WorldWideScience

Sample records for vhe gamma astrophysics

  1. VHE Gamma-ray Supernova Remnants

    Energy Technology Data Exchange (ETDEWEB)

    Funk, Stefan; /KIPAC, Menlo Park

    2007-01-22

    Increasing observational evidence gathered especially in X-rays and {gamma}-rays during the course of the last few years support the notion that Supernova remnants (SNRs) are Galactic particle accelerators up to energies close to the ''knee'' in the energy spectrum of Cosmic rays. This review summarizes the current status of {gamma}-ray observations of SNRs. Shell-type as well as plerionic type SNRs are addressed and prospect for observations of these two source classes with the upcoming GLAST satellite in the energy regime above 100 MeV are given.

  2. Peculiar emission from the new VHE gamma-ray source H1722+119

    Science.gov (United States)

    Terzić, T.; Stamerra, A.; D'Ammando, F.; Raiteri, C. M.; Villata, M.; Verrecchia, F.; Kurtanidze, O.

    The BL Lac object H1722+119 was observed in the very high energy band (VHE, E > 100 GeV) by the MAGIC (Major Atmospheric Gamma-ray Imaging Cherenkov) telescopes (Aleksić et al. 2016a, b)) between 2013 May 17 and 22, following a state of high activity in the optical band measured by the KVA (Kungliga Vetenskapsakademien) telescope. Optical high states are often used to trigger MAGIC observations, which result in the VHE γ-ray signal detection (see e.g. Aleksić et al. 2015, Ahnen et al. 2016 and references therein).

  3. Extragalactic Gamma-Ray Astrophysics

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    During the last decades, various classes of radio-loud active galactic nuclei have been established as sources of high-energy radiation extending over a very broad range from soft gamma-rays (photon energies E~MeV) up to very-high-energy gamma-rays (E>100 GeV). These include blazars of different types, as well as young and evolved radio galaxies. The observed gamma-ray emission from such implies efficient particle acceleration processes taking place in highly magnetized and relativistic jets produced by supermassive black holes, processes that have yet to be identified and properly understood. In addition, nearby starforming and starburst galaxies, some of which host radio-quiet Seyfert-type nuclei, have been detected in the gamma-ray range as well. In their cases, the observed gamma-ray emission is due to non-thermal activity in the interstellar medium, possibly including also a contribution from accretion disks and nuclear outflows. Finally, the high-energy emission from clusters of galaxies remains elusive...

  4. Investigating the peculiar emission from the new VHE gamma-ray source H1722+119

    Science.gov (United States)

    Ahnen, M. L.; Ansoldi, S.; Antonelli, L. A.; Antoranz, P.; Babic, A.; Banerjee, B.; Bangale, P.; Barres de Almeida, U.; Barrio, J. A.; Becerra González, J.; Bednarek, W.; Bernardini, E.; Biasuzzi, B.; Biland, A.; Blanch, O.; Bonnefoy, S.; Bonnoli, G.; Borracci, F.; Bretz, T.; Buson, S.; Carosi, A.; Chatterjee, A.; Clavero, R.; Colin, P.; Colombo, E.; Contreras, J. L.; Cortina, J.; Covino, S.; Da Vela, P.; Dazzi, F.; De Angelis, A.; De Lotto, B.; de Oña Wilhelmi, E.; Di Pierro, F.; Doert, M.; Domínguez, A.; Dominis Prester, D.; Dorner, D.; Doro, M.; Einecke, S.; Eisenacher Glawion, D.; Elsaesser, D.; Fallah Ramazani, V.; Fernández-Barral, A.; Fidalgo, D.; Fonseca, M. V.; Font, L.; Frantzen, K.; Fruck, C.; Galindo, D.; García López, R. J.; Garczarczyk, M.; Garrido Terrats, D.; Gaug, M.; Giammaria, P.; Godinović, N.; González Muñoz, A.; Gora, D.; Guberman, D.; Hadasch, D.; Hahn, A.; Hanabata, Y.; Hayashida, M.; Herrera, J.; Hose, J.; Hrupec, D.; Hughes, G.; Idec, W.; Kodani, K.; Konno, Y.; Kubo, H.; Kushida, J.; La Barbera, A.; Lelas, D.; Lindfors, E.; Lombardi, S.; Longo, F.; López, M.; López-Coto, R.; Majumdar, P.; Makariev, M.; Mallot, K.; Maneva, G.; Manganaro, M.; Mannheim, K.; Maraschi, L.; Marcote, B.; Mariotti, M.; Martínez, M.; Mazin, D.; Menzel, U.; Miranda, J. M.; Mirzoyan, R.; Moralejo, A.; Moretti, E.; Nakajima, D.; Neustroev, V.; Niedzwiecki, A.; Nievas Rosillo, M.; Nilsson, K.; Nishijima, K.; Noda, K.; Nogués, L.; Orito, R.; Overkemping, A.; Paiano, S.; Palacio, J.; Palatiello, M.; Paneque, D.; Paoletti, R.; Paredes, J. M.; Paredes-Fortuny, X.; Pedaletti, G.; Perri, L.; Persic, M.; Poutanen, J.; Prada Moroni, P. G.; Prandini, E.; Puljak, I.; Rhode, W.; Ribó, M.; Rico, J.; Rodriguez Garcia, J.; Saito, T.; Satalecka, K.; Schultz, C.; Schweizer, T.; Sillanpää, A.; Sitarek, J.; Snidaric, I.; Sobczynska, D.; Stamerra, A.; Steinbring, T.; Strzys, M.; Takalo, L.; Takami, H.; Tavecchio, F.; Temnikov, P.; Terzić, T.; Tescaro, D.; Teshima, M.; Thaele, J.; Torres, D. F.; Toyama, T.; Treves, A.; Verguilov, V.; Vovk, I.; Ward, J. E.; Will, M.; Wu, M. H.; Zanin, R.; D'Ammando, F.; Berdyugin, A.; Hovatta, T.; Max-Moerbeck, W.; Raiteri, C. M.; Readhead, A. C. S.; Reinthal, R.; Richards, J. L.; Verrecchia, F.; Villata, M.

    2016-07-01

    The Major Atmospheric Gamma-ray Imaging Cherenkov (MAGIC) telescopes observed the BL Lac object H1722+119 (redshift unknown) for six consecutive nights between 2013 May 17 and 22, for a total of 12.5 h. The observations were triggered by high activity in the optical band measured by the KVA (Kungliga Vetenskapsakademien) telescope. The source was for the first time detected in the very high energy (VHE, E > 100 GeV) γ-ray band with a statistical significance of 5.9σ. The integral flux above 150 GeV is estimated to be (2.0 ± 0.5) per cent of the Crab nebula flux. We used contemporaneous high energy (HE, 100 MeV < E < 100 GeV) γ-ray observations from Fermi-Large Area Telescope to estimate the redshift of the source. Within the framework of the current extragalactic background light models, we estimate the redshift to be z = 0.34 ± 0.15. Additionally, we used contemporaneous X-ray to radio data collected by the instruments on board the Swift satellite, the KVA, and the Owens Valley Radio Observatory telescope to study multifrequency characteristics of the source. We found no significant temporal variability of the flux in the HE and VHE bands. The flux in the optical and radio wavebands, on the other hand, did vary with different patterns. The spectral energy distribution of H1722+119 shows surprising behaviour in the ˜3 × 1014-1018 Hz frequency range. It can be modelled using an inhomogeneous helical jet synchrotron self-Compton model.

  5. The Future of Gamma Ray Astrophysics

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    Over the past decade, gamma ray astrophysics has entered the astrophysical mainstream. Extremely successful space-borne (GeV) and ground-based (TeV) detectors, combined with a multitude of partner telescopes, have revealed a fascinating “astroscape" of active galactic nuclei, pulsars, gamma ray bursts, supernova remnants, binary stars, star-forming galaxies, novae much more, exhibiting major pathways along which large energy releases can flow. From  a basic physics perspective, exquisitely sensitive measurements have constrained the nature of dark matter, the cosmological origin of magnetic field and the properties of black holes. These advances have motivated the development of new facilities, including HAWC, DAMPE, CTA and SVOM, which will further our understanding of the high energy universe. Topics that will receive special attention include merging neutron star binaries, clusters of galaxies, galactic cosmic rays and putative, TeV dark matter.

  6. Maximizng the sensitivity of a low threshold VHE gamma ray telescope by the use of neural nets and other methods

    Energy Technology Data Exchange (ETDEWEB)

    Kertzman, M.P. (Department of Physics and Astronomy, DePauw University Greencastle, Indiana 46135 (USA)); Sembroski, G.H. (Department of Physcis, Purdue University West Lafayette, Indiana 47907 (USA))

    1991-04-05

    Detailed 3-dimensional Monte-Carlo computer simulations of the Cherenkov photons produced by VHE (10 GeV to 10 TeV) gamma ray and proton induced air shower cascades are used to calculate the sensitivity and threshold of a ground-based, single-mount, multi-mirror, single photo-electron sensitive gamma ray telescope. Such a telescope is designed to have the lowest possible energy threshold for gamma ray induced air showers for a given light collection area. The sensitivity and energy threshold of this design are determined for various triggering configurations, and the sources and properties of background triggers are investigated. In particular, it is found that up to 40% of the background triggers are due to single muons produced by proton induced showers with primary energies in the 25 to 75 GeV range. Two methods for increasing the sensitivity of such a telescope by discrimination against the single muon induced triggers are investigated. The first uses small outrider telescopes triggering in coincidence with the main telescope. The second uses software implemented neural nets trained to identify muon induced triggers by use of the temporal shape of the Cherenkov light pulse.

  7. Gamma-Ray Astrophysics NSSTC Fermi GBM

    Data.gov (United States)

    National Aeronautics and Space Administration — The Fermi Gamma-Ray Burst Monitor (GBM) is not a pointed or imaging instrument. To determine fluxes for known sources, we measure the change in the count rate...

  8. Research in cosmic and gamma ray astrophysics: Cosmic physics portion

    Science.gov (United States)

    Stone, Edward C.; Mewaldt, Richard A.; Schindler, Stephen

    1993-01-01

    Research in particle astrophysics at the Space Radiation Laboratory (SRL) of the California Institute of Technology is supported under NASA Grant NAGW-1919. A three-year proposal for continuation of support was submitted a year ago and put into effect 1 October 1992. This report is the combined progress report and continuation application called for under the Federal Demonstration Project. Gamma-ray Astrophysics at SRL is separately supported under NAGW-1919 and will be separately summarized and proposed. This report will document progress and plans for our particle spectroscopy activities and for related data analysis, calibration, and community service activities. A bibliography and a budget will be attached as appendices. The Caltech SRL research program includes a heavy emphasis on elemental and isotopic spectroscopy of energetic particles in the cosmic radiation; in solar, interplanetary, and anomalous 'cosmic' radiation; and in planetary magnetospheres as discussed.

  9. Computational Astrophysics Consortium 3 - Supernovae, Gamma-Ray Bursts and Nucleosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Woosley, Stan [Univ. of California, Santa Cruz, CA (United States)

    2014-08-29

    Final project report for UCSC's participation in the Computational Astrophysics Consortium - Supernovae, Gamma-Ray Bursts and Nucleosynthesis. As an appendix, the report of the entire Consortium is also appended.

  10. Ultra-sensitive in-beam gamma-ray spectroscopy for nuclear astrophysics at LUNA

    CERN Document Server

    Caciolli, A; Bemmerer, D; Bonetti, R; Broggini, C; Confortola, F; Corvisiero, P; Costantini, H; Elekes, Z; Formicola, A; Fülöp, Z; Gervino, G; Guglielmetti, A; Gustavino, C; Gyurky, Gy; Imbriani, G; Junker, M; Laubenstein, M; Lemut, A; Limata, B; Marta, M; Mazzocchi, C; Menegazzo, R; Prati, P; Roca, V; Rolfs, C; Alvarez, C Rossi; Somorjai, E; Straniero, O; Strieder, F; Terrasi, F; Trautvetter, H P

    2008-01-01

    Ultra-sensitive in-beam gamma-ray spectroscopy studies for nuclear astrophysics are performed at the LUNA (Laboratory for Underground Nuclear Astrophysics) 400 kV accelerator, deep underground in Italy's Gran Sasso laboratory. By virtue of a specially constructed passive shield, the laboratory gamma-ray background for E_\\gamma < 3 MeV at LUNA has been reduced to levels comparable to those experienced in dedicated offline underground gamma-counting setups. The gamma-ray background induced by an incident alpha-beam has been studied. The data are used to evaluate the feasibility of sensitive in-beam experiments at LUNA and, by extension, at similar proposed facilities.

  11. The gamma-ray spectrometer HORUS and its applications for nuclear astrophysics

    CERN Document Server

    Netterdon, L; Endres, J; Fransen, C; Hennig, A; Mayer, J; Müller-Gatermann, C; Sauerwein, A; Scholz, P; Spieker, M; Zilges, A

    2014-01-01

    A dedicated setup for the in-beam measurement of absolute cross sections of astrophysically relevant charged-particle induced reactions is presented. These, usually very low, cross sections at energies of astrophysical interest are important to improve the modeling of the nucleosynthesis processes of heavy nuclei. Particular emphasis is put on the production of the $p$ nuclei during the astrophysical $\\gamma$ process. The recently developed setup utilizes the high-efficiency $\\gamma$-ray spectrometer HORUS, which is located at the 10 MV FN tandem ion accelerator of the Institute for Nuclear Physics in Cologne. The design of this setup will be presented and results of the recently measured $^{89}$Y(p,$\\gamma$)$^{90}$Zr reaction will be discussed. The excellent agreement with existing data shows, that the HORUS spectrometer is a powerful tool to determine total and partial cross sections using the in-beam method with high-purity germanium detectors.

  12. S-factor of 14N(p,gamma)15O at astrophysical energies

    CERN Document Server

    Imbriani, G; Formicola, A; Vomiero, A; Angulo, C; Bemmerer, D; Bonetti, R; Broggini, C; Confortola, F; Corvisiero, P; Cruz, J; Descouvemont, P; Fülöp, Z; Gervino, G; Guglielmetti, A; Gustavino, C; Gyürky, G; Jesus, A P; Junker, M; Klug, J N; Lemut, A; Menegazzo, R; Prati, P; Roca, V; Rolfs, C; Romano, M; Alvarez, C R; Schumann, F; Schurmann, D; Somorjai, E; Straniero, O; Strieder, F; Terrasi, F; Trautvetter, H P; Fulop, Zs.; Gyurky, Gy.

    2005-01-01

    The astrophysical S-factor of 14N(p,gamma)15O has been measured for effective center-of-mass energies between E_eff = 119 and 367 keV at the LUNA facility using TiN solid targets and Ge detectors. The data are in good agreement with previous and recent work at overlapping energies. R-matrix analysis reveals that due to the complex level structure of 15O the extrapolated S(0) value is model dependent and calls for additional experimental efforts to reduce the present uncertainty in S(0) to a level of a few percent as required by astrophysical calculations.

  13. CELESTE: an atmospheric Cherenkov telescope for high energy gamma astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Pare, E.; Balauge, B.; Bazer-Bachi, R.; Bergeret, H.; Berny, F.; Briand, N.; Bruel, P.; Cerutti, M.; Collon, J.; Cordier, A.; Cornebise, P.; Debiais, G.; Dezalay, J.-P.; Dumora, D.; Durand, E.; Eschstruth, P.; Espigat, P.; Fabre, B.; Fleury, P.; Gilly, J.; Gouillaud, J.-C.; Gregory, C.; Herault, N.; Holder, J.; Hrabovsky, M.; Incerti, S.; Jouenne, A.; Kalt, L.; LeGallou, R.; Lott, B.; Lodygensky, O.; Manigot, P.; Manseri, H.; Manitaz, H.; Martin, M.; Morano, R.; Morineaud, G.; Muenz, F.; Musquere, A.; Naurois, M. de; Neveu, J.; Noppe, J.-M.; Olive, J.-F.; Palatka, M.; Perez, A.; Quebert, J.; Rebii, A.; Reposeur, T. E-mail: reposeur@in2p3.fr; Rob, L.; Roy, P.; Sans, J.-L.; Sako, T.; Schovanek, P.; Smith, D.A.; Snabre, P.; Villard, G

    2002-09-01

    CELESTE is an atmospheric Cherenkov telescope based on the sampling method which makes use of the de-commissioned THEMIS solar electrical plant in the French Pyrenees. A large (2000 m{sup 2}) mirror surface area from 40 independent heliostats followed by a secondary optic, a trigger system using analog summing techniques and signal digitization with 1 GHz flash ADCs make possible the detection of cosmic {gamma}-rays down to 30 GeV. This paper provides a detailed technical description of the CELESTE installation.

  14. An actively vetoed Clover gamma-detector for nuclear astrophysics at LUNA

    CERN Document Server

    Szucs, T; Broggini, C; Caciolli, A; Confortola, F; Corvisiero, P; Elekes, Z; Formicola, A; Fulop, Zs; Gervino, G; Guglielmetti, A; Gustavino, C; Gyurky, Gy; Imbriani, G; Junker, M; Lemut, A; Marta, M; Mazzocchi, C; Menegazzo, R; Prati, P; Roca, V; Rolfs, C; Alvarez, C Rossi; Somorjai, E; Straniero, O; Strieder, F; Terrasi, F; Trautvetter, H P

    2010-01-01

    An escape-suppressed, composite high-purity germanium detector of the Clover type has been installed at the Laboratory for Underground Nuclear Astrophysics (LUNA) facility, deep underground in the Gran Sasso Laboratory, Italy. The laboratory gamma-ray background of the Clover detector has been studied underground at LUNA and, for comparison, also in an overground laboratory. Spectra have been recorded both for the single segments and for the virtual detector formed by online addition of all four segments. The effect of the escape-suppression shield has been studied as well. Despite their generally higher intrinsic background, escape-suppressed detectors are found to be well suited for underground nuclear astrophysics studies. As an example for the advantage of using a composite detector deep underground, the weak ground state branching of the Ep = 223 keV resonance in the 24Mg(p,gamma)25Al reaction is determined with improved precision.

  15. Gamma-Ray Lenses for Astrophysics-and the Gamma-Ray Imager Mission GRI

    DEFF Research Database (Denmark)

    Wunderer, C. B.; Ballmoos, P. V.; Barriere, N.

    2009-01-01

    Observations of the gamma-ray sky reveal the most powerful sources and the most violent events in the Universe. While at lower wavebands the observed emission is generally dominated by thermal processes, the gamma-ray sky provides us with a view on the non-thermal Universe. Here particles are acc...

  16. Dicty_cDB: VHE418 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available e URL http://dictycdb.biol.tsukuba.ac.jp/CSM/VH/VHE4-A/VHE418Q.Seq.d/ Representat...ive seq. ID VHE418P (Link to Original site) Representative DNA sequence >VHE418 (VHE418Q) /CSM/VH/VHE4-A/VHE418Q...ogy vs CSM-cDNA Score E Sequences producing significant alignments: (bits) Value VHE418 (VHE418Q) /CSM/VH/VHE4-A/VHE418Q

  17. Multi-TeV gamma ray and cosmic ray astrophysics with TAIGA

    Energy Technology Data Exchange (ETDEWEB)

    Tluczykont, Martin [Hamburg Univ. (Germany). Institut fuer Experimentalphysik; Collaboration: TAIGA Kollaboration

    2016-07-01

    The very high energy gamma-ray regime is the key to several questions in high energy astrophysics, the most prominent being the search for the origin of cosmic rays. Observations of gamma rays up to several 100 TeV are particularly important to spectrally resolve the cutoff regime of the long-sought Pevatrons, the accelerators of PeV cosmic rays. TAIGA is an international collaboration that has, in the past 3 years, installed the air Cherenkov timing array HiSCORE on an area of 0.25 square-km, and are currently installing a first 4m diameter imaging air Cherenkov telescope (IACT), to be operated in parallel with the timing array. Our aim is to combine the timing and imaging techniques on a large scale in order to optimize the air Cherenkov detection technique for energies above 10 TeV and up to several 100 TeV. Simulations show a clear potential of the planned hybrid event reconstruction, especially in the energy regime from 10 TeV to 100 TeV. The TAIGA experiment will be complemented by scintillator based particle detectors for a measurement of the muon content of the air shower at higher energies. The status of our experiment and the planned 1 square-km stage of TAIGA are discussed.

  18. Astrophysical reaction rate for alpha(alpha n,gamma) sup 9 Be by photodisintegration

    CERN Document Server

    Sumiyoshi, K; Goko, S; Kajino, T

    2002-01-01

    We study the astrophysical reaction rate for the formation of sup 9 Be through the three body reaction alpha(alpha n,gamma). This reaction is one of the key reactions which could bridge the mass gap at A=8 nuclear systems to produce intermediate-to-heavy mass elements in alpha- and neutron-rich environments such as r-process nucleosynthesis in supernova explosions, s-process nucleosynthesis in asymptotic giant branch (AGB) stars, and primordial nucleosynthesis in baryon inhomogeneous cosmological models. To calculate the thermonuclear reaction rate in a wide range of temperatures, we numerically integrate the thermal average of cross sections assuming a two-steps formation through a metastable sup 8 Be, alpha+alpha[rlhar2] sup 8 Be(n,gamma) sup 9 Be. Off-resonant and on-resonant contributions from the ground state in sup 8 Be are taken into account. As input cross section, we adopt the latest experimental data by photodisintegration of sup 9 Be with laser-electron photon beams, which covers all relevant reson...

