WorldWideScience

Sample records for viability membrane damage

  1. Membrane damage and viability loss of Escherichia coli K-12 and Salmonella enteritidis in liquid egg by thermal death time disk treatment.

    Science.gov (United States)

    Ukuku, Dike O; Jin, Tony; Zhang, Howard

    2008-10-01

    Bacterial injury, including leakage of intracellular substance and viability loss, of Escherichia coli K-12 (ATCC 23716) and Salmonella Enteritidis (ATCC 13076) inoculated in liquid egg white and liquid whole egg was determined by thermal death time disk. E. coli K-12 and Salmonella Enteritidis were inoculated in liquid egg white and liquid whole egg to a final count of 7.8 log CFU/ml and were thermally treated with thermal death time disks at room temperature (23"C), 54, 56, 58, and 60 degrees C from 0 to 240 s. Sublethal injury, leakage of intracellular substances, and viability loss of E. coli K-12 and Salmonella Enteritidis was investigated by plating 0.1 ml on selective trypticase soy agar containing 3% NaCl, 5% NaCl, sorbitol MacConky agar, and xylose lysine sodium tetradecylsulfate and nonselective trypticase soy agar. No significant (P > 0.05) differences on percent injury or viability loss for E. coli K-12 and Salmonella populations were determined in all samples treated at 23 degrees C. Sublethal injury occurred in E. coli and Salmonella populations at 54 degrees C or above for 120 s. Viability losses for both bacteria averaged 5 log at 54 degrees C or above for 180 s, and the surviving populations were below detection (membrane damage, leakage, and accumulation of intracellular ATP from 2 to 2.5 log fg/ml and UV-absorbing substances of 0.1 to 0.39 in the treated samples. These results indicate similar thermal injury/damage on both E. coli and Salmonella membranes as determined by the amount of inactivation, viability loss, and leakage of intracellular substances of bacteria.

  2. Pollen viability and membrane lipid composition

    NARCIS (Netherlands)

    Bilsen, van D.G.J.L.

    1993-01-01

    In this thesis membrane lipid composition is studied in relation to pollen viability during storage. Chapter 1 reviews pollen viability, membranes in the dry state and membrane changes associated with cellular aging. This chapter is followed by a study of age-related changes in phospholipid

  3. Adverse respiratory outcome after premature rupture of membranes before viability.

    Science.gov (United States)

    Verspyck, Eric; Bisson, Violene; Roman, Horace; Marret, Stéphane

    2014-03-01

    To determine whether preterm premature rupture of membranes (PPROM) before 24 weeks is an independent risk factor for poor outcome in preterm neonates. A retrospective comparative cohort study was conducted, including viable premature infants born between 25 and 34-weeks gestation. Each preterm case with early PPROM was matched with two preterm controls of the same gestational age at birth, sex and birth date and who were born spontaneously with intact membranes. Logistic regression was performed to identify independent risk factors associated with composite respiratory and perinatal adverse outcomes for the overall population of preterm infants. Thirty-five PPROM cases were matched with 70 controls. Extreme prematurity (26-28 weeks) was an independent risk factor for composite perinatal adverse outcomes [odds ratio (OR) 43.9; p = 0.001]. Extreme prematurity (OR 42.9; p = 0.001), PPROM (OR 7.1; p = 0.01), male infant (OR 5.2; p = 0.02) and intrauterine growth restriction (IUGR, OR 4.8; p = 0.04) were factors for composite respiratory adverse outcomes. Preterm premature rupture of membranes before viability represents an independent risk factor for composite respiratory adverse outcomes in preterm neonates. Extreme prematurity may represent the main risk factor for both composite respiratory and perinatal adverse outcomes. ©2013 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.

  4. Effect of acclimation medium on cell viability, membrane integrity and ability to consume malic acid in synthetic wine by oenological Lactobacillus plantarum strains.

    Science.gov (United States)

    Bravo-Ferrada, B M; Tymczyszyn, E E; Gómez-Zavaglia, A; Semorile, L

    2014-02-01

    The aim of this work was to evaluate the effect of acclimation on the viability, membrane integrity and the ability to consume malic acid of three oenological strains of Lactobacillus plantarum. Cultures in the stationary phase were inoculated in an acclimation medium (Accl.) containing 0, 6 or 10% v/v ethanol and incubated 48 h at 28°C. After incubation, cells were harvested by centrifugation and inoculated in a synthetic wine, containing 14% v/v ethanol and pH 3.5 at 28°C. Viability and membrane integrity were determined by flow cytometry (FC) using carboxyfluorescein diacetate (cFDA) and propidium iodide. Bacterial growth and malic acid consumption were monitored in a synthetic wine during 15 days. In nonacclimated strains, the damage of bacterial membranes produced a dramatic decrease in microbial viability in synthetic wine. In contrast, survival of strains previously acclimated in Accl. with 6 and 10% v/v ethanol was noticeable higher. Therefore, acclimation with ethanol increased the cultivability in synthetic wine and consequently, the consumption of l-malic acid after 15 days of growth. Acclimation of oenological strains in media containing ethanol prior to wine inoculation significantly decreases the membrane damage and improves viability in the harsh wine conditions. The role of membrane integrity is crucial to warrant the degradation of l-malic acid. The efficiency of multiparametric FC in monitoring viability and membrane damage along with the malic acid consumption has a strong impact on winemaking because it represents a useful tool for a quick and highly reliable evaluation of oenological parameters. © 2013 The Society for Applied Microbiology.

  5. Alcoholic beverages and gastric epithelial cell viability: effect on oxidative stress-induced damage.

    Science.gov (United States)

    Loguercio, C; Tuccillo, C; Federico, A; Fogliano, V; Del Vecchio Blanco, C; Romano, M

    2009-12-01

    Alcohol is known to cause damage to the gastric epithelium independently of gastric acid secretion. Different alcoholic beverages exert different damaging effects in the stomach. However, this has not been systematically evaluated. Moreover, it is not known whether the non-alcoholic components of alcoholic beverages also play a role in the pathogenesis of gastric epithelial cell damage. Therefore, this study was designed to evaluate whether different alcoholic beverages, at a similar ethanol concentration, exerted different damaging effect in gastric epithelial cells in vitro. Moreover, we evaluated whether pre-treatment of gastric epithelial cells with alcoholic beverages prevented oxidative stress-induced damage to gastric cells. Cell damage was assessed, in MKN-28 gastric epithelial cells, by MTT assay. Oxidative stress was induced by incubating cells with xanthine and xanthine oxidase. Gastric cell viability was assessed following 30, 60, and 120 minutes incubation with ethanol 17.5-125 mg/ml(-1) or different alcoholic beverages (i.e., beer, white wine, red wine, spirits) at comparable ethanol concentration. Finally, we assessed whether pre-incubation with red wine (with or without ethanol) prevented oxidative stress-induced cell damage. Red wine caused less damage to gastric epithelial cells in vitro compared with other alcoholic beverages at comparable ethanol concentration. Pre-treatment with red wine, but not with dealcoholate red wine, significantly and time-dependently prevented oxidative stress-induced cell damage. 1) red wine is less harmful to gastric epithelial cells than other alcoholic beverages; 2) this seems related to the non-alcoholic components of red wine, because other alcoholic beverages with comparable ethanol concentration exerted more damage than red wine; 3) red wine prevents oxidative stress-induced cell damage and this seems to be related to its ethanol content.

  6. Some aspects of the history of membrane-damaging toxins.

    Science.gov (United States)

    Bernheimer, A W

    1996-09-01

    In this review the following topics are considered: (a) the character of biomedical research and how it has changed during the last six decades; (b) the early history of membrane-damaging toxins; (c) comparative toxinology as illustrated by similarity of the toxins of the brown recluse spider and the bacterial agent of peudotuberculosis, and by similarity of a toxin of a sea anemone and the thiol-activated membrane-damaging agents of bacteria; (d) examples of the diversity of membrane-damaging toxins; (e) cooperative or synergistic lytic systems; and (f) the outlook for the future.

  7. Polyvinyl Alcohol/Lithospermum Erythrorhizon Nanofibrous Membrane: Characterizations, In Vitro Drug Release, and Cell Viability

    Directory of Open Access Journals (Sweden)

    Ching-Wen Lou

    2017-11-01

    Full Text Available This study proposes an optimization process of the Lithospermum erythrorhizon (LE extraction with a higher purity of shikonin (SK. The influence of extraction temperature on the concentration of SK is examined, and an in vitro cell viability assay is used to examine the optimal concentration of SK. Afterwards, polyvinyl alcohol (PVA/LE solutions at ratios of 90/10, 80/20, and 70/30 w/w are electrospun into LE electrospun nanofibrous membranes (LENMs. The optimal manufacture parameters of LENMs are evaluated based on the test results of in vitro drug release test and cell viability assay. The optimal concentration occurs when the extraction temperature is −10 °C. The purity of the LE extract reaches 53.8% and the concentration of SK is 1.07 mg/mL. Moreover, the cell viability of nanofibrous membranes significantly increases to 136.8% when 0.7 μM SK is used. The diameter of nanofibers of LENM is decreased by 43.9% when the ratio of PVA solution to LE extract is 70/30 (w/w. 80/20 (w/w LENM has the maximum amount of drug release of 79% for a continuous period of 48 h. In particular, 90/10 (w/w LENM can create the maximum cell proliferation of 157.5% in a 24-h in vitro cell viability assay. This suggests that LENM has great potential to be used in facilitating tissue regeneration and wound healing.

  8. Recovery and viability of Cryptosporidium parvum oocysts and Giardia intestinalis cysts using the membrane dissolution procedure.

    Science.gov (United States)

    McCuin, R M; Bukhari, Z; Clancy, J L

    2000-08-01

    Previously, the cellulose acetate membrane filter dissolution method was reported to yield Cryptosporidium parvum oocyst recoveries of 70.5%, with recovered oocysts retaining their infectivity. In contrast, high spike doses (approximately 1 x 10(5) Cryptosporidium parvum oocysts and Giardia intestinalis cysts) yielded recoveries ranging from 0.4% to 83.9%, and 3.2% to 90.3%, respectively, in this study. Recoveries with low spike doses (approximately 100 (oo)cysts) continued to demonstrate high variability also. Efforts to optimize the method included increased centrifugation speeds, suspension of the final concentrate in deionized water for organism detection on well slides, and analysis of the entire concentrate. A comparison of two monoclonal antibodies was also conducted to identify potential differences between antibodies in detection of organisms. Archived source and finished water samples were spiked, yielding variable recoveries of C. parvum oocysts (11.8% to 71.4%) and G. intestinalis cysts (7.4% to 42.3%). Effects of organic solvents used in the membrane dissolution procedure on the viability of recovered (oo)cysts was determined using a fluorogenic vital dyes assay in conjunction with (oo)cyst morphology, which indicated > 99% inactivation. These data indicate that the membrane dissolution procedure yields poor and highly variable (oo)cyst recoveries, and also renders the majority of recovered organisms non-viable.

  9. Viability and membrane potential analysis of Bacillus megaterium cells by impedance flow cytometry.

    Science.gov (United States)

    David, F; Hebeisen, M; Schade, G; Franco-Lara, E; Di Berardino, M

    2012-02-01

    Single cell analysis is an important tool to gain deeper insights into microbial physiology for the characterization and optimization of bioprocesses. In this study a novel single cell analysis technique was applied for estimating viability and membrane potential (MP) of Bacillus megaterium cells cultured in minimal medium. Its measurement principle is based on the analysis of the electrical cell properties and is called impedance flow cytometry (IFC). Comparatively, state-of-the-art fluorescence-based flow cytometry (FCM) was used to verify the results obtained by IFC. Viability and MP analyses were performed with cells at different well-defined growth stages, focusing mainly on exponential and stationary phase cells, as well as on dead cells. This was done by PI and DiOC(2)(3) staining assays in FCM and by impedance measurements at 0.5 and 10 MHz in IFC. In addition, transition growth stages of long-term cultures and agar plate colonies were characterized with both methods. FCM and IFC analyses of all experiments gave comparable results, quantitatively and qualitatively, indicating that IFC is an equivalent technique to FCM for the study of physiological cell states of bacteria. Copyright © 2011 Wiley Periodicals, Inc.

  10. Fluorescence studies on radiation oxidative damage to membranes ...

    Indian Academy of Sciences (India)

    Unknown

    Presence of structure modulating agents (e.g. cholesterol) or antioxidant molecules (e.g. tocopherol, ascorbic acid) in the membrane protected lipids against radiation, suggesting involvement of free radicals in the damage process. There seems to exist a relationship between generated ROS and permeability changes after.

  11. DETECTION OF MYOCARDIAL VIABILITY IN ISСHAEMIC DAMAGE USING MAGNETIC RESONANCE AND EMISSION TOMOGRAPHY

    Directory of Open Access Journals (Sweden)

    V. Yu. Ussov

    2013-01-01

    Full Text Available A review of modern methods of magnetic resonance imaging (MRI and emission tomography (singlephoton emission and positron emission computer tomography – SPECT and PET as toos for diagnosis and prognosis of myocardial ischaemic damage, in particular in coronary revascularization. The definition of term “myocardial viability” is discussed. It has been shown that the integrity of blood-tissue barrier between myocardium and microcirculatory vessels is the most sensitive marker of tissue viability and of functional integrity of myocardium. It’s evaluation by means of contrast-enhanced MRI of myocardium is the most available and most precise technique of diagnosis and prognosis both in patients with postinfarction myocardiosclerosis and in patients with coronary disease without myocardial infarction. It is proposed that in the nearest future the combination of MR-coronarography and contrast-enhanced MRI of myocardium will provide a possibility to obtain the full set of data necessary for planning of endovascular and surgical treatment of various forms of coronary heart disease. PET and SPECT techniques currently are of some essential interest for pathophysiologic research of coronary ishaemia in clinical and experimental studies as well as for qualitative visual studies of pharmacokinetics.

  12. Ovalbumin with Glycated Carboxyl Groups Shows Membrane-Damaging Activity

    Directory of Open Access Journals (Sweden)

    Ching-Chia Tang

    2017-02-01

    Full Text Available The aim of the present study was to investigate whether glycated ovalbumin (OVA showed novel activity at the lipid-water interface. Mannosylated OVA (Man-OVA was prepared by modification of the carboxyl groups with p-aminophenyl α-dextro (d-mannopyranoside. An increase in the number of modified carboxyl groups increased the membrane-damaging activity of Man-OVA on cell membrane-mimicking vesicles, whereas OVA did not induce membrane permeability in the tested phospholipid vesicles. The glycation of carboxyl groups caused a notable change in the gross conformation of OVA. Moreover, owing to their spatial positions, the Trp residues in Man-OVA were more exposed, unlike those in OVA. Fluorescence quenching studies suggested that the Trp residues in Man-OVA were located on the interface binds with the lipid vesicles, and their microenvironment was abundant in positively charged residues. Although OVA and Man-OVA showed a similar binding affinity for lipid vesicles, the lipid-interacting feature of Man-OVA was distinct from that of OVA. Chemical modification studies revealed that Lys and Arg residues, but not Trp residues, played a crucial role in the membrane-damaging activity of Man-OVA. Taken together, our data suggest that glycation of carboxyl groups causes changes in the structural properties and membrane-interacting features of OVA, generating OVA with membrane-perturbing activities at the lipid-water interface.

  13. Evidence for substantial maintenance of membrane integrity and cell viability in normally developing grape (Vitis vinifera L.) berries throughout development.

    Science.gov (United States)

    Krasnow, Mark; Matthews, Mark; Shackel, Ken

    2008-01-01

    Fluorescein diacetate (FDA) was used as a vital stain to assay membrane integrity (cell viability) in mesocarp tissue of the developing grape (Vitis vinifera L.) berry in order to test the hypothesis that there is a substantial loss of compartmentation in these cells during ripening. This technique was also used to determine whether loss of viability was associated with symptoms of a ripening disorder known as berry shrivel. FDA fluorescence of berry cells was rapid, bright, and stable for over 1 h at room temperature. Confocal microscopy detected FDA staining through two to three intact surface cell layers (300-400 mum) of bisected berries, and showed that the fluorescence was confined to the cytoplasm, indicating the maintenance of integrity in both cytoplasmic as well as vacuolar membranes, and the presence of active cytoplasmic esterases. FDA clearly discriminated between living cells and freeze-killed cells, and exhibited little, if any, non-specific staining. Propidium iodide and DAPI, both widely used to assess cell viability, were unable to discriminate between living and freeze-killed cells, and did not specifically stain the nuclei of dead cells. For normally developing berries under field conditions there was no evidence of viability loss until about 40 d after veraison, and the majority (80%) of mesocarp cells remained viable past commercial harvest (26 degrees Brix). These results are inconsistent with current models of grape berry development which hypothesize that veraison is associated with a general loss of compartmentation in mesocarp cells. The observed viability loss was primarily in the locule area around the seeds, suggesting that a localized loss of viability and compartmentation may occur as part of normal fruit development. The cell viability of berry shrivel-affected berries was similar to that of normally developing berries until the onset of visible symptoms (i.e. shrivelling), at which time viability declined in visibly shrivelled

  14. Radiation induced oxidative damage modification by cholesterol in liposomal membrane

    Science.gov (United States)

    Pandey, B. N.; Mishra, K. P.

    1999-05-01

    Ionizing radiation induced structural and chemical alterations in egg lecithin liposomal membrane have been studied by measurements of lipid peroxides, conjugated diene and fluorescence polarization. Predominantly unilamellar phospholipid vesicles prepared by sonication procedure were subjected to radiation doses of γ-rays from Co-60 in aerated, buffered aqueous suspensions. The oxidative damage in irradiated lipid molecules of liposomes has been determined spectrophotometrically by diene conjugate formation and thiobarbituric acid reactive (TBAR) method as a function of radiation dose. A correlation was found between the radiation dose applied (0.1-1 kGy) and the consequent lipid oxidation. The damage produced in irradiated liposomal membrane was measured by 1,6-diphenyl-1,3,5-hexatriene (DPH) fluorescence decay and polarization. The observed decrease in DPH fluorescence and increase in polarization was found dependent on the radiation dose suggesting alterations in rigidity or organizational order in phospholipid bilayer after irradiation. Furthermore, irradiated liposome vesicles composed of cholesterol showed marked reduction in observed radiation mediated peroxide formation and significantly affected the DPH fluorescence parameters. The magnitude of these modifying effects were found dependent on the mole fraction of cholesterol. It is concluded that modulation of structural order in unilamellar vesicle membrane by variations in basic molecular components controlled the magnitude of lipid peroxidation and diene conjugate formation. These observations contribute to our understanding of mechanism of radical reaction mediated damage caused by ionizing radiation in phospholipid membrane.

  15. Radiation induced oxidative damage modification by cholesterol in liposomal membrane

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, B.N. [Radiation Biology and Biochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai (India); Mishra, K.P. [Radiation Biology and Biochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai (India)

    1999-05-01

    Ionizing radiation induced structural and chemical alterations in egg lecithin liposomal membrane have been studied by measurements of lipid peroxides, conjugated diene and fluorescence polarization. Predominantly unilamellar phospholipid vesicles prepared by sonication procedure were subjected to radiation doses of {gamma}-rays from Co-60 in aerated, buffered aqueous suspensions. The oxidative damage in irradiated lipid molecules of liposomes has been determined spectrophotometrically by diene conjugate formation and thiobarbituric acid reactive (TBAR) method as a function of radiation dose. A correlation was found between the radiation dose applied (0.1-1 kGy) and the consequent lipid oxidation. The damage produced in irradiated liposomal membrane was measured by 1,6-diphenyl-1,3,5-hexatriene (DPH) fluorescence decay and polarization. The observed decrease in DPH fluorescence and increase in polarization was found dependent on the radiation dose suggesting alterations in rigidity or organizational order in phospholipid bilayer after irradiation. Furthermore, irradiated liposome vesicles composed of cholesterol showed marked reduction in observed radiation mediated peroxide formation and significantly affected the DPH fluorescence parameters. The magnitude of these modifying effects were found dependent on the mole fraction of cholesterol. It is concluded that modulation of structural order in unilamellar vesicle membrane by variations in basic molecular components controlled the magnitude of lipid peroxidation and diene conjugate formation. These observations contribute to our understanding of mechanism of radical reaction mediated damage caused by ionizing radiation in phospholipid membrane.

  16. Membrane-bound conformation and phospholipid components modulate membrane-damaging activity of Taiwan cobra cardiotoxins.

    Science.gov (United States)

    Kao, Pei-Hsiu; Lin, Shinne-Ren; Wu, Ming-Jung; Chang, Long-Sen

    2009-04-01

    Membrane-damaging activity of Naja naja atra cardiotoxin 3 (CTX3) on 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC)/1,2-dimyristoyl-phosphatidic acid (DMPA) vesicles was approximately 3-fold that of N. naja atra cardiotoxin 4 (CTX4), while CTX3 and CTX4 displayed insignificantly permeabilizing activity in 1,2-dipalmitoyl-phosphatidylcholine (DPPC)/DMPA vesicles. Phospholipid-binding capability and oligomeric assembly upon binding with lipid vesicles did not closely correlate with membrane-damaging potency of CTX3 and CTX4. Geometrical arrangement of CTX3 in contact with POPC/DMPA vesicles was different from that noted with CTX4, and binding forces between CTX3 and POPC/DMPA were stronger than those between CTX4 and POPC/DMPA. Unlike POPC/DMPA, the interaction between CTXs and DPPC/DMPA was drastically reduced by increasing salt concentration. Color transformation of phospholipid/polydiacetylene membrane assay and FTIR spectra analyses revealed that CTX3 and CTX4 adopted different conformationsand modes upon absorption on POPC/DMPA and DPPC/DMPA vesicles. Taken together, our data show that, in addition to membrane packing density and phospholipid-binding capability, membrane-bound conformation of CTXs plays a vital role in displaying membrane-damaging activity.

  17. 3,6-O-[N-(2-Aminoethyl)-acetamide-yl]-chitosan exerts antibacterial activity by a membrane damage mechanism.

    Science.gov (United States)

    Yan, Feilong; Dang, Qifeng; Liu, Chengsheng; Yan, Jingquan; Wang, Teng; Fan, Bing; Cha, Dongsu; Li, Xiaoli; Liang, Shengnan; Zhang, Zhenzhen

    2016-09-20

    A novel chitosan derivative, 3,6-O-[N-(2-aminoethyl)-acetamide-yl]-chitosan (AACS), was successfully prepared to improve water solubility and antibacterial activity of chitosan. AACS had good antibacterial activity, with minimum inhibitory concentrations of 0.25mg/mL, against Escherichia coli and Staphylococcus aureus. Cell membrane integrity, electric conductivity and NPN uptake tests showed that AACS caused quickly increasing the release of intracellular nucleic acids, the uptake of NPN, and the electric conductivity by damaging membrane integrity. On the other hand, hydrophobicity, cell viability and SDS-PAGE experiments indicated that AACS was able to reduce the surface hydrophobicity, the cell viability and the intracellular proteins through increasing membrane permeability. SEM observation further confirmed that AACS could kill bacteria via disrupting their membranes. All results above verified that AACS mainly exerted antibacterial activity by a membrane damage mechanism, and it was expected to be a new food preservative. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Zona pellucida damage to human embryos after cryopreservation and the consequences for their blastomere survival and in-vitro viability.

    Science.gov (United States)

    Van Den Abbeel, E; Van Steirteghem, A

    2000-02-01

    The study objective was to quantify zona pellucida (ZP) damage in cryopreserved human embryos. The influence of two different freezing containers was investigated, and the influence of freezing damage on the survival and viability of the embryos evaluated. ZP damage did not differ according to whether embryos originated from in-vitro fertilization (IVF) cycles or from IVF cycles in association with intracytoplasmic sperm injection (ICSI). The freezing container, however, significantly influenced the occurrence of ZP damage after cryopreservation. More damage was observed when the embryos were frozen-thawed using plastic cryovials than using plastic mini-straws (16.6% versus 2.3%; P plastic mini-straws. The further cleavage of frozen-thawed embryos suitable for transfer was not different whether there was ZP damage or not; however, it was higher when there was 100% blastomere survival as compared with when some blastomeres were damaged (79.0% versus 43.7%; P plastic mini-straws. In conclusion, the aim of a cryopreservation programme should be to have as many fully intact embryos as possible after thawing. Increased ZP damage might indicate a suboptimal cryopreservation procedure.

  19. Membrane damage elicits an immunomodulatory program in Staphylococcus aureus.

    Directory of Open Access Journals (Sweden)

    Ahmed S Attia

    2010-03-01

    Full Text Available The Staphylococcus aureus HrtAB system is a hemin-regulated ABC transporter composed of an ATPase (HrtA and a permease (HrtB that protect S. aureus against hemin toxicity. S. aureus strains lacking hrtA exhibit liver-specific hyper-virulence and upon hemin exposure over-express and secrete immunomodulatory factors that interfere with neutrophil recruitment to the site of infection. It has been proposed that heme accumulation in strains lacking hrtAB is the signal which triggers S. aureus to elaborate this anti-neutrophil response. However, we report here that S. aureus strains expressing catalytically inactive HrtA do not elaborate the same secreted protein profile. This result indicates that the physical absence of HrtA is responsible for the increased expression of immunomodulatory factors, whereas deficiencies in the ATPase activity of HrtA do not contribute to this process. Furthermore, HrtB expression in strains lacking hrtA decreases membrane integrity consistent with dysregulated permease function. Based on these findings, we propose a model whereby hemin-mediated over-expression of HrtB in the absence of HrtA damages the staphylococcal membrane through pore formation. In turn, S. aureus senses this membrane damage, triggering the increased expression of immunomodulatory factors. In support of this model, wildtype S. aureus treated with anti-staphylococcal channel-forming peptides produce a secreted protein profile that mimics the effect of treating DeltahrtA with hemin. These results suggest that S. aureus senses membrane damage and elaborates a gene expression program that protects the organism from the innate immune response of the host.

  20. Cell membrane damage by iron nanoparticles: an invitro study

    Directory of Open Access Journals (Sweden)

    Gelare Hajsalimi

    2016-12-01

    Full Text Available Application of nanotechnology in medicinal and biological fields has attracted a great interest in the recent yeras. In this paper the cell membrane leakage induced by iron nanoparticles (Fe-NP against PC12 cell line which is known as a model of nervous system cell line was investigated by the lactate dehydrogenase (LDH test. Therefore, PC12 cells were incubated with different concentration of Fe-NP and test was performed after 48h of incubation of the cells with Fe-NP. The resulting data showed that the Fe-NP induced the damage of PC12 cell membrane in a concentration dependent manner. Hence, it may be concluded that the different cytotoxicty effect of NPs may be referred to the concentration of NPs, type of the NPs and the cells. Indeed, the kind of cytotoxic impacts of NPs on the cells can be reduced by the considering of above-mentioned parameters. The resulting data showed that the Fe-NP induced the damage of PC12 cell membrane in a concentration dependent manner. Hence, it may be concluded that the different cytotoxicty effect of NPs may be referred to the concentration of NPs, type of the NPs and the cells. Indeed, the kind of cytotoxic impacts of NPs on the cells can be reduced by the considering of above-mentioned parameters.

  1. The role of laser fluence in cell viability, proliferation, and membrane integrity of wounded human skin fibroblasts following helium-neon laser irradiation.

    Science.gov (United States)

    Hawkins, Denise H; Abrahamse, Heidi

    2006-01-01

    In medicine, lasers have been used predominantly for applications, which are broadly termed low level laser therapy (LLLT), phototherapy or photobiomodulation. This study aimed to establish cellular responses to Helium-Neon (632.8 nm) laser irradiation using different laser fluences (0.5, 2.5, 5, 10, and 16 J/cm(2)) with a single exposure on 2 consecutive days on normal and wounded human skin fibroblasts. Changes in normal and wounded fibroblast cell morphology were evaluated by light microscopy. Changes following laser irradiation were evaluated by assessing the mitochondrial activity using adenosine triphosphate (ATP) luminescence, cell proliferation using neutral red and an alkaline phosphatase (ALP) activity assay, membrane integrity using lactate dehydrogenase (LDH), and percentage cytotoxicity and DNA damage using the Comet assay. Morphologically, wounded cells exposed to 5 J/cm(2) migrate rapidly across the wound margin indicating a stimulatory or positive influence of phototherapy. A dose of 5 J/cm(2) has a stimulatory influence on wounded fibroblasts with an increase in cell proliferation and cell viability without adversely increasing the amount of cellular and molecular damage. Higher doses (10 and 16 J/cm(2)) were characterized by a decrease in cell viability and cell proliferation with a significant amount of damage to the cell membrane and DNA. Results show that 5 J/cm(2) stimulates mitochondrial activity, which leads to normalization of cell function and ultimately stimulates cell proliferation and migration of wounded fibroblasts to accelerate wound closure. Laser irradiation can modify cellular processes in a dose or fluence (J/cm(2)) dependent manner.

  2. Detection of Occult Erythrocytic Membrane Damages upon Pharmacological Exposures

    Directory of Open Access Journals (Sweden)

    P. Yu. Alekseyeva

    2007-01-01

    Full Text Available Blood administration of pharmaceuticals may cause occult effects of these agents on erythrocytic membranes. These effects may damage and cause additional membrane defects, but may strengthen. The type and degree of the effects of an agent were detected by calibrated irreversible electroporation with a pulsed electric field (PEF. The paper considers the erythrocytic membranous effects of a wide concentration range of agents used in anesthesiology, such as esmerone, tracrium, and mar-caine-adrenaline. Under the action of PEF and esmerone at the normal concentration N, the rate of erythrocytic hemolysis increased by several times as compared with the control. The similar effect also occurred when esmerone was added at the concentration C=10N. Tracrium exerted a fixing effect on erythrocytic membranes. Upon a combined exposure to PEF and tracrium in the normal concentration C=N; erythrocytic hemolysis was slow. So was with the concentration C=10N. The rate of hemolysis of the red blood cells subjected to a combined action of marcaine adrenaline at the normal concentration C=N and even at the concentration C=10N and PEF was comparable with the hemolytic rate of the reference suspension. 

  3. Effect of Amniotic Membrane Suspension (AMS) and Amniotic Membrane Homogenate (AMH) on Human Corneal Epithelial Cell Viability, Migration and Proliferation In Vitro.

    Science.gov (United States)

    Wu, Ming-Feng; Stachon, Tanja; Langenbucher, Achim; Seitz, Berthold; Szentmáry, Nóra

    2017-03-01

    To analyze the effects of different concentrations of amniotic membrane suspension (AMS) or amniotic membrane homogenate (AMH) on human corneal epithelial cell (HCEC) viability, migration and proliferation. Amniotic membranes (AMs) of 13 placentas were prepared and stored at -80°C. For AMS preparation, following de-freezing, AM pieces were inserted in six-well plates and 5 ml Dulbecco's Modified Eagle's Medium (DMEM)/F12 (with 5% fetal bovine serum, FBS) per gram tissue was added for 96 h. After removal of the AM, the remaining supernatant was collected for experiments. For AMH preparation, following de-freezing, AMs were homogenized in liquid nitrogen and 5 ml DMEM/F12 (with 5% FBS) per gram tissue was added. Following centrifugation, the supernatant was collected for experiments. HCECs were expanded and incubated in DMEM/F12, 5% FBS supplemented by 15%, 30% or 100% AMS or 15% or 30% AMH. Viability was analyzed using Cell Proliferation Kit XTT, migration using wound healing assay and proliferation by the cell proliferation ELISA BrdU kit. HCEC viability remained unchanged using 15% or 30% AMS (p = 1.0 for both); however, it decreased significantly using 100% AMS (p migration increased significantly (p migration remained unchanged and 100% AMS inhibited HCEC migration (p migration, 15% and 30% AMS application seems to be the most appropriate method to support epithelial healing.

  4. Ultraviolet radiation-specific DNA damage and embryonic viability in sea urchins from Kasitsna Bay, Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Theodorakis, C. [Oak Ridge Associated Universities, TN (United States); Anderson, S. [Lawrence Berkeley National Lab., CA (United States); Shugart, L.R. [Oak Ridge National Lab., TN (United States)

    1995-12-31

    Ripe ova and sperm were obtained from Green Sea Urchins (Strongvlocentrotus drochbachiensis) collected from Kasitsna Bay, Alaska, and ova were fertilized in vitro. Embryos were immediately placed in plastic bags secured to floating racks deployed in the bay. The bags were suspended just below the surface of the water and at 1 and 2 meter depths for up to 120 hours. Bags were either left uncovered, covered with Mylar plastic (which blocks out UV-B but not UV-A radiations), or covered with dark plastic. The number of damaged DNA sites was determined by digesting the DNA with enzymes isolated from the bacterium Micrococcus luteus which cleave the DNA at damaged sites. It was found that DNA damage was present in a dose-dependent fashion with the amount of damage in embryos from the uncovered bags > Mylar covered bags > dark covered bags. No dimers were detected from embryos at 1 or 2 m. depths. Also, the number of damaged sites varied from day to day. Finally, the number of damaged sites was positively correlated with percent abnormal embryos in each bag. The results are discussed with relation to monitoring UV-B effects and ecological consequences of enhanced UV-B radiation.

  5. Biomass viability: An experimental study and the development of an empirical mathematical model for submerged membrane bioreactor.

    Science.gov (United States)

    Zuthi, M F R; Ngo, H H; Guo, W S; Nghiem, L D; Hai, F I; Xia, S Q; Zhang, Z Q; Li, J X

    2015-08-01

    This study investigates the influence of key biomass parameters on specific oxygen uptake rate (SOUR) in a sponge submerged membrane bioreactor (SSMBR) to develop mathematical models of biomass viability. Extra-cellular polymeric substances (EPS) were considered as a lumped parameter of bound EPS (bEPS) and soluble microbial products (SMP). Statistical analyses of experimental results indicate that the bEPS, SMP, mixed liquor suspended solids and volatile suspended solids (MLSS and MLVSS) have functional relationships with SOUR and their relative influence on SOUR was in the order of EPS>bEPS>SMP>MLVSS/MLSS. Based on correlations among biomass parameters and SOUR, two independent empirical models of biomass viability were developed. The models were validated using results of the SSMBR. However, further validation of the models for different operating conditions is suggested. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Retinal Damage Induced by Internal Limiting Membrane Removal

    Directory of Open Access Journals (Sweden)

    Rachel Gelman

    2015-01-01

    Full Text Available The internal limiting membrane (ILM, the basement membrane of the Müller cells, serves as the interface between the vitreous body and the retinal nerve fiber layer. It has a fundamental role in the development, structure, and function of the retina, although it also is a pathologic component in the various vitreoretinal disorders, most notably in macular holes. It was not until understanding of the evolution of idiopathic macular holes and the advent of idiopathic macular hole surgery that the idea of adjuvant ILM peeling in the treatment of tractional maculopathies was explored. Today intentional ILM peeling is a commonly applied surgical technique among vitreoretinal surgeons as it has been found to increase the rate of successful macular hole closure and improve surgical outcomes in other vitreoretinal diseases. Though ILM peeling has refined surgery for tractional maculopathies, like all surgical procedures it is not immune to perioperative risk. The essential role of the ILM to the integrity of the retina and risk of trauma to retinal tissue spurs suspicion with regard to its routine removal. Several authors have investigated the retinal damage induced by ILM peeling and these complications have been manifested across many different diagnostic studies.

  7. Trichomonicidal and parasite membrane damaging activity of bidesmosic saponins from Manilkara rufula

    Science.gov (United States)

    Silva, Nícolas Luiz Feijó; Menezes, Camila Braz; da Silva, Márcia Vanusa; Silva, Denise Brentan; Lopes, Norberto Peporine; Macedo, Alexandre José; Bastida, Jaume; Tasca, Tiana

    2017-01-01

    The infection caused by Trichomonas vaginalis is the most common but overlooked non-viral sexually transmitted disease worldwide. Treatment relies on one class of drugs, the 5-nitroimidazoles, but resistance is widespread. New drugs are urgently needed. We reported the effect of crude and purified saponin fractions of Manilkara rufula against Trichomonas vaginalis. The compound responsible for antitrichomonal activity was isolated and identified as an uncommon bidesmosic saponin, Mi-saponin C. This saponin eliminated parasite viability without toxicity against the human vaginal epithelial line (HMVII). In addition, the isolated saponin fraction improved the metronidazole effect against a metronidazole-resistant isolate and dramatically reduced the cytoadherence of T. vaginalis to human cells. Investigation of the mechanism of death showed that the saponin fraction induced the parasite death due to profound membrane damage, inducing a disturbance of intracellular content without nuclear damage. To the best of our knowledge, this is the first report of antitrichomonal activity in the bidesmosic saponins of Manilkara rufula. PMID:29190689

  8. Repair of Nerve Cell Membrane Damage by Calcium-Dependent, Membrane-Binding Proteins (Revised)

    Science.gov (United States)

    2012-09-01

    reduces liposome permeability at high magnesium concentrations. Liposomes were incubated in Assay Buffer with 1.0, 3.5, or 5.0 mM MgCl2 as marked...annexins on disruption of the membrane permeability barrier by amylin In Type 2 diabetes there is a buildup of insoluble, fibrillar deposits of...cause or severity of beta cell destruction in diabetes by a mechanism similar to that proposed for the action of A-beta on nerve cells, damaging the beta

  9. Damage assessment of the equine sperm membranes by fluorimetric technique

    Directory of Open Access Journals (Sweden)

    Eneiva Carla Carvalho Celeghini

    2010-12-01

    Full Text Available To validate a practical technique of simultaneous evaluation of the plasma, acrosomal and mitochondrial membranes in equine spermatozoa three fluorescent probes (PI, FITC-PSA and MITO were associated. Four ejaculates from three stallions (n=12 were diluted in TALP medium and split into 2 aliquots, 1 aliquot was flash frozen in liquid nitrogen to induce damage in cellular membranes. Three treatments were prepared with the following fixed ratios of fresh semen: flash frozen semen: 100:0 (T100, 50:50 (T50, and 0:100 (T0. A 150-µL aliquot of diluted semen of each treatment was added of 2 µL of PI, 2 µL of MITO and 80 µL of FITC-PSA; incubated at 38.5ºC/8 min, and sperm cells were evaluated by epifluorescent microscopy. Based in regression analysis, this could be an efficient and practical technique to assess damage in equine spermatozoa, as it was able to determine the sperm percentage more representative of the potential to fertilize the oocyte.Para validar uma técnica prática de avaliação simultânea das membranas plasmática, acrossomal e mitocondrial em espermatozóides eqüinos três sondas fluorescentes (PI, FITC-PSA e MITO foram associadas. Quatro ejaculados de três garanhões (n=12 foram diluídos em meio TALP e divididos em duas alíquotas, uma alíquota foi submetida a flash frozen em nitrogênio líquido para induzir danos nas membranas celulares. Três tratamentos foram preparados com as seguintes proporções de sêmen fresco: sêmen flash frozen: 100:0 (T100, 50:50 (T50, e 0:100 (T0. Uma amostra de 150 µL de sêmen diluído de cada tratamento foi adicionada de 2 µL de PI, 2 µL de MITO e 80 µL de FITC-PSA; incubadas à 38,5ºC/8 min, e as células espermáticas foram avaliadas por microscopia de epifluorescência. Baseados na análise de regressão esta é uma técnica eficiente e prática para determinar danos em espermatozóides eqüinos, capaz de determinar a porcentagem de espermatozóides mais representativa do

  10. Bacillus thuringiensis membrane-damaging toxins acting on mammalian cells.

    Science.gov (United States)

    Celandroni, Francesco; Salvetti, Sara; Senesi, Sonia; Ghelardi, Emilia

    2014-12-01

    Bacillus thuringiensis is widely used as a biopesticide in forestry and agriculture, being able to produce potent species-specific insecticidal toxins and considered nonpathogenic to other animals. More recently, however, repeated observations are documenting the association of this microorganism with various infectious diseases in humans, such as food-poisoning-associated diarrheas, periodontitis, bacteremia, as well as ocular, burn, and wound infections. Similar to B. cereus, B. thuringiensis produces an array of virulence factors acting against mammalian cells, such as phosphatidylcholine- and phosphatidylinositol-specific phospholipase C (PC-PLC and PI-PLC), hemolysins, in particular hemolysin BL (HBL), and various enterotoxins. The contribution of some of these toxins to B. thuringiensis pathogenicity has been studied in animal models of infection, following intravitreous, intranasal, or intratracheal inoculation. These studies lead to the speculation that the activities of PC-PLC, PI-PLC, and HBL are responsible for most of the pathogenic properties of B. thuringiensis in nongastrointestinal infections in mammals. This review summarizes data regarding the biological activity, the genetic basis, and the structural features of these membrane-damaging toxins. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  11. Photodynamic Action of LED-Activated Curcumin against Staphylococcus aureus Involving Intracellular ROS Increase and Membrane Damage

    Directory of Open Access Journals (Sweden)

    Yuan Jiang

    2014-01-01

    Full Text Available Aim. To investigate the effect of photodynamic action of LED-activated curcumin on cell viability, membrane permeability, and intracellular reactive oxygen species of Staphylococcus aureus. Methods. Staphylococcus aureus was incubated with the different concentrations of curcumin for 60 min and then irradiated by blue light with the wavelength of 470 nm and with light dose of 3 J/cm2. The colony forming unit assay was used to investigate photocytotoxicity of curcumin on Staphylococcus aureus, confocal laser scanning microscopy (CLSM and flow cytometry (FCM for assaying membrane permeability, FCM analysis with DCFH-DA staining for measuring the intracellular ROS level, and transmission electron microscopy (TEM for observing morphology and structure. Results. Blue light-activated curcumin significantly killed Staphylococcus aureus in a curcumin dose-dependent manner. TEM observed remarkable structural damages in S. aureus after light-activated curcumin. More red fluorescence of PI dye was found in S. aureus treated by blue light-activated curcumin than in those of the controlled bacterial cells. Intracellular ROS increase was observed after light-activated curcumin. Conclusion. Blue light-activated curcumin markedly damaged membrane permeability, resulting in cell death of Staphylococcus aureus and highlighted that intracellular ROS increase might be an important event in photodynamic killing of Staphylococcus aureus in the presence of curcumin.

  12. Microbiological viability of bovine amniotic membrane stored in glycerin 99% at room temperature for 48 months

    Directory of Open Access Journals (Sweden)

    Kelly Cristine de Sousa Pontes

    Full Text Available ABSTRACT The medium for storing biological tissues is of great importance for their optimal use in surgery. Glycerin has been proven efficient for storing diverse tissues for prolonged time, but the preservation of the bovine amniotic membrane in glycerin 99% at room temperature has never been evaluated to be used safely in surgical procedures. This study evaluated the preservation of 80 bovine amniotic membrane samples stored in glycerin 99% at room temperature. The samples were randomly divided evenly into four groups. Samples were microbiologically tested after 1, 6, 12 and 48 months of storage. The presence of bacteria and fungi in the samples was evaluated by inoculation on blood agar and incubation at 37 ºC for 48 hours and on Sabouraud agar at 25 ºC for 5 to 10 days. No fungal or bacterial growth was detected in any of the samples. It was concluded that glycerin is an efficient medium, regarding microbiology, for preserving pre-prepared bovine amniotic membrane, keeping the tissue free of microorganisms that grow in the media up to 48 months at room temperature.

  13. Modification of radiation-induced oxidative damage in liposomal and microsomal membrane by eugenol

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, B.N. [Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Lathika, K.M. [Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Mishra, K.P. [Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India)]. E-mail: kpm@magnum.barc.ernet.in

    2006-03-15

    Radiation-induced membrane oxidative damage, and their modification by eugenol, a natural antioxidant, was investigated in liposomes and microsomes. Liposomes prepared with DPH showed decrease in fluorescence after {gamma}-irradiation, which was prevented significantly by eugenol and correlated with magnitude of oxidation of phospholipids. Presence of eugenol resulted in substantial inhibition in MDA formation in irradiated liposomes/microsomes, which was less effective when added after irradiation. Similarly, the increase in phospholipase C activity observed after irradiation in microsomes was inhibited in samples pre-treated with eugenol. Results suggest association of radio- oxidative membrane damage with alterations in signaling molecules, and eugenol significantly prevented these membrane damaging events.

  14. Modification of radiation-induced oxidative damage in liposomal and microsomal membrane by eugenol

    Science.gov (United States)

    Pandey, B. N.; Lathika, K. M.; Mishra, K. P.

    2006-03-01

    Radiation-induced membrane oxidative damage, and their modification by eugenol, a natural antioxidant, was investigated in liposomes and microsomes. Liposomes prepared with DPH showed decrease in fluorescence after γ-irradiation, which was prevented significantly by eugenol and correlated with magnitude of oxidation of phospholipids. Presence of eugenol resulted in substantial inhibition in MDA formation in irradiated liposomes/microsomes, which was less effective when added after irradiation. Similarly, the increase in phospholipase C activity observed after irradiation in microsomes was inhibited in samples pre-treated with eugenol. Results suggest association of radio- oxidative membrane damage with alterations in signaling molecules, and eugenol significantly prevented these membrane damaging events.

  15. Lack of Outer Membrane Protein A Enhances the Release of Outer Membrane Vesicles and Survival of Vibrio cholerae and Suppresses Viability of Acanthamoeba castellanii

    Directory of Open Access Journals (Sweden)

    Soni Priya Valeru

    2014-01-01

    Full Text Available Vibrio cholerae, the causative agent of the diarrhoeal disease cholera, survives in aquatic environments. The bacterium has developed a survival strategy to grow and survive inside Acanthamoeba castellanii. It has been shown that V. cholerae expresses outer membrane proteins as virulence factors playing a role in the adherence to interacted host cells. This study examined the role of outer membrane protein A (OmpA and outer membrane vesicles (OMVs in survival of V. cholerae alone and during its interaction with A. castellanii. The results showed that an OmpA mutant of V. cholerae survived longer than wild-type V. cholerae when cultivated alone. Cocultivation with A. castellanii enhanced the survival of both bacterial strains and OmpA protein exhibited no effect on attachment, engulfment, and survival inside the amoebae. However, cocultivation of the OmpA mutant of V. cholerae decreased the viability of A. castellanii and this bacterial strain released more OMVs than wild-type V. cholerae. Surprisingly, treatment of amoeba cells with OMVs isolated from the OmpA mutant significantly decreased viable counts of the amoeba cells. In conclusion, the results might highlight a regulating rule for OmpA in survival of V. cholerae and OMVs as a potent virulence factor for this bacterium towards eukaryotes in the environment.

  16. Viability in the production of a drug extracted from Ananas comosus by a flat membrane system

    Directory of Open Access Journals (Sweden)

    Francisco Luiz Gumes Lopes

    2012-06-01

    Full Text Available The aim of this work was to study the production of e bromelain from the Ananas comosus L. Merril, by determining the process conditions using flat membranes. The production system modeling generated a hyperbolical curve and the optimization by response surfaces showed an influence of the transmembrane pressure higher than the pH influence. The cost of the production of bromelain from A. comosus was estimated 9 to 13 times lower than Sigma's retail sales price and 6.5 to 8.5 times lower than when this enzyme was obtained through a liquid-liquid extraction, which showed the economical feasibility of the process.

  17. ATM is required for the prolactin-induced HSP90-mediated increase in cellular viability and clonogenic growth after DNA damage.

    Science.gov (United States)

    Karayazi Atici, Ödül; Urbanska, Anna; Gopal Gopinathan, Sesha; Boutillon, Florence; Goffin, Vincent; Shemanko, Carrie S

    2017-11-24

    Prolactin acts as a survival factor for breast cancer cells, but the prolactin signaling pathway and the mechanism is unknown. Previously, we identified the master chaperone, heat shock protein 90α (HSP90α), as a prolactin-Janus-Kinase-(JAK2)-signal-transducer-and-activator-of-transcription-5-(STAT5) target gene involved in survival, and here we investigated the role of HSP90 in the mechanism of prolactin-induced viability in response to DNA damage. The ataxia-telangiectasia mutated kinase protein (ATM) plays a critical role in the cellular response to double strand DNA damage. Prolactin increased viability of breast cancer cells treated with doxorubicin or etoposide. The increase in cellular resistance is specific to the prolactin receptor, as the prolactin receptor antagonist, Δ1-9-G129R-hPRL, prevented the increase in viability. Two different HSP90 inhibitors, 17-allylamino-17-demethoxy geldanamycin and BIIB021, reduced the prolactin-mediated increase in cell viability of doxorubicin treated cells, and led to a decrease in JAK2, ATM and phospho-ATM protein levels. Inhibitors of JAK2 (G6) and ATM (KU55933) abolished the prolactin-mediated increase in cell viability of DNA damaged cells, supporting the involvement of each, as well as the cross-talk of ATM with the prolactin pathway in the context of DNA damage. Drug synergism was detected between the ATM inhibitor, KU55933, and doxorubicin, and also between the HSP90 inhibitor, BIIB021, and doxorubicin. Short interfering RNA, directed against ATM, prevented the PRL-mediated increase in cell survival in both 2D and 3D collagen gel cultures, and in clonogenic cell survival, after doxorubicin treatment. Our results indicate that ATM contributes to the prolactin-JAK2-STAT5-HSP90 pathway in mediating cellular resistance to DNA damaging agents. Copyright © 2017 Endocrine Society.

  18. The Effect of Fatty Acids to Protect Forward Osmosis Membranes from Damage

    Science.gov (United States)

    Romero Mangado, Jaione; Parodi, Jurek; Stefanson, Ofir; Lathrop, Cooper; Lewis, Madeleine; Ferrara, Alessandro; Tatum, Simone; Flynn, Michael

    2017-01-01

    NASA has conducted research and development on forward osmosis (FO) membranes for wastewater reclamation in space since 1993. The lessons learned during operation of the International Space Station and FO based technologies on the ground taught us that reliability is a key limitation. Membranes are susceptible to organic fouling, oxidation and calcium scaling, and these factors tend to damage the membrane reducing their operating life and performance. The development of a Synthetic Biological Membrane (SBM), a membrane that mimics naturally occurring biological processes, will mitigate membrane damage and improve reliability. The SBM is a lipid-based membrane with a protective fatty acid layer configured for use in a FO water purification system. In this configuration, the protective layer on the surface of the lipid membrane is composed of fatty acids (FA). The FA interact with the chemicals found in the wastewater feed, and protect the membrane from damage. In this study, we conducted preliminary experiments to determine the feasibility of using fatty acids to alleviate damage from calcium scaling, oxidation and organic fouling.

  19. Evaluation of Cassia tora Linn. against oxidative stress-induced DNA and cell membrane damage

    National Research Council Canada - National Science Library

    R Kumar; Ramesh Narasingappa; Chandrashekar Joshi; Talakatta Girish; Ummiti Prasada Rao; Ananda Danagoudar

    2017-01-01

    .... against oxidative stress-induced DNA and cell membrane damage. Materials and Methods: The total and profiles of flavonoids were identified and quantified through reversed-phase high-performance liquid chromatography...

  20. Maternal and neonatal outcomes following expectant management of preterm prelabour rupture of membranes before viability.

    Science.gov (United States)

    Sim, Winnie Huiyan; Araujo Júnior, Edward; Da Silva Costa, Fabricio; Sheehan, Penelope Marie

    2017-01-01

    To assess the contemporary maternal and neonatal outcomes following expectant management of preterm premature rupture of membranes (PPROM) prior to 24 weeks' gestation and to identify prognostic indicators of this morbid presentation. We performed a systematic review in the Pubmed and EMBASE databases to identify the primary (perinatal mortality, severe neonatal morbidity and serious maternal morbidity) and secondary (neonatal survival and morbidity) outcomes following expectant management of previable PPROM. Mean latency between PPROM and delivery ranged between 20 and 43 days. Women with PPROM <24 weeks had an overall live birth rate of 63.6% and a survival-to-discharge rate of 44.9%. The common neonatal morbidities were respiratory distress syndrome, bronchopulmonary dysplasia and sepsis. The majority of neonatal deaths within 24 h post birth were associated with pulmonary hypoplasia, severe intraventricular haemorrhage and neonatal sepsis. The common maternal outcomes were chorioamnionitis and caesarean sections. The major predictors of neonatal survival were later gestational age at PPROM, adequate residual amniotic fluid levels, C-reactive protein <1 mg/dL within 24 h of admission and PPROM after invasive procedures. Pregnancy latency and neonatal survival following previable PPROM has improved in recent years, although neonatal morbidity remains unchanged despite recent advances in obstetric and neonatal care. There is heterogeneity in management practices across centres worldwide.

  1. Outcome at Two Years of Very Preterm Infants Born after Rupture of Membranes before Viability.

    Directory of Open Access Journals (Sweden)

    Amelie Kieffer

    Full Text Available To compare the respiratory and neurological outcomes at two years of age of preterm children born before 33 weeks of gestation (WG after early preterm premature rupture of membranes (EPPROM between 14 and 24 WG with preterm children without EPPROM.This single-center case-control retrospective study was conducted at Rouen University Hospital between 1st January 2000 and 31st December 2010. All the cases with EPPROM born from 26WG to 32WG were included. Each newborn was matched by sex, gestational age (GA and year of birth to two very preterm children, born without EPPROM. At two years of corrected age, motor and cognitive abilities were assessed by routine score based on the Amiel-Tison and Denver developmental scales.Ninety-four cases with EPPROM before 24WG have been included. The 31 children born from 26WG to 32WG were matched with 62 controls. The EPPROM group had poorer clinical evaluation at one year for motor (p = 0.003 and cognitive developmental scores (p = 0.016. Neuromotor rehabilitation was performed more often (p = 0.013. However, there was no difference at 2 years of age. Children born after EPPROM were hospitalized more often for bronchiolitis (p<0.001 during their first 2 years, which correlates with increased incidence of pneumothorax (p = 0.017, pulmonary hypoplasia (p = 0.004 and bronchopulmonary dysplasia (p = 0.005 during neonatal period.At two years, despite an increase in severe bronchiolitis and the need for more neuromotor rehabilitation during the first month of the life after discharge, there was no difference in neurological outcomes in the very preterm children of the EPPROM group compared to those born at a similar GA without EPPROM.

  2. Influence of carvacrol and 1,8-cineole on cell viability, membrane integrity, and morphology of Aeromonas hydrophila cultivated in a vegetable-based broth.

    Science.gov (United States)

    de Sousa, Jossana Pereira; de Oliveira, Kataryne Árabe Rimá; de Figueiredo, Regina Celia Bressan Queiroz; de Souza, Evandro Leite

    2015-02-01

    This study investigated the effects of carvacrol (CAR) and 1,8-cineole (CIN) alone (at the MIC) or in combination at subinhibitory amounts (both at 1/8 MIC) on the cell viability, membrane permeability, and morphology of Aeromonas hydrophila INCQS 7966 (A. hydrophila) cultivated in a vegetable-based broth. CAR and CIN alone or in combination severely affected the viability of the bacteria and caused dramatic changes in the cell membrane permeability, leading to cell death, as observed by confocal laser microscopy. Scanning and transmission electron microscopy images of bacterial cells exposed to CAR or CIN or the mixture of both compounds revealed severe changes in cell wall structure, rupture of the plasma membrane, shrinking of cells, condensation of cytoplasmic content, leakage of intracellular material, and cell collapse. These findings suggest that CAR and CIN alone or in combination at subinhibitory amounts could be applied to inhibit the growth of A. hydrophila in foods, particularly as sanitizing agents in vegetables.

  3. Photodynamic membrane damage of hematoporphyrin derivative-treated NHIK 3025 cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Volden, G. (Tromsoe Univ. (Norway)); Christensen, T.; Moan, J. (Norsk Hydros Inst. for Kreftforskning, Oslo)

    1981-12-01

    Irradiation of NHIK 3025 cells treated with hematoporphyrin derivative in monolayer cultures with near ultraviolet light resulted in the development of extensive vesicles on their surface. The vesicles were shown biochemically to contain cytosol and lysosomal enzymes and trace activities of the marker enzymes for microsomes and mitochondria. The vesicles show an approximately 10-fold enrichment in the plasma membrane marker enzyme phosphodiesterase I compared with unirradiated cells, indicating that the membrane of the vesicles is derived from the membrane. The effects at the subcellular level appear to be mediated by photodynamic membrane damage.

  4. Effects of in vitro ozone exposure on peroxidative damage, membrane leakage, and taurine content of rat alveolar macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Banks, M.A.; Porter, D.W.; Martin, W.G.; Castranova, V. (National Institute for Occupational Safety and Health, Morgantown, WV (USA))

    1990-08-01

    Rat alveolar macrophages (AM) were isolated by pulmonary lavage, allowed to adhere to a tissue culture flask, and then exposed to 0.45 +/- 0.05 ppm ozone. After exposures ranging from 0 to 60 min, the medium was decanted and cells were harvested. Cells were assayed for oxidant damage and media analyzed for leakage of intracellular components. Increasing length of exposure to ozone resulted in a decreased number of adherent AM and decreased cell viability. Resting and zymosan-stimulated chemiluminescence increased immediately after ozone exposure and reached a maximum at 15-30 min, then declined to initial levels after 60 min of ozone exposure. Lipid peroxidation and leakage of protein and K+ ions increased with increasing length of exposure to ozone, while leakage of reduced and oxidized glutathione increased through 30 min, then declined (reduced) or leveled off (oxidized). Activity of the Na+/K+ ATPase decreased with time while intracellular taurine concentration exhibited an initial rise, peaked at 30 min, and then returned to the untreated level. Leakage of taurine into the medium increased with time of exposure, suggesting that exposure of AM to ozone results in a shift from bound to free intracellular taurine. These data indicate that in vitro exposure of AM to ozone results in a time-dependent alteration of cell function, membrane integrity, and viability.

  5. Analysis of roof membranes damaged by mechanical and climatic loads – pilot research

    Directory of Open Access Journals (Sweden)

    Čurpek Jakub

    2017-01-01

    Full Text Available Realization of roof construction has many hidden risks, especially in buildings with diverse architecture. There is a problem about cooperation of individual works (vertical and horizontal constructions on roof in this type of architecture, during the process of realization. Purpose of this research is to reveal risks in form of the group of major source of defects by mechanical damages. The most often types of mechanical damages were chosen in this research, which then were applied on individual types of roof membranes. Response of this damage was found out during the test procedure of water pressure by special laboratory machines. Furthermore, samples of roof membranes were subjected to the Impact test, which was actually focused on damage by hailstone impact from the atmosphere. The final outcomes of the measurements show that the material composition of each roof membrane can influence their whole waterproofing after application of certain type of mechanical damage. In the Impact test, samples were suffered from impact of the hails. This test signified that the choice of base material of thermal insulation below the roof membrane plays an important role.

  6. Enhancement of hemin-induced membrane damage by artemisinin.

    Science.gov (United States)

    Wei, N; Sadrzadeh, S M

    1994-08-17

    Artemisinin is an effective antimalarial agent, and its action on the malarial parasite is suggested to be mediated by oxidative processes. Since malarial parasites contain a high concentration of hemin, and hemin may induce the formation of reactive oxygen species, we investigated the interaction of artemisinin, iron and hemin. We used erythrocyte membrane-bound Ca2+ pump ATPase (basal) and calmodulin (CaM)-activated Ca2+ pump ATPase as our model. Membranes were incubated with artemisinin in the presence or absence of iron-ascorbate or hemin at 37 degrees for 1 hr. Following incubation, ATPase activity was measured. Our results showed that artemisinin (500 microM) had no effect on ATPase activities. However, artemisinin enhanced the inhibitory effect of iron (50 microM)-ascorbate (500 microM) on ATPase activity (46.3 +/- 3.9 vs 63 +/- 2.1% for basal; 57.2 +/- 2.5 vs 74.8 +/- 2.1% for CaM-activated). Desferrioxamine (DFO, 200 microM) blocked significantly the effect of iron-ascorbate-artemisinin on ATPases (P CaM-activated Ca2+ pump ATPase (31.6 +/- 2.8 vs 70.0 +/- 1.5%). Iron chelators (DFO, ferene, 8-hydroxyquinoline, 1,10-phenanthroline, and 1,2-dimethyl-3-hydroxypyrid-4-one) had no effect on artemisinin plus hemin-induced enzyme inhibition. Catalase (2000 U/mL) had a minor effect on the artemisinin-hemin or hemin-mediated effect. Thiourea (1 mM) had no effect. However, superoxide dismutase (500 U/mL) and dithiothreitol blocked artemisinin-hemin or hemin-mediated ATPase inhibition significantly (P oxidation of thiol groups on the enzymes. Free iron or hydroxyl radical does not seem to be involved. This interaction between artemisinin and hemin may contribute to the antimalarial action of artemisinin against malarial parasites.

  7. Cell viability, adhesion and function of RAW 264.7 macrophages on fluorinated xerogel-derived nitric oxide permeable membrane for the application of cellular sensing.

    Science.gov (United States)

    Kang, Wook Sung; Seo, Bochan; Kim, Ji-Hye; Kim, Ok-Kyun; Shin, Jae Ho; Lee, Gi-Ja; Park, Hun-Kuk

    2014-11-01

    Organically modified xerogels have an advantage over gas sensing applications due to their open, rigid structure and hydrophobicity. Here we evaluated the biocompatibility of xerogel-derived nitric oxide (NO) permeable membranes modified with fluorinated functional groups for application in cellular sensing by growing RAW 264.7 macrophages on them. We examined the cell viability, adhesion and growth of RAW 264.7 macrophages on NO permselective membrane and other cell-adhesive matrices, poly L-lysine and collagen. The surface roughness of each membrane was obtained from topographic atomic force microscopy (AFM) images. In addition, we measured the level of NO release of RAW 264.7 macrophages by lipopolysaccharide (LPS) stimulation using a Griess assay to confirm the function of cells. The fluorinated xerogel-derived membrane had a very smooth surface with rms roughness 2.1 Å and did not show cytotoxic effects in RAW 264.7 macrophages. As a result, the morphology and function of adhering RAW 264.7 macrophage showed no differences from those of other cell-adhesive membranes. Finally, we successfully detected NO release in RAW 264.7 macrophages stimulated by LPS, using a planar-type xerogel-derived NO sensor. Therefore, we suggest that fluorinated xerogel-derived membrane could be used as both a NO permeable and cell-adhesive membrane for cellular sensing applications.

  8. Damage to the microbial cell membrane during pyrolytic sugar utilization and strategies for increasing resistance.

    Science.gov (United States)

    Jin, Tao; Rover, Marjorie R; Petersen, Elspeth M; Chi, Zhanyou; Smith, Ryan G; Brown, Robert C; Wen, Zhiyou; Jarboe, Laura R

    2017-09-01

    Lignocellulosic biomass is an appealing feedstock for the production of biorenewable fuels and chemicals, and thermochemical processing is a promising method for depolymerizing it into sugars. However, trace compounds in this pyrolytic sugar syrup are inhibitory to microbial biocatalysts. This study demonstrates that hydrophobic inhibitors damage the cell membrane of ethanologenic Escherichia coli KO11+lgk. Adaptive evolution was employed to identify design strategies for improving pyrolytic sugar tolerance and utilization. Characterization of the resulting evolved strain indicates that increased resistance to the membrane-damaging effects of the pyrolytic sugars can be attributed to a glutamine to leucine mutation at position 29 of carbon storage regulator CsrA. This single amino acid change is sufficient for decreasing EPS protein production and increasing membrane integrity when exposed to pyrolytic sugars.

  9. Erythrocyte membrane fluidity and indices of plasmatic oxidative damage after acute physical exercise in humans.

    Science.gov (United States)

    Berzosa, C; Gómez-Trullén, E M; Piedrafita, E; Cebrián, I; Martínez-Ballarín, E; Miana-Mena, F J; Fuentes-Broto, L; García, J J

    2011-06-01

    Optimal levels of membrane fluidity are essential for numerous cell functions including cell growth, solute transport and signal transduction. Since exercise enhances free radical production, our aim was to evaluate in healthy male subjects the effects of an acute bout of maximal and submaximal exercise on the erythrocyte membrane fluidity and its possible relation to the oxidative damage overproduction due to exercise. Subjects (n = 34) performed three cycloergometric tests: a continuous progressive exercise, a strenuous exercise until exhaustion and an acute bout of exercise at an intensity corresponding to 70% of maximal work capacity for 30 min. Venous blood samples were collected before and immediately after these exercises. Erythrocyte membrane fluidity was assessed by fluorescence spectroscopy. Plasma malondialdehyde (MDA) and 4-hydroxyalkenals (4-HDA) concentrations and carbonyl content of plasmatic proteins were used as an index of lipid and protein oxidation, respectively. Exercise produced a dramatic drop in the erythrocyte membrane fluidity as compared to resting time, but this was not accompanied by significant changes in the plasmatic MDA and 4-HDA concentrations. The highest erythrocyte membrane rigidity was detected immediately after strenuous exercise until exhaustion was performed. Protein carbonyl levels were higher after exhaustive exercises than at rest. Continuous progressive and strenuous exercises until exhaustion, but not submaximal workload, resulted in a significant enhanced accumulation of carbonylated proteins in the plasma. These findings are consistent with the idea that exercise exaggerates oxidative damage, which may contribute, at least partially, to explain the rigidity in the membrane of the erythrocytes due to acute exercise.

  10. Protective Effect of Sundakai (Solanum torvum) Seed Protein (SP) Against Oxidative Membrane Damage in Human Erythrocytes.

    Science.gov (United States)

    Sivapriya, M; Gowda, S S Thammanna; Srinivas, Leela

    2015-12-01

    Lipid peroxidation by ROS at the membrane level disturbs the inherit integrity of components activating subsequent alterations in the function. In this study, the protective effect of purified Sundakai (Solanum torvum) seed protein (SP) was tested against oxidative membrane damage in erythrocyte membrane. SP prevented oxidative RBC lysis induced by pro-oxidants; Fe:As (2:20 μmol), periodate (0.4 mM), and t-BOOH (1 mM) up to 86, 81, and 86 %, respectively. Further, SP prevented the Fe:As-induced K(+) leakage up to the tune of 95 %. The inhibition offered by SP on K(+) leakage was comparable to inhibition offered by quinine sulfate, a known K(+) channel blocker. SP dose dependently restored Na(+)K(+) ATPase and Ca(2+)Mg(2+) ATPase activities in erythrocyte membrane. The restoration of ATPase activity by SP was two times more than standard antioxidants BHA and α-tocopherol. Besides, SP at 1.6 μmol restored the membrane proteins over Fe:As induction when analyzed by SDS-PAGE, which was comparable to protection offered by BHA. In conclusion, SP is an effective antioxidant in preventing oxidative membrane damage and associated functions mediated by ROS. As SP is non-toxic, it can be used as an effective bioprotective antioxidant agent to cellular components.

  11. In Vitro Anti/Pro-oxidant Activities of R. ferruginea Extract and Its Effect on Glioma Cell Viability: Correlation with Phenolic Compound Content and Effects on Membrane Dynamics.

    Science.gov (United States)

    Dos Santos, Desirée Magalhães; Rocha, Camila Valesca Jardim; da Silveira, Elita Ferreira; Marinho, Marcelo Augusto Germani; Rodrigues, Marisa Raquel; Silva, Nichole Osti; da Silva Ferreira, Ailton; de Moura, Neusa Fernandes; Darelli, Gabriel Jorge Sagrera; Braganhol, Elizandra; Horn, Ana Paula; de Lima, Vânia Rodrigues

    2018-02-08

    Rapanea ferruginea antioxidant and antitumoral properties were not explored before in literature. This study aimed to investigate these biological activities for the R. ferruginea leaf extract and correlate them with its phenolic content and influence in biological membrane dynamics. Thus, in this study, anti/pro-oxidative properties of R. ferruginea leaf extract by in vitro DPPH and TBARS assays, with respect to the free radical reducing potential and to its activity regarding membrane free radical-induced peroxidation, respectively. Furthermore, preliminary tests related to the extract effect on in vitro glioma cell viability were also performed. In parallel, the phenolic content was detected by HPLC-DAD and included syringic and trans-cinnamic acids, quercetrin, catechin, quercetin, and gallic acid. In an attempt to correlate the biological activity of R. ferruginea extract and its effect on membrane dynamics, the molecular interaction between the extract and a liposomal model with natural-sourced phospholipids was investigated. Location and changes in vibrational, rotational, and translational lipid motions, as well as in the phase state of liposomes, induced by R. ferruginea extract, were monitored by Fourier-transform infrared spectroscopy, nuclear magnetic resonance, differential scanning calorimetry, and UV-visible spectroscopy. In its free form, the extract showed promising in vitro antioxidant properties. Free-form extract (at 1000µ g/mL) exposure reduced glioma cell in vitro viability in 40%, as evidenced by MTT tests. Pro-oxidant behavior was observed when the extract was loaded into liposomes. A 70.8% cell viability reduction was achieved with 500 µg/mL of liposome-loaded extract. The compounds of R. ferruginea extract ordered liposome interface and disorder edits a polar region. Phenolic content, as well as membrane interaction and modulation may have an important role in the oxidative and antitumoral activities of the R. ferruginea leaf extract.

  12. Lysosomal exocytosis in response to subtle membrane damage following nanosecond pulse exposure

    Science.gov (United States)

    Dalzell, Danielle R.; Roth, Caleb C.; Bernhard, Joshua A.; Payne, Jason A.; Wilmink, Gerald J.; Ibey, Bennett L.

    2011-03-01

    The cellular response to subtle membrane damage following exposure to nanosecond electric pulses (nsEP) is not well understood. Recent work has shown that when cells are exposed to nsEP, ion permeable nanopores ( 2nm) created by longer micro and millisecond duration pulses. Macroscopic damage to a plasma membrane by a micropipette has been shown to cause internal vesicles (lysosomes) to undergo exocytosis to repair membrane damage, a calcium mediated process called lysosomal exocytosis. Formation of large pores in the plasma membrane by electrical pulses has been shown to elicit lysosomal exocytosis in a variety of cell types. Our research objective is to determine whether lysosomal exocytosis will occur in response to nanopores formed by exposure to nsEP. In this paper we used propidium iodide (PI) and Calcium Green-1 AM ester (CaGr) to differentiate between large and small pores formed in CHO-K1 cells following exposure to either 1 or 20, 600-ns duration electrical pulses at 16.2 kV/cm. This information was compared to changes in membrane organization observed by increases in FM1-43 fluorescence, both in the presence and absence of calcium ions in the outside buffer. In addition, we monitored the real time migration of lysosomes within the cell using Cellular Lights assay to tag LAMP-1, a lysosomal membrane protein. Both 1 and 20 pulses elicited a large influx of extracellular calcium, while little PI uptake was observed following a single pulse exposure. Statistically significant increases in FM1-43 fluorescence were seen in samples containing calcium suggesting that calcium-triggered membrane repair may be occurring. Lastly, density of lysosomes within cells, specifically around the nucleus, appeared to change rapidly upon nsEP stimulation suggesting lysosomal migration.

  13. Involvement of MIF in basement membrane damage in chronically UVB-exposed skin in mice.

    Directory of Open Access Journals (Sweden)

    Yoko Yoshihisa

    Full Text Available Solar ultraviolet (UV B radiation is known to induce matrix metalloproteinases (MMPs that degrade collagen in the basement membrane. Macrophage migration inhibitory factor (MIF is a pluripotent cytokine that plays an essential role in the pathophysiology of skin inflammation induced by UV irradiation. This study examined the effects of MIF on basement membrane damage following chronic UVB irradiation in mice. The back skin of MIF transgenic (Tg and wild-type (WT mice was exposed to UVB three times a week for 10 weeks. There was a decrease in intact protein levels of type IV collagen and increased basement membrane damage in the exposed skin of the MIF Tg mice compared to that observed in the WT mice. Moreover, the skin of the MIF Tg mice exhibited higher MIF, MMP-2 and MMP-9 expression and protein levels than those observed in the WT mice. We also found that chronic UVB exposure in MIF Tg mice resulted in higher levels of neutrophil infiltration in the dermis compared with that observed in the WT mice. In vitro experiments revealed that MIF induced increases in the MMPs expression, including that of MMP-9 in keratinocytes and MMP-2 in fibroblasts. Cultured neutrophils also secreted MMP-9 stimulated by MIF. Therefore, MIF-mediated basement membrane damage occurs primarily through MMPs activation and neutrophil influx in murine skin following chronic UVB irradiation.

  14. VIABILITY AND PLASMA MEMBRANE INTEGRITY OF THE SPOTTED BUFFALO EPIDIDYMAL SPERMATOZOA AFTER THAWING WITH THE ADDITION OF DEXTROSE INTO THE EXTENDER

    Directory of Open Access Journals (Sweden)

    M. RIZAL

    2009-01-01

    Full Text Available h e objective of this study was to obtain the viability and plasma membrane integrity of the spotted buff alo epididymal sperm after addition of dextrose into Andromed® extender. Spermatozoa that have been collected from cauda epididymis were diluted with Andromed® extender as control (K and Andromed® + 0.2% dextrose (P1 and Andromed® + 0.4% dextrose (P2 as treatments. h e results showed that the quality of epididymal spermatozoa decreased during cryopreservation process. h e percentage of motility after thawing in P1 (46% and P2 (46.67% were signifi cantly higher (P<0.05 compared to K (41% as well as the percentage of live sperm in P1 (58.8% and P2 (60% compared to K (52.2%. h e percentage of membrane integrity in P1, P2 and K were 67.4; 66.8 and 68 %, respectively. In conclusion, the addition of 0.2 and 0.4% of dextrose into Andromed® acted as an extra cellular cryoprotectant and could maintain the viability and membrane integrity of the spotted buff alo epididymal spermatozoa after thawing.

  15. Quantitative Analyses of Synergistic Responses between Cannabidiol and DNA-Damaging Agents on the Proliferation and Viability of Glioblastoma and Neural Progenitor Cells in Culture.

