stem cell therapy is emerging as a viable approach in regenerative medicine. A 31-year-old male with brachial plexus injury had complete sensory-motor loss since 16 years with right pseudo-meningocele at C5-D1 levels and extra-spinal extension up to C7-D1, with avulsion on magnetic resonance imaging and irreversible damage. We generated adipose tissue derived neuronal differentiated mesenchymal stem cells (N-AD-MSC and bone marrow derived hematopoietic stem cells (HSC-BM. Neuronal stem cells expressed β-3 tubulin and glial fibrillary acid protein which was confirmed on immunofluorescence. On day 14, 2.8 ml stem cell inoculum was infused under local anesthesia in right brachial plexus sheath by brachial block technique under ultrasonography guidance with a 1.5-inch-long 23 gauge needle. Nucleated cell count was 2 × 10 4 /μl, CD34+ was 0.06%, and CD45-/90+ and CD45-/73+ were 41.63% and 20.36%, respectively. No untoward effects were noted. He has sustained recovery with re-innervation over a follow-up of 4 years documented on electromyography-nerve conduction velocity study.

  1. Potential of Escherichia coli 0157:H7 to persist and form viable but non-culturable cells on a food-contact surface subjected to cycles of soiling and chemical treatment

    DEFF Research Database (Denmark)

    Marouani-Gadri, Nesrine; Firmesse, Olivier; Chassaing, Danielle

    2010-01-01

    only, a further increase in this proportion occurred 24 h after the CT, suggesting that some of the surviving viable but non-culturable cells finally died. This study shows that conditions leading to E. coli O157:H7 persistence are not likely to arise when good refrigeration and hygiene practices...... no longer detectable after the first week. However, on 66-hour biofilms with 6.7 log CFU/cm², after initially decreasing, E. coli numbers reached 6.6 log CFU/cm² and 8.3 log viable cells/cm² on the 11th day. When E. coli was cultured with a Comamonas testosteroni previously shown to increase E. coli biofilm...

  2. Optical cell sorting with multiple imaging modalities

    DEFF Research Database (Denmark)

    Banas, Andrew; Carrissemoux, Caro; Palima, Darwin

    2017-01-01

    the advantage of being non-invasive, thus maintaining cell viability. Fluorescence imaging, on the other hand, takes advantages of the chemical specificity of fluorescence markers and can validate machine vision results from brightfield images. Visually identified cells are sorted using optical manipulation...... healthy cells. With the richness of visual information, a lot of microscopy techniques have been developed and have been crucial in biological studies. To utilize their complementary advantages we adopt both fluorescence and brightfield imaging in our optical cell sorter. Brightfield imaging has...

  3. Dimethyl fumarate treatment alters NK cell function in multiple sclerosis.

    Science.gov (United States)

    Smith, Matthew D; Calabresi, Peter A; Bhargava, Pavan

    2018-02-01

    Dimethyl fumarate (DMF) treatment in multiple sclerosis (MS) increased the proportion of immunoregulatory CD56 bright NK cells and this change was proportional to reductions in CD8 + memory T cells. DMF and monomethyl fumarate (MMF) treatment in vitro had directs effects on NK cells and promoted degranulation and cytotoxicity. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Novel human multiple myeloma cell line UHKT-893

    Czech Academy of Sciences Publication Activity Database

    Uherková, L.; Vančurová, I.; Vyhlídalová, I.; Pleschnerová, M.; Špička, I.; Mihalová, R.; Březinová, J.; Hodný, Zdeněk; Čermáková, K.; Polanská, V.; Marinov, I.; Jedelský, P.L.; Kuželová, K.; Stöckbauer, P.

    2013-01-01

    Roč. 37, č. 3 (2013), s. 320-326 ISSN 0145-2126 Institutional support: RVO:68378050 Keywords : human myeloma cell line * human multiple myeloma * plasma cell * IL-6 dependence * immunoglobulin * free light chain Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.692, year: 2013

  5. Complementation of multiple sulfatase deficiency in somatic cell hybrids.

    OpenAIRE

    Fedde, K; Horwitz, A L

    1984-01-01

    Multiple sulfatase deficiency (MSD) is an inherited disorder characterized by deficient activity of seven different sulfatases. Genetic complementation for steroid sulfatase (STS), arylsulfatase A, and N-acetylgalactosamine 6-SO4 sulfatase was demonstrated in somatic cell hybrids between MSD fibroblasts and mouse cells ( LA9 ) or Chinese hamster cells ( CHW ). In an electrophoretic system that separates human and rodent STS isozymes, enzyme from hybrids migrated as human enzyme. We concluded ...

  6. Cell-based therapeutic strategies for multiple sclerosis.

    Science.gov (United States)

    Scolding, Neil J; Pasquini, Marcelo; Reingold, Stephen C; Cohen, Jeffrey A

    2017-11-01

    The availability of multiple disease-modifying medications with regulatory approval to treat multiple sclerosis illustrates the substantial progress made in therapy of the disease. However, all are only partially effective in preventing inflammatory tissue damage in the central nervous system and none directly promotes repair. Cell-based therapies, including immunoablation followed by autologous haematopoietic stem cell transplantation, mesenchymal and related stem cell transplantation, pharmacologic manipulation of endogenous stem cells to enhance their reparative capabilities, and transplantation of oligodendrocyte progenitor cells, have generated substantial interest as novel therapeutic strategies for immune modulation, neuroprotection, or repair of the damaged central nervous system in multiple sclerosis. Each approach has potential advantages but also safety concerns and unresolved questions. Moreover, clinical trials of cell-based therapies present several unique methodological and ethical issues. We summarize here the status of cell-based therapies to treat multiple sclerosis and make consensus recommendations for future research and clinical trials. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain.

  7. Alpha-particles induce autophagy in multiple myeloma cells

    Directory of Open Access Journals (Sweden)

    Joelle Marcelle Gaschet

    2015-10-01

    Full Text Available Objectives: Radiations emitted by the radionuclides in radioimmunotherapy (RIT approaches induce direct killing of the targeted cells as well as indirect killing through bystander effect. Our research group is dedicated to the development of α-RIT, i.e RIT using α-particles especially for the treatment of multiple myeloma (MM. γ-irradiation and β-irradiation have been shown to trigger apoptosis in tumor cells. Cell death mode induced by 213Bi α-irradiation appears more controversial. We therefore decided to investigate the effects of 213Bi on MM cell radiobiology, notably cell death mechanisms as well as tumor cell immunogenicity after irradiation.Methods: Murine 5T33 and human LP-1 multiple myeloma (MM cell lines were used to study the effects of such α-particles. We first examined the effects of 213Bi on proliferation rate, double strand DNA breaks, cell cycle and cell death. Then, we investigated autophagy after 213Bi irradiation. Finally, a co-culture of dendritic cells (DC with irradiated tumour cells or their culture media was performed to test whether it would induce DC activation.Results: We showed that 213Bi induces DNA double strand breaks, cell cycle arrest and autophagy in both cell lines but we detected only slight levels of early apoptosis within the 120 hours following irradiation in 5T33 and LP-1. Inhibition of autophagy prevented 213Bi induced inhibition of proliferation in LP-1 suggesting that this mechanism is involved in cell death after irradiation. We then assessed the immunogenicity of irradiated cells and found that irradiated LP-1 can activate DC through the secretion of soluble factor(s, however no increase in membrane or extracellular expression of danger associated molecular patterns (DAMPs was observed after irradiation.Conclusion: This study demonstrates that 213Bi induces mainly necrosis in MM cells, low levels of apoptosis and also autophagy that might be involved in tumor cell death.

  8. Multiple exciton generation in quantum dot-based solar cells

    Directory of Open Access Journals (Sweden)

    Goodwin Heather

    2018-01-01

    Full Text Available Multiple exciton generation (MEG in quantum-confined semiconductors is the process by which multiple bound charge-carrier pairs are generated after absorption of a single high-energy photon. Such charge-carrier multiplication effects have been highlighted as particularly beneficial for solar cells where they have the potential to increase the photocurrent significantly. Indeed, recent research efforts have proved that more than one charge-carrier pair per incident solar photon can be extracted in photovoltaic devices incorporating quantum-confined semiconductors. While these proof-of-concept applications underline the potential of MEG in solar cells, the impact of the carrier multiplication effect on the device performance remains rather low. This review covers recent advancements in the understanding and application of MEG as a photocurrent-enhancing mechanism in quantum dot-based photovoltaics.

  9. Multiple exciton generation in quantum dot-based solar cells

    Science.gov (United States)

    Goodwin, Heather; Jellicoe, Tom C.; Davis, Nathaniel J. L. K.; Böhm, Marcus L.

    2018-01-01

    Multiple exciton generation (MEG) in quantum-confined semiconductors is the process by which multiple bound charge-carrier pairs are generated after absorption of a single high-energy photon. Such charge-carrier multiplication effects have been highlighted as particularly beneficial for solar cells where they have the potential to increase the photocurrent significantly. Indeed, recent research efforts have proved that more than one charge-carrier pair per incident solar photon can be extracted in photovoltaic devices incorporating quantum-confined semiconductors. While these proof-of-concept applications underline the potential of MEG in solar cells, the impact of the carrier multiplication effect on the device performance remains rather low. This review covers recent advancements in the understanding and application of MEG as a photocurrent-enhancing mechanism in quantum dot-based photovoltaics.

  10. Troglitazone reverses the multiple drug resistance phenotype in cancer cells

    Directory of Open Access Journals (Sweden)

    Gerald F Davies

    2009-03-01

    Full Text Available Gerald F Davies1, Bernhard HJ Juurlink2, Troy AA Harkness11Department of Anatomy and Cell Biology, College of Medicine, University of Saskatchewan, Saskatoon, Canada; 2College of Medicine, Alfaisal University, Riyadh, Kingdom of Saudi ArabiaAbstract: A major problem in treating cancer is the development of drug resistance. We previously demonstrated doxorubicin (DOX resistance in K562 human leukemia cells that was associated with upregulation of glyoxalase 1 (GLO-1 and histone H3 expression. The thiazolidinedione troglitazone (TRG downregulated GLO-1 expression and further upregulated histone H3 expression and post-translational modifications in these cells, leading to a regained sensitivity to DOX. Given the pleiotropic effects of epigenetic changes in cancer development, we hypothesized that TRG may downregulate the multiple drug resistance (MDR phenotype in a variety of cancer cells. To test this, MCF7 human breast cancer cells and K562 cells were cultured in the presence of low-dose DOX to establish DOX-resistant cell lines (K562/DOX and MCF7/DOX. The MDR phenotype was confirmed by Western blot analysis of the 170 kDa P-glycoprotein (Pgp drug efflux pump multiple drug resistance protein 1 (MDR-1, and the breast cancer resistance protein (BCRP. TRG markedly decreased expression of both MDR-1 and BCRP in these cells, resulting in sensitivity to DOX. Silencing of MDR-1 expression also sensitized MCF7/DOX cells to DOX. Use of the specific and irreversible peroxisome proliferator-activated receptor gamma (PPARγ inhibitor GW9662 in the nanomolar range not only demonstrated that the action of TRG on MCF/DOX was PPARγ-independent, but indicated that PPARγ may play a role in the MDR phenotype, which is antagonized by TRG. We conclude that TRG is potentially a useful adjunct therapy in chemoresistant cancers. Keywords: chemotherapy, doxorubicin, breast cancer resistance protein-1, multiple drug resistance, multiple drug resistance protein 1

  11. Charcoal disrupts cell-cell communication through multiple mechanisms

    Science.gov (United States)

    Gao, X.; Cheng, H. Y.; Liu, S.; Masiello, C. A.; Silberg, J. J.; Del Valle, I.

    2016-12-01

    Microbial cell-cell communication through the release and detection of small signaling molecules is employed by soil microbes to manage many biogeochemically relevant processes including production of biofilms, priming effects on native SOM, and management of methanogenesis and denitrification. Charcoal is a ubiquitous component of soil, entering soil either from natural fire or intentionally amended as biochar. Charcoal's presence in soil introduces spatial and temporal heterogeneity in nutrients and habitats for soil microbes and may trigger a range of biological effects not yet predictable, in part because it interferes with microbial cell-cell communication. We hypothesized that charcoal's alkalinity and large active surface area could affect the lifetime of some chemical compounds that microbes use for cell-cell signaling on times scales relevant to growth and communication. To test this idea, we examined the extent and rate of charcoal quenching of cell-cell communication caused by ten charcoals with a wide range of physicochemical properties. Our measurements focused on signaling mediated by an acyl-homoserine lactone (AHL), N-3-oxo-dodecanoyl-L-homoserine lactone, which is used by many gram-negative bacteria for quorum sensing. Our results from a bioassay and chemical sorption experiments revealed that charcoal can decrease the bioavailable level of AHL through a combination of sorption and pH-dependent hydrolysis of the lactone ring. We found that the kinetics of hydrolysis can exceed those of sorption. These findings implicate charcoal surface area and alkalinity as properties that could be tuned to regulate the degradation rates of cell-cell signaling molecules in soils. We then built a quantitative model that predicts the half-lives of different microbial signaling compounds in the presence of charcoals varying in pH and surface area. Our model results suggest that the effects of charcoal on pH-sensitive bacterial AHL signals will be fundamentally

  12. Tumor-selective replication herpes simplex virus-based technology significantly improves clinical detection and prognostication of viable circulating tumor cells

    DEFF Research Database (Denmark)

    Zhang, Wen; Bao, Li; Yang, Shaoxing

    2016-01-01

    Detection of circulating tumor cells remains a significant challenge due to their vast physical and biological heterogeneity. We developed a cell-surface-marker-independent technology based on telomerase-specific, replication-selective oncolytic herpes-simplex-virus-1 that targets telomerase...

  13. Cell-sensitive phase contrast microscopy imaging by multiple exposures.

    Science.gov (United States)

    Yin, Zhaozheng; Su, Hang; Ker, Elmer; Li, Mingzhong; Li, Haohan

    2015-10-01

    We propose a novel way of imaging live cells in a Petri dish by the phase contrast microscope. By taking multiple exposures of phase contrast microscopy images on the same cell dish, we estimate a cell-sensitive camera response function which responds to cells' irradiance signals but generates a constant on non-cell background signal. The result of this new microscopy imaging is visually superior quality, which reveals the appearance details of cells and suppresses background noise near zero. Using the cell-sensitive microscopy imaging, cells' original irradiance signals are restored from all exposures and the irradiance signals on non-cell background regions are restored as a uniform constant (i.e., the imaging system is sensitive to cells only but insensitive to non-cell background). The restored irradiance signals greatly facilitate the cell segmentation by simple thresholding. The experimental results validate that high quality cell segmentation can be achieved by our approach. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Multiple skin cancers in a single patient: Multiple pigmented Bowen′s disease, giant basal cell carcinoma, squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Ravi Saini

    2015-01-01

    Full Text Available Basal cell carcinoma (BCC and squamous cell carcinoma are the most common type of nonmelanoma skin cancers (NMSCs. Bowen′s disease (BD, a premalignant condition, has a marginal potential (3-5% to progress to invasive carcinoma. We report here a rarest of a rare case of multiple pigmented BD with overlying squamous cell cancer along with a giant neglected BCC on the scalp of a 76-year-old man. The occurrence of multiple BD and NMSC in a single patient compelled us to explore the following hypothesis: (1 The multiple precancerous and cancerous lesions can be due to common etiopathogenesis. Chronic ultraviolet exposure, immunosupresssion, human papillomavirus infection, dietary factors, and environmental factors including arsenic exposure were probed in to. (2 There is evolution of precancerous lesions into a different type of cancers in different time frame. (3 The new cancerous lesions are subsequent cancers that developed after neglected untreated primary cancer.

  15. Enzymatic isolation of viable human odontoblasts.

    Science.gov (United States)

    Cuffaro, H M; Pääkkönen, V; Tjäderhane, L

    2016-05-01

    To improve an enzymatic method previously used for isolation of rat odontoblasts to isolate viable mature human odontoblasts. Collagenase I, collagenase I/hyaluronidase mixture and hyaluronidase were used to extract mature human odontoblasts from the pulp chamber. Detachment of odontoblasts from dentine was determined with field emission scanning electron microscopy (FESEM) and to analyse the significance of differences in tubular diameter, and the t-test was used. MTT-reaction was used to analyse cell viability, and nonparametric Kruskal-Wallis and Mann-Whitney post hoc tests were used to analyse the data. Immunofluorescent staining of dentine sialoprotein (DSP), aquaporin-4 (AQP4) and matrix metalloproteinase-20 (MMP-20) and quantitative PCR (qPCR) of dentine sialophosphoprotein (DSPP) were used to confirm the odontoblastic nature of the cells. MTT-reaction and FESEM demonstrated collagenase I/hyaluronidase resulted in more effective detachment and higher viability than collagenase I alone. Hyaluronidase alone was not able to detach odontoblasts. Immunofluorescence revealed the typical odontoblastic-morphology with one process, and DSP, AQP4 and MMP-20 were detected. Quantitative PCR of DSPP confirmed that the isolated cells expressed this odontoblast-specific gene. The isolation of viable human odontoblasts was successful. The cells demonstrated morphology typical for odontoblasts and expressed characteristic odontoblast-type genes and proteins. This method will enable new approaches, such as apoptosis analysis, for studies using fully differentiated odontoblasts. © 2015 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  16. Osteoprotegerin is bound, internalized, and degraded by multiple myeloma cells

    DEFF Research Database (Denmark)

    Standal, Therese; Seidel, Carina; Hjertner, Øyvind

    2002-01-01

    Multiple myeloma (MM) is a hematologic malignancy characterized by accumulation of plasma cells in the bone marrow (BM). Bone destruction is a complication of the disease and is usually associated with severe morbidity. The balance between receptor activator of nuclear factor-kappaB (NF-kappaB) l...

  17. The binding of rhBMP-2 to the receptors of viable MC3T3-E1 cells and the question of cooperativity

    Energy Technology Data Exchange (ETDEWEB)

    Wiemann, M.; Rumpf, H.M.; Bingmann, D.; Jennissen, H.P. [Universitaetsklinikum Essen (Germany). Inst. fuer Physiologie; Universitaetsklinikum Essen (Germany). Inst. fuer Physiologiesche Chemie

    2001-12-01

    The binding of rhBMP-2 to its receptors, the signal transduction cascade and the final responses of bone cells, osteoprogenitor cells and derived cell lines is of high fundamental and clinical interest. In this report concentration-response curves of the osteoblast cell line MC3T3-E1 under influence of rhBMP-2 was investigated. The biological response of the cells (corresponding to a down-stream effect of the receptor state-function) was monitored in pilot experiments by the MC3T3-cell alkaline phosphatase-induction test (MC3T3-cell ALP-induction test). It is shown that the MC3T3-cell ALP-induction test is a good tool for measuring biologically active recombinant human BMP-2 (rhBMP-2) in crude extracts of E. coli as well as in highly purified form. In addition this test is very sensitive to chemically induced structural changes of rhBMP-2 such as those resulting from a radiolabeling of rhBMP-2 by the Bolton-Hunter procedure. The latter procedure reduces the biological activity of rhBMP-2 by a factor of 3-4. The measured concentration-response curves could all be non-linearly fitted to a rectangular hyperbola. The half-maximal saturation, K{sub 0.5}, is found between 30-100 nM rhBMP-2 (= 0.8-2.5 {mu}g/ml). The effect of rhBMP-2 shows a plateau i.e. maximal response at ca. 300-1000 nM rhBMP-2 (= 8-25 {mu}g/ml). The data thus indicate a non-cooperative binding-response behavior. This was unexpected since BMP-2 binds simultaneously to two cooperating receptors of type 1 and type 2. However in the very low concentration range of employed rhBMP-2 a variable response of the cells was measured so that a full exclusion of cooperativity cannot be concluded at the present time. This will be clarified by future experiments. (orig.)

  18. Automated platform for designing multiple robot work cells

    Science.gov (United States)

    Osman, N. S.; Rahman, M. A. A.; Rahman, A. A. Abdul; Kamsani, S. H.; Bali Mohamad, B. M.; Mohamad, E.; Zaini, Z. A.; Rahman, M. F. Ab; Mohamad Hatta, M. N. H.

    2017-06-01

    Designing the multiple robot work cells is very knowledge-intensive, intricate, and time-consuming process. This paper elaborates the development process of a computer-aided design program for generating the multiple robot work cells which offer a user-friendly interface. The primary purpose of this work is to provide a fast and easy platform for less cost and human involvement with minimum trial and errors adjustments. The automated platform is constructed based on the variant-shaped configuration concept with its mathematical model. A robot work cell layout, system components, and construction procedure of the automated platform are discussed in this paper where integration of these items will be able to automatically provide the optimum robot work cell design according to the information set by the user. This system is implemented on top of CATIA V5 software and utilises its Part Design, Assembly Design, and Macro tool. The current outcomes of this work provide a basis for future investigation in developing a flexible configuration system for the multiple robot work cells.

  19. New type of cells with multiple chromosome rearrangements

    Energy Technology Data Exchange (ETDEWEB)

    Aseeva, Elena A. [National Research Centre for Hematology, Russian Academy of Medical Sciences, Novozykovsky proezd 4a, 125167 Moscow (Russian Federation); Snigiryova, Galina P. [Russian Scientific Centre of Roentgenology and Radiology, ul. Profsoyuznaya 86, 117997 Moscow (Russian Federation); Neverova, Anna L. [National Research Centre for Hematology, Russian Academy of Medical Sciences, Novozykovsky proezd 4a, 125167 Moscow (Russian Federation); Bogomazova, Alexandra N.; Novitskaya, Natalia N.; Khazins, Eva D. [Russian Scientific Centre of Roentgenology and Radiology, ul. Profsoyuznaya 86, 117997 Moscow (Russian Federation); Domracheva, Elena V. [National Research Centre for Hematology, Russian Academy of Medical Sciences, Novozykovsky proezd 4a, 125167 Moscow (Russian Federation)], E-mail: dom@blood.ru

    2010-04-15

    A comparative analysis of the distribution and the frequency of multiaberrant cells (MAC) among lymphocytes in different categories of low dose (up to 0.5 Gy) irradiated people was carried out. The highest MAC frequency was observed in people exposed to {alpha}-radiation (Pu, Rn) and in cosmonauts. This fact allows MAC to be considered as an indicator of a high-energy local exposure. A new type of cells with multiple chromosome rearrangements was discovered in the course of analysis of stable aberrations by the fluorescence in situ hybridization (FISH) method. The biological consequences of MAC formation and possibility of revealing the whole diversity of cells with multiple aberrations by means of modern molecular-cytogenetic methods are discussed.

  20. Characterization of the Viable but Nonculturable (VBNC State in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Mohammad Salma

    Full Text Available The Viable But Non Culturable (VBNC state has been thoroughly studied in bacteria. In contrast, it has received much less attention in other microorganisms. However, it has been suggested that various yeast species occurring in wine may enter in VBNC following sulfite stress.In order to provide conclusive evidences for the existence of a VBNC state in yeast, the ability of Saccharomyces cerevisiae to enter into a VBNC state by applying sulfite stress was investigated. Viable populations were monitored by flow cytometry while culturable populations were followed by plating on culture medium. Twenty-four hours after the application of the stress, the comparison between the culturable population and the viable population demonstrated the presence of viable cells that were non culturable. In addition, removal of the stress by increasing the pH of the medium at different time intervals into the VBNC state allowed the VBNC S. cerevisiae cells to "resuscitate". The similarity between the cell cycle profiles of VBNC cells and cells exiting the VBNC state together with the generation rate of cells exiting VBNC state demonstrated the absence of cellular multiplication during the exit from the VBNC state. This provides evidence of a true VBNC state. To get further insight into the molecular mechanism pertaining to the VBNC state, we studied the involvement of the SSU1 gene, encoding a sulfite pump in S. cerevisiae. The physiological behavior of wild-type S. cerevisiae was compared to those of a recombinant strain overexpressing SSU1 and null Δssu1 mutant. Our results demonstrated that the SSU1 gene is only implicated in the first stages of sulfite resistance but not per se in the VBNC phenotype. Our study clearly demonstrated the existence of an SO2-induced VBNC state in S. cerevisiae and that the stress removal allows the "resuscitation" of VBNC cells during the VBNC state.

  1. [Targeting B cells in multiple sclerosis. Current concepts and strategies].

    Science.gov (United States)

    Menge, T; Büdingen, H-C; Dalakas, M C; Kieseier, B C; Hartung, H-P

    2009-02-01

    Multiple sclerosis (MS) is a chronic inflammatory demyelinating autoimmune disease of the CNS and a leading cause of lasting neurological disability in younger adults. In the last decade our knowledge of its immunopathogenesis expanded vastly. It is now widely appreciated that B cells are key players in the autoreactive immune network. They exert far more functions than merely being the precursors of antibody-producing plasma cells. B cells act as efficient antigen-presenting cells and may stimulate an autoreactive immune response through secretion of proinflammatory cytokines. It is thus only logical to test therapeutic strategies targeting B cells in MS. Rituximab is a depleting chimeric monoclonal antibody directed against CD20 and expressed on developing, naïve, and memory B cells but not stem or plasma cells. Several smaller studies have been conducted that led to a placebo controlled, double blind phase II study on efficacy which was reported recently. The results are very promising, meeting not only the primary endpoint of reduction of the surrogate MRI marker of contrast-enhancing lesions but also showing a reduction in clinical relapse rate of patients treated with rituximab. This review discusses the role of autoreactive B cells in the context of MS, analyzes the B-cell-depleting treatment studies reported, and provides information on planned and future B-cell-directed therapeutic strategies in MS.

  2. Enumeration of viable and non-viable larvated Ascaris eggs with quantitative PCR.

    Science.gov (United States)

    Raynal, Maria; Villegas, Eric N; Nelson, Kara L

    2012-12-01

    The goal of this study was to further develop an incubation-quantitative polymerase chain reaction (qPCR) method for quantifying viable Ascaris eggs by characterizing the detection limit and number of template copies per egg, determining the specificity of the method, and testing the method with viable and inactivated larvated eggs. The number of template copies per cell was determined by amplifying DNA from known numbers of eggs at different development stages; the value was estimated to be 32 copies. The specificity of the method was tested against a panel of bacteria, fungi, protozoa and helminths, and no amplification was found with non-target DNA. Finally, fully larvated eggs were inactivated by four different treatments: 254 nm ultraviolet light, 2,000 ppm NH(3)-N at pH 9, moderate heat (48 °C) and high heat (70 °C). Concentrations of treated eggs were measured by direct microscopy and incubation-qPCR. The qPCR signal decreased following all four treatments, and was in general agreement with the decrease in viable eggs determined by microscopy. The incubation-qPCR method for enumerating viable Ascaris eggs is a promising approach that can produce results faster than direct microscopy, and may have benefits for applications such as assessing biosolids.

  3. From stem cell to erythroblast: regulation of red cell production at multiple levels by multiple hormones.

    Science.gov (United States)

    Lodish, Harvey; Flygare, Johan; Chou, Song

    2010-07-01

    This article reviews the regulation of production of red blood cells at several levels: (1) the ability of erythropoietin and adhesion to a fibronectin matrix to stimulate the rapid production of red cells by inducing terminal proliferation and differentiation of committed erythroid CFU-E progenitors; (2) the regulated expansion of the pool of earlier BFU-E erythroid progenitors by glucocorticoids and other factors that occurs during chronic anemia or inflammation; and (3) the expansion of thehematopoietic cell pool to produce more progenitors of all hematopoietic lineages. (c) 2010 IUBMB IUBMB Life.

  4. Targeting proliferating cell nuclear antigen and its protein interactions induces apoptosis in multiple myeloma cells.

    Directory of Open Access Journals (Sweden)

    Rebekka Müller

    Full Text Available Multiple myeloma is a hematological cancer that is considered incurable despite advances in treatment strategy during the last decade. Therapies targeting single pathways are unlikely to succeed due to the heterogeneous nature of the malignancy. Proliferating cell nuclear antigen (PCNA is a multifunctional protein essential for DNA replication and repair that is often overexpressed in cancer cells. Many proteins involved in the cellular stress response interact with PCNA through the five amino acid sequence AlkB homologue 2 PCNA-interacting motif (APIM. Thus inhibiting PCNA's protein interactions may be a good strategy to target multiple pathways simultaneously. We initially found that overexpression of peptides containing the APIM sequence increases the sensitivity of cancer cells to contemporary therapeutics. Here we have designed a cell-penetrating APIM-containing peptide, ATX-101, that targets PCNA and show that it has anti-myeloma activity. We found that ATX-101 induced apoptosis in multiple myeloma cell lines and primary cancer cells, while bone marrow stromal cells and primary healthy lymphocytes were much less sensitive. ATX-101-induced apoptosis was caspase-dependent and cell cycle phase-independent. ATX-101 also increased multiple myeloma cells' sensitivity against melphalan, a DNA damaging agent commonly used for treatment of multiple myeloma. In a xenograft mouse model, ATX-101 was well tolerated and increased the anti-tumor activity of melphalan. Therefore, targeting PCNA by ATX-101 may be a novel strategy in multiple myeloma treatment.

  5. Smart Energy Management of Multiple Full Cell Powered Applications

    Energy Technology Data Exchange (ETDEWEB)

    Mohammad S. Alam

    2007-04-23

    In this research project the University of South Alabama research team has been investigating smart energy management and control of multiple fuel cell power sources when subjected to varying demands of electrical and thermal loads together with demands of hydrogen production. This research has focused on finding the optimal schedule of the multiple fuel cell power plants in terms of electric, thermal and hydrogen energy. The optimal schedule is expected to yield the lowest operating cost. Our team is also investigating the possibility of generating hydrogen using photoelectrochemical (PEC) solar cells through finding materials for efficient light harvesting photoanodes. The goal is to develop an efficient and cost effective PEC solar cell system for direct electrolysis of water. In addition, models for hydrogen production, purification, and storage will be developed. The results obtained and the data collected will be then used to develop a smart energy management algorithm whose function is to maximize energy conservation within a managed set of appliances, thereby lowering O/M costs of the Fuel Cell power plant (FCPP), and allowing more hydrogen generation opportunities. The Smart Energy Management and Control (SEMaC) software, developed earlier, controls electrical loads in an individual home to achieve load management objectives such that the total power consumption of a typical residential home remains below the available power generated from a fuel cell. In this project, the research team will leverage the SEMaC algorithm developed earlier to create a neighborhood level control system.

  6. Multiple myeloma related cells in patients undergoing autologous peripheral blood stem cell transplantation

    NARCIS (Netherlands)

    Guikema, JEJ; Vellenga, E; Veeneman, JM; Hovenga, S; Bakkus, MHC; Klip, H; Bos, NA

    A high incidence of oligoclonal serum M-components is observed in multiple myeloma (MM) patients treated with autologous Stem cell transplantation (ASCT). To determine whether these hi-components are produced by myeloma clonally related cells or caused by an aberrant B-cell regeneration we analysed

  7. Myeloma stem cell concepts, heterogeneity and plasticity of multiple myeloma.

    Science.gov (United States)

    Hajek, Roman; Okubote, Samuel A; Svachova, Hana

    2013-12-01

    Multiple myeloma (MM) is a haematological malignancy characterized by the accumulation of clonal plasma cells (PCs) in the bone marrow (BM). Although novel therapeutic strategies have prolonged survival of patients, the disease remains difficult to treat with a high risk of relapse. The failure of therapy is thought to be associated with a persistent population of the so-called MM stem cells or myeloma initiating cells (MIC) that exhibit tumour-initiating potential, self-renewal and resistance to chemotherapy. However, the population responsible for the origin and sustainability of tumour mass has not been clearly characterized so far. This review summarizes current myeloma stem cell concepts and suggests that high phenotypic and intra-clonal heterogeneity, together with plasticity potential of MM might be other contributing factors explaining discrepancies among particular concepts and contributing to the treatment failure. © 2013 John Wiley & Sons Ltd.

  8. The Chemically Synthesized Ageladine A-Derivative LysoGlow84 Stains Lysosomes in Viable Mammalian Brain Cells and Specific Structures in the Marine Flatworm Macrostomum lignano

    Directory of Open Access Journals (Sweden)

    Thorsten Mordhorst

    2015-02-01

    Full Text Available Based on the chemical structure and the known chemical synthesis of the marine sponge alkaloid ageladine A, we synthesized the ageladine A-derivative 4-(naphthalene-2-yl-1H-imidazo[4,5-c]pyridine trifluoroacetate (LysoGlow84. The two-step synthesis started with the Pictet-Spengler reaction of histamine and naphthalene-2-carbaldehyde to a tetrahydropyridine intermediate, which was dehydrogenated with activated manganese (IV oxide to LysoGlow84. Structure and purity of the synthesized LysoGlow84 were confirmed by NMR spectroscopy and mass spectrometry. The fluorescence intensity emitted by LysoGlow84 depended strongly on the pH of the solvent with highest fluorescence intensity recorded at pH 4. The fluorescence maximum (at 315 nm excitation was observed at 440 nm. Biocompatibility of LysoGlow84 was investigated using cultured rat brain astrocytes and the marine flatworm Macrostomum lignano. Exposure of the astrocytes for up to 6 h to micromolar concentrations of LysoGlow84 did not compromise cell viability, as demonstrated by several viability assays, but revealed a promising property of this compound for staining of cellular vesicles. Conventional fluorescence microscopy as well as confocal scanning microscopy of LysoGlow84-treated astrocytes revealed co-localization of LysoGlow84 fluorescence with that of LysoTracker® Red DND-99. LysoGlow84 stained unclear structures in Macrostomum lignano, which were identified as lysosomes by co-staining with LysoTracker. Strong fluorescence staining by LysoGlow84 was further observed around the worms’ anterior gut and the female genital pore which were not counterstained by LysoTracker Red. Thus, LysoGlow84 is a new promising dye that stains lysosomes and other acidic compartments in cultured cells and in worms.

  9. The chemically synthesized ageladine A-derivative LysoGlow84 stains lysosomes in viable mammalian brain cells and specific structures in the marine flatworm Macrostomum lignano.

    Science.gov (United States)

    Mordhorst, Thorsten; Awal, Sushil; Jordan, Sebastian; Petters, Charlotte; Sartoris, Linda; Dringen, Ralf; Bickmeyer, Ulf

    2015-02-11

    Based on the chemical structure and the known chemical synthesis of the marine sponge alkaloid ageladine A, we synthesized the ageladine A-derivative 4-(naphthalene-2-yl)-1H-imidazo[4,5-c]pyridine trifluoroacetate (LysoGlow84). The two-step synthesis started with the Pictet-Spengler reaction of histamine and naphthalene-2-carbaldehyde to a tetrahydropyridine intermediate, which was dehydrogenated with activated manganese (IV) oxide to LysoGlow84. Structure and purity of the synthesized LysoGlow84 were confirmed by NMR spectroscopy and mass spectrometry. The fluorescence intensity emitted by LysoGlow84 depended strongly on the pH of the solvent with highest fluorescence intensity recorded at pH 4. The fluorescence maximum (at 315 nm excitation) was observed at 440 nm. Biocompatibility of LysoGlow84 was investigated using cultured rat brain astrocytes and the marine flatworm Macrostomum lignano. Exposure of the astrocytes for up to 6 h to micromolar concentrations of LysoGlow84 did not compromise cell viability, as demonstrated by several viability assays, but revealed a promising property of this compound for staining of cellular vesicles. Conventional fluorescence microscopy as well as confocal scanning microscopy of LysoGlow84-treated astrocytes revealed co-localization of LysoGlow84 fluorescence with that of LysoTracker® Red DND-99. LysoGlow84 stained unclear structures in Macrostomum lignano, which were identified as lysosomes by co-staining with LysoTracker. Strong fluorescence staining by LysoGlow84 was further observed around the worms' anterior gut and the female genital pore which were not counterstained by LysoTracker Red. Thus, LysoGlow84 is a new promising dye that stains lysosomes and other acidic compartments in cultured cells and in worms.

  10. T cells in multiple sclerosis and experimental autoimmune encephalomyelitis.

    LENUS (Irish Health Repository)

    Fletcher, J M

    2012-02-01

    Multiple sclerosis (MS) is a demyelinating inflammatory disorder of the central nervous system (CNS), which involves autoimmune responses to myelin antigens. Studies in experimental autoimmune encephalomyelitis (EAE), an animal model for MS, have provided convincing evidence that T cells specific for self-antigens mediate pathology in these diseases. Until recently, T helper type 1 (Th1) cells were thought to be the main effector T cells responsible for the autoimmune inflammation. However more recent studies have highlighted an important pathogenic role for CD4(+) T cells that secrete interleukin (IL)-17, termed Th17, but also IL-17-secreting gammadelta T cells in EAE as well as other autoimmune and chronic inflammatory conditions. This has prompted intensive study of the induction, function and regulation of IL-17-producing T cells in MS and EAE. In this paper, we review the contribution of Th1, Th17, gammadelta, CD8(+) and regulatory T cells as well as the possible development of new therapeutic approaches for MS based on manipulating these T cell subtypes.

  11. Multiple Sclerosis: A Disorder of Altered T-Cell Homeostasis

    Directory of Open Access Journals (Sweden)

    David G. Haegert

    2011-01-01

    Full Text Available Uncertainty exists as to whether similar or different mechanisms contribute to the pathogenesis of different subtypes of multiple sclerosis (MS. Detailed analysis of naive T cell homeostasis shows that patients with relapsing-remitting MS (RRMS and with primary progressive MS (PPMS have early-onset thymic involution that causes reduced thymic output. The reduced thymic output leads to secondary peripheral homeostatic alterations in naïve CD4 T-cells, which closely mimic T-cell alterations observed in an experimental animal model of diabetes mellitus. Homeostatic T-cell receptor (TCR signalling and proliferation of naïve T cells are induced by self-peptides. Consequently, the findings of increased TCR signalling of naïve CD4 T-cells, without increased proliferation, in PPMS, and the increased homeostatic proliferation of naïve CD4 T-cells in RRMS favour the development of autoimmunity. Thus, it seems highly likely that peripheral T-cell alterations secondary to a thymic abnormality contribute to the pathogenesis of both MS subtypes.

  12. Effect of failures and repairs on multiple cell production lines

    Energy Technology Data Exchange (ETDEWEB)

    Legato, P.; Bobbio, A.; Roberti, L.

    1989-01-01

    This paper examines a production line composed of multiple stages, or cells, which are passed in sequential order to arrive to the final product. Two possible coordination disciplines are considered, namely: the classical tandem arrangement of sequential working centers with input buffer and the kanban scheme, considered the Japanese shop floor realization of the Just-In-Time (JIT) manifacturing approach. The production line is modelled and analysed by means of Stochastic Petri Nets (SPN). Finally an analysis is made of the possibility that the working cells can incur failure/repair cycles perturbing the production flow of the line and thus reduce performance indices.

  13. Tuning Cell and Tissue Development by Combining Multiple Mechanical Signals.

    Science.gov (United States)

    Sinha, Ravi; Verdonschot, Nico; Koopman, Bart; Rouwkema, Jeroen

    2017-10-01

    Mechanical signals offer a promising way to control cell and tissue development. It has been established that cells constantly probe their mechanical microenvironment and employ force feedback mechanisms to modify themselves and when possible, their environment, to reach a homeostatic state. Thus, a correct mechanical microenvironment (external forces and mechanical properties and shapes of cellular surroundings) is necessary for the proper functioning of cells. In vitro or in the case of nonbiological implants in vivo, where cells are in an artificial environment, addition of the adequate mechanical signals can, therefore, enable the cells to function normally as in vivo. Hence, a wide variety of approaches have been developed to apply mechanical stimuli (such as substrate stretch, flow-induced shear stress, substrate stiffness, topography, and modulation of attachment area) to cells in vitro. These approaches have not just revealed the effects of the mechanical signals on cells but also provided ways for probing cellular molecules and structures that can provide a mechanistic understanding of the effects. However, they remain lower in complexity compared with the in vivo conditions, where the cellular mechanical microenvironment is the result of a combination of multiple mechanical signals. Therefore, combinations of mechanical stimuli have also been applied to cells in vitro. These studies have had varying focus-developing novel platforms to apply complex combinations of mechanical stimuli, observing the co-operation/competition between stimuli, combining benefits of multiple stimuli toward an application, or uncovering the underlying mechanisms of their action. In general, they provided new insights that could not have been predicted from previous knowledge. We present here a review of several such studies and the insights gained from them, thereby making a case for such studies to be continued and further developed.

  14. Th17 cells in the pathogenesis of multiple sclerosis

    Directory of Open Access Journals (Sweden)

    Marek Juszczak

    2009-10-01

    Full Text Available Th17 cells are a recently described subset of T helper lymphocytes characterized by the production of IL-17 (IL-17A. Since their discovery in 2003, studies on Th17 cells have become increasingly popular among immunologists and they have emerged as key players in the pathogenesis of multiple sclerosis (MS and other autoimmune disorders traditionally attributed to Th1 cells. Murine Th17 lymphocytes differentiate from naive CD4 cells in a specific cytokine environment, which includes TGF- and IL-6 or IL-21, whereas human Th17 cell development requires TGF-, IL-1, and IL-2 in combination with IL-6, IL-21, or IL-23. Th17-related response is additionally enhanced by osteopontin, TNF, and PGE2 and suppressed by IL-25, IL-27, IL-35, and IL-10. Apart from their main cytokine, Th17 cells can also express IL-17F, IL-21, IL-22, TNF, CCL20, and, in humans, IL-26. All of these mediators may contribute to the proinflammatory action of Th17 .cells both in the clearance of various pathogens and in autoimmunity. At least some of these functions are exerted through the induction of neutrophil-recruiting chemokines (CXCL1, CXCL2, CXCL8 by IL-17. Accumulating evidence from studies on mice and humans indicates an important role of Th17 cells in mediating autoimmune neuroinflammation. This has led some immunologists to question the previously exhibited importance of Th1 cells in MS pathology. However, more recent data suggest that both these T-cell subsets are capable of inducing and promoting the disease. Further investigation is required to clarify the role of Th17 cells in the pathogenesis of MS since some of the Th17-related molecules appear as attractive targets for future therapeutic strategies

  15. Gene, cell, and organ multiplication drives inner ear evolution.

    Science.gov (United States)

    Fritzsch, Bernd; Elliott, Karen L

    2017-11-01

    We review the development and evolution of the ear neurosensory cells, the aggregation of neurosensory cells into an otic placode, the evolution of novel neurosensory structures dedicated to hearing and the evolution of novel nuclei in the brain and their input dedicated to processing those novel auditory stimuli. The evolution of the apparently novel auditory system lies in duplication and diversification of cell fate transcription regulation that allows variation at the cellular level [transforming a single neurosensory cell into a sensory cell connected to its targets by a sensory neuron as well as diversifying hair cells], organ level [duplication of organ development followed by diversification and novel stimulus acquisition] and brain nuclear level [multiplication of transcription factors to regulate various neuron and neuron aggregate fate to transform the spinal cord into the unique hindbrain organization]. Tying cell fate changes driven by bHLH and other transcription factors into cell and organ changes is at the moment tentative as not all relevant factors are known and their gene regulatory network is only rudimentary understood. Future research can use the blueprint proposed here to provide both the deeper molecular evolutionary understanding as well as a more detailed appreciation of developmental networks. This understanding can reveal how an auditory system evolved through transformation of existing cell fate determining networks and thus how neurosensory evolution occurred through molecular changes affecting cell fate decision processes. Appreciating the evolutionary cascade of developmental program changes could allow identifying essential steps needed to restore cells and organs in the future. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Holographic photolysis for multiple cell stimulation in mouse hippocampal slices.

    Directory of Open Access Journals (Sweden)

    Morad Zahid

    Full Text Available BACKGROUND: Advanced light microscopy offers sensitive and non-invasive means to image neural activity and to control signaling with photolysable molecules and, recently, light-gated channels. These approaches require precise and yet flexible light excitation patterns. For synchronous stimulation of subsets of cells, they also require large excitation areas with millisecond and micrometric resolution. We have recently developed a new method for such optical control using a phase holographic modulation of optical wave-fronts, which minimizes power loss, enables rapid switching between excitation patterns, and allows a true 3D sculpting of the excitation volumes. In previous studies we have used holographic photololysis to control glutamate uncaging on single neuronal cells. Here, we extend the use of holographic photolysis for the excitation of multiple neurons and of glial cells. METHODS/PRINCIPAL FINDINGS: The system combines a liquid crystal device for holographic patterned photostimulation, high-resolution optical imaging, the HiLo microscopy, to define the stimulated regions and a conventional Ca(2+ imaging system to detect neural activity. By means of electrophysiological recordings and calcium imaging in acute hippocampal slices, we show that the use of excitation patterns precisely tailored to the shape of multiple neuronal somata represents a very efficient way for the simultaneous excitation of a group of neurons. In addition, we demonstrate that fast shaped illumination patterns also induce reliable responses in single glial cells. CONCLUSIONS/SIGNIFICANCE: We show that the main advantage of holographic illumination is that it allows for an efficient excitation of multiple cells with a spatiotemporal resolution unachievable with other existing approaches. Although this paper focuses on the photoactivation of caged molecules, our approach will surely prove very efficient for other probes, such as light-gated channels, genetically

  17. Stationary Size Distributions of Growing Cells with Binary and Multiple Cell Division

    Science.gov (United States)

    Rading, M. M.; Engel, T. A.; Lipowsky, R.; Valleriani, A.

    2011-10-01

    Populations of unicellular organisms that grow under constant environmental conditions are considered theoretically. The size distribution of these cells is calculated analytically, both for the usual process of binary division, in which one mother cell produces always two daughter cells, and for the more complex process of multiple division, in which one mother cell can produce 2 n daughter cells with n=1,2,3,… . The latter mode of division is inspired by the unicellular algae Chlamydomonas reinhardtii. The uniform response of the whole population to different environmental conditions is encoded in the individual rates of growth and division of the cells. The analytical treatment of the problem is based on size-dependent rules for cell growth and stochastic transition processes for cell division. The comparison between binary and multiple division shows that these different division processes lead to qualitatively different results for the size distribution and the population growth rates.

  18. Complementation of multiple sulfatase deficiency in somatic cell hybrids.

    Science.gov (United States)

    Fedde, K; Horwitz, A L

    1984-05-01

    Multiple sulfatase deficiency (MSD) is an inherited disorder characterized by deficient activity of seven different sulfatases. Genetic complementation for steroid sulfatase (STS), arylsulfatase A, and N-acetylgalactosamine 6-SO4 sulfatase was demonstrated in somatic cell hybrids between MSD fibroblasts and mouse cells ( LA9 ) or Chinese hamster cells ( CHW ). In an electrophoretic system that separates human and rodent STS isozymes, enzyme from hybrids migrated as human enzyme. We concluded that the rodent cell complemented the MSD deficiency and allowed normal expression of the STS structural gene. Some MSD- LA9 hybrids showed significant levels of human arylsulfatase A activity, as shown by the immunoprecipitation of active enzyme by human-specific antiserum. Complementation was also suggested for N-acetylgalactosamine 6- sulfatate sulfatase (GalNAc-6S sulfatase) in several MSD- LA9 hybrids by the demonstration of a significant increase in activity (10-fold) over that of the GalNAc-6S sulfatase-deficient parental mouse and MSD cells. Thus, it was possible to demonstrate complementation for more than one sulfatase in a single MSD-rodent hybrid. Normal levels of sulfatase activity in hybrids indicate that the sulfatase structural genes are intact in MSD cells.

  19. Viable Syntax: Rethinking Minimalist Architecture

    Directory of Open Access Journals (Sweden)

    Ken Safir

    2010-03-01

    Full Text Available Hauser et al. (2002 suggest that the human language faculty emerged as a genetic innovation in the form of what is called here a ‘keystone factor’—a single, simple, formal mental capability that, interacting with the pre-existing faculties of hominid ancestors, caused a cascade of effects resulting in the language faculty in modern humans. They take Merge to be the keystone factor, but instead it is posited here that Merge is the pre-existing mechanism of thought made viable by a principle that permits relations interpretable at the interfaces to be mapped onto c-command. The simplified minimalist architecture proposed here respects the keystone factor as closely as possible, but is justified on the basis of linguistic analyses it makes available, including a relativized intervention theory applicable across Case, scope, agreement, selection and linearization, a derivation of the A/A’-distinction from Case theory, and predictions such as why in situ wh-interpretation is island-insensitive, but susceptible to intervention effects.

  20. Mechanism for multiplicity of steady states with distinct cell concentration in continuous culture of mammalian cells.

    Science.gov (United States)

    Yongky, Andrew; Lee, Jongchan; Le, Tung; Mulukutla, Bhanu Chandra; Daoutidis, Prodromos; Hu, Wei-Shou

    2015-07-01

    Continuous culture for the production of biopharmaceutical proteins offers the possibility of steady state operations and thus more consistent product quality and increased productivity. Under some conditions, multiplicity of steady states has been observed in continuous cultures of mammalian cells, wherein with the same dilution rate and feed nutrient composition, steady states with very different cell and product concentrations may be reached. At those different steady states, cells may exhibit a high glycolysis flux with high lactate production and low cell concentration, or a low glycolysis flux with low lactate and high cell concentration. These different steady states, with different cell concentration, also have different productivity. Developing a mechanistic understanding of the occurrence of steady state multiplicity and devising a strategy to steer the culture toward the desired steady state is critical. We establish a multi-scale kinetic model that integrates a mechanistic intracellular metabolic model and cell growth model in a continuous bioreactor. We show that steady state multiplicity exists in a range of dilution rate in continuous culture as a result of the bistable behavior in glycolysis. The insights from the model were used to devise strategies to guide the culture to the desired steady state in the multiple steady state region. The model provides a guideline principle in the design of continuous culture processes of mammalian cells. © 2015 Wiley Periodicals, Inc.

  1. Nestin Reporter Transgene Labels Multiple Central Nervous System Precursor Cells

    Directory of Open Access Journals (Sweden)

    Avery S. Walker

    2010-01-01

    Full Text Available Embryonic neuroepithelia and adult subventricular zone (SVZ stem and progenitor cells express nestin. We characterized a transgenic line that expresses enhanced green fluorescent protein (eGFP specified to neural tissue by the second intronic enhancer of the nestin promoter that had several novel features. During embryogenesis, the dorsal telencephalon contained many and the ventral telencephalon few eGFP+ cells. eGFP+ cells were found in postnatal and adult neurogenic regions. eGFP+ cells in the SVZ expressed multiple phenotype markers, glial fibrillary acidic protein, Dlx, and neuroblast-specific molecules suggesting the transgene is expressed through the lineage. eGFP+ cell numbers increased in the SVZ after cortical injury, suggesting this line will be useful in probing postinjury neurogenesis. In non-neurogenic regions, eGFP was strongly expressed in oligodendrocyte progenitors, but not in astrocytes, even when they were reactive. This eGFP+ mouse will facilitate studies of proliferative neuroepithelia and adult neurogenesis, as well as of parenchymal oligodendrocytes.

  2. Detection of multiple mycoplasma infection in cell cultures by PCR

    Directory of Open Access Journals (Sweden)

    J. Timenetsky

    2006-07-01

    Full Text Available A total of 301 cell cultures from 15 laboratories were monitored for mycoplasma (Mollicutes using PCR and culture methodology. The infection was detected in the cell culture collection of 12 laboratories. PCR for Mollicutes detected these bacteria in 93 (30.9% samples. Although the infection was confirmed by culture for 69 (22.9% samples, PCR with generic primers did not detect the infection in five (5.4%. Mycoplasma species were identified with specific primers in 91 (30.2% of the 98 samples (32.6% considered to be infected. Mycoplasma hyorhinis was detected in 63.3% of the infected samples, M. arginini in 59.2%, Acholeplasma laidlawii in 20.4%, M. fermentans in 14.3%, M. orale in 11.2%, and M. salivarium in 8.2%. Sixty (61.2% samples were co-infected with more than one mycoplasma species. M. hyorhinis and M. arginini were the microorganisms most frequently found in combination, having been detected in 30 (30.6% samples and other associations including up to four species were detected in 30 other samples. Failure of the treatments used to eliminate mycoplasmas from cell cultures might be explained by the occurrence of these multiple infections. The present results indicate that the sharing of non-certified cells among laboratories may disseminate mycoplasma in cell cultures.

  3. Experimental design for the optimization of propidium monoazide treatment to quantify viable and non-viable bacteria in piggery effluents.

    Science.gov (United States)

    Desneux, Jérémy; Chemaly, Marianne; Pourcher, Anne-Marie

    2015-08-16

    Distinguishing between viable and dead bacteria in animal and urban effluents is a major challenge. Among existing methods, propidium monoazide (PMA)-qPCR is a promising way to quantify viable cells. However, its efficiency depends on the composition of the effluent, particularly on total suspended solids (TSS)) and on methodological parameters. The aim of this study was evaluate the influence of three methodological factors (concentration of PMA, incubation time and photoactivation time) on the efficiency of PMA-qPCR to quantify viable and dead cells of Listeria monocytogenes used as a microorganism model, in two piggery effluents (manure and lagoon effluent containing 20 and 0.4 TSS g.kg(-1), respectively). An experimental design strategy (Doehlert design and desirability function) was used to identify the experimental conditions to achieve optimal PMA-qPCR results. The quantification of viable cells of L. monocytogenes was mainly influenced by the concentration of PMA in the manure and by the duration of photoactivation in the lagoon effluent. Optimal values differed with the matrix: 55 μM PMA, 5 min incubation and 56 min photoactivation for manure and 20 μM PMA, 20 min incubation and 30 min photoactivation for lagoon effluent. Applied to five manure and four lagoon samples, these conditions resulted in satisfactory quantification of viable and dead cells. PMA-qPCR can be used on undiluted turbid effluent with high levels of TSS, provided preliminary tests are performed to identify the optimal conditions.

  4. Small cell lung cancer associated with multiple paraneoplastic syndromes

    Directory of Open Access Journals (Sweden)

    Diana L. Franco

    2017-01-01

    Full Text Available We report the case of a patient presenting with multiple severe electrolyte disturbances who was subsequently found to have small cell lung cancer. Upon further evaluation, she demonstrated three distinct paraneoplastic processes, including the syndrome of inappropriate antidiuretic hormone, Fanconi syndrome, and an inappropriate elevation in fibroblast growth factor-23 (FGF23. The patient underwent one round of chemotherapy, but she was found to have progressive disease. After 36 days of hospitalization, the patient made the decision to enter hospice care and later she expired.

  5. Retinal ganglion cell analysis in multiple sclerosis and optic neuritis

    DEFF Research Database (Denmark)

    Britze, Josefine; Pihl-Jensen, Gorm; Frederiksen, Jette Lautrup

    2017-01-01

    The aim of this study was to summarise existing findings regarding optical coherence tomography (OCT) measurements of ganglion cell layer (GCL) alterations in optic neuritis (ON) and multiple sclerosis (MS). Peer-reviewed studies published prior to April 2016 were searched using PubMed, EMBASE, Web...... in MS patients both with and without previous ON compared to healthy controls. GCL thinning was associated with visual function in most studies (n = 10) and expanded disability status scale (EDSS) scores (n = 6). In acute ON, thinning of the GCL is measurable prior to RNFL thinning, and GCL thickness...

  6. Stitching together multiple data dimensions reveals interacting metabolomic and transcriptomic networks that modulate cell regulation

    National Research Council Canada - National Science Library

    Zhu, Jun; Sova, Pavel; Xu, Qiuwei; Dombek, Kenneth M; Xu, Ethan Y; Vu, Heather; Tu, Zhidong; Brem, Rachel B; Bumgarner, Roger E; Schadt, Eric E

    2012-01-01

    Cells employ multiple levels of regulation, including transcriptional and translational regulation, that drive core biological processes and enable cells to respond to genetic and environmental changes...

  7. The Mutational Landscape of Circulating Tumor Cells in Multiple Myeloma

    Directory of Open Access Journals (Sweden)

    Yuji Mishima

    2017-04-01

    Full Text Available The development of sensitive and non-invasive “liquid biopsies” presents new opportunities for longitudinal monitoring of tumor dissemination and clonal evolution. The number of circulating tumor cells (CTCs is prognostic in multiple myeloma (MM, but there is little information on their genetic features. Here, we have analyzed the genomic landscape of CTCs from 29 MM patients, including eight cases with matched/paired bone marrow (BM tumor cells. Our results show that 100% of clonal mutations in patient BM were detected in CTCs and that 99% of clonal mutations in CTCs were present in BM MM. These include typical driver mutations in MM such as in KRAS, NRAS, or BRAF. These data suggest that BM and CTC samples have similar clonal structures, as discordances between the two were restricted to subclonal mutations. Accordingly, our results pave the way for potentially less invasive mutation screening of MM patients through characterization of CTCs.

  8. Endothelial progenitor cells display clonal restriction in multiple myeloma

    Directory of Open Access Journals (Sweden)

    Dai Kezhi

    2006-06-01

    Full Text Available Abstract Background In multiple myeloma (MM, increased neoangiogenesis contributes to tumor growth and disease progression. Increased levels of endothelial progenitor cells (EPCs contribute to neoangiogenesis in MM, and, importantly, covary with disease activity and response to treatment. In order to understand the mechanisms responsible for increased EPC levels and neoangiogenic function in MM, we investigated whether these cells were clonal by determining X-chromosome inactivation (XCI patterns in female patients by a human androgen receptor assay (HUMARA. In addition, EPCs and bone marrow cells were studied for the presence of clonotypic immunoglobulin heavy-chain (IGH gene rearrangement, which indicates clonality in B cells; thus, its presence in EPCs would indicate a close genetic link between tumor cells in MM and endothelial cells that provide tumor neovascularization. Methods A total of twenty-three consecutive patients who had not received chemotherapy were studied. Screening in 18 patients found that 11 displayed allelic AR in peripheral blood mononuclear cells, and these patients were further studied for XCI patterns in EPCs and hair root cells by HUMARA. In 2 patients whose EPCs were clonal by HUMARA, and in an additional 5 new patients, EPCs were studied for IGH gene rearrangement using PCR with family-specific primers for IGH variable genes (VH. Results In 11 patients, analysis of EPCs by HUMARA revealed significant skewing (≥ 77% expression of a single allele in 64% (n = 7. In 4 of these patients, XCI skewing was extreme (≥ 90% expression of a single allele. In contrast, XCI in hair root cells was random. Furthermore, PCR amplification with VH primers resulted in amplification of the same product in EPCs and bone marrow cells in 71% (n = 5 of 7 patients, while no IGH rearrangement was found in EPCs from healthy controls. In addition, in patients with XCI skewing in EPCs, advanced age was associated with poorer clinical status

  9. Okadaic acid inhibits cell multiplication and induces apoptosis in a549 cells, a human lung adenocarcinoma cell line.

    Science.gov (United States)

    Wang, Renjun; Lv, Lili; Zhao, Yunfeng; Yang, Nana

    2014-01-01

    This essay aims to research the effect of okadaic acid (OA) on A549 cell multiplication, and cell apoptosis induced by OA was observed by cell morphology. MTT assay, trypan blue exclusion test (TBET), Giemsa staining method and acridine orange (AO) fluorescence staining assay were applied. The results of cell survival evaluated by TBET and colorimetric assay with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) showed: The number of A549 cells was decreased in a dose-dependent manner. Cytomorphology observation of okadaic acid-treated cells showed that cells became shrinkage and turned round, some cells floated in the nutrient medium with nucleus agglutination broken, resulting in apoptotic bodies. Above-mentioned results indicated that OA exerted significantly inhibitory effect on A549 cell multiplication due to the apoptosis induced by OA.

  10. Cytotoxic CD4+ T Cells Drive Multiple Sclerosis Progression

    Directory of Open Access Journals (Sweden)

    Liesbet M. Peeters

    2017-09-01

    Full Text Available Multiple sclerosis (MS is the leading cause of chronic neurological disability in young adults. The clinical disease course of MS varies greatly between individuals, with some patients progressing much more rapidly than others, making prognosis almost impossible. We previously discovered that cytotoxic CD4+ T cells (CD4+ CTL, identified by the loss of CD28, are able to migrate to sites of inflammation and that they contribute to tissue damage. Furthermore, in an animal model for MS, we showed that these cells are correlated with inflammation, demyelination, and disability. Therefore, we hypothesize that CD4+ CTL drive progression of MS and have prognostic value. To support this hypothesis, we investigated whether CD4+ CTL are correlated with worse clinical outcome and evaluated the prognostic value of these cells in MS. To this end, the percentage of CD4+CD28null T cells was measured in the blood of 176 patients with relapsing-remitting MS (=baseline. Multimodal evoked potentials (EP combining information on motoric, visual, and somatosensoric EP, as well as Kurtzke expanded disability status scale (EDSS were used as outcome measurements at baseline and after 3 and 5 years. The baseline CD4+CD28null T cell percentage is associated with EP (P = 0.003, R2 = 0.28, indicating a link between these cells and disease severity. In addition, the baseline CD4+CD28null T cell percentage has a prognostic value since it is associated with EP after 3 years (P = 0.005, R2 = 0.29 and with EP and EDSS after 5 years (P = 0.008, R2 = 0.42 and P = 0.003, R2 = 0.27. To the best of our knowledge, this study provides the first direct link between the presence of CD4+ CTL and MS disease severity, as well as its prognostic value. Therefore, we further elaborate on two important research perspectives: 1° investigating strategies to block or reverse pathways in the formation of these cells resulting in new treatments that slow down

  11. HIV Cell-to-Cell Spread Results in Earlier Onset of Viral Gene Expression by Multiple Infections per Cell

    Science.gov (United States)

    Boullé, Mikaël; Müller, Thorsten G.; Dähling, Sabrina; Jackson, Laurelle; Mahamed, Deeqa; Oom, Lance; Lustig, Gila

    2016-01-01

    Cell-to-cell spread of HIV, a directed mode of viral transmission, has been observed to be more rapid than cell-free infection. However, a mechanism for earlier onset of viral gene expression in cell-to-cell spread was previously uncharacterized. Here we used time-lapse microscopy combined with automated image analysis to quantify the timing of the onset of HIV gene expression in a fluorescent reporter cell line, as well as single cell staining for infection over time in primary cells. We compared cell-to-cell spread of HIV to cell-free infection, and limited both types of transmission to a two-hour window to minimize differences due to virus transit time to the cell. The mean time to detectable onset of viral gene expression in cell-to-cell spread was accelerated by 19% in the reporter cell line and by 35% in peripheral blood mononuclear cells relative to cell-free HIV infection. Neither factors secreted by infected cells, nor contact with infected cells in the absence of transmission, detectably changed onset. We recapitulated the earlier onset by infecting with multiple cell-free viruses per cell. Surprisingly, the acceleration in onset of viral gene expression was not explained by cooperativity between infecting virions. Instead, more rapid onset was consistent with a model where the fastest expressing virus out of the infecting virus pool sets the time for infection independently of the other co-infecting viruses. PMID:27812216

  12. HIV Cell-to-Cell Spread Results in Earlier Onset of Viral Gene Expression by Multiple Infections per Cell.

    Science.gov (United States)

    Boullé, Mikaël; Müller, Thorsten G; Dähling, Sabrina; Ganga, Yashica; Jackson, Laurelle; Mahamed, Deeqa; Oom, Lance; Lustig, Gila; Neher, Richard A; Sigal, Alex

    2016-11-01

    Cell-to-cell spread of HIV, a directed mode of viral transmission, has been observed to be more rapid than cell-free infection. However, a mechanism for earlier onset of viral gene expression in cell-to-cell spread was previously uncharacterized. Here we used time-lapse microscopy combined with automated image analysis to quantify the timing of the onset of HIV gene expression in a fluorescent reporter cell line, as well as single cell staining for infection over time in primary cells. We compared cell-to-cell spread of HIV to cell-free infection, and limited both types of transmission to a two-hour window to minimize differences due to virus transit time to the cell. The mean time to detectable onset of viral gene expression in cell-to-cell spread was accelerated by 19% in the reporter cell line and by 35% in peripheral blood mononuclear cells relative to cell-free HIV infection. Neither factors secreted by infected cells, nor contact with infected cells in the absence of transmission, detectably changed onset. We recapitulated the earlier onset by infecting with multiple cell-free viruses per cell. Surprisingly, the acceleration in onset of viral gene expression was not explained by cooperativity between infecting virions. Instead, more rapid onset was consistent with a model where the fastest expressing virus out of the infecting virus pool sets the time for infection independently of the other co-infecting viruses.