  19. Proton and $\\gamma$- partial widths of astrophysically important states of $^{30}$S studied by the $\\beta$-delayed decay of $^{31}$Ar

    CERN Document Server

    Koldste, G T; Borge, M J G; Briz, J A; Carmona-Gallardo, M; Fraile, L M; Fynbo, H O U; Giovinazzo, J; Johansen, J G; Jokinen, A; Jonson, B; Kurturkian-Nieto, T; Kusk, J H; Nilsson, T; Perea, A; Pesudo, V; Picado, E; Riisager, K; Saastamoinen, A; Tengblad, O; Thomas, J -C; Van de Walle, J

    2013-01-01

    Resonances just above the proton threshold in $^{30}$S affect the $^{29}$P$(p,\\gamma)^{30}$S reaction under astrophysical conditions. The ($p,\\gamma$)-reaction rate is currently determined indirectly and depends on the properties of the relevant resonances. We present here a method for finding the ratio between the proton- and $\\gamma$- partial widths of resonances in $^{30}$S. The widths are determined from the $\\beta -2p$ and $\\beta -p-\\gamma$-decay of $^{31}$Ar, which is produced at ISOLDE, CERN. Experimental limits on the ratio between the proton- and $\\gamma$- partial widths for astrophysical relevant levels in $^{30}$S have been found for the first time. A level at 4689.2(24)keV is identified in the $\\gamma$-spectrum, and an upper limit on the $\\Gamma_{p}/\\Gamma_{\\gamma}$ ratio of 0.26 (95% C.L.) is found. In the two-proton spectrum two levels at 5227(3)keV and 5847(4)keV are identified. These levels were previously seen to $\\gamma$-decay and upper limits on the $\\Gamma_{\\gamma}/\\Gamma_{p}$ ratio of 0.5...

  20. Dicty_cDB: VHE820 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available producing significant alignments: (bits) Value VHE820 (VHE820Q) /CSM/VH/VHE8-A/VHE820Q.Seq.d/ 32 2.0 SSL712...date 2004.12.24 Homology vs DNA Score E Sequences producing significant alignments: (bits) Value

  1. Dicty_cDB: VHE138 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available VH (Link to library) VHE138 (Link to dictyBase) - - - Contig-U15767-1 VHE138P (Link... to Original site) VHE138F 569 VHE138Z 621 VHE138P 1170 - - Show VHE138 Library VH (Link to library) Clone ID VHE138 (Link to dict...yBase) Atlas ID - NBRP ID - dictyBase ID - Link to Contig Contig-U15767-1 Original site URL http://dict...FVDNQAGDSXSAKSGKNLPIQRDIELNWNGEAYEYSNSNYFPINGQGF NDVSYP--- ---QVTCGGCETCSYATGKCEPDSSLCNDNNICT...rsi*i**fkllpn*rtrf q*ckls--- ---QVTCGGCETCSYATGKCEPDSSLCNDNNICTIDICVHEGILDGLPQGNCSNTPVDCG ANDEDKCKTWSCDPTKGG

  2. Hard X-ray/soft gamma-ray telescope designs for future astrophysics missions

    DEFF Research Database (Denmark)

    Ferreira, Desiree Della Monica; Christensen, Finn Erland; Pivovaroff, Michael J.

    2013-01-01

    We present several concept designs of hard X-ray/soft λ-ray focusing telescopes for future astrophysics missions. The designs are based on depth graded multilayer coatings. These have been successfully employed on the NuSTAR mission for energies up to 80 keV. Recent advances in demonstrating...

  3. Astrophysical S-factor of the 3He(alpha,gamma)7Be reaction measured at low energy via prompt and delayed gamma detection

    CERN Document Server

    Confortola, F; Costantini, H; Formicola, A; Gyürky, Gy; Bezzon, P; Bonetti, R; Broggini, C; Corvisiero, P; Elekes, Z; Fülöp, Z; Gervino, G; Guglielmetti, A; Gustavino, C; Imbriani, G; Junker, M; Laubenstein, M; Lemut, A; Limata, B; Lozza, V; Marta, M; Menegazzo, R; Prati, P; Roca, V; Rolfs, C; Alvarez, C Rossi; Somorjai, E; Straniero, O; Strieder, F; Terrasi, F; Trautvetter, H P

    2007-01-01

    Solar neutrino fluxes depend both on astrophysical and on nuclear physics inputs, namely on the cross sections of the reactions responsible for neutrino production inside the Solar core. While the flux of solar 8B neutrinos has been recently measured at Superkamiokande with a 3.5% uncertainty and a precise measurement of 7Be neutrino flux is foreseen in the next future, the predicted fluxes are still affected by larger errors. The largest nuclear physics uncertainty to determine the fluxes of 8B and 7Be neutrinos comes from the 3He(alpha,gamma)7Be reaction. The uncertainty on its S-factor is due to an average discrepancy in results obtained using two different experimental approaches: the detection of the delayed gamma rays from 7Be decay and the measurement of the prompt gamma emission. Here we report on a new high precision experiment performed with both techniques at the same time. Thanks to the low background conditions of the Gran Sasso LUNA accelerator facility, the cross section has been measured at Ec...

  4. The Beta-Delayed Proton and Gamma Decay of 27P for Nuclear Astrophysics

    Science.gov (United States)

    Simmons, E.; Banu, A.; Chyzh, R.; Dag, M.; Hardy, J. C.; Iacob, V. E.; McCleskey, M.; Park, H.; Roeder, B.; Spiridon, A.; Trache, L.; Tribble, R. E.; Saastamoinen, A.; Pizzone, R. G.; Davinson, T.; Doherty, D.; Lotay, G. J.; Wallace, J.; Woods, P. J.; Cyclotron Institute, Texas A&M Collaboration; University of Jyvaskyla, Finland Collaboration; INFN-Laboratori Nazionali del Sud, Catania, Italy Collaboration; University of Edinburgh, UK Collaboration

    2014-09-01

    The destruction of 26Al can be accomplished by proton capture on either the ground state or the metastable-state. The indirect method used here was the study of beta-delayed gamma and proton decay of 27P. The states that are populated above the proton threshold in 27Si can then decay by proton emission to 26mAl. These states represent the resonances of interest in the direct proton capture process. While no new proton lines were observed, a slightly higher total proton branching ratio was estimated. Several new gamma lines were seen, mostly gamma's emitted from the IAS, which itself had a new and more accurate energy value assigned. The destruction of 26Al can be accomplished by proton capture on either the ground state or the metastable-state. The indirect method used here was the study of beta-delayed gamma and proton decay of 27P. The states that are populated above the proton threshold in 27Si can then decay by proton emission to 26mAl. These states represent the resonances of interest in the direct proton capture process. While no new proton lines were observed, a slightly higher total proton branching ratio was estimated. Several new gamma lines were seen, mostly gamma's emitted from the IAS, which itself had a new and more accurate energy value assigned. Supported by the US DOE under Grant DE-FG02-93ER40773.

  5. Nuclear Astrophysics

    CERN Document Server

    Langanke, K

    1999-01-01

    The manuscript reviews progress achieved in recent years in various aspects of nuclear astrophysics, including stellar nucleosynthesis, nuclear aspects of supernova collapse and explosion, neutrino-induced reactions and their possible role in the supernova mechanism and nucleosynthesis, explosive hydrogen burning in binary systems, and finally the observation of gamma-rays from supernova remnants.

  6. Improved lead and bismuth (n,{gamma}) cross sections and their astrophysical impact

    Energy Technology Data Exchange (ETDEWEB)

    Domingo-Pardo, C.; Abbondanno, U.; Aerts, G.; Alvarez, H.; Alvarez-Velarde, F.; Andriamonje, S.; Andrzejewski, J.; Assimakopoulos, P.; Audouin, L.; Badurek, G.; Baumann, P.; Becvar, F.; Berthoumieux, E.; Calvino, F.; Calviani, M.; Cano-Ott, D.; Capote, R.; Carrapico, C.; Cennini, P.; Chepel, V.; Chiaveri, E.; Colonna, N.; Cortes, G.; Couture, A.; Cox, J.; Dahlfors, M.; David, S.; Dillmann, I.; Dridi, W.; Duran, I.; Eleftheriadis, C.; Embid-Segura, M.; Ferrant, L.; Ferrari, A.; Ferreira-Marques, R.; Fujii, K.; Furman, W.; Goncalves, I.; Gonzalez-Romero, E.; Gramegna, F.; Guerrero, C.; Gunsing, F.; Haas, B.; Haight, R.; Heil, M.; Herrera-Martinez, A.; Igashira, M.; Jericha, E.; Kiappeler, F.; Kadi, Y.; Karadimos, D.; Karamanis, D.; Kerveno, M.; Koehler, P.; Kossionides, E.; Krticka, M.; Lampoudis, C.; Leeb, H.; Lindote, A.; Lopes, I.; Lozano, M.; Lukic, S.; Marganiec, J.; Marrone, S.; Martinez, T.; Massimi, C.; Mastinu, P.; Mengoni, A.; Milazzo, P.M.; Moreau, C.; Mosconi, M.; Neves, F.; Oberhummer, H.; O' Brien, S.; Pancin, J.; Papachristodoulou, C.; Papadopoulos, C.; Paradela, C.; Patronis, N.; Pavlik, A.; Pavlopoulos, P.; Perrot, L.; Pigni, M.T.; Plag, R.; Plompen, A.; Plukis, A.; Poch, A.; Praena, J.; Pretel, C.; Quesada, J.; Rauscher, T.; Reifarth, R.; Rubbia, C.; Rudolf, G.; Rullhusen, P.; Salgado, J.; Santos, C.; Sarchiapone, L.; Savvidis, I.; Stephan, C.; Tagliente, G.; Tain, J.L.; Tassan-Got, L.; Tavora, L.; Terlizzi, R.; Vannini, G.; Vaz, P.; Ventura, A.; Villamarin, D.; Vincente, M.C.; Vlachoudis, V.; Vlastou, R.; Voss, F.; Walter, S.; Wiescher, M.; Wisshak, K

    2008-07-01

    A series of (n,{gamma}) neutron capture measurements on the lead isotopes and bismuth have been carried out at the CERN n-TOF installation in the neutron energy range from 1 eV up to 1 MeV. At n-TOF, contaminations due to scattered neutrons were reduced down to a negligible level by using improved {gamma}-ray detectors with very low neutron sensitivity. The background level has been determined precisely from a complementary measurement. Other experimental effects related to the electronic threshold in the detectors and the angular distribution of the prompt {gamma}-rays were investigated via Monte Carlo simulations and could be taken into account in the analysis of the capture data. With this set of measurements the energy differential (n,{gamma}) cross sections of {sup 204,206,207}Pb and {sup 209}Bi have been determined with good accuracy. The information obtained in this work becomes of interest for constraining r-process calculations and in particular for the Th/U cosmo-chronometer. (authors)

  7. Astrophysical interpretation of the anisotropies in the unresolved gamma-ray background

    Science.gov (United States)

    Ando, Shin'ichiro; Fornasa, Mattia; Fornengo, Nicolao; Regis, Marco; Zechlin, Hannes-S.

    2017-06-01

    Recently, a new measurement of the auto- and cross-correlation angular power spectrum (APS) of the isotropic gamma-ray background was performed, based on 81 months of data of the Fermi Large-Area Telescope (LAT). Here, we fit, for the first time, the new APS data with a model describing the emission of unresolved blazars. These sources are expected to dominate the anisotropy signal. The model we employ in our analysis reproduces well the blazars resolved by Fermi LAT. When considering the APS obtained by masking the sources listed in the 3FGL catalog, we find that unresolved blazars underproduce the measured APS below ˜1 GeV . Contrary to past results, this suggests the presence of a new contribution to the low-energy APS, with a significance of, at least, 5 σ . The excess can be ascribed to a new class of faint gamma-ray emitters. If we consider the APS obtained by masking the sources in the 2FGL catalog, there is no underproduction of the APS below 1 GeV, but the new source class is still preferred over the blazars-only scenario (with a significance larger than 10 σ ). The properties of the new source class and the level of anisotropies induced in the isotropic gamma-ray background are the same, independent of the APS data used. In particular, the new gamma-ray emitters must have a soft energy spectrum, with a spectral index ranging, approximately, from 2.7 to 3.2. This complicates their interpretation in terms of known sources, since, normally, star-forming and radio galaxies are observed with a harder spectrum. The new source class identified here is also expected to contribute significantly to the intensity of the isotropic gamma-ray background.

  8. Dicty_cDB: VHE424 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available VH (Link to library) VHE424 (Link to dictyBase) - - - Contig-U16349-1 - (Link to Or...iginal site) - - VHE424Z 667 - - - - Show VHE424 Library VH (Link to library) Clone ID VHE424 (Link to dicty...Base) Atlas ID - NBRP ID - dictyBase ID - Link to Contig Contig-U16349-1 Original site URL http://dictycdb.b...ino Acid sequence ---ASGSVVEQCSSVDSISNLPTTMQLFAGIKSICTEMAMDGCEKCSGNSPTTTCDVLPV YSSLCMAMPDMSQCANWTKMCSSSGQLYN...--ASGSVVEQCSSVDSISNLPTTMQLFAGIKSICTEMAMDGCEKCSGNSPTTTCDVLPV YSSLCMAMPDMSQCANWTKMCSSSGQLYNSQITSDYCVASVADAVPIM

  9. Correlative studies of astrophysical sources of very high and ultra high energy gamma-rays

    Science.gov (United States)

    Akerlof, Carl W.

    1993-01-01

    During the period of this contract, June 1, 1991 to November 14, 1992, the major results of our research effort have come from the Whipple air shower experiment in Tucson, AZ. The most notable development has been the discovery of TeV photons from the BL Lac object, Markarian 421. This result depended critically on the identification of Mrk 421 by the EGRET team as a source of GeV gamma rays.

  10. Topics in High-Energy Astrophysics: X-ray Time Lags and Gamma-ray Flares

    Science.gov (United States)

    Kroon, John J.

    2016-03-01

    The Universe is host to a wide variety of high-energy processes that convert gravitational potential energy or rest-mass energy into non-thermal radiation such as bremsstrahlung and synchrotron. Prevailing models of X-ray emission from accreting Black Hole Binaries (BHBs) struggle to simultaneously fit the quiescent X-ray spectrum and the transients which result in the phenomenon known as X-ray time lags. And similarly, classical models of diffusive shock acceleration in pulsar wind nebulae fail to explain the extreme particle acceleration in very short timescales as is inferred from recent gamma-ray flares from the Crab nebula. In this dissertation, I develop new exact analytic models to shed light on these intriguing processes. I take a fresh look at the formation of X-ray time lags in compact sources using a new mathematical approach in which I obtain the exact Green's function solution. The resulting Green's function allows one to explore a variety of injection scenarios, including both monochromatic and broadband (bremsstrahlung) seed photon injection. I obtain the exact solution for the dependence of the time lags on the Fourier frequency, for both homogeneous and inhomogeneous clouds. The model can successfully reproduce both the observed time lags and the quiescent X-ray spectrum using a single set of coronal parameters. I show that the implied coronal radii in the new model are significantly smaller than those obtained in the Monte Carlo simulations, hence greatly reducing the coronal heating problem. Recent bright gamma-ray flares from the Crab nebula observed by AGILE and Fermi reaching GeV energies and lasting several days challenge the contemporary model for particle acceleration in pulsar wind nebulae, specifically the diffusive shock acceleration model. Simulations indicate electron/positron pairs in the Crab nebula pulsar wind must be accelerated up to PeV energies in the presence of ambient magnetic fields with strength B ~100 microG. No

  11. Relevance of axionlike particles for very-high-energy astrophysics

    Science.gov (United States)

    de Angelis, Alessandro; Galanti, Giorgio; Roncadelli, Marco

    2011-11-01

    Several extensions of the standard model and, in particular, superstring theories suggest the existence of axionlike particles (ALPs), which are very light spin-zero bosons with a two-photon coupling. As a consequence, photon-ALP oscillations occur in the presence of an external magnetic field, and ALPs can lead to observable effects on the measured photon spectrum of astrophysical sources. An intriguing situation arises when blazars are observed in the very-high-energy (VHE) band—namely, above 100 GeV—as it is the case with the presently operating Imaging Atmospheric Cherenkov Telescopes H.E.S.S, Major Atmospheric Gamma Imaging Cherenkov telescope, Collaboration of Australia and Nippon for a Gamma Ray Observatory in the Outback III, and VERITAS. The extragalactic background light produced by galaxies during cosmic evolution gives rise to a source dimming which becomes important in the VHE band and increases with energy, since hard photons from a blazar scatter off soft extragalactic background light photons thereby disappearing into e+e- pairs. This dimming can be considerably reduced by photon-ALP oscillations, and since they are energy independent the resulting blazar spectra become harder than expected. We consider throughout a scenario first proposed by De Angelis, Roncadelli, and Mansutti in which the above strategy is implemented with photon-ALP oscillations triggered by large-scale magnetic fields, and we systematically investigate its implications for VHE blazars. We find that for ALPs lighter than 5·10-10eV the photon survival probability is larger than predicted by conventional physics above a few hundred GeV. Specifically, a boost factor of 10 can easily occur for sources at large distance and large energy, e.g. at 8 TeV for the blazar 1ES 0347-121 at redshift z=0.188. This is a clear-cut prediction which can be tested with the planned Cherenkov Telescope Array and the High Altitude Water Cherenkov Experiment (HAWC) water Cherenkov

  12. Hard-X and gamma-ray imaging detector for astrophysics based on pixelated CdTe semiconductors

    Science.gov (United States)

    Gálvez, J.-L.; Hernanz, M.; Álvarez, L.; Artigues, B.; Ullán, M.; Lozano, M.; Pellegrini, G.; Cabruja, E.; Martínez, R.; Chmeissani, M.; Puigdengoles, C.

    2016-01-01

    Stellar explosions are astrophysical phenomena of great importance and interest. Instruments with high sensitivities are essential to perform detailed studies of cosmic explosions and cosmic accelerators. In order to achieve the needed performance, a hard-X and gamma-ray imaging detector with mm spatial resolution and large enough efficiency is required. We present a detector module which consists of a single CdTe crystal of 12.5 × 12.5mm 2 and 2mm thick with a planar cathode and with the anode segmented in an 11x11 pixel array with a pixel pitch of 1 mm attached to the readout chip. Two possible detector module configurations are considered: the so-called Planar Transverse Field (PTF) and the Parallel Planar Field (PPF). The combination of several modules in PTF or PPF configuration will achieve the desired performance of the imaging detector. The sum energy resolution of all pixels of the CdTe module measured at 122 keV and 356 keV is 3.8% and 2% respectively, in the following operating conditions: PPF irradiation, bias voltage -500 V and temperature -10̂ C.

  13. Astrophysical S factors for the {sup 9}Be({rvec p},{gamma}){sup 10}B reaction

    Energy Technology Data Exchange (ETDEWEB)

    Wulf, E.A.; Godwin, M.A.; Guillemette, J.F.; Laymon, C.M.; Rice, B.J.; Weller, H.R. [Department of Physics, Duke University, Durham, North Carolina 27708 (United States); Wulf, E.A.; Godwin, M.A.; Guillemette, J.F.; Laymon, C.M.; Rice, B.J.; Tilley, D.R.; Weller, H.R. [Triangle Universities Nuclear Laboratory, Durham, North Carolina 27708 (United States); Prior, R.M.; Spraker, M. [Department of Physics, North Georgia College and State University, Dahlonega, Georgia 30597 (United States); Tilley, D.R. [Department of Physics, North Carolina State University, Raleigh, North Carolina 27695 (United States)

    1998-07-01

    Analyzing powers for the {sup 9}Be({rvec p},{gamma}){sup 10}B reaction were measured by stopping a 100 keV polarized proton beam in a {sup 9}Be target. The measured vector analyzing power is A{sub y}(90{degree})=0.18{plus_minus}0.03 for capture to the ground state, with smaller values at 90{degree} for the first three excited states. Astrophysical S factors were calculated for each of the final states using a direct capture plus resonance model which fit both the present analyzing power data and the previously reported cross section data. The calculated S factors at E{sub p}=0 keV for capture to the ground state and first three excited states were 0.25, 0.34, 0.27, and 0.10 keV b, respectively, which are considerably smaller than previously reported. The observed analyzing powers are explained, within experimental uncertainty, as arising from the interference of the E1 direct capture amplitude with the tails of nearby p-wave and s-wave resonances. {copyright} {ital 1998} {ital The American Physical Society}

  14. The {sup 7}Li (n,{gamma}){sup 8}Li radiative capture at astrophysical energies

    Energy Technology Data Exchange (ETDEWEB)

    Dubovichenko, S.B. [V. G. Fessenkov Astrophysical Institute ' ' NCSRT' ' NSA RK, 050020, Observatory 23, Kamenskoe plato, Almaty (Kazakstan (Kazakhstan)); Institute of Nuclear Physics NNC RK, 050032, str. Ibragimova 1, Almaty (Kazakstan (Kazakhstan)); Dzhazairov-Kakhramanov, A.V. [Institute of Nuclear Physics NNC RK, 050032, str. Ibragimova 1, Almaty (Kazakstan (Kazakhstan))

    2012-12-15

    The possibility to construct intercluster interaction potentials in continuous and discrete spectra is shown in one-channel cluster model based on the classification of orbital states according to Young schemes. These potentials usually contain Pauli forbidden states, and correctly describe elastic scattering phase shifts taking into account resonance behavior and main characteristics of the bound states of nuclei in the considering cluster channel. The versions of intercluster interaction potentials describing the resonance nature of some phase shifts of the n{sup 7}Li elastic scattering at low energies and the P{sub 2} ground state of {sup 8}Li in the n{sup 7}Li cluster channel have been constructed for the demonstration of this approach. The possibility of describing the total cross sections of {sup 7}Li (n,{gamma}){sup 8}Li within the energies from 5 meV (5 . 10{sup -3} eV) to 1 MeV, including resonance at 0.25 MeV, has been demonstrated for the potentials obtained in the potential cluster model with forbidden states. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Dicty_cDB: VHE513 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available VH (Link to library) VHE513 (Link to dictyBase) - - - Contig-U13028-1 VHE513P (Link to Original site)...VHE513Z 227 VHE513P 804 - - Show VHE513 Library VH (Link to library) Clone ID VHE513 (Link to dictyBase)...Physarum08327 Physarum polycephalum starvation stress library Physarum polycephalum cDNA clone PpolyN1d98h02...Physarum08344 Physarum polycephalum starvation stress library Physarum polycephalum cDNA clone PpolyN1d95e10...Physarum08350 Physarum polycephalum starvation stress library Physarum polycephalum cDNA clone PpolyN1d88e08

  16. Astrophysics Program Overview; Briefing

    National Research Council Canada - National Science Library

    1998-01-01

    This is an overview briefing of the NAS Astrophysics programs. These program should lead the opening scientific frontiers and disseminate new knowledge, as the Hubble Space Telescope and Compton Gamma Ray Observatory are currently doing...