    Science.gov (United States)

    Deng, Liting; Ng, Lindsay; Ozawa, Tatsuya; Stella, Nephi

    2017-01-01

    Evidence suggests that the nonpsychotropic cannabis-derived compound, cannabidiol (CBD), has antineoplastic activity in multiple types of cancers, including glioblastoma multiforme (GBM). DNA-damaging agents remain the main standard of care treatment available for patients diagnosed with GBM. Here we studied the antiproliferative and cell-killing activity of CBD alone and in combination with DNA-damaging agents (temozolomide, carmustine, or cisplatin) in several human GBM cell lines and in mouse primary GBM cells in cultures. This activity was also studied in mouse neural progenitor cells (NPCs) in culture to assess for potential central nervous system toxicity. We found that CBD induced a dose-dependent reduction of both proliferation and viability of all cells with similar potencies, suggesting no preferential activity for cancer cells. Hill plot analysis indicates an allosteric mechanism of action triggered by CBD in all cells. Cotreatment regimens combining CBD and DNA-damaging agents produced synergistic antiproliferating and cell-killing responses over a limited range of concentrations in all human GBM cell lines and mouse GBM cells as well as in mouse NPCs. Remarkably, antagonistic responses occurred at low concentrations in select human GBM cell lines and in mouse GBM cells. Our study suggests limited synergistic activity when combining CBD and DNA-damaging agents in treating GBM cells, along with little to no therapeutic window when considering NPCs. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  16. Evaluation of Cassia tora Linn. against oxidative stress-induced DNA and cell membrane damage

    Directory of Open Access Journals (Sweden)

    R Sunil Kumar

    2017-01-01

    Full Text Available Objective: The present study aims to evaluate antioxidants and protective role of Cassia tora Linn. against oxidative stress-induced DNA and cell membrane damage. Materials and Methods: The total and profiles of flavonoids were identified and quantified through reversed-phase high-performance liquid chromatography. In vitro antioxidant activity was determined using standard antioxidant assays. The protective role of C. tora extracts against oxidative stress-induced DNA and cell membrane damage was examined by electrophoretic and scanning electron microscopic studies, respectively. Results: The total flavonoid content of CtEA was 106.8 ± 2.8 mg/g d.w.QE, CtME was 72.4 ± 1.12 mg/g d.w.QE, and CtWE was 30.4 ± 0.8 mg/g d.w.QE. The concentration of flavonoids present in CtEA in decreasing order: quercetin >kaempferol >epicatechin; in CtME: quercetin >rutin >kaempferol; whereas, in CtWE: quercetin >rutin >kaempferol. The CtEA inhibited free radical-induced red blood cell hemolysis and cell membrane morphology better than CtME as confirmed by a scanning electron micrograph. CtEA also showed better protection than CtME and CtWE against free radical-induced DNA damage as confirmed by electrophoresis. Conclusion: C. tora contains flavonoids and inhibits oxidative stress and can be used for many health benefits and pharmacotherapy.

  17. Protection of DPPC phospholipid liposomal membrane against radiation oxidative damage by antioxidants

    Energy Technology Data Exchange (ETDEWEB)

    Marathe, D.L.; Pandey, B.N.; Mishra, K.P [Bhabha Atomic Research Centre, Mumbai (India)

    2000-05-01

    Investigations in our laboratory on egg lecithin liposomes have recently showed a marked protection against damage by gamma radiation when cholesterol was present in the composition of vesicles suggesting a role of bilayer molecular architecture in the mechanism of free radical mediated lipid peroxidation. Present study was designed to determine the changes in bilayer permeability in DPPC unilamelar vesicles after exposure to gamma radiation by monitoring the leakage of pre-loaded carboxyfluorescein (CF), a marker loaded in aqueous interior of vesicle and fluidity alterations in the bilayer using fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene (DPH), a membrane bilayer probe. It was found that radiation doses of an order of magnitude higher were required to produce detectable changes in vesicles of DPPC than in the vesicles of egg lecithin suggesting a modulating role of chemical nature of composition in the membrane radiation sensitivity. It was significant to find that the leakage of CF from and incorporation of DPH into vesicle bilayer showed similar response pattern to radiation doses (0.1-6 kGy) which was also found to be dose rate dependent. Presence of antioxidants; alpha-tocopherol (0.15 mole %) in the bilayer membrane or ascorbic acid (0.1 mM) in the aqueous region significantly protected DPPC vesicles from radiation damage as determined from DPH uptake kinetics suggesting involvement of reactive free radicals of lipids as well as water radicals in the mechanism of membrane peroxidative damage. The magnitude of protection was found to increase with the increasing concentration of both these antioxidants but comparisons showed that {alpha}-tocopherol was far more effective in protecting the vesicles than ascorbic acid. These results contribute to our understanding of the mechanism of radiation oxidative damage and its modification by radical scavenging and/or organizational modulation which emphasize the importance of structure and composition of

  18. Effect of isoliquiritigenin on viability and differentiated functions of human hepatocytes maintained on PEEK-WC-polyurethane membranes.

    Science.gov (United States)

    De Bartolo, Loredana; Morelli, Sabrina; Gallo, Maria Carmela; Campana, Carla; Statti, Giancarlo; Rende, Maria; Salerno, Simona; Drioli, Enrico

    2005-11-01

    In this study, we tested the ability of microporous membranes synthesised from a polymeric blend of modified polyetheretherketone (PEEK-WC) and polyurethane (PU) to support long-term maintenance and differentiation of human liver cells. The effect of isoliquiritigenin (ISL), which is a component of liquorice extract, exhibiting growth stimulatory and antiproliferative dose-dependent effect was investigated by comparing cultures treated with ISL with those untreated. To this purpose, flat-sheet membranes were prepared by a blend of PEEK-WC and PU polymers by phase inverse technique. The morphological and physico-chemical properties were characterised, respectively, by scanning electron microscopy and water contact angle measurements. Human hepatocytes cultured on PEEK-WC-PU membranes were constant up to 1 month albumin production and urea synthesis as well as the synthesis of total proteins. The liver-specific functions were expressed at high levels when cells were cultured on membranes with respect to collagen. Also the biotransformation functions were maintained for all culture periods: the ISL elimination rate increased during the culture time and high values were measured up to 22 days. Thereafter, a decrease was observed. ISL stimulated the proliferation of hepatocytes cultured on both substrata but did not affect their liver-specific functions. Hepatocytes cultured on PEEK-WC-PU membranes responded very well to ISL and expressed high levels of P450 cytochrome. These results demonstrated that long-term maintenance of human liver differentiation can be achieved on PEEK-WC-PU membranes. The incubation with ISL at the investigated concentration could stimulate the proliferation of human hepatocytes in biohybrid systems.

  19. Electro-membrane microcurrent therapy reduces signs and symptoms of muscle damage.

    Science.gov (United States)

    Lambert, Michael I; Marcus, Paul; Burgess, Theresa; Noakes, Timothy D

    2002-04-01

    Delayed onset muscle soreness (DOMS) occurs after unaccustomed physical activity or competitive sport, resulting in stiff, painful muscles with impaired function. Acustat electro-membrane microcurrent therapy has been used to treat postoperative pain and soft tissue injury; however, its efficacy in reducing symptoms of muscle damage is not known. Thirty healthy men were recruited for a double-blind, placebo-controlled trial. The muscles of their nondominant arms were damaged using an eccentric-exercise protocol. Subjects were then randomly assigned to treatment with either Acustat or a matching placebo membrane for 96 h and monitored for a total of 168 h. Subjects in both groups experienced severe pain and swelling of the elbow flexors after the eccentric exercise. After 24 h, the elbow joint angle of the placebo group had increased significantly more than those in the Acustat group (13.7 +/- 8.9 degrees vs 7.5 +/- 5.5 degrees; placebo vs Acustat, P microcurrent therapy reduces the severity of the symptoms. The mechanisms of action are unknown but are likely related to maintenance of intracellular Ca2+ homeostasis after muscle damaging exercise.

  20. Viability Theory

    CERN Document Server

    Aubin, Jean-Pierre; Saint-Pierre, Patrick

    2011-01-01

    Viability theory designs and develops mathematical and algorithmic methods for investigating the adaptation to viability constraints of evolutions governed by complex systems under uncertainty that are found in many domains involving living beings, from biological evolution to economics, from environmental sciences to financial markets, from control theory and robotics to cognitive sciences. It involves interdisciplinary investigations spanning fields that have traditionally developed in isolation. The purpose of this book is to present an initiation to applications of viability theory, explai

  1. Effect of salt on cell viability and membrane integrity of Lactobacillus acidophilus, Lactobacillus casei and Bifidobacterium longum as observed by flow cytometry.

    Science.gov (United States)

    Gandhi, Akanksha; Shah, Nagendra P

    2015-08-01

    The aim of the current study was to investigate the effect of varying sodium chloride concentrations (0-5%) on viability and membrane integrity of three probiotic bacteria, Lactobacillus acidophilus, Lactobacillus casei and Bifidobacterium longum, using conventional technique and flow cytometry. Double staining of cells by carboxyfluorescein diacetate (cFDA) and propidium iodide (PI) enabled to evaluate the effect of NaCl on cell esterase activity and membrane integrity. Observations from conventional culture technique were compared with findings from flow cytometric analysis on the metabolic activities of the cells and a correlation was observed between culturability and dye extrusion ability of L. casei and B. longum. However, a certain population of L. acidophilus was viable as per the plate count method but its efflux activity was compromised. Esterase activity of most bacteria reduced significantly (P casei was least affected by higher NaCl concentrations among the three probiotic bacteria, as opposed to B. longum where the cF extrusion performance was greatly reduced during 1 wk storage. The metabolic activity and salt resistance of L. casei was found to be highest among the bacteria studied. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  2. Engineered ZnO and TiO(2) nanoparticles induce oxidative stress and DNA damage leading to reduced viability of Escherichia coli.

    Science.gov (United States)

    Kumar, Ashutosh; Pandey, Alok K; Singh, Shashi S; Shanker, Rishi; Dhawan, Alok

    2011-11-15

    Extensive use of engineered nanoparticle (ENP)-based consumer products and their release into the environment have raised a global concern pertaining to their adverse effects on human and environmental health. The safe production and use of ENPs requires improvement in our understanding of environmental impact and possible ecotoxicity. This study explores the toxicity mechanism of ZnO and TiO(2) ENPs in a gram-negative bacterium, Escherichia coli. Internalization and uniform distribution of characterized bare ENPs in the nano range without agglomeration was observed in E. coli by electron microscopy and flow cytometry. Our data showed a statistically significant concentration-dependent decrease in E. coli cell viability by both conventional plate count method and flow cytometric live-dead discrimination assay. Significant (pDNA damage in E. coli cells was also observed after ENP treatment. Glutathione depletion with a concomitant increase in hydroperoxide ions, malondialdehyde levels, reactive oxygen species, and lactate dehydrogenase activity demonstrates that ZnO and TiO(2) ENPs induce oxidative stress leading to genotoxicity and cytotoxicity in E. coli. Our study substantiates the need for reassessment of the safety/toxicity of metal oxide ENPs. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Membrane phospholipids, lipoxidative damage and molecular integrity: a causal role in aging and longevity.

    Science.gov (United States)

    Pamplona, Reinald

    2008-10-01

    Nonenzymatic molecular modifications induced by reactive carbonyl species (RCS) generated by peroxidation of membrane phospholipids acyl chains play a causal role in the aging process. Most of the biological effects of RCS, mainly alpha,beta-unsaturated aldehydes, di-aldehydes, and keto-aldehydes, are due to their capacity to react with cellular constituents, forming advanced lipoxidation end-products (ALEs). Compared to reactive oxygen and nitrogen species, lipid-derived RCS are stable and can diffuse within or even escape from the cell and attack targets far from the site of formation. Therefore, these soluble reactive intermediates, precursors of ALEs, are not only cytotoxic per se, but they also behave as mediators and propagators of oxidative stress and cellular and tissue damage. The consequent loss-of-function and structural integrity of modified biomolecules can have a wide range of downstream functional consequences and may be the cause of subsequent cellular dysfunctions and tissue damage. The causal role of ALEs in aging and longevity is inferred from the findings that follow: a) its accumulation with aging in several tissues and species; b) physiological interventions (dietary restriction) that increase longevity, decrease ALEs content; c) the longer the longevity of a species, the lower is the lipoxidation-derived molecular damage; and finally d) exacerbated levels of ALEs are associated with pathological states.

  4. Erythrocyte shape abnormalities, membrane oxidative damage, and β-actin alterations: an unrecognized triad in classical autism.

    Science.gov (United States)

    Ciccoli, Lucia; De Felice, Claudio; Paccagnini, Eugenio; Leoncini, Silvia; Pecorelli, Alessandra; Signorini, Cinzia; Belmonte, Giuseppe; Guerranti, Roberto; Cortelazzo, Alessio; Gentile, Mariangela; Zollo, Gloria; Durand, Thierry; Valacchi, Giuseppe; Rossi, Marcello; Hayek, Joussef

    2013-01-01

    Autism spectrum disorders (ASDs) are a complex group of neurodevelopment disorders steadily rising in frequency and treatment refractory, where the search for biological markers is of paramount importance. Although red blood cells (RBCs) membrane lipidomics and rheological variables have been reported to be altered, with some suggestions indicating an increased lipid peroxidation in the erythrocyte membrane, to date no information exists on how the oxidative membrane damage may affect cytoskeletal membrane proteins and, ultimately, RBCs shape in autism. Here, we investigated RBC morphology by scanning electron microscopy in patients with classical autism, that is, the predominant ASDs phenotype (age range: 6-26 years), nonautistic neurodevelopmental disorders (i.e., "positive controls"), and healthy controls (i.e., "negative controls"). A high percentage of altered RBCs shapes, predominantly elliptocytes, was observed in autistic patients, but not in both control groups. The RBCs altered morphology in autistic subjects was related to increased erythrocyte membrane F2-isoprostanes and 4-hydroxynonenal protein adducts. In addition, an oxidative damage of the erythrocyte membrane β-actin protein was evidenced. Therefore, the combination of erythrocyte shape abnormalities, erythrocyte membrane oxidative damage, and β-actin alterations constitutes a previously unrecognized triad in classical autism and provides new biological markers in the diagnostic workup of ASDs.

  5. Elevated oxidative membrane damage associated with genetic modifiers of Lyst-mutant phenotypes.

    Directory of Open Access Journals (Sweden)

    Colleen M Trantow

    2010-07-01

    Full Text Available LYST is a large cytosolic protein that influences the biogenesis of lysosome-related organelles, and mutation of the encoding gene, LYST, can cause Chediak-Higashi syndrome. Recently, Lyst-mutant mice were recognized to also exhibit an iris disease resembling exfoliation syndrome, a common cause of glaucoma in humans. Here, Lyst-mutant iris phenotypes were used in a search for genes that influence Lyst pathways. In a candidate gene-driven approach, albino Lyst-mutant mice homozygous for a mutation in Tyr, whose product is key to melanin synthesis within melanosomes, exhibited complete rescue of Lyst-mutant iris phenotypes. In a genetic background-driven approach using a DBA/2J strain of congenic mice, an interval containing Tyrp1 enhanced Lyst-dependent iris phenotypes. Thus, both experimental approaches implicated the melanosome, an organelle that is a potential source of oxidative stress, as contributing to the disease phenotype. Confirming an association with oxidative damage, Lyst mutation resulted in genetic context-sensitive changes in iris lipid hydroperoxide levels, being lowest in albino and highest in DBA/2J mice. Surprisingly, the DBA/2J genetic background also exposed a late-onset neurodegenerative phenotype involving cerebellar Purkinje-cell degeneration. These results identify an association between oxidative damage to lipid membranes and the severity of Lyst-mutant phenotypes, revealing a new mechanism that contributes to pathophysiology involving LYST.

  6. Particle-based simulations of bilayer membranes: self-assembly, structural analysis, and shock-wave damage

    Science.gov (United States)

    Steinhauser, Martin O.; Schindler, Tanja

    2017-01-01

    We report on the results of particle-based, coarse-grained molecular dynamics simulations of amphiphilic lipid molecules in aqueous environment where the membrane structures at equilibrium are subsequently exposed to strong shock waves, and their damage is analyzed. The lipid molecules self-assemble from unbiased random initial configurations to form stable bilayer membranes, including closed vesicles. During self-assembly of lipid molecules, we observe several stages of clustering, starting with many small clusters of lipids, gradually merging together to finally form one single bilayer membrane. We find that the clustering of lipids sensitively depends on the hydrophobic interaction h_c of the lipid tails in our model and on temperature T of the system. The self-assembled bilayer membranes are quantitatively analyzed at equilibrium with respect to their degree of order and their local structure. We also show that—by analyzing the membrane fluctuations and using a linearized theory— we obtain area compression moduli K_A and bending stiffnesses κ _B for our bilayer membranes which are within the experimental range of in vivo and in vitro measurements of biological membranes. We also discuss the density profile and the pair correlation function of our model membranes at equilibrium which has not been done in previous studies of particle-based membrane models. Furthermore, we present a detailed phase diagram of our lipid model that exhibits a sol-gel transition between quasi-solid and fluid domains, and domains where no self-assembly of lipids occurs. In addition, we present in the phase diagram the conditions for temperature T and hydrophobicity h_c of the lipid tails of our model to form closed vesicles. The stable bilayer membranes obtained at equilibrium are then subjected to strong shock waves in a shock tube setup, and we investigate the damage in the membranes due to their interaction with shock waves. Here, we find a transition from self

  7. Oxidative stress damage-associated molecular signaling pathways differentiate spontaneous preterm birth and preterm premature rupture of the membranes.

    Science.gov (United States)

    Dutta, Eryn H; Behnia, Faranak; Boldogh, Istvan; Saade, George R; Taylor, Brandie D; Kacerovský, Marian; Menon, Ramkumar

    2016-02-01

    In women with preterm premature rupture of the membranes (PPROM), increased oxidative stress may accelerate premature cellular senescence, senescence-associated inflammation and proteolysis, which may predispose them to rupture. We demonstrate mechanistic differences between preterm birth (PTB) and PPROM by revealing differences in fetal membrane redox status, oxidative stress-induced damage, distinct signaling pathways and senescence activation. Oxidative stress-associated fetal membrane damage and cell cycle arrest determine adverse pregnancy outcomes, such as spontaneous PTB and PPROM. Fetal membranes and amniotic fluid samples were collected from women with PTB and PPROM. Molecular, biochemical and histologic markers were used to document differences in oxidative stress and antioxidant enzyme status, DNA damage, secondary signaling activation by Ras-GTPase and mitogen-activated protein kinases, and activation of senescence between membranes from the two groups. Oxidative stress was higher and antioxidant enzymes were lower in PPROM compared with PTB. PTB membranes had minimal DNA damage and showed activation of Ras-GTPase and ERK/JNK signaling pathway with minimal signs of senescence. PPROM had higher numbers of cells with DNA damage, prosenescence stress kinase (p38 MAPK) activation and signs of senescence. Samples were obtained retrospectively after delivery. The markers of senescence that we tested are specific but are not sufficient to confirm senescence as the pathology in PPROM. Oxidative stress-induced DNA damage and senescence are characteristics of fetal membranes from PPROM, compared with PTB with intact membranes. PTB and PPROM arise from distinct pathophysiologic pathways. Oxidative stress and oxidative stress-induced cellular damages are likely determinants of the mechanistic signaling pathways and phenotypic outcome. This study is supported by developmental funds to Dr R. Menon from the Department of Obstetrics and Gynecology at The University of

  8. Cell membrane damage and protein interaction induced by copper containing nanoparticles--importance of the metal release process.

    Science.gov (United States)

    Karlsson, Hanna L; Cronholm, Pontus; Hedberg, Yolanda; Tornberg, Malin; De Battice, Laura; Svedhem, Sofia; Wallinder, Inger Odnevall

    2013-11-08

    Cu-containing nanoparticles are used in various applications in order to e.g. achieve antimicrobial activities and to increase the conductivity of fluids and polymers. Several studies have reported on toxic effects of such particles but the mechanisms are not completely clear. The aim of this study was to investigate the interactions between cell membranes and well-characterized nanoparticles of CuO, Cu metal, a binary Cu-Zn alloy and micron-sized Cu metal particles. This was conducted via in vitro investigations of the effects of the nanoparticles on (i) cell membrane damage on lung epithelial cells (A549), (ii) membrane rupture of red blood cells (hemolysis), complemented by (iii) nanoparticle interaction studies with a model lipid membrane using quartz crystal microbalance with dissipation monitoring (QCM-D). The results revealed that nanoparticles of the Cu metal and the Cu-Zn alloy were both highly membrane damaging and caused a rapid (within 1h) increase in membrane damage at a particle mass dose of 20 μg/mL, whereas the CuO nanoparticles and the micron-sized Cu metal particles showed no such effect. At similar nanoparticle surface area doses, the nano and micron-sized Cu particles showed more similar effects. The commonly used LDH (lactate dehydrogenase) assay for analysis of membrane damage was found impossible to use due to nanoparticle-assay interactions. None of the particles induced any hemolytic effects on red blood cells when investigated up to high particle concentrations (1mg/mL). However, both Cu and Cu-Zn nanoparticles caused hemoglobin aggregation/precipitation, a process that would conceal a possible hemolytic effect. Studies on interactions between the nanoparticles and a model membrane using QCM-D indicated a small difference between the investigated particles. Results of this study suggest that the observed membrane damage is caused by the metal release process at the cell membrane surface and highlight differences in reactivity between

  9. S. aureus hemolysins, bi-component leukocidins and cytolytic peptides: a redundant arsenal of membrane-damaging virulence factors?

    Directory of Open Access Journals (Sweden)

    Francois eVandenesch

    2012-02-01

    Full Text Available One key aspect of S. aureus virulence lies in its ability to target the host cell membrane with a large number of membrane-damaging toxins and peptides. In this review, we describe the hemolysins, the bi-component leukocidins, which include the Panton Valentine Leukocidin, LukAB/GH, LukED and the cytolytic peptides (Phenol Soluble Modulins. While at first glance, all these factors might appear redundant, it is now clear that some of these factors play specific roles in certain S. aureus life stages and diseases or target specific cell types or species. Here, we present an update of the literature on toxins receptors and their cell type and species specificities. Furthermore, we review epidemiological studies and animal models illustrating a role of these membrane-damaging factors in various diseases. Finally, we emphasize the interplay of these factors with the host immune system and highlight all their non-lytic functions.

  10. Cytosolic peroxidases protect the lysosome of bloodstream African trypanosomes from iron-mediated membrane damage.

    Directory of Open Access Journals (Sweden)

    Corinna Hiller

    2014-04-01

    Full Text Available African trypanosomes express three virtually identical non-selenium glutathione peroxidase (Px-type enzymes which preferably detoxify lipid-derived hydroperoxides. As shown previously, bloodstream Trypanosoma brucei lacking the mitochondrial Px III display only a weak and transient proliferation defect whereas parasites that lack the cytosolic Px I and Px II undergo extremely fast lipid peroxidation and cell lysis. The phenotype can completely be rescued by supplementing the medium with the α-tocopherol derivative Trolox. The mechanism underlying the rapid cell death remained however elusive. Here we show that the lysosome is the origin of the cellular injury. Feeding the px I-II knockout parasites with Alexa Fluor-conjugated dextran or LysoTracker in the presence of Trolox yielded a discrete lysosomal staining. Yet upon withdrawal of the antioxidant, the signal became progressively spread over the whole cell body and was completely lost, respectively. T. brucei acquire iron by endocytosis of host transferrin. Supplementing the medium with iron or transferrin induced, whereas the iron chelator deferoxamine and apo-transferrin attenuated lysis of the px I-II knockout cells. Immunofluorescence microscopy with MitoTracker and antibodies against the lysosomal marker protein p67 revealed that disintegration of the lysosome precedes mitochondrial damage. In vivo experiments confirmed the negligible role of the mitochondrial peroxidase: Mice infected with px III knockout cells displayed only a slightly delayed disease development compared to wild-type parasites. Our data demonstrate that in bloodstream African trypanosomes, the lysosome, not the mitochondrion, is the primary site of oxidative damage and cytosolic trypanothione/tryparedoxin-dependent peroxidases protect the lysosome from iron-induced membrane peroxidation. This process appears to be closely linked to the high endocytic rate and distinct iron acquisition mechanisms of the infective

  11. Photodynamic damage to cartilage and synovial tissue grafted on a chick's chorioallantoic membrane

    Science.gov (United States)

    Fisher, M.; Nahir, A. M.; Kimel, Sol

    1997-09-01

    Rheumatoid arthritis (RA) is a chronic inflammatory disease of the synovial joints causing pain deformities and disability. The highly vascular inflamed synovium has aggressive and destructive characteristics, it invades, erodes and gradually destroys cartilage and underlying bone. Photodynamic therapy (PDT) was performed using the chick chorioallantoic membrane (CAM) model to investigate the vitality of synovium and cartilage implanted on the CAM. Synovium, obtained from human patients, was grafted onto the CAM; gross microscopy and histology proved its vitality 7 days post grafting. Cartilage obtained from rabbit knee joint was also maintained on the CAM for 7 days. Its vitality was demonstrated by histology and by measuring metabolic and enzymatic activity of cartilage cells (chondrocytes) as well as the collagen and proteoglycans content. Selective PDT was performed using aluminum phthalocyanine tetrasulfonate (AlPcS4), a hydrophilic compound, soluble in biological solutions, as a photosensitizer. After irradiation with a diode laser (lambda equals 670 nm, 10 mW) damage was observed in vascularized synovium grafts, whereas avascular cartilage remained intact.

  12. Comparative kinetics of damage to the plasma and mitochondrial membranes by intra-cellularly synthesized and externally-provided photosensitizers using multi-color FACS.

    Science.gov (United States)

    Haupt, Sara; Malik, Zvi; Ehrenberg, Benjamin

    2014-01-01

    Photodynamic therapy (PDT) of cancer involves inflicting lethal damage to the cells of malignant tumors, primarily by singlet oxygen that is generated following light-absorption in a photosensitizer molecule. Dysfunction of cells is manifested in many ways, including peroxidation of cellular components, membrane rupture, depolarization of electric potentials, termination of mitochondrial activity, onset of apoptosis and necrosis and eventually cell lysis. These events do not necessarily occur in linear fashion and different types of damage to cell components occur, most probably, in parallel. In this report we measured the relative rates of damage to two cellular membranes: the plasma membrane and the mitochondrial membrane. We employed photosensitizers of diverse hydrophobicities and used different incubation procedures, which lead to their different intra-cellular localizations. We monitored the damage that was inflicted on these membranes, by employing optical probes of membrane integrity, in a multi-color FACS experiment. The potentiometric indicator JC-1 monitored the electric cross-membrane potential of the mitochondria and the fluorometric indicator Draq7 monitored the rupture of the plasma membrane. We show that the electric depolarization of the mitochondrial membrane and the damage to the enveloping plasma membrane proceed with different kinetics that reflect the molecular character and intracellular location of the sensitizer: PpIX that is synthesized in the cells from ALA causes rapid mitochondrial damage and very slow damage to the plasma membrane, while externally added PpIX has an opposite effect. The hydrophilic sensitizer HypS4 can be taken up by the cells by different incubation conditions, and these affect its intracellular location, and as a consequence either the plasma membrane or the mitochondria is damaged first. A similar correlation was found for additional extracellularly-provided photosensitizers HP and PpIX.

  13. Depth of morphologic skin damage and viability after one, two, and three passes of a high-energy, short-pulse CO2 laser (Tru-Pulse) in pig skin.

    Science.gov (United States)

    Smith, K J; Skelton, H G; Graham, J S; Hamilton, T A; Hackley, B E; Hurst, C G

    1997-08-01

    CO2 laser energy is absorbed by water, which is present in all tissue. The depth of penetration of CO2 lasers is narrow with minimal reflection, scatter, or transmission. However, thermal damage has limited the usefulness of conventional, continuous-wave CO2 lasers for debridement as demonstrated by wound healing studies. The development of high-energy CO2 lasers, with pulse durations that are less than the thermal relaxation time of tissue, have made vaporization of skin for resurfacing and wound debridement possible because of the decreased risk of thermal damage. This study was performed to evaluate thermal damage produced by a CO2 laser. Routine histopathologic examination and nitroblue-tetrazolium chloride (NBTC) staining were used to evaluate the depth of tissue damage and viability in weanling pig skin after one, two, and three passes of the laser. At a pulse energy of 300 mJ, with a pulse duration of 60 microseconds, one pass of the laser produced vaporization of the epidermis with minimal thermal damage. Two passes produced areas of denatured collagen with loss of viable cells in the superficial papillary dermis. Three passes extended the damage into the papillary dermis. Hyalinization of collagen appears to correspond well with the level of thermal damage as measured by NBTC staining. Our findings suggest that the energy necessary to vaporize the dermis may be greater than that needed to vaporize epidermis.

  14. Protection of radiation induced DNA and membrane damages by total triterpenes isolated from Ganoderma lucidum (Fr.) P. Karst.

    Science.gov (United States)

    Smina, T P; Maurya, D K; Devasagayam, T P A; Janardhanan, K K

    2015-05-25

    The total triterpenes isolated from the fruiting bodies of Ganoderma lucidum was examined for its potential to prevent γ-radiation induced membrane damage in rat liver mitochondria and microsomes. The effects of total triterpenes on γ-radiation-induced DNA strand breaks in pBR 322 plasmid DNA in vitro and human peripheral blood lymphocytes ex vivo were evaluated. The protective effect of total triterpenes against γ-radiation-induced micronuclei formations in mice bone marrow cells in vivo were also evaluated. The results indicated the significant effectiveness of Ganoderma triterpenes in protecting the DNA and membrane damages consequent to the hazardous effects of radiation. The findings suggest the potential use of Ganoderma triterpenes in radio therapy. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  15. Mitochondrial DNA damage associated with lipid peroxidation of the mitochondrial membrane induced by Fe2+-citrate

    Directory of Open Access Journals (Sweden)

    Andréa M. Almeida

    2006-09-01

    Full Text Available Iron imbalance/accumulation has been implicated in oxidative injury associated with many degenerative diseases such as hereditary hemochromatosis, beta-thalassemia, and Friedreich's ataxia. Mitochondria are particularly sensitive to iron-induced oxidative stress - high loads of iron cause extensive lipid peroxidation and membrane permeabilization in isolated mitochondria. Here we detected and characterized mitochondrial DNA damage in isolated rat liver mitochondria exposed to a Fe2+-citrate complex, a small molecular weight complex. Intense DNA fragmentation was induced after the incubation of mitochondria with the iron complex. The detection of 3' phosphoglycolate ends at the mtDNA strand breaks by a 32P-postlabeling assay, suggested the involvement of hydroxyl radical in the DNA fragmentation induced by Fe2+-citrate. Increased levels of 8-oxo-7,8-dihydro-2'-deoxyguanosine also suggested that Fe2+-citrate-induced oxidative stress causes mitochondrial DNA damage. In conclusion, our results show that iron-mediated lipid peroxidation was associated with intense mtDNA damage derived from the direct attack of reactive oxygen species.Desequilíbrio/acúmulo de ferro tem sido implicado em injúria oxidativa associada a diversas doenças degenerativas tais como, hemocromatose hereditária, beta-talassemia e ataxia de Friedreich. As mitocôndrias são particularmente sensíveis a estresse oxidativo induzido por ferro - um carregamento alto de ferro em mitocôndrias isoladas pode causar uma extensiva peroxidação lipídica e a permeabilização de membrana. Nesse estudo, nós detectamos e caracterizamos danos do DNA mitocondrial em mitocôndrias isoladas de fígado de rato, expostas ao complexo Fe2+-citrato, um dos complexos de baixo peso molecular. A intensa fragmentação do DNA foi induzida após a incubação das mitocôndrias com o complexo de ferro. A detecção de finais 3' de fosfoglicolato nas quebras de fitas de DNA mitocondrial pelo ensaio 32

  16. Impact of Neuronal Membrane Damage on the Local Field Potential in a Large-Scale Simulation of Cerebral Cortex

    Directory of Open Access Journals (Sweden)

    David L. Boothe

    2017-06-01

    Full Text Available Within multiscale brain dynamics, the structure–function relationship between cellular changes at a lower scale and coordinated oscillations at a higher scale is not well understood. This relationship may be particularly relevant for understanding functional impairments after a mild traumatic brain injury (mTBI when current neuroimaging methods do not reveal morphological changes to the brain common in moderate to severe TBI such as diffuse axonal injury or gray matter lesions. Here, we created a physiology-based model of cerebral cortex using a publicly released modeling framework (GEneral NEural SImulation System to explore the possibility that performance deficits characteristic of blast-induced mTBI may reflect dysfunctional, local network activity influenced by microscale neuronal damage at the cellular level. We operationalized microscale damage to neurons as the formation of pores on the neuronal membrane based on research using blast paradigms, and in our model, pores were simulated by a change in membrane conductance. We then tracked changes in simulated electrical activity. Our model contained 585 simulated neurons, comprised of 14 types of cortical and thalamic neurons each with its own compartmental morphology and electrophysiological properties. Comparing the functional activity of neurons before and after simulated damage, we found that simulated pores in the membrane reduced both action potential generation and local field potential (LFP power in the 1–40 Hz range of the power spectrum. Furthermore, the location of damage modulated the strength of these effects: pore formation on simulated axons reduced LFP power more strongly than did pore formation on the soma and the dendrites. These results indicate that even small amounts of cellular damage can negatively impact functional activity of larger scale oscillations, and our findings suggest that multiscale modeling provides a promising avenue to elucidate these relationships.

  17. Impact of Neuronal Membrane Damage on the Local Field Potential in a Large-Scale Simulation of Cerebral Cortex.

    Science.gov (United States)

    Boothe, David L; Yu, Alfred B; Kudela, Pawel; Anderson, William S; Vettel, Jean M; Franaszczuk, Piotr J

    2017-01-01

    Within multiscale brain dynamics, the structure-function relationship between cellular changes at a lower scale and coordinated oscillations at a higher scale is not well understood. This relationship may be particularly relevant for understanding functional impairments after a mild traumatic brain injury (mTBI) when current neuroimaging methods do not reveal morphological changes to the brain common in moderate to severe TBI such as diffuse axonal injury or gray matter lesions. Here, we created a physiology-based model of cerebral cortex using a publicly released modeling framework (GEneral NEural SImulation System) to explore the possibility that performance deficits characteristic of blast-induced mTBI may reflect dysfunctional, local network activity influenced by microscale neuronal damage at the cellular level. We operationalized microscale damage to neurons as the formation of pores on the neuronal membrane based on research using blast paradigms, and in our model, pores were simulated by a change in membrane conductance. We then tracked changes in simulated electrical activity. Our model contained 585 simulated neurons, comprised of 14 types of cortical and thalamic neurons each with its own compartmental morphology and electrophysiological properties. Comparing the functional activity of neurons before and after simulated damage, we found that simulated pores in the membrane reduced both action potential generation and local field potential (LFP) power in the 1-40 Hz range of the power spectrum. Furthermore, the location of damage modulated the strength of these effects: pore formation on simulated axons reduced LFP power more strongly than did pore formation on the soma and the dendrites. These results indicate that even small amounts of cellular damage can negatively impact functional activity of larger scale oscillations, and our findings suggest that multiscale modeling provides a promising avenue to elucidate these relationships.

  18. Platelet membrane coating coupled with solar irradiation endows a photodynamic nanosystem with both improved antitumor efficacy and undetectable skin damage.

    Science.gov (United States)

    Xu, Lulu; Gao, Feng; Fan, Feng; Yang, Lihua

    2018-03-01

    The therapeutic efficacy of tumor photodynamic therapy (PDT) is hindered by the following three challenges. The extremely short lifetime of reactive oxygen species (ROS, the cytotoxic factor of PDT) limits the radius of their action to tens-of-nanometer scale; functionalizing a photodynamic nanosystem with active targeting moieties helps bring the target cells into reach of ROS but requires extra research efforts. Current photodynamic systems are in general excited by light on the short end of near-infrared (NIR) region; deep tissue penetration necessitates the development of those excitable by longer NIR light. Reducing irradiation dose is necessary for avoiding skin damages but impacts the therapeutic outcome; how to resolve this delimma remains a challenge. We herein show that platelet membrane-coating over a photodynamic nanoparticle coupled with solar irradiation may simultaneously resolve all challenges above. Platelet membrane-coating provides both long circulation and active targeting, leading to preferential internalization by tumor over fibroblast cells in vitro and higher tumor uptake than the red blood cell (RBC) membrane-coated counterpart. Preloading a photodynamic sensitizer into a synthetic nanocarrier shifts its absorption peak to longer wavelength, which favors deep tissue penetration. Upon irradiation with NIR light from a solar simulator at extremely low output power density, the platelet membrane-coated photodynamic-nanoparticle outperforms its RBC membrane-coated counterpart and effectively ablates tumor without causing skin damages, which underscores the importance of active targeting in tumor PDT. We anticipate that platelet membrane coating may facilitate the in vivo applications of antitumor photodynamic therapy. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. [Effect of damage integrity rat brain synaptic membranes on the functional activity GABA(A)-receptor/Cl(-)-ionophore complex in the CNC].

    Science.gov (United States)

    Rebrov, I G; Kalinina, M V

    2013-01-01

    Functional activity of the CGABA(A)-receptor/Cl(-) ionophore complex was investigated the muscimol-stimulated entry of the radioactive isotope 36Cl(-) in synaptoneurosomes in changing the structure and permeability of neuronal membranes. Integrity of the membranes was damaged by removal of Ca(+2) and Mg(+2) from the incubation medium and by the method of freezing-thawing synaptoneurosomes. In both cases, an increase in basal 36Cl(-) entry into synaptoneurosomes, indicating increased nonspecific permeability of neuronal membranes, and decreased activity the CABA(A)-receptor/Cl(-) ionophore complex. The conclusion about the relationship of processes damage neuronal membranes and reducing the inhibitory processes in the epileptic focus.

  20. Staphylococcus aureus Hemolysins, bi-component Leukocidins, and Cytolytic Peptides: A Redundant Arsenal of Membrane-Damaging Virulence Factors?

    Science.gov (United States)

    Vandenesch, François; Lina, G.; Henry, Thomas

    2012-01-01

    One key aspect of the virulence of Staphylococcus aureus lies in its ability to target the host cell membrane with a large number of membrane-damaging toxins and peptides. In this review, we describe the hemolysins, the bi-component leukocidins (which include the Panton Valentine leukocidin, LukAB/GH, and LukED), and the cytolytic peptides (phenol soluble modulins). While at first glance, all of these factors might appear redundant, it is now clear that some of these factors play specific roles in certain S. aureus life stages and diseases or target specific cell types or species. In this review, we present an update of the literature on toxin receptors and their cell type and species specificities. Furthermore, we review epidemiological studies and animal models illustrating the role of these membrane-damaging factors in various diseases. Finally, we emphasize the interplay of these factors with the host immune system and highlight all their non-lytic functions. PMID:22919604

  1. Response of the cell membrane-cytoskeleton complex to osmotic and freeze/thaw stresses. Part 2: The link between the state of the membrane-cytoskeleton complex and the cellular damage.

    Science.gov (United States)

    Ragoonanan, Vishard; Less, Rebekah; Aksan, Alptekin

    2013-04-01

    In an earlier paper [35], we examined the mutual interaction between the actin cytoskeleton and the cell membrane and explored the role this interaction plays during freeze/thaw. In this follow-up paper, we investigate the physical and chemical stresses induced by freeze/thaw and explore the different mechanisms of damage caused by these stresses. Our results showed that changes in cell volume during freeze/thaw and the unfrozen water content in the solution alter the cytoskeleton stiffness, and the available membrane material. Combined with unfavorable ice-membrane interactions and increasing membrane stiffness, increased de-structuring of the membrane (such as bleb and microvilli formation) synergistically act on the membrane-cytoskeleton system generating irreversible damage. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Extracts of edible and medicinal plants damage membranes of Vibrio cholerae.

    Science.gov (United States)

    Sánchez, Eduardo; García, Santos; Heredia, Norma

    2010-10-01

    The use of natural compounds from plants can provide an alternative approach against food-borne pathogens. The mechanisms of action of most plant extracts with antimicrobial activity have been poorly studied. In this work, changes in membrane integrity, membrane potential, internal pH (pH(in)), and ATP synthesis were measured in Vibrio cholerae cells after exposure to extracts of edible and medicinal plants. A preliminary screen of methanolic, ethanolic, and aqueous extracts of medicinal and edible plants was performed. Minimal bactericidal concentrations (MBCs) were measured for extracts showing high antimicrobial activity. Our results indicate that methanolic extracts of basil (Ocimum basilicum L.), nopal cactus (Opuntia ficus-indica var. Villanueva L.), sweet acacia (Acacia farnesiana L.), and white sagebrush (Artemisia ludoviciana Nutt.) are the most active against V. cholera, with MBCs ranging from 0.5 to 3.0 mg/ml. Using four fluorogenic techniques, we studied the membrane integrity of V. cholerae cells after exposure to these four extracts. Extracts from these plants were able to disrupt the cell membranes of V. cholerae cells, causing increased membrane permeability, a clear decrease in cytoplasmic pH, cell membrane hyperpolarization, and a decrease in cellular ATP concentration in all strains tested. These four plant extracts could be studied as future alternatives to control V. cholerae contamination in foods and the diseases associated with this microorganism.

  3. Extracts of Edible and Medicinal Plants Damage Membranes of Vibrio cholerae▿

    Science.gov (United States)

    Sánchez, Eduardo; García, Santos; Heredia, Norma

    2010-01-01

    The use of natural compounds from plants can provide an alternative approach against food-borne pathogens. The mechanisms of action of most plant extracts with antimicrobial activity have been poorly studied. In this work, changes in membrane integrity, membrane potential, internal pH (pHin), and ATP synthesis were measured in Vibrio cholerae cells after exposure to extracts of edible and medicinal plants. A preliminary screen of methanolic, ethanolic, and aqueous extracts of medicinal and edible plants was performed. Minimal bactericidal concentrations (MBCs) were measured for extracts showing high antimicrobial activity. Our results indicate that methanolic extracts of basil (Ocimum basilicum L.), nopal cactus (Opuntia ficus-indica var. Villanueva L.), sweet acacia (Acacia farnesiana L.), and white sagebrush (Artemisia ludoviciana Nutt.) are the most active against V. cholera, with MBCs ranging from 0.5 to 3.0 mg/ml. Using four fluorogenic techniques, we studied the membrane integrity of V. cholerae cells after exposure to these four extracts. Extracts from these plants were able to disrupt the cell membranes of V. cholerae cells, causing increased membrane permeability, a clear decrease in cytoplasmic pH, cell membrane hyperpolarization, and a decrease in cellular ATP concentration in all strains tested. These four plant extracts could be studied as future alternatives to control V. cholerae contamination in foods and the diseases associated with this microorganism. PMID:20802077

  4. 1-((2,4-DichlorophenethylAmino-3-Phenoxypropan-2-ol Kills Pseudomonas aeruginosa through Extensive Membrane Damage

    Directory of Open Access Journals (Sweden)

    Valerie Defraine

    2018-02-01

    Full Text Available The ever increasing multidrug-resistance of clinically important pathogens and the lack of novel antibiotics have resulted in a true antibiotic crisis where many antibiotics are no longer effective. Further complicating the treatment of bacterial infections are antibiotic-tolerant persister cells. Besides being responsible for the recalcitrant nature of chronic infections, persister cells greatly contribute to the observed antibiotic tolerance in biofilms and even facilitate the emergence of antibiotic resistance. Evidently, eradication of these persister cells could greatly improve patient outcomes and targeting persistence may provide an alternative approach in combatting chronic infections. We recently characterized 1-((2,4-dichlorophenethylamino-3-phenoxypropan-2-ol (SPI009, a novel anti-persister molecule capable of directly killing persisters from both Gram-negative and Gram-positive pathogens. SPI009 potentiates antibiotic activity in several in vitro and in vivo infection models and possesses promising anti-biofilm activity. Strikingly, SPI009 restores antibiotic sensitivity even in resistant strains. In this study, we investigated the mode of action of this novel compound using several parallel approaches. Genetic analyses and a macromolecular synthesis assays suggest that SPI009 acts by causing extensive membrane damage. This hypothesis was confirmed by liposome leakage assay and membrane permeability studies, demonstrating that SPI009 rapidly impairs the bacterial outer and inner membranes. Evaluation of SPI009-resistant mutants, which only could be generated under severe selection pressure, suggested a possible role for the MexCD-OprJ efflux pump. Overall, our results demonstrate the extensive membrane-damaging activity of SPI009 and confirm its clinical potential in the development of novel anti-persister therapies.

  5. Photoinduced membrane damage of E. coli and S. aureus by the photosensitizer-antimicrobial peptide conjugate eosin-(KLAKLAK2.

    Directory of Open Access Journals (Sweden)

    Gregory A Johnson

    Full Text Available BACKGROUND/OBJECTIVES: Upon irradiation with visible light, the photosensitizer-peptide conjugate eosin-(KLAKLAK2 kills a broad spectrum of bacteria without damaging human cells. Eosin-(KLAKLAK2 therefore represents an interesting lead compound for the treatment of local infection by photodynamic bacterial inactivation. The mechanisms of cellular killing by eosin-(KLAKLAK2, however, remain unclear and this lack of knowledge hampers the development of optimized therapeutic agents. Herein, we investigate the localization of eosin-(KLAKLAK2 in bacteria prior to light treatment and examine the molecular basis for the photodynamic activity of this conjugate. METHODOLOGY/PRINCIPAL FINDINGS: By employing photooxidation of 3,3-diaminobenzidine (DAB, (scanning transmission electron microscopy ((STEM, and energy dispersive X-ray spectroscopy (EDS methodologies, eosin-(KLAKLAK2 is visualized at the surface of E. coli and S. aureus prior to photodynamic irradiation. Subsequent irradiation leads to severe membrane damage. Consistent with these observations, eosin-(KLAKLAK2 binds to liposomes of bacterial lipid composition and causes liposomal leakage upon irradiation. The eosin moiety of the conjugate mediates bacterial killing and lipid bilayer leakage by generating the reactive oxygen species singlet oxygen and superoxide. In contrast, the (KLAKLAK2 moiety targets the photosensitizer to bacterial lipid bilayers. In addition, while (KLAKLAK2 does not disrupt intact liposomes, the peptide accelerates the leakage of photo-oxidized liposomes. CONCLUSIONS/SIGNIFICANCE: Together, our results suggest that (KLAKLAK2 promotes the binding of eosin Y to bacteria cell walls and lipid bilayers. Subsequent light irradiation results in membrane damage from the production of both Type I & II photodynamic products. Membrane damage by oxidation is then further aggravated by the (KLAKLAK2 moiety and membrane lysis is accelerated by the peptide. These results therefore

  6. Protective effect of matrix metalloproteinase inhibitors against epidermal basement membrane damage: skin equivalents partially mimic photoageing process.

    Science.gov (United States)

    Amano, S; Ogura, Y; Akutsu, N; Matsunaga, Y; Kadoya, K; Adachi, E; Nishiyama, T

    2005-12-01

    The epidermal basement membrane (BM) plays important roles in adhesion between epidermis and dermis, and in controlling epidermal differentiation. The BM has been reported to be damaged in sun-exposed skin. Although matrix metalloproteinases (MMPs) are believed to be involved in the BM damage, there is no good in vitro model for examining BM damage by MMPs or for exploring methods to protect the BM. To examine the involvement of MMPs in BM damage and approaches to protect the BM from such damage by using an in vitro skin-equivalent (SE) model. SE was prepared by culturing human keratinocytes on contracted collagen gel including human fibroblasts. MMP-1, -2, -3 and -9, laminin 5 and type IV and VII collagens were determined by specific sandwich ELISAs, and MMP-2 and MMP-9 were analysed by gelatin zymography. Histological examination of SE was also carried out. Despite production of BM components such as laminin 5 and type IV and VII collagens in SEs, BM was rarely observed at the dermal-epidermal junction. Several MMPs, such as MMP-1, -2, -3 and -9, were observed to be present in conditioned media and some of them were in active forms. Tissue inhibitor of metalloproteinase (TIMP)-2 was not detected, although TIMP-1 was present. Synthetic MMP inhibitors, CGS27023A and MMP-inhibitor I, which inhibit MMP-1, -2, -3 and -9, markedly augmented deposition of laminin 5 and type IV and VII collagens at the dermal-epidermal junction, resulting in the formation of continuous epidermal BM. Our results indicate that MMPs are involved in the degradation of BM in SEs, and that MMP inhibitors exert a protective effect against BM damage.

  7. Membraner

    DEFF Research Database (Denmark)

    Bach, Finn

    2009-01-01

    Notatet giver en kort introduktion til den statiske virkemåde af membraner og membrankonstruktioner......Notatet giver en kort introduktion til den statiske virkemåde af membraner og membrankonstruktioner...

  8. Kinetics of membrane damage to high (HNA) and low (LNA) nucleic acid bacterial clusters in drinking water by ozone, chlorine, chlorine dioxide, monochloramine, ferrate(VI), and permanganate.

    Science.gov (United States)

    Ramseier, Maaike K; von Gunten, Urs; Freihofer, Pietro; Hammes, Frederik

    2011-01-01

    Drinking water was treated with ozone, chlorine, chlorine dioxide, monochloramine, ferrate(VI), and permanganate to investigate the kinetics of membrane damage of native drinking water bacterial cells. Membrane damage was measured by flow cytometry using a combination of SYBR Green I and propidium iodide (SGI+PI) staining as indicator for cells with permeabilized membranes and SGI alone to measure total cell concentration. SGI+PI staining revealed that the cells were permeabilized upon relatively low oxidant exposures of all tested oxidants without a detectable lag phase. However, only ozonation resulted in a decrease of the total cell concentrations for the investigated reaction times. Rate constants for the membrane damage reaction varied over seven orders of magnitude in the following order: ozone > chlorine > chlorine dioxide ≈ ferrate > permanganate > chloramine. The rate constants were compared to literature data and were in general smaller than previously measured rate constants. This confirmed that membrane integrity is a conservative and therefore safe parameter for disinfection control. Interestingly, the cell membranes of high nucleic acid (HNA) content bacteria were damaged much faster than those of low nucleic acid (LNA) content bacteria during treatment with chlorine dioxide and permanganate. However, only small differences were observed during treatment with chlorine and chloramine, and no difference was observed for ferrate treatment. Based on the different reactivity of these oxidants it was suggested that HNA and LNA bacterial cell membranes have a different chemical constitution. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Repair of Nerve Cell Membrance Damage by Calcium-Dependent, Membrane-Binding Proteins

    Science.gov (United States)

    2013-09-01

    membrane perturbation or disruption. Some studies have reported that annexins can influence the ability of channel- forming toxins or ionophores to... ionophore ,50,51 that readily crosses the bilayer but as evidenced here does not cause sufficient disruption of bilayer structure to allow CF to permeate

  10. Antifungal Activity of Isoliquiritin and Its Inhibitory Effect against Peronophythora litchi Chen through a Membrane Damage Mechanism

    Directory of Open Access Journals (Sweden)

    Jianjun Luo

    2016-02-01

    Full Text Available This study investigated the antifungal activity and potential antifungal mechanism(s of isoliquiritin against P. litchi Chen, one of the main litchi pathogens. The antifungal activity of isoliquiritin against P. litchi Chen had been proven in a dose-dependent manner through in vitro (mycelial growth and sporangia germination and in vivo (detached leaf tests. Results revealed that isoliquiritin exhibited significant antifungal activity against the tested pathogens, especially, P. litchi Chen, with a minimum inhibitory concentration of 27.33 mg/L. The morphology of P. litchi Chen was apparently changed by isoliquiritin through cytoplasm leakage and distortion of mycelia. The cell membrane permeability of the P. litchi Chen increased with the increasing concentration of isoliquiritin, as evidenced by a rise in relative electric conductivity and a decrease in reducing sugar contents. These results indicated that the antifungal effects of isoliquiritin could be explained by a membrane lesion mechanism causing damage to the cell membrane integrity leading to the death of mycelial cells. Taken together, isoliquiritin may be used as a natural alternative to commercial fungicides or a lead compound to develop new fungicides for the control of litchi downy blight.

  11. Supplementation of T3 Recovers Hypothyroid Rat Liver Cells from Oxidatively Damaged Inner Mitochondrial Membrane Leading to Apoptosis

    Science.gov (United States)

    Mukherjee, Sutapa; Samanta, Luna; Roy, Anita; Bhanja, Shravani; Chainy, Gagan B. N.

    2014-01-01

    Hypothyroidism is a growing medical concern. There are conflicting reports regarding the mechanism of oxidative stress in hypothyroidism. Mitochondrial oxidative stress is pivotal to thyroid dysfunction. The present study aimed to delineate the effects of hepatic inner mitochondrial membrane dysfunction as a consequence of 6-n-propyl-2-thiouracil-induced hypothyroidism in rats. Increased oxidative stress predominance in the submitochondrial particles (SMP) and altered antioxidant defenses in the mitochondrial matrix fraction correlated with hepatocyte apoptosis. In order to check whether the effects caused by hypothyroidism are reversed by T3, the above parameters were evaluated in a subset of T3-treated hypothyroid rats. Complex I activity was inhibited in hypothyroid SMP, whereas T3 supplementation upregulated electron transport chain complexes. Higher mitochondrial H2O2 levels in hypothyroidism due to reduced matrix GPx activity culminated in severe oxidative damage to membrane lipids. SMP and matrix proteins were stabilised in hypothyroidism but exhibited increased carbonylation after T3 administration. Glutathione content was higher in both. Hepatocyte apoptosis was evident in hypothyroid liver sections; T3 administration, on the other hand, exerted antiapoptotic and proproliferative effects. Hence, thyroid hormone level critically regulates functional integrity of hepatic mitochondria; hypothyroidism injures mitochondrial membrane lipids leading to hepatocyte apoptosis, which is substantially recovered upon T3 supplementation. PMID:24987693

  12. Supplementation of T3 Recovers Hypothyroid Rat Liver Cells from Oxidatively Damaged Inner Mitochondrial Membrane Leading to Apoptosis

    Directory of Open Access Journals (Sweden)

    Sutapa Mukherjee

    2014-01-01

    Full Text Available Hypothyroidism is a growing medical concern. There are conflicting reports regarding the mechanism of oxidative stress in hypothyroidism. Mitochondrial oxidative stress is pivotal to thyroid dysfunction. The present study aimed to delineate the effects of hepatic inner mitochondrial membrane dysfunction as a consequence of 6-n-propyl-2-thiouracil-induced hypothyroidism in rats. Increased oxidative stress predominance in the submitochondrial particles (SMP and altered antioxidant defenses in the mitochondrial matrix fraction correlated with hepatocyte apoptosis. In order to check whether the effects caused by hypothyroidism are reversed by T3, the above parameters were evaluated in a subset of T3-treated hypothyroid rats. Complex I activity was inhibited in hypothyroid SMP, whereas T3 supplementation upregulated electron transport chain complexes. Higher mitochondrial H2O2 levels in hypothyroidism due to reduced matrix GPx activity culminated in severe oxidative damage to membrane lipids. SMP and matrix proteins were stabilised in hypothyroidism but exhibited increased carbonylation after T3 administration. Glutathione content was higher in both. Hepatocyte apoptosis was evident in hypothyroid liver sections; T3 administration, on the other hand, exerted antiapoptotic and proproliferative effects. Hence, thyroid hormone level critically regulates functional integrity of hepatic mitochondria; hypothyroidism injures mitochondrial membrane lipids leading to hepatocyte apoptosis, which is substantially recovered upon T3 supplementation.

  13. Increased Uptake of Chelated Copper Ions by Lolium perenne Attributed to Amplified Membrane and Endodermal Damage

    Directory of Open Access Journals (Sweden)

    Anthea Johnson

    2015-10-01

    Full Text Available The contributions of mechanisms by which chelators influence metal translocation to plant shoot tissues are analyzed using a combination of numerical modelling and physical experiments. The model distinguishes between apoplastic and symplastic pathways of water and solute movement. It also includes the barrier effects of the endodermis and plasma membrane. Simulations are used to assess transport pathways for free and chelated metals, identifying mechanisms involved in chelate-enhanced phytoextraction. Hypothesized transport mechanisms and parameters specific to amendment treatments are estimated, with simulated results compared to experimental data. Parameter values for each amendment treatment are estimated based on literature and experimental values, and used for model calibration and simulation of amendment influences on solute transport pathways and mechanisms. Modeling indicates that chelation alters the pathways for Cu transport. For free ions, Cu transport to leaf tissue can be described using purely apoplastic or transcellular pathways. For strong chelators (ethylenediaminetetraacetic acid (EDTA and diethylenetriaminepentaacetic acid (DTPA, transport by the purely apoplastic pathway is insufficient to represent measured Cu transport to leaf tissue. Consistent with experimental observations, increased membrane permeability is required for simulating translocation in EDTA and DTPA treatments. Increasing the membrane permeability is key to enhancing phytoextraction efficiency.

  14. Interaction of Naja naja atra cardiotoxin 3 with H-trisaccharide modulates its hemolytic activity and membrane-damaging activity.

    Science.gov (United States)

    Kao, Pei-Hsiu; Lin, Shinne-Ren; Chang, Long-Sen

    2010-06-15

    To address whether saccharide moieties of blood groups A, B and O antigens modulate hemolytic activity of Naja naja atra cardiotoxins (CTXs), the present study was carried out. Unlike other CTX isotoxins, hemolytic activity of CTX3 toward blood group O cholesterol-depleted red blood cells (RBCs) was notably lower than that of blood groups A and B cholesterol-depleted RBCs. Conversion of blood group B RBCs into blood group O RBCs by alpha-galactosidase treatment attenuated the susceptibility for hemolytic activity of CTX3, suggesting that H-antigen affected hemolytic potency of CTX3. Pre-incubation with H-trisaccharide reduced hemolytic activity and membrane-damaging activity of CTX3. Moreover, CTX3 showed a higher binding capability with H-trisaccharide than other CTXs did. CD spectra showed that the binding with H-trisaccharide induced changes in gross conformation of CTX3. Self-quenching studies revealed that oligomerization of CTX3 was affected in the presence of H-trisaccharide. Taken together, our data suggest that the binding of CTX3 with H-antigen alters its membrane-bound mode, thus reducing its hemolytic activity toward blood group O cholesterol-depleted RBCs. 2010 Elsevier Ltd. All rights reserved.

  15. Intracellular and membrane-damaging activities of methyl gallate isolated from Terminalia chebula against multidrug-resistant Shigella spp.

    Science.gov (United States)

    Acharyya, Saurabh; Sarkar, Prodipta; Saha, Dhira R; Patra, Amarendra; Ramamurthy, T; Bag, Prasanta K

    2015-08-01

    Shigella spp. (Shigella dysenteriae, Shigella flexneri, Shigella boydii and Shigella sonnei) cause bacillary dysentery (shigellosis), which is characterized by bloody mucous diarrhoea. Although a variety of antibiotics have been effective for treatment of shigellosis, options are becoming limited due to globally emerging drug resistance. In the present study, in vitro antibacterial activity of methyl gallate (MG) isolated from Terminalia chebula was determined by performing MIC, minimal bactericidal concentration (MBC) and time-kill kinetic studies. Bacterial membrane-damaging activity of MG was determined by membrane perturbation and transmission electron microscopy (TEM). Cellular drug accumulation, cell infection and assessment of intracellular activities of MG and reference antibiotics were performed using HeLa cell cultures. The bactericidal activity of MG against multidrug-resistant (MDR) Shigella spp. in comparison with other commonly used drugs including fluoroquinolone was demonstrated here. TEM findings in the present study revealed that MG caused the total disintegration of inner and outer membranes, and leakage of the cytoplasmic contents of S. dysenteriae. The level of accumulation of MG and tetracycline in HeLa cells incubated for 24  h was relatively higher than that of ciprofloxacin and nalidixic acid (ratio of intracellular concentration/extracellular concentration of antibiotic for MG and tetracycline>ciprofloxacin and nalidixic acid). The viable number of intracellular S. dysenteriae was decreased in a time-dependent manner in the presence of MG (4 × MBC) and reduced to zero within 20  h. The significant intracellular activities of MG suggested that it could potentially be used as an effective antibacterial agent for the treatment of severe infections caused by MDR Shigella spp.

  16. Iron-Mediated Lysosomal Membrane Permeabilization in Ethanol-Induced Hepatic Oxidative Damage and Apoptosis: Protective Effects of Quercetin

    Directory of Open Access Journals (Sweden)

    Yanyan Li

    2016-01-01

    Full Text Available Iron, in its free ferrous states, can catalyze Fenton reaction to produce OH∙, which is recognized as a crucial role in the pathogenesis of alcoholic liver diseases (ALD. As a result of continuous decomposition of iron-containing compounds, lysosomes contain a pool of redox-active iron. To investigate the important role of intralysosomal iron in alcoholic liver injury and the potential protection of quercetin, male C57BL/6J mice fed by Lieber De Carli diets containing ethanol (30% of total calories were cotreated by quercetin or deferoxamine (DFO for 15 weeks and ethanol-incubated mice primary hepatocytes were pretreated with FeCl3, DFO, and bafilomycin A1 at their optimal concentrations and exposure times. Chronic ethanol consumption caused an evident increase in lysosomal redox-active iron accompanying sustained oxidative damage. Iron-mediated ROS could trigger lysosomal membrane permeabilization (LMP and subsequent mitochondria apoptosis. The hepatotoxicity was attenuated by reducing lysosomal iron while being exacerbated by escalating lysosomal iron. Quercetin substantially alleviated the alcoholic liver oxidative damage and apoptosis by decreasing lysosome iron and ameliorating iron-mediated LMP, which provided a new prospective of the use of quercetin against ALD.

  17. Alterations of domains in the plasmatic membrane due to damages of the perinuclear theca of pig preserved spermatozoa.

    Science.gov (United States)

    Orozco Benítez, María Guadalupe; Lemus Flores, Clemente; Hernández Ballesteros, Juan Antonio; Navarrete Méndez, Raúl; Juárez-Mosqueda, María de Lourdes

    2008-05-15

    Samples of semen from 12 pigs, three from Yorkshire, Landrace, Duroc and Mexican Hairless each where obtained to study cryopreservation methods. Three stages of boar semen cryopreservation were evaluated: none (fresh stage), cooling at 5 degrees C and freezing at -196 degrees C then thawing to 56 degrees C for 12 sec. Perinuclear theca damage and domain alterations were selected as indices of seminal quality, as measured by electronic and fluorescence microcopy, respectively according to two lineal models considering by separately the effect of semen preservation and breed. Integrity and absence of perinuclear theca significantly (p membrane distribution of domains, from 92.1 to 76.8% and from 3.1 to 13.1% in this same order. Slight but highly significant (p < 0.001) differences were observed when theca integrity was evaluated as affected by breed, with highest and lowest values for Yorkshire and Pel6n Mexicano pigs, respectively. No breed effect was encountered for presence of acrosomal domains. A strong interdependence was found between perinuclear theca damage and domain distribution. In this connection, a highly significant (p < 0.001) positive, interdependence was observed between the theca damage and acrosomal domain (r = 0.87), while this same relationship was although highly significant (p < 0.001), negative in nature for equatorial and post-acrosonal domains (r = -0.77 and -0.85, respectively). This experiment confirmed that cryopreservation methods may severely affect semen quality of pigs and that genotype may further influence these same indices. More research is needed for improving methods of preservation of pig semen quality, from the point of view of perinuclear theca and domain characteristics of spermatozoa.

  18. α-Synuclein Oligomers Stabilize Pre-Existing Defects in Supported Bilayers and Propagate Membrane Damage in a Fractal-Like Pattern

    NARCIS (Netherlands)

    Chaudhary, Himanshu; Iyer, Aditya; Subramaniam, Vinod; Claessens, Mireille M A E

    2016-01-01

    Phospholipid vesicles are commonly used to get insights into the mechanism by which oligomers of amyloidogenic proteins damage membranes. Oligomers of the protein α-synuclein (αS) are thought to create pores in phospholipid vesicles containing a high amount of anionic phospholipids but fail to

  19. Abnormal reticuloendothelial function in patients with active vasculitis and idiopathic membranous glomerulopathy - a study with tc-99m-labeled heat-damaged autologous red-blood-cells

    NARCIS (Netherlands)

    van der Woude, Fokko J.; Piers, D. Albertus; van der Giessen, M.; Hoedemaeker, P. J.; The, T. Hauw; van der Hem, G. K.

    Reticuloendothelial function was assessed in 11 patients with systemic lupus erythematosus, 8 patients with Wegener's granulomatosus, and 20 patients with idiopathic membranous glomerulopathy by using autologous 99mTc-labeled heat-damaged red blood cells. With this method organ uptake could be

  20. Nuclear DNA sensor IFI16 as circulating protein in autoimmune diseases is a signal of damage that impairs endothelial cells through high-affinity membrane binding.

    Directory of Open Access Journals (Sweden)

    Francesca Gugliesi

    Full Text Available IFI16, a nuclear pathogenic DNA sensor induced by several pro-inflammatory cytokines, is a multifaceted protein with various functions. It is also a target for autoantibodies as specific antibodies have been demonstrated in the sera of patients affected by systemic autoimmune diseases. Following transfection of virus-derived DNA, or treatment with UVB, IFI16 delocalizes from the nucleus to the cytoplasm and is then eventually released into the extracellular milieu. In this study, using an in-house capture enzyme-linked immunsorbent assay we demonstrate that significant levels of IFI16 protein can also exist as circulating form in the sera of autoimmune patients. We also show that the rIFI16 protein, when added in-vitro to endothelial cells, does not affect cell viability, but severely limits their tubulogenesis and transwell migration activities. These inhibitory effects are fully reversed in the presence of anti-IFI16 N-terminal antibodies, indicating that its extracellular activity resides within the N-terminus. It was further demonstrated that endogenous IFI16 released by apoptotic cells bind neighboring cells in a co-culture. Immunofluorescence assays revealed existence of high-affinity binding sites on the plasma membrane of endothelial cells. Free recombinant IFI16 binds these sites on HUVEC with dissociation constant of 2.7 nM, radioiodinated and unlabeled IFI16 compete for binding sites, with inhibition constant (Ki of 14.43 nM and half maximal inhibitory concentration (IC50 of 67.88 nM; these data allow us to estimate the presence of 250,000 to 450,000 specific binding sites per cell. Corroborating the results from functional assays, this binding could be completely inhibited using anti-IFI16 N-terminal antibody, but not with an antibody raised against the IFI16 C-terminal. Altogether, these data demonstrate that IFI16 may exist as circulating protein in the sera of autoimmune patients which binds endothelial cells causing damage

  1. Green synthesized silver nanoparticles destroy multidrug resistant bacteria via reactive oxygen species mediated membrane damage

    Directory of Open Access Journals (Sweden)

    Balaram Das

    2017-09-01

    Full Text Available The growing need of antimicrobial agent for novel therapies against multi-drug resistant bacteria has drawn researchers to green nanotechnology. Especially, eco-friendly biosynthesis of silver nanoparticles (Ag NPs has shown its interesting impact against bacterial infection in laboratory research. In this study, a simple method was developed to form Ag NPs at room temperature, bio-reduction of silver ions from silver nitrate salt by leaf extract from Ocimum gratissimum. The Ag NPs appear to be capped with plant proteins, but are otherwise highly crystalline and pure. The Ag NPs have a zeta potential of −15 mV, a hydrodynamic diameter of 31 nm with polydispersity index of 0.65, and dry sizes of 18 ± 3 nm and 16 ± 2 nm, based on scanning and transmission electron microscopy respectively. The minimum inhibitory concentration (MIC of the Ag NPs against a multi-drug resistant Escherichia coli was 4 μg/mL and the minimum bactericidal concentration (MBC was 8 μg/mL, while the MIC and MBC against a resistant strain of Staphylococcus aureus were slightly higher at 8 μg/mL and 16 μg/mL respectively. Further, the Ag NPs inhibited biofilm formation by both Escherichia coli and S. aureus at concentrations similar to the MIC for each strain. Treatment of E. coli and S. aureus with Ag NPs resulted in damage to the surface of the cells and the production of reactive oxygen species. Both mechanisms likely contribute to bacterial cell death. In summary, this new method appears promising for green biosynthesis of pure Ag NPs with potent antimicrobial activity.

  2. X-radiation damage of hydrated lecithin membranes detected by real-time X-ray diffraction using wiggler-enhanced synchrotron radiation as the ionizing radiation source

    Science.gov (United States)

    Caffrey, Martin

    1984-05-01

    Radiation damage of hydrated lecithin membranes brought about by exposure to wiggler-derived synchrotron radiation at 8.3 keV (1.5 Å) is reported. Considerable damage was observed with exposures under 1 h at an incident flux density of 3 × 10 10 photon s -1 mm -2, corresponding to a cumulative radiation dose of ≦10 MRad. Damage was so dramatic as to be initially observed while making real-time X-ray diffraction measurements on the sample. The damaging effects of 8.3 keV X-rays on dispersions of dipalmitoyllecithin and lecithin derived from hen egg yolk are as follows: (1) marked changes were noted in the X-ray diffraction behaviour, indicating disruption of membrane stacking. (2) Chemical breakdown of lecithin was observed. (3) The X-ray beam visibly damaged the sample and changed the appearance of the lipid dispersion, when viewed under the light microscope. Considering the importance of X-ray diffraction as a structural probe and the anticipated use of synchrotron radiation in studies involving membranes, the problem of radiation damage must be duly recognized. Furthermore, since dipalmitoyllecithin, the major lipid used in the present study, is a relatively stable compound, it is not unreasonable to expect that X-ray damage may be a problem with other less stable biological and non-biological materials. These results serve to emphasize that whenever a high intensity X-ray source is used, radiation damage can be a problem and that the sensitivity of the sample must always be evaluated under the conditions of measurement.

  3. Determination of glucose exchange rates and permeability of erythrocyte membrane in preeclampsia and subsequent oxidative stress-related protein damage using dynamic-19F-NMR.

    Science.gov (United States)

    Dickinson, Elizabeth; Arnold, John R P; Fisher, Julie

    2017-02-01

    The cause of the pregnancy condition preeclampsia (PE) is thought to be endothelial dysfunction caused by oxidative stress. As abnormal glucose tolerance has also been associated with PE, we use a fluorinated-mimic of this metabolite to establish whether any oxidative damage to lipids and proteins in the erythrocyte membrane has increased cell membrane permeability. Data were acquired using 19 F Dynamic-NMR (DNMR) to measure exchange of 3-fluoro-3-deoxyglucose (3-FDG) across the membrane of erythrocytes from 10 pregnant women (5 healthy control women, and 5 from women suffering from PE). Magnetisation transfer was measured using the 1D selective inversion and 2D EXSY pulse sequences, over a range of time delays. Integrated intensities from these experiments were used in matrix diagonalisation to estimate the values of the rate constants of exchange and membrane permeability. No significant differences were observed for the rate of exchange of 3-FDG and membrane permeability between healthy pregnant women and those suffering from PE, leading us to conclude that no oxidative damage had occurred at this carrier-protein site in the membrane.

  4. Determination of glucose exchange rates and permeability of erythrocyte membrane in preeclampsia and subsequent oxidative stress-related protein damage using dynamic-{sup 19}F-NMR

    Energy Technology Data Exchange (ETDEWEB)

    Dickinson, Elizabeth, E-mail: elizabeth.dickinson@york.ac.uk [University of York, Department of Chemistry (United Kingdom); Arnold, John R. P. [Selby College (United Kingdom); Fisher, Julie [University of Leeds, School of Chemistry (United Kingdom)

    2017-02-15

    The cause of the pregnancy condition preeclampsia (PE) is thought to be endothelial dysfunction caused by oxidative stress. As abnormal glucose tolerance has also been associated with PE, we use a fluorinated-mimic of this metabolite to establish whether any oxidative damage to lipids and proteins in the erythrocyte membrane has increased cell membrane permeability. Data were acquired using {sup 19}F Dynamic-NMR (DNMR) to measure exchange of 3-fluoro-3-deoxyglucose (3-FDG) across the membrane of erythrocytes from 10 pregnant women (5 healthy control women, and 5 from women suffering from PE). Magnetisation transfer was measured using the 1D selective inversion and 2D EXSY pulse sequences, over a range of time delays. Integrated intensities from these experiments were used in matrix diagonalisation to estimate the values of the rate constants of exchange and membrane permeability. No significant differences were observed for the rate of exchange of 3-FDG and membrane permeability between healthy pregnant women and those suffering from PE, leading us to conclude that no oxidative damage had occurred at this carrier-protein site in the membrane.

  5. Fluorescent multiple staining and CASA system to assess boar sperm viability and membranes integrity in short and long-term extenders.

    Science.gov (United States)

    Lange-Consiglio, A; Meucci, A; Cremonesi, F

    2013-01-01

    The aim of this study was to assess the effect on boar spermatozoa quality of in vitro storage in short and long-term extenders by fluorescent multiple staining (FMS) and computer assisted semen analyzer (CASA). Fresh ejaculates from three healthy, sexually mature boars were diluted with equal volumes of six short-term or three long-term commercial extenders and stored at 19°C for 6 days (short-term) or 12 days (long-term). The integrity of spermatozoa membranes was analyzed by FMS using propidium iodide, 5,5',6,6'-tetrachloro-1,1',3,3' tetraethylbenzimidazolyl-carbocyanine iodide (JC-1) and fluorescein isothiocyanate-conjugated peanut agglutinin (PNA). The results obtained from this staining were compared with spermatozoa motility assessed by CASA. Our study showed that the number of viable spermatozoa with non-reacted acrosomes and intact mitochondria was positively correlated with the rate of motile spermatozoa (r(2)>0.9) irrespective of the extender used. In all extenders the number of motile spermatozoa significantly decreased as preservation period increased (P<0.05). FMS test is a potent indicator of sperm motility because it analyses mitochondrial integrity independently from observable alterations in motility. The best performing extenders were BTS for short-term storage and TRI-x-Cell for long-term storage.