  13. Autologous haematopoietic stem cell transplantation for treatment of multiple sclerosis.

    Science.gov (United States)

    Muraro, Paolo A; Martin, Roland; Mancardi, Giovanni Luigi; Nicholas, Richard; Sormani, Maria Pia; Saccardi, Riccardo

    2017-07-01

    Autologous haematopoietic stem cell transplantation (AHSCT) is a multistep procedure that enables destruction of the immune system and its reconstitution from haematopoietic stem cells. Originally developed for the treatment of haematological malignancies, the procedure has been adapted for the treatment of severe immune-mediated disorders. Results from ∼20 years of research make a compelling case for selective use of AHSCT in patients with highly active multiple sclerosis (MS), and for controlled trials. Immunological studies support the notion that AHSCT causes qualitative immune resetting, and have provided insight into the mechanisms that might underlie the powerful treatment effects that last well beyond recovery of immune cell numbers. Indeed, studies have demonstrated that AHSCT can entirely suppress MS disease activity for 4-5 years in 70-80% of patients, a rate that is higher than those achieved with any other therapies for MS. Treatment-related mortality, which was 3.6% in studies before 2005, has decreased to 0.3% in studies since 2005. Current evidence indicates that the patients who are most likely to benefit from and tolerate AHSCT are young, ambulatory and have inflammatory MS activity. Clinical trials are required to rigorously test the efficacy, safety and cost-effectiveness of AHSCT against highly active MS drugs.

  14. Mesenchymal Stem Cells and Induced Pluripotent Stem Cells as Therapies for Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Juan Xiao

    2015-04-01

    Full Text Available Multiple sclerosis (MS is a chronic, autoimmune, inflammatory demyelinating disorder of the central nervous system that leads to permanent neurological deficits. Current MS treatment regimens are insufficient to treat the irreversible neurological disabilities. Tremendous progress in the experimental and clinical applications of cell-based therapies has recognized stem cells as potential candidates for regenerative therapy for many neurodegenerative disorders including MS. Mesenchymal stem cells (MSC and induced pluripotent stem cell (iPSCs derived precursor cells can modulate the autoimmune response in the central nervous system (CNS and promote endogenous remyelination and repair process in animal models. This review highlights studies involving the immunomodulatory and regenerative effects of mesenchymal stem cells and iPSCs derived cells in animal models, and their translation into immunomodulatory and neuroregenerative treatment strategies for MS.

  15. Detection of viable toxigenic Vibrio cholerae and virulent Shigella ...

    African Journals Online (AJOL)

    A rapid and sensitive assay was developed for the detection of low numbers of viable Vibrio cholerae and Shigella spp. cells in environmental and drinking water samples. Water samples were filtered, and the filters were enriched in a non-selective medium. The enrichment cultures were prepared for polymerase chain ...

  16. Detection of viable toxigenic Vibrio cholerae and virulent Shigella ...

    African Journals Online (AJOL)

    DRINIE

    2003-04-02

    Apr 2, 2003 ... A rapid and sensitive assay was developed for the detection of low numbers of viable Vibrio cholerae and Shigella spp. cells in environmental and drinking water samples. Water samples were filtered, and the filters were enriched in a non-selective medium. The enrichment cultures were prepared for ...

  17. Bortezomib consolidation after autologous stem cell transplantation in multiple myeloma

    DEFF Research Database (Denmark)

    Mellqvist, Ulf-Henrik; Gimsing, Peter; Hjertner, Oyvind

    2013-01-01

    The Nordic Myeloma Study Group conducted an open randomized trial to compare bortezomib as consolidation therapy given after high-dose therapy and autologous stem cell transplantation (ASCT) with no consolidation in bortezomib-naive patients with newly diagnosed multiple myeloma. Overall, 370...... patients were centrally randomly assigned 3 months after ASCT to receive 20 doses of bortezomib given during 21 weeks or no consolidation. The hypothesis was that consolidation therapy would prolong progression-free survival (PFS). The PFS after randomization was 27 months for the bortezomib group compared......-reported quality-of-life (QOL) questionnaires, whereas no other major differences in QOL were recorded between the groups. Consolidation therapy seemed to be beneficial for patients not achieving at least a very good partial response (VGPR) but not for patients in the ≥ VGPR category at randomization...

  18. Economically viable large-scale hydrogen liquefaction

    Science.gov (United States)

    Cardella, U.; Decker, L.; Klein, H.

    2017-02-01

    The liquid hydrogen demand, particularly driven by clean energy applications, will rise in the near future. As industrial large scale liquefiers will play a major role within the hydrogen supply chain, production capacity will have to increase by a multiple of today’s typical sizes. The main goal is to reduce the total cost of ownership for these plants by increasing energy efficiency with innovative and simple process designs, optimized in capital expenditure. New concepts must ensure a manageable plant complexity and flexible operability. In the phase of process development and selection, a dimensioning of key equipment for large scale liquefiers, such as turbines and compressors as well as heat exchangers, must be performed iteratively to ensure technological feasibility and maturity. Further critical aspects related to hydrogen liquefaction, e.g. fluid properties, ortho-para hydrogen conversion, and coldbox configuration, must be analysed in detail. This paper provides an overview on the approach, challenges and preliminary results in the development of efficient as well as economically viable concepts for large-scale hydrogen liquefaction.

  19. T cell cytokine signatures: Biomarkers in pediatric multiple sclerosis.

    Science.gov (United States)

    Cala, Cather M; Moseley, Carson E; Steele, Chad; Dowdy, Sarah M; Cutter, Gary R; Ness, Jayne M; DeSilva, Tara M

    2016-08-15

    Although multiple sclerosis is predominantly regarded as a disease of young adulthood, up to 5% of MS patients are diagnosed prior to age eighteen. The predominant form of MS is relapsing-remitting characterized by exacerbations of symptoms followed by periods of remission. The majority of disease modifying drugs target T cell proliferation or block migration into the central nervous system. Although these treatments reduce relapses, disease progression still occurs, warranting therapeutic strategies that protect the CNS. Biomarkers to indicate relapses would facilitate a personalized approach for add-on therapies that protect the CNS. A multiplex cytokine bead array was performed to detect T cell associated cytokines in sera from patients 6-20years of age with pediatric onset MS clinically diagnosed in relapse or remission compared to healthy control patients. Of the 25 cytokines evaluated, 17 were increased in patients clinically diagnosed in relapse compared to sera from control patients in contrast to only 9 cytokines in the clinically diagnosed remission group. Furthermore, a linear regression analysis of cytokine levels in the remission population showed 12 cytokines to be statistically elevated as a function of disease duration, with no effect observed in the relapse population. To further explore this concept, we used a multivariable stepwise discriminate analysis and found that the following four cytokines (IL-10, IL-21, IL-23, and IL-27) are not only a significant predictor for MS, but have important predictive value in determining a relapse. Since IL-10 and IL-27 are considered anti-inflammatory and IL-21 and IL-23 are pro-inflammatory, ratios of these cytokines were evaluated using a Duncan's multiple range test. Of the six possible combinations, increased ratios of IL-10:IL-21, IL-10:IL-23, and IL-10:IL-27 were significant suggesting levels of IL-10 to be a driving force in predicting a relapse. Copyright © 2016 The Authors. Published by Elsevier B

  20. Ocrelizumab: a B-cell depleting therapy for multiple sclerosis.

    Science.gov (United States)

    Jakimovski, Dejan; Weinstock-Guttman, Bianca; Ramanathan, Murali; Kolb, Channa; Hojnacki, David; Minagar, Alireza; Zivadinov, Robert

    2017-09-01

    Multiple sclerosis (MS) is the most common neurological disease responsible for early disability in the young working population. In the last two decades, based on retrospective/prospective data, the use of disease-modifying therapies has been shown to slow the rate of disability progression and prolonged the time to conversion into secondary-progressive MS (SPMS). However, despite the availability of several approved therapies, disability progression cannot be halted significantly in all MS patients. Areas covered: This article reviews the immunopathology of the B-cells, and their role in pathogenesis of MS and their attractiveness as a potential therapeutic target in MS. The review focuses on the recently published ocrelizumab phase III trials in terms of its efficacy, safety, and tolerability as well as its future considerations. Expert opinion: B lymphocyte cell depletion therapy offers a compelling and promising new option for MS patients. Nonetheless, there is a need for heightened vigilance and awareness in detecting potential long-term consequences that currently remain unknown.

  1. Dendritic Cells and Multiple Sclerosis: Disease, Tolerance and Therapy

    Directory of Open Access Journals (Sweden)

    Mohammad G. Mohammad

    2012-12-01

    Full Text Available Multiple sclerosis (MS is a devastating neurological disease that predominantly affects young adults resulting in severe personal and economic impact. The majority of therapies for this disease were developed in, or are beneficial in experimental autoimmune encephalomyelitis (EAE, the animal model of MS. While known to target adaptive anti-CNS immune responses, they also target, the innate immune arm. This mini-review focuses on the role of dendritic cells (DCs, the professional antigen presenting cells of the innate immune system. The evidence for a role for DCs in the appropriate regulation of anti-CNS autoimmune responses and their role in MS disease susceptibility and possible therapeutic utility are discussed. Additionally, the current controversy regarding the evidence for the presence of functional DCs in the normal CNS is reviewed. Furthermore, the role of CNS DCs and potential routes of their intercourse between the CNS and cervical lymph nodes are considered. Finally, the future role that this nexus between the CNS and the cervical lymph nodes might play in site directed molecular and cellular therapy for MS is outlined.

  2. Plasma cell morphology in multiple myeloma and related disorders.

    Science.gov (United States)

    Ribourtout, B; Zandecki, M

    2015-06-01

    Normal and reactive plasma cells (PC) are easy to ascertain on human bone marrow films, due to their small mature-appearing nucleus and large cytoplasm, the latter usually deep blue after Giemsa staining. Cytoplasm is filled with long strands of rough endoplasmic reticulum and one large Golgi apparatus (paranuclear hof), demonstrating that PC are dedicated mainly to protein synthesis and excretion (immunoglobulin). Deregulation of the genome may induce clonal expansion of one PC that will lead to immunoglobulin overproduction and eventually to one among the so-called PC neoplasms. In multiple myeloma (MM), the number of PC is over 10% in most patients studied. Changes in the morphology of myeloma PC may be inconspicuous as compared to normal PC (30-50% patients). In other instances PC show one or several morphological changes. One is related to low amount of cytoplasm, defining lymphoplasmacytoid myeloma (10-15% patients). In other cases (40-50% patients), named immature myeloma cases, nuclear-cytoplasmic asynchrony is observed: presence of one nucleolus, finely dispersed chromatin and/or irregular nuclear contour contrast with a still large and blue (mature) cytoplasm. A peculiar morphological change, corresponding to the presence of very immature PC named plasmablasts, is observed in 10-15% cases. Several prognostic morphological classifications have been published, as mature myeloma is related to favorable outcome and immature myeloma, peculiarly plasmablastic myeloma, is related to dismal prognosis. However, such classifications are no longer included in current prognostic schemes. Changes related to the nucleus are very rare in monoclonal gammopathy of unknown significance (MGUS). In contrast, anomalies related to the cytoplasm of PC, including color (flaming cells), round inclusions (Mott cells, Russell bodies), Auer rod-like or crystalline inclusions, are reported in myeloma cases as well as in MGUS and at times in reactive disorders. They do not correspond

  3. An investigation of thermal resistance in single- and multiple-cell GaAs MESFETs

    Science.gov (United States)

    Wang, Y.-C.; Bahrami, M.

    1979-01-01

    Thermal resistances among FETs of a variable number of gates in parallel are compared. Although the thermal resistance per cell for multiple cells is higher, the total thermal resistance is still low because all the cells are parallel to one another. This implies that the multiple-cell structure is capable of dissipating more power than the single-cell structure and therefore of being used as a power FET.

  4. T cell repertoire following autologous stem cell transplantation for multiple sclerosis.

    Science.gov (United States)

    Muraro, Paolo A; Robins, Harlan; Malhotra, Sachin; Howell, Michael; Phippard, Deborah; Desmarais, Cindy; de Paula Alves Sousa, Alessandra; Griffith, Linda M; Lim, Noha; Nash, Richard A; Turka, Laurence A

    2014-03-01

    Autologous hematopoietic stem cell transplantation (HSCT) is commonly employed for hematologic and non-hematologic malignancies. In clinical trials, HSCT has been evaluated for severe autoimmunity as a method to "reset" the immune system and produce a new, non-autoimmune repertoire. While the feasibility of eliminating the vast majority of mature T cells is well established, accurate and quantitative determination of the relationship of regenerated T cells to the baseline repertoire has been difficult to assess. Here, in a phase II study of HSCT for poor-prognosis multiple sclerosis, we used high-throughput deep TCRβ chain sequencing to assess millions of individual TCRs per patient sample. We found that HSCT has distinctive effects on CD4+ and CD8+ T cell repertoires. In CD4+ T cells, dominant TCR clones present before treatment were undetectable following reconstitution, and patients largely developed a new repertoire. In contrast, dominant CD8+ clones were not effectively removed, and the reconstituted CD8+ T cell repertoire was created by clonal expansion of cells present before treatment. Importantly, patients who failed to respond to treatment had less diversity in their T cell repertoire early during the reconstitution process. These results demonstrate that TCR characterization during immunomodulatory treatment is both feasible and informative, and may enable monitoring of pathogenic or protective T cell clones following HSCT and cellular therapies.

  5. T cell repertoire following autologous stem cell transplantation for multiple sclerosis

    Science.gov (United States)

    Muraro, Paolo A.; Robins, Harlan; Malhotra, Sachin; Howell, Michael; Phippard, Deborah; Desmarais, Cindy; de Paula Alves Sousa, Alessandra; Griffith, Linda M.; Lim, Noha; Nash, Richard A.; Turka, Laurence A.

    2014-01-01

    Autologous hematopoietic stem cell transplantation (HSCT) is commonly employed for hematologic and non-hematologic malignancies. In clinical trials, HSCT has been evaluated for severe autoimmunity as a method to “reset” the immune system and produce a new, non-autoimmune repertoire. While the feasibility of eliminating the vast majority of mature T cells is well established, accurate and quantitative determination of the relationship of regenerated T cells to the baseline repertoire has been difficult to assess. Here, in a phase II study of HSCT for poor-prognosis multiple sclerosis, we used high-throughput deep TCRβ chain sequencing to assess millions of individual TCRs per patient sample. We found that HSCT has distinctive effects on CD4+ and CD8+ T cell repertoires. In CD4+ T cells, dominant TCR clones present before treatment were undetectable following reconstitution, and patients largely developed a new repertoire. In contrast, dominant CD8+ clones were not effectively removed, and the reconstituted CD8+ T cell repertoire was created by clonal expansion of cells present before treatment. Importantly, patients who failed to respond to treatment had less diversity in their T cell repertoire early during the reconstitution process. These results demonstrate that TCR characterization during immunomodulatory treatment is both feasible and informative, and may enable monitoring of pathogenic or protective T cell clones following HSCT and cellular therapies. PMID:24531550

  6. Antitumoral Effect of Hibiscus sabdariffa on Human Squamous Cell Carcinoma and Multiple Myeloma Cells.

    Science.gov (United States)

    Malacrida, Alessio; Maggioni, Daniele; Cassetti, Arianna; Nicolini, Gabriella; Cavaletti, Guido; Miloso, Mariarosaria

    2016-10-01

    Cancer is a leading cause of death worldwide. Despite therapeutic improvements, some cancers are still untreatable. Recently there has been an increasing interest in the use of natural substances for cancer prevention and treatment. Hibiscus sabdariffa (HS) is a plant, belonging to Malvaceae family, widespread in South Asia and Central Africa. HS extract (HSE) used in folk medicine, gained researchers' interest thanks to its antioxidant, anti-inflammatory, and chemopreventive properties. In the present study, we initially assessed HSE effect on a panel of human tumor cell lines. Then we focused our study on the following that are most sensitive to HSE action cell lines: Multiple Myeloma (MM) cells (RPMI 8226) and Oral Squamous Cell Carcinoma (OSCC) cells (SCC-25). In both RPMI 8226 and SCC-25 cells, HSE impaired cell growth, exerted a reversible cytostatic effect, and reduced cell motility and invasiveness. We evaluated the involvement of MAPKs ERK1/2 and p38 in HSE effects by using specific inhibitors, U0126 and SB203580, respectively. For both SCC-25 and RPMI 8226, HSE cytostatic effect depends on p38 activation, whereas ERK1/2 modulation is crucial for cell motility and invasiveness. Our results suggest that HSE may be a potential therapeutic agent against MM and OSCC.

  7. Pure Quantum Interpretations Are not Viable

    Science.gov (United States)

    Schmelzer, I.

    2011-02-01

    Pure interpretations of quantum theory, which throw away the classical part of the Copenhagen interpretation without adding new structure to its quantum part, are not viable. This is a consequence of a non-uniqueness result for the canonical operators.

  8. High throughput single-cell and multiple-cell micro-encapsulation.

    Science.gov (United States)

    Lagus, Todd P; Edd, Jon F

    2012-06-15

    Microfluidic encapsulation methods have been previously utilized to capture cells in picoliter-scale aqueous, monodisperse drops, providing confinement from a bulk fluid environment with applications in high throughput screening, cytometry, and mass spectrometry. We describe a method to not only encapsulate single cells, but to repeatedly capture a set number of cells (here we demonstrate one- and two-cell encapsulation) to study both isolation and the interactions between cells in groups of controlled sizes. By combining drop generation techniques with cell and particle ordering, we demonstrate controlled encapsulation of cell-sized particles for efficient, continuous encapsulation. Using an aqueous particle suspension and immiscible fluorocarbon oil, we generate aqueous drops in oil with a flow focusing nozzle. The aqueous flow rate is sufficiently high to create ordering of particles which reach the nozzle at integer multiple frequencies of the drop generation frequency, encapsulating a controlled number of cells in each drop. For representative results, 9.9 μm polystyrene particles are used as cell surrogates. This study shows a single-particle encapsulation efficiency P(k=1) of 83.7% and a double-particle encapsulation efficiency P(k=2) of 79.5% as compared to their respective Poisson efficiencies of 39.3% and 33.3%, respectively. The effect of consistent cell and particle concentration is demonstrated to be of major importance for efficient encapsulation, and dripping to jetting transitions are also addressed. Continuous media aqueous cell suspensions share a common fluid environment which allows cells to interact in parallel and also homogenizes the effects of specific cells in measurements from the media. High-throughput encapsulation of cells into picoliter-scale drops confines the samples to protect drops from cross-contamination, enable a measure of cellular diversity within samples, prevent dilution of reagents and expressed biomarkers, and amplify

  9. Cultivation and multiplication of viable axenic trypanosoma vivax in ...

    African Journals Online (AJOL)

    Trypanosoma vivax was isolated from the blood of an infected laboratory mouse, washed and introduced into the prepared culture media, ME-99 and minimum essential medium (MEM), both containing laboratory prepared (commercial) horse serum and antibiotics (streptomycin and penicillin). The cultures were monitored ...

  10. Micropatterned superhydrophobic structures for the simultaneous culture of multiple cell types and the study of cell-cell communication.

    Science.gov (United States)

    Efremov, Alexander N; Stanganello, Eliana; Welle, Alexander; Scholpp, Steffen; Levkin, Pavel A

    2013-02-01

    The ability to control spatial arrangement and geometry of different cell types while keeping them separated and in close proximity for a long time is crucial to mimic and study variety of biological processes in vitro. Although the existing cell patterning technologies allow co-culturing of different cell types, they are usually limited to relatively simple geometry. The methods used for obtaining complex geometries are usually applicable for patterning only one or two cell types. Here we introduce a convenient method for creating patterns of multiple (up to twenty) different cell types on one substrate. The method virtually allows any complexity of cell pattern geometry. Cell positioning on the substrate is realized by a parallel formation of multiple cell-containing microreservoirs confined to the geometry of highly hydrophilic regions surrounded by superhydrophobic borders built-in a fine nanoporous polymer film. As a case study we showed the cross-talk between two cell populations via Wnt signaling molecules propagation during co-culture in a mutual culture medium. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. The Role of Regulatory T Cells and TH17 Cells in Multiple Myeloma

    Directory of Open Access Journals (Sweden)

    Walter M. T. Braga

    2012-01-01

    Full Text Available The development of multiple myeloma (MM involves a series of genetic alterations and changes in the bone marrow microenvironment, favoring the growth of the tumor and failure of local immune control. Quantitative and functional alterations in CD4+ and CD8+ T cells have been described in MM. The balance between T regulatory cells (Treg and T helper (Th 17 cells represents one essential prerequisite for maintaining anti-tumor immunity in MM. Tregs play an important role in the preservation of self-tolerance and modulation of overall immune responses against infections and tumor cells. In MM patients, Tregs seem to contribute to myeloma-related immune dysfunction and targeting them could, therefore, help to restore and enhance vital immune responses. Th17 cells protect against fungal and parasitic infections and participate in inflammatory reactions and autoimmunity. The interplay of TGF-β and IL-6, expressed at high levels in the bone marrow of myeloma patients, may affect generation of Th17 cells both directly or via other pro-inflammatory cytokines and thereby modulate antitumor immune responses. A detailed analysis of the balance between Tregs and Th17 cells seems necessary in order to design more effective and less toxic modes of immunotherapy myeloma which still is an uncurable malignancy.

  12. The essential role of t cells in multiple sclerosis: A reappraisal

    Directory of Open Access Journals (Sweden)

    Cris S Constantinescu

    2014-04-01

    Full Text Available Multiple sclerosis is an inflammatory demyelinating disease of the central nervous system in which destruction of myelin and nerve axons has been shown to be mediated by immune mechanisms. Although the focus of research has been traditionally on T cells as key mediators of the immunopathology, more recent efforts at understanding this complex disorder have been directed increasingly at other cellular and humoral elements of the immune response. This review is a reappraisal of the crucial role of T cells, in particular the CD4+ helper T-cell subset, in multiple sclerosis. Recent evidence is discussed underlining the predominant contribution of T-cell-associated genes to the genome-wide association study results of multiple sclerosis susceptibility, the loss of T-cell quiescence in the conversion from clinically isolated syndrome to clinically definite multiple sclerosis, and the fact that T cells represent the main target of effective immunomodulatory and immunosuppressive treatments in multiple sclerosis.

  13. [MYETS1 recombinant expression in prokaryotic cells and deletion analysis in multiple myeloma cell lines].

    Science.gov (United States)

    Wang, Jianjun; Hong, Liping; Pan, Yi; Liu, Shuiping; Wu, Kunlu; Tang, Lijun

    2012-01-01

    To explore the down-expression mechanism of MYETS1 gene in multiple myeloma cell lines ARH-77 or KM3, and express MYETS1 gene in prokaryotic express system. The region of chromosome 13q14.3 in ARH-77 and KM3 was detected by FISH. MYETS1 gene was amplified by RT-PCR and cloned into prokaryotic expression vector pGEX-4T. Positive consequence was acquired in 13q14.3 where MYETS1 located by FISH in ARH- 77 and KM3 cell lines. Bioinformatics indicated highly sequence homology between MYETS1 and LECT1, but excluded the homology of open reading frame between MYETS1 and that of LECT1 by RT-PCR. Myets1 protein was expressed and harvested successfully. The region of chromosome 13q14.3 ,where MYETS1 gene located, was not defected in ARH-77 and KM3 cell lines. Down-expression of MYETS1 might be regulated by other mechanisms in multiple myeloma cell lines.

  14. Cell-based therapeutic strategies for multiple sclerosis

    DEFF Research Database (Denmark)

    Scolding, Neil J; Pasquini, Marcelo; Reingold, Stephen C

    2017-01-01

    The availability of multiple disease-modifying medications with regulatory approval to treat multiple sclerosis illustrates the substantial progress made in therapy of the disease. However, all are only partially effective in preventing inflammatory tissue damage in the central nervous system and...

  15. Plasma Cell Neoplasms (Including Multiple Myeloma) Treatment (PDQ®)—Patient Version

    Science.gov (United States)

    Plasma cell neoplasms occur when abnormal plasma cells or myeloma cells form tumors in the bones or soft tissues of the body. Multiple myeloma, plasmacytoma, lymphoplasmacytic lymphoma, and monoclonal gammopathy of undetermined significance (MGUS) are different types of plasma cell neoplasms. Find out about risk factors, symptoms, diagnostic tests, prognosis, and treatment for these diseases.

  16. Dihydroorotate dehydrogenase inhibitor A771726 (leflunomide) induces apoptosis and diminishes proliferation of multiple myeloma cells.

    Science.gov (United States)

    Baumann, Philipp; Mandl-Weber, Sonja; Völkl, Andreas; Adam, Christian; Bumeder, Irmgard; Oduncu, Fuat; Schmidmaier, Ralf

    2009-02-01

    Multiple myeloma is still an incurable disease; therefore, new therapeutics are urgently needed. A771726 is the active metabolite of the immunosuppressive drug leflunomide, which is currently applied in the treatment of rheumatoid arthritis, BK virus nephropathy, and cytomegaly viremia. Here, we show that dihydroorotate dehydrogenase (DHODH) is commonly expressed in multiple myeloma cell lines and primary multiple myeloma cells. The DHODH inhibitor A771726 inhibits cell growth in common myeloma cell lines at clinically achievable concentrations in a time- and dose-dependent manner. Annexin V-FITC/propidium iodide staining revealed induction of apoptosis of multiple myeloma cell lines and primary multiple myeloma cells. The 5-bromo-2'-deoxyuridine cell proliferation assay showed that inhibition of cell growth was partly due to inhibition of multiple myeloma cell proliferation. A771726 induced G(1) cell cycle arrest via modulation of cyclin D2 and pRb expression. A771726 decreased phosphorylation of protein kinase B (Akt), p70S6K, and eukaryotic translation initiation factor 4E-binding protein-1 as shown by Western blotting experiments. Furthermore, we show that the stimulatory effect of conditioned medium of HS-5 bone marrow stromal cells on multiple myeloma cell growth is completely abrogated by A771726. In addition, synergism studies revealed synergistic and additive activity of A771726 together with the genotoxic agents melphalan, treosulfan, and doxorubicin as well as with dexamethasone and bortezomib. Taken together, we show that inhibition of DHODH by A771726/leflunomide is effective in multiple myeloma. Considering the favorable toxicity profile and the great clinical experience with leflunomide in rheumatoid arthritis, this drug represents a potential new candidate for targeted therapy in multiple myeloma.

  17. Cell assemblies at multiple time scales with arbitrary lag constellations

    National Research Council Canada - National Science Library

    Russo, Eleonora; Durstewitz, Daniel

    2017-01-01

    .... Yet progress in this area is hampered by the lack of statistical tools that would enable to extract assemblies with arbitrary constellations of time lags, and at multiple temporal scales, partly due...

  18. Increased T cell expression of CD154 (CD40-ligand) in multiple sclerosis

    DEFF Research Database (Denmark)

    Jensen, J; Krakauer, M; Sellebjerg, F

    2001-01-01

    CD154 (CD40-ligand, gp39), expressed on activated T cells, is crucial in T cell-dependent immune responses and may be involved in the pathogenesis of multiple sclerosis (MS). We studied cerebro-spinal fluid and peripheral blood T cell expression of CD154 in MS by flow cytometry. Patients with sec......CD154 (CD40-ligand, gp39), expressed on activated T cells, is crucial in T cell-dependent immune responses and may be involved in the pathogenesis of multiple sclerosis (MS). We studied cerebro-spinal fluid and peripheral blood T cell expression of CD154 in MS by flow cytometry. Patients...

  19. CAR T-Cell Therapy for Multiple Myeloma

    Science.gov (United States)

    A Cancer Currents blog on results presented at the American Society of Clinical Oncology annual meeting from two early-phase trials testing immune cells that were engineered to target a protein on myeloma cells called B-cell maturation antigen.

  20. Grazing of particle-associated bacteria-an elimination of the non-viable fraction.

    Science.gov (United States)

    Gonsalves, Maria-Judith; Fernandes, Sheryl Oliveira; Priya, Madasamy Lakshmi; LokaBharathi, Ponnapakkam Adikesavan

    Quantification of bacteria being grazed by microzooplankton is gaining importance since they serve as energy subsidies for higher trophic levels which consequently influence fish production. Hence, grazing pressure on viable and non-viable fraction of free and particle-associated bacteria in a tropical estuary controlled mainly by protist grazers was estimated using the seawater dilution technique. In vitro incubations over a period of 42h showed that at the end of 24h, growth coefficient (k) of particle-associated bacteria was 9 times higher at 0.546 than that of free forms. Further, 'k' value of viable cells on particles was double that of free forms at 0.016 and 0.007, respectively. While bacteria associated with particles were grazed (coefficient of removal (g)=0.564), the free forms were relatively less grazed indicating that particle-associated bacteria were exposed to grazers in these waters. Among the viable and non-viable forms, 'g' of non-viable fraction (particle-associated bacteria=0.615, Free=0.0086) was much greater than the viable fraction (particle-associated bacteria=0.056, Free=0.068). Thus, grazing on viable cells was relatively low in both the free and attached states. These observations suggest that non-viable forms of particle-associated bacteria were more prone to grazing and were weeded out leaving the viable cells to replenish the bacterial standing stock. Particle colonization could thus be a temporary refuge for the "persistent variants" where the viable fraction multiply and release their progeny. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  1. The correlation between T regulatory cells and autologous peripheral blood stem cell transplantation in multiple myeloma

    Directory of Open Access Journals (Sweden)

    Ayşe Pınar Erçetin

    2011-06-01

    Full Text Available Objective: Multiple myeloma (MM is characterized by malignant proliferation of plasmocytes and their precursors. T regulatory cells (Tregs have a role in immunosuppression and control of autoimmunity, and are currently an important topic in the study of immune response to tumor cells. The correlation between Tregs and autologous peripheral blood stem cell transplantation (APBSCT in MM has not been studied. The aim of this study was to compare CD4+CD25+FOXP3+ Treg, CD200, and PD-1 levels in MM patients that did and did not undergo APBSCT. Materials and Methods: Peripheral blood samples were collected from 28 MM patients ranging in age from 41 to 78 years for analysis of CD4CD25+ FOXP3+ Tregs, PD-1 (CD279, and CD200. Peripheral blood mononuclear cells were isolated via density gradient centrifugation. Four-color flow cytometry was performed. Using a sequential gating strategy, Tregs were identified as CD4+CD25+FOXP3+ T-cells. Results were analyzed using the Mann Whitney U non-parametric test and a compare means test. p values 0.05. Conclusion: Treg levels were higher in the patients that underwent APBSCT. Tregs are crucial for the induction and maintenance of peripheral tolerance to self-antigens. In addition, Tregs can suppress immune responses to tumor antigens; however, APBSCT and Treg levels were not correlated with CD200 or PD-1 expression. Relationship of Tregs with prognosis needs to be determined by studies that include larger cohorts.

  2. Using Generic Examples to Make Viable Arguments

    Science.gov (United States)

    Adams, Anne E.; Ely, Rob; Yopp, David

    2017-01-01

    The twenty-first century has seen an increased call to train students to craft mathematical arguments. The third of the Common Core's (CCSS) Standards for Mathematical Practice (SMP 3) (CCSSI 2010) calls for all mathematically proficient students to "construct viable arguments" to support the truth of their ideas and to "critique…

  3. Multiple phenotypes in Huntington disease mouse neural stem cells.

    Science.gov (United States)

    Ritch, James J; Valencia, Antonio; Alexander, Jonathan; Sapp, Ellen; Gatune, Leah; Sangrey, Gavin R; Sinha, Saurabh; Scherber, Cally M; Zeitlin, Scott; Sadri-Vakili, Ghazaleh; Irimia, Daniel; Difiglia, Marian; Kegel, Kimberly B

    2012-05-01

    Neural stem (NS) cells are a limitless resource, and thus superior to primary neurons for drug discovery provided they exhibit appropriate disease phenotypes. Here we established NS cells for cellular studies of Huntington's disease (HD). HD is a heritable neurodegenerative disease caused by a mutation resulting in an increased number of glutamines (Q) within a polyglutamine tract in Huntingtin (Htt). NS cells were isolated from embryonic wild-type (Htt(7Q/7Q)) and "knock-in" HD (Htt(140Q/140Q)) mice expressing full-length endogenous normal or mutant Htt. NS cells were also developed from mouse embryonic stem cells that were devoid of Htt (Htt(-/-)), or knock-in cells containing human exon1 with an N-terminal FLAG epitope tag and with 7Q or 140Q inserted into one of the mouse alleles (Htt(F7Q/7Q) and Htt(F140Q/7Q)). Compared to Htt(7Q/7Q) NS cells, HD Htt(140Q/140Q) NS cells showed significantly reduced levels of cholesterol, increased levels of reactive oxygen species (ROS), and impaired motility. The heterozygous Htt(F140Q/7Q) NS cells had increased ROS and decreased motility compared to Htt(F7Q/7Q). These phenotypes of HD NS cells replicate those seen in HD patients or in primary cell or in vivo models of HD. Huntingtin "knock-out" NS cells (Htt(-/-)) also had impaired motility, but in contrast to HD cells had increased cholesterol. In addition, Htt(140Q/140Q) NS cells had higher phospho-AKT/AKT ratios than Htt(7Q/7Q) NS cells in resting conditions and after BDNF stimulation, suggesting mutant htt affects AKT dependent growth factor signaling. Upon differentiation, the Htt(7Q/7Q) and Htt(140Q/140Q) generated numerous Beta(III)-Tubulin- and GABA-positive neurons; however, after 15 days the cellular architecture of the differentiated Htt(140Q/140Q) cultures changed compared to Htt(7Q/7Q) cultures and included a marked increase of GFAP-positive cells. Our findings suggest that NS cells expressing endogenous mutant Htt will be useful for study of mechanisms of HD

  4. EEN regulates the proliferation and survival of multiple myeloma cells by potentiating IGF-1 secretion

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Er-Wen [Guangzhou Institute of Forensic Science, Guangzhou (China); Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou (China); Xue, Sheng-Jiang [Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou (China); Li, Xiao-Yan [Department of Pharmacy, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou (China); Xu, Suo-Wen [Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou (China); Cheng, Jian-Ding; Zheng, Jin-Xiang [Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou (China); Shi, He; Lv, Guo-Li; Li, Zhi-Gang; Li, Yue; Liu, Chang-Hui; Chen, Xiao-Hui; Liu, Hong [Guangzhou Institute of Forensic Science, Guangzhou (China); Li, Jie, E-mail: mdlijie@sina.com [Department of Anaesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou (China); Liu, Chao, E-mail: liuchaogaj@21cn.com [Guangzhou Institute of Forensic Science, Guangzhou (China)

    2014-05-02

    Highlights: • Levels of EEN expression paralleled with the rate of cell proliferation. • EEN was involved in the proliferation and survival of multiple myeloma (MM) cells. • EEN regulated the activity of IGF-1-Akt/mTOR pathway. • EEN regulated proliferation and survival of MM cells by enhancing IGF-1 secretion. - Abstract: The molecular mechanisms of multiple myeloma are not well defined. EEN is an endocytosis-regulating molecule. Here we report that EEN regulates the proliferation and survival of multiple myeloma cells, by regulating IGF-1 secretion. In the present study, we observed that EEN expression paralleled with cell proliferation, EEN accelerated cell proliferation, facilitated cell cycle transition from G1 to S phase by regulating cyclin-dependent kinases (CDKs) pathway, and delayed cell apoptosis via Bcl2/Bax-mitochondrial pathway. Mechanistically, we found that EEN was indispensable for insulin-like growth factor-1 (IGF-1) secretion and the activation of protein kinase B-mammalian target of rapamycin (Akt-mTOR) pathway. Exogenous IGF-1 overcame the phenotype of EEN depletion, while IGF-1 neutralization overcame that of EEN over-expression. Collectively, these data suggest that EEN may play a pivotal role in excessive cell proliferation and insufficient cell apoptosis of bone marrow plasma cells in multiple myeloma. Therefore, EEN may represent a potential diagnostic marker or therapeutic target for multiple myeloma.

  5. Multiple personalities: synaptic target cells as introverts and extroverts.

    Science.gov (United States)

    Ritzenthaler, S; Chiba, A

    2001-10-01

    The intricate process of wiring a neuronetwork requires a high degree of accuracy in the communication between pre- and post-synaptic cells. While presynaptic cells have been widely recognized for their dynamic role in synaptic matchmaking, post-synaptic cells have historically been overlooked as passive targets. Recent studies in the Drosophila embryonic neuromuscular system provide compelling evidence that post-synaptic cells participate actively in the synaptogenic process. Endocytosis allows them to quickly modify the array of molecular cues they provide on their surfaces and the extension of dynamic filopodia allows post-synaptic cells to engage in direct long-distance communication. By making use of familiar cellular mechanisms such as endocytosis and filopodia formation, post-synaptic cells may be able to communicate more effectively with potential synaptic partners.

  6. A Case Report of Multiple Basal Cell Carcinoma Syndrome

    Directory of Open Access Journals (Sweden)

    A. Ansar

    2007-01-01

    Full Text Available Introduction: Nevoid BCC syndrome (Gorline syndrome is a familial disorder with autosomal dominant inheritense. This syndrome is combination of multiple BCC that occurs at an early age, characteristic faces with: frontal bossing, broad nasal bridge and hypertelorism, jaw cysts, palmoplanter pitting, macrocephaly, skeletal and spinal anomalies include bifid ribes, cervical rib and kyphoscoliosis, CNS abnormality include corpus callusom disgenesia , falx cerebri calcification(at early age and mental deficiency.Case Report: This case was a 25-years-old female presented with multiple and progressive skin lesions with different size in neck, upper trunk and axilla (multiple BCC, palmoplantar pitting, jaw cyst, cervical rib, bifid rib and liver haemangioma.Conclusion: With combination of clinical feature, histopathological reports of skin lesions and radiological reports of mandibular cyst and ribs anomalies, this case was diagnosed as nevoid BCC syndrome.

  7. Removal of viable bacteria and endotoxins by Electro Deionization (EDI).

    Science.gov (United States)

    Harada, Norimitsu; Otomo, Teruo; Watabe, Tomoichi; Ase, Tomonobu; Takemura, Takuto; Sato, Toshio

    2011-09-01

    Viable bacteria and endotoxins in water sometimes cause problems for human health. Endotoxins are major components of the outer cell wall of gram-negative bacteria (lipopolysaccharides). In medical procedures, especially haemodialysis (HD) and related therapies (haemodiafiltration (HDF), haemofiltration (HF)), endotoxins in the water for haemodialysis can permeate through the haemodialysis membrane and cause microinflammation or various haemodialysis-related illnesses. To decrease such a biological risk, RO and UF membranes are generally used. Also, hot water disinfection or the chemical disinfection is regularly executed to kill bacteria which produce endotoxins. However, simple treatment methods and equipment may be able to decrease the biological risk more efficiently. In our experiments, we confirmed that viable bacteria and endotoxins were removed by Electro Deionization (EDI) technology and also clarified the desorption mechanisms.

  8. Hypovitaminosis D upscales B-cell immunoreactivity in multiple sclerosis.

    Science.gov (United States)

    Haas, Jürgen; Schwarz, Alexander; Korporal-Kuhnke, Mirjam; Faller, Simon; Jarius, Sven; Wildemann, Brigitte

    2016-05-15

    While vitamin D is increasingly recognized as a potential immune regulator of MS disease activity, its impact on B lymphocytes, however, remains ill-defined. We assessed the impact of vitamin D on B-cell proliferation and cytokine secretion ex vivo and screened for effects of hypovitaminosis D and vitamin D supplementation on the compartmentalized distribution of B-cell subtypes in peripheral blood and cerebrospinal fluid (CSF) from patients with relapsing remitting MS (n=95) and various neurologic and healthy controls (n=57). B cells from MS patients with 25(OH)D serum levels vitamin D or when retesting B cells from MS patients after prolonged supplementation with vitamin D. Hypovitaminosis D was detectable in the serum of 40/95 MS patients, correlated with decreased vitamin D concentrations in CSF and with higher disease activity, and was paralleled by intrathecal accumulation of CD27(+) B-cell subtypes and plasma cells. B-cell immunoreactivity is attenuated by vitamin D. Our finding that vitamin D deficiency affects the intrathecal compartment and coincides with increased frequencies of effector B-cell subtypes in the CSF suggests that hypovitaminosis D might contribute to augmenting disease activity in the target organ and supports a potential benefit of vitamin D supplementation in MS. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Activation of endogenous neural stem cells for multiple sclerosis therapy

    NARCIS (Netherlands)

    Michailidou, I.; de Vries, H.E.; Hol, E.M.; van Strien, M.E.

    2015-01-01

    Multiple sclerosis (MS) is a chronic inflammatory disorder of the central nervous system, leading to severe neurological deficits. Current MS treatment regimens, consist of immunomodulatory agents aiming to reduce the rate of relapses. However, these agents are usually insufficient to treat chronic

  10. Different aspects of thalidomide treatment and stem cell transplantation in multiple myeloma patients

    NARCIS (Netherlands)

    Marion, A.M.W. van

    2006-01-01

    Multiple myeloma (MM) is an haematological malignancy caused by an unrestrained proliferation of plasma cells (monoclonally differentiated B-cells), and part of the white blood cell count. This proliferation infiltrates the blood forming skeletal bone marrow, producing osteoclastic factors, causing

  11. Multiple Loci Are Associated with White Blood Cell Phenotypes

    OpenAIRE

    Nalls, Michael A.; Couper, David J.; Tanaka, Toshiko; van Rooij, Frank J. A.; Chen, Ming-Huei; Smith, Albert V.; Toniolo, Daniela; Zakai, Neil A.; Yang, Qiong; Greinacher, Andreas; Wood, Andrew R.; Garcia, Melissa; Gasparini, Paolo; Liu, Yongmei; Lumley, Thomas

    2011-01-01

    textabstractWhite blood cell (WBC) count is a common clinical measure from complete blood count assays, and it varies widely among healthy individuals. Total WBC count and its constituent subtypes have been shown to be moderately heritable, with the heritability estimates varying across cell types. We studied 19,509 subjects from seven cohorts in a discovery analysis, and 11,823 subjects from ten cohorts for replication analyses, to determine genetic factors influencing variability within the...

  12. Multiple melanocortin receptors are expressed in bone cells

    Science.gov (United States)

    Zhong, Qing; Sridhar, Supriya; Ruan, Ling; Ding, Ke-Hong; Xie, Ding; Insogna, Karl; Kang, Baolin; Xu, Jianrui; Bollag, Roni J.; Isales, Carlos M.

    2005-01-01

    Melanocortin receptors belong to the seven transmembrane domain, G-protein coupled family of receptors. There are five members of this receptor family labeled MC1R-MC5R. These receptors are activated by fragments derived from a larger molecule, proopiomelanocortin (POMC) and include ACTH, alpha beta and gamma-MSH and beta-endorphin. Because of in vitro and in vivo data suggesting direct effects of these POMC molecules on bone and bone turnover, we examined bone and bone derived cells for the presence of the various members of the melanocortin receptor family. We report that the five known melanocortin receptors are expressed to varying degrees in osteoblast-like and osteoclastic cells. POMC fragments increased proliferation and expression of a variety of genes in osteoblastic cells. Furthermore, POMC mRNA was detected in osteoclastic cells. These data demonstrate that POMC-derived peptide hormones acting through high affinity melanocortin receptors have specific effects on bone cells. Thus, in addition to the indirect effects of POMC-derived hormones on bone turnover through their modulation of steroid hormone secretion, POMC fragments may have direct and specific effects on bone cell subpopulations.

  13. Monotone viable trajectories for functional differential inclusions

    Science.gov (United States)

    Haddad, Georges

    This paper is a study on functional differential inclusions with memory which represent the multivalued version of retarded functional differential equations. The main result gives a necessary and sufficient equations. The main result gives a necessary and sufficient condition ensuring the existence of viable trajectories; that means trajectories remaining in a given nonempty closed convex set defined by given constraints the system must satisfy to be viable. Some motivations for this paper can be found in control theory where F( t, φ) = { f( t, φ, u)} uɛU is the set of possible velocities of the system at time t, depending on the past history represented by the function φ and on a control u ranging over a set U of controls. Other motivations can be found in planning procedures in microeconomics and in biological evolutions where problems with memory do effectively appear in a multivalued version. All these models require viability constraints represented by a closed convex set.

  14. Screening for hemosiderosis in patients receiving multiple red blood cell transfusions

    NARCIS (Netherlands)

    de Jongh, Adriaan D; van Beers, E J|info:eu-repo/dai/nl/314670793; de Vooght, K M K|info:eu-repo/dai/nl/304817961; Schutgens, R E G|info:eu-repo/dai/nl/258752084

    2017-01-01

    Background: The dramatic impact of hemosiderosis on survival in chronically transfused patients with hereditary anemia is well known. We evaluated whether patients receiving multiple red blood cell (RBC) transfusions are adequately screened for hemosiderosis. Methods: We retrospectively assessed

  15. Synchronous occurrence of odontogenic myxoma with multiple keratocystic odontogenic tumors in nevoid basal cell carcinoma syndrome.

    Science.gov (United States)

    Shao, Zhe; Liu, Bing; Zhang, WenFeng; Chen, XinMing

    2013-01-01

    The keratocystic odontogenic tumor (KCOT) is a benign developmental tumor with many distinguishing clinical and histologic features. Usually, multiple KCOTs occur as a component of nevoid basal cell carcinoma syndrome. The odontogenic myxoma is a rare benign tumor that represents about 3% of all odontogenic tumors. This article reports the case of mandible odontogenic myxoma with synchronous occurrence of multiple KCOTs, partial expression of nevoid basal cell carcinoma syndrome. A review of the international literature is also presented.

  16. Cell therapy for multiple sclerosis: an evolving concept with implications for other neurodegenerative diseases.

    Science.gov (United States)

    Rice, Claire M; Kemp, Kevin; Wilkins, Alastair; Scolding, Neil J

    2013-10-05

    Multiple sclerosis is a major cause of neurological disability, and particularly occurs in young adults. It is characterised by conspicuous patches of damage throughout the brain and spinal cord, with loss of myelin and myelinating cells (oligodendrocytes), and damage to neurons and axons. Multiple sclerosis is incurable, but stem-cell therapy might offer valuable therapeutic potential. Efforts to develop stem-cell therapies for multiple sclerosis have been conventionally built on the principle of direct implantation of cells to replace oligodendrocytes, and therefore to regenerate myelin. Recent progress in understanding of disease processes in multiple sclerosis include observations that spontaneous myelin repair is far more widespread and successful than was previously believed, that loss of axons and neurons is more closely associated with progressive disability than is myelin loss, and that damage occurs diffusely throughout the CNS in grey and white matter, not just in discrete, isolated patches or lesions. These findings have introduced new and serious challenges that stem-cell therapy needs to overcome; the practical challenges to achieve cell replacement alone are difficult enough, but, to be useful, cell therapy for multiple sclerosis must achieve substantially more than the replacement of lost oligodendrocytes. However, parallel advances in understanding of the reparative properties of stem cells--including their distinct immunomodulatory and neuroprotective properties, interactions with resident or tissue-based stem cells, cell fusion, and neurotrophin elaboration--offer renewed hope for development of cell-based therapies. Additionally, these advances suggest avenues for translation of this approach not only for multiple sclerosis, but also for other common neurological and neurodegenerative diseases. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Germ Cell Cancer and Multiple Relapses: Toxicity and Survival

    DEFF Research Database (Denmark)

    Lauritsen, Jakob; Kier, Maria G.G.; Mortensen, Mette S.

    2015-01-01

    Purpose: A small number of patients with germ cell cancer (GCC) receive more than one line of treatment for disseminated disease. The purpose of this study was to evaluate late toxicity and survival in an unselected cohort of patients who experienced relapse after receiving first-line treatment...

  18. Involvement of multiple cell lineages in atherogenesis | Ogeng'o ...

    African Journals Online (AJOL)

    Atherogenesis is a multicellular event. Early reports concentrated on the role of endotheliocytes, monocyte - macrophages and smooth muscle cells. Recognition of the immuno-inflammatory nature of the process, however, expanded the scope of cellular involvement and more recent reviews emphasize the role of immune ...

  19. Revealing cell assemblies at multiple levels of granularity.

    Science.gov (United States)

    Billeh, Yazan N; Schaub, Michael T; Anastassiou, Costas A; Barahona, Mauricio; Koch, Christof

    2014-10-30

    Current neuronal monitoring techniques, such as calcium imaging and multi-electrode arrays, enable recordings of spiking activity from hundreds of neurons simultaneously. Of primary importance in systems neuroscience is the identification of cell assemblies: groups of neurons that cooperate in some form within the recorded population. We introduce a simple, integrated framework for the detection of cell-assemblies from spiking data without a priori assumptions about the size or number of groups present. We define a biophysically-inspired measure to extract a directed functional connectivity matrix between both excitatory and inhibitory neurons based on their spiking history. The resulting network representation is analyzed using the Markov Stability framework, a graph theoretical method for community detection across scales, to reveal groups of neurons that are significantly related in the recorded time-series at different levels of granularity. Using synthetic spike-trains, including simulated data from leaky-integrate-and-fire networks, our method is able to identify important patterns in the data such as hierarchical structure that are missed by other standard methods. We further apply the method to experimental data from retinal ganglion cells of mouse and salamander, in which we identify cell-groups that correspond to known functional types, and to hippocampal recordings from rats exploring a linear track, where we detect place cells with high fidelity. We present a versatile method to detect neural assemblies in spiking data applicable across a spectrum of relevant scales that contributes to understanding spatio-temporal information gathered from systems neuroscience experiments. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  20. A television scanner for the ultracentrifuge. II. Multiple cell operation.

    Science.gov (United States)

    Rockholt, D L; Royce, C R; Richards, E G

    1976-07-01

    The "Optical Multichannel Analyzer" (OMA) is a commercially available instrument that with the absorption optical system of the ultracentrifuge, provides an entire 500 channel intensity profile of a cell in real time. With its own analog-todigital converter, the OMA integrates a selectable number of 32.8 msec scans to provide a time-averaged image in digital form. This paper describes an interface-controller for operation of the OMA with single- and double-sector cells in multi-cell rotors, simulating double-beam measurement required for absorbance determinations. The desired sector is selected by "gating" the intensifier stage of a "Silicon Intensified Target" vidicon (SIT) used as the light detector. The cell location in the rotor and the position of the gate relative to the cell centerline is obtained from a phase-locked loop circuit which divides each rotation of the rotor into 3600 parts independent of rotor speed. (This circuit employed with photo-multiplier scanners would select the gate position for integration of photomultiplier pulses.) From examination of appropriate signals with an oscilloscope, it was verified that gate positions and widths are located with an accuracy of 0.1degree or better and with a precision of +/- 0.1 mus. The light intensity profile for any desired cell can be examined in "real time", even during acceleration of the rotor. Additional circuits employing a 10 MHz crystal clock 1) control the automatic collection of data for all sectors in multicell rotors at digitally selected time intervals, 2) display the rotor speed, and 3) indicate the elapsed time of the experiment. Constructed but not tested are additional circuits for pulsing a laser into the absorption or Rayleigh optical system. The accuracy of the pulsed SIT has been demonstrated by measurement of absorbances of solutions and also by sedimentation equilibrium experiments with myoglobin. The estimated error is 0.003 for absorbances ranging from 0 to 1. The interface

  1. Dendritic Cells and Their Multiple Roles during Malaria Infection

    Directory of Open Access Journals (Sweden)

    Kelly N. S. Amorim

    2016-01-01

    Full Text Available Dendritic cells (DCs play a central role in the initiation of adaptive immune responses, efficiently presenting antigens to T cells. This ability relies on the presence of numerous surface and intracellular receptors capable of sensing microbial components as well as inflammation and on a very efficient machinery for antigen presentation. In this way, DCs sense the presence of a myriad of pathogens, including Plasmodium spp., the causative agent of malaria. Despite many efforts to control this infection, malaria is still responsible for high rates of morbidity and mortality. Different groups have shown that DCs act during Plasmodium infection, and data suggest that the phenotypically distinct DCs subsets are key factors in the regulation of immunity during infection. In this review, we will discuss the importance of DCs for the induction of immunity against the different stages of Plasmodium, the outcomes of DCs activation, and also what is currently known about Plasmodium components that trigger such activation.

  2. Autologous hematopoietic stem cell transplantation in relapsing-remitting multiple sclerosis: comparison with secondary progressive multiple sclerosis.

    Science.gov (United States)

    Casanova, Bonaventura; Jarque, Isidro; Gascón, Francisco; Hernández-Boluda, Juan Carlos; Pérez-Miralles, Francisco; de la Rubia, Javier; Alcalá, Carmen; Sanz, Jaime; Mallada, Javier; Cervelló, Angeles; Navarré, Arantxa; Carcelén-Gadea, María; Boscá, Isabel; Gil-Perotin, Sara; Solano, Carlos; Sanz, Miguel Angel; Coret, Francisco

    2017-07-01

    The main objective of our work is to describe the long-term results of myeloablative autologous hematopoietic stem cell transplant (AHSCT) in multiple sclerosis patients. Patients that failed to conventional therapies for multiple sclerosis (MS) underwent an approved protocol for AHSCT, which consisted of peripheral blood stem cell mobilization with cyclophosphamide and granulocyte colony-stimulating factor (G-CSF), followed by a conditioning regimen of BCNU, Etoposide, Ara-C, Melphalan IV, plus Rabbit Thymoglobulin. Thirty-eight MS patients have been transplanted since 1999. Thirty-one patients have been followed for more than 2 years (mean 8.4 years). There were 22 relapsing-remitting multiple sclerosis (RRMS) patients and 9 secondary progressive multiple sclerosis (SPMS) patients. No death related to AHSCT. A total of 10 patients (32.3%) had at least one relapse during post-AHSCT evolution, 6 patients in the RRMS group (27.2%) and 4 in the SPMS group (44.4%). After AHSCT, 7 patients (22.6%) experienced progression of disability, all within SP form. By contrast, no patients with RRMS experienced worsening of disability after a median follow-up of 5.4 years, 60% of them showed a sustained reduction in disability (SRD), defined as the improvement of 1.0 point in the expanded disability status scale (EDSS) sustains for 6 months (0.5 in cases of EDSS ≥ 5.5). The only clinical variable that predicted a poor response to AHSCT was a high EDSS in the year before transplant. AHSCT using the BEAM-ATG scheme is safe and efficacious to control the aggressive forms of RRMS.

  3. Intracranial Tumor Cell Migration and the Development of Multiple Brain Metastases in Malignant Melanoma

    Directory of Open Access Journals (Sweden)

    Trude G. Simonsen

    2016-06-01

    Full Text Available INTRODUCTION: A majority of patients with melanoma brain metastases develop multiple lesions, and these patients show particularly poor prognosis. To develop improved treatment strategies, detailed insights into the biology of melanoma brain metastases, and particularly the development of multiple lesions, are needed. The purpose of this preclinical investigation was to study melanoma cell migration within the brain after cell injection into a well-defined intracerebral site. METHODS: A-07, D-12, R-18, and U-25 human melanoma cells transfected with green fluorescent protein were injected stereotactically into the right cerebral hemisphere of nude mice. Moribund mice were killed and autopsied, and the brain was evaluated by fluorescence imaging or histological examination. RESULTS: Intracerebral inoculation of melanoma cells produced multiple lesions involving all regions of the brain, suggesting that the cells were able to migrate over substantial distances within the brain. Multiple modes of transport were identified, and all transport modes were observed in all four melanoma lines. Thus, the melanoma cells were passively transported via the flow of cerebrospinal fluid in the meninges and ventricles, they migrated actively along leptomeningeal and brain parenchymal blood vessels, and they migrated actively along the surfaces separating different brain compartments. CONCLUSION: Migration of melanoma cells after initial arrest, extravasation, and growth at a single location within the brain may contribute significantly to the development of multiple melanoma brain metastases.

  4. Air-spore in Cartagena, Spain: viable and non-viable sampling methods.

    Science.gov (United States)

    Elvira-Rendueles, Belen; Moreno, Jose; Garcia-Sanchez, Antonio; Vergara, Nuria; Martinez-Garcia, Maria Jose; Moreno-Grau, Stella

    2013-01-01

    In the presented study the airborne fungal spores of the semiarid city of Cartagena, Spain, are identified and quantified by means of viable or non-viable sampling methods. Airborne fungal samples were collected simultaneously using a filtration method and a pollen and particle sampler based on the Hirst methodology. This information is very useful for elucidating geographical patterns of hay fever and asthma. The qualitative results showed that when the non-viable methodology was employed, Cladosporium, Ustilago, and Alternaria were the most abundant spores identified in the atmosphere of Cartagena, while the viable methodology showed that the most abundant taxa were: Cladosporium, Penicillium, Aspergillus and Alternaria. The quantitative results of airborne fungal spores identified by the Hirst-type air sampler (non-viable method), showed that Deuteromycetes represented 74% of total annual spore counts, Cladosporium being the major component of the fungal spectrum (62.2%), followed by Alternaria (5.3%), and Stemphylium (1.3%). The Basidiomycetes group represented 18.9% of total annual spore counts, Ustilago (7.1%) being the most representative taxon of this group and the second most abundant spore type. Ascomycetes accounted for 6.9%, Nectria (2.3%) being the principal taxon. Oomycetes (0.2%) and Zygomycestes and Myxomycestes (0.06%) were scarce. The prevailing species define our bioaerosol as typical of dry air. The viable methodology was better at identifying small hyaline spores and allowed for the discrimination of the genus of some spore types. However, non-viable methods revealed the richness of fungal types present in the bioaerosol. Thus, the use of both methodologies provides a more comprehensive characterization of the spore profile.

  5. Parejas viables que perduran en el tiempo

    OpenAIRE

    Juan José Cuervo Rodríguez

    2013-01-01

    El presente artículo científico presenta resultados del proceso llevado a cabo en el proyecto de investigación docente "Mecanismos de autorregulación en parejas viables que perduran en el tiempo". Se soporta en una mirada compleja de la psicología basada en una epistemología de la construcción. En el ámbito metodológico, se inscribe en los estudios de terapia familiar desde una perspectiva de la comunicación humana como un todo integrado. Participaron nueve parejas. Los criterios de inclusión...

  6. A novel Multiple-Marker Method for the Early Diagnosis of Oral Squamous Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Jutta Ries

    2009-01-01

    Full Text Available Objective: Melanoma associated antigens-A (MAGE-A expression is highly specific to cancer cells. Thus, they can be the most suitable targets for the diagnosis of malignancy. The aim of this study was to evaluate the sensitivity of multiple MAGE-A expression analysis for the diagnosis of oral squamous cell carcinoma (OSCC.

  7. Characterization of naïve, memory and effector T cells in progressive multiple sclerosis

    DEFF Research Database (Denmark)

    Nielsen, Birgitte Romme; Ratzer, Rikke; Börnsen, Lars

    2017-01-01

    We characterized naïve, central memory (CM), effector memory (EM) and terminally differentiated effector memory (TEMRA) CD4+ and CD8+ T cells and their expression of CD49d and CD26 in peripheral blood in patients with multiple sclerosis (MS) and healthy controls. CD26+ CD28+ CD4+ TEMRA T cells were...

  8. A rapid biosensor for viable B. anthracis spores.

    Science.gov (United States)

    Baeumner, Antje J; Leonard, Barbara; McElwee, John; Montagna, Richard A

    2004-09-01

    A simple membrane-strip-based biosensor assay has been combined with a nucleic acid sequence-based amplification (NASBA) reaction for rapid (4 h) detection of a small number (ten) of viable B. anthracis spores. The biosensor is based on identification of a unique mRNA sequence from one of the anthrax toxin genes, the protective antigen ( pag), encoded on the toxin plasmid, pXO1, and thus provides high specificity toward B. anthracis. Previously, the anthrax toxins activator ( atxA) mRNA had been used in our laboratory for the development of a biosensor for the detection of a single B. anthracis spore within 12 h. Changing the target sequence to the pag mRNA provided the ability to shorten the overall assay time significantly. The vaccine strain of B. anthracis (Sterne strain) was used in all experiments. A 500-microL sample containing as few as ten spores was mixed with 500 microL growth medium and incubated for 30 min for spore germination and mRNA production. Thus, only spores that are viable were detected. Subsequently, RNA was extracted from lysed cells, selectively amplified using NASBA, and rapidly identified by the biosensor. While the biosensor assay requires only 15 min assay time, the overall process takes 4 h for detection of ten viable B. anthracis spores, and is shortened significantly if more spores are present. The biosensor is based on an oligonucleotide sandwich-hybridization assay format. It uses a membrane flow-through system with an immobilized DNA probe that hybridizes with the target sequence. Signal amplification is provided when the target sequence hybridizes to a second DNA probe that has been coupled to liposomes encapsulating the dye sulforhodamine B. The amount of liposomes captured in the detection zone can be read visually or quantified with a hand-held reflectometer. The biosensor can detect as little as 1 fmol target mRNA (1 nmol L(-1)). Specificity analysis revealed no cross-reactivity with 11 organisms tested, among them closely

  9. Selective purging of human multiple myeloma cells from autologous stem cell transplant grafts using oncolytic myxoma virus

    OpenAIRE

    Bartee, Eric; Chan, Winnie S.; Moreb, Jan S.; Cogle, Christopher R.; McFadden, Grant

    2012-01-01

    Autologous stem cell transplantation (ASCT) and novel therapies have improved overall survival of patients with multiple myeloma; however, most patients relapse and eventually succumb to their disease. Evidence indicates that residual cancer cells contaminate autologous grafts and may contribute to early relapses after ASCT. Here, we demonstrate that ex vivo treatment with an oncolytic poxvirus called myxoma virus results in specific elimination of human myeloma cells by inducing rapid cellul...