  17. Minicourses in Astrophysics, Modular Approach, Vol. I.

    Science.gov (United States)

    Illinois Univ., Chicago.

    This is the first volume of a two-volume minicourse in astrophysics. It contains chapters on the following topics: planetary atmospheres; X-ray astronomy; radio astrophysics; molecular astrophysics; and gamma-ray astrophysics. Each chapter gives much technical discussion, mathematical treatment, diagrams, and examples. References are included with…

  18. The B-10((p)over-right-arrow, gamma)C-11 reaction at astrophysically relevant energies

    NARCIS (Netherlands)

    Tonchev, AP; Nelson, SO; Sabourov, K; Crowley, BT; Joshi, K; Weller, HR; Kelley, JH; Prior, RM; Spraker, M; Kalantar-Nayestanaki, N

    2003-01-01

    The B-10(, gamma)C-11 reaction was studied by detecting the gamma-rays produced when 100, 130-, and 160-keV polarized protons were stopped in a thick B-10 target. Polarized and unpolarized incident beams were used to measure the cross section and vector analyzing power as a function of angle and

  19. A search for gamma-ray imprints of annihilating dark matter in the galaxy, and the astrophysical implications of ultra-light fundamental vector bosons

    Energy Technology Data Exchange (ETDEWEB)

    Zechlin, Hannes-Sebastian

    2013-12-15

    Standard Model extensions imply new elementary particles that can lead to specific astrophysical signatures. In particular, weakly interacting massive particles (WIMPs) can constitute the unknown non-luminous cold dark matter, which contributes approximately 84% to the matter content of the Universe. Annihilation or decay of WIMPs may lead to high-energy gamma-rays. In this thesis, new methods of searching for gamma-ray signals from annihilating dark matter are developed and applied. Moreover, astrophysical imprints of new ultra-light hidden U(1) gauge bosons in radio data are investigated. Hierarchical structure formation predicts a variety of smaller bound dark matter sub-halos in Milky-Way-like galactic hosts. It is shown that the Fermi-LAT is sufficiently sensitive for detecting up to a few nearby dark matter subhalos in terms of faint gamma-ray sources with a moderate angular extent. Searches in the first and second Fermi-LAT source catalogs reveal about ten candidate sources each. To discriminate the source candidates from conventional astrophysical objects, an analysis for spectral, spatial, positional, and temporal gamma-ray properties using 3.5 years of Fermi-LAT data is carried out. In addition, a multi-wavelength analysis of archival data or follow-up observations in the radio, infrared, optical, UV, X-ray, high-energy, and very-high energy gamma-ray bands is carried out. The broad-band spectra of all promising candidates are compatible with AGN, in particular high-energy peaked BL-Lac type objects (HBLs). Dark matter annihilation can contribute to the small-scale angular anisotropy spectrum of the diffuse gamma-ray background (DGB). The detection capabilities of currently operating imaging atmospheric Cherenkov telescopes and the planned Cherenkov Telescope Array (CTA) are studied. With CTA, a relative gamma-ray contribution from annihilating dark matter of 10% to the extragalactic DGB can be resolved via angular anisotropies. In terms of the dark

  20. Dicty_cDB: VHE495 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available VH (Link to library) VHE495 (Link to dictyBase) - - - Contig-U11503-1 VHE495E (Link...) Clone ID VHE495 (Link to dictyBase) Atlas ID - NBRP ID - dictyBase ID - Link to Contig Contig-U11503-1 Ori...uence kkkqfsl*iy*YMIRKSNNFSILFAIFLKIVFVVSAPLCPNSTILLNYNILTVYNSSEGC GFNNEPICTSLKDA...nce (All Frames) Frame A: kkkqfsl*iy*YMIRKSNNFSILFAIFLKIVFVVSAPLCPNSTILLNYNILTVYNSSEGC GFNNEPICTSLKDAVSRAFLL...ts: (bits) Value N AC115680 |AC115680.3 Dictyostelium discoideum chromosome 2 map 4915084-5005461 strain AX4

  1. Direct capture contribution to the sup 1 sup 1 C(p,gamma) sup 1 sup 2 N reaction at astrophysical energies

    CERN Document Server

    Timofeyuk, N K

    2003-01-01

    The contribution of the direct mechanism to the sup 1 sup 1 C(p,gamma) sup 1 sup 2 N capture reaction at astrophysically relevant energies is calculated using the overlap integral and the p- sup 1 sup 1 C local effective potential obtained within a microscopic approach. This approach is based on the solution of the inhomogeneous differential equation with the source term calculated within the translation-invariant 0 Planck constant omega shell model. The calculations resulted in a zero-energy astrophysical S-factor S(0) equal to 0.149 keV b. This value was obtained with the two-body effective NN potential, which gives the asymptotic normalization coefficient (ANC) for mirror nucleus sup 1 sup 2 B close to the available experimental value. A separate estimation of S(0) based on the ratio of mirror ANCs gave S(0)=0.111 sup + sup 0 sup . sup 0 sup 2 sup 5 sub - sub 0 sub . sub 0 sub 2 sub 0 keV b. This value is about three times larger than the one obtained from the Coulomb breakup of sup 1 sup 2 N.

  2. Astrophysical S factor for the radiative-capture reaction p{sup 6}Li {yields} {sup 7}Be{gamma}

    Energy Technology Data Exchange (ETDEWEB)

    Dubovichenko, S. B., E-mail: sergey@dubovichenko.ru [National Space Agency of the Republic of Kazakhstan, Fessenkov Astrophysical Institute, National Center of Space Research and Technology (Kazakhstan); Burtebaev, N., E-mail: burteb@inp.kz; Zazulin, D. M.; Kerimkulov, Zh. K. [National Nuclear Center of Republic of Kazakhstan, Institute of Nuclear Physics (Kazakhstan); Amar, A. S. A. [Al-Farabi Kazakh National University (Kazakhstan)

    2011-07-15

    A new measurement of differential cross sections for elastic p{sup 6}Li scattering in the energy range 0.35-1.2 MeV was performed. A partial-wave analysis of the data obtained in this way was carried out, and potentials simulating the p{sup 6}Li interaction were constructed. Various experiments devoted to studying elastic p{sup 6}Li scattering over the broad energy range of 0.5-50 MeV were analyzed on the basis of the optical model. By using the potentials obtained from the partial-wave analysis, the possibility of describing the astrophysical S factor for radiative proton capture on {sup 6}Li at low energies was considered within the potential cluster model involving forbidden states.

  3. Essential astrophysics

    CERN Document Server

    Lang, Kenneth R

    2013-01-01

    Essential Astrophysics is a book to learn or teach from, as well as a fundamental reference volume for anyone interested in astronomy and astrophysics. It presents astrophysics from basic principles without requiring any previous study of astronomy or astrophysics. It serves as a comprehensive introductory text, which takes the student through the field of astrophysics in lecture-sized chapters of basic physical principles applied to the cosmos. This one-semester overview will be enjoyed by undergraduate students with an interest in the physical sciences, such as astronomy, chemistry, engineering or physics, as well as by any curious student interested in learning about our celestial science. The mathematics required for understanding the text is on the level of simple algebra, for that is all that is needed to describe the fundamental principles. The text is of sufficient breadth and depth to prepare the interested student for more advanced specialized courses in the future. Astronomical examples are provide...

  4. Nuclear astrophysics lessons from INTEGRAL.

    Science.gov (United States)

    Diehl, Roland

    2013-02-01

    Measurements of high-energy photons from cosmic sources of nuclear radiation through ESA's INTEGRAL mission have advanced our knowledge: new data with high spectral resolution showed that characteristic gamma-ray lines from radioactive decays occur throughout the Galaxy in its interstellar medium. Although the number of detected sources and often the significance of the astrophysical results remain modest, conclusions derived from this unique astronomical window of radiation originating from nuclear processes are important, complementing the widely-employed atomic-line based spectroscopy. We review the results and insights obtained in the past decade from gamma-ray line measurements of cosmic sources in the context of their astrophysical questions.

  5. Nuclear astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Haxton, W.C.

    1992-01-01

    The problem of core-collapse supernovae is used to illustrate the many connections between nuclear astrophysics and the problems nuclear physicists study in terrestrial laboratories. Efforts to better understand the collapse and mantle ejection are also motivated by a variety of interdisciplinary issues in nuclear, particle, and astrophysics, including galactic chemical evolution, neutrino masses and mixing, and stellar cooling by the emission of new particles. The current status of theory and observations is summarized.

  6. Nuclear astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Haxton, W.C.

    1992-12-31

    The problem of core-collapse supernovae is used to illustrate the many connections between nuclear astrophysics and the problems nuclear physicists study in terrestrial laboratories. Efforts to better understand the collapse and mantle ejection are also motivated by a variety of interdisciplinary issues in nuclear, particle, and astrophysics, including galactic chemical evolution, neutrino masses and mixing, and stellar cooling by the emission of new particles. The current status of theory and observations is summarized.

  7. Relativistic astrophysics

    CERN Document Server

    Demianski, Marek

    2013-01-01

    Relativistic Astrophysics brings together important astronomical discoveries and the significant achievements, as well as the difficulties in the field of relativistic astrophysics. This book is divided into 10 chapters that tackle some aspects of the field, including the gravitational field, stellar equilibrium, black holes, and cosmology. The opening chapters introduce the theories to delineate gravitational field and the elements of relativistic thermodynamics and hydrodynamics. The succeeding chapters deal with the gravitational fields in matter; stellar equilibrium and general relativity

  8. Predicting the statistics of high-energy astrophysical backgrounds

    NARCIS (Netherlands)

    Feyereisen, M.R.

    2017-01-01

    This thesis presents improvements to a methodology for predicting the probability distribution of diffuse isotropic astrophysical backgrounds, applied to high-energy extragalactic gamma rays and neutrinos.

  9. Astrophysical Concepts

    CERN Document Server

    Harwit, Martin

    2006-01-01

    This classic text, aimed at senior undergraduates and beginning graduate students in physics and astronomy, presents a wide range of astrophysical concepts in sufficient depth to give the reader a quantitative understanding of the subject. Emphasizing physical concepts, the book outlines cosmic events but does not portray them in detail: it provides a series of astrophysical sketches. For this fourth edition, nearly every part of the text has been reconsidered and rewritten, new sections have been added to cover recent developments, and others have been extensively revised and brought up to date. The book begins with an outline of the scope of modern astrophysics and enumerates some of the outstanding problems faced in the field today. The basic physics needed to tackle these questions are developed in the next few chapters using specific astronomical processes as examples. The second half of the book enlarges on these topics and shows how we can obtain quantitative insight into the structure and evolution of...

  10. Cross section measurements of the sup 1 sup 0 sup 2 Pd(p, gamma) sup 1 sup 0 sup 3 Ag, sup 1 sup 1 sup 6 Sn(p, gamma) sup 1 sup 1 sup 7 Sb, and sup 1 sup 1 sup 2 Sn(alpha, gamma) sup 1 sup 1 sup 6 Te reactions relevant to the astrophysical rp- and gamma-processes

    CERN Document Server

    Oezkan, N; Boyd, R N; Cole, A L; Famiano, M; Gueray, R T; Howard, M; Sahin, L; Zach, J J; Haan, R D; Görres, J; Wiescher, M C; Islam, M S; Rauscher, T

    2002-01-01

    Total cross section measurements for the sup 1 sup 0 sup 2 Pd(p, gamma) sup 1 sup 0 sup 3 Ag and sup 1 sup 1 sup 6 Sn(p, gamma) sup 1 sup 1 sup 7 Sb reactions have been performed in the proton energy range 2.6 to 4.25 MeV, and for the sup 1 sup 1 sup 2 Sn(alpha, gamma) sup 1 sup 1 sup 6 Te reaction over the alpha beam energy range 7.0 to 10.5 MeV. An activation technique was used in which gamma rays from decays of the reaction products were detected off-line by two hyper-pure germanium detectors in a low background environment. Where possible, reaction rates are derived and the results compared to those of calculations generated by the NON-SMOKER and the MOST statistical model codes so as to judge their applicability for describing the cross sections needed for network calculations of nucleosynthesis in explosive astrophysical environments via the gamma- and rp-processes.

  11. Allen's astrophysical quantities

    CERN Document Server

    2000-01-01

    This new, fourth, edition of Allen's classic Astrophysical Quantities belongs on every astronomer's bookshelf. It has been thoroughly revised and brought up to date by a team of more than ninety internationally renowned astronomers and astrophysicists. While it follows the basic format of the original, this indispensable reference has grown to more than twice the size of the earlier editions to accommodate the great strides made in astronomy and astrophysics. It includes detailed tables of the most recent data on: - General constants and units - Atoms, molecules, and spectra - Observational astronomy at all wavelengths from radio to gamma-rays, and neutrinos - Planetary astronomy: Earth, planets and satellites, and solar system small bodies - The Sun, normal stars, and stars with special characteristics - Stellar populations - Cataclysmic and symbiotic variables, supernovae - Theoretical stellar evolution - Circumstellar and interstellar material - Star clusters, galaxies, quasars, and active galactic nuclei ...

  12. Astrophysics a new approach

    CERN Document Server

    Kundt, Wolfgang

    2005-01-01

    For a quantitative understanding of the physics of the universe - from the solar system through the milky way to clusters of galaxies all the way to cosmology - these edited lecture notes are perhaps among the most concise and also among the most critical ones: Astrophysics has not yet stood the redundancy test of laboratory physics, hence should be wary of early interpretations. Special chapters are devoted to magnetic and radiation processes, supernovae, disks, black-hole candidacy, bipolar flows, cosmic rays, gamma-ray bursts, image distortions, and special sources. At the same time, planet earth is viewed as the arena for life, with plants and animals having evolved to homo sapiens during cosmic time. -- This text is unique in covering the basic qualitative and quantitative tools, formulae as well as numbers, needed for the precise interpretation of frontline phenomena in astrophysical research. The author compares mainstream interpretations with new and even controversial ones he wishes to emphasize. The...

  13. Plasma astrophysics

    CERN Document Server

    Kaplan, S A; ter Haar, D

    2013-01-01

    Plasma Astrophysics is a translation from the Russian language; the topics discussed are based on lectures given by V.N. Tsytovich at several universities. The book describes the physics of the various phenomena and their mathematical formulation connected with plasma astrophysics. This book also explains the theory of the interaction of fast particles plasma, their radiation activities, as well as the plasma behavior when exposed to a very strong magnetic field. The text describes the nature of collective plasma processes and of plasma turbulence. One author explains the method of elementary

  14. First detection of VHE γ-rays from SN 1006 by HESS

    NARCIS (Netherlands)

    Acero, F.; Aharonian, F.; Akhperjanian, A.G.; Anton, G.; Vink, J.|info:eu-repo/dai/nl/182880559

    2010-01-01

    Aims. Recent theoretical predictions of the lowest very high energy (VHE) luminosity of SN 1006 are only a factor 5 below the previously published HESS upper limit, thus motivating further in-depth observations of this source. Methods. Deep observations at VHE energies (above 100 GeV) were carried

  15. Nuclear Astrophysics

    Science.gov (United States)

    Drago, Alessandro

    2005-04-01

    The activity of the Italian nuclear physicists community in the field of Nuclear Astrophysics is reported. The researches here described have been performed within the project "Fisica teorica del nucleo e dei sistemi a multi corpi", supported by the Ministero dell'Istruzione, dell'Università e della Ricerca.

  16. Astrophysics today

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, A.G.W.

    1984-01-01

    Examining recent history, current trends, and future possibilities, the author reports the frontiers of research on the solar system, stars, galactic physics, and cosmological physics. The book discusses the great discoveries in astronomy and astrophysics and examines the circumstances in which they occurred. It discusses the physics of white dwarfs, the inflationary universe, the extinction of dinosaurs, black hole, cosmological models, and much more.

  17. Relativistic astrophysics

    CERN Document Server

    Price, R H

    1993-01-01

    Work reported in the workshop on relativistic astrophysics spanned a wide varicy of topics. Two specific areas seemed of particular interest. Much attention was focussed on gravitational wave sources, especially on the waveforms they produce, and progress was reported in theoretical and observational aspects of accretion disks.

  18. Astrophysical Processes

    Indian Academy of Sciences (India)

    Since January 2016, the Journal of Astrophysics and Astronomy has moved to Continuous Article Publishing (CAP) mode. This means that each accepted article is being published immediately online with DOI and article citation ID with starting page number 1. Articles are also visible in Web of Science immediately.

  19. First Experimental Constraint on the Fe-59(n, gamma)Fe-60 Reaction Cross Section at Astrophysical Energies via the Coulomb Dissociation of Fe-60

    NARCIS (Netherlands)

    Uberseder, E.; Adachi, T.; Aumann, T.; Beceiro-Novo, S.; Boretzky, K.; Caesar, C.; Dillmann, I.; Ershova, O.; Estrade, A.; Farinon, F.; Hagdahl, J.; Heftrich, T.; Heil, M.; Heine, M.; Holl, M.; Ignatov, A.; Johansson, H. T.; Kalantar, N.; Langer, C.; Le Bleis, T.; Litvinov, Yu. A.; Marganiec, J.; Movsesyan, A.; Najafi, M. A.; Nilsson, T.; Nociforo, C.; Panin, V.; Pietri, S.; Plag, R.; Prochazka, A.; Rastrepina, G.; Reifarth, R.; Ricciardi, V.; Rigollet, C.; Rossi, D. M.; Savran, D.; Simon, H.; Sonnabend, K.; Streicher, B.; Terashima, S.; Thies, R.; Togano, Y.; Volkov, V.; Wamers, F.; Weick, H.; Weigand, M.; Wiescher, M.; Wimmer, C.; Winckler, N.; Woods, P. J.

    2014-01-01

    The radionuclide Fe-60 has been of great interest to the nuclear astrophysics community for over a decade. An initial discrepancy between the observed and modeled Galactic Fe-60/Al-26 ratio motivated numerous studies focused on the nucleosynthesis of these two isotopes, though the cross section of

  20. Focusing Telescopes in Nuclear Astrophysics

    CERN Document Server

    Ballmoos, Peter von

    2007-01-01

    This volume is the first of its kind on focusing gamma-ray telescopes. Forty-eight refereed papers provide a comprehensive overview of the scientific potential and technical challenges of this nascent tool for nuclear astrophysics. The book features articles dealing with pivotal technologies such as grazing incident mirrors, multilayer coatings, Laue- and Fresnel-lenses - and even an optic using the curvature of space-time. The volume also presents an overview of detectors matching the ambitious objectives of gamma ray optics, and facilities for operating such systems on the ground and in space. The extraordinary scientific potential of focusing gamma-ray telescopes for the study of the most powerful sources and the most violent events in the Universe is emphasized in a series of introductory articles. Practicing professionals, and students interested in experimental high-energy astrophysics, will find this book a useful reference

  1. Observational astrophysics

    CERN Document Server

    Léna, Pierre; Lebrun, François; Mignard, François; Pelat, Didier

    2012-01-01

    This is the updated, widely revised, restructured and expanded third edition of Léna et al.'s successful work Observational Astrophysics. It presents a synthesis on tools and methods of observational astrophysics of the early 21st century. Written specifically for astrophysicists and graduate students, this textbook focuses on fundamental and sometimes practical limitations on the ultimate performance that an astronomical system may reach, rather than presenting particular systems in detail. In little more than a decade there has been extraordinary progress in imaging and detection technologies, in the fields of adaptive optics, optical interferometry, in the sub-millimetre waveband, observation of neutrinos, discovery of exoplanets, to name but a few examples. The work deals with ground-based and space-based astronomy and their respective fields. And it also presents the ambitious concepts behind space missions aimed for the next decades. Avoiding particulars, it covers the whole of the electromagnetic spec...

  2. astrophysical significance

    Directory of Open Access Journals (Sweden)

    Dartois E.

    2014-02-01

    Full Text Available Clathrate hydrates, ice inclusion compounds, are of major importance for the Earth’s permafrost regions and may control the stability of gases in many astrophysical bodies such as the planets, comets and possibly interstellar grains. Their physical behavior may provide a trapping mechanism to modify the absolute and relative composition of icy bodies that could be the source of late-time injection of gaseous species in planetary atmospheres or hot cores. In this study, we provide and discuss laboratory-recorded infrared signatures of clathrate hydrates in the near to mid-infrared and the implications for space-based astrophysical tele-detection in order to constrain their possible presence.

  3. Cognitive Astrophysics

    Science.gov (United States)

    Madore, Barry F.

    2012-09-01

    Cognitive Astrophysics works at the cusp between Cognitive Science and Astrophysics, drawing upon lessons learned in the Philosophy of Science, Linguistics and Artificial Intelligence. We will introduce and illustrate the concept of ``Downward Causation,'' common in philosophical discussions, but either unknown to or disdained by most physicists. A clear example operating on cosmological scales involving the origin of large-scale structure will be given. We will also make the case that on scales exceeding most laboratory experiments, self-gravitating matter can be considered to be in a ``fifth state'', characterized primarily by its negative specific heat, as first recognized by Lynden-Bell and Lynden-Bell (1977, MNRAS, 181, 405). Such systems increase their temperature as they lose energy. Numerous examples will be given and discussed.