  6. Membranes

    OpenAIRE

    Junbo Hou; Min Yang

    2012-01-01

    Lithium ion batteries have proven themselves the main choice of power sources for portable electronics. Besides consumer electronics, lithium ion batteries are also growing in popularity for military, electric vehicle, and aerospace applications. The present review attempts to summarize the knowledge about some selected membranes in lithium ion batteries. Based on the type of electrolyte used, literature concerning ceramic-glass and polymer solid ion conductors, microporous filter type separa...

  7. Intracellular, biofilm-inhibitory and membrane-damaging activities of nimbolide isolated from Azadirachta indica A. Juss (Meliaceae) against meticillin-resistant Staphylococcus aureus.

    Science.gov (United States)

    Sarkar, Prodipta; Acharyya, Saurabh; Banerjee, Anirban; Patra, Amarendra; Thankamani, Karthika; Koley, Hemanta; Bag, Prasanta K

    2016-10-01

    Staphylococcus aureus is a leading aetiologic agent of nosocomial- and community-acquired infectious diseases worldwide. The public health concern regarding staphylococcal infections is inflated by the increasing occurrence of multidrug-resistant strains, e.g. multidrug- and meticillin-resistant S.aureus (MDR MRSA). This study was designed to evaluate the intracellular killing, membrane-damaging and biofilm-inhibitory activities of nimbolide isolated from Azadirachta indica against MDR MRSA. In vitro antibacterial activity of nimbolide was determined by performing MIC, minimal bactericidal concentration (MBC) and time-kill kinetic studies. Bacterial membrane-damaging activity was determined by membrane perturbation and scanning electron microscopy (SEM) examination. Biofilm-inhibitory activities were determined by SEM. Cellular drug accumulation and assessments of intracellular activities were performed using Vero cell culture. SEM revealed that nimbolide caused significant membrane damage and lysis of the S. aureus cells. The biofilm structure was disrupted, and the biofilm formation was greatly reduced in the presence of nimbolide as examined by SEM. The level of accumulation of nimbolide in Vero cells incubated for 24 h is relatively higher than that of ciprofloxacin and nalidixic acid (Cc/Ce for nimbolide > ciprofloxacin and nalidixic acid). The viable number of intracellular S. aureus was decreased [reduction of ~2 log10 c.f.u. (mg Vero cell protein)-1] in a time-dependent manner in the presence of nimbolide (4× MBC) that was comparable to that of tetracycline and nalidixic acid. The significant intracellular, biofilm-inhibitory and bacterial membrane-damaging activities of nimbolide demonstrated here suggested that it has potential as an effective antibacterial agent for the treatment of severe infections caused by MDR MRSA.

  8. Effect of a Vietnamese Cinnamomum cassia essential oil and its major component trans-cinnamaldehyde on the cell viability, membrane integrity, membrane fluidity, and proton motive force of Listeria innocua.

    Science.gov (United States)

    Trinh, Nga-Thi-Thanh; Dumas, Emilie; Thanh, Mai Le; Degraeve, Pascal; Ben Amara, Chedia; Gharsallaoui, Adem; Oulahal, Nadia

    2015-04-01

    The antibacterial mechanism of a Cinnamomum cassia essential oil from Vietnam and of its main component (trans-cinnamaldehyde, 90% (m/m) of C. cassia essential oil) against a Listeria innocua strain was investigated to estimate their potential for food preservation. In the presence of C. cassia essential oil or trans-cinnamaldehyde at their minimal bactericidal concentration (2700 μg·mL(-1)), L. innocua cells fluoresced green after staining with Syto9® and propidium iodide, as observed by epifluorescence microscopy, suggesting that the perturbation of membrane did not cause large pore formation and cell lysis but may have introduced the presence of viable but nonculturable bacteria. Moreover, the fluidity, potential, and intracellular pH of the cytoplasmic membrane were perturbed in the presence of the essential oil or trans-cinnamaldehyde. However, these membrane perturbations were less severe in the presence of trans-cinnamaldehyde than in the presence of multicomponent C. cassia essential oil. This indicates that in addition to trans-cinnamaldehyde, other minor C. cassia essential oil components play a major role in its antibacterial activity against L. innocua cells.

  9. DNA fragmentation and membrane damage of bocachico Prochilodus magdalenae (Ostariophysi: Prochilodontidae sperm following cryopreservation with dimethylsulfoxide and glucose

    Directory of Open Access Journals (Sweden)

    José Gregorio Martínez

    Full Text Available The endangered bocachico Prochilodus magdalenae is a native freshwater fish of Colombia, the most captured species locally and one of the most important species for ex-situ conservation (germplasm banks. The aim of this study was to examine the effect of three concentrations of Dimethylsulfoxide (DMSO (5%, 10%, 15% and three of glucose (305, 333, 361 mM in the extender on spermatic DNA fragmentation (F-DNA (by Halomax®, Chromatin dispersion and membrane damage (D-Me (by eosin-nigrosin staining. After assessment of sperm quality by computer analysis of motility, one part of semen from males was diluted separately with three parts of extender and filled into 0.5 ml straws. Freezing was carried out in liquid nitrogen vapor dry shipper for 30 minutes and thawed at 60ºC for 8 seconds in a water bath and evaluated for the percentage of cells found with F-DNA and D-Me. The results demonstrated that cryopreservation causes greater F-DNA (13.62 ± 1.6% to 28.91 ± 3.25 and D-Me (24.27 ± 1.1% to 58.33 ± 2.81% when compared with pre-freezing semen (PFS (6.71 ± 1.54% and 2.34 ± 0.5%, respectively for F-DNA and D-Me. A significant interaction was found between DMSO and glucose concentration in this experiment. Use of extender: 10% DMSO + 305 mM glucose + 12% chicken egg yolk and, 10% DMSO + 333 mM glucose + 12% chicken egg yolk, allow for lower F-DNA and D-Me during cryopreservation of bocachico semen. A high correlation between F-DNA and D-Me was found (r = 0.771.

  10. Cytotoxicity and Effects on Cell Viability of Nickel Nanowires

    KAUST Repository

    Rodriguez, Jose E.

    2013-05-01

    Recently, magnetic nanoparticles are finding an increased use in biomedical applications and research. Nanobeads are widely used for cell separation, biosensing and cancer therapy, among others. Due to their properties, nanowires (NWs) are gaining ground for similar applications and, as with all biomaterials, their cytotoxicity is an important factor to be considered before conducting biological studies with them. In this work, the cytotoxic effects of nickel NWs (Ni NWs) were investigated in terms of cell viability and damage to the cellular membrane. Ni NWs with an average diameter of 30-34 nm were prepared by electrodeposition in nanoporous alumina templates. The templates were obtained by a two-step anodization process with oxalic acid on an aluminum substrate. Characterization of NWs was done using X-Ray diffraction (XRD) and energy dispersive X-Ray analysis (EDAX), whereas their morphology was observed with scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Cell viability studies were carried out on human colorectal carcinoma cells HCT 116 by the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) cell proliferation colorimetric assay, whereas the lactate dehydrogenase (LDH) homogenous membrane fluorimetric assay was used to measure the degree of cell membrane rupture. The density of cell seeding was calculated to obtain a specific cell number and confluency before treatment with NWs. Optical readings of the cell-reduced MTT products were measured at 570 nm, whereas fluorescent LDH membrane leakage was recorded with an excitation wavelength of 525 nm and an emission wavelength of 580 - 640 nm. The effects of NW length, cell exposure time, as well as NW:cell ratio, were evaluated through both cytotoxic assays. The results show that cell viability due to Ni NWs is affected depending on both exposure time and NW number. On the other hand, membrane rupture and leakage was only significant at later exposure times. Both

  11. Ultrasound-induced membrane lipid peroxidation and cell damage of Escherichia coli in the presence of non-woven TiO2 fabrics.

    Science.gov (United States)

    Rahman, Mohammad Mizanur; Ninomiya, Kazuaki; Ogino, Chiaki; Shimizu, Nobuaki

    2010-04-01

    A non-woven titanium dioxide (TiO(2)) fabric was applied to disinfection by ultrasound (US) irradiation, and the disinfection efficiency and lipid peroxidation of Escherichia coli (E. coli) cell membrane were evaluated to investigate the killing process. The addition of non-woven TiO(2) fabric enhanced hydroxyl (OH) radical generation and disinfection efficiency. Judging from the disinfection experiments using glutathione or t-butanol as a radical scavenger, the OH radical played a major role in cell killing in sonodynamic disinfection with non-woven TiO(2) fabric. Moreover, to understand the detailed killing process, damage to cell membrane was also evaluated using a diphenyl-1-pyrenylphosphine (DPPP) fluorescent probe, which detects the membrane's lipid peroxidation. The addition of non-woven TiO(2) fabric aggravated this peroxidation. This aggravation was caused by the OH radical according to an assay using a radical scavenger. From these results, it was concluded that non-woven TiO(2) fabric as a sonocatalyst promoted peroxidation of the polyunsaturated phospholipid component of the lipid membrane initially and induced a major disorder in the E. coli cell membrane under US irradiation. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  12. Rare mutations and potentially damaging missense variants in genes encoding fibrillar collagens and proteins involved in their production are candidates for risk for preterm premature rupture of membranes.

    Science.gov (United States)

    Modi, Bhavi P; Teves, Maria E; Pearson, Laurel N; Parikh, Hardik I; Chaemsaithong, Piya; Sheth, Nihar U; York, Timothy P; Romero, Roberto; Strauss, Jerome F

    2017-01-01

    Preterm premature rupture of membranes (PPROM) is the leading identifiable cause of preterm birth with ~ 40% of preterm births being associated with PPROM and occurs in 1% - 2% of all pregnancies. We hypothesized that multiple rare variants in fetal genes involved in extracellular matrix synthesis would associate with PPROM, based on the assumption that impaired elaboration of matrix proteins would reduce fetal membrane tensile strength, predisposing to unscheduled rupture. We performed whole exome sequencing (WES) on neonatal DNA derived from pregnancies complicated by PPROM (49 cases) and healthy term deliveries (20 controls) to identify candidate mutations/variants. Genotyping for selected variants from the WES study was carried out on an additional 188 PPROM cases and 175 controls. All mothers were self-reported African Americans, and a panel of ancestry informative markers was used to control for genetic ancestry in all genetic association tests. In support of the primary hypothesis, a statistically significant genetic burden (all samples combined, SKAT-O p-value = 0.0225) of damaging/potentially damaging rare variants was identified in the genes of interest-fibrillar collagen genes, which contribute to fetal membrane strength and integrity. These findings suggest that the fetal contribution to PPROM is polygenic, and driven by an increased burden of rare variants that may also contribute to the disparities in rates of preterm birth among African Americans.

  13. Bacteria May Cope Differently from Similar Membrane Damage Caused by the Australian Tree Frog Antimicrobial Peptide Maculatin 1.1.

    Science.gov (United States)

    Sani, Marc-Antoine; Henriques, Sónia Troeira; Weber, Daniel; Separovic, Frances

    2015-08-07

    Maculatin 1.1 (Mac1) is an antimicrobial peptide from the skin of Australian tree frogs and is known to possess selectivity toward Gram-positive bacteria. Although Mac1 has membrane disrupting activity, it is not known how Mac1 selectively targets Gram-positive over Gram-negative bacteria. The interaction of Mac1 with Escherichia coli, Staphylococcus aureus, and human red blood cells (hRBC) and with their mimetic model membranes is here reported. The peptide showed a 16-fold greater growth inhibition activity against S. aureus (4 μM) than against E. coli (64 μM) and an intermediate cytotoxicity against hRBC (30 μM). Surprisingly, Sytox Green uptake monitored by flow cytometry showed that Mac1 compromised both bacterial membranes with similar efficiency at ∼20-fold lower concentration than the reported minimum inhibition concentration against S. aureus. Mac1 also reduced the negative potential of S. aureus and E. coli membrane with similar efficacy. Furthermore, liposomes mimicking the cell membrane of S. aureus (POPG/TOCL) and E. coli (POPE/POPG) were lysed at similar concentrations, whereas hRBC-like vesicles (POPC/SM/Chol) remained mostly intact in the presence of Mac1. Remarkably, when POPG/TOCL and POPE/POPG liposomes were co-incubated, Mac1 did not induce leakage from POPE/POPG liposomes, suggesting a preference toward POPG/TOCL membranes that was supported by surface plasma resonance assays. Interestingly, circular dichroism spectroscopy showed a similar helical conformation in the presence of the anionic liposomes but not the hRBC mimics. Overall, the study showed that Mac1 disrupts bacterial membranes in a similar fashion before cell death events and would preferentially target S. aureus over E. coli or hRBC membranes. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Biochemical and micrographic evidence of Escherichia coli membrane damage during incubation in egg white under bactericidal conditions.

    Science.gov (United States)

    Jan, Sophie; Baron, Florence; Alabdeh, Mariah; Chaari, Walid; Grosset, Noël; Cochet, Marie-Françoise; Gautier, Michel; Vié, Véronique; Nau, Françoise

    2013-09-01

    Bacterial membranes are often thought to be the main targets of the antimicrobial activity of egg white. In order to test this hypothesis, the state of the membranes of Escherichia coli K-12 cells during either bactericidal (45°C) or bacteriostatic (30°C) incubation in egg white at natural alkaline pH was studied by biochemical methods. Namely, the permeability of the outer membrane was evaluated through its ability to incorporate a hydrophobic fluorescent probe (1-N-phenylnaphthylamine), and the permeability of the cytoplasmic membrane was evaluated through the release of a specific intracellular enzyme (β-galactosidase). The bacteria were observed by atomic force microscopy in order to support the biochemical results. At 45°C, the outer membrane of E. coli K-12 incorporated the hydrophobic probe, suggesting that it was disrupted. In addition, the cytoplasmic β-galactosidase was released at this temperature. The atomic force microscopy analysis revealed the formation of spheroplasts, which provided further evidence of the cell wall disruption and a progressive release of cellular contents. At 30°C, biochemical and micrographic experiments confirmed that membrane integrity was preserved. These techniques provide a useful approach for studying the mechanisms of bacterial cell death in egg white.

  15. Photothermal effects of multi-walled carbon nanotubes on the viability of BT-474 cancer cells.

    Science.gov (United States)

    Chou, Hung-Tao; Wang, Tsung-Pao; Lee, Chi-Young; Tai, Nyan-Hwa; Chang, Hwan-You

    2013-03-01

    Functionalized multi-walled carbon nanotubes (f-MWCNTs) were conjugated to an antibody of BT-474 cancer cells (f-MWCNTs-ab), and the photothermal effect of the f-MWCNTs-ab for BT-474 cancer cell destruction was demonstrated. After near-infrared irradiation, the f-MWCNTs-ab were more capable of killing cancer cells and possessed higher cell specificity than f-MWCNTs. Quantitative results showed that the viability of the cancer cells was affected by the concentration of the f-MWCNTs-ab solution, irradiation time, and settling time after irradiation. The membrane impermeable fluorescence dye ethidium bromide was used to detect cell viability after near-infrared irradiation, and the results agreed with those obtained from the Alamar Blue cell viability assay. The EtBr fluorescence results suggest that the cell membrane, attached to f-MWCNTs-ab, was damaged after irradiation, which led to cell death and necrosis. Using confocal microscopy, a few f-MWCNTs-ab were detected in the cell, indicating the endocytosis effect. The results not only explain the improved efficiency of thermotherapy but also indicate that necrosis may result from protein denaturation attributing to the heated f-MWCNTs-ab in the cell. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. The random co-polymer glatiramer acetate rapidly kills primary human leukocytes through sialic-acid-dependent cell membrane damage

    DEFF Research Database (Denmark)

    Christiansen, Stig Hill; Zhang, Xianwei; Juul-Madsen, Kristian

    2017-01-01

    in innate immunity. It shares the positive charge and amphipathic character of GA, and, as shown here, also the ability to kill human leukocyte. The cytotoxicity of both compounds depends on sialic acid in the cell membrane. The killing was associated with the generation of CD45 + debris, derived from cell...... membrane deformation. Nanoparticle tracking analysis confirmed the formation of such debris, even at low GA concentrations. Electric cell-substrate impedance sensing measurements also recorded stable alterations in T lymphocytes following such treatment. LL-37 forms oligomers through weak hydrophobic...

  17. Melatonin reverses the enhanced oxidative damage to membrane lipids and improves skin biophysical characteristics in former-smokers - A study in postmenopausal women.

    Science.gov (United States)

    Sagan, Dorota; Stepniak, Jan; Gesing, Adam; Lewinski, Andrzej; Karbownik-Lewinska, Malgorzata

    2017-12-23

    Protective antioxidative effects of melatonin have been repeatedly documented in experimental and clinical studies. One of the most spectacular exogenous prooxidative agents is cigarette smoking. The aim of the study was to evaluate the level of oxidative damage to membrane lipids (lipid peroxidation; LPO) in blood serum, and in epidermis exfoliated during microdermabrasion collected from former-smokers who were treated with melatonin. The study was performed in postmenopausal women. Ninety (90) female volunteers, aged 46-67 years, were enrolled. Two major groups, i.e. never-smokers (n=44) and former-smokers (n=46), were divided into: Control, melatonin topical skin application, Restructurer (containing antioxidants) topical skin application, and melatonin oral treatment. Microdermabrasion was performed at point '0', after 2 weeks, and after 4 weeks of treatment. The following parameters were measured: LPO in blood serum, LPO in epidermis exfoliated during microdermabrasion, and skin biophysical characteristics, such as sebum, moisture, elasticity, and pigmentation. Malondialdehyde+4-hydroxyalkenals level (LPO index) was measured spectrophotometrically. Melatonin oral treatment significantly reversed the increased serum LPO level in former-smokers already after 2 weeks of treatment. In a univariate regression model, LPO blood level constituted the only independent factor negatively associated with melatonin oral treatment. After 4 weeks of treatment, melatonin given orally increased skin sebum, moisture and elasticity levels, and melatonin applied topically increased sebum level. Exogenous melatonin reverses the enhanced oxidative damage to membrane lipids and improves skin biophysical characteristics in former-smokers.

  18. Cysteinyl 1 Receptor Antagonist Montelukast, Does Not Prevent Peritoneal Membrane Damage in Experimental Chronic Peritoneal Dialysis Model in Rats

    Directory of Open Access Journals (Sweden)

    Sibel Koçak Yucel

    2014-12-01

    Full Text Available Background/Aims: Continuous ambulatory peritoneal dialysis (CAPD induces structural changes in the peritoneal membrane such as fibrosis, vasculopathy and angioneogenesis with a reduction in ultrafiltration capacity. Leukotriene (LT receptor antagonists have been found to be effective to prevent fibrosis in some nonperitoneal tissues. The aim of this study is to investigate the possible beneficial effect of montelukast, a LT receptor antagonist, on peritoneal membrane exposed to hypertonic peritoneal dialysis in uremic rats. Methods: Of the 48 male, 5/6 nephrectomized Wistar rats 29 remained alive and were included in the study. These studied rats were divided into 3 groups: Group I (n=7 was the control group, Group II (n=8 was treated with 20 ml hypertonic PDF intraperitoneally daily and Group III was treated with montelukast and similar PDF treatment protocol. The morphological and functional changes in the peritoneal membrane as well as cytokine expression were compared between groups. Results: Submesothelial thickness and the severity of the degree of hyaline vasculapathy were more prominent in group III when compared to group I. There were no significant differences between group II and other groups in terms of submesothelial thickness and the severity of the degree of hyaline vasculapathy. Increased expressions of TGF-β and VEGF in parietal peritoneal membrane were found in group II and group III when compared to group I. The amount of TGF-β and VEGF expression were similar in group II and group III. Conclusion: This study suggests that montelukast treatment does not prevent the peritoneal membrane from deleterious effects of hyperosmolar PDF in the uremic environment.

  19. DNA fragmentation and membrane damage of bocachico Prochilodus magdalenae (Ostariophysi: Prochilodontidae sperm following cryopreservation with dimethylsulfoxide and glucose

    Directory of Open Access Journals (Sweden)

    José Gregorio Martínez

    2012-09-01

    Full Text Available The endangered bocachico Prochilodus magdalenae is a native freshwater fish of Colombia, the most captured species locally and one of the most important species for ex-situ conservation (germplasm banks. The aim of this study was to examine the effect of three concentrations of Dimethylsulfoxide (DMSO (5%, 10%, 15% and three of glucose (305, 333, 361 mM in the extender on spermatic DNA fragmentation (F-DNA (by Halomax®, Chromatin dispersion and membrane damage (D-Me (by eosin-nigrosin staining. After assessment of sperm quality by computer analysis of motility, one part of semen from males was diluted separately with three parts of extender and filled into 0.5 ml straws. Freezing was carried out in liquid nitrogen vapor dry shipper for 30 minutes and thawed at 60ºC for 8 seconds in a water bath and evaluated for the percentage of cells found with F-DNA and D-Me. The results demonstrated that cryopreservation causes greater F-DNA (13.62 ± 1.6% to 28.91 ± 3.25 and D-Me (24.27 ± 1.1% to 58.33 ± 2.81% when compared with pre-freezing semen (PFS (6.71 ± 1.54% and 2.34 ± 0.5%, respectively for F-DNA and D-Me. A significant interaction was found between DMSO and glucose concentration in this experiment. Use of extender: 10% DMSO + 305 mM glucose + 12% chicken egg yolk and, 10% DMSO + 333 mM glucose + 12% chicken egg yolk, allow for lower F-DNA and D-Me during cryopreservation of bocachico semen. A high correlation between F-DNA and D-Me was found (r = 0.771.O curimba Prochilodus magdalenae, é uma espécie nativa de água doce da Colômbia ameaçada de extinção, sendo a mais capturada localmente e uma das mais importantes para a conservação ex-situ (bancos de germoplasma. O objetivo deste estudo foi avaliar o efeito de três concentrações de dimetilsulfóxido (DMSO (5%, 10%, 15% e três de glicose (305, 333, 361 mM no diluente sobre a fragmentação do ADN espermático (F-DNA (através de Halomax®, dispersão da cromatina e danos em

  20. Antioxidant treatment in the absence of exogenous lipids and proteins protects rhesus macaque sperm from cryopreservation-induced cell membrane damage.

    Science.gov (United States)

    McCarthy, Megan J; Meyers, Stuart A

    2011-07-01

    Osmotic stress caused oxidative stress in rhesus macaque sperm, which was alleviated by antioxidant supplementation. The objective of the present study was to demonstrate that cryopreservation of rhesus macaque sperm also induces reactive oxygen species (ROS) production, and to determine whether ROS have an important role in cryopreservation-induced membrane. Additionally, we evaluated the antioxidant capacity of TEST (N-Tris(hydroxymethyl)methyl-2-aminoethanesulfonic acid-Tris) buffer (with 20% egg yolk and 13% skim milk) and supplementation with antioxidants, superoxide dismutase (SOD), catalase (CAT), and α-tocopherol. There was a substantial level of ROS production in both the presence (15% increase in superoxide, P membrane protection against ROS, but increased postthaw total and progressive motility by 10% (P lipid peroxidation by 61% (P sperm induced a significant increase in ROS and that antioxidant supplementation (N-Tris(hydroxymethyl)methyl-2-aminoethanesulfonic acid-Tris) can significantly decrease the extent of ROS-induced membrane damage. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Viability, invariance and applications

    CERN Document Server

    Carja, Ovidiu; Vrabie, Ioan I

    2007-01-01

    The book is an almost self-contained presentation of the most important concepts and results in viability and invariance. The viability of a set K with respect to a given function (or multi-function) F, defined on it, describes the property that, for each initial data in K, the differential equation (or inclusion) driven by that function or multi-function) to have at least one solution. The invariance of a set K with respect to a function (or multi-function) F, defined on a larger set D, is that property which says that each solution of the differential equation (or inclusion) driven by F and issuing in K remains in K, at least for a short time.The book includes the most important necessary and sufficient conditions for viability starting with Nagumo's Viability Theorem for ordinary differential equations with continuous right-hand sides and continuing with the corresponding extensions either to differential inclusions or to semilinear or even fully nonlinear evolution equations, systems and inclusions. In th...

  2. The random co-polymer glatiramer acetate rapidly kills primary human leukocytes through sialic-acid-dependent cell membrane damage

    DEFF Research Database (Denmark)

    Christiansen, Stig Hill; Zhang, Xianwei; Juul-Madsen, Kristian

    2017-01-01

    in innate immunity. It shares the positive charge and amphipathic character of GA, and, as shown here, also the ability to kill human leukocyte. The cytotoxicity of both compounds depends on sialic acid in the cell membrane. The killing was associated with the generation of CD45 + debris, derived from cell...... of certain oligomeric and chemical properties to support cytotoxic effects of cationic polymers targeting human leukocytes....

  3. Leghemoglobin-derived radicals. Evidence for multiple protein-derived radicals and the initiation of peribacteroid membrane damage

    DEFF Research Database (Denmark)

    Moreau, S; Davies, Michael Jonathan; Mathieu, C

    1996-01-01

    Reaction of H2O2 with ferric leghemoglobin (metLb, the monomeric, oxygen-carrying, heme protein from root nodules of nitrogen-fixing plants) has been previously shown to generate an iron(IV)-oxo (ferryl) species and at least one protein radical. The latter has been suggested to be a tyrosine...... significance; the destruction of this membrane is one of the earliest observable events in root nodule senescence and is associated with the loss of nitrogen-fixing activity....

  4. Estrogen-induced disruption of intracellular iron metabolism leads to oxidative stress, membrane damage, and cell cycle arrest in MCF-7 cells.

    Science.gov (United States)

    Bajbouj, Khuloud; Shafarin, Jasmin; Abdalla, Maher Y; Ahmad, Iman M; Hamad, Mawieh

    2017-10-01

    It is well established that several forms of cancer associate with significant iron overload. Recent studies have suggested that estrogen (E2) disrupts intracellular iron homeostasis by reducing hepcidin synthesis and maintaining ferroportin integrity. Here, the ability of E2 to alter intracellular iron status and cell growth potential was investigated in MCF-7 cells treated with increasing concentrations of E2. Treated cells were assessed for intracellular iron status, the expression of key proteins involved in iron metabolism, oxidative stress, cell survival, growth, and apoptosis. E2 treatment resulted in a significant reduction in hepcidin expression and a significant increase in hypoxia-inducible factor 1 alpha, ferroportin, transferrin receptor, and ferritin expression; a transient decrease in labile iron pool; and a significant increase in total intracellular iron content mainly at 20 nM/48 h E2 dose. Treated cells also showed increased total glutathione and oxidized glutathione levels, increased superoxide dismutase activity, and increased hemoxygenase 1 expression. Treatment with E2 at 20 nM for 48 h resulted in a significant reduction in cell growth (0.35/1 migration rate) and decreased cell survival (iron metabolism and precipitates adverse effects concerning cell viability, membrane integrity, and growth potential.

  5. Optimal nano-descriptors as translators of eclectic data into prediction of the cell membrane damage by means of nano metal-oxides.

    Science.gov (United States)

    Toropova, Alla P; Toropov, Andrey A; Benfenati, Emilio; Korenstein, Rafi; Leszczynska, Danuta; Leszczynski, Jerzy

    2015-01-01

    Systematization of knowledge on nanomaterials has become a necessity with the fast growth of applications of these species. Building up predictive models that describe properties (both beneficial and hazardous) of nanomaterials is vital for computational sciences. Classic quantitative structure-property/activity relationships (QSPR/QSAR) are not suitable for investigating nanomaterials because of the complexity of their molecular architecture. However, some characteristics such as size, concentration, and exposure time can influence endpoints (beneficial or hazardous) related to nanoparticles and they can therefore be involved in building a model. Application of the optimal descriptors calculated with the so-called correlation weights of various concentrations and different exposure times are suggested in order to build up a predictive model for cell membrane damage caused by a series of nano metal-oxides. The numerical data on correlation weights are calculated by the Monte Carlo method. The obtained results are in good agreement with the experimental data.

  6. Carboxylation of multiwalled carbon nanotube attenuated the cytotoxicity by limiting the oxidative stress initiated cell membrane integrity damage, cell cycle arrestment, and death receptor mediated apoptotic pathway.

    Science.gov (United States)

    Liu, Zhenbao; Liu, Yanfei; Peng, Dongming

    2015-08-01

    In this study, the effects of carboxylated multiwalled carbon nanotubes (MWCNTs-COOH) on human normal liver cell line L02 was compared with that of pristine multiwalled carbon nanotubes (p-MWCNTs). It was shown that compared with MWCNTs-COOH, p-MWCNTs induced apoptosis, reduced the level of intracellular antioxidant glutathione more significantly, and caused severer cell membrane damage as demonstrated by lactate dehydrogenase leakage. Cell cycles were arrested by both MWCNTs, while p-MWCNTs induced higher ratio of G0/G1 phase arrestment as compared with MWCNTs-COOH. Caspase-8 was also activated after both MWCNTs exposure, indicating extrinsic apoptotic pathway was involved in the apoptosis induced by MWCNTs exposure, more importantly, MWCNTs-COOH significantly reduced the activation of caspase-8 as compared with p-MWCNTs. All these results suggested that MWCNTs-COOH might be safer for in vivo application as compared with p-MWCNTs. © 2015 Wiley Periodicals, Inc.

  7. Ultrafast molecular dynamics of biofuel extraction for microalgae and bacteria milking: blocking membrane folding pathways to damaged lipid-bilayer conformations with nanomicelles.

    Science.gov (United States)

    Gillet, Jean-Numa

    2015-01-01

    Cell milking is a 100% renewable green energy for CO2 by extraction of biofuels inside the cytosol of photosynthetic micro-organisms as microalgae and bacteria. The cells are exposed to a hydrophobic solvent forming holes and cracks through their membranes from which the biofuels can leak out. In protein folding, the goal would be to find pathways to the unique functional protein conformer. However, in the lipid-bilayer interaction with the solvent for milking, the objective is to block the pathways for damaged membrane conformations of low free energy with undesired nanostructures, using the solvent properties, as shown with an ab initio structural bioinformatic model. Statistical thermodynamics is used to compute the free energy (including entropy) from the molecular dynamics trajectory of the biomolecular system with many conformational changes. This model can be extended to the general problem of biomolecules folding as for proteins and nucleic acids. Using an adaptation of the Einstein diffusion law, the conformational change dynamics of the lipid bilayer depends on the two diffusion coefficients of the solvent: D1 before the irreversible folding transition time and the much smaller D2 thereafter. In contrast to the n-hexane and n-heptane hydrocarbons of smaller size, the residual D2=4.7 × 10(-7)cm(2)/s of the n-decane solvent, with the highest partition coefficient among the three extractors, is the only to present a D2 value that is significantly below the critical threshold of 10(-6)cm(2)/s. Therefore, the membrane would resist to long hydrocarbons and the exposed cells would remain viable for milking.

  8. Photothermal effects of multi-walled carbon nanotubes on the viability of BT-474 cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Hung-Tao [Department of Materials Science and Engineering, National Tsing Hua University, No. 101, Sec. 2 Kuang-Fu Rd., Hsin-chu 30013, Taiwan (China); Wang, Tsung-Pao [Department of Medical Science, National Tsing Hua University, No. 101, Sec. 2 Kuang-Fu Rd., Hsin-chu 30013, Taiwan (China); Lee, Chi-Young [Department of Materials Science and Engineering, National Tsing Hua University, No. 101, Sec. 2 Kuang-Fu Rd., Hsin-chu 30013, Taiwan (China); Tai, Nyan-Hwa, E-mail: nhtai@mx.nthu.edu.tw [Department of Materials Science and Engineering, National Tsing Hua University, No. 101, Sec. 2 Kuang-Fu Rd., Hsin-chu 30013, Taiwan (China); Chang, Hwan-You, E-mail: hychang@mx.nthu.edu.tw [Department of Medical Science, National Tsing Hua University, No. 101, Sec. 2 Kuang-Fu Rd., Hsin-chu 30013, Taiwan (China)

    2013-03-01

    Functionalized multi-walled carbon nanotubes (f-MWCNTs) were conjugated to an antibody of BT-474 cancer cells (f-MWCNTs-ab), and the photothermal effect of the f-MWCNTs-ab for BT-474 cancer cell destruction was demonstrated. After near-infrared irradiation, the f-MWCNTs-ab were more capable of killing cancer cells and possessed higher cell specificity than f-MWCNTs. Quantitative results showed that the viability of the cancer cells was affected by the concentration of the f-MWCNTs-ab solution, irradiation time, and settling time after irradiation. The membrane impermeable fluorescence dye ethidium bromide was used to detect cell viability after near-infrared irradiation, and the results agreed with those obtained from the Alamar Blue cell viability assay. The EtBr fluorescence results suggest that the cell membrane, attached to f-MWCNTs-ab, was damaged after irradiation, which led to cell death and necrosis. Using confocal microscopy, a few f-MWCNTs-ab were detected in the cell, indicating the endocytosis effect. The results not only explain the improved efficiency of thermotherapy but also indicate that necrosis may result from protein denaturation attributing to the heated f-MWCNTs-ab in the cell. Highlights: Black-Right-Pointing-Pointer f-MWCNTs conjugated with anti-HER2 antibody by chemical method. Black-Right-Pointing-Pointer Kill breast cancer cells by using low dose f-MWCNTs-ab due to photothermal effect. Black-Right-Pointing-Pointer Use EtBr fluorescent to prove that the cell membrane was broken by heated f-MWCNTs. Black-Right-Pointing-Pointer Few f-MWCNTs-ab were detected in the cell indicating the endocytosis effect. Black-Right-Pointing-Pointer Necrosis may result from protein denaturation due to contact with the heated CNTs.

  9. Tissue damage and embryonic malformation induced by aqueous extract of Pteridium aquilinum on chorioallantoic membrane of chick embryo (CAM

    Directory of Open Access Journals (Sweden)

    Amanda Leitolis

    2017-06-01

    Full Text Available The aim of this study was evaluate the effects of Bracken fern (BF (Pteridium aquilinum (L. Kuhn. on biological systems. When consumed by animals can cause acute intoxication, hematuria, biochemistry alterations and cancer. To humans the toxicity is associated with its intake on contaminated ground water or milk and inhalation of its spores. In order to check the BF aqueous extract (AEB deleterious effects on animals blood vessels system, chick embryo chorioallantoic membrane (CAM was used. It were applying on CAM 0.1, 0.5, 1, 5, 10 e 15 µg/mL of AEB and saline as control. The angiogenesis was analyzed and the vascular density index (VDI calculated. The CAM samples were prepared and stained with H&E to evaluation of microvessels, Masson’s trichrome to characterize collagen and fibrin deposition and Picro-sirius used to evaluate collagen using polarized light. Also the morphological aspects of embryos were analysed. We observe on the results of neovascularization that AEB did not change significantly the number of vessels/mm², however, membranes treated with AEB (5 or 10 µg/mL exhibit opacity and tissue fibrosis, both signs of inflammation. Histological analysis with Masson's trichrome and picro-sirius on tissues exposed to AEB respectively has shown increased collagen fibers and presence of fibrilar collagen. The embryos exposed to concentrations of 5 or 10 µg/mL AEB, showed changes as poor face formation and poor closing of abdominal wall. The highest concentration of AEB (15 µg/mL was lethal to embryos. Although significant effects on the CAM’s vasculature has not observed, tissue aggression was detected, a desmoplasia (an extensive inflammatory signal triggered by tissue injury, changes caused on embryos as well as the presence of toxic substances in the AEB show us an important and deleterious pathway of this bracken fern extract on its intoxicants effects on humans and animals, and even cancer or the death of animals.

  10. Ζ potential evidences silanol heterogeneity induced by metal contaminants at the quartz surface: Implications in membrane damage.

    Science.gov (United States)

    Pavan, Cristina; Turci, Francesco; Tomatis, Maura; Ghiazza, Mara; Lison, Dominique; Fubini, Bice

    2017-09-01

    Among the physico-chemical features responsible for the so-called "variability of quartz hazard", a key role has been assigned to the silica surface charge, evaluated by means of ζ potential measurement. The ζ potential of silica describes the protonation state of silanols which, in turn, determine interactions with cell membranes. To gain a molecular understanding of the role of silanols in silica pathogenicity, we conducted a systematic investigation of the variation of the ζ potential as a function of pH (ζ plot titration curve) on a large set of respirable quartz particles with different levels of metal contaminants. The membranolytic activity of the particles on red blood cells, used as a readout of pathogenic activity, was assessed in parallel. Pure quartz surfaces showed sigmoid-shaped ζ plots suggesting the presence of silanol families with similar acidity, whereas contaminated dusts exhibited convex-shaped ζ plots, indicating a higher silanol heterogeneity on contaminated surfaces with respect to the pure ones. The quartz particles with a higher surface heterogeneity related to metal contamination showed a higher membranolytic activity. By removing structural defects and chemical heterogeneity, the ζ plot shifted towards the typical shape of pure quartz and the membranolytic activity was reduced. We conclude that the ζ plot is a useful readout to measure the acid-base behavior of quartz surfaces and to describe the chemical heterogeneity of quartz silanols. Surface heterogeneity, here induced by metal contamination, is proposed as the main cause of quartz membranolytic activity, further supporting the hypothesis that surface silanol disorganization determines silica pathogenicity. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Extending the viability of sea urchin gametes.

    Science.gov (United States)

    Spiegler, M A; Oppenheimer, S B

    1995-04-01

    The sea urchin is the material of choice for studying many early developmental events. Methods to extend the viability of sea urchin gametes have not received much attention, but it is well known that the eggs are easily damaged by freezing. This study was designed to extend the viability of Lytechinus pictus eggs and sperm without freezing. Gamete viability measurements were based on relative numbers of fertilized vs unfertilized eggs, percentage fertilization, and on observations of embryonic development. Results indicate that gametes can be stored longer and at lower temperatures than previously described. Sperm were consistently kept viable for at least 12 days with little decrease in viability when stored in glass test tubes or plastic petri dishes and submerged in ice inside a refrigerator at 0 +/- 1 degree C. In one experiment, sperm stored in glass test tubes on ice remained viable up to 20 days after extraction. Eggs were maintained from 1 to 7 days, rather than the 1 day or so previously reported, when stored in glass test tubes submerged in ice in a refrigerator at 0 +/- 1 degree C. Results of egg and sperm experiments varied at different times in the season. Such variations may be caused by seasonal cytoplasmic changes, population differences, or the time mature individuals were maintained unfed in aquaria prior to use. Results from this study should be useful for a variety of research, mariculture, and teaching applications in which sea urchin supplies are limited or when the same gamete population is required for subsequent experiments.

  12. Viability of mesenchymal stem cells during electrospinning

    Directory of Open Access Journals (Sweden)

    G. Zanatta

    2012-02-01

    Full Text Available Tissue engineering is a technique by which a live tissue can be re-constructed and one of its main goals is to associate cells with biomaterials. Electrospinning is a technique that facilitates the production of nanofibers and is commonly used to develop fibrous scaffolds to be used in tissue engineering. In the present study, a different approach for cell incorporation into fibrous scaffolds was tested. Mesenchymal stem cells were extracted from the wall of the umbilical cord and mononuclear cells from umbilical cord blood. Cells were re-suspended in a 10% polyvinyl alcohol solution and subjected to electrospinning for 30 min under a voltage of 21 kV. Cell viability was assessed before and after the procedure by exclusion of dead cells using trypan blue staining. Fiber diameter was observed by scanning electron microscopy and the presence of cells within the scaffolds was analyzed by confocal laser scanning microscopy. After electrospinning, the viability of mesenchymal stem cells was reduced from 88 to 19.6% and the viability of mononuclear cells from 99 to 8.38%. The loss of viability was possibly due to the high viscosity of the polymer solution, which reduced the access to nutrients associated with electric and mechanical stress during electrospinning. These results suggest that the incorporation of cells during fiber formation by electrospinning is a viable process that needs more investigation in order to find ways to protect cells from damage.

  13. Outer Membrane Vesicles from the Probiotic Escherichia coli Nissle 1917 and the Commensal ECOR12 Enter Intestinal Epithelial Cells via Clathrin-Dependent Endocytosis and Elicit Differential Effects on DNA Damage.

    Directory of Open Access Journals (Sweden)

    María-Alexandra Cañas

    Full Text Available Interactions between intestinal microbiota and the human host are complex. The gut mucosal surface is covered by a mucin layer that prevents bacteria from accessing the epithelial cells. Thus, the crosstalk between microbiota and the host mainly rely on secreted factors that can go through the mucus layer and reach the epithelium. In this context, vesicles released by commensal strains are seen as key players in signaling processes in the intestinal mucosa. Studies with Gram-negative pathogens showed that outer membrane vesicles (OMVs are internalized into the host cell by endocytosis, but the entry mechanism for microbiota-derived vesicles is unknown. Escherichia coli strains are found as part of normal human gut microbiota. In this work, we elucidate the pathway that mediate internalization of OMVs from the probiotic E.coli Nissle 1917 (EcN and the commensal ECOR12 strains in several human intestinal epithelial cell lines. Time course measurement of fluorescence and microscopy analysis performed with rhodamine B-R18-labeled OMVs in the presence of endocytosis inhibitors showed that OMVs from these strains enter epithelial cells via clathrin-mediated endocytosis. Vesicles use the same endocytosis pathway in polarized epithelial monolayers. Internalized OMVs are sorted to lysosomal compartments as shown by their colocalization with clathrin and specific markers of endosomes and lysosomes. OMVs from both strains did not affect cell viability, but reduce proliferation of HT-29 cells. Labeling of 8-oxo-dG adducts in DNA revealed that neither OMVs from EcN nor from ECOR12 promoted oxidative DNA damage. In contrast, flow cytometry analysis of phosphorylated γH2AX evidenced that OMVs from the probiotic EcN significantly produced more double strand breaks in DNA than ECOR12 OMVs. The EcN genotoxic effects have been attributed to the synthesis of colibactin. However, it is not known how colibactin is exported and delivered into host cells. Whether

  14. ROS-induced oxidative stress and apoptosis-like event directly affect the cell viability of cryopreserved embryogenic callus in Agapanthus praecox.

    Science.gov (United States)

    Zhang, Di; Ren, Li; Chen, Guan-Qun; Zhang, Jie; Reed, Barbara M; Shen, Xiao-Hui

    2015-09-01

    Oxidative stress and apoptosis-like programmed cell death, induced in part by H 2 O 2 , are two key factors that damage cells during plant cryopreservation. Their inhibition can improve cell viability. We hypothesized that oxidative stress and apoptosis-like event induced by ROS seriously impact plant cell viability during cryopreservation. This study documented changes in cell morphology and ultrastructure, and detected dynamic changes in ROS components (O 2 (·-) , H2O2 and OH·), antioxidant systems, and programmed cell death (PCD) events during embryonic callus cryopreservation of Agapanthus praecox. Plasmolysis, organelle ultrastructure changes, and increases in malondialdehyde (a membrane lipid peroxidation product) suggested that oxidative damage and PCD events occurred at several early cryopreservation steps. PCD events including autophagy, apoptosis-like, and necrosis also occurred at later stages of cryopreservation, and most were apoptosis. H2O2 is the most important ROS molecule mediating oxidative damage and affecting cell viability, and catalase and AsA-GSH cycle are involved in scavenging the intracellular H2O2 and protecting the cells against stress damage in the whole process. Gene expression studies verified changes of antioxidant system and PCD-related genes at the main steps of the cryopreservation process that correlated with improved cell viability. Reducing oxidative stress or inhibition of apoptosis-like event by deactivating proteases improved cryopreserved cell viability from 49.14 to 86.85 % and 89.91 %, respectively. These results verify our model of ROS-induced oxidative stress and apoptosis-like event in plant cryopreservation. This study provided a novel insight into cell stress response mechanisms in cryopreservation.

  15. Effects of Trypsinization on Viability of Equine Chondrocytes in Cell Culture

    Directory of Open Access Journals (Sweden)

    B. C. Sutradhar, J. Park, G. Hong, S. H. Choi and G. Kim*

    2010-10-01

    Full Text Available Trypsin is an essential reagent for routine cell culture work. In the cultivation of mammalian cells, it has been extensively used for cell isolation from tissues or cell dislodging in subculturing. It may damage the cell membrane in contact of cells during long trypsinization. However, there is no specific report on time-dependent effect of trypsinization on cells. In the present study, we investigated the time dependent effects of trypsinization on equine chondrocytes. Cell viability after trypsinization with 0.25% trypsin-EDTA for 5 to 60 minutes was quantified by trypan blue exclusion assay, propidium iodide-Hoechst double staining, flow cytometry analysis and XTT assay. The results showed that trypsin-EDTA decreased the proliferation of equine chondrocytes depending on the exposure time of trypsinization. After 20 and 60 minutes of trypsinization, the cell membranes were strongly affected and the percentages of viable cells reduced to 91% and 85% respectively detected by trypan blue exclusion assay. Similar results were observed both in flow cytometric evaluation and propidium iodide-Hoechst double staining. The XTT assay result also showed decreased cell viability with the extended time of trypsinization. In order to minimize the time dependant cytotoxicity of trypsinization, as minimum as short time exposure is suggestive that maximizes live cell isolation from tissue as well as subculture of equine chondrocytes or other cells.

  16. Equine sperm membrane phase behavior: the effects of lipid-based cryoprotectants.

    Science.gov (United States)

    Ricker, J V; Linfor, J J; Delfino, W J; Kysar, P; Scholtz, E L; Tablin, F; Crowe, J H; Ball, B A; Meyers, S A

    2006-02-01

    The plasma membrane of sperm can undergo lipid phase separation during freezing, resulting in irreversible damage to the cell. The objective of our study was to examine the membrane phase behavior of equine spermatozoa in the absence and presence of lipid-based cryoprotectants. Biophysical properties of sperm membranes were investigated with Fourier-transform infrared spectroscopy. Compared to fresh untreated sperm, postthaw untreated sperm showed extensive lipid phase separation and rearrangement. In contrast, postthaw sperm that were cryopreserved in egg phosphatidylcholine (egg PC)- or soy phosphatidylcholine (soy PC)-based diluents showed similar lipid phase behavior to that of fresh, untreated sperm. Studies with a deuterium-labeled PC lipid (POPCd-31) suggest that exogenous lipid from the diluents are strongly associated with the sperm membrane, and scanning electron microscopy images of treated sperm show the presence of lipid aggregates on the membrane surface. Thus, the exogenous lipid does not appear to be integrated into the sperm membrane after cryopreservation. When compared to a standard egg-yolk-based diluent (INRA 82), the soy and egg PC media preserved viability and motility equally well in postthaw sperm. A preliminary fertility study determined that sperm cryopreserved in the soy PC-based medium were capable of fertilization at the same rate as sperm frozen in the conventional INRA 82 medium. Our results show that pure lipid-based diluents can prevent membrane damage during cryopreservation and perform as well as a standard egg-yolk-based diluent in preserving sperm viability, motility, and fertility.

  17. A 'fragile cell' sub-population revealed during cytometric assessment of Saccharomyces cerevisiae viability in lipid-limited alcoholic fermentation.

    Science.gov (United States)

    Delobel, P; Pradal, M; Blondin, B; Tesniere, C

    2012-11-01

    To show that in anaerobic fermentation with limiting lipid nutrients, cell preparation impacts the viability assessment of yeast cells, and to identify the factors involved. Saccharomyces cerevisiae viability was determined using propidium iodide staining and the flow cytometry. Analyses identified intact cells, dead cells and, under certain conditions, the presence of a third subpopulation of apparently damaged cells. This intermediate population could account for up to 40% of the entire cell population. We describe, analyse and discuss the effects of different solutions for cell resuspension on the respective proportion of these three populations, in particular that of the intermediate population. We show that this intermediate cell population forms in the absence of Ca(2+)/Mg(2+). Cell preparation significantly impacts population viability assessment by FCM. The intermediate population, revealed under certain conditions, could be renamed as 'fragile cells'. For these cells, Ca(2+) and Mg(2+) reduce cell membrane permeability to PI. This is the first study that analyses and discusses the factors influencing the formation of an intermediate population when studying viability in yeast alcoholic fermentation. With a wider application in biological research, this study provides important support to the relatively new questioning of propidium iodide staining as a universal cell death indicator. © 2012 The Authors. Letters in Applied Microbiology © 2012 The Society for Applied Microbiology.

  18. Oral administration of Nigella sativa oil ameliorates the effect of cisplatin on membrane enzymes, carbohydrate metabolism and oxidative damage in rat liver.

    Science.gov (United States)

    Farooqui, Zeba; Afsar, Mohammad; Rizwan, Sana; Khan, Aijaz Ahmed; Khan, Farah

    2016-01-01

    Cisplatin (CP) is a potent anti-cancer drug widely used against solid tumors. However, it exhibits pronounced adverse effects including hepatotoxicity. Several strategies were attempted to prevent CP hepatotoxicity but were not found suitable for therapeutic application. Nigella sativa has been shown to prevent/reduce the progression of certain type of cardiovascular, kidney and liver diseases. Present study investigates whether N. sativa oil (NSO) can prevent CP induced hepatotoxic effects. Rats were divided into four groups viz. control, CP, NSO and CPNSO. Animals in CPNSO and NSO group were administered NSO (2 ml/kg bwt, orally) with or without single hepatotoxic dose of CP (6 mg/kg bwt, i.p.) respectively. CP hepatotoxicity was recorded by increased serum ALT and AST activities. CP treatment caused oxidant/antioxidant imbalances as reflected by increased lipid peroxidation and decreased enzymatic and non-enzymatic antioxidants. Furthermore, the activities of various carbohydrate metabolism and membrane enzymes were altered by CP treatment. In contrast, NSO administration to CP treated rats, markedly ameliorated the CP elicited deleterious alterations in liver. Histopathological observations showed extensive liver damage in CP treated animals while greatly reduced tissue injury in CPNSO group. In conclusion, NSO appears to protect CP induced hepatotoxicity by improving energy metabolism and strengthening antioxidant defense mechanism.

  19. Oral administration of Nigella sativa oil ameliorates the effect of cisplatin on membrane enzymes, carbohydrate metabolism and oxidative damage in rat liver

    Directory of Open Access Journals (Sweden)

    Zeba Farooqui

    2016-01-01

    Full Text Available Cisplatin (CP is a potent anti-cancer drug widely used against solid tumors. However, it exhibits pronounced adverse effects including hepatotoxicity. Several strategies were attempted to prevent CP hepatotoxicity but were not found suitable for therapeutic application. Nigella sativa has been shown to prevent/reduce the progression of certain type of cardiovascular, kidney and liver diseases. Present study investigates whether N. sativa oil (NSO can prevent CP induced hepatotoxic effects. Rats were divided into four groups viz. control, CP, NSO and CPNSO. Animals in CPNSO and NSO group were administered NSO (2 ml/kg bwt, orally with or without single hepatotoxic dose of CP (6 mg/kg bwt, i.p. respectively. CP hepatotoxicity was recorded by increased serum ALT and AST activities. CP treatment caused oxidant/antioxidant imbalances as reflected by increased lipid peroxidation and decreased enzymatic and non-enzymatic antioxidants. Furthermore, the activities of various carbohydrate metabolism and membrane enzymes were altered by CP treatment. In contrast, NSO administration to CP treated rats, markedly ameliorated the CP elicited deleterious alterations in liver. Histopathological observations showed extensive liver damage in CP treated animals while greatly reduced tissue injury in CPNSO group. In conclusion, NSO appears to protect CP induced hepatotoxicity by improving energy metabolism and strengthening antioxidant defense mechanism.

  20. Hydroxylation of multi-walled carbon nanotubes: Enhanced biocompatibility through reduction of oxidative stress initiated cell membrane damage, cell cycle arrestment and extrinsic apoptotic pathway.

    Science.gov (United States)

    Liu, Zhenbao; Liu, Yanfei; Peng, Dongming

    2016-10-01

    Modification of CNTs with hydroxyl group promotes their applications in biomedical area. However, the impact of hydroxylation on their biocompatibility is far from being completely understood. In this study, we carried out a comprehensive evaluation of hydroxylated multi-walled carbon nanotubes (MWCNTs-OH) on the human normal liver L02 cell line, and compared it with that of pristine multi-walled carbon nanotubes (p-MWCNTs). Results demonstrated that compared with p-MWCNTs, MWCNTs-OH induced significantly lower oxidative stress as indicated by the level of intracellular antioxidant glutathione (GSH), subsequently lead to less cell membrane damage as demonstrated by lactate dehydrogenase (LDH) leakage assay, and showed slightly decreased arrestment of cell cycle distribution at G0/G1. More interestingly, MWCNTs-OH exhibited significantly lower tendency to activate caspase-8, a key molecule involved in the extrinsic apoptotic pathway. All these in vitro results demonstrated that hydroxylation of MWCNTs enhanced their biocompatibility compare with p-MWCNTs. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Sodium Nitrate Induces Reactive Oxygen Species That Lower the Antioxidant Power, Damage the Membrane, and Alter Pathways of Glucose Metabolism in Human Erythrocytes.

    Science.gov (United States)

    Ansari, Fariheen Aisha; Mahmood, Riaz

    2015-12-09

    Nitrate salts are widely used as food additives and nitrogenous fertilizers and are present as contaminants in drinking water supplies. The effect of different concentrations (1-15 mM) of sodium nitrate (NaNO3) on human erythrocytes was studied under in vitro conditions. Treatment of erythrocytes with NaNO3 resulted in increases in methemoglobin levels, lipid peroxidation, and protein oxidation and a decrease in glutathione content. There were changes in the activities of all major antioxidant defense enzymes, and the pathways of glucose metabolism were also affected. Increased generation of reactive oxygen species (ROS) took place while the antioxidant power was impaired. The osmotic fragility of cells was increased, and membrane-bound enzymes were greatly inhibited. All changes were statistically significant at a probability level of P < 0.05 at all concentrations of NaNO3 except the lowest (1 mM). Thus, NaNO3 generates ROS that cause significant damage to human erythrocytes and interfere in normal cellular pathways.

  2. Peritoneal Cell-free DNA: an innovative method for determining acute cell damage in peritoneal membrane and for monitoring the recovery process after peritonitis.

    Science.gov (United States)

    Virzì, Grazia Maria; Milan Manani, Sabrina; Brocca, Alessandra; Cantaluppi, Vincenzo; de Cal, Massimo; Pastori, Silvia; Tantillo, Ilaria; Zambon, Roberto; Crepaldi, Carlo; Ronco, Claudio

    2016-02-01

    Cell-free DNA (cfDNA) is present in the peritoneal effluent of stable peritoneal dialysis (PD) patients, but there are no data on cfDNA in PD patients with peritonitis. We investigated the variation of peritoneal cfDNA levels subsequent to peritonitis in PD patients. We enrolled 53 PD patients: 30 without any history of systemic inflammation or peritonitis in the last 3 months (group A) and 23 with acute peritonitis (group B). CfDNA was quantified in the peritoneal effluent. Peritoneal samples on days 1, 3, 10, 30 and until day 120 from the start of peritonitis were collected for white blood cells (WBC) count and cfDNA evaluation in group B. Quantitative analysis of cfDNA showed significantly higher levels in group B on day 1, 3, 10 and 30 compared with group A (p peritoneal cfDNA levels tended to progressively decline during follow-up of peritonitis. From this decreasing curve, we estimated that 49 days are necessary to reach the value of 51 genome equivalents (GE)/ml (75th percentile in controls) and 63 days to reach 31 GE/ml (median). Our results demonstrate that cfDNA increases in peritoneal effluent of PD patients with peritonitis and tends to progressively decline in step with peritonitis resolution and membrane repair process. Peritoneal cfDNA quantification could be an innovative method to determine acute damage and an inverse index of the repair process.

  3. Polyphenolics from Albizia harveyi Exhibit Antioxidant Activities and Counteract Oxidative Damage and Ultra-Structural Changes of Cryopreserved Bull Semen

    OpenAIRE

    Mansour Sobeh; Soha A. Hassan; El Raey, Mohamed A.; Wael A. Khalil; Mahmoud A. E. Hassan; Michael Wink

    2017-01-01

    Albizia harveyi is a tropical deciduous tree, found across South and Eastern Africa and widely used in traditional medicine. The leaf extract ameliorated the damaging effects of the frozen-thawing process in cryopreserved bull semen. In a dose-dependent pattern, sperm motility, viability, and membrane integrity were improved compared to the untreated control. Furthermore, the extract increased the percentage of viable sperm cells and reduced the percentages of early apoptotic and apoptotic sp...

  4. Desiccation-induced changes in viability, lipid peroxidation and ...

    African Journals Online (AJOL)

    Intermediate seeds of Mimusopsis elengi showed obvious membrane lipid peroxidation during desiccation. When the moisture content (MC) decreased from initial 41.8 to 6.1%, seed viability significantly decreased from 100 to 23%, consorted with activity changes of a few anti-oxidative enzymes. The activities of superoxide ...

  5. Viability of Baylisascaris procyonis Eggs

    OpenAIRE

    Shira C Shafir; Sorvillo, Frank J.; Sorvillo, Teresa; Eberhard, Mark L.

    2011-01-01

    Infection with Baylisascaris procyonis roundworms is rare but often fatal and typically affects children. We attempted to determine parameters of viability and methods of inactivating the eggs of these roundworms. Loss of viability resulted when eggs were heated to 62°C or desiccated for 7 months but not when frozen at –15°C for 6 months.

  6. Bog bilberry (Vaccinium uliginosum L.) extract reduces cultured Hep-G2, Caco-2, and 3T3-L1 cell viability, affects cell cycle progression, and has variable effects on membrane permeability.

    Science.gov (United States)

    Liu, Jia; Zhang, Wei; Jing, Hao; Popovich, David G

    2010-04-01

    Bog bilberry (Vaccinium uliginosum L.) is a blue-pigmented edible berry related to bilberry (Vaccinium myrtillus L.) and the common blueberry (Vaccinium corymbosum). The objective of this study was to investigate the effect of a bog bilberry anthocyanin extract (BBAE) on cell growth, membrane permeability, and cell cycle of 2 malignant cancer cell lines, Caco-2 and Hep-G2, and a nonmalignant murine 3T3-L1 cell line. BBAE contained 3 identified anthocyanins. The most abundant anthocyanin was cyanidin-3-glucoside (140.9 +/- 2.6 microg/mg of dry weight), followed by malvidin-3-glucoside (10.3 +/- 0.3 microg/mg) and malvidin-3-galactoside (8.1 +/- 0.4 microg/mg). Hep-G2 LC50 was calculated to be 0.563 +/- 0.04 mg/mL, Caco-2 LC50 was 0.390 +/- 0.30 mg/mL and 0.214 +/- 0.02 mg/mL for 3T3-L1 cells. LDH release, a marker of membrane permeability, was significantly increased in Hep-G2 cells and Caco-2 cells after 48 and 72 h compared to 24 h. The increase was 21% at 48 h and 57% at 72 h in Caco-2 cells and 66% and 139% in Hep-G2 cells compared to 24 h. However, 3T3-L1 cells showed an unexpected significant lower LDH activity (P < or = 0.05) after 72 h of exposure corresponding to a 21% reduction in LDH release. BBAE treatment increased sub-G1 in all 3 cell lines without influencing cells in the G2/M phase. BBAE treatment reduced the growth and increased the accumulation of sub-G1 cells in 2 malignant and 1 nonmalignant cell line; however, the effect on membrane permeability differs considerably between the malignant and nonmalignant cells and may in part be due to differences in cellular membrane composition.

  7. Carbosilane dendrimers inhibit α-synuclein fibrillation and prevent cells from rotenone-induced damage.

    Science.gov (United States)

    Milowska, Katarzyna; Szwed, Aleksandra; Mutrynowska, Marta; Gomez-Ramirez, Rafael; de la Mata, Francisco Javier; Gabryelak, Teresa; Bryszewska, Maria

    2015-04-30

    This study investigates the role of carbosilane dendrimers in fibrillation of α-synuclein and prevention of the mouse hippocampal cell (mHippoE-18) from rotenone-induced damage. Examining the interaction between carbosilane dendrimers and α-synuclein, we found that the dendrimers inhibit fibril formation. We also investigated cell viability, the production of reactive oxygen species (ROS), and mitochondrial membrane potential. mHippoE-18 cells were preincubated with carbosilane dendrimers before rotenone was added. All the dendrimers possess potential protection activity. Preincubation with dendrimers contributed to: increased viability, higher mitochondrial membrane potential, and reduced ROS level in cells. The probable mechanism of cell protection lies in the ability of dendrimers to capture rotenone by encapsulating or binding to its surface groups. The fact that dendrimers have prevention potential is important in the search for new pharmacological strategies against neurodegenerative disorders. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Extracellular superoxide production, viability and redox poise in response to desiccation in recalcitrant Castanea sativa seeds.

    Science.gov (United States)

    Roach, Thomas; Beckett, Richard P; Minibayeva, Farida V; Colville, Louise; Whitaker, Claire; Chen, Hongying; Bailly, Christophe; Kranner, Ilse

    2010-01-01

    Reactive oxygen species (ROS) are implicated in seed death following dehydration in desiccation-intolerant 'recalcitrant' seeds. However, it is unknown if and how ROS are produced in the apoplast and if they play a role in stress signalling during desiccation. We studied intracellular damage and extracellular superoxide (O(2)(.-)) production upon desiccation in Castanea sativa seeds, mechanisms of O(2)(.-) production and the effect of exogenously supplied ROS. A transient increase in extracellular O(2)(.-) production by the embryonic axes preceded significant desiccation-induced viability loss. Thereafter, progressively more oxidizing intracellular conditions, as indicated by a significant shift in glutathione half-cell reduction potential, accompanied cell and axis death, coinciding with the disruption of nuclear membranes. Most hydrogen peroxide (H(2)O(2))-dependent O(2)(.-) production was found in a cell wall fraction that contained extracellular peroxidases (ECPOX) with molecular masses of approximately 50 kDa. Cinnamic acid was identified as a potential reductant required for ECPOX-mediated O(2)(.-) production. H(2)O(2), applied exogenously to mimic the transient ROS burst at the onset of desiccation, counteracted viability loss of sub-lethally desiccation-stressed seeds and of excised embryonic axes grown in tissue culture. Hence, extracellular ROS produced by embryonic axes appear to be important signalling components involved in wound response, regeneration and growth.

  9. Ozone affects pollen viability and NAD(P)H oxidase release from Ambrosia artemisiifolia pollen.

    Science.gov (United States)

    Pasqualini, Stefania; Tedeschini, Emma; Frenguelli, Giuseppe; Wopfner, Nicole; Ferreira, Fatima; D'Amato, Gennaro; Ederli, Luisa

    2011-10-01

    Air pollution is frequently proposed as a cause of the increased incidence of allergy in industrialised countries. We investigated the impact of ozone (O(3)) on reactive oxygen species (ROS) and allergen content of ragweed pollen (Ambrosia artemisiifolia). Pollen was exposed to acute O(3) fumigation, with analysis of pollen viability, ROS and nitric oxide (NO) content, activity of nicotinamide adenine dinucleotide phosphate (NAD[P]H) oxidase, and expression of major allergens. There was decreased pollen viability after O(3) fumigation, which indicates damage to the pollen membrane system, although the ROS and NO contents were not changed or were only slightly induced, respectively. Ozone exposure induced a significant enhancement of the ROS-generating enzyme NAD(P)H oxidase. The expression of the allergen Amb a 1 was not affected by O(3), determined from the mRNA levels of the major allergens. We conclude that O(3) can increase ragweed pollen allergenicity through stimulation of ROS-generating NAD(P)H oxidase. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. When are bacteria dead? A step towards interpreting flow cytometry profiles after chlorine disinfection and membrane integrity staining.

    Science.gov (United States)

    Nocker, Andreas; Cheswick, Ryan; Dutheil de la Rochere, Pierre-Marie; Denis, Matthieu; Léziart, Tangui; Jarvis, Peter

    2017-04-01

    Flow cytometry is increasingly employed by drinking water providers. Its use with appropriate fluorescent stains allows the distinction between intact and membrane-damaged bacteria, which makes it ideally suited for assessment of disinfection efficiency. In contrast to plate counting, the technology allows the visualization of the gradual loss of membrane integrity. Although this sensitivity per se is very positive, it creates the problem of how this detailed viability information compares with binary plate counts where a colony is either formed or not. Guidelines are therefore needed to facilitate interpretation of flow cytometry results and to determine a degree of membrane damage where bacteria can be considered 'dead'. In this study we subjected Escherichia coli and environmental microorganisms in real water to increasing chlorine concentrations. Resulting flow cytometric patterns after membrane integrity staining were compared with culturability and in part with redox activity. For laboratory-grown bacteria, culturability was lost at lower disinfectant concentrations than membrane integrity making the latter a conservative viability parameter. No recovery from chlorine was observed for four days. For real water, loss of membrane integrity had to be much more substantial to completely suppress colony formation, probably due to the heterogenic composition of the natural microbial community with different members having different susceptibilities to the disinfectant.

  11. Acute hydrodynamic damage induced by SPLITT fractionation and centrifugation in red blood cells.

    Science.gov (United States)

    Urbina, Adriana; Godoy-Silva, Ruben; Hoyos, Mauricio; Camacho, Marcela

    2016-05-01

    Though blood bank processing traditionally employs centrifugation, new separation techniques may be appealing for large scale processes. Split-flow fractionation (SPLITT) is a family of techniques that separates in absence of labelling and uses very low flow rates and force fields, and is therefore expected to minimize cell damage. However, the hydrodynamic stress and possible consequent damaging effects of SPLITT fractionation have not been yet examined. The aim of this study was to investigate the hydrodynamic damage of SPLITT fractionation to human red blood cells, and to compare these effects with those induced by centrifugation. Peripheral whole blood samples were collected from healthy volunteers. Samples were diluted in a buffered saline solution, and were exposed to SPLITT fractionation (flow rates 1-10 ml/min) or centrifugation (100-1500 g) for 10 min. Cell viability, shape, diameter, mean corpuscular hemoglobin, and membrane potential were measured. Under the operating conditions employed, both SPLITT and centrifugation maintained cell viability above 98%, but resulted in significant sublethal damage, including echinocyte formation, decreased cell diameter, decreased mean corpuscular hemoglobin, and membrane hyperpolarization which was inhibited by EGTA. Wall shear stress and maximum energy dissipation rate showed significant correlation with lethal and sublethal damage. Our data do not support the assumption that SPLITT fractionation induces very low shear stress and is innocuous to cell function. Some changes in SPLITT channel design are suggested to minimize cell damage. Measurement of membrane potential and cell diameter could provide a new, reliable and convenient basis for evaluation of hydrodynamic effects on different cell models, allowing identification of optimal operating conditions on different scales. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Ozone affects pollen viability and NAD(P)H oxidase release from Ambrosia artemisiifolia pollen

    Energy Technology Data Exchange (ETDEWEB)

    Pasqualini, Stefania, E-mail: spas@unipg.it [Department of Applied Biology, University of Perugia, Perugia (Italy); Tedeschini, Emma; Frenguelli, Giuseppe [Department of Applied Biology, University of Perugia, Perugia (Italy); Wopfner, Nicole; Ferreira, Fatima [Department of Molecular Biology, CD Laboratory for Allergy Diagnosis and Therapy, University of Salzburg, Salzburg (Austria); D' Amato, Gennaro [Division of Respiratory and Allergic Diseases, ' A. Cardarelli' High Speciality Hospital, Naples (Italy); Ederli, Luisa [Department of Applied Biology, University of Perugia, Perugia (Italy)

    2011-10-15

    Air pollution is frequently proposed as a cause of the increased incidence of allergy in industrialised countries. We investigated the impact of ozone (O{sub 3}) on reactive oxygen species (ROS) and allergen content of ragweed pollen (Ambrosia artemisiifolia). Pollen was exposed to acute O{sub 3} fumigation, with analysis of pollen viability, ROS and nitric oxide (NO) content, activity of nicotinamide adenine dinucleotide phosphate (NAD[P]H) oxidase, and expression of major allergens. There was decreased pollen viability after O{sub 3} fumigation, which indicates damage to the pollen membrane system, although the ROS and NO contents were not changed or were only slightly induced, respectively. Ozone exposure induced a significant enhancement of the ROS-generating enzyme NAD(P)H oxidase. The expression of the allergen Amb a 1 was not affected by O{sub 3}, determined from the mRNA levels of the major allergens. We conclude that O{sub 3} can increase ragweed pollen allergenicity through stimulation of ROS-generating NAD(P)H oxidase. - Highlights: > O{sub 3} reduces the viability of ragweed pollen. > ROS and allergens of ragweed pollen were not affected by O{sub 3} exposure. > O{sub 3} enhances the activity of the ROS-generating enzyme NAD(P)H oxidase. > O{sub 3} increases ragweed pollen allergenicity through NAD(P)H-oxidase stimulation. - This study focuses on the effects of the atmospheric pollutant ozone on ROS content and NAD(P)H oxidase activity of ragweed pollen grains.

  13. Redefining the effect of salt on thermophilic starter cell viability, culturability and metabolic activity in cheese.

    Science.gov (United States)

    Hickey, C D; Fallico, V; Wilkinson, M G; Sheehan, J J

    2018-02-01

    This study investigated the differential effect of salt concentration in the outside and inside layers of brine salted cheeses on viability, culturability and enzyme activity of starter bacteria. The high-salt environment of the outside layer caused a sharp decrease in L. helveticus viability as measured by traditional plate counts. Remarkably, this was associated with lower release of intracellular enzymes (LDH), reduced levels of proteolysis and larger membrane integrity as measured by flow cytometry (FC) following classical Live/Dead staining. FC analysis of light scattering properties highlighted a significant reduction in size and granularity of the microbiota located in the cheese surface, suggestive of cell shrinkage and condensation of internal macromolecules probably due to hyperosmotic stress. The microbiota of the cheese surface were found to experience greater oxidative stress, as measured by FC analysis of the total levels of reactive oxygen species, compared to that of the interior layer. These results lead us to postulate that the physiology and health status of the microbiota were significantly different in the outer and inner layers of the cheese. The hyperosmotic environment of the outer layer resulted in reduced cell lysis, as measurable by assays based upon membrane integrity, but rather triggered cell death via mechanisms involving cell shrinkage and ROS-mediated damage of vital intracellular components. This study challenges the current thinking on how salt controls microbial activity in ripening cheese, especially in cheeses which are brine salted as local variations in biochemical ripening indices can differ significantly from the outside to the inside of a ripening cheese. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Assessing the viability of bacterial species in drinking water by combined cellular and molecular analyses.

    Science.gov (United States)

    Kahlisch, Leila; Henne, Karsten; Gröbe, Lothar; Brettar, Ingrid; Höfle, Manfred G

    2012-02-01

    The question which bacterial species are present in water and if they are viable is essential for drinking water safety but also of general relevance in aquatic ecology. To approach this question we combined propidium iodide/SYTO9 staining ("live/dead staining" indicating membrane integrity), fluorescence-activated cell sorting (FACS) and community fingerprinting for the analysis of a set of tap water samples. Live/dead staining revealed that about half of the bacteria in the tap water had intact membranes. Molecular analysis using 16S rRNA and 16S rRNA gene-based single-strand conformation polymorphism (SSCP) fingerprints and sequencing of drinking water bacteria before and after FACS sorting revealed: (1) the DNA- and RNA-based overall community structure differed substantially, (2) the community retrieved from RNA and DNA reflected different bacterial species, classified as 53 phylotypes (with only two common phylotypes), (3) the percentage of phylotypes with intact membranes or damaged cells were comparable for RNA- and DNA-based analyses, and (4) the retrieved species were primarily of aquatic origin. The pronounced difference between phylotypes obtained from DNA extracts (dominated by Betaproteobacteria, Bacteroidetes, and Actinobacteria) and from RNA extracts (dominated by Alpha-, Beta-, Gammaproteobacteria, Bacteroidetes, and Cyanobacteria) demonstrate the relevance of concomitant RNA and DNA analyses for drinking water studies. Unexpected was that a comparable fraction (about 21%) of phylotypes with membrane-injured cells was observed for DNA- and RNA-based analyses, contradicting the current understanding that RNA-based analyses represent the actively growing fraction of the bacterial community. Overall, we think that this combined approach provides an interesting tool for a concomitant phylogenetic and viability analysis of bacterial species of drinking water.

  15. Antihemolytic and antioxidant properties of pearl powder against 2,2′-azobis(2-amidinopropane dihydrochloride-induced hemolysis and oxidative damage to erythrocyte membrane lipids and proteins

    Directory of Open Access Journals (Sweden)

    Hsin-Ling Yang

    2017-10-01

    Full Text Available Pearl powder, a well-known traditional mineral medicine, is reported to be used for well-being and to treat several diseases from centuries in Taiwan and China. We investigated the in vitro antihemolytic and antioxidant properties of pearl powder that could protect erythrocytes against 2,2′-azobis(2-amidinopropane dihydrochloride (AAPH-induced oxidative damage to membrane proteins/lipids. Human erythrocytes were incubated with different concentrations of pearl powder (50–200 μg/mL for 30 minutes and then exposed to AAPH for 2–6 hours. We found that AAPH alone time dependently increased the oxidative hemolysis of erythrocytes, while pearl powder pretreatment substantially inhibited the hemolysis in a concentration-/time-dependent manner. AAPH-induced oxidative damage to erythrocyte membrane lipids was evidenced by the elevated malondialdehyde (MDA levels. However, pearl powder remarkably inhibited the malondialdehyde formation, and the 200 μg/mL concentration showed almost similar malondialdehyde values to the control. Furthermore, pearl powder suppressed the AAPH-induced high-molecular-weight protein formation and concomitantly increased the low-molecular-weight proteins in erythrocytes. Antioxidant potential that was measured as superoxide dismutase activity and glutathione content was significantly dropped by AAPH incubation, which suggests the vulnerability of erythrocytes to AAPH-induced oxidative stress. Noteworthy, erythrocytes pretreated with pearl powder showed restored superoxide dismutase activity and glutathione levels against AAPH-induced loss. Our findings conclude that pearl powder attenuate free radical-induced hemolysis and oxidative damage to erythrocyte membrane lipids/proteins. The potent antioxidant property of pearl powder may offer protection from free radical-related diseases.