  10. A CASE REPORT OF MULTIPLE PRIMARY SQUAMOUS CELL CARCINOMAS OF THE OVARY AND SIGMOID COLON

    Directory of Open Access Journals (Sweden)

    A. B. Villert

    2016-01-01

    Full Text Available Squamous cell ovarian and sigmoid colon carcinomas are extremely rare malignancies. Because of their rarity, it is difficult to investigate the clinical characteristics and prognosis of patients with theses malignancies, and therefore, the increased interest in each clinical case report is highly relevant. Multiple primary squamous cell ovarian and sigmoid colon carcinomas are the subject of discussion and differential diagnosis of sigmoid colon cancer with secondary ovarian cancer. Histopathological and clinical characteristics of the tumors were present and evidences in favor of the multiple primary malignancies were given. The association of squamous cell ovarian and sigmoid colon carcinomas with human papilloma virus type 16 was shown.

  11. AFAP-1L1-mediated actin filaments crosslinks hinder Trypanosoma cruzi cell invasion and intracellular multiplication.

    Science.gov (United States)

    de Araújo, Karine Canuto Loureiro; Teixeira, Thaise Lara; Machado, Fabrício Castro; da Silva, Aline Alves; Quintal, Amanda Pifano Neto; da Silva, Claudio Vieira

    2016-10-01

    Host actin cytoskeleton polymerization has been shown to play an important role during Trypanosoma cruzi internalization into mammalian cell. The structure and dynamics of the actin cytoskeleton in cells are regulated by a vast number of actin-binding proteins. Here we aimed to verify the impact of AFAP-1L1, during invasion and multiplication of T. cruzi. Knocking-down AFAP-1L1 increased parasite cell invasion and intracellular multiplication. Thus, we have shown that the integrity of the machinery formed by AFAP-1L1 in actin cytoskeleton polymerization is important to hinder parasite infection. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. The anticancer agent PB-100, selectively active on malignant cells, inhibits multiplication of sixteen malignant cell lines, even multidrug resistant

    Directory of Open Access Journals (Sweden)

    Beljanski Mirko

    2000-01-01

    Full Text Available The plant-derived anticancer agent PB-100 selectively destroys cancer cells, even when multidrug resistant; yet, it does not inhibit normal (non-malignant cell multiplication. Testing of PB-100 on sixteen malignant cell lines, several multidrug resistant, as well as on five normal cell lines, confirmed our previous results. Flavopereirine and dihydroflavopereirine, the active principles of PB-100, were chemically synthesized and displayed the same selectivity for tumor cells as the purified plant extract, being active at even lower concentrations.

  13. Multiple Loci Are Associated with White Blood Cell Phenotypes

    Science.gov (United States)

    Yang, Qiong; Greinacher, Andreas; Wood, Andrew R.; Garcia, Melissa; Gasparini, Paolo; Liu, Yongmei; Lumley, Thomas; Folsom, Aaron R.; Reiner, Alex P.; Gieger, Christian; Lagou, Vasiliki; Felix, Janine F.; Völzke, Henry; Gouskova, Natalia A.; Biffi, Alessandro; Döring, Angela; Völker, Uwe; Chong, Sean; Wiggins, Kerri L.; Rendon, Augusto; Dehghan, Abbas; Moore, Matt; Taylor, Kent; Wilson, James G.; Lettre, Guillaume; Hofman, Albert; Bis, Joshua C.; Pirastu, Nicola; Fox, Caroline S.; Meisinger, Christa; Sambrook, Jennifer; Arepalli, Sampath; Nauck, Matthias; Prokisch, Holger; Stephens, Jonathan; Glazer, Nicole L.; Cupples, L. Adrienne; Okada, Yukinori; Takahashi, Atsushi; Kamatani, Yoichiro; Matsuda, Koichi; Tsunoda, Tatsuhiko; Tanaka, Toshihiro; Kubo, Michiaki; Nakamura, Yusuke; Yamamoto, Kazuhiko; Kamatani, Naoyuki; Stumvoll, Michael; Tönjes, Anke; Prokopenko, Inga; Illig, Thomas; Patel, Kushang V.; Garner, Stephen F.; Kuhnel, Brigitte; Mangino, Massimo; Oostra, Ben A.; Thein, Swee Lay; Coresh, Josef; Wichmann, H.-Erich; Menzel, Stephan; Lin, JingPing; Pistis, Giorgio; Uitterlinden, André G.; Spector, Tim D.; Teumer, Alexander; Eiriksdottir, Gudny; Gudnason, Vilmundur; Bandinelli, Stefania; Frayling, Timothy M.; Chakravarti, Aravinda; van Duijn, Cornelia M.; Melzer, David; Ouwehand, Willem H.; Levy, Daniel; Boerwinkle, Eric; Singleton, Andrew B.; Hernandez, Dena G.; Longo, Dan L.; Soranzo, Nicole; Witteman, Jacqueline C. M.; Psaty, Bruce M.; Ferrucci, Luigi; Harris, Tamara B.; O'Donnell, Christopher J.; Ganesh, Santhi K.

    2011-01-01

    White blood cell (WBC) count is a common clinical measure from complete blood count assays, and it varies widely among healthy individuals. Total WBC count and its constituent subtypes have been shown to be moderately heritable, with the heritability estimates varying across cell types. We studied 19,509 subjects from seven cohorts in a discovery analysis, and 11,823 subjects from ten cohorts for replication analyses, to determine genetic factors influencing variability within the normal hematological range for total WBC count and five WBC subtype measures. Cohort specific data was supplied by the CHARGE, HeamGen, and INGI consortia, as well as independent collaborative studies. We identified and replicated ten associations with total WBC count and five WBC subtypes at seven different genomic loci (total WBC count—6p21 in the HLA region, 17q21 near ORMDL3, and CSF3; neutrophil count—17q21; basophil count- 3p21 near RPN1 and C3orf27; lymphocyte count—6p21, 19p13 at EPS15L1; monocyte count—2q31 at ITGA4, 3q21, 8q24 an intergenic region, 9q31 near EDG2), including three previously reported associations and seven novel associations. To investigate functional relationships among variants contributing to variability in the six WBC traits, we utilized gene expression- and pathways-based analyses. We implemented gene-clustering algorithms to evaluate functional connectivity among implicated loci and showed functional relationships across cell types. Gene expression data from whole blood was utilized to show that significant biological consequences can be extracted from our genome-wide analyses, with effect estimates for significant loci from the meta-analyses being highly corellated with the proximal gene expression. In addition, collaborative efforts between the groups contributing to this study and related studies conducted by the COGENT and RIKEN groups allowed for the examination of effect homogeneity for genome-wide significant associations across populations

  14. Multiple loci are associated with white blood cell phenotypes.

    Directory of Open Access Journals (Sweden)

    Michael A Nalls

    2011-06-01

    Full Text Available White blood cell (WBC count is a common clinical measure from complete blood count assays, and it varies widely among healthy individuals. Total WBC count and its constituent subtypes have been shown to be moderately heritable, with the heritability estimates varying across cell types. We studied 19,509 subjects from seven cohorts in a discovery analysis, and 11,823 subjects from ten cohorts for replication analyses, to determine genetic factors influencing variability within the normal hematological range for total WBC count and five WBC subtype measures. Cohort specific data was supplied by the CHARGE, HeamGen, and INGI consortia, as well as independent collaborative studies. We identified and replicated ten associations with total WBC count and five WBC subtypes at seven different genomic loci (total WBC count-6p21 in the HLA region, 17q21 near ORMDL3, and CSF3; neutrophil count-17q21; basophil count- 3p21 near RPN1 and C3orf27; lymphocyte count-6p21, 19p13 at EPS15L1; monocyte count-2q31 at ITGA4, 3q21, 8q24 an intergenic region, 9q31 near EDG2, including three previously reported associations and seven novel associations. To investigate functional relationships among variants contributing to variability in the six WBC traits, we utilized gene expression- and pathways-based analyses. We implemented gene-clustering algorithms to evaluate functional connectivity among implicated loci and showed functional relationships across cell types. Gene expression data from whole blood was utilized to show that significant biological consequences can be extracted from our genome-wide analyses, with effect estimates for significant loci from the meta-analyses being highly corellated with the proximal gene expression. In addition, collaborative efforts between the groups contributing to this study and related studies conducted by the COGENT and RIKEN groups allowed for the examination of effect homogeneity for genome-wide significant associations across

  15. Role of Immunological Memory Cells as a Therapeutic Target in Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Tanima Bose

    2017-11-01

    Full Text Available Pharmacological targeting of memory cells is an attractive treatment strategy in various autoimmune diseases, such as psoriasis and rheumatoid arthritis. Multiple sclerosis is the most common inflammatory disorder of the central nervous system, characterized by focal immune cell infiltration, activation of microglia and astrocytes, along with progressive damage to myelin sheaths, axons, and neurons. The current review begins with the identification of memory cell types in the previous literature and a recent description of the modulation of these cell types in T, B, and resident memory cells in the presence of different clinically approved multiple sclerosis drugs. Overall, this review paper tries to determine the potential of memory cells to act as a target for the current or newly-developed drugs.

  16. Tuning cell migration: contractility as an integrator of intracellular signals from multiple cues

    Science.gov (United States)

    Bordeleau, Francois; Reinhart-King, Cynthia A.

    2016-01-01

    There has been immense progress in our understanding of the factors driving cell migration in both two-dimensional and three-dimensional microenvironments over the years. However, it is becoming increasingly evident that even though most cells share many of the same signaling molecules, they rarely respond in the same way to migration cues. To add to the complexity, cells are generally exposed to multiple cues simultaneously, in the form of growth factors and/or physical cues from the matrix. Understanding the mechanisms that modulate the intracellular signals triggered by multiple cues remains a challenge. Here, we will focus on the molecular mechanism involved in modulating cell migration, with a specific focus on how cell contractility can mediate the crosstalk between signaling initiated at cell-matrix adhesions and growth factor receptors. PMID:27508074

  17. Characterization of CD4+T cell-mediated cytotoxicity in patients with multiple myeloma.

    Science.gov (United States)

    Zhang, Xiaole; Gao, Lei; Meng, Kai; Han, Chunting; Li, Qiang; Feng, Zhenjun; Chen, Lei

    2018-02-12

    Multiple myeloma (MM) is an incurable cancer characterized by the development of malignant plasma cells. The CD8 T cell-mediated cytotoxicity is considered a major player in antitumor immunity, but in MM patients, the CD8 T cells displayed senescence markers and were functionally impaired. To investigate whether cytotoxic CD4 T cells could act as a treatment alternative in MM, we examined the frequency and function of naturally occurring cytotoxic CD4 T cells in MM patients. The cytotoxic CD4 T cells were identified as granzyme-A, granzyme B-, and perforin-expressing CD4 T cells, and their frequencies were significantly upregulated in MM patients when compared with healthy controls. The frequencies of cytotoxic CD4 T cells in MM patients were not associated with the frequencies of cytotoxic CD8 T cells, but were negatively associated with disease severity. Interestingly, the expression levels of inhibitory molecules, including PD-1 and CTLA-4, were significantly lower in cytotoxic CD4 T cells than in cytotoxic CD8 T cells. When co-incubated with autologous CD38 + CD138 + plasma cells, CD4 T cells were capable of eliminating plasma cells with varying degrees of efficacy. In MM patients, the frequency of circulating plasma cells was negatively correlated with the frequency of cytotoxic CD4 T cells. Therefore, CD4 T cell-mediated cytotoxicity existed naturally in MM patients and could potentially act as an option in antitumor therapies. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Prospective clinical and radiographic evaluation of an allogeneic bone matrix containing stem cells (Trinity Evolution® Viable Cellular Bone Matrix) in patients undergoing two-level anterior cervical discectomy and fusion.

    Science.gov (United States)

    Peppers, Timothy A; Bullard, Dennis E; Vanichkachorn, Jed S; Stanley, Scott K; Arnold, Paul M; Waldorff, Erik I; Hahn, Rebekah; Atkinson, Brent L; Ryaby, James T; Linovitz, Raymond J

    2017-04-26

    Trinity Evolution® (TE), a viable cellular bone allograft, previously demonstrated high fusion rates and no safety-related concerns after single-level anterior cervical discectomy and fusion (ACDF) procedures. This prospective multicenter clinical study was performed to assess the radiographic and clinical outcomes of TE in subjects undergoing two-level ACDF procedures. In a prospective, multicenter study, 40 subjects that presented with symptomatic cervical degeneration at two adjacent vertebral levels underwent instrumented ACDF using TE autograft substitute in a polyetherethereketone (PEEK) cage. At 12 months, radiographic fusion status was evaluated by dynamic motion plain radiographs and thin cut CT with multiplanar reconstruction by a panel that was blinded to clinical outcome. Fusion success was defined by angular motion (≤4°) and the presence of bridging bone across the adjacent vertebral endplates. Clinical pain and function assessments included the Neck Disability Index (NDI), neck and arm pain as evaluated by visual analog scales (VAS), and SF-36 at both 6 and 12 months. At both 6 and 12 months, all clinical outcome scores (SF-36, NDI, and VAS pain) improved significantly (p Trinity Evolution in Anterior Cervical Disectomy and Fusion (ACDF) NCT00951938.

  19. Mechanisms of Oxidative Damage in Multiple Sclerosis and a Cell Therapy Approach to Treatment

    Directory of Open Access Journals (Sweden)

    Jonathan Witherick

    2011-01-01

    Full Text Available Although significant advances have recently been made in the understanding and treatment of multiple sclerosis, reduction of long-term disability remains a key goal. Evidence suggests that inflammation and oxidative stress within the central nervous system are major causes of ongoing tissue damage in the disease. Invading inflammatory cells, as well as resident central nervous system cells, release a number of reactive oxygen and nitrogen species which cause demyelination and axonal destruction, the pathological hallmarks of multiple sclerosis. Reduction in oxidative damage is an important therapeutic strategy to slow or halt disease processes. Many drugs in clinical practice or currently in trial target this mechanism. Cell-based therapies offer an alternative source of antioxidant capability. Classically thought of as being important for myelin or cell replacement in multiple sclerosis, stem cells may, however, have a more important role as providers of supporting factors or direct attenuators of the disease. In this paper we focus on the antioxidant properties of mesenchymal stem cells and discuss their potential importance as a cell-based therapy for multiple sclerosis.

  20. Individual motile CD4+ T cells can participate in efficient multi-killing through conjugation to multiple tumor cells

    Science.gov (United States)

    Liadi, Ivan; Singh, Harjeet; Romain, Gabrielle; Rey-Villamizar, Nicolas; Merouane, Amine; Adolacion, Jay R T.; Kebriaei, Partow; Huls, Helen; Qiu, Peng; Roysam, Badrinath; Cooper, Laurence J.N.; Varadarajan, Navin

    2015-01-01

    T cells genetically modified to express a CD19-specific chimeric antigen receptor (CAR) for the investigational treatment of B-cell malignancies comprise a heterogeneous population, and their ability to persist and participate in serial killing of tumor cells is a predictor of therapeutic success. We implemented Timelapse Imaging Microscopy In Nanowell Grids (TIMING) to provide direct evidence that CD4+CAR+ T cells (CAR4 cells) can engage in multi-killing via simultaneous conjugation to multiple tumor cells. Comparisons of the CAR4 cells and CD8+CAR+ T cells (CAR8 cells) demonstrate that while CAR4 cells can participate in killing and multi-killing, they do so at slower rates, likely due to the lower Granzyme B content. Significantly, in both sets of T cells, a minor sub-population of individual T cells identified by their high motility, demonstrated efficient killing of single tumor cells. By comparing both the multi-killer and single killer CAR+ T cells it appears that the propensity and kinetics of T-cell apoptosis was modulated by the number of functional conjugations. T cells underwent rapid apoptosis, and at higher frequencies, when conjugated to single tumor cells in isolation and this effect was more pronounced on CAR8 cells. Our results suggest that the ability of CAR+ T cells to participate in multi-killing should be evaluated in the context of their ability to resist activation induced cell death (AICD). We anticipate that TIMING may be utilized to rapidly determine the potency of T-cell populations and may facilitate the design and manufacture of next-generation CAR+ T cells with improved efficacy. PMID:25711538

  1. Generative models: Human embryonic stem cells and multiple modeling relations.

    Science.gov (United States)

    Fagan, Melinda Bonnie

    2016-04-01

    Model organisms are at once scientific models and concrete living things. It is widely assumed by philosophers of science that (1) model organisms function much like other kinds of models, and (2) that insofar as their scientific role is distinctive, it is in virtue of representing a wide range of biological species and providing a basis for generalizations about those targets. This paper uses the case of human embryonic stem cells (hESC) to challenge both assumptions. I first argue that hESC can be considered model organisms, analogous to classic examples such as Escherichia coli and Drosophila melanogaster. I then discuss four contrasts between the epistemic role of hESC in practice, and the assumptions about model organisms noted above. These contrasts motivate an alternative view of model organisms as a network of systems related constructively and developmentally to one another. I conclude by relating this result to other accounts of model organisms in recent philosophy of science. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. PMA-Linked Fluorescence for Rapid Detection of Viable Bacterial Endospores

    Science.gov (United States)

    LaDuc, Myron T.; Venkateswaran, Kasthuri; Mohapatra, Bidyut

    2012-01-01

    The most common approach for assessing the abundance of viable bacterial endospores is the culture-based plating method. However, culture-based approaches are heavily biased and oftentimes incompatible with upstream sample processing strategies, which make viable cells/spores uncultivable. This shortcoming highlights the need for rapid molecular diagnostic tools to assess more accurately the abundance of viable spacecraft-associated microbiota, perhaps most importantly bacterial endospores. Propidium monoazide (PMA) has received a great deal of attention due to its ability to differentiate live, viable bacterial cells from dead ones. PMA gains access to the DNA of dead cells through compromised membranes. Once inside the cell, it intercalates and eventually covalently bonds with the double-helix structures upon photoactivation with visible light. The covalently bound DNA is significantly altered, and unavailable to downstream molecular-based manipulations and analyses. Microbiological samples can be treated with appropriate concentrations of PMA and exposed to visible light prior to undergoing total genomic DNA extraction, resulting in an extract comprised solely of DNA arising from viable cells. This ability to extract DNA selectively from living cells is extremely powerful, and bears great relevance to many microbiological arenas.

  3. Human embryonic stem cells have enhanced repair of multiple forms of DNA damage

    DEFF Research Database (Denmark)

    Maynard, Scott; Swistowska, Anna Maria; Lee, Jae Wan

    2008-01-01

    Embryonic stem cells need to maintain genomic integrity so that they can retain the ability to differentiate into multiple cell types without propagating DNA errors. Previous studies have suggested that mechanisms of genome surveillance, including DNA repair, are superior in mouse embryonic stem...... cells compared with various differentiated murine cells. Using single-cell gel electrophoresis (comet assay) we found that human embryonic stem cells (BG01, I6) have more efficient repair of different types of DNA damage (generated from H2O2, UV-C, ionizing radiation, or psoralen) than human primary...... fibroblasts (WI-38, hs27) and, with the exception of UV-C damage, HeLa cells. Microarray gene expression analysis showed that mRNA levels of several DNA repair genes are elevated in human embryonic stem cells compared with their differentiated forms (embryoid bodies). These data suggest that genomic...

  4. Modulation of cell metabolic pathways and oxidative stress signaling contribute to acquired melphalan resistance in multiple myeloma cells

    DEFF Research Database (Denmark)

    Zub, Kamila Anna; Sousa, Mirta Mittelstedt Leal de; Sarno, Antonio

    2015-01-01

    Alkylating agents are widely used chemotherapeutics in the treatment of many cancers, including leukemia, lymphoma, multiple myeloma, sarcoma, lung, breast and ovarian cancer. Melphalan is the most commonly used chemotherapeutic agent against multiple myeloma. However, despite a 70-80% initial...... and pathways not previously associated with melphalan resistance in multiple myeloma cells, including a metabolic switch conforming to the Warburg effect (aerobic glycolysis), and an elevated oxidative stress response mediated by VEGF/IL8-signaling. In addition, up-regulated aldo-keto reductase levels...

  5. Roots of success: cultivating viable community forestry

    Energy Technology Data Exchange (ETDEWEB)

    MacQueen, Duncan

    2009-05-15

    Is community forestry emerging from the shadows? The evidence shows that locally controlled enterprises can be economically viable, and often build on stronger social and environmental foundations than the big private-sector players. Certainly this is an industry in need of a shakeup. Many forests have become flashpoints where agro-industry, large-scale logging concerns and conservation interests clash, while forest-dependent communities are left out in the cold. Meanwhile, governments – driven by concerns over the climate impacts of deforestation – are having to gear up for legal, sustainable forestry production. Community forestry could be crucial to solving many of these challenges. By building on local core capabilities and developing strategic partnerships, they are forging key new business models that could transform the sector.

  6. Hollow fiber integrated microfluidic platforms for in vitro Co-culture of multiple cell types.

    Science.gov (United States)

    Huang, Jen-Huang; Harris, Jennifer F; Nath, Pulak; Iyer, Rashi

    2016-10-01

    This study demonstrates a rapid prototyping approach for fabricating and integrating porous hollow fibers (HFs) into microfluidic device. Integration of HF can enhance mass transfer and recapitulate tubular shapes for tissue-engineered environments. We demonstrate the integration of single or multiple HFs, which can give the users the flexibility to control the total surface area for tissue development. We also present three microfluidic designs to enable different co-culture conditions such as the ability to co-culture multiple cell types simultaneously on a flat and tubular surface, or inside the lumen of multiple HFs. Additionally, we introduce a pressurized cell seeding process that can allow the cells to uniformly adhere on the inner surface of HFs without losing their viabilities. Co-cultures of lung epithelial cells and microvascular endothelial cells were demonstrated on the different platforms for at least five days. Overall, these platforms provide new opportunities for co-culturing of multiple cell types in a single device to reconstruct native tissue micro-environment for biomedical and tissue engineering research.

  7. Polymerase chain reaction-based discrimination of viable from non-viable Mycoplasma gallisepticum

    Directory of Open Access Journals (Sweden)

    Ching Giap Tan

    2014-02-01

    Full Text Available The present study was based on the reverse transcription polymerase chain reaction (RT-PCR of the 16S ribosomal nucleic acid (rRNA of Mycoplasma for detection of viable Mycoplasma gallisepticum. To determine the stability of M. gallisepticum 16S rRNA in vitro, three inactivation methods were used and the suspensions were stored at different temperatures. The 16S rRNA of M. gallisepticum was detected up to approximately 20–25 h at 37 °C, 22–25 h at 16 °C, and 23–27 h at 4 °C. The test, therefore, could detect viable or recently dead M. gallisepticum (< 20 h. The RT-PCR method was applied during an in vivo study of drug efficacy under experimental conditions, where commercial broiler-breeder eggs were inoculated with M. gallisepticum into the yolk. Hatched chicks that had been inoculated in ovo were treated with Macrolide 1. The method was then applied in a flock of day 0 chicks with naturally acquired vertical transmission of M. gallisepticum, treated with Macrolide 2. Swabs of the respiratory tract were obtained for PCR and RT-PCR evaluations to determine the viability of M. gallisepticum. This study proved that the combination of both PCR and RT-PCR enables detection and differentiation of viable from non-viable M. gallisepticum.

  8. Cryoprotection and banking of living cells in a 3D multiple emulsion-based carrier.

    Science.gov (United States)

    Dluska, Ewa; Cui, Zhanfeng; Markowska-Radomska, Agnieszka; Metera, Agata; Kosicki, Konrad

    2017-08-01

    The ability to preserve stem cells/cells with minimal damage for short and long periods of time is essential for advancements in biomedical therapies and biotechnology. New methods of cell banking are continuously needed to provide effective damage prevention to cells. This paper puts forward a solution to the problem of the low viability of cells during cryopreservation in a traditional suspension and storage by developing innovative multiple emulsion-based carriers for the encapsulation and cryopreservation of cells. During freezing-thawing processes, irreversible damage to cells occurs as a result of the formation of ice crystals, cell dehydration, and the toxicity of cryoprotectant. The proposed method was effective due to the "flexible" protective structure of multiple emulsions, which was proven by a high cell survival rate, above 90%. Results make new contributions in the fields of cell engineering and biotechnology and contribute to the development of methods for banking biological material. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Dual modality live cell imaging with multiple-wavelength digital holography and epi-fluorescence

    Science.gov (United States)

    Mann, Christopher J.; Bingham, Philip R.; Lin, Henry K.; Paquit, Vincent C.; Gleason, Shaun S.

    2011-03-01

    We apply multiple-wavelength digital holography in combination with epi-fluorescence microscopy in order to generate quantitative phase and fluorescence information from cell samples. While digital holography provides high precision morphological information, the addition of fluorescence supplies the specificity needed to identify cellular constituents. By the application of multiple-wavelength digital holography it is possible to obtain the complete wavefront data deterministically and in real-time. We demonstrate this dual-mode imaging capability through the investigation of living cells. [Figure not available: see fulltext.

  10. Concept of multiple-cell cavity for axion dark matter search

    Science.gov (United States)

    Jeong, Junu; Youn, SungWoo; Ahn, Saebyeok; Kim, Jihn E.; Semertzidis, Yannis K.

    2018-02-01

    In cavity-based axion dark matter search experiments exploring high mass regions, multiple-cavity design is under consideration as a method to increase the detection volume within a given magnet bore. We introduce a new idea, referred to as a multiple-cell cavity, which provides various benefits including a larger detection volume, simpler experimental setup, and easier phase-matching mechanism. We present the characteristics of this concept and demonstrate the experimental feasibility with an example of a double-cell cavity.

  11. Effect of Natalizumab on Circulating CD4(+) T-Cells in Multiple Sclerosis

    DEFF Research Database (Denmark)

    Börnsen, Lars; Christensen, Jeppe Romme; Ratzer, Rikke

    2012-01-01

    In multiple sclerosis (MS), treatment with the monoclonal antibody natalizumab effectively reduces the formation of acute lesions in the central nervous system (CNS). Natalizumab binds the integrin very late antigen (VLA)-4, expressed on the surface of immune cells, and inhibits VLA-4 dependent...... transmigration of circulating immune-cells across the vascular endothelium into the CNS. Recent studies suggested that natalizumab treated MS patients have an increased T-cell pool in the blood compartment which may be selectively enriched in activated T-cells. Proposed causes are sequestration of activated T......-cells due to reduced extravasation of activated and pro-inflammatory T-cells or due to induction of VLA-4 mediated co-stimulatory signals by natalizumab. In this study we examined how natalizumab treatment altered the distribution of effector and memory T-cell subsets in the blood compartment and if T...

  12. Asymmetric Cell Division of T Cells Upon Antigen Presentation Utilizes Multiple Conserved Mechanisms

    Science.gov (United States)

    Oliaro, Jane; Van Ham, Vanessa; Sacirbegovic, Faruk; Pasam, Anupama; Bomzon, Ze’ev; Pham, Kim; Ludford-Menting, Mandy J.; Waterhouse, Nigel J.; Bots, Michael; Hawkins, Edwin D.; Watt, Sally V.; Cluse, Leonie A.; Clarke, Chris J.P.; Izon, David J.; Chang, John T.; Thompson, Natalie; Gu, Min; Johnstone, Ricky W.; Smyth, Mark J.; Humbert, Patrick O.; Reiner, Steven L.; Russell, Sarah M.

    2013-01-01

    Asymmetric cell division is a potential means by which cell fate choices during an immune response are orchestrated. Defining the molecular mechanisms that underlie asymmetric division of T cells is paramount for determining the role of this process in the generation of effector and memory T cell subsets. In other cell types, asymmetric cell division is regulated by conserved polarity protein complexes that control the localization of cell fate determinants and spindle orientation during division. We have developed a tractable, in vitro model of naïve CD8+ T cells undergoing initial division while attached to dendritic cells during antigen presentation to investigate whether similar mechanisms might regulate asymmetric division of T cells. Using this system, we show that direct interactions with antigen presenting cells provide the cue for polarization of T cells. Interestingly, the immunological synapse disseminates before division even though the T cells retain contact with the antigen presenting cell. The cue from the antigen presenting cell is translated into polarization of cell fate determinants via the polarity network of the Par3 and Scribble complexes and orientation of the mitotic spindle during division is orchestrated by the Pins/G protein complex. These findings suggest that T cells have selectively adapted a number of evolutionarily conserved mechanisms to generate diversity through asymmetric cell division. PMID:20530266

  13. Sigma-2 ligands induce tumour cell death by multiple signalling pathways.

    Science.gov (United States)

    Zeng, C; Rothfuss, J; Zhang, J; Chu, W; Vangveravong, S; Tu, Z; Pan, F; Chang, K C; Hotchkiss, R; Mach, R H

    2012-02-14

    The sigma-2 receptor has been identified as a biomarker of proliferating cells in solid tumours. In the present study, we studied the mechanisms of sigma-2 ligand-induced cell death in the mouse breast cancer cell line EMT-6 and the human melanoma cell line MDA-MB-435. EMT-6 and MDA-MB-435 cells were treated with sigma-2 ligands. The modulation of multiple signaling pathways of cell death was evaluated. Three sigma-2 ligands (WC-26, SV119 and RHM-138) induced DNA fragmentation, caspase-3 activation and PARP-1 cleavage. The caspase inhibitor Z-VAD-FMK partially blocked DNA fragmentation and cytotoxicity caused by these compounds. These data suggest that sigma-2 ligand-induced apoptosis and caspase activation are partially responsible for the cell death. WC-26 and siramesine induced formation of vacuoles in the cells. WC-26, SV119, RHM-138 and siramesine increased the synthesis and processing of microtubule-associated protein light chain 3, an autophagosome marker, and decreased the expression levels of the downstream effectors of mammalian target of rapamycin (mTOR), p70S6K and 4EBP1, suggesting that sigma-2 ligands induce autophagy, probably by inhibition of the mTOR pathway. All four sigma-2 ligands decreased the expression of cyclin D1 in a time-dependent manner. In addition, WC-26 and SV119 mainly decreased cyclin B1, E2 and phosphorylation of retinoblastoma protein (pRb); RHM-138 mainly decreased cyclin E2; and 10 μM siramesine mainly decreased cyclin B1 and pRb. These data suggest that sigma-2 ligands also impair cell-cycle progression in multiple phases of the cell cycle. Sigma-2 ligands induce cell death by multiple signalling pathways.

  14. HIF-1α inhibition blocks the cross talk between multiple myeloma plasma cells and tumor microenvironment

    Energy Technology Data Exchange (ETDEWEB)

    Borsi, Enrica, E-mail: enrica.borsi2@unibo.it [Department of Experimental Diagnostic and Specialty Medicine (DIMES), “L. and A. Seràgnoli”, Bologna University School of Medicine, S. Orsola' s University Hospital (Italy); Perrone, Giulia [Fondazione IRCCS Istituto Nazionale dei Tumori, Hematology Department, Via Venezian 1, 20133 Milano (Italy); Terragna, Carolina; Martello, Marina; Zamagni, Elena; Tacchetti, Paola; Pantani, Lucia; Brioli, Annamaria; Dico, Angela Flores; Zannetti, Beatrice Anna; Rocchi, Serena; Cavo, Michele [Department of Experimental Diagnostic and Specialty Medicine (DIMES), “L. and A. Seràgnoli”, Bologna University School of Medicine, S. Orsola' s University Hospital (Italy)

    2014-11-01

    Multiple myeloma (MM) is a malignant disorder of post-germinal center B cells, characterized by the clonal proliferation of malignant plasma cells (PCs) within the bone marrow (BM). The reciprocal and complex interactions that take place between the different compartments of BM and the MM cells result in tumor growth, angiogenesis, bone disease, and drug resistance. Given the importance of the BM microenvironment in MM pathogenesis, we investigated the possible involvement of Hypoxia-Inducible transcription Factor-1 alpha (HIF-1α) in the PCs-bone marrow stromal cells interplay. To test this hypothesis, we used EZN-2968, a 3rd generation antisense oligonucleotide against HIF-1α, to inhibit HIF-1α functions. Herein, we provide evidence that the interaction between MM cells and BM stromal cells is drastically reduced upon HIF-1α down-modulation. Notably, we showed that upon exposure to HIF-1α inhibitor, neither the incubation with IL-6 nor the co-culture with BM stromal cells were able to revert the anti-proliferative effect induced by EZN-2968. Moreover, we observed a down-modulation of cytokine-induced signaling cascades and a reduction of MM cells adhesion capability to the extracellular matrix proteins in EZN-2968-treated samples. Taken together, these results strongly support the concept that HIF-1α plays a critical role in the interactions between bone BM cells and PCs in Multiple Myeloma. - Highlights: • HIF-1α inhibition induces a mild apoptotic cell death. • Down-modulation of cytokine-induced signaling cascades upon HIF-1α inhibition. • Reduced interaction between MM cells and BMSCs upon HIF-1α down-modulation. • Reduced PCs adhesion to the extracellular matrix protein induced by EZN-2968. • HIF-1α inhibition may be an attractive therapeutic strategy for Multiple Myeloma.

  15. Multiple paths of electron flow to current in microbial electrolysis cells fed with low and high concentrations of propionate.

    Science.gov (United States)

    Hari, Ananda Rao; Katuri, Krishna P; Gorron, Eduardo; Logan, Bruce E; Saikaly, Pascal E

    2016-07-01

    Microbial electrolysis cells (MECs) provide a viable approach for bioenergy generation from fermentable substrates such as propionate. However, the paths of electron flow during propionate oxidation in the anode of MECs are unknown. Here, the paths of electron flow involved in propionate oxidation in the anode of two-chambered MECs were examined at low (4.5 mM) and high (36 mM) propionate concentrations. Electron mass balances and microbial community analysis revealed that multiple paths of electron flow (via acetate/H2 or acetate/formate) to current could occur simultaneously during propionate oxidation regardless of the concentration tested. Current (57-96 %) was the largest electron sink and methane (0-2.3 %) production was relatively unimportant at both concentrations based on electron balances. At a low propionate concentration, reactors supplemented with 2-bromoethanesulfonate had slightly higher coulombic efficiencies than reactors lacking this methanogenesis inhibitor. However, an opposite trend was observed at high propionate concentration, where reactors supplemented with 2-bromoethanesulfonate had a lower coulombic efficiency and there was a greater percentage of electron loss (23.5 %) to undefined sinks compared to reactors without 2-bromoethanesulfonate (11.2 %). Propionate removal efficiencies were 98 % (low propionate concentration) and 78 % (high propionate concentration). Analysis of 16S rRNA gene pyrosequencing revealed the dominance of sequences most similar to Geobacter sulfurreducens PCA and G. sulfurreducens subsp. ethanolicus. Collectively, these results provide new insights on the paths of electron flow during propionate oxidation in the anode of MECs fed with low and high propionate concentrations.

  16. Multiple paths of electron flow to current in microbial electrolysis cells fed with low and high concentrations of propionate

    KAUST Repository

    Rao, Hari Ananda

    2016-03-03

    Microbial electrolysis cells (MECs) provide a viable approach for bioenergy generation from fermentable substrates such as propionate. However, the paths of electron flow during propionate oxidation in the anode of MECs are unknown. Here, the paths of electron flow involved in propionate oxidation in the anode of two-chambered MECs were examined at low (4.5 mM) and high (36 mM) propionate concentrations. Electron mass balances and microbial community analysis revealed that multiple paths of electron flow (via acetate/H2 or acetate/formate) to current could occur simultaneously during propionate oxidation regardless of the concentration tested. Current (57–96 %) was the largest electron sink and methane (0–2.3 %) production was relatively unimportant at both concentrations based on electron balances. At a low propionate concentration, reactors supplemented with 2-bromoethanesulfonate had slightly higher coulombic efficiencies than reactors lacking this methanogenesis inhibitor. However, an opposite trend was observed at high propionate concentration, where reactors supplemented with 2-bromoethanesulfonate had a lower coulombic efficiency and there was a greater percentage of electron loss (23.5 %) to undefined sinks compared to reactors without 2-bromoethanesulfonate (11.2 %). Propionate removal efficiencies were 98 % (low propionate concentration) and 78 % (high propionate concentration). Analysis of 16S rRNA gene pyrosequencing revealed the dominance of sequences most similar to Geobacter sulfurreducens PCA and G. sulfurreducens subsp. ethanolicus. Collectively, these results provide new insights on the paths of electron flow during propionate oxidation in the anode of MECs fed with low and high propionate concentrations.

  17. Complex heterogeneous tissue constructs containing multiple cell types prepared by inkjet printing technology.

    Science.gov (United States)

    Xu, Tao; Zhao, Weixin; Zhu, Jian-Ming; Albanna, Mohammad Z; Yoo, James J; Atala, Anthony

    2013-01-01

    This study was designed to develop a versatile method for fabricating complex and heterogeneous three-dimensional (3D) tissue constructs using simultaneous ink-jetting of multiple cell types. Human amniotic fluid-derived stem cells (hAFSCs), canine smooth muscle cells (dSMCs), and bovine aortic endothelial cells (bECs), were separately mixed with ionic cross-linker calcium chloride (CaCl(2)), loaded into separate ink cartridges and printed using a modified thermal inkjet printer. The three cell types were delivered layer-by-layer to pre-determined locations in a sodium alginate-collagen composite located in a chamber under the printer. The reaction between CaCl(2) and sodium alginate resulted in a rapid formation of a solid composite gel and the printed cells were anchored in designated areas within the gel. The printing process was repeated for several cycles leading to a complex 3D multi-cell hybrid construct. The biological functions of the 3D printed constructs were evaluated in vitro and in vivo. Each of the printed cell types maintained their viability and normal proliferation rates, phenotypic expression, and physiological functions within the heterogeneous constructs. The bioprinted constructs were able to survive and mature into functional tissues with adequate vascularization in vivo. These findings demonstrate the feasibility of fabricating complex heterogeneous tissue constructs containing multiple cell types using inkjet printing technology. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. A developmentally plastic adult mouse kidney cell line spontaneously generates multiple adult kidney structures

    Energy Technology Data Exchange (ETDEWEB)

    Webb, Carol F., E-mail: carol-webb@omrf.org [Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK (United States); Immunobiology and Cancer Research, Oklahoma Medical Research Foundation, Oklahoma City, OK (United States); Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK (United States); Ratliff, Michelle L., E-mail: michelle-ratliff@omrf.org [Immunobiology and Cancer Research, Oklahoma Medical Research Foundation, Oklahoma City, OK (United States); Powell, Rebecca, E-mail: rebeccapowell@gmail.com [Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK (United States); Wirsig-Wiechmann, Celeste R., E-mail: celeste-wirsig@ouhsc.edu [Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK (United States); Lakiza, Olga, E-mail: olga-lakiza@ouhsc.edu [Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK (United States); Obara, Tomoko, E-mail: tomoko-obara@ouhsc.edu [Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK (United States)

    2015-08-07

    Despite exciting new possibilities for regenerative therapy posed by the ability to induce pluripotent stem cells, recapitulation of three-dimensional kidneys for repair or replacement has not been possible. ARID3a-deficient mouse tissues generated multipotent, developmentally plastic cells. Therefore, we assessed the adult mouse ARID3a−/− kidney cell line, KKPS5, which expresses renal progenitor surface markers as an alternative cell source for modeling kidney development. Remarkably, these cells spontaneously developed into multicellular nephron-like structures in vitro, and engrafted into immunocompromised medaka mesonephros, where they formed mouse nephron structures. These data implicate KKPS5 cells as a new model system for studying kidney development. - Highlights: • An ARID3a-deficient mouse kidney cell line expresses multiple progenitor markers. • This cell line spontaneously forms multiple nephron-like structures in vitro. • This cell line formed mouse kidney structures in immunocompromised medaka fish kidneys. • Our data identify a novel model system for studying kidney development.

  19. Pathogenic CD8 T cells in Multiple Sclerosis and its experimental models

    Directory of Open Access Journals (Sweden)

    Eric S. Huseby

    2012-03-01

    Full Text Available A growing body of evidence suggests that autoreactive CD8 T cells contribute to the disease process in Multiple Sclerosis (MS. Lymphocytes in MS plaques are biased toward the CD8 lineage, and MS patients harbor CD8 T cells specific for multiple central nervous system (CNS antigens. Currently, there are relatively few experimental model systems available to study these pathogenic CD8 T cells in vivo. However, the few studies that have been done characterizing the mechanisms used by CD8 T cells to induce CNS autoimmunity indicate that several of the paradigms of how CD4 T cells mediate CNS autoimmunity do not hold true for CD8 T cells or for patients with MS. Thus, myelin-specific CD4 T cells are likely to be one of several important mechanisms that drive CNS disease in MS patients. The focus of this review is to highlight the current models of pathogenic CNS-reactive CD8 T cells and the molecular mechanisms these lymphocytes use when causing CNS inflammation and damage. Understanding how CNS-reactive CD8 T cells escape tolerance induction and induce CNS autoimmunity is critical to our ability to propose and test new therapies for MS.

  20. Fucoidan prevents multiple myeloma cell escape from chemotherapy-induced drug cytotoxicity.

    Science.gov (United States)

    Lv, Jinglong; Xiao, Qing; Wang, Li; Liu, Xin; Wang, Xin; Yang, Zesong; Zhang, Hongbin; Dong, Pujiang

    2013-01-01

    Minimal residual disease (MRD) occurrence with some chemotherapy drugs that promote tumor cell escape is also a key factor in blood malignancy relapse. We observed that cytarabine promotes multiple myeloma (MM) cell escape and that the number of cells in the lower chamber increased with increasing clinical disease stage in in vitro model which was constructed by a Boyden chamber, matrigel glue and serum from MM patients in different disease stages. The mechanism of cytarabine that promotes MM cell escape is closely associated with the up-regulation of CXCR4. SDF-1α can up-regulate the expression of MMP9 and RHoC proteins in MM cells with up-regulated CXCR4, and further promote the cell escape. Fucoidan, a sulfated polysaccharide in the cell wall matrix of brown algae, has attracted much attention for its multiple biological activities, and we further explored the effects and possible underlying mechanisms of fucoidan on MM cell escape from cytarabine cytotoxicity. The results show that fucoidan may decrease MM cell escape from cytarabine cytotoxicity, and that fucoidan can down-regulate CXCR4, MMP9 and RHoC expression. This research provides new direction for investigating MRD occurrence and prevention. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Selective purging of human multiple myeloma cells from autologous stem cell transplantation grafts using oncolytic myxoma virus.

    Science.gov (United States)

    Bartee, Eric; Chan, Winnie M; Moreb, Jan S; Cogle, Christopher R; McFadden, Grant

    2012-10-01

    Autologous stem cell transplantation and novel therapies have improved overall survival of patients with multiple myeloma; however, most patients relapse and eventually succumb to their disease. Evidence indicates that residual cancer cells contaminate autologous grafts and may contribute to early relapses after autologous stem cell transplantation. Here, we demonstrate that ex vivo treatment with an oncolytic poxvirus called myxoma virus results in specific elimination of human myeloma cells by inducing rapid cellular apoptosis while fully sparing normal hematopoietic stem and progenitor cells. The specificity of this elimination is based on strong binding of the virus to myeloma cells coupled with an inability of the virus to bind or infect CD34(+) hematopoietic stem and progenitor cells. These 2 features allow myxoma to readily identify and distinguish even low levels of myeloma cells in complex mixtures. This ex vivo rabbit-specific oncolytic poxvirus called myxoma virus treatment also effectively inhibits systemic in vivo engraftment of human myeloma cells into immunodeficient mice and results in efficient elimination of primary CD138(+) myeloma cells contaminating patient hematopoietic cell products. We conclude that ex vivo myxoma treatment represents a safe and effective method to selectively eliminate myeloma cells from hematopoietic autografts before reinfusion. Copyright © 2012 American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  2. Donor-Derived Smoldering Multiple Myeloma following a Hematopoietic Cell Transplantation for AML.

    Science.gov (United States)

    Fakhri, Bita; Fiala, Mark; Slade, Michael; Westervelt, Peter; Ghobadi, Armin

    2017-01-01

    Posttransplant Lymphoproliferative Disorder (PTLD) is one of the most common malignancies complicating solid organ transplantation. In contrast, PTLD accounts for a minority of secondary cancers following allogeneic hematopoietic cell transplantation (HCT). Here we report on a 61-year-old woman who received an ABO-mismatched, HLA-matched unrelated donor hematopoietic cell transplantation from a presumably healthy donor for a diagnosis of acute myeloid leukemia (AML). Eighteen months following her transplant, she developed a monoclonal gammopathy. Bone marrow studies revealed 10% plasma cells, but the patient lacked clinical defining features of multiple myeloma (MM); thus a diagnosis of smoldering multiple myeloma (SMM) was established. Cytogenetic and molecular studies of the bone marrow confirmed the plasma cells were donor-derived. The donor lacks a diagnosis of monoclonal gammopathy of undetermined significance, SMM, or MM.

  3. Donor-Derived Smoldering Multiple Myeloma following a Hematopoietic Cell Transplantation for AML

    Directory of Open Access Journals (Sweden)

    Bita Fakhri

    2017-01-01

    Full Text Available Posttransplant Lymphoproliferative Disorder (PTLD is one of the most common malignancies complicating solid organ transplantation. In contrast, PTLD accounts for a minority of secondary cancers following allogeneic hematopoietic cell transplantation (HCT. Here we report on a 61-year-old woman who received an ABO-mismatched, HLA-matched unrelated donor hematopoietic cell transplantation from a presumably healthy donor for a diagnosis of acute myeloid leukemia (AML. Eighteen months following her transplant, she developed a monoclonal gammopathy. Bone marrow studies revealed 10% plasma cells, but the patient lacked clinical defining features of multiple myeloma (MM; thus a diagnosis of smoldering multiple myeloma (SMM was established. Cytogenetic and molecular studies of the bone marrow confirmed the plasma cells were donor-derived. The donor lacks a diagnosis of monoclonal gammopathy of undetermined significance, SMM, or MM.

  4. Systematic identification of yeast cell cycle transcription factors using multiple data sources

    Directory of Open Access Journals (Sweden)

    Li Wen-Hsiung

    2008-12-01

    Full Text Available Abstract Background Eukaryotic cell cycle is a complex process and is precisely regulated at many levels. Many genes specific to the cell cycle are regulated transcriptionally and are expressed just before they are needed. To understand the cell cycle process, it is important to identify the cell cycle transcription factors (TFs that regulate the expression of cell cycle-regulated genes. Results We developed a method to identify cell cycle TFs in yeast by integrating current ChIP-chip, mutant, transcription factor binding site (TFBS, and cell cycle gene expression data. We identified 17 cell cycle TFs, 12 of which are known cell cycle TFs, while the remaining five (Ash1, Rlm1, Ste12, Stp1, Tec1 are putative novel cell cycle TFs. For each cell cycle TF, we assigned specific cell cycle phases in which the TF functions and identified the time lag for the TF to exert regulatory effects on its target genes. We also identified 178 novel cell cycle-regulated genes, among which 59 have unknown functions, but they may now be annotated as cell cycle-regulated genes. Most of our predictions are supported by previous experimental or computational studies. Furthermore, a high confidence TF-gene regulatory matrix is derived as a byproduct of our method. Each TF-gene regulatory relationship in this matrix is supported by at least three data sources: gene expression, TFBS, and ChIP-chip or/and mutant data. We show that our method performs better than four existing methods for identifying yeast cell cycle TFs. Finally, an application of our method to different cell cycle gene expression datasets suggests that our method is robust. Conclusion Our method is effective for identifying yeast cell cycle TFs and cell cycle-regulated genes. Many of our predictions are validated by the literature. Our study shows that integrating multiple data sources is a powerful approach to studying complex biological systems.

  5. High Efficiency Quantum Dot Solar Cells Based on Multiple Exciton Generation

    Energy Technology Data Exchange (ETDEWEB)

    Breeze, Alison [Solexant Corp., San Jose, CA (United States)

    2011-04-15

    The objective of this project was to demonstrate that efficient multiple exciton generation observed in quantum dot materials could be harvested in nanostructured solar cells to dramatically improve the maximum power efficiency obtainable in photovoltaic modules. This proposal aimed to develop a high efficiency solar cell through a combination of quantum dot materials, nanostructured surfaces and atomic layer deposition for fabricating conformal and ultrathin films.

  6. Petiveria alliacea extracts uses multiple mechanisms to inhibit growth of human and mouse tumoral cells

    OpenAIRE

    Urue?a, Claudia; Cifuentes, Claudia; Casta?eda, Diana; Arango, Amparo; Kaur, Punit; Asea, Alexzander; Fiorentino, Susana

    2008-01-01

    Abstract Background There is ethnopharmacological evidence that Petiveria alliacea can have antitumor activity; however, the mechanism of its cytotoxic activity is not well understood. We assessed multiple in vitro biological activities of an ethyl acetate soluble plant fraction over several tumor cell lines. Methods Tumor cell lines were evaluated using the following tests: trypan blue exclusion test, MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide], flow cytometry, cytosk...

  7. Mechanisms of Oxidative Damage in Multiple Sclerosis and a Cell Therapy Approach to Treatment

    OpenAIRE

    Jonathan Witherick; Alastair Wilkins; Neil Scolding; Kevin Kemp

    2011-01-01

    Although significant advances have recently been made in the understanding and treatment of multiple sclerosis, reduction of long-term disability remains a key goal. Evidence suggests that inflammation and oxidative stress within the central nervous system are major causes of ongoing tissue damage in the disease. Invading inflammatory cells, as well as resident central nervous system cells, release a number of reactive oxygen and nitrogen species which cause demyelination and axonal destructi...

  8. A Case of Mature Natural Killer-Cell Neoplasm Manifesting Multiple Choroidal Lesions: Primary Intraocular Natural Killer-Cell Lymphoma

    Directory of Open Access Journals (Sweden)

    Yoshiaki Tagawa

    2015-11-01

    Full Text Available Purpose: Natural killer (NK cell neoplasm is a rare disease that follows an acute course and has a poor prognosis. It usually emerges from the nose and appears in the ocular tissue as a metastasis. Herein, we describe a case of NK-cell neoplasm in which the eye was considered to be the primary organ. Case: A 50-year-old female displayed bilateral anterior chamber cells, vitreous opacity, bullous retinal detachment, and multiple white choroidal mass lesions. Although malignant lymphoma or metastatic tumor was suspected, various systemic examinations failed to detect any positive results. A vitrectomy was performed OS; however, histocytological analyses from the vitreous sample showed no definite evidence of malignancy, and IL-10 concentration was low. Enlarged choroidal masses were fused together. Three weeks after the first visit, the patient suddenly developed an attack of fever, night sweat, and hepatic dysfunction, and 5 days later, she passed away due to multiple organ failure. Immunohistochemisty and in situ hybridization revealed the presence of atypical cells positive for CD3, CD56, and Epstein-Barr virus-encoded RNAs, resulting in the diagnosis of NK-cell neoplasm. With the characteristic clinical course, we concluded that this neoplasm was a primary intraocular NK-cell lymphoma. Conclusions: This is the first report to describe primary intraocular NK-cell neoplasm. When we encounter atypical choroidal lesions, we should consider the possibility of NK-cell lymphoma, even though it is a rare disease.

  9. Reverse transcriptase real-time PCR for detection and quantification of viable Campylobacter jejuni directly from poultry faecal samples

    DEFF Research Database (Denmark)

    Bui, Thanh Xuan; Wolff, Anders; Madsen, Mogens

    2012-01-01

    and quantification of viable Campylobacter jejuni directly from chicken faecal samples. The results of this method anda DNA-based quantitative real-time PCR (qPCR) method were compared with those of a bacterial culture method. Using bacterial culture andRT-qPCR methods, viable C. jejuni cells could be detected...

  10. High Throughput Single-cell and Multiple-cell Micro-encapsulation

    OpenAIRE

    Lagus, Todd P.; Edd, Jon F.

    2012-01-01

    Microfluidic encapsulation methods have been previously utilized to capture cells in picoliter-scale aqueous, monodisperse drops, providing confinement from a bulk fluid environment with applications in high throughput screening, cytometry, and mass spectrometry. We describe a method to not only encapsulate single cells, but to repeatedly capture a set number of cells (here we demonstrate one- and two-cell encapsulation) to study both isolation and the interactions between cells in groups of ...

  11. Related B cell clones populate the meninges and parenchyma of patients with multiple sclerosis

    Science.gov (United States)

    Lovato, Laura; Willis, Simon N.; Rodig, Scott J.; Caron, Tyler; Almendinger, Stefany E.; Howell, Owain W.; Reynolds, Richard; Hafler, David A.

    2011-01-01

    In the central nervous system of patients with multiple sclerosis, B cell aggregates populate the meninges, raising the central question as to whether these structures relate to the B cell infiltrates found in parenchymal lesions or instead, represent a separate central nervous system immune compartment. We characterized the repertoires derived from meningeal B cell aggregates and the corresponding parenchymal infiltrates from brain tissue derived primarily from patients with progressive multiple sclerosis. The majority of expanded antigen-experienced B cell clones derived from meningeal aggregates were also present in the parenchyma. We extended this investigation to include 20 grey matter specimens containing meninges, 26 inflammatory plaques, 19 areas of normal appearing white matter and cerebral spinal fluid. Analysis of 1833 B cell receptor heavy chain variable region sequences demonstrated that antigen-experienced clones were consistently shared among these distinct compartments. This study establishes a relationship between extraparenchymal lymphoid tissue and parenchymal infiltrates and defines the arrangement of B cell clones that populate the central nervous system of patients with multiple sclerosis. PMID:21216828

  12. Asymmetric cell division of T cells upon antigen presentation uses multiple conserved mechanisms.

    Science.gov (United States)

    Oliaro, Jane; Van Ham, Vanessa; Sacirbegovic, Faruk; Pasam, Anupama; Bomzon, Ze'ev; Pham, Kim; Ludford-Menting, Mandy J; Waterhouse, Nigel J; Bots, Michael; Hawkins, Edwin D; Watt, Sally V; Cluse, Leonie A; Clarke, Chris J P; Izon, David J; Chang, John T; Thompson, Natalie; Gu, Min; Johnstone, Ricky W; Smyth, Mark J; Humbert, Patrick O; Reiner, Steven L; Russell, Sarah M

    2010-07-01

    Asymmetric cell division is a potential means by which cell fate choices during an immune response are orchestrated. Defining the molecular mechanisms that underlie asymmetric division of T cells is paramount for determining the role of this process in the generation of effector and memory T cell subsets. In other cell types, asymmetric cell division is regulated by conserved polarity protein complexes that control the localization of cell fate determinants and spindle orientation during division. We have developed a tractable, in vitro model of naive CD8(+) T cells undergoing initial division while attached to dendritic cells during Ag presentation to investigate whether similar mechanisms might regulate asymmetric division of T cells. Using this system, we show that direct interactions with APCs provide the cue for polarization of T cells. Interestingly, the immunological synapse disseminates before division even though the T cells retain contact with the APC. The cue from the APC is translated into polarization of cell fate determinants via the polarity network of the Par3 and Scribble complexes, and orientation of the mitotic spindle during division is orchestrated by the partner of inscuteable/G protein complex. These findings suggest that T cells have selectively adapted a number of evolutionarily conserved mechanisms to generate diversity through asymmetric cell division.

  13. The Conceptual Mechanism for Viable Organizational Learning Based on Complex System Theory and the Viable System Model

    Science.gov (United States)

    Sung, Dia; You, Yeongmahn; Song, Ji Hoon

    2008-01-01

    The purpose of this research is to explore the possibility of viable learning organizations based on identifying viable organizational learning mechanisms. Two theoretical foundations, complex system theory and viable system theory, have been integrated to provide the rationale for building the sustainable organizational learning mechanism. The…

  14. Effects of Voltage-Gated K+ Channel on Cell Proliferation in Multiple Myeloma

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2014-01-01

    Full Text Available Objective. To study the effects and underlying mechanisms of voltage-gated K+ channels on the proliferation of multiple myeloma cells. Methods. RPMI-8226 MM cell line was used for the experiments. Voltage-gated K+ currents and the resting potential were recorded by whole-cell patch-clamp technique. RT-PCR detected Kv channel mRNA expression. Cell viability was analyzed with MTT assay. Cell counting system was employed to monitor cell proliferation. DNA contents and cell volume were analyzed by flow cytometry. Results. Currents recorded in RPMI-8226 cells were confirmed to be voltage-gated K+ channels. A high level of Kv1.3 mRNA was detected but no Kv3.1 mRNA was detected in RPMI-8226 cells. Voltage-gated K+ channel blocker 4-aminopyridine (4-AP (2 mM depolarized the resting potential from −42 ± 1.7 mV to −31.8 ± 2.8 mV (P0.05. Conclusions. In RPMI-8226, voltage-gated K+ channels are involved in proliferation and cell cycle progression its influence on the resting potential and cell volume may be responsible for this process; the inhibitory effect of the voltage-gated K+ channel blocker on RPMI-8226 cell proliferation is a phase-specific event.

  15. Deletion of ultraconserved elements yields viable mice

    Energy Technology Data Exchange (ETDEWEB)

    Ahituv, Nadav; Zhu, Yiwen; Visel, Axel; Holt, Amy; Afzal, Veena; Pennacchio, Len A.; Rubin, Edward M.

    2007-07-15

    Ultraconserved elements have been suggested to retainextended perfect sequence identity between the human, mouse, and ratgenomes due to essential functional properties. To investigate thenecessities of these elements in vivo, we removed four non-codingultraconserved elements (ranging in length from 222 to 731 base pairs)from the mouse genome. To maximize the likelihood of observing aphenotype, we chose to delete elements that function as enhancers in amouse transgenic assay and that are near genes that exhibit markedphenotypes both when completely inactivated in the mouse as well as whentheir expression is altered due to other genomic modifications.Remarkably, all four resulting lines of mice lacking these ultraconservedelements were viable and fertile, and failed to reveal any criticalabnormalities when assayed for a variety of phenotypes including growth,longevity, pathology and metabolism. In addition more targeted screens,informed by the abnormalities observed in mice where genes in proximityto the investigated elements had been altered, also failed to revealnotable abnormalities. These results, while not inclusive of all thepossible phenotypic impact of the deleted sequences, indicate thatextreme sequence constraint does not necessarily reflect crucialfunctions required for viability.

  16. Is Greenberg's "Macro-Carib" viable?

    Directory of Open Access Journals (Sweden)

    Spike Gildea

    Full Text Available In his landmark work Language in the Americas, Greenberg (1987 proposed that Macro-Carib was one of the major low-level stocks of South America, which together with Macro-Panoan and Macro-Ge-Bororo were claimed to comprise the putative Ge-Pano-Carib Phylum. His Macro-Carib includes the isolates Andoke and Kukura, and the Witotoan, Peba-Yaguan, and Cariban families. Greenberg's primary evidence came from person-marking paradigms in individual languages, plus scattered words from individual languages collected into 79 Macro-Carib 'etymologies' and another 64 Amerind 'etymologies'. The goal of this paper is to re-evaluate Greenberg's Macro-Carib claim in the light of the much more extensive and reliable language data that has become available largely since 1987. Based on full person-marking paradigms for Proto-Cariban, Yagua, Bora and Andoke, we conclude that Greenberg's morphological claims are unfounded. For our lexical comparison, we created lexical lists for Proto-Cariban, Proto-Witotoan, Yagua and Andoke, for both Greenberg's 143 putative etymologies and for the Swadesh 100 list. From both lists, a total of 23 potential cognates were found, but no consonantal correspondences were repeated even once. We conclude that our greatly expanded and improved database does not provide sufficient evidence to convince the skeptic that the Macro-Carib hypothesis is viable

  17. Cells Respond to Distinct Nanoparticle Properties with Multiple Strategies As Revealed by Single-Cell RNA-Seq

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Hugh D.; Markillie, Lye Meng; Chrisler, William B.; Gaffrey, Matthew J.; Hu, Dehong; Szymanski, Craig J.; Xie, Yumei; Melby, Eric S.; Dohnalkova, Alice; Taylor, Ronald C.; Grate, Eva K.; Cooley, Scott K.; McDermott, Jason E.; Heredia-Langner, Alejandro; Orr, Galya

    2016-11-22

    The impact of distinct nanoparticle (NP) properties on cellular response and ultimately human health is unclear. This gap is partially due to experimental difficulties in achieving uniform NP loads in the studied cells, creating heterogeneous populations with some cells “overloaded” while other cells are loaded with few or no NPs. Yet gene expression studies have been conducted in the population as a whole, identifying generic responses, while missing unique responses due to signal averaging across many cells, each carrying different loads. Here we applied single-cell RNA-Seq to alveolar epithelial cells carrying defined loads of aminated or carboxylated quantum dots (QDs), showing higher or lower toxicity, respectively. Interestingly, cells carrying lower loads responded with multiple strategies, mostly with upregulated processes, which were nonetheless coherent and unique to each QD type. In contrast, cells carrying higher loads responded more uniformly, with mostly downregulated processes that were shared across QD types. Strategies unique to aminated QDs showed strong upregulation of stress responses, coupled in some cases with regulation of cell cycle, protein synthesis and organelle activities. In contrast, strategies unique to carboxylated QDs showed upregulation of DNA repair and RNA activities, and decreased regulation of cell division, coupled in some cases with upregulation of stress responses and ATP related functions. Together, our studies suggest scenarios where higher NP loads lock cells into uniform responses, mostly shutdown of cellular processes, whereas lower loads allow for unique responses to each NP type that are more diversified, proactive defenses or repairs of the NP insults.

  18. Multiple Myeloma Tumor Cells are Selectively Killed by Pharmacologically-dosed Ascorbic Acid.

    Science.gov (United States)

    Xia, Jiliang; Xu, Hongwei; Zhang, Xiaoyan; Allamargot, Chantal; Coleman, Kristen L; Nessler, Randy; Frech, Ivana; Tricot, Guido; Zhan, Fenghuang

    2017-04-01

    High-dose chemotherapies to treat multiple myeloma (MM) can be life-threatening due to toxicities to normal cells and there is a need to target only tumor cells and/or lower standard drug dosage without losing efficacy. We show that pharmacologically-dosed ascorbic acid (PAA), in the presence of iron, leads to the formation of highly reactive oxygen species (ROS) resulting in cell death. PAA selectively kills CD138 + MM tumor cells derived from MM and smoldering MM (SMM) but not from monoclonal gammopathy undetermined significance (MGUS) patients. PAA alone or in combination with melphalan inhibits tumor formation in MM xenograft mice. This study shows PAA efficacy on primary cancer cells and cell lines in vitro and in vivo. Copyright © 2017 The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc. Published by Elsevier B.V. All rights reserved.