  4. Transient Astrophysics Probe

    Science.gov (United States)

    Camp, Jordan

    2017-08-01

    Transient Astrophysics Probe (TAP), selected by NASA for a funded Concept Study, is a wide-field high-energy transient mission proposed for flight starting in the late 2020s. TAP’s main science goals, called out as Frontier Discovery areas in the 2010 Decadal Survey, are time-domain astrophysics and counterparts of gravitational wave (GW) detections. The mission instruments include unique imaging soft X-ray optics that allow ~500 deg2 FoV in each of four separate modules; a high sensitivity, 1 deg2 FoV soft X-ray telescope based on single crystal silicon optics; a passively cooled, 1 deg2 FoV Infrared telescope with bandpass 0.6-3 micron; and a set of ~8 small NaI gamma-ray detectors. TAP will observe many events per year of X-ray transients related to compact objects, including tidal disruptions of stars, supernova shock breakouts, neutron star bursts and superbursts, and high redshift Gamma-Ray Bursts. Perhaps most exciting is TAP’s capability to observe X-ray and IR counterparts of GWs involving stellar mass black holes detected by LIGO/Virgo, and possibly X-ray counterparts of GWs from supermassive black holes, detected by LISA and Pulsar Timing Arrays.

  5. The 2010 Very High Energy Gamma-Ray Flare and 10 Years of Multi-Wavelength Observations of M87

    Science.gov (United States)

    Abramowski, A.; Acero, F.; Aharonian, F.; Akhperjanian, A G.; Anton, G.; Balzer, A.; Barnacka, A.; Barres de Almeida, U.; Becherini, Y.; Becker, J.; hide

    2011-01-01

    The giant radio galaxy M87 with its proximity (16 Mpc), famous jet, and very massive black hole ((3-6) X 10(exp 9) Solar Mass) provides a unique opportunity to investigate the origin of very high energy (VHE; E>100 GeV) gamma-ray emission generated in relativistic outflows and the surroundings of super-massive black holes. M87 has been established as a VHE gamma -ray emitter since 2006. The VHE gamma -ray emission displays strong variability on timescales as short as a day. In this paper, results from a joint VHE monitoring campaign on M87 by the MAGIC and VERITAS instruments in 2010 are reported. During the campaign, a flare at VHE was detected. triggering further observations at VHE (H.E.S.S.), X-rays (Chandra), and radio (43 GHz VLBA). The excellent sampling of the VHE gamma-ray light curve enables one to derive a precise temporal characterization of the flare: the single, isolated flare is well described by a two-sided exponential function with significantly different flux rise and decay times of rise tau ((sup rise sub d) = (1:69 +/- 0:30) days and tau(sup decay sub d = (0:611 +/- 0:080) days, respectively. While the overall variability pattern of the 2010 flare appears somewhat different from that of previous VHE flares in 2005 and 2008, they share very similar timescales (approx day), peak fluxes (Phi (sub > 0:35 TeV) approx. equals (1 - 3) X 10(exp -11) ph / square cm/s), and VHE spectra. 43 GHz VLBA radio observations of the inner jet regions indicate no enhanced flux in 2010 in contrast to observations in 2008, where an increase of the radio flux of the innermost core regions coincided with a VHE flare. On the other hand, Chandra X-ray observations taken approx 3 days after the peak of the VHE gamma -ray emission reveal an enhanced flux from the core (flux increased by factor approx 2; variability timescale < 2 days). The long-term (2001-2010) multi-wavelength (MWL) light curve of M87, spanning from radio to VHE and including data from HST, LT, VLA and

  6. THE 2010 VERY HIGH ENERGY {gamma}-RAY FLARE AND 10 YEARS OF MULTI-WAVELENGTH OBSERVATIONS OF M 87

    Energy Technology Data Exchange (ETDEWEB)

    Abramowski, A. [Institut fuer Experimentalphysik, Universitaet Hamburg, Luruper Chaussee 149, D 22761 Hamburg (Germany); Acero, F. [Laboratoire Univers et Particules de Montpellier, Universite Montpellier 2, CNRS/IN2P3, CC 72, Place Eugene Bataillon, F-34095 Montpellier Cedex 5 (France); Aharonian, F.; Bernloehr, K.; Bochow, A. [Max-Planck-Institut fuer Kernphysik, P.O. Box 103980, D 69029 Heidelberg (Germany); Akhperjanian, A. G. [National Academy of Sciences of the Republic of Armenia, 24 Marshall Baghramian Avenue, 0019 Yerevan (Armenia); Anton, G.; Balzer, A. [Physikalisches Institut, Universitaet Erlangen-Nuernberg, Erwin-Rommel-Str. 1, D 91058 Erlangen (Germany); Barnacka, A. [Nicolaus Copernicus Astronomical Center, ul. Bartycka 18, 00-716 Warsaw (Poland); Barres de Almeida, U. [Department of Physics, University of Durham, South Road, Durham DH1 3LE (United Kingdom); Becherini, Y. [Astroparticule et Cosmologie (APC), CNRS, Universite Paris 7 Denis Diderot, 10, rue Alice Domon et Leonie Duquet, F-75205 Paris Cedex 13 (France); Becker, J. [Institut fuer Theoretische Physik, Lehrstuhl IV: Weltraum und Astrophysik, Ruhr-Universitaet Bochum, D 44780 Bochum (Germany); Behera, B. [Landessternwarte, Universitaet Heidelberg, Koenigstuhl, D 69117 Heidelberg (Germany); Birsin, E. [Institut fuer Physik, Humboldt-Universitaet zu Berlin, Newtonstr. 15, D 12489 Berlin (Germany); Biteau, J. [Laboratoire Leprince-Ringuet, Ecole Polytechnique, CNRS/IN2P3, F-91128 Palaiseau (France); Boisson, C. [LUTH, Observatoire de Paris, CNRS, Universite Paris Diderot, 5 Place Jules Janssen, 92190 Meudon (France); Bolmont, J. [LPNHE, Universite Pierre et Marie Curie Paris 6, Universite Denis Diderot Paris 7, CNRS/IN2P3, 4 Place Jussieu, F-75252, Paris Cedex 5 (France); Bordas, P., E-mail: martin.raue@desy.de [Institut fuer Astronomie und Astrophysik, Universitaet Tuebingen, Sand 1, D 72076 Tuebingen (Germany); Collaboration: H.E.S.S. Collaboration; MAGIC Collaboration; VERITAS Collaboration; and others

    2012-02-20

    The giant radio galaxy M 87 with its proximity (16 Mpc), famous jet, and very massive black hole ((3 - 6) Multiplication-Sign 10{sup 9} M{sub Sun }) provides a unique opportunity to investigate the origin of very high energy (VHE; E > 100 GeV) {gamma}-ray emission generated in relativistic outflows and the surroundings of supermassive black holes. M 87 has been established as a VHE {gamma}-ray emitter since 2006. The VHE {gamma}-ray emission displays strong variability on timescales as short as a day. In this paper, results from a joint VHE monitoring campaign on M 87 by the MAGIC and VERITAS instruments in 2010 are reported. During the campaign, a flare at VHE was detected triggering further observations at VHE (H.E.S.S.), X-rays (Chandra), and radio (43 GHz Very Long Baseline Array, VLBA). The excellent sampling of the VHE {gamma}-ray light curve enables one to derive a precise temporal characterization of the flare: the single, isolated flare is well described by a two-sided exponential function with significantly different flux rise and decay times of {tau}{sup rise}{sub d} = (1.69 {+-} 0.30) days and {tau}{sup decay}{sub d} = (0.611 {+-} 0.080) days, respectively. While the overall variability pattern of the 2010 flare appears somewhat different from that of previous VHE flares in 2005 and 2008, they share very similar timescales ({approx}day), peak fluxes ({Phi}{sub >0.35TeV} {approx_equal} (1-3) Multiplication-Sign 10{sup -11} photons cm{sup -2} s{sup -1}), and VHE spectra. VLBA radio observations of 43 GHz of the inner jet regions indicate no enhanced flux in 2010 in contrast to observations in 2008, where an increase of the radio flux of the innermost core regions coincided with a VHE flare. On the other hand, Chandra X-ray observations taken {approx}3 days after the peak of the VHE {gamma}-ray emission reveal an enhanced flux from the core (flux increased by factor {approx}2; variability timescale <2 days). The long-term (2001-2010) multi-wavelength (MWL

  7. High precision In-113(alpha, alpha)In-113 elastic scattering at energies near the Coulomb barrier for the astrophysical gamma process

    OpenAIRE

    Kiss, G.G.(Institute for Nuclear Research (MTA ATOMKI), Debrecen, H-4001, Hungary); Mohr, P; Fülöp, Zs.; Rauscher, T.; Gyürky, Gy.(Institute for Nuclear Research (MTA ATOMKI), Debrecen, H-4001, Hungary); Szücs, T; Halász, Z.; Somorjai, E.; Ornelas, A.; Yalcin, C.; Güray, R T; Özkan, N

    2013-01-01

    The $\\gamma$ process in supernova explosions is thought to explain the origin of proton-rich isotopes between Se and Hg, the so-called $p$ nuclei. The majority of the reaction rates for $\\gamma$ process reaction network studies has to be predicted in Hauser-Feshbach statistical model calculations using global optical potential parameterizations. While the nucleon+nucleus optical potential is fairly known, for the $\\alpha$+nucleus optical potential several different parameterizations exist and...

  8. Astrophysical cosmology

    Science.gov (United States)

    Bardeen, J. M.

    The last several years have seen a tremendous ferment of activity in astrophysical cosmology. Much of the theoretical impetus has come from particle physics theories of the early universe and candidates for dark matter, but what promise to be even more significant are improved direct observations of high z galaxies and intergalactic matter, deeper and more comprehensive redshift surveys, and the increasing power of computer simulations of the dynamical evolution of large scale structure. Upper limits on the anisotropy of the microwave background radiation are gradually getting tighter and constraining more severely theoretical scenarios for the evolution of the universe.

  9. High Energy Density Laboratory Astrophysics

    CERN Document Server

    Lebedev, Sergey V

    2007-01-01

    During the past decade, research teams around the world have developed astrophysics-relevant research utilizing high energy-density facilities such as intense lasers and z-pinches. Every two years, at the International conference on High Energy Density Laboratory Astrophysics, scientists interested in this emerging field discuss the progress in topics covering: - Stellar evolution, stellar envelopes, opacities, radiation transport - Planetary Interiors, high-pressure EOS, dense plasma atomic physics - Supernovae, gamma-ray bursts, exploding systems, strong shocks, turbulent mixing - Supernova remnants, shock processing, radiative shocks - Astrophysical jets, high-Mach-number flows, magnetized radiative jets, magnetic reconnection - Compact object accretion disks, x-ray photoionized plasmas - Ultrastrong fields, particle acceleration, collisionless shocks. These proceedings cover many of the invited and contributed papers presented at the 6th International Conference on High Energy Density Laboratory Astrophys...

  10. Astrophysical techniques

    CERN Document Server

    Kitchin, CR

    2013-01-01

    DetectorsOptical DetectionRadio and Microwave DetectionX-Ray and Gamma-Ray DetectionCosmic Ray DetectorsNeutrino DetectorsGravitational Radiation Dark Matter and Dark Energy Detection ImagingThe Inverse ProblemPhotographyElectronic ImagingScanningInterferometrySpeckle InterferometryOccultationsRadarElectronic ImagesPhotometryPhotometryPhotometersSpectroscopySpectroscopy SpectroscopesOther TechniquesAstrometryPolarimetrySolar StudiesMagnetometryComputers and The Internet.

  11. High energy astrophysics. An introduction

    Energy Technology Data Exchange (ETDEWEB)

    Courvoisier, Thierry J.L. [Geneva Univ., Versoix (Switzerland). ISDC, Data Centre for Astrophysics

    2013-07-01

    Based on observational examples this book reveals and explains high-energy astrophysical processes. Presents the theory of astrophysical processes in a didactic approach by deriving equations step by step. With several attractive astronomical pictures. High-energy astrophysics has unveiled a Universe very different from that only known from optical observations. It has revealed many types of objects in which typical variability timescales are as short as years, months, days, and hours (in quasars, X-ray binaries, and other objects), and even down to milli-seconds in gamma ray bursts. The sources of energy that are encountered are only very seldom nuclear fusion, and most of the time gravitation, a paradox when one thinks that gravitation is, by many orders of magnitude, the weakest of the fundamental interactions. The understanding of these objects' physical conditions and the processes revealed by high-energy astrophysics in the last decades is nowadays part of astrophysicists' culture, even of those active in other domains of astronomy. This book evolved from lectures given to master and PhD students at the University of Geneva since the early 1990s. It aims at providing astronomers and physicists intending to be active in high-energy astrophysics a broad basis on which they should be able to build the more specific knowledge they will need. While in the first part of the book the physical processes are described and derived in detail, the second part studies astrophysical objects in which high-energy astrophysics plays a crucial role. This two-pronged approach will help students recognise physical processes by their observational signatures in contexts that may differ widely from those presented here.

  12. High energy astrophysical techniques

    CERN Document Server

    Poggiani, Rosa

    2017-01-01

    This textbook presents ultraviolet and X-ray astronomy, gamma-ray astronomy, cosmic ray astronomy, neutrino astronomy, and gravitational wave astronomy as distinct research areas, focusing on the astrophysics targets and the requirements with respect to instrumentation and observation methods. The purpose of the book is to bridge the gap between the reference books and the specialized literature. For each type of astronomy, the discussion proceeds from the orders of magnitude for observable quantities. The physical principles of photon and particle detectors are then addressed, and the specific telescopes and combinations of detectors, presented. Finally the instruments and their limits are discussed with a view to assisting readers in the planning and execution of observations. Astronomical observations with high-energy photons and particles represent the newest additions to multimessenger astronomy and this book will be of value to all with an interest in the field.

  13. The Astrophysics Science Division Annual Report 2008

    Science.gov (United States)

    Oegerle, William; Reddy, Francis; Tyler, Pat

    2009-01-01

    The Astrophysics Science Division (ASD) at Goddard Space Flight Center (GSFC) is one of the largest and most diverse astrophysical organizations in the world, with activities spanning a broad range of topics in theory, observation, and mission and technology development. Scientific research is carried out over the entire electromagnetic spectrum from gamma rays to radio wavelengths as well as particle physics and gravitational radiation. Members of ASD also provide the scientific operations for three orbiting astrophysics missions WMAP, RXTE, and Swift, as well as the Science Support Center for the Fermi Gamma-ray Space Telescope. A number of key technologies for future missions are also under development in the Division, including X-ray mirrors, and new detectors operating at gamma-ray, X-ray, ultraviolet, infrared, and radio wavelengths. This report includes the Division's activities during 2008.

  14. Trends in Nuclear Astrophysics

    OpenAIRE

    Schatz, Hendrik

    2016-01-01

    Nuclear Astrophysics is a vibrant field at the intersection of nuclear physics and astrophysics that encompasses research in nuclear physics, astrophysics, astronomy, and computational science. This paper is not a review. It is intended to provide an incomplete personal perspective on current trends in nuclear astrophysics and the specific role of nuclear physics in this field.

  15. The origin and emission mechanism of VHE (>100GeV emission from FSRQs

    Directory of Open Access Journals (Sweden)

    Behera Bagmeet

    2013-12-01

    Full Text Available Flat Spectrum Radio Quasars, unlike BL Lac objects, are blazars that show prominent line-emission and strong thermal components associated with the accretion disk, the broad-line region (BLR, and/or the dusty torus. The low energy peak in the continuum is from synchrotron emission (of electrons, and the high energy peak is well explained by external-Compton emission. In these models the relativistic electrons in the jet up-scatter photons from the thermal photon fields up to GeV energies. Beyond a few tens of GeV such models predict cutoffs due to Klein-Nishina effect and internal absorption via pair production. While more than 300 FSRQs have been seen with Fermi-LAT (between 100MeV−30GeV, only three have been detected at VHE (Very High Energy, E > 100 GeV with Cherenkov telescopes. The detection of VHE emission constrains the location of the blazar zone based on internal absorption estimates, but challenges the emission models that predict cutoffs. While a number of GeV flaring states (in various FSRQs have been observed with Cherenkov telescopes only few have resulted in detection of a VHE signal. The broadband emission characteristics of VHE FSRQs (including the VHE-detected FSRQs are studied and put in context to better understand their location and emission mechanism.

  16. Coulomb dissociation studies for astrophysical thermonuclear reactions

    Energy Technology Data Exchange (ETDEWEB)

    Motobayashi, T. [Dept. of Physics, Rikkyo Univ., Toshima, Tokyo (Japan)

    1998-06-01

    The Coulomb dissociation method was applied to several radiative capture processes of astrophysical interest. The method has an advantage of high experimental efficiency, which allow measurements with radioactive nuclear beams. The reactions {sup 13}N(p,{gamma}){sup 14}O and {sup 7}Be(p,{gamma}){sup 8}B are mainly discussed. They are the key reaction in the hot CNO cycle in massive stars and the one closely related to the solar neutrino problem, respectively. (orig.)

  17. Investigations in γ-Ray Astrophysics and Astroparticle Physics

    Energy Technology Data Exchange (ETDEWEB)

    Krennrich, Frank [Iowa State Univ., Ames, IA (United States). Dept. of Physics and Astronomy

    2016-06-28

    This report describes the status of data analysis efforts, results and publications of research grant DE-SC0009917. The research is focused on TeV gamma-ray studies of astrophysical sources and related particle physics questions.

  18. Discovery of TeV gamma-ray emission from the pulsar wind nebula 3C 58 by MAGIC

    Directory of Open Access Journals (Sweden)

    López-Coto Rubén

    2016-01-01

    Full Text Available The pulsar wind nebula (PWN 3C 58 is one of the historical very-high-energy (VHE; E>100 GeV gamma-ray source candidates. It has been compared to the Crab Nebula due to their morphological similarities. This object was detected by Fermi-LAT with a spectrum extending beyond 100 GeV. We analyzed 81 hours of 3C 58 data taken with the MAGIC telescopes and we detected VHE gamma-ray emission for the first time at TeV energies with a significance of 5.7 sigma and an integral flux of 0.65% C.U. above 1 TeV. According to our results 3C 58 is the least luminous PWN ever detected at VHE and the one with the lowest flux at VHE to date. We compare our results with the expectations of time-dependent models in which electrons up-scatter photon fields. The best representation favors a distance to the PWN of 2 kpc and Far Infrared (FIR comparable to CMB photon fields. Hadronic contribution from the hosting supernova remnant (SNR requires unrealistic energy budget given the density of the medium, disfavoring cosmic ray acceleration in the SNR as origin of the VHE gamma-ray emission.

  19. The High-Energy Astrophysics Learning Center, Version 1. [CD-ROM].

    Science.gov (United States)

    Whitlock, Laura A.; Allen, Jesse S.; Lochner, James C.

    The High-Energy Astrophysics (HEA) Learning Center gives students, teachers, and the general public a window into the world of high-energy astrophysics. The universe is revealed through x-rays and gamma rays where matter exists under extreme conditions. Information is available on astrophysics at a variety of reading levels, and is illustrated…

  20. Measurements of Cyclotron Features and Pulse Periods in the High-Mass X-Ray Binaries 4U 1538-522 and 4U 1907+09 with the International Gamma-Ray Astrophysics Laboratory

    Science.gov (United States)

    Hemphill, Paul B.; Rothschild, Richard E.; Caballero, Isabel; Pottschmidt, Katja; Kuhnel, Matthias; Furst, Felix; Wilms, Jorn

    2013-01-01

    We present a spectral and timing analysis of International Gamma-Ray Astrophysics Laboratory (INTEGRAL) observations of two high-mass X-ray binaries, 4U 1538-522 and 4U 1907+09. Our timing measurements for 4U 1538-522 find the pulse period to have exhibited a spin-up trend until approximately 2009, after which there is evidence for a torque reversal, with the source beginning to spin down to the most recently measured period of 525.407 plus or minus 0.001 seconds. The most recent INTEGRAL observations of 4U 1907+09 are not found to yield statistically significant pulse periods due to the significantly lower flux from the source compared with 4U 1538-522. A spectral model consisting of a power-law continuum with an exponential cutoff and modified by two cyclotron resonance scattering features is found to fit both sources well, with the cyclotron scattering features detected at approximately 22 and approximately 49 kiloelectronvolts for 4U 1538-522 and at approximately 18 and approximately 36 kiloelectronvolts for 4U 1907+09. The spectral parameters of 4U 1538-522 are generally not found to vary significantly with flux and there is little to no variation across the torque reversal. Examining our results in conjunction with previous work, we find no evidence for a correlation between cyclotron line energy and luminosity for 4U 1538-522. 4U 1907+09 shows evidence for a positive correlation between cyclotron line energy and luminosity, which would make it the fourth, and lowest luminosity, cyclotron line source to exhibit this relationship.

  1. Current Perspectives in High Energy Astrophysics

    Science.gov (United States)

    Ormes, Jonathan F. (Editor)

    1996-01-01

    High energy astrophysics is a space-age discipline that has taken a quantum leap forward in the 1990s. The observables are photons and particles that are unable to penetrate the atmosphere and can only be observed from space or very high altitude balloons. The lectures presented as chapters of this book are based on the results from the Compton Gamma-Ray Observatory (CGRO) and Advanced Satellite for Cosmology and Astrophysics (ASCA) missions to which the Laboratory for High Energy Astrophysics at NASA's Goddard Space Flight Center made significant hardware contributions. These missions study emissions from very hot plasmas, nuclear processes, and high energy particle interactions in space. Results to be discussed include gamma-ray beaming from active galactic nuclei (AGN), gamma-ray emission from pulsars, radioactive elements in the interstellar medium, X-ray emission from clusters of galaxies, and the progress being made to unravel the gamma-ray burst mystery. The recently launched X-ray Timing Explorer (XTE) and prospects for upcoming Astro-E and Advanced X-ray Astronomy Satellite (AXAF) missions are also discussed.