  16. The viability of perilabyrinthine osteocytes

    DEFF Research Database (Denmark)

    Bloch, Sune Land; Kristensen, Søren Lund; Sørensen, Mads Sølvsten

    2012-01-01

    Bone remodeling is highly inhibited around the inner ear space, most likely by the anti-resorptive action of the inner ear cytokine osteoprotegerin (OPG) entering perilabyrinthine bone through the lacuno-canalicular porosity (LCP). This extracellular signaling pathway depends on the viability...

  17. Flying-fox (Pteropus spp.) sperm membrane fatty acid composition, its relationship to cold shock injury and implications for cryopreservation success.

    Science.gov (United States)

    Melville, D F; Johnston, S D; Miller, R R

    2012-12-01

    The very large acrosome of Pteropus species spermatozoa is prone to damage during cooling procedures. Cryogenic succuss has been linked to membrane composition, therefore the lipid composition of five Pteropus species sperm acrosomal and plasma membranes were investigated to provide insight into reasons for cold shock susceptibility. Rapid chilling and re-warming of spermatozoa from three Pteropus species resulted in a decrease (Plipids revealed that stearic acid (18:0) was the predominant saturated fatty acid and oleic acid (18:1, n-9) the predominant unsaturated fatty acid in both acrosomal and plasma membranes. Linolenic acid (18:3, n-3) was only detected in plasma membranes of Pteropus hypomelanus and was detected in acrosomal membranes of all Pteropus spp. studied (except Pteropus giganteus). Although detected in both plasma and acrosomal membranes of Pteropus vampyrus, docosahexaenoic acid (22:6) was not detected at all in Pteropus poliocephalus, only in trace levels in the acrosomal and plasma membranes of P. giganteus and P. hypomelanus and not in acrosomal membranes of Pteropus rodricensis. No difference was seen in the levels of polyunsaturated fatty acids (PUFAs) within plasma membranes, however PUFAs were lower (Pmembranes of P. giganteus compared with P. vampyrus. Pteropus spp. spermatozoa have a very low ratio of unsaturated/saturated membrane fatty acids (Membranes containing more PUFAs are more fluid, so the use of cryogenic media which improves membrane fluidity should improve Pteropus spp. spermatozoal viability post-thaw. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. The use of fluorescent probes to assess viability of the plant pathogenic bacterium Clavibacter michiganensis subsp. michiganensis by flow cytometry

    NARCIS (Netherlands)

    Chitarra, L.G.; Breeuwer, P.; Abee, T.; Bulk, van den R.W.

    2006-01-01

    Determination of the viability of bacteria by the conventional plating technique is a time-consuming process. Methods based on enzyme activity or membrane integrity are much faster and may be good alternatives. Assessment of the viability of suspensions of the plant pathogenic bacterium Clavibacter

  19. Abundance, viability and culturability of Antarctic bacteria

    Digital Repository Service at National Institute of Oceanography (India)

    LokaBharathi, P.A.; DeSouza, M.J.B.D.; Nair, S.; Chandramohan, D.

    The viability of total number of bacteria decide the mineralisation rate in any ecosystem and ultimately the fertility of the region. This study aims at establishing the extent of viability in the standing stock of the Antarctic bacterial population...

  20. The in vitro comparative study of the effect of BPA, BPS, BPF and BPAF on human erythrocyte membrane; perturbations in membrane fluidity, alterations in conformational state and damage to proteins, changes in ATP level and Na+/K+ ATPase and AChE activities.

    Science.gov (United States)

    Maćczak, Aneta; Duchnowicz, Piotr; Sicińska, Paulina; Koter-Michalak, Maria; Bukowska, Bożena; Michałowicz, Jaromir

    2017-12-01

    Bisphenols are massively used in the industry, and thus the exposure of biota including humans to these substances has been noted. In this study we have assessed the effect of BPA and its selected analogs, i.e. BPS, BPF and BPAF on membrane of human red blood cells, which is the first barrier that must be overcome by xenobiotics penetrating the cell, and is commonly utilized as a model in the investigation of the effect of different xenobiotics on various cell types. Red blood cells were incubated with BPA and its analogs in the concentrations ranging from 0.1 to 250 μg/ml for 4 h and 24 h. We have noted that the compounds studied altered membrane fluidity at its hydrophobic region, increased internal viscosity and osmotic fragility of the erythrocytes and altered conformational state of membrane proteins. Moreover, bisphenols examined increased thiol groups level, caused oxidative damage to membrane proteins, decreased ATP level, depleted the activity of Na+/K + ATPase and changed the activity of AChE in human red blood cells. It has been shown that the strongest changes were noted in cells treated with BPAF, while BPS caused the weakest (or none) alterations in the parameters studied. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Cell Viability in Arthroscopic Versus Open Autologous Chondrocyte Implantation.

    Science.gov (United States)

    Biant, Leela C; Simons, Michiel; Gillespie, Trudi; McNicholas, Michael J

    2017-01-01

    Autologous chondrocyte implantation (ACI) is an effective method of repair of articular cartilage defects. It is a 2-stage operation, with the second stage most commonly performed via mini-arthrotomy. Arthroscopic ACI is gaining popularity, as it is less invasive and may accelerate early rehabilitation. However, handling and manipulation of the implant have been shown to cause chondrocyte cell death. To assess the number and viability of cells delivered via an open versus arthroscopic approach in ACI surgery. Controlled laboratory study. Sixteen ACI surgeries were performed on young cadaveric knees by 2 experienced surgeons: 8 via mini-arthrotomy and 8 arthroscopically. Live and dead cells were stained and counted on implants after surgery. The cell number and viability were assessed using confocal laser scanning microscopy. Surgery was timed from knife to skin until the end of cycling the knee 10 times after implantation of the cell-membrane construct. On receipt of cell membranes after transportation from the laboratory, ≥92% of the cells were viable. There were significantly more remaining cells (8.47E+07 arthroscopic vs 1.41E+08 open; P arthroscopic vs 37.34% open; P arthroscopic technique. Open surgery was of a significantly shorter duration (6 vs 32 minutes; P arthroscopic technique. The viability of cells delivered for ACI via an arthroscopic approach was 16 times less than via an open approach. The mini-arthrotomy approach is recommended until long-term clinical comparative data are available.

  2. Tychastic measure of viability risk

    CERN Document Server

    Aubin, Jean-Pierre; Dordan, Olivier

    2014-01-01

    This book presents a forecasting mechanism of the price intervals for deriving the SCR (solvency capital requirement) eradicating the risk during the exercise period on one hand, and measuring the risk by computing the hedging exit time function associating with smaller investments the date until which the value of the portfolio hedges the liabilities on the other. This information, summarized under the term “tychastic viability measure of risk” is an evolutionary alternative to statistical measures, when dealing with evolutions under uncertainty. The book is written by experts in the field and the target audience primarily comprises research experts and practitioners.

  3. Parallel damage in mitochondrial and lysosomal compartments promotes efficient cell death with autophagy: The case of the pentacyclic triterpenoids.

    Science.gov (United States)

    Martins, Waleska K; Costa, Érico T; Cruz, Mário C; Stolf, Beatriz S; Miotto, Ronei; Cordeiro, Rodrigo M; Baptista, Maurício S

    2015-07-27

    The role of autophagy in cell death is still controversial and a lot of debate has concerned the transition from its pro-survival to its pro-death roles. The similar structure of the triterpenoids Betulinic (BA) and Oleanolic (OA) acids allowed us to prove that this transition involves parallel damage in mitochondria and lysosome. After treating immortalized human skin keratinocytes (HaCaT) with either BA or OA, we evaluated cell viability, proliferation and mechanism of cell death, function and morphology of mitochondria and lysosomes, and the status of the autophagy flux. We also quantified the interactions of BA and OA with membrane mimics, both in-vitro and in-silico. Essentially, OA caused mitochondrial damage that relied on autophagy to rescue cellular homeostasis, which failed upon lysosomal inhibition by Chloroquine or Bafilomycin-A1. BA caused parallel damage on mitochondria and lysosome, turning autophagy into a destructive process. The higher cytotoxicity of BA correlated with its stronger efficiency in damaging membrane mimics. Based on these findings, we underlined the concept that autophagy will turn into a destructive outcome when there is parallel damage in mitochondrial and lysosomal membranes. We trust that this concept will help the development of new drugs against aggressive cancers.

  4. Modification of membrane cholesterol and its impact on frozen-thawed chicken sperm characteristics.

    Science.gov (United States)

    Partyka, Agnieszka; Bonarska-Kujawa, Dorota; Sporniak, Marta; Strojecki, Maciej; Niżański, Wojciech

    2016-10-01

    This study was conducted to determine the changes in chicken sperm plasma membranes fluidity and polarity as lipid packing arrangement induced by cholesterol-loaded cyclodextrin (CLC) and 2-hydroxypropyl-β-cyclodextrin (HBCD) and how sperm cryopreservation outcomes are improved by these changes. Treatment with 2 mg HBCD supported the highest (P sperm motility was highest in 2 mg HBCD (P sperm treated with 1 or 2 mg CLC showed the highest anisotropy at 5, 21, 25 and 40°C (P sperm membranes, increasing their fluidity and preventing them against membrane phase transition to gel, thus minimizing freezing-thaw sperm damage. HBCD treatment enhances chicken sperm viability and motility after cryopreservation and subsequent storage. This novel procedure may be useful for improving the technology for cryopreservation of fowl spermatozoa.

  5. Wildlife Tunnel Enhances Population Viability

    Directory of Open Access Journals (Sweden)

    Rodney van der Ree

    2009-12-01

    Full Text Available Roads and traffic are pervasive components of landscapes throughout the world: they cause wildlife mortality, disrupt animal movements, and increase the risk of extinction. Expensive engineering solutions, such as overpasses and tunnels, are increasingly being adopted to mitigate these effects. Although some species readily use such structures, their success in preventing population extinction remains unknown. Here, we use population viability modeling to assess the effectiveness of tunnels for the endangered Mountain Pygmy-possum (Burramys parvus in Australia. The underpasses reduced, but did not completely remove, the negative effects of a road. The expected minimum population size of a "reconnected" population remained 15% lower than that of a comparable "undivided" population. We propose that the extent to which the risk of extinction decreases should be adopted as a measure of effectiveness of mitigation measures and that the use of population modeling become routine in these evaluations.

  6. Malthus, Boserup and population viability.

    Science.gov (United States)

    Bonneuil, N

    1994-01-01

    The Malthus-Boserup explanatory framework is revisited from the point of view of viability theory. Instead of imposing a univocal relationship between population pressure and level of knowledge, the way technology will change is not determined, it is only constrained. This leads to regard any situation as associated to a set of reachable futures. When no possibility is left for systems to avoid extinction, systems are no longer viable. Hence, the control-phase space can be divided into regions corresponding to gradual danger or security. This point of view allows the introduction of ideas such as incentives to create or to use new knowledge, gives a role to the threatening power of Malthusian checks, and leaves space for a specific variety of behaviors. The Boserupian theme then appears indirectly, emerging from the constraints imposed by the inertia of technological change.

  7. Viability of telework at PROCEMPA.

    Science.gov (United States)

    Fetzner, Maria Amelia de Mesquita

    2003-02-01

    At the end of the 20th century, telework appears as one of the modalities of flexible work, which is related to new organizational structures as well as to increasing use of technology. It revolutionizes the traditional ways of performing work. Its implementation creates a number of questions to be answered by the organizations and the individuals involved. This article presents a case study on the viability of implementing telework at Procempa (The Data Processing Company of the City of Porto Alegre). The case study analyzes the technical, organizational, psychological, legal, and labor union dimensions. As a result of this study, we can identify the organization's stage of readiness for telework, the conditions under which it would be implemented, and the specific issues of an implementation.

  8. Silver Nanoparticles Against Salmonella enterica Serotype Typhimurium: Role of Inner Membrane Dysfunction.

    Science.gov (United States)

    Seong, Minju; Lee, Dong Gun

    2017-06-01

    The evolution of antibiotics-resistant bacteria is considered a major concern. To explore promising antibacterial materials and clarify their unknown mechanisms, the mode of action of silver nanoparticles (AgNPs) against Salmonella enterica serotype typhimurium was investigated. We investigated the effect of AgNPs on the bacterial membrane. The N-phenyl-1-naphthylamine assay showed that the permeability of the outer membrane was not changed by treatment with AgNPs. The O-nitrophenyl-β-D-galactopyranoside assay showed that the inner membrane permeability increased as AgNPs concentration increased. Our results showed that AgNPs affected the inner membrane without outer membrane damage. Generally, antibiotic-induced reactive oxygen species (ROS) and changes in the Ca 2+ gradient are known to contribute to bacterial cell death. Likewise, we detected that AgNPs induced the accumulation of ROS and intracellular Ca 2+ depending on its concentration, using 2',7'-dichlorodihydrofluorescein and Fura-2AM, respectively. At higher concentrations, no relationship between oxidative stress and bactericidal effects of AgNPs was confirmed through a cell viability assay and intracellular Ca 2+ assay with antioxidant N-acetylcysteine. In this study, the inner membrane disruption followed by membrane dysfunction played a key role in the antibacterial activity of AgNPs against S. typhimurium. Contrary to the expected results, ROS do not influence growth inhibition of AgNPs.

  9. Sheet Membrane Spacesuit Water Membrane Evaporator

    Science.gov (United States)

    Bue, Grant; Trevino, Luis; Zapata, Felipe; Dillion, Paul; Castillo, Juan; Vonau, Walter; Wilkes, Robert; Vogel, Matthew; Frodge, Curtis

    2013-01-01

    A document describes a sheet membrane spacesuit water membrane evaporator (SWME), which allows for the use of one common water tank that can supply cooling water to the astronaut and to the evaporator. Test data showed that heat rejection performance dropped only 6 percent after being subjected to highly contaminated water. It also exhibited robustness with respect to freezing and Martian atmospheric simulation testing. Water was allowed to freeze in the water channels during testing that simulated a water loop failure and vapor backpressure valve failure. Upon closing the backpressure valve and energizing the pump, the ice eventually thawed and water began to flow with no apparent damage to the sheet membrane. The membrane evaporator also serves to de-gas the water loop from entrained gases, thereby eliminating the need for special degassing equipment such as is needed by the current spacesuit system. As water flows through the three annular water channels, water evaporates with the vapor flowing across the hydrophobic, porous sheet membrane to the vacuum side of the membrane. The rate at which water evaporates, and therefore, the rate at which the flowing water is cooled, is a function of the difference between the water saturation pressure on the water side of the membrane, and the pressure on the vacuum side of the membrane. The primary theory is that the hydrophobic sheet membrane retains water, but permits vapor pass-through when the vapor side pressure is less than the water saturation pressure. This results in evaporative cooling of the remaining water.

  10. Methods for isolation and viability assessment of biological organisms

    Science.gov (United States)

    Letant, Sonia Edith; Baker, Sarah Elyse; Bond, Tiziana; Chang, Allan Shih-Ping

    2015-02-03

    Isolation of biological or chemical organisms can be accomplished using a surface enhanced Raman scattering (SERS) system. The SERS system can be a single or a stacked plurality of photonic crystal membranes with noble-metal lined through pores for flowing analyte potentially containing the biological or chemical organisms. The through pores can be adapted to trap individual biological or chemical organisms and emit SERS spectra, which can then be detected by a detector and further analyzed for viability of the biological or chemical organism.

  11. Fluorescence Microscopy Methods for Determining the Viability of Bacteria in Association with Mammalian Cells

    Science.gov (United States)

    Johnson, M. Brittany; Criss, Alison K.

    2013-01-01

    Central to the field of bacterial pathogenesis is the ability to define if and how microbes survive after exposure to eukaryotic cells. Current protocols to address these questions include colony count assays, gentamicin protection assays, and electron microscopy. Colony count and gentamicin protection assays only assess the viability of the entire bacterial population and are unable to determine individual bacterial viability. Electron microscopy can be used to determine the viability of individual bacteria and provide information regarding their localization in host cells. However, bacteria often display a range of electron densities, making assessment of viability difficult. This article outlines protocols for the use of fluorescent dyes that reveal the viability of individual bacteria inside and associated with host cells. These assays were developed originally to assess survival of Neisseria gonorrhoeae in primary human neutrophils, but should be applicable to any bacterium-host cell interaction. These protocols combine membrane-permeable fluorescent dyes (SYTO9 and 4',6-diamidino-2-phenylindole [DAPI]), which stain all bacteria, with membrane-impermeable fluorescent dyes (propidium iodide and SYTOX Green), which are only accessible to nonviable bacteria. Prior to eukaryotic cell permeabilization, an antibody or fluorescent reagent is added to identify extracellular bacteria. Thus these assays discriminate the viability of bacteria adherent to and inside eukaryotic cells. A protocol is also provided for using the viability dyes in combination with fluorescent antibodies to eukaryotic cell markers, in order to determine the subcellular localization of individual bacteria. The bacterial viability dyes discussed in this article are a sensitive complement and/or alternative to traditional microbiology techniques to evaluate the viability of individual bacteria and provide information regarding where bacteria survive in host cells. PMID:24056524

  12. Oxidant Status and Lipid Composition of Erythrocyte Membranes in Patients with Type 2 Diabetes, Chronic Liver Damage, and a Combination of Both Pathologies

    Directory of Open Access Journals (Sweden)

    Rolando Hernández-Muñoz

    2013-01-01

    Full Text Available There is an important set of cirrhotic and diabetic patients that present both diseases. However, information about metabolic and cellular blood markers that are altered, in conjunction or distinctively, in the 3 pathological conditions is scarce. The aim of this project was to evaluate several indicators of prooxidant reactions and the membrane composition of blood samples (serum and red blood cells (RBCs from patients clinically classified as diabetic (n=60, cirrhotic (n=70, and diabetic with liver cirrhosis (n=25 as compared to samples from a similar population of healthy individuals (n=60. The results showed that levels of TBARS, nitrites, cysteine, and conjugated dienes in the RBC of cirrhotic patients were significantly increased. However, the coincidence of diabetes and cirrhosis partially reduced the alterations promoted by the cirrhotic condition. The amount of total phospholipids and cholesterol was greatly enhanced in the patients with both pathologies (between 60 and 200% according to the type of phospholipid but not in the patients with only one disease. Overall, the data indicate that the cooccurrence of diabetes and cirrhosis elicits a physiopathological equilibrium that is different from the alterations typical of each individual malady.

  13. Constants of the Alper and Howard-Flanders oxygen equation for damage to bacterial membrane, deduced from observations on the radiation-induced penicillin-sensitive lesion

    Energy Technology Data Exchange (ETDEWEB)

    Obioha, F.I.; Gillies, N.E. (Middlesex Hospital, London (UK)); Cullen, B.M.; Walker, H.C. (Hammersmith Hospital, London (UK). M.R.C. Cyclotron Unit); Alper, T.

    1984-05-01

    E. coli were irradiated in the presence of 100% oxygen, oxygen-free nitrogen and mixtures of 1.01, 0.59, 0.3, 0.1 and 0.06% oxygen in nitrogen. Changes in sensitivity with pO/sub 2/ conformed with the Alper and Howard-Flanders equation for bacteria treated after irradiation by penicillin as well as for the untreated ones. Values of m were respectively 4.8 and 3.3; values of K were identical, within experimental error, (4.4 mmHg). Sensitivity to induction of the bacterial membrane penicillin-sensitive lesion was calculated from the difference in the reciprocals of D/sub 0/ values proper to untreated and treated bacteria, for every gas used. The value of m could not be directly calculated because the effect of penicillin on anoxically irradiated bacteria was not detectable. For that reason, a transformation of the oxygen equation was used, allowing estimates to be made of both m and K, provided the results conformed with the equation. Within experimental error they did. Calculated values of m and K for induction of the penicillin-sensitive lesion were respectively 8 and 5.9 mmHg, but it is shown that the oxygen enhancement ratio was probably underestimated and the value overestimated.

  14. Economic viability of anaerobic digestion

    Energy Technology Data Exchange (ETDEWEB)

    Wellinger, A. [INFOENERGIE, Ettenhausen (Switzerland)

    1996-01-01

    The industrial application of anaerobic digestion is a relatively new, yet proven waste treatment technology. Anaerobic digestion reduces and upgrades organic waste, and is a good way to control air pollution as it reduces methane and nitrous gas emissions. For environmental and energy considerations, anaerobic digestion is a nearly perfect waste treatment process. However, its economic viability is still in question. A number of parameters - type of waste (solid or liquid), digester system, facility size, product quality and end use, environmental requirements, cost of alternative treatments (including labor), and interest rates - define the investment and operating costs of an anaerobic digestion facility. Therefore, identical facilities that treat the same amount and type of waste may, depending on location, legislation, and end product characteristics, reveal radically different costs. A good approach for evaluating the economics of anaerobic digestion is to compare it to treatment techniques such as aeration or conventional sewage treatment (for industrial wastewater), or composting and incineration (for solid organic waste). For example, the cost (per ton of waste) of in-vessel composting with biofilters is somewhat higher than that of anaerobic digestion, but the investment costs 1 1/2 to 2 times more than either composting or anaerobic digestion. Two distinct advantages of anaerobic digestion are: (1) it requires less land than either composting or incinerating, which translates into lower costs and milder environmental and community impacts (especially in densely populated areas); and (2) it produces net energy, which can be used to operate the facility or sold to nearby industries.

  15. Recent advances on polymeric membranes for membrane reactors

    KAUST Repository

    Buonomenna, M. G.

    2012-06-24

    Membrane reactors are generally applied in high temperature reactions (>400 °C). In the field of fine chemical synthesis, however, much milder conditions are generally applicable and polymeric membranes were applied without their damage. The successful use of membranes in membrane reactors is primary the result of two developments concerning: (i) membrane materials and (ii) membrane structures. The selection of a suited material and preparation technique depends on the application the membrane is to be used in. In this chapter a review of up to date literature about polymers and configuration catalyst/ membranes used in some recent polymeric membrane reactors is given. The new emerging concept of polymeric microcapsules as catalytic microreactors has been proposed. © 2012 Bentham Science Publishers. All rights reserved.

  16. Different effects of sonoporation on cell morphology and viability

    Directory of Open Access Journals (Sweden)

    Ji-Zhen Zhang

    2012-05-01

    Full Text Available The objective of our study was to investigate changes in cell morphology and viability after sonoporation. Sonoportion was achieved by ultrasound (21 kHz exposure on adherent human prostate cancer DU145 cells in the cell culture dishes with the presence of microbubble contrast agents and calcein (a cell impermeant dye. We investigated changes in cell morphology immediately after sonoporation under scanning electron microscope (SEM and changes in cell viability immediately and 6 h after sonoporation under fluorescence microscope. It was shown that various levels of intracellular calcein uptake and changes in cell morphology can be caused immediately after sonoporation: smooth cell surface, pores in the membrane and irregular cell surface. Immediately after sonoporation, both groups of cells with high levels of calcein uptake and low levels of calcein uptake were viable; 6 h after sonoporation, group of cells with low levels of calcein uptake still remained viable, while group of cells with high levels of calcein uptake died. Sonoporation induces different effects on cell morphology, intracellular calcein uptake and cell viability.

  17. Non-thermal dielectric-barrier discharge plasma damages human keratinocytes by inducing oxidative stress

    Science.gov (United States)

    KIM, KI CHEON; PIAO, MEI JING; HEWAGE, SUSARA RUWAN KUMARA MADDUMA; HAN, XIA; KANG, KYOUNG AH; JO, JIN OH; MOK, YOUNG SUN; SHIN, JENNIFER H.; PARK, YEUNSOO; YOO, SUK JAE; HYUN, JIN WON

    2016-01-01

    The aim of this study was to identify the mechanisms through which dielectric-barrier discharge plasma damages human keratinocytes (HaCaT cells) through the induction of oxidative stress. For this purpose, the cells were exposed to surface dielectric-barrier discharge plasma in 70% oxygen and 30% argon. We noted that cell viability was decreased following exposure of the cells to plasma in a time-dependent manner, as shown by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The levels of intracellular reactive oxygen species (ROS) were determined using 2′,7′-dichlorodihydro-fluorescein diacetate and dihydroethidium was used to monitor superoxide anion production. Plasma induced the generation of ROS, including superoxide anions, hydrogen peroxide and hydroxyl radicals. N-acetyl cysteine, which is an antioxidant, prevented the decrease in cell viability caused by exposure to plasma. ROS generated by exposure to plasma resulted in damage to various cellular components, including lipid membrane peroxidation, DNA breaks and protein carbonylation, which was detected by measuring the levels of 8-isoprostane and diphenyl-1-pyrenylphosphine assay, comet assay and protein carbonyl formation. These results suggest that plasma exerts cytotoxic effects by causing oxidative stress-induced damage to cellular components. PMID:26573561

  18. Does the balanced scorecard support organizational viability?

    NARCIS (Netherlands)

    Achterbergh, J.M.I.M.; Beeres, R.J.M.; Vriens, D.J.

    2003-01-01

    In this paper we assess whether the balanced scorecard (BSC) supports the necessary functions for organizational viability. To this purpose, we use the viable system model (VSM) as a means to describe the functions required for organizational viability. Then we use the VSM as a template to assess

  19. Effect of various commercial buffers on sperm viability and capacitation.

    Science.gov (United States)

    Andrisani, Alessandra; Donà, Gabriella; Ambrosini, Guido; Bonanni, Guglielmo; Bragadin, Marcantonio; Cosmi, Erich; Clari, Giulio; Armanini, Decio; Bordin, Luciana

    2014-08-01

    A wide variety of sperm preparation protocols are currently available for assisted conception. They include density gradient separation and washing methods. Both aim at isolating and capacitating as much motile sperm as possible for subsequent oocyte fertilization. The aim of this study was to examine the effects of four commercial sperm washing buffers on sperm viability and capacitation. Semen samples from 48 healthy donors (normal values of sperm count, motility, morphology, and volume) were analyzed. After separation (density gradient 40/80%), sperm were incubated in various buffers then analysed for reactive oxygen species (ROS) production, viability, tyrosine phosphorylation (Tyr-P), cholera toxin B subunit (CTB) labeling, and the acrosome reaction (AR). The buffers affected ROS generation in various ways resulting either in rapid cell degeneration (when the amount of ROS was too high for cell survival) or the inability of the cells to maintain correct functioning (when ROS were too few). Only when the correct ROS generation curve was maintained, suitable membrane reorganization, evidenced by CTB labeling was achieved, leading to the highest percentages of both Tyr-P- and acrosome-reacted-cells. Distinguishing each particular pathological state of the sperm sample would be helpful to select the preferred buffer treatment since both ROS production and membrane reorganization can be significantly altered by commercial buffers.

  20. DNA Damage and Cell Cycle Arrest Induced by Protoporphyrin IX in Sarcoma 180 Cells

    Directory of Open Access Journals (Sweden)

    Qing Li

    2013-09-01

    Full Text Available Background: Porphyrin derivatives have been widely used in photodynamic therapy as effective sensitizers. Protoporphyrin IX (PpIX, a well-known hematoporphyrin derivative component, shows great potential to enhance light induced tumor cell damage. However, PpIX alone could also exert anti-tumor effects. The mechanisms underlying those direct effects are incompletely understood. This study thus investigated the putative mechanisms underlying the anti-tumor effects of PpIX on sarcoma 180 (S180 cells. Methods: S180 cells were treated with different concentrations of PpIX. Following the treatment, cell viability was evaluated by the 3-(4, 5- dimethylthiazol-2-yl-2, 5-diphenyltetrazoliumbromide (MTT assay; Disruption of mitochondrial membrane potential was measured by flow cytometry; The trans-location of apoptosis inducer factor (AIF from mitochondria to nucleus was visualized by confocal laser scanning microscopy; DNA damage was detected by single cell gel electrophoresis; Cell cycle distribution was analyzed by DNA content with flow cytometry; Cell cycle associated proteins were detected by western blotting. Results: PpIX (≥ 1 µg/ml significantly inhibited proliferation and reduced viability of S180 cells in a dose-dependent manner. PpIX rapidly and significantly triggered mitochondrial membrane depolarization, AIF (apoptosis inducer factor translocation from mitochondria to nucleus and DNA damage, effects partially relieved by the specific inhibitor of MPTP (mitochondrial permeability transition pore. Furthermore, S phase arrest and upregulation of the related proteins of P53 and P21 were observed following 12 and 24 h PpIX exposure. Conclusion: PpIX could inhibit tumor cell proliferation by induction of DNA damage and cell cycle arrest in the S phase.

  1. Membrane dynamics

    DEFF Research Database (Denmark)

    Bendix, Pól Martin

    2015-01-01

    Current topics include membrane-protein interactions with regard to membrane deformation or curvature sensing by BAR domains. Also, we study the dynamics of membrane tubes of both cells and simple model membrane tubes. Finally, we study membrane phase behavior which has important implications...... for the lateral organization of membranes as wells as for physical properties like bending, permeability and elasticity...

  2. Free cholesterol and cholesterol esters in bovine oocytes: Implications in survival and membrane raft organization after cryopreservation.

    Science.gov (United States)

    Buschiazzo, Jorgelina; Ríos, Glenda L; Canizo, Jesica R; Antollini, Silvia S; Alberio, Ricardo H

    2017-01-01

    Part of the damage caused by cryopreservation of mammalian oocytes occurs at the plasma membrane. The addition of cholesterol to cell membranes as a strategy to make it more tolerant to cryopreservation has been little addressed in oocytes. In order to increase the survival of bovine oocytes after cryopreservation, we proposed not only to increase cholesterol level of oocyte membranes before vitrification but also to remove the added cholesterol after warming, thus recovering its original level. Results from our study showed that modulation of membrane cholesterol by methyl-β-cyclodextrin (MβCD) did not affect the apoptotic status of oocytes and improved viability after vitrification yielding levels of apoptosis closer to those of fresh oocytes. Fluorometric measurements based on an enzyme-coupled reaction that detects both free cholesterol (membrane) and cholesteryl esters (stored in lipid droplets), revealed that oocytes and cumulus cells present different levels of cholesterol depending on the seasonal period. Variations at membrane cholesterol level of oocytes were enough to account for the differences found in total cholesterol. Differences found in total cholesterol of cumulus cells were explained by the differences found in both the content of membrane cholesterol and of cholesterol esters. Cholesterol was incorporated into the oocyte plasma membrane as evidenced by comparative labeling of a fluorescent cholesterol. Oocytes and cumulus cells increased membrane cholesterol after incubation with MβCD/cholesterol and recovered their original level after cholesterol removal, regardless of the season. Finally, we evaluated the effect of vitrification on the putative raft molecule GM1. Cholesterol modulation also preserved membrane organization by maintaining ganglioside level at the plasma membrane. Results suggest a distinctive cholesterol metabolic status of cumulus-oocyte complexes (COCs) among seasons and a dynamic organizational structure of cholesterol

  3. Free cholesterol and cholesterol esters in bovine oocytes: Implications in survival and membrane raft organization after cryopreservation.

    Directory of Open Access Journals (Sweden)

    Jorgelina Buschiazzo

    Full Text Available Part of the damage caused by cryopreservation of mammalian oocytes occurs at the plasma membrane. The addition of cholesterol to cell membranes as a strategy to make it more tolerant to cryopreservation has been little addressed in oocytes. In order to increase the survival of bovine oocytes after cryopreservation, we proposed not only to increase cholesterol level of oocyte membranes before vitrification but also to remove the added cholesterol after warming, thus recovering its original level. Results from our study showed that modulation of membrane cholesterol by methyl-β-cyclodextrin (MβCD did not affect the apoptotic status of oocytes and improved viability after vitrification yielding levels of apoptosis closer to those of fresh oocytes. Fluorometric measurements based on an enzyme-coupled reaction that detects both free cholesterol (membrane and cholesteryl esters (stored in lipid droplets, revealed that oocytes and cumulus cells present different levels of cholesterol depending on the seasonal period. Variations at membrane cholesterol level of oocytes were enough to account for the differences found in total cholesterol. Differences found in total cholesterol of cumulus cells were explained by the differences found in both the content of membrane cholesterol and of cholesterol esters. Cholesterol was incorporated into the oocyte plasma membrane as evidenced by comparative labeling of a fluorescent cholesterol. Oocytes and cumulus cells increased membrane cholesterol after incubation with MβCD/cholesterol and recovered their original level after cholesterol removal, regardless of the season. Finally, we evaluated the effect of vitrification on the putative raft molecule GM1. Cholesterol modulation also preserved membrane organization by maintaining ganglioside level at the plasma membrane. Results suggest a distinctive cholesterol metabolic status of cumulus-oocyte complexes (COCs among seasons and a dynamic organizational structure

  4. Processo de reparação de lesões da córnea e a membrana amniótica na oftalmologia Repair process of corneal damage and the amniotic membrane in ophthalmology

    Directory of Open Access Journals (Sweden)

    Kelly Cristine de Sousa Pontes

    2011-12-01

    Full Text Available Os eventos que fazem parte do processo de reparação de lesões da córnea ocorrem simultaneamente e envolvem proliferação, migração, diferenciação e apoptose celular, além da comunicação intercelular. Vários fatores solúveis, além de proteínas da matriz mesenquimal, proteoglicanos, enzimas proteolíticas e alguns tipos celulares são abordados nesta revisão, na qual explicam-se os processos de reparação de lesões superficiais ou penetrantes da córnea. A membrana amniótica, muito utilizada na cirurgia oftálmica, foi estudada por apresentar funções que colaboram com o processo de reparação. Entretanto, tais funções poderão ser perdidas quando tal tecido for submetido à conservação. Assim, torna-se importante conhecer o processo de reparação de lesões que envolvem, ou não, a córnea em toda a sua espessura e escolher a melhor forma de utilização da membrana amniótica quando ela for indicada na terapia para estas lesões.The events included in the process of repair of corneal damage occur simultaneously and involve proliferation, migration, differentiation, cell apoptosis and intercellular communication. Several soluble factors, mesenchymal matrix proteins, proteoglycans, proteolytic enzymes and some cell types are covered in this review, which explains the processes of repair of corneal wounds, either superficial or penetrating. The amniotic membrane, used in ophthalmic surgery, was studied because of the contribution of its functions to the repair process. However, these functions may be lost when the amniotic membrane is subjected to conservation. Therefore, it is important to understand the repair process of lesions involving or not the entire thickness of the cornea, and choose the best use of the amniotic membrane, when it is indicated for the treatment of these lesions.

  5. Fungal Spores Viability on the International Space Station

    Science.gov (United States)

    Gomoiu, I.; Chatzitheodoridis, E.; Vadrucci, S.; Walther, I.; Cojoc, R.

    2016-11-01

    In this study we investigated the security of a spaceflight experiment from two points of view: spreading of dried fungal spores placed on the different wafers and their viability during short and long term missions on the International Space Station (ISS). Microscopic characteristics of spores from dried spores samples were investigated, as well as the morphology of the colonies obtained from spores that survived during mission. The selected fungal species were: Aspergillus niger, Cladosporium herbarum, Ulocladium chartarum, and Basipetospora halophila. They have been chosen mainly based on their involvement in the biodeterioration of different substrate in the ISS as well as their presence as possible contaminants of the ISS. From biological point of view, three of the selected species are black fungi, with high melanin content and therefore highly resistant to space radiation. The visual inspection and analysis of the images taken before and after the short and the long term experiments have shown that all biocontainers were returned to Earth without damages. Microscope images of the lids of the culture plates revealed that the spores of all species were actually not detached from the surface of the wafers and did not contaminate the lids. From the adhesion point of view all types of wafers can be used in space experiments, with a special comment on the viability in the particular case of iron wafers when used for spores that belong to B. halophila (halophilic strain). This is encouraging in performing experiments with fungi without risking contamination. The spore viability was lower in the experiment for long time to ISS conditions than that of the short experiment. From the observations, it is suggested that the environment of the enclosed biocontainer, as well as the species'specific behaviour have an important effect, reducing the viability in time. Even the spores were not detached from the surface of the wafers, it was observed that spores used in the

  6. The Mre11-Nbs1 Interface Is Essential for Viability and Tumor Suppression

    NARCIS (Netherlands)

    Kim, J.H. (Jun Hyun); M. Grosbart (Malgorzata); Anand, R. (Roopesh); C. Wyman (Claire); Cejka, P. (Petr); J.H.J. Petrini (John)

    2017-01-01

    textabstractThe Mre11 complex (Mre11, Rad50, and Nbs1) is integral to both DNA repair and ataxia telangiectasia mutated (ATM)-dependent DNA damage signaling. All three Mre11 complex components are essential for viability at the cellular and organismal levels. To delineate essential and non-essential

  7. Parylene as a new membrane material for BioMEMS applications

    Science.gov (United States)

    Lu, Bo

    The work in this thesis aims to use MEMS and microfabrication technologies to develop two types of parylene membrane devices for biomedical applications. The first device is the parylene membrane filter for cancer detection. The presence of circulating tumor cells (CTC) in patient blood is an important sign of cancer metastasis. However, currently there are two big challenges for CTC detection. First, CTCs are extremely rare, especially at the early stage of cancer metastasis. Secondly, CTCs are very fragile, and are very likely to be damaged during the capturing process. By using size-based membrane filtration through the specially designed parylene filters, together with a constant-pressure filtration system, we are able to capture the CTCs from patient blood with high capture efficiency, high viability, moderate enrichment, and high throughput. Both immunofluorescence enumeration and telomerase activity detection have been used to detect and differentiate the captured CTCs. The feasibility of further cell culture of the captured CTCs has also been demonstrated, which could be a useful way to increase the number of CTCs for future studies. Models of the time-dependent cell membrane damage are developed to predict and prevent CTC damage during this detection process. The results of clinical trials further demonstrate that the parylene membrane filter is a promising device for cancer detection. The second device is the parylene artificial Bruch's membrane for age-related macular degeneration (AMD). AMD is usually characterized by an impaired Bruch's membrane with much lowered permeability, which impedes the transportation of nutrients from choroid vessels to nourish the retinal pigment epithelial (RPE) cells and photoreceptors. Parylene is selected as a substitute material because of its good mechanical properties, transparency, biocompatibility, and machinability. More importantly, it is found that the permeability of submicron parylene is very similar to that of

  8. Terminology for pregnancy loss prior to viability

    DEFF Research Database (Denmark)

    Kolte, A M; Bernardi, L A; Christiansen, O B

    2015-01-01

    Pregnancy loss prior to viability is common and research in the field is extensive. Unfortunately, terminology in the literature is inconsistent. The lack of consensus regarding nomenclature and classification of pregnancy loss prior to viability makes it difficult to compare study results from...... different centres. In our opinion, terminology and definitions should be based on clinical findings, and when possible, transvaginal ultrasound. With this Early Pregnancy Consensus Statement, it is our goal to provide clear and consistent terminology for pregnancy loss prior to viability....

  9. Gas Separations using Ceramic Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Paul KT Liu

    2005-01-13

    This project has been oriented toward the development of a commercially viable ceramic membrane for high temperature gas separations. A technically and commercially viable high temperature gas separation membrane and process has been developed under this project. The lab and field tests have demonstrated the operational stability, both performance and material, of the gas separation thin film, deposited upon the ceramic membrane developed. This performance reliability is built upon the ceramic membrane developed under this project as a substrate for elevated temperature operation. A comprehensive product development approach has been taken to produce an economically viable ceramic substrate, gas selective thin film and the module required to house the innovative membranes for the elevated temperature operation. Field tests have been performed to demonstrate the technical and commercial viability for (i) energy and water recovery from boiler flue gases, and (ii) hydrogen recovery from refinery waste streams using the membrane/module product developed under this project. Active commercializations effort teaming with key industrial OEMs and end users is currently underway for these applications. In addition, the gas separation membrane developed under this project has demonstrated its economical viability for the CO2 removal from subquality natural gas and landfill gas, although performance stability at the elevated temperature remains to be confirmed in the field.

  10. Minimally invasive intracellular delivery based on electrokinetic forces combined with vibration-assisted cell membrane perforation

    Science.gov (United States)

    Shibata, Takayuki; Ozawa, Tatsuya; Ito, Yasuharu; Yamamoto, Keita; Nagai, Moeto

    2017-01-01

    To provide an effective platform for the fundamental analysis of cellular mechanisms and the regulation of cellular functions, we developed a unique method of minimally invasive intracellular delivery. Using this method, we successfully demonstrated the delivery of DNA molecules into living HeLa cells via a glass micropipette based on DC-biased AC-driven electrokinetic forces with much better controllability than that of the pressure-driven flow method. We also proposed a vibration-assisted insertion method for penetrating the cell membrane to reduce cell damage. Preliminary insertion tests revealed that application of mechanical oscillation can reduce the deformation of cells due to increases in their viscous resistance, resulting in a high probability of cell membrane perforation and cell viability. Moreover, to overcome the intrinsic low throughput of intracellular delivery with a single glass micropipette, we developed a fabrication process involving an array of stepped hollow silicon dioxide (SiO2) nanoneedles with well-defined tips.

  11. Effect of electrical charges and fields on injury and viability of airborne bacteria.

    Science.gov (United States)

    Mainelis, Gediminas; Górny, Rafał L; Reponen, Tiina; Trunov, Mikhaylo; Grinshpun, Sergey A; Baron, Paul; Yadav, Jagjit; Willeke, Klaus

    2002-07-20

    In this study, the effects of the electric charges and fields on the viability of airborne microorganisms were investigated. The electric charges of different magnitude and polarity were imparted on airborne microbial cells by a means of induction charging. The airborne microorganisms carrying different electric charge levels were then extracted by an electric mobility analyzer and collected using a microbial sampler. It was found that the viability of Pseudomonas fluorescens bacteria, used as a model for sensitive bacteria, carrying a net charge from 4100 negative to 30 positive elementary charges ranged between 40% and 60%; the viability of the cells carrying >2700 positive charges was below 1.5%. In contrast, the viability of the stress-resistant spores of Bacillus subtilis var. niger (used as simulant of anthrax-causing Bacillus anthracis spores when testing bioaerosol sensors in various studies), was not affected by the amount of electric charges on the spores. Because bacterial cells depend on their membrane potential for basic metabolic activities, drastic changes occurring in the membrane potential during aerosolization and the local electric fields induced by the imposed charges appeared to affect the sensitive cells' viability. These findings facilitate applications of electric charging for environmental control purposes involving sterilization of bacterial cells by imposing high electric charges on them. The findings from this study can also be used in the development of new bioaerosol sampling methods based on electrostatic principles. Copyright 2002 Wiley Periodicals, Inc.

  12. A novel sorting technology allows for highly efficient selection of sperm without chromatin damage.

    Science.gov (United States)

    Funaro, Michael G; Kim, Howard H; Mazel, Svetlana; Bolyakov, Alexander; Goldstein, Marc; Schlegel, Peter N; Paduch, Darius A

    2013-06-01

    Sperm chromatin damage has been associated with male infertility, increased risk for spontaneous abortion, and poor embryo development. Available methods for detecting chromatin damage render the sperm no longer suitable for clinical use. Early apoptotic events resulting in chromatin damage are associated with increased permeability of the cell membrane to large ions. We propose the use of a large fluorescent organic cation, proprietary fluorochrome (PF-1), for fluorescence-activated cell sorting (FACS) for negative selection of sperm without chromatin damage. Sperm with chromatin damage are PF-1 positive. Performance of cell sorting by PF-1 was verified with terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) after FACS on PF-1(+) and PF-1(-) subpopulations. Whereas 19.5% of PF-1 positive sperm were TUNEL positive only 1.5% sperm in the PF-1(-) fraction were TUNEL positive (p positive sperm without adverse effects on viability, providing a new therapeutic avenue for men with a high percentage of TUNEL positive sperm. Further research is needed to determine if the reduction in TUNEL positive sperm using PF-1 will improve in vitro fertilization (IVF) outcomes.

  13. Effects of the utilization of homeopathic elements in commercial diluent on swine sperm viability.

    Science.gov (United States)

    Soto, Francisco Rafael Martins; Vuaden, Erlete Rosalina; de Paula Coelho, Cideli; Bonamin, Leoni Villano; de Azevedo, Sérgio Santos; Benites, Nilson Roberti; de Barros, Flavia Regina Oliveira; Goissis, Marcelo Demarchi; Ortiz D'Ávila Assumpção, Mayra Elena; Visintin, José Antônio; Marques, Mariana Groke

    2011-03-01

    It has been speculated that the homeopathic treatment of sperm cells in order to improve semen quality could be promising. However, few data is available and its use in spermatozoa requires investigation. It is well established that mitochondrial membrane potential is an important viability parameter of spermatozoa and it is intimately related to reproductive efficiency. In this manner, new technologies in order to improve the activity of sperm cells and, finally, the fecundity of swine herds are of extremely importance. Due to the lack of knowledge of homeopathic treatment effect on spermatozoa, the aim of the present study was to verify the effect of three different homeopathic treatments on viability of boar sperm cells. Three homeopathic treatments composed by Pulsatila CH6, Pulsatila and Avena CH6, Avena CH6 and one control treatment (sucrose) were added to diluted boar semen, which were cooled for 24 or 48 h. Interestingly, no positive effect of homeopathic treatments was observed over semen viability. However, it was demonstrated that the 24 h of cooling storage provided more viable sperm cells when compared to the 48-h period. This effect of storage period on sperm viability was assessed by intact plasmatic membrane, intact acrosome and mitochondrial membrane potential evaluation.

  14. Near viability for fully nonlinear differential inclusions

    National Research Council Canada - National Science Library

    Irina Căpraru; Alina Lazu

    2014-01-01

    .... We establish a viability result under Lipschitz hypothesis on F, that consists in proving the existence of solutions of the differential inclusion above, starting from a given set, which remain...

  15. Poxvirus viability and signatures in historical relics

    National Research Council Canada - National Science Library

    McCollum, Andrea M; Li, Yu; Wilkins, Kimberly; Karem, Kevin L; Davidson, Whitni B; Paddock, Christopher D; Reynolds, Mary G; Damon, Inger K

    2014-01-01

    Although it has been >30 years since the eradication of smallpox, the unearthing of well-preserved tissue material in which the virus may reside has called into question the viability of variola virus decades or centuries...

  16. Intraspecific variation in pollen viability, germination and ...

    African Journals Online (AJOL)

    Oleaceae) cultivars 'Koroneiki', 'Mastoidis' and 'Kalamata' was studied with scanning electron microscopy to identify genotype- distinguishing characters that could be employed for morphological cultivar discrimination. Pollen viability and germination ...

  17. Probiotic viability – does it matter?

    OpenAIRE

    Sampo J. Lahtinen

    2012-01-01

    Probiotics are viable by definition, and viability of probiotics is often considered to be a prerequisite for the health benefits. Indeed, the overwhelming majority of clinical studies in the field have been performed with viable probiotics. However, it has also been speculated that some of the mechanisms behind the probiotic health effects may not be dependent on the viability of the cells, and therefore is also possible that also nonviable probiotics could have some health benefits. The eff...

  18. Comparative studies of cellular viability levels on 2D and 3D in vitro culture matrices.

    Science.gov (United States)

    Gargotti, M; Lopez-Gonzalez, U; Byrne, H J; Casey, A

    2017-09-18

    In this study, the cellular viability and function of immortalized human cervical and dermal cells are monitored and compared in conventional 2D and two commercial 3D membranes, Collagen and Geltrex, of varying working concentration and volume. Viability was monitored with the aid of the Alamar Blue assay, cellular morphology was monitored with confocal microscopy, and cell cycle studies and cell death mechanism studies were performed with flow cytometry. The viability studies showed apparent differences between the 2D and 3D culture systems, the differences attributed in part to the physical transition from 2D to 3D environment causing alterations to effective resazurin concentration, uptake and conversion rates, which was dependent on exposure time, but also due to the effect of the membrane itself on cellular function. These effects were verified by flow cytometry, in which no significant differences in viable cell numbers between 2D and 3D systems were observed after 24 h culture. The results showed the observed effect was different after shorter exposure periods, was also dependent on working concentration of the 3D system and could be mediated by altering the culture vessel size. Cell cycle analysis revealed cellular function could be altered by growth on the 3D substrates and the alterations were noted to be dependent on 3D membrane concentration. The use of 3D culture matrices has been widely interpreted to result in "improved viability levels" or "reduced" toxicity or cellular "resistance" compared to cells cultured on traditional 2D systems. The results of this study show that cellular health and viability levels are not altered by culture in 3D environments, but their normal cycle can be altered as indicated in the cell cycle studies performed and such variations must be accounted for in studies employing 3D membranes for in vitro cellular screening.

  19. Zinc protects sperm from being damaged by reactive oxygen species in assisted reproduction techniques.

    Science.gov (United States)

    Wu, Jinxiang; Wu, Shiqiang; Xie, Yuanzhi; Wang, Zhengyao; Wu, Ruiyun; Cai, Junfeng; Luo, Xiangmin; Huang, Suzhen; You, Liuxia

    2015-04-01

    The aim of this study was to explore the effect of zinc on hydrogen peroxide-induced sperm damage in assisted reproduction techniques. First, sperms were selected from semen samples of 20 healthy men prepared by density gradient centrifugation. Selected sperm were treated with either 0.001% H(2)O(2), 12.5 nM ZnCL(2), 0.001% H(2)O(2) + 12.5 nM ZnCL(2) or 0.9% NaCl(2) (control). After this treatment, the motility, viability, membrane integrity and DNA fragmentation of sperms in each group were analysed by Goodline sperm detection system, optical microscopy and sperm DNA fragmentation assay. Poorer motility, vitality, membrane integrity and more DNA damage were found in sperms treated by H(2)O(2), compared with control. When sperms were treated with both H(2)O(2) and zinc, however, all indicators were improved compared with H(2)O(2) alone. There was a close association between oxidative stimulation and sperm injury; zinc could inhibit hydrogen peroxide-induced damage of sperm in assisted reproductive technology. However, the presence of zinc in culture medium can decrease the sperm quality without addition of peroxide. Copyright © 2014 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  20. Viability and Tissue Quality of Cartilage Flaps From Patients With Femoroacetabular Hip Impingement: A Matched-Control Comparison

    OpenAIRE

    Rodriguez-Fontan, Francisco; Payne, Karin A.; Chahla, Jorge; Mei-Dan, Omer; Richards, Abigail; Uchida, Soshi; Pascual-Garrido, Cecilia

    2017-01-01

    Background: Chondrolabral damage is commonly observed in patients with cam-type femoroacetabular impingement (FAI). Chondral flap reattachment has recently been proposed as a possible preservation technique. Purpose/Hypothesis: The purpose of this study was to determine the viability and tissue quality of chondral flaps from patients with FAI at the time of arthroscopy. It was hypothesized that chondral flaps from patients with cam lesions of the hip would exhibit less viability and greater t...

  1. Assessment of strategies to increase chondrocyte viability in cryopreserved human osteochondral allografts: evaluation of the glycosylated hydroquinone, arbutin.

    Science.gov (United States)

    Rosa, S C; Gonçalves, J; Judas, F; Lopes, C; Mendes, A F

    2009-12-01

    Allogeneic cartilage is used to repair damaged areas of articular cartilage, requiring the presence of living chondrocytes. So far, no preservation method can effectively meet that purpose. Identification of more effective cryoprotective agents (CPAs) can contribute to this goal. The aim of this study was to determine whether the glycosylated hydroquinone, arbutin, alone or in combination with low concentrations of other CPAs, has cryoprotective properties towards human articular cartilage. Human tibial plateaus were procured from multi-organ donors, with the approval of the Ethics Committee of the University Hospital of Coimbra. The tibial plateaus were treated with or without arbutin (50 or 100mM), alone or in combination with various concentrations of dimethyl sulfoxide (DMSO) and glycerol, for 0.5-1.5h/37 degrees C, then frozen at -20 degrees C and 24h later transferred to a biofreezer at -80 degrees C. Two to 3 months later, thawing was achieved by immersion in cell culture medium at 37 degrees C/1h. Chondrocyte viability was assessed before and after freeze-thawing using a colorimetric assay based on the cell's metabolic activity and fluorescent dyes to evaluate cell membrane integrity. Before freezing, chondrocyte metabolic activity was identical in all the conditions tested. After freeze-thawing, the highest activity, corresponding to 34.2+/-2.1% of that in the Fresh Control, was achieved in tibial plateaus incubated in 50mM arbutin for 1h whereas in those left untreated it was 11.1+/-4.7. Addition of DMSO and glycerol to arbutin did not increase chondrocyte viability any further. Fluorescence microscopy confirmed these results and showed that living chondrocytes were mainly restricted to the superficial cartilage layers. Arbutin seems to be an effective cryoprotective agent for osteochondral allografts with potential benefits over DMSO and glycerol.

  2. RELATIONSHIP BETWEEN MOTILITY AND VIABILITY PARAMETERS OF FROZEN-THAWED BULL SPERMATOZOA

    Directory of Open Access Journals (Sweden)

    Eliška Špaleková

    2013-02-01

    Full Text Available The aim of this study was to determine relationship between parameters of spermatozoa motility (total motility - TM and progressive movement - PM and viability of bull frozen-thawed spermatozoa (dead spermatozoa ratio, apoptotic spermatozoa ratio and plasma membrane integrity. Motility parameters were evaluated using computer-assisted semen analysis (CASA. Parameters of spermatozoa viability were analysed using fluorescent dyes PNA-FITC (plasma membrane, Yo-Pro-1 and propidium iodide (PI. All bulls (n=6 were divided into two groups. First group (n=3 A – better bulls with total motility after thawing over 40% and the second group (n=3 B – with total motility lower than 40%. It was observed significantly (P<0.001 higher TM and PM in group A. No significant differences in velocity parameters and ALH between the group A and B were detected. Occurrence of spermatozoa with disrupted membranes, dead/necrotic spermatozoa and apoptotic spermatozoa was significantly lower in the group A. Bulls in the group A showed significantly higher cleavage rate of embryos. These motility and viability characteristics are associated with a higher embryo cleavage rate in in vitro fertilizatioThe aim of this study was to determine relationship between parameters of spermatozoa motility (total motility - TM and progressive movement - PM and viability of bull frozen-thawed spermatozoa (dead spermatozoa ratio, apoptotic spermatozoa ratio and plasma membrane integrity. Motility parameters were evaluated using computer-assisted semen analysis (CASA. Parameters of spermatozoa viability were analysed using fluorescent dyes PNA-FITC (plasma membrane, Yo-Pro-1 and propidium iodide (PI. All bulls (n=6 were divided into two groups. First group (n=3 A – better bulls with total motility after thawing over 40% and the second group (n=3 B – with total motility lower than 40%. It was observed significantly (P<0.001 higher TM and PM in group A. No significant differences in

  3. Membrane tension and membrane fusion

    OpenAIRE

    Kozlov, Michael M.; Chernomordik, Leonid V.

    2015-01-01

    Diverse cell biological processes that involve shaping and remodeling of cell membranes are regulated by membrane lateral tension. Here we focus on the role of tension in driving membrane fusion. We discuss the physics of membrane tension, forces that can generate the tension in plasma membrane of a cell, and the hypothesis that tension powers expansion of membrane fusion pores in late stages of cell-to-cell and exocytotic fusion. We propose that fusion pore expansion can require unusually la...

  4. Degradation of Polypropylene Membranes Applied in Membrane Distillation Crystallizer

    Directory of Open Access Journals (Sweden)

    Marek Gryta

    2016-03-01

    Full Text Available The studies on the resistance to degradation of capillary polypropylene membranes assembled in a membrane crystallizer were performed. The supersaturation state of salt was achieved by evaporation of water from the NaCl saturated solutions using membrane distillation process. A high feed temperature (363 K was used in order to enhance the degradation effects and to shorten the test times. Salt crystallization was carried out by the application of batch or fluidized bed crystallizer. A significant membrane scaling was observed regardless of the method of realized crystallization. The SEM-EDS, DSC, and FTIR methods were used for investigations of polypropylene degradation. The salt crystallization onto the membrane surface accelerated polypropylene degradation. Due to a polymer degradation, the presence of carbonyl groups on the membranes’ surface was identified. Besides the changes in the chemical structure a significant mechanical damage of the membranes, mainly caused by the internal scaling, was also found. As a result, the membranes were severely damaged after 150 h of process operation. A high level of salt rejection was maintained despite damage to the external membrane surface.

  5. Membrane fusion

    DEFF Research Database (Denmark)

    Bendix, Pól Martin

    2015-01-01

    At Stanford University, Boxer lab, I worked on membrane fusion of small unilamellar lipid vesicles to flat membranes tethered to glass surfaces. This geometry closely resembles biological systems in which liposomes fuse to plasma membranes. The fusion mechanism was studied using DNA zippering...... between complementary strands linked to the two apposing membranes closely mimicking the zippering mechanism of SNARE fusion complexes....

  6. Influence of feed composition and membrane fouling on forward osmosis performance

    DEFF Research Database (Denmark)

    Schneider, Carina; Sathyadev Rajmohan, Rajath; Zarebska, Agata

    2016-01-01

    . Nonetheless, the existing membrane technologies often face fouling problem that lowers the economic viability of the membrane application in industrial scale. Recent development in the membrane technology indicates that forward osmosis (FO) has a high potential for wastewater treatment, producing high quality...... water [1]. Compared to other pressure driven membrane processes, forward osmosis (FO) membranes suffered less severe fouling due to the lack of hydraulic pressure [2]. Furthermore, novel biomimetic membranes incorporating Aquaporins, highly selective water channels, became commercially available...

  7. Viability analysis in biological evaluations: Concepts of population viability analysis, biological population, and ecological scale

    Science.gov (United States)

    Gregory D. Hayward; John R. Squires

    1994-01-01

    Environmental protection strategies often rely on environmental impact assessments. As part of the assessment process biologists are routinely asked to evaluate the effects of management actions on plants and animals. This evaluation often requires that biologists make judgments about the viability of affected populations. However, population viability...

  8. Effect of air drying on bacterial viability: A multiparameter viability assessment

    NARCIS (Netherlands)

    Nocker, A.; Fernández, P.S.; Montijn, R.; Schuren, F.

    2012-01-01

    The effect of desiccation on the viability of microorganisms is a question of great interest for a variety of public health questions and industrial applications. Although viability is traditionally assessed by plate counts, cultivation-independent methods are increasingly applied with the aim to

  9. Viability and Resilience of Languages in Competition

    Science.gov (United States)

    Chapel, Laetitia; Castelló, Xavier; Bernard, Claire; Deffuant, Guillaume; Eguíluz, Víctor M.; Martin, Sophie; Miguel, Maxi San

    2010-01-01

    We study the viability and resilience of languages, using a simple dynamical model of two languages in competition. Assuming that public action can modify the prestige of a language in order to avoid language extinction, we analyze two cases: (i) the prestige can only take two values, (ii) it can take any value but its change at each time step is bounded. In both cases, we determine the viability kernel, that is, the set of states for which there exists an action policy maintaining the coexistence of the two languages, and we define such policies. We also study the resilience of the languages and identify configurations from where the system can return to the viability kernel (finite resilience), or where one of the languages is lead to disappear (zero resilience). Within our current framework, the maintenance of a bilingual society is shown to be possible by introducing the prestige of a language as a control variable. PMID:20126655

  10. Probiotic viability – does it matter?

    Directory of Open Access Journals (Sweden)

    Sampo J. Lahtinen

    2012-06-01

    Full Text Available Probiotics are viable by definition, and viability of probiotics is often considered to be a prerequisite for the health benefits. Indeed, the overwhelming majority of clinical studies in the field have been performed with viable probiotics. However, it has also been speculated that some of the mechanisms behind the probiotic health effects may not be dependent on the viability of the cells and, therefore, is also possible that also non-viable probiotics could have some health benefits. The efficacy of non-viable probiotics has been assessed in a limited number of studies, with varying success. While it is clear that viable probiotics are more effective than non-viable probiotics and that, in many cases, viability is indeed a prerequisite for the health benefit, there are also some cases where it appears that non-viable probiotics could also have beneficial effects on human health.

  11. A New Methodology for Evaluation of Nematode Viability

    Directory of Open Access Journals (Sweden)

    Sebastião Rodrigo Ferreira

    2015-01-01

    Full Text Available Nematodes infections are responsible for debilitating conditions and economic losses in domestic animals as well as livestock and are considered an important public health problem due to the high prevalence in humans. The nematode resistance for drugs has been reported for livestock, highlighting the importance for development of new anthelmintic compounds. The aim of the current study was to apply and compare fluorimetric techniques using Sytox and propidium iodide for evaluating the viability of C. elegans larvae after treatment with anthelmintic drugs. These fluorescent markers were efficient to stain larvae treated with ivermectin and albendazole sulfoxide. We observed that densitometric values were proportional to the concentration of dead larvae stained with both markers. Furthermore, data on motility test presented an inverse correlation with fluorimetric data when ivermectin was used. Our results showed that lower concentrations of drugs were effective to interfere in the processes of cellular transport while higher drugs concentrations were necessary in order to result in any damage to cell integrity. The methodology described in this work might be useful for studies that aim to evaluate the viability of nematodes, particularly for testing of new anthelminthic compounds using an easy, economic, reproducible, and no time-consuming technique.

  12. Effect of Antarctic solar radiation on sewage bacteria viability.

    Science.gov (United States)

    Hughes, Kevin A

    2005-06-01

    The majority of coastal Antarctic research stations discard untreated sewage waste into the near-shore marine environment. However, Antarctic solar conditions are unique, with ozone depletion increasing the proportion of potentially damaging ultraviolet-B (UV-B) radiation reaching the marine environment. This study assessed the influence of Antarctic solar radiation on the viability of Escherichia coli and sewage microorganisms at Rothera Research Station, Adelaide Island, Antarctic Peninsula. Cell viability decreased with increased exposure time and with exposure to shorter wavelengths of solar radiation. Cell survival also declined with decreasing cloud cover, solar zenith angle and ozone column depth. However, particulates in sewage increased the persistence of viable bacteria. Ultraviolet radiation doses over Rothera Point were highest during the austral summer. During this time, solar radiation may act to partially reduce the number of viable sewage-derived microorganisms in the surface seawater around Antarctic outfalls. Nevertheless, this effect is not reliable and every effort should be made to fully treat sewage before release into the Antarctic marine environment.

  13. Effect of magnetic nanoparticle heating on cortical neuron viability.

    Science.gov (United States)

    Rivet, Christopher J; Yuan, Yuan; Gilbert, Ryan J; Borca-Tasciuc, Diana-Andra

    2014-03-01

    Superparamagnetic iron oxide nanoparticles are currently approved for use as an adjunctive treatment to glioblastoma multiforme radiotherapy. Radio frequency stimulation of the nanoparticles generates localised hyperthermia, which sensitises the tumour to the effects of radiotherapy. Clinical trials reported thus far are promising, with an increase in patient survival rate; however, what are left unaddressed are the implications of this technology on the surrounding healthy tissue. Aminosilane-coated iron oxide nanoparticles suspended in culture medium were applied to chick embryonic cortical neuron cultures. Cultures were heated to 37 °C or 45 °C by an induction coil system for 2 h. The latter regime emulates the therapeutic conditions of the adjunctive therapy. Cellular viability and neurite retraction was quantified 24 h after exposure to the hyperthermic events. The hyperthermic load inflicted little damage to the neuron cultures, as determined by calcein-AM, propidium iodide, and alamarBlue® assays. Fluorescence imaging was used to assess the extent of neurite retraction which was found to be negligible. Retention of chick, embryonic cortical neuron viability was confirmed under the thermal conditions produced by radiofrequency stimulation of iron oxide nanoparticles. While these results are not directly applicable to clinical applications of hyperthermia, the thermotolerance of chick embryonic cortical neurons is promising and calls for further studies employing human cultures of neurons and glial cells.

  14. Real-time assessment of corneal endothelial cell damage following graft preparation and donor insertion for DMEK.

    Directory of Open Access Journals (Sweden)

    Maninder Bhogal

    Full Text Available To establish a method for assessing graft viability, in-vivo, following corneal transplantation.Optimization of calcein AM fluorescence and toxicity assessment was performed in cultured human corneal endothelial cells and ex-vivo corneal tissue. Descemet membrane endothelial keratoplasty grafts were incubated with calcein AM and imaged pre and post preparation, and in-situ after insertion and unfolding in a pig eye model. Global, macroscopic images of the entire graft and individual cell resolution could be attained by altering the magnification of a clinical confocal scanning laser microscope. Patterns of cell loss observed in situ were compared to those seen using standard ex-vivo techniques.Calcein AM showed a positive dose-fluorescence relationship. A dose of 2.67μmol was sufficient to allow clear discrimination between viable and non-viable areas (sensitivity of 96.6% with a specificity of 96.1% and was not toxic to cultured endothelial cells or ex-vivo corneal tissue. Patterns of cell loss seen in-situ closely matched those seen on ex-vivo assessment with fluorescence viability imaging, trypan blue/alizarin red staining or scanning electron microscopy. Iatrogenic graft damage from preparation and insertion varied between 7-35% and incarceration of the graft tissue within surgical wounds was identified as a significant cause of endothelial damage.In-situ graft viability assessment using clinical imaging devices provides comparable information to ex-vivo methods. This method shows high sensitivity and specificity, is non-toxic and can be used to evaluate immediate cell viability in new grafting techniques in-vivo.

  15. Protein corona mitigates the cytotoxicity of graphene oxide by reducing its physical interaction with cell membrane.

    Science.gov (United States)

    Duan, Guangxin; Kang, Seung-gu; Tian, Xin; Garate, Jose Antonio; Zhao, Lin; Ge, Cuicui; Zhou, Ruhong

    2015-10-07

    Many recent studies have shown that the way nanoparticles interact with cells and biological molecules can vary greatly in the serum-containing or serum-free culture medium. However, the underlying molecular mechanisms of how the so-called "protein corona" formed in serum medium affects nanoparticles' biological responses are still largely unresolved. Thus, it is critical to understand how absorbed proteins on the surfaces of nanoparticles alter their biological effects. In this work, we have demonstrated with both experimental and theoretical approaches that protein BSA coating can mitigate the cytotoxicity of graphene oxide (GO) by reducing its cell membrane penetration. Our cell viability and cellular uptake experiments showed that protein corona decreased cellular uptake of GO, thus significantly mitigating the potential cytotoxicity of GO. The electron microscopy images also confirmed that protein corona reduced the cellular morphological damage by limiting GO penetration into the cell membrane. Further molecular dynamics (MD) simulations validated the experimental results and revealed that the adsorbed BSA in effect weakened the interaction between the phospholipids and graphene surface due to a reduction of the available surface area plus an unfavorable steric effect, thus significantly reducing the graphene penetration and lipid bilayer damaging. These findings provide new insights into the underlying molecular mechanism of this important graphene protein corona interaction with cell membranes, and should have implications in future development of graphene-based biomedical applications.

  16. Economic Viability and Marketing Strategies of Periwinkle ...

    African Journals Online (AJOL)

    The economic viability and marketing strategies of periwinkle species in twelve major markets across Rivers State Nigeria were investigated using structured questionnaires. The results indicated that marketing strategies are enroute, through harvesters (collectors), to wholesalers (those who purchase in small quantities ...

  17. Incorporating evolutionary processes into population viability models

    NARCIS (Netherlands)

    Pierson, J.C.; Beissinger, S.R.; Bragg, J.G.; Coates, D.J.; Oostermeijer, J.G.B.; Sunnucks, P.; Schumaker, N.H.; Trotter, M.V.; Young, A.G.

    2015-01-01

    We examined how ecological and evolutionary (eco-evo) processes in population dynamics could be better integrated into population viability analysis (PVA). Complementary advances in computation and population genomics can be combined into an eco-evo PVA to offer powerful new approaches to understand

  18. Assessment of myocardial viability using PET

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Seok Nam [College of Medicine, Ajou University, Suwon (Korea, Republic of)

    2005-02-15

    The potential for recovery of left ventricular dysfunction after myocardial revascularization represents a practical clinical definition for myocardial viability. The evaluation of viable myocardium in patients with severe global left ventricular dysfunction due to coronary artery disease and with regional dysfunction after acute myocardial infarction is an important issue whether left ventricular dysfunction may be reversible or irreversible after therapy. If the dysfunction is due to stunning or hibernation, functional improvement is observed. But stunned myocardium may recover of dysfunction with no revascularization. Hibernation is chronic process due to chronic reduction in the resting myocardial blood flow. There are two types of myocardial hibernation; 'functional hibernation' with preserved contractile reserve and 'structural hibernation' without contractile reserve in segments with preserved glucose metabolism. This review focus on the application of F-18 FDG and other radionuclides to evaluate myocardial viability. In addition the factors influencing predictive value of FDG imaging for evaluating viability and the different criteria for viability are also reviewed.

  19. Viability of smallholder dairying in Wedza, Zimbabwe.

    Science.gov (United States)

    Zvinorova, Plaxedis Ivy; Halimani, Tinyiko Edward; Mano, Renneth T; Ngongoni, Nobbert Takarwirwa

    2013-04-01

    Viability differences in smallholder dairy farming are a result of differences in access to markets and services. It is hypothesized that innovations that improve productivity and market linkages also improve returns and viability. The viability of smallholder dairying in Wedza was characterised by interviewing 52 households using semi-structured questionnaires. Information on demographics, production, marketing, livestock numbers, assets and constraints was obtained. Farmers were resource-constrained with differences in access to resources. The highly resourced farmers had higher milk output and numbers of livestock. Almost 40 % of the households were female-headed, and these dominated the poor category. Household sizes ranged from 4 to 13 persons. Milk off-take was low (3.7 ± 0.53 l/cow/day), due to various constraints. Only rich farmers had viable enterprises in purely financial terms. Per litre cost of milk was more than selling price (US$0.96) for most farmers except the relatively rich. Operating ratios were 1.7, 0.6, 1.4 and 1.1 for the poor, rich, sub-centre and milk collection centre farmers, respectively. This means incomes from the dairy activities did not cover costs. Sensitivity analysis indicated that increases in total variable costs and labour reduced returns. Milk production and viability were influenced by access to resources and markets.

  20. Pollen viability in Quercus robur L.

    Directory of Open Access Journals (Sweden)

    Batos Branislava

    2017-01-01

    Full Text Available The variability of viability (germination rate and the length of pollen tubes of fresh pedunculate oak (Quercus robur L. pollen grains was studied in vitro on a medium containing 15% sucrose. Spatial variability was studied by sampling fresh pollen grains from a total of thirteen trees at four different sites in the area of Belgrade (Košutnjak, Banovo Brdo, Ada Ciganlija and Bojčin Forest in a single year (2011. In order to assess temporal variability and determine the effects of climate change on a small time scale, we studied the viability of the pollen grains collected from one tree at the Banovo Brdo site in six different years (2004, 2005, 2006, 2007, 2011 and 2012. Interindividual variability was tested on the pollen grains sampled from eight trees at Ada Ciganlija in 2004. The percentage values of the pollen grain germination rate and the pollen tube length showed no statistically significant differences between the sites. However, the studied characteristics of the pollen grain viability (germination rate and pollen tube length showed statistically significant differences in both temporal (between the pollen collection years and interindividual variability. This type of research makes a valuable contribution to pedunculate oak breeding programs through the identification of trees with stable production and a good quality of pollen. Furthermore, it can be important in defining the patterns of spatial, temporal and individual variability of pollen grain viability under the influence of climate factors, which are showing compelling changing trends from year to year.

  1. Permeabilisation de membranes cellulaires a l'aide d'un laser nanoseconde amplifie par nanoparticules plasmoniques

    Science.gov (United States)

    St-Louis Lalonde, Bastien

    The plasmic membrane of eukaryot cells provides a selective permeability between the cytoplasm and the external environment. It regulates the passage of ions (O2, N 2, K, etc...) and molecules (H2 O, C2H6 O, etc...) by mechanisms like passive diffusion and active transport. In various fields like molecular biology or drug development, it is sometimes needed to bypass this selective permeability to introduce external molecules that are normally impermeable to cell membrane. Examples of external molecules may be DNA plasmid, RNA segment or drugs. We propose a method based on laser amplification by plasmonic nanoparticles to overcome this biological barrier. This non invasive method increases the membrane permeability of a large number of cells in a short time. Optoporation by laser amplified with plasmonic nanoparticles consists of pulsed laser irradiation on cells that have been previously incubated with gold nanoparticles (AuNPs). The laser-AuNPs interactions will create a cavitation bubble which in turn will decrease the membrane permeability by disrupting the bilipid layer arrangement. Molecules in the external medium may then penetrate inside the cells and under the right experimental conditions, the cells will rapidly reseal their membrane and continue living without nefast effects. The feasibility of high throughput optical perforation amplified by plasmonic nanoparticles have been tested with a nanosecond pulsed laser working at 532 nm and 1064 nm. The plasma membrane of cancerous human fibroblast (melanoma wm278) have been successfully perforated while keeping an excellent viability rate. Up to 30% of cells are perforated in which the Lucifer Yellow fluorophore have been incorporated. The viability 2 h after the treatment was evaluated by PI exclusion and the long term vitality was tested by MTT essay. Under optimal conditions at 532 nm, the 2 h viability is 84% and the vitality start at 64% for 2h and reaches 88% after 72 h. With 1064 nm pusles, the 2 h

  2. Diffusion-mediated in situ alginate encapsulation of cell spheroids using microscale concave well and nanoporous membrane.