  19. Multiple Myeloma Tumor Cells are Selectively Killed by Pharmacologically-dosed Ascorbic Acid

    Directory of Open Access Journals (Sweden)

    Jiliang Xia

    2017-04-01

    Full Text Available High-dose chemotherapies to treat multiple myeloma (MM can be life-threatening due to toxicities to normal cells and there is a need to target only tumor cells and/or lower standard drug dosage without losing efficacy. We show that pharmacologically-dosed ascorbic acid (PAA, in the presence of iron, leads to the formation of highly reactive oxygen species (ROS resulting in cell death. PAA selectively kills CD138+ MM tumor cells derived from MM and smoldering MM (SMM but not from monoclonal gammopathy undetermined significance (MGUS patients. PAA alone or in combination with melphalan inhibits tumor formation in MM xenograft mice. This study shows PAA efficacy on primary cancer cells and cell lines in vitro and in vivo.

  20. Raman spectroscopy differentiates between sensitive and resistant multiple myeloma cell lines

    Science.gov (United States)

    Franco, Domenico; Trusso, Sebastiano; Fazio, Enza; Allegra, Alessandro; Musolino, Caterina; Speciale, Antonio; Cimino, Francesco; Saija, Antonella; Neri, Fortunato; Nicolò, Marco S.; Guglielmino, Salvatore P. P.

    2017-12-01

    Current methods for identifying neoplastic cells and discerning them from their normal counterparts are often nonspecific and biologically perturbing. Here, we show that single-cell micro-Raman spectroscopy can be used to discriminate between resistant and sensitive multiple myeloma cell lines based on their highly reproducible biomolecular spectral signatures. In order to demonstrate robustness of the proposed approach, we used two different cell lines of multiple myeloma, namely MM.1S and U266B1, and their counterparts MM.1R and U266/BTZ-R subtypes, resistant to dexamethasone and bortezomib, respectively. Then, micro-Raman spectroscopy provides an easily accurate and noninvasive method for cancer detection for both research and clinical environments. Characteristic peaks, mostly due to different DNA/RNA ratio, nucleic acids, lipids and protein concentrations, allow for discerning the sensitive and resistant subtypes. We also explored principal component analysis (PCA) for resistant cell identification and classification. Sensitive and resistant cells form distinct clusters that can be defined using just two principal components. The identification of drug-resistant cells by confocal micro-Raman spectroscopy is thus proposed as a clinical tool to assess the development of resistance to glucocorticoids and proteasome inhibitors in myeloma cells.

  1. Optimal Assignment of Cells in C-RAN Deployments with Multiple BBU Pools

    DEFF Research Database (Denmark)

    Holm, Henrik; Checko, Aleksandra; Al-obaidi, Rami

    2015-01-01

    recommend to divide the area into multiple BBU Pools. In this paper we show how to optimally assign cells to different BBU Pools in such a scenario. By using Integer Linear Programming (ILP) method we derive engineering guidelines for minimizing the CAPital EXpenditure (CAPEX) of C-RAN deployment....

  2. Chemokine receptor expression on B cells and effect of interferon-beta in multiple sclerosis

    DEFF Research Database (Denmark)

    Sørensen, Torben Lykke; Roed, Hanne; Sellebjerg, Finn

    2002-01-01

    We investigated the B-cell expression of chemokine receptors CXCR3, CXCR5 and CCR5 in the blood and cerebrospinal fluid (CSF) from patients in relapse of multiple sclerosis (MS) and in neurological controls. Chemokine receptor expression was also studied in interferon-beta-treated patients with r...

  3. Interactions between organic anions on multiple transporters in Caco-2 cells

    DEFF Research Database (Denmark)

    Grandvuinet, Anne Sophie; Steffansen, Bente

    2011-01-01

    Caco-2 cell line may be used as an overall model to predict interactions on multiple membrane transporters in the intestine. Taurocholic acid (TCA) and estrone-3-sulfate (E1S) were used as model substrates. Possible inhibitors studied were TCA, E1S, taurolithocholic acid, fluvastatin, and glipizide...

  4. B cells populating the multiple sclerosis brain mature in the draining cervical lymph nodes

    NARCIS (Netherlands)

    J.N.H. Stern (Joel N. H.); G. Yaari (Gur); J. Vander Heiden (Jason); G.M. Church (George); W.F. Donahue (William F.); R.Q. Hintzen (Rogier); A.J. Huttner (Anita J.); J.D. Laman (Jon); R.M. Nagra (Rashed M.); A. Nylander (Alyssa); D. Pitt (David); S. Ramanan (Sriram); B.A. Siddiqui (Bilal A.); F. Vigneault (Francois); S.H. Kleinstein (Steven H.); D.A. Hafler (David); K. O'Connor (Kevin)

    2014-01-01

    textabstractMultiple sclerosis (MS) is an inflammatory disease of the central nervous system (CNS) characterized by autoimmunemediated demyelination and neurodegeneration. The CNS of patients withMSharbors expanded clones of antigen-experienced B cells that reside in distinct compartments including

  5. Optimization of carrier multiplication for more effcient solar cells: the case of Sn quantum dots.

    Science.gov (United States)

    Allan, Guy; Delerue, Christophe

    2011-09-27

    We present calculations of impact ionization rates, carrier multiplication yields, and solar-power conversion efficiencies in solar cells based on quantum dots (QDs) of a semimetal, α-Sn. Using these results and previous ones on PbSe and PbS QDs, we discuss a strategy to select QDs with the highest carrier multiplication rate for more efficient solar cells. We suggest using QDs of materials with a close to zero band gap and a high multiplicity of the bands in order to favor the relaxation of photoexcited carriers by impact ionization. Even in that case, the improvement of the maximum solar-power conversion efficiency appears to be a challenging task. © 2011 American Chemical Society

  6. Multiple scale model for cell migration in monolayers: Elastic mismatch between cells enhances motility.

    Science.gov (United States)

    Palmieri, Benoit; Bresler, Yony; Wirtz, Denis; Grant, Martin

    2015-07-02

    We propose a multiscale model for monolayer of motile cells that comprise normal and cancer cells. In the model, the two types of cells have identical properties except for their elasticity; cancer cells are softer and normal cells are stiffer. The goal is to isolate the role of elasticity mismatch on the migration potential of cancer cells in the absence of other contributions that are present in real cells. The methodology is based on a phase-field description where each cell is modeled as a highly-deformable self-propelled droplet. We simulated two types of nearly confluent monolayers. One contains a single cancer cell in a layer of normal cells and the other contains normal cells only. The simulation results demonstrate that elasticity mismatch alone is sufficient to increase the motility of the cancer cell significantly. Further, the trajectory of the cancer cell is decorated by several speed "bursts" where the cancer cell quickly relaxes from a largely deformed shape and consequently increases its translational motion. The increased motility and the amplitude and frequency of the bursts are in qualitative agreement with recent experiments.

  7. Scaling-up of dental pulp stem cells isolated from multiple niches.

    Directory of Open Access Journals (Sweden)

    Nelson F Lizier

    Full Text Available Dental pulp (DP can be extracted from child's primary teeth (deciduous, whose loss occurs spontaneously by about 5 to 12 years. Thus, DP presents an easy accessible source of stem cells without ethical concerns. Substantial quantities of stem cells of an excellent quality and at early (2-5 passages are necessary for clinical use, which currently is a problem for use of adult stem cells. Herein, DPs were cultured generating stem cells at least during six months through multiple mechanical transfers into a new culture dish every 3-4 days. We compared stem cells isolated from the same DP before (early population, EP and six months after several mechanical transfers (late population, LP. No changes, in both EP and LP, were observed in morphology, expression of stem cells markers (nestin, vimentin, fibronectin, SH2, SH3 and Oct3/4, chondrogenic and myogenic differentiation potential, even after cryopreservation. Six hours after DP extraction and in vitro plating, rare 5-bromo-2'-deoxyuridine (BrdU positive cells were observed in pulp central part. After 72 hours, BrdU positive cells increased in number and were found in DP periphery, thus originating a multicellular population of stem cells of high purity. Multiple stem cell niches were identified in different zones of DP, because abundant expression of nestin, vimentin and Oct3/4 proteins was observed, while STRO-1 protein localization was restricted to perivascular niche. Our finding is of importance for the future of stem cell therapies, providing scaling-up of stem cells at early passages with minimum risk of losing their "stemness".

  8. DEPTOR maintains plasma cell differentiation and favorably affects prognosis in multiple myeloma.

    Science.gov (United States)

    Quwaider, Dalia; Corchete, Luis A; Misiewicz-Krzeminska, Irena; Sarasquete, María E; Pérez, José J; Krzeminski, Patryk; Puig, Noemí; Mateos, María Victoria; García-Sanz, Ramón; Herrero, Ana B; Gutiérrez, Norma C

    2017-04-18

    The B cell maturation process involves multiple steps, which are controlled by relevant pathways and transcription factors. The understanding of the final stages of plasma cell (PC) differentiation could provide new insights for therapeutic strategies in multiple myeloma (MM). Here, we explore the role of DEPTOR, an mTOR inhibitor, in the terminal differentiation of myeloma cells, and its potential impact on patient survival. The expression level of DEPTOR in MM cell lines and B cell populations was measured by real-time RT-PCR, and/or Western blot analysis. DEPTOR protein level in MM patients was quantified by capillary electrophoresis immunoassay. RNA interference was used to downregulate DEPTOR in MM cell lines. DEPTOR knockdown in H929 and MM1S cell lines induced dedifferentiation of myeloma cells, as demonstrated by the upregulation of PAX5 and BCL6, the downregulation of IRF4, and a clear reduction in cell size and endoplasmic reticulum mass. This effect seemed to be independent of mTOR signaling, since mTOR substrates were not affected by DEPTOR knockdown. Additionally, the potential for DEPTOR to be deregulated in MM by particular miRNAs was investigated. The ectopic expression of miR-135b and miR-642a in myeloma cell lines substantially diminished DEPTOR protein levels, and caused dedifferentiation of myeloma cells. Interestingly, the level of expression of DEPTOR protein in myeloma patients was highly variable, the highest levels being associated with longer progression-free survival. Our results demonstrate for the first time that DEPTOR expression is required to maintain myeloma cell differentiation and that high level of its expression are associated with better outcome. Primary samples used in this study correspond to patients entered into GEM2010 trial (registered at www.clinicaltrials.gov as #NCT01237249, 4 November 2010).

  9. Barrett's metaplasia glands are clonal, contain multiple stem cells and share a common squamous progenitor.

    Science.gov (United States)

    Nicholson, Anna M; Graham, Trevor A; Simpson, Ashley; Humphries, Adam; Burch, Nicola; Rodriguez-Justo, Manuel; Novelli, Marco; Harrison, Rebecca; Wright, Nicholas A; McDonald, Stuart A C; Jankowski, Janusz A

    2012-10-01

    Little is known about the stem cell organisation of the normal oesophagus or Barrett's metaplastic oesophagus. Using non-pathogenic mitochondrial DNA mutations as clonal markers, the authors reveal the stem cell organisation of the human squamous oesophagus and of Barrett's metaplasia and determine the mechanism of clonal expansion of mutations. Mutated cells were identified using enzyme histochemistry to detect activity of cytochrome c oxidase (CCO). CCO-deficient cells were laser-captured and mutations confirmed by PCR sequencing. Cell lineages were identified using immunohistochemistry. The normal squamous oesophagus contained CCO-deficient patches varying in size from around 30 μm up to about 1 mm. These patches were clonal as each area within a CCO-deficient patch contained an identical mitochondrial DNA mutation. In Barrett's metaplasia partially CCO-deficient glands indicate that glands are maintained by multiple stem cells. Wholly mutated Barrett's metaplasia glands containing all the expected differentiated cell lineages were seen, demonstrating multilineage differentiation from a clonal population of Barrett's metaplasia stem cells. Patches of clonally mutated Barrett's metaplasia glands were observed, indicating glands can divide to form patches. In one patient, both the regenerating squamous epithelium and the underlying glandular tissue shared a clonal mutation, indicating that they are derived from a common progenitor cell. In normal oesophageal squamous epithelium, a single stem cell clone can populate large areas of epithelium. Barrett's metaplasia glands are clonal units, contain multiple multipotential stem cells and most likely divide by fission. Furthermore, a single cell of origin can give rise to both squamous and glandular epithelium suggesting oesophageal plasticity.

  10. Multiple lymphomatous diverticulosis and comorbid chronic lymphocytic leukemia: novel manifestations of ileocolic mantle cell lymphoma.

    Science.gov (United States)

    Medlicott, Shaun A C; Brown, Holly A; Roland, Birgitte; Beck, Paul L; Auer, Iwona; Mansoor, Adnan

    2007-10-01

    Mantle cell lymphoma (MCL) has tropism for the gastrointestinal tract (GIT) identifiable as multiple polyps and mass lesions throughout the GIT. We describe 2 novel manifestations of MCL. A 60-year-old woman with known chronic lymphocytic leukemia (CLL) had an exophytic mass of the appendiceal orifice. Multiple polypoid masses of the distal ileum were identified in the right hemicolectomy specimen (multiple lymphomatous polyposis). Ancillary studies confirmed the coexistence of the 2 independent lymphoproliferative disorders. A 69-year-old man had recurrent urinary tract infections and pneumatouria caused by a colovesicular fistula complicating diverticulosis coli. Segmental resections of the sigmoid and ileocecum confirmed diverticulosis of the left and right colon. Histology identified infiltrates of MCL confined to the penetrating aspects of colonic diverticula. MCL has not been documented to coexist with CLL. An invaginating morphology of lymphoma, multiple lymphomatous diverticulosis is also a novel presentation. These 2 scenarios expand MCL's known manifestations within the GIT.

  11. Is telomerase a viable target in cancer?

    Science.gov (United States)

    Buseman, C.M.; Wright, W.E.; Shay, J.W.

    2012-01-01

    The ideal cancer treatment would specifically target cancer cells yet have minimal or no adverse effects on normal somatic cells. Telomerase, the ribonucleoprotein reverse transcriptase that maintains the ends of human chromosome, is an attractive cancer therapeutic target for exactly this reason [1]. Telomerase is expressed in more than 85% of cancer cells, making it a nearly universal cancer marker, while the majority of normal somatic cells are telomerase negative. Telomerase activity confers limitless replicative potential to cancer cells, a hallmark of cancer which must be attained for the continued growth that characterizes almost all advanced neoplasms [2]. In this review we will summarize the role of telomeres and telomerase in cancer cells, and how properties of telomerase are being exploited to create targeted cancer therapies including telomerase inhibitors, telomerase-targeted immunotherapies and telomerase-driven virotherapies. A frank and balanced assessment of the current state of telomerase inhibitors with caveats and potential limitations will be included. PMID:21802433

  12. Metachronous multiple esophageal squamous cell carcinomas and Lugol-voiding lesions after endoscopic mucosal resection.

    Science.gov (United States)

    Urabe, Y; Hiyama, T; Tanaka, S; Oka, S; Yoshihara, M; Arihiro, K; Chayama, K

    2009-04-01

    Endoscopic mucosal resection (EMR) has been applied to the treatment of superficial esophageal squamous cell carcinoma (SCC). The incidence and characteristics of metachronous multiple esophageal SCCs and Lugol-voiding lesions (LVLs) were investigated in a retrospective study in patients who had undergone EMR for superficial esophageal SCC. 96 patients with esophageal SCC who had been treated by EMR were followed up by endoscopy for 12 months or longer. Clinicopathologic parameters such as tumor size and location and presence of LVLs were examined. 10 patients (10 %) had synchronous multiple SCCs, and 12 (13 %) developed metachronous multiple SCCs. The mean annual incidence of newly diagnosed tumor was 4.4 %. The incidence of a speckled pattern of LVLs was 20/74 (27 %) in patients with solitary SCC, 5/10 (50 %) in synchronous multiple SCC, and 10/12 (83 %) in metachronous multiple SCC. The incidence of the presence of speckled pattern of LVLs was significantly higher in patients with multiple SCCs than in those with solitary SCC (68 % vs. 27 %, P = 0.0004). Patients who have undergone EMR for esophageal SCC, especially those with metachronous multiple LVLs in the background mucosa, should undergo follow-up with close endoscopic observation using Lugol staining.

  13. Selective purging of human multiple myeloma cells from autologous stem cell transplant grafts using oncolytic myxoma virus

    Science.gov (United States)

    Bartee, Eric; Chan, Winnie S.; Moreb, Jan S.; Cogle, Christopher R.; McFadden, Grant

    2012-01-01

    Autologous stem cell transplantation (ASCT) and novel therapies have improved overall survival of patients with multiple myeloma; however, most patients relapse and eventually succumb to their disease. Evidence indicates that residual cancer cells contaminate autologous grafts and may contribute to early relapses after ASCT. Here, we demonstrate that ex vivo treatment with an oncolytic poxvirus called myxoma virus results in specific elimination of human myeloma cells by inducing rapid cellular apoptosis while fully sparing normal hematopoietic stem and progenitor cells (HSPCs). The specificity of this elimination is based on strong binding of the virus to myeloma cells coupled with an inability of the virus to bind or infect CD34+ HSPCs. These two features allow myxoma to readily identify and distinguish even low levels of myeloma cells in complex mixtures. This ex vivo MYXV treatment also effectively inhibits systemic in vivo engraftment of human myeloma cells into immunodeficient mice and results in efficient elimination of primary CD138+ myeloma cells contaminating patient hematopoietic cell products. We conclude that ex vivo myxoma treatment represents a safe and effective method to selectively eliminate myeloma cells from hematopoietic autografts prior to reinfusion. PMID:22516053

  14. Meta-analysis reveals conserved cell cycle transcriptional network across multiple human cell types.

    Science.gov (United States)

    Giotti, Bruno; Joshi, Anagha; Freeman, Tom C

    2017-01-05

    Cell division is central to the physiology and pathology of all eukaryotic organisms. The molecular machinery underpinning the cell cycle has been studied extensively in a number of species and core aspects of it have been found to be highly conserved. Similarly, the transcriptional changes associated with this pathway have been studied in different organisms and different cell types. In each case hundreds of genes have been reported to be regulated, however there seems to be little consensus in the genes identified across different studies. In a recent comparison of transcriptomic studies of the cell cycle in different human cell types, only 96 cell cycle genes were reported to be the same across all studies examined. Here we perform a systematic re-examination of published human cell cycle expression data by using a network-based approach to identify groups of genes with a similar expression profile and therefore function. Two clusters in particular, containing 298 transcripts, showed patterns of expression consistent with cell cycle occurrence across the four human cell types assessed. Our analysis shows that there is a far greater conservation of cell cycle-associated gene expression across human cell types than reported previously, which can be separated into two distinct transcriptional networks associated with the G 1 /S-S and G 2 -M phases of the cell cycle. This work also highlights the benefits of performing a re-analysis on combined datasets.

  15. Effect of Propionibacterium freudenreichii on Salmonella multiplication, motility, and association with avian epithelial cells1.

    Science.gov (United States)

    V T Nair, Divek; Kollanoor-Johny, A

    2017-05-01

    We investigated the effects of a probiotic bacterium, Propionibacterium freudenreichii, on Salmonella multiplication, motility, and association to and invasion of avian epithelial cells in vitro. Two subspecies of P. freudenreichii (P. freudenreichii subsp. freudenreichii and P. freudenreichii subsp. shermanii) were tested against 3 Salmonella serotypes in poultry, namely, S. Enteritidis, S. Typhimurium, and S. Heidelberg, using co-culture-, motility, multiplication, cell association, and invasion assays. Both strains of P. freudenreichii were effective in reducing or inhibiting multiplication of all 3 Salmonella serotypes in co-culture and turkey cecal contents (P ≤ 0.05). P. freudenreichii significantly reduced Salmonella motility (P ≤ 0.05). Cell culture studies revealed that P. freudenreichii associated with the avian epithelial cells effectively and reduced S. Enteritidis, S. Heidelberg, and S. Typhimurium cell association in the range of 1.0 to 1.6 log10 CFU/mL, and invasion in the range of 1.3 to 1.5 log10 CFU/mL (P ≤ 0.05), respectively. Our current in vitro results indicate the potential of P. freudenreichii against Salmonella in poultry. Follow-up in vivo studies are underway to evaluate this possibility. © 2016 Poultry Science Association Inc.

  16. SMA actuators: a viable practical technology (Presentation Video)

    Science.gov (United States)

    Browne, Alan L.; Brown, Jeffrey; Hodgson, Darel E.

    2015-04-01

    Diverse products either based solely on or incorporating Shape Memory Alloys (SMA) have and are being made in a wide range of industries, and IP is being captured. Why then compared to SE (superelastic) Nitinol, and especially conventional technology, do so few ideas reach production? This presentation delves deeply into this topic in reaching the final assessment that SMA actuators are indeed now a viable practical technology. The presentation begins with an introduction to and description of the fundamental basis of SMA actuator technology. Examples of multiple commercially available geometric forms of SMA actuators are given and the functionalities that they provide are described. This is followed by examples of multiple commercial products incorporating such SMA actuators. Given that there are literally millions of commercial products incorporating conventional actuator technologies, indications are given as to why there are their less than 1000 that utilize SMA. Experience based challenges to the commercial use of SMA actuators are described. Besides having to compete with existing non-SMA technology which is quite mature additional challenges that are unique to SM actuators are indicated these including a wider than expected set of technical engineering problems and challenges and that a broader scope of dynamics is required.

  17. Mantle Cell Lymphoma of Intestine Presenting as Multiple Lymphomatous Polyposis with Intussusception

    Directory of Open Access Journals (Sweden)

    Meena N. Jadhav

    2015-01-01

    Full Text Available Mantle Cell Lymphoma (MCL is a distinct clinicopathological subtype of B-cell non-Hodgkin's lymphoma (NHL accounting for 2-10% of all NHL cases. Gastrointestinal tract (GIT is the predominant site of extranodal MCL which commonly presents as Multiple Lymphomatous Polyposis (MLP. A 60 year old male presented with pain abdomen, diarrhea and weight loss of two months duration. On colonoscopy multiple polyps were found in the entire colon and rectum. Computed tomography revealed ileo-colic intussusception with nodularity in the lead point. Histopathology suggested features of MCL. On immunohistochemistry, the tumor cells were positive for CD20, CD5, Cyclin D1, negative for CD3, CD10, CD23, and CD45 RO

  18. Parejas viables que perduran en el tiempo

    Directory of Open Access Journals (Sweden)

    Juan José Cuervo Rodríguez

    2013-01-01

    Full Text Available El presente artículo científico presenta resultados del proceso llevado a cabo en el proyecto de investigación docente "Mecanismos de autorregulación en parejas viables que perduran en el tiempo". Se soporta en una mirada compleja de la psicología basada en una epistemología de la construcción. En el ámbito metodológico, se inscribe en los estudios de terapia familiar desde una perspectiva de la comunicación humana como un todo integrado. Participaron nueve parejas. Los criterios de inclusión fueron: cinco o más años de convivencia, participación voluntaria, no presentar (ni haber presentado problemáticas especiales que ameriten intervención psicoterapéutica y la obtención de un porcentaje significativo en el uso de estrategias de comunicación asertiva en la resolución de conflictos. El método general utilizado fue el análisis de la comunicación en tarea de conversación. Los principales hallazgos señalan una estrecha relación entre el contexto de desarrollo de las parejas, la emergencia de códigos comunicacionales propios y la posibilidad de perdurar en el tiempo; también, se resalta el tipo de comunicación asertiva o constructiva, la construcción de valores como el respeto y la aceptación de las diferencias, y el deseo por vivir y construir bienestar común, como elementos constitutivos de su identidad como pareja.

  19. Non-myeloablative autologous haematopoietic stem cell transplantation expands regulatory cells and depletes IL-17 producing mucosal-associated invariant T cells in multiple sclerosis.

    Science.gov (United States)

    Abrahamsson, Sofia V; Angelini, Daniela F; Dubinsky, Amy N; Morel, Esther; Oh, Unsong; Jones, Joanne L; Carassiti, Daniele; Reynolds, Richard; Salvetti, Marco; Calabresi, Peter A; Coles, Alasdair J; Battistini, Luca; Martin, Roland; Burt, Richard K; Muraro, Paolo A

    2013-09-01

    Autologous haematopoietic stem cell transplantation has been tried as one experimental strategy for the treatment of patients with aggressive multiple sclerosis refractory to other immunotherapies. The procedure is aimed at ablating and repopulating the immune repertoire by sequentially mobilizing and harvesting haematopoietic stem cells, administering an immunosuppressive conditioning regimen, and re-infusing the autologous haematopoietic cell product. 'Non-myeloablative' conditioning regimens to achieve lymphocytic ablation without marrow suppression have been proposed to improve safety and tolerability. One trial with non-myeloablative autologous haematopoietic stem cell transplantation reported clinical improvement and inflammatory stabilization in treated patients with highly active multiple sclerosis. The aim of the present study was to understand the changes in the reconstituted immune repertoire bearing potential relevance to its mode of action. Peripheral blood was obtained from 12 patients with multiple sclerosis participating in the aforementioned trial and longitudinally followed for 2 years. We examined the phenotype and function of peripheral blood lymphocytes by cell surface or intracellular staining and multi-colour fluorescence activated cell sorting alone or in combination with proliferation assays. During immune reconstitution post-transplantation we observed significant though transient increases in the proportion of CD4+ FoxP3+ T cells and CD56(high) natural killer cell subsets, which are cell subsets associated with immunoregulatory function. CD8+ CD57+ cytotoxic T cells were persistently increased after therapy and were able to suppress CD4+ T cell proliferation with variable potency. In contrast, a CD161(high) proinflammatory CD8+ T cell subset was depleted at all time-points post-transplantation. Phenotypic characterization revealed that the CD161(high)CD8+ T cells were mucosal-associated invariant T cells, a novel cell population

  20. Restoring Natural Killer Cell Immunity against Multiple Myeloma in the Era of New Drugs

    Directory of Open Access Journals (Sweden)

    Gianfranco Pittari

    2017-11-01

    Full Text Available Transformed plasma cells in multiple myeloma (MM are susceptible to natural killer (NK cell-mediated killing via engagement of tumor ligands for NK activating receptors or “missing-self” recognition. Similar to other cancers, MM targets may elude NK cell immunosurveillance by reprogramming tumor microenvironment and editing cell surface antigen repertoire. Along disease continuum, these effects collectively result in a progressive decline of NK cell immunity, a phenomenon increasingly recognized as a critical determinant of MM progression. In recent years, unprecedented efforts in drug development and experimental research have brought about emergence of novel therapeutic interventions with the potential to override MM-induced NK cell immunosuppression. These NK-cell enhancing treatment strategies may be identified in two major groups: (1 immunomodulatory biologics and small molecules, namely, immune checkpoint inhibitors, therapeutic antibodies, lenalidomide, and indoleamine 2,3-dioxygenase inhibitors and (2 NK cell therapy, namely, adoptive transfer of unmanipulated and chimeric antigen receptor-engineered NK cells. Here, we summarize the mechanisms responsible for NK cell functional suppression in the context of cancer and, specifically, myeloma. Subsequently, contemporary strategies potentially able to reverse NK dysfunction in MM are discussed.

  1. Isolation of viable human hepatic progenitors from adult livers is possible even after 48 hours of cold ischemia.

    Science.gov (United States)

    Aupet, Sophie; Simoné, Gael; Heyd, Bruno; Bachellier, Philippe; Vidal, Isabelle; Richert, Lysiane; Martin, Hélène

    2013-07-01

    Liver transplantation, utilized routinely for end-stage liver disease, has been constrained by the paucity of organ donors, and is being complemented by alternative strategies such as liver cell transplantation. One of the most promising forms of liver cell transplantation is hepatic stem cell therapies, as the number of human hepatic stem cells (hHpSCs) and other early hepatic progenitor cells (HPCs) are sufficient to provide treatment for multiple patients from a single liver source. In the present study, human adult livers were exposed to cold ischemia and then processed after numbers, albeit somewhat lower, were obtained from those exposed to 48 h of cold ischemia. The yields are similar to those reported from livers with minimal exposure to ischemia. When cultured on plastic dishes and in Kubota's Medium, a serum-free medium designed for early lineage stage HPCs, colonies of rapidly expanding cells formed. They were confirmed to be probable hHpSCs by their ability to survive and expand on plastic and in Kubota's Medium for months, by co-expression of EpCAM and neural cell adhesion molecule, minimal if any albumin expression, with EpCAM found throughout the cells, and no expression of alpha-fetoprotein. The yields of viable EpCAM(+) cells were surprisingly large, and the numbers from a single donor liver are sufficient to treat approximately 50-100 patients given the numbers of EpCAM(+) cells currently used in hepatic stem cell therapies. Thus, cold ischemic livers for up to 48 h are a new source of cells that might be used for liver cell therapies.

  2. CALCULUS FROM THE PAST: MULTIPLE DELAY SYSTEMS ARISING IN CANCER CELL MODELLING

    KAUST Repository

    WAKE, G. C.

    2013-01-01

    Nonlocal calculus is often overlooked in the mathematics curriculum. In this paper we present an interesting new class of nonlocal problems that arise from modelling the growth and division of cells, especially cancer cells, as they progress through the cell cycle. The cellular biomass is assumed to be unstructured in size or position, and its evolution governed by a time-dependent system of ordinary differential equations with multiple time delays. The system is linear and taken to be autonomous. As a result, it is possible to reduce its solution to that of a nonlinear matrix eigenvalue problem. This method is illustrated by considering case studies, including a model of the cell cycle developed recently by Simms, Bean and Koeber. The paper concludes by explaining how asymptotic expressions for the distribution of cells across the compartments can be determined and used to assess the impact of different chemotherapeutic agents. Copyright © 2013 Australian Mathematical Society.

  3. Modulation of cell metabolic pathways and oxidative stress signaling contribute to acquired melphalan resistance in multiple myeloma cells.

    Science.gov (United States)

    Zub, Kamila Anna; Sousa, Mirta Mittelstedt Leal de; Sarno, Antonio; Sharma, Animesh; Demirovic, Aida; Rao, Shalini; Young, Clifford; Aas, Per Arne; Ericsson, Ida; Sundan, Anders; Jensen, Ole Nørregaard; Slupphaug, Geir

    2015-01-01

    Alkylating agents are widely used chemotherapeutics in the treatment of many cancers, including leukemia, lymphoma, multiple myeloma, sarcoma, lung, breast and ovarian cancer. Melphalan is the most commonly used chemotherapeutic agent against multiple myeloma. However, despite a 70-80% initial response rate, virtually all patients eventually relapse due to the emergence of drug-resistant tumour cells. By using global proteomic and transcriptomic profiling on melphalan sensitive and resistant RPMI8226 cell lines followed by functional assays, we discovered changes in cellular processes and pathways not previously associated with melphalan resistance in multiple myeloma cells, including a metabolic switch conforming to the Warburg effect (aerobic glycolysis), and an elevated oxidative stress response mediated by VEGF/IL8-signaling. In addition, up-regulated aldo-keto reductase levels of the AKR1C family involved in prostaglandin synthesis contribute to the resistant phenotype. Finally, selected metabolic and oxidative stress response enzymes were targeted by inhibitors, several of which displayed a selective cytotoxicity against the melphalan-resistant cells and should be further explored to elucidate their potential to overcome melphalan resistance.

  4. Transiently antigen primed B cells can generate multiple subsets of memory cells.

    Directory of Open Access Journals (Sweden)

    Jackson S Turner

    Full Text Available Memory B cells are long-lived cells that generate a more vigorous response upon recognition of antigen (Ag and T cell help than naïve B cells and ensure maintenance of durable humoral immunity. Functionally distinct subsets of murine memory B cells have been identified based on isotype switching of BCRs and surface expression of the co-stimulatory molecule CD80 and co-inhibitory molecule PD-L2. Memory B cells in a subpopulation with low surface expression of CD80 and PD-L2 are predominantly non-isotype switched and can be efficiently recruited into germinal centers (GCs in secondary responses. In contrast, a CD80 and PD-L2 positive subset arises predominantly from GCs and can quickly differentiate into antibody-secreting plasma cells (PCs. Here we demonstrate that single transient acquisition of Ag by B cells may be sufficient for their long-term participation in GC responses and for development of various memory B cell subsets including CD80 and PD-L2 positive effector-like memory cells that rapidly differentiate into class-switched PCs during recall responses.

  5. Multiple dendritic cell populations activate CD4+ T cells after viral stimulation.

    Directory of Open Access Journals (Sweden)

    Adele M Mount

    2008-02-01

    Full Text Available Dendritic cells (DC are a heterogeneous cell population that bridge the innate and adaptive immune systems. CD8alpha DC play a prominent, and sometimes exclusive, role in driving amplification of CD8(+ T cells during a viral infection. Whether this reliance on a single subset of DC also applies for CD4(+ T cell activation is unknown. We used a direct ex vivo antigen presentation assay to probe the capacity of flow cytometrically purified DC populations to drive amplification of CD4(+ and CD8(+ T cells following infection with influenza virus by different routes. This study examined the contributions of non-CD8alpha DC populations in the amplification of CD8(+ and CD4(+ T cells in cutaneous and systemic influenza viral infections. We confirmed that in vivo, effective immune responses for CD8(+ T cells are dominated by presentation of antigen by CD8alpha DC but can involve non-CD8alpha DC. In contrast, CD4(+ T cell responses relied more heavily on the contributions of dermal DC migrating from peripheral lymphoid tissues following cutaneous infection, and CD4 DC in the spleen after systemic infection. CD4(+ T cell priming by DC subsets that is dependent upon the route of administration raises the possibility that vaccination approaches could be tailored to prime helper T cell immunity.

  6. Cell differentiation and the multiple drug resistance phenotype in human erythroleukemic cells.

    Science.gov (United States)

    Carrett-Dias, Michele; Almeida, Leda Karine; Pereira, Juliano Lacava; Almeida, Daniela Volcan; Filgueira, Daza Moraes Vaz Batista; Marins, Luis Fernando; Votto, Ana Paula de Souza; Trindade, Gilma Santos

    2016-03-01

    The gene expression of Oct-4, a transcription factor and hematopoietic stem cell marker, is higher in Lucena lines, which is MDR, and the gene Alox-5 has also been implicated in the differentiation of some cell lines. The aim of this study was to compare the response to PMA-induced differentiation in MDR and non-MDR cells. We observed the differentiation to megakaryocytes in the K562 cell line, which is non-MDR. The expression of Alox-5 and Nanog genes was downregulated and that of Mdr-1 was upregulated in K562 cells. The Lucena cell line contained a higher number of megakaryocytes than the non-MDR, but this number was not altered by PMA, as well as Mdr-1 gene expression. However, Alox-5 expression was downregulated. Alox-5, Mdr-1, Nanog, Oct-4 and Sox-2 basal expression was also evaluated in the K562, Lucena and FEPS (also MDR) cell lines. The transcription factors gene expression was similar in MDR cell lines. The expression of Alox-5 was higher in the non-MDR cell line, while FEPS had the lowest expression of this gene. The opposite pattern was observed for Mdr-1 gene expression. These results suggest that the Alox-5 gene might play a role in the differentiation of these cell lines. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. A rapid method for assessment of natural killer cell function after multiple receptor crosslinking.

    Science.gov (United States)

    Al-Hubeshy, Z B; Coleman, A; Nelson, M; Goodier, M R

    2011-03-07

    NK cell function is regulated by the integration of signals from activating and inhibitory receptors. We developed an assay to study the effect of co-crosslinking NK cell receptors in pair-wise combinations without the need to purify NK cells. Monoclonal antibodies recognising inhibitory and activating receptors were coated to flat bottomed tissue culture plates and degranulation was measured within unfractionated, freshly isolated resting or cytokine activated peripheral blood mononuclear cells by flow cytometric analysis of CD107a expression. Measured degranulation responses were NK cell specific, since no expression of CD107a was induced in gated T cells. We detected enhancement of degranulation in response to combinations of antibodies against activating NK cell receptors, including CD16, NKG2D, NKp30 and NKp46 compared to each antibody when combined with an isotype matched control antibody. Co-crosslinking of NKG2A resulted in the inhibition of degranulation measured in response to anti-NKp30 or anti-NKp46 alone in both resting or cytokine pre-activated NK cells, but had no effect on CD16 or NKG2D mediated responses. Interferon gamma production was assayed by intracellular cytokine staining and in cell culture supernatants after receptor crosslinking. No IFN-γ could be detected from resting NK cells after receptor crosslinking whereas the pattern of IFN-γ production in cytokine pre-activated NK cells reflected that observed for degranulation. We conclude that this assay is suitable for the analysis of the impact of NK cell receptor co-crosslinking on multiple NK cell functions and has the potential for application to pathologic conditions where limited numbers of cells are available for study. Published by Elsevier B.V.

  8. Stem Cell Physics. Multiple-Laser-Beam Treatment of Parkinson's Disease

    Science.gov (United States)

    Stefan, V.

    2013-03-01

    A novel method for the treatment of Parkinson's disease is proposed. Pluripotent stem cells are laser cultured, using ultrashort wavelength, (around 0.1 micron-ultraviolet radiation-with intensities of a few mW/cm2) , multiple laser beams.[2] The multiple-energy laser photons[3] interact with the neuron DNA molecules to be cloned. The laser created dopaminergic substantia nigra neurons can be, (theoretically), laser transplanted, (a higher focusing precision as compared to a syringe method), into the striatum or substantia nigra regions of the brain, or both. Supported by Nikola Tesla Labs, Stefan University.

  9. Dendritic cell, monocyte and T cell activation and response to glatiramer acetate in multiple sclerosis

    DEFF Research Database (Denmark)

    Sellebjerg, F; Hesse, D; Limborg, S

    2012-01-01

    patients, the latter followed prospectively for one year. Gd-enhanced magnetic resonance imaging (MRI) studies were conducted in all patients. Disease activity was assessed as relapses. Results: The median percentage of DCs expressing CD40 was 10% in untreated MS patients and 5.9% in GA-treated patients...... associated with regulatory, naïve or central memory T cell populations, but CD4+ T cell activation was not related with relapse risk. Conclusions: MS patients treated with GA show prominent changes in circulating antigen-presenting cells and CD4+ T cells. Expression of CD40 on DCs is significantly lower...

  10. Robust Anti-viral Immunity Requires Multiple Distinct T Cell-Dendritic Cell Interactions.

    Science.gov (United States)

    Eickhoff, Sarah; Brewitz, Anna; Gerner, Michael Y; Klauschen, Frederick; Komander, Karl; Hemmi, Hiroaki; Garbi, Natalio; Kaisho, Tsuneyasu; Germain, Ronald Nathan; Kastenmüller, Wolfgang

    2015-09-10

    Host defense against viruses and intracellular parasites depends on effector CD8(+) T cells, whose optimal clonal expansion, differentiation, and memory properties require signals from CD4(+) T cells. Here, we addressed the role of dendritic cell (DC) subsets in initial activation of the two T cell types and their co-operation. Surprisingly, initial priming of CD4(+) and CD8(+) T cells was spatially segregated within the lymph node and occurred on different DCs with temporally distinct patterns of antigen presentation via MHCI versus MHCII molecules. DCs that co-present antigen via both MHC molecules were detected at a later stage; these XCR1(+) DCs are the critical platform involved in CD4(+) T cell augmentation of CD8(+) T cell responses. These findings delineate the complex choreography of cellular interactions underlying effective cell-mediated anti-viral responses, with implications for basic DC subset biology, as well as for translational application to the development of vaccines that evoke optimal T cell immunity. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. High Throughput Single-cell and Multiple-cell Micro-encapsulation

    National Research Council Canada - National Science Library

    Lagus, Todd P; Edd, Jon F

    2012-01-01

    Microfluidic encapsulation methods have been previously utilized to capture cells in picoliter-scale aqueous, monodisperse drops, providing confinement from a bulk fluid environment with applications...

  12. Transforming growth factor alpha (TGFα regulates granulosa cell tumor (GCT cell proliferation and migration through activation of multiple pathways.

    Directory of Open Access Journals (Sweden)

    Cheng Wang

    Full Text Available Granulosa cell tumors (GCTs are the most common ovarian estrogen producing tumors, leading to symptoms of excessive estrogen such as endometrial hyperplasia and endometrial adenocarcinoma. These tumors have malignant potential and often recur. The etiology of GCT is unknown. TGFα is a potent mitogen for many different cells. However, its function in GCT initiation, progression and metastasis has not been determined. The present study aims to determine whether TGFα plays a role in the growth of GCT cells. KGN cells, which are derived from an invasive GCT and have many features of normal granulosa cells, were used as the cellular model. Immunohistochemistry, Western blot and RT-PCR results showed that the ErbB family of receptors is expressed in human GCT tissues and GCT cell lines. RT-PCR results also indicated that TGFα and EGF are expressed in the human granulosa cells and the GCT cell lines, suggesting that TGFα might regulate GCT cell function in an autocrine/paracrine manner. TGFα stimulated KGN cell DNA synthesis, cell proliferation, cell viability, cell cycle progression, and cell migration. TGFα rapidly activated EGFR/PI3K/Akt and mTOR pathways, as indicated by rapid phosphorylation of Akt, TSC2, Rictor, mTOR, P70S6K and S6 proteins following TGFα treatment. TGFα also rapidly activated the EGFR/MEK/ERK pathway, and P38 MAPK pathways, as indicated by the rapid phosphorylation of EGFR, MEK, ERK1/2, P38, and CREB after TGFα treatment. Whereas TGFα triggered a transient activation of Akt, it induced a sustained activation of ERK1/2 in KGN cells. Long-term treatment of KGN cells with TGFα resulted in a significant increase in cyclin D2 and a decrease in p27/Kip1, two critical regulators of granulosa cell proliferation and granulosa cell tumorigenesis. In conclusion, TGFα, via multiple signaling pathways, regulates KGN cell proliferation and migration and may play an important role in the growth and metastasis of GCTs.

  13. Induction of Cancer Cell Death by Isoflavone: The Role of Multiple Signaling Pathways

    Science.gov (United States)

    Li, Yiwei; Kong, Dejuan; Bao, Bin; Ahmad, Aamir; Sarkar, Fazlul H.

    2011-01-01

    Soy isoflavones have been documented as dietary nutrients broadly classified as “natural agents” which plays important roles in reducing the incidence of hormone-related cancers in Asian countries, and have shown inhibitory effects on cancer development and progression in vitro and in vivo, suggesting the cancer preventive or therapeutic activity of soy isoflavones against cancers. Emerging experimental evidence shows that isoflavones could induce cancer cell death by regulating multiple cellular signaling pathways including Akt, NF-κB, MAPK, Wnt, androgen receptor (AR), p53 and Notch signaling, all of which have been found to be deregulated in cancer cells. Therefore, homeostatic regulation of these important cellular signaling pathways by isoflavones could be useful for the activation of cell death signaling, which could result in the induction of apoptosis of both pre-cancerous and/or cancerous cells without affecting normal cells. In this article, we have attempted to summarize the current state-of-our-knowledge regarding the induction of cancer cell death pathways by isoflavones, which is believed to be mediated through the regulation of multiple cellular signaling pathways. The knowledge gained from this article will provide a comprehensive view on the molecular mechanism(s) by which soy isoflavones may exert their effects on the prevention of tumor progression and/or treatment of human malignancies, which would also aid in stimulating further in-depth mechanistic research and foster the initiation of novel clinical trials. PMID:22200028

  14. Impaired immune evasion in HIV through intracellular delays and multiple infection of cells

    Science.gov (United States)

    Althaus, Christian L.; De Boer, Rob J.

    2012-01-01

    With its high mutation rate, HIV is capable of escape from recognition, suppression and/or killing by CD8+ cytotoxic T lymphocytes (CTLs). The rate at which escape variants replace each other can give insights into the selective pressure imposed by single CTL clones. We investigate the effects of specific characteristics of the HIV life cycle on the dynamics of immune escape. First, it has been found that cells in HIV-infected patients can carry multiple copies of proviruses. To investigate how this process affects the emergence of immune escape, we develop a mathematical model of HIV dynamics with multiple infections of cells. Increasing the frequency of multiple-infected cells delays the appearance of immune escape variants, slows down the rate at which they replace the wild-type variant and can even prevent escape variants from taking over the quasi-species. Second, we study the effect of the intracellular eclipse phase on the rate of escape and show that escape rates are expected to be slower than previously anticipated. In summary, slow escape rates do not necessarily imply inefficient CTL-mediated killing of HIV-infected cells, but are at least partly a result of the specific characteristics of the viral life cycle. PMID:22492063

  15. T cells in multiple myeloma display features of exhaustion and senescence at the tumor site

    Directory of Open Access Journals (Sweden)

    Claudia Zelle-Rieser

    2016-11-01

    Full Text Available Abstract Background Multiple myeloma is an incurable plasma cell malignancy that is mostly restricted to the bone marrow. Cancer-induced dysfunction of cytotoxic T cells at the tumor site may be responsible for immune evasion and therapeutical failure of immunotherapies. Therefore, enhanced knowledge about the actual status of T cells in myeloma bone marrow is urgently needed. Here, we assessed the expression of inhibitory molecules PD-1, CTLA-4, 2B4, CD160, senescence marker CD57, and CD28 on T cells of naive and treated myeloma patients in the bone marrow and peripheral blood and collected data on T cell subset distribution in both compartments. In addition, T cell function concerning proliferation and expression of T-bet, IL-2, IFNγ, and CD107a was investigated after in vitro stimulation by CD3/CD28. Finally, data was compared to healthy, age-matched donor T cells from both compartments. Methods Multicolor flow cytometry was utilized for the analyses of surface molecules, intracellular staining of cytokines was also performed by flow cytometry, and proliferation was assessed by 3H-thymidine incorporation. Statistical analyses were performed utilizing unpaired T test and Mann-Whitney U test. Results We observed enhanced T cell exhaustion and senescence especially at the tumor site. CD8+ T cells expressed several molecules associated with T cell exhaustion (PD-1, CTLA-4, 2B4, CD160 and T cell senescence (CD57, lack of CD28. This phenotype was associated with lower proliferative capacity and impaired function. Despite a high expression of the transcription factor T-bet, CD8+ T cells from the tumor site failed to produce IFNγ after CD3/CD28 in vitro restimulation and displayed a reduced ability to degranulate in response to T cell stimuli. Notably, the percentage of senescent CD57+CD28− CD8+ T cells was significantly lower in treated myeloma patients when compared to untreated patients. Conclusions T cells from the bone marrow of myeloma

  16. Isolation and Multiple Differentiation Potential Assessment of Human Gingival Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Yuan Gao

    2014-11-01

    Full Text Available The aim of this study was to isolate human mesenchymal stem cells (MSCs from the gingiva (GMSCs and confirm their multiple differentiation potentials, including the odontogenic lineage. GMSCs, periodontal ligament stem cells (PDLSCs and dermal stem cells (DSCs cultures were analyzed for cell shape, cell cycle, colony-forming unit-fibroblast (CFU-F and stem cell markers. Cells were then induced for osteogenic and adipogenic differentiation and analyzed for differentiation markers (alkaline phosphatase (ALP activity, mineralization nodule formation and Runx2, ALP, osteocalcin (OCN and collagen I expressions for the osteogenic differentiation, and lipid vacuole formation and PPARγ-2 expression for the adipogenic differentiation. Besides, the odontogenic differentiation potential of GMSCs induced with embryonic tooth germ cell-conditioned medium (ETGC-CM was observed. GMSCs, PDLSCs and DSCs were all stromal origin. PDLSCs showed much higher osteogenic differentiation ability but lower adipogenic differentiation potential than DSCs. GMSCs showed the medial osteogenic and adipogenic differentiation potentials between those of PDLSCs and DSCs. GMSCs were capable of expressing the odontogenic genes after ETGC-CM induction. This study provides evidence that GMSCs can be used in tissue engineering/regeneration protocols as an approachable stem cell source.

  17. Evidences of early senescence in multiple myeloma bone marrow mesenchymal stromal cells.

    Directory of Open Access Journals (Sweden)

    Thibaud André

    Full Text Available BACKGROUND: In multiple myeloma, bone marrow mesenchymal stromal cells support myeloma cell growth. Previous studies have suggested that direct and indirect interactions between malignant cells and bone marrow mesenchymal stromal cells result in constitutive abnormalities in the bone marrow mesenchymal stromal cells. DESIGN AND METHODS: The aims of this study were to investigate the constitutive abnormalities in myeloma bone marrow mesenchymal stromal cells and to evaluate the impact of new treatments. RESULTS: We demonstrated that myeloma bone marrow mesenchymal stromal cells have an increased expression of senescence-associated β-galactosidase, increased cell size, reduced proliferation capacity and characteristic expression of senescence-associated secretory profile members. We also observed a reduction in osteoblastogenic capacity and immunomodulatory activity and an increase in hematopoietic support capacity. Finally, we determined that current treatments were able to partially reduce some abnormalities in secreted factors, proliferation and osteoblastogenesis. CONCLUSIONS: We showed that myeloma bone marrow mesenchymal stromal cells have an early senescent profile with profound alterations in their characteristics. This senescent state most likely participates in disease progression and relapse by altering the tumor microenvironment.

  18. Illuminating vitamin D effects on B cells--the multiple sclerosis perspective.

    Science.gov (United States)

    Rolf, Linda; Muris, Anne-Hilde; Hupperts, Raymond; Damoiseaux, Jan

    2016-03-01

    Vitamin D is associated with many immune-mediated disorders. In multiple sclerosis (MS) a poor vitamin D status is a major environmental factor associated with disease incidence and severity. The inflammation in MS is primarily T-cell-mediated, but increasing evidence points to an important role for B cells. This has paved the way for investigating vitamin D effects on B cells. In this review we elaborate on vitamin D interactions with antibody production, T-cell-stimulating capacity and regulatory B cells. Although in vitro plasma cell generation and expression of co-stimulatory molecules are inhibited and the function of regulatory B cells is promoted, this is not supported by in vivo data. We speculate that differences might be explained by the B-cell-Epstein-Barr virus interaction in MS, the exquisite role of germinal centres in B-cell biology, and/or in vivo interactions with other hormones and vitamins that interfere with the vitamin D pathways. Further research is warranted to illuminate this tube-versus-body paradox. © 2015 John Wiley & Sons Ltd.

  19. Illuminating vitamin D effects on B-cells - the multiple sclerosis perspective.

    Science.gov (United States)

    Rolf, Linda; Muris, Anne-Hilde; Hupperts, Raymond; Damoiseaux, Jan

    2016-01-05

    Vitamin D is associated with many immune mediated disorders. In multiple sclerosis (MS) a poor vitamin D status is a major environmental factor associated with disease incidence and severity. The inflammation in MS is primarily T-cell mediated, but increasing evidence points to an important role for B-cells. This has paved the way for investigating vitamin D effects on B-cells. In this review we elaborate on vitamin D interactions with antibody production, T-cell stimulating capacity, and regulatory B-cells. While in vitro plasma cell generation, expression of costimulatory molecules, and the function of regulatory B-cells are inhibited, this is not supported by in vivo data. We speculate that differences might be explained by the B-cell - EBV interaction in MS, the exquisite role of germinal centers in B-cell biology, and/or in vivo interactions with other hormones and vitamins that interfere with the vitamin D pathways. Further research is warranted to illuminate this tube-versus-body paradox. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  20. Simultaneous Measurement of Multiple Mechanical Properties of Single Cells Using AFM by Indentation and Vibration.

    Science.gov (United States)

    Zhang, Chuang; Shi, Jialin; Wang, Wenxue; Xi, Ning; Wang, Yuechao; Liu, Lianqing

    2017-12-01

    The mechanical properties of cells, which are the main characteristics determining their physical performance and physiological functions, have been actively studied in the fields of cytobiology and biomedical engineering and for the development of medicines. In this study, an indentation-vibration-based method is proposed to simultaneously measure the mechanical properties of cells in situ, including cellular mass (m), elasticity (k), and viscosity (c). The proposed measurement method is implemented based on the principle of forced vibration stimulated by simple harmonic force using an atomic force microscope (AFM) system integrated with a piezoelectric transducer as the substrate vibrator. The corresponding theoretical model containing the three mechanical properties is derived and used to perform simulations and calculations. Living and fixed human embryonic kidney 293 (HEK 293) cells were subjected to indentation and vibration to measure and compare their mechanical parameters and verify the proposed approach. The results that the fixed sample cells are more viscous and elastic than the living sample cells and the measured mechanical properties of cell are consistent within, but not outside of the central region of the cell, are in accordance with the previous studies. This work provides an approach to simultaneous measurement of the multiple mechanical properties of single cells using an integrated AFM system based on the principle force vibration and thickness-corrected Hertz model. This study should contribute to progress in biomedical engineering, cytobiology, medicine, early diagnosis, specific therapy and cell-powered robots.

  1. Imaging membrane intercalating near infrared dyes to track multiple cell populations.

    Science.gov (United States)

    Roy, Edward J; Sivaguru, Mayandi; Fried, Glenn; Gray, Brian D; Kranz, David M

    2009-08-31

    Given the increasing interest in understanding in vivo migration of different cell types, it would be useful to have a simple method for tracking multiple cell populations in animals. Here we evaluated near infrared (NIR) dyes that intercalate into cell membranes as cell tracking labels, using both high-throughput and high-resolution methods. We tracked cells in tissues containing significant autofluorescence. CellVue Burgundy (ex 683/em 707) and CellVue NIR815 (ex 786/em 814) are especially useful because their spectral properties match the laser and detectors of the LI-COR laser scanner. After labeling cells ex vivo and injecting them into tumor-bearing mice, the distribution of cells in tumor and organs could be quantified in tissue sections with high throughput by scanning many slides at once. For example, we compared brain tumor infiltration and organ distribution of naïve and activated lymphocytes in single animals. High-resolution microscopic examination of the same tissues could be done by a relatively inexpensive modification of an epifluorescence microscope using a custom designed diode laser light source. Light emitting diodes that emit 685 nm and 780 nm light allowed microscopic visualization of the NIR labeled cells in tissues. The NIR dye-labeled cells were visualized with a greater signal/noise ratio compared to visible wavelength dyes such as CFSE, because of the low levels of autofluorescence in the NIR range. We also describe a simple modification of immunohistochemical procedures that allows combined visualization of the hydrophobic NIR dyes and antibody probes of cell markers in unfixed tissue. In combination these techniques will facilitate cell tracking in vivo.

  2. B cells are multifunctional players in multiple sclerosis pathogenesis: insights from therapeutic interventions

    Directory of Open Access Journals (Sweden)

    Nele eClaes

    2015-12-01

    Full Text Available Multiple sclerosis (MS is a severe disease of the central nervous system (CNS characterized by autoimmune inflammation and neurodegeneration. Historically, damage to the CNS was thought to be mediated predominantly by activated pro-inflammatory T cells. B cell involvement in the pathogenesis of MS was solely attributed to autoantibody production. The first clues for the involvement of antibody-independent B cell functions in MS pathology came from positive results in clinical trials of the B cell depleting treatment rituximab in patients with relapsing-remitting (RR MS. The survival of antibody-secreting plasma cells and decrease in T cell numbers indicated the importance of other B cell functions in MS such as antigen presentation, costimulation and cytokine production. Rituximab provided us with an example of how clinical trials can lead to new research opportunities concerning B cell biology. Moreover, analysis of the antibody-independent B cell functions in MS has gained interest since these trials. Limited information is present on the effects of current immunomodulatory therapies on B cell functions, although effects of both first-line (interferon, glatiramer acetate, dimethyl fumarate and teriflunomide, second-line (fingolimod, natalizumab and even third-line (monoclonal antibody therapies treatments on B cell subtype distribution, expression of functional surface markers and secretion of different cytokines by B cells have been studied to some extent. In this review, we summarize the effects of different MS related treatments on B cell functions that have been described up to now in order to find new research opportunities and contribute to the understanding of the pathogenesis of MS.

  3. NF-kappa B modulation is involved in celastrol induced human multiple myeloma cell apoptosis.

    Directory of Open Access Journals (Sweden)

    Haiwen Ni

    Full Text Available Celastrol is an active compound extracted from the root bark of the traditional Chinese medicine Tripterygium wilfordii Hook F. To investigate the effect of celastrol on human multiple myeloma cell cycle arrest and apoptosis and explore its molecular mechanism of action. The activity of celastrol on LP-1 cell proliferation was detected by WST-8 assay. The celastrol-induced cell cycle arrest was analyzed by flow cytometry after propidium iodide staining. Nuclear translocation of the nuclear factor kappa B (NF-κB was observed by fluorescence microscope. Celastrol inhibited cell proliferation of LP-1 myeloma cell in a dose-dependent manner with IC50 values of 0.8817 µM, which was mediated through G1 cell cycle arrest and p27 induction. Celastrol induced apoptosis in LP-1 and RPMI 8226 myeloma cells in a time and dose dependent manner, and it involved Caspase-3 activation and NF-κB pathway. Celastrol down-modulated antiapoptotic proteins including Bcl-2 and survivin expression. The expression of NF-κB and IKKa were decreased after celastrol treatment. Celastrol effectively blocked the nuclear translocation of the p65 subunit and induced human multiple myeloma cell cycle arrest and apoptosis by p27 upregulation and NF-kB modulation. It has been demonstrated that the effect of celastrol on NF-kB was HO-1-independent by using zinc protoporphyrin-9 (ZnPPIX, a selective heme oxygenase inhibitor. From the results, it could be inferred that celastrol may be used as a NF-kB inhibitor to inhibit myeloma cell proliferation.

  4. Large-scale progenitor cell expansion for multiple donors in a monitored hollow fibre bioreactor.

    Science.gov (United States)

    Lambrechts, Toon; Papantoniou, Ioannis; Rice, Brent; Schrooten, Jan; Luyten, Frank P; Aerts, Jean-Marie

    2016-09-01

    With the increasing scale in stem cell production, a robust and controlled cell expansion process becomes essential for the clinical application of cell-based therapies. The objective of this work was the assessment of a hollow fiber bioreactor (Quantum Cell Expansion System from Terumo BCT) as a cell production unit for the clinical-scale production of human periosteum derived stem cells (hPDCs). We aimed to demonstrate comparability of bioreactor production to standard culture flask production based on a product characterization in line with the International Society of Cell Therapy in vitro benchmarks and supplemented with a compelling quantitative in vivo bone-forming potency assay. Multiple process read-outs were implemented to track process performance and deal with donor-to-donor-related variation in nutrient needs and harvest timing. The data show that the hollow fiber bioreactor is capable of robustly expanding autologous hPDCs on a clinical scale (yield between 316 million and 444 million cells starting from 20 million after ± 8 days of culture) while maintaining their in vitro quality attributes compared with the standard flask-based culture. The in vivo bone-forming assay on average resulted in 10.3 ± 3.7% and 11.0 ± 3.8% newly formed bone for the bioreactor and standard culture flask respectively. The analysis showed that the Quantum system provides a reproducible cell expansion process in terms of yields and culture conditions for multiple donors. Copyright © 2016 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  5. Electrotaxis of oral squamous cell carcinoma cells in a multiple-electric-field chip with uniform flow field.

    Science.gov (United States)

    Tsai, Hsieh-Fu; Peng, Shih-Wei; Wu, Chun-Ying; Chang, Hui-Fang; Cheng, Ji-Yen

    2012-01-01

    We report a new design of microfluidic chip (Multiple electric Field with Uniform Flow chip, MFUF chip) to create multiple electric field strengths (EFSs) while providing a uniform flow field simultaneously. MFUF chip was fabricated from poly-methyl methacrylates (PMMA) substrates by using CO2 laser micromachining. A microfluidic network with interconnecting segments was utilized to de-couple the flow field and the electric field (EF). Using our special design, different EFSs were obtained in channel segments that had an identical cross-section and therefore a uniform flow field. Four electric fields with EFS ratio of 7.9:2.8:1:0 were obtained with flow velocity variation of only 7.8% CV (coefficient of variation). Possible biological effect of shear force can therefore be avoided. Cell behavior under three EFSs and the control condition, where there is no EF, was observed in a single experiment. We validated MFUF chip performance using lung adenocarcinoma cell lines and then used the chip to study the electrotaxis of HSC-3, an oral squamous cell carcinoma cell line. The MFUF chip has high throughput capability for studying the EF-induced cell behavior under various EFSs, including the control condition (EFS = 0).

  6. Telomerase inhibition targets clonogenic multiple myeloma cells through telomere length-dependent and independent mechanisms.

    Directory of Open Access Journals (Sweden)

    Sarah K Brennan

    2010-09-01

    Full Text Available Plasma cells constitute the majority of tumor cells in multiple myeloma (MM but lack the potential for sustained clonogenic growth. In contrast, clonotypic B cells can engraft and recapitulate disease in immunodeficient mice suggesting they serve as the MM cancer stem cell (CSC. These tumor initiating B cells also share functional features with normal stem cells such as drug resistance and self-renewal potential. Therefore, the cellular processes that regulate normal stem cells may serve as therapeutic targets in MM. Telomerase activity is required for the maintenance of normal adult stem cells, and we examined the activity of the telomerase inhibitor imetelstat against MM CSC. Moreover, we carried out both long and short-term inhibition studies to examine telomere length-dependent and independent activities.Human MM CSC were isolated from cell lines and primary clinical specimens and treated with imetelstat, a specific inhibitor of the reverse transcriptase activity of telomerase. Two weeks of exposure to imetelstat resulted in a significant reduction in telomere length and the inhibition of clonogenic MM growth both in vitro and in vivo. In addition to these relatively long-term effects, 72 hours of imetelstat treatment inhibited clonogenic growth that was associated with MM CSC differentiation based on expression of the plasma cell antigen CD138 and the stem cell marker aldehyde dehydrogenase. Short-term treatment of MM CSC also decreased the expression of genes typically expressed by stem cells (OCT3/4, SOX2, NANOG, and BMI1 as revealed by quantitative real-time PCR.Telomerase activity regulates the clonogenic growth of MM CSC. Moreover, reductions in MM growth following both long and short-term telomerase inhibition suggest that it impacts CSC through telomere length-dependent and independent mechanisms.

  7. Microfluidic assay for simultaneous culture of multiple cell types on surfaces or within hydrogels.

    Science.gov (United States)

    Shin, Yoojin; Han, Sewoon; Jeon, Jessie S; Yamamoto, Kyoko; Zervantonakis, Ioannis K; Sudo, Ryo; Kamm, Roger D; Chung, Seok

    2012-06-07

    This protocol describes a simple but robust microfluidic assay combining three-dimensional (3D) and two-dimensional (2D) cell culture. The microfluidic platform comprises hydrogel-incorporating chambers between surface-accessible microchannels. By using this platform, well-defined biochemical and biophysical stimuli can be applied to multiple cell types interacting over distances of type assays can be used to study cell survival, proliferation, migration, morphogenesis and differentiation under controlled conditions. Applications include the study of previously unexplored cellular interactions, and they have already provided new insights into how biochemical and biophysical factors regulate interactions between populations of different cell types. It takes 3 d to fabricate the system and experiments can run for up to several weeks.