  2. Astrophysical Hydrodynamics An Introduction

    CERN Document Server

    Shore, Steven N

    2007-01-01

    This latest edition of the proven and comprehensive treatment on the topic -- from the bestselling author of ""Tapestry of Modern Astrophysics"" -- has been updated and revised to reflect the newest research results. Suitable for AS0000 and AS0200 courses, as well as advanced astrophysics and astronomy lectures, this is an indispensable theoretical backup for studies on celestial body formation and astrophysics. Includes exercises with solutions.

  3. Particle Physics & Astrophysics (PPA)

    Data.gov (United States)

    Federal Laboratory Consortium — Scientists at SLAC's Particle Physics and Astrophysics develop and utilize unique instruments from underground to outer space to explore the ultimate laws of nature...

  4. Review of Astrophysics Experiments on Intense Lasers

    Energy Technology Data Exchange (ETDEWEB)

    Remington, B A; Drake, R P; Takabe, H; Arnett, D

    2000-01-19

    Astrophysics has traditionally been pursued at astronomical observatories and on theorists' computers. Observations record images from space, and theoretical models are developed to explain the observations. A component often missing has been the ability to test theories and models in an experimental setting where the initial and final states are well characterized. Intense lasers are now being used to recreate aspects of astrophysical phenomena in the laboratory, allowing the creation of experimental testbeds where theory and modeling can be quantitatively tested against data. We describe here several areas of astrophysics--supernovae, supernova remnants, gamma-ray bursts, and giant planets--where laser experiments are under development to test our understanding of these phenomena.

  5. LHC, Astrophysics and Cosmology

    Directory of Open Access Journals (Sweden)

    Giulio Auriemma

    2014-12-01

    Full Text Available In this paper we discuss the impact on cosmology of recent results obtained by the LHC (Large Hadron Collider experiments in the 2011-2012 runs, respectively at √s = 7 and 8 TeV. The capital achievement of LHC in this period has been the discovery of a spin-0 particle with mass 126 GeV/c2, very similar to the Higgs boson of the Standard Model of Particle Physics. Less exciting, but not less important, negative results of searches for Supersymmetric particles or other exotica in direct production or rare decays are discussed in connection with particles and V.H.E. astronomy searches for Dark Matter.

  6. New isotopes of interest to astrophysics

    CERN Document Server

    Davids, C N; Pardo, R C; Parks, L A

    1976-01-01

    The beta decays of the new isotopes /sup 53/Ti and /sup 59/Mn have been studied. These neutron-rich isotopes have half-lives of 32.7+or-0.9 s and 4.75+or-0.14 s, respectively. They were produced via the /sup 48/Ca(/sup 7/Li, pn)/sup 53/Ti and /sup 48/Ca(/sup 13/C, pn) /sup 59/Mn reactions using beams from the Argonne National Laboratory FN Tandem Van de Graaff accelerator. Measurement of gamma singles, gamma - gamma coincidences, and beta - gamma coincidences were facilitated by a pneumatic target-transfer system ('rabbit'). Decay schemes are presented, and the measured masses compared with various predictions. The relevance to astrophysics will be discussed. In addition, a new 8-target multiple rabbit system will be described. (7 refs).

  7. Astronomy and astrophysics

    National Research Council Canada - National Science Library

    National Research Council Staff

    1988-01-01

    ... for the Decades 1995 to 2015 Astronomy and Astrophysics Task Group on Astronomy and Astrophysics Space Science Board Commission on Physical Sciences, Mathematics, and Resources National Research Council NATIONAL ACADEMY PRESS Washington, D.C. 1988 Copyrightoriginal retained, the be not from cannot book, paper original however, for version formatting, author...

  8. Goddard's Astrophysics Science Division Annual Report 2013

    Science.gov (United States)

    Weaver, Kimberly A. (Editor); Reddy, Francis J. (Editor); Tyler, Patricia A. (Editor)

    2014-01-01

    The Astrophysics Science Division (ASD) at Goddard Space Flight Center (GSFC) is one of the largest and most diverse astrophysical organizations in the world, with activities spanning a broad range of topics in theory, observation, and mission and technology development. Scientific research is carried out over the entire electromagnetic spectrum from gamma rays to radio wavelengths as well as particle physics and gravitational radiation. Members of ASD also provide the scientific operations for two orbiting astrophysics missions Fermi Gamma-ray Space Telescope and Swift as well as the Science Support Center for Fermi. A number of key technologies for future missions are also under development in the Division, including X-ray mirrors, space-based interferometry, high contrast imaging techniques to search for exoplanets, and new detectors operating at gamma-ray, X-ray, ultraviolet, infrared, and radio wavelengths. The overriding goals of ASD are to carry out cutting-edge scientific research, provide Project Scientist support for spaceflight missions, implement the goals of the NASA Strategic Plan, serve and support the astronomical community, and enable future missions by conceiving new concepts and inventing new technologies.

  9. Goddard's Astrophysics Science Division Annual Report 2011

    Science.gov (United States)

    Centrella, Joan; Reddy, Francis; Tyler, Pat

    2012-01-01

    The Astrophysics Science Division(ASD) at Goddard Space Flight Center(GSFC)is one of the largest and most diverse astrophysical organizations in the world, with activities spanning a broad range of topics in theory, observation, and mission and technology development. Scientific research is carried out over the entire electromagnetic spectrum from gamma rays to radiowavelengths as well as particle physics and gravitational radiation. Members of ASD also provide the scientific operations for three orbiting astrophysics missions WMAP, RXTE, and Swift, as well as the Science Support Center for the Fermi Gamma-ray Space Telescope. A number of key technologies for future missions are also under development in the Division, including X-ray mirrors, space-based interferometry, high contract imaging techniques to serch for exoplanets, and new detectors operating at gamma-ray, X-ray, ultraviolet, infrared, and radio wavelengths. The overriding goals of ASD are to carry out cutting-edge scientific research, and provide Project Scientist support for spaceflight missions, implement the goals of the NASA Strategic Plan, serve and suppport the astronomical community, and enable future missions by conceiving new conepts and inventing new technologies.

  10. The Astrophysics Science Division Annual Report 2009

    Science.gov (United States)

    Oegerle, William (Editor); Reddy, Francis (Editor); Tyler, Pat (Editor)

    2010-01-01

    The Astrophysics Science Division (ASD) at Goddard Space Flight Center (GSFC) is one of the largest and most diverse astrophysical organizations in the world, with activities spanning a broad range of topics in theory, observation, and mission and technology development. Scientific research is carried out over the entire electromagnetic spectrum - from gamma rays to radio wavelengths - as well as particle physics and gravitational radiation. Members of ASD also provide the scientific operations for three orbiting astrophysics missions - WMAP, RXTE, and Swift, as well as the Science Support Center for the Fermi Gamma-ray Space Telescope. A number of key technologies for future missions are also under development in the Division, including X-ray mirrors, space-based interferometry, high contrast imaging techniques to search for exoplanets, and new detectors operating at gamma-ray, X-ray, ultraviolet, infrared, and radio wavelengths. The overriding goals of ASD are to carry out cutting-edge scientific research, provide Project Scientist support for spaceflight missions, implement the goals of the NASA Strategic Plan, serve and support the astronomical community, and enable future missions by conceiving new concepts and inventing new technologies.

  11. Astrophysically Interesting Resonances; Another Approach

    Science.gov (United States)

    Austin, Roby; Jenkins, David

    2008-10-01

    R.A.E. Austin, R. Kanungo, A. Campbell, S. Colosimo, S. Reeve Saint Mary's University; D.G. Jenkins, C.Aa.Diget, A. Robinson, University of York, UK; P.J. Woods T. Davinson University of Edinburgh; C.-Y. Wu A. Hurst J.A. Becker Lawrence Livermore National Laboratory; G.C. Ball M. Djongolov G. Hackman A.C. Morton, C. Pearson, S.J. Williams TRIUMF; A.A. Phillips, M. Schumaker, University of Guelph H.Boston, A. Grint, D. Oxley, University of Liverpool; D. Cline, A. Hayes, University of Rochester; We describe a prototype experiment to measure resonances of interest in astrophysical reactions. We use the TIGRESS to detect gamma rays in coincidence with charged particles, inelastically scattered in inverse kinematics. The particles are detected with the Bambino detector modified to a δE-E silicon telescope spanning 15-40 degrees in the lab.

  12. A Review of Astrophysical Jets

    Directory of Open Access Journals (Sweden)

    James H. Beall

    2014-12-01

    Full Text Available Astrophysical jets are ubiquitous: this simple statement has become a commonplace over the last three decades and more as a result of observing campaigns using detectors sensitive from radio to gamma-ray energies. During this epoch, theoretical models of these sources have become more complex, moving from assumptions of isotropy that made analytic calculations possible, to fully anisotropic models of emission from the jets and their interactions with the interstellar and intra-cluster medium. Such calculations are only possible because we have extensive computational resources. In addition, the degree of international cooperation required for observing campaigns of these sorts is remarkable, since the instruments include among others the Very Large Array (VLA, the Very Long Baseline Array (VLBA, and entire constellations of satellite instruments, often working in concert. In this paper, I discuss some relevant observations from these eorts and the theoretical interpretations they have occasioned.

  13. Focusing telescopes in nuclear astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Von Ballmoos, P.; Knodlseder, R.; Sazonov, S.; Griffiths, R.; Bastie, P.; Halloin, H.; Pareschi, G.; Ramsey, B.; Jensen, C.; Buis, E.J.; Ulmer, M.; Giommi, P.; Colafrancesco, S.; Comastri, A.; Barret, D.; Leising, M.; Hernanz, M.; Smith, D.; Abrosimov, N.; Smither, B.; Ubertini, P.; Olive, J.F.; Lund, N.; Pisa, A.; Courtois, P.; Roa, D.; Harrison, F.; Pareschi, G.; Frontera, F.; Von Ballmoos, P.; Barriere, N.; Rando, N.; Borde, J.; Hinglais, E.; Cledassou, R.; Duchon, P.; Sghedoni, M.; Huet, B.; Takahashi, T.; Caroli, E.; Quadrinin, L.; Buis, E.J.; Skinner, G.; Krizmanic, J.; Pareschi, G.; Loffredo, G.; Wunderer, C.; Weidenspointner, G.; Wunderer, C.; Koechlin, L.; Bignami, G.; Von Ballmoos, P.; Tueller, J.; Andritschke, T.; Laurens, A.; Evrard, J

    2005-07-01

    The objective of this workshop is to consider the next generation of instrumentation to be required within the domain of nuclear astrophysics. A small, but growing community has been pursuing various techniques for the focusing of hard X-rays and gamma-rays with the aim of achieving a factor of up to 100 improvement in sensitivity over present technologies. Balloon flight tests of both multilayer mirrors and a Laue lens have been performed and ideas abound. At present, implementation scenarios for space missions are being studied at Esa, CNES, and elsewhere. The workshop will provide a first opportunity for this new community to meet, exchange technological know-how, discuss scientific objectives and synergies, and consolidate implementation approaches within National and European Space Science programs. This document gathers the slides of all the presentations.

  14. Laboratory Astrophysics on High Power Lasers and Pulsed Power Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Remington, B A

    2002-02-05

    Over the past decade a new genre of laboratory astrophysics has emerged, made possible by the new high energy density (HED) experimental facilities, such as large lasers, z-pinch generators, and high current particle accelerators. (Remington, 1999; 2000; Drake, 1998; Takabe, 2001) On these facilities, macroscopic collections of matter can be created in astrophysically relevant conditions, and its collective properties measured. Examples of processes and issues that can be experimentally addressed include compressible hydrodynamic mixing, strong shock phenomena, radiative shocks, radiation flow, high Mach-number jets, complex opacities, photoionized plasmas, equations of state of highly compressed matter, and relativistic plasmas. These processes are relevant to a wide range of astrophysical phenomena, such as supernovae and supernova remnants, astrophysical jets, radiatively driven molecular clouds, accreting black holes, planetary interiors, and gamma-ray bursts. These phenomena will be discussed in the context of laboratory astrophysics experiments possible on existing and future HED facilities.

  15. Astrophysics in a nutshell

    CERN Document Server

    Maoz, Dan

    2007-01-01

    A concise but thorough introduction to the observational data and theoretical concepts underlying modern astronomy, Astrophysics in a Nutshell is designed for advanced undergraduate science majors taking a one-semester course. This well-balanced and up-to-date textbook covers the essentials of modern astrophysics--from stars to cosmology--emphasizing the common, familiar physical principles that govern astronomical phenomena, and the interplay between theory and observation. In addition to traditional topics such as stellar remnants, galaxies, and the interstellar medium, Astrophysics in a N

  16. An invitation to astrophysics

    CERN Document Server

    Padmanabhan, Thanu

    2006-01-01

    This unique book provides a clear and lucid description of several aspects of astrophysics and cosmology in a language understandable to a physicist or beginner in astrophysics. It presents the key topics in all branches of astrophysics and cosmology in a simple and concise language. The emphasis is on currently active research areas and exciting new frontiers rather than on more pedantic topics. Many complicated results are introduced with simple, novel derivations which strengthen the conceptual understanding of the subject. The book also contains over one hundred exercises which will help s

  17. Gamma-ray and TeV Emission Properties of Pulsars and Pulsar Wind Nebulae

    Science.gov (United States)

    de Jager, O. C.

    2006-08-01

    Introduction: Although more than 1,600 radio pulsars have been discovered, only a few have been detected in the gamma-ray band. This is not because they are intrinsically faint, but because the pulsed component seems to cut off below about 30 GeV (the EGRET range), where the sensitivity was severely limited. However, ground-based atmospheric Cerenkov telescopes operating above 100 GeV (the Very High Energy or VHE domain), have both good sensitivity and good angular resolution to resolve several pulsar wind nebulae (PWN) in the VHE gamma-ray domain. Methods: This will be a review talk summarising the progress to date on pulsar and pulsar wind nebula observations and theory. Results and Conclusions: Since gamma-ray observations below 30 GeV have been limited by poor sensitivity, an instrument like GLAST should be able to resolve the pulsed component of a significant fraction of radio pulsars. This talk will show how the discovery potential of GLAST will be limited for fainter sources in the absence of contemporary radio pulsar parameters. This calls for the introduction of wide field-of-view radio pulsar monitors like KAT to resolve this problem. Most progress on PWN in the gamma-ray domain was made by the HESS telescope system in Namibia. In this case we progressed to the level where VHE Gamma-ray Astronomy is taking the lead at all wavelengths (radio, IR, optical, X-ray and gamma-ray) in the identification and understanding of new PWN. We will show how the spin history of the PWN is more relevant to such VHE observations rather than X-rays, although the latter probe the more recent history of PWN evolution. We will then show how these complementary wavebands can be combined to obtain new information about aspects such as the birth periods of pulsars and conversion efficiency of spin-down power to injected ultra-relativistic electrons.

  18. Astrophysical payloads for picosatellites

    Science.gov (United States)

    Hudec, R.

    2017-07-01

    The recent progress in cubesatellite technology allows to consider scientific applications of these minsatellites including astrophysical research. Miniature X-ray and UV-payloads may serve as an example.

  19. Astrophysics Decoding the cosmos

    CERN Document Server

    Irwin, Judith A

    2007-01-01

    Astrophysics: Decoding the Cosmos is an accessible introduction to the key principles and theories underlying astrophysics. This text takes a close look at the radiation and particles that we receive from astronomical objects, providing a thorough understanding of what this tells us, drawing the information together using examples to illustrate the process of astrophysics. Chapters dedicated to objects showing complex processes are written in an accessible manner and pull relevant background information together to put the subject firmly into context. The intention of the author is that the book will be a 'tool chest' for undergraduate astronomers wanting to know the how of astrophysics. Students will gain a thorough grasp of the key principles, ensuring that this often-difficult subject becomes more accessible.

  20. Theoretical physics and astrophysics

    CERN Document Server

    Ginzburg, Vitalii Lazarevich

    1979-01-01

    The aim of this book is to present, on the one hand various topics in theoretical physics in depth - especially topics related to electrodynamics - and on the other hand to show how these topics find applications in various aspects of astrophysics. The first text on theoretical physics and astrophysical applications, it covers many recent advances including those in X-ray, &ggr;-ray and radio-astronomy, with comprehensive coverage of the literature

  1. Collisionless plasmas in astrophysics

    CERN Document Server

    Belmont, Gerard; Mottez, Fabrice; Pantellini, Filippo; Pelletier, Guy

    2013-01-01

    Collisionless Plasmas in Astrophysics examines the unique properties of media without collisions in plasma physics. Experts in this field, the authors present the first book to concentrate on collisionless conditions in plasmas, whether close or not to thermal equilibrium. Filling a void in scientific literature, Collisionless Plasmas in Astrophysics explains the possibilities of modeling such plasmas, using a fluid or a kinetic framework. It also addresses common misconceptions that even professionals may possess, on phenomena such as "collisionless (Landau) damping". Abundant illustrations

  2. High-Energy Spectroscopic Astrophysics Swiss Society for Astrophysics and Astronomy

    CERN Document Server

    Kahn, Steven M; von Ballmoos, Peter

    2005-01-01

    After three decades of intense research in X-ray and gamma-ray astronomy, the time was ripe to summarize basic knowledge on X-ray and gamma-ray spectroscopy for interested students and researchers ready to become involved in new high-energy missions. This volume exposes both the scientific basics and modern methods of high-energy spectroscopic astrophysics. The emphasis is on physical principles and observing methods rather than a discussion of particular classes of high-energy objects, but many examples and new results are included in the three chapters as well.

  3. Houdini for Astrophysical Visualization

    Science.gov (United States)

    Naiman, J. P.; Borkiewicz, Kalina; Christensen, A. J.

    2017-05-01

    The rapid growth in scale and complexity of both computational and observational astrophysics over the past decade necessitates efficient and intuitive methods for examining and visualizing large data sets. Here, we discuss some newly developed tools used to import and manipulate astrophysical data into the three-dimensional visual effects software, Houdini. This software is widely used by visual effects artists, but a recently implemented Python API now allows astronomers to more easily use Houdini as a visualization tool. This paper includes a description of features, workflow, and various example visualizations. The project website, www.ytini.com, is aimed at a scientific audience and contains Houdini tutorials and links to the Python script Bitbucket repository to simplify the process of importing and rendering astrophysical data.

  4. Working Group Report on the "TeV Particle Astrophysics and Physics Beyond the Standard Model"

    OpenAIRE

    Albuquerque, Ivone F. M.; Palomares-Ruiz, Sergio; Weiler, Tom

    2006-01-01

    This working group focused mainly on the complementarity among particle physics and astrophysics. The analysis of data from both fields will better constrain theoretical models. Much of the discussion focused on detecting dark matter and susy particles, and on the potential of neutrino and gamma-ray astrophysics for seeking or constraining new physics.

  5. Search for very high-energy gamma-ray emission from the microquasar Cygnus X-1 with the MAGIC telescopes

    Science.gov (United States)

    Ahnen, M. L.; Ansoldi, S.; Antonelli, L. A.; Arcaro, C.; Babić, A.; Banerjee, B.; Bangale, P.; Barres de Almeida, U.; Barrio, J. A.; Becerra González, J.; Bednarek, W.; Bernardini, E.; Berti, A.; Bhattacharyya, W.; Biasuzzi, B.; Biland, A.; Blanch, O.; Bonnefoy, S.; Bonnoli, G.; Carosi, R.; Carosi, A.; Chatterjee, A.; Colin, P.; Colombo, E.; Contreras, J. L.; Cortina, J.; Covino, S.; Cumani, P.; da Vela, P.; Dazzi, F.; de Angelis, A.; de Lotto, B.; de Oña Wilhelmi, E.; di Pierro, F.; Doert, M.; Domínguez, A.; Dominis Prester, D.; Dorner, D.; Doro, M.; Einecke, S.; Eisenacher Glawion, D.; Elsaesser, D.; Engelkemeier, M.; Fallah Ramazani, V.; Fernández-Barral, A.; Fidalgo, D.; Fonseca, M. V.; Font, L.; Fruck, C.; Galindo, D.; García López, R. J.; Garczarczyk, M.; Gaug, M.; Giammaria, P.; Godinović, N.; Gora, D.; Guberman, D.; Hadasch, D.; Hahn, A.; Hassan, T.; Hayashida, M.; Herrera, J.; Hose, J.; Hrupec, D.; Ishio, K.; Konno, Y.; Kubo, H.; Kushida, J.; Kuveždić, D.; Lelas, D.; Lindfors, E.; Lombardi, S.; Longo, F.; López, M.; Maggio, C.; Majumdar, P.; Makariev, M.; Maneva, G.; Manganaro, M.; Mannheim, K.; Maraschi, L.; Mariotti, M.; Martínez, M.; Mazin, D.; Menzel, U.; Minev, M.; Mirzoyan, R.; Moralejo, A.; Moreno, V.; Moretti, E.; Neustroev, V.; Niedzwiecki, A.; Nievas Rosillo, M.; Nilsson, K.; Ninci, D.; Nishijima, K.; Noda, K.; Nogués, L.; Paiano, S.; Palacio, J.; Paneque, D.; Paoletti, R.; Paredes, J. M.; Paredes-Fortuny, X.; Pedaletti, G.; Peresano, M.; Perri, L.; Persic, M.; Prada Moroni, P. G.; Prandini, E.; Puljak, I.; Garcia, J. R.; Reichardt, I.; Rhode, W.; Ribó, M.; Rico, J.; Righi, C.; Saito, T.; Satalecka, K.; Schroeder, S.; Schweizer, T.; Sitarek, J.; Šnidarić, I.; Sobczynska, D.; Stamerra, A.; Strzys, M.; Surić, T.; Takalo, L.; Tavecchio, F.; Temnikov, P.; Terzić, T.; Tescaro, D.; Teshima, M.; Torres, D. F.; Torres-Albà, N.; Treves, A.; Vanzo, G.; Vazquez Acosta, M.; Vovk, I.; Ward, J. E.; Will, M.; Zarić, D.; MAGIC Collaboration; Bosch-Ramon, V.; Pooley, G. G.; Trushkin, S. A.; Zanin, R.