    Science.gov (United States)

    Lee, Kwang Ho; No, Da Yoon; Kim, Su-Hwan; Ryoo, Ji Hee; Wong, Sau Fung; Lee, Sang-Hoon

    2011-03-21

    Here, we present a novel and simple process of spheroid formation and in situ encapsulation of the formed spheroid without intervention. A hemispherical polydimethylsiloxane (PDMS) micromold was employed for the formation of uniform sized spheroids and two types of nano-porous membrane were used for the control of the crosslinking agent. We characterized the transport properties of the membrane, and the selection of alginate hydrogel as a function of gelation time, alginate concentration, and membrane type. Using the developed process and micromold, HepG2 cell spheroids were successfully formed and encapsulated in alginate without replating. This method allows spheroid encapsulation with minimal damage to the spheroid while maintaining high cell viability. We demonstrate the feasibility of this method in developing a bio-artificial liver (BAL) chip by evaluating viability and function of encapsulated HepG2 spheroids. This method may be applied to the encapsulation of several aggregating cell types, such as β-cells for islet formation and stem cells for embryonic body preservation, or as a model for tumor cell growth and proliferation in a 3D hydrogel environment. This journal is © The Royal Society of Chemistry 2011

  3. Radiation damage

    CERN Document Server

    Heijne, Erik H M; CERN. Geneva

    1998-01-01

    a) Radiation damage in organic materials. This series of lectures will give an overview of radiation effects on materials and components frequently used in accelerator engineering and experiments. Basic degradation phenomena will be presented for organic materials with comprehensive damage threshold doses for commonly used rubbers, thermoplastics, thermosets and composite materials. Some indications will be given for glass, scintillators and optical fibres. b) Radiation effects in semiconductor materials and devices. The major part of the time will be devoted to treat radiation effects in semiconductor sensors and the associated electronics, in particular displacement damage, interface and single event phenomena. Evaluation methods and practical aspects will be shown. Strategies will be developed for the survival of the materials under the expected environmental conditions of the LHC machine and detectors. I will describe profound revolution in our understanding of black holes and their relation to quantum me...

  4. Mechanism of H₂O₂-induced oxidative stress regulating viability and biocontrol ability of Rhodotorula glutinis.

    Science.gov (United States)

    Chen, Jian; Li, Boqiang; Qin, Guozheng; Tian, Shiping

    2015-01-16

    The use of antagonistic yeasts to control postharvest pathogens is a promising alternative to fungicides. The effectiveness of the antagonists against fungal pathogens is greatly dependent on their viability, which is usually mediated by reactive oxygen species (ROS). Here, we investigated the effects of H₂O₂-induced oxidative stress on the viability and biocontrol efficacy of Rhodotorula glutinis and, using flow cytometric analysis, observed the changes of ROS accumulation and apoptosis in the yeast cells with or without H₂O₂ treatment. We found that the viability of R. glutinis decreased in a time- and dose-dependent manner under H₂O₂-induced oxidative stress. Compared to the control, yeast cells exposed to oxidative stress exhibited more accumulation of ROS and higher levels of protein oxidative damage, but showed lower efficacy for biocontrol of Penicillium expansum causing blue mold rot on peach fruit. The results indicate that apoptosis is a main cause of the cell viability loss in R. glutinis, which is attributed to ROS accumulation under oxidative stress. These findings offer a plausible explanation that oxidative stress affects biocontrol efficacy of R. glutinis via regulating its viability and cell apoptosis. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Decrease in cell viability in an RMF, sigma(38), and OmpC triple mutant of Escherichia coli.

    Science.gov (United States)

    Samuel Raj, V; Füll, Christine; Yoshida, Madoka; Sakata, Kaori; Kashiwagi, Keiko; Ishihama, Akira; Igarashi, Kazuei

    2002-11-29

    In a speG-disrupted Escherichia coli mutant, which cannot metabolize spermidine to acetylspermidine, addition of spermidine to the medium caused a decrease in cell viability at the late stationary phase of growth. There were parallel decreases in the levels of ribosome modulation factor (RMF), the sigma(38) subunit of RNA polymerase, and the outer membrane protein C (OmpC). To clarify that these three proteins are strongly involved in cell viability, the rmf, rpoS (encoding sigma(38)), and ompC genes were disrupted. Viability of the triple mutant decreased to less than 1% of normal cells. The triple mutant had a reduced cell viability compared to any combination of double mutants, which also had a reduced cell viability. The single rmf and rpoS, but not ompC, mutant only slightly reduced cell viability. The results indicate that cooperative functions of these three proteins are necessary for cell viability at the late stationary phase. The triple mutant had a reduced level of ribosomes and of intracellular cations.

  6. Evaluation of endoscopic vein extraction on structural and functional viability of saphenous vein endothelium

    OpenAIRE

    Hussaini, Bader E; Lu, Xiu-Gui; Wolfe, J Alan; Thatte, Hemant S

    2011-01-01

    Abstract Objectives Endothelial injury during harvest influences graft patency post CABG. We have previously shown that endoscopic harvest causes structural and functional damage to the saphenous vein (SV) endothelium. However, causes of such injury may depend on the extraction technique. In order to assess this supposition, we evaluated the effect of VirtuoSaph endoscopic SV harvesting technique (VsEVH) on structural and functional viability of SV endothelium using multiphoton imaging, bioch...

  7. Monitoring cell growth, viability, and apoptosis.

    Science.gov (United States)

    Butler, Michael; Spearman, Maureen; Braasch, Katrin

    2014-01-01

    The accurate determination of cell growth and viability is pivotal to monitoring a bioprocess. Direct methods to determine the cell growth and/or viability in a bioprocess include microscopic counting, electronic particle counting, image analysis, in situ biomass monitoring, and dieletrophoretic cytometry. These methods work most simply when a fixed volume sample can be taken from a suspension culture. Manual microscopic counting is laborious but affords the advantage of allowing cell viability to be determined if a suitable dye is included. Electronic particle counting is a rapid total cell count method for replicate samples, but some data distortion may occur if the sample has significant cell debris or cell aggregates. Image analysis based on the use of digital camera images acquired through a microscope has advanced rapidly with the availability of several commercially available software packages replacing manual microscopic counting and viability determination. Biomass probes detect cells by their dielectric properties or their internal concentration of NADH and can be used as a continuous monitor of the progress of a culture. While the monitoring of cell growth and viability is an integral part of a bioprocess, the monitoring of apoptosis induction is also becoming more and more important in bioprocess control to increase volumetric productivity by extending bioprocess duration. Different fluorescent assays allow for the detection of apoptotic characteristics in a cell sample.Indirect methods of cell determination involve the chemical analysis of a culture component or a measure of metabolic activity. These methods are most useful when it is difficult to obtain intact cell samples. However, the relationship between these parameters and the cell number may not be linear through the phases of a cell culture. The determination of nucleic acid (DNA) or total protein can be used as an estimate of biomass, while the depletion of glucose from the media can be used

  8. No. 347-Obstetric Management at Borderline Viability.

    Science.gov (United States)

    Ladhani, Noor Niyar N; Chari, Radha S; Dunn, Michael S; Jones, Griffith; Shah, Prakesh; Barrett, Jon F R

    2017-09-01

    The primary objective of this guideline was to develop consensus statements to guide clinical practice and recommendations for obstetric management of a pregnancy at borderline viability, currently defined as prior to 25+6 weeks. Clinicians involved in the obstetric management of women whose fetus is at the borderline of viability. Women presenting for possible birth at borderline viability. This document presents a summary of the literature and a general consensus on the management of pregnancies at borderline viability, including maternal transfer and consultation, administration of antenatal corticosteroids and magnesium sulfate, fetal heart rate monitoring, and considerations in mode of delivery. Medline, EMBASE, and Cochrane databases were searched using the following keywords: extreme prematurity, borderline viability, preterm, pregnancy, antenatal corticosteroids, mode of delivery. The results were then studied, and relevant articles were reviewed. The references of the reviewed studies were also searched, as were documents citing pertinent studies. The evidence was then presented at a consensus meeting, and statements were developed. The content and recommendations were developed by the consensus group from the fields of Maternal-Fetal Medicine, Neonatology, Perinatal Nursing, Patient Advocacy, and Ethics. The quality of evidence was rated using criteria described in the Grading of Recommendations Assessment, Development and Evaluation methodology framework (reference 1). The Board of the Society of Obstetricians and Gynaecologists of Canada approved the final draft for publication. The quality of evidence was rated using the criteria described in the Grading of Recommendations, Assessment, Development, and Evaluation methodology framework. The interpretation of strong and weak recommendations is described later. The Summary of Findings is available upon request. A multidisciplinary approach should be used in counselling women and families at borderline

  9. Viability of encapsulated Lactobacillus sp. Mar 8

    Directory of Open Access Journals (Sweden)

    EVI TRIANA

    2006-04-01

    Full Text Available Lactobacillus sp. Mar 8 had advantages as probiotic digestive system cholesterol lowering Lactobacillus. Applying in industry, particular processing technique is necessary for gaining product that ready for marketing and consuming. Spray drying is common technique using in various food processing. High processing temperature, 100-200oC, for 3-10 second become the barrier because cells were under extreme temperature stress. Therefore, encapsulate was needed to protect the cells from those extreme conditions. Viability and survival rate of encapsulated Lactobacillus sp. Mar 8 have been investigated. The result showed that Lactobacillus sp. Mar 8 that was encapsulated by 10% skim milk has higher viability than those by 5% skim milk, namely 72.37% and 51.69% respectively. Survival rate of encapsulated Lactobacillus cells will come to zero in 41.28 years. Therefore, encapsulated Lactobacillus sp. Mar 8 may use as probiotic agent.

  10. Membrane Biophysics

    CERN Document Server

    Ashrafuzzaman, Mohammad

    2013-01-01

    Physics, mathematics and chemistry all play a vital role in understanding the true nature and functioning of biological membranes, key elements of living processes. Besides simple spectroscopic observations and electrical measurements of membranes we address in this book the phenomena of coexistence and independent existence of different membrane components using various theoretical approaches. This treatment will be helpful for readers who want to understand biological processes by applying both simple observations and fundamental scientific analysis. It provides a deep understanding of the causes and effects of processes inside membranes, and will thus eventually open new doors for high-level pharmaceutical approaches towards fighting membrane- and cell-related diseases.

  11. Group B streptococcal beta-hemolysin/cytolysin directly impairs cardiomyocyte viability and function.

    Directory of Open Access Journals (Sweden)

    Mary E Hensler

    Full Text Available BACKGROUND: Group B Streptococcus (GBS is a leading cause of neonatal sepsis where myocardial dysfunction is an important contributor to poor outcome. Here we study the effects of the GBS pore-forming beta-hemolysin/cytolysin (Bh/c exotoxin on cardiomyocyte viability, contractility, and calcium transients. METHODOLOGY/PRINCIPAL FINDINGS: HL-1 cardiomyocytes exposed to intact wild-type (WT or isogenic Deltabeta h/c mutant GBS, or to cell-free extracts from either strain, were assessed for viability by trypan blue exclusion and for apoptosis by TUNEL staining. Functionality of exposed cardiomyocytes was analyzed by visual quantitation of the rate and extent of contractility. Mitochondrial membrane polarization was measured in TMRE-loaded cells exposed to GBS beta h/c. Effects of GBS beta h/c on calcium transients were studied in fura-2AM-loaded primary rat ventricular cardiomyocytes. Exposure of HL-1 cardiomyocytes to either WT GBS or beta h/c extracts significantly reduced both rate and extent of contractility and later induced necrotic and apoptotic cell death. No effects on cardiomyocyte viability or function were observed after treatment with Deltabeta h/c mutant bacteria or extracts. The beta h/c toxin was associated with complete and rapid loss of detectable calcium transients in primary neonatal rat ventricular cardiomyocytes and induced a loss of mitochondrial membrane polarization. These effects on viability and function were abrogated by the beta h/c inhibitor, dipalmitoyl phosphatidylcholine (DPPC. CONCLUSIONS/SIGNIFICANCE: Our data show a rapid loss of cardiomyocyte viability and function induced by GBS beta h/c, and these deleterious effects are inhibited by DPPC, a normal constituent of human pulmonary surfactant.. These findings have clinical implications for the cardiac dysfunction observed in neonatal GBS infections.

  12. Transient Features in Nanosecond Pulsed Electric Fields Differentially Modulate Mitochondria and Viability

    Science.gov (United States)

    Beebe, Stephen J.; Chen, Yeong-Jer; Sain, Nova M.; Schoenbach, Karl H.; Xiao, Shu

    2012-01-01

    It is hypothesized that high frequency components of nanosecond pulsed electric fields (nsPEFs), determined by transient pulse features, are important for maximizing electric field interactions with intracellular structures. For monopolar square wave pulses, these transient features are determined by the rapid rise and fall of the pulsed electric fields. To determine effects on mitochondria membranes and plasma membranes, N1-S1 hepatocellular carcinoma cells were exposed to single 600 ns pulses with varying electric fields (0–80 kV/cm) and short (15 ns) or long (150 ns) rise and fall times. Plasma membrane effects were evaluated using Fluo-4 to determine calcium influx, the only measurable source of increases in intracellular calcium. Mitochondria membrane effects were evaluated using tetramethylrhodamine ethyl ester (TMRE) to determine mitochondria membrane potentials (ΔΨm). Single pulses with short rise and fall times caused electric field-dependent increases in calcium influx, dissipation of ΔΨm and cell death. Pulses with long rise and fall times exhibited electric field-dependent increases in calcium influx, but diminished effects on dissipation of ΔΨm and viability. Results indicate that high frequency components have significant differential impact on mitochondria membranes, which determines cell death, but lesser variances on plasma membranes, which allows calcium influxes, a primary determinant for dissipation of ΔΨm and cell death. PMID:23284682

  13. Transient features in nanosecond pulsed electric fields differentially modulate mitochondria and viability.

    Directory of Open Access Journals (Sweden)

    Stephen J Beebe

    Full Text Available It is hypothesized that high frequency components of nanosecond pulsed electric fields (nsPEFs, determined by transient pulse features, are important for maximizing electric field interactions with intracellular structures. For monopolar square wave pulses, these transient features are determined by the rapid rise and fall of the pulsed electric fields. To determine effects on mitochondria membranes and plasma membranes, N1-S1 hepatocellular carcinoma cells were exposed to single 600 ns pulses with varying electric fields (0-80 kV/cm and short (15 ns or long (150 ns rise and fall times. Plasma membrane effects were evaluated using Fluo-4 to determine calcium influx, the only measurable source of increases in intracellular calcium. Mitochondria membrane effects were evaluated using tetramethylrhodamine ethyl ester (TMRE to determine mitochondria membrane potentials (ΔΨm. Single pulses with short rise and fall times caused electric field-dependent increases in calcium influx, dissipation of ΔΨm and cell death. Pulses with long rise and fall times exhibited electric field-dependent increases in calcium influx, but diminished effects on dissipation of ΔΨm and viability. Results indicate that high frequency components have significant differential impact on mitochondria membranes, which determines cell death, but lesser variances on plasma membranes, which allows calcium influxes, a primary determinant for dissipation of ΔΨm and cell death.

  14. Sodium perbarate and benzalkonium chloride induce DNA damage in Chang conjunctival epithelial cells.

    Science.gov (United States)

    Zhang, Huina; Wu, Han; Yang, Jun; Ye, Juan

    2017-12-01

    Content and objective: To investigate and compare the toxic effects of benzalkonium chloride (BAC) and new type oxidative preservative sodium perborate (NaBO3) on DNA damage, reactive oxygen species (ROS), and cell survival in immortalized human Chang conjunctival cells. Cells were exposed to BAC and NaBO3 in concentrations of 0.00001-0.001% for 30 min. Cell viability was measured by the MTT test. Alkaline comet assay was used to detect DNA damage. Mitochondrial membrane potential (MMP), cell apoptosis, and ROS production were detected by flow cytometry analysis. Significant changes in the relative cell survival rate in cells were observed after exposure to 0.0005-0.001% BAC for 30 min (p < 0.001). DNA damage and intracellular ROS were observed in a dose-dependent manner with BAC exposure (p < 0.001). However, 0.001% BAC induced less ROS than 0.0005% BAC. A decrease in MMP was also recorded. NaBO3 did not induce the decrease in cell survival and MMP in low concentration but could induce DNA damage and ROS generation in a 0.001% concentration (p < 0.001). BAC can induce DNA damage in human conjunctival epithelial cells; this effect may be related to oxidative stress. Although NaBO3 did not induce a significant decrease in cell survival and MMP, DNA damage and ROS generation were still detected in high concentration. New type oxidative preservative has less toxicity than the old type, but it still has the tendency of producing genotoxic changes in an in vitro test system.

  15. Thermoforming of tracheal cartilage: viability, shape change, and mechanical behavior.

    Science.gov (United States)

    Chae, Yongseok; Protsenko, Dmitriy; Holden, Paul K; Chlebicki, Cara; Wong, Brian J F

    2008-10-01

    Trauma, emergent tracheostomy, and prolonged intubation are common causes of severe deformation and narrowing of the trachea. Laser technology may be used to reshape tracheal cartilage using minimally invasive methods. The objectives of this study were to determine: (1) the dependence of tracheal cartilage shape change on temperature and laser dosimetry using heated saline bath immersion and laser irradiation, respectively, (2) the effect of temperature on the mechanical behavior of cartilage, and (3) tissue viability as a function of laser dosimetry. Ex vivo rabbit trachea cartilage specimens were bent and secured around a cylinder (6 mm), and then immersed in a saline bath (45 and 72 degrees C) for 5-100 seconds. In separate experiments, tracheal specimens were irradiated with a diode laser (lambda = 1.45 microm, 220-400 J/cm(2)). Mechanical analysis was then used to determine the elastic modulus in tension after irradiation. Fluorescent viability assays combined with laser scanning confocal microscopy (LSCM) were employed to image and identify thermal injury regions. Shape change transition zones, between 62 and 66 degrees C in the saline heating bath and above power densities of 350 J/cm(2) (peak temperatures 65+/-10 degrees C) for laser irradiation were identified. Above these zones, the elastic moduli were higher (8.2+/-4 MPa) than at lower temperatures (4.5+/-3 MPa). LSCM identified significant loss of viable chondrocytes within the laser-irradiation zones. Our results indicate a change in mechanical properties occurs with laser irradiation and further demonstrates that significant thermal damage is concurrent with clinically relevant shape change in the elastic cartilage tissues of the rabbit trachea using the present laser and dosimetry parameters. (c) 2008 Wiley-Liss, Inc.

  16. Inhibition of biofouling by modification of forward osmosis membrane using quaternary ammonium cation.

    Science.gov (United States)

    Park, Kang-Hee; Yu, Sang-Hyun; Kim, Han-Shin; Park, Hee-Deung

    2015-01-01

    In the operation of the forward osmosis (FO) process, biofouling of the membrane is a potentially serious problem. Development of an FO membrane with antibacterial properties could contribute to a reduction in biofouling. In this study, quaternary ammonium cation (QAC), a widely used biocidal material, was conjugated with a silane coupling agent (3-(trimethoxysilyl)-propyldimethyloctadecyl ammonium chloride) and used to modify an FO membrane to confer antibacterial properties. Fourier transform infrared spectroscopy (FT-IR) demonstrated that the conjugated QAC was successfully immobilized on the FO membrane via covalent bonding. Bacterial viability on the QAC-modified membrane was confirmed via colony count method and visualized via bacterial viability assay. The QAC membrane decreased the viability of Escherichia coli to 62% and Staphylococcus aureus to 77% versus the control membrane. Inhibition of biofilm formation on the QAC modified membrane was confirmed via anti-biofilm tests using the drip-flow reactor and FO unit, resulting in 64% and 68% inhibition in the QAC-modified membrane against the control membrane, respectively. The results demonstrate the effectiveness of the modified membrane in reducing bacterial viability and inhibiting biofilm formation, indicating the potential of QAC-modified membranes to decrease operation costs incurred by biofouling.

  17. Seed viability of five wild Saudi Arabian species by germination and X-ray tests

    Directory of Open Access Journals (Sweden)

    B.A. Al-Hammad

    2017-09-01

    Full Text Available Our objective was to evaluate the usefulness of the germination vs. the X-ray test in determining the initial viability of seeds of five wild species (Moringa peregrina, Abrus precatorius, Arthrocnemum macrostachyum, Acacia ehrenbergiana and Acacia tortilis from Saudi Arabia. Usually several days were required to determine the viability of all five species via germination tests. However, X-ray test will give immediate results on filled/viable seeds. Seeds of all species, except Acacia ehrenbergiana and Acacia tortilis showed high viability in both germination (96–72% at 25/15 °C, 94–70% at 35/25 °C and X-ray (100–80% test. Furthermore, there was a general agreement between the germination (19%, 14% at 25/15 °C and 17% and 12% at 35/25 °C and X-ray (8%, 4% tests in which seed viability of Acacia ehrenbergiana and Acacia tortilis was very low due to insect damaged embryo as shown in X-ray analysis. Seeds of Abruspreca torius have physical dormancy, which was broken by scarification in concentrated sulfuric acid (10 min, and they exhibited high viability in both the germination (83% at 25/15 °C and 81% at 35/25 °C and X-ray (96% tests. Most of the nongerminated seeds of the five species except those of Acacia ehrenbergiana and Acacia tortilis, were alive as judged by the tetrazolium test (TZ. Thus, for the five species examined, the X-ray test was proved to be a good and rapid predictor of seed viability.

  18. Multicomponent membranes

    Science.gov (United States)

    Kulprathipanja, Santi; Kulkarni, Sudhir S.; Funk, Edward W.

    1988-01-01

    A multicomponent membrane which may be used for separating various components which are present in a fluid feed mixture comprises a mixture of a plasticizer such as a glycol and an organic polymer cast upon a porous organic polymer support. The membrane may be prepared by casting an emulsion or a solution of the plasticizer and polymer on the porous support, evaporating the solvent and recovering the membrane after curing.

  19. Rapid onsite assessment of spore viability.

    Energy Technology Data Exchange (ETDEWEB)

    Branda, Steven; Lane, Todd W.; VanderNoot, Victoria A.; Gaucher, Sara P.; Jokerst, Amanda S.

    2005-12-01

    This one year LDRD addresses problems of threat assessment and restoration of facilities following a bioterror incident like the incident that closed down mail facilities in late 2001. Facilities that are contaminated with pathogenic spores such as B. anthracis spores must be shut down while they are treated with a sporicidal agent and the effectiveness of the treatment is ascertained. This process involves measuring the viability of spore test strips, laid out in a grid throughout the facility; the CDC accepted methodologies require transporting the samples to a laboratory and carrying out a 48 hr outgrowth experiment. We proposed developing a technique that will ultimately lead to a fieldable microfluidic device that can rapidly assess (ideally less than 30 min) spore viability and effectiveness of sporicidal treatment, returning facilities to use in hours not days. The proposed method will determine viability of spores by detecting early protein synthesis after chemical germination. During this year, we established the feasibility of this approach and gathered preliminary results that should fuel a future more comprehensive effort. Such a proposal is currently under review with the NIH. Proteomic signatures of Bacillus spores and vegetative cells were assessed by both slab gel electrophoresis as well as microchip based gel electrophoresis employing sensitive laser-induced fluorescence detection. The conditions for germination using a number of chemical germinants were evaluated and optimized and the time course of protein synthesis was ascertained. Microseparations were carried out using both viable spores and spores inactivated by two different methods. A select number of the early synthesis proteins were digested into peptides for analysis by mass spectrometry.

  20. Viability of pollen grains of tetraploid banana

    Directory of Open Access Journals (Sweden)

    Taliane Leila Soares

    2016-01-01

    Full Text Available ABSTRACT Obtaining banana tetraploid cultivars from triploid strains results in total or partial reestablishment of fertility, allowing the occurrence of some fruits with seeds, a feature that is undesirable from a marketing perspective. The objective of this study was to assess the viability of pollen of 12 banana tetraploid hybrids (AAAB by means of in vitro germination and two histochemical tests (acetocarmine and 2,3,5-triphenyltetrazolium chloride. The pollen tube growth was evaluated by germinating grains in three culture media — M1: 0.03% Ca(NO3∙4H2O, 0.02% Mg(SO4∙7H2O, 0.01% KNO3, 0.01% H3BO3 and 15% sucrose; M2: 0.03% Ca(NO3∙4H2O, 0.01% KNO3, 0.01% H3BO3 and 10% sucrose; and M3: 0.015% H3BO3, 0.045% Ca3(PO42 and 25% sucrose. The acetocarmine staining indicated high viability (above 80%, except for the genotypes YB42-17 and Caprichosa, which were 76 and 70%, respectively. However, the in vitro germination rate was lower than 50% for all the genotypes, except for the hybrids YB42-17 (M1 and YB42-47 (M1. The medium M1 provided the greatest germination percentage and pollen tube growth. Among the genotypes assessed, YB42-47 presented the highest germination rate (61.5% and tube length (5.0 mm. On the other hand, the Vitória cultivar had the lowest germination percentage (8.2% in medium M1. Studies of meiosis can shed more light on the differences observed in the evaluated tetraploids, since meiotic irregularities can affect pollen viability.

  1. Transplantation of cultured rhesus monkey vascular endothelial cells to allogeneic cornea concomitant with stripping of Descemet's membrane

    Directory of Open Access Journals (Sweden)

    Qin Zhu

    2015-01-01

    Full Text Available Context: In cases of damaged corneal endothelium cells (CECs of the eye, transplantation of cultured vascular endothelial cells (VECs may be a viable method to restore transparency. Aims: To evaluate the viability of replacing damaged primate CECs with cultured allogeneic VECs. Subjects and Methods: Rhesus monkey VECs (RMVECs were cultured and proliferating cells were labeled with bromodeoxyuridine (BrdU in vitro. RMs of the experimental group (n = 6 underwent manual Descemettt membrane stripping with transplantation of RMVECs labeled with BrdU; those in the control group received manual Descemetnt membrane stripping without transplantation. Postoperative evaluations included the transparency and appearance of the corneal graft; distribution and ultrastructural changes of RMVECs on the inner surface of the cornea using scanning and transmission electron microscopy, and immunohistological identification of BrdU. Results: At 90 days postsurgery, the corneal grafts of the monkeys in the experimental group retained better transparency than those of the controls, without corneal neovascularization or bullous keratopathy. A layer of cells with positive BrdU staining was found on the posterior surface of the treated corneas in the experimental group, while there was no VEC structure in corneal grafts from the monkeys of the control group. Conclusions: RMVECs can grow on the posterior surface of the cornea without Descemet's membrane. Cultured and transplanted RMVECs appeared similar in ultrastructure. VECs can provide a barrier to maintain corneal dehydration and transparency to some extent.

  2. Transplantation of cultured rhesus monkey vascular endothelial cells to allogeneic cornea concomitant with stripping of Descemet's membrane.

    Science.gov (United States)

    Zhu, Qin; Wu, Min; Sun, Xiaomei; Zhang, Wenjia; Hu, Zhulin; Liu, Hai

    2015-08-01

    In cases of damaged corneal endothelium cells (CECs) of the eye, transplantation of cultured vascular endothelial cells (VECs) may be a viable method to restore transparency. To evaluate the viability of replacing damaged primate CECs with cultured allogeneic VECs. Rhesus monkey VECs (RMVECs) were cultured and proliferating cells were labeled with bromodeoxyuridine (BrdU) in vitro. RMs of the experimental group (n = 6) underwent manual Descemettt membrane stripping with transplantation of RMVECs labeled with BrdU; those in the control group received manual Descemetnt membrane stripping without transplantation. Postoperative evaluations included the transparency and appearance of the corneal graft; distribution and ultrastructural changes of RMVECs on the inner surface of the cornea using scanning and transmission electron microscopy, and immunohistological identification of BrdU. At 90 days postsurgery, the corneal grafts of the monkeys in the experimental group retained better transparency than those of the controls, without corneal neovascularization or bullous keratopathy. A layer of cells with positive BrdU staining was found on the posterior surface of the treated corneas in the experimental group, while there was no VEC structure in corneal grafts from the monkeys of the control group. RMVECs can grow on the posterior surface of the cornea without Descemet's membrane. Cultured and transplanted RMVECs appeared similar in ultrastructure. VECs can provide a barrier to maintain corneal dehydration and transparency to some extent.

  3. Antioxidants protect proteins' anchorage to the bilayer by improving plasma membrane integrity of ram spermatozoa during liquid preservation in a soya lecithin-based diluent.

    Science.gov (United States)

    Paul, R K; Kumar, D; Naqvi, Smk

    2017-12-01

    Antioxidants are known to prevent the reactive oxygen species (ROS)-mediated peroxidative damage to the membrane lipids during hypothermic storage of mammalian spermatozoa. We hypothesized here that ROS also affect the lipid-protein interactions, thereby diminishing the membrane's integrity and proteins' anchorage to the bilayer. Antioxidants prevent these damages by scavenging the ROS. Ejaculates from Patanwadi rams were pooled after subjective evaluation and centrifuged using Percoll® . Sperm pellet was resuspended in soya lecithin-Tris-fructose diluent (400 × 106  cells/ml) containing either antioxidants (100 IU/ml catalase + 10 mM reduced glutathione) or no antioxidant. Aliquots were chilled to 5°C in a cabinet and stored in a refrigerator at 3-5°C for 72 hr. Sperm motility, viability, lipid peroxidation (LPO) and hypo-osmotic swelling test (HOST) were performed at 0, 24, 48 and 72 hr. Sperm proteins extracted with 0.5% Triton X-100 were resolved by SDS-PAGE and quantified using Quantity One software (Bio-Rad, USA). The rapid motility, linearity and straight-line velocity (VSL) were found significantly (p membrane integrity and protection of proteins' anchorage to the plasma membrane at 48 and 72 hr of storage. © 2017 Blackwell Verlag GmbH.

  4. Population Viability Analysis of Riverine Fishes

    Energy Technology Data Exchange (ETDEWEB)

    Bates, P.; Chandler, J.; Jager, H.I.; Lepla, K.; Van Winkle, W.

    1999-04-12

    Many utilities face conflkts between two goals: cost-efficient hydropower generation and protecting riverine fishes. Research to develop ecological simulation tools that can evaluate alternative mitigation strategies in terms of their benefits to fish populations is vital to informed decision-making. In this paper, we describe our approach to population viability analysis of riverine fishes in general and Snake River white sturgeon in particular. We are finding that the individual-based modeling approach used in previous in-stream flow applications is well suited to addressing questions about the viability of species of concern for several reasons. Chief among these are: (1) the abiIity to represent the effects of individual variation in life history characteristics on predicted population viabili~, (2) the flexibili~ needed to quanti~ the ecological benefits of alternative flow management options by representing spatial and temporal variation in flow and temperaturty and (3) the flexibility needed to quantifi the ecological benefits of non-flow related manipulations (i.e., passage, screening and hatchery supplementation).

  5. Evaluation of endoscopic vein extraction on structural and functional viability of saphenous vein endothelium.

    Science.gov (United States)

    Hussaini, Bader E; Lu, Xiu-Gui; Wolfe, J Alan; Thatte, Hemant S

    2011-06-10

    Endothelial injury during harvest influences graft patency post CABG. We have previously shown that endoscopic harvest causes structural and functional damage to the saphenous vein (SV) endothelium. However, causes of such injury may depend on the extraction technique. In order to assess this supposition, we evaluated the effect of VirtuoSaph endoscopic SV harvesting technique (VsEVH) on structural and functional viability of SV endothelium using multiphoton imaging, biochemical and immunofluorescence assays. Nineteen patients scheduled for CABG were prospectively identified. Each underwent VsEVH for one portion and "No-touch" open SV harvesting (OSVH) for another portion of the SV. A two cm segment from each portion was immersed in GALA conduit preservation solution and transported overnight to our lab for processing. The segments were labeled with fluorescent markers to quantify cell viability, calcium mobilization and generation of nitric oxide. Morphology, expression, localization and stability of endothelial caveolin, eNOS, von Willebrand factor and cadherin were evaluated using immunofluorescence, Western blot and multiphoton microscopy (MPM). Morphological, biochemical and immunofluorescence parameters of viability, structure and function were well preserved in VsEVH group as in OSVH group. However, tonic eNOS activity, agonist-dependent calcium mobilization and nitric oxide production were partially attenuated in the VsEVH group. This study indicates that VirtuoSaph endoscopic SV harvesting technique preserves the structural and functional viability of SV endothelium, but may differentially attenuate the vasomotor function of the saphenous vein graft.

  6. Recent developments in the use of viability dyes and quantitative PCR in the food microbiology field.

    Science.gov (United States)

    Elizaquível, P; Aznar, R; Sánchez, G

    2014-01-01

    The increase in foodborne outbreaks highlights the need for rapid, sensitive and specific methods for food safety monitoring, enabling specific detection and quantification of viable foodborne pathogens. Real-time PCR (qPCR) combined with the use of viability dyes, recently introduced, fulfils all these requirements. The strategy relies on the use of DNA-binding molecules such as propidium monoazide (PMA) or ethidium monoazide (EMA) as sample pretreatment previous to the qPCR. These molecules permeate only membrane-compromised cells and have successfully been applied for different types of foodborne pathogens, including bacteria and viruses. Moreover, those dyes have been explored to monitor different food manufacturing processes as an alternative to classical cultural methods. In this review, state-of-the-art information regarding viability PCR (v-PCR) is compiled. © 2013 The Society for Applied Microbiology.

  7. Membrane processes

    Science.gov (United States)

    Staszak, Katarzyna

    2017-11-01

    The membrane processes have played important role in the industrial separation process. These technologies can be found in all industrial areas such as food, beverages, metallurgy, pulp and paper, textile, pharmaceutical, automotive, biotechnology and chemical industry, as well as in water treatment for domestic and industrial application. Although these processes are known since twentieth century, there are still many studies that focus on the testing of new membranes' materials and determining of conditions for optimal selectivity, i. e. the optimum transmembrane pressure (TMP) or permeate flux to minimize fouling. Moreover the researchers proposed some calculation methods to predict the membrane processes properties. In this article, the laboratory scale experiments of membrane separation techniques, as well their validation by calculation methods are presented. Because membrane is the "heart" of the process, experimental and computational methods for its characterization are also described.

  8. Irradiation damage

    Energy Technology Data Exchange (ETDEWEB)

    Howe, L.M

    2000-07-01

    There is considerable interest in irradiation effects in intermetallic compounds from both the applied and fundamental aspects. Initially, this interest was associated mainly with nuclear reactor programs but it now extends to the fields of ion-beam modification of metals, behaviour of amorphous materials, ion-beam processing of electronic materials, and ion-beam simulations of various kinds. The field of irradiation damage in intermetallic compounds is rapidly expanding, and no attempt will be made in this chapter to cover all of the various aspects. Instead, attention will be focused on some specific areas and, hopefully, through these, some insight will be given into the physical processes involved, the present state of our knowledge, and the challenge of obtaining more comprehensive understanding in the future. The specific areas that will be covered are: point defects in intermetallic compounds; irradiation-enhanced ordering and irradiation-induced disordering of ordered alloys; irradiation-induced amorphization.

  9. Involvement of reactive oxygen species in the enhancement of membrane lipid peroxidation by sonodynamic therapy with functionalized fullerenes.

    Science.gov (United States)

    Yumita, Nagahiko; Iwase, Yumiko; Watanabe, Takahiro; Nishi, Koji; Kuwahara, Hiroyuki; Shigeyama, Masato; Sadamoto, Kiyomi; Ikeda, Toshihiko; Umemura, Shin-Ichiro

    2014-11-01

    Sonodynamic cancer therapy is based on the preferential uptake and/or retention of a sonosensitizing drug (sonosensitizer) in tumor tissues and subsequent activation of the drug by ultrasound irradiation. In the present study, we investigated the participation of lipid peroxidation in the mechanism of the sonodynamically-induced antitumor effect with functionalized fullerenes, such as polyhydroxy fullerene (PHF. Ultrasonically-induced cell damage and lipid peroxidation with PHF were compared in the same in vitro insonation setup. Sarcoma 180 cells suspended in PBS were exposed to 2 MHz ultrasound in the presence and absence of PHF. Cell viability was determined by the Trypan Blue exclusion test. Lipid peroxidation in cell membranes was estimated by measuring the amount of malondialdehyde as the thiobarbituric acid-reactive-substances. Significant enhancement of the rates of both ultrasonically-induced cell damage and lipid peroxidation was observed in the presence of PHF, both of which were positively correlated with PHF. The enhancement of cell damage and lipid peroxidation with PHF was suppressed by reactive oxygen scavengers such as histidine and tryptophan. The good correlation observed in the presence of PHF suggests that membrane lipid peroxidation is one of the important intermediary events in sonodynamically-induced cellular damage. The inhibitory effects of histidine and tryptophan also provide evidence that singlet oxygen plays an important role in PHF-mediated sonosensitization of membranes and that this moiety may be an important mediator of cell destruction in sonodynamic therapy associated with PHF and ultrasound. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  10. Viability and Tissue Quality of Cartilage Flaps From Patients With Femoroacetabular Hip Impingement: A Matched-Control Comparison

    Science.gov (United States)

    Rodriguez-Fontan, Francisco; Payne, Karin A.; Chahla, Jorge; Mei-Dan, Omer; Richards, Abigail; Uchida, Soshi; Pascual-Garrido, Cecilia

    2017-01-01

    Background: Chondrolabral damage is commonly observed in patients with cam-type femoroacetabular impingement (FAI). Chondral flap reattachment has recently been proposed as a possible preservation technique. Purpose/Hypothesis: The purpose of this study was to determine the viability and tissue quality of chondral flaps from patients with FAI at the time of arthroscopy. It was hypothesized that chondral flaps from patients with cam lesions of the hip would exhibit less viability and greater tissue degeneration than would those of a matched control group. Study Design: Cohort study; Level of evidence, 2. Methods: Patients with cam-type FAI who were treated with hip arthroscopy between 2014 and 2016 were asked to participate in this study. The cartilage lesions were localized and classified intraoperatively according to Beck classification. A chondral flap (study group) and a cartilage sample (control group) were obtained from each patient for histologic evaluation. Cellular viability and tissue quality were examined and compared in both groups. Cellular viability was determined with live/dead staining, and tissue quality was evaluated using safranin O/fast green, hematoxylin and eosin (H&E) staining, and immunohistochemistry for collagen II. Osteoarthritis Research Society International (OARSI) grading was used for quality assessment, and Image J software was used to calculate the percentage of tissue viability and Col II stain. Results: A total of 10 male patients with a mean age of 38.4 years (range, 30-55 years) were enrolled. All chondral flaps were classified as Beck grade 4. The mean cellular viability of the chondral flaps was reduced (54.6% ± 25.6%), and they were found to be degenerated (OARSI grade, 4 ± 1.27). Control samples also had reduced viability (38.8% ± 30.3%) and were degenerative (OARSI grade, 3.5 ± 1.38). There was no statistically significant intergroup difference for viability (P = .203) or OARSI grade (P = .645), nor was there an

  11. Viability Assessment of a Scintillating Fibre Tracker for the LHCb Upgrade

    CERN Document Server

    Bay, Aurelio; Bruggisser, Sebastian; Callot, Olivier; Chanal, Hervé; Cogneras, E; Comerma-Montells, Albert; Deckenhoff, Mirko; Decreuse, Gerard; Demmer, Moritz; Egorychev, Victor; Ekelhof, Robert; Gascon, David; Golutvin, Andrei; Graugès, Eugeni; Grünberg, Oliver; Gushchin, Evgeny; Guz, Yury; Haefeli, Guido; Jaton, Pierre; Joram, Christian; Karacson, Matthias; Leverington, Blake; Lindner, Rolf; Lopez-March, Neus; Nakada, Tatsuya; Patel, Mitesh; Perret, Pascal; Puig Navarro, Albert; Rakotomiaramanana, Barinjaka; Rouvinet, Julien; Savidge, Trevor; Schneider, Olivier; Schneider, Thomas; Shatalov, Pavel; Spaan, Bernhard; Thomas, Eric; Veneziano, Giovanni; Uwer, Ulrich; Xu, Zhirui; Yu, Hao

    2014-01-01

    This document describes the parameters and qualities of scintillating fibres and silicon photodetectors for a central tracking detector for the LHCb upgrade and discusses the viability of the proposals for a tracking detector set forth in the Framework Technical Design Report and Letter of Intent. It summarizes experimental, simulation and literature studies to assess the viability of the baseline components with a particular emphasis being put on their tolerance to damage from radiation. The specifications of the fibre and photodetector will have strong impact on the design of the front- end electronics and vice versa. Some of the results for this are also reported here. Finally, we will present a conclusion based on the results of our studies and other collaborations, regarding the suitability of a scintillating fibre based tracker with a Silicon Photo-Multiplier (SiPM) read out in the higher luminosity environment of the upgrade scenario.

  12. Exercise regulates breast cancer cell viability

    DEFF Research Database (Denmark)

    Dethlefsen, Christine; Lillelund, Christian; Midtgaard, Julie

    2016-01-01

    Purpose: Exercise decreases breast cancer risk and disease recurrence, but the underlying mechanisms are unknown. Training adaptations in systemic factors have been suggested as mediating causes. We aimed to examine if systemic adaptations to training over time, or acute exercise responses......, in breast cancer survivors could regulate breast cancer cell viability in vitro. Methods: Blood samples were collected from breast cancer survivors, partaking in either a 6-month training intervention or across a 2 h acute exercise session. Changes in training parameters and systemic factors were evaluated...... and pre/post exercise-conditioned sera from both studies were used to stimulate breast cancer cell lines (MCF-7, MDA-MB-231) in vitro. Results: Six months of training increased VO2peak (16.4 %, p

  13. Artificial evolution by viability rather than competition.

    Directory of Open Access Journals (Sweden)

    Andrea Maesani

    Full Text Available Evolutionary algorithms are widespread heuristic methods inspired by natural evolution to solve difficult problems for which analytical approaches are not suitable. In many domains experimenters are not only interested in discovering optimal solutions, but also in finding the largest number of different solutions satisfying minimal requirements. However, the formulation of an effective performance measure describing these requirements, also known as fitness function, represents a major challenge. The difficulty of combining and weighting multiple problem objectives and constraints of possibly varying nature and scale into a single fitness function often leads to unsatisfactory solutions. Furthermore, selective reproduction of the fittest solutions, which is inspired by competition-based selection in nature, leads to loss of diversity within the evolving population and premature convergence of the algorithm, hindering the discovery of many different solutions. Here we present an alternative abstraction of artificial evolution, which does not require the formulation of a composite fitness function. Inspired from viability theory in dynamical systems, natural evolution and ethology, the proposed method puts emphasis on the elimination of individuals that do not meet a set of changing criteria, which are defined on the problem objectives and constraints. Experimental results show that the proposed method maintains higher diversity in the evolving population and generates more unique solutions when compared to classical competition-based evolutionary algorithms. Our findings suggest that incorporating viability principles into evolutionary algorithms can significantly improve the applicability and effectiveness of evolutionary methods to numerous complex problems of science and engineering, ranging from protein structure prediction to aircraft wing design.

  14. Primordial membranes

    DEFF Research Database (Denmark)

    Hanczyc, Martin M; Monnard, Pierre-Alain

    2017-01-01

    Cellular membranes, which are self-assembled bilayer structures mainly composed of lipids, proteins and conjugated polysaccharides, are the defining feature of cell physiology. It is likely that the complexity of contemporary cells was preceded by simpler chemical systems or protocells during...... the various evolutionary stages that led from inanimate to living matter. It is also likely that primitive membranes played a similar role in protocell 'physiology'. The composition of such ancestral membranes has been proposed as mixtures of single hydrocarbon chain amphiphiles, which are simpler versions...

  15. The relationship between sperm viability and DNA fragmentation rates.

    Science.gov (United States)

    Samplaski, Mary K; Dimitromanolakis, Apostolos; Lo, Kirk C; Grober, Ethan D; Mullen, Brendan; Garbens, Alaina; Jarvi, Keith A

    2015-05-14

    In humans, sperm DNA fragmentation rates have been correlated with sperm viability rates. Reduced sperm viability is associated with high sperm DNA fragmentation, while conversely high sperm viability is associated with low rates of sperm DNA fragmentation. Both elevated DNA fragmentation rates and poor viability are correlated with impaired male fertility, with a DNA fragmentation rate of >30% indicating subfertility. We postulated that in some men, the sperm viability assay could predict the sperm DNA fragmentation rates. This in turn could reduce the need for sperm DNA fragmentation assay testing, simplifying the infertility investigation and saving money for infertile couples. All men having semen analyses with both viability and DNA fragmentation testing were identified via a prospectively collected database. Viability was measured by eosin-nigrosin assay. DNA fragmentation was measured using the sperm chromosome structure assay. The relationship between DNA fragmentation and viability was assessed using Pearson's correlation coefficient. From 2008-2013, 3049 semen analyses had both viability and DNA fragmentation testing. A strong inverse relationship was seen between sperm viability and DNA fragmentation rates, with r=-0.83. If viability was ≤50% (n=301) then DNA fragmentation was ≥ 30% for 95% of the samples. If viability was ≥75% (n=1736), then the DNA fragmentation was ≤30% for 95% of the patients. Sperm viability correlates strongly with DNA fragmentation rates. In men with high levels of sperm viability≥75%, or low levels of sperm viability≤ 30%, DFI testing may be not be routinely necessary. Given that DNA fragmentation testing is substantially more expensive than vitality testing, this may represent a valuable cost-saving measure for couples undergoing a fertility evaluation.

  16. A novel method for the assessment of cellular composition and beta-cell viability in human islet preparations.

    Science.gov (United States)

    Ichii, Hirohito; Inverardi, Luca; Pileggi, Antonello; Molano, R Damaris; Cabrera, Over; Caicedo, Alejandro; Messinger, Shari; Kuroda, Yoshikazu; Berggren, Per-Olof; Ricordi, Camillo

    2005-07-01

    Current methodologies to evaluate islet cell viability are largely based on tests that assess the exclusion of DNA-binding dyes. While these tests identify cells that have lost selective membrane permeability, they do not allow us to recognize apoptotic cells, which do not yet stain with DNA-binding dyes. Furthermore, current methods of analysis do not discriminate between cell subsets in the preparation and, in particular, they do not allow for selectively defining beta-cell viability. For these reasons we have developed novel methods for the specific assessment of beta-cell content and viability in human islets based on cellular composition analysis through laser scanning cytometry (LSC) coupled with identification of beta-cell-specific apoptosis at the mitochondrial level. Our novel analytical methods hold promise to prospectively analyze clinical islet transplantation preparations and predict functional performance, as suggested by the observed correlation with in vivo analysis of islet potency in immunodeficient rodents.

  17. Cell damage after shock.

    Science.gov (United States)

    Barber, A E; Shires, G T

    1996-05-01

    Hypoperfusion of tissue results in cell membrane dysfunction. Normally, the cell membrane serves to preserve the milieu interior through the maintenance of a negative charge or membrane potential. Maintenance of a negative membrane potential across the cell membrane serves as a semipermeable barrier, preserving the balance of intra- and extracellular electrolytes and water.

  18. The viability of MCM-41 as separator in secondary alkaline cells

    Science.gov (United States)

    Meskon, S. R.; Othman, R.; Ani, M. H.

    2018-01-01

    The viability of MCM-41 membrane as a separator material in secondary alkaline cell is investigated. The inorganic membrane was employed in an alkaline nickel-zinc system. MCM-41 mesoporous material consists of arrays of hexagonal nano-pore channels. The membrane was synthesized using sol-gel route from parent solution comprising of quarternary ammonium surfactant, cethyltrimethylammonium bromide C16H33(CH3)3NBr (CTAB), hydrochloric acid (HCl), deionized water (H2O), ethanol (C2H5OH), and tetraethylortosilicate (TEOS). Both the anodic zinc/zinc oxide and cathodic nickel hydroxide electrodeposited film were coated with MCM-41 membrane. The Ni/MCM-41/Zn alkaline cell was then subjected to 100-cycle durability test and the structural stability of MCM-41 separator throughout the progression of the charge-discharge cycles is studied. X-ray diffraction (XRD) analysis on the dismantled cell shows that MCM-41 began to transform to lamellar MCM-50 on the 5th cycle and transformed almost completely on the 25th cycle. The phase transformation of MCM-41 hexagonal structure into gel-like MCM-50 prevents the mesoporous cell separator from diminished in the caustic alkaline surround. This work has hence demonstrated MCM-41 membrane is viable to be employed in secondary alkaline cells.

  19. High Nutrient Levels and TORC1 Activity Reduce Cell Viability following Prolonged Telomere Dysfunction and Cell Cycle Arrest

    Directory of Open Access Journals (Sweden)

    Julia Klermund

    2014-10-01

    Full Text Available Cells challenged with DNA damage activate checkpoints to arrest the cell cycle and allow time for repair. Successful repair coupled to subsequent checkpoint inactivation is referred to as recovery. When DNA damage cannot be repaired, a choice between permanent arrest and cycling in the presence of damage (checkpoint adaptation must be made. While permanent arrest jeopardizes future lineages, continued proliferation is associated with the risk of genome instability. We demonstrate that nutritional signaling through target of rapamycin complex 1 (TORC1 influences the outcome of this decision. Rapamycin-mediated TORC1 inhibition prevents checkpoint adaptation via both Cdc5 inactivation and autophagy induction. Preventing adaptation results in increased cell viability and hence proliferative potential. In accordance, the ability of rapamycin to increase longevity is dependent upon the DNA damage checkpoint. The crosstalk between TORC1 and the DNA damage checkpoint may have important implications in terms of therapeutic alternatives for diseases associated with genome instability.

  20. 3'-hydroxy-4'-methoxy-β-methyl-β-nitrostyrene inhibits tumorigenesis in colorectal cancer cells through ROS-mediated DNA damage and mitochondrial dysfunction.

    Science.gov (United States)

    Tsai, Chun-Hao; Hung, Amos C; Chen, Yuan-Yin; Chiu, Ya-Wen; Hsieh, Pei-Wen; Lee, Yi-Chen; Su, Yu-Han; Chang, Po-Chih; Hu, Stephen Chu-Sung; Yuan, Shyng-Shiou F

    2017-03-14

    The β-nitrostyrene family has been shown to suppress cell proliferation and induce apoptosis in types of various cancers. However, the mechanisms underlying the anticancer effects of β-nitrostyrenes in colorectal cancer remain poorly understood. In this study, we synthesized a β-nitrostyrene derivative, CYT-Rx20 (3'-hydroxy-4'-methoxy-β-methyl-β-nitrostyrene), and investigated its anticancer activities in human colorectal cancer cells both in vitro and in vivo. Our findings showed that treatment with CYT-Rx20 reduced cell viability and induced DNA damage in colorectal cancer cells. In addition, CYT-Rx20 induced cell cycle arrest of colorectal cancer cells at the G2/M phase and upregulated the protein expression of phospho-ERK, cyclin B1, phospho-cdc2 (Tyr15), aurora A, and aurora B, while it downregulated the expression of cdc25A and cdc25C. Furthermore, we found that CYT-Rx20 caused accumulation of intracellular reactive oxygen species (ROS) and reduction of mitochondrial membrane potential. The effects of CYT-Rx20 on cell viability, DNA damage, and mitochondrial membrane potential were reversed by pretreatment with the thiol antioxidant N-acetyl-L-cysteine (NAC), suggesting that ROS-mediated DNA damage and mitochondrial dysregulation play a critical role in these events. Finally, the nude mice xenograft study showed that CYT-Rx20 significantly reduced tumor growth of implanted colorectal cancer cells accompanied by elevated protein expression of aurora A, aurora B, γH2AX, phosphor-ERK, and MDA in the tumor tissues. Taken together, these results suggest that CYT-Rx20 may potentially be developed as a novel β-nitrostyrene-based anticancer agent for colorectal cancer.

  1. Plasma membrane disruption: repair, prevention, adaptation

    Science.gov (United States)

    McNeil, Paul L.; Steinhardt, Richard A.

    2003-01-01

    Many metazoan cells inhabit mechanically stressful environments and, consequently, their plasma membranes are frequently disrupted. Survival requires that the cell rapidly repair or reseal the disruption. Rapid resealing is an active and complex structural modification that employs endomembrane as its primary building block, and cytoskeletal and membrane fusion proteins as its catalysts. Endomembrane is delivered to the damaged plasma membrane through exocytosis, a ubiquitous Ca2+-triggered response to disruption. Tissue and cell level architecture prevent disruptions from occurring, either by shielding cells from damaging levels of force, or, when this is not possible, by promoting safe force transmission through the plasma membrane via protein-based cables and linkages. Prevention of disruption also can be a dynamic cell or tissue level adaptation triggered when a damaging level of mechanical stress is imposed. Disease results from failure of either the preventive or resealing mechanisms.

  2. A study to evaluate the effect of nootropic drug-piracetam on DNA damage in leukocytes and macrophages.

    Science.gov (United States)

    Singh, Sarika; Goswami, Poonam; Swarnkar, Supriya; Singh, Sheelendra Pratap; Wahajuddin; Nath, Chandishwar; Sharma, Sharad

    2011-11-27

    Piracetam is a nootropic drug that protects neurons in neuropathological and age-related diseases and the activation and modulation of peripheral blood cells in patients with neuropathological conditions is well known. Therefore, in the present study, in vivo, ex vivo, and in vitro tests were conducted to investigate the effect of piracetam on leukocytes and macrophages. Lipopolysaccharide (LPS) causes oxidative DNA damage; thus, in the present study, LPS was used as a tool to induce DNA damage. In vivo experiments were conducted on Sprague Dawley rats, and piracetam (600mg/kg, oral) was provided for five consecutive days. On the fifth day, a single injection of LPS (10mg/kg, i.p.) was administered. Three hours after LPS injection, blood leukocytes and peritoneal macrophages were collected and processed, and a variety of different assays were conducted. Ex vivo treatments were performed on isolated rat blood leukocytes, and in vitro experiments were conducted on rat macrophage cell line J774A.1. Cell viability and the level of reactive oxygen species (ROS), mitochondrial membrane potential (MMP) and DNA damage were estimated in untreated (control) and piracetam-, LPS- and LPS+piracetam-treated leukocytes and macrophages. In vivo experiments revealed that rats pretreated with piracetam were significantly protected against LPS-induced increases in ROS levels and DNA damage. Ex vivo isolated leukocytes and J774A.1 cells treated with LPS exhibited augmented ROS levels and DNA damage, which were attenuated with piracetam treatment. Thus, the present study revealed the salutary effect of piracetam against LPS-induced oxidative stress and DNA damage in leukocytes and macrophages. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Biocatalytic Self-Cleaning Polymer Membranes

    Directory of Open Access Journals (Sweden)

    Agnes Schulze

    2015-09-01

    Full Text Available Polymer membrane surfaces have been equipped with the digestive enzyme trypsin. Enzyme immobilization was performed by electron beam irradiation in aqueous media within a one-step method. Using this method, trypsin was covalently and side-unspecific attached to the membrane surface. Thus, the use of preceding polymer functionalization and the use of toxic solvents or reagents can be avoided. The resulting membranes showed significantly improved antifouling properties as demonstrated by repeated filtration of protein solutions. Furthermore, the biocatalytic membrane can be simply “switched on” to actively degrade a fouling layer on the membrane surface and regain the initial permeability. The membrane pore structure (pore size and porosity was neither damaged by the electron beam treatment nor blocked by the enzyme loading, ensuring a stable membrane performance.

  4. Sperm viability staining in ecology and evolution: potential pitfalls

    DEFF Research Database (Denmark)

    Holman, Luke

    2009-01-01

    a number of interesting results, it has some potential pitfalls that have rarely been discussed. In the present paper, I review the major findings of ecology and evolution studies employing sperm viability staining and outline the method's principle limitations. The key problem is that the viability assay......The causes and consequences of variation in sperm quality, survival and ageing are active areas of research in ecology and evolution. In order to address these topics, many recent studies have measured sperm viability using fluorescent staining. Although sperm viability staining has produced...

  5. Assessing the Viability of Tiger Subpopulations in a Fragmented Landscape

    National Research Council Canada - National Science Library

    Matthew Linkie; Guillaume Chapron; Deborah J. Martyr; Jeremy Holden; Nigel Leader-Williams

    2006-01-01

    .... This study aimed to provide such information for tigers in the Kerinci Seblat (KS) region, Sumatra, by identifying and assessing subpopulation viability under different management strategies. 2...

  6. Fault Detection and Isolation using Viability Theory and Interval Observers

    Science.gov (United States)

    Ghaniee Zarch, Majid; Puig, Vicenç; Poshtan, Javad

    2017-01-01

    This paper proposes the use of interval observers and viability theory in fault detection and isolation (FDI). Viability theory develops mathematical and algorithmic methods for investigating the adaptation to viability constraints of evolutions governed by complex systems under uncertainty. These methods can be used for checking the consistency between observed and predicted behavior by using simple sets that approximate the exact set of possible behavior (in the parameter or state space). In this paper, fault detection is based on checking for an inconsistency between the measured and predicted behaviors using viability theory concepts and sets. Finally, an example is provided in order to show the usefulness of the proposed approach.

  7. The effects of storage conditions on the viability of ...

    African Journals Online (AJOL)

    The effects of storage conditions on the viability of enteropathogenics bacteria in biobanking of human stools: Cases of Yersinia enterocolitica, Salmonella enterica Typhimurium and Vibrio cholerae O: 1.

  8. Storage Viability and Optimization Web Service

    Energy Technology Data Exchange (ETDEWEB)

    Stadler, Michael; Marnay, Christ; Lai, Judy; Siddiqui, Afzal; Limpaitoon, Tanachai; Phan, Trucy; Megel, Olivier; Chang, Jessica; DeForest, Nicholas

    2010-10-11

    Non-residential sectors offer many promising applications for electrical storage (batteries) and photovoltaics (PVs). However, choosing and operating storage under complex tariff structures poses a daunting technical and economic problem that may discourage potential customers and result in lost carbon and economic savings. Equipment vendors are unlikely to provide adequate environmental analysis or unbiased economic results to potential clients, and are even less likely to completely describe the robustness of choices in the face of changing fuel prices and tariffs. Given these considerations, researchers at Lawrence Berkeley National Laboratory (LBNL) have designed the Storage Viability and Optimization Web Service (SVOW): a tool that helps building owners, operators and managers to decide if storage technologies and PVs merit deeper analysis. SVOW is an open access, web-based energy storage and PV analysis calculator, accessible by secure remote login. Upon first login, the user sees an overview of the parameters: load profile, tariff, technologies, and solar radiation location. Each parameter has a pull-down list of possible predefined inputs and users may upload their own as necessary. Since the non-residential sectors encompass a broad range of facilities with fundamentally different characteristics, the tool starts by asking the users to select a load profile from a limited cohort group of example facilities. The example facilities are categorized according to their North American Industry Classification System (NAICS) code. After the load profile selection, users select a predefined tariff or use the widget to create their own. The technologies and solar radiation menus operate in a similar fashion. After these four parameters have been inputted, the users have to select an optimization setting as well as an optimization objective. The analytic engine of SVOW is LBNL?s Distributed Energy Resources Customer Adoption Model (DER-CAM), which is a mixed

  9. Brimonidine Can Prevent In Vitro Hydroquinone Damage on Retinal Pigment Epithelium Cells and Retinal Müller Cells.

    Science.gov (United States)

    Ramírez, Claudio; Cáceres-del-Carpio, Javier; Chu, Justin; Chu, Joshua; Moustafa, M Tarek; Chwa, Marilyn; Limb, G Astrid; Kuppermann, Baruch D; Kenney, M Cristina

    2016-03-01

    Brimonidine is a selective alpha-2 adrenergic agonist used to reduce intraocular pressure and it has been shown to have some neuroprotective effects. Hydroquinone (HQ) is a toxicant present in cigarette smoke, and other sources. In this study, we investigated the cyto-protective effects in vitro of Brimonidine on human retinal pigment epithelium cells (ARPE-19) and human retinal Müller cells (MIO-M1) that had been treated with HQ. Cells were pretreated for 6 h with different doses of Brimonidine tartrate 0.1% (1/2×, 1×, 5×, 10×), followed by a 24-h exposure to 100 μM of HQ, while the Brimonidine was still present. Assays were used to measure cell viability, mitochondrial membrane potential (ΔΨm), reactive oxygen species (ROS) production, and lactate dehydrogenase (LDH) release. Brimonidine increased the cell viability at all concentrations studied in both cell lines studied. ΔΨm also improved at all Brimonidine doses in ARPE-19 cells and in the 5× and 10× dosages MIO-M1 cells. The ROS levels decreased at 1×, 5×, and 10× doses of Brimonidine in ARPE-19 but only at 10× on MIO-M1 cells. The 10×-Brimonidine ARPE-19 cells had decreased LDH release, but no LDH changes were observed on MIO-M1 cells. HQ-induced toxicity is mediated through mitochondrial damaging, oxidative stress-related and necrosis-related pathways; Brimonidine significantly prevented the mitochondrial damaging and oxidative stress-related effects but had little effect on blocking the necrosis component of HQ-toxicity. Brimonidine protective effects differ between the different retinal cell types and high concentrations of Brimonidine (10×) have minimal damaging effects on human retinal cells.

  10. Pulsed electric field improves the bioprotective capacity of purées for different coloured carrot cultivars against H2O2-induced oxidative damage.

    Science.gov (United States)

    Leong, Sze Ying; Oey, Indrawati; Burritt, David John

    2016-04-01

    This research aimed to study the effect of pulsed electric field (PEF) processing on the bioprotective capacity of carrot purée for White Belgian, Yellow Solar, Nantes, Nutri Red and Purple Haze cultivars against H2O2-induced oxidative damage. The bioprotective capacity was determined using cell viability, membrane integrity and nitric oxide (NO) production in a human Caco-2 cell culture assay. Total carotenoids, total anthocyanins, total vitamin C and total phenolics were also evaluated. Compared to the untreated purée, Purple Haze and Nutri Red processed at 303 kJ/kg completely increased Caco-2 cells resistance towards oxidative damage by recovering the cell viability and inhibiting NO production. For cultivar with low carotenoid levels, i.e. Yellow Solar, the application of 0.8 kV/cm resulted in a higher total carotenoid content in the purée than its untreated counterpart, leading to an improved bioprotective effect. This study clearly shows that PEF could add value to carrots by maximising bioprotective effects. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Soybean lecithin-based extender preserves spermatozoa membrane integrity and fertilizing potential during goat semen cryopreservation.

    Science.gov (United States)

    Chelucci, Sara; Pasciu, Valeria; Succu, Sara; Addis, Daniela; Leoni, Giovanni G; Manca, Maria E; Naitana, Salvatore; Berlinguer, Fiammetta

    2015-04-01

    Soybean lecithin may represent a suitable alternative to egg yolk for semen cryopreservation in livestock species. However, additional studies are needed to elucidate its effects on spermatozoa functional properties. Semen collected from five Sarda bucks was cryopreserved in Tris-based extender and glycerol (4% v:v) with different supplementations. In a preliminary experiment, different soybean lecithin concentrations were tested (1%-6% wt/vol) and results in terms of viability, percentages of progressive motile and rapid spermatozoa, and DNA integrity after thawing showed that the most effective concentration was 1%. In the second experiment, semen was frozen in a Tris-based extender with no supplementation (EXT), with 1% lecithin (EXT LC), and 20% egg yolk (EXT EY). The effectiveness of these extenders was also compared with a commercial extender. The EXT EY led to the highest viability and motility parameters after freezing and thawing (P lecithin can be considered as a suitable alternative to egg yolk in goat semen cryopreservation, because it ensures higher fertilization rates and a better protection from membrane damage by cold shock. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Loss of all 3 Extended Synaptotagmins does not affect normal mouse development, viability or fertility.

    Science.gov (United States)

    Tremblay, Michel G; Moss, Tom

    2016-09-01

    The extended synaptotagmins, E-Syt1, 2 and 3, are multiple C2 domain membrane proteins that are tethered to the endoplasmic reticulum and interact in a calcium dependent manner with plasma membrane phospholipids to form endoplasmic reticulum - plasma membrane junctions. These junctions have been implicated in the exchange of phospholipids between the 2 organelles. The E-Syts have further been implicated in receptor signaling and endocytosis and can interact directly with fibroblast growth factor and other cell surface receptors. Despite these multiple functions, the search for a requirement in vivo has been elusive. Most recently, we found that the genes for E-Syt2 and 3 could be inactivated without effect on mouse development, viability, fertility or morphology. We have now created insertion and deletion mutations in the last of the mouse E-Syt genes. We show that E-Syt1 is specifically expressed throughout the embryonic skeleton during the early stages of chrondrogenesis in a pattern quite distinct from that of E-Syt2 or 3. Despite this, E-Syt1 is also not required for mouse development and propagation. We further show that even the combined inactivation of all 3 E-Syt genes has no effect on mouse viability or fertility in the laboratory. However, this inactivation induces an enhancement in the expression of the genes encoding Orp5/8, Orai1, STIM1 and TMEM110, endoplasmic reticulum - plasma membrane junction proteins that potentially could compensate for E-Syt loss. Given the multiple functions suggested for the E-Syts and their evolutionary conservation, our unexpected findings suggest that they may only provide a survival advantage under specific conditions that have as yet to be identified.

  13. Incorporating evolutionary processes into population viability models.

    Science.gov (United States)

    Pierson, Jennifer C; Beissinger, Steven R; Bragg, Jason G; Coates, David J; Oostermeijer, J Gerard B; Sunnucks, Paul; Schumaker, Nathan H; Trotter, Meredith V; Young, Andrew G

    2015-06-01

    We examined how ecological and evolutionary (eco-evo) processes in population dynamics could be better integrated into population viability analysis (PVA). Complementary advances in computation and population genomics can be combined into an eco-evo PVA to offer powerful new approaches to understand the influence of evolutionary processes on population persistence. We developed the mechanistic basis of an eco-evo PVA using individual-based models with individual-level genotype tracking and dynamic genotype-phenotype mapping to model emergent population-level effects, such as local adaptation and genetic rescue. We then outline how genomics can allow or improve parameter estimation for PVA models by providing genotypic information at large numbers of loci for neutral and functional genome regions. As climate change and other threatening processes increase in rate and scale, eco-evo PVAs will become essential research tools to evaluate the effects of adaptive potential, evolutionary rescue, and locally adapted traits on persistence. © 2014 Society for Conservation Biology.

  14. Endoplasmic Reticulum Stress Mediates Methamphetamine-Induced Blood-Brain Barrier Damage.

    Science.gov (United States)

    Qie, Xiaojuan; Wen, Di; Guo, Hongyan; Xu, Guanjie; Liu, Shuai; Shen, Qianchao; Liu, Yi; Zhang, Wenfang; Cong, Bin; Ma, Chunling

    2017-01-01

    Methamphetamine (METH) abuse causes serious health problems worldwide, and long-term use of METH disrupts the blood-brain barrier (BBB). Herein, we explored the potential mechanism of endoplasmic reticulum (ER) stress in METH-induced BBB endothelial cell damage in vitro and the therapeutic potential of endoplasmic reticulum stress inhibitors for METH-induced BBB disruption in C57BL/6J mice. Exposure of immortalized BMVEC (bEnd.3) cells to METH significantly decreased cell viability, induced apoptosis, and diminished the tightness of cell monolayers. METH activated ER stress sensor proteins, including PERK, ATF6, and IRE1, and upregulated the pro-apoptotic protein CHOP. The ER stress inhibitors significantly blocked the upregulation of CHOP. Knockdown of CHOP protected bEnd.3 cells from METH-induced cytotoxicity. Furthermore, METH elevated the production of reactive oxygen species (ROS) and induced the dysfunction of mitochondrial characterized by a Bcl2/Bax ratio decrease, mitochondrial membrane potential collapse, and cytochrome c. ER stress release was partially reversed by ROS inhibition, and cytochrome c release was partially blocked by knockdown of CHOP. Finally, PBA significantly attenuated METH-induced sodium fluorescein (NaFluo) and Evans Blue leakage, as well as tight junction protein loss, in C57BL/6J mice. These data suggest that BBB endothelial cell damage was caused by METH-induced endoplasmic reticulum stress, which further induced mitochondrial dysfunction, and that PBA was an effective treatment for METH-induced BBB disruption.

  15. Endoplasmic Reticulum Stress Mediates Methamphetamine-Induced Blood–Brain Barrier Damage

    Directory of Open Access Journals (Sweden)

    Xiaojuan Qie

    2017-09-01

    Full Text Available Methamphetamine (METH abuse causes serious health problems worldwide, and long-term use of METH disrupts the blood–brain barrier (BBB. Herein, we explored the potential mechanism of endoplasmic reticulum (ER stress in METH-induced BBB endothelial cell damage in vitro and the therapeutic potential of endoplasmic reticulum stress inhibitors for METH-induced BBB disruption in C57BL/6J mice. Exposure of immortalized BMVEC (bEnd.3 cells to METH significantly decreased cell viability, induced apoptosis, and diminished the tightness of cell monolayers. METH activated ER stress sensor proteins, including PERK, ATF6, and IRE1, and upregulated the pro-apoptotic protein CHOP. The ER stress inhibitors significantly blocked the upregulation of CHOP. Knockdown of CHOP protected bEnd.3 cells from METH-induced cytotoxicity. Furthermore, METH elevated the production of reactive oxygen species (ROS and induced the dysfunction of mitochondrial characterized by a Bcl2/Bax ratio decrease, mitochondrial membrane potential collapse, and cytochrome c. ER stress release was partially reversed by ROS inhibition, and cytochrome c release was partially blocked by knockdown of CHOP. Finally, PBA significantly attenuated METH-induced sodium fluorescein (NaFluo and Evans Blue leakage, as well as tight junction protein loss, in C57BL/6J mice. These data suggest that BBB endothelial cell damage was caused by METH-induced endoplasmic reticulum stress, which further induced mitochondrial dysfunction, and that PBA was an effective treatment for METH-induced BBB disruption.

  16. Toxic effect of silica nanoparticles on endothelial cells through DNA damage response via Chk1-dependent G2/M checkpoint.

    Directory of Open Access Journals (Sweden)

    Junchao Duan

    Full Text Available Silica nanoparticles have become promising carriers for drug delivery or gene therapy. Endothelial cells could be directly exposed to silica nanoparticles by intravenous administration. However, the underlying toxic effect mechanisms of silica nanoparticles on endothelial cells are still poorly understood. In order to clarify the cytotoxicity of endothelial cells induced by silica nanoparticles and its mechanisms, cellular morphology, cell viability and lactate dehydrogenase (LDH release were observed in human umbilical vein endothelial cells (HUVECs as assessing cytotoxicity, resulted in a dose- and time- dependent manner. Silica nanoparticles-induced reactive oxygen species (ROS generation caused oxidative damage followed by the production of malondialdehyde (MDA as well as the inhibition of superoxide dismutase (SOD and glutathione peroxidase (GSH-Px. Both necrosis and apoptosis were increased significantly after 24 h exposure. The mitochondrial membrane potential (MMP decreased obviously in a dose-dependent manner. The degree of DNA damage including the percentage of tail DNA, tail length and Olive tail moment (OTM were markedly aggravated. Silica nanoparticles also induced G2/M arrest through the upregulation of Chk1 and the downregulation of Cdc25C, cyclin B1/Cdc2. In summary, our data indicated that the toxic effect mechanisms of silica nanoparticles on endothelial cells was through DNA damage response (DDR via Chk1-dependent G2/M checkpoint signaling pathway, suggesting that exposure to silica nanoparticles could be a potential hazards for the development of cardiovascular diseases.

  17. Protein corona mitigates the cytotoxicity of graphene oxide by reducing its physical interaction with cell membrane

    Science.gov (United States)

    Duan, Guangxin; Kang, Seung-Gu; Tian, Xin; Garate, Jose Antonio; Zhao, Lin; Ge, Cuicui; Zhou, Ruhong

    2015-09-01

    Many recent studies have shown that the way nanoparticles interact with cells and biological molecules can vary greatly in the serum-containing or serum-free culture medium. However, the underlying molecular mechanisms of how the so-called ``protein corona'' formed in serum medium affects nanoparticles' biological responses are still largely unresolved. Thus, it is critical to understand how absorbed proteins on the surfaces of nanoparticles alter their biological effects. In this work, we have demonstrated with both experimental and theoretical approaches that protein BSA coating can mitigate the cytotoxicity of graphene oxide (GO) by reducing its cell membrane penetration. Our cell viability and cellular uptake experiments showed that protein corona decreased cellular uptake of GO, thus significantly mitigating the potential cytotoxicity of GO. The electron microscopy images also confirmed that protein corona reduced the cellular morphological damage by limiting GO penetration into the cell membrane. Further molecular dynamics (MD) simulations validated the experimental results and revealed that the adsorbed BSA in effect weakened the interaction between the phospholipids and graphene surface due to a reduction of the available surface area plus an unfavorable steric effect, thus significantly reducing the graphene penetration and lipid bilayer damaging. These findings provide new insights into the underlying molecular mechanism of this important graphene protein corona interaction with cell membranes, and should have implications in future development of graphene-based biomedical applications.Many recent studies have shown that the way nanoparticles interact with cells and biological molecules can vary greatly in the serum-containing or serum-free culture medium. However, the underlying molecular mechanisms of how the so-called ``protein corona'' formed in serum medium affects nanoparticles' biological responses are still largely unresolved. Thus, it is critical

  18. Suitability of the cellular viability technique as a control tool of the chlorine dosage on the activated sludge of a biological process affected by bulking; Empleo de la viabilidad celular como herramienta para el control de la dosificacion de cloro sobre un fango activado con problemas de bulking

    Energy Technology Data Exchange (ETDEWEB)

    Montaya Martinez, T.; Zornoza Zornoza, A.; Granell Munoz, P.; Fayos, G.; Fajarddo, V.; Zorrilla, F.; Alonso Molina, J. L.; Morenilla Martinez, J. J.; Bernacer Bonora, I.; Martinez Francisco, F. J.

    2009-07-01

    This work demonstrates the suitability of the cellular viability technique as a control tool of the chlorine dosage on the activated sludge of a biological process affected by the overabundance of the filamentous bacteria (Thiothrix-021N). This technique was used to establish the chlorine dosage according to the observed damages on cellular membranes of both, floc-forming bacteria as well as filamentous bacteria. To identify the filamentous bacteria responsible for the macro-structural alteration of the flocs, several criteria were, met, including morphologic characteristics as well as conventional microbiological stains: Gram, Neisser and polyhydroxy alkanoates. FISH was used to confirm the obtained results, providing a definitive identification of the filamentous bacteria responsible for the alteration. (Author) 11 refs.