  8. Multiple hormonal control of enzyme synthesis in liver and hepatoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Kenney, F.T.; Lee, K.L.; Pomato, N.; Nickol, J.M.

    1978-01-01

    Synthesis of hepatic tyrosine aminotransferase is accelerated in vivo by either of the pancreatic hormones, insulin and glucagon as well as by glucocorticoids, and glucagon acts via the intracellular mediator, cyclic AMP. The mechanisms responsive to these hormones have also been retained in cultured hepatoma cells: in H-35 cells the responses appear to be essentially identical to those in liver, especially in that each inducer can act independently of the others. In this paper we describe recent analyses of the cellular mechanisms involved in this multiple hormonal control of synthesis of a single enzyme. These experiments have been done with rat liver in vivo, owing to a need for larger quantities of cellular components that can readily be obtained from cultured cells. As some of these results appear to be at variance in important respects with those of earlier analyses carried out in H-35 cells, we briefly review these earlier experiments as well.

  9. Novel cell penetrating peptides with multiple motifs composed of RGD and its analogs.

    Science.gov (United States)

    Mokhtarieh, Amir Abbas; Kim, Semi; Lee, Yunhee; Chung, Bong Hyun; Lee, Myung Kyu

    2013-03-08

    Cell penetrating peptides (CPPs) have been used to transport macromolecules into cells. Most CPPs have properties such as a strong polycationic charge, amphipathic basic, and hydrophobicity. In this study, we designed the peptides with multiple motifs composed of RGD and its analogs to induce integrin-mediated endocytosis as well as endosomal escape by forming an amphipathic helix in acidic endosomes. These peptides were proved less toxic to animal cells than those without acidic residues. Unexpectedly, peptide conjugated liposomes could penetrate into cells regardless of integrins. The replacement of all aspartic acids by glutamic acids did not prevent the peptide-mediated liposome uptake, and the higher basic and leucine contents enhanced the gene silencing activity of siRNA encapsulated in the liposomes. The peptide is considered to be a new type of CPP which can be used for drug delivery. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Effect of natalizumab on circulating CD4+ T-cells in multiple sclerosis.

    Directory of Open Access Journals (Sweden)

    Lars Börnsen

    Full Text Available In multiple sclerosis (MS, treatment with the monoclonal antibody natalizumab effectively reduces the formation of acute lesions in the central nervous system (CNS. Natalizumab binds the integrin very late antigen (VLA-4, expressed on the surface of immune cells, and inhibits VLA-4 dependent transmigration of circulating immune-cells across the vascular endothelium into the CNS. Recent studies suggested that natalizumab treated MS patients have an increased T-cell pool in the blood compartment which may be selectively enriched in activated T-cells. Proposed causes are sequestration of activated T-cells due to reduced extravasation of activated and pro-inflammatory T-cells or due to induction of VLA-4 mediated co-stimulatory signals by natalizumab. In this study we examined how natalizumab treatment altered the distribution of effector and memory T-cell subsets in the blood compartment and if T-cells in general or myelin-reactive T-cells in particular showed signs of increased immune activation. Furthermore we examined the effects of natalizumab on CD4(+ T-cell responses to myelin in vitro. Natalizumab-treated MS patients had significantly increased numbers of effector-memory T-cells in the blood. In T-cells from natalizumab-treated MS patients, the expression of TNF-α mRNA was increased whereas the expression of fourteen other effector cytokines or transcription factors was unchanged. Natalizumab-treated MS patients had significantly decreased expression of the co-stimulatory molecule CD134 on CD4(+CD26(HIGH T-cells, in blood, and natalizumab decreased the expression of CD134 on MBP-reactive CD26(HIGHCD4(+ T-cells in vitro. Otherwise CD4(+ T-cells from natalizumab-treated and untreated MS patients showed similar responses to MBP. In conclusion natalizumab treatment selectively increased the effector memory T-cell pool but not the activation state of T-cells in the blood compartment. Myelin-reactive T-cells were not selectively increased in

  11. Encapsulation of Multiple Microalgal Cells via a Combination of Biomimetic Mineralization and LbL Coating

    Directory of Open Access Journals (Sweden)

    Minjeong Kim

    2018-02-01

    Full Text Available The encapsulation of living cells is appealing for its various applications to cell-based sensors, bioreactors, biocatalysts, and bioenergy. In this work, we introduce the encapsulation of multiple microalgal cells in hollow polymer shells of rhombohedral shape by the following sequential processes: embedding of microalgae in CaCO3 crystals; layer-by-layer (LbL coating of polyelectrolytes; and removal of sacrificial crystals. The microcapsule size was controlled by the alteration of CaCO3 crystal size, which is dependent on CaCl2/Na2CO3 concentration. The microalgal cells could be embedded in CaCO3 crystals by a two-step process: heterogeneous nucleation of crystal on the cell surface followed by cell embedment by the subsequent growth of crystal. The surfaces of the microalgal cells were highly favorable for the crystal growth of calcite; thus, micrometer-sized microalgae could be perfectly occluded in the calcite crystal without changing its rhombohedral shape. The surfaces of the microcapsules, moreover, could be decorated with gold nanoparticles, Fe3O4 magnetic nanoparticles, and carbon nanotubes (CNTs, by which we would expect the functionalities of a light-triggered release, magnetic separation, and enhanced mechanical and electrical strength, respectively. This approach, entailing the encapsulation of microalgae in semi-permeable and hollow polymer microcapsules, has the potential for application to microbial-cell immobilization for high-biomass-concentration cultivation as well as various other bioapplications.

  12. Involvement of multiple myeloma cell-derived exosomes in osteoclast differentiation

    Science.gov (United States)

    Raimondi, Lavinia; De Luca, Angela; Amodio, Nicola; Manno, Mauro; Raccosta, Samuele; Taverna, Simona; Bellavia, Daniele; Naselli, Flores; Fontana, Simona; Schillaci, Odessa; Giardino, Roberto; Fini, Milena; Tassone, Pierfrancesco; Santoro, Alessandra; De Leo, Giacomo; Giavaresi, Gianluca; Alessandro, Riccardo

    2015-01-01

    Bone disease is the most frequent complication in multiple myeloma (MM) resulting in osteolytic lesions, bone pain, hypercalcemia and renal failure. In MM bone disease the perfect balance between bone-resorbing osteoclasts (OCs) and bone-forming osteoblasts (OBs) activity is lost in favour of OCs, thus resulting in skeletal disorders. Since exosomes have been described for their functional role in cancer progression, we here investigate whether MM cell-derived exosomes may be involved in OCs differentiation. We show that MM cells produce exosomes which are actively internalized by Raw264.7 cell line, a cellular model of osteoclast formation. MM cell-derived exosomes positively modulate pre-osteoclast migration, through the increasing of CXCR4 expression and trigger a survival pathway. MM cell-derived exosomes play a significant pro-differentiative role in murine Raw264.7 cells and human primary osteoclasts, inducing the expression of osteoclast markers such as Cathepsin K (CTSK), Matrix Metalloproteinases 9 (MMP9) and Tartrate-resistant Acid Phosphatase (TRAP). Pre-osteoclast treated with MM cell-derived exosomes differentiate in multinuclear OCs able to excavate authentic resorption lacunae. Similar results were obtained with exosomes derived from MM patient's sera. Our data indicate that MM-exosomes modulate OCs function and differentiation. Further studies are needed to identify the OCs activating factors transported by MM cell-derived exosomes. PMID:25944696

  13. Encapsulation of Multiple Microalgal Cells via a Combination of Biomimetic Mineralization and LbL Coating.

    Science.gov (United States)

    Kim, Minjeong; Choi, Myoung Gil; Ra, Ho Won; Park, Seung Bin; Kim, Yong-Joo; Lee, Kyubock

    2018-02-13

    The encapsulation of living cells is appealing for its various applications to cell-based sensors, bioreactors, biocatalysts, and bioenergy. In this work, we introduce the encapsulation of multiple microalgal cells in hollow polymer shells of rhombohedral shape by the following sequential processes: embedding of microalgae in CaCO₃ crystals; layer-by-layer (LbL) coating of polyelectrolytes; and removal of sacrificial crystals. The microcapsule size was controlled by the alteration of CaCO₃ crystal size, which is dependent on CaCl₂/Na₂CO₃ concentration. The microalgal cells could be embedded in CaCO₃ crystals by a two-step process: heterogeneous nucleation of crystal on the cell surface followed by cell embedment by the subsequent growth of crystal. The surfaces of the microalgal cells were highly favorable for the crystal growth of calcite; thus, micrometer-sized microalgae could be perfectly occluded in the calcite crystal without changing its rhombohedral shape. The surfaces of the microcapsules, moreover, could be decorated with gold nanoparticles, Fe₃O₄ magnetic nanoparticles, and carbon nanotubes (CNTs), by which we would expect the functionalities of a light-triggered release, magnetic separation, and enhanced mechanical and electrical strength, respectively. This approach, entailing the encapsulation of microalgae in semi-permeable and hollow polymer microcapsules, has the potential for application to microbial-cell immobilization for high-biomass-concentration cultivation as well as various other bioapplications.

  14. CD26 + CD4 + T cell counts and attack risk in interferon-treated multiple sclerosis

    DEFF Research Database (Denmark)

    Sellebjerg, F; Ross, C; Koch-Henriksen, Nils

    2005-01-01

    Biomarkers that allow the identification of patients with multiple sclerosis (MS) with an insufficient response to immunomodulatory treatment would be desirable, as currently available treatments are only incompletely efficacious. Previous studies have shown that the expression of CD25, CD26...... in patients with CD26 + CD4 + T cell counts above median, and this risk was independent of the risk conferred by neutralizing anti-IFN-beta antibodies. CD26 + CD4 + T cell counts may identify patients with MS at increased risk of attack during treatment with IFN-beta....

  15. Multiple Synchronous Central Giant Cell Granulomas of the Maxillofacial Region: A Case Report

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Min Seok; Kim, Hak Jin [Pusan National University Hospital, Busan (Korea, Republic of)

    2010-01-15

    Multifocal central giant cell granulomas (CGCG) in the maxillofacial region are suggestive of systemic disease such as hyperparathyroidism or an inherited syndrome such as Noonan-like multiple giant cell lesion syndrome. Only 5 cases of multifocal CGCGs in the maxillofacial region without any concomitant systemic disease have currently been reported. We report here on an unusual case of 17-year-old man who presented with multifocal CGCGs of the bilateral posterior mandible and right maxilla and he was without any concomitant systemic disease

  16. Examining Biopsychosocial Factors in Relation to Multiple Pain Features in Pediatric Sickle Cell Disease.

    Science.gov (United States)

    Schlenz, Alyssa M; Schatz, Jeffrey; Roberts, Carla W

    2016-09-01

     To examine biopsychosocial variables in relation to multiple pain features in pediatric sickle cell disease (SCD).   76 children with SCD (M = 14.05, SD = 3.26), ages 8-19 years, and 70 caregivers completed measures of coping, mood, and family functioning and reported on multiple pain features via retrospective interviews during routine hematological visits. Sickle cell genotype and health care utilization were collected via medical record review. Using hierarchical regression, biological (genotype), child psychological (coping and mood), and social factors (caregiver coping and family functioning) were evaluated in relation to multiple pain features.   Genotype was associated with pain intensity, and child psychological factors were associated with pain frequency. Multiple biopsychosocial factors were related to health care utilization.   Biopsychosocial factors may have distinct relationships with pain features in pediatric SCD. Understanding these relationships may refine the biopsychosocial model and inform integrated medical and psychosocial approaches in SCD. © The Author 2016. Published by Oxford University Press on behalf of the Society of Pediatric Psychology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Glutaminase inhibitor CB-839 synergizes with carfilzomib in resistant multiple myeloma cells.

    Science.gov (United States)

    Thompson, Ravyn M; Dytfeld, Dominik; Reyes, Leticia; Robinson, Reeder M; Smith, Brittany; Manevich, Yefim; Jakubowiak, Andrzej; Komarnicki, Mieczyslaw; Przybylowicz-Chalecka, Anna; Szczepaniak, Tomasz; Mitra, Amit K; Van Ness, Brian G; Luczak, Magdalena; Dolloff, Nathan G

    2017-05-30

    Curative responses in the treatment of multiple myeloma (MM) are limited by the emergence of therapeutic resistance. To address this problem, we set out to identify druggable mechanisms that convey resistance to proteasome inhibitors (PIs; e.g., bortezomib), which are cornerstone agents in the treatment of MM. In isogenic pairs of PI sensitive and resistant cells, we observed stark differences in cellular bioenergetics between the divergent phenotypes. PI resistant cells exhibited increased mitochondrial respiration driven by glutamine as the principle fuel source. To target glutamine-induced respiration in PI resistant cells, we utilized the glutaminase-1 inhibitor, CB-839. CB-839 inhibited mitochondrial respiration and was more cytotoxic in PI resistant cells as a single agent. Furthermore, we found that CB-839 synergistically enhanced the activity of multiple PIs with the most dramatic synergy being observed with carfilzomib (Crflz), which was confirmed in a panel of genetically diverse PI sensitive and resistant MM cells. Mechanistically, CB-839 enhanced Crflz-induced ER stress and apoptosis, characterized by a robust induction of ATF4 and CHOP and the activation of caspases. Our findings suggest that the acquisition of PI resistance involves adaptations in cellular bioenergetics, supporting the combination of CB-839 with Crflz for the treatment of refractory MM.

  18. Petiveria alliacea extracts uses multiple mechanisms to inhibit growth of human and mouse tumoral cells.

    Science.gov (United States)

    Urueña, Claudia; Cifuentes, Claudia; Castañeda, Diana; Arango, Amparo; Kaur, Punit; Asea, Alexzander; Fiorentino, Susana

    2008-11-18

    There is ethnopharmacological evidence that Petiveria alliacea can have antitumor activity; however, the mechanism of its cytotoxic activity is not well understood. We assessed multiple in vitro biological activities of an ethyl acetate soluble plant fraction over several tumor cell lines. Tumor cell lines were evaluated using the following tests: trypan blue exclusion test, MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide], flow cytometry, cytoskeleton organization analysis, cell cycle, mitochondria membrane depolarization, clonogenicity test, DNA fragmentation test and differential protein expression by HPLC-Chip/MS analysis. F4 fraction characterization was made by HPLC-MS. Petiveria alliacea fraction characterized by de-replication was found to alter actin cytoskeleton organization, induce G2 cell cycle arrest and cause apoptotic cell death in a mitochondria independent way. In addition, we found down regulation of cytoskeleton, chaperone, signal transduction proteins, and proteins involved in metabolic pathways. Finally up regulation of proteins involved in translation and intracellular degradation was also observed. The results of this study indicate that Petiveria alliacea exerts multiple biological activities in vitro consistent with cytotoxicity. Further studies in animal models are needed but Petiveria alliacea appears to be a good candidate to be used as an antitumor agent.

  19. Petiveria alliacea extracts uses multiple mechanisms to inhibit growth of human and mouse tumoral cells

    Directory of Open Access Journals (Sweden)

    Kaur Punit

    2008-11-01

    Full Text Available Abstract Background There is ethnopharmacological evidence that Petiveria alliacea can have antitumor activity; however, the mechanism of its cytotoxic activity is not well understood. We assessed multiple in vitro biological activities of an ethyl acetate soluble plant fraction over several tumor cell lines. Methods Tumor cell lines were evaluated using the following tests: trypan blue exclusion test, MTT [3-(4,5-dimethylthiazol-2-yl-2,5-diphenyl tetrazolium bromide], flow cytometry, cytoskeleton organization analysis, cell cycle, mitochondria membrane depolarization, clonogenicity test, DNA fragmentation test and differential protein expression by HPLC-Chip/MS analysis. F4 fraction characterization was made by HPLC-MS. Results Petiveria alliacea fraction characterized by de-replication was found to alter actin cytoskeleton organization, induce G2 cell cycle arrest and cause apoptotic cell death in a mitochondria independent way. In addition, we found down regulation of cytoskeleton, chaperone, signal transduction proteins, and proteins involved in metabolic pathways. Finally up regulation of proteins involved in translation and intracellular degradation was also observed. Conclusion The results of this study indicate that Petiveria alliacea exerts multiple biological activities in vitro consistent with cytotoxicity. Further studies in animal models are needed but Petiveria alliacea appears to be a good candidate to be used as an antitumor agent.

  20. Defining the diversity of phenotypic respecification using multiple cell lines and reprogramming regimens.

    Science.gov (United States)

    Alicea, Bradly; Murthy, Shashanka; Keaton, Sarah A; Cobbett, Peter; Cibelli, Jose B; Suhr, Steven T

    2013-10-01

    To better understand the basis of variation in cellular reprogramming, we performed experiments with two primary objectives: first, to determine the degree of difference, if any, in reprogramming efficiency among cells lines of a similar type after accounting for technical variables, and second, to compare the efficiency of conversion of multiple similar cell lines to two separate reprogramming regimens-induced neurons and induced skeletal muscle. Using two reprogramming regimens, it could be determined whether converted cells are likely derived from a distinct subpopulation that is generally susceptible to reprogramming or are derived from cells with an independent capacity for respecification to a given phenotype. Our results indicated that when technical components of the reprogramming regimen were accounted for, reprogramming efficiency was reproducible within a given primary fibroblast line but varied dramatically between lines. The disparity in reprogramming efficiency between lines was of sufficient magnitude to account for some discrepancies in published results. We also found that the efficiency of conversion to one phenotype was not predictive of reprogramming to the alternate phenotype, suggesting that the capacity for reprogramming does not arise from a specific subpopulation with a generally "weak grip" on cellular identity. Our findings suggest that parallel testing of multiple cell lines from several sources may be needed to accurately assess the efficiency of direct reprogramming procedures, and that testing a larger number of fibroblast lines--even lines with similar origins--is likely the most direct means of improving reprogramming efficiency.

  1. Petiveria alliacea extracts uses multiple mechanisms to inhibit growth of human and mouse tumoral cells

    Science.gov (United States)

    Urueña, Claudia; Cifuentes, Claudia; Castañeda, Diana; Arango, Amparo; Kaur, Punit; Asea, Alexzander; Fiorentino, Susana

    2008-01-01

    Background There is ethnopharmacological evidence that Petiveria alliacea can have antitumor activity; however, the mechanism of its cytotoxic activity is not well understood. We assessed multiple in vitro biological activities of an ethyl acetate soluble plant fraction over several tumor cell lines. Methods Tumor cell lines were evaluated using the following tests: trypan blue exclusion test, MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide], flow cytometry, cytoskeleton organization analysis, cell cycle, mitochondria membrane depolarization, clonogenicity test, DNA fragmentation test and differential protein expression by HPLC-Chip/MS analysis. F4 fraction characterization was made by HPLC-MS. Results Petiveria alliacea fraction characterized by de-replication was found to alter actin cytoskeleton organization, induce G2 cell cycle arrest and cause apoptotic cell death in a mitochondria independent way. In addition, we found down regulation of cytoskeleton, chaperone, signal transduction proteins, and proteins involved in metabolic pathways. Finally up regulation of proteins involved in translation and intracellular degradation was also observed. Conclusion The results of this study indicate that Petiveria alliacea exerts multiple biological activities in vitro consistent with cytotoxicity. Further studies in animal models are needed but Petiveria alliacea appears to be a good candidate to be used as an antitumor agent. PMID:19017389

  2. In vitro activity of dimethylarsinic acid against human leukemia and multiple myeloma cell lines.

    Science.gov (United States)

    Duzkale, Hatice; Jilani, Iman; Orsolic, Nada; Zingaro, Ralph A; Golemovic, Mirna; Giles, Francis J; Kantarjian, Hagop; Albitar, Maher; Freireich, Emil J; Verstovsek, Srdan

    2003-05-01

    Arsenic trioxide (As(2)O(3)), an inorganic arsenic compound, has recently been approved for the treatment of relapsed or refractory acute promyelocytic leukemia. However, systemic toxicity associated with As(2)O(3) treatment remains a problem. Inorganic arsenic is detoxified in vivo by methylation reactions into organic arsenic compounds that are less toxic. We investigated the antiproliferative and cytotoxic activity of dimethylarsinic acid (DMAA), an organic arsenic derivative and major metabolic by-product of As(2)O(3), against a panel of eight leukemia and multiple myeloma cell lines. As(2)O(3) was tested in comparison. In clonogenic assay, the average concentration of DMAA that suppressed cell colony growth by 50% was 0.5-1 m M, while for As(2)O(3) it was on average 1-2 microM. At those concentrations DMAA and As(2)O(3) had significantly less effect on colony growth of normal progenitor cells. Cytotoxic doses of DMAA and As(2)O(3) in 3-day trypan blue dye exclusion assay experiments were similar to doses effective in clonogenic assay. Assessment of apoptosis by annexin V assay revealed a high rate of apoptosis in all cell lines treated with DMAA and As(2)O(3), but significantly less effect on normal progenitor cells. DMAA, unlike As(2)O(3), had no effect on the maturation of leukemic cells. DMAA exerts differential antiproliferative and cytotoxic activity against leukemia and multiple myeloma cells, with no significant effect on normal progenitor cells. However, concentrations of DMAA needed to achieve such efficacy are up to 1000 times those of As(2)O(3). Evaluation of novel organic arsenic that would combine the high efficacy of As(2)O(3) and the low toxicity of DMAA is warranted.

  3. Screening for hemosiderosis in patients receiving multiple red blood cell transfusions

    OpenAIRE

    de Jongh, Adriaan D; van Beers, E J; de Vooght, K M K; Schutgens, R E G

    2017-01-01

    Background: The dramatic impact of hemosiderosis on survival in chronically transfused patients with hereditary anemia is well known. We evaluated whether patients receiving multiple red blood cell (RBC) transfusions are adequately screened for hemosiderosis. Methods: We retrospectively assessed hemosiderosis screening and prevalence in adult patients that received over twenty RBC units in the University Medical Centre Utrecht from 2010 till 2015. Hemosiderosis was defined as ferritin ≥1000 μ...

  4. Incidentally Diagnosed Multiple Vascular Lesions of the Spleen: Littoral Cell Angioma or Hemangioma?

    Science.gov (United States)

    Aydin, Emrah

    2016-01-01

    Vascular lesions of the solid abdominal viscera may pose diagnostic and management issues. A 16-year old girl admitted to emergency department due to recurrent abdominal pain and diagnosed to have multiple vascular malformations of the spleen on imaging investigations. Littoral cell angioma was preoperative suspicion owing to no response of the vascular lesion to the propranolol. It turned out to be cavernous hemangioma on histopathology.

  5. Impaired immune evasion in HIV through intracellular delays and multiple infection of cells

    OpenAIRE

    Althaus, Christian; de Boer, Rob J

    2012-01-01

    With its high mutation rate, HIV is capable of escape from recognition, suppression and/or killing by CD8(+) cytotoxic T lymphocytes (CTLs). The rate at which escape variants replace each other can give insights into the selective pressure imposed by single CTL clones. We investigate the effects of specific characteristics of the HIV life cycle on the dynamics of immune escape. First, it has been found that cells in HIV-infected patients can carry multiple copies of proviruses. To investigate...

  6. Keratoacanthoma Accompanied by Multiple Lung Squamous Cell Carcinomas Developing in a Renal Transplant Recipient

    Directory of Open Access Journals (Sweden)

    Sadanori Furudate

    2014-07-01

    Full Text Available Keratoacanthoma (KA is a benign keratinocytic neoplasm that spontaneously regresses after 3-6 months and shares features with well-differentiated squamous cell carcinoma (SCC. An increased incidence of both KA and non-melanoma skin tumor, including SCC, is seen among immunosuppressed, organ-transplant recipients. In this report we describe a case of KA accompanied by multiple lung SCCs developing in a renal transplant recipient.

  7. Multiparametric flow cytometry profiling of neoplastic plasma cells in multiple myeloma

    DEFF Research Database (Denmark)

    Johnsen, Hans Erik; Bøgsted, Martin; Klausen, Tobias W

    2010-01-01

    BACKGROUND AND AIM: The clinical impact of multiparametric flow cytometry (MFC) in multiple myeloma (MM) is still unclear and under evaluation. Further progress relies on multiparametric profiling of the neoplastic plasma cell (PC) compartment to provide an accurate image of the stage......, prognostic, and predictive information useful in clinical practice, which will be prospectively validated within the European Myeloma Network (EMN). © 2010 International Clinical Cytometry Society....

  8. Dimethyl Fumarate Therapy Significantly Improves the Responsiveness of T Cells in Multiple Sclerosis Patients for Immunoregulation by Regulatory T Cells.

    Science.gov (United States)

    Schlöder, Janine; Berges, Carsten; Luessi, Felix; Jonuleit, Helmut

    2017-01-28

    Multiple sclerosis (MS) is a chronic autoimmune disease caused by an insufficient suppression of autoreactive T lymphocytes. One reason for the lack of immunological control is the reduced responsiveness of T effector cells (Teff) for the suppressive properties of regulatory T cells (Treg), a process termed Treg resistance. Here we investigated whether the disease-modifying therapy of relapsing-remitting MS (RRMS) with dimethyl fumarate (DMF) influences the sensitivity of T cells in the peripheral blood of patients towards Treg-mediated suppression. We demonstrated that DMF restores responsiveness of Teff to the suppressive function of Treg in vitro, presumably by down-regulation of interleukin-6R (IL-6R) expression on T cells. Transfer of human immune cells into immunodeficient mice resulted in a lethal graft-versus-host reaction triggered by human CD4⁺ Teff. This systemic inflammation can be prevented by activated Treg after transfer of immune cells from DMF-treated MS patients, but not after injection of Treg-resistant Teff from therapy-naïve MS patients. Furthermore, after DMF therapy, proliferation and expansion of T cells and the immigration into the spleen of the animals is reduced and modulated by activated Treg. In summary, our data reveals that DMF therapy significantly improves the responsiveness of Teff in MS patients to immunoregulation.

  9. Elevated IL-17 produced by Th17 cells promotes myeloma cell growth and inhibits immune function in multiple myeloma

    Science.gov (United States)

    Pelluru, Dheeraj; Fulciniti, Mariateresa; Prabhala, Harsha K.; Nanjappa, Puru; Song, Weihua; Pai, Christine; Amin, Samir; Tai, Yu-Tzu; Richardson, Paul G.; Ghobrial, Irene M.; Treon, Steven P.; Daley, John F.; Anderson, Kenneth C.; Kutok, Jeffery L.

    2010-01-01

    Elevated cytokines in bone marrow (BM) micro-environment (interleukin-6 [IL-6], transforming growth factor-beta [TGF-β], and IL-1β) may play an important role in observed immune dysfunction in multiple myeloma (MM). As IL-6 and TGF-β are important for the generation of T-helper 17 (TH17) cells, we evaluated and observed a significantly elevated baseline and induced frequency of Th17 cells in peripheral blood mononuclear cells (PBMCs) and BM mononuclear cells (BMMCs) from MM patients compared with healthy donors. We observed significant increase in levels of serum IL-17, IL-21, IL-22, and IL-23 in blood and BM in MM compared with healthy donors. We also observed that myeloma PBMCs after TH17 polarization significantly induced IL-1α, IL-13, IL-17, and IL-23 production compared with healthy donor PBMCs. We next observed that IL-17 promotes myeloma cell growth and colony formation via IL-17 receptor, adhesion to bone marrow stromal cells (BMSCs) as well as increased growth in vivo in murine xenograft model of human MM. Additionally, we have observed that combination of IL-17 and IL-22 significantly inhibited the production of TH1-mediated cytokines, including interferon-γ (IFN-γ), by healthy donor PBMCs. In conclusion, IL-17–producing Th17 cells play an important role in MM pathobiology and may be an important therapeutic target for anti-MM activity and to improve immune function. PMID:20395418

  10. Role of perforin secretion from CD8+ T-cells in neuronal cytotoxicity in multiple sclerosis.

    Science.gov (United States)

    Zhao, Daidi; Feng, Fuqiang; Zhao, Cong; Wu, Fang; Ma, Chao; Bai, Yanan; Guo, Jun; Li, Hongzeng

    2018-01-01

    Multiple sclerosis (MS) is the most prevalent autoimmune disease of the central nervous system, and is characterized by inflammation and myelin damage. The immune system initiates the autoimmune response, although the mechanisms of neuronal damage have not been elucidated. The purpose of the present study was to investigate autoreactive CD4+ and CD8+ T lymphocytes, in conjunction with other inflammatory cells and cytokines in active MS lesions. EAE animal models was established by plantar injections of MBP (200 μg per rat). Purified CD4+ or CD8+ T-cells were isolated from heparinized peripheral blood (EAE animals and control animals) via negative selection. To examine effects of presence of autoreactive CD4+ and CD8+ T lymphocytes, we carried out ELISA, Western blot analysis and TUNEL. In addition, we examined the direct effects of various factors on neuronal cell death using MTT assay. The data revealed that CD8+ T-cells were more toxic to neurons compared to CD4+ T-cells, in both the MBP and EAE conditions. Bax was greater increased when neurons were co-cultured with CD8+ T-cells in the MBP group. There is a significant increase in IL-17 secretion by CD4+ T-cells in both the MBP group and EAE group. Neuronal viability were affected by Perforin (1.5 μg/mL). The present study extends previous research by demonstrating the role of CD8+ T-cells in MS and supports perforin secretion by CD8+ T-cells as a potential therapeutic factor. Furthermore, we determined that CD4+ T-cells can enhance CD8+ T-cell neuronal cytotoxicity via induction of intense inflammation.

  11. Tumorigenic fragments of APC cause dominant defects in directional cell migration in multiple model systems

    Directory of Open Access Journals (Sweden)

    Scott A. Nelson

    2012-11-01

    Nonsense mutations that result in the expression of truncated, N-terminal, fragments of the adenomatous polyposis coli (APC tumour suppressor protein are found in most sporadic and some hereditary colorectal cancers. These mutations can cause tumorigenesis by eliminating β-catenin-binding sites from APC, which leads to upregulation of β-catenin and thereby results in the induction of oncogenes such as MYC. Here we show that, in three distinct experimental model systems, expression of an N-terminal fragment of APC (N-APC results in loss of directionality, but not speed, of cell motility independently of changes in β-catenin regulation. We developed a system to culture and fluorescently label live pieces of gut tissue to record high-resolution three-dimensional time-lapse movies of cells in situ. This revealed an unexpected complexity of normal gut cell migration, a key process in gut epithelial maintenance, with cells moving with spatial and temporal discontinuity. Quantitative comparison of gut tissue from wild-type mice and APC heterozygotes (APCMin/+; multiple intestinal neoplasia model demonstrated that cells in precancerous epithelia lack directional preference when moving along the crypt-villus axis. This effect was reproduced in diverse experimental systems: in developing chicken embryos, mesoderm cells expressing N-APC failed to migrate normally; in amoeboid Dictyostelium, which lack endogenous APC, expressing an N-APC fragment maintained cell motility, but the cells failed to perform directional chemotaxis; and multicellular Dictyostelium slug aggregates similarly failed to perform phototaxis. We propose that N-terminal fragments of APC represent a gain-of-function mutation that causes cells within tissue to fail to migrate directionally in response to relevant guidance cues. Consistent with this idea, crypts in histologically normal tissues of APCMin/+ intestines are overpopulated with cells, suggesting that a lack of migration might cause cell

  12. In Silico Prediction Analysis of Idiotope-Driven T–B Cell Collaboration in Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Rune A. Høglund

    2017-10-01

    Full Text Available Memory B cells acting as antigen-presenting cells are believed to be important in multiple sclerosis (MS, but the antigen they present remains unknown. We hypothesized that B cells may activate CD4+ T cells in the central nervous system of MS patients by presenting idiotopes from their own immunoglobulin variable regions on human leukocyte antigen (HLA class II molecules. Here, we use bioinformatics prediction analysis of B cell immunoglobulin variable regions from 11 MS patients and 6 controls with other inflammatory neurological disorders (OINDs, to assess whether the prerequisites for such idiotope-driven T–B cell collaboration are present. Our findings indicate that idiotopes from the complementarity determining region (CDR 3 of MS patients on average have high predicted affinities for disease associated HLA-DRB1*15:01 molecules and are predicted to be endosomally processed by cathepsin S and L in positions that allows such HLA binding to occur. Additionally, complementarity determining region 3 sequences from cerebrospinal fluid (CSF B cells from MS patients contain on average more rare T cell-exposed motifs that could potentially escape tolerance and stimulate CD4+ T cells than CSF B cells from OIND patients. Many of these features were associated with preferential use of the IGHV4 gene family by CSF B cells from MS patients. This is the first study to combine high-throughput sequencing of patient immune repertoires with large-scale prediction analysis and provides key indicators for future in vitro and in vivo analyses.

  13. Determination of viable Salmonellae from potable and source water through PMA assisted qPCR.

    Science.gov (United States)

    Singh, Gulshan; Vajpayee, Poornima; Bhatti, Saurabh; Ronnie, Nirmala; Shah, Nimish; McClure, Peter; Shanker, Rishi

    2013-07-01

    Resource constrained countries identified as endemic zones for pathogenicity of Salmonella bear an economic burden due to recurring expenditure on medical treatment. qPCR used for Salmonella detection could not discriminate between viable and nonviable cells. Propidium monoazide (PMA) that selectively penetrates nonviable cells to cross-link their DNA, was coupled with ttr gene specific qPCR for quantifying viable salmonellae in source/potable waters collected from a north Indian city. Source water (raw water for urban potable water supply) and urban potable water exhibited viable salmonellae in the range of 2.1×10(4)-2.6×10(6) and 2-7160CFU/100mL, respectively. Potable water at water works exhibited DNA from dead cells but no viable cells were detected. PMA assisted qPCR could specifically detect low numbers of live salmonellae in Source and potable waters. This strategy can be used in surveillance of urban potable water distribution networks to map contamination points for better microbial risk management. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Live Cell Visualization of Multiple Protein-Protein Interactions with BiFC Rainbow.

    Science.gov (United States)

    Wang, Sheng; Ding, Miao; Xue, Boxin; Hou, Yingping; Sun, Yujie

    2018-01-11

    As one of the most powerful tools to visualize PPIs in living cells, bimolecular fluorescence complementation (BiFC) has gained great advancement during recent years, including deep tissue imaging with far-red or near-infrared fluorescent proteins or super-resolution imaging with photochromic fluorescent proteins. However, little progress has been made toward simultaneous detection and visualization of multiple PPIs in the same cell, mainly due to the spectral crosstalk. In this report, we developed novel BiFC assays based on large-Stokes-shift fluorescent proteins (LSS-FPs) to detect and visualize multiple PPIs in living cells. With the large excitation/emission spectral separation, LSS-FPs can be imaged together with normal Stokes shift fluorescent proteins to realize multicolor BiFC imaging using a simple illumination scheme. We also further demonstrated BiFC rainbow combining newly developed BiFC assays with previously established mCerulean/mVenus-based BiFC assays to achieve detection and visualization of four PPI pairs in the same cell. Additionally, we prove that with the complete spectral separation of mT-Sapphire and CyOFP1, LSS-FP-based BiFC assays can be readily combined with intensity-based FRET measurement to detect ternary protein complex formation with minimal spectral crosstalk. Thus, our newly developed LSS-FP-based BiFC assays not only expand the fluorescent protein toolbox available for BiFC but also facilitate the detection and visualization of multiple protein complex interactions in living cells.

  15. Aptamer-conjugated nanoparticles for the collection and detection of multiple cancer cells.

    Science.gov (United States)

    Smith, Joshua E; Medley, Colin D; Tang, Zhiwen; Shangguan, Dihua; Lofton, Charles; Tan, Weihong

    2007-04-15

    We have extended the use the aptamer-conjugated nanoparticles for the collection and detection of multiple cancer cells. The aptamers were selected using a cell-based SELEX strategy in our laboratory for cancer cells that, when utilized in this method, allow for the selective recognition of the cells from complex mixtures including fetal bovine serum samples. Aptamer-conjugated magnetic nanoparticles were used for the selective targeting cell extraction, and aptamer-conjugated fluorescent nanoparticles were employed for sensitive cellular detection. Employing both types of nanoparticles allows for selective and sensitive detection not possible by using the particles separately. Fluorescent nanoparticles amplify the signal intensity versus a single fluorophore label resulting in improved sensitivity. In addition, aptamer-conjugated magnetic nanoparticles allow for extraction and enrichment of target cells not possible with other separation methods. Fluorescent imaging and a microplate reader were used for cellular detection to demonstrate the wide applicability of this methodology for medical diagnostics and cell enrichment and separation.

  16. Long-term therapy with glatiramer acetate in multiple sclerosis: effect on T-cells.

    Science.gov (United States)

    Ragheb, S; Abramczyk, S; Lisak, D; Lisak, R

    2001-02-01

    Glatiramer acetate (GA) is an immunotherapeutic drug for multiple sclerosis (MS). Several mechanisms of action have been demonstrated which target and affect T-cells that are specific for myelin antigen epitopes. We measured the in vitro proliferation of GA-responsive T-cells from untreated MS patients and from normal healthy subjects; in addition, we determined the effect of prolonged GA therapy or interferon-beta therapy on the in vitro proliferation of GA-responsive T-cells of MS patients. We found that GA induces the proliferation of T-cells isolated from individuals who have not been previously exposed to GA, and that long-term in vivo therapy of MS patients with GA abrogates the GA-induced proliferative response of T-cells. In GA-treated patients, there is no evidence of generalized immunosuppression; both tetanus toxoid and anti-CD3 induced proliferative responses remain unaffected. We propose that prolonged in vivo exposure to GA may result in the eventual induction of anergy or deletion of a population of GA-responsive cells that may also be T-cells that are pathogenic in MS. This mechanism of action, in addition to other mechanisms that have been demonstrated, suggests that GA has pleiotropic effects on the immune system in MS.

  17. B cell follicle-like structures in multiple sclerosis-with focus on the role of B cell activating factor

    DEFF Research Database (Denmark)

    Morten, Haugen; Frederiksen, Jette L; Vinter, Matilda Degn

    2014-01-01

    B lymphocytes play an important role in the pathogenesis of multiple sclerosis (MS). Follicle-like structures (FLS) have recently been found in the subarachnoid space in the leptomeninges in some patients with secondary progressive MS (SPMS). They contain proliferating B lymphocytes, plasma cells......, helper T lymphocytes and a network of follicular dendritic cells. FLS have been shown to correlate with increased cortical demyelination, neuronal loss, meningeal infiltration and central nervous system inflammation, as well as lower age at disease onset and progression to severe disability and death....... In this review, we will discuss the role of FLS in MS pathogenesis and disease course and the possible influence by B cell activating factor (BAFF) and C-X-C motif chemokine 13 (CXCL13)....

  18. Asouzu's Complementary Ontology as a Foundation for a Viable ...

    African Journals Online (AJOL)

    This paper on “Asouzu's Complementary Ontology as a foundation for a viable Ethic of the Environment”, posits that an ethic of the environment can be seen as viable if it considers the whole of reality as ontologically relevant. This point of view would free environmental ethics of anthropocentric bias and its attendant ...

  19. Serglycin proteoglycan is required for multiple myeloma cell adhesion, in vivo growth, and vascularization.

    Science.gov (United States)

    Purushothaman, Anurag; Toole, Bryan P

    2014-02-28

    Recently, it was discovered that serglycin, a hematopoietic cell proteoglycan, is the major proteoglycan expressed and constitutively secreted by multiple myeloma (MM) cells. High levels of serglycin are present in the bone marrow aspirates of at least 30% of newly diagnosed MM patients. However, its contribution to the pathophysiology of MM is unknown. Here, we show that serglycin knockdown (by ∼85% compared with normal levels), using lentiviral shRNA, dramatically attenuated MM tumor growth in mice with severe combined immunodeficiency. Tumors formed from cells deficient in serglycin exhibited diminished levels of hepatocyte growth factor expression and impaired development of blood vessels, indicating that serglycin may affect tumor angiogenesis. Furthermore, knockdown of serglycin significantly decreased MM cell adhesion to bone marrow stromal cells and collagen I. Even though serglycin proteoglycan does not have a transmembrane domain, flow cytometry showed that serglycin is present on the MM cell surface, and attachment to the cell surface is, at least in part, dependent on its chondroitin sulfate side chains. Co-precipitation of serglycin from conditioned medium of MM cells using a CD44-Fc chimera suggests that CD44 is the cell surface-binding partner for serglycin, which therefore may serve as a major ligand for CD44 at various stages during myeloma progression. Finally, we demonstrate that serglycin mRNA expression in MM cells is up-regulated by activin, a predominant cytokine among those increased in MM patients with osteolytic lesions. These studies provide direct evidence for a critical role for serglycin in MM pathogenesis and show that targeting serglycin may provide a novel therapeutic approach for MM.

  20. Dimethyl fumarate treatment of relapsing-remitting multiple sclerosis influences B-cell subsets

    Science.gov (United States)

    Lundy, Steven K.; Wu, Qi; Wang, Qin; Dowling, Catherine A.; Taitano, Sophina H.; Mao, Guangmei

    2016-01-01

    Objective: To test the hypothesis that dimethyl fumarate (Tecfidera, BG-12) affects B-cell subsets in patients with relapsing-remitting multiple sclerosis (RRMS). Methods: Peripheral blood B cells were compared for surface marker expression in patients with RRMS prior to initiation of treatment, after 4–6 months, and at more than 1 year of treatment with BG-12. Production of interleukin (IL)–10 by RRMS patient B cells was also analyzed. Results: Total numbers of peripheral blood B lymphocytes declined after 4–6 months of BG-12 treatment, due to losses in both the CD27+ memory B cells and CD27neg B-cell subsets. Some interpatient variability was observed. In contrast, circulating CD24highCD38high (T2-MZP) B cells increased in percentage in the majority of patients with RRMS after 4–6 months and were present in higher numbers in all of the patients after 12 months of treatment. The CD43+CD27+ B-1 B cells also increased at the later time point in most patients but were unchanged at 4–6 months compared to pretreatment levels. Purified B cells from 7 of the 9 patients with RRMS tested after 4–6 months of treatment were able to produce IL-10 following CD40 ligand stimulation, and the amount corresponded with the combined levels of T2-MZP and B-1 B cells in the sample. None of the patients with RRMS in this study have had a relapse while taking BG-12. Conclusions: These data suggest that BG-12 differentially affects B-cell subsets in patients with RRMS, resulting in increased numbers of circulating B lymphocytes with regulatory capacity. PMID:27006972

  1. A magnetic nanoparticle-based multiple-gene delivery system for transfection of porcine kidney cells.

    Directory of Open Access Journals (Sweden)

    Yan Wang

    Full Text Available Superparamagnetic nanoparticles are promising candidates for gene delivery into mammalian somatic cells and may be useful for reproductive cloning using the somatic cell nuclear transfer technique. However, limited investigations of their potential applications in animal genetics and breeding, particularly multiple-gene delivery by magnetofection, have been performed. Here, we developed a stable, targetable and convenient system for delivering multiple genes into the nuclei of porcine somatic cells using magnetic Fe3O4 nanoparticles as gene carriers. After surface modification by polyethylenimine, the spherical magnetic Fe3O4 nanoparticles showed strong binding affinity for DNA plasmids expressing the genes encoding a green (DNAGFP or red (DNADsRed fluorescent protein. At weight ratios of DNAGFP or DNADsRed to magnetic nanoparticles lower than or equal to 10∶1 or 5∶1, respectively, the DNA molecules were completely bound by the magnetic nanoparticles. Atomic force microscopy analyses confirmed binding of the spherical magnetic nanoparticles to stretched DNA strands up to several hundred nanometers in length. As a result, stable and efficient co-expression of GFP and DsRed in porcine kidney PK-15 cells was achieved by magnetofection. The results presented here demonstrate the potential application of magnetic nanoparticles as an attractive delivery system for animal genetics and breeding studies.

  2. Mesenchymal stem cells expressing osteoprotegerin variants inhibit osteolysis in a murine model of multiple myeloma.

    Science.gov (United States)

    Higgs, Jerome T; Lee, Joo Hyoung; Wang, Hong; Ramani, Vishnu C; Chanda, Diptiman; Hardy, Cherlene Y; Sanderson, Ralph D; Ponnazhagan, Selvarangan

    2017-11-28

    The current treatment options for multiple myeloma (MM) osteolytic lesions are mainly combinations of chemotherapy and other small-molecule inhibitors, but toxic side effects still remain a major concern. Studies have shown that osteoclast activity is enhanced in MM patients through increased expression of receptor activator of nuclear factor κB ligand (RANKL), triggering RANK signaling on osteoclast precursors, which results in aggressive bone resorption. Furthermore, osteoprotegerin (OPG), a decoy receptor for RANKL, and the osteogenic potential of mesenchymal stem cells (MSCs) are significantly decreased in myeloma patients with multiple bone lesions. Thus, the use of OPG as a therapeutic molecule would greatly decrease osteolytic damage and reduce morbidity. However, in addition to inhibiting osteoclast activation, OPG binds to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), thereby rendering the tumor cells resistant to TRAIL-induced apoptosis and limiting the use of OPG for therapy. The present study developed a bone-disseminated myeloma disease model in mouse and successfully tested a cell therapy approach using MSCs, genetically engineered to express OPG variants that retain the capacity to bind RANKL, but do not bind TRAIL. Our results of skeletal remodeling following this regenerative stem cell therapy with OPG variants indicated a significant protection against myeloma-induced osteolytic bone damage in areas of major myeloma skeletal dissemination, suggesting the potential of this therapy for treating osteolytic damage in myeloma patients.

  3. Multiple origins of spontaneously arising micronuclei in HeLa cells: Direct evidence from long-term live cell imaging

    Energy Technology Data Exchange (ETDEWEB)

    Rao Xiaotang; Zhang Yingyin; Yi Qiyi; Hou Heli; Xu Bo; Chu Liang; Huang Yun; Zhang Wenrui [Laboratory of Molecular and Cell Genetics, Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027 (China); Fenech, Michael [CSIRO Human Nutrition, PO Box 10041, Adelaide BC, Adelaide, SA 5000 (Australia); Shi Qinghua [Laboratory of Molecular and Cell Genetics, Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027 (China)], E-mail: qshi@ustc.edu.cn

    2008-11-10

    Although micronuclei (MNi) are extensively used to evaluate genotoxic effects and chromosome instability, the most basic issue regarding their origins has not been completely addressed due to limitations of traditional methods. Recently, long-term live cell imaging was developed to monitor the dynamics of single cell in a real-time and high-throughput manner. In the present study, this state-of-the-art technique was employed to examine spontaneous micronucleus (MN) formation in untreated HeLa cells. We demonstrate that spontaneous MNi are derived from incorrectly aligned chromosomes in metaphase (displaced chromosomes, DCs), lagging chromosomes (LCs) and broken chromosome bridges (CBs) in later mitotic stages, but not nuclear buds in S phase. However, most of bipolar mitoses with DCs (91.29%), LCs (73.11%) and broken CBs (88.93%) did not give rise to MNi. Our data also show directly, for the first time, that MNi could originate spontaneously from (1) MNi already presented in the mother cells; (2) nuclear fragments that appeared during mitosis with CB; and (3) chromosomes being extruded into a minicell which fused with one of the daughter cells later. Quantitatively, most of MNi originated from LCs (63.66%), DCs (10.97%) and broken CBs (9.25%). Taken together, these direct evidences show that there are multiple origins for spontaneously arising MNi in HeLa cells and each mechanism contributes to overall MN formation to different extents.

  4. Multiple superficial basal cell carcinoma of the skin that appeared macroscopically healthy after radiotherapy. Case report

    Energy Technology Data Exchange (ETDEWEB)

    Handa, Yoshihiro; Takakuwa, Sachiko; Yamada, Motohito; Ono, Hiroki; Tomita, Yasushi [Nagoya Univ. (Japan). School of Medicine

    2000-01-01

    The patient was a 76-year-old woman with multiple superficial basal cell carcinomas. She had undergone radiotherapy for a 1-year period after hysterectomy for uterine carcinoma 38 years previously, and the basal cell carcinomas coincided with the irradiated parts. No clear symptoms of chronic radioepithelitis could be found macroscopically, but the lesions were thought to represent radiation-induced carcinoma based on the histopathological findings (atrophy of the epidermis, hyalinization and sclerosis of dermal connective tissue, inflammatory cell infiltration, and capillary dilatation). The lesion was removed to the depth of the adipose tissue with a 5 mm margin around the tumor, and primary closure was achieved. No recurrences or new carcinomas have been detected during the 16 months since the operation. (K.H.)

  5. Highly efficient multiple-layer CdS quantum dot sensitized III-V solar cells.

    Science.gov (United States)

    Lin, Chien-Chung; Han, Hau-Vei; Chen, Hsin-Chu; Chen, Kuo-Ju; Tsai, Yu-Lin; Lin, Wein-Yi; Kuo, Hao-Chung; Yu, Peichen

    2014-02-01

    In this review, the concept of utilization of solar spectrum in order to increase the solar cell efficiency is discussed. Among the three mechanisms, down-shifting effect is investigated in detail. Organic dye, rare-earth minerals and quantum dots are three most popular down-shift materials. While the enhancement of solar cell efficiency was not clearly observed in the past, the advances in quantum dot fabrication have brought strong response out of the hybrid platform of a quantum dot solar cell. A multiple layer structure, including PDMS as the isolation layer, is proposed and demonstrated. With the help of pulse spray system, precise control can be achieved and the optimized concentration can be found.

  6. MESENCHYMAL STEM CELLS AS A THERAPEUTIC STRATEGY FOR MULTIPLE SCLEROSIS: ISSUES AND PERSPECTIVES

    Directory of Open Access Journals (Sweden)

    M. M. Zafranskaya

    2017-01-01

    Full Text Available The ability of mesenchymal stem cells (MSC to influence the regulatory/suppressive effect in the autoimmune process and promote remyelination allows to consider them a new method of multiple sclerosis (MS therapy, by means of modifying the disease activity. Genetic stability, proliferative potential, ability to migrate into the damaged tissue areas and agreed protocols for isolation and culture are the main advantages for successful autologous, as well as allogeneic MSC therapy. Preliminary results from clinical studies using MSC application in MS patients show efficiency and safety of this therapeutic approach. Nevertheless, successful demonstration of the cell therapy in MS is only possible after detailed analysis and understanding of MSC biology and mechanisms of appropriate intercellular interactions. The article reviews general experience in usage of immunomodulatory and neuroprotective properties of MSС in MS, and highlights the issues of validity in cell-based therapy taking into account both in vitro и in vivo studies.

  7. UPDATE ON THE ROLE OF AUTOLOGOUS HEMATOPOIETIC STEM CELL TRANSPLANTATION IN MULTIPLE MYELOMA

    Directory of Open Access Journals (Sweden)

    Patrizia Tosi

    2012-11-01

    Full Text Available Autologous stem cell transplantation is considered the standard of care for multiple myeloma patients aged < 65 years with no relevant comorbidities. The addition of drugs acting both on bone marrow microenvironment and on neoplastic plasma cells has significantly increased the proportion of patients achieving a complete remission after induction therapy, and these results are mantained after high-dose melphalan, leading to a prolonged disease control. Studies are being carried out in order to evaluate whether short term consolidation or long-term maintenance therapy can result into disease eradication at the molecular level thus increasing also patients survival. The efficacy of these new drugs has raised the issue of deferring the transplant after achivng a second response upon relapse. Another controversial point is the optimal treatment strategy for high-risk patients, that do not benefit from autologous stem cell transplantation and for whom the efficacy of new drugs is still matter of debate.

  8. MicroRNA-125b transforms myeloid cell lines by repressing multiple mRNA.

    Science.gov (United States)

    Bousquet, Marina; Nguyen, Diu; Chen, Cynthia; Shields, Lauren; Lodish, Harvey F

    2012-11-01

    We previously described a t(2;11)(p21;q23) chromosomal translocation found in patients with myelodysplasia or acute myeloid leukemia that leads to over-expression of the microRNA miR-125b, and we showed that transplantation of mice with murine stem/progenitor cells overexpressing miR-125b is able to induce leukemia. In this study, we investigated the mechanism of myeloid transformation by miR-125b. To investigate the consequences of miR-125b over-expression on myeloid differentiation, apoptosis and proliferation, we used the NB4 and HL60 human promyelocytic cell lines and the 32Dclone3 murine promyelocytic cell line. To test whether miR-125b is able to transform myeloid cells, we used the non-tumorigenic and interleukin-3-dependent 32Dclone3 cell line over-expressing miR-125b, in xenograft experiments in nude mice and in conditions of interleukin-3 deprivation. To identify new miR-125b targets, we compared, by RNA-sequencing, the transcriptome of cell lines that do or do not over-express miR-125b. We showed that miR-125b over-expression blocks apoptosis and myeloid differentiation and enhances proliferation in both species. More importantly, we demonstrated that miR-125b is able to transform the 32Dclone3 cell line by conferring growth independence from interleukin-3; xenograft experiments showed that these cells form tumors in nude mice. Using RNA-sequencing and quantitative real-time polymerase chain reaction experiments, we identified multiple miR-125b targets. We demonstrated that ABTB1, an anti-proliferative factor, is a new direct target of miR-125b and we confirmed that CBFB, a transcription factor involved in hematopoiesis, is also targeted by miR-125b. MiR-125b controls apoptosis by down-regulating genes involved in the p53 pathway including BAK1 and TP53INP1. This study demonstrates that in a myeloid context, miR-125b is an oncomiR able to transform cell lines. miR-125b blocks myeloid differentiation in part by targeting CBFB, blocks apoptosis through

  9. miR-186 inhibits cell proliferation in multiple myeloma by repressing Jagged1

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zengyan [Department of Hematology, Qilu Hospital, Shandong University, 107 Wenhuaxi Road, Jinan, Shandong 250012 (China); Department of Hematology, Hospital Affiliated to Binzhou Medical University, 661 Second Huanghe Street, Binzhou 256603 (China); Zhang, Guoqiang [Department of Thyroid and Breast Surgery, Hospital Affiliated to Binzhou Medical University, 661 Second Huanghe Street, Binzhou 256603 (China); Yu, Wenzheng; Gao, Na [Department of Hematology, Hospital Affiliated to Binzhou Medical University, 661 Second Huanghe Street, Binzhou 256603 (China); Peng, Jun, E-mail: junpeng885@sina.com [Department of Hematology, Qilu Hospital, Shandong University, 107 Wenhuaxi Road, Jinan, Shandong 250012 (China)

    2016-01-15

    MicroRNAs (miRNAs) are small, noncoding ribonucleic acids that regulate gene expression by targeting mRNAs for translational repression and degradation. Accumulating experimental evidence supports a causal role of miRNAs in hematology tumorigenesis. However, the specific functions of miRNAs in the pathogenesis of multiple myeloma (MM) remain to be established. In this study, we demonstrated that miR-186 is commonly downregulated in MM cell lines and patient MM cells. Ectopic expression of miR-186 significantly inhibited cell growth, both in vitro and in vivo, and induced cell cycle G{sub 0}/G{sub 1} arrest. Furthermore, miR-186 induced downregulation of Jagged1 protein expression by directly targeting its 3′-untranslated region (3′-UTR). Conversely, overexpression of Jagged1 rescued cells from miR-186-induced growth inhibition. Our collective results clearly indicate that miR-186 functions as a tumor suppressor in MM, supporting its potential as a therapeutic target for the disease. - Highlights: • miR-186 expression is decreased in MM. • miR-186 inhibits MM cell proliferation in vitro and in vivo. • Jagged1 is regulated by miR-186. • Overexpression of Jagged1 reverses the effects of miR-186.

  10. Activation of Blood CD3(+)CD56(+)CD8(+) T Cells during Pregnancy and Multiple Sclerosis.

    Science.gov (United States)

    de Andrés, Clara; Fernández-Paredes, Lidia; Tejera-Alhambra, Marta; Alonso, Bárbara; Ramos-Medina, Rocío; Sánchez-Ramón, Silvia

    2017-01-01

    A striking common feature of most autoimmune diseases is their female predominance, with at least twice as common among women than men in relapsing-remitting multiple sclerosis (MS), the prevailing MS clinical form with onset at childbearing age. This fact, together with the protective effect on disease activity during pregnancy, when there are many biological changes including high levels of estrogens and progesterone, puts sex hormones under the spotlight. The role of natural killer (NK) and NKT cells in MS disease beginning and course is still to be elucidated. The uterine NK (uNK) cells are the most predominant immune population in early pregnancy, and the number and function of uNK cells infiltrating the endometrium are sex-hormones' dependent. However, there is controversy on the role of estrogen or progesterone on circulating NK (CD56(dim) and CD56(bright)) and NKT cells' subsets. Here, we show a significantly increased activation of CD3(+)CD56(+)CD8(+) cells in pregnant MS women (MSP) compared with non-pregnant MS women (NPMS) (p CD3(+)CD56(+)CD8(+) cells showed a progressive statistically significant increase along the gestation trimesters (T) and at postpartum (PP) with respect to NPMS (1T: p = 0.018; 2T: p = 0.004; 3T: p CD3(+)CD56(+)CD8(+) cells was higher in MSP than HP in the first two trimesters of gestation (p = 0.004 and p = 0.015, respectively). NPMS showed significantly increased cytotoxic/regulatory NK ratio compared with healthy controls (p CD3(+)CD56(+)CD8(+) cells' subsets. Our findings may add on the understanding of the regulatory axis in MS during pregnancy. Further studies on specific CD8(+) NKT cells function and their role in pregnancy beneficial effects on MS are warranted to move forward more effective MS treatments.

  11. Sox10 controls migration of B16F10 melanoma cells through multiple regulatory target genes.

    Directory of Open Access Journals (Sweden)

    Ikjoo Seong

    Full Text Available It is believed that the inherent differentiation program of melanocytes during embryogenesis predisposes melanoma cells to high frequency of metastasis. Sox10, a transcription factor expressed in neural crest stem cells and a subset of progeny lineages, plays a key role in the development of melanocytes. We show that B16F10 melanoma cells transfected with siRNAs specific for Sox10 display reduced migratory activity which in turn indicated that a subset of transcriptional regulatory target genes of Sox10 is likely to be involved in migration and metastasis of melanoma cells. We carried out a microarray-based gene expression profiling using a Sox10-specific siRNA to identify relevant regulatory targets and found that multiple genes including melanocortin-1 receptor (Mc1r partake in the regulation of migration. We provide evidences that the effect of Sox10 on migration is mediated in large part by Mitf, a transcription factor downstream to Sox10. Among the mouse melanoma cell lines examined, however, only B16F10 showed robust down-regulation of Sox10 and inhibition of cell migration indicating that further dissection of dosage effects and/or cell line-specific regulatory networks is necessary. The involvement of Mc1r in migration was studied in detail in vivo using a murine metastasis model. Specifically, B16F10 melanoma cells treated with a specific siRNA showed reduced tendency in metastasizing to and colonizing the lung after being injected in the tail vein. These data reveal a cadre of novel regulators and mediators involved in migration and metastasis of melanoma cells that represents potential targets of therapeutic intervention.

  12. Multiple MTS Assay as the Alternative Method to Determine Survival Fraction of the Irradiated HT-29 Colon Cancer Cells.

    Science.gov (United States)

    Arab-Bafrani, Zahra; Shahbazi-Gahrouei, Daryoush; Abbasian, Mahdi; Fesharaki, Mehrafarin

    2016-01-01

    A multiple colorimetric assay has been introduced to evaluate the proliferation and determination of survival fraction (SF) of irradiated cells. The estimation of SF based on the cell-growth curve information is the major advantage of this assay. In this study, the utility of multiple-MTS assay for the SF estimation of irradiated HT-29 colon cancer cells, which were plated before irradiation, was evaluated. The SF of HT-29 colon cancer cells under irradiation with 9 MV photon was estimated using multiple-MTS assay and colony assay. Finally, the correlation between two assays was evaluated. Results showed that there are no significant differences between the SF obtained by two assays at different radiation doses (P > 0.05), and the survival curves have quite similar trends. In conclusion, multiple MTS-assay can be a reliable method to determine the SF of irradiated colon cancer cells that plated before irradiation.

  13. Separation of viable and non-viable tomato (Solanum lycopersicum L.) seeds using single seed near-infrared spectroscopy

    DEFF Research Database (Denmark)

    Shrestha, Santosh; Deleuran, Lise Christina; Gislum, René

    2017-01-01

    -viable tomato seeds of two cultivars using chemometrics. The data exploration were performed by principal component analysis (PCA). Subsequently, viable and non-viable seeds were classified by partial least squares-discriminant analysis (PLS-DA) and interval PLS-DA (iPLS-DA). The indication of clustering...... of viable and non-viable seeds were observed in the PCA of each cultivar and the pooled samples. However, the PCA did not exhibit a pattern of separation among the early, normal and late germinated tomato seeds. The NIR spectral regions of 1160–1170, 1383–1397, 1647–1666, 1860–1884 and 1915–1940 nm were...... identified as important for classification of viable and non-viable tomato seeds by iPLS-DA. The sensitivity i.e. ability to correctly identify the positive samples and specificity i.e. ability to reject the negative samples of the (iPLS-DA) model on identified spectral regions for prediction of viable...

  14. Towards Multiple-Bit-Per-Cell Operation In a Single Active Layer-Phase Change Memory Cell

    Science.gov (United States)

    Cinar, Ibrahim; Karakas, Vedat; Dincer, Onur; Aslan, Ozgur Burak; Gokce, Aisha; Stipe, Barry; Katine, Jordan A.; Aktas, Gulen; Ozatay, Ozhan

    2014-03-01

    High contrast between 0 and 1 logic states in addition to other superior properties of phase change memory (PCM) brought out the possible application of multiple logic levels in a single bit in an effort to boost data storage density. The potential stabilization of resistance levels in between the 0 polycrystalline and 1 amorphous states enables storage of several data in a single device cell (such as 00, 01,10,11 levels). Here we report our investigation of the role of contact geometry and fabrication induced modification of phase change kinetics in stabilizing mixed phase states in an effort to obtain such multiple-bit per cell operation within a single layer PCM material system (Ge2Sb2Te5) . The nature of switching dynamics appears highly sensitive to exact programming current distribution and defect density such that a nanoscale square contact with effective current localization at the sharp corners facilitates the formation of stable intermediate phases as compared to a circular one. Resistance maps show that the top contact geometry and engineering of defects can be used as an effective handle to tune the resistance states to optimize memory cells for ultra-high density storage. This work has been supported by the European Commission FP7 Marie Curie IRG grant: PCM-256281.