    2017-12-01

    The microquasar Cygnus X-1 displays the two typical soft and hard X-ray states of a black hole transient. During the latter, Cygnus X-1 shows a one-sided relativistic radio-jet. Recent detection of the system in the high energy (HE; E ≳ 60 MeV) gamma-ray range with Fermi-LAT associates this emission with the outflow. Former MAGIC observations revealed a hint of flaring activity in the very high-energy (VHE; E ≳ 100 GeV) regime during this X-ray state. We analyse ∼97 h of Cygnus X-1 data taken with the MAGIC telescopes between July 2007 and October 2014. To shed light on the correlation between hard X-ray and VHE gamma rays as previously suggested, we study each main X-ray state separately. We perform an orbital phase-folded analysis to look for variability in the VHE band. Additionally, to place this variability behaviour in a multiwavelength context, we compare our results with Fermi-LAT, AGILE, Swift-BAT, MAXI, RXTE-ASM, AMI and RATAN-600 data. We do not detect Cygnus X-1 in the VHE regime. We establish upper limits for each X-ray state, assuming a power-law distribution with photon index Γ = 3.2. For steady emission in the hard and soft X-ray states, we set integral upper limits at 95 per cent confidence level for energies above 200 GeV at 2.6 × 10-12 photons cm-2 s-1 and 1.0 × 10-11 photons cm-2 s-1, respectively. We rule out steady VHE gamma-ray emission above this energy range, at the level of the MAGIC sensitivity, originating in the interaction between the relativistic jet and the surrounding medium, while the emission above this flux level produced inside the binary still remains a valid possibility.

  6. Astrophysics in a nutshell

    CERN Document Server

    Maoz, Dan

    2016-01-01

    Winner of the American Astronomical Society's Chambliss Award, Astrophysics in a Nutshell has become the text of choice in astrophysics courses for science majors at top universities in North America and beyond. In this expanded and fully updated second edition, the book gets even better, with a new chapter on extrasolar planets; a greatly expanded chapter on the interstellar medium; fully updated facts and figures on all subjects, from the observed properties of white dwarfs to the latest results from precision cosmology; and additional instructive problem sets. Throughout, the text features the same focused, concise style and emphasis on physics intuition that have made the book a favorite of students and teachers.

  7. Theoretical astrophysics an introduction

    CERN Document Server

    Bartelmann, Matthias

    2013-01-01

    A concise yet comprehensive introduction to the central theoretical concepts of modern astrophysics, presenting hydrodynamics, radiation, and stellar dynamics all in one textbook. Adopting a modular structure, the author illustrates a small number of fundamental physical methods and principles, which are sufficient to describe and understand a wide range of seemingly very diverse astrophysical phenomena and processes. For example, the formulae that define the macroscopic behavior of stellar systems are all derived in the same way from the microscopic distribution function. This function it

  8. 14th International School of Cosmic Ray Astrophysics

    CERN Document Server

    Stanev, Todor; Wefel, John P; Neutrinos and explosive events in the universe

    2005-01-01

    This volume contains the Lectures and selected participant contributions to the 14th Course of the International School of Cosmic Rays Astrophysics, a NATO Advanced Study Institute. Well known astrophysicists and astronomers discuss different aspects of the generation of high energy signals in powerful astrophysical objects concentrating on the production of neutrinos and gamma rays from high energy particle interactions. Recent results from new experiments and observatories are presented. Topics cover a wide range including the Spitzer infrared observatory, TeV gamma ray observations, dark matter, and neutrino telescopes. The combination of basic knowledge about the production of high energy signals with information about the data analysis of ongoing observations places the book between the usual levels of a textbook and a conference proceedings. It will give the reader a good introduction to the current field of astroparticle physics, and some of the fascinating astrophysics being addressed.

  9. CZT drift strip detectors for high energy astrophysics

    DEFF Research Database (Denmark)

    Kuvvetli, Irfan; Budtz-Jørgensen, Carl; Caroli, E.

    2010-01-01

    Requirements for X- and gamma ray detectors for future High Energy Astrophysics missions include high detection efficiency and good energy resolution as well as fine position sensitivity even in three dimensions.We report on experimental investigations on the CZT drift detector developed DTU Space...

  10. The NASA Astrophysics Program

    Science.gov (United States)

    Zebulum, Ricardo S.

    2011-01-01

    NASA's scientists are enjoying unprecedented access to astronomy data from space, both from missions launched and operated only by NASA, as well as missions led by other space agencies to which NASA contributed instruments or technology. This paper describes the NASA astrophysics program for the next decade, including NASA's response to the ASTRO2010 Decadal Survey.

  11. Astrophysics: An Integrative Course

    Science.gov (United States)

    Gutsche, Graham D.

    1975-01-01

    Describes a one semester course in introductory stellar astrophysics at the advanced undergraduate level. The course aims to integrate all previously learned physics by applying it to the study of stars. After a brief introductory section on basic astronomical measurements, the main topics covered are stellar atmospheres, stellar structure, and…

  12. High energy particles and quanta in astrophysics

    Science.gov (United States)

    Mcdonald, F. B. (Editor); Fichtel, C. E.

    1974-01-01

    The various subdisciplines of high-energy astrophysics are surveyed in a series of articles which attempt to give an overall view of the subject as a whole by emphasizing the basic physics common to all fields in which high-energy particles and quanta play a role. Successive chapters cover cosmic ray experimental observations, the abundances of nuclei in the cosmic radiation, cosmic electrons, solar modulation, solar particles (observation, relationship to the sun acceleration, interplanetary medium), radio astronomy, galactic X-ray sources, the cosmic X-ray background, and gamma ray astronomy. Individual items are announced in this issue.

  13. Frontier Research in Astrophysics - II

    Science.gov (United States)

    2016-05-01

    The purpose of this international workshop is to bring together astrophysicists and physicists who are involved in various topics at the forefront of modern astrophysics and particle physics. The workshop will discuss the most recent experimental and theoretical results in order to advance our understanding of the physics governing our Universe. To accomplish the goals of the workshop, we believe it is necessary to use data from ground-based and space-based experiments and results from theoretical developments: work on the forefront of science which has resulted (or promises to result in) high-impact scientific papers. Hence, the main purpose of the workshop is to discuss in a unique and collaborative setting a broad range of topics in modern astrophysics, from the Big Bang to Planets and Exoplanets. We believe that this can provide a suitable framework for each participant who (while obviously not involved in all the topics discussed), will be able to acquire a general view of the main experimental and theoretical results currently obtained. Such an up-to-date view of the current research on cosmic sources can help guide future research projects by the participants, and will encourage collaborative efforts across various topical areas of research. The proceedings will be published in Proceedings of Science (PoS)- SISSA and will provide a powerful resource for all the scientific community and will be especially helpful for PhD students. The following items will be reviewed: Cosmology: Cosmic Background, Dark Matter, Dark Energy, Clusters of Galaxies. Physics of the Diffuse Cosmic Sources. Physics of Cosmic Rays. Physics of Discrete Cosmic Sources. Extragalactic Sources: Active Galaxies, Normal Galaxies, Gamma-Ray Bursts. Galactic Sources: Star Formation, Pre-Main-Sequence and Main- Sequence Stars, the Sun, Cataclysmic Variables and Novae, Supernovae and SNRs, X-Ray Binary Systems, Pulsars, Black Holes, Gamma-Ray Sources, Nucleosynthesis, Asteroseismology

  14. High Time Resolution Astrophysics

    CERN Document Server

    Phelan, Don; Shearer, Andrew

    2008-01-01

    High Time Resolution Astrophysics (HTRA) is an important new window to the universe and a vital tool in understanding a range of phenomena from diverse objects and radiative processes. This importance is demonstrated in this volume with the description of a number of topics in astrophysics, including quantum optics, cataclysmic variables, pulsars, X-ray binaries and stellar pulsations to name a few. Underlining this science foundation, technological developments in both instrumentation and detectors are described. These instruments and detectors combined cover a wide range of timescales and can measure fluxes, spectra and polarisation. These advances make it possible for HTRA to make a big contribution to our understanding of the Universe in the next decade.

  15. Microphysics of Astrophysical Flames

    Science.gov (United States)

    Dursi, L. J.; Zingale, M.; Caceres, A.; Calder, A. C.; Timmes, F. X.; Truran, J. W.; Rosner, R.; Lamb, D. Q.; Brown, E.; Ricker, P.; Fryxell, B.; Olson, K.; Riley, K.; Siegel, A.; Vladimirova, N.

    2003-03-01

    Type Ia supernovae are thought to begin with a deflagration phase, where burning occurs as a subsonic flame which accelerates and possibly undergoes a transition to a supersonic detonation. Both the acceleration and possible transition will depend on the microphysics of astrophysical flames, and their interaction with a turbulent flow in degenerate material. Here we present recent progress in studying the interactions of astrophysical flames and curvature and strain at the FLASH center; in particular, we discuss quantitative measurements of the effects of strain on burning rate of these flames, and implications for instability growth and quenching. This work was supported by the DOE ASCI/Alliances program at the University of Chicago under grant No. B341495 and the Scientific through Advanced Computing (SciDAC) program of the DOE, grant number DE-FC02-01ER41176 to the Supernova Science Center/UCSC.

  16. Astrophysical black holes

    CERN Document Server

    Gorini, Vittorio; Moschella, Ugo; Treves, Aldo; Colpi, Monica

    2016-01-01

    Based on graduate school lectures in contemporary relativity and gravitational physics, this book gives a complete and unified picture of the present status of theoretical and observational properties of astrophysical black holes. The chapters are written by internationally recognized specialists. They cover general theoretical aspects of black hole astrophysics, the theory of accretion and ejection of gas and jets, stellar-sized black holes observed in the Milky Way, the formation and evolution of supermassive black holes in galactic centers and quasars as well as their influence on the dynamics in galactic nuclei. The final chapter addresses analytical relativity of black holes supporting theoretical understanding of the coalescence of black holes as well as being of great relevance in identifying gravitational wave signals. With its introductory chapters the book is aimed at advanced graduate and post-graduate students, but it will also be useful for specialists.

  17. Nuclear astrophysics at DRAGON

    Energy Technology Data Exchange (ETDEWEB)

    Hager, U. [Colorado School of Mines, Golden, Colorado (United States)

    2014-05-02

    The DRAGON recoil separator is located at the ISAC facility at TRIUMF, Vancouver. It is designed to measure radiative alpha and proton capture reactions of astrophysical importance. Over the last years, the DRAGON collaboration has measured several reactions using both radioactive and high-intensity stable beams. For example, the 160(a, g) cross section was recently measured. The reaction plays a role in steady-state helium burning in massive stars, where it follows the 12C(a, g) reaction. At astrophysically relevant energies, the reaction proceeds exclusively via direct capture, resulting in a low rate. In this measurement, the unique capabilities of DRAGON enabled determination not only of the total reaction rates, but also of decay branching ratios. In addition, results from other recent measurements will be presented.

  18. SPECTRAL ANALYSIS AND INTERPRETATION OF THE {gamma}-RAY EMISSION FROM THE STARBURST GALAXY NGC 253

    Energy Technology Data Exchange (ETDEWEB)

    Abramowski, A. [Institut fuer Experimentalphysik, Universitaet Hamburg, Luruper Chaussee 149, D-22761 Hamburg (Germany); Acero, F. [Laboratoire Univers et Particules de Montpellier, Universite Montpellier 2, CNRS/IN2P3, CC 72, Place Eugene Bataillon, F-34095 Montpellier Cedex 5 (France); Aharonian, F.; Bernloehr, K.; Bochow, A. [Max-Planck-Institut fuer Kernphysik, P.O. Box 103980, D-69029 Heidelberg (Germany); Akhperjanian, A. G. [National Academy of Sciences of the Republic of Armenia, Yerevan (Armenia); Anton, G.; Balzer, A.; Brucker, J. [Physikalisches Institut, Universitaet Erlangen-Nuernberg, Erwin-Rommel-Str. 1, D-91058 Erlangen (Germany); Barnacka, A. [Nicolaus Copernicus Astronomical Center, ul. Bartycka 18, 00-716 Warsaw (Poland); Becherini, Y. [APC, AstroParticule et Cosmologie, Universite Paris Diderot, CNRS/IN2P3, CEA/lrfu, Observatoire de Paris, Sorbonne Paris Cite, 10, rue Alice Domon et Leonie Duquet, F-75205 Paris Cedex 13 (France); Becker, J. [Institut fuer Theoretische Physik, Lehrstuhl IV: Weltraum und Astrophysik, Ruhr-Universitaet Bochum, D-44780 Bochum (Germany); Birsin, E. [Institut fuer Physik, Humboldt-Universitaet zu Berlin, Newtonstr. 15, D-12489 Berlin (Germany); Biteau, J.; Brun, F. [Laboratoire Leprince-Ringuet, Ecole Polytechnique, CNRS/IN2P3, F-91128 Palaiseau (France); Boisson, C. [LUTH, Observatoire de Paris, CNRS, Universite Paris Diderot, 5 Place Jules Janssen, F-92190 Meudon (France); Bolmont, J. [LPNHE, Universite Pierre et Marie Curie Paris 6, Universite Denis Diderot Paris 7, CNRS/IN2P3, 4 Place Jussieu, F-75252, Paris Cedex 5 (France); Bordas, P. [Institut fuer Astronomie und Astrophysik, Universitaet Tuebingen, Sand 1, D-72076 Tuebingen (Germany); Brun, P. [CEA Saclay, DSM/IRFU, F-91191 Gif-Sur-Yvette Cedex (France); Bulik, T., E-mail: stefan.ohm@le.ac.uk [Astronomical Observatory, The University of Warsaw, Al. Ujazdowskie 4, 00-478 Warsaw (Poland); Collaboration: H.E.S.S. Collaboration; and others

    2012-10-01

    Very high energy (VHE; E {>=} 100 GeV) and high-energy (HE; 100 MeV {<=} E {<=} 100 GeV) data from {gamma}-ray observations performed with the H.E.S.S. telescope array and the Fermi-LAT instrument, respectively, are analyzed in order to investigate the non-thermal processes in the starburst galaxy NGC 253. The VHE {gamma}-ray data can be described by a power law in energy with differential photon index {Gamma} = 2.14 {+-} 0.18{sub stat} {+-} 0.30{sub sys} and differential flux normalization at 1 TeV of F{sub 0} = (9.6 {+-} 1.5{sub stat}(+ 5.7, -2.9){sub sys}) Multiplication-Sign 10{sup -14} TeV{sup -1} cm{sup -2} s{sup -1}. A power-law fit to the differential HE {gamma}-ray spectrum reveals a photon index of {Gamma} 2.24 {+-} 0.14{sub stat} {+-} 0.03{sub sys} and an integral flux between 200 MeV and 200 GeV of F(0.2-200 GeV) = (4.9 {+-} 1.0{sub stat} {+-} 0.3{sub sys}) Multiplication-Sign 10{sup -9} cm{sup -2} s{sup -1}. No evidence for a spectral break or turnover is found over the dynamic range of both the LAT instrument and the H.E.S.S. experiment: a combined fit of a power law to the HE and VHE {gamma}-ray data results in a differential photon index {Gamma} = 2.34 {+-} 0.03 with a p-value of 30%. The {gamma}-ray observations indicate that at least about 20% of the energy of the cosmic rays (CRs) capable of producing hadronic interactions is channeled into pion production. The smooth alignment between the spectra in the HE and VHE {gamma}-ray domain suggests that the same transport processes dominate in the entire energy range. Advection is most likely responsible for charged particle removal from the starburst nucleus from GeV to multiple TeV energies. In a hadronic scenario for the {gamma}-ray production, the single overall power-law spectrum observed would therefore correspond to the mean energy spectrum produced by the ensemble of CR sources in the starburst region.

  19. Astrophysical fluid dynamics

    Science.gov (United States)

    Ogilvie, Gordon I.

    2016-06-01

    > These lecture notes and example problems are based on a course given at the University of Cambridge in Part III of the Mathematical Tripos. Fluid dynamics is involved in a very wide range of astrophysical phenomena, such as the formation and internal dynamics of stars and giant planets, the workings of jets and accretion discs around stars and black holes and the dynamics of the expanding Universe. Effects that can be important in astrophysical fluids include compressibility, self-gravitation and the dynamical influence of the magnetic field that is `frozen in' to a highly conducting plasma. The basic models introduced and applied in this course are Newtonian gas dynamics and magnetohydrodynamics (MHD) for an ideal compressible fluid. The mathematical structure of the governing equations and the associated conservation laws are explored in some detail because of their importance for both analytical and numerical methods of solution, as well as for physical interpretation. Linear and nonlinear waves, including shocks and other discontinuities, are discussed. The spherical blast wave resulting from a supernova, and involving a strong shock, is a classic problem that can be solved analytically. Steady solutions with spherical or axial symmetry reveal the physics of winds and jets from stars and discs. The linearized equations determine the oscillation modes of astrophysical bodies, as well as their stability and their response to tidal forcing.

  20. Goddard's Astrophysics Science Divsion Annual Report 2014

    Science.gov (United States)

    Weaver, Kimberly (Editor); Reddy, Francis (Editor); Tyler, Pat (Editor)

    2015-01-01

    The Astrophysics Science Division (ASD, Code 660) is one of the world's largest and most diverse astronomical organizations. Space flight missions are conceived, built and launched to observe the entire range of the electromagnetic spectrum, from gamma rays to centimeter waves. In addition, experiments are flown to gather data on high-energy cosmic rays, and plans are being made to detect gravitational radiation from space-borne missions. To enable these missions, we have vigorous programs of instrument and detector development. Division scientists also carry out preparatory theoretical work and subsequent data analysis and modeling. In addition to space flight missions, we have a vibrant suborbital program with numerous sounding rocket and balloon payloads in development or operation. The ASD is organized into five labs: the Astroparticle Physics Lab, the X-ray Astrophysics Lab, the Gravitational Astrophysics Lab, the Observational Cosmology Lab, and the Exoplanets and Stellar Astrophysics Lab. The High Energy Astrophysics Science Archive Research Center (HEASARC) is an Office at the Division level. Approximately 400 scientists and engineers work in ASD. Of these, 80 are civil servant scientists, while the rest are resident university-based scientists, contractors, postdoctoral fellows, graduate students, and administrative staff. We currently operate the Swift Explorer mission and the Fermi Gamma-ray Space Telescope. In addition, we provide data archiving and operational support for the XMM mission (jointly with ESA) and the Suzaku mission (with JAXA). We are also a partner with Caltech on the NuSTAR mission. The Hubble Space Telescope Project is headquartered at Goddard, and ASD provides Project Scientists to oversee operations at the Space Telescope Science Institute. Projects in development include the Neutron Interior Composition Explorer (NICER) mission, an X-ray timing experiment for the International Space Station; the Transiting Exoplanet Sky Survey (TESS

  1. Plasma physics of extreme astrophysical environments.

    Science.gov (United States)

    Uzdensky, Dmitri A; Rightley, Shane

    2014-03-01

    Among the incredibly diverse variety of astrophysical objects, there are some that are characterized by very extreme physical conditions not encountered anywhere else in the Universe. Of special interest are ultra-magnetized systems that possess magnetic fields exceeding the critical quantum field of about 44 TG. There are basically only two classes of such objects: magnetars, whose magnetic activity is manifested, e.g., via their very short but intense gamma-ray flares, and central engines of supernovae (SNe) and gamma-ray bursts (GRBs)--the most powerful explosions in the modern Universe. Figuring out how these complex systems work necessarily requires understanding various plasma processes, both small-scale kinetic and large-scale magnetohydrodynamic (MHD), that govern their behavior. However, the presence of an ultra-strong magnetic field modifies the underlying basic physics to such a great extent that relying on conventional, classical plasma physics is often not justified. Instead, plasma-physical problems relevant to these extreme astrophysical environments call for constructing relativistic quantum plasma (RQP) physics based on quantum electrodynamics (QED). In this review, after briefly describing the astrophysical systems of interest and identifying some of the key plasma-physical problems important to them, we survey the recent progress in the development of such a theory. We first discuss the ways in which the presence of a super-critical field modifies the properties of vacuum and matter and then outline the basic theoretical framework for describing both non-relativistic and RQPs. We then turn to some specific astrophysical applications of relativistic QED plasma physics relevant to magnetar magnetospheres and to central engines of core-collapse SNe and long GRBs. Specifically, we discuss the propagation of light through a magnetar magnetosphere; large-scale MHD processes driving magnetar activity and responsible for jet launching and propagation in

  2. Gamma-ray bursts

    CERN Document Server

    Wijers, Ralph A M J; Woosley, Stan

    2012-01-01

    Cosmic gamma ray bursts (GRBs) have fascinated scientists and the public alike since their discovery in the late 1960s. Their story is told here by some of the scientists who participated in their discovery and, after many decades of false starts, solved the problem of their origin. Fourteen chapters by active researchers in the field present a detailed history of the discovery, a comprehensive theoretical description of GRB central engine and emission models, a discussion of GRB host galaxies and a guide to how GRBs can be used as cosmological tools. Observations are grouped into three sets from the satellites CGRO, BeppoSAX and Swift, and followed by a discussion of multi-wavelength observations. This is the first edited volume on GRB astrophysics that presents a fully comprehensive review of the subject. Utilizing the latest research, Gamma-ray Bursts is an essential desktop companion for graduate students and researchers in astrophysics.