  19. The DNA damage response in mammalian oocytes

    Directory of Open Access Journals (Sweden)

    John eCarroll

    2013-06-01

    Full Text Available DNA damage is one of the most common insults that challenge all cells. To cope, an elaborate molecular and cellular response has evolved to sense, respond to and correct the damage. This allows the maintenance of DNA fidelity essential for normal cell viability and the prevention of genomic instability that can lead to tumour formation. In the context of oocytes, the impact of DNA damage is not one of tumour formation but of the maintenance of fertility. Mammalian oocytes are particularly vulnerable to DNA damage because physiologically they may lie dormant in the ovary for many years (>40 in humans until they receive the stimulus to grow and acquire the competence to become fertilized. The implication of this is that in some organisms, such as humans, oocytes face the danger of cumulative genetic damage for decades. Thus, the ability to detect and repair DNA damage is essential to maintain the supply of oocytes necessary for reproduction. Therefore, failure to confront DNA damage in oocytes could cause serious anomalies in the embryo that may be propagated in the form of mutations to the next generation allowing the appearance of hereditary disease. Despite the potential impact of DNA damage on reproductive capacity and genetic fidelity of embryos, the mechanisms available to the oocyte for monitoring and repairing such insults have remained largely unexplored until recently. Here, we review the different aspects of the response to DNA damage in mammalian oocytes. Specifically, we address the oocyte DNA damage response from embryonic life to adulthood and throughout oocyte development.

  20. Impact damage development in damaged composite materials

    Science.gov (United States)

    Duke, J. C., Jr.; Kiernan, M. T.

    1989-01-01

    A procedure for predicting the nature of impact damage development based on the measured acousto-ultrasonic (AU) response of fiber reinforced crossply laminates with or without damage is described. Results of AU evaluation as well as penetrant enhanced radiographs of damaged laminates are presented.

  1. Establishing guidelines to retain viability of probiotics during spray drying

    NARCIS (Netherlands)

    Perdana, J.A.; Fox, M.B.; Boom, R.M.; Schutyser, M.A.I.

    2014-01-01

    We present a model-based approach to map processing conditions suitable to spray dry probiotics with minimal viability loss. The approach combines the drying history and bacterial inactivation kinetics to predict the retention of viability after drying. The approach was used to systematically assess

  2. Evaluation of pollen viability, stigma receptivity and fertilization ...

    African Journals Online (AJOL)

    To provide theoretical basis for artificial pollination in Lagerstroemia indica L., pollen viability and stigma receptivity were tested and the morphological change of stigma was observed. Pollen viability tested by in vitro culture, stigma receptivity examined by benzidine-H2O2 testing and fruit set estimated by field artificial ...

  3. Viability of dielectrophoretically trapped neuronal cortical cells in culture

    NARCIS (Netherlands)

    Heida, Tjitske; Vulto, P; Rutten, Wim; Marani, Enrico

    2001-01-01

    Negative dielectrophoretic trapping of neural cells is an efficient way to position neural cells on the electrode sites of planar micro-electrode arrays. The preservation of viability of the neural cells is essential for this approach. This study investigates the viability of postnatal cortical rat

  4. 37 CFR 1.807 - Viability of deposit.

    Science.gov (United States)

    2010-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2010-07-01 2010-07-01 false Viability of deposit. 1.807... COMMERCE GENERAL RULES OF PRACTICE IN PATENT CASES Biotechnology Invention Disclosures Deposit of Biological Material § 1.807 Viability of deposit. (a) A deposit of biological material that is capable of...

  5. Evaluation of pollen viability, stigma receptivity and fertilization ...

    African Journals Online (AJOL)

    AJL

    2013-11-13

    Nov 13, 2013 ... To provide theoretical basis for artificial pollination in Lagerstroemia indica L., pollen viability and stigma receptivity were tested and the morphological change of stigma was observed. Pollen viability tested by in vitro culture, stigma receptivity examined by benzidine-H2O2 testing and fruit set estimated.

  6. Studies On Fermentation, Alcohol Production And Viability In ...

    African Journals Online (AJOL)

    The reverse was true in the sugarcane bagasse medium. Yeasts with high viability tended to have high alcohol production ability in the sucrose medium and vice-versa. KEY WORDS: Alcohol production; fermentation; induced mutants; Saccharomyces cerevisiae; viability. Global Journal of Pure and Applied Sciences ...

  7. The Economy and Democracy: Viability and Challenges for ...

    African Journals Online (AJOL)

    The Economy and Democracy: Viability and Challenges for Sustainable Democratisation in Nigeria. ... Economic and Policy Review ... the viability for developing sustainable democracy in Nigeria against the background of the country's enormous economic potentials and the economic reforms introduced following the ...

  8. Pollen viability and germination in Jatropha ribifolia and Jatropha ...

    African Journals Online (AJOL)

    The aim of this work is to assess pollen viability using the staining technique and in vitro germination with different concentrations of sucrose in Jatropha ribifolia and Jatropha mollissima, contributing to the knowledge of the reproductive biology and subsidizing their conservation, management and utilization. Pollen viability ...

  9. Viability, Advantages and Design Methodologies of M-Learning Delivery

    Science.gov (United States)

    Zabel, Todd W.

    2010-01-01

    The purpose of this study was to examine the viability and principle design methodologies of Mobile Learning models in developing regions. Demographic and market studies were utilized to determine the viability of M-Learning delivery as well as best uses for such technologies and methods given socioeconomic and political conditions within the…

  10. Electrospun superhydrophobic membranes with unique structures for membrane distillation.

    Science.gov (United States)

    Liao, Yuan; Loh, Chun-Heng; Wang, Rong; Fane, Anthony G

    2014-09-24

    With modest temperature demand, low operating pressure, and high solute rejection, membrane distillation (MD) is an attractive option for desalination, waste treatment, and food and pharmaceutical processing. However, large-scale practical applications of MD are still hindered by the absence of effective membranes with high hydrophobicity, high porosity, and adequate mechanical strength, which are important properties for MD permeation fluxes, stable long-term performance, and effective packing in modules without damage. This study describes novel design strategies for highly robust superhydrophobic dual-layer membranes for MD via electrospinning. One of the newly developed membranes comprises a durable and ultrathin 3-dimensional (3D) superhydrophobic skin and porous nanofibrous support whereas another was fabricated by electrospinning 3D superhydrophobic layers on a nonwoven support. These membranes exhibit superhydrophobicity toward distilled water, salty water, oil-in-water emulsion, and beverages, which enables them to be used not only for desalination but also for other processes. The superhydrophobic dual-layer membrane #3S-N with nanofibrous support has a competitive permeation flux of 24.6 ± 1.2 kg m(-2) h(-1) in MD (feed and permeate temperate were set as 333 and 293 K, respectively) due to the higher porosity of the nanofibrous scaffold. Meanwhile, the membranes with the nonwoven support exhibit greater mechanical strength due to this support combined with better long-term performance because of the thicker 3D superhydrophobic layers. The morphology, pore size, porosity, mechanical properties, and liquid enter pressure of water of these superhydrophobic composite membranes with two different structures are reported and compared with commercial polyvinylidene fluoride membranes.

  11. [Hemodialysis improves the subendocardial viability ratio].

    Science.gov (United States)

    De Blasio, Antonella; Sirico, Maria; Di Micco, Lucia; Di Iorio, Biagio

    2013-01-01

    The subendocardial viability ratio (SEVR), a parameter introduced by Buckberg, represents a non-invasive measure of myocardial perfusion related to left ventricular work. AIM. The aim of this study was to verify if dialysis may determine modifications of SEVR and how these modifications are modulated in the 2-day interdialytic period. METHODS.We studied 54 subjects of mean age 6314 years and receiving dialysis for 3215 months. Exclusion criteria were diabetes, resistant hypertension and peripheral vascular diseases and intradialytic hypotension evidenced during the study dialysis session. Pulse wave velocity and SEVR assessments were performed during the third dialysis session of the week, before (pre-HD) and after (post-HD) dialysis, in 2-day interdialytic period after and at the beginning of the following dialysis session. RESULTS.Dialysis reduces PWV, in particular the tertile with the lowest PWV presents the highest percentage reduction (-26%) compared with the second and the third tertiles. In the same way, dialysis leads to an increase of SEVR and patients in the tertile with the highest SEVR values maintain high SEVR values during dialysis and in the interdialytic period. Patients with severe vascular calcifications present higher PWV value and lower SEVR value. CONCLUSIONS.The results of present study demonstrate that ultrafiltration improves PWV (with a mean reduction of 16%) and SEVR (increase of 13%) and that the severity of vascular calcifications influences the effect of ultrafiltration on these two parameters. More studies are certainly necessary to verify our findings. Considered the higher mortality of patients with higher SEVR, it would be important to understand if new dialytic strategies are needed in patients with higher PVW and lower SEVR values.

  12. Viability and functional integrity of washed platelets

    Energy Technology Data Exchange (ETDEWEB)

    Pineda, A.A.; Zylstra, V.W.; Clare, D.E.; Dewanjee, M.K.; Forstrom, L.A.

    1989-07-01

    The viability and functional integrity of saline- and ACD-saline-washed platelets were compared with those of unwashed platelets. After template bleeding time (TBT) was measured, 15 healthy volunteers underwent plateletpheresis and ingested 600 mg of aspirin. Autologous /sup 111/In-labeled platelets were transfused: unwashed (n = 5), washed with 0.9 percent saline solution (SS) (n = 5), and washed with a buffered 12.6 percent solution of ACD-A in 0.9 percent saline solution (n = 5). After transfusion, we measured TBT at 1, 4, and 24 hours; platelet survival at 10 minutes and 1, 4, and 24 hours and daily for 6 days; and the percentage of uptake in liver and spleen by quantitative whole-body radionuclide scintigraphy at 24 and 190 hours. We found that saline washing affected platelet recovery, 23.47 +/- 12 percent (p less than 0.001) as compared to 52.43 +/- 17 percent (p less than 0.002) for ACD-saline and 73.17 +/- 8 percent for control; that saline washing resulted in a greater liver uptake than control and ACD-saline-washed platelets (31.9 +/- 8% (p less than 0.001) vs 17.7 +/- 4.1 and 19.3 +/- 2.1% (p greater than 0.1), respectively); that, unlike control and ACD-saline-washed platelets, saline-washed platelets did not shorten bleeding time; and that neither type of washing affected survival. Although ACD-saline washing affects recovery, it also results in intact function, normal survival, higher recovery than SS platelets, and no significant liver uptake.

  13. A key inactivation factor of HeLa cell viability by a plasma flow

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Takehiko; Yokoyama, Mayo [Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Johkura, Kohei, E-mail: sato@ifs.tohoku.ac.jp [Department of Histology and Embryology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto 390-8621 (Japan)

    2011-09-21

    Recently, a plasma flow has been applied to medical treatment using effects of various kinds of stimuli such as chemical species, charged particles, heat, light, shock wave and electric fields. Among them, the chemical species are known to cause an inactivation of cell viability. However, the mechanisms and key factors of this event are not yet clear. In this study, we focused on the effect of H{sub 2}O{sub 2} in plasma-treated culture medium because it is generated in the culture medium and it is also chemically stable compared with free radicals generated by the plasma flow. To elucidate the significance of H{sub 2}O{sub 2}, we assessed the differences in the effects of plasma-treated medium and H{sub 2}O{sub 2}-added medium against inactivation of HeLa cell viability. These two media showed comparable effects on HeLa cells in terms of the survival ratios, morphological features of damage processes, permeations of H{sub 2}O{sub 2} into the cells, response to H{sub 2}O{sub 2} decomposition by catalase and comprehensive gene expression. The results supported that among chemical species generated in a plasma-treated culture medium, H{sub 2}O{sub 2} is one of the main factors responsible for inactivation of HeLa cell viability. (fast track communication)

  14. Evidence of electroconformational changes in membrane proteins: field-induced reductions in intra membrane nonlinear charge movement currents.

    Science.gov (United States)

    Chen, Wei

    2004-06-01

    Experimental results are presented to show that a pulsed, intensive membrane potential can reduce intra membrane, nonlinear charge movement currents, which are the voltage-sensors in the voltage-dependent membrane proteins and in the excitation-contraction coupling of skeletal muscle fibers. The results indicate a possible mechanism involved in electrical injury: dysfunctions of the voltage-dependent membrane proteins caused by electroconformational damages in their voltage-sensors.

  15. Dynamics of the human nuclear proteome in response to DNA damage

    NARCIS (Netherlands)

    Dirksen, Eef Hubert Cecil

    2006-01-01

    The genome is constantly challenged by factors that can induce DNA damage and thereby threaten the viability of the cell. If DNA damage remains unrepaired it can lead to the development of cancer. Although much is known about the role of proteins and protein complexes in the cellular response to DNA

  16. DNA damage markers in dermal fibroblasts in vitro reflect chronological donor age

    DEFF Research Database (Denmark)

    Waaijer, Mariëtte E C; Croco, Eleonora; Westendorp, Rudi G J

    2016-01-01

    The aging process is accompanied by an accumulation of cellular damage, which compromises the viability and function of cells and tissues. We aim to further explore the association between in vitro DNA damage markers and the chronological age of the donor, as well as long-lived family membership...

  17. Impact of ZnO and Ag Nanoparticles on Bacterial Growth and Viability

    Science.gov (United States)

    Olson, M. S.; Digiovanni, K. A.

    2007-12-01

    Hundreds of consumer products containing nanomaterials are currently available in the U.S., including computers, clothing, cosmetics, sports equipment, medical devices and product packaging. Metallic nanoparticles can be embedded in or coated on product surfaces to provide antimicrobial, deodorizing, and stain- resistant properties. Although these products have the potential to provide significant benefit to the user, the impact of these products on the environment remains largely unknown. The purpose of this project is to study the effect of metallic nanoparticles released to the environment on bacterial growth and viability. Inhibition of bacterial growth was tested by adding doses of suspended ZnO and Ag nanoparticles into luria broth prior to inoculation of Escherichia coli cells. ZnO particles (approximately 40 nm) were obtained commercially and Ag particles (12-14 nm) were fabricated by reduction of silver nitrate with sodium borohydride. Toxicity assays were performed to test the viability of E. coli cells exposed to both ZnO and Ag nanoparticles using the LIVE/DEAD BacLight bacterial viability kit (Invitrogen). Live cells stain green whereas cells with compromised membranes that are considered dead or dying stain red. Cells were first grown, stained, and exposed to varying doses of metallic nanoparticles, and then bacterial viability was measured hourly using fluorescence microscopy. Results indicate that both ZnO and Ag nanoparticles inhibit the growth of E. coli in liquid media. Preliminary results from toxicity assays confirm the toxic effect of ZnO and Ag nanoparticles on active cell cultures. Calculated death rates resulting from analyses of toxicity studies will be presented.

  18. Robotic membranes

    DEFF Research Database (Denmark)

    Ramsgaard Thomsen, Mette

    2008-01-01

    , Vivisection and Strange Metabolisms, were developed at the Centre for Information Technology and Architecture (CITA) at the Royal Danish Academy of Fine Arts in Copenhagen as a means of engaging intangible digital data with tactile physical material. As robotic membranes, they are a dual examination...

  19. Effects of X-ray and carbon ion beam irradiation on membrane permeability and integrity in Saccharomyces cerevisiae cells.

    Science.gov (United States)

    Cao, Guozhen; Zhang, Miaomiao; Miao, Jianshun; Li, Wenjian; Wang, Jufang; Lu, Dong; Xia, Jiefang

    2015-03-01

    Saccharomyces cerevisiae has served as a eukaryotic model in radiation biology studies of cellular responses to ionizing radiation (IR). Research in this field has thus far mainly been focused on DNA strand breaks, DNA base damage, or inhibition of protein activity. However, the effects of IR on S. cerevisiae cell membranes have barely been studied. Here, we investigated the changes in the permeability and integrity of S. cerevisiae cell membranes induced by high-linear energy transfer carbon ion (CI) beam or low-linear energy transfer X-ray. After CI exposure, protein elution and nucleotide diffusion were more pronounced than after X-ray treatment at the same doses, although these features were most prevalent following irradiation doses of 25-175 Gy. Flow cytometry of forward scatter light versus side scatter light and double-staining with fluorescein diacetate and propidium iodide showed that CI and X-ray irradiation significantly affected S. cerevisiae cell membrane integrity and cellular enzyme activity compared with untreated control cells. The extent of lesions in CI-irradiated cells, which exhibited markedly altered morphology and size, was greater than that in X-ray-irradiated cells. The relationships between permeabilized cells, esterase activity, and non-viable cell numbers furthermore indicated that irradiation-induced increases in cell permeabilization and decreases in esterase activity are dependent on the type of radiation and that these parameters correspond well with cell viability. These results also indicate that the patterns of cell inactivity due to X-ray or CI irradiation may be similar in terms of cell membrane damage. © The Author 2015. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  20. Endothelin receptor B antagonists decrease glioma cell viability independently of their cognate receptor

    Directory of Open Access Journals (Sweden)

    Patterson Paul H

    2008-11-01

    Full Text Available Abstract Background Endothelin receptor antagonists inhibit the progression of many cancers, but research into their influence on glioma has been limited. Methods We treated glioma cell lines, LN-229 and SW1088, and melanoma cell lines, A375 and WM35, with two endothelin receptor type B (ETRB-specific antagonists, A-192621 and BQ788, and quantified viable cells by the capacity of their intracellular esterases to convert non-fluorescent calcein AM into green-fluorescent calcein. We assessed cell proliferation by labeling cells with carboxyfluorescein diacetate succinimidyl ester and quantifying the fluorescence by FACS analysis. We also examined the cell cycle status using BrdU/propidium iodide double staining and FACS analysis. We evaluated changes in gene expression by microarray analysis following treatment with A-192621 in glioma cells. We examined the role of ETRB by reducing its expression level using small interfering RNA (siRNA. Results We report that two ETRB-specific antagonists, A-192621 and BQ788, reduce the number of viable cells in two glioma cell lines in a dose- and time-dependent manner. We describe similar results for two melanoma cell lines. The more potent of the two antagonists, A-192621, decreases the mean number of cell divisions at least in part by inducing a G2/M arrest and apoptosis. Microarray analysis of the effects of A-192621 treatment reveals up-regulation of several DNA damage-inducible genes. These results were confirmed by real-time RT-PCR. Importantly, reducing expression of ETRB with siRNAs does not abrogate the effects of either A-192621 or BQ788 in glioma or melanoma cells. Furthermore, BQ123, an endothelin receptor type A (ETRA-specific antagonist, has no effect on cell viability in any of these cell lines, indicating that the ETRB-independent effects on cell viability exhibited by A-192621 and BQ788 are not a result of ETRA inhibition. Conclusion While ETRB antagonists reduce the viability of glioma cells

  1. Propofol alleviate oxidative stress and mitochondrial damage in endothelial cells after heat stress

    Directory of Open Access Journals (Sweden)

    Li LI

    2017-08-01

    Full Text Available Objective To explore the protective effect of propofol on endothelial cells during heat stress and its protective effect to mitochondra. Methods Heat stress model of human umbilical vein endothelial cell was established when cells were incubated at 43℃ for 2h, then further incubted at 37℃, 5%CO2 for 6h. The experimental group was subdivided into six groups, including 37℃ group, 37℃ plus intralipid group (negative control group, 37℃ plus propofol group, 43℃ plus propofol group, 43℃ plus intralipid group, H2O2 plus propofol group (positive control group; Pretreated with 50μmol/L propofol, 0.2ml intralipid or 25μmol/L H2O2 before heat stress at 43℃, while the cells in the control group were incubated at 37℃. Cell viability was tested by CCK-8. ROS, mitochondrial membrane potential and the changes in mitochondrial permeability transition pore were determined by flow cytometry. The level of ATP was detected by fluorescein-luciferase. The changes of caspase-9 and caspase-3 were analyzed by Caspase Activity Assay Kit. Results HUVESs cell viability and damage of mitochondra were significantly decreased after heat stress. Compared with 43℃ heat stress group, pretreatment with propofol induced the recovery of cell viability and the ROS levels were significantly decreased in HUVEC cells (P<0.05. Meanwhile, the number of cells representing the decrease of mitochondrial membrane potential (the proportion of JC-1 monomer was significantly decreased (P<0.05 by propofol. The average fluorescence intensity of calcein which representing the MPTP changes and intracellular ATP content was significantly increased (P<0.05. In addition, the activation of mitochondrial apoptotic pathway mediated by caspase-9/3 was also inhibited. Conclusions Propofol have anti-oxidative, anti-apoptosis and mitochondria protective effect against endothelial cell injury during heat stress. DOI: 10.11855/j.issn.0577-7402.2017.06.04

  2. Nonhomogeneous immunostaining of hyaline membranes in different manifestations of diffuse alveolar damage Imunomarcação não homogênea das membranas hialinas na sindrome da angustia respiratório do adulto pulmonar, extrapulmonar e idiopática

    Directory of Open Access Journals (Sweden)

    André Peres e Serra

    2006-01-01

    Full Text Available PURPOSE: To determine the nature of hyaline membranes in different manifestations of diffuse alveolar damage, [pulmonary and extrapulmonary acute respiratory distress syndrome], and idiopathic [acute interstitial pneumonia]. MATERIALS AND METHODS: Pulmonary specimens were obtained from 17 patients with acute respiratory distress syndrome and 9 patients with acute interstitial pneumonia. They were separated into 3 different groups: (a pulmonary diffuse alveolar damage (pDAD (n = 8, consisting only of pneumonia cases; (b extrapulmonary diffuse alveolar damage (expDAI (n = 9, consisting of sepsis and septic shock cases; and (c idiopathic diffuse alveolar damage (iDAD (n = 9, consisting of idiopathic cases (acute interstitial pneumonia. Hyaline membranes, the hallmark of the diffuse alveolar damage histological pattern, were examined using various kinds of antibodies. The antibodies used were against surfactant apoprotein-A (SP-A, cytokeratin 7 (CK7, cytokeratin 8 (CK8, alpha smooth muscle actin (a-SMA, cytokeratin AE1/AE3 (AE1/AE3, and factor VIII-related antigen (factor VIII. RESULTS: Pulmonary diffuse alveolar damage showed the largest quantity of hyaline membranes (12.65% ± 3.24%, while extrapulmonary diffuse alveolar damage (9.52% ± 3.64% and idiopathic diffuse alveolar damage (7.34% ± 2.11% showed intermediate and lower amounts, respectively, with the difference being statistically significant between pulmonary and idiopathic diffuse alveolar damage (P OBJETIVO: Determinar a natureza da membrana hialina nas diferentes manifestações do dano alveolar difuso [pulmonar e extrapulmonar síndrome do desconforto respiratório] e idiopático [pneumonia intersticial aguda]. MATERIAIS E MÉTODOS: Espécimes pulmonares foram obtidos de 17 pacientes com SDRA e 9 pacientes com pneumonia intersticial aguda e separados em três diferentes grupos: (a dano alveolar difuso pulmonar (DADp (n=8 constituído por casos de pneumonia, (b dano alveolar difuso

  3. Low radon-dose effect on fecundity and egg-to-adult viability of Drosophila

    Energy Technology Data Exchange (ETDEWEB)

    Pimentel, E. E-mail: aepp@nuclear.inin.mx; Tavera, L.; Cruces, M.P.; Balcazar, M.; Rosa, M.E. de la

    2003-06-01

    Uncertainties exist on the extrapolation of induction radiation damage curves from high to low doses. This work presents experimental data on the effects of low radon doses to Drosophila melanogaster. Larvae (48 h old) of D. melanogaster (Canton-S) were exposed during 72 h to nine different radon concentrations (6{+-}2;12{+-}2;14{+-}2;25{+-}7;30{+-}7;43{+-}5;58{+-}5;74{+-}7 and 78{+-}7 kBq/m{sup 3}); estimated doses: 0.03,0.1,0.156,0.869,1.209,2.088,2.12,2.878,3.18 mGy (Mutat. Res. 354 (1996) 139). Egg yield and their viability from the adult hatched was measured. The fecundity of treated flies was significantly lower than that of the control ones (p<0.0001), except for the 25{+-}7 (0.869);43{+-}5 (2.088);58{+-}5 (2.12) and 78{+-}7 (3.18) kBq/m{sup 3} (mGy) radon treatment. However, the viability for the treated flies was slightly higher; considering all data, a significant difference was found (p<0.02). This suggests that exposure to radon induces lethal damage in D. melanogaster during gametogenesis, and provides an improvement to the viable gametes through the treatment. Based on the low dose used; data are in agreement with the hormesis hypothesis.

  4. Study of functional viability of SU-8-based microneedles for neural applications

    Science.gov (United States)

    Fernández, Luis J.; Altuna, Ane; Tijero, Maria; Gabriel, Gemma; Villa, Rosa; Rodríguez, Manuel J.; Batlle, Montse; Vilares, Roman; Berganzo, Javier; Blanco, F. J.

    2009-02-01

    This paper presents the design, fabrication, packaging and first test results of SU-8-based microneedles for neural applications. By the use of photolithography, sputtering and bonding techniques, polymer needles with integrated microchannels and electrodes have been successfully fabricated. The use of photolithography for the patterning of the fluidic channel integrated in the needle allows the design of multiple outlet ports at the needle tip, minimizing the possibility of being blocked by the tissue. Furthermore, the flexibility of the polymer reduces the risk of fracture and tissue damage once the needle is inserted, while it is still rigid enough to allow a perfect insertion into the neural tissue. Fluidic and electric characterization of the microneedles has shown their viability for drug delivery and monitoring in neural applications. First drug delivery tests in ex vivo tissue demonstrated the functional viability of the needle to deliver drugs to precise points. Furthermore, in vivo experiments have demonstrated lower associated damages during insertion than those by stereotaxic standard needles.

  5. Evaluation of endoscopic vein extraction on structural and functional viability of saphenous vein endothelium

    Directory of Open Access Journals (Sweden)

    Lu Xiu-Gui

    2011-06-01

    Full Text Available Abstract Objectives Endothelial injury during harvest influences graft patency post CABG. We have previously shown that endoscopic harvest causes structural and functional damage to the saphenous vein (SV endothelium. However, causes of such injury may depend on the extraction technique. In order to assess this supposition, we evaluated the effect of VirtuoSaph endoscopic SV harvesting technique (VsEVH on structural and functional viability of SV endothelium using multiphoton imaging, biochemical and immunofluorescence assays. Methods Nineteen patients scheduled for CABG were prospectively identified. Each underwent VsEVH for one portion and "No-touch" open SV harvesting (OSVH for another portion of the SV. A two cm segment from each portion was immersed in GALA conduit preservation solution and transported overnight to our lab for processing. The segments were labeled with fluorescent markers to quantify cell viability, calcium mobilization and generation of nitric oxide. Morphology, expression, localization and stability of endothelial caveolin, eNOS, von Willebrand factor and cadherin were evaluated using immunofluorescence, Western blot and multiphoton microscopy (MPM. Results Morphological, biochemical and immunofluorescence parameters of viability, structure and function were well preserved in VsEVH group as in OSVH group. However, tonic eNOS activity, agonist-dependent calcium mobilization and nitric oxide production were partially attenuated in the VsEVH group. Conclusions This study indicates that VirtuoSaph endoscopic SV harvesting technique preserves the structural and functional viability of SV endothelium, but may differentially attenuate the vasomotor function of the saphenous vein graft. Ultramini-Abstract Endoscopic extraction preserved the structure and function, but attenuated the calcium mobilization and nitric oxide generation in human SV endothelium.

  6. Thermal, high pressure, and electric field processing effects on plant cell membrane integrity and relevance to fruit and vegetable quality.

    Science.gov (United States)

    Gonzalez, Maria E; Barrett, Diane M

    2010-09-01

    Advanced food processing methods that accomplish inactivation of microorganisms but minimize adverse thermal exposure are of great interest to the food industry. High pressure (HP) and pulsed electric field (PEF) processing are commercially applied to produce high quality fruit and vegetable products in the United States, Europe, and Japan. Both microbial and plant cell membranes are significantly altered following exposure to heat, HP, or PEF. Our research group sought to quantify the degree of damage to plant cell membranes that occurs as a result of exposure to heat, HP, or PEF, using the same analytical methods. In order to evaluate whether new advanced processing methods are superior to traditional thermal processing methods, it is necessary to compare them. In this review, we describe the existing state of knowledge related to effects of heat, HP, and PEF on both microbial and plant cells. The importance and relevance of compartmentalization in plant cells as it relates to fruit and vegetable quality is described and various methods for quantification of plant cell membrane integrity are discussed. These include electrolyte leakage, cell viability, and proton nuclear magnetic resonance (¹H-NMR).

  7. Cell membrane fatty acid changes and desaturase expression of Saccharomyces bayanus exposed to high pressure homogenization in relation to the supplementation of exogenous unsaturated fatty acids

    Directory of Open Access Journals (Sweden)

    Diana Isabella eSerrazanetti

    2015-10-01

    Full Text Available Aims: The aim of this work was to study the responses of Saccharomyces bayanus cells exposed to sub-lethal high-pressure homogenization (HPH and determine whether the plasmatic membrane can sense HPH in the presence, or absence, of exogenous unsaturated fatty acids (UFAs in the growth medium. Methods and Results: HPH damaged and caused the collapse of cell walls and membranes of a portion of cells; however, HPH did not significantly affect S. bayanus cell viability (less than 0.3 Log CFU ml-1. HPH strongly affected the membrane fatty acid composition by increasing the percentage of total UFA when compared with saturated fatty acids. The gene expression showed that the transcription of OLE1, ERG3 and ERG11 increased after HPH. The presence of exogenous UFA abolished HPH-induced effects on the OLE1 and ERG3 genes, increased the percentage of membrane lipids and decreased the expression of OLE1 and ERG3 within 30 min of treatment. Conclusions: The results suggest a key role for UFA in the microbial cell response to sub-lethal stress. In addition, these data provide insight into the molecular basis of the response of S. bayanus to this innovative technology. Significance and Impact of the Study: Elucidation of the mechanism of action for sub-lethal HPH will enable the utilization of this technology to modulate the starter performance at the industrial scale.

  8. Cell membrane fatty acid changes and desaturase expression of Saccharomyces bayanus exposed to high pressure homogenization in relation to the supplementation of exogenous unsaturated fatty acids.

    Science.gov (United States)

    Serrazanetti, Diana I; Patrignani, Francesca; Russo, Alessandra; Vannini, Lucia; Siroli, Lorenzo; Gardini, Fausto; Lanciotti, Rosalba

    2015-01-01

    The aim of this work was to study the responses of Saccharomyces bayanus cells exposed to sub-lethal high-pressure homogenization (HPH) and determine whether the plasmatic membrane can sense HPH in the presence, or absence, of exogenous unsaturated fatty acids (UFAs) in the growth medium. High-pressure homogenization damaged and caused the collapse of cell walls and membranes of a portion of cells; however, HPH did not significantly affect S. bayanus cell viability (less than 0.3 Log CFU ml(-1)). HPH strongly affected the membrane fatty acid (FA) composition by increasing the percentage of total UFA when compared with saturated fatty acids. The gene expression showed that the transcription of OLE1, ERG3, and ERG11 increased after HPH. The presence of exogenous UFA abolished HPH-induced effects on the OLE1 and ERG3 genes, increased the percentage of membrane lipids and decreased the expression of OLE1 and ERG3 within 30 min of treatment. The results suggest a key role for UFA in the microbial cell response to sub-lethal stress. In addition, these data provide insight into the molecular basis of the response of S. bayanus to this innovative technology. Elucidation of the mechanism of action for sub-lethal HPH will enable the utilization of this technology to modulate the starter performance at the industrial scale.

  9. Dragon's Blood Sap (Croton Lechleri) As Storage Medium For Avulsed Teeth: In Vitro Study Of Cell Viability.

    Science.gov (United States)

    Martins, Christine Men; Hamanaka, Elizane Ferreira; Hoshida, Thayse Yumi; Sell, Ana Maria; Hidalgo, Mirian Marubayashi; Silveira, Catarina Soares; Poi, Wilson Roberto

    2016-01-01

    Tooth replantation success depends on the condition of cementum periodontal ligament after tooth avulsion; which is influenced by storage medium. The dragon's blood (Croton lechleri) sap has been suggested as a promising medium because it supports collagen formation and exhibits healing, anti-inflammatory and antimicrobial properties. Thus, the aim of this study was to evaluate the efficacy of dragon's blood sap as a storage medium for avulsed teeth through evaluation of functional and metabolic cell viability. This in vitro study compared the efficacy of different storage media to maintain the viability of human peripheral blood mononuclear and periodontal ligament cells. A 10% dragon's blood sap was tested while PBS was selected as its control. Ultra pasteurized whole milk was used for comparison as a commonly used storage medium. DMEM and distilled water were the positive and negative controls, respectively. The viability was assessed through trypan blue exclusion test and colorimetric MTT assay after 1, 3, 6, 10 and 24 h of incubation. The dragon's blood sap showed promising results due to its considerable maintenance of cell viability. For trypan blue test, the dragon's blood sap was similar to milk (p<0.05) and both presented the highest viability values. For MTT, the dragon's blood sap showed better results than all storage media, even better than milk (p<0.05). It was concluded that the dragon's blood sap was as effective as milk, the gold standard for storage medium. The experimental sap preserved the membrane of all cells and the functional viability of periodontal ligament cells.

  10. Electrospun polyurethane membranes for Tissue Engineering applications.

    Science.gov (United States)

    Gabriel, Laís P; Rodrigues, Ana Amélia; Macedo, Milton; Jardini, André L; Maciel Filho, Rubens

    2017-03-01

    Tissue Engineering proposes, among other things, tissue regeneration using scaffolds integrated with biological molecules, growth factors or cells for such regeneration. In this research, polyurethane membranes were prepared using the electrospinning technique in order to obtain membranes to be applied in Tissue Engineering, such as epithelial, drug delivery or cardiac applications. The influence of fibers on the structure and morphology of the membranes was studied using scanning electron microscopy (SEM), the structure was evaluated by Fourier transform infrared spectroscopy (FT-IR), and the thermal stability was analyzed by thermogravimetry analysis (TGA). In vitro cells attachment and proliferation was investigated by SEM, and in vitro cell viability was studied by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assays and Live/Dead® assays. It was found that the membranes present an homogeneous morphology, high porosity, high surface area/volume ratio, it was also observed a random fiber network. The thermal analysis showed that the membrane degradation started at 254°C. In vitro evaluation of fibroblasts cells showed that fibroblasts spread over the membrane surface after 24, 48 and 72h of culture. This study supports the investigation of electrospun polyurethane membranes as biocompatible scaffolds for Tissue Engineering applications and provides some guidelines for improved biomaterials with desired properties. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Repair of radiation damage in mammalian cells

    Energy Technology Data Exchange (ETDEWEB)

    Setlow, R.B.

    1981-01-01

    The responses, such as survival, mutation, and carcinogenesis, of mammalian cells and tissues to radiation are dependent not only on the magnitude of the damage to macromolecular structures - DNA, RNA, protein, and membranes - but on the rates of macromolecular syntheses of cells relative to the half-lives of the damages. Cells possess a number of mechanisms for repairing damage to DNA. If the repair systems are rapid and error free, cells can tolerate much larger doses than if repair is slow or error prone. It is important to understand the effects of radiation and the repair of radiation damage because there exist reasonable amounts of epidemiological data that permits the construction of dose-response curves for humans. The shapes of such curves or the magnitude of the response will depend on repair. Radiation damage is emphasized because: (a) radiation dosimetry, with all its uncertainties for populations, is excellent compared to chemical dosimetry; (b) a number of cancer-prone diseases are known in which there are defects in DNA repair and radiation results in more chromosomal damage in cells from such individuals than in cells from normal individuals; (c) in some cases, specific radiation products in DNA have been correlated with biological effects, and (d) many chemical effects seem to mimic radiation effects. A further reason for emphasizing damage to DNA is the wealth of experimental evidence indicating that damages to DNA can be initiating events in carcinogenesis.

  12. The market viability of nuclear hydrogen technologies.

    Energy Technology Data Exchange (ETDEWEB)

    Botterud, A.; Conzelmann, G.; Petri, M. C.; Yildiz, B.

    2007-04-06

    The Department of Energy Office of Nuclear Energy is supporting system studies to gain a better understanding of nuclear power's potential role in a hydrogen economy and what hydrogen production technologies show the most promise. This assessment includes identifying commercial hydrogen applications and their requirements, comparing the characteristics of nuclear hydrogen systems to those market requirements, evaluating nuclear hydrogen configuration options within a given market, and identifying the key drivers and thresholds for market viability of nuclear hydrogen options. One of the objectives of the current analysis phase is to determine how nuclear hydrogen technologies could evolve under a number of different futures. The outputs of our work will eventually be used in a larger hydrogen infrastructure and market analysis conducted for DOE-EE using a system-level market simulation tool now underway. This report expands on our previous work by moving beyond simple levelized cost calculations and looking at profitability, risk, and uncertainty from an investor's perspective. We analyze a number of technologies and quantify the value of certain technology and operating characteristics. Our model to assess the profitability of the above technologies is based on Real Options Theory and calculates the discounted profits from investing in each of the production facilities. We use Monte-Carlo simulations to represent the uncertainty in hydrogen and electricity prices. The model computes both the expected value and the distribution of discounted profits from a production plant. We also quantify the value of the option to switch between hydrogen and electricity production in order to maximize investor profits. Uncertainty in electricity and hydrogen prices can be represented with two different stochastic processes: Geometric Brownian Motion (GBM) and Mean Reversion (MR). Our analysis finds that the flexibility to switch between hydrogen and electricity leads

  13. Static Magnetic Field Attenuates Lipopolysaccharide-Induced Inflammation in Pulp Cells by Affecting Cell Membrane Stability

    Directory of Open Access Journals (Sweden)

    Sung-Chih Hsieh

    2015-01-01

    Full Text Available One of the causes of dental pulpitis is lipopolysaccharide- (LPS- induced inflammatory response. Following pulp tissue inflammation, odontoblasts, dental pulp cells (DPCs, and dental pulp stem cells (DPSCs will activate and repair damaged tissue to maintain homeostasis. However, when LPS infection is too serious, dental repair is impossible and disease may progress to irreversible pulpitis. Therefore, the aim of this study was to examine whether static magnetic field (SMF can attenuate inflammatory response of dental pulp cells challenged with LPS. In methodology, dental pulp cells were isolated from extracted teeth. The population of DPSCs in the cultured DPCs was identified by phenotypes and multilineage differentiation. The effects of 0.4 T SMF on DPCs were observed through MTT assay and fluorescent anisotropy assay. Our results showed that the SMF exposure had no effect on surface markers or multilineage differentiation capability. However, SMF exposure increases cell viability by 15%. In addition, SMF increased cell membrane rigidity which is directly related to higher fluorescent anisotropy. In the LPS-challenged condition, DPCs treated with SMF demonstrated a higher tolerance to LPS-induced inflammatory response when compared to untreated controls. According to these results, we suggest that 0.4 T SMF attenuates LPS-induced inflammatory response to DPCs by changing cell membrane stability.

  14. Simultaneous evaluation of plasma membrane integrity, acrosomal integrity, and mitochondrial membrane potential in bovine spermatozoa by flow cytometry.

    Science.gov (United States)

    Kanno, Chihiro; Kang, Sung-Sik; Kitade, Yasuyuki; Yanagawa, Yojiro; Takahashi, Yoshiyuki; Nagano, Masashi

    2016-08-01

    The present study aimed to develop an objective evaluation procedure to estimate the plasma membrane integrity, acrosomal integrity, and mitochondrial membrane potential of bull spermatozoa simultaneously by flow cytometry. Firstly, we used frozen-thawed semen mixed with 0, 25, 50, 75 or 100% dead spermatozoa. Semen was stained using three staining solutions: SYBR-14, propidium iodide (PI), and phycoerythrin-conjugated peanut agglutinin (PE-PNA), for the evaluation of plasma membrane integrity and acrosomal integrity. Then, characteristics evaluated by flow cytometry and by fluorescence microscopy were compared. Characteristics of spermatozoa (viability and acrosomal integrity) evaluated by flow cytometry and by fluorescence microscopy were found to be similar. Secondly, we attempted to evaluate the plasma membrane integrity, acrosomal integrity, and also mitochondrial membrane potential of spermatozoa by flow cytometry using conventional staining with three dyes (SYBR-14, PI, and PE-PNA) combined with MitoTracker Deep Red (MTDR) staining (quadruple staining). The spermatozoon characteristics evaluated by flow cytometry using quadruple staining were then compared with those of staining using SYBR-14, PI, and PE-PNA and staining using SYBR-14 and MTDR. There were no significant differences in all characteristics (viability, acrosomal integrity, and mitochondrial membrane potential) evaluated by quadruple staining and the other procedures. In conclusion, quadruple staining using SYBR-14, PI, PE-PNA, and MTDR for flow cytometry can be used to evaluate the plasma membrane integrity, acrosomal integrity, and mitochondrial membrane potential of bovine spermatozoa simultaneously.

  15. Puget Sound steelhead life cycle model analyses - Population Viability Analysis

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This research was initiated by the Puget Sound Steelhead Technical Recovery Team to develop viability criteria for threatened Puget Sound steelhead and to support...

  16. Cadmium affects the mitochondrial viability and the acid soluble ...

    African Journals Online (AJOL)

    Cadmium affects the mitochondrial viability and the acid soluble thiols concentration in liver, kidney, heart and gills of Ancistrus brevifilis (Eigenmann, 1920). P Velasquez-Vottelerd, Y Anton, R Salazar-Lugo ...

  17. STUDY ON POLLEN VIABILITY AS BIOINDICATOR OF AIR QUALITY

    Directory of Open Access Journals (Sweden)

    Florentina ŞTEFLEA

    2012-01-01

    Full Text Available The aim of this research is to estimate the relationship between pollen viability and atmospheric pollution (in polluted and non-polluted conditions. The study was carried out in the city of Timisoara. Two areas, with different intensity of road traffic (very high and absent but all characterized by the presence of the same plant species, were selected. The pollen of herbaceous spontaneous species, arboreal species and a shrub species was used (Robinia pseudacacia, Aesculus x carnea, Catalpa bignonioides, Albizzia julibrissin, Rosa canina, Sambucus nigra, Malva neglecta, Ranunculus acer, Trifolium repens, Cichorium intybus. The pollen of these species was treated with TTC (2, 3, 5 Tryphenil-Tetrazolium-Chloride staining solution and viability was then estimated by light microscopy. The results of the mean pollen viability percentage of the examined species are reported. Pollen viability of herbaceous plants is significantly different between the two environments.

  18. Maintaining yeast viability in continuous primary beer fermentation

    National Research Council Canada - National Science Library

    Pires, Eduardo J; Teixeira, José A; Brányik, Tomás; Côrte‐Real, Manuela; Vicente, António A

    2014-01-01

    .... This work was aimed at solving one of the most relevant obstacles to implementing ICT on a large scale in beer fermentations, namely the control of biomass and the maintenance of cell viability in a gas‐lift bioreactor...

  19. Desiccation-induced changes in viability, lipid peroxidation and ...

    African Journals Online (AJOL)

    user

    2012-05-31

    Hendry et al., 1992) and A. saccharinum (Pukacka and Ratajczak, 2006) and intermediate seeds like Azadirachta indica (Varghese and. Naithani, 2002), Coffea Arabica (Dussert et al., 2006), indicating that loss of seed viability ...

  20. Femtosecond optical transfection of cells:viability and efficiency

    National Research Council Canada - National Science Library

    D. Stevenson; B. Agate; X. Tsampoula; P. Fischer; C. T. A. Brown; W. Sibbett; A. Riches; F. Gunn-Moore; K. Dholakia

    2006-01-01

    .... However, there remains no study into the true efficiency of this procedure. Here, we present a detailed analysis of transfection efficiency and cell viability for femtosecond optical transfection using a titanium sapphire laser at 800 nm...

  1. Equine ovarian tissue viability after cryopreservation and in vitro culture

    Science.gov (United States)

    The efficiency of several cryoprotective agents were compared using both slow-freezing and vitrification methods. Results indicate that the viability of ovarian tissue cells increases when DMSO (slow-freezing) and ethylene glycol (vitrification) are used....

  2. Approximate viability for nonlinear evolution inclusions with application to controllability

    Directory of Open Access Journals (Sweden)

    Omar Benniche

    2016-12-01

    Full Text Available We investigate approximate viability for a graph with respect to fully nonlinear quasi-autonomous evolution inclusions. As application, an approximate null controllability result is given.

  3. [Effect of germacrone in alleviating HUVECs damaged by H2O2-induced oxidative stress].

    Science.gov (United States)

    Chen, Qiong-Fang; Wang, Gang; Tang, Li-Qing; Yu, Xian-Wen; Li, Zhao-Fei; Yang, Xiu-Fen

    2017-09-01

    This study focuses on the protective effect of germacrone on human umbilical vein endothelial cells(HUVECs) damaged by H2O2-induced oxidative stress and its possible mechanisms. The oxidative damage model was established by using 500 μmol•L⁻¹ H2O2 to treat HUVECs for 3 hours, and then protected with different concentrations of germacrone for 24 hours. The effect of germacrone on cell viability of HUVECs damaged by H2O2 was detected by MTT. The contents of PGI2, TXB2, ET-1, t-PA, PAI-1, TNF-α and IL-6 were detected by ELISA. The content of NO was detected by using nitrate reductase method. Colorimetry was used to detect NOS and GSH-Px. The contents of MDA, SOD and LDH were detected by TBA, WST-1 and microplate respectively. Apoptosis was observed by Hoechst 33258 fluorescent staining. The mRNA expressions of Bax, Bcl-2 and Caspase-3 in cells were detected by RT-PCR. The results showed that the cell damage rate was 52% after treated with 500 μmol•L⁻¹ H2O2 for 3 hours. The cell activity was increasing with the rise of germacrone concentration within the range of 20-200 mol•L⁻¹. Compared with normal group, the contents of PGI2, NO, T-NOS, t-PA, SOD, GSH-Px and Bcl-2 mRNA expressions were lower after damaged with H2O2. The contents of PAI-1, ET-1, IL-6, TNF-α, TXB2, LDH, MDA, Bax mRNA and Caspase-3 mRNA expressions were increased. Compared with model group, the contents of PGI2, NO, T-NOS, t-PA, SOD, GSH-Px and Bcl-2 mRNA expressions were increased after treated with germacrone. The contents of PAI-1, ET-1, IL-6, TNF-α, TXB2, LDH, MDA, Bax mRNA and Caspase-3 mRNA expressions were lower after treated with germacrone. According to Hoechst 33258 fluorescence staining, compared with normal group, the cell membrane and the nucleus showed strong dense blue fluorescence, and the number of cells significantly decreased in model group. Compared with model group, blue fluorescence intensity decreased in drug group. The above findings demonstrate that

  4. The Polymerase Activity of Mammalian DNA Pol ζ Is Specifically Required for Cell and Embryonic Viability.

    Directory of Open Access Journals (Sweden)

    Sabine S Lange

    2016-01-01

    Full Text Available DNA polymerase ζ (pol ζ is exceptionally important for maintaining genome stability. Inactivation of the Rev3l gene encoding the polymerase catalytic subunit causes a high frequency of chromosomal breaks, followed by lethality in mouse embryos and in primary cells. Yet it is not known whether the DNA polymerase activity of pol ζ is specifically essential, as the large REV3L protein also serves as a multiprotein scaffold for translesion DNA synthesis via multiple conserved structural domains. We report that Rev3l cDNA rescues the genomic instability and DNA damage sensitivity of Rev3l-null immortalized mouse fibroblast cell lines. A cDNA harboring mutations of conserved catalytic aspartate residues in the polymerase domain of REV3L could not rescue these phenotypes. To investigate the role of REV3L DNA polymerase activity in vivo, a Rev3l knock-in mouse was constructed with this polymerase-inactivating alteration. No homozygous mutant mice were produced, with lethality occurring during embryogenesis. Primary fibroblasts from mutant embryos showed growth defects, elevated DNA double-strand breaks and cisplatin sensitivity similar to Rev3l-null fibroblasts. We tested whether the severe Rev3l-/- phenotypes could be rescued by deletion of DNA polymerase η, as has been reported with chicken DT40 cells. However, Rev3l-/- Polh-/- mice were inviable, and derived primary fibroblasts were as sensitive to DNA damage as Rev3l-/- Polh+/+ fibroblasts. Therefore, the functions of REV3L in maintaining cell viability, embryonic viability and genomic stability are directly dependent on its polymerase activity, and cannot be ameliorated by an additional deletion of pol η. These results validate and encourage the approach of targeting the DNA polymerase activity of pol ζ to sensitize tumors to DNA damaging agents.

  5. The Polymerase Activity of Mammalian DNA Pol ζ Is Specifically Required for Cell and Embryonic Viability.

    Science.gov (United States)

    Lange, Sabine S; Tomida, Junya; Boulware, Karen S; Bhetawal, Sarita; Wood, Richard D

    2016-01-01

    DNA polymerase ζ (pol ζ) is exceptionally important for maintaining genome stability. Inactivation of the Rev3l gene encoding the polymerase catalytic subunit causes a high frequency of chromosomal breaks, followed by lethality in mouse embryos and in primary cells. Yet it is not known whether the DNA polymerase activity of pol ζ is specifically essential, as the large REV3L protein also serves as a multiprotein scaffold for translesion DNA synthesis via multiple conserved structural domains. We report that Rev3l cDNA rescues the genomic instability and DNA damage sensitivity of Rev3l-null immortalized mouse fibroblast cell lines. A cDNA harboring mutations of conserved catalytic aspartate residues in the polymerase domain of REV3L could not rescue these phenotypes. To investigate the role of REV3L DNA polymerase activity in vivo, a Rev3l knock-in mouse was constructed with this polymerase-inactivating alteration. No homozygous mutant mice were produced, with lethality occurring during embryogenesis. Primary fibroblasts from mutant embryos showed growth defects, elevated DNA double-strand breaks and cisplatin sensitivity similar to Rev3l-null fibroblasts. We tested whether the severe Rev3l-/- phenotypes could be rescued by deletion of DNA polymerase η, as has been reported with chicken DT40 cells. However, Rev3l-/- Polh-/- mice were inviable, and derived primary fibroblasts were as sensitive to DNA damage as Rev3l-/- Polh+/+ fibroblasts. Therefore, the functions of REV3L in maintaining cell viability, embryonic viability and genomic stability are directly dependent on its polymerase activity, and cannot be ameliorated by an additional deletion of pol η. These results validate and encourage the approach of targeting the DNA polymerase activity of pol ζ to sensitize tumors to DNA damaging agents.

  6. Evaluation of sperm superoxide anion production and Mitochondrial Membrane Potential: flowcytometry in rats with experimental varicocele

    Directory of Open Access Journals (Sweden)

    Jafari A

    2009-05-01

    Full Text Available "n Normal 0 false false false EN-GB X-NONE AR-SA MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:Arial; mso-bidi-theme-font:minor-bidi;} Background: Varicocele is a major cause of male infertility, but its pathophysiology is unclear. Recent studies declare that fertile varicocele people with normal semen analysis are also at risk of loss of infertility. The exact mechanism by which varicocele damages spermatogenesis is still unknown. Some studies have reported increased Reactive Oxygen Species (ROS is a major factor in semen of men with varicocele. The aim of this study was to investigate whether the source of elevated ROS is intracellular or not. In addition, we studied Mitochondrial Membrane Potential (MMP, viability, antioxidant activity, sperm count and motility in these rats."n"n Methods: The study group consisted of 28 male rats divided in four groups: control, sham, varicocele 1, varicocele 2, Experimental varicocele was established by partial ligation of the left renal vein in last two groups. Animals were sacrificed two and six months after surgery and dilation of the internal spermatic veins was observed. Then, superoxide anion production and Mitochondrial Membrane Potential were evaluated by Flow cytometry sperm characteristics were evaluated by Flow cytometry. Sperm superoxide anion production was assessed by the dihydroethidium and

  7. Effects of an antibacterial membrane on osteoblast-like cells in vitro

    Science.gov (United States)

    Ye, Jun; Yao, Qianqian; Mo, Anchun; Nie, Jing; Liu, Wenwen; Ye, Cui; Chen, Xianji

    2011-01-01

    Infection around membranes is often found in guided bone regeneration (GBR). The excellent antibacterial properties of Ag-nHA-nTiO2/polyamide-66 (PA66) nanocomposite membranes have been demonstrated previously. The aim of this study was to observe the microstructure of an Ag-nHA-nTiO2/PA66 membrane and its effects on osteoblast-like cells in vitro. An Ag-nHA-nTiO2/PA66 membrane was used in the experimental group, and both nHA/PA66 and expanded poly tetrafluroethylene (e-PTFE) membranes were set as control. MG63 osteoblast-like cells were cultured on the three kinds of membrane and tissue culture polystyrene (TCP). The microstructure of the above membranes and the cells adhered on them were detected by scanning electronic microscope (SEM). Cell proliferation was determined by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, cell viability with a cell viability analyzer, and alkaline phosphatase (ALP) activity and Ca2+ concentration of osteoblast-like cell matrix by enzyme-linked immunosorbent assay. SEM showed that both Ag-nHA-nTiO2/PA66 membranes and nHA/PA66 membranes were composed of porous obverse face and smooth opposite face. The e-PTFE membranes showed elliptic surface structure with many tiny lined cracks. The MG63 cells adhered and proliferated well on all three kinds of membranes. Though cell viability on Ag-nHA-nTiO2/PA66 membranes was significantly lower than that of the control groups (P membranes (P > 0.05). From these findings, it can be concluded that Ag-nHA-nTiO2/PA66 membranes are as biocompatible as nHA/ PA66 membranes and TCP, thus may be applied safely in GBR. PMID:21931481

  8. Cerebral aspects of neonatal extracorporeal membrane oxygenation: a review.

    NARCIS (Netherlands)

    Mol, A.C. de; Liem, K.D.; Heijst, A.F.J. van

    2013-01-01

    Background: Neonatal extracorporeal membrane oxygenation (ECMO) is a lifesaving therapeutic approach in newborns suffering from severe, but potentially reversible, respiratory insufficiency, mostly complicated by neonatal persistent pulmonary hypertension. However, cerebral damage, intracerebral

  9. The major basement membrane components localize to the chondrocyte pericellular matrix--a cartilage basement membrane equivalent?

    DEFF Research Database (Denmark)

    Kvist, Alexander J.; Nyström, Alexander; Hultenby, Kjell

    2007-01-01

    In this study, we demonstrate that articular cartilage chondrocytes are surrounded by the defining basement membrane proteins laminin, collagen type IV, nidogen and perlecan, and suggest that these form the functional equivalent of a basement membrane. We found by real-time PCR that mouse...... that the chondrocyte, like several other cell types of mesenchymal origin, is surrounded by the functional equivalent of a basement membrane. This structure is presumably involved in maintaining chondrocyte phenotype and viability and may well allow a new understanding of cartilage development and provide clues...

  10. Erythrocyte Membrane Failure by Electromechanical Stress

    Directory of Open Access Journals (Sweden)

    E Du

    2018-01-01

    Full Text Available We envision that electrodeformation of biological cells through dielectrophoresis as a new technique to elucidate the mechanistic details underlying membrane failure by electrical and mechanical stresses. Here we demonstrate the full control of cellular uniaxial deformation and tensile recovery in biological cells via amplitude-modified electric field at radio frequency by an interdigitated electrode array in microfluidics. Transient creep and cyclic experiments were performed on individually tracked human erythrocytes. Observations of the viscoelastic-to-viscoplastic deformation behavior and the localized plastic deformations in erythrocyte membranes suggest that electromechanical stress results in irreversible membrane failure. Examples of membrane failure can be separated into different groups according to the loading scenarios: mechanical stiffening, physical damage, morphological transformation from discocyte to echinocyte, and whole cell lysis. These results show that this technique can be potentially utilized to explore membrane failure in erythrocytes affected by other pathophysiological processes.

  11. Effectiveness of helium-neon laser irradiation on viability and cytotoxicity of diabetic-wounded fibroblast cells.

    Science.gov (United States)

    Houreld, N N; Abrahamse, H

    2007-12-01

    This study investigated the effectiveness of helium-neon (He-Ne) laser irradiation at increasing intervals on diabetic-induced wounded human skin fibroblast cells (WS1) at a morphological, cellular, and molecular level. The controversies over light therapy can be explained by the differing exposure regimens and models used. No therapeutic window for dosimetry and mechanism of action has been determined at the level of individual cell types, particularly in diabetic cells in vitro. WS1 cells were used to simulate an in vitro wounded diabetic model. The effect of the frequency of He-Ne irradiation (632.8 nm) at a fluence of 5 J/cm(2) was determined by analysis of cell morphology, viability, cytotoxicity, and DNA damage. Cells were irradiated using three different protocols: they were irradiated at 30 min only; irradiated twice, at 30 min and at 24 h; or irradiated twice, at 30 min and at 72 h post-wound induction. A single exposure to 5 J/cm(2) 30 min post-wound induction increased cellular damage. Irradiation of cells at 30 min and at 24 h post-wound induction decreased cellular viability, cytotoxicity, and DNA damage. However, complete wound closure as well as an increase in viability and a decrease in cytotoxicity and DNA damage occurs when cells were irradiated at 30 min and at 72 h post-wound induction. Wounded diabetic WS1 cells irradiated to 5 J/cm(2) showed increased cellular repair when irradiated with adequate time between irradiations, allowing time for cellular response mechanisms to take effect. Therefore, the irradiation interval was shown to play an important role in wound healing in vitro and should be taken into account.

  12. Comparison of reintroduction and enhancement effects on metapopulation viability

    Science.gov (United States)

    Halsey, Samniqueka J; Bell, Timothy J.; McEachern, Kathryn; Pavlovic, Noel B.

    2015-01-01

    Metapopulation viability depends upon a balance of extinction and colonization of local habitats by a species. Mechanisms that can affect this balance include physical characteristics related to natural processes (e.g. succession) as well as anthropogenic actions. Plant restorations can help to produce favorable metapopulation dynamics and consequently increase viability; however, to date no studies confirm this is true. Population viability analysis (PVA) allows for the use of empirical data to generate theoretical future projections in the form of median time to extinction and probability of extinction. In turn, PVAs can inform and aid the development of conservation, recovery, and management plans. Pitcher's thistle (Cirsium pitcheri) is a dune endemic that exhibited metapopulation dynamics. We projected viability of three natural and two restored populations with demographic data spanning 15–23 years to determine the degree the addition of reintroduced population affects metapopulation viability. The models were validated by comparing observed and projected abundances and adjusting parameters associated with demographic and environmental stochasticity to improve model performance. Our chosen model correctly predicted yearly population abundance for 60% of the population-years. Using that model, 50-year projections showed that the addition of reintroductions increases metapopulation viability. The reintroduction that simulated population performance in early-successional habitats had the maximum benefit. In situ enhancements of existing populations proved to be equally effective. This study shows that restorations can facilitate and improve metapopulation viability of species dependent on metapopulation dynamics for survival with long-term persistence of C. pitcheri in Indiana likely to depend on continued active management.

  13. Growth and potential damage of human bone-derived cells on fresh and aged fullerene c60 films.

    Science.gov (United States)

    Kopova, Ivana; Bacakova, Lucie; Lavrentiev, Vasily; Vacik, Jiri

    2013-04-26

    Fullerenes are nanoparticles composed of carbon atoms arranged in a spherical hollow cage-like structure. Numerous studies have evaluated the therapeutic potential of fullerene derivates against oxidative stress-associated conditions, including the prevention or treatment of arthritis. On the other hand, fullerenes are not only able to quench, but also to generate harmful reactive oxygen species. The reactivity of fullerenes may change in time due to the oxidation and polymerization of fullerenes in an air atmosphere. In this study, we therefore tested the dependence between the age of fullerene films (from one week to one year) and the proliferation, viability and metabolic activity of human osteosarcoma cells (lines MG-63 and U-2 OS). We also monitored potential membrane and DNA damage and morphological changes of the cells. After seven days of cultivation, we did not observe any cytotoxic morphological changes, such as enlarged cells or cytosolic vacuole formation. Furthermore, there was no increased level of DNA damage. The increasing age of the fullerene films did not cause enhancement of cytotoxicity. On the contrary, it resulted in an improvement in the properties of these materials, which are more suitable for cell cultivation. Therefore, fullerene films could be considered as a promising material with potential use as a bioactive coating of cell carriers for bone tissue engineering.

  14. Polyphenolics from Albizia harveyi Exhibit Antioxidant Activities and Counteract Oxidative Damage and Ultra-Structural Changes of Cryopreserved Bull Semen

    Directory of Open Access Journals (Sweden)

    Mansour Sobeh

    2017-11-01

    Full Text Available Albizia harveyi is a tropical deciduous tree, found across South and Eastern Africa and widely used in traditional medicine. The leaf extract ameliorated the damaging effects of the frozen-thawing process in cryopreserved bull semen. In a dose-dependent pattern, sperm motility, viability, and membrane integrity were improved compared to the untreated control. Furthermore, the extract increased the percentage of viable sperm cells and reduced the percentages of early apoptotic and apoptotic sperm cells as well as the damage in sperm ultra-structure. These activities are in agreement with the robust antioxidant properties in vitro and in the seminal fluid as observed in the total antioxidant capacity and the lipid peroxidation parameter malondialdehyde. LC-MS yielded 35 compounds. The extract was dominated by quercetin-O-galloyl-hexoside and quercetin-O-pentoside, along with other flavonoid glycosides. The polyphenols are probably responsible for the observed activities. In conclusion, the current findings show that A. harveyi leaves are rich in bioactive polyphenols with functional properties, validating its traditional use.

  15. Diminution of Oxidative Damage to Human Erythrocytes and Lymphocytes by Creatine: Possible Role of Creatine in Blood.

    Directory of Open Access Journals (Sweden)

    Neha Qasim

    Full Text Available Creatine (Cr is naturally produced in the body and stored in muscles where it is involved in energy generation. It is widely used, especially by athletes, as a staple supplement for improving physical performance. Recent reports have shown that Cr displays antioxidant activity which could explain its beneficial cellular effects. We have evaluated the ability of Cr to protect human erythrocytes and lymphocytes against oxidative damage. Erythrocytes were challenged with model oxidants, 2, 2'-azobis(2-amidinopropane dihydrochloride (AAPH and hydrogen peroxide (H2O2 in the presence and absence of Cr. Incubation of erythrocytes with oxidant alone increased hemolysis, methemoglobin levels, lipid peroxidation and protein carbonyl content. This was accompanied by decrease in glutathione levels. Antioxidant enzymes and antioxidant power of the cell were compromised while the activity of membrane bound enzyme was lowered. This suggests induction of oxidative stress in erythrocytes by AAPH and H2O2. However, Cr protected the erythrocytes by ameliorating the AAPH and H2O2 induced changes in these parameters. This protective effect was confirmed by electron microscopic analysis which showed that oxidant-induced cell damage was attenuated by Cr. No cellular alterations were induced by Cr alone even at 20 mM, the highest concentration used. Creatinine, a by-product of Cr metabolism, was also shown to exert protective effects, although it was slightly less effective than Cr. Human lymphocytes were similarly treated with H2O2 in absence and presence of different concentrations of Cr. Lymphocytes incubated with oxidant alone had alterations in various biochemical and antioxidant parameters including decrease in cell viability and induction of DNA damage. The presence of Cr attenuated all these H2O2-induced changes in lymphocytes. Thus, Cr can function as a blood antioxidant, protecting cells from oxidative damage, genotoxicity and can potentially increase their

  16. Effect of surface organic coatings of cellulose nanocrystals on the viability of mammalian cell lines

    Directory of Open Access Journals (Sweden)

    Jimenez AS

    2017-09-01

    Full Text Available Ambar S Jimenez,1 Francesca Jaramillo,1 Usha D Hemraz,2 Yaman Boluk,3 Karina Ckless,1 Rajesh Sunasee1 1Department of Chemistry, State University of New York at Plattsburgh, Plattsburgh, NY, USA; 2National Research Council, Montreal, QC, Canada, 3Department of Civil & Environmental Engineering, University of Alberta and National Institute for Nanotechnology, National Research Council, Edmonton, AB, Canada Abstract: Cellulose nanocrystals (CNCs have emerged as promising candidates for a number of bio-applications. Surface modification of CNCs continues to gain significant research interest as it imparts new properties to the surface of the nanocrystals for the design of multifunctional CNCs-based materials. A small chemical surface modification can potentially lead to drastic behavioral changes of cell-material interactions thereby affecting the intended bio-application. In this work, unmodified CNCs were covalently decorated with four different organic moieties such as a diaminobutane fragment, a cyclic oligosaccharide (β-cyclodextrin, a thermoresponsive polymer (poly[N-isopropylacrylamide], and a cationic aminomethacrylamide-based polymer using different synthetic covalent methods. The effect of surface coatings of CNCs and the respective dose-response of the above organic moieties on the cell viability were evaluated on mammalian cell cultures (J774A.1 and MFC-7, using 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide and lactate dehydrogenase assays. Overall, the results indicated that cells exposed to surface-coated CNCs for 24 h did not display major changes in cell viability, membrane permeability as well as cell morphology. However, with longer exposure, all these parameters were somewhat affected, which appears not to be correlated with either anionic or cationic surface coatings of CNCs used in this study. Keywords: cellulose nanocrystals, surface coating, cell viability, MTT, LDH

  17. Effects of cannabinoids and related fatty acids upon the viability of P19 embryonal carcinoma cells.

    Science.gov (United States)

    Gustafsson, Sofia B; Wallenius, Anders; Zackrisson, Hanna; Popova, Dina; Plym Forshell, Linus; Jacobsson, Stig O P

    2013-11-01

    Compounds acting on the cannabinoid (CB) receptors are involved in the control of cell fate, and there is an emerging consensus that CBs have anticancer effects. However, the CB-mediated effects are contradictory since some studies suggest stimulatory effects on cancer cell proliferation, and CBs have been shown to stimulate both proliferation and differentiation of other mitotic cells such as stem and progenitor cells. In this study, the concentration-dependent effects of synthetic and endogenous CBs on the viability of mouse P19 embryonal carcinoma (EC) cells have been examined by using fluorescence assays of cell membrane integrity, cell proliferation, oxidative stress, and detection of apoptosis and necrosis. All compounds examined produced a concentration-dependent decrease in cell viability in the micromolar range, with the potent CB receptor agonist HU 210 and the enantiomer HU 211 (with no CB receptor activity) being the most potent compounds examined with apparent IC50 values of 1 and 0.6 μM, respectively. The endogenous CB anandamide showed similar potency and efficacy as structurally related polyunsaturated fatty acids with no reported activity at the CB receptors. The rapid (within hours) decrease in cell viability induced by the examined CBs suggests cytocidal rather than antiproliferative effects and is dependent on the plating cell population density with the highest toxicity around 100 cells/mm(2). The CB-induced cytotoxicity, which appears to involve CB receptors and the sphingomyelin-ceramide pathway, is a mixture of both apoptosis and necrosis that can be blocked by the antioxidants α-tocopherol and N-acetylcysteine. In conclusion, both synthetic and endogenous CBs produce seemingly unspecific cytotoxic effects in the P19 EC cells.

  18. Moringa oleifera's Nutritious Aqueous Leaf Extract Has Anticancerous Effects by Compromising Mitochondrial Viability in an ROS-Dependent Manner.

    Science.gov (United States)

    Madi, Niveen; Dany, Mohammed; Abdoun, Salah; Usta, Julnar

    2016-01-01

    Moringa oleifera (MO) is an important dietary component for many populations in West Africa and the Indian subcontinent. In addition to its highly nutritious value, almost all parts of this plant have been widely used in folk medicine in curing infectious, cardiovascular, gastrointestinal, hepatic, and other diseases. Evidence-based research supported its versatile medicinal properties; however, more rigorous research is required to establish it in cancer therapy. As such, in this study we aim to investigate the in vitro anticancerous effect of Moringa oleifera's aqueous leaf extract. Moringa extract was prepared by soaking pulverized leaves in hot water mimicking the people's mode of the leaf drink preparation. Several assays were used to study the effect of different percentage concentrations of the extract on viability of A549 cells; levels of adenosine triphosphate (ATP), reactive oxygen species (ROS), and glutathione (GSH) generated; as well as percentage of lactate dehydrogenase (LDH) released at different time points. In addition to mitochondrial membrane potential, apoptotic events were assessed using western blotting for apoptotic markers and immunoflourescent flourescent labeled inhibitor of caspases (FLICA) assay. MO extract treatment resulted in a significant decrease in mitochondrial membrane potential (1 hour) and ATP levels (3 hours), followed by an increase in (6 hours) ROS, caspase activation, proapoptotic proteins expression (p53, SMAC/Diablo, AIF), and PARP-1 cleavage. This eventually resulted in decreased GSH levels and a decrease in viability. The cytotoxic effect was prevented upon pretreatment with antioxidant N-acetyl-cysteine. MO decreased as well the viability of HepG2, CaCo2, Jurkat, and HEK293 cells. Our findings identify a plant extract with an anticancerous effect on cancer cell lines. MO extract exerts its cytotoxic effect in A549 cancer cells by affecting mitochondrial viability and inducing apoptosis in an ROS-dependent manner.

  19. Inhibition of Geranylgeranyl Transferase-I Decreases Cell Viability of HTLV-1-Transformed Cells

    Directory of Open Access Journals (Sweden)

    Cynthia A. Pise-Masison

    2011-10-01

    Full Text Available Human T-cell leukemia virus type-1 (HTLV-1 is the etiological agent of adult T-cell leukemia (ATL, an aggressive and highly chemoresistant malignancy. Rho family GTPases regulate multiple signaling pathways in tumorigenesis: cytoskeletal organization, transcription, cell cycle progression, and cell proliferation. Geranylgeranylation of Rho family GTPases is essential for cell membrane localization and activation of these proteins. It is currently unknown whether HTLV-1-transformed cells are preferentially sensitive to geranylgeranylation inhibitors, such as GGTI-298. In this report, we demonstrate that GGTI-298 decreased cell viability and induced G2/M phase accumulation of HTLV-1-transformed cells, independent of p53 reactivation. HTLV-1-LTR transcriptional activity was inhibited and Tax protein levels decreased following treatment with GGTI-298. Furthermore, GGTI-298 decreased activation of NF-κB, a downstream target of Rho family GTPases. These studies suggest that protein geranylgeranylation contributes to dysregulation of cell survival pathways in HTLV-1-transformed cells.

  20. Inhibition of geranylgeranyl transferase-I decreases cell viability of HTLV-1-transformed cells.

    Science.gov (United States)

    Edwards, Dustin C; McKinnon, Katherine M; Fenizia, Claudio; Jung, Kyung-Jin; Brady, John N; Pise-Masison, Cynthia A

    2011-10-01

    Human T-cell leukemia virus type-1 (HTLV-1) is the etiological agent of adult T-cell leukemia (ATL), an aggressive and highly chemoresistant malignancy. Rho family GTPases regulate multiple signaling pathways in tumorigenesis: cytoskeletal organization, transcription, cell cycle progression, and cell proliferation. Geranylgeranylation of Rho family GTPases is essential for cell membrane localization and activation of these proteins. It is currently unknown whether HTLV-1-transformed cells are preferentially sensitive to geranylgeranylation inhibitors, such as GGTI-298. In this report, we demonstrate that GGTI-298 decreased cell viability and induced G(2)/M phase accumulation of HTLV-1-transformed cells, independent of p53 reactivation. HTLV-1-LTR transcriptional activity was inhibited and Tax protein levels decreased following treatment with GGTI-298. Furthermore, GGTI-298 decreased activation of NF-κB, a downstream target of Rho family GTPases. These studies suggest that protein geranylgeranylation contributes to dysregulation of cell survival pathways in HTLV-1-transformed cells.

  1. Global Deletion of TSPO Does Not Affect the Viability and Gene Expression Profile.

    Directory of Open Access Journals (Sweden)

    Huaishan Wang

    Full Text Available Translocator Protein (18kDa, TSPO is a mitochondrial outer membrane transmembrane protein. Its expression is elevated during inflammation and injury. However, the function of TSPO in vivo is still controversial. Here, we constructed a TSPO global knockout (KO mouse with a Cre-LoxP system that abolished TSPO protein expression in all tissues and showed normal phenotypes in the physiological condition. The birth rates of TSPO heterozygote (Het x Het or KO x KO breeding were consistent with Mendel's Law, suggesting a normal viability of TSPO KO mice at birth. RNA-seq analysis showed no significant difference in the gene expression profile of lung tissues from TSPO KO mice compared with wild type mice, including the genes associated with bronchial alveoli immune homeostasis. The alveolar macrophage population was not affected by TSPO deletion in the physiological condition. Our findings contradict the results of Papadopoulos, but confirmed Selvaraj's findings. This study confirms TSPO deficiency does not affect viability and bronchial alveolar immune homeostasis.

  2. Application of cyclic biamperometry to viability and cytotoxicity assessment in human corneal epithelial cells.

    Science.gov (United States)

    Rahimi, Mehdi; Youn, Hyun-Yi; McCanna, David J; Sivak, Jacob G; Mikkelsen, Susan R

    2013-05-01

    The application of cyclic biamperometry to viability and cytotoxicity assessments of human corneal epithelial cells has been investigated. Electrochemical measurements have been compared in PBS containing 5.0 mM glucose and minimal essential growth medium. Three different lipophilic mediators including dichlorophenol indophenol, 2-methyl-1,4-naphthoquinone (also called menadione or vitamin K3) and N,N,N',N'-tetramethyl-p-phenylenediamine have been evaluated for shuttling electrons across the cell membrane to the external medium. Transfer of these electrons to ferricyanide in the extra cellular medium results in the accumulation of ferrocyanide. The amount of ferrocyanide is then determined using cyclic biamperometry and is related to the extent of cell metabolic activity and therefore cell viability. To illustrate cytotoxicity assessment of chemicals, hydrogen peroxide, benzalkonium chloride and sodium dodecyl sulfate have been chosen as sample toxins, the cytotoxicities of which have been evaluated and compared to values reported in the literature. Similar values have been reported using colorimetric assays; however, the simplicity of this electrochemical assay can, in principle, open the way to miniaturization onto lab-on-chip devices and its incorporation into tiered-testing approaches for cytotoxicity assessment.