  15. Quantification of bone marrow plasma cell infiltration in multiple myeloma : Usefulness of bone marrow aspirate clot with CD138 immunohistochemistry

    NARCIS (Netherlands)

    Matsue, Kosei; Matsue, Yuya; Kumata, Kaoru; Usui, Yoshiaki; Suehara, Yasuhito; Fukumoto, Kota; Fujisawa, Manabu; Narita, Kentaro; Takeuchi, Masami

    Accurate quantification of plasma cells (PCs) in bone marrow (BM) is critical for diagnosis and assessment of treatment response in patients with multiple myeloma (MM). We compared the % of BM PC quantified by 250 cell differential count on May–Giemsa-stained BM smears, by counting 500 – 2500 cells

  16. Maintenance of pathogenicity during entry into and resuscitation from viable but nonculturable state in Aeromonas hydrophila exposed to natural seawater at low temperature.

    Science.gov (United States)

    Maalej, S; Gdoura, R; Dukan, S; Hammami, A; Bouain, A

    2004-01-01

    To investigate the fate of Aeromonas hydrophila pathogenicity when cells switch, in nutrient-poor filtered sterilized seawater, between the culturable and nonculturable state. Aeromonas hydrophila ATCC 7966, rendered non culturable within 50-55 days of exposure to marine stress conditions, was tested for its ability to maintain haemolysin and to adhere to McCoy cells. Results showed that pathogenicity was lost concomitantly with culturability, whereas cell viability remained undamaged, as determined by the Kogure cell elongation test. However, this loss is only temporary because, following temperature shift from 5 to 23 degrees C, multiple biological activities of recovered Aer. hydrophila cells, which include their ability to lyse human erythrocytes and to attach and destroy McCoy cells were regained. During the temperature-induced resuscitation, constant total cell counts were observed. Moreover, no significant improvement in recovery yield was obtained on brain-heart infusion (BHI) agar plates amended with catalase. We suggest that in addition to the growth of the few undetected culturable cells, there is repair and growth of some mildly injured viable but nonculturable cells. The possibility that nonculturable cells of normally culturable Aer. hydrophila in natural marine environment may constitute a source of infectious diseases posing a public health problem was demonstrated. These experiments may mimic what happens when Aer. hydrophila cells are released in natural seawater with careful attention to the conditions in which surrounding waters gradually become warmer in late summer/early autumn. Copyright 2004 The Society for Applied Microbiology

  17. Multiple Mechanisms Are Involved in 6-Gingerol-Induced Cell Growth Arrest and Apoptosis in Human Colorectal Cancer Cells

    Science.gov (United States)

    Lee, Seong-Ho; Cekanova, Maria; Baek, Seung Joon

    2008-01-01

    6-Gingerol, a natural product of ginger, has been known to possess anti-tumorigenic and pro-apoptotic activities. However, the mechanisms by which it prevents cancer are not well understood in human colorectal cancer. Cyclin D1 is a proto-oncogene that is overexpressed in many cancers and plays a role in cell proliferation through activation by β-catenin signaling. Nonsteroidal anti-inflammatory drug (NSAID)-activated gene-1 (NAG-1) is a cytokine associated with pro-apoptotic and anti-tumorigenic properties. In the present study, we examined whether 6-gingerol influences cyclin D1 and NAG-1 expression and determined the mechanisms by which 6-gingerol affects the growth of human colorectal cancer cells in vitro. 6-Gingerol treatment suppressed cell proliferation and induced apoptosis and G1 cell cycle arrest. Subsequently, 6-gingerol suppressed cyclin D1 expression and induced NAG-1 expression. Cyclin D1 suppression was related to inhibition of β-catenin translocation and cyclin D1 proteolysis. Furthermore, experiments using inhibitors and siRNA transfection confirm the involvement of the PKCε and glycogen synthase kinase (GSK)-3β pathways in 6-gingerol-induced NAG-1 expression. The results suggest that 6-gingerol stimulates apoptosis through upregulation of NAG-1 and G1 cell cycle arrest through downregulation of cyclin D1. Multiple mechanisms appear to be involved in 6-gingerol action, including protein degradation as well as β-catenin, PKCε, and GSK-3β pathways. PMID:18058799

  18. Simultaneously measuring multiple protein interactions and their correlations in a cell by Protein-interactome Footprinting.

    Science.gov (United States)

    Luo, Si-Wei; Liang, Zhi; Wu, Jia-Rui

    2017-03-24

    Quantitatively detecting correlations of multiple protein-protein interactions (PPIs) in vivo is a big challenge. Here we introduce a novel method, termed Protein-interactome Footprinting (PiF), to simultaneously measure multiple PPIs in one cell. The principle of PiF is that each target physical PPI in the interactome is simultaneously transcoded into a specific DNA sequence based on dimerization of the target proteins fused with DNA-binding domains. The interaction intensity of each target protein is quantified as the copy number of the specific DNA sequences bound by each fusion protein dimers. Using PiF, we quantitatively reveal dynamic patterns of PPIs and their correlation network in E. coli two-component systems.

  19. Superficial Type of Multiple Basal Cell Carcinomas: Detailed Comparative Study of Its Dermoscopic and Histopathological Findings

    Directory of Open Access Journals (Sweden)

    Akiko Hirofuji

    2011-01-01

    Full Text Available We investigated in detail the dermoscopic and histopathological findings in a case of a superficial type of multiple basal cell carcinomas (BCCs. These multiple lesions (occurring in the chest, neck, and back showed three different findings, respectively. Dermoscopy of the erythematous and brown-colored patch on the anterior chest showed spoke wheel areas, and the histopathological cross-section revealed vertical spoke wheel structures. In the black- and brown-colored patch at the neck, the dermatoscopy showed a maple leaf-like structure, which was in accordance with the strengthening of the histological lateral connection of the lesion. The brown-colored patch of the lateral back histologically showed irregularly enlarged spoke wheel-like areas with peripheral increased melanin pigments, which correlated with the dark black color of dermoscopic maple leaf-like areas. The vertical spoke wheel areas by dermatoscopy revealed a horizontal spoke wheel structure by histopathology.

  20. Autologous haematopoietic stem cell transplantation reduces abnormalities in the expression of immune genes in multiple sclerosis.

    Science.gov (United States)

    de Paula A Sousa, Alessandra; Malmegrim, Kelen C R; Panepucci, Rodrigo A; Brum, Doralina S; Barreira, Amilton A; Carlos Dos Santos, Antonio; Araújo, Amélia G; Covas, Dimas Tadeu; Oliveira, Maria C; Moraes, Daniela A; Pieroni, Fabiano; Barros, George M; Simões, Belinda P; Nicholas, Richard; Burt, Richard K; Voltarelli, Júlio C; Muraro, Paolo A

    2015-01-01

    Autologous haematopoietic stem-cell transplantation (AHSCT) has been experimented as a treatment in patients affected by severe forms of multiple sclerosis (MS) who failed to respond to standard immunotherapy. The rationale of AHSCT is to 'reboot' the immune system and reconstitute a new adaptive immunity. The aim of our study was to identify, through a robust and unbiased transcriptomic analysis, any changes of gene expression in T-cells potentially underlying the treatment effect in patients who underwent non-myeloablative AHSCT for treatment of MS. We evaluated by microarray DNA-chip technology the gene expression of peripheral CD4+ and CD8+ T-cell subsets sorted from patients with MS patients before AHSCT, at 6 months, 1 year and 2 years after AHSCT and from healthy control subjects. Hierarchical clustering analysis revealed that reconstituted CD8+ T-cells of MS patients at 2 years post-transplantation, aggregated together with healthy controls, suggesting a normalization of gene expression in CD8+ cells post-therapy. When we compared the gene expression in MS patients before and after therapy, we detected a large number of differentially expressed genes (DEG) in both CD8+ and CD4+ T-cell subsets at all time points after transplantation. We catalogued the biological function of DEG and we selected 27 genes known to be involved in immune function for accurate quantification of gene expression by real-time PCR. The analysis confirmed and extended with quantitative data, a number of significant changes in both the CD4+ and CD8+ T-cells subsets from MS post-transplant. Notably, CD8+ T-cells revealed more extensive changes in the expression of genes involved in effector immune responses.

  1. Three-dimensional computational modeling of multiple deformable cells flowing in microvessels.

    Science.gov (United States)

    Doddi, Sai K; Bagchi, Prosenjit

    2009-04-01

    Three-dimensional (3D) computational modeling and simulation are presented on the motion of a large number of deformable cells in microchannels. The methodology is based on an immersed boundary method, and the cells are modeled as liquid-filled elastic capsules. The model retains two important features of the blood flow in the microcirculation, that is, the particulate nature of blood and deformation of the erythrocytes. The tank-treading and tumbling motion and the lateral migration, as observed for erythrocytes in dilute suspension, are briefly discussed. We then present results on the motion of multiple cells in semidense suspension and study how their collective dynamics leads to various physiologically relevant processes such as the development of the cell-free layer and the Fahraeus-Lindqvist effect. We analyze the 3D trajectory and velocity fluctuations of individual cell in the suspension and the plug-flow velocity profile as functions of the cell deformability, hematocrit, and vessel size. The numerical results allow us to directly obtain various microrheological data, such as the width of the cell-free layer, and the variation in the apparent blood viscosity and hematocrit over the vessel cross section. We then use these results to calculate the core and plasma-layer viscosity and show that the two-phase (or core-annular) model of blood flow in microvessels underpredicts the blood velocity obtained in the simulations by as much as 40%. Based on a posteriori analysis of the simulation data, we develop a three-layer model of blood flow by taking into consideration the smooth variation in viscosity and hematocrit across the interface of the cell-free layer and the core. We then show that the blood velocity predicted by the three-layer model agrees very well with that obtained from the simulations.

  2. Secretome of Olfactory Mucosa Mesenchymal Stem Cell, a Multiple Potential Stem Cell

    Directory of Open Access Journals (Sweden)

    Lite Ge

    2016-01-01

    Full Text Available Nasal olfactory mucosa mesenchymal stem cells (OM-MSCs have the ability to promote regeneration in the nervous system in vivo. Moreover, with view to the potential for clinical application, OM-MSCs have the advantage of being easily accessible from patients and transplantable in an autologous manner, thus eliminating immune rejection and contentious ethical issues. So far, most studies have been focused on the role of OM-MSCs in central nervous system replacement. However, the secreted proteomics of OM-MSCs have not been reported yet. Here, proteins secreted by OM-MSCs cultured in serum-free conditions were separated on SDS-PAGE and identified by LC-MS/MS. As a result, a total of 274 secreted proteins were identified. These molecules are known to be important in neurotrophy, angiogenesis, cell growth, differentiation, and apoptosis, and inflammation which were highly correlated with the repair of central nervous system. The proteomic profiling of the OM-MSCs secretome might provide new insights into their nature in the neural recovery. However, proteomic analysis for clinical biomarkers of OM-MSCs needs to be further studied.

  3. AUTOLOGOUS HEMATOPOIETIC STEM CELL TRANSPLANTATION IN CHILDREN WITH SEVERE RESISTANT MULTIPLE SCLEROSIS

    Directory of Open Access Journals (Sweden)

    K. I. Kirgizov

    2013-01-01

    Full Text Available Unique experience of high-dose chemotherapy with consequent autologous hematopoietic stem cell transplantation in children with severe resistant multiple sclerosis (n=7 is shown in this article. At present time there is enough data on chemotherapy with consequent hematopoietic stem cell transplantation in children with severe resistant multiple sclerosis. This method was proved to be efficient and safe with immunoablative conditioning chemotherapy regimen. In patients included in this study the mean rate according to the Expanded Disability Status Scale was 5,94±0,2 (from 3 to 9 points. All the patients had disseminated demyelination loci, accumulating the contrast substance, in the brain and the spinal cord. After cyclophosphamide treatment in combination with anti-monocytes globulin the fast stabilization of the condition and prolonged (the observation period was 3-36 moths clinical and radiologic as well as immunophenotypic remission with marked positive dynamics according to the Expanded Disability Status Scale were noted. No pronounced side-effects and infectious complications were mentioned. The maximal improvement according to the Expanded Disability Status Scale (EDSS was 5,5 points, the mean — 2,7±0,1 (from 2 to 5,5 points accompanied with positive dynamics on the magneto-resonance imaging.  The efficacy of the treatment was also proved by the positive changes in the lymphocytes subpopulation status in peripheral blood. The timely performed high-dose chemotherapy with consequent hematopoietic stem cell transplantation is an effective and safe method to slowdown the autoimmune inflammatory process. This method can be recommended to use in treatment of children with severe resistant multiple sclerosis. 

  4. LIS1 RNA interference blocks neural stem cell division, morphogenesis, and motility at multiple stages.

    Science.gov (United States)

    Tsai, Jin-Wu; Chen, Yu; Kriegstein, Arnold R; Vallee, Richard B

    2005-09-12

    Mutations in the human LIS1 gene cause the smooth brain disease classical lissencephaly. To understand the underlying mechanisms, we conducted in situ live cell imaging analysis of LIS1 function throughout the entire radial migration pathway. In utero electroporation of LIS1 small interference RNA and short hairpin dominant negative LIS1 and dynactin cDNAs caused a dramatic accumulation of multipolar progenitor cells within the subventricular zone of embryonic rat brains. This effect resulted from a complete failure in progression from the multipolar to the migratory bipolar state, as revealed by time-lapse analysis of brain slices. Surprisingly, interkinetic nuclear oscillations in the radial glial progenitors were also abolished, as were cell divisions at the ventricular surface. Those few bipolar cells that reached the intermediate zone also exhibited a complete block in somal translocation, although, remarkably, process extension persisted. Finally, axonal growth also ceased. These results identify multiple distinct and novel roles for LIS1 in nucleokinesis and process dynamics and suggest that nuclear position controls neural progenitor cell division.

  5. TAK1 regulates caspase 8 activation and necroptotic signaling via multiple cell death checkpoints.

    Science.gov (United States)

    Guo, Xiaoyun; Yin, Haifeng; Chen, Yi; Li, Lei; Li, Jing; Liu, Qinghang

    2016-09-29

    Necroptosis has emerged as a new form of programmed cell death implicated in a number of pathological conditions such as ischemic injury, neurodegenerative disease, and viral infection. Recent studies indicate that TGFβ-activated kinase 1 (TAK1) is nodal regulator of necroptotic cell death, although the underlying molecular regulatory mechanisms are not well defined. Here we reported that TAK1 regulates necroptotic signaling as well as caspase 8-mediated apoptotic signaling through both NFκB-dependent and -independent mechanisms. Inhibition of TAK1 promoted TNFα-induced cell death through the induction of RIP1 phosphorylation/activation and necrosome formation. Further, inhibition of TAK1 triggered two caspase 8 activation pathways through the induction of RIP1-FADD-caspase 8 complex as well as FLIP cleavage/degradation. Mechanistically, our data uncovered an essential role for the adaptor protein TNF receptor-associated protein with death domain (TRADD) in caspase 8 activation and necrosome formation triggered by TAK1 inhibition. Moreover, ablation of the deubiqutinase CYLD prevented both apoptotic and necroptotic signaling induced by TAK1 inhibition. Finally, blocking the ubiquitin-proteasome pathway prevented the degradation of key pro-survival signaling proteins and necrosome formation. Thus, we identified new regulatory mechanisms underlying the critical role of TAK1 in cell survival through regulation of multiple cell death checkpoints. Targeting key components of the necroptotic pathway (e.g., TRADD and CYLD) and the ubiquitin-proteasome pathway may represent novel therapeutic strategies for pathological conditions driven by necroptosis.

  6. Multiple biomarkers of the cytotoxicity induced by BDE-47 in human embryonic kidney cells.

    Science.gov (United States)

    Wu, Huifeng; Cao, Lulu; Li, Fei; Lian, Peiwen; Zhao, Jianmin

    2015-05-01

    Polybrominated diphenyl ethers (PBDEs) are widely used as brominated flame-retardants in a variety of industrial products. Among these PBDEs, 2,2',4,4'-tetra-bromodiphenyl ether (BDE-47) is one of the most predominant congeners inducing multiple toxicities, including hepatotoxicity, neurotoxicity, cytotoxicity, genotoxicity, carcinogenecity and immunotoxicity in human body. In this study, the cytotoxicity of BDE-47 in human embryonic kidney cells (HEK293) was investigated by a set of bioassays, including cell proliferation, apoptosis, oxidative stress and metabolic responses as well as gene expressions related to apoptosis. Results showed that BDE-47 induced an inverted U-shaped curve of cell proliferation in HEK293 cells from 10(-6) to 10(-4) M. Cell apoptosis and ROS overproduction were detected at 10(-5) M of BDE-47 (paspartate, UDP-glucose and NAD(+). The increased lactate/alanine ratios indicated the higher reductive state induced by BDE-47 in all exposures confirmed by the overproduction of ROS. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. EPMLR: sequence-based linear B-cell epitope prediction method using multiple linear regression.

    Science.gov (United States)

    Lian, Yao; Ge, Meng; Pan, Xian-Ming

    2014-12-19

    B-cell epitopes have been studied extensively due to their immunological applications, such as peptide-based vaccine development, antibody production, and disease diagnosis and therapy. Despite several decades of research, the accurate prediction of linear B-cell epitopes has remained a challenging task. In this work, based on the antigen's primary sequence information, a novel linear B-cell epitope prediction model was developed using the multiple linear regression (MLR). A 10-fold cross-validation test on a large non-redundant dataset was performed to evaluate the performance of our model. To alleviate the problem caused by the noise of negative dataset, 300 experiments utilizing 300 sub-datasets were performed. We achieved overall sensitivity of 81.8%, precision of 64.1% and area under the receiver operating characteristic curve (AUC) of 0.728. We have presented a reliable method for the identification of linear B cell epitope using antigen's primary sequence information. Moreover, a web server EPMLR has been developed for linear B-cell epitope prediction: http://www.bioinfo.tsinghua.edu.cn/epitope/EPMLR/ .

  8. A method for multiple sequential analyses of macrophage functions using a small single cell sample

    Directory of Open Access Journals (Sweden)

    F.R.F. Nascimento

    2003-09-01

    Full Text Available Microbial pathogens such as bacillus Calmette-Guérin (BCG induce the activation of macrophages. Activated macrophages can be characterized by the increased production of reactive oxygen and nitrogen metabolites, generated via NADPH oxidase and inducible nitric oxide synthase, respectively, and by the increased expression of major histocompatibility complex class II molecules (MHC II. Multiple microassays have been developed to measure these parameters. Usually each assay requires 2-5 x 10(5 cells per well. In some experimental conditions the number of cells is the limiting factor for the phenotypic characterization of macrophages. Here we describe a method whereby this limitation can be circumvented. Using a single 96-well microassay and a very small number of peritoneal cells obtained from C3H/HePas mice, containing as little as <=2 x 10(5 macrophages per well, we determined sequentially the oxidative burst (H2O2, nitric oxide production and MHC II (IAk expression of BCG-activated macrophages. More specifically, with 100 µl of cell suspension it was possible to quantify H2O2 release and nitric oxide production after 1 and 48 h, respectively, and IAk expression after 48 h of cell culture. In addition, this microassay is easy to perform, highly reproducible and more economical.

  9. Deazaneplanocin a is a promising drug to kill multiple myeloma cells in their niche.

    Directory of Open Access Journals (Sweden)

    Jérémie Gaudichon

    Full Text Available Tumoral plasma cells has retained stemness features and in particular, a polycomb-silenced gene expression signature. Therefore, epigenetic therapy could be a mean to fight for multiple myeloma (MM, still an incurable pathology. Deazaneplanocin A (DZNep, a S-adenosyl-L-homocysteine hydrolase inhibitor, targets enhancer of zest homolog 2 (EZH2, a component of polycomb repressive complex 2 (PRC2 and is capable to induce the death of cancer cells. We show here that, in some MM cell lines, DZNep induced both caspase-dependent and -independent apoptosis. However, the induction of cell death was not mediated through its effect on EZH2 and the trimethylation on lysine 27 of histone H3 (H3K27me3. DZNep likely acted through non-epigenetic mechanisms in myeloma cells. In vivo, in xenograft models, and in vitro DZNep showed potent antimyeloma activity alone or in combination with bortezomib. These preclinical data let us to envisage new therapeutic strategies for myeloma.

  10. Human Neural Precursor Cells Promote Neurologic Recovery in a Viral Model of Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Lu Chen

    2014-06-01

    Full Text Available Using a viral model of the demyelinating disease multiple sclerosis (MS, we show that intraspinal transplantation of human embryonic stem cell-derived neural precursor cells (hNPCs results in sustained clinical recovery, although hNPCs were not detectable beyond day 8 posttransplantation. Improved motor skills were associated with a reduction in neuroinflammation, decreased demyelination, and enhanced remyelination. Evidence indicates that the reduced neuroinflammation is correlated with an increased number of CD4+CD25+FOXP3+ regulatory T cells (Tregs within the spinal cords. Coculture of hNPCs with activated T cells resulted in reduced T cell proliferation and increased Treg numbers. The hNPCs acted, in part, through secretion of TGF-β1 and TGF-β2. These findings indicate that the transient presence of hNPCs transplanted in an animal model of MS has powerful immunomodulatory effects and mediates recovery. Further investigation of the restorative effects of hNPC transplantation may aid in the development of clinically relevant MS treatments.

  11. Efficiency dip observed with InGaN-based multiple quantum well solar cells

    KAUST Repository

    Lai, Kunyu

    2014-01-01

    The dip of external quantum efficiency (EQE) is observed on In0.15Ga0.85N/GaN multiple quantum well (MQW) solar cells upon the increase of incident optical power density. With indium composition increased to 25%, the EQE dip becomes much less noticeable. The composition dependence of EQE dip is ascribed to the competition between radiative recombination and photocurrent generation in the active region, which are dictated by quantum-confined Stark effect (QCSE) and composition fluctuation in the MQWs.

  12. Photon-modulated multiple-state memory cell in Josephson junction systems

    Science.gov (United States)

    Ho, I.-Lin; Shiau, Shiue-Yuan

    2013-08-01

    This work studies the multiple-state memory cell in weak-coupled Josephson junction systems, allowing for alternative occupations of the quasiparticle (QP) and Cooper pair (CP) in the memory node and presenting its adjustability (between the QP and CP) by electromagnetic modulations. We structure theoretical formulae considering these interactive dynamics by the golden approximation and perform the time evolutions of relevant function operations using Monte Carlo techniques. Numerical results demonstrate switchable hysteretic memory effects for devices under photon radiations or magnetic fields and signify other potential applications, e.g., on interconnections with optical computing systems.

  13. Incorporating Multiple Energy Relay Dyes in Liquid Dye-Sensitized Solar Cells

    KAUST Repository

    Yum, Jun-Ho

    2011-01-05

    Panchromatic response is essential to increase the light-harvesting efficiency in solar conversion systems. Herein we show increased light harvesting from using multiple energy relay dyes inside dye-sensitized solar cells. Additional photoresponse from 400-590 nm matching the optical window of the zinc phthalocyanine sensitizer was observed due to Förster resonance energy transfer (FRET) from the two energy relay dyes to the sensitizing dye. The complementary absorption spectra of the energy relay dyes and high excitation transfer efficiencies result in a 35% increase in photovoltaic performance. © 2011 Wiley-VCH Verlag GmbH& Co. KGaA.

  14. Multiple Mechanisms are Responsible for Transactivation of the Epidermal Growth Factor Receptor in Mammary Epithelial Cells

    Energy Technology Data Exchange (ETDEWEB)

    Rodland, Karin D.; Bollinger, Nikki; Ippolito, Danielle L.; Opresko, Lee; Coffey, Robert J.; Zangar, Richard C.; Wiley, H. S.

    2008-11-14

    REVIEW ENTIRE DOCUMENT AT: https://pnlweb.pnl.gov/projects/bsd/ERICA%20Manuscripts%20for%20Review/KD%20Rodland%20D7E80/HMEC_transactivation_ms01_15+Figs.pdf ABSTRACT: Using a single nontransformed strain of human mammary epithelial cells, we found that the ability of multiple growth factors and cytokines to induce ERK phosphorylation was dependent on EGFR activity. These included lysophosphatidic acid (LPA), uridine triphosphate, growth hormone, vascular endothelial growth factor, insulin-like growth factor-1 (IGF-1), and tumor necrosis factoralpha. In contrast, hepatocyte growth factor could stimulate ERK phosphorylation independent of EGFR activity...

  15. Failure to demonstrate human T cell lymphotropic virus type I in multiple sclerosis patients

    DEFF Research Database (Denmark)

    Fugger, L; Morling, N; Ryder, L P

    1990-01-01

    The polymerase chain reaction (PCR) technique was employed in searching for human T cell lymphotropic virus type I (HTLV-I) gag, env and pol sequences in samples of DNA prepared from two HTLV-I seropositive patients with tropical spastic paraparesis (TSP), the Swedish multiple sclerosis (MS......) patients who recently have been reported to be PCR-positive for HTLV-I gag and env sequences, and eight healthy individuals. Precautions were taken in order to reduce the risk of cross-contamination in the PCR. In the two TSP patients strong signals were obtained with gag, env and pol amplification primers...

  16. Proteomic analysis reveals complex metabolic regulation in Saccharomyces cerevisiae cells against multiple inhibitors stress.

    Science.gov (United States)

    Lv, Ya-Jin; Wang, Xin; Ma, Qian; Bai, Xue; Li, Bing-Zhi; Zhang, Weiwen; Yuan, Ying-Jin

    2014-03-01

    Toxic compounds including acids, furans, and phenols (AFP) were generated from the pretreatment of lignocellulose. We cultivated Saccharomyces cerevisiae cells in a batch mode, besides the cell culture of original yeast strain in AFP-free medium which was referred as C0, three independent subcultures were cultivated under multiple inhibitors AFP and were referred as C1, C2, and C3 in time sequence. Comparing to C0, the cell density was lowered while the ethanol yield was maintained stably in the three yeast cultures under AFP stress, and the lag phase of C1 was extended while the lag phases of C2 and C3 were not extended. In proteomic analysis, 194 and 215 unique proteins were identified as differently expressed proteins at lag phase and exponential phase, respectively. Specifically, the yeast cells co-regulated protein folding and protein synthesis process to prevent the generation of misfolded proteins and to save cellular energy, they increased the activity of glycolysis, redirected metabolic flux towards phosphate pentose pathway and the biosynthesis of ethanol instead of the biosynthesis of glycerol and acetic acid, and they upregulated several oxidoreductases especially at lag phase and induced programmed cell death at exponential phase. When the yeast cells were cultivated under AFP stress, the new metabolism homeostasis in favor of cellular energy and redox homeostasis was generated in C1, then it was inherited and optimized in C2 and C3, enabling the yeast cells in C2 and C3 to enter the exponential phase in a short period after inoculation, which thus significantly shortened the fermentation time.

  17. Non-viable Borrelia burgdorferi induce inflammatory mediators and apoptosis in human oligodendrocytes.

    Science.gov (United States)

    Parthasarathy, Geetha; Fevrier, Helene B; Philipp, Mario T

    2013-11-27

    In previous studies, exposure to live Borrelia burgdorferi was shown to induce inflammation and apoptosis of human oligodendrocytes. In this study we assessed the ability of non-viable bacteria (heat killed or sonicated) to induce inflammatory mediators and cell death. Both heat-killed and sonicated bacteria induced release of CCL2, IL-6, and CXCL8 from oligodendrocytes in a dose dependent manner. In addition, non-viable B. burgdorferi also induced cell death as evaluated by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and another cell viability assay. These results suggest that spirochetal residues left after bacterial demise, due to treatment or otherwise, may continue to be pathogenic to the central nervous system. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  18. The effects of omega-3 Fatty acids on matrix metalloproteinase-9 production and cell migration in human immune cells: implications for multiple sclerosis.

    Science.gov (United States)

    Shinto, Lynne; Marracci, Gail; Bumgarner, Lauren; Yadav, Vijayshree

    2011-01-01

    In multiple sclerosis (MS), compromised blood-brain barrier (BBB) integrity contributes to inflammatory T cell migration into the central nervous system. Matrix metalloproteinase-9 (MMP-9) is associated with BBB disruption and subsequent T cell migration into the CNS. The aim of this paper was to evaluate the effects of omega-3 fatty acids on MMP-9 levels and T cell migration. Peripheral blood mononuclear cells (PBMC) from healthy controls were pretreated with two types of omega-3 fatty acids, eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA). Cell supernatants were used to determine MMP-9 protein and activity levels. Jurkat cells were pretreated with EPA and DHA and were added to fibronectin-coated transwells to measure T cell migration. EPA and DHA significantly decreased MMP-9 protein levels, MMP-9 activity, and significantly inhibited human T cell migration. The data suggest that omega-3 fatty acids may benefit patients with multiple sclerosis by modulating immune cell production of MMP-9.

  19. The potential of mesenchymal stromal cells as a novel cellular therapy for multiple sclerosis

    Science.gov (United States)

    Auletta, Jeffery J; Bartholomew, Amelia M; Maziarz, Richard T; Deans, Robert J; Miller, Robert H; Lazarus, Hillard M; Cohen, Jeffrey A

    2012-01-01

    Multiple sclerosis (MS) is an inflammatory neurodegenerative disease of the CNS for which only partially effective therapies exist. Intense research defining the underlying immune pathophysiology is advancing both the understanding of MS as well as revealing potential targets for disease intervention. Mesenchymal stromal cell (MSC) therapy has the potential to modulate aberrant immune responses causing demyelination and axonal injury associated with MS, as well as to repair and restore damaged CNS tissue and cells. This article reviews the pathophysiology underlying MS, as well as providing a cutting-edge perspective into the field of MSC therapy based upon the experience of authors intrinsically involved in MS and MSC basic and translational science research. PMID:22642335

  20. Multiple Sclerosis

    Science.gov (United States)

    Multiple sclerosis (MS) is a nervous system disease that affects your brain and spinal cord. It damages the myelin ... healthy cells in your body by mistake. Multiple sclerosis affects women more than men. It often begins ...

  1. Screening for hemosiderosis in patients receiving multiple red blood cell transfusions.

    Science.gov (United States)

    de Jongh, Adriaan D; van Beers, Eduard J; de Vooght, Karen M K; Schutgens, Roger E G

    2017-05-01

    The dramatic impact of hemosiderosis on survival in chronically transfused patients with hereditary anemia is well known. We evaluated whether patients receiving multiple red blood cell (RBC) transfusions are adequately screened for hemosiderosis. We retrospectively assessed hemosiderosis screening and prevalence in adult patients that received over twenty RBC units in the University Medical Centre Utrecht from 2010 till 2015. Hemosiderosis was defined as ferritin ≥1000 μg/L. Adequate screening for chronically transfused patients was defined as any ferritin determined up to 3 months before or any moment after the last transfusion, while for patients that received all transfusions within 3 months (bulk transfusion), ferritin had to be determined after at least twenty transfusions. Of 471 patients, only 38.6% was adequately screened and hemosiderosis prevalence was 46.7%. Hemosiderosis prevalence was 47% in the chronic transfusion group and 12% in the bulk transfusion group. In patients transfused because of hematological malignancy or cardiothoracic surgery, respectively, 74% and 31% were adequately screened and hemosiderosis prevalence was 53% and 13%, respectively. Hemosiderosis screening in our routine practice is suboptimal. Hemosiderosis is not an exclusive complication of multiple transfusions in the hematology ward. We recommend screening for hemosiderosis in all patients receiving multiple transfusions. © 2017 The Authors. European Journal of Haematology Published by John Wiley & Sons Ltd.

  2. Imaging B Cells in a Mouse Model of Multiple Sclerosis Using (64)Cu-Rituximab PET.

    Science.gov (United States)

    James, Michelle L; Hoehne, Aileen; Mayer, Aaron T; Lechtenberg, Kendra; Moreno, Monica; Gowrishankar, Gayatri; Ilovich, Ohad; Natarajan, Arutselvan; Johnson, Emily M; Nguyen, Joujou; Quach, Lisa; Han, May; Buckwalter, Marion; Chandra, Sudeep; Gambhir, Sanjiv S

    2017-11-01

    B lymphocytes are a key pathologic feature of multiple sclerosis (MS) and are becoming an important therapeutic target for this condition. Currently, there is no approved technique to noninvasively visualize B cells in the central nervous system (CNS) to monitor MS disease progression and response to therapies. Here, we evaluated (64)Cu-rituximab, a radiolabeled antibody specifically targeting the human B cell marker CD20, for its ability to image B cells in a mouse model of MS using PET. Methods: To model CNS infiltration by B cells, experimental autoimmune encephalomyelitis (EAE) was induced in transgenic mice that express human CD20 on B cells. EAE mice were given subcutaneous injections of myelin oligodendrocyte glycoprotein fragment1-125 emulsified in complete Freund adjuvant. Control mice received complete Freund adjuvant alone. PET imaging of EAE and control mice was performed 1, 4, and 19 h after (64)Cu-rituximab administration. Mice were perfused and sacrificed after the final PET scan, and radioactivity in dissected tissues was measured with a γ-counter. CNS tissues from these mice were immunostained to quantify B cells or were further analyzed via digital autoradiography. Results: Lumbar spinal cord PET signal was significantly higher in EAE mice than in controls at all evaluated time points (e.g., 1 h after injection: 5.44 ± 0.37 vs. 3.33 ± 0.20 percentage injected dose [%ID]/g, P B220 immunostaining verified that increased (64)Cu-rituximab uptake in CNS tissues corresponded with elevated B cells. Conclusion: B cells can be detected in the CNS of EAE mice using (64)Cu-rituximab PET. Results from these studies warrant further investigation of (64)Cu-rituximab in EAE models and consideration of use in MS patients to evaluate its potential for detecting and monitoring B cells in the progression and treatment of this disease. These results represent an initial step toward generating a platform to evaluate B cell-targeted therapeutics en route to the

  3. Barrier potential design criteria in multiple-quantum-well-based solar-cell structures

    Science.gov (United States)

    Mohaidat, Jihad M.; Shum, Kai; Wang, W. B.; Alfano, R. R.

    1994-01-01

    The barrier potential design criteria in multiple-quantum-well (MQW)-based solar-cell structures is reported for the purpose of achieving maximum efficiency. The time-dependent short-circuit current density at the collector side of various MQW solar-cell structures under resonant condition was numerically calculated using the time-dependent Schroedinger equation. The energy efficiency of solar cells based on the InAs/Ga(y)In(1-y)As and GaAs/Al(x)Ga(1-x)As MQW structues were compared when carriers are excited at a particular solar-energy band. Using InAs/Ga(y)In(1-y)As MQW structures it is found that a maximum energy efficiency can be achieved if the structure is designed with barrier potential of about 450 meV. The efficiency is found to decline linearly as the barrier potential increases for GaAs/Al(x)Ga(1-x)As MQW-structure-based solar cells.

  4. Quinolinic acid toxicity on oligodendroglial cells: relevance for multiple sclerosis and therapeutic strategies.

    Science.gov (United States)

    Sundaram, Gayathri; Brew, Bruce J; Jones, Simon P; Adams, Seray; Lim, Chai K; Guillemin, Gilles J

    2014-12-13

    The excitotoxin quinolinic acid, a by-product of the kynurenine pathway, is known to be involved in several neurological diseases including multiple sclerosis (MS). Quinolinic acid levels are elevated in experimental autoimmune encephalomyelitis rodents, the widely used animal model of MS. Our group has also found pathophysiological concentrations of quinolinic acid in MS patients. This led us to investigate the effect of quinolinic acid on oligodendrocytes; the main cell type targeted by the autoimmune response in MS. We have examined the kynurenine pathway (KP) profile of two oligodendrocyte cell lines and show that these cells have a limited threshold to catabolize exogenous quinolinic acid. We further propose and demonstrate two strategies to limit quinolinic acid gliotoxicity: 1) by neutralizing quinolinic acid's effects with anti-quinolinic acid monoclonal antibodies and 2) directly inhibiting quinolinic acid production from activated monocytic cells using specific KP enzyme inhibitors. The outcome of this study provides a new insight into therapeutic strategies for limiting quinolinic acid-induced neurodegeneration, especially in neurological disorders that target oligodendrocytes, such as MS.

  5. Intrathecal T-cell clonal expansions in patients with multiple sclerosis.

    Science.gov (United States)

    de Paula Alves Sousa, Alessandra; Johnson, Kory R; Nicholas, Richard; Darko, Sam; Price, David A; Douek, Daniel C; Jacobson, Steven; Muraro, Paolo A

    2016-06-01

    Analysis of the T-cell receptor (TCR) repertoire in the cerebrospinal fluid (CSF) of patients with multiple sclerosis (MS) can reveal antigen-specific immune responses potentially implicated in the disease process. We applied a new unbiased deep-sequencing method for TCR repertoire analysis to accurately measure and compare receptor diversity and clonal expansions within the peripheral and CSF-trafficking T-cell populations of patients with MS and control individuals with idiopathic intracranial hypertension (IIH). Paired blood and CSF TCR β-chain libraries from five MS patients and five IIH controls were sequenced, yielding a total of 80 million reads. Although TCR repertoire diversity was greater in the blood and CSF compartments of MS patients when compared with IIH controls, it is notable that the frequency of clonal expansions was also significantly higher in both compartments of MS patients. Highly expanded T-cell clones were enriched in the CSF compartment of MS patients compared to peripheral blood, very few of them were detected in both compartments. Collectively, our data provide a proof of principle that private compartmentalized T-cell expansion exists in the intrathecal space of MS patients.

  6. Multiple HIV-1 infection of cells and the evolutionary dynamics of cytotoxic T lymphocyte escape mutants.

    Science.gov (United States)

    Wodarz, Dominik; Levy, David N

    2009-09-01

    Cytotoxic T lymphocytes (CTL) are an important branch of the immune system, killing virus-infected cells. Many viruses can mutate so that infected cells are not killed by CTL anymore. This escape can contribute to virus persistence and disease. A prominent example is HIV-1. The evolutionary dynamics of CTL escape mutants in vivo have been studied experimentally and mathematically, assuming that a cell can only be infected with one HIV particle at a time. However, according to data, multiple virus particles frequently infect the same cell, a process called coinfection. Here, we study the evolutionary dynamics of CTL escape mutants in the context of coinfection. A mathematical model suggests that an intermediate strength of the CTL response against the wild-type is most detrimental for an escape mutant, minimizing overall virus load and even leading to its extinction. A weaker or, paradoxically, stronger CTL response against the wild-type both lead to the persistence of the escape mutant and higher virus load. It is hypothesized that an intermediate strength of the CTL response, and thus the suboptimal virus suppression observed in HIV-1 infection, might be adaptive to minimize the impact of existing CTL escape mutants on overall virus load.

  7. Leukemia inhibitory factor tips the immune balance towards regulatory T cells in multiple sclerosis.

    Science.gov (United States)

    Janssens, Kris; Van den Haute, Chris; Baekelandt, Veerle; Lucas, Sophie; van Horssen, Jack; Somers, Veerle; Van Wijmeersch, Bart; Stinissen, Piet; Hendriks, Jerome J A; Slaets, Helena; Hellings, Niels

    2015-03-01

    Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system (CNS), for which current treatments are unable to prevent disease progression. Based on its neuroprotective and neuroregenerating properties, leukemia inhibitory factor (LIF), a member of the interleukin-6 (IL-6) cytokine family, is proposed as a novel candidate for MS therapy. However, its effect on the autoimmune response remains unclear. In this study, we determined how LIF modulates T cell responses that play a crucial role in the pathogenesis of MS. We demonstrate that expression of the LIF receptor was strongly increased on immune cells of MS patients. LIF treatment potently boosted the number of regulatory T cells (Tregs) in CD4(+) T cells isolated from healthy controls and MS patients with low serum levels of IL-6. Moreover, IL-6 signaling was reduced in the donors that responded to LIF treatment in vitro. Our data together with previous findings revealing that IL-6 inhibits Treg development, suggest an opposing function of LIF and IL-6. In a preclinical animal model of MS we shifted the LIF/IL-6 balance in favor of LIF by CNS-targeted overexpression. This increased the number of Tregs in the CNS during active autoimmune responses and reduced disease symptoms. In conclusion, our data show that LIF downregulates the autoimmune response by enhancing Treg numbers, providing further impetus for the use of LIF as a novel treatment for MS and other autoimmune diseases. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Curcumin induces apoptosis of upper aerodigestive tract cancer cells by targeting multiple pathways.

    Directory of Open Access Journals (Sweden)

    A R M Ruhul Amin

    Full Text Available Curcumin, a natural compound isolated from the Indian spice "Haldi" or "curry powder", has been used for centuries as a traditional remedy for many ailments. Recently, the potential use of curcumin in cancer prevention and therapy urges studies to uncover the molecular mechanisms associated with its anti-tumor effects. In the current manuscript, we investigated the mechanism of curcumin-induced apoptosis in upper aerodigestive tract cancer cell lines and showed that curcumin-induced apoptosis is mediated by the modulation of multiple pathways such as induction of p73, and inhibition of p-AKT and Bcl-2. Treatment of cells with curcumin induced both p53 and the related protein p73 in head and neck and lung cancer cell lines. Inactivation of p73 by dominant negative p73 significantly protected cells from curcumin-induced apoptosis, whereas ablation of p53 by shRNA had no effect. Curcumin treatment also strongly inhibited p-AKT and Bcl-2 and overexpression of constitutively active AKT or Bcl-2 significantly inhibited curcumin-induced apoptosis. Taken together, our findings suggest that curcumin-induced apoptosis is mediated via activating tumor suppressor p73 and inhibiting p-AKT and Bcl-2.

  9. Feasibility and toxicity of hematopoietic stem cell transplant in multiple sclerosis

    Directory of Open Access Journals (Sweden)

    Thomas Low Tat Kuan

    2017-07-01

    Full Text Available Multiple sclerosis is a debilitating disease of the central nervous system. It affects people of all ages but is more prevalent among 20-40 year olds. Patients with MS can be presented with potentially any neurological symptom depending on the location of the lesion. A quarter of patients with MS suffer from bilateral lower limb spasticity among other symptoms. These devastating effects can be detrimental to the patient's quality of life. Hematopoietic stem cells (HSCs have been used as a treatment for MS over the past 2 decades but their safety and efficacy has are undetermined. The objective of this study is to evaluate the feasibility and toxicity of autologous HSCs transplantation in MS. A literature search was done from 1997 to 2016 using different keywords. A total of 9 articles, which met the inclusion and exclusion criteria, were included in this review. The type of conditioning regimen and technique of stem cell mobilization are summarized and compared in this study. All studies reported high-dose immunosuppressive therapy with autologous HSCs transplantation being an effective treatment option for severe cases of multiple sclerosis. Fever, sepsis, and immunosuppression side effects were the most observed adverse effects that were reported in the selected studies. HSCs is a feasible treatment for patients with MS; nevertheless the safety is still a concern due to chemo toxicity.

  10. Concurrent dendritic cell vaccine and strontium-89 radiation therapy in the management of multiple bone metastases.

    Science.gov (United States)

    Liu, J; Li, J; Fan, Y; Chang, K; Yang, X; Zhu, W; Wu, X; Pang, Yan

    2015-06-01

    In addition to its direct cytotoxic effects, radiation therapy renders tumor cells more susceptible to T cell-mediated cytotoxicity by modulating cell surface molecules involved in antigen presentation. The purpose of the present study was to determine the benefit of combined 89Sr radiation and dendritic cell (DC) vaccine therapy in bone metastasis patients. Patients were treated with intravenous 89Sr at a dose of 40 μCi/kg of body weight on the first day after the peripheral blood mononuclear cell collection. Seven days later, patients received DCs once a week for 6 weeks. The first three vaccines were administered by intravenous infusion, and the last three vaccines were administered by 24-point intradermal injection. Clinical response was evaluated by the number of bone metastatic foci demonstrated on bone scintigraphy; cell-mediated cytotoxicity response was evaluated by delayed-type hypersensitivity (DTH) reaction. All treatment-related toxicities including vaccine-induced fever and 89Sr-associated hematological toxicity were carefully monitored. Twenty-six patients with histologically diagnosed with primary cancers and multiple bone metastases demonstrated on bone scintigraphy were studied. The overall survival rate was 58.3%. The total positive DTH rate was 50%. The efficiency rate for pain relief was 60% (6/10), for quantity of life was 80%, and for clinic responses was 90%. Out of 10 cases, the Grade 1 or 2 of hematological depression in 4, erythema in 1, and fever in 7 were observed. The study has important implications for that combined 89Sr radiation, and DC vaccine therapy can benefit cancer patients with bone metastasis.

  11. Safety and T cell modulating effects of high dose vitamin D3 supplementation in multiple sclerosis.

    Directory of Open Access Journals (Sweden)

    Joost Smolders

    2010-12-01

    Full Text Available A poor vitamin D status has been associated with a high disease activity of multiple sclerosis (MS. Recently, we described associations between vitamin D status and peripheral T cell characteristics in relapsing remitting MS (RRMS patients. In the present study, we studied the effects of high dose vitamin D3 supplementation on safety and T cell related outcome measures.Fifteen RRMS patients were supplemented with 20,000 IU/d vitamin D3 for 12 weeks. Vitamin D and calcium metabolism were carefully monitored, and T cell characteristics were studied by flowcytometry. All patients finished the protocol without side-effects, hypercalcaemia, or hypercalciuria. The median vitamin D status increased from 50 nmol/L (31-175 at week 0 to 380 nmol/L (151-535 at week 12 (P<0.001. During the study, 1 patient experienced an exacerbation of MS and was censored from the T cell analysis. The proportions of (naïve and memory CD4+ Tregs remained unaffected. Although Treg suppressive function improved in several subjects, this effect was not significant in the total cohort (P=0.143. An increased proportion of IL-10+ CD4+ T cells was found after supplementation (P=0.021. Additionally, a decrease of the ratio between IFN-γ+ and IL-4+ CD4+ T cells was observed (P=0.035.Twelve week supplementation of high dose vitamin D3 in RRMS patients was well tolerated and did not induce decompensation of calcium metabolism. The skewing towards an anti-inflammatory cytokine profile supports the evidence on vitamin D as an immune-modulator, and may be used as outcome measure for upcoming randomized placebo-controlled trials.Clinicaltrials.gov NCT00940719.

  12. The role of stem cell mobilization regimen on lymphocyte collection yield in patients with multiple myeloma.

    Science.gov (United States)

    Hiwase, D K; Hiwase, S; Bailey, M; Bollard, G; Schwarer, A P

    2008-01-01

    The lymphocyte dose (LY-DO) infused during an autograft influences absolute lymphocyte (ALC) recovery and survival following autologous stem cell transplantation (ASCT) in multiple myeloma (MM) patients. Factors influencing lymphocyte yield (LY-C) during leukapheresis have been poorly studied. Factors that could influence survival, LY-C and CD34(+) cell yield were analyzed in 122 MM patients. Three mobilization regimens were used, granulocyte-colony-stimulating factor (G-CSF) alone (n=13), cyclophosphamide 1-2 g/m(2) plus G-CSF (LD-CY, n=62) and cyclophosphamide 3-4 g/m(2) and G-CSF (ID-CY, n=47). Using multivariate analysis, age, LY-C, ALC on day 30 (ALC-30) and International Staging System stage significantly influenced overall (OS) and progression-free survival (PFS) following ASCT. PFS (56 versus 29 months, P=0.05) and OS (72 versus 49 months; P=0.07) were longer in the LY-C>or=0.12x10(9)/kg group than the LY-Cradiotherapy and number of leukaphereses significantly influenced LY-C. Significantly higher LY-C was obtained with G-CSF alone compared with the LD-CY and ID-CY groups. CD34(+) count on the day of leukapheresis, prior chemotherapy with prednisone, cyclophosphamide, adriamycin and BCNU or melphalan, and stem cell mobilization regimen significantly influenced CD34(+) cell yield. LY-C influenced ALC-15 and survival following ASCT. Factors that influenced CD34(+) cell yield and LY-C during leukapheresis were different. Mobilization should be tailored to maximize the LY-C and CD34(+) cell yield.

  13. PMA-PhyloChip DNA Microarray to Elucidate Viable Microbial Community Structure

    Science.gov (United States)

    Venkateswaran, Kasthuri J.; Stam, Christina N.; Andersen, Gary L.; DeSantis, Todd

    2011-01-01

    Since the Viking missions in the mid-1970s, traditional culture-based methods have been used for microbial enumeration by various NASA programs. Viable microbes are of particular concern for spacecraft cleanliness, for forward contamination of extraterrestrial bodies (proliferation of microbes), and for crew health/safety (viable pathogenic microbes). However, a "true" estimation of viable microbial population and differentiation from their dead cells using the most sensitive molecular methods is a challenge, because of the stability of DNA from dead cells. The goal of this research is to evaluate a rapid and sensitive microbial detection concept that will selectively estimate viable microbes. Nucleic acid amplification approaches such as the polymerase chain reaction (PCR) have shown promise for reducing time to detection for a wide range of applications. The proposed method is based on the use of a fluorescent DNA intercalating agent, propidium monoazide (PMA), which can only penetrate the membrane of dead cells. The PMA-quenched reaction mixtures can be screened, where only the DNA from live cells will be available for subsequent PCR reaction and microarray detection, and be identified as part of the viable microbial community. An additional advantage of the proposed rapid method is that it will detect viable microbes and differentiate from dead cells in only a few hours, as opposed to less comprehensive culture-based assays, which take days to complete. This novel combination approach is called the PMA-Microarray method. DNA intercalating agents such as PMA have previously been used to selectively distinguish between viable and dead bacterial cells. Once in the cell, the dye intercalates with the DNA and, upon photolysis under visible light, produces stable DNA adducts. DNA cross-linked in this way is unavailable for PCR. Environmental samples suspected of containing a mixture of live and dead microbial cells/spores will be treated with PMA, and then incubated

  14. Clonotypic analysis of cerebrospinal fluid T cells during disease exacerbation and remission in a patient with multiple sclerosis.

    Science.gov (United States)

    Muraro, Paolo A; Cassiani-Ingoni, Riccardo; Chung, Katherine; Packer, Amy N; Sospedra, Mireia; Martin, Roland

    2006-02-01

    Migration of autoreactive T cells into the central nervous system (CNS) compartment is thought to be an important step in the pathogenesis of multiple sclerosis (MS). To follow the evolution of T cell repertoire in the CNS of a patient with relapsing-remitting MS, we analyzed cerebrospinal fluid (CSF) cells obtained during an acute clinical exacerbation, and subsequent disease remission after 13 months of immunomodulatory therapy. T cell receptor CDR3 region length distribution was significantly altered during the relapse, demonstrating the presence of clonally expanded T cells in the CSF. CDR3 spectratyping is a valuable approach to identify disease-associated T cells in the CNS.

  15. Multiple kinase pathways involved in the different de novo sensitivity of pancreatic cancer cell lines to 17-AAG.

    Science.gov (United States)

    Liu, Heping; Zhang, Ti; Chen, Rong; McConkey, David J; Ward, John F; Curley, Steven A

    2012-07-01

    17-Allylamino-17-demethoxygeldanamycin (17-AAG) specifically targets heat shock protein (HSP)90 and inhibits its chaperoning functions for multiple kinases involved in cancer cell growth and survival. To select responsive patients, the molecular mechanisms underlying the sensitivity of cancer cells to 17-AAG must be elucidated. We used cytotoxicity assays and Western blotting to explore the effects of 17-AAG and sorafenib on cell survival and expression of multiple kinases in the pancreatic cancer cell lines AsPC-1 and Panc-1. Gene cloning and transfection, siRNA silencing, and immunohistochemistry were used to evaluate the effects of mutant p53 protein on 17-AAG sensitivity. AsPC-1 and Panc-1 responded differently to 17-AAG, with half maximal inhibitory concentration (IC(50)) values of 0.12 and 3.18 μM, respectively. Comparable expression of HSP90, HSP70, and HSP27 was induced by 17-AAG in AsPC-1 and Panc-1 cells. P-glycoprotein and mutant p53 did not affect 17-AAG sensitivity in these cell lines. Multiple kinases are more sensitive to HSP90 inhibition in AsPC-1 than in Panc-1 cells. After 17-AAG treatment, p-Bad (S112) decreased in AsPC-1 cells and increased in Panc-1 cells. Sorafenib markedly increased p-Akt, p-ERK1/2, p-GSK-3β, and p-S6 in both cell lines. Accordingly, 17-AAG and sorafenib acted antagonistically in AsPC-1 and Panc-1 cells, except at high concentrations in AsPC-1 cells. Differential inhibition of multiple kinases is responsible for the different de novo sensitivity of AsPC-1 and Panc-1 cells to HSP90 inhibition. P-glycoprotein and mutant p53 protein did not play a role in the sensitivity of pancreatic cancer cells to 17-AAG. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Dual fluorophore doped silica nanoparticles for cellular localization studies in multiple stained cells.

    Science.gov (United States)

    Shahabi, Shakiba; Treccani, Laura; Dringen, Ralf; Rezwan, Kurosch

    2015-03-01

    Fluorescently labeled nanoparticles (NPs) are used in a wide range of biomedical and nanotoxicological studies to elucidate their interactions with cellular components and their intracellular localization. As commonly used fluorescence microscopes are usually limited in their performance to a few channels which detect the emitted fluorescence light in the red, green and blue color range, the simultaneous colocalization of accumulated fluorescent NPs with cellular markers is often difficult and remains a challenge due to spectral overlay of NP fluorescence and fluorescence of stained cellular components. To overcome this problem we have synthesized three different photostable dual-labeled fluorescent core/shell silica NPs with high fluorescence intensity and well-defined shape, size and surface chemistry. The synthesis route of dual fluorophore doped silica (DFDS) NPs was based on a water-in-oil microemulsion method and includes the separate incorporation of two fluorophores in the core or shell. The suitability of DFDS for colocalization studies was assessed and successfully demonstrated with human osteoblast cells. Parallel visualization of DFDS NPs with two separate microscope channels allowed cellular NP uptake and discrimination from fluorescently stained cellular components, even in triple stained cells that show fluorescence for the cytoskeleton protein actin (green), the nucleus (blue) and collagen (red). Our results demonstrate the feasibility and straightforwardness of the approach for colocalization studies at a single-cell level to discern clearly the accumulation of NPs from triple-stained cellular components. Such NPs with multiple fluorescence characteristics have a great potential to replace single fluorescent NPs for in vitro studies, when multiple staining of cellular components is required. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  17. Fate of viable but non-culturable Listeria monocytogenes in pig manure microcosms

    Directory of Open Access Journals (Sweden)

    Jeremy eDesneux

    2016-03-01

    Full Text Available The fate of two strains of L. monocytogenes and their ability to become viable but non-culturable (VBNC was investigated in microcosms containing piggery effluents (two raw manures and two biologically treated manures stored for two months at 8°C and 20°C. Levels of L. monocytogenes were estimated using the culture method, qPCR, and propidium monoazide treatment combined with qPCR (qPCRPMA. The chemical composition and the microbial community structure of the manures were also analysed. The strains showed similar decline rates and persisted up to 63 days. At day zero, the percentage of VBNC cells among viable cells was higher in raw manures (81.5-94.8% than in treated manures (67.8-79.2%. The changes in their proportion over time depended on the temperature and on the type of effluent: the biggest increase was observed in treated manures at 20°C and the smallest increase in raw manures at 8°C. The chemical parameters had no influence on the behaviour of the strains, but decrease of the persistence of viable cells was associated with an increase in the microbial richness of the manures. This study demonstrated that storing manure altered the culturability of L. monocytogenes, which rapidly entered the VBNC state, and underlines the importance of including VBNC cells when estimating the persistence of the pathogens in farm effluents.

  18. Glioma Surgical Aspirate: A Viable Source of Tumor Tissue for Experimental Research

    Directory of Open Access Journals (Sweden)

    Perry F. Bartlett

    2013-04-01

    Full Text Available Brain cancer research has been hampered by a paucity of viable clinical tissue of sufficient quality and quantity for experimental research. This has driven researchers to rely heavily on long term cultured cells which no longer represent the cancers from which they were derived. Resection of brain tumors, particularly at the interface between normal and tumorigenic tissue, can be carried out using an ultrasonic surgical aspirator (CUSA that deposits liquid (blood and irrigation fluid and resected tissue into a sterile bottle for disposal. To determine the utility of CUSA-derived glioma tissue for experimental research, we collected 48 CUSA specimen bottles from glioma patients and analyzed both the solid tissue fragments and dissociated tumor cells suspended in the liquid waste fraction. We investigated if these fractions would be useful for analyzing tumor heterogeneity, using IHC and multi-parameter flow cytometry; we also assessed culture generation and orthotopic xenograft potential. Both cell sources proved to be an abundant, highly viable source of live tumor cells for cytometric analysis, animal studies and in-vitro studies. Our findings demonstrate that CUSA tissue represents an abundant viable source to conduct experimental research and to carry out diagnostic analyses by flow cytometry or other molecular diagnostic procedures.

  19. Nuclear tristetraprolin acts as a corepressor of multiple steroid nuclear receptors in breast cancer cells

    Directory of Open Access Journals (Sweden)

    Tonatiuh Barrios-García

    2016-06-01

    Full Text Available Tristetraprolin (TTP is a 34-kDa, zinc finger-containing factor that in mammalian cells acts as a tumor suppressor protein through two different mechanisms. In the cytoplasm TTP promotes the decay of hundreds of mRNAs encoding cell factors involved in inflammation, tissue invasion, and metastasis. In the cell nucleus TTP has been identified as a transcriptional corepressor of the estrogen receptor alpha (ERα, which has been associated to the development and progression of the majority of breast cancer tumors. In this work we report that nuclear TTP modulates the transactivation activity of progesterone receptor (PR, glucocorticoid receptor (GR and androgen receptor (AR. In recent years these steroid nuclear receptors have been shown to be of clinical and therapeutical relevance in breast cancer. The functional association between TTP and steroid nuclear receptors is supported by the finding that TTP physically interacts with ERα, PR, GR and AR in vivo. We also show that TTP overexpression attenuates the transactivation of all the steroid nuclear receptors tested. In contrast, siRNA-mediated reduction of endogenous TTP expression in MCF-7 cells produced an increase in the transcriptional activities of ERα, PR, GR and AR. Taken together, these results suggest that the function of nuclear TTP in breast cancer cells is to act as a corepressor of ERα, PR, GR and AR. We propose that the reduction of TTP expression observed in different types of breast cancer tumors may contribute to the development of this disease by producing a dysregulation of the transactivation activity of multiple steroid nuclear receptors.

  20. Serial blood T cell repertoire alterations in multiple sclerosis patients; correlation with clinical and MRI parameters.

    Science.gov (United States)

    Laplaud, David-Axel; Berthelot, Laureline; Miqueu, Patrick; Bourcier, Kasia; Moynard, Julien; Oudinet, Yannick; Guillet, Marina; Ruiz, Catherine; Oden, Neal; Brouard, Sophie; Guttmann, Charles R G; Weiner, Howard L; Khoury, Samia J; Soulillou, Jean-Paul

    2006-08-01

    A significant skewing of the peripheral T cell repertoire has been shown in relapsing-remitting multiple sclerosis (MS). Most of the studies already performed in this field are cross-sectional and therefore, little is known of the T cell repertoire evolution over time in MS and the correlation of T cell repertoire variation with clinical and MRI parameters. This study was performed on serially harvested frozen PBMC from nine untreated MS patients (27 samples) and 14 healthy individuals. The blood T cell repertoire of each patient was analysed at the complementarity determining region 3 (CDR3) level and compared with a monthly MRI scan performed over a six month period with assessment of T2 lesion load and gadolinium enhancing lesions. A highly significant blood T cell repertoire skewing was observed in MS patients as compared with healthy controls (p<0.01). In addition, the number of altered Vbeta families correlated significantly with both the T2 lesion volume and the number of gadolinium enhancing lesions as assessed by MRI (Spearman correlation tests, r=0.51 and r=0.44, p<0.01 and p<0.05 respectively). Furthermore, the variation of the number of altered Vbeta families over time also correlated with the appearance of new gadolinium enhancing lesions (r=0.36, p=0.05). These findings which need confirmation on larger serial cohorts, suggest an association between the magnitude of TCRBV CDR3 length distribution alterations in the peripheral blood of MS patients and the disease process.

  1. Vitamin D status is positively correlated with regulatory T cell function in patients with multiple sclerosis.

    Directory of Open Access Journals (Sweden)

    Joost Smolders

    Full Text Available BACKGROUND: In several autoimmune diseases, including multiple sclerosis (MS, a compromised regulatory T cell (Treg function is believed to be critically involved in the disease process. In vitro, the biologically active metabolite of vitamin D has been shown to promote Treg development. A poor vitamin D status has been linked with MS incidence and MS disease activity. In the present study, we assess a potential in vivo correlation between vitamin D status and Treg function in relapsing remitting MS (RRMS patients. METHODOLOGY/PRINCIPAL FINDINGS: Serum levels of 25-hydroxyvitamin D (25(OHD were measured in 29 RRMS patients. The number of circulating Tregs was assessed by flow-cytometry, and their functionality was tested in vitro in a CFSE-based proliferation suppression assay. Additionally, the intracellular cytokine profile of T helper cells was determined directly ex-vivo by flow-cytometry. Serum levels of 25(OHD correlated positively with the ability of Tregs to suppress T cell proliferation (R = 0.590, P = 0.002. No correlation between 25(OHD levels and the number of Tregs was found. The IFN-gamma/IL-4 ratio (Th1/Th2-balance was more directed towards IL-4 in patients with favourable 25(OHD levels (R = -0.435, P = 0.023. CONCLUSIONS/SIGNIFICANCE: These results show an association of high 25(OHD levels with an improved Treg function, and with skewing of the Th1/Th2 balance towards Th2. These findings suggest that vitamin D is an important promoter of T cell regulation in vivo in MS patients. It is tempting to speculate that our results may not only hold for MS, but also for other autoimmune diseases. Future intervention studies will show whether modulation of vitamin D status results in modulation of the T cell response and subsequent amelioration of disease activity.

  2. Chitinase effects on immune cell response in neuromyelitis optica and multiple sclerosis.

    Science.gov (United States)

    Correale, Jorge; Fiol, Marcela

    2011-05-01

    Recent studies conducted in arthritis, asthma, and inflammatory bowel disease suggest that chitinases are important in inflammatory processes and tissue remodeling. To investigate the role of chitinases in multiple sclerosis (MS) and neuromyelitis optica (NMO). Levels of chitotriosidase, acid mammalian chitinase (AMCase), and chitinase 3-like-1 (CHI3L1) were measured using ELISA, in cerebrospinal fluid (CSF) and in serum from 24 patients with relapsing remitting (RR) MS, 24 patients with secondary progressive (SP) MS, 12 patients with NMO, 24 patients with other inflammatory neurological diseases (OIND), and 24 healthy controls (HCs). The number of anti-MOG cytokine-secreting cells was studied using ELISPOT. Eotaxins, MCP-1, RANTES, and IL-8 were assessed using ELISA. Cell transmigration was determined using an in vitro blood-brain barrier (BBB) model, in the presence and absence of chitinases. CSF chitinase levels were significantly increased in patients with RRMS and NMO compared with HCs and patients with SPMS and OIND. In contrast, no significant differences were detected in serum chitinase levels between groups. Chitinase CSF levels showed correlation with anti-MOG IL-13-producing cells, and eotaxin levels. In vitro experiments showed macrophage chitinase secretion was significantly increased by IL-13, but not by IL-5, IL-6, IL-12, or IFN-γ. Moreover, chitinases enhanced IL-8, RANTES, MCP-1, and eotaxin production, increasing migratory capacity in eosinophils, T cells, and macrophages across an in vitro BBB model. Chitinases increased in the CSF from patients with NMO in response to IL-13. These enhanced levels could contribute to central nervous system inflammation by increasing immune cell migration across the BBB.