  3. The TeV {gamma}-ray binary PSR B1259-63. Observations with the high energy stereoscopic system in the years 2005-2007

    Energy Technology Data Exchange (ETDEWEB)

    Kerschhaggl, Matthias

    2010-04-06

    PSR B1259-63/SS2883 is a binary system where a 48 ms pulsar orbits a massive Be star with a period of 3.4 years. The system exhibits variable, non-thermal radiation around periastron on the highly eccentric orbit (e=0.87) visible from radio to very high energies (VHE; E>100 GeV). When being detected in TeV {gamma}-rays with the High Energy Stereoscopic System (H.E.S.S.) in 2004 it became known as the first variable galactic VHE source. This thesis presents VHE data from PSR B1259-63 as taken during the years 2005, 2006 and before as well as shortly after the 2007 periastron passage. These data extend the knowledge of the lightcurve of this object to all phases of the binary orbit. The lightcurve constrains physical mechanisms present in this TeV source. Observations of VHE {gamma}-rays with the H.E.S.S. telescope array using the Imaging Atmospheric Cherenkov Technique were performed. The H.E.S.S. instrument features an angular resolution of < 0.1 and an energy resolution of < 20%. Gamma-ray events in an energy range of 0.5-70 TeV were recorded. From these data, energy spectra and lightcurve with a monthly time sampling were extracted. VHE {gamma}-ray emission from PSRB1259-63 was detected with an overall significance of 9.5 standard deviations using 55 h of exposure, obtained from April to August 2007. The monthly flux of -rays during the observation period was measured, yielding VHE lightcurve data for the early pre-periastron phase of the system for the first time. No spectral variability was found on timescales of months. The spectrum is described by a power law with a photon index of {gamma}=2.8{+-}0.2{sub stat}{+-}0.2{sub sys} and flux normalisation {phi}{sub 0}=(1.1{+-}0.1{sub stat}{+-}0.2{sub sys}) x 10{sup -12} TeV{sup -1}cm{sup -2}s{sup -1}. PSR B1259-63 was also monitored in 2005 and 2006, far from periastron passage, comprising 8.9 h and 7.5 h of exposure, respectively. No significant excess of {gamma}-rays is seen in those observations. PSR B1259-63 has

  4. Investigating High Field Gravity using Astrophysical Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Bloom, Elliott D.; /SLAC

    2008-02-01

    The purpose of these lectures is to introduce particle physicists to astrophysical techniques. These techniques can help us understand certain phenomena important to particle physics that are currently impossible to address using standard particle physics experimental techniques. As the subject matter is vast, compromises are necessary in order to convey the central ideas to the reader. Many general references are included for those who want to learn more. The paragraphs below elaborate on the structure of these lectures. I hope this discussion will clarify my motivation and make the lectures easier to follow. The lectures begin with a brief review of more theoretical ideas. First, elements of general relativity are reviewed, concentrating on those aspects that are needed to understand compact stellar objects (white dwarf stars, neutron stars, and black holes). I then review the equations of state of these objects, concentrating on the simplest standard models from astrophysics. After these mathematical preliminaries, Sec. 2(c) discusses 'The End State of Stars'. Most of this section also uses the simplest standard models. However, as these lectures are for particle physicists, I also discuss some of the more recent approaches to the equation of state of very dense compact objects. These particle-physics-motivated equations of state can dramatically change how we view the formation of black holes. Section 3 focuses on the properties of the objects that we want to characterize and measure. X-ray binary systems and Active Galactic Nuclei (AGN) are stressed because the lectures center on understanding very dense stellar objects, black hole candidates (BHCs), and their accompanying high gravitational fields. The use of x-ray timing and gamma-ray experiments is also introduced in this section. Sections 4 and 5 review information from x-ray and gamma-ray experiments. These sections also discuss the current state of the art in x-ray and gamma-ray satellite

  5. Microphysics in Astrophysical Plasmas

    Science.gov (United States)

    Schwartz, Steven J.; Zweibel, Ellen G.; Goldman, Martin

    Although macroscale features dominate astrophysical images and energetics, the physics is controlled through microscale transport processes (conduction, diffusion) that mediate the flow of mass, momentum, energy, and charge. These microphysical processes manifest themselves in key (all) boundary layers and also operate within the body of the plasma. Crucially, most plasmas of interest are rarefied to the extent that classical particle collision length- and time-scales are long. Collective plasma kinetic phenomena then serve to scatter or otherwise modify the particle distribution functions and in so-doing govern the transport at the microscale level. Thus collisionless plasmas are capable of supporting thin shocks, current sheets which may be prone to magnetic reconnection, and the dissipation of turbulence cascades at kinetic scales. This paper lays the foundation for the accompanying collection that explores the current state of knowledge in this subject. The richness of plasma kinetic phenomena brings with it a rich diversity of microphysics that does not always, if ever, simply mimic classical collision-dominated transport. This can couple the macro- and microscale physics in profound ways, and in ways which thus depend on the astrophysical context.

  6. Nuclear astrophysics: a new era

    Energy Technology Data Exchange (ETDEWEB)

    Wiescher, Michael; Aprahamian, Ani [Department of Physics, University of Notre Dame (United States); Regan, Paddy [Department of Physics, University of Surrey (United Kingdom)

    2002-02-01

    The latest generation of radioactive-ion-beam facilities promises to shed light on the complex nuclear processes that control the evolution of stars and stellar explosions. The most fundamental question in nature is where do we come from, or, put another way, what are we made of? The late Carl Sagan poetically said that we are all made of stardust, but the origin of the elements has fascinated scientists for thousands of years. Many of the greatest medieval and renaissance scientists dabbled in alchemy, trying to create the elements that make up the cosmos, but we had to wait until the early 20th century to recognize that elements are really defined by the number of protons in the nucleus. According to our current understanding, after the big bang most of the normal or baryonic material in the universe consisted of the lightest two elements, hydrogen and helium, with only trace amounts of lithium and beryllium. All the heavier elements that occur naturally on Earth were created from this original material via a series of nuclear reactions in the cores of stars or in stellar explosions. Over the last decade, ground-based telescopes and satellite-based Observatories have opened new windows on the stars across the electromagnetic spectrum, from infrared to gamma radiation. New technology now makes it possible to observe and analyse short-lived stellar explosions. Indeed, the distribution of elements in 'planetary nebula' and in the ejecta of supernovae and novae give a direct glimpse of individual nucleosynthesis processes. In the February issue of Physics World, Michael Wiescher, Paddy Regan and Ani Aprahamian describe how sate-of-the-art facilities are set to plug many of the gaps in our understanding of nuclear astrophysics. (U.K.)

  7. Gamma-Ray Astronomy Technology Needs

    Science.gov (United States)

    Gehrels, N.; Cannizzo, J. K.

    2012-01-01

    In recent decades gamma-ray observations have become a valuable tool for studying the universe. Progress made in diverse 8re1lS such as gamma-ray bursts (GRBs), nucleosynthesis, and active galactic nuclei (AGNs) has complimented and enriched our astrophysical understanding in many ways. We present an overview of current and future planned space y-ray missions and discussion technology needs for- the next generation of space gamma-ray instruments.

  8. A Review of Astrophysics Experiments on Intense Lasers

    Energy Technology Data Exchange (ETDEWEB)

    Remington, B.A.; Arnett, D.; Drake, R.P.; Takabe, H.

    1999-03-03

    Astrophysics traditionally has been the domain of large astronomical observatories and theorists' computers, the former producing images from deep space, and the latter constructing intricate models to explain the observations. A component often missing has been the ability to quantitatively test the theories and models in an experimental setting where the initial and final states are well characterized. In a new development, intense lasers are being used to recreate aspects of astrophysical phenomena in the laboratory, allowing the creation of experimental testbeds where theory and modeling can be quantitatively compared with data. We summarize here several areas of astrophysics: supernovae, supernova remnants, gamma-ray bursts, and giant planets. In each of these areas, experiments are under development at intense laser facilities to test and refine our understanding of these phenomena.

  9. A Unified Model of High-Energy Astrophysical phenomena

    CERN Document Server

    De Rújula, Alvaro

    2005-01-01

    I outline a unified model of high-energy astrophysics, in which the gamma background radiation, cluster "cooling flows", gamma-ray bursts, X-ray flashes and cosmic-ray electrons and nuclei of all energies -share a common origin. The mechanism underlying these phenomena is the emission of relativistic "cannonballs" by ordinary supernovae, analogous to the observed ejection of plasmoids by quasars and microquasars. I concentrate on Cosmic Rays: the longest-lasting conundrum in astrophysics. The distribution of Cosmic Rays in the Galaxy, their total "luminosity", the broken power-law spectra with their observed slopes, the position of the knee(s) and ankle(s), and the alleged variations of composition with energy are all explained in terms of simple and "standard" physics. The model is only lacking a satisfactory theoretical understanding of the "cannon" that emits the cannonballs in catastrophic episodes of accretion onto a compact object.

  10. Radiation processes in astrophysics

    CERN Document Server

    Tucker, Wallace H

    1975-01-01

    The purpose of this book is twofold: to provide a brief, simple introduction to the theory of radiation and its application in astrophysics and to serve as a reference manual for researchers. The first part of the book consists of a discussion of the basic formulas and concepts that underlie the classical and quantum descriptions of radiation processes. The rest of the book is concerned with applications. The spirit of the discussion is to present simple derivations that will provide some insight into the basic physics involved and then to state the exact results in a form useful for applications. The reader is referred to the original literature and to reviews for rigorous derivations.The wide range of topics covered is illustrated by the following table of contents: Basic Formulas for Classical Radiation Processes; Basic Formulas for Quantum Radiation Processes; Cyclotron and Synchrotron Radiation; Electron Scattering; Bremsstrahlung and Collision Losses; Radiative Recombination; The Photoelectric Effect; a...

  11. Stellar Astrophysics with Arcus

    Science.gov (United States)

    Brickhouse, Nancy S.; Huenemoerder, David P.; Wolk, Scott; Schulz, Norbert; Foster, Adam; Brenneman, Laura; Poppenhaeger, Katja; Arcus Team

    2018-01-01

    The Arcus mission is now in Phase A of the NASA Medium-Class Explorer competition. We present here the Arcus science case for stellar astrophysics. With spectral resolving power of at least 2500 and effective area greater than 400 cm^2, Arcus will measure new diagnostic lines, e.g. for H- and He-like ions of oxygen and other elements. Weak dielectronic recombination lines will provide sensitive measurements of temperature to test stellar coronal heating models. Arcus will also resolve the coronal and accretion line components in young accreting stars, allowing detailed studies of accretion shocks and their post-shock behavior. Arcus can resolve line shapes and variability in hot star winds to study inhomogeneities and dynamics of wind structure. Such profiles will provide an independent measure of mass loss rates, for which theoretical and observational discrepancies can reach an order of magnitude. Arcus will also study exoplanet atmospheres through X-ray absorption, determing their extent and composition.

  12. Numerical relativity beyond astrophysics

    Science.gov (United States)

    Garfinkle, David

    2017-01-01

    Though the main applications of computer simulations in relativity are to astrophysical systems such as black holes and neutron stars, nonetheless there are important applications of numerical methods to the investigation of general relativity as a fundamental theory of the nature of space and time. This paper gives an overview of some of these applications. In particular we cover (i) investigations of the properties of spacetime singularities such as those that occur in the interior of black holes and in big bang cosmology. (ii) investigations of critical behavior at the threshold of black hole formation in gravitational collapse. (iii) investigations inspired by string theory, in particular analogs of black holes in more than 4 spacetime dimensions and gravitational collapse in spacetimes with a negative cosmological constant.

  13. Black-hole astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Bender, P. [Univ. of Colorado, Boulder, CO (United States); Bloom, E. [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Cominsky, L. [Sonoma State Univ., Rohnert Park, CA (United States). Dept. of Physics and Astronomy] [and others

    1995-07-01

    Black-hole astrophysics is not just the investigation of yet another, even if extremely remarkable type of celestial body, but a test of the correctness of the understanding of the very properties of space and time in very strong gravitational fields. Physicists` excitement at this new prospect for testing theories of fundamental processes is matched by that of astronomers at the possibility to discover and study a new and dramatically different kind of astronomical object. Here the authors review the currently known ways that black holes can be identified by their effects on their neighborhood--since, of course, the hole itself does not yield any direct evidence of its existence or information about its properties. The two most important empirical considerations are determination of masses, or lower limits thereof, of unseen companions in binary star systems, and measurement of luminosity fluctuations on very short time scales.

  14. Numerical relativity beyond astrophysics.

    Science.gov (United States)

    Garfinkle, David

    2017-01-01

    Though the main applications of computer simulations in relativity are to astrophysical systems such as black holes and neutron stars, nonetheless there are important applications of numerical methods to the investigation of general relativity as a fundamental theory of the nature of space and time. This paper gives an overview of some of these applications. In particular we cover (i) investigations of the properties of spacetime singularities such as those that occur in the interior of black holes and in big bang cosmology. (ii) investigations of critical behavior at the threshold of black hole formation in gravitational collapse. (iii) investigations inspired by string theory, in particular analogs of black holes in more than 4 spacetime dimensions and gravitational collapse in spacetimes with a negative cosmological constant.

  15. Exotic nuclei and astrophysics

    Directory of Open Access Journals (Sweden)

    Penionzhkevich Yu.

    2012-12-01

    Full Text Available In recent years, nuclear physics investigations of the laws of the microscopic world contributed significantly to extension of our knowledge of phenomena occurring in the macroscopic world (Universe and made a formidable contribution to the development of astrophysical and cosmological theories. First of all, this concerns the expanding universe model, the evolution of stars, and the abundances of elements, as well as the properties of various stars and cosmic objects, including “cold” and neutron stars, black holes, and pulsars. Without claiming to give a full account of all cosmological problems, we will dwell upon those of them that, in my opinion, have much in common with nuclear-matter properties manifesting themselves in nuclear interactions.

  16. Astrophysics Faces the Millennium

    Science.gov (United States)

    Trimble, Virginia

    2001-03-01

    The Medieval synthesis of Aristotelian philosophy and church doctrine, due largely to Thomas Aquinas, insisted that the universe outside the earth's atmosphere must be immutable, single-centered, fully inventoried, immaculate or perfect, including perfectly spherical, and much else that sounds strange to modern ears. The beginnings of modern astronomy can be largely described as the overthrow of these various concepts by a combination of new technologies and new ways of thinking, and many current questions in astrophysics can be directly tied to developments of those same concepts. Indeed they probably all can be, but not over time, ending with questions like: Do other stars have spots? What does it mean when quasar jets look like they are moving faster than the speed of light? Is there anything special about our star, our galaxy, our planet, or our universe? How did these all form, and what is their long-term fate?

  17. Theoretical Particle Astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Kamionkowski, Marc [Johns Hopkins Univ., Baltimore, MD (United States)

    2013-08-07

    Abstract: Theoretical Particle Astrophysics. The research carried out under this grant encompassed work on the early Universe, dark matter, and dark energy. We developed CMB probes for primordial baryon inhomogeneities, primordial non-Gaussianity, cosmic birefringence, gravitational lensing by density perturbations and gravitational waves, and departures from statistical isotropy. We studied the detectability of wiggles in the inflation potential in string-inspired inflation models. We studied novel dark-matter candidates and their phenomenology. This work helped advance the DoE's Cosmic Frontier (and also Energy and Intensity Frontiers) by finding synergies between a variety of different experimental efforts, by developing new searches, science targets, and analyses for existing/forthcoming experiments, and by generating ideas for new next-generation experiments.

  18. Theoretical nuclear structure and astrophysics. Progress report for 1996

    Energy Technology Data Exchange (ETDEWEB)

    Guidry, M.W.; Nazarewicz, W.; Strayer, M.R.

    1996-12-31

    This research effort is directed toward theoretical support and guidance for the fields of radioactive ion beam physics, gamma ray spectroscopy, computational and nuclear astrophysics, and the interface between these disciplines. The authors report substantial progress in all those areas. One measure of progress is publications and invited material. The research described here has led to more than 43 papers that are published, accepted, or submitted to refereed journals, and to 15 invited presentations at conferences and workshops.

  19. Laue diffraction lenses for astrophysics: From theory to experiments

    OpenAIRE

    Halloin, H.

    2006-01-01

    Based on the laws of X-ray diffraction in crystals, Laue lenses offer a promising way to achieve the sensitivity and angular resolution leap required for the next generation of hard X-ray and gamma-ray telescopes. The present paper describes the instrumental responses of Laue diffraction lenses designed for nuclear astrophysics. Different possible geometries are discussed, as well as the corresponding spectral and imaging capabilities. These theoretical predictions are then compared with Mont...

  20. Nuclear astrophysics measurements with ELISSA at ELI-NP

    Science.gov (United States)

    Matei, C.; Balabanski, D. L.; Tesileanu, O.; Xu, Y.; La Cognata, M.; Spitaleri, C.

    2017-09-01

    ELISSA is a new silicon-strip detector array under development at the Extreme Light Infrastructure - Nuclear Physics facility in collaboration with INFN-LNS, Catania. ELI-NP will provide very intense, brilliant gamma beams, tunable from 200keV to 19.5MeV. Several reactions important for the astrophysical p-process, Big Bang Nucleosynthesis and supernova explosion have been selected for the first measurement campaigns starting in 2019.

  1. VI European Summer School on Experimental Nuclear Astrophysics

    Science.gov (United States)

    The European Summer School on Experimental Nuclear Astrophysics has reached the sixth edition, marking the tenth year's anniversary. The spirit of the school is to provide a very important occasion for a deep education of young researchers about the main topics of experimental nuclear astrophysics. Moreover, it should be regarded as a forum for the discussion of the last-decade research activity. Lectures are focused on various aspects of primordial and stellar nucleosynthesis, including novel experimental approaches and detectors, indirect methods and radioactive ion beams. Moreover, in order to give a wide educational offer, some lectures cover complementary subjects of nuclear astrophysics such as gamma ray astronomy, neutron-induced reactions, short-lived radionuclides, weak interaction and cutting-edge facilities used to investigate nuclear reactions of interest for astrophysics. Large room is also given to young researcher oral contributions. Traditionally, particular attention is devoted to the participation of students from less-favoured countries, especially from the southern coast of the Mediterranean Sea. The school is organised by the Catania Nuclear Astrophysics research group with the collaboration of Dipartimento di Fisica e Astromomia - Università di Catania and Laboratori Nazionali del Sud - Istituto Nazionale di Fisica Nucleare.

  2. What does Astrophysics want to know about (Astrophysical) Reconnection?

    Science.gov (United States)

    Rosner, R.

    2005-12-01

    Magnetic reconnection is commonly invoked as a plasma energization and particle acceleration process in astrophysics, but the levels of detail regarding the underlying physics that are required are generally far demanding than what is typically encountered in laboratory or space plasma physics. Naively, one would therefore expect it to be far easier to answer questions regarding reconnection in the astrophysical context as opposed to the laboratory or space plasma physics contexts. My talk will focus on why this naive expectation is not correct, and will discuss the specifics of such astrophysics-motivated questions, as well as some possible answers.

  3. Astrophysical life extinctions what killed the dinosaurs?

    CERN Document Server

    Dar, Arnon

    1999-01-01

    Geological records indicate that the exponential diversification of marine and continental life on Earth in the past 500 My was interrupted by many life extinctions. They also indicate that the major mass extinctions were correlated in time with large meteoritic impacts, gigantic volcanic eruptions, sea regressions and drastic changes in global climate. Some of these catastrophes coincided in time. The astrophysical life extinction mechanisms which were proposed so far, in particular, meteoritic impacts, nearby supernova explosions, passage through molecular or dark matter clouds, and Galactic gamma/cosmic ray bursts cannot explain the time coincidences between these catastrophes. However, recent observations suggest that many planetary-mass objects may be present in the outer solar system between the Kuiper belt and the Oort cloud. Gravitational perturbations may occasionally bring them into the inner solar system. Their passage near Earth could have generated gigantic tidal waves, large volcanic eruptions, ...

  4. Gamma gamma technology group

    Indian Academy of Sciences (India)

    This report briefly describes the results presented at this conference on work to develop the technology required to build the proposed gamma gamma option, also known as the photon linear collider (PLC) [1]. Before describing the work presented at this conference I would like to put it in context. At the International ...

  5. Spin light of neutrino in astrophysical environments

    Science.gov (United States)

    Grigoriev, Alexander; Lokhov, Alexey; Studenikin, Alexander; Ternov, Alexei

    2017-11-01

    The spin light of neutrino (SLν) is a new possible mechanism of electromagnetic radiation by a massive neutrino (with a nonzero magnetic moment) moving in media. Since the prediction of this mechanism, the question has been debated in a number of publications as whether the effect can be of any significance for realistic astrophysical conditions. Although this effect is strongly suppressed due to smallness of neutrino magnetic moment, for ultra-high energy neutrinos (PeV neutrinos recently observed by the IceCube collaboration, for instance) the SLν might be of interest in the case of neutrinos propagating in dense matter. An advanced view on the SLν in matter is given, and several astrophysical settings (a neutron star, supernova, Gamma-Ray Burst (GRB), and relic neutrino background) for which the effect can be realized are considered. Taking into account the threshold condition and also several competing processes, we determine conditions for which the SLν mechanism is possible. We conclude that the most favorable case of the effect manifestation is provided by ultra dense matter of neutron stars and ultrahigh energy of the radiating neutrino, and note that these conditions can be met within galaxy clusters. It is also shown that due to the SLν specific polarization properties this electromagnetic mechanism is of interest in the connection with the observed polarization of GRB emission.