  3. Importance of Donor Chondrocyte Viability for Osteochondral Allografts.

    Science.gov (United States)

    Cook, James L; Stannard, James P; Stoker, Aaron M; Bozynski, Chantelle C; Kuroki, Keiichi; Cook, Cristi R; Pfeiffer, Ferris M

    2016-05-01

    Osteochondral allograft (OCA) transplantation provides a biological treatment option for functional restoration of large articular cartilage defects in multiple joints. While successful outcomes after OCA transplantation have been linked to viable donor chondrocytes, the importance of donor cell viability has not been comprehensively validated. To use a canine model to determine the importance of donor chondrocyte viability at the time of implantation with respect to functional success of femoral condylar OCAs based on radiographic, gross, cell viability, histologic, biochemical, and biomechanical outcome measures. Controlled laboratory study. After approval was obtained from the institutional animal care and use committee, adult female dogs (N = 16) were implanted with 8-mm cylindrical OCAs from male dogs in the lateral and medial femoral condyles of 1 knee. OCAs were preserved for 28 or 60 days after procurement, and chondrocyte viability was quantified before implantation. Two different storage media, temperatures, and time points were used to obtain a spectrum of percentage chondrocyte viability at the time of implantation. A successful outcome was defined as an OCA that was associated with graft integration, maintenance of hyaline cartilage, lack of associated cartilage disorder, and lack of fibrillation, fissuring, or fibrous tissue infiltration of the allograft based on subjective radiographic, gross, and histologic assessments at 6 months after implantation. Chondrocyte viability ranged from 23% to 99% at the time of implantation. All successful grafts had >70% chondrocyte viability at the time of implantation, and no graft with chondrocyte viability <70% was associated with a successful outcome. Live-dead stained sections and histologic findings with respect to cell morphological features suggested that successful grafts were consistently composed of viable chondrocytes in lacunae, while grafts that were not successful were composed of nonviable

  4. Relativistic membranes

    Science.gov (United States)

    Hoppe, Jens

    2013-01-01

    The classical dynamics of M-dimensional extended objects arising from stationary points of the world volume swept out in space time is discussed from various points of view. A introduction to the Hamiltonian mechanics of bosonic compact M(em)branes is given, emphasing the diversity of the different formulations and gauge choices. For moving hypersurfaces, a graph description—including its nonlinear realization of Lorentz invariance—and hydrodynamic formulations (in light-cone coordinates as well as when choosing the time coordinate of a Lorentz observer as the dependent variable) are presented. A matrix regularization for M = 2 (existing for all topologies) is explained in detail for the 2-sphere, as well as multilinear formulations for M > 2. The recently found dynamical symmetry that exists for all M and related reconstruction algebras are covered, just as some explicit solutions of the level-set equations.

  5. A Classification Method for Seed Viability Assessment with Infrared Thermography

    Directory of Open Access Journals (Sweden)

    Sen Men

    2017-04-01

    Full Text Available This paper presents a viability assessment method for Pisum sativum L. seeds based on the infrared thermography technique. In this work, different artificial treatments were conducted to prepare seeds samples with different viability. Thermal images and visible images were recorded every five minutes during the standard five day germination test. After the test, the root length of each sample was measured, which can be used as the viability index of that seed. Each individual seed area in the visible images was segmented with an edge detection method, and the average temperature of the corresponding area in the infrared images was calculated as the representative temperature for this seed at that time. The temperature curve of each seed during germination was plotted. Thirteen characteristic parameters extracted from the temperature curve were analyzed to show the difference of the temperature fluctuations between the seeds samples with different viability. With above parameters, support vector machine (SVM was used to classify the seed samples into three categories: viable, aged and dead according to the root length, the classification accuracy rate was 95%. On this basis, with the temperature data of only the first three hours during the germination, another SVM model was proposed to classify the seed samples, and the accuracy rate was about 91.67%. From these experimental results, it can be seen that infrared thermography can be applied for the prediction of seed viability, based on the SVM algorithm.

  6. Cleaning UF membranes with simple and formulated solutions

    NARCIS (Netherlands)

    Levitsky, I.; Duek, A.; Naim, R.; Arkhangelsky, E.; Gitis, V.

    2012-01-01

    The ultrafiltration membranes fouled by proteins are typically cleaned by consecutive soaking in alkali, surfactant and oxidizing solutions. We combined all three chemicals into a formulated cleaning agent and examined its efficiency to restore the water flux without damaging the membrane or

  7. Effects of a marine serine protease inhibitor on viability and morphology of Trypanosoma cruzi, the agent of Chagas disease.

    Science.gov (United States)

    de Almeida Nogueira, Natália Pereira; Morgado-Díaz, José Andrés; Menna-Barreto, Rubem Figueiredo Sadok; Paes, Marcia Cristina; da Silva-López, Raquel Elisa

    2013-10-01

    It has been reported that serine peptidase activities of Trypanosoma cruzi play crucial roles in parasite dissemination and host cell invasion and therefore their inhibition could affect the progress of Chagas disease. The present study investigates the interference of the Stichodactyla helianthus Kunitz-type serine protease inhibitor (ShPI-I), a 55-amino acid peptide, in T. cruzi serine peptidase activities, parasite viability, and parasite morphology. The effect of this peptide was also studied in Leishmania amazonensis promastigotes and it was proved to be a powerful inhibitor of serine proteases activities and the parasite viability. The ultrastructural alterations caused by ShPI-I included vesiculation of the flagellar pocket membrane and the appearance of a cytoplasmic vesicle that resembles an autophagic vacuole. ShPI-I, which showed itself to be an important T. cruzi serine peptidase inhibitor, reduced the parasite viability, in a dose and time dependent manner. The maximum effect of peptide on T. cruzi viability was observed when ShPI-I at 1×10(-5)M was incubated for 24 and 48h which killed completely both metacyclic trypomastigote and epimastigote forms. At 1×10(-6)M ShPI-I, in the same periods of time, reduced parasite viability about 91-95% respectively. Ultrastructural analysis demonstrated the formation of concentric membranar structures especially in the cytosol, involving organelles and small vesicles. Profiles of endoplasmic reticulum were also detected, surrounding cytosolic vesicles that resembled autophagic vacuoles. These results suggest that serine peptidases are important in T. cruzi physiology since the inhibition of their activity killed parasites in vitro as well as inducing important morphological alterations. Protease inhibitors thus appear to have a potential role as anti-trypanosomatidal agents. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Reformulated meat products protect against ischemia-induced cardiac damage.

    Science.gov (United States)

    Asensio-Lopez, M C; Lax, A; Sanchez-Mas, J; Avellaneda, A; Planes, J; Pascual-Figal, D A

    2016-02-01

    The protective effects of the antioxidants present in food are of great relevance for cardiovascular health. This study evaluates whether the extracts from reformulated meat products with a reduction in fat and/or sodium content exert a cardioprotective effect against ischemia-induced oxidative stress in cardiomyocytes, compared with non-meat foods. Ischemic damage caused loss of cell viability, increased reactive oxygen species and lipid peroxidation and decreased the antioxidant activity. Pretreatment for 24 h with digested or non-digested extracts from reformulated meat products led to protection against ischemia-induced oxidative damage: increased cell viability, reduced oxidative stress and restored the antioxidant activity. Similar results were obtained using extracts from tuna fish, but not with the extracts of green peas, salad or white beans. These results suggest that reformulated meat products have a beneficial impact in protecting cardiac cells against ischemia, and they may represent a source of natural antioxidants with benefits for cardiovascular health.

  9. Pleomorphism and Viability of the Lyme Disease Pathogen Borrelia burgdorferi Exposed to Physiological Stress Conditions: A Correlative Cryo-Fluorescence and Cryo-Scanning Electron Microscopy Study.

    Science.gov (United States)

    Vancová, Marie; Rudenko, Nataliia; Vaněček, Jiří; Golovchenko, Maryna; Strnad, Martin; Rego, Ryan O M; Tichá, Lucie; Grubhoffer, Libor; Nebesářová, Jana

    2017-01-01

    To understand the response of the Lyme disease spirochete Borrelia burgdorferi exposed to stress conditions and assess the viability of this spirochete, we used a correlative cryo-fluorescence and cryo-scanning microscopy approach. This approach enables simple exposition of bacteria to various experimental conditions that can be stopped at certain time intervals by cryo-immobilization, examination of cell viability without necessity to maintain suitable culture conditions during viability assays, and visualization of structures in their native state at high magnification. We focused on rare and transient events e.g., the formation of round bodies and the presence of membranous blebs in spirochetes exposed to culture medium, host sera either without or with the bacteriolytic effect and water. We described all crucial steps of the workflow, particularly the influence of freeze-etching and accelerating voltage on the visualization of topography. With the help of newly designed cryo-transport device, we achieved greater reproducibility.

  10. Tissue viability 2010 -2015:from good to great.

    Science.gov (United States)

    Milne, Jeanette; Ousey, Karen

    2010-09-01

    This paper explores the challenges of the changing face of the NHS with specific relation to the challenges for community-based tissue viability services following the publication of government documents that identify the need to provide a quality service for all patients in health-care settings. Patients receiving care in the community is paramount to the success of the NHS going forward; service redesign, improvements in quality, outcome tracking, seamless discharge and patient satisfaction/responsibilities has been heralded as the core prerequisites of successful services. Tissue viability is a relatively young specialism, with most services being nurse led and established less than 15 years. It is argued that in order to continue to be successful as a specialism, tissue viability has to challenge traditional patient and nursing beliefs and values.

  11. Multimodality imaging in the assessment of myocardial viability

    Science.gov (United States)

    Partington, Sara L.; Kwong, Raymond Y.

    2014-01-01

    The prevalence of heart failure due to coronary artery disease continues to increase, and it portends a worse prognosis than non-ischemic cardiomyopathy. Revascularization improves prognosis in these high-risk patients who have evidence of viability; therefore, optimal assessment of myocardial viability remains essential. Multiple imaging modalities exist for differentiating viable myocardium from scar in territories with contractile dysfunction. Given the multiple modalities available, choosing the best modality for a specific patient can be a daunting task. In this review, the physiology of myocardial hibernation and stunning will be reviewed. All the current methods available for assessing viability including echocardiography, cardiac magnetic resonance imaging, nuclear imaging with single photon emission tomography and positron emission tomography imaging and cardiac computed tomography will be reviewed. The effectiveness of the various techniques will be compared, and the limitations of the current literature will be discussed. PMID:21069458

  12. Viability of Lucilia sericata maggots after exposure to wound antiseptics.

    Science.gov (United States)

    Daeschlein, Georg; Napp, Matthias; Assadian, Ojan; von Podewils, Sebastian; Reese, Kevin; Hinz, Peter; Matiasek, Johannes; Spitzmueller, Romy; Humphreys, Paul; Jünger, Michael; Kramer, Axel

    2017-06-01

    After debridement and before dressing a wound with maggots of calliphorid flies, one frequently performed step is the application of antiseptics to the prepared wound bed. However, the concomitant application of antiseptic agents during maggot therapy is regarded controversial as antiseptics may interfere with maggots' viability. In this experimental in vitro study, the viability of fly maggots was investigated after exposure to various antiseptics frequently used in wound care. Here, we show that Lucilia sericata fly maggots can survive up to an hour's exposure to wound antiseptics such as octenidine, povidone-iodine or polihexanide. Concomitant short-term application of wound antiseptics together with maggots on wound beds is tolerated by larvae and does not impair their viability. © 2016 Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  13. Performance Improvement of Membrane Stress Measurement Equipment through Evaluation of Added Mass of Membrane and Error Correction

    Directory of Open Access Journals (Sweden)

    Sang-Wook Jin

    2017-01-01

    Full Text Available One of the most important issues in keeping membrane structures in stable condition is to maintain the proper stress distribution over the membrane. However, it is difficult to determine the quantitative real stress level in the membrane after the completion of the structure. The stress relaxation phenomenon of the membrane and the fluttering effect due to strong wind or ponding caused by precipitation may cause severe damage to the membrane structure itself. Therefore, it is very important to know the magnitude of the existing stress in membrane structures for their maintenance. The authors have proposed a new method for separately estimating the membrane stress in two different directions using sound waves instead of directly measuring the membrane stress. The new method utilizes the resonance phenomenon of the membrane, which is induced by sound excitations given through an audio speaker. During such experiment, the effect of the surrounding air on the vibrating membrane cannot be overlooked in order to assure high measurement precision. In this paper, an evaluation scheme for the added mass of membrane with the effect of air on the vibrating membrane and the correction of measurement error is discussed. In addition, three types of membrane materials are used in the experiment in order to verify the expandability and accuracy of the membrane measurement equipment.

  14. Combat damage control surgery.

    Science.gov (United States)

    Blackbourne, Lorne H

    2008-07-01

    Although the use of damage control surgery for blunt and penetrating injury has been widely reported and defined, the use of damage control surgery on the battlefield (combat damage control surgery) has not been well detailed. Damage control surgery is now well established as the standard of care for severely injured civilian patients requiring emergent laparotomy in the United States. The civilian damage control paradigm is based on a "damage control trilogy." This trilogy comprises an abbreviated operation, intensive care unit resuscitation, and a return to the operating room for the definitive operation. The goal of damage control surgery and the triology is avoidance of irreversible physiological insult termed the lethal triad. The lethal triad comprises the vicious cycle of hypothermia, acidosis, and coagulopathy. Although the damage control model involves the damage control trilogy, abbreviated operation, intensive care unit resuscitation, and definitive operation, all in the same surgical facility, the combat damage control paradigm must incorporate global evacuation through several military surgical facilities and involves up to ten stages to allow for battlefield evacuation, surgical operations, multiple resuscitations, and transcontinental transport. Combat damage control surgery represents many unique challenges for those who care for the severely injured patients in a combat zone.

  15. Biocidal effect of cathodic protection on bacterial viability in biofilm attached to carbon steel.

    Science.gov (United States)

    Miyanaga, Kazuhiko; Terashi, Ryosuke; Kawai, Hirofumi; Unno, Hajime; Tanji, Yasunori

    2007-07-01

    Biofilm formed on carbon steel by various species of bacterial cells causes serious problems such as corrosion of steel, choking of flow in the pipe, deterioration of the heat-transfer efficiency, and so on. Cathodic protection is known to be a reliable method for protecting carbon steel from corrosion. However, the initial attachment of bacteria to the surface and the effects of cathodic protection on bacterial viability in the biofilm have not been clarified. In this study, cathodic protection was applied to an artificial biofilm containing Pseudomonas aeruginosa (PAO1), a biofilm constituent, on carbon steel. The aims of this study were to evaluate the inhibition effect of cathodic protection on biofilm formation and to reveal the inhibition mechanisms. The viability of PAO1 in artificial biofilm of 5 mm thickness on cathodically protected steel decreased to 1% of the initial cell concentration. Analysis of pH distribution in the artificial biofilm by pH microelectrode revealed that pH in proximity to carbon steel increased to approximately 11 after cathodic protection for 5 h. Moreover, 99% of region in the artificial biofilm was under the pH conditions of over nine. A simulation of pH profile was shown to correspond to experimental values. These results indicate cells in the artificial biofilm were killed or damaged by cathodic protection due to pH increase. (c) 2006 Wiley Periodicals, Inc.

  16. The Cytotoxic Role of Intermittent High Glucose on Apoptosis and Cell Viability in Pancreatic Beta Cells

    Directory of Open Access Journals (Sweden)

    Zhen Zhang

    2014-01-01

    Full Text Available Objectives. Glucose fluctuations are both strong predictor of diabetic complications and crucial factor for beta cell damages. Here we investigated the effect of intermittent high glucose (IHG on both cell apoptosis and proliferation activity in INS-1 cells and the potential mechanisms. Methods. Cells were treated with normal glucose (5.5 mmol/L, constant high glucose (CHG (25 mmol/L, and IHG (rotation per 24 h in 11.1 or 25 mmol/L for 7 days. Reactive oxygen species (ROS, xanthine oxidase (XOD level, apoptosis, cell viability, cell cycle, and expression of cyclinD1, p21, p27, and Skp2 were determined. Results. We found that IHG induced more significant apoptosis than CHG and normal glucose; intracellular ROS and XOD levels were more markedly increased in cells exposed to IHG. Cells treated with IHG showed significant decreased cell viability and increased cell proportion in G0/G1 phase. Cell cycle related proteins such as cyclinD1 and Skp2 were decreased significantly, but expressions of p27 and p21 were increased markedly. Conclusions. This study suggested that IHG plays a more toxic effect including both apoptosis-inducing and antiproliferative effects on INS-1 cells. Excessive activation of cellular stress and regulation of cyclins might be potential mechanism of impairment in INS-1 cells induced by IHG.

  17. Chlorella protects against hydrogen peroxide-induced pancreatic β-cell damage.

    Science.gov (United States)

    Lin, Chia-Yu; Huang, Pei-Jane; Chao, Che-Yi

    2014-12-01

    Oxidative stress has been implicated in the etiology of pancreatic β-cell dysfunction and diabetes. Studies have shown that chlorella could be important in health promotion or disease prevention through its antioxidant capacity. However, whether chlorella has a cytoprotective effect in pancreatic β-cells remains to be elucidated. We investigated the protective effects of chlorella on H2O2-induced oxidative damage in INS-1 (832/13) cells. Chlorella partially restored cell viability after H2O2 toxicity. To further investigate the effects of chlorella on mitochondria function and cellular oxidative stress, we analyzed mitochondria membrane potential, ATP concentrations, and cellular levels of reactive oxygen species (ROS). Chlorella prevented mitochondria disruption and maintained cellular ATP levels after H2O2 toxicity. It also normalized intracellular levels of ROS to that of control in the presence of H2O2. Chlorella protected cells from apoptosis as indicated by less p-Histone and caspase 3 activation. In addition, chlorella not only enhanced glucose-stimulated insulin secretion (GSIS), but also partially restored the reduced GSIS after H2O2 toxicity. Our results suggest that chlorella is effective in amelioration of cellular oxidative stress and destruction, and therefore protects INS-1 (832/13) cells from H2O2-induced apoptosis and increases insulin secretion. Chlorella should be studied for use in the prevention or treatment of diabetes.

  18. Impact of oxygen stress and energy availability on membrane stability of plant cells.

    Science.gov (United States)

    Rawyler, André; Arpagaus, Silvio; Braendle, Roland

    2002-10-01

    This article reviews the relationship between the energy status of plant cells under O(2) stress (e.g. waterlogging) and the maintenance of membrane intactness, using information largely derived from suspension cultures of anoxia-intolerant potato cells. Energy-related parameters measured were fermentation end-products (ethanol, lactate, alanine), respiratory rate, ATP, adenylate energy charge, nitrate reductase activity and biomass. ATP synthesis rates were calculated from the first four parameters. Reactive oxygen species were estimated from H(2)O(2) and superoxide levels, and the enzymatic detoxification potential from the activity levels of catalase and superoxide dismutase. Structure-related parameters were total fatty acids, free fatty acids (FFAs), lipid hydroperoxides, total phospholipids, N-acylphosphatidylethanolamine (NAPE) and cell viability. The following issues are addressed in this review: (1) what is the impact of anoxia on membrane lipids and how does this relate to energy status; (2) does O(2) per se play a role in these changes; (3) under which conditions and to what extent does lipid peroxidation occur upon re-aeration; and (4) can the effects of re-aeration be distinguished from those of anoxia? The emerging picture is a reappraisal of the relative contributions of anoxia and re-aeration. Two successive phases (pre-lytic and lytic) characterize potato cells under anoxia. They are connected by a threshold in ATP production rate, below which membrane lipids are hydrolysed to FFAs, and NAPE increases. Since lipid peroxidation occurs only when cells are reoxygenated during the lytic phase, its biological relevance in an already damaged system is questionable.

  19. Measurement of bioimpedance and cell viability during ischemia-reperfusion in the rat liver.

    Science.gov (United States)

    Ahn, H; Shin, H; Yun, S; Kim, J; Choi, J

    2005-01-01

    During liver resection and liver transplant, liver is damaged by ischemia-reperfusion injury. Until now, there is no approved method to measure or predict the extent of liver injury during the operation. This is the preliminary study to make the real time monitoring system by quantification of bioimpedance and ischemiareperfusion reperfusion injury in liver. Sprague-Dawley rats were subjected to different periods of 70% partial hepatic ischemia (30, 60, 90 and 120minutes ischemia) and reperfusion. We measured changes of liver tissue bioimpedance (120Hz-100KHz) every five minutes. Cell viability was assessed by metabolic capacity of fatty acid (palmitic acid metabolic rate), ATP content and histological examination (H/E and TUNEL stain) at every 30 minutes interval during ischemia.

  20. ATM-mediated mitochondrial damage response triggered by nuclear DNA damage in normal human lung fibroblasts.

    Science.gov (United States)

    Shimura, Tsutomu; Sasatani, Megumi; Kawai, Hidehiko; Kamiya, Kenji; Kobayashi, Junya; Komatsu, Kenshi; Kunugita, Naoki

    2017-11-03

    Ionizing radiation (IR) elevates mitochondrial oxidative phosphorylation (OXPHOS) in response to the energy requirement for DNA damage responses. Reactive oxygen species (ROS) released during mitochondrial OXPHOS may cause oxidative damage to mitochondria in irradiated cells. In this paper, we investigated the association between nuclear DNA damage and mitochondrial damage following IR in normal human lung fibroblasts. In contrast to low-doses of acute single radiation, continuous exposure of chronic radiation or long-term exposure of fractionated radiation (FR) induced persistent Rad51 and γ-H2AX foci at least 24 hours after IR in irradiated cells. Additionally, long-term FR increased mitochondrial ROS accompanied with enhanced mitochondrial membrane potential (ΔΨm) and mitochondrial complex IV (cytochrome c oxidase) activity. Mitochondrial ROS released from the respiratory chain complex I caused oxidative damage to mitochondria. Inhibition of ATM kinase or ATM loss eliminated nuclear DNA damage recognition and mitochondrial radiation responses. Consequently, nuclear DNA damage activates ATM which in turn increases ROS level and subsequently induces mitochondrial damage in irradiated cells. In conclusion, we demonstrated that ATM is essential in the mitochondrial radiation responses in irradiated cells. We further demonstrated that ATM is involved in signal transduction from nucleus to the mitochondria in response to IR.

  1. Economic Viability of Brewery Spent Grain as a Biofuel

    Energy Technology Data Exchange (ETDEWEB)

    Morrow, Charles [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-01-01

    This report summarizes an investigation into the technical feasibility and economic viability of use grain wastes from the beer brewing process as fuel to generate the heat needed in subsequent brewing process. The study finds that while use of spent grain as a biofuel is technically feasible, the economics are not attractive. Economic viability is limited by the underuse of capital equipment. The investment in heating equipment requires a higher utilization that the client brewer currently anticipates. It may be possible in the future that changing factors may swing the decision to a more positive one.

  2. Economic viability of new launched school lunch programmes

    DEFF Research Database (Denmark)

    Jensen, Jørgen Dejgård; Smed, Sinne; Mørkbak, Morten Raun

    2013-01-01

    The objective of this paper is to investigate determinants for the viability of school lunch programmes with a zero-price start-up period. The study is based on a Danish pilot experiment, in which 38 schools were subsidized to provide free school lunch for all pupils during a two-month start...... activities related to the schools’ support and the users’ feeling of ownership, as well as internal professionalism and leadership in the implementation of the school lunch programme are important for the viability of the programme. Strong performance on the latter factors might to some extent compensate...... for the gap between cost and users’ willingness to pay for school lunches....

  3. Challenge testing of gametes to enhance their viability

    DEFF Research Database (Denmark)

    Callesen, Henrik

    2010-01-01

    of survival mechanism that enables them to come through the process. The details of the mechanism remain unknown but, if identified, it could have immense potential as a new way to improve the viability of embryos produced by ART. However, few publications describe systematic ways to challenge test gametes...... and then to use the results as a basis for improving gamete viability. Furthermore, new methods to monitor the reactions of gametes to such challenge tests are needed. In the present review, these two issues are discussed, as are some of the conditions necessary before a challenge test protocol can be part...

  4. Population-specific life histories contribute to metapopulation viability

    Science.gov (United States)

    Halsey, Samniqueka J.; Bell, Timothy J.; McEachern, A. Kathryn; Pavlovic, Noel B.

    2016-01-01

    Restoration efforts can be improved by understanding how variations in life-history traits occur within populations of the same species living in different environments. This can be done by first understanding the demographic responses of natural occurring populations. Population viability analysis continues to be useful to species management and conservation with sensitivity analysis aiding in the understanding of population dynamics. In this study, using life-table response experiments and elasticity analyses, we investigated how population-specific life-history demographic responses contributed to the metapopulation viability of the Federally threatened Pitcher's thistle (Cirsium pitcheri). Specifically, we tested the following hypotheses: (1) Subpopulations occupying different environments within a metapopulation have independent demographic responses and (2) advancing succession results in a shift from a demographic response focused on growth and fecundity to one dominated by stasis. Our results showed that reintroductions had a positive contribution to the metapopulation growth rate as compared to native populations which had a negative contribution. We found no difference in succession on the contribution to metapopulation viability. In addition, we identified distinct population-specific contributions to metapopulation viability and were able to associate specific life-history demographic responses. For example, the positive impact of Miller High Dunes population on the metapopulation growth rate resulted from high growth contributions, whereas increased time of plant in stasis for the State Park Big Blowout population resulted in negative contributions. A greater understanding of how separate populations respond in their corresponding environment may ultimately lead to more effective management strategies aimed at reducing extinction risk. We propose the continued use of sensitivity analyses to evaluate population-specific demographic influences on

  5. Cigarette smoking exacerbates chronic alcohol-induced brain damage: a preliminary metabolite imaging study.

    Science.gov (United States)

    Durazzo, Timothy C; Gazdzinski, Stefan; Banys, Peter; Meyerhoff, Dieter J

    2004-12-01

    the frontal lobes of RAs and has independent adverse effects on neuronal viability and cell membranes in the midbrain and on cell membranes of the cerebellar vermis. Higher smoking levels are associated with metabolite concentrations in select subcortical structures. Greater consideration of the potential effects of comorbid cigarette smoking on alcohol-induced brain damage and other diseases affecting the central nervous system is warranted.

  6. Integrity of the plasma membrane, the acrosomal membrane, and the mitochondrial membrane potential of sperm in Nelore bulls from puberty to sexual maturity

    Directory of Open Access Journals (Sweden)

    L.S.L.S. Reis

    2016-06-01

    Full Text Available ABSTRACT This study evaluated the plasma membrane integrity, acrosomal membrane integrity, and mitochondrial membrane potential of Nelore bull sperm from early puberty to early sexual maturity and their associations with sperm motility and vigor, the mass motility of the spermatozoa (wave motion, scrotal circumference, and testosterone. Sixty Nelore bulls aged 18 to 19 months were divided into four lots (n=15 bulls/lot and evaluated over 280 days. Semen samples, collected every 56 days by electroejaculation, were evaluated soon after collection for motility, vigor and wave motion under an optical microscope. Sperm membrane integrity, acrosomal integrity, and mitochondrial activity were evaluated under a fluorescent microscope using probe association (FITC-PSA, PI, JC-1, H342. The sperm were classified into eight integrity categories depending on whether they exhibited intact or damaged membranes, an intact or damaged acrosomal membrane, and high or low mitochondrial potential. The results show that bulls have a low amount of sperm with intact membranes at puberty, and the sperm show low motility, vigor, and wave motion; however, in bulls at early sexual maturity, the integrity of the sperm membrane increased significantly. The rate of sperm membrane damage was negatively correlated with motility, vigor, wave motion, and testosterone in the bulls, and a positive correlation existed between sperm plasma membrane integrity and scrotal circumference. The integrity of the acrosomal membrane was not influenced by puberty. During puberty and into early sexual maturity, bulls show low sperm mitochondrial potential, but when bulls reached sexual maturity, high membrane integrity with high mitochondrial potential was evident.

  7. Application of PEG and EGCG modified collagen-base membrane to promote osteoblasts proliferation.

    Science.gov (United States)

    Chu, Chenyu; Deng, Jia; Hou, Yi; Xiang, Lin; Wu, Yingying; Qu, Yili; Man, Yi

    2017-07-01

    Collagen membranes possess ideal biological properties and can be served as a barrier for supporting infiltration and proliferation of osteoblasts in guided bone regeneration (GBR). However, pure collagen lacks desirable mechanical properties and also leads to inflammation, resulting in progressive bone resorption. In our previous study, EGCG cross-linked collagen membranes exhibit better mechanical properties and anti-inflammatory effect. However, higher concentration of EGCG may not improve cell viability. Herein, we present an enhanced EGCG cross-linked collagen membranes with surface modification of PEG to improve cell viability and cell adhesion, considering the better biocompatibility of PEG. Scanning electron microscope images showed that PEG-EGCG-collagen membrane exhibited smoother surface fiber aggregates. Fourier transform infrared spectroscopy demonstrated that the structure characteristics were maintained after addition of EGCG and PEG. Cell viability was significantly increased after modification of PEG, as determined by the Cell Counting Kit-8 (CCK-8) and live/dead assay. Better shapes of cytoskeleton were observed in immunostaining images. Additionally, enzyme-linked immunosorbent assay showed PEG-EGCG-collagen membrane significantly decreased the level of inflammatory factors secreted by MG63 cells. Collectively, with respect to all the aspects including intact structure, cell viability promotion and mediation of pro-inflammatory cytokine secretion, our results indicate that PEG-EGCG-collagen membrane might be used in GBR applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Effect of KCl substitution on bacterial viability of Escherichia coli (ATCC 25922) and selected probiotics.

    Science.gov (United States)

    Gandhi, Akanksha; Cui, Yuxiang; Zhou, Mingyang; Shah, Nagendra P

    2014-10-01

    Excessive intake of NaCl has been associated with the increased risk of several diseases, particularly hypertension. Strategies to reduce sodium intake include substitution of NaCl with other salts, such as KCl. In this study, the effects of NaCl reduction and its substitution with KCl on cell membranes of a cheese starter bacterium (Lactococcus lactis ssp. lactis), probiotic bacteria (Bifidobacterium longum, Lactobacillus acidophilus, and Lactobacillus casei), and a pathogenic bacterium (Escherichia coli) were investigated using Fourier-transform infrared (FTIR) spectroscopy. A critical NaCl concentration that inhibited the viability of E. coli without affecting the viability of probiotic bacteria significantly was determined. To find the critical NaCl concentration, de Man, Rogosa, and Sharpe (MRS) broth was supplemented with a range of NaCl concentrations [0 (control), 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, and 5.0%], and the effect on cell viability and FTIR spectra was monitored for all bacteria. A NaCl concentration of 2.5% was found to be the critical level of NaCl to inhibit E. coli without significantly affecting the viability of most of the probiotic bacteria and the cheese starter bacterium. The FTIR spectral analysis also highlighted the changes that occurred mainly in the amide regions upon increasing the NaCl concentration from 2.5 to 3.0% in most of the bacteria. Escherichia coli and B. longum were more sensitive to substitution of NaCl with KCl, compared with Lb. acidophilus, Lb. casei, and Lc. lactis ssp. lactis. To evaluate the effect of substitution of NaCl with KCl, substitution was carried out at the critical total salt concentration (2.5%, wt/vol) at varying concentrations (0, 25, 50, 75, and 100% KCl). The findings suggest that 50% substitution of NaCl with KCl, at 2.5% total salt, could inhibit E. coli without affecting the probiotic bacteria. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights

  9. FEM-based oxygen consumption and cell viability models for avascular pancreatic islets

    Directory of Open Access Journals (Sweden)

    Buchwald Peter

    2009-04-01

    Full Text Available Abstract Background The function and viability of cultured, transplanted, or encapsulated pancreatic islets is often limited by hypoxia because these islets have lost their vasculature during the isolation process and have to rely on gradient-driven passive diffusion, which cannot provide adequate oxygen transport. Pancreatic islets (islets of Langerhans are particularly susceptible due to their relatively large size, large metabolic demand, and increased sensitivity to hypoxia. Here, finite element method (FEM based multiphysics models are explored to describe oxygen transport and cell viability in avascular islets both in static and in moving culture media. Methods Two- and three-dimensional models were built in COMSOL Multiphysics using the convection and diffusion as well as the incompressible Navier-Stokes fluid dynamics application modes. Oxygen consumption was assumed to follow Michaelis-Menten-type kinetics and to cease when local concentrations fell below a critical threshold; in a dynamic model, it was also allowed to increase with increasing glucose concentration. Results Partial differential equation (PDE based exploratory cellular-level oxygen consumption and cell viability models incorporating physiologically realistic assumptions have been implemented for fully scaled cell culture geometries with 100, 150, and 200 μm diameter islets as representative. Calculated oxygen concentrations and intra-islet regions likely to suffer from hypoxia-related necrosis obtained for traditional flask-type cultures, oxygen-permeable silicone-rubber membrane bottom cultures, and perifusion chambers with flowing media and varying incoming glucose levels are presented in detail illustrated with corresponding colour-coded figures and animations. Conclusion Results of the computational models are, as a first estimate, in good quantitative agreement with existing experimental evidence, and they confirm that during culture, hypoxia is often a problem for

  10. Ophiobolin A from Bipolaris oryzae Perturbs Motility and Membrane Integrities of Porcine Sperm and Induces Cell Death on Mammalian Somatic Cell Lines

    Directory of Open Access Journals (Sweden)

    Ottó Bencsik

    2014-09-01

    Full Text Available Bipolaris oryzae is a phytopathogenic fungus causing a brown spot disease in rice, and produces substance that strongly perturbs motility and membrane integrities of boar spermatozoa. The substance was isolated from the liquid culture of the fungal strain using extraction and a multi-step semi-preparative HPLC procedures. Based on the results of mass spectrometric and 2D NMR techniques, the bioactive molecule was identified as ophiobolin A, a previously described sesterterpene-type compound. The purified ophiobolin A exhibited strong motility inhibition and viability reduction on boar spermatozoa. Furthermore, it damaged the sperm mitochondria significantly at sublethal concentration by the dissipation of transmembrane potential in the mitochondrial inner membrane, while the plasma membrane permeability barrier remained intact. The study demonstrated that the cytotoxicity of ophiobolin A toward somatic cell lines is higher by 1–2 orders of magnitude compared to other mitochondriotoxic mycotoxins, and towards sperm cells unique by replacing the progressive motility by shivering tail beating at low exposure concentration.

  11. Effects of High Hydrostatic Pressure on Escherichia coli Ultrastructure, Membrane Integrity and Molecular Composition as Assessed by FTIR Spectroscopy and Microscopic Imaging Techniques

    Directory of Open Access Journals (Sweden)

    María Prieto-Calvo

    2014-12-01

    Full Text Available High hydrostatic pressure (HHP is a novel food processing technology that is considered as an attractive alternative to conventional heat treatments for the preservation of foods, due to its lethal effects on pathogenic and spoilage microorganisms, while causing minor effects on food quality and sensorial attributes. This study is aimed at investigating how HHP treatments at varying intensities in the range 50–900 MPa affect the viability, membrane integrity, ultrastructure and molecular composition of Escherichia coli. Results of membrane integrity tests (measurement of cellular leakage and monitoring of propidium iodide uptake through fluorescence microscopy and ultrastructural observations by transmission electron microscopy demonstrated that HHP gave rise to cellular enlargement, membrane damage or detachment, DNA and protein denaturation and loss of intracellular contents. Fourier-transform infrared (FTIR spectroscopy analyses evidenced minor changes in molecular composition in response to high pressures, which were mostly observed on the spectral region w4 (1200–900 cm−1, mainly informative of carbohydrates and polysaccharides of the cell wall. These findings suggest that exposure of E. coli cells to HHP causes alterations in their physical integrity while producing minor modifications in biochemical cellular composition. The current study increases the knowledge on the mechanisms of E. coli inactivation by HHP and provides valuable information for the design of more effective food preservation regimes based on the integration of mild HHP in combination with other food preservation strategies into a multi-target hurdle technology approach.

  12. Methods of amniotic membrane fixation in ocular amniotic membrane surgeries

    Directory of Open Access Journals (Sweden)

    Shu-Rong Wang

    2016-05-01

    Full Text Available Various ocular surface disorders like alkali burns and corneal ulcers can all cause damage to the cornea and conjunctiva, and often induce corneal neovascularization(CNVthat affects the visual function. However, amniotic membranes(AMcan promote the rapid epithelization of acute injured corneas and conjunctiva defects, diminish scarring, and perform anti-inflammatory effect. Therefore, AM has been widely used in ocular surface reconstructions and treatment of CNV. But the key problem is how to fix the AM. Only ensuring the adhesive time and cover area with convenient operation and little stimulation can achieve the best curative effect. This article reviews the methods of AM fixation in AM patch technique.

  13. Sperm Membrane Behaviour during Cooling and Cryopreservation.

    Science.gov (United States)

    Sieme, H; Oldenhof, H; Wolkers, W F

    2015-09-01

    Native sperm is only marginally stable after collection. Cryopreservation of semen facilitates transport and storage for later use in artificial reproduction technologies, but cryopreservation processing may result in cellular damage compromising sperm function. Membranes are thought to be the primary site of cryopreservation injury. Therefore, insights into the effects of cooling, ice formation and protective agents on sperm membranes may help to rationally design cryopreservation protocols. In this review, we describe membrane phase behaviour of sperm at supra- and subzero temperatures. In addition, factors affecting membrane phase transitions and stability, sperm osmotic tolerance limits and mode of action of cryoprotective agents are discussed. It is shown how cooling only results in minor thermotropic non-cooperative phase transitions, whereas freezing causes sharp lyotropic fluid-to-gel phase transitions. Membrane cholesterol content affects suprazero membrane phase behaviour and osmotic tolerance. The rate and extent of cellular dehydration coinciding with freezing-induced membrane phase transitions are affected by the cooling rate and ice nucleation temperature and can be modulated by cryoprotective agents. Permeating agents such as glycerol can move across cellular membranes, whereas non-permeating agents such as sucrose cannot. Both, permeating and non-permeating protectants preserve biomolecular and cellular structures by forming a protective glassy state during freezing. © 2015 Blackwell Verlag GmbH.

  14. Anaerobic membrane bioreactors: Are membranes really necessary?

    NARCIS (Netherlands)

    Davila, M.; Kassab, G.; Klapwijk, A.; Lier, van J.B.

    2008-01-01

    Membranes themselves represent a significant cost for the full scale application of anaerobic membrane bioreactors (AnMBR). The possibility of operating an AnMBR with a self-forming dynamic membrane generated by the substances present in the reactor liquor would translate into an important saving. A

  15. Effect of nitrogen dioxide and sulfur dioxide on viability and morphology of oak pollen.

    Science.gov (United States)

    Ouyang, Yuhui; Xu, Zhaojun; Fan, Erzhong; Li, Ying; Zhang, Luo

    2016-01-01

    Nitrogen dioxide (NO2) and sulfur dioxide (SO2) generated by excessive coal combustion and motor vehicle emissions are major air pollutants in the large cities of China. The objective of our study was to determine the effects of the exposure of oak pollens (Quercusmongolica) to several concentrations of NO2 or SO2. Pollen grains were exposed to 0.5 ppm to 5.0 ppm NO2 or SO2 for 4 hours and assessed for morphological damage by field emission scanning electron microscopy and for viability using the trypan blue stain. Morphological changes in pollen grains were also examined after contact with acid solutions at pH 4.0 to pH 7.0. Exposure to NO2 or SO2 significantly damaged pollen grains at all concentrations investigated, compared to exposure to air; with exposure to concentrations of 0.5 ppm to 2 ppm resulting in fissures or complete breaks in the exine and a concentration of 5 ppm resulting in complete breakdown and release of pollen cytoplasmic granules. Significantly greater amounts of pollen grain were damaged after exposure to SO2 (15.5-20.4%) than after exposure to NO2 (7.1-14.7%). Similarly, exposure to NO2 or SO2 significantly decreased the viability of pollen grains, compared with exposure to air; with SO2 being slightly more detrimental than NO2. Exposure to acid solutions also induced pollen damage, which appeared to be pH-dependent (from 24.6% at pH 6.0 to 55.8% at pH 4.0; compared to 3.8% at pH 7.0). Short-term exposure of oak pollen to high concentrations of SO2 or NO2 significantly increases their fragility and disruption, leading to subsequent release of pollen cytoplasmic granules into the atmosphere. These results suggest that heightened air pollution during the oak pollen season may possibly increase the incidence of allergic airway disease in sensitized individuals by facilitating the bioavailability of airborne pollen allergens. © 2015 ARS-AAOA, LLC.

  16. Transplantation of amniotic membrane to the subretinal space in pigs

    DEFF Research Database (Denmark)

    Kiilgaard, Jens Folke; Scherfig, Erik; Prause, Jan Ulrik

    2012-01-01

    Purpose. To investigate the effect of transplanted amniotic membrane (AM) on subretinal wound healing. Methods. Nine Danish Landrace pigs had surgical removal of retinal pigment epithelium (RPE) and mechanical damage of Bruch's membrane (BM) and served as a control group. 15 pigs additionally had...... is well tolerated in the subretinal space, causes only limited inflammation, and is covered with a monolayer of pigmented cells when in contact with the host RPE. Conclusions. AM modifies choroidal neovascularisation after BM damage and may serve as a basement membrane substitute for the RPE....

  17. Membranes for Redox Flow Battery Applications

    Directory of Open Access Journals (Sweden)

    Maria Skyllas-Kazacos

    2012-06-01

    Full Text Available The need for large scale energy storage has become a priority to integrate renewable energy sources into the electricity grid. Redox flow batteries are considered the best option to store electricity from medium to large scale applications. However, the current high cost of redox flow batteries impedes the wide spread adoption of this technology. The membrane is a critical component of redox flow batteries as it determines the performance as well as the economic viability of the batteries. The membrane acts as a separator to prevent cross-mixing of the positive and negative electrolytes, while still allowing the transport of ions to complete the circuit during the passage of current. An ideal membrane should have high ionic conductivity, low water intake and excellent chemical and thermal stability as well as good ionic exchange capacity. Developing a low cost, chemically stable membrane for redox flow cell batteries has been a major focus for many groups around the world in recent years. This paper reviews the research work on membranes for redox flow batteries, in particular for the all-vanadium redox flow battery which has received the most attention.

  18. Membranes for Redox Flow Battery Applications

    Science.gov (United States)

    Prifti, Helen; Parasuraman, Aishwarya; Winardi, Suminto; Lim, Tuti Mariana; Skyllas-Kazacos, Maria

    2012-01-01

    The need for large scale energy storage has become a priority to integrate renewable energy sources into the electricity grid. Redox flow batteries are considered the best option to store electricity from medium to large scale applications. However, the current high cost of redox flow batteries impedes the wide spread adoption of this technology. The membrane is a critical component of redox flow batteries as it determines the performance as well as the economic viability of the batteries. The membrane acts as a separator to prevent cross-mixing of the positive and negative electrolytes, while still allowing the transport of ions to complete the circuit during the passage of current. An ideal membrane should have high ionic conductivity, low water intake and excellent chemical and thermal stability as well as good ionic exchange capacity. Developing a low cost, chemically stable membrane for redox flow cell batteries has been a major focus for many groups around the world in recent years. This paper reviews the research work on membranes for redox flow batteries, in particular for the all-vanadium redox flow battery which has received the most attention. PMID:24958177

  19. Membrane Cholesterol Modulates Superwarfarin Toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Marangoni, M. Natalia; Martynowycz, Michael W.; Kuzmenko, Ivan; Braun, David; Polak, Paul E.; Weinberg, Guy; Rubinstein, Israel; Gidalevitz, David; Feinstein, Douglas L.

    2016-04-26

    Superwarfarins are modified analogs of warfarin with additional lipophilic aromatic rings, up to 100-fold greater potency, and longer biological half-lives. We hypothesized that increased hydrophobicity allowed interactions with amphiphilic membranes and modulation of biological responses. We find that superwarfarins brodifacoum and difenacoum increase lactate production and cell death in neuroblastoma cells. In contrast, neither causes changes in glioma cells that have higher cholesterol content. After choleterol depletion, lactate production was increased and cell viability was reduced. Drug-membrane interactions were examined by surface X-ray scattering using Langmuir monolayers of dipalmitoylphosphatidylcholine and/or cholesterol. Specular X-ray reflectivity data revealed that superwarfarins, but not warfarin, intercalate between dipalmitoylphosphatidylcholine molecules, whereas grazing incidence X-ray diffraction demonstrated changes in lateral crystalline order of the film. Neither agent showed significant interactions with monolayers containing >20% cholesterol. These findings demonstrate an affinity of superwarfarins to biomembranes and suggest that cellular responses to these agents are regulated by cholesterol content.

  20. Traveling-Wave Membrane Photomixers

    Science.gov (United States)

    Wyss, R. A.; Martin, S. C.; Nakamura, B. J.; Neto, A.; Pasqualini, D.; Siegel, P. H.; Kadow, C.; Gossard, A. C.

    2001-01-01

    Traveling-wave photomixers have superior performance when compared with lumped area photomixers in the 1 to 3 THz frequency range. Their large active area and distributed gain mechanism assure high thermal damage threshold and elimination of the capacitive frequency roll-off. However, the losses experienced by the radio frequency wave traveling along the coplanar strips waveguide (due to underlying semi-infinite GaAs substrate) were a serious drawback. In this paper we present device designs and an experimental setup that make possible the realization of photomixers on membranes which eliminate the losses.

  1. The practice of investment viability appraisal in Akure, Nigeria ...

    African Journals Online (AJOL)

    This paper examines the role played by valuers in choosing the right viability appraisal technique for an investment appraisal. Structured questionnaire was administered on Twenty one (21) registered and practicing Estate Surveying and Valuation firms in Akure out of which fourteen (14) were retrieved and found good for ...

  2. Proof of Economic Viability of Blended Learning Business Models

    Science.gov (United States)

    Druhmann, Carsten; Hohenberg, Gregor

    2014-01-01

    The discussion on economically sustainable business models with respect to information technology is lacking in many aspects of proven approaches. In the following contribution the economic viability is valued based on a procedural model for design and evaluation of e-learning business models in the form of a case study. As a case study object a…

  3. Evaluating the Viability of Mobile Learning to Enhance Management Training

    Science.gov (United States)

    Macdonald, Iain; Chiu, Jason

    2011-01-01

    A qualitative research project was conducted to test the viability of augmenting an e-learning program for workplace learners using mobile content delivered through smart phones. Ten learners taking a six week web-based e-learning course were given smart phones which enabled them to access approximately 70% of the course content, in addition to…

  4. Assessment of viability of microorganisms employing fluorescence techniques

    NARCIS (Netherlands)

    Breeuwer, P.

    1996-01-01


    Viability assessment of microorganisms is relevant for a wide variety of applications in industry, including evaluation of inactivation treatments and quality assessment of starter cultures for beer, wine, and yoghurt production.

    Usually, the ability of microbial cells to

  5. Banana nectar as a medium for testing pollen viability and ...

    African Journals Online (AJOL)

    Administrator

    2007-05-16

    May 16, 2007 ... A quick and reliable method for evaluating pollen quality is essential in a breeding program, especially in a crop such as banana that is characterized by high male and female sterility. In this study the germination and viability of banana pollen was evaluated in a sucrose solution and diluted banana nectar.

  6. Banana nectar as a medium for testing pollen viability and ...

    African Journals Online (AJOL)

    A quick and reliable method for evaluating pollen quality is essential in a breeding program, especially in a crop such as banana that is characterized by high male and female sterility. In this study the germination and viability of banana pollen was evaluated in a sucrose solution and diluted banana nectar. Twenty banana ...

  7. Morphology and viability of castor bean genotypes pollen grains

    Directory of Open Access Journals (Sweden)

    Maria Selma Alves Silva Diamantino

    2016-01-01

    Full Text Available The objective of this work was to characterize the morphology and viability of the pollen of 15 genotypes of castor bean (Ricinus communis L. and to generate information that can assist in the selection of highly promising male parents for future use in genetic improvement programs aimed at producing seeds for oil extraction. Acetolysis and scanning electron microscopy was used to characterize the morphology of the pollen. The viability of the pollen grains was estimated by in vitro germination and colorimetric analysis (acetocarmine 2% and 2, 3, 5-triphenyltetrazolium chloride 1%. For the in vitro germination, pollen grains were grown in 10 types of solidified culture medium consisting of different concentrations of sucrose, boric acid, calcium nitrate, magnesium sulfate and potassium nitrate. The pollen grains had the following characteristics: medium size, isopolar and subspheroidal shape, radial symmetry, circular ambit, 3-colporate, elongated endoapertures, tectate exine and granulated sexine. The acetocarmine dye overestimated pollen viability. The media M5 and M8 were the most efficient at promoting the germination of pollen grains. The studied genotypes had high levels of viability and can therefore be used as male parents in genetic improvement programs.

  8. Low-dose adenosine stress echocardiography: Detection of myocardial viability

    Directory of Open Access Journals (Sweden)

    Nedeljkovic Milan

    2003-06-01

    Full Text Available Abstract Objective The aim of this study was to evaluate the diagnostic potential of low-dose adenosine stress echocardiography in detection of myocardial viability. Background Vasodilation through low dose dipyridamole infusion may recruit contractile reserve by increasing coronary flow or by increasing levels of endogenous adenosine. Methods Forty-three patients with resting dyssynergy, due to previous myocardial infarction, underwent low-dose adenosine (80, 100, 110 mcg/kg/min in 3 minutes intervals echocardiography test. Gold standard for myocardial viability was improvement in systolic thickening of dyssinergic segments of ≥ 1 grade at follow-up. Coronary angiography was done in 41 pts. Twenty-seven patients were revascularized and 16 were medically treated. Echocardiographic follow up data (12 ± 2 months were available in 24 revascularized patients. Results Wall motion score index improved from rest 1.55 ± 0.30 to 1.33 ± 0.26 at low-dose adenosine (p Conclusion Low-dose adenosine stress echocardiography test has high diagnostic potential for detection of myocardial viability in the group of patients with left ventricle dysfunction due to previous myocardial infarction. Low dose adenosine stress echocardiography may be adequate alternative to low-dose dobutamine test for evaluation of myocardial viability.

  9. The effects of storage conditions on the viability of ...

    African Journals Online (AJOL)

    Long-terms recoverability of enteropathogens is necessary for future epidemiological studies to screen stool samples when conditions do not permit immediate processing. The aim of this study was to determine the viability and the recoverability of three enteropathogens bacteria (Yersinia enterocolitica, Vibrio cholerae O: 1 ...

  10. The viability of business data mining in the sports environment ...

    African Journals Online (AJOL)

    Data mining can be viewed as the process of extracting previously unknown information from large databases and utilising this information to make crucial business decisions (Simoudis, 1996: 26). This paper considers the viability of using data mining tools and techniques in sports, particularly with regard to mining the ...

  11. Influence of gamma irradiation on pollen viability, germination ability ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-12-15

    Dec 15, 2009 ... Effects of gamma radiation on vitality and competitive ability of Cucumis pollen. Euphytica, 32: 677-684. Yanmaz R, Ellialtıoglu S, Taner KY (1999). The effects of gamma irradiation on pollen viability and haploid plant formation in snake cucumber (Cucumis melo L. var. flexuosus Naud.). Acta Hort. 492:.

  12. Low-level waste vitrification contact maintenance viability study

    Energy Technology Data Exchange (ETDEWEB)

    Leach, C.E., Westinghouse Hanford

    1996-07-12

    This study investigates the economic viability of contact maintenance in the Low-Level Waste Vitrification Facility, which is part of the Hanford Site Tank Waste Remediation System. This document was prepared by Flour Daniel, Inc., and transmitted to Westinghouse Hanford Company in September 1995.

  13. Pollen diversity, viability and floral structure of some Musa genotypes

    African Journals Online (AJOL)

    This experiment was designed to study the floral structure, pollen morphology and the potential pollen viability of five Musa genotypes obtained from the Musa field ... Three different types of pollen were encountered viz, big, moderate and small pollens with corresponding big, moderate and small apertures and pores.

  14. Viability of bull semen extended with commercial semen extender ...

    African Journals Online (AJOL)

    Andrea Raseona

    Abstract. The aim of this study was to evaluate the viability of bull spermatozoa diluted with commercial semen extender and two culture media stored at controlled room temperature (24 °C) for 72 hours. Two Nguni bulls were used for semen collection with the aid of an electro-ejaculator. After macroscopic evaluation ...

  15. The economic and social viability of Tanzanian Wildlife Management Areas

    DEFF Research Database (Denmark)

    Homewood, Katherine; Bluwstein, Jevgeniy; Lund, Jens Friis

    This policy brief contributes to assessing the economic and social viability of Tanzania’s Wildlife Management Areas (WMAs) through preliminary findings by the ‘Poverty and ecosystem Impacts of Tanzania’s Wildlife Management Areas’ (PIMA) project, focusing on benefits, costs, and their distribution...

  16. Effect of pretreatments on seed viability during fruit development of ...

    African Journals Online (AJOL)

    Studies to identify the stage at which developing fruits of Irvingia gabonensis (var. excelsa and var. gabonensis), picked from standing trees and/or forest floors, attain maximum viability and germinability were conducted in two harvesting seasons in 2000 and 2001. Some pretreatment methods were used as a means of ...

  17. Viability of bull semen extended with commercial semen extender ...

    African Journals Online (AJOL)

    After macroscopic evaluation, semen was pooled and aliquoted randomly into Triladyl, modified Ham's F10, and TCM-199 culture media, and then stored at 24 °C. Sperm motility parameters, morphology, and viability were analysed with computer aided sperm analysis (CASA) after 0, 24, 48 and 72 hours. The study was ...

  18. A comparison of assays measuring the viability of Legionella ...

    Science.gov (United States)

    Background: The relatively high prevalence of Legionella pneumophila in premise plumbing systems has been widely reported. Published reports indicate Legionella has a comparatively high resistance to chlorine and moreover has the ability to grow in phagocytic amoeba which could provide additional protection in chlorinated drinking water distribution systems. Copper-Silver (Cu-Ag) ionization treatment systems are commercially available for use in large building water systems to help control the risks from Legionella bacteria. The objectives of this study were to develop and optimize Legionella viability assays and use them to investigate the viability of Legionella bacteria after exposure to water treated with coppper and silver ions. Methods: Log phase L. pneumophila cells were used in all experiments and were generated by incubation at 35C for 48 hours in buffered yeast extract broth. Viability assays used included plating on buffered charcoal yeast extract agar to determine the number of culturable cells and treating cells with propidium monoazide (PMA) or ethidium monoazide (EMA) followed by quantitative PCR targeting mip gene of L. pneumophila. The qPCR viability assays were optimized using L. pneumophila inactivated by heat treatment at 65C for 60 min. The effectiveness of Cu-Ag ionization treatment was studied by inoculating L. pneumonia at 105 CFU/mL in water collected directly from a building water system that employed this technology and incubat

  19. Effect of salt hyperosmotic stress on yeast cell viability

    Directory of Open Access Journals (Sweden)

    Logothetis Stelios

    2007-01-01

    Full Text Available During fermentation for ethanol production, yeasts are subjected to different kinds of physico-chemical stresses such as: initially high sugar concentration and low temperature; and later, increased ethanol concentrations. Such conditions trigger a series of biological responses in an effort to maintain cell cycle progress and yeast cell viability. Regarding osmostress, many studies have been focused on transcriptional activation and gene expression in laboratory strains of Saccharomyces cerevisiae. The overall aim of this present work was to further our understanding of wine yeast performance during fermentations under osmotic stress conditions. Specifically, the research work focused on the evaluation of NaCl-induced stress responses of an industrial wine yeast strain S. cerevisiae (VIN 13, particularly with regard to yeast cell growth and viability. The hypothesis was that osmostress conditions energized specific genes to enable yeast cells to survive under stressful conditions. Experiments were designed by pretreating cells with different sodium chloride concentrations (NaCl: 4%, 6% and 10% w/v growing in defined media containing D-glucose and evaluating the impact of this on yeast growth and viability. Subsequent fermentation cycles took place with increasing concentrations of D-glucose (20%, 30%, 40% w/v using salt-adapted cells as inocula. We present evidence that osmostress induced by mild salt pre-treatments resulted in beneficial influences on both cell viability and fermentation performance of an industrial wine yeast strain.

  20. Potential carbon credit and community expectations towards viability ...

    African Journals Online (AJOL)

    The paper presents results of the potential carbon credit and community expectations towards viability of REDD+ projects in Ugalla- Masito ecosystem using a case of Ilagala and Karago villages whereby REDD+ is being piloted. Various data collection methods were employed and these included focused group discussion, ...

  1. Research Note on viability of herbicide and Hormone - treated ...

    African Journals Online (AJOL)

    The responses and viability of acid scarified seeds of four tropical weeds to gibberellic acid and seven herbicides including Galex, Gramoxone, 2 - 4 D, Atrazine, Simazine, Roundup and Primextra in the Laboratory were investigated. The weeds used are Cassia occidentalis, Cassia obtusifolia Cassia hirtusa and ...

  2. Economic Viability of Deficit Irrigation in the Western US

    Science.gov (United States)

    In many arid regions of the world, population growth, groundwater depletion, and uncertain supplies have caused agricultural water to become increasingly scarce. Deficit irrigation (DI) provides a potential response to water scarcity, but no consensus exists on its economic viability. In this pape...

  3. Port viability for choice making among shipping companies in West ...

    African Journals Online (AJOL)

    In this paper, the study of port viability for choice making among shipping companies in West Africa sub-region trade route was conducted. Discriminant analysis was used to ascertain the consistency of the attributes of ports that establish their overall attractiveness to the carriers. The critical valued port attributes deduced ...

  4. The effects of storage conditions on the viability of ...

    African Journals Online (AJOL)

    SARAKA DANIEL

    2015-01-07

    Jan 7, 2015 ... Long-terms recoverability of enteropathogens is necessary for future epidemiological studies to screen stool samples when conditions do not permit immediate processing. The aim of this study was to determine the viability and the recoverability of three enteropathogens bacteria (Yersinia enterocolitica,.

  5. Relationships between cock semen viability and the fertility of ...

    African Journals Online (AJOL)

    CUT User

    Semen was collected from each cock following 5ASM, evaluated for semen viability and 0.05 mL diluted semen used to inseminate five hens per breed, in each experimental group. Significant differences in ejaculation rates and semen quality and quantity were recorded in the four breeds of cocks - with the HP cocks of the ...

  6. Optimizing cell viability in droplet-based cell deposition

    NARCIS (Netherlands)

    Hendriks, Jan; Willem Visser, Claas; Henke, Sieger; Leijten, Jeroen; Saris, Daniël B F|info:eu-repo/dai/nl/241604443; Sun, Chao; Lohse, Detlef; Karperien, Marcel

    2015-01-01

    Biofabrication commonly involves the use of liquid droplets to transport cells to the printed structure. However, the viability of the cells after impact is poorly controlled and understood, hampering applications including cell spraying, inkjet bioprinting, and laser-assisted cell transfer. Here,

  7. Interactions between Plant Extracts and Cell Viability Indicators ...

    African Journals Online (AJOL)

    Interactions between Plant Extracts and Cell Viability. Indicators during Cytotoxicity Testing: Implications for. Ethnopharmacological Studies. Sze Mun Chan1, Kong Soo Khoo2 and Nam Weng Sit1*. 1Department of Biomedical Science, 2Department of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman,.

  8. Dormancy, activation and viability of Rhizopus oligosporus sporangiospores

    NARCIS (Netherlands)

    Thanh, N.V.; Nout, M.J.R.

    2004-01-01

    Interruption of dormancy to improve viability of Rhizopus oligosporus sporangiospores is crucial for the application of stored starter cultures for fungal (tempe) production. We aimed to assess the extent of dormancy and factors that could result in activation. Whereas heat treatments were

  9. Influence of gamma irradiation on pollen viability, germination ability ...

    African Journals Online (AJOL)

    July 9th, 11th, 15th, 21st and 28th) and pollen age (0th and 1st days) on the pollen viability, germination ability and fruit and seed-set were investigated in pumpkin (Cucurbita moschata Duchesne ex Poir.) and winter squash (Cucurbita maxima ...

  10. The Effect of Saturated Fatty Acids on Methanogenesis and Cell Viability of Methanobrevibacter ruminantium

    Directory of Open Access Journals (Sweden)

    Xuan Zhou

    2013-01-01

    Full Text Available Saturated fatty acids (SFAs are known to suppress ruminal methanogenesis, but the underlying mechanisms are not well known. In the present study, inhibition of methane formation, cell membrane permeability (potassium efflux, and survival rate (LIVE/DEAD staining of pure ruminal Methanobrevibacter ruminantium (DSM 1093 cell suspensions were tested for a number of SFAs. Methane production rate was not influenced by low concentrations of lauric (C12; 1 μg/mL, myristic (C14; 1 and 5 μg/mL, or palmitic (C16; 3 and 5 μg/mL acids, while higher concentrations were inhibitory. C12 and C14 were most inhibitory. Stearic acid (C18, tested at 10–80 μg/mL and ineffective at 37°C, decreased methane production rate by half or more at 50°C and ≥50 μg/mL. Potassium efflux was triggered by SFAs (C12 = C14 > C16 > C18 = control, corroborating data on methane inhibition. Moreover, the exposure to C12 and C14 decreased cell viability to close to zero, while 40% of control cells remained alive after 24 h. Generally, tested SFAs inhibited methanogenesis, increased cell membrane permeability, and decreased survival of M. ruminantium in a dose- and time-dependent way. These results give new insights into how the methane suppressing effect of SFAs could be mediated in methanogens.

  11. Toxicological Effects of Organophosphate Pesticide on Ceolomocytes Viability of Earthworm E. Foetida Using NRRA

    Directory of Open Access Journals (Sweden)

    Sameena Farrukh

    2015-03-01

    Full Text Available Background: In recent years, there has been a growing interest in the development of sub-lethal earthworm biomarkers as they are relevant indicators of environmental change and they are among the five key indicators for ecotoxicological testing of industrial chemicals determined by the OECD. In the present study, the effects of an organophosphate pesticide dichlorovos on lysosomes of coelomocytes of earthworm E. foetida are studied using Neutral Red Retention Assay (NRRA. Methods: Earthworms were exposed to three sub-lethal concentrations of the pesticide for 7, 14, 21, and 28 days and neutral red retention assay was done following the method employed by Weeks and Sevendsen and Booth et al. Results: It was observed that the pesticide significantly affected the coelomocyte viability within 28 days of exposure. The neutral red retention time of lysosomal membrane significantly decreased at all concentrations when compared with well-matched controls. Conclusion: After the analysis of results, it was concluded that the neutral red retention time assay in earthworms can be used to link changes in the permeability of lysosomal membranes to ecologically relevant life cycle effects caused by such toxic substances.

  12. Cytokine-induced impairment of short-chain fatty acid oxidation and viability in human colonic epithelial cells

    DEFF Research Database (Denmark)

    Pedersen, G; Saermark, T; Horn, T

    2000-01-01

    Pro-inflammatory cytokines may directly influence the viability and metabolic function of colonic epithelial cells (CEC) as an early event in the development of inflammatory bowel disease. We report here that TNF-alpha+IFN-gamma induced a synergistic, concentration-dependent decline in butyrate o...... was independent on NO formation and involved the IFN-gamma signalling pathway as well as induction of apoptosis. If cytokines have similar effects in vivo, these may lead to energy deficiency and thus contribute to CEC damage and disturbance of the epithelial integrity....

  13. Viability of postmortal epididymal mouse spermatozoa during long-term hypothermic storage and cryopreservation.

    Science.gov (United States)

    Shishova, N V; Gakhova, E N; Mel'nikova, E V

    2011-08-01

    The study examined the effect of long-term hypothermic (4°C) storage of mouse carcasses on motility, cell membrane damage, in vitro survival and capacitation of epididymal spermatozoa before and after cryopreservation. It was shown that the number of spermatozoa with rectilinear forward motion decreased with increasing storage time. There were no significant changes in the total sperm motility and integrity of their plasmalemma. Pronounced effects of hypothermia and long-term storage of the mouse carcasses on cryocapacitation of spermatozoa during cryoconservation were demonstrated.

  14. Viability assessment of invasive microplankton in ship’s treated ballast water

    DEFF Research Database (Denmark)

    Lundgreen, Kim; Holbech, Henrik; Pedersen, Knud Ladegaard

    The spreading of aquatic invasive species in ship’s ballast water has huge environmental and health-related consequences and is causing socio-economic losses around the world in the order of US$100 billion per year. Regulations now require all large ships to have an approved ballast water treatment...... system (BWTS) on-board for cleaning of the ballast water to avoid further spreading of invasive species. To ensure BWTS compliance with discharge standards water samples need to be verified for the number of viable organisms in different size classes. The current standard method for assessing organism...... this method. A special challenge is the verification UV based BWTS. UV causes damage to DNA, but leaves the cell membrane unaffected. DNA damage can either result in later death or in survival due to DNA repair. Current staining methods may therefore produce false positives as dead or dying organisms...

  15. Muscle cell membrane damage by very low serum sodium

    African Journals Online (AJOL)

    Nathan

    2009-11-12

    Nov 12, 2009 ... and following PVP (photoselective vaporization of prostate) for benign prostate hypertrophy [7] had led to hyponatermia induced rhabdomyolysis. Though underlying pathophysiology for hyponatremia induced rhabdomyolysis is still obscure, the proposed mechanism is the malfunction of muscle cell ...

  16. Fluorescence studies on radiation oxidative damage to membranes ...

    Indian Academy of Sciences (India)

    Changes in the lipid bilayer in irradiated unilamellar liposomes prepared from egg yolk lecithin (EYL) were measured by using diphenylhexatriene (DPH) as a probe. The observed increase in DPH polarization and decrease in fluorescence intensity after g-irradiation of liposomes imply radiationinduced decrease in bilayer ...

  17. Guanidination of notexin alters its membrane-damaging activity in ...

    Indian Academy of Sciences (India)

    MADHU

    Abbreviations used: CD, circular dichroism; EYPC, egg yolk phosphatidylcholine; EYSM, egg yolk sphingomyelin; FTIR, Fourier trans- ..... fluorescence spectra of notexin (A) and Gu-notexin (B) were measured using an exciting wavelength of 295 nm. Circular ... underlying the deprivation of their PLA2 activity. Thus,.

  18. Muscle cell membrane damage by very low serum sodium ...

    African Journals Online (AJOL)

    A 63-year-old male was admitted with complaints of upper gastrointestinal symptoms with fatigue and myalgia. Investigations revealed severe hyponatremia with elevated creatine phosphokinase levels. Following further workup, it was diagnosed as a case of hyponatremia induced rhabdomyolysis. Because of prompt ...

  19. Composite sensor membrane

    Science.gov (United States)

    Majumdar, Arun [Orinda, CA; Satyanarayana, Srinath [Berkeley, CA; Yue, Min [Albany, CA

    2008-03-18

    A sensor may include a membrane to deflect in response to a change in surface stress, where a layer on the membrane is to couple one or more probe molecules with the membrane. The membrane may deflect when a target molecule reacts with one or more probe molecules.

  20. Magnetically controlled permeability membranes

    KAUST Repository

    Kosel, Jurgen

    2013-10-31

    A bioactive material delivery system can include a thermoresponsive polymer membrane and nanowires distributed within the thermoresponsive polymer membrane. Magnetic activation of a thermoresponsive polymer membrane can take place via altering the magnetization or dimensions of nanowires dispersed or ordered within the membrane matrix.

  1. Animal damage management handbook.

    Science.gov (United States)

    Hugh C. Black

    1994-01-01

    This handbook treats animal damage management (ADM) in the West in relation to forest, range, and recreation resources; predator management is not addressed. It provides a comprehensive reference of safe, effective, and practical methods for managing animal damage on National Forest System lands. Supporting information is included in references after each chapter and...

  2. Animal damage to birch

    Science.gov (United States)

    James S. Jordan; Francis M. Rushmore

    1969-01-01

    A relatively few animal species are responsible for most of the reported damage to the birches. White-tailed deer, yellow-bellied sapsuckers, porcupines, moose, and hares are the major animals involved. We will review reports of damage, discuss the underlying causes, and describe possible methods of control. For example, heavy deer browsing that eliminates birch...

  3. DNA damage response

    NARCIS (Netherlands)

    G. Giglia-Mari (Giuseppina); A. Zotter (Angelika); W. Vermeulen (Wim)

    2011-01-01

    textabstractStructural changes to DNA severely affect its functions, such as replication and transcription, and play a major role in age-related diseases and cancer. A complicated and entangled network ofDNA damage response (DDR) mechanisms, including multiple DNA repair pathways, damage tolerance

  4. Post-cryopreservation viability of the benthic freshwater diatom Planothidium frequentissimum depends on light levels.

    Science.gov (United States)

    Buhmann, Matthias T; Day, John G; Kroth, Peter G

    2013-08-01

    Over recent years, several planktonic and benthic freshwater diatom taxa have been established as laboratory model strains. In common with most freshwater diatoms the pennate diatom Planothidium frequentissimum suffers irreversible cell shrinkage on prolonged maintenance by serial transfers, without induction of the sexual cycle. Therefore, alternative strategies are required for the long-term maintenance of this strain. Conventional colligative cryopreservation approaches have previously proven unsuccessful with no regrowth. However, in this study using 5% dimethyl sulfoxide (Me2SO), controlled cooling at 1 °C min(-1), automated ice seeding and cooling to -40 °C with a final plunge into liquid nitrogen, viability levels were enhanced from 0.3 ± 0.4% to 80 ± 3%, by incorporating a 48 h dark-recovery phase after rewarming. Omission, or reduction, of this recovery step resulted in obvious cell damage with photo-bleaching of pigments, indicative of oxidative-stress induced cell damage, with subsequent deterioration of cellular architecture. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Fetal viability as a threshold to personhood. A legal analysis.

    Science.gov (United States)

    Peterfy, A

    1995-12-01

    This essay opens with an examination of US laws concerning fetal viability as they apply to induced abortion, to a mother's right to refuse medical treatment necessary to save the life of a fetus, and to the rights to file suit for the wrongful death of unborn children. The history of abortion policies in the US is traced from the common law period of the early 19th century to the restrictive post-Civil War laws and the decisions of the Supreme Court in Roe vs. Wade, which upheld the constitutionality of previability abortions; Webster vs. Reproductive Health Services, in which the Court assigned viability to the 20th week of pregnancy and acknowledged that States could have a compelling previability interest in the fetus; and the Casey decision, which provided tolerance for limits on the availability of abortion before viability as long as the limits did not create an "undue burden" on the woman seeking the abortion. Courts dealing with the issue of compelling a mother to undergo medical treatment to save her fetus have been inconsistent as they balanced the state's interest in the fetus against the mother's rights to privacy. Judges have tended to err on the side of forcing the medical interventions, but the most recent trend is against this sort of judgement. In these cases, fetal viability has also served as a dividing line. The inconsistency of the legal system is illustrated by the fact that, whereas the fetus now has a legal existence, wrongful death actions entered on behalf of a nonviable fetus have often been denied although courts have been more willing to extend protection to fetuses in wrongful death tort cases than in abortion or medical intervention cases. Criminal law has a unique set of rules for dealing with fetuses as some states have broadened their definitions of "homicide" to include fetuses, even nonviable fetuses. Courts, however, are reluctant to enlarge criminal statutes on their own. While the central position given to the role of

  6. Phospholipase Dα1-mediated phosphatidic acid change is a key determinant of desiccation-induced viability loss in seeds.

    Science.gov (United States)

    Chen, Hongying; Yu, Xiaomei; Zhang, Xudong; Yang, Lan; Huang, Xing; Zhang, Jie; Pritchard, Hugh W; Li, Weiqi

    2018-01-01

    High sensitivity of seeds to water loss is a widespread phenomenon in the world's plant species. The molecular basis of this trait is poorly understood but thought to be associated with critical changes in membrane function. We profiled membrane lipids of seeds in eight species with varying levels of desiccation tolerance and found a close association between reducing seed viability and increasing phosphatidic acid (PA). We applied hydration-dehydration cycles to Arabidopsis seeds, which are normally desiccation tolerant, to mimic the onset of desiccation sensitivity with progression towards germination and examined the role of phospholipase D (PLD) in desiccation stress-induced production of PA. We found that PLDα1 became more abundant and migrated from the cytosol to the membrane during desiccation, whereas PLDδ did not change, and that all desiccation-induced PA was derived from PLDα1 hydrolysis. When PLDα1 was suppressed, the germination level after each hydration-dehydration cycle improved significantly. We further demonstrated that PLDα1-mediated PA formation modulates desiccation sensitivity as applying its inhibitor improved seed desiccation tolerance and its suppression in protoplasts enhanced survival under dehydration. The insights provided by comparative lipidomics enable us to propose a new membrane-based model for seed desiccation stress and survival. © 2017 John Wiley & Sons Ltd.

  7. Tree damage and mycotrophy

    Energy Technology Data Exchange (ETDEWEB)

    Heyser, W.; Iken, J.; Meyer, F.H.

    1988-10-22

    Tree species that are particularly endangered in our forests are characterized by the fact that they live in an obligatory symbiosis with ectomycorrhiza fungii. In verifying which tree species appear to be more damaged or less severely damaged, a conspicuous phenomenon noted was that the tree species exhibiting slight symptoms of damage or none at all included such ones as form mycorrhizas facultatively or dispense with mycorrhizas, e.g. Acer, Aesculus, Fraxinus, Populus, Salix. Given that trees in municipal gardens reflect the development and extent of damage in a way similar to forests, and given also that much greater numbers of tree species are often cultured in parks of this type, the latter were considered particularly suited to examine the question of whether a relationship exists between mycotrophy and the severity of damage.

  8. Cellular viability techniques applied to chlorineting process control in activated sludge; Tecnicas de viabilidad celular para el control de procesos de cloracion en fangos activados

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez Arteaga, G. W.; Alonso Molina, J. L.; Becares Mantecon, E.; Basiero, J. A.; Santos, J. M.; Bernacer, I.; Morenilla, J. J.; Moreno Galvez, I.