  3. Pre-clinical evaluation of CD38 chimeric antigen receptor engineered T cells for the treatment of multiple myeloma

    DEFF Research Database (Denmark)

    Drent, Esther; Groen, Richard W. J.; Noort, Willy A. Noort

    2016-01-01

    Adoptive transfer of chimeric antigen receptor-transduced T cells is a promising strategy for cancer immunotherapy. The CD38 molecule, with its high expression on multiple myeloma cells, appears a suitable target for antibody therapy. Prompted by this, we used three different CD38 antibody...

  4. The 5T2 mouse multiple myeloma model: Characterization of 5T2 cells within the bone marrow

    NARCIS (Netherlands)

    Croese, J.W.; Vas Nunes, C.M.; Radl, J.; Enden-Vieveen, M.H.M.; Brondijk, R.J. van den; Boersma, W.J.A.

    1987-01-01

    The transplantable C57BL/KaLwRij mouse 5T2 multiple myeloma (MM) is a new animal model for studies on MM in man. Histological examination of the 5T2 MM cells revealed their morphological heterogeneity. In this study we investigated whether this heterogeneity reflects subpopulations of 5T2 MM cells

  5. Presentation of αB-crystallin to T cells in active multiple sclerosis lesions: An early event following inflammatory demyelination

    NARCIS (Netherlands)

    Bajramović, J.J.; Plomp, A.C.; Goes, A. van der; Koevoets, C.; Newcombe, J.; Cuzner, M.L.; Noort, J.M. van

    2000-01-01

    In the development of multiple sclerosis (MS), (re)activation of infiltrating T cells by myelin-derived Ags is considered to be a crucial step. Previously, αB-crystallin has been shown to be an important myelin Ag to human T cells. Since αB-crystallin is an intracellular heat shock protein, the

  6. The primate EAE model points at EBV-infected B cells as a preferential therapy target in multiple sclerosis

    NARCIS (Netherlands)

    't Hart, Bert A.; Jagessar, S. Anwar; Haanstra, Krista; Verschoor, Ernst; Laman, Jon D.; Kap, Yolanda S.

    2013-01-01

    The remarkable clinical efficacy of anti-CD20 monoclonal antibodies (mAb) in relapsing-remitting multiple sclerosis points at the critical involvement of B cells in the disease. However, the exact pathogenic contribution of B cells is poorly understood. In this publication we review new data on the

  7. The primate EAE model points at EBV-infected B cells as a preferential therapy target in multiple sclerosis

    NARCIS (Netherlands)

    B.A. 't Hart (Bert); S.A. Jagessar (Anwar); K.G. Haanstra (Krista); E.J. Verschoor (Ernst); J.D. Laman (Jon); Y.S. Kap (Yolanda)

    2013-01-01

    textabstractThe remarkable clinical efficacy of anti-CD20 monoclonal antibodies (mAb) in relapsing-remitting multiple sclerosis points at the critical involvement of B cells in the disease. However, the exact pathogenic contribution of B cells is poorly understood. In this publication we review new

  8. Pre-clinical evaluation of CD38 chimeric antigen receptor engineered T cells for the treatment of multiple myeloma

    DEFF Research Database (Denmark)

    Drent, Esther; Groen, Richard W. J.; Noort, Willy A. Noort

    2016-01-01

    Adoptive transfer of chimeric antigen receptor-transduced T cells is a promising strategy for cancer immunotherapy. The CD38 molecule, with its high expression on multiple myeloma cells, appears a suitable target for antibody therapy. Prompted by this, we used three different CD38 antibody sequen...

  9. The ROCK inhibitor Y-27632 improves recovery of human embryonic stem cells after fluorescence-activated cell sorting with multiple cell surface markers.

    Directory of Open Access Journals (Sweden)

    Nil Emre

    Full Text Available BACKGROUND: Due to the inherent sensitivity of human embryonic stem cells (hESCs to manipulations, the recovery and survival of hESCs after fluorescence-activated cell sorting (FACS can be low. Additionally, a well characterized and robust methodology for performing FACS on hESCs using multiple-cell surface markers has not been described. The p160-Rho-associated coiled kinase (ROCK inhibitor, Y-27632, previously has been identified as enhancing survival of hESCs upon single-cell dissociation, as well as enhancing recovery from cryopreservation. Here we examined the application of Y-27632 to hESCs after FACS to improve survival in both feeder-dependent and feeder-independent growth conditions. METHODOLOGY/PRINCIPAL FINDINGS: HESCs were sorted using markers for SSEA-3, TRA-1-81, and SSEA-1. Cells were plated after sorting for 24 hours in either the presence or the absence of Y-27632. In both feeder-dependent and feeder-independent conditions, cell survival was greater when Y-27632 was applied to the hESCs after sort. Specifically, treatment of cells with Y-27632 improved post-sort recovery up to four fold. To determine the long-term effects of sorting with and without the application of Y-27632, hESCs were further analyzed. Specifically, hESCs sorted with and without the addition of Y-27632 retained normal morphology, expressed hESC-specific markers as measured by immunocytochemistry and flow cytometry, and maintained a stable karyotype. In addition, the hESCs could differentiate into three germ layers in vitro and in vivo in both feeder-dependent and feeder-independent growth conditions. CONCLUSIONS/SIGNIFICANCE: The application of Y-27632 to hESCs after cell sorting improves cell recovery with no observed effect on pluripotency, and enables the consistent recovery of hESCs by FACS using multiple surface markers. This improved methodology for cell sorting of hESCs will aid many applications such as removal of hESCs from secondary cell types

  10. How entorhinal grid cells may learn multiple spatial scales from a dorsoventral gradient of cell response rates in a self-organizing map.

    Directory of Open Access Journals (Sweden)

    Stephen Grossberg

    Full Text Available Place cells in the hippocampus of higher mammals are critical for spatial navigation. Recent modeling clarifies how this may be achieved by how grid cells in the medial entorhinal cortex (MEC input to place cells. Grid cells exhibit hexagonal grid firing patterns across space in multiple spatial scales along the MEC dorsoventral axis. Signals from grid cells of multiple scales combine adaptively to activate place cells that represent much larger spaces than grid cells. But how do grid cells learn to fire at multiple positions that form a hexagonal grid, and with spatial scales that increase along the dorsoventral axis? In vitro recordings of medial entorhinal layer II stellate cells have revealed subthreshold membrane potential oscillations (MPOs whose temporal periods, and time constants of excitatory postsynaptic potentials (EPSPs, both increase along this axis. Slower (faster subthreshold MPOs and slower (faster EPSPs correlate with larger (smaller grid spacings and field widths. A self-organizing map neural model explains how the anatomical gradient of grid spatial scales can be learned by cells that respond more slowly along the gradient to their inputs from stripe cells of multiple scales, which perform linear velocity path integration. The model cells also exhibit MPO frequencies that covary with their response rates. The gradient in intrinsic rhythmicity is thus not compelling evidence for oscillatory interference as a mechanism of grid cell firing. A response rate gradient combined with input stripe cells that have normalized receptive fields can reproduce all known spatial and temporal properties of grid cells along the MEC dorsoventral axis. This spatial gradient mechanism is homologous to a gradient mechanism for temporal learning in the lateral entorhinal cortex and its hippocampal projections. Spatial and temporal representations may hereby arise from homologous mechanisms, thereby embodying a mechanistic "neural relativity" that

  11. How entorhinal grid cells may learn multiple spatial scales from a dorsoventral gradient of cell response rates in a self-organizing map.

    Science.gov (United States)

    Grossberg, Stephen; Pilly, Praveen K

    2012-01-01

    Place cells in the hippocampus of higher mammals are critical for spatial navigation. Recent modeling clarifies how this may be achieved by how grid cells in the medial entorhinal cortex (MEC) input to place cells. Grid cells exhibit hexagonal grid firing patterns across space in multiple spatial scales along the MEC dorsoventral axis. Signals from grid cells of multiple scales combine adaptively to activate place cells that represent much larger spaces than grid cells. But how do grid cells learn to fire at multiple positions that form a hexagonal grid, and with spatial scales that increase along the dorsoventral axis? In vitro recordings of medial entorhinal layer II stellate cells have revealed subthreshold membrane potential oscillations (MPOs) whose temporal periods, and time constants of excitatory postsynaptic potentials (EPSPs), both increase along this axis. Slower (faster) subthreshold MPOs and slower (faster) EPSPs correlate with larger (smaller) grid spacings and field widths. A self-organizing map neural model explains how the anatomical gradient of grid spatial scales can be learned by cells that respond more slowly along the gradient to their inputs from stripe cells of multiple scales, which perform linear velocity path integration. The model cells also exhibit MPO frequencies that covary with their response rates. The gradient in intrinsic rhythmicity is thus not compelling evidence for oscillatory interference as a mechanism of grid cell firing. A response rate gradient combined with input stripe cells that have normalized receptive fields can reproduce all known spatial and temporal properties of grid cells along the MEC dorsoventral axis. This spatial gradient mechanism is homologous to a gradient mechanism for temporal learning in the lateral entorhinal cortex and its hippocampal projections. Spatial and temporal representations may hereby arise from homologous mechanisms, thereby embodying a mechanistic "neural relativity" that may clarify how

  12. A case of multiple basal cell carcinomas developed about 50 years after irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, Chu; Minamimoto, Toshiyuki; Hamada, Yoshimi; Sasaki, Harue; Furuya, Kazuhiko [Hakodate Central General Hospital, Hokkaido (Japan); Funayama, Emi

    1998-10-01

    Malignant skin tumors are known to develop in areas of chronic radiodermatitis. We experienced a patient with multiple basal cell carcinomas that developed about 50 years after irradiation. The patient was a 77-year-old man who underwent radiotherapy in his twenties for caries in the left shoulder joint. The dose given was unknown. Black skin tumor appeared initially about 10 years before the first consultation. The skin around the tumor began to erode about six months before presentation. Biopsy of the tumor was done at another institution and revealed basal cell carcinoma (BCC), so the patients was referred to our department. In addition to the BCC measuring 35 x 20 mm in the left shoulder, BCC measuring 17 x 20 mm and 15 x 15 mm were found on the chest and the left axilla, respectively. The lesions were excised with a margin of 5 mm from the radiodermatitis, and the resultant skin defects were covered with latissimus dorsi flaps. All three tumors were basal cell carcinomas. The patients died of an unrelated disease six years after surgery and there was no recurrence of his tumors. (author)

  13. UPDATE ON THE ROLE OF AUTOLOGOUS HEMATOPOIETIC STEM CELL TRANSPLANTATION IN MULTIPLE MYELOMA

    Directory of Open Access Journals (Sweden)

    Patrizia Tosi

    2012-01-01

    Full Text Available

    Autologous stem cell transplantation is considered the standard of care for multiple myeloma patients aged < 65 years with no relevant comorbidities. The addition of drugs acting both on bone marrow microenvironment and on neoplastic plasma cells has significantly increased the proportion of patients achieving a complete remission after induction therapy, and these results are mantained after high-dose melphalan, leading to a prolonged disease control. Studies are being carried out in order to evaluate whether short term consolidation or long-term maintenance therapy can result into disease eradication at the molecular level thus increasing also patients survival. The efficacy of these new drugs has raised the issue of deferring the transplant after achivng a second response upon relapse. Another controversial point is the optimal treatment strategy for high-risk patients, that do not benefit from autologous stem cell transplantation and for whom the efficacy of new drugs is still matter of debate.

  14. Multiple transfusion fail to provoke antibodies against blood cell antigens in human infants.

    Science.gov (United States)

    Floss, A M; Strauss, R G; Goeken, N; Knox, L

    1986-01-01

    We conducted studies of both red cell (RBC) and leukocyte (WBC) antibody formation in infants following multiple transfusions given during the first weeks of life. Fifty-three infants received 683 RBC transfusions from 503 different donors, plus 62 platelet, 4 granulocyte, and 53 fresh-frozen plasma units during the first 4 months of life. Three hundred fifty serum samples were obtained before, during, and after the transfusions. None of the infants formed unexpected RBC antibodies when tested at 37 degrees C by a two-cell low-ionic-strength solution antibody screen that included an anti-globulin phase. Twenty posttransfusion serums were negative when tested at room temperature. Lymphocytotoxic and granulocytotoxic WBC antibodies were measured in posttransfusion serums from 13 infants, and none were found. Despite exposure to many RBC and WBC antigens, no infants produced alloantibodies against blood cell antigens. Thus, immunologically mediated transfusion reactions should be quite rare in young infants, and this study supports recommendations of the American Association of Blood Banks Standards to omit repeat RBC compatibility testing during the first 4 months of life in infants whose initial RBC antibody screens reveal no unexpected antibodies.

  15. Multiple-Trapping Model for the Charge Recombination Dynamics in Mesoporous-Structured Perovskite Solar Cells.

    Science.gov (United States)

    Wang, Hao-Yi; Wang, Yi; Hao, Ming-Yang; Qin, Yujun; Fu, Li-Min; Guo, Zhi-Xin; Ai, Xi-Cheng; Zhang, Jian-Ping

    2017-12-22

    The photovoltaic performance of organic-inorganic hybrid perovskite solar cells has reached a bottleneck after rapid development in last few years. Further breakthrough in this field requires deeper understanding of the underlying mechanism of the photoelectric conversion process in the device, especially the dynamics of charge-carrier recombination. Originating from dye-sensitized solar cells (DSSCs), mesoporous-structured perovskite solar cells (MPSCs) have shown many similarities to DSSCs with respect to their photoelectric dynamics. Herein, by applying the multiple-trapping model of the charge-recombination dynamic process for DSSCs in MPSCs, with rational modification, a novel physical model is proposed to describe the dynamics of charge recombination in MPSCs that exhibits good agreement with experimental data. Accordingly, the perovskite- and TiO 2 -dominating charge-recombination processes are assigned and their relationships with the trap-state distribution are also discussed. An optimal balance between these two dynamic processes is required to improve the performance of mesoporous-structured perovskite devices. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Spatiotemporal Analysis of Cell Response to a Rigidity Gradient: A Quantitative Study Using Multiple Optical Tweezers

    Science.gov (United States)

    Allioux-Guérin, Myriam; Icard-Arcizet, Delphine; Durieux, Christiane; Hénon, Sylvie; Gallet, François; Mevel, Jean-Claude; Masse, Marie-Jo; Tramier, Marc; Coppey-Moisan, Maïté

    2009-01-01

    Abstract We investigate the dynamic response of single cells to weak and local rigidities, applied at controlled adhesion sites. Using multiple latex beads functionalized with fibronectin, and each trapped in its own optical trap, we study the reaction in real time of single 3T3 fibroblast cells to asymmetrical tensions in the tens of pN · μm−1 range. We show that the cell feels a rigidity gradient even at this low range of tension, and over time develops an adapted change in the force exerted on each adhesion site. The rate at which force increases is proportional to trap stiffness. Actomyosin recruitment is regulated in space and time along the rigidity gradient, resulting in a linear relationship between the amount of recruited actin and the force developed independently in trap stiffness. This time-regulated actomyosin behavior sustains a constant and rigidity-independent velocity of beads inside the traps. Our results show that the strengthening of extracellular matrix-cytoskeleton linkages along a rigidity gradient is regulated by controlling adhesion area and actomyosin recruitment, to maintain a constant deformation of the extracellular matrix. PMID:18931254

  17. Icing oral mucositis: Oral cryotherapy in multiple myeloma patients undergoing autologous hematopoietic stem cell transplant.

    Science.gov (United States)

    Chen, Joey; Seabrook, Jamie; Fulford, Adrienne; Rajakumar, Irina

    2017-03-01

    Background Up to 70% of patients receiving hematopoietic stem cell transplant develop oral mucositis as a side effect of high-dose melphalan conditioning chemotherapy. Oral cryotherapy has been documented to be potentially effective in reducing oral mucositis. The aim of this study was to examine the effectiveness of the cryotherapy protocol implemented within the hematopoietic stem cell transplant program. Methods A retrospective chart review was conducted of adult multiple myeloma patients who received high-dose melphalan conditioning therapy for autologous hematopoietic stem cell transplant. Primary endpoints were incidence and severity of oral mucositis. Secondary endpoints included duration of oral mucositis, duration of hospital stay, parenteral narcotics use and total parenteral nutrition use. Results One hundred and forty patients were included in the study, 70 patients in both no cryotherapy and cryotherapy groups. Both oral mucositis incidence and severity were found to be significantly lower in the cryotherapy group. Fifty (71.4%) experienced mucositis post cryotherapy compared to 67 (95.7%) in the no cryotherapy group (p cryotherapy group (p = 0.03). Oral mucositis duration and use of parenteral narcotics were also significantly reduced. Duration of hospital stay and use of parenteral nutrition were similar between the two groups. Conclusion The cryotherapy protocol resulted in a significantly lower incidence and severity of oral mucositis. These results provide evidence for the continued use of oral cryotherapy, an inexpensive and generally well-tolerated practice.

  18. Mitochondrial respiration in human viable platelets-Methodology and influence of gender, age and storage

    DEFF Research Database (Denmark)

    Sjövall, Fredrik; Ehinger, Johannes K H; Marelsson, Sigurður E

    2013-01-01

    Studying whole cell preparations with intact mitochondria and respiratory complexes has a clear benefit compared to isolated or disrupted mitochondria due to the dynamic interplay between mitochondria and other cellular compartments. Platelet mitochondria have a potential to serve as a source...... of human viable mitochondria when studying mitochondrial physiology and pathogenic mechanisms, as well as for the diagnostics of mitochondrial diseases. The objective of the present study was to perform a detailed evaluation of platelet mitochondrial respiration using high-resolution respirometry. Further...

  19. Cerebrospinal fluid B cells and disease progression in multiple sclerosis - A longitudinal prospective study.

    Directory of Open Access Journals (Sweden)

    Sebastian Wurth

    Full Text Available There is evidence that B cells play an important role in disease pathology of multiple sclerosis (MS. The aim of this prospective observational study was to determine the predictive value of cerebrospinal fluid (CSF B cell subtypes in disease evolution of patients with MS.128 patients were included between 2004 and 2012. Median follow up time was 7.9 years (range 3.3-10.8 years. 10 patients were lost to follow-up. 32 clinically isolated syndrome- (CIS, 25 relapsing remitting MS- (RRMS, 2 secondary progressive MS- (SPMS and 9 primary progressive MS- (PPMS patients were included. The control group consisted of 40 patients with other neurological diseases (OND. CSF samples were analyzed for routine diagnostic parameters. B cell phenotypes were characterized by flow cytometry using CD19 and CD138 specific antibodies. Standardized baseline brain MRI was conducted at the time of diagnostic lumbar puncture. Main outcome variables were likelihood of progressive disease course, EDSS progression, conversion to clinical definite MS (CDMS and relapse rate.CSF mature B cells (CD19+CD138- were increased in bout-onset MS compared to PPMS (p<0.05 and OND (p<0.001, whereas plasma blasts (CD19+CD138+ were increased in bout-onset MS (p<0.001 and PPMS (p<0.05 compared to OND. CSF B cells did not predict a progressive disease course, EDSS progression, an increased relapse rate or the conversion to CDMS. Likelihood of progressive disease course (p<0.05 and EDSS (p<0.01 was predicted by higher age at baseline, whereas conversion to CDMS was predicted by a lower age at onset (p<0.01 and the presence of ≥9 MRI T2 lesions (p<0.05.We detected significant differences in the CSF B cell subsets between different clinical MS subtypes and OND patients. CSF B cells were neither predictive for disease and EDSS progression nor conversion to CDMS after a CIS.

  20. Material Selection for Dye Sensitized Solar Cells Using Multiple Attribute Decision Making Approach

    Directory of Open Access Journals (Sweden)

    Sarita Baghel

    2014-01-01

    Full Text Available Dye sensitized solar cells (DSCs provide a potential alternative to conventional p-n junction photovoltaic devices. The semiconductor thin film plays a crucial role in the working of DSC. This paper aims at formulating a process for the selection of optimum semiconductor material for nanostructured thin film using multiple attribute decision making (MADM approach. Various possible available semiconducting materials and their properties like band gap, cost, mobility, rate of electron injection, and static dielectric constant are considered and MADM technique is applied to select the best suited material. It was found that, out of all possible candidates, titanium dioxide (TiO2 is the best semiconductor material for application in DSC. It was observed that the proposed results are in good agreement with the experimental findings.

  1. GLOBAL HELIOSEISMIC EVIDENCE FOR A DEEPLY PENETRATING SOLAR MERIDIONAL FLOW CONSISTING OF MULTIPLE FLOW CELLS

    Energy Technology Data Exchange (ETDEWEB)

    Schad, A.; Roth, M. [Kiepenheuer-Institut für Sonnenphysik, D-79104 Freiburg (Germany); Timmer, J., E-mail: ariane.schad@kis.uni-freiburg.de [Institute of Physics, University of Freiburg, D-79104 Freiburg (Germany)

    2013-12-01

    We use a novel global helioseismic analysis method to infer the meridional flow in the deep Solar interior. The method is based on the perturbation of eigenfunctions of Solar p modes due to meridional flow. We apply this method to time series obtained from Dopplergrams measured by the Michelson Doppler Imager aboard the Solar and Heliospheric Observatory covering the observation period 2004-2010. Our results show evidence that the meridional flow reaches down to the base of the convection zone. The flow profile has a complex spatial structure consisting of multiple flow cells distributed in depth and latitude. Toward the Solar surface, our results are in good agreement with flow measurements from local helioseismology.

  2. [Utility of the examination of plasma-cell morphology in the study of multiple myeloma].

    Science.gov (United States)

    Moro, M J; Portero, J A; Gascón, A; Hernández, J M; Ortega, F; Jiménez, R; Guerras, L; Martínez, M; Casanova, F; Sanz, M A

    1992-06-01

    To assess the classification of Greipp et al in a group of multiple myeloma (MM) patients, in an attempt to correlate the morphological patterns with the clinico-biological features of the disease. Bone marrow aspirates from 135 patients with multiple myeloma were examined by two different observers. Full accordance existed in 122 cases (90%). The four morphological MM subgroup distribution was: mature, 38%; intermediate, 30%; immature, 18%, and plasmoblastic, 14%. The analysis of the M component types with regard to morphology showed increased IgA cases within the intermediate (40%) and immature (48%) MM (p = 0.01), and Bence-Jones cases within the plasmoblastic MM (32%). On the contrary, no differences were found with regard to the clinical stage, although none of the plasmoblastic MM was in stage I. The incidence of renal insufficiency and of high bone-marrow infiltration progressively increased from mature to plasmoblastic MM, the difference between the extreme morphological groups being significant. The incidence of hypercalcaemia and lower paraprotein rates was higher in plasmoblastic myeloma, with significant difference with respect to mature myeloma (p = 0.05). The median survival was longer in intermediate (27.8 months) and mature (22.5 months) myelomas than in plasmoblastic (17.9 months) and immature (13.6 months) myelomas. After grouping the mature forms (intermediate plus mature) and the immature ones (plasmoblastic plus immature) the survival differences approached statistical significance (p = 0.07). This study suggests that the morphological examination of plasma cells should be included in the prognostic criteria of multiple myeloma.

  3. Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis

    Science.gov (United States)

    Sawcer, Stephen; Hellenthal, Garrett; Pirinen, Matti; Spencer, Chris C.A.; Patsopoulos, Nikolaos A.; Moutsianas, Loukas; Dilthey, Alexander; Su, Zhan; Freeman, Colin; Hunt, Sarah E.; Edkins, Sarah; Gray, Emma; Booth, David R.; Potter, Simon C.; Goris, An; Band, Gavin; Oturai, Annette Bang; Strange, Amy; Saarela, Janna; Bellenguez, Céline; Fontaine, Bertrand; Gillman, Matthew; Hemmer, Bernhard; Gwilliam, Rhian; Zipp, Frauke; Jayakumar, Alagurevathi; Martin, Roland; Leslie, Stephen; Hawkins, Stanley; Giannoulatou, Eleni; D’alfonso, Sandra; Blackburn, Hannah; Boneschi, Filippo Martinelli; Liddle, Jennifer; Harbo, Hanne F.; Perez, Marc L.; Spurkland, Anne; Waller, Matthew J; Mycko, Marcin P.; Ricketts, Michelle; Comabella, Manuel; Hammond, Naomi; Kockum, Ingrid; McCann, Owen T.; Ban, Maria; Whittaker, Pamela; Kemppinen, Anu; Weston, Paul; Hawkins, Clive; Widaa, Sara; Zajicek, John; Dronov, Serge; Robertson, Neil; Bumpstead, Suzannah J.; Barcellos, Lisa F.; Ravindrarajah, Rathi; Abraham, Roby; Alfredsson, Lars; Ardlie, Kristin; Aubin, Cristin; Baker, Amie; Baker, Katharine; Baranzini, Sergio E.; Bergamaschi, Laura; Bergamaschi, Roberto; Bernstein, Allan; Berthele, Achim; Boggild, Mike; Bradfield, Jonathan P.; Brassat, David; Broadley, Simon A.; Buck, Dorothea; Butzkueven, Helmut; Capra, Ruggero; Carroll, William M.; Cavalla, Paola; Celius, Elisabeth G.; Cepok, Sabine; Chiavacci, Rosetta; Clerget-Darpoux, Françoise; Clysters, Katleen; Comi, Giancarlo; Cossburn, Mark; Cournu-Rebeix, Isabelle; Cox, Mathew B.; Cozen, Wendy; Cree, Bruce A.C.; Cross, Anne H.; Cusi, Daniele; Daly, Mark J.; Davis, Emma; de Bakker, Paul I.W.; Debouverie, Marc; D’hooghe, Marie Beatrice; Dixon, Katherine; Dobosi, Rita; Dubois, Bénédicte; Ellinghaus, David; Elovaara, Irina; Esposito, Federica; Fontenille, Claire; Foote, Simon; Franke, Andre; Galimberti, Daniela; Ghezzi, Angelo; Glessner, Joseph; Gomez, Refujia; Gout, Olivier; Graham, Colin; Grant, Struan F.A.; Guerini, Franca Rosa; Hakonarson, Hakon; Hall, Per; Hamsten, Anders; Hartung, Hans-Peter; Heard, Rob N.; Heath, Simon; Hobart, Jeremy; Hoshi, Muna; Infante-Duarte, Carmen; Ingram, Gillian; Ingram, Wendy; Islam, Talat; Jagodic, Maja; Kabesch, Michael; Kermode, Allan G.; Kilpatrick, Trevor J.; Kim, Cecilia; Klopp, Norman; Koivisto, Keijo; Larsson, Malin; Lathrop, Mark; Lechner-Scott, Jeannette S.; Leone, Maurizio A.; Leppä, Virpi; Liljedahl, Ulrika; Bomfim, Izaura Lima; Lincoln, Robin R.; Link, Jenny; Liu, Jianjun; Lorentzen, Åslaug R.; Lupoli, Sara; Macciardi, Fabio; Mack, Thomas; Marriott, Mark; Martinelli, Vittorio; Mason, Deborah; McCauley, Jacob L.; Mentch, Frank; Mero, Inger-Lise; Mihalova, Tania; Montalban, Xavier; Mottershead, John; Myhr, Kjell-Morten; Naldi, Paola; Ollier, William; Page, Alison; Palotie, Aarno; Pelletier, Jean; Piccio, Laura; Pickersgill, Trevor; Piehl, Fredrik; Pobywajlo, Susan; Quach, Hong L.; Ramsay, Patricia P.; Reunanen, Mauri; Reynolds, Richard; Rioux, John D.; Rodegher, Mariaemma; Roesner, Sabine; Rubio, Justin P.; Rückert, Ina-Maria; Salvetti, Marco; Salvi, Erika; Santaniello, Adam; Schaefer, Catherine A.; Schreiber, Stefan; Schulze, Christian; Scott, Rodney J.; Sellebjerg, Finn; Selmaj, Krzysztof W.; Sexton, David; Shen, Ling; Simms-Acuna, Brigid; Skidmore, Sheila; Sleiman, Patrick M.A.; Smestad, Cathrine; Sørensen, Per Soelberg; Søndergaard, Helle Bach; Stankovich, Jim; Strange, Richard C.; Sulonen, Anna-Maija; Sundqvist, Emilie; Syvänen, Ann-Christine; Taddeo, Francesca; Taylor, Bruce; Blackwell, Jenefer M.; Tienari, Pentti; Bramon, Elvira; Tourbah, Ayman; Brown, Matthew A.; Tronczynska, Ewa; Casas, Juan P.; Tubridy, Niall; Corvin, Aiden; Vickery, Jane; Jankowski, Janusz; Villoslada, Pablo; Markus, Hugh S.; Wang, Kai; Mathew, Christopher G.; Wason, James; Palmer, Colin N.A.; Wichmann, H-Erich; Plomin, Robert; Willoughby, Ernest; Rautanen, Anna; Winkelmann, Juliane; Wittig, Michael; Trembath, Richard C.; Yaouanq, Jacqueline; Viswanathan, Ananth C.; Zhang, Haitao; Wood, Nicholas W.; Zuvich, Rebecca; Deloukas, Panos; Langford, Cordelia; Duncanson, Audrey; Oksenberg, Jorge R.; Pericak-Vance, Margaret A.; Haines, Jonathan L.; Olsson, Tomas; Hillert, Jan; Ivinson, Adrian J.; De Jager, Philip L.; Peltonen, Leena; Stewart, Graeme J.; Hafler, David A.; Hauser, Stephen L.; McVean, Gil; Donnelly, Peter; Compston, Alastair

    2011-01-01

    Multiple sclerosis (OMIM 126200) is a common disease of the central nervous system in which the interplay between inflammatory and neurodegenerative processes typically results in intermittent neurological disturbance followed by progressive accumulation of disability.1 Epidemiological studies have shown that genetic factors are primarily responsible for the substantially increased frequency of the disease seen in the relatives of affected individuals;2,3 and systematic attempts to identify linkage in multiplex families have confirmed that variation within the Major Histocompatibility Complex (MHC) exerts the greatest individual effect on risk.4 Modestly powered Genome-Wide Association Studies (GWAS)5-10 have enabled more than 20 additional risk loci to be identified and have shown that multiple variants exerting modest individual effects play a key role in disease susceptibility.11 Most of the genetic architecture underlying susceptibility to the disease remains to be defined and is anticipated to require the analysis of sample sizes that are beyond the numbers currently available to individual research groups. In a collaborative GWAS involving 9772 cases of European descent collected by 23 research groups working in 15 different countries, we have replicated almost all of the previously suggested associations and identified at least a further 29 novel susceptibility loci. Within the MHC we have refined the identity of the DRB1 risk alleles and confirmed that variation in the HLA-A gene underlies the independent protective effect attributable to the Class I region. Immunologically relevant genes are significantly over-represented amongst those mapping close to the identified loci and particularly implicate T helper cell differentiation in the pathogenesis of multiple sclerosis. PMID:21833088

  4. Distributed multiple-anodes benthic microbial fuel cell as reliable power source for subsea sensors

    Science.gov (United States)

    Liu, Bingchuan; Weinstein, Alyssa; Kolln, Michael; Garrett, Caleb; Wang, Lei; Bagtzoglou, Amvrossios; Karra, Udayarka; Li, Yan; Li, Baikun

    2015-07-01

    A new type distributed benthic microbial fuel cell (MFC) (DBMFC) consisting of 18 MFC arrays was developed to enhance the robustness and stability of the power source for subsea sensor networks. A power management system (PMS) was integrated into the DBMFC system to boost the power output for two temperature sensors. The PMS was specifically designed with 18 charge pumps capable of simultaneously harvesting energy from 6 MFC units (18 anodes total) in the DBMFC system. The pilot scale DBMFC (total sediment volume: 1 m3) with continuous ocean water supply showed that the power outputs of individual MFC units were affected by the organic carbon and nitrogen contents in the sediment pore water. The MFC units with higher power output resulted in faster charging/discharging rate of the PMS supercapacitor. Manual disconnection of anodes from the PMS was conducted to simulate the anode malfunction caused by bioturbation. Fewer functional anodes (e.g. 12 out of 18 anodes were disconnected) slowed the charging/discharging rate of the PMS supercapacitor but still supported the PMS to regularly power two sensors. This scale-up DBMFC/PMS/sensor study demonstrated that multiple MFC units with multiple PMS substantially enhanced the stability and robustness of power supply to subsea sensors.

  5. Neoadjuvant chemotherapy and irradiation in multiple synchronous squamous cell carcinoma of the upper aero digestive tract

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, T.D.; Panis, X.; Demange, L.; Froissart, D. (Institut Jean-Godinot, Reims (France). Department of Radio-omcology); Legros, M. (Centre Hospitalier Universitaire, 51 - Reims (France)); Marechal, F. (Institut Jean-Godinot, Reims (France). Department of Medical Oncology)

    1989-12-01

    Twenty-four patients with multiple, synchronous carcinoma of hte head and neck, lung or esophagus, were treated with induction chemotherapy followed by irradiation to involved areas. Chemotherapy regimen consisted of cisplatinum either alone, or in combination with 5-FU or etoposide. Subsequently, external radiotherapy, 60-65 Gy nd 70-75 Gy ot the mediastinum and the head and neck areas, respectively, was carried out. Following chemotherapy, three patients (12.5%) had a complete clinical remission in both cervical and mediastinal sites. That rate was significantly increased by radiotherapy (66%). Tolerance was fair or mild even though half of the patients needed a rest break during irradiation. Follow-up ranges from 24 to 38 months, respectively. It is suggested that induction chemotherapy will not drastically improve the overall prognosis of multiple squamous cell carcinoma of the upper aero digestive tact and that external irradiation remains a major part of treatment which should not be reduced in treated volumes, or intotal dose delivered. (author). 15 refs.; 4 tabs.

  6. Structure of the EGF receptor transactivation circuit integrates multiple signals with cell context

    Energy Technology Data Exchange (ETDEWEB)

    Joslin, Elizabeth J.; Shankaran, Harish; Opresko, Lee K.; Bollinger, Nikki; Lauffenburger, Douglas A.; Wiley, H. S.

    2010-05-10

    Transactivation of the epidermal growth factor receptor (EGFR) has been proposed to be a mechanism by which a variety of cellular inputs can be integrated into a single signaling pathway, but the regulatory topology of this important system is unclear. To understand the transactivation circuit, we first created a “non-binding” reporter for ligand shedding. We then quantitatively defined how signals from multiple agonists were integrated both upstream and downstream of the EGFR into the extracellular signal regulated kinase (ERK) cascade in human mammary epithelial cells. We found that transactivation is mediated by a recursive autocrine circuit where ligand shedding drives EGFR-stimulated ERK that in turn drives further ligand shedding. The time from shedding to ERK activation is fast (<5 min) whereas the recursive feedback is slow (>15 min). Simulations showed that this delay in positive feedback greatly enhanced system stability and robustness. Our results indicate that the transactivation circuit is constructed so that the magnitude of ERK signaling is governed by the sum of multiple direct inputs, while recursive, autocrine ligand shedding controls signal duration.

  7. Photoelectrode Fabrication of Dye-Sensitized Nanosolar Cells Using Multiple Spray Coating Technique

    Directory of Open Access Journals (Sweden)

    Chien-Chih Chen

    2013-01-01

    Full Text Available This paper presents a spray coating technique for fabricating nanoporous film of photoelectrode in dye-sensitized nanosolar cells (DSSCs. Spray coating can quickly fabricate nanoporous film of the photoelectrode with lower cost, which can further help the DSSCs to be commercialized in the future. This paper analyzed photoelectric conversion efficiency of the DSSCs using spray coated photoelectrode in comparison with the photoelectrode made with the doctor blade method. Spray coating can easily control transmittance of the photoelectrode through the multiple spray coating process. This work mainly used a dispersant with help of ultrasonic oscillation to prepare the required nano-TiO2 solution and then sprayed it on the ITO glasses. In this work, a motor-operated conveyor belt was built to transport the ITO glasses automatically for multiple spray coating and drying alternately. Experiments used transmittance of the photoelectrode as a fabrication parameter to analyze photoelectric conversion efficiency of the DSSCs. The influencing factors of the photoelectrode transmittance during fabrication are the spray flow rate, the spray distance, and the moving speed of the conveyor belt. The results show that DSSC with the photoelectrode transmittance of ca. 68.0 ± 1.5% and coated by the spray coating technique has the best photoelectric conversion efficiency in this work.

  8. Remyelination of the Corpus Callosum by Olfactory Ensheathing Cell in an Experimental Model of Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Mohammad Azimi Alamouti

    2015-10-01

    Full Text Available Multiple Sclerosis (MS causes loss of the myelin sheath, which leads to loss of neurons. Regeneration of myelin sheath stimulates axon regeneration and neurons’ survival. In this study, olfactory ensheathing cell (OEC transplantation is investigated to restore myelin sheath in an experimental model of MS in male mice.OECs were isolated from the olfactory mucosa of seven-day-old infant rats and cultured. Then, cells were evaluated and approved by flow cytometry by p75 and GFAP markers. A total of 32 mice (C57BL /6 were studied in four groups; 1 without any treatment (control, 2 Sham (receiving PBS, 3 MS model and 4 MS and OEC transplantation. MS was induced by adding Cuprizon in the diet of animals for six weeks. After the expiration of 20 days, histologic analysis was performed with approval of the presence of cells in the graft area and the removal of myelin and myelin regeneration with two types of luxal fast blue (LFB staining and immunohistochemistry. The purity of the cells ensheathing the olfactory was 90%.  There was a significant difference in Myelin percentage of PBS and OEC recipient groups (P≤0.05. MBP and PLP of the myelin sheath in the group receiving OECs were more than MS group.According to the findings, in MS model MBP and PLP of the myelin sheath is reduced. In the group receiving OECs, it was returned to a normal level significantly compared to the sham group received only PBS significant differences were observed. The OECs transplantation can improve myelin restoration.

  9. Caveolin-1 influences human influenza A virus (H1N1 multiplication in cell culture

    Directory of Open Access Journals (Sweden)

    Hemgård Gun-Viol

    2010-05-01

    Full Text Available Abstract Background The threat of recurring influenza pandemics caused by new viral strains and the occurrence of escape mutants necessitate the search for potent therapeutic targets. The dependence of viruses on cellular factors provides a weak-spot in the viral multiplication strategy and a means to interfere with viral multiplication. Results Using a motif-based search strategy for antiviral targets we identified caveolin-1 (Cav-1 as a putative cellular interaction partner of human influenza A viruses, including the pandemic influenza A virus (H1N1 strains of swine origin circulating from spring 2009 on. The influence of Cav-1 on human influenza A/PR/8/34 (H1N1 virus replication was determined in inhibition and competition experiments. RNAi-mediated Cav-1 knock-down as well as transfection of a dominant-negative Cav-1 mutant results in a decrease in virus titre in infected Madin-Darby canine kidney cells (MDCK, a cell line commonly used in basic influenza research as well as in virus vaccine production. To understand the molecular basis of the phenomenon we focussed on the putative caveolin-1 binding domain (CBD located in the lumenal, juxtamembranal portion of the M2 matrix protein which has been identified in the motif-based search. Pull-down assays and co-immunoprecipitation experiments showed that caveolin-1 binds to M2. The data suggest, that Cav-1 modulates influenza virus A replication presumably based on M2/Cav-1 interaction. Conclusion As Cav-1 is involved in the human influenza A virus life cycle, the multifunctional protein and its interaction with M2 protein of human influenza A viruses represent a promising starting point for the search for antiviral agents.

  10. Results of Treatment with 2-Chlorodeoxyadenosine (2-CDA in Multiple Reactivations or Refractory Langerhans Cell Histiocytosis

    Directory of Open Access Journals (Sweden)

    Ghasem Miri-Aliabad

    2014-01-01

    Full Text Available Background: Langerhans cell histiocytosis (LCH is the most common type of histiocytosis and characterized by abnormal proliferation and excess accumulation of inflammatory and langerhans cells at various tissue sites. Clinical manifestations are variable, ranging from spontaneously regressing single bone lesion to multisystem disease, life-threatening and refractory to treatment. Conventional chemotherapy has been shown to be effective in treatment of majority of patients with LCH. However, treatment of refractory disease or multiple reactivations is difficult. The aim of this study is to assess the efficacy of 2-CDA in relapsed or refractory LCH. Materials and methods: Four patients with relapsed or refractory LCH that were treated with 2-chlorodeoxyadenosin (2-CDA enrolled in this study. All patients had received at least one prior chemotherapy regimen. The dose and schedule of 2-CDA was 6 mg/m²/day for 5 days every 3-4 weeks. Results: Median age at the time of treatment with 2-CDA was 9.7 years. Three patients had multisystem disease and one had multifocal bone lesions. All patients had multifocal bone lesions. None of them had risk organ involvement. Mean course of treatment with 2-CDA was 9.5. Radiologic evaluations revealed complete resolution of bone lesions in two (50% patients. In one (25% patient lesions regressed (partial response and in another (25% the disease remained stable. Drug related side effects were minimal. At the present time all patients are alive. Conclusion: Our study demonstrates that 2-CDA as a single agent is efficacious in treatment of multiple reactivations or refractory LCH and well-tolerated in children.

  11. Cucurbitacin B exerts anti-cancer activities in human multiple myeloma cells in vitro and in vivo by modulating multiple cellular pathways

    Science.gov (United States)

    Huang, Ning; Zhong, Yueling; Zeng, Ting; Wei, Rong; Wu, Zhongjun; Xiao, Cui; Cao, Xiaohua; Li, Minhui; Li, Limei; Han, Bin; Yu, Xiaoping; Li, Hua; Zou, Qiang

    2017-01-01

    Cucurbitacin B (CuB), a triterpenoid compound isolated from the stems of Cucumis melo, has long been used to treat hepatitis and hepatoma in China. Although its remarkable anti-cancer activities have been reported, the mechanism by which it achieves this therapeutic activity remains unclear. This study was designed to investigate the molecular mechanisms by which CuB inhibits cancer cell proliferation. Our results indicate that CuB is a novel inhibitor of Aurora A in multiple myeloma (MM) cells, arresting cells in the G2/M phase. CuB also inhibited IL-10-induced STAT3 phosphorylation, synergistically increasing the anti-tumor activity of Adriamycin in vitro. CuB induced dephosphorylation of cofilin, resulting in the loss of mitochondrial membrane potential, release of cytochrome c, and activation of caspase-8. CuB inhibited MM tumor growth in a murine MM model, without host toxicity. In conclusion, these results indicate that CuB interferes with multiple cellular pathways in MM cells. CuB thus represents a promising therapeutic tool for the treatment of MM. PMID:27418139

  12. Poor peripheral blood stem cell mobilization affects long-term outcomes in multiple myeloma patients undergoing autologous stem cell transplantation.

    Science.gov (United States)

    Moreb, Jan S; Byrne, Michael; Shugarman, Ilicia; Zou, Fei; Xiong, Sican; May, William S; Norkin, Maxim; Hiemenz, John; Brown, Randall; Cogle, Christopher; Wingard, John R; Hsu, Jack W

    2018-02-01

    Peripheral blood stem cell (PBSC) mobilization is routinely undertaken prior to autologous stem cell transplantation (ASCT) in patients with multiple myeloma (MM). A number of studies have identified risk factors for poor PBSC mobilization, however, little data exists to correlate mobilization with disease-specific outcomes in this patient population. Prospective work in MM has demonstrated similar outcomes in a homogenous patient population. In this single institution analysis, we retrospectively studied the impact of poor PBSC mobilization on progression free survival (PFS) and OS in MM patients undergoing PBSC mobilization. Poor mobilizers are defined as patients that collected mobilization cycles to achieve this target. We confirm that poor PBSC mobilization is significantly associated with a shortened PFS (P = .0012) and OS (P = .0005) compared with good mobilizers. Our univariate analysis also shows that independent risk factors for poor mobilization include male gender, higher ideal body weight, and a greater median number of lines of chemotherapy prior to PBSC mobilization. However, by multivariate analysis, only number of prior lines of chemotherapy remains significantly predictive of poor mobilization (Odds ratio 1.857, P = .0095). The use of high-dose G-CSF (> 10 mcg/kg/day) and/or plerixafor can significantly improve mobilization and ASCT chances in this population. These data indicate that poor mobilization can be predictable and is associated with more aggressive disease biology and worse outcomes, warranting intensive post-ASCT management. © 2017 Wiley Periodicals, Inc.

  13. Self-sustained reduction of multiple metals in a microbial fuel cell-microbial electrolysis cell hybrid system.

    Science.gov (United States)

    Li, Yan; Wu, Yining; Liu, Bingchuan; Luan, Hongwei; Vadas, Timothy; Guo, Wanqian; Ding, Jie; Li, Baikun

    2015-09-01

    A self-sustained hybrid bioelectrochemical system consisting of microbial fuel cell (MFC) and microbial electrolysis cell (MEC) was developed to reduce multiple metals simultaneously by utilizing different reaction potentials. Three heavy metals representing spontaneous reaction (chromium, Cr) and unspontaneous reaction (lead, Pb and nickel, Ni) were selected in this batch-mode study. The maximum power density of the MFC achieved 189.4 mW m(-2), and the energy recovery relative to the energy storage circuit (ESC) was ∼ 450%. At the initial concentration of 100 mg L(-1), the average reduction rate of Cr(VI) was 30.0 mg L(-1) d(-1), Pb(II) 32.7 mg L(-1) d(-1), and Ni(II) 8.9 mg L(-1) d(-1). An electrochemical model was developed to predict the change of metal concentration over time. The power output of the MFC was sufficient to meet the requirement of the ESC and MEC, and the "self-sustained metal reduction" was achieved in this hybrid system. Published by Elsevier Ltd.

  14. Outcome of autologous hematopoietic stem cell transplantation in refractory multiple myeloma.

    Science.gov (United States)

    Veltri, Lauren W; Milton, Denái R; Delgado, Ruby; Shah, Nina; Patel, Krina; Nieto, Yago; Kebriaei, Partow; Popat, Uday R; Parmar, Simrit; Oran, Betul; Ciurea, Stefan; Hosing, Chitra; Lee, Hans C; Manasanch, Elisabet; Orlowski, Robert Z; Shpall, Elizabeth J; Champlin, Richard E; Qazilbash, Muzaffar H; Bashir, Qaiser

    2017-09-15

    Despite the introduction of effective, novel agents, the outcome of patients with refractory multiple myeloma remains poor, particularly those who are refractory to both proteasome inhibitors (PIs) and immunomodulatory agents (IMiDs). Limited data are available on the role of autologous hematopoietic stem cell transplantation in this population. Patients with refractory myeloma who underwent first autologous hematopoietic stem cell transplantation (auto-HCT) between March 2000 and October 2015 were retrospectively analyzed. Those who had primary refractory disease and those with relapsed and refractory disease were included. Disease that was refractory to at least 1 PI and at least 1 IMiD was classified as double-refractory multiple myeloma (DR-MM). In total, 233 patients were identified, including 105 (45%) classified with DR-MM and 128 (55%) classified with nondouble-refractory myeloma (NDR-MM). At a median follow-up of 42 months for surviving patients, at least a partial response was observed in 188 patients (81%; 83 patients in the DR-MM group [79%] and 105 patients in the NDR-MM [82%]; P = .77). A near complete response or better was observed in 52 patients (22%; 25 patients in the DR-MM group [24%] and 27 patients in the NDR-MM group [21%]; P = .77). The median progression-free survival was 17.6 months (14.4 months in the DR-MM group and 18.2 months in the NDR-MM group), and the 2-year progression-free survival rate was 38% (35% in the DR-MM group and 40% in the NDR-MM group; P = .40). The median overall survival was 48 months (38.9 months in the DR-MM group and 56.6 months in the NDR-MM group), and the 2-year overall survival rate was 74% (71% in the DR-MM group and 76% in the NDR-MM group; P = .27). The current findings indicate that auto-HCT is an effective and safe therapy in patients with refractory multiple myeloma, including those who are refractory to IMiDs and PIs. Cancer 2017;123:3568-75. © 2017 American Cancer Society. © 2017

  15. Detection of viable Salmonella in lettuce by propidium monoazide real-time PCR.

    Science.gov (United States)

    Liang, Ningjian; Dong, Jin; Luo, Laixin; Li, Yong

    2011-05-01

    Contamination of lettuce by Salmonella has caused serious public health problems. Polymerase chain reaction (PCR) allows rapid detection of pathogenic bacteria in food, but it is inaccurate as it might amplify DNA from dead target cells as well. This study aimed to investigate the stability of DNA of dead Salmonella cells in lettuce and to develop an approach to detecting viable Salmonella in lettuce. Salmonella-free lettuce was inoculated with heat-killed Salmonella Typhimurium cells and stored at 4 °C. Bacterial DNA extracted from the sample was amplified by real-time PCR targeting the invA gene. Our results indicate that DNA from the dead cells remained stable in lettuce for at least 8 d. To overcome this limitation, propidium monoazide (PMA), a dye that can selectively penetrate dead bacterial cells and cross-link their DNA upon light exposure, was combined with real-time PCR. Lettuce samples inoculated with different levels of dead or viable S. Typhimurium cells were treated or untreated with PMA before DNA extraction. Real-time PCR suggests that PMA treatment effectively prevented PCR amplification from as high as 10(8) CFU/g dead S. Typhimurium cells in lettuce. The PMA real-time PCR assay could detect viable Salmonella at as low as 10(2) CFU/mL in pure culture and 10(3) CFU/g in lettuce. With 12-h enrichment, S. Typhimurium of 10(1) CFU/g in lettuce was detectable. In conclusion, the PMA real-time PCR assay provides an alternative to real-time PCR assay for accurate detection of Salmonella in food. © 2011 Institute of Food Technologists®

  16. Hypoxia induced impairment of NK cell cytotoxicity against multiple myeloma can be overcome by IL-2 activation of the NK cells.

    Directory of Open Access Journals (Sweden)

    Subhashis Sarkar

    Full Text Available BACKGROUND: Multiple Myeloma (MM is an incurable plasma cell malignancy residing within the bone marrow (BM. We aim to develop allogeneic Natural Killer (NK cell immunotherapy for MM. As the BM contains hypoxic regions and the tumor environment can be immunosuppressive, we hypothesized that hypoxia inhibits NK cell anti-MM responses. METHODS: NK cells were isolated from healthy donors by negative selection and NK cell function and phenotype were examined at oxygen levels representative of hypoxic BM using flowcytometry. Additionally, NK cells were activated with IL-2 to enhance NK cell cytotoxicity under hypoxia. RESULTS: Hypoxia reduced NK cell killing of MM cell lines in an oxygen dependent manner. Under hypoxia, NK cells maintained their ability to degranulate in response to target cells, though, the percentage of degranulating NK cells was slightly reduced. Adaptation of NK- or MM cells to hypoxia was not required, hence, the oxygen level during the killing process was critical. Hypoxia did not alter surface expression of NK cell ligands (HLA-ABC, -E, MICA/B and ULBP1-2 and receptors (KIR, NKG2A/C, DNAM-1, NCRs and 2B4. It did, however, decrease expression of the activating NKG2D receptor and of intracellular perforin and granzyme B. Pre-activation of NK cells by IL-2 abrogated the detrimental effects of hypoxia and increased NKG2D expression. This emphasized that activated NK cells can mediate anti-MM effects, even under hypoxic conditions. CONCLUSIONS: Hypoxia abolishes the killing potential of NK cells against multiple myeloma, which can be restored by IL-2 activation. Our study shows that for the design of NK cell-based immunotherapy it is necessary to study biological interactions between NK- and tumor cells also under hypoxic conditions.

  17. An advanced PCR method for the specific detection of viable total coliform bacteria in pasteurized milk.

    Science.gov (United States)

    Soejima, Takashi; Minami, Jun-ichi; Yaeshima, Tomoko; Iwatsuki, Keiji

    2012-07-01

    Pasteurized milk is a complex food that contains various inhibitors of polymerase chain reaction (PCR) and may contain a large number of dead bacteria, depending on the milking conditions and environment. Ethidium monoazide bromide (EMA)-PCR is occasionally used to distinguish between viable and dead bacteria in foods other than pasteurized milk. EMA is a DNA-intercalating dye that selectively permeates the compromised cell membranes of dead bacteria and cleaves DNA. Usually, EMA-PCR techniques reduce the detection of dead bacteria by up to 3.5 logs compared with techniques that do not use EMA. However, this difference may still be insufficient to suppress the amplification of DNA from dead Gram-negative bacteria (e.g., total coliform bacteria) if they are present in pasteurized milk in large numbers. Thus, false positives may result. We developed a new method that uses real-time PCR targeting of a long DNA template (16S-23S rRNA gene, principally 2,451 bp) following EMA treatment to completely suppress the amplification of DNA of up to 7 logs (10(7) cells) of dead total coliforms. Furthermore, we found that a low dose of proteinase K (25 U/ml) removed PCR inhibitors and simultaneously increased the signal from viable coliform bacteria. In conclusion, our simple protocol specifically detects viable total coliforms in pasteurized milk at an initial count of ≥1 colony forming unit (CFU)/2.22 ml within 7.5 h of total testing time. This detection limit for viable cells complies with the requirements for the analysis of total coliforms in pasteurized milk set by the Japanese Sanitation Act (which specifies <1 CFU/2.22 ml).

  18. Multiple regulatory systems coordinate DNA replication with cell growth in Bacillus subtilis.

    Directory of Open Access Journals (Sweden)

    Heath Murray

    2014-10-01

    Full Text Available In many bacteria the rate of DNA replication is linked with cellular physiology to ensure that genome duplication is coordinated with growth. Nutrient-mediated growth rate control of DNA replication initiation has been appreciated for decades, however the mechanism(s that connects these cell cycle activities has eluded understanding. In order to help address this fundamental question we have investigated regulation of DNA replication in the model organism Bacillus subtilis. Contrary to the prevailing view we find that changes in DnaA protein level are not sufficient to account for nutrient-mediated growth rate control of DNA replication initiation, although this regulation does require both DnaA and the endogenous replication origin. We go on to report connections between DNA replication and several essential cellular activities required for rapid bacterial growth, including respiration, central carbon metabolism, fatty acid synthesis, phospholipid synthesis, and protein synthesis. Unexpectedly, the results indicate that multiple regulatory systems are involved in coordinating DNA replication with cell physiology, with some of the regulatory systems targeting oriC while others act in a oriC-independent manner. We propose that distinct regulatory systems are utilized to control DNA replication in response to diverse physiological and chemical changes.

  19. Image-based red blood cell counter for multiple species of wild and domestic animals

    Directory of Open Access Journals (Sweden)

    C.R.M. Mauricio

    Full Text Available ABSTRACT RBC count plays an important role in animal diagnosis. Despite the many technologies available in different automated hematology analyzers, when it comes to the blood of wild animals it is still difficult to find an easy and affordable solution for multiple species. This study aims to evaluate the proposed automatic red blood cell counter. Blood samples (1 ocelot - Leopardus pardalis, 1 monkey - Cebus apella, 1 coati - Nasua nasua, 62 dogs - Canis familiaris, and 5 horses - Equus caballus were analyzed using three methods: 1-manual count, 2-automatic count by image, and 3-semi-automatic count by image; blood from dogs and horses were also analyzed by a fourth method: 4-automatic count by impedance. The counts in methods 2 and 3 were produced by the proposed red blood cell counter. Results were compared using Pearson's correlation and plots with different methods as the criterion standard. RBC counts in methods 1, 2, and 3 correlated very well with those in the method 4 (r ≥ 0.94. RBC counts produced by method 2 were highly correlated with method 3 (r = 0.998. The results indicate that the proposed method can be used as an automatic or semi-automatic counting method in clinics that are currently using the manual method for RBC assessment.

  20. Autoimmune T-Cell Reactivity to Myelin Proteolipids and Glycolipids in Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Judith M. Greer

    2013-01-01

    Full Text Available Central nervous system (CNS myelin, the likely major target of autoimmune attack in multiple sclerosis (MS, contains a number of unique components that are potential targets of the attack. Two classes of molecules that are greatly enriched in CNS myelin compared to other parts of the body are certain types of proteolipids and glycolipids. Due to the hydrophobic nature of both of these classes of molecules, they present challenges for use in immunological assays and have therefore been somewhat neglected in studies of T-cell reactivity in MS compared to more soluble molecules such as the myelin basic proteins and the extracellular domain of myelin oligodendrocyte glycoprotein. This review firstly looks at the makeup of CNS myelin, with an emphasis on proteolipids and glycolipids. Next, a retrospective of what is known of T-cell reactivity directed against proteolipids and glycolipids in patients with MS is presented, and the implications of the findings are discussed. Finally, this review considers the question of what would be required to prove a definite role for autoreactivity against proteolipids and glycolipids in the pathogenesis of MS.

  1. Endocytosis of Cytotoxic Granules Is Essential for Multiple Killing of Target Cells by T Lymphocytes.

    Science.gov (United States)

    Chang, Hsin-Fang; Bzeih, Hawraa; Schirra, Claudia; Chitirala, Praneeth; Halimani, Mahantappa; Cordat, Emmanuelle; Krause, Elmar; Rettig, Jens; Pattu, Varsha

    2016-09-15

    CTLs are serial killers that kill multiple target cells via exocytosis of cytotoxic granules (CGs). CG exocytosis is tightly regulated and has been investigated in great detail; however, whether CG proteins are endocytosed following exocytosis and contribute to serial killing remains unknown. By using primary CTLs derived from a knock-in mouse of the CG membrane protein Synaptobrevin2, we show that CGs are endocytosed in a clathrin- and dynamin-dependent manner. Following acidification, endocytosed CGs are recycled through early and late, but not recycling endosomes. CGs are refilled with granzyme B at the late endosome stage and polarize to subsequent synapses formed between the CTL and new target cells. Importantly, inhibiting CG endocytosis in CTLs results in a significant reduction of their cytotoxic activity. Thus, our data demonstrate that continuous endocytosis of CG membrane proteins is a prerequisite for efficient serial killing of CTLs and identify key events in this process. Copyright © 2016 by The American Association of Immunologists, Inc.

  2. Color vision impairment in multiple sclerosis points to retinal ganglion cell damage.

    Science.gov (United States)

    Lampert, E J; Andorra, M; Torres-Torres, R; Ortiz-Pérez, S; Llufriu, S; Sepúlveda, M; Sola, N; Saiz, A; Sánchez-Dalmau, B; Villoslada, P; Martínez-Lapiscina, Elena H

    2015-11-01

    Multiple Sclerosis (MS) results in color vision impairment regardless of optic neuritis (ON). The exact location of injury remains undefined. The objective of this study is to identify the region leading to dyschromatopsia in MS patients' NON-eyes. We evaluated Spearman correlations between color vision and measures of different regions in the afferent visual pathway in 106 MS patients. Regions with significant correlations were included in logistic regression models to assess their independent role in dyschromatopsia. We evaluated color vision with Hardy-Rand-Rittler plates and retinal damage using Optical Coherence Tomography. We ran SIENAX to measure Normalized Brain Parenchymal Volume (NBPV), FIRST for thalamus volume and Freesurfer for visual cortex areas. We found moderate, significant correlations between color vision and macular retinal nerve fiber layer (rho = 0.289, p = 0.003), ganglion cell complex (GCC = GCIP) (rho = 0.353, p dyschromatopsia [OR = 0.88 95 % CI (0.80-0.97) p = 0.016]. This association remained significant when we also added sex, age, and disease duration as covariates in the regression model. Dyschromatopsia in NON-eyes is due to damage of retinal ganglion cells (RGC) in MS. Color vision can serve as a marker of RGC damage in MS.

  3. Patients with Multiple Myeloma Develop SOX2-Specific Autoantibodies after Allogeneic Stem Cell Transplantation

    Directory of Open Access Journals (Sweden)

    Sebastian Kobold

    2011-01-01

    Full Text Available The occurrence of SOX2-specific autoantibodies seems to be associated with an improved prognosis in patients with monoclonal gammopathy of undetermined significance (MGUS. However, it is unclear if SOX2-specific antibodies also develop in established multiple myeloma (MM. Screening 1094 peripheral blood (PB sera from 196 MM patients and 100 PB sera from healthy donors, we detected SOX2-specific autoantibodies in 7.7% and 2.0% of patients and donors, respectively. We identified SOX2211–230 as an immunodominant antibody-epitope within the full protein sequence. SOX2 antigen was expressed in most healthy tissues and its expression did not correlate with the number of BM-resident plasma cells. Accordingly, anti-SOX2 immunity was not related to SOX2 expression levels or tumor burden in the patients’ BM. The only clinical factor predicting the development of anti-SOX2 immunity was application of allogeneic stem cell transplantation (alloSCT. Anti-SOX2 antibodies occurred more frequently in patients who had received alloSCT (n=74. Moreover, most SOX2-seropositive patients had only developed antibodies after alloSCT. This finding indicates that alloSCT is able to break tolerance towards this commonly expressed antigen. The questions whether SOX2-specific autoantibodies merely represent an epiphenomenon, are related to graft-versus-host effects or participate in the immune control of myeloma needs to be answered in prospective studies.