    2001-07-01

    The effect of chlorine-induced damage on filamentous bacteria was assessed using suitable fluorescent intracellular stains (BL) Live/Dead BacLight Viability Kit -7012, (Molecular Probes Inc. 1998). The (BL)method was useful for assessing chlorine effect on filamentous microorganisms in mixed cultures such as activated sludge. This approach allows for a relatively fast assessment of the extent of the disinfection and the level of damage in the filaments and floc bacteria, being a valuable aid for chlorine dosage, saving costs and reducing floc-side effects. (Author) 11 refs.

  9. Ginseng (Panax quinquefolius and Licorice (Glycyrrhiza uralensis Root Extract Combinations Increase Hepatocarcinoma Cell (Hep-G2 Viability

    Directory of Open Access Journals (Sweden)

    David G. Popovich

    2011-01-01

    Full Text Available The combined cytoactive effects of American ginseng (Panax quinquefolius and licorice (Glycyrrhiza uralensis root extracts were investigated in a hepatocarcinoma cell line (Hep-G2. An isobolographic analysis was utilized to express the possibility of synergistic, additive or antagonistic interaction between the two extracts. Both ginseng and licorice roots are widely utilized in traditional Chinese medicine preparations to treat a variety of ailments. However, the effect of the herbs in combination is currently unknown in cultured Hep-G2 cells. Ginseng (GE and licorice (LE extracts were both able to reduce cell viability. The LC50 values, after 72 h, were found to be 0.64 ± 0.02 mg/mL (GE and 0.53 ± 0.02 mg/mL (LE. An isobologram was plotted, which included five theoretical LC50s calculated, based on the fixed fraction method of combination ginseng to licorice extracts to establish a line of additivity. All combinations of GE to LE (1/5, 1/3, 1/2, 2/3, 4/5 produced an effect on Hep-G2 cell viability but they were all found to be antagonistic. The LC50 of fractions 1/3, 1/2, 2/3 were 23%, 21% and 18% above the theoretical LC50. Lactate dehydrogenase release indicated that as the proportion of GE to LE increased beyond 50%, the influence on membrane permeability increased. Cell-cycle analysis showed a slight but significant arrest at the G1 phase of cell cycle for LE. Both GE and LE reduced Hep-G2 viability independently; however, the combinations of both extracts were found to have an antagonistic effect on cell viability and increased cultured Hep-G2 survival.

  10. Targeting melanoma growth and viability reveals dualistic functionality of the phosphonothionate analogue of carba cyclic phosphatidic acid

    Directory of Open Access Journals (Sweden)

    Prestwich Glenn D

    2010-06-01

    Full Text Available Abstract Background Although the incidence of melanoma in the U.S. is rising faster than any other cancer, the FDA-approved chemotherapies lack efficacy for advanced disease, which results in poor overall survival. Lysophosphatidic acid (LPA, autotaxin (ATX, the enzyme that produces LPA, and the LPA receptors represent an emerging group of therapeutic targets in cancer, although it is not known which of these is most effective. Results Herein we demonstrate that thio-ccPA 18:1, a stabilized phosphonothionate analogue of carba cyclic phosphatidic acid, ATX inhibitor and LPA1/3 receptor antagonist, induced a marked reduction in the viability of B16F10 metastatic melanoma cells compared with PBS-treated control by 80-100%. Exogenous LPA 18:1 or D-sn-1-O-oleoyl-2-O-methylglyceryl-3-phosphothioate did not reverse the effect of thio-ccPA 18:1. The reduction in viability mediated by thio-ccPA 18:1 was also observed in A375 and MeWo melanoma cell lines, suggesting that the effects are generalizable. Interestingly, siRNA to LPA3 (siLPA3 but not other LPA receptors recapitulated the effects of thio-ccPA 18:1 on viability, suggesting that inhibition of the LPA3 receptor is an important dualistic function of the compound. In addition, siLPA3 reduced proliferation, plasma membrane integrity and altered morphology of A375 cells. Another experimental compound designed to antagonize the LPA1/3 receptors significantly reduced viability in MeWo cells, which predominantly express the LPA3 receptor. Conclusions Thus the ability of thio-ccPA 18:1 to inhibit the LPA3 receptor and ATX are key to its molecular mechanism, particularly in melanoma cells that predominantly express the LPA3 receptor. These observations necessitate further exploration and exploitation of these targets in melanoma.

  11. Metabolite Damage and Metabolite Damage Control in Plants

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, Andrew D. [Horticultural Sciences Department and; Henry, Christopher S. [Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, Illinois 60439, email:; Computation Institute, University of Chicago, Chicago, Illinois 60637; Fiehn, Oliver [Genome Center, University of California, Davis, California 95616, email:; de Crécy-Lagard, Valérie [Microbiology and Cell Science Department, University of Florida, Gainesville, Florida 32611, email: ,

    2016-04-29

    It is increasingly clear that (a) many metabolites undergo spontaneous or enzyme-catalyzed side reactions in vivo, (b) the damaged metabolites formed by these reactions can be harmful, and (c) organisms have biochemical systems that limit the buildup of damaged metabolites. These damage-control systems either return a damaged molecule to its pristine state (metabolite repair) or convert harmful molecules to harmless ones (damage preemption). Because all organisms share a core set of metabolites that suffer the same chemical and enzymatic damage reactions, certain damage-control systems are widely conserved across the kingdoms of life. Relatively few damage reactions and damage-control systems are well known. Uncovering new damage reactions and identifying the corresponding damaged metabolites, damage-control genes, and enzymes demands a coordinated mix of chemistry, metabolomics, cheminformatics, biochemistry, and comparative genomics. This review illustrates the above points using examples from plants, which are at least as prone to metabolite damage as other organisms.

  12. Enhanced attachment of human osteoblasts on NH3-treated poly(L-lactic acid) membranes for guided bone regeneration.

    Science.gov (United States)

    Byeon, Ju-Hee; Kim, Su-Gwan; Son, Jun-Sik; Jin, Seung-Chan; Piao, Zheng-Gang; Lee, Sook-Young; Jang, Eun-Sook; Kim, Jae-Sung; Jeong, Mi-Ae; Ahn, Hoon; Park, Jong-Phil

    2013-03-01

    Barrier membranes for guided bone regeneration (GBR) were prepared by a solvent casting method using solutions of poly(L-lactic acid) (PLLA) and chitosan. PLLA and PLLA/chitosan membranes were treated with ammonia gas plasma. PLLA/chitosan membranes were successfully fabricated, and the surface of the PLLA/chitosan membrane was clearly modified by NH3 plasma treatment according to attenuated total reflectance (ATR-FTIR), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) analyses. Additionally, water contact angle testing indicated that the hydrophilicity of these membranes was significantly increased. MG-63 cells were cultured on each type of membrane, and cell viability was examined using an MTT assay. After one week of culturing, MG-63 cells were more abundant on PLLA/chitosan membranes than on PLLA membranes. The cell viability of PLLA/chitosan membranes with plasma treatment was significantly higher than that of PLLA membranes. These results suggest that this plasma-treated membrane is suitable for GBR and is a promising source of bioactive membrane material for bone regeneration.

  13. VIABILITY OF THE PROBIOTIC BACTERIA L. ACIDOPHILUS IN DAIRY PRODUCTS

    Directory of Open Access Journals (Sweden)

    Janka Koreňová

    2011-12-01

    Full Text Available A number of health benefits have been claimed for probiotic bacteria such as Lactobacillus acidophilus. Because of the potential health benefits, these organisms are increasingly incorporated into dairy foods. Viability of probiotic bacteria is important in order to provide health benefits. However, many studies have shown low viability of probiotics in market preparations. This study cover selective enumeration and survival of probiotic bacteria L. acidophilus in some dairy drinks. L. acidophilus was found in the range from 106 to 107 CFU.g-1 in five types of fermented milk products containing probiotic cultures. Two investigated products were up to standard according to Regulation of Ministry of Agriculture and Ministry of Health of Slovak Republic.doi: 10.5219/147

  14. Nuclear Power Options Viability Study. Volume 4. Bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Trauger, D B; White, J D; Sims, J W [eds.

    1986-09-01

    Documents in the Nuclear Power Options Viability Study (NPOVS) bibliography are classified under one of four headings or categories as follows: nuclear options; light water reactors; liquid metal reactors; and high temperature reactors. The collection and selection of these documents, beginning early in 1984 and continuing through March of 1986, was carried out in support of the study's objective: to explore the viabilities of several nuclear electric power generation options for commercial deployment in the United States between 2000 and 2010. There are approximately 550 articles, papers, reports, and books in the bibliography that have been selected from some 2000 surveyed. The citations have been made computer accessible to facilitate rapid on-line retrieval by keyword, author, corporate author, title, journal name, or document number.

  15. Myocardial Viability: From Proof of Concept to Clinical Practice

    Directory of Open Access Journals (Sweden)

    Aditya Bhat

    2016-01-01

    Full Text Available Ischaemic left ventricular (LV dysfunction can arise from myocardial stunning, hibernation, or necrosis. Imaging modalities have become front-line methods in the assessment of viable myocardial tissue, with the aim to stratify patients into optimal treatment pathways. Initial studies, although favorable, lacked sufficient power and sample size to provide conclusive outcomes of viability assessment. Recent trials, including the STICH and HEART studies, have failed to confer prognostic benefits of revascularisation therapy over standard medical management in ischaemic cardiomyopathy. In lieu of these recent findings, assessment of myocardial viability therefore should not be the sole factor for therapy choice. Optimization of medical therapy is paramount, and physicians should feel comfortable in deferring coronary revascularisation in patients with coronary artery disease with reduced LV systolic function. Newer trials are currently underway and will hopefully provide a more complete understanding of the pathos and management of ischaemic cardiomyopathy.

  16. Traffic networks as information systems a viability approach

    CERN Document Server

    Aubin, Jean-Pierre

    2017-01-01

    This authored monograph covers a viability to approach to traffic management by advising to vehicles circulated on the network the velocity they should follow for satisfying global traffic conditions;. It presents an investigation of three structural innovations: The objective is to broadcast at each instant and at each position the advised celerity to vehicles, which could be read by auxiliary speedometers or used by cruise control devices. Namely, 1. Construct regulation feedback providing at each time and position advised velocities (celerities) for minimizing congestion or other requirements. 2. Taking into account traffic constraints of different type, the first one being to remain on the roads, to stop at junctions, etc. 3. Use information provided by the probe vehicles equipped with GPS to the traffic regulator; 4. Use other global traffic measures of vehicles provided by different types of sensors; These results are based on convex analysis, intertemporal optimization and viability theory as mathemati...

  17. Care at the edge of viability: medical and ethical issues.

    Science.gov (United States)

    Haward, Marlyse F; Kirshenbaum, Nancy W; Campbell, Deborah E

    2011-09-01

    Decision-making for extremely immature preterm infants at the margins of viability is ethically, professionally, and emotionally complicated. A standard for prenatal consultation should be developed incorporating assessment of parental decision-making preferences and styles, a communication process involving a reciprocal exchange of information, and effective strategies for decisional deliberation, guided by and consistent with parental moral framework. Professional caregivers providing perinatal consultations or end-of-life counseling for extremely preterm infants should be sensitive to these issues and be taught flexibility in counseling techniques adhering to consistent guidelines. Emphasis must shift away from physician beliefs and behaviors about the boundaries of viability. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Characteristics associated with regional health information organization viability.

    Science.gov (United States)

    Adler-Milstein, Julia; Landefeld, John; Jha, Ashish K

    2010-01-01

    Regional Health Information Organizations (RHIOs) will likely play a key role in our nation's effort to catalyze health information exchange. Yet we know little about why some efforts succeed while others fail. We sought to identify factors associated with RHIO viability. Using data from a national survey of RHIOs that we conducted in mid-2008, we examined factors associated with becoming operational and factors associated with financial viability. We used multivariate logistic regression models to identify unique predictors. We classified RHIOs actively facilitating data exchange as operational and measured financial viability as the percent of operating costs covered by revenue from participants in data exchange (0-24%, 25-74%, 75-100%). Predictors included breadth of participants, breadth of data exchanged, whether the RHIO focused on a specific population, whether RHIO participants had a history of collaborating, and sources of revenue during the planning phase. Exchanging a narrow set of data and involving a broad group of stakeholders were independently associated with a higher likelihood of being operational. Involving hospitals and ambulatory physicians, and securing early funding from participants were associated with a higher likelihood of financial viability, while early grant funding seemed to diminish the likelihood. Finding ways to help RHIOs become operational and self-sustaining will bolster the current approach to nationwide health information exchange. Our work suggests that convening a broad coalition of stakeholders to focus on a narrow set of data is an important step in helping RHIOs become operational. Convincing stakeholders to financially commit early in the process may help RHIOs become self-sustaining.

  19. Effect of Allium sativum (garlic) methanol extract on viability and ...

    African Journals Online (AJOL)

    Effect of Allium sativum (garlic) methanol extract on viability and apoptosis of human leukemic cell lines. ... bromide (MTT) assay at concentrations of 3.125, 6.25, 12.5, 25, 50, 100, 200, 400 and 800 ug/mL of Allium sativum extract following 48-h treatment on U-937, Jurkat Clone E6-1 and K-562 cell lines. The mode of cell ...

  20. Viability and Indication of Pathogenic Microbes in the Environment,

    Science.gov (United States)

    viability of parasitic microbes can be clarified corrently only with consideration of the interaction of the organism with the environment and...adaptation to it. According to this school of thought, the stability of a causative agent in the environment is determined by the specific mechanism through...mechanism of transfer of the contaminating principle, the shorter the period during which the parasitic microbe is in the environment - i.e., the

  1. Effect of Isolation Techniques on Viability of Bovine Blood Neutrophils

    Directory of Open Access Journals (Sweden)

    P. Sláma

    2006-01-01

    Full Text Available The effect of selected isolation methods on the viability of neutrophil granulocytes (neutrophils from the blood of healthy Holstein x Bohemian Red Pied crossbred heifers was evaluated. Two methods of neutrophil isolation were used: a neutrophil isolation on the basis of hypotonic erythrocyte lysis (in two variants: after the erythrocyte lysis proper, the cells were centrifuged at either 200 g or 1000 g, and b neutrophil isolation with FACS Lysing Solution as the lysing agent. The viability of the isolated neutrophils was evaluated on the basis of apoptosis and necrosis. The results obtained with flow cytometry (FCM suggest that, from the isolation techniques used, the method based on FACS Lysing Solution impaired the neutrophil viability least. After the application of this method, 5.36 ± 2.15% of neutrophils were apoptotic and 0.51 ± 0.12% were necrotic. In contrast, when the hypotonic erythrocyte lysis was used, the proportion of apoptotic neutrophils amounted to 42.14 ± 7.12% and 49.00 ± 14.70%, respectively, and 41.12 ± 5.55% and 36.91 ± 24.38% respectively of necrotic neutrophils (P < 0.01. This was also confirmed by the light microscopy. After the isolation with FASC Lysing Solution, 1.92 ± 1.74% of neutrophils were apoptotic and 1.05 ± 0.76% were necrotic, as distinct from after the hypotonic erythrocyte lysis where 9.43 ± 3.69% of neutrophils were apoptotic and 12.67 ± 4.74% of necrotic after centrifugation at 200 g, while 12.60 ± 4.35 were apoptotic and 14.96 ± 12.64% were necrotic after centrifugation at 1000 g. It follows from the above-mentioned data that hypotonic lysis is not a suitable method for the isolation of neutrophils, as the method itself markedly affects cell viability.

  2. Effects of Fluid Shear Stress on Cancer Stem Cell Viability

    Science.gov (United States)

    Sunday, Brittney; Triantafillu, Ursula; Domier, Ria; Kim, Yonghyun

    2014-11-01

    Cancer stem cells (CSCs), which are believed to be the source of tumor formation, are exposed to fluid shear stress as a result of blood flow within the blood vessels. It was theorized that CSCs would be less susceptible to cell death than non-CSCs after both types of cell were exposed to a fluid shear stress, and that higher levels of fluid shear stress would result in lower levels of cell viability for both cell types. To test this hypothesis, U87 glioblastoma cells were cultured adherently (containing smaller populations of CSCs) and spherically (containing larger populations of CSCs). They were exposed to fluid shear stress in a simulated blood flow through a 125-micrometer diameter polyetheretherketone (PEEK) tubing using a syringe pump. After exposure, cell viability data was collected using a BioRad TC20 Automated Cell Counter. Each cell type was tested at three physiological shear stress values: 5, 20, and 60 dynes per centimeter squared. In general, it was found that the CSC-enriched U87 sphere cells had higher cell viability than the CSC-depleted U87 adherent cancer cells. Interestingly, it was also observed that the cell viability was not negatively affected by the higher fluid shear stress values in the tested range. In future follow-up studies, higher shear stresses will be tested. Furthermore, CSCs from different tumor origins (e.g. breast tumor, prostate tumor) will be tested to determine cell-specific shear sensitivity. National Science Foundation Grant #1358991 supported the first author as an REU student.

  3. MODERN TECHNIQUES OF CERVICAL INSTRUMENTATION IN IMMATURE SKELETON: VIABILITY ASSESSMENT

    OpenAIRE

    Aires, Ayrana Soares; Silva, Luís Eduardo Carelli Teixeira da; Barros, Alderico Girão Campos de; Azevedo, Gustavo Borges Laurindo de; Naves, Cleiton Dias

    2017-01-01

    ABSTRACT Objective: This study describes the use of materials for modern cervical instrumentation, evaluating its viability in children and adolescents, and the techniques used in different cases. The efficacy of the techniques was analyzed through improvement of pain, maintenance of cervical range of motion, recovery of craniocervical stability, bone consolidation, and spinal stenosis in the postoperative follow-up. Method: Retrospective study of the clinical and radiological parameters of 2...

  4. Comparison of tissue viability imaging and colorimetry: skin blanching.

    Science.gov (United States)

    Zhai, Hongbo; Chan, Heidi P; Farahmand, Sara; Nilsson, Gert E; Maibach, Howard I

    2009-02-01

    Operator-independent assessment of skin blanching is important in the development and evaluation of topically applied steroids. Spectroscopic instruments based on hand-held probes, however, include elements of operator dependence such as difference in applied pressure and probe misalignment, while laser Doppler-based methods are better suited for demonstration of skin vasodilatation than for vasoconstriction. To demonstrate the potential of the emerging technology of Tissue Viability Imaging (TiVi) in the objective and operator-independent assessment of skin blanching. The WheelsBridge TiVi600 Tissue Viability Imager was used for quantification of human skin blanching with the Minolta chromameter CR 200 as an independent colorimeter reference method. Desoximetasone gel 0.05% was applied topically on the volar side of the forearm under occlusion for 6 h in four healthy adults. In a separate study, the induction of blanching in the occlusion phase was mapped using a transparent occlusion cover. The relative uncertainty in the blanching estimate produced by the Tissue Viability Imager was about 5% and similar to that of the chromameter operated by a single user and taking the a(*) parameter as a measure of blanching. Estimation of skin blanching could also be performed in the presence of a transient paradoxical erythema, using the integrated TiVi software. The successive induction of skin blanching during the occlusion phase could readily be mapped by the Tissue Viability Imager. TiVi seems to be suitable for operator-independent and remote mapping of human skin blanching, eliminating the main disadvantages of methods based on hand-held probes.

  5. A multi-parametric approach assessing microbial viability and organic matter characteristics during managed aquifer recharge.

    Science.gov (United States)

    Kim, Hyun-Chul; Noh, Jin Hyung; Chae, So-Ryong; Choi, Jaewon; Lee, Yunho; Maeng, Sung Kyu

    2015-08-15

    Soil column (SC) experiments were conducted to investigate the feasibility of using silver nanoparticles (AgNPs) as microbial inhibitors; the microbial viability affecting the degradation of pharmaceutically active compounds (PhACs) and the characteristics of organic matter during managed aquifer recharge were specifically evaluated. Natural surface water samples treated with AgNPs (0, 2.5, 5, and 10 mg L(-1)) were continually fed into the soil columns for 2 years. The adverse impact of AgNPs on the cell membrane integrity and microbial enzymatic activity was quantitatively determined using flow cytometry and adenosine triphosphate analysis. The increase in AgNP concentration in the feed water (up to 10 mg L(-1)) resulted in a corresponding deterioration in the performance of the managed aquifer recharge (MAR), with respect to the removal of organic carbon, oxidation of nitrogenous compounds, and PhAC attenuation. The fluorescence excitation-emission matrices of feed water and treated water showed the favorable removal of protein-like substances compared to humic-like substances regardless of the AgNP concentrations; however, the extent of removed fractions decreased noticeably when the microbial viability was lowered via AgNP treatment. The biological oxidation of organic nitrogen was almost completely inhibited when 10 mg L(-1) AgNP was added during soil passage. The attenuation of bezafibrate, ketoprofen, diclofenac, clofibric acid, and gemfibrozil was strongly associated with the significant deterioration in biodegradation as a result of AgNP activity. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Intracellular magnesium level determines cell viability in the MPP(+) model of Parkinson's disease.

    Science.gov (United States)

    Shindo, Yutaka; Yamanaka, Ryu; Suzuki, Koji; Hotta, Kohji; Oka, Kotaro

    2015-12-01

    Parkinson's disease (PD) is a neurodegenerative disorder resulting from mitochondrial dysfunction in dopaminergic neurons. Mitochondria are believed to be responsible for cellular Mg²⁺ homeostasis. Mg²⁺ is indispensable for maintaining ordinal cellular functions, hence perturbation of the cellular Mg²⁺ homeostasis may be responsible for the disorders of physiological functions and diseases including PD. However, the changes in intracellular Mg²⁺ concentration ([Mg²⁺]i) and the role of Mg²⁺ in PD have still been obscure. In this study, we investigated [Mg²⁺]i and its effect on neurodegeneration in the 1-methyl-4-phenylpyridinium (MPP⁺) model of PD in differentiated PC12 cells. Application of MPP⁺ induced an increase in [Mg²⁺]i immediately via two different pathways: Mg²⁺ release from mitochondria and Mg²⁺ influx across cell membrane, and the increased [Mg²⁺]i sustained for more than 16 h after MPP⁺ application. Suppression of Mg²⁺ influx decreased the viability of the cells exposed to MPP⁺. The cell viability correlated highly with [Mg²⁺]i. In the PC12 cells with suppressed Mg²⁺ influx, ATP concentration decreased and the amount of reactive oxygen species (ROS) increased after an 8h exposure to MPP⁺. Our results indicate that the increase in [Mg²⁺]i inhibited cellular ROS generation and maintained ATP production, which resulted in the protection from MPP⁺ toxicity. Copyright © 2015. Published by Elsevier B.V.

  7. Methanotroph outer membrane preparation.

    Science.gov (United States)

    Karlsen, Odd A; Berven, Frode S; Jensen, Harald B; Fjellbirkeland, Anne

    2011-01-01

    All presently known methanotrophs are gram-negative bacteria suggesting that they are surrounded by a two-layered membrane: an inner or cytoplasmic membrane and an outer membrane. In the methanotroph Methylococcus capsulatus (Bath), separation of the two membranes has allowed studies on protein and lipid composition of the outer membrane. Its outer membrane can be isolated from purified cell envelopes by selective solubilization of the inner membranes with the detergent Triton X-100. The proteins associated with the outer membrane can further be fractionated into integral and tightly associated proteins and peripheral loosely associated proteins. We present here protocols for this fractionation and show how the proteins associated with the outer leaflet of the outer membrane can be isolated and identified by whole-cell biotin surface labeling. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Static cold storage preservation of ischemically damaged kidneys. A comparison between IGL-1 and UW solution

    NARCIS (Netherlands)

    Maathuis, Mark-Hugo J.; Ottens, Petra J.; van Goor, Harry; Zwaagstra, Jacco J.; Wiersema-Buist, Janneke; Schuurs, Theo A.; Ploeg, Rutger J.; Leuvenink, Henri G. D.

    Especially in damaged organs, adequate organ preservation is critically important to maintain viability. Institut Georges Lopez-1 (IGL-1) is a new preservation solution, with an extracellular sodium/potassium ratio and polyethylene glycol as a colloid. The influence of warm and cold ischemia was

  9. Ca-Lignosulphonate and sclerotial viability of Sclerotinia sclerotiorum

    Directory of Open Access Journals (Sweden)

    MATTEO MONTANARI

    2012-01-01

    Full Text Available Lignosulphonates, low cost by-products of the pulping process, have shown suppressive effects against some diseases caused by soil-borne pathogens. In this study, the effect of 1.5% v/v calcium lignosulphonate (Ca-Ls amendment to two commercial potting mixes (peat + coconut fibres; PC; and municipal compost + peat + pumice; MCPP on the viability of Sclerotinia sclerotiorum sclerotia was investigated. Sclerotia were buried in the Ca-Ls amended substrates for 30 days. Non-amended PC and MCPP, sterile sand and sterile PC with and without Ca-Ls were used as controls. The viability of sclerotia recovered from PC and MCPP amended with Ca-Ls was reduced by 50 and 42% respectively compared to control treatments. Ca-Ls amendment decreased sclerotial viability by enhancing the activity of the indigenous mycoparasitic fungi, Fusarium oxysporum, Mucor spp. and Trichoderma spp. The biocontrol ability of Ca-Ls against sclerotia was due to the stimulation of microbial activity and is, therefore, strictly dependent on the microbial composition of the substrate.

  10. Viability studies of optically trapped T-cells

    Science.gov (United States)

    McAlinden, Niall; Glass, David G.; Millington, Owain; Wright, Amanda J.

    2011-10-01

    We present a viability study of optically trapped live T cell hybridomas. T cells form an important part of the adaptive immune response system which is responsible for fighting particular pathogens or diseases. The cells of interest were directly trapped by a laser operating at a wavelength of 1064 nm and their viability measured as a function of time. Cell death was monitored using an inverted fluorescent microscope to observe the uptake by the cell of the fluorescent dye propidium iodide. Studies were undertaken at various laser powers and beam profiles. There is a growing interest in optically trapping immune cells and this is the first study that investigates the viability of a T cell when trapped using a conventional optical trapping system. In such experiments it is crucial that the T cell remains viable and trapping the cell directly means that any artefacts due to a cell-bead interface are removed. Our motivation behind this experiment is to use optical tweezers to gain a greater understanding of the interaction forces between T cells and antigen presenting cells. Measuring these interactions has become important due to recent theories which indicate that the strength of this interaction may underlie the activation of the T-cell and subsequent immune response.

  11. Nuclear cardiac imaging for the assessment of myocardial viability.

    Science.gov (United States)

    Slart, R H J A; Bax, J J; van der Wall, E E; van Veldhuisen, D J; Jager, P L; Dierckx, R A

    2005-11-01

    An important aspect of the diagnostic and prognostic work-up of patients with ischaemic cardiomyopathy is the assessment of myocardial viability. Patients with left ventricular dysfunction who have viable myocardium are the patients at highest risk because of the potential for ischaemia but at the same time benefit most from revascularisation. It is important to identify viable myocardium in these patients, and radionuclide myocardial scintigraphy is an excellent tool for this. Single-photon emission computed tomography perfusion scintigraphy (SPECT), whether using 201thallium, 99mTc-sestamibi, or 99mTc- tetrofosmin, in stress and/or rest protocols, has consistently been shown to be an effective modality for identifying myocardial viability and guiding appropriate management. Metabolic and perfusion imaging with positron emission tomography radiotracers frequently adds additional information and is a powerful tool for predicting which patients will have an improved outcome from revascularisation. New techniques in the nuclear cardiology field, such as attenuation corrected SPECT, dual isotope simultaneous acquisition (DISA) SPECT and gated FDG PET are promising and will further improve the detection of myocardial viability. Also the combination of multislice computed tomography scanners with PET opens possibilities of adding coronary calcium scoring and noninvasive coronary angiography to myocardial perfusion imaging and quantification.

  12. Viability of various weed seeds in anaerobic conditions (biogas plant)

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, S.; Hansen, J.

    1983-04-01

    Seeds from different weeds, Urtica urens L. (nettle), Solanum nigrum L. (nightshade), Avena fatua L. (wild oat-grass), Brassica napus L. (rape), Chenopodium album L. (goose-foot), were put into small polyester net bags, which were placed in biogas reactors containing cattle manure. These ''biogas reactors'' were placed at different temperatures . Net bags were taken out after 4.5, 10.5, 21.5, 38 and 53 days, and the seeds were tested for their viability by germination tests and the tetrazolium method. Concerning all seeds it was manifested that the viability decreased very steeply at 35degC. Most of the seeds had a T/sub 50/ at 2-5 days; Chenopodium album L seeds had a T/sub 50/ at 16 days. After 4.5 days it was not possible to find living Avena fatua L seeds. The decrease in viability was less steep at 20degC and even less steep at 2degC.

  13. Viability of lactobacillus acidophilus in various vaginal tablet formulations

    Directory of Open Access Journals (Sweden)

    Fazeli M.R.

    2006-07-01

    Full Text Available The lactobacilli which are present in vaginal fluids play an important role in prevention of vaginosis and there are considerable interests in formulation of these friendly bacteria into suitable pharmaceutical dosage forms. Formulating these microorganisms for vaginal application is a critical issue as the products should retain viability of lactobacilli during formulation and also storage. The aim of this study was to examine the viability and release of Lactobacillus acidophilus from slow-release vaginal tablets prepared by using six different retarding polymers and from two effervescent tablets prepared by using citric or adipic acid. The Carbomer–based formulations showed high initial viablility compared to those based on HPMC-LV, HPMC-HV, Polycarbophil and SCMC polymers which showed one log decrease in viable cells. All retarding polymers in slow release formulations presented a strong bacterial release at about 2 h except Carbomer polymers which showed to be poor bacterial releasers. Although effervescent formulations produced a quick bacterial release in comparison with polymer based slow-release tablets, they were less stable in cold storage. Due to the strong chelating characteristic of citric acid, the viability was quickly lost for aqueous medium of citric acid in comparison with adipic acid based effervescent tablets.

  14. PET/SPECT imaging: From carotid vulnerability to brain viability

    Energy Technology Data Exchange (ETDEWEB)

    Meerwaldt, Robbert [Department of Surgery, Isala Clinics, Zwolle (Netherlands); Slart, Riemer H.J.A. [Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, Groningen (Netherlands); Dam, Gooitzen M. van [Department of Surgery, University Medical Center Groningen, Groningen (Netherlands); Luijckx, Gert-Jan [Department of Neurology, University Medical Center Groningen, Groningen (Netherlands); Tio, Rene A. [Department of Cardiology, University Medical Center Groningen, Groningen (Netherlands); Zeebregts, Clark J. [Department of Surgery, University Medical Center Groningen, Groningen (Netherlands)], E-mail: czeebregts@hotmail.com

    2010-04-15

    Background: Current key issues in ischemic stroke are related to carotid plaque vulnerability, brain viability, and timing of intervention. The treatment of ischemic stroke has evolved into urgent active interventions, as 'time is brain'. Functional imaging such as positron emission tomography (PET)/single photon emission computed tomography (SPECT) could improve selection of patients with a vulnerable plaque and evaluation of brain viability in ischemic stroke. Objective: To describe the current applications of PET and SPECT as a diagnostic tool in relation to ischemic stroke. Methods: A literature search using PubMed identified articles. Manual cross-referencing was also performed. Results: Several papers, all observational studies, identified PET/SPECT to be used as a tool to monitor systemic atheroma modifying treatment and to select high-risk patients for surgery regardless of the degree of luminal stenosis in carotid lesions. Furthermore, PET/SPECT is able to quantify the penumbra region during ischemic stroke and in this way may identify those patients who may benefit from timely intervention. Discussion: Functional imaging modalities such as PET/SPECT may become important tools for risk-assessment and evaluation of treatment strategies in carotid plaque vulnerability and brain viability. Prospective clinical studies are needed to evaluate the diagnostic accuracy of PET/SPECT.

  15. Dormancy, activation and viability of Rhizopus oligosporus sporangiospores.

    Science.gov (United States)

    Thanh, N V; Nout, M J R

    2004-04-15

    Interruption of dormancy to improve viability of Rhizopus oligosporus sporangiospores is crucial for the application of stored starter cultures for fungal (tempe) production. We aimed to assess the extent of dormancy and factors that could result in activation. Whereas heat treatments were unsuccessful, Malt Extract Broth (MEB) showed to be a good activation medium, with 80% of dormant spores being activated as measured by fluorescence microscopy using a fluorescent marker, compared with 11% with the control. Peptone and yeast extract but not glucose played an important role in activating dormant spores. Metabolically active (fluorescent) and swollen spores, followed by germ tubes were obtained after activation in MEB for 25 min., 2 and 4 h, respectively, at 37 degrees C. Simultaneously, some interesting transitions took place. Dormant spores represent 85-90% of the total spores at harvest and after drying. Their number decreased to 21-32% after activation with MEB with a concomitant increase of metabolically active spores. As a result of storage, some dormancy was lost, yielding an increase of active spores from 11.2% at harvest to 28.8% after 3 months storage. Levels of active spores were well correlated with their viability. By activation of dormant spores, their viability increased; levels of viable and active spores were maximum in 1 month old starter (61.7% and 75.9% of total spores, respectively) but gradually decreased with concomitant increase of the number of dead spores.

  16. Viability And Conidial Production Of Entomopathogenic Fungi Penicillium SP.

    Directory of Open Access Journals (Sweden)

    Nurariaty Agus

    2015-01-01

    Full Text Available Abstract Penicillium sp. order Eurotiales class Eurotiomycetes family Trichocomaceae is one of the entomopathogenic fungi that have the potential to be developed as biological control agent of pests.The study aims to determine the viability and spora production of Entomopathogenic fungi Penicillium sp. Experiments was conducted in Pests Identification and Biological Control laboratory Department of Plant Pest and Disease Faculty of Agriculture Hasanuddin University. The fungus Penicillium sp. cultured in a liquid medium and then added chitin as treatment and others without chitin. The spora viability of fungi was observed on 12th and 24th hours while spora production on 3nd 6th 9th and 12th days after application.The results showed that conidial viability of the fungus Penicillium sp. at 24 hours after application was higher if the medium given chitin than without chitin. The conidial production was higher if given chitin than without chitin. It was highest on 12th day reached 143.4 x 106 conidiaml if media given chitin and on 6th day if without chitin 0.50 x 106 conidiaml.

  17. Membrane hyperpolarization drives cation influx and fungicidal activity of amiodarone.

    Science.gov (United States)

    Maresova, Lydie; Muend, Sabina; Zhang, Yong-Qiang; Sychrova, Hana; Rao, Rajini

    2009-01-30

    Cationic amphipathic drugs, such as amiodarone, interact preferentially with lipid membranes to exert their biological effect. In the yeast Saccharomyces cerevisiae, toxic levels of amiodarone trigger a rapid influx of Ca(2+) that can overwhelm cellular homeostasis and lead to cell death. To better understand the mechanistic basis of antifungal activity, we assessed the effect of the drug on membrane potential. We show that low concentrations of amiodarone (0.1-2 microm) elicit an immediate, dose-dependent hyperpolarization of the membrane. At higher doses (>3 microm), hyperpolarization is transient and is followed by depolarization, coincident with influx of Ca(2+) and H(+) and loss in cell viability. Proton and alkali metal cation transporters play reciprocal roles in membrane polarization, depending on the availability of glucose. Diminishment of membrane potential by glucose removal or addition of salts or in pma1, tok1Delta, ena1-4Delta, or nha1Delta mutants protected against drug toxicity, suggesting that initial hyperpolarization was important in the mechanism of antifungal activity. Furthermore, we show that the link between membrane hyperpolarization and drug toxicity is pH-dependent. We propose the existence of pH- and hyperpolarization-activated Ca(2+) channels in yeast, similar to those described in plant root hair and pollen tubes that are critical for cell elongation and growth. Our findings illustrate how membrane-active compounds can be effective microbicidals and may pave the way to developing membrane-selective agents.

  18. Effect of Incubation Time and Vitamin E Supplementation on Sperm Motility, Viability and DNA Fragmentation in Asthenoteratozoospermic Samples

    Directory of Open Access Journals (Sweden)

    Ali Asghar Ghafarizadeh

    2017-09-01

    Full Text Available Abstract Background: In Asthenoteratozoospermic‎ men, low motility, defected DNA and highly oxidative stress in ‎sperm ‎‎cause ‎poor‎ assisted reproductive techniques (ART outcomes. The aim of this study was to determine the effect of Vitamin E (Vit E, as a potent antioxidant, on sperm motility, viability and DNA integrity at different times of in vitro incubation (after 2, 4 and 6-h to improve asthenoteratozoospermic semen samples for ART. Materials and Methods: Asthenoteratozoospermic semen samples of 50 volunteers were collected and examined. Each sample was divided into two groups of control and vitamin E (2mM and kept in the 37 °C and 6 % CO2 for 2, 4 and 6 hours. After this incubation, sperm motility, viability and sperm DNA fragmentation (SCD were evaluated in each group. Data were analyzed using repeated measurement of ANOVA and T-test. The means were considered significantly different at p<0.05. Results:Significant decrease in total and progressive motility and viability as well as significant increase in sperm DNA damage (after 6h of incubation were found in control group vs. the control group before incubation (p<0.05. The sperm motility and viability was significantly higher in vitamin E group compared to untreated control group (p<0.05. Our results also showed that DNA fragmentation significantly was lower after 6h of vitamin E treatment (p<0.05. Conclusion: In vitro supplementation of vitamin E in asthenoteratozoospermia semen samples may protect spermatozoa from maltreatment effect of ROS during sperm sampling via keeping enzymatic and antioxidant process in optimum condition.

  19. Sealing of Corneal Lacerations Using Photoactivated Rose Bengal Dye and Amniotic Membrane.

    Science.gov (United States)

    Soeken, Timothy A; Zhu, Hong; DeMartelaere, Sheri; Davies, Brett W; Kim, Mirang; Wang, Heuy-Ching; Aden, James; Grimm, Rose; Alt, Clemens; Kochevar, Irene E; Johnson, Anthony J

    2018-02-01

    Watertight closure of perforating corneoscleral lacerations is necessary to prevent epithelial ingrowth, infection, and potential loss of the eye. Complex lacerations can be difficult to treat, and repair with sutures alone is often inadequate. In this study, we evaluated a potentially sutureless technology for sealing complex corneal and scleral lacerations that bonds the amniotic membrane (AM) to the wound using only green light and rose bengal dye. The AM was impregnated with rose bengal and then sealed over lacerations using green light to bond the AM to the deepithelialized corneal surface. This process was compared with suture repair of 3 laceration configurations in New Zealand White rabbits in 3 arms of the study. A fourth study arm assessed the side effect profile including viability of cells in the iris, damage to the blood-retinal barrier, retinal photoreceptors, retinal pigment epithelium, and choriocapillaris in Dutch Belted rabbits. Analyses of the first 3 arms revealed a clinically insignificant increase in polymorphonuclear inflammation. In the fourth arm, iris cells appeared unaffected and no evidence of breakdown of the blood-retinal barrier was detected. The retina from green light laser-treated eyes showed normal retinal pigment epithelium, intact outer segments, and normal outer nuclear layer thickness. The results of these studies established that a light-activated method to cross-link AM to the cornea can be used for sealing complex penetrating wounds in the cornea and sclera with minimal inflammation or secondary effects.

  20. Influence of antepartum administration of immunopotentiators on reproductive efficacy of buffalo and viability of their newborn

    Directory of Open Access Journals (Sweden)

    Atef M. Badr

    2008-06-01

    Full Text Available The authors determine the efficacy of prepartum immunopotentiators administered during late gestation on postpartum fertility, IgG levels and calf viability. Fifty buffalo were divided into five groups (10 animals in each group. Group I was the control group. Each animal in Group II received 30 ml intramuscularly of viteselen (1.7 mg sodium selenium and 150 mg vitamin E/ml. Each animal in Group III received a subcutaneous injection of bacillus Calmette-Guérin (BCG at 0.5 ml. In Group IV, each animal received 12.5 ml of levamisole hydrochloride intramuscularly, while those in Group V received 10 ml of ultra-corn subcutaneously. The immunopotentiators were administered according to each group 60 days prior to the anticipated date of parturition. Postpartum fertility was assessed by close observation and rectal examination after parturition. Colostrum from the dams and sera from the newborn were collected to estimate the level of immunoglobulin (IgG. Body weight, growth rate and viability of the calves were recorded after parturition. Prepartum treatment with viteselen reduced the period of foetal membrane expulsion by 2 h compared to the other groups. Concomitantly, the uterine involution period was significantly shorter in animals treated with viteselen and ultra-corn than in the other groups. Injection of viteselen, BCG or ultra-corn significantly reduced the calving to the first oestrus interval and length of postpartum service period (by 57, 54, 48 days and 67, 57, 44 days, respectively than the levamisole group. The IgG level was significantly higher in both the colostrum of the dam and in newborn serum after administration of immunopotentiating agents. Furthermore, the viteselen injection resulted in a significantly higher level of IgG in both dam colostrum (at parturition and calf serum in comparison to the other groups. The calves from viteselen and ultra-corn treated dams showed a higher growth rate and better health condition than the

  1. Sperm DNA damage in relation to lipid peroxidation following ...

    African Journals Online (AJOL)

    ... were no consistent associations between post-thaw sperm LPO and sperm quality characteristics. It could be suggested that the increased LPO of membrane phospholipids is associated with higher susceptibility of boar spermatozoa to cryo-induced DNA damage. Keywords: Comet assay measurements, cryopreservation ...

  2. Diabetes and nerve damage

    Science.gov (United States)

    Diabetic neuropathy; Diabetes - neuropathy; Diabetes - peripheral neuropathy ... In people with diabetes, the body's nerves can be damaged by decreased blood flow and a high blood sugar level. This condition is ...

  3. LSD and Genetic Damage

    Science.gov (United States)

    Dishotsky, Norman I.; And Others

    1971-01-01

    Reviews studies of the effects of lysergic acid diethylamide (LSD) on man and other organisms. Concludes that pure LSD injected in moderate doses does not cause chromosome or detectable genetic damage and is not a teratogen or carcinogen. (JM)

  4. Bypassing damaged nervous tissue

    CERN Document Server

    Shneider, M N

    2016-01-01

    We show the principal ability of bypassing damaged demyelinated portions of nervous tissue, thereby restoring its normal function for the passage of action potentials. We carry out a theoretical analysis on the basis of the synchronization mechanism of action potential propagation along a bundle of neurons, proposed recently in [1]. And we discuss the feasibility of implement a bypass to restore damaged nervous tissue and creating an artificial neuron network.

  5. Population viability impacts of habitat additions and subtractions: A simulation experiment with endangered kangaroo rats

    Science.gov (United States)

    Species viability is influenced by the quality, quantity and configuration of habitat. For species at risk, a principal challenge is to identify landscape configurations that, if realized, would improve a population’s viability or restoration potential. Critical habitat patche...

  6. Viability of Event Management Business in Batangas City, Philippine: Basis for Business Operation Initiatives

    National Research Council Canada - National Science Library

    Jeninah Christia D. Borbon

    2016-01-01

    The research study on Viability of Event Management Business in Batangas City: Basis for Business Operation Initiatives aimed to assess the viability of this type of business using Thompson’s (2005...

  7. Transmembrane Signalling: Membrane messengers

    Science.gov (United States)

    Cockroft, Scott L.

    2017-05-01

    Life has evolved elaborate means of communicating essential chemical information across cell membranes. Inspired by biology, two new artificial mechanisms have now been developed that use synthetic messenger molecules to relay chemical signals into or across lipid membranes.

  8. Hybrid adsorptive membrane reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tsotsis, Theodore T [Huntington Beach, CA; Sahimi, Muhammad [Altadena, CA; Fayyaz-Najafi, Babak [Richmond, CA; Harale, Aadesh [Los Angeles, CA; Park, Byoung-Gi [Yeosu, KR; Liu, Paul K. T. [Lafayette Hill, PA

    2011-03-01

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  9. Oxygen transport membrane

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a novel composite oxygen transport membrane as well as its preparation and uses thereof.......The present invention relates to a novel composite oxygen transport membrane as well as its preparation and uses thereof....

  10. Membrane Innovation in Dialysis.

    Science.gov (United States)

    Boschetti-de-Fierro, Adriana; Beck, Werner; Hildwein, Helmut; Krause, Bernd; Storr, Markus; Zweigart, Carina

    2017-01-01

    Despite advances in renal replacement therapy, the adequate removal of uremic toxins over a broad molecular weight range remains one of the unmet needs in hemodialysis. Therefore, membrane innovation is currently directed towards enhanced removal of uremic toxins and increased membrane permeability. This chapter presents a variety of opportunities where innovation is brought into dialysis membranes. It covers the membrane formation from solution, describing different approaches to control the phase inversion process through additives that either swell in the polymer solution or influence the pore shrinkage during the membrane drying process. Additionally, large-scale manufacturing is described, and the influence of raw materials, spinning, and drying processes on membrane selectivity are presented. Finally, new characterization methods developed for the latest innovations around the application of membranes in dialysis are discussed, which allow the membrane performance for removal of a broad range of uremic toxins and the expected albumin loss in clinical use. © 2017 S. Karger AG, Basel.

  11. Composite zeolite membranes

    Science.gov (United States)

    Nenoff, Tina M.; Thoma, Steven G.; Ashley, Carol S.; Reed, Scott T.

    2002-01-01

    A new class of composite zeolite membranes and synthesis techniques therefor has been invented. These membranes are essentially defect-free, and exhibit large levels of transmembrane flux and of chemical and isotopic selectivity.

  12. Supported inorganic membranes

    Science.gov (United States)

    Sehgal, Rakesh; Brinker, Charles Jeffrey

    1998-01-01

    Supported inorganic membranes capable of molecular sieving, and methods for their production, are provided. The subject membranes exhibit high flux and high selectivity. The subject membranes are substantially defect free and less than about 100 nm thick. The pores of the subject membranes have an average critical pore radius of less than about 5 .ANG., and have a narrow pore size distribution. The subject membranes are prepared by coating a porous substrate with a polymeric sol, preferably under conditions of low relative pressure of the liquid constituents of the sol. The coated substrate is dried and calcined to produce the subject supported membrane. Also provided are methods of derivatizing the surface of supported inorganic membranes with metal alkoxides. The subject membranes find use in a variety of applications, such as the separation of constituents of gaseous streams, as catalysts and catalyst supports, and the like.

  13. Molecular Interactions at Membranes

    DEFF Research Database (Denmark)

    Jagalski, Vivien

    Biological membranes are essential and complex structures in every living cell consisting of a fluid lipid bilayer sheet and membrane proteins. Its significance makes biological membranes not only interesting for medical research, but also has made it a target for toxins in the course of evolution...... mechanisms of membrane compounds, including compounds associated with membranes, are still unknown due to the challenges that arise when probing the hydrophobic nature of the membrane's interior. For integral membrane proteins that span through the entire membrane, the amphiphilic environment is essential...... to retain their native structure. This creates a challenge for studying the true structures of such proteins. Here, we present an approach via the immobilization of the transmembrane leucine transporter protein (LeuT) to a functionalized surface. Moreover, we created a native-like lipid environment post...

  14. Response of plasma membrane H+-ATPase in rice (Oryza sativa) seedlings to simulated acid rain.

    Science.gov (United States)

    Liang, Chanjuan; Ge, Yuqing; Su, Lei; Bu, Jinjin

    2015-01-01

    Understanding the adaptation of plants to acid rain is important to find feasible approaches to alleviate such damage to plants. We studied effects of acid rain on plasma membrane H(+)-ATPase activity and transcription, intracellular H(+), membrane permeability, photosynthetic efficiency, and relative growth rate during stress and recovery periods. Simulated acid rain at pH 5.5 did not affect plasma membrane H(+)-ATPase activity, intracellular H(+), membrane permeability, photosynthetic efficiency, and relative growth rate. Plasma membrane H(+)-ATPase activity and transcription in leaves treated with acid rain at pH 3.5 was increased to maintain ion homeostasis by transporting excessive H(+) out of cells. Then intracellular H(+) was close to the control after a 5-day recovery, alleviating damage on membrane and sustaining photosynthetic efficiency and growth. Simulated acid rain at pH 2.5 inhibited plasma membrane H(+)-ATPase activity by decreasing the expression of H(+)-ATPase at transcription level, resulting in membrane damage and abnormal intracellular H(+), and reduction in photosynthetic efficiency and relative growth rate. After a 5-day recovery, all parameters in leaves treated with pH 2.5 acid rain show alleviated damage, implying that the increased plasma membrane H(+)-ATPase activity and its high expression were involved in repairing process in acid rain-stressed plants. Our study suggests that plasma membrane H(+)-ATPase can play a role in adaptation to acid rain for rice seedlings.

  15. Composite fuel cell membranes

    Science.gov (United States)

    Plowman, Keith R.; Rehg, Timothy J.; Davis, Larry W.; Carl, William P.; Cisar, Alan J.; Eastland, Charles S.

    1997-01-01

    A bilayer or trilayer composite ion exchange membrane suitable for use in a fuel cell. The composite membrane has a high equivalent weight thick layer in order to provide sufficient strength and low equivalent weight surface layers for improved electrical performance in a fuel cell. In use, the composite membrane is provided with electrode surface layers. The composite membrane can be composed of a sulfonic fluoropolymer in both core and surface layers.

  16. Membrane Lipid Replacement for chronic illnesses, aging and cancer using oral glycerolphospholipid formulations with fructooligosaccharides to restore phospholipid function in cellular membranes, organelles, cells and tissues.

    Science.gov (United States)

    Nicolson, Garth L; Ash, Michael E

    2017-09-01

    Membrane Lipid Replacement is the use of functional, oral supplements containing mixtures of cell membrane glycerolphospholipids, plus fructooligosaccharides (for protection against oxidative, bile acid and enzymatic damage) and antioxidants, in order to safely replace damaged, oxidized, membrane phospholipids and restore membrane, organelle, cellular and organ function. Defects in cellular and intracellular membranes are characteristic of all chronic medical conditions, including cancer, and normal processes, such as aging. Once the replacement glycerolphospholipids have been ingested, dispersed, complexed and transported, while being protected by fructooligosaccharides and several natural mechanisms, they can be inserted into cell membranes, lipoproteins, lipid globules, lipid droplets, liposomes and other carriers. They are conveyed by the lymphatics and blood circulation to cellular sites where they are endocytosed or incorporated into or transported by cell membranes. Inside cells the glycerolphospholipids can be transferred to various intracellular membranes by lipid globules, liposomes, membrane-membrane contact or by lipid carrier transfer. Eventually they arrive at their membrane destinations due to 'bulk flow' principles, and there they can stimulate the natural removal and replacement of damaged membrane lipids while undergoing further enzymatic alterations. Clinical trials have shown the benefits of Membrane Lipid Replacement in restoring mitochondrial function and reducing fatigue in aged subjects and chronically ill patients. Recently Membrane Lipid Replacement has been used to reduce pain and other symptoms as well as removing hydrophobic chemical contaminants, suggesting that there are additional new uses for this safe, natural medicine supplement. This article is part of a Special Issue entitled: Membrane Lipid Therapy: Drugs Targeting Biomembranes edited by Pablo V. Escribá. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights

  17. Viability and Functionality of Cells Delivered from Peptide Conjugated Scaffolds

    OpenAIRE

    Vacharathit, Voranaddha; Silva, Eduardo A.; Mooney, David J.

    2011-01-01

    Many cell-based therapies aim to transplant functional cells to revascularize damaged tissues and ischemic areas. However, conventional cell therapy is not optimally efficient: massive cell death, damage, and non-localization of cells both spatially and temporally all likely contribute to poor tissue functionality. An alginate cell depot system has been proposed as an alternative means to deliver outgrowth endothelial cells (OECs) in a spatiotemporally controllable manner while protecting the...

  18. Membrane contactor applications

    NARCIS (Netherlands)

    Klaassen, R.; Feron, P.H.M.; Jansen, A.

    2008-01-01

    In a membrane contactor the membrane separation is completely integrated with an extraction or absorption operation in order to exploit the benefits of both technologies fully. Membrane contactor applications that have been developed can be found in both water and gas treatment. Several recently

  19. Model cell membranes

    DEFF Research Database (Denmark)

    Günther-Pomorski, Thomas; Nylander, Tommy; Cardenas Gomez, Marite

    2014-01-01

    The high complexity of biological membranes has motivated the development and application of a wide range of model membrane systems to study biochemical and biophysical aspects of membranes in situ under well defined conditions. The aim is to provide fundamental understanding of processes control...

  20. Cadmium sulfide membranes

    Science.gov (United States)

    Spanhel, Lubomir; Anderson, Marc A.

    1991-10-22

    A method is described for the creation of novel q-effect cadmium sulfide membranes. The membranes are made by first creating a dilute cadmium sulfide colloid in aqueous suspension and then removing the water and excess salts therefrom. The cadmium sulfide membrane thus produced is luminescent at room temperature and may have application in laser fabrication.

  1. Meniscus Membranes For Separation

    Science.gov (United States)

    Dye, Robert C.; Jorgensen, Betty; Pesiri, David R.

    2005-09-20

    Gas separation membranes, especially meniscus-shaped membranes for gas separations are disclosed together with the use of such meniscus-shaped membranes for applications such as thermal gas valves, pre-concentration of a gas stream, and selective pre-screening of a gas stream. In addition, a rapid screening system for simultaneously screening polymer materials for effectiveness in gas separation is provided.

  2. Monitoring viability of seeds in gene banks: developing software tools to increase efficiency

    Science.gov (United States)

    Monitoring the decline of seed viability is essential for effective long term seed storage in ex situ collections. Recent FAO Genebank Standards recommend monitoring intervals at one-third the time predicted for viability to fall to 85% of initial viability. This poster outlines the development of ...

  3. The Neuroprotective Properties of Hericium erinaceus in Glutamate-Damaged Differentiated PC12 Cells and an Alzheimer's Disease Mouse Model.

    Science.gov (United States)

    Zhang, Junrong; An, Shengshu; Hu, Wenji; Teng, Meiyu; Wang, Xue; Qu, Yidi; Liu, Yang; Yuan, Ye; Wang, Di

    2016-11-01

    Hericium erinaceus , an edible and medicinal mushroom, displays various pharmacological activities in the prevention of dementia in conditions such as Parkinson's and Alzheimer's disease. The present study explored the neuroprotective effects of H. erinaceus mycelium polysaccharide-enriched aqueous extract (HE) on an l-glutamic acid (l-Glu)-induced differentiated PC12 (DPC12) cellular apoptosis model and an AlCl₃ combined with d-galactose-induced Alzheimer's disease mouse model. The data revealed that HE successfully induced PC12 cell differentiation. A 3 h HE incubation at doses of 50 and 100 µg/mL before 25 mM of l-Glu effectively reversed the reduction of cell viability and the enhancement of the nuclear apoptosis rate in DPC12 cells. Compared with l-Glu-damaged cells, in PC12 cells, HE suppressed intracellular reactive oxygen species accumulation, blocked Ca 2+ overload and prevented mitochondrial membrane potential (MMP) depolarization. In the Alzheimer's disease mouse model, HE administration enhanced the horizontal and vertical movements in the autonomic activity test, improved the endurance time in the rotarod test, and decreased the escape latency time in the water maze test. It also improved the central cholinergic system function in the Alzheimer's mice, demonstrated by the fact that it dose-dependently enhanced the acetylcholine (Ach) and choline acetyltransferase (ChAT) concentrations in both the serum and the hypothalamus. Our findings provide experimental evidence that HE may provide neuroprotective candidates for treating or preventing neurodegenerative diseases.

  4. Polyphenol-Rich Strawberry Extract Protects Human Dermal Fibroblasts against Hydrogen Peroxide Oxidative Damage and Improves Mitochondrial Functionality

    Directory of Open Access Journals (Sweden)

    Francesca Giampieri

    2014-06-01

    Full Text Available Strawberry bioactive compounds are widely known to be powerful antioxidants. In this study, the antioxidant and anti-aging activities of a polyphenol-rich strawberry extract were evaluated using human dermal fibroblasts exposed to H2O2. Firstly, the phenol and flavonoid contents of strawberry extract were studied, as well as the antioxidant capacity. HPLC-DAD analysis was performed to determine the vitamin C and β-carotene concentration, while HPLC-DAD/ESI-MS analysis was used for anthocyanin identification. Strawberry extract presented a high antioxidant capacity, and a relevant concentration of vitamins and phenolics. Pelargonidin- and cyanidin-glycosides were the most representative anthocyanin components of the fruits. Fibroblasts incubated with strawberry extract and stressed with H2O2 showed an increase in cell viability, a smaller intracellular amount of ROS, and a reduction of membrane lipid peroxidation and DNA damage. Strawberry extract was also able to improve mitochondrial functionality, increasing the basal respiration of mitochondria and to promote a regenerative capacity of cells after exposure to pro-oxidant stimuli. These findings confirm that strawberries possess antioxidant properties and provide new insights into the beneficial role of strawberry bioactive compounds on protecting skin from oxidative stress and aging.

  5. Synergistic Application of Black Tea Extracts and Lactic Acid Bacteria in Protecting Human Colonocytes against Oxidative Damage.

    Science.gov (United States)

    Zhao, Danyue; Shah, Nagendra P

    2016-03-23

    In view of the potential of lactic acid bacteria (LAB) to enhance the antioxidant activity of food products, this work explored the effectiveness of LAB fermented black tea samples in alleviating H2O2-induced oxidative stress in human colonocytes. The antioxidant capacity of tea samples was evaluated in terms of cyto-protectiveness, mitochondria membrane potential (Δψm)-stabilizing activity, ROS-inhibitory effect, and antioxidant enzyme-modulating activity. The effect on oxidative DNA damage and repair was studied in CCD 841 by comet assay. Results showed that the protective effect of tea pretreatment was more pronounced in normal cells (CCD 841) than in carcinomas (Caco-2), and fermented samples were invariably more effective. Higher cell viability and Δψm were maintained and ROS production was markedly inhibited with tea pretreatment. The fermented tea samples also remarkably stimulated DNA repair, resulting in fewer strand breaks and oxidative lesions. Our study implied that LAB fermentation may be an efficient way to enhance the antioxidative effectiveness of black tea flavonoid-enriched foods.

  6. Assessing Tropical Cyclone Damage

    Science.gov (United States)

    Done, J.; Czajkowski, J.

    2012-12-01

    Landfalling tropical cyclones impact large coastal and inland areas causing direct damage due to winds, storm-surge flooding, tornadoes, and precipitation; as well as causing substantial indirect damage such as electrical outages and business interruption. The likely climate change impact of increased tropical cyclone intensity, combined with increases in exposure, bring the possibility of increased damage in the future. A considerable amount of research has focused on modeling economic damage due to tropical cyclones, and a series of indices have been developed to assess damages under climate change. We highlight a number of ways this research can be improved through a series of case study analyses. First, historical loss estimates are revisited to properly account for; time, impacted regions, the source of damage by type, and whether the damage was direct/indirect and insured/uninsured. Second, the drivers of loss from both the socio-economic and physical side are examined. A case is made to move beyond the use of maximum wind speed to more stable metrics and the use of other characteristics of the wind field such as direction, degree of gustiness, and duration is explored. A novel approach presented here is the potential to model losses directly as a function of climate variables such as sea surface temperature, greenhouse gases, and aerosols. This work is the first stage in the development of a tropical cyclone loss model to enable projections of losses under scenarios of both socio-economic change (such as population migration or altered policy) and physical change (such as shifts in tropical cyclone activity one from basin to another or within the same basin).

  7. The Early-Acting Peroxin PEX19 Is Redundantly Encoded, Farnesylated, and Essential for Viability in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Margaret M McDonnell

    Full Text Available Peroxisomes are single-membrane bound organelles that are essential for normal development in plants and animals. In mammals and yeast, the peroxin (PEX proteins PEX3 and PEX19 facilitate the early steps of peroxisome membrane protein (PMP insertion and pre-peroxisome budding from the endoplasmic reticulum. The PEX3 membrane protein acts as a docking site for PEX19, a cytosolic chaperone for PMPs that delivers PMPs to the endoplasmic reticulum or peroxisomal membrane. PEX19 is farnesylated in yeast and mammals, and we used immunoblotting with prenylation mutants to show that PEX19 also is fully farnesylated in wild-type Arabidopsis thaliana plants. We examined insertional alleles disrupting either of the two Arabidopsis PEX19 isoforms, PEX19A or PEX19B, and detected similar levels of PEX19 protein in the pex19a-1 mutant and wild type; however, PEX19 protein was nearly undetectable in the pex19b-1 mutant. Despite the reduction in PEX19 levels in pex19b-1, both pex19a-1 and pex19b-1 single mutants lacked notable peroxisomal β-oxidation defects and displayed normal levels and localization of peroxisomal matrix and membrane proteins. The pex19a-1 pex19b-1 double mutant was embryo lethal, indicating a redundantly encoded critical role for PEX19 during embryogenesis. Expressing YFP-tagged versions of either PEX19 isoform rescued this lethality, confirming that PEX19A and PEX19B act redundantly in Arabidopsis. We observed that pex19b-1 enhanced peroxisome-related defects of a subset of peroxin-defective mutants, supporting a role for PEX19 in peroxisome function. Together, our data indicate that Arabidopsis PEX19 promotes peroxisome function and is essential for viability.

  8. Cytostatic activity of Geranium robertianum L. extracts processed by membrane procedures

    Directory of Open Access Journals (Sweden)

    Elena Neagu

    2017-05-01

    Full Text Available In the present study the antioxidant and cytostatic capacities of some 8% Geranium robertianum (geranium aqueous extracts processed by membrane procedures (micro- and ultrafiltration were determined. The extracts were purified by microfiltration and then concentrated by successive ultrafiltrations using Millipore membranes with 10,000 and 1000 Da cut-off. Two methods were used to establish the extracts’ antioxidant activity: DPPH and ABTS; the cytostatic capacity was evaluated on HEp-2p cell lines, by a qualitative method (cytochemical stain with Giemsa solution and quantitative one (MTT test. Four concentrations of Geranium aqueous extracts were used to test cell viability: 100, 500, 1000 and 2000 μg/mL, 24 and 48 h, against the control culture (100% viability. The concentrated samples had the highest content of total polyphenols and the strongest antioxidant effect, having also the biggest impact upon cell viability.

  9. Activin Receptor Signaling Regulates Prostatic Epithelial Cell Adhesion and Viability

    Directory of Open Access Journals (Sweden)

    Derek P. Simon

    2009-04-01

    Full Text Available Mutational changes coupled with endocrine, paracrine, and/or autocrine signals regulate cell division during carcinogenesis. The hormone signals remain undefined, although the absolute requirement in vitro for fetal serum indicates the necessity for a fetal serum factor(s in cell proliferation. Using prostatic cancer cell (PCC lines as a model of cancer cell proliferation, we have identified the fetal serum component activin A and its signaling through the activin receptor type II (ActRII, as necessary, although not sufficient, for PCC proliferation. Activin A induced Smad2 phosphorylation and PCC proliferation, but only in the presence of fetal bovine serum (FBS. Conversely, activin A antibodies and inhibin A suppressed FBS-induced PCC proliferation confirming activin A as one of multiple serum components required for PCC proliferation. Basic fibroblast growth factor was subsequently shown to synergize activin A-induced PCC proliferation. Inhibition of ActRII signaling using a blocking antibody or antisense-P decreased mature ActRII expression, Smad2 phosphorylation, and the apparent viability of PCCs and neuroblastoma cells grown in FBS. Suppression of ActRII signaling in PCC and neuroblastoma cells did not induce apoptosis as indicated by the ratio of active/inactive caspase 3 but did correlate with increased cell detachment and ADAM-15 expression, a disintegrin whose expression is strongly correlated with prostatic metastasis. These findings indicate that ActRII signaling is required for PCC and neuroblastoma cell viability, with ActRII mediating cell fate via the regulation of cell adhesion. That ActRII signaling governs both cell viability and cell adhesion has important implications for developing therapeutic strategies to regulate cancer growth and metastasis.

  10. Non-disruptive measurement system of cell viability in bioreactors

    Science.gov (United States)

    Rudek, F.; Nelsen, B. L.; Baselt, T.; Berger, T.; Wiele, M.; Prade, I.; Hartmann, P.

    2016-04-01

    Nutrient and oxygen transport, as well as the removal of metabolic waste are essential processes to support and maintain viable tissue. Current bioreactor technology used to grow tissue cultures in vitro has a fundamental limit to the thickness of tissues. Based on the low diffusion limit of oxygen a maximum tissue thickness of 200 μm is possible. The efficiency of those systems is currently under investigation. During the cultivation process of the artificial tissue in bioreactors, which lasts 28 days or longer, there are no possibilities to investigate the viability of cells. This work is designed to determine the influence of a non-disruptive cell viability measuring system on cellular activity. The measuring system uses a natural cellular marker produced during normal metabolic activity. Nicotinamide adenine dinucleotide (NADH) is a coenzyme naturally consumed and produced during cellular metabolic processes and has thoroughly been studied to determine the metabolic state of a cell. Measuring the fluorescence of NADH within the cell represents a non-disruptive marker for cell viability. Since the measurement process is optical in nature, NADH fluorescence also provides a pathway for sampling at different measurement depths within a given tissue sample. The measurement system we are using utilizes a special UV light source, to excite the NADH fluorescence state. However, the high energy potentially alters or harms the cells. To investigate the influence of the excitation signal, the cells were irradiated with a laser operating at a wavelength of 355 nm and examined for cytotoxic effects. The aim of this study was to develop a non-cytotoxic system that is applicable for large-scale operations during drug-tissue interaction testing.

  11. Cost Assessment Methodology and Economic Viability of Tidal Energy Projects

    Directory of Open Access Journals (Sweden)

    Eva Segura

    2017-11-01

    Full Text Available The exploitation of technologies with which to harness the energy from ocean currents will have considerable possibilities in the future thanks to their enormous potential for electricity production and their high predictability. In this respect, the development of methodologies for the economic viability of these technologies is fundamental to the attainment of a consistent quantification of their costs and the discovery of their economic viability, while simultaneously attracting investment in these technologies. This paper presents a methodology with which to determine the economic viability of tidal energy projects, which includes a technical study of the life-cycle costs into which the development of a tidal farm can be decomposed: concept and definition, design and development, manufacturing, installation, operation and maintenance and dismantling. These cost structures are additionally subdivided by considering their sub-costs and bearing in mind the main components of the tidal farm: the nacelle, the supporting tidal energy converter structure and the export power system. Furthermore, a technical study is developed in order to obtain an estimation of the annual energy produced (and, consequently, the incomes generated if the electric tariff is known by considering its principal attributes: the characteristics of the current, the ability of the device to capture energy and its ability to convert and export the energy. The methodology has been applied (together with a sensibility analysis to the particular case of a farm composed of first generation tidal energy converters in one of the Channel Island Races, the Alderney Race, in the U.K., and the results have been attained by means of the computation of engineering indexes, such as the net present value, the internal rate of return, the discounted payback period and the levelized cost of energy, which indicate that the proposed project is economically viable for all the case studies.

  12. Monitoring change in refractive index of cytosol of animal cells on affinity surface under osmotic stimulus for label-free measurement of viability.

    Science.gov (United States)

    Park, Jina; Jin, Sung Il; Kim, Hyung Min; Ahn, Junhyoung; Kim, Yeon-Gu; Lee, Eun Gyo; Kim, Min-Gon; Shin, Yong-Beom

    2015-02-15

    We demonstrated that a metal-clad waveguide (MCW)-based biosensor can be applied to label-free measurements of viability of adherent animal cells with osmotic stimulation in real time. After Chinese hamster ovary (CHO) and human embryonic kidney cell 293 (HEK293) cells were attached to a Concanavalin A (Con A)-modified sensor surface, the magnitudes of cell responses to non-isotonic stimulation were compared between live and dead cells. The live cells exhibited a change in the refractive index (RI) of the cytosol caused by a redistribution of water through the cell membrane, which was induced by the osmotic stimulus, but the dead cells did not. Moreover, the normalized change in the RI measured via the MCW sensor was linearly proportional to the viability of attached cells and the resolution in monitoring cell viability was about 0.079%. Therefore, the viability of attached animal cells can be measured without labels by observing the relative differences in the RI of cytosol in isotonic and non-isotonic buffers. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Effects of Dopamine Infusion on Cerebral Blood Flow, Brain Cell Membrane Function and Energy Metabolism in Experimental Escherichia coli Meningitis in the Newborn Piglet

    National Research Council Canada - National Science Library

    Park, Won Soon; Chang, Yun Sil; Shim, Jae Won; Kim, Mi Jung; Ko, Sun Young; Kim, Sung Shin; Hwang, Jong Hee; Choi, Chang Won; Lee, Munhyang

    2003-01-01

    .... The decreased cerebral cortical cell membrane Na+, K+ -ATPase activity and increased lipid peroxidation products, indicative of meningitis-induced brain damage, were significantly attenuated by dopamine infusion...

  14. Economical Analysis of Different Clinical Approaches in Pre-Viability Amniorrhexis—A Case Series

    Directory of Open Access Journals (Sweden)

    Samuel Engemise

    2014-01-01

    Full Text Available Prolonged oligohydramnios following extreme preterm prelabour rupture of membranes (EPPROM is traditionally associated with a high morbidity and mortality to both the mother and the baby. The clinical maternal evaluation and fetal ultrasound assessment may provide important prognostic information for the clinicians and should be taken into account when counselling the patients so as to provide them with enough information to make decision of continuing or interrupting the pregnancy. Current financial constraints on the National Healthcare Service (NHS resources make it imperative for clinical decision-makers and budgetary planners to make the right decision of continuing or terminating a second trimester pre-viability amniorrhexis for desperate parents. To assess the economic consequences following EPPROM, the risk of infection to both baby and mother, psychological impact on the parents and associated complications and further disability after delivery on this fragile group of patients to the NHS resources. We review the clinical course, outcome, and the challenges to parents and health care professionals on three pregnancies complicated by EPPROM, occurring before 24 weeks’ gestation with a membrane rupture to delivery interval (latent period of 14 days or more. The anticipated birth of an extremely premature infant poses many challenges for parents and health care professionals. As parents are faced with difficult decisions that can have a long-term impact on the infant, family and country’s resources, it is critical to provide the type of information and support that is needed by them. Taking all these into consideration with the period of ventilation and respiratory assistance in Neonatal Intensive Care Unit (NICU is essential to provide maximum chances for survival, minimizing the risk for long term sequelae of the neonate and provides the parents enough time to decide on making the right decision with the associated guidance of the

  15. Cell structure and percent viability by a slide centrifuge technique.

    Science.gov (United States)

    Fitzgerald, M G; Hosking, C S

    1982-01-01

    It was found that a slide centrifuge (Cytospin) preparation of a cell suspension allowed a reliable assessment of not only cell structure but also the percentage of non-viable cells. The non-viable cells appeared as "smear" cells and paralleled in number the cells taking up trypan blue. Direct experiment showed the unstained viable cells in a trypan blue cell suspension remained intact in a Cytospin preparation while the cells taking up trypan blue were the "smear" cells. The non-viability of the "smear" cells was confirmed by their inability to survive in culture. Images PMID:7040483

  16. Law and ethics at the border of viability.

    Science.gov (United States)

    Krug, E F

    2006-06-01

    The Supreme Court of Texas in the case of Miller v. HCA announced a rule in 2003 (118 s.w. 3d 758) that a physician attending the delivery of a severely premature infant may provide life-sustaining treatment for that infant under 'emergent circumstances' as a matter of law without first obtaining parental consent. This paper examines issues of law and ethics relevant to decisions about infant resuscitation at the border of viability. It is argued that there is typically no emergency when infants are delivered at 23 weeks gestation, and parents should be asked for informed consent before resuscitation in the delivery room.

  17. The Viability of Small Banks in the United States

    OpenAIRE

    R. Alton Gilbert

    2007-01-01

    Small banks have an important role in financing economic activity through their financial services for small businesses. There has been a sharp decline in the number of small banking organizations in the U.S. since the early 1980s. A continuation of this trend would raise important issues about access to financial services for small businesses. Data on the number of banks, their profits, and the distribution of consistent high and low earning banks tend to tell the same story about the viabil...

  18. Viability of human corneal keratocytes during organ culture

    DEFF Research Database (Denmark)

    Møller-Pedersen, T; Møller, H J

    1996-01-01

    The viability of human corneal keratocytes was assessed during four weeks of 'closed system' organ culture at 31 degrees C. After 28 days of culturing, the entire keratocyte population was still alive and viable because all cells incorporated uridine; a parameter for RNA-synthesis. During the fir...... of keratan sulphate proteoglycan suggested that approximately 1% of the total content was lost during the period. In conclusion, our current organ culture technique can maintain a viable keratocyte population for four weeks; a viable stroma can be grafted within this period....

  19. Causes of excitation-induced muscle cell damage in isometric contractions: mechanical stress or calcium overload?

    DEFF Research Database (Denmark)

    Fredsted, Anne; Gissel, Hanne; Madsen, Klavs

    2007-01-01

    Prolonged or unaccustomed exercise leads to muscle cell membrane damage, detectable as release of the intracellular enzyme lactic acid dehydrogenase (LDH). This is correlated to excitation-induced influx of Ca2+, but it cannot be excluded that mechanical stress contributes to the damage. We here ...

  20. Plasma membrane ATPases

    DEFF Research Database (Denmark)

    Palmgren, Michael Broberg; Bækgaard, Lone; Lopez Marques, Rosa Laura

    2011-01-01

    The plasma membrane separates the cellular contents from the surrounding environment. Nutrients must enter through the plasma membrane in order to reach the cell interior, and toxic metabolites and several ions leave the cell by traveling across the same barrier. Biological pumps in the plasma...... membrane include ABC transporters, vacuolar (V-type) H+ pumps, and P-type pumps. These pumps all utilize ATP as a fuel for energizing pumping. This review focuses on the physiological roles of plasma membrane P-type pumps, as they represent the major ATP hydrolytic activity in this membrane....