  4. Multiple Regulatory Systems Coordinate DNA Replication with Cell Growth in Bacillus subtilis

    Science.gov (United States)

    Murray, Heath; Koh, Alan

    2014-01-01

    In many bacteria the rate of DNA replication is linked with cellular physiology to ensure that genome duplication is coordinated with growth. Nutrient-mediated growth rate control of DNA replication initiation has been appreciated for decades, however the mechanism(s) that connects these cell cycle activities has eluded understanding. In order to help address this fundamental question we have investigated regulation of DNA replication in the model organism Bacillus subtilis. Contrary to the prevailing view we find that changes in DnaA protein level are not sufficient to account for nutrient-mediated growth rate control of DNA replication initiation, although this regulation does require both DnaA and the endogenous replication origin. We go on to report connections between DNA replication and several essential cellular activities required for rapid bacterial growth, including respiration, central carbon metabolism, fatty acid synthesis, phospholipid synthesis, and protein synthesis. Unexpectedly, the results indicate that multiple regulatory systems are involved in coordinating DNA replication with cell physiology, with some of the regulatory systems targeting oriC while others act in a oriC-independent manner. We propose that distinct regulatory systems are utilized to control DNA replication in response to diverse physiological and chemical changes. PMID:25340815

  5. Validation of interphase fluorescence in situ hybridization (iFISH for multiple myeloma using CD138 positive cells

    Directory of Open Access Journals (Sweden)

    Renata Kiyomi Kishimoto

    2016-06-01

    Full Text Available ABSTRACT BACKGROUND: Multiple myeloma is a plasma cell neoplasm with acquired genetic abnormalities of clinical and prognostic importance. Multiple myeloma differs from other hematologic malignancies due to a high fraction of low proliferating malignant plasma cells and the paucity of plasma cells in bone marrow aspiration samples, making cytogenetic analysis a challenge. An abnormal karyotype is found in only one-third of patients with multiple myeloma and interphase fluorescence in situ hybridization is the most useful test for studying the chromosomal abnormalities present in almost 90% of cases. However, it is necessary to study the genetic abnormalities in plasma cells after their identification or selection by morphology, immunophenotyping or sorting. Other challenges are the selection of the most informative FISH panel and determining cut-off levels for FISH probes. This study reports the validation of interphase fluorescence in situ hybridization using CD138 positive cells, according to proposed guidelines published by the European Myeloma Network (EMN in 2012. METHOD: Bone marrow samples from patients with multiple myeloma were used to standardize a panel of five probes [1q amplification, 13q14 deletion, 17p deletion, t(4;14, and t(14;16] in CD138+ cells purified by magnetic cell sorting. RESULTS: This test was validated with a low turnaround time and good reproducibility. Five of six samples showed genetic abnormalities. Monosomy/deletion 13 plus t(4;14 were found in two cases. CONCLUSION: This technique together with magnetic cell sorting is effective and can be used in the routine laboratory practice. In addition, magnetic cell sorting provides a pure plasma cell population that allows other molecular and genomic studies.

  6. Radiobiological effects of multiple vs. single low-dose pre-irradiation on the HT29 cell line.

    Science.gov (United States)

    Djan, Igor; Solajic, Slavica; Djan, Mihajla; Vucinic, Natasa; Popovic, Dunja; Ilic, Miroslav; Lučić, Silvija; Bogdanovic, Gordana

    2014-01-01

    Aim of the study was to compare radiobiological effects of multiple vs. single low-dose pre-irradiation on the HT29 cell line. This regime is designed to be as similar as possible to fractionated tumour radiotherapy treatment, and to provide data on radiobiological effects on human tumour cells. The cell line used in the study was HT29 (human colorectal adenocarcinoma, American Type Culture Collection HTB-38™). Also, for comparison, the MRC5 cell line (human foetal lung fibroblasts, American Type Culture Collection CCL 171) was used. Four-day treatment in a 4 × 2 Gy regime was performed. Cell viability was evaluated by tetrazolium colorimetric MTT assay. Multiple low-dose pre-irradiation induced a stronger radioadaptive response compared to single low-dose application in the HT29 cell line. Multiple pre-irradiation with 0.03 Gy and 0.05 Gy caused radioadaptive effects, while in both single and multiple low-dose pre-irradiation regimes 0.07 Gy led to radiosensitivity. Radiobiological effects induced in the HT29 cell line by low-dose pre-irradiation were evidently weak during the treatment time, because a single low-dose applied only on the first day gave no radioadaptive effects. In the MRC5 cell line different effects were registered, since radioadaptive response has not been observed after multiple or single pre-irradiation. The obtained data are interesting, especially for the possible application of low-dose pre-irradiation in radiotherapy.

  7. A note on the global properties of an age-structured viral dynamic model with multiple target cell populations.

    Science.gov (United States)

    Wang, Shaoli; Wu, Jianhong; Rong, Libin

    2017-06-01

    Some viruses can infect different classes of cells. The age of infection can affect the dynamics of infected cells and viral production. Here we develop a viral dynamic model with the age of infection and multiple target cell populations. Using the methods of semigroup and Lyapunov function, we study the global asymptotic property of the steady states of the model. The results show that when the basic reproductive number falls below 1, the infection is predicted to die out. When the basic reproductive number exceeds 1, there exists a unique infected steady state which is globally asymptotically stable. The model can be extended to study virus dynamics with multiple compartments or coinfection by multiple types of viruses. We also show that under some scenarios the age-structured model can be reduced to an ordinary differential equation system with or without time delays.

  8. Erlotinib pretreatment improves photodynamic therapy of non-small cell lung carcinoma xenografts via multiple mechanisms

    Science.gov (United States)

    Gallagher-Colombo, Shannon M.; Miller, Joann; Cengel, Keith A.; Putt, Mary E.; Vinogradov, Sergei A.; Busch, Theresa M.

    2015-01-01

    Aberrant expression of the epidermal growth factor receptor (EGFR) is a common characteristic of many cancers including non-small cell lung carcinoma (NSCLC), head and neck squamous cell carcinoma, and ovarian cancer. While EGFR is currently a favorite molecular target for treatment of these cancers, inhibition of the receptor with small molecule inhibitors (i.e.- erlotinib) or monoclonal antibodies (i.e.- cetuximab) does not provide long-term therapeutic benefit as standalone treatment. Interestingly, we have found that addition of erlotinib to photodynamic therapy (PDT) can improve treatment response in typically erlotinib-resistant NSCLC tumor xenografts. Ninety-day complete response rates of 63% are achieved when erlotinib is administered in three doses before PDT of H460 human tumor xenografts, compared to 16% after PDT-alone. Similar benefit is found when erlotinib is added to PDT of A549 NCSLC xenografts. Improved response is accompanied by increased vascular shutdown, and erlotinib increases the in vitro cytotoxicity of PDT to endothelial cells. Tumor uptake of the photosensitizer (benzoporphyrin derivative monoacid ring A; BPD) is increased by the in vivo administration of erlotinib; nevertheless, this elevation of BPD levels only partially accounts for the benefit of erlotinib to PDT. Thus, pretreatment with erlotinib augments multiple mechanisms of PDT effect that collectively lead to large improvements in therapeutic efficacy. These data demonstrate that short-duration administration of erlotinib before PDT can greatly improve the responsiveness of even erlotinib-resistant tumors to treatment. Results will inform clinical investigation of EGFR-targeting therapeutics in conjunction with PDT. PMID:26054596

  9. Signaling Interplay between Bone Marrow Adipose Tissue and Multiple Myeloma cells.

    Science.gov (United States)

    Falank, Carolyne; Fairfield, Heather; Reagan, Michaela R

    2016-01-01

    In the year 2000, Hanahan and Weinberg (1) defined the six Hallmarks of Cancer as: self-sufficiency in growth signals, evasion of apoptosis, insensitivity to antigrowth mechanisms, tissue invasion and metastasis, limitless replicative potential, and sustained angiogenesis. Eleven years later, two new Hallmarks were added to the list (avoiding immune destruction and reprograming energy metabolism) and two new tumor characteristics (tumor-promoting inflammation and genome instability and mutation) (2). In multiple myeloma (MM), a destructive cancer of the plasma cell that grows predominantly in the bone marrow (BM), it is clear that all these hallmarks and characteristics are in play, contributing to tumor initiation, drug resistance, disease progression, and relapse. Bone marrow adipose tissue (BMAT) is a newly recognized contributor to MM oncogenesis and disease progression, potentially affecting MM cell metabolism, immune action, inflammation, and influences on angiogenesis. In this review, we discuss the confirmed and hypothetical contributions of BMAT to MM development and disease progression. BMAT has been understudied due to technical challenges and a previous lack of appreciation for the endocrine function of this tissue. In this review, we define the dynamic, responsive, metabolically active BM adipocyte. We then describe how BMAT influences MM in terms of: lipids/metabolism, hypoxia/angiogenesis, paracrine or endocrine signaling, and bone disease. We then discuss the connection between BMAT and systemic inflammation and potential treatments to inhibit the feedback loops between BM adipocytes and MM cells that support MM progression. We aim for researchers to use this review to guide and help prioritize their experiments to develop better treatments or a cure for cancers, such as MM, that associate with and may depend on BMAT.

  10. Minimally invasive monitoring of CD4 T cells at multiple mucosal tissues after intranasal vaccination in rhesus macaques.

    Science.gov (United States)

    Dorta-Estremera, Stephanie; Nehete, Pramod N; Yang, Guojun; He, Hong; Nehete, Bharti P; Shelton, Kathryn A; Barry, Michael A; Sastry, K Jagannadha

    2017-01-01

    Studies in nonhuman primates (NHP) for prospective immune cell monitoring subsequent to infection and/or vaccination usually rely on periodic sampling of the blood samples with only occasional collections of biopsies from mucosal tissues because of safety concerns and practical constraints. Here we present evidence in support of cytobrush sampling of oral, rectal, and genital mucosal tissues as a minimally invasive approach for the phenotypic analyses of different T cells subsets de novo as well as prospectively after intranasal immunization in rhesus macaques. Significant percentages of viable lymphocytes were obtained consistently from both naïve and chronically SIV-infected rhesus macaques. The percentages of CD3+ T cells in the blood were significantly higher compared to those in the mucosal tissues analyzed in the naïve animals, while in the SIV+ animals the CD3+ T cells were significantly elevated in the rectal tissues, relative to all other sites analyzed. In the naïve, but not SIV+ macaques, the rectal and vaginal mucosal tissues, compared to oral mucosa and blood, showed higher diversity and percentages of CD4+ T cells expressing the HIV entry co-receptor CCR5 and mucosal specific adhesion (CD103) as well as activation (HLA-DR) and proliferation (Ki67) markers. Sequential daily cytobrush sampling from the oral, rectal, and genital mucosal tissues was performed in SIV+ animals from an ongoing study where they were administered intranasal immunization with adenoviral vectored vaccines incorporating the green fluorescent protein (GFP) reporter gene. We detected a transient increase in GFP+ CD4 T cells in only oral mucosa suggesting limited mucosal trafficking. In general, CD4+ and CD8+ T cells expressing Ki67 transiently increased in all mucosal tissues, but those expressing the CCR5, HLA-DR, and CD103 markers exhibited minor changes. We propose the minimally invasive cytobrush sampling as a practical approach for effective and prospective immune

  11. Embryonic stem cells and mice expressing different GFP variants for multiple non-invasive reporter usage within a single animal

    Directory of Open Access Journals (Sweden)

    Macmaster Suzanne

    2002-06-01

    Full Text Available Abstract Background Non-invasive autofluorescent reporters have revolutionized lineage labeling in an array of different organisms. In recent years green fluorescent protein (GFP from the bioluminescent jellyfish Aequoria Victoria has gained popularity in mouse transgenic and gene targeting regimes 1. It offers several advantages over conventional gene-based reporters, such as lacZ and alkaline phosphatase, in that its visualization does not require a chromogenic substrate and can be realized in vivo. We have previously demonstrated the utility and developmental neutrality of enhanced green fluorescent protein (EGFP in embryonic stem (ES cells and mice 2. Results In this study we have used embryonic stem (ES cell-mediated transgenesis to test the enhanced cyan fluorescent protein (ECFP and enhanced yellow fluorescent protein (EYFP, two mutant and spectrally distinct color variants of wild type (wt GFP. We have also tested DsRed1, the novel red fluorescent protein reporter recently cloned from the Discostoma coral by virtue of its homology to GFP. To this end, we have established lines of ES cells together with viable and fertile mice having widespread expression of either the ECFP or EYFP GFP-variant reporters. However, we were unable to generate equivalent DsRed1 lines, suggesting that DsRed1 is not developmentally neutral or that transgene expression cannot be sustained constitutively. Balanced (diploid diploid and polarized (tetraploid diploid chimeras comprising combinations of the ECFP and EYFP ES cells and/or embryos, demonstrate that populations of cells expressing each individual reporter can be distinguished within a single animal. Conclusions GFP variant reporters are unique in allowing non-invasive multi-spectral visualization in live samples. The ECFP and EYFP-expressing transgenic ES cells and mice that we have generated provide sources of cells and tissues for combinatorial, double-tagged recombination experiments, chimeras or

  12. Assessment of bone marrow plasma cell infiltrates in multiple myeloma: the added value of CD138 immunohistochemistry

    Science.gov (United States)

    Al-Quran, Samer Z.; Yang, Lijun; Magill, James M.; Braylan, Raul C.; Douglas-Nikitin, Vonda K.

    2012-01-01

    Summary Assessment of bone marrow involvement by malignant plasma cells is an important element in the diagnosis and follow-up of patients with multiple myeloma and other plasma cell dyscrasias. Microscope-based differential counts of bone marrow aspirates are used as the primary method to evaluate bone marrow plasma cell percentages. However, multiple myeloma is often a focal process, a fact that impacts the accuracy and reliability of the results of bone marrow plasma cell percentages obtained by differential counts of bone marrow aspirate smears. Moreover, the interobserver and intraobserver reproducibility of counting bone marrow plasma cells microscopically has not been adequately tested. CD138 allows excellent assessment of plasma cell numbers and distribution in bone marrow biopsies. We compared estimates of plasma cell percentages in bone marrow aspirates and in hematoxylin-eosin– and CD138-stained bone marrow biopsy sections (CD138 sections) in 79 bone marrows from patients with multiple myeloma. There was a notable discrepancy in bone marrow plasma cell percentages using the different methods of observation. In particular, there was a relatively poor concordance of plasma cell percentage estimation between aspirate smears and CD138 sections. Estimates of plasma cell percentage using CD138 sections demonstrated the highest interobserver concordance. This observation was supported by computer-assisted image analysis. In addition, CD138 expression highlighted patterns of plasma cell infiltration indicative of neoplasia even in the absence of plasmacytosis. We conclude that examination of CD138 sections should be considered for routine use in the estimation of plasma cell load in the bone marrow. PMID:17714757

  13. Efficient Presentation of Multiple Endogenous Epitopes to Both CD4+ and CD8+ Diabetogenic T Cells for Tolerance

    Directory of Open Access Journals (Sweden)

    Shamael R. Dastagir

    2017-03-01

    Full Text Available Antigen-specific immunotherapy of type 1 diabetes, typically via delivery of a single native β cell antigen, has had little clinical benefit to date. With increasing evidence that diabetogenic T cells react against multiple β cell antigens, including previously unappreciated neo-antigens that can be emulated by mimotopes, a shift from protein- to epitope-based therapy is warranted. To this end, we aimed to achieve efficient co-presentation of multiple major epitopes targeting both CD4+ and CD8+ diabetogenic T cells. We have compared native epitopes versus mimotopes as well as various targeting signals in an effort to optimize recognition by both types of T cells in vitro. Optimal engagement of all T cells was achieved with segregation of CD8 and CD4 epitopes, the latter containing mimotopes and driven by endosome-targeting signals, after delivery into either dendritic or stromal cells. The CD4+ T cell responses elicited by the endogenously delivered epitopes were comparable with high concentrations of soluble peptide and included functional regulatory T cells. This work has important implications for the improvement of antigen-specific therapies using an epitope-based approach to restore tolerance in type 1 diabetes and in a variety of other diseases requiring concomitant targeting of CD4+ and CD8+ T cells.

  14. Efficient Presentation of Multiple Endogenous Epitopes to Both CD4(+) and CD8(+) Diabetogenic T Cells for Tolerance.

    Science.gov (United States)

    Dastagir, Shamael R; Postigo-Fernandez, Jorge; Xu, Chunliang; Stoeckle, James H; Firdessa-Fite, Rebuma; Creusot, Rémi J

    2017-03-17

    Antigen-specific immunotherapy of type 1 diabetes, typically via delivery of a single native β cell antigen, has had little clinical benefit to date. With increasing evidence that diabetogenic T cells react against multiple β cell antigens, including previously unappreciated neo-antigens that can be emulated by mimotopes, a shift from protein- to epitope-based therapy is warranted. To this end, we aimed to achieve efficient co-presentation of multiple major epitopes targeting both CD4(+) and CD8(+) diabetogenic T cells. We have compared native epitopes versus mimotopes as well as various targeting signals in an effort to optimize recognition by both types of T cells in vitro. Optimal engagement of all T cells was achieved with segregation of CD8 and CD4 epitopes, the latter containing mimotopes and driven by endosome-targeting signals, after delivery into either dendritic or stromal cells. The CD4(+) T cell responses elicited by the endogenously delivered epitopes were comparable with high concentrations of soluble peptide and included functional regulatory T cells. This work has important implications for the improvement of antigen-specific therapies using an epitope-based approach to restore tolerance in type 1 diabetes and in a variety of other diseases requiring concomitant targeting of CD4(+) and CD8(+) T cells.

  15. Microfiltration of enzyme treated egg whites for accelerated detection of viable Salmonella.

    Science.gov (United States)

    Ku, Seockmo; Ximenes, Eduardo; Kreke, Thomas; Foster, Kirk; Deering, Amanda J; Ladisch, Michael R

    2016-11-01

    We report detection of egg white within 7 h by concentrating the bacteria using microfiltration through 0.2-μm cutoff polyethersulfone hollow fiber membranes. A combination of enzyme treatment, controlled cross-flow on both sides of the hollow fibers, and media selection were key to controlling membrane fouling so that rapid concentration and the subsequent detection of low numbers of microbial cells were achieved. We leveraged the protective effect of egg white proteins and peptone so that the proteolytic enzymes did not attack the living cells while hydrolyzing the egg white proteins responsible for fouling. The molecular weight of egg white proteins was reduced from about 70 kDa to 15 kDa during hydrolysis. This enabled a 50-fold concentration of the cells when a volume of 525 mL of peptone and egg white, containing 13 CFU of Salmonella, was decreased to a 10 mL volume in 50 min. A 10-min microcentrifugation step further concentrated the viable Salmonella cells by 10×. The final cell recovery exceeded 100%, indicating that microbial growth occurred during the 3-h processing time. The experiments leading to rapid concentration, recovery, and detection provided further insights on the nature of membrane fouling enabling fouling effects to be mitigated. Unlike most membrane processes where protein recovery is the goal, recovery of viable microorganisms for pathogen detection is the key measure of success, with modification of cell-free proteins being both acceptable and required to achieve rapid microfiltration of viable microorganisms. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1464-1471, 2016. © 2016 American Institute of Chemical Engineers.

  16. A direct viable count method for the enumeration of attached bacteria and assessment of biofilm disinfection

    Science.gov (United States)

    Yu, F. P.; Pyle, B. H.; McFeters, G. A.

    1993-01-01

    This report describes the adaptation of an in situ direct viable count (in situ DVC) method in biofilm disinfection studies. The results obtained with this technique were compared to two other enumeration methods, the plate count (PC) and conventional direct viable count (c-DVC). An environmental isolate (Klebsiella pneumoniae Kp1) was used to form biofilms on stainless steel coupons in a stirred batch reactor. The in situ DVC method was applied to directly assess the viability of bacteria in biofilms without disturbing the integrity of the interfacial community. As additional advantages, the results were observed after 4 h instead of the 24 h incubation time required for colony formation and total cell numbers that remained on the substratum were enumerated. Chlorine and monochloramine were used to determine the susceptibilities of attached and planktonic bacteria to disinfection treatment using this novel analytical approach. The planktonic cells in the reactor showed no significant change in susceptibility to disinfectants during the period of biofilm formation. In addition, the attached cells did not reveal any more resistance to disinfection than planktonic cells. The disinfection studies of young biofilms indicated that 0.25 mg/l free chlorine (at pH 7.2) and 1 mg/l monochloramine (at pH 9.0) have comparable disinfection efficiencies at 25 degrees C. Although being a weaker disinfectant, monochloramine was more effective in removing attached bacteria from the substratum than free chlorine. The in situ DVC method always showed at least one log higher viable cell densities than the PC method, suggesting that the in situ DVC method is more efficient in the enumeration of biofilm bacteria. The results also indicated that the in situ DVC method can provide more accurate information regarding the cell numbers and viability of bacteria within biofilms following disinfection.

  17. Multiple linear B-cell epitopes of classical swine fever virus glycoprotein E2 expressed in E.coli as multiple epitope vaccine induces a protective immune response.

    Science.gov (United States)

    Zhou, Bin; Liu, Ke; Jiang, Yan; Wei, Jian-Chao; Chen, Pu-Yan

    2011-07-30

    Classical swine fever is a highly contagious disease of swine caused by classical swine fever virus, an OIE list A pathogen. Epitope-based vaccines is one of the current focuses in the development of new vaccines against classical swine fever virus (CSFV). Two B-cell linear epitopes rE2-ba from the E2 glycoprotein of CSFV, rE2-a (CFRREKPFPHRMDCVTTTVENED, aa844-865) and rE2-b (CKEDYRYAISSTNEIGLLGAGGLT, aa693-716), were constructed and heterologously expressed in Escherichia coli as multiple epitope vaccine. Fifteen 6-week-old specified-pathogen-free (SPF) piglets were intramuscularly immunized with epitopes twice at 2-week intervals. All epitope-vaccinated pigs could mount an anamnestic response after booster vaccination with neutralizing antibody titers ranging from 1:16 to 1:256. At this time, the pigs were subjected to challenge infection with a dose of 1 × 106 TCID50 virulent CSFV strain. After challenge infection, all of the rE2-ba-immunized pigs were alive and without symptoms or signs of CSF. In contrast, the control pigs continuously exhibited signs of CSF and had to be euthanized because of severe clinical symptoms at 5 days post challenge infection. The data from in vivo experiments shown that the multiple epitope rE2-ba shown a greater protection (similar to that of HCLV vaccine) than that of mono-epitope peptide(rE2-a or rE2-b). Therefore, The results demonstrated that this multiple epitope peptide expressed in a prokaryotic system can be used as a potential DIVA (differentiating infected from vaccinated animals) vaccine. The E.coli-expressed E2 multiple B-cell linear epitopes retains correct immunogenicity and is able to induce a protective immune response against CSFV infection.

  18. Multiple linear B-cell epitopes of classical swine fever virus glycoprotein E2 expressed in E.coli as multiple epitope vaccine induces a protective immune response

    Directory of Open Access Journals (Sweden)

    Wei Jian-Chao

    2011-07-01

    Full Text Available Abstract Classical swine fever is a highly contagious disease of swine caused by classical swine fever virus, an OIE list A pathogen. Epitope-based vaccines is one of the current focuses in the development of new vaccines against classical swine fever virus (CSFV. Two B-cell linear epitopes rE2-ba from the E2 glycoprotein of CSFV, rE2-a (CFRREKPFPHRMDCVTTTVENED, aa844-865 and rE2-b (CKEDYRYAISSTNEIGLLGAGGLT, aa693-716, were constructed and heterologously expressed in Escherichia coli as multiple epitope vaccine. Fifteen 6-week-old specified-pathogen-free (SPF piglets were intramuscularly immunized with epitopes twice at 2-week intervals. All epitope-vaccinated pigs could mount an anamnestic response after booster vaccination with neutralizing antibody titers ranging from 1:16 to 1:256. At this time, the pigs were subjected to challenge infection with a dose of 1 × 106 TCID50 virulent CSFV strain. After challenge infection, all of the rE2-ba-immunized pigs were alive and without symptoms or signs of CSF. In contrast, the control pigs continuously exhibited signs of CSF and had to be euthanized because of severe clinical symptoms at 5 days post challenge infection. The data from in vivo experiments shown that the multiple epitope rE2-ba shown a greater protection (similar to that of HCLV vaccine than that of mono-epitope peptide(rE2-a or rE2-b. Therefore, The results demonstrated that this multiple epitope peptide expressed in a prokaryotic system can be used as a potential DIVA (differentiating infected from vaccinated animals vaccine. The E.coli-expressed E2 multiple B-cell linear epitopes retains correct immunogenicity and is able to induce a protective immune response against CSFV infection.

  19. The search for viable local government system in Nigeria: an ...

    African Journals Online (AJOL)

    The history of the Nigerian local government system has been one long episode of trails and errors aimed at achieving viable local government institution without much success. Local government in the country began its long series of reforms from the colonial period when the colonial government attempted to ...

  20. Comment: Towards a Viable Local Government Structure in Nigeria ...

    African Journals Online (AJOL)

    Local governments are principally established for development at the grassroots and they must be structured in a manner that makes them viable and capable of achieving this purpose. The objective of this comment is to appraise the current local government structure under the Nigerian constitutional framework with a view ...

  1. Dimethyl Fumarate Treatment Mediates an Anti-Inflammatory Shift in B Cell Subsets of Patients with Multiple Sclerosis.

    Science.gov (United States)

    Li, Rui; Rezk, Ayman; Ghadiri, Mathab; Luessi, Felix; Zipp, Frauke; Li, Hulun; Giacomini, Paul S; Antel, Jack; Bar-Or, Amit

    2017-01-15

    The therapeutic mode of action of dimethyl fumarate (DMF), approved for treating patients with relapsing-remitting multiple sclerosis, is not fully understood. Recently, we and others demonstrated that Ab-independent functions of distinct B cell subsets are important in mediating multiple sclerosis (MS) relapsing disease activity. Our objective was to test whether and how DMF influences both the phenotype and functional responses of disease-implicated B cell subsets in patients with MS. High-quality PBMC were obtained from relapsing-remitting MS patients prior to and serially after initiation of DMF treatment. Multiparametric flow cytometry was used to monitor the phenotype and functional response-profiles of distinct B cell subsets. Total B cell counts decreased following DMF treatment, largely reflecting losses of circulating mature/differentiated (but not of immature transitional) B cells. Within the mature B cell pool, DMF had a greater impact on memory than naive B cells. In keeping with these in vivo effects, DMF treatment in vitro remarkably diminished mature (but not transitional B cell) survival, mediated by inducing apoptotic cell death. Although DMF treatment (both in vivo and in vitro) minimally impacted B cell IL-10 expression, it strongly reduced B cell expression of GM-CSF, IL-6, and TNF-α, resulting in a significant anti-inflammatory shift of B cell response profiles. The DMF-mediated decrease in B cell proinflammatory cytokine responses was further associated with reduced phosphorylation of STAT5/6 and NF-κB in surviving B cells. Together, these data implicate novel mechanisms by which DMF may modulate MS disease activity through shifting the balance between pro- and anti-inflammatory B cell responses. Copyright © 2017 by The American Association of Immunologists, Inc.

  2. Increased prevalence of lymphoid tissue inducer cells in the cerebrospinal fluid of patients with early multiple sclerosis

    DEFF Research Database (Denmark)

    Degn, Matilda; Modvig, Signe; Dyring-Andersen, Beatrice

    2016-01-01

    BACKGROUND: Inflammatory cytokines produced by cells of the immune system are believed to play a central role in the pathogenesis of multiple sclerosis (MS). Innate lymphoid cells (ILCs) have been shown to produce and secrete a wide range of the cytokines involved in MS pathogenesis; however...... of LTi cells in the CSF, suggesting a favoured recruitment of blood derived LTi cells. CONCLUSION: Our data suggests a role for ILCs, and in particular the LTi subset, in the early stages of MS. This finding represents an important contribution to the understanding of early inflammation in MS, and adds...

  3. Multiple factor analysis of metachronous upper urinary tract transitional cell carcinoma after radical cystectomy

    Directory of Open Access Journals (Sweden)

    P. Wang

    2007-07-01

    Full Text Available Transitional cell carcinoma (TCC of the urothelium is often multifocal and subsequent tumors may occur anywhere in the urinary tract after the treatment of a primary carcinoma. Patients initially presenting a bladder cancer are at significant risk of developing metachronous tumors in the upper urinary tract (UUT. We evaluated the prognostic factors of primary invasive bladder cancer that may predict a metachronous UUT TCC after radical cystectomy. The records of 476 patients who underwent radical cystectomy for primary invasive bladder TCC from 1989 to 2001 were reviewed retrospectively. The prognostic factors of UUT TCC were determined by multivariate analysis using the COX proportional hazards regression model. Kaplan-Meier analysis was also used to assess the variable incidence of UUT TCC according to different risk factors. Twenty-two patients (4.6%. developed metachronous UUT TCC. Multiplicity, prostatic urethral involvement by the bladder cancer and the associated carcinoma in situ (CIS were significant and independent factors affecting the occurrence of metachronous UUT TCC (P = 0.0425, 0.0082, and 0.0006, respectively. These results were supported, to some extent, by analysis of the UUT TCC disease-free rate by the Kaplan-Meier method, whereby patients with prostatic urethral involvement or with associated CIS demonstrated a significantly lower metachronous UUT TCC disease-free rate than patients without prostatic urethral involvement or without associated CIS (log-rank test, P = 0.0116 and 0.0075, respectively. Multiple tumors, prostatic urethral involvement and associated CIS were risk factors for metachronous UUT TCC, a conclusion that may be useful for designing follow-up strategies for primary invasive bladder cancer after radical cystectomy.

  4. Mantle cell lymphoma of the gastrointestinal tract presenting with multiple intussusceptions – case report and review of literature

    Directory of Open Access Journals (Sweden)

    Abo Stephen M

    2009-07-01

    Full Text Available Abstract Background Mantle cell lymphoma (MCL is an aggressive type of B-cell non-Hodgkin's lymphoma that originates from small to medium sized lymphocytes located in the mantle zone of the lymph node. Extra nodal involvement is present in the majority of cases, with a peculiar tendency to invade the gastro-intestinal tract in the form of multiple lymphomatous polyposis. MCL can be accurately diagnosed with the use of the highly specific marker Cyclin D1. Few cases of mantle cell lymphoma presenting with intussuception have been reported. Here we present a rare case of multiple intussusceptions caused by mantle cell lymphoma and review the literature of this disease. Case presentation A 68-year-old male presented with pain, tenderness in the right lower abdomen, associated with nausea and non-bilious vomiting. CT scan of abdomen revealed ileo-colic intussusception. Laparoscopy confirmed multiple intussusceptions involving ileo-colic and ileo-ileal segments of gastrointestinal tract. A laparoscopically assisted right hemicolectomy and extended ileal resection was performed. Postoperative recovery was uneventful. The histology and immuno-histochemistry of the excised small and large bowel revealed mantle cell lymphoma with multiple lymphomatous polyposis and positivity to Cyclin D1 marker. The patient was successfully treated with Rituximab-CHOP chemotherapy and remains in complete remission at one-year follow-up. Conclusion This is a rare case of intestinal lymphomatous polyposis due to mantle cell lymphoma presenting with multiple small bowel intussusceptions. Our case highlights laparoscopic-assisted bowel resection as a potential and feasible option in the multi-disciplinary treatment of mantle cell lymphoma.

  5. Differential multiple-time-programmable memory cells by laterally coupled floating metal gate fin field-effect transistors

    Science.gov (United States)

    Hsu, Chia-Ling; Liao, Chu-Feng; Chien, Wei Yu; Chih, Yue-Der; Lin, Chrong Jung; King, Ya-Chin

    2017-04-01

    In this paper, we present a new differential multiple-time-programmable (MTP) memory cell with a novel slot contact coupling structure in the fin field-effect transistor (FinFET) CMOS process. This MTP cell contains a pair of floating metal gates to store differential data on a single cell. Through differential read operations, the cells are less susceptible to read error caused by cell-to-cell variations. In a nano-scaled FinFET process, the gate dielectric layer becomes too thin to retain charge in the floating gates for long periods of time. Differential cell design further extends the data lifetime, even with the serious charge-loss problem, and reduces the overall intellectual property (IP) area.

  6. Luteolin inhibits Cr(VI)-induced malignant cell transformation of human lung epithelial cells by targeting ROS mediated multiple cell signaling pathways

    Energy Technology Data Exchange (ETDEWEB)

    Pratheeshkumar, Poyil; Son, Young-Ok; Divya, Sasidharan Padmaja; Roy, Ram Vinod; Hitron, John Andrew; Wang, Lei [Center for Research on Environmental Disease, University of Kentucky, 1095 VA Drive, Lexington, KY 40536 (United States); Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536 (United States); Kim, Donghern; Dai, Jin [Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536 (United States); Asha, Padmaja [National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Cochin (India); Zhang, Zhuo [Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536 (United States); Wang, Yitao [State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau (China); Shi, Xianglin, E-mail: xshi5@email.uky.edu [Center for Research on Environmental Disease, University of Kentucky, 1095 VA Drive, Lexington, KY 40536 (United States); Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536 (United States)

    2014-12-01

    Hexavalent chromium [Cr(VI)] is a well-known human carcinogen associated with the incidence of lung cancer. Inhibition of metal induced carcinogenesis by a dietary antioxidant is a novel approach. Luteolin, a natural dietary flavonoid found in fruits and vegetables, possesses potent antioxidant and anti-inflammatory activity. We found that short term exposure of human bronchial epithelial cells (BEAS-2B) to Cr(VI) (5 μM) showed a drastic increase in ROS generation, NADPH oxidase (NOX) activation, lipid peroxidation, and glutathione depletion, which were significantly inhibited by the treatment with luteolin in a dose dependent manner. Treatment with luteolin decreased AP-1, HIF-1α, COX-2, and iNOS promoter activity induced by Cr(VI) in BEAS-2B cells. In addition, luteolin protected BEAS-2B cells from malignant transformation induced by chronic Cr(VI) exposure. Moreover, luteolin also inhibited the production of pro-inflammatory cytokines (IL-1β, IL-6, IL-8, TNF-α) and VEGF in chronic Cr(VI) exposed BEAS-2B cells. Western blot analysis showed that luteolin inhibited multiple gene products linked to survival (Akt, Fak, Bcl-2, Bcl-xL), inflammation (MAPK, NF-κB, COX-2, STAT-3, iNOS, TNF-α) and angiogenesis (HIF-1α, VEGF, MMP-9) in chronic Cr(VI) exposed BEAS-2B cells. Nude mice injected with BEAS-2B cells chronically exposed to Cr(VI) in the presence of luteolin showed reduced tumor incidence compared to Cr(VI) alone treated group. Overexpression of catalase (CAT) or SOD2, eliminated Cr(VI)-induced malignant transformation. Overall, our results indicate that luteolin protects BEAS-2B cells from Cr(VI)-induced carcinogenesis by scavenging ROS and modulating multiple cell signaling mechanisms that are linked to ROS. Luteolin, therefore, serves as a potential chemopreventive agent against Cr(VI)-induced carcinogenesis. - Highlights: • Luteolin inhibited Cr(VI)-induced oxidative stress. • Luteolin inhibited chronic Cr(VI)-induced malignant transformation.

  7. Coexisting multiple myeloma, lymphoma, and non-small cell lung cancer: a case report and review of the literature

    Directory of Open Access Journals (Sweden)

    Khade P

    2017-11-01

    Full Text Available Parth Khade, Srinivas Devarakonda Department of Internal Medicine, Louisiana State University Health, Shreveport, LA, USA Abstract: Multiple myeloma is a plasma cell dyscrasia characterized by neoplastic proliferation of plasma cells, producing a monoclonal immunoglobulin. Small lymphocytic lymphoma (SLL is a neoplasm consisting of monoclonal B-cell lymphocyte proliferation. We present an extremely rare case of coexisting multiple myeloma, SLL, and squamous cell carcinoma of the lung in a 74-year-old female patient. She initially presented with a midline mass with pain in the lumbar area. Debulking surgery was performed, and pathology showed plasmacytoma. Further evaluation revealed coexistent IgG kappa myeloma. Imaging revealed extensive abdominal lymphadenopathy, and mesenteric lymph node biopsy confirmed the presence of SLL. The patient was also found to have a mass in the left lower lobe of the lung; biopsy showed squamous cell carcinoma. This patient was treated with lenalidomide and dexamethasone for multiple myeloma, and stereotactic body radiotherapy for limited stage lung cancer. Due to the more indolent course of SLL, watchful waiting was applied. Keywords: coexisting, multiple myeloma, lung cancer, non-Hodgkin’s lymphoma

  8. A proposed cell model for multiple-occurrence regional landslide events: Implications for landslide susceptibility mapping

    Science.gov (United States)

    Crozier, M. J.

    2017-10-01

    Multiple-occurrence regional landslide events (MORLEs) consist of hundreds to thousands of shallow landslides occurring more or less simultaneously within defined areas, ranging from tens to thousands of square kilometres. While MORLEs can be triggered by rainstorms and earthquakes, this paper is confined to those landslide events triggered by rainstorms. Globally, MORLEs occur in a range of geological settings in areas of moderate to steep slopes subject to intense rainstorms. Individual landslides in rainstorm-triggered events are dominantly small, shallow debris and earth flows, and debris and earth slides involving regolith or weathered bedrock. The model used to characterise these events assumes that energy distribution within the event area is represented on the land surface by a cell structure; with maximum energy expenditure within an identifiable core and rapid dissipation concentrically away from the centre. The version of the model presented here has been developed for rainfall-triggered landslide events. It proposes that rainfall intensity can be used to determine different critical landslide response zones within the cell (referred to as core, middle, and periphery zones). These zones are most readily distinguished by two conditions: the proportion of the slope that fails and the particular type of the slope stability factor that assumes dominance in determining specific sites of landslide occurrence. The latter condition means that the power of any slope stability factor to distinguish between stable and unstable sites varies throughout the affected area in accordance with the landslide response zones within the cell; certain factors critical for determining the location of landslide sites in one part of the event area have little influence in other parts of the event area. The implication is that landslide susceptibility maps (and subsequently derived mitigation measures) based on conventional slope stability factors may have only limited validity

  9. Molecular approaches for viable bacterial population and transcriptional analyses in a rodent model of dental caries.

    Science.gov (United States)

    Klein, M I; Scott-Anne, K M; Gregoire, S; Rosalen, P L; Koo, H

    2012-10-01

    Culturing methods are the primary approach for microbiological analysis of plaque biofilms in rodent models of dental caries. In this study, we developed strategies for the isolation of DNA and RNA from plaque biofilms formed in vivo to analyse the viable bacterial population and gene expression. Plaque biofilm samples from rats were treated with propidium monoazide to isolate DNA from viable cells, and the purified DNA was used to quantify total bacteria and the Streptococcus mutans population via quantitative polymerase chain reaction (qPCR) and specific primers; the same samples were also analysed by counting colony-forming units (CFU). In parallel, RNA was isolated from plaque-biofilm samples (from the same animals) and used for transcriptional analyses via reverse transcription-qPCR. The viable populations of both S. mutans and total bacteria assessed by qPCR were positively correlated with the CFU data (P  0.8). However, the qPCR data showed higher bacterial cell counts, particularly for total bacteria (vs. CFU). Moreover, S. mutans proportion in the plaque biofilm determined by qPCR analysis showed strong correlation with incidence of smooth-surface caries (P = 0.0022, r = 0.71). The purified RNAs presented high RNA integrity numbers (> 7), which allowed measurement of the expression of genes that are critical for S. mutans virulence (e.g. gtfB and gtfC). Our data show that the viable microbial population and the gene expression can be analysed simultaneously, providing a global assessment of the infectious aspect of dental caries. Our approach could enhance the value of the current rodent model in further understanding the pathophysiology of this disease and facilitating the exploration of novel anti-caries therapies. © 2012 John Wiley & Sons A/S.

  10. Concurrent detection of other respiratory viruses in children shedding viable human respiratory syncytial virus.

    Science.gov (United States)

    Gagliardi, T B; Paula, F E; Iwamoto, M A; Proença-Modena, J L; Santos, A E; Camara, A A; Cervi, M C; Cintra, O A L; Arruda, E

    2013-10-01

    Human respiratory syncytial virus (HRSV) is an important cause of respiratory disease. The majority of studies addressing the importance of virus co-infections to the HRSV-disease have been based on the detection of HRSV by RT-PCR, which may not distinguish current replication from prolonged shedding of remnant RNA from previous HRSV infections. To assess whether co-detections of other common respiratory viruses are associated with increased severity of HRSV illnesses from patients who were shedding viable-HRSV, nasopharyngeal aspirates from children younger than 5 years who sought medical care for respiratory infections in Ribeirão Preto (Brazil) were tested for HRSV by immunofluorescence, RT-PCR and virus isolation in cell culture. All samples with viable-HRSV were tested further by PCR for other respiratory viruses. HRSV-disease severity was assessed by a clinical score scale. A total of 266 samples from 247 children were collected and 111 (42%) were HRSV-positive. HRSV was isolated from 70 (63%), and 52 (74%) of them were positive for at least one additional virus. HRSV-positive diseases were more severe than HRSV-negative ones, but there was no difference in disease severity between patients with viable-HRSV and those HRSV-positives by RT-PCR. Co-detection of other viruses did not correlate with increased disease severity. HRSV isolation in cell culture does not seem to be superior to RT-PCR to distinguish infections associated with HRSV replication in studies of clinical impact of HRSV. A high rate of co-detection of other respiratory viruses was found in samples with viable-HRSV, but this was not associated with more severe HRSV infection. Copyright © 2013 Wiley Periodicals, Inc.

  11. Stilbene 5c, a microtubule poison with vascular disrupting properties that induces multiple modes of growth arrest and cell death.

    Science.gov (United States)

    Alotaibi, M R; Asnake, B; Di, Xu; Beckman, M J; Durrant, D; Simoni, D; Baruchello, R; Lee, R M; Schwartz, E L; Gewirtz, D A

    2013-12-15

    The stilbene derivative, cis-3,4',5-trimethoxy-3'-aminostilbene (stilbene 5c), is a potentially potent antitumor agent that acts via binding to the colchicine-binding site in tubulin. The current studies were designed to investigate the effectiveness of stilbene 5c against the HCT-116 human colon cancer cell line and B16/F10 melanoma cells as well as human endothelial cell tube formation and tumor perfusion. Stilbene 5c produced a time-dependent decrease in cell viability in both cell lines and the capacity of the cells to proliferate was not restored upon removal of the drug. Treatment with stilbene 5c also promoted both senescence and autophagy in both cell lines. TUNEL and annexin 5 staining indicated that apoptosis also occurs in stilbene 5c-treated HCT-116 cells, but not in B16/F10 melanoma cells. DAPI staining revealed morphological changes in the cell nuclei (binucleated and micronucleated cells) indicative of mitotic catastrophe in HCT-116 cells but not in the B16/F10 melanoma cells. p53-null HCT-116 cells demonstrated a similar growth arrest/cell death response to stilbene as p53-wild type HCT-116 cells. Stilbene 5c also completely inhibited human endothelial cell tube formation on Matrigel, consistent with potential anti-angiogenic actions. Using a new method developed for monitoring the pharmacodynamic effects of stilbene 5c in vivo, we found that a single injection of stilbene 5c reduced tumor perfusion by 65% at 4h, returning to baseline by 24h, while subsequent daily injections of stilbene 5c produced progressively larger reductions and smaller rebounds. This work indicates that stilbene 5c could potentially be effective against melanoma and colon cancer through the promotion of multiple modes of growth arrest and cell death coupled with anti-angiogenic and antivascular actions. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Autologous mesenchymal stem cells for the treatment of secondary progressive multiple sclerosis:an open-label phase 2a proof-of-concept study

    OpenAIRE

    Connick, Peter; Kolappan, Madhan; Crawley, Charles; Webber, Daniel J; Patani, Rickie; Michell, Andrew W; Du, Ming-Qing; Luan, Shi-Lu; Altmann, Daniel R; Thompson, Alan J.; Compston, Alastair; Scott, Michael A.; Miller, David H.; Chandran, Siddharthan

    2012-01-01

    BackgroundMore than half of patients with multiple sclerosis have progressive disease characterised by accumulating disability. The absence of treatments for progressive multiple sclerosis represents a major unmet clinical need. On the basis of evidence that mesenchymal stem cells have a beneficial effect in acute and chronic animal models of multiple sclerosis, we aimed to assess the safety and efficacy of these cells as a potential neuroprotective treatment for secondary progressive multipl...

  13. Ganglion cell loss in relation to visual disability in multiple sclerosis.

    Science.gov (United States)

    Walter, Scott D; Ishikawa, Hiroshi; Galetta, Kristin M; Sakai, Reiko E; Feller, Daniel J; Henderson, Sam B; Wilson, James A; Maguire, Maureen G; Galetta, Steven L; Frohman, Elliot; Calabresi, Peter A; Schuman, Joel S; Balcer, Laura J

    2012-06-01

    We used high-resolution spectral-domain optical coherence tomography (SD-OCT) with retinal segmentation to determine how ganglion cell loss relates to history of acute optic neuritis (ON), retinal nerve fiber layer (RNFL) thinning, visual function, and vision-related quality of life (QOL) in multiple sclerosis (MS). Cross-sectional study. A convenience sample of patients with MS (n = 122; 239 eyes) and disease-free controls (n = 31; 61 eyes). Among MS eyes, 87 had a history of ON before enrollment. The SD-OCT images were captured using Macular Cube (200×200 or 512×128) and ONH Cube 200×200 protocols. Retinal layer segmentation was performed using algorithms established for glaucoma studies. Thicknesses of the ganglion cell layer/inner plexiform layer (GCL+IPL), RNFL, outer plexiform/inner nuclear layers (OPL+INL), and outer nuclear/photoreceptor layers (ONL+PRL) were measured and compared in MS versus control eyes and MS ON versus non-ON eyes. The relation between changes in macular thickness and visual disability was also examined. The OCT measurements of GCL+IPL and RNFL thickness; high contrast visual acuity (VA); low-contrast letter acuity (LCLA) at 2.5% and 1.25% contrast; on the 25-item National Eye Institute Visual Function Questionnaire (NEI-VFQ-25) and 10-Item Neuro-Ophthalmic Supplement composite score. Macular RNFL and GCL+IPL were significantly decreased in MS versus control eyes (Pvisual function and vision-specific QOL in MS, and may serve as a useful structural marker of disease. Our findings parallel those of magnetic resonance imaging studies that show gray matter disease is a marker of neurologic disability in MS. Proprietary or commercial disclosure may be found after the references. Copyright © 2012 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  14. Perforin Expression by CD4+ Regulatory T Cells Increases at Multiple Sclerosis Relapse: Sex Differences

    Directory of Open Access Journals (Sweden)

    Silvia Sánchez-Ramón

    2012-06-01

    Full Text Available Multiple sclerosis (MS represents the leading cause of neurological deficit among young adults, affecting women more frequently than men. In MS, the extent of central nervous system lesions is determined by the net balance between self-reactive and regulatory T-cells at any given time, among other factors, as well as by the effect of inflammatory response. Here, we studied both CD4+ and CD8+ TReg in parallel in blood and CSF during MS relapse. A recruitment of both regulatory CD4+ and CD8+ T cells (TReg within the cerebrospinal fluid (CSF takes place during MS relapse. Not previously described, the presence of CD4+ TReg in CSF was higher in women than in men, which could account for the sexual dimorphism in the incidence of MS. A direct correlation between plasma oestradiol (E2 and IL-2 levels was observed, in line with a putative circuit of E2 and perforin expression by CD4+ TReg playing a role in MS. Also, serum IFN-alpha was higher in females, with direct correlation with serum E2 levels. This is the first study to analyze perforin expression by CD4+ TReg in MS, which was greatly enhanced in CSF, what points out a relevant role of this molecule in the suppressive effects of the CD4+ TReg in MS, and contributes to the understanding of MS pathophysiology.

  15. Selective detection of viable seed-borne Acidovorax citrulli by real-time PCR with propidium monoazide

    Science.gov (United States)

    Tian, Qian; Feng, Jian-jun; Hu, Jie; Zhao, Wen-jun

    2016-01-01

    In recent years, use of the DNA-intercalating dye propidium monoazide (PMA) in real-time PCR has been reported as a novel method to detect viable bacteria in different types of samples, such as food, environmental, and microbiological samples. In this study, viable cells of Acidovorax citrulli, the causal agent of bacterial seedling blight and fruit blotch, were selectively detected and differentiated from dead cells by real-time fluorescent polymerase chain reaction amplification after the bacterial solution was treated with the DNA-binding dye PMA. The primers and TaqMan probe were based on the A. citrulli genome (Aave_1909, Gene ID: 4669443) and were highly specific for A. citrulli. The detection threshold of this assay was 103 colony-forming units per mL (CFU/mL) in pure cell suspensions containing viable and dead cells and infected watermelon seeds. Application of this assay enables the selective detection of viable cells of A. citrulli and facilitates monitoring of the pathogen in watermelon and melon seeds. PMID:27739469

  16. Biofilms in Full-Scale Drinking Water Ozone Contactors Contribute Viable Bacteria to Ozonated Water.

    Science.gov (United States)

    Kotlarz, Nadine; Rockey, Nicole; Olson, Terese M; Haig, Sarah-Jane; Sanford, Larry; LiPuma, John J; Raskin, Lutgarde

    2018-02-13

    Concentrations of viable microbial cells were monitored using culture-based and culture-independent methods across multichamber ozone contactors in a full-scale drinking water treatment plant. Membrane-intact and culturable cell concentrations in ozone contactor effluents ranged from 1200 to 3750 cells/mL and from 200 to 3850 colony forming units/mL, respectively. Viable cell concentrations decreased significantly in the first ozone contact chamber, but rose, even as ozone exposure increased, in subsequent chambers. Our results implicate microbial detachment from biofilms on contactor surfaces, and from biomass present within lime softening sediments in a hydraulic dead zone, as a possible reason for increasing cell concentrations in water samples from sequential ozone chambers. Biofilm community structures on baffle walls upstream and downstream from the dead zone were significantly different from each other (p = 0.017). The biofilms downstream of the dead zone contained a significantly (p = 0.036) higher relative abundance of bacteria of the genera Mycobacterium and Legionella than the upstream biofilms. These results have important implications as the effluent from ozone contactors is often treated further in biologically active filters and bacteria in ozonated water continuously seed filter microbial communities.

  17. Survival Strategy of Erwinia amylovora against Copper: Induction of the Viable-but-Nonculturable State

    Science.gov (United States)

    Ordax, Mónica; Marco-Noales, Ester; López, María M.; Biosca, Elena G.

    2006-01-01

    Copper compounds, widely used to control plant-pathogenic bacteria, have traditionally been employed against fire blight, caused by Erwinia amylovora. However, recent studies have shown that some phytopathogenic bacteria enter into the viable-but-nonculturable (VBNC) state in the presence of copper. To determine whether copper kills E. amylovora or induces the VBNC state, a mineral medium without copper or supplemented with 0.005, 0.01, or 0.05 mM Cu2+ was inoculated with 107 CFU/ml of this bacterium and monitored over 9 months. Total and viable cell counts were determined by epifluorescence microscopy using the LIVE/DEAD kit and by flow cytometry with 5-cyano-2,3-ditolyl tetrazolium chloride and SYTO 13. Culturable cells were counted on King's B nonselective solid medium. Changes in the bacterial morphology in the presence of copper were observed by scanning electron microscopy. E. amylovora entered into the VBNC state at all three copper concentrations assayed, much faster when the copper concentration increased. The addition of different agents which complex copper allowed the resuscitation (restoration of culturability) of copper-induced VBNC cells. Finally, copper-induced VBNC cells were virulent only for the first 5 days, while resuscitated cells always regained their pathogenicity on immature fruits over 9 months. These results have shown, for the first time, the induction of the VBNC state in E. amylovora as a survival strategy against copper. PMID:16672494

  18. Determination of viable wine yeast using DNA binding dyes and quantitative PCR.

    Science.gov (United States)

    Andorrà, Imma; Esteve-Zarzoso, Braulio; Guillamón, José M; Mas, Albert

    2010-12-15

    The detection and quantification of wine yeast can be misleading due to under or overestimation of these microorganisms. Underestimation may be caused by variable growing rates of different microorganisms in culture media or the presence of viable but non-cultivable microorganisms. Overestimation may be caused by the lack of discrimination between live and dead microorganisms if quantitative PCR is used to quantify with DNA as the template. However, culture-independent methods that use dyes have been described to remove the DNA from dead cells and then quantify the live microorganisms. Two dyes have been studied in this paper: ethidium monoazide bromide (EMA) and propidium monoazide bromide (PMA). The technique was applied to grape must fermentation and ageing wines. Both dyes presented similar results on yeast monitoring. Membrane cell recovery was necessary when yeasts were originated from ethanol-containing media. When applied to grape must fermentation, differences of up to 1 log unit were seen between the QPCR estimation with or without the dye during the stationary phase. In ageing wines, good agreement was found between plating techniques and QPCR. Most of the viable cells were also culturable and no differences were observed with the methods, except for Zygosaccharomyces bailii and Dekkera bruxellensis where much higher counts were occasionally detected by QPCR. The presence of excess dead cells did not interfere with the quantification of live cells with either of the dyes. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. Effector memory and central memory NY-ESO-1-specific re-directed T cells for treatment of multiple myeloma.

    Science.gov (United States)

    Schuberth, P C; Jakka, G; Jensen, S M; Wadle, A; Gautschi, F; Haley, D; Haile, S; Mischo, A; Held, G; Thiel, M; Tinguely, M; Bifulco, C B; Fox, B A; Renner, C; Petrausch, U

    2013-04-01

    The cancer-testis antigen NY-ESO-1 is a potential target antigen for immune therapy expressed in a subset of patients with multiple myeloma. We generated chimeric antigen receptors (CARs) recognizing the immunodominant NY-ESO-1 peptide 157-165 in the context of HLA-A*02:01 to re-direct autologous CD8(+) T cells towards NY-ESO-1(+) myeloma cells. These re-directed T cells specifically lysed NY-ESO-1(157-165)/HLA-A*02:01-positive cells and secreted IFNγ. A total of 40% of CCR7(-) re-directed T cells had an effector memory phenotype and 5% a central memory phenotype. Based on CCR7 cell sorting, effector and memory CAR-positive T cells were separated and CCR7(+) memory cells demonstrated after antigen-specific re-stimulation downregulation of CCR7 as sign of differentiation towards effector cells accompanied by an increased secretion of memory signature cytokines such as IL-2. To evaluate NY-ESO-1 as potential target antigen, we screened 78 bone marrow biopsies of multiple myeloma patients where NY-ESO-1 protein was found to be expressed by immunohistochemistry in 9.7% of samples. Adoptively transferred NY-ESO-1-specific re-directed T cells protected mice against challenge with endogenously NY-ESO-1-positive myeloma cells in a xenograft model. In conclusion, re-directed effector- and central memory T cells specifically recognized NY-ESO-1(157-165)/ HLA-A*02:01-positive cells resulting in antigen-specific functionality in vitro and in vivo.

  20. Anti-CD20 Cell Therapies in Multiple Sclerosis-A Fixed Dosing Schedule for Ocrelizumab is Overkill.

    Science.gov (United States)

    Avasarala, Jagannadha

    2017-01-01

    Anti-CD 20 therapies have found significant uses in multiple sclerosis (MS). Based singularly on the accumulated evidence with the use of rituximab (RTX; Rituxan, Genentech, and Biogen) in neuroimmunological diseases, ocrelizumab (OCR; Ocrevus, Genentech) was developed as a treatment option for MS and selectively targets CD20 B cells, a cell surface antigen found on pre-B cells, mature, and memory B cells, but not on lymphoid stem cells and plasma cells. On the basis of indirect evidence, elimination of the antigen-presenting capabilities and antigen nonspecific immune functions of B cells appear to be central to the therapeutic efficacy of anti-CD20 B-cell therapies. An important question is this-Why does the drug need to be dosed at fixed intervals and not based on a measurable endpoint, such as tracking peripheral CD20 cell counts? There is minimal scientific validity in infusing the drug every 6 months particularly if CD20 cell counts are negligible in the peripheral blood. In this analysis, a case is made for following CD19 cell populations as a surrogate for CD20 cells on a monthly basis to guide OCR redosing parameters and does not follow a scheduled dosing parameter.

  1. Anti-CD20 Cell Therapies in Multiple Sclerosis—A Fixed Dosing Schedule for Ocrelizumab is Overkill

    Science.gov (United States)

    Avasarala, Jagannadha

    2017-01-01

    Anti-CD 20 therapies have found significant uses in multiple sclerosis (MS). Based singularly on the accumulated evidence with the use of rituximab (RTX; Rituxan, Genentech, and Biogen) in neuroimmunological diseases, ocrelizumab (OCR; Ocrevus, Genentech) was developed as a treatment option for MS and selectively targets CD20 B cells, a cell surface antigen found on pre-B cells, mature, and memory B cells, but not on lymphoid stem cells and plasma cells. On the basis of indirect evidence, elimination of the antigen-presenting capabilities and antigen nonspecific immune functions of B cells appear to be central to the therapeutic efficacy of anti-CD20 B-cell therapies. An important question is this—Why does the drug need to be dosed at fixed intervals and not based on a measurable endpoint, such as tracking peripheral CD20 cell counts? There is minimal scientific validity in infusing the drug every 6 months particularly if CD20 cell counts are negligible in the peripheral blood. In this analysis, a case is made for following CD19 cell populations as a surrogate for CD20 cells on a monthly basis to guide OCR redosing parameters and does not follow a scheduled dosing parameter. PMID:29123374

  2. Simvastatin Impairs Insulin Secretion by Multiple Mechanisms in MIN6 Cells

    Science.gov (United States)

    López Rodríguez, Maykel; Stančáková, Alena; Kuusisto, Johanna; Kokkola, Tarja; Laakso, Markku

    2015-01-01

    Statins are widely used in the treatment of hypercholesterolemia and are efficient in the prevention of cardiovascular disease. Molecular mechanisms explaining statin-induced impairment in insulin secretion remain largely unknown. In the current study, we show that simvastatin decreased glucose-stimulated insulin secretion in mouse pancreatic MIN6 β-cells by 59% and 79% (pSimvastatin induced decrease in insulin secretion occurred through multiple targets. In addition to its established effects on ATP-sensitive potassium channels (p = 0.004) and voltage-gated calcium channels (p = 0.004), simvastatin suppressed insulin secretion stimulated by muscarinic M3 or GPR40 receptor agonists (Tak875 by 33%, p = 0.002; GW9508 by 77%, p = 0.01) at glucose level of 5.5 mmol/l, and inhibited calcium release from the endoplasmic reticulum. Impaired insulin secretion caused by simvastatin treatment were efficiently restored by GPR119 or GLP-1 receptor stimulation and by direct activation of cAMP-dependent signaling pathways with forskolin. The effects of simvastatin treatment on insulin secretion were not affected by the presence of hyperglycemia. Our observation of the opposite effects of simvastatin and pravastatin on glucose-stimulated insulin secretion is in agreement with previous reports showing that simvastatin, but not pravastatin, was associated with increased risk of incident diabetes. PMID:26561346

  3. Asymptomatic Multiple Lymphomatous Polyposis Identified during Staging Bidirectional Endoscopy of Mantle Cell Lymphoma

    Directory of Open Access Journals (Sweden)

    Sonja P. Dawsey

    2016-10-01

    Full Text Available Multiple lymphomatous polyposis (MLP as an extranodal manifestation of mantle cell lymphoma (MCL in the gastrointestinal tract is rare and not often reported in the literature. We describe the case of a 63-year-old female with asymptomatic MLP found during staging bidirectional endoscopy of MCL. The patient presented only with dyspnea, but was found on physical exam to have diffuse lymphadenopathy, and subsequent positron emission tomography (PET CT showed extensive lymph node adenopathy consistent with lymphoma. Excisional lymph node biopsy revealed high-risk MCL. Prior to therapy, staging bidirectional endoscopy was performed, which revealed duodenal bulb polyps and diffuse polyposis in the colon. Biopsies showed atypical lymphoid infiltrate identical to the initial excisional lymph node biopsy. The patient underwent aggressive induction therapy, chemotherapy and bone marrow transplantation. Four months later, repeat colonoscopy and biopsies showed normal mucosa, and repeat PET CT showed no evidence of systemic disease. Eight months later, the patient began having symptoms consistent with cauda equina syndrome, and she was found to have leptomeningeal recurrence of MCL. In spite of other medical treatment, the patient’s MCL progressed and she passed away 3 years after the initial presentation.

  4. Absence of spontaneous response improvement beyond day +100 after autologous stem cell transplantation in multiple myeloma.

    Science.gov (United States)

    Fernández de Larrea, C; Dávila, J; Isola, I; Ocio, E M; Rosiñol, L; García-Sanz, R; Cibeira, M T; Tovar, N; Rovira, M; Mateos, M V; Miguel, J S; Bladé, J

    2017-04-01

    The response evaluation after autologous stem-cell transplantation (ASCT) is usually performed at day +100 in patients with multiple myeloma (MM). A recent report suggests that improvement in the response can be observed beyond day +100. The aim of the present study has been to evaluate the rate of improved response and outcome beyond day +100 after ASCT, with and without maintenance therapy. One hundred and forty-four patients who underwent single ASCT with chemosensitive disease and achieved less than CR at day 100 post ASCT were evaluated. Seventy-four patients (51.4%) did not receive any maintenance with only one of them showing an upgrade in the response. The remaining 70 patients (48.6%) received maintenance therapy; eleven of them (15.7%) improved their response beyond day +100. The outcome of these patients was better than those who did not upgrade their response in both progression-free survival and overall survival (P=0.019 and P=0.031, respectively). In conclusion, the improvement in response beyond day +100 after ASCT in patients not receiving any therapy is exceedingly rare. A minority of patients receiving maintenance therapy after ASCT upgrades their response and this finding is associated with better outcome.

  5. Mast Cells in the Pathogenesis of Multiple Sclerosis and Experimental Autoimmune Encephalomyelitis

    Directory of Open Access Journals (Sweden)

    Rosetta Pedotti

    2012-11-01

    Full Text Available Mast cells (MCs are best known as key immune players in immunoglobulin E (IgE-dependent allergic reactions. In recent years, several lines of evidence have suggested that MCs might play an important role in several pathological conditions, including autoimmune disorders such as multiple sclerosis (MS and experimental autoimmune encephalomyelitis (EAE, an animal model for MS. Since their first description in MS plaques in the late 1800s, much effort has been put into elucidating the contribution of MCs to the development of central nervous system (CNS autoimmunity. Mouse models of MC-deficiency have provided a valuable experimental tool for dissecting MC involvement in MS and EAE. However, to date there is still major controversy concerning the function of MCs in these diseases. Indeed, although MCs have been classically proposed as having a detrimental and pro-inflammatory role, recent literature has questioned and resized the contribution of MCs to the pathology of MS and EAE. In this review, we will present the main evidence obtained in MS and EAE on this topic, and discuss the critical and controversial aspects of such evidence.

  6. Inhibition of West Nile virus multiplication in cell culture by anti-parkinsonian drugs

    Directory of Open Access Journals (Sweden)

    Ana Belen Blazquez

    2016-03-01

    Full Text Available West Nile virus (WNV is a mosquito-borne flavivirus maintained in a transmission cycle between mosquitoes and birds, but it can also infect other vertebrates, including humans, in which it can cause neuroinvasive diseases. To date, no licensed vaccine or therapy for human use against this pathogen is yet available. A recent approach to search for new antiviral agent candidates is the assessment of long-used drugs commonly administered by clinicians to treat human disorders in drug antiviral development. In this regard, as patients with West Nile encephalitis frequently develop symptoms and features of parkinsonism, and cellular factors altered in parkinsonism, such as alpha-synuclein, have been shown to play a role on WNV infection, we have assessed the effect of four drugs (L-dopa, Selegiline, Isatin and Amantadine, that are used as therapy for Parkinson´s disease in the inhibition of WNV multiplication. L-dopa, Isatin, a