  6. A detailed study of the supernova remnant RCW 86 in TeV {gamma}-rays

    Energy Technology Data Exchange (ETDEWEB)

    Heinz, Sebastian

    2012-03-29

    A detailed study of the supernova remnant RCW 86 is presented. RCW 86 encountered a shell-like structure in radio, X-rays and optical, whereas in the discovery paper of RCW 86 in the very high energy regime the structure could not be confirmed. In this thesis for the first time the shell was resolved in the very high energy gamma rays. The shell width was determined to be 0.125 {+-}0.014 , the radius to be 0.194 {+-} 0.016 and the center to be -62.433 {+-}0.014 in declination and 220.734 {+-}0.016 in rectascension. The spectral analysis was performed for the whole SNR and for the south-east part, which is more pronounced in X-rays separately. But the results were comparable within errors. Additionally a power-law with an exponential cut off described the spectra best with the parameters: an spectral index of 1.50{+-}0.28, a cut-off energy of (2.69{+-}0.99 TeV) and an integral flux above 1 TeV of (6.51{+-}2.69) . 10{sup -12} cm{sup -2}s{sup -1}. The study of the correlation of the X-ray and VHE {gamma}-ray data of RCW 86 was hampered by the poor angular resolution of the VHE data. Therefore detailed studies of the Richardson-Lucy deconvolution algorithm have been performed. The outcome is, that deconvolution techniques are applicable to strong VHE {gamma}-ray sources and that fine structure well below the angular resolution can be studied. The application to RX J1713-3946, the brightest SNR in the VHE regime, has shown, that the correlation coefficient of the X-ray data and the VHE data of is stable down to 0.01 and has a value of 0.85. On the other side the significance of the data set is not sufficient in the case of RCW 86 to apply the deconvolution technique.

  7. Collaborative Astrophysical Research in Aire

    Science.gov (United States)

    Zhou, Jianfeng

    The AIRE (Astrophysical Integrated Research Environment) consists of three main parts: a Data Archive Center (DAC) which collects and manages public astrophysical data; a web-based Data Processing Center (DPC) which enables astrophysicists to process the data in a central server at any place and anytime; and a Collaborative Astrophysical Research Project System (CARPS) with which astrophysicists in different fields can pursue a collaborative reserch efficiently. Two research examples QPO study of RXTE data and wavelet analysis of large amount of galaxies are shown here.

  8. Nucleosynthesis and gamma-ray lines

    OpenAIRE

    Prantzos, Nikos

    2011-01-01

    Astrophysical gamma-ray spectroscopy is an invaluable tool for studying nuclear astrophysics, supernova structure, recent star formation in the Milky Way and mixing of nucleosynthesis products in the interstellar medium. After a short, historical, introduction to the field, I present a brief review of the most important current issues. Emphasis is given to radioactivities produced by massive stars and associated supernova explosions, and in particular, those related to observations carried ou...

  9. Study of the N=28 shell closure by one neutron transfer reaction: astrophysical application and {beta}-{gamma} spectroscopy of neutron rich nuclei around N=32/34 and N=40; Etude de la fermeture de couche N=28 autour du noyau {sub 18}{sup 46}Ar{sub 28} par reaction de transfert d'un neutron: application a l'astrophysique et Spectroscopie {beta}-{gamma} de noyaux riches en neutrons de N=32/34 et N=40

    Energy Technology Data Exchange (ETDEWEB)

    Gaudefroy, L

    2005-09-15

    The study of the N=28 shell closure has been presented as well as its astrophysical implications. Moreover the structure of neutron rich nuclei around N=32/34 and 40 was studied. The N=28 shell closure has been studied trough the one neutron transfer reaction on {sup 44,46}Ar nuclei. Excitation energies of states in {sup 45,47}Ar nuclei have been obtained, as well as their angular momenta and spectroscopic factors. These results were used to show that N=28 is still a good magic number in the argon isotopic chain. We interpreted the evolution of the spin-orbit partner gaps in terms of the tensor monopolar proton-neutron interaction. Thanks to this latter, we showed it is not necessary to summon up a reduction of the intensity of the spin-orbit force in order to explain this evolution in N=29 isotopes from calcium to argon chains. The neutron capture rates on {sup 44,46}Ar have been determined thanks to the results of the transfer reaction. Their influence on the nucleosynthesis of {sup 46,48}Ca was studied. We proposed stellar conditions to account for the abnormal isotopic ratio observed in the Allende meteorite concerning {sup 46,48}Ca isotopes. The beta decay and gamma spectroscopy of neutron rich nuclei in the scandium to cobalt region has been studied. We showed that beta decay process is dominated by the {nu}f{sub 5/2} {yields} {pi}f{sub 7/2} Gamow-Teller transition. Moreover, we demonstrated that the {nu}g{sub 9/2} hinders this process in the studied nuclei, and influences their structure, by implying the existence of isomers. Our results show that N=34 is not a magic number in the titanium chain and the superior ones. (author)

  10. Atoms in astrophysics

    CERN Document Server

    Eissner, W; Hummer, D; Percival, I

    1983-01-01

    It is hard to appreciate but nevertheless true that Michael John Seaton, known internationally for the enthusiasm and skill with which he pursues his research in atomic physics and astrophysics, will be sixty years old on the 16th of January 1983. To mark this occasion some of his colleagues and former students have prepared this volume. It contains articles that de­ scribe some of the topics that have attracted his attention since he first started his research work at University College London so many years ago. Seaton's association with University College London has now stretched over a period of some 37 years, first as an undergraduate student, then as a research student, and then, successively, as Assistant Lecturer, Lecturer, Reader, and Professor. Seaton arrived at University College London in 1946 to become an undergraduate in the Physics Department, having just left the Royal Air Force in which he had served as a navigator in the Pathfinder Force of Bomber Command. There are a number of stories of ho...

  11. MAGIC upper limits to the VHE gamma-ray flux of 3C 454.3 in high emission state

    Science.gov (United States)

    Anderhub, H.; Antonelli, L. A.; Antoranz, P.; Backes, M.; Baixeras, C.; Balestra, S.; Barrio, J. A.; Bartko, H.; Bastieri, D.; Becerra González, J.; Becker, J. K.; Bednarek, W.; Berger, K.; Bernardini, E.; Biland, A.; Bock, R. K.; Bonnoli, G.; Bordas, P.; Borla Tridon, D.; Bosch-Ramon, V.; Bretz, T.; Britvitch, I.; Camara, M.; Carmona, E.; Commichau, S.; Contreras, J. L.; Cortina, J.; Costado, M. T.; Covino, S.; Curtef, V.; Dazzi, F.; de Angelis, A.; de Cea Del Pozo, E.; de Los Reyes, R.; de Lotto, B.; de Maria, M.; de Sabata, F.; Delgado Mendez, C.; Dominguez, A.; Dorner, D.; Doro, M.; Elsaesser, D.; Errando, M.; Ferenc, D.; Fernández, E.; Firpo, R.; Fonseca, M. V.; Font, L.; Galante, N.; García López, R. J.; Garczarczyk, M.; Gaug, M.; Goebel, F.; Hadasch, D.; Hayashida, M.; Herrero, A.; Höhne-Mönch, D.; Hose, J.; Hsu, C. C.; Huber, S.; Jogler, T.; Kranich, D.; La Barbera, A.; Laille, A.; Leonardo, E.; Lindfors, E.; Lombardi, S.; Longo, F.; López, M.; Lorenz, E.; Majumdar, P.; Maneva, G.; Mankuzhiyil, N.; Mannheim, K.; Maraschi, L.; Mariotti, M.; Martínez, M.; Mazin, D.; Meucci, M.; Meyer, M.; Miranda, J. M.; Mirzoyan, R.; Moldón, J.; Moles, M.; Moralejo, A.; Nieto, D.; Nilsson, K.; Ninkovic, J.; Otte, N.; Oya, I.; Paoletti, R.; Paredes, J. M.; Pasanen, M.; Pascoli, D.; Pauss, F.; Pegna, R. G.; Perez-Torres, M. A.; Persic, M.; Peruzzo, L.; Prada, F.; Prandini, E.; Puchades, N.; Rhode, W.; Ribó, M.; Rico, J.; Rissi, M.; Robert, A.; Rügamer, S.; Saggion, A.; Saito, T. Y.; Salvati, M.; Sanchez-Conde, M.; Sartori, P.; Satalecka, K.; Scalzotto, V.; Scapin, V.; Schweizer, T.; Shayduk, M.; Shinozaki, K.; Shore, S. N.; Sidro, N.; Sierpowska-Bartosik, A.; Sillanpää, A.; Sitarek, J.; Sobczynska, D.; Spanier, F.; Stamerra, A.; Stark, L. S.; Takalo, L.; Tavecchio, F.; Temnikov, P.; Tescaro, D.; Teshima, M.; Tluczykont, M.; Torres, D. F.; Turini, N.; Vankov, H.; Venturini, A.; Vitale, V.; Wagner, R. M.; Wittek, W.; Zabalza, V.; Zandanel, F.; Zanin, R.; Zapatero, J.; Vercellone, S.; Donnarumma, I.; D'Ammando, F.; Tavani, M.

    2009-04-01

    Aims: We report upper limits to the very high energy flux (E>100 GeV) of the flat spectrum radio quasar 3C 454.3 (z=0.859) derived by the Cherenkov telescope MAGIC during the high states of July/August and November/December 2007. We compare the upper limits derived in both time slots with the available quasi-simultaneous MeV-GeV data from the AGILE γ-ray satellite and interpret the observational results in the context of leptonic emission models. Methods: The source was observed with the MAGIC telescope during the active phases of July-August 2007 and November-December 2007 and the data were analyzed with the MAGIC standard analysis tools. For the periods around the ends of July and November, characterized by the most complete multifrequency coverage, we constructed the spectral energy distributions using our data together with nearly simultaneous multifrequency (optical, UV, X-ray and GeV) data. Results: Only upper limits can be derived from the MAGIC data. The upper limits, once corrected for the expected absorption by the extragalactic background light, together with nearly simultaneous multifrequency data, allow us to constrain the spectral energy distribution of 3C 454.3. The data are consistent with the model expectations based on inverse Compton scattering of the ambient photons from the broad line region by relativistic electrons, which robustly predicts a sharp cut-off above 20-30 GeV.

  12. An introduction to observational astrophysics

    CERN Document Server

    Gallaway, Mark

    2016-01-01

    Observational Astrophysics follows the general outline of an astrophysics undergraduate curriculum targeting practical observing information to what will be covered at the university level. This includes the basics of optics and coordinate systems to the technical details of CCD imaging, photometry, spectography and radio astronomy.  General enough to be used by students at a variety of institutions and advanced enough to be far more useful than observing guides targeted at amateurs, the author provides a comprehensive and up-to-date treatment of observational astrophysics at undergraduate level to be used with a university’s teaching telescope.  The practical approach takes the reader from basic first year techniques to those required for a final year project. Using this textbook as a resource, students can easily become conversant in the practical aspects of astrophysics in the field as opposed to the classroom.

  13. Nuclear astrophysics from direct reactions

    Energy Technology Data Exchange (ETDEWEB)

    Bertulani, C. [Department of Physics, Texas A and M University, Commerce, TX 75429 (United States)]. e-mail: carlos_bertulani@tamu-commerce.edu

    2008-12-15

    Accurate nuclear reaction rates are needed for primordial nucleosynthesis and hydrostatic burning in stars. The relevant reactions are extremely difficult to measure directly in the laboratory at the small astrophysical energies. In recent years direct reactions have been developed and applied to extract low-energy astrophysical S-factors. These methods require a combination of new experimental techniques and theoretical efforts, which are the subject of this presentation. (Author)

  14. An introduction to astrophysical hydrodynamics

    CERN Document Server

    Shore, Steven N

    1992-01-01

    This book is an introduction to astrophysical hydrodynamics for both astronomy and physics students. It provides a comprehensive and unified view of the general problems associated with fluids in a cosmic context, with a discussion of fluid dynamics and plasma physics. It is the only book on hydrodynamics that addresses the astrophysical context. Researchers and students will find this work to be an exceptional reference. Contents include chapters on irrotational and rotational flows, turbulence, magnetohydrodynamics, and instabilities.

  15. Nuclear Data for Astrophysical Modeling

    OpenAIRE

    Pritychenko, Boris

    2016-01-01

    Nuclear physics has been playing an important role in modern astrophysics and cosmology. Since the early 1950's it has been successfully applied for the interpretation and prediction of astrophysical phenomena. Nuclear physics models helped to explain the observed elemental and isotopic abundances and star evolution and provided valuable insights on the Big Bang theory. Today, the variety of elements observed in stellar surfaces, solar system and cosmic rays, and isotope abundances are calcul...

  16. Highlights of Spanish Astrophysics VII

    Science.gov (United States)

    Guirado, J. C.; Lara, L. M.; Quilis, V.; Gorgas, J.

    2013-05-01

    "Highlights of Astronomy and Astrophysics VII" contains the Proceedings of the biannual meeting of the Spanish Astronomical Society held in Valencia from July 9 to 13, 2012. Over 300 astronomer, both national and international researchers, attended to the conference covering a wide variety of astrophysical topics: Galaxies and Cosmology, The Milky Way and Its Components, Planetary Sciences, Solar Physics, Instrumentation and Computation, and Teaching and Outreach of Astronomy.

  17. Nuclear astrophysics with radioactive beams

    CERN Document Server

    Schatz, H

    2002-01-01

    Nuclei far from stability play an important role in our understanding of astrophysical scenarios with extreme temperature and density conditions. Among these are nova explosions, accreting neutron stars, supernovae, and the site of the r-process. I will give a brief review of the important open astrophysical questions in these scenarios and discuss the radioactive beam experiments at ISOL-type and at fragmentation-type facilities that are needed to answer them.

  18. Astrophysical neutrinos and atmospheric leptons

    Directory of Open Access Journals (Sweden)

    Gaisser T.K.

    2017-01-01

    Full Text Available IceCube measurements of the neutrino flux from TeV to PeV show the signal of astrophysical neutrinos standing out at high energy well above the steeply falling foreground of atmospheric neutrinos. The astrophysical signal appears both in measurements of neutrino-induced muons and in the starting event sample, which responds preferentially to electron and tau neutrinos, but which also includes muon neutrinos. Searches for point sources of astrophysical neutrinos have, however, not yet identified a single source or class of sources for the astrophysical component. Some constraints on astrophysical sources implied by the current observations will be described in this talk. Uncertainties in the fluxes of atmospheric leptons resulting from an incomplete knowledge of the primary cosmic-ray spectrum and from a limited understanding of meson production, including charm will also be reviewed. The ultimate goal is to improve the understanding of the astrophysical spectrum in the transition to lower energy where atmospheric neutrinos dominate. The main aspects of this presentation will be included in the author's Review Talk at the end of the Symposium.

  19. FOREWORD: Nuclear Physics in Astrophysics V

    Science.gov (United States)

    Auerbach, Naftali; Hass, Michael; Paul, Michael

    2012-02-01

    of neutrinos, such as double-beta decay and neutrino mixing were well represented at the conference. One of the central problems in modern cosmology and astrophysics is the search for dark matter. Several talks dealt with this subject and with methods to detect dark matter. Another intriguing and rather novel subject that was discussed at the meeting was time variation of fundamental physical constants. Two speakers have examined the sensitivity of Big-Bang Nucleosynthesis to the variation of the values of the fundamental constants. The role of some specific nuclei (such as Ni 56) in cosmology was pointed out. Many of the presentations at the conference described experimental studies of reactions relevant to nucleosynthesis at various stages of cosmic evolution. As reflected in the conference, these activities are widespread, encompassing many laboratories. Rare Isotope Beam (RIB) facilities are in the forefront of these studies. To understand the various processes of nucleosynthesis one has to have a good theory of nuclei far from the stability line. A number of presentations dealt with the description of such exotic nuclei. It is clear from the presentations that the future of experimental nuclear astrophysics looks promising as existing experimental facilities are being upgraded and new facilities are being built. X-Ray and Gamma-Ray Bursts and cosmic explosions were the subject of several talks. A discussion of various experiments attempting to measure time-reversal violation was the subject of one lecture. The solution of the puzzle as to why the universe is asymmetric with respect to matter-antimatter requires knowledge of the limit of time-reversal conservation. The late John Bahcall was a great astrophysicist and a supporter of the conference series 'Nuclear physics in Astrophysics'. On the last day of the conference, following a talk by Neta Bahcall from Princeton University on dark matter in the Universe, a short commemoration for John was held. Detailed

  20. MAGIC gamma-ray and multi-frequency observations of flat spectrum radio quasar PKS 1510-089 in early 2012

    Science.gov (United States)

    Aleksić, J.; Ansoldi, S.; Antonelli, L. A.; Antoranz, P.; Babic, A.; Bangale, P.; Barres de Almeida, U.; Barrio, J. A.; Becerra González, J.; Bednarek, W.; Bernardini, E.; Biland, A.; Blanch, O.; Bonnefoy, S.; Bonnoli, G.; Borracci, F.; Bretz, T.; Carmona, E.; Carosi, A.; Carreto Fidalgo, D.; Colin, P.; Colombo, E.; Contreras, J. L.; Cortina, J.; Covino, S.; Da Vela, P.; Dazzi, F.; De Angelis, A.; De Caneva, G.; De Lotto, B.; Delgado Mendez, C.; Doert, M.; Domínguez, A.; Dominis Prester, D.; Dorner, D.; Doro, M.; Einecke, S.; Eisenacher, D.; Elsaesser, D.; Farina, E.; Ferenc, D.; Fonseca, M. V.; Font, L.; Frantzen, K.; Fruck, C.; García López, R. J.; Garczarczyk, M.; Garrido Terrats, D.; Gaug, M.; Godinović, N.; González Muñoz, A.; Gozzini, S. R.; Hadasch, D.; Hayashida, M.; Herrera, J.; Herrero, A.; Hildebrand, D.; Hose, J.; Hrupec, D.; Idec, W.; Kadenius, V.; Kellermann, H.; Kodani, K.; Konno, Y.; Krause, J.; Kubo, H.; Kushida, J.; La Barbera, A.; Lelas, D.; Lewandowska, N.; Lindfors, E.; Lombardi, S.; López, M.; López-Coto, R.; López-Oramas, A.; Lorenz, E.; Lozano, I.; Makariev, M.; Mallot, K.; Maneva, G.; Mankuzhiyil, N.; Mannheim, K.; Maraschi, L.; Marcote, B.; Mariotti, M.; Martínez, M.; Mazin, D.; Menzel, U.; Meucci, M.; Miranda, J. M.; Mirzoyan, R.; Moralejo, A.; Munar-Adrover, P.; Nakajima, D.; Niedzwiecki, A.; Nilsson, K.; Nishijima, K.; Noda, K.; Nowak, N.; Orito, R.; Overkemping, A.; Paiano, S.; Palatiello, M.; Paneque, D.; Paoletti, R.; Paredes, J. M.; Paredes-Fortuny, X.; Partini, S.; Persic, M.; Prada, F.; Prada Moroni, P. G.; Prandini, E.; Preziuso, S.; Puljak, I.; Reinthal, R.; Rhode, W.; Ribó, M.; Rico, J.; Rodriguez Garcia, J.; Rügamer, S.; Saggion, A.; Saito, T.; Saito, K.; Satalecka, K.; Scalzotto, V.; Scapin, V.; Schultz, C.; Schweizer, T.; Shore, S. N.; Sillanpää, A.; Sitarek, J.; Snidaric, I.; Sobczynska, D.; Spanier, F.; Stamatescu, V.; Stamerra, A.; Steinbring, T.; Storz, J.; Strzys, M.; Sun, S.; Surić, T.; Takalo, L.; Takami, H.; Tavecchio, F.; Temnikov, P.; Terzić, T.; Tescaro, D.; Teshima, M.; Thaele, J.; Tibolla, O.; Torres, D. F.; Toyama, T.; Treves, A.; Uellenbeck, M.; Vogler, P.; Wagner, R. M.; Zandanel, F.; Zanin, R.; MAGIC Collaboration; Lucarelli, F.; Pittori, C.; Vercellone, S.; Verrecchia, F.; AGILE Collaboration; Buson, S.; D'Ammando, F.; Stawarz, L.; Giroletti, M.; Orienti, M.; Fermi-LAT Collaboration; Mundell, C.; Steele, I.; Zarpudin, B.; Raiteri, C. M.; Villata, M.; Sandrinelli, A.; Lähteenmäki, A.; Tammi, J.; Tornikoski, M.; Hovatta, T.; Readhead, A. C. S.; Max-Moerbeck, W.; Richards, J. L.; Jorstad, S.; Marscher, A.; Gurwell, M. A.; Larionov, V. M.; Blinov, D. A.; Konstantinova, T. S.; Kopatskaya, E. N.; Larionova, L. V.; Larionova, E. G.; Morozova, D. A.; Troitsky, I. S.; Mokrushina, A. A.; Pavlova, Yu. V.; Chen, W. P.; Lin, H. C.; Panwar, N.; Agudo, I.; Casadio, C.; Gómez, J. L.; Molina, S. N.; Kurtanidze, O. M.; Nikolashvili, M. G.; Kurtanidze, S. O.; Chigladze, R. A.; Acosta-Pulido, J. A.; Carnerero, M. I.; Manilla-Robles, A.; Ovcharov, E.; Bozhilov, V.; Metodieva, I.; Aller, M. F.; Aller, H. D.; Fuhrman, L.; Angelakis, E.; Nestoras, I.; Krichbaum, T. P.; Zensus, J. A.; Ungerechts, H.; Sievers, A.

    2014-09-01

    Aims: Amongst more than fifty blazars detected in very high energy (VHE, E> 100 GeV) γ rays, only three belong to the subclass of flat spectrum radio quasars (FSRQs). The detection of FSRQs in the VHE range is challenging, mainly because of their soft spectra in the GeV-TeV regime. MAGIC observed PKS 1510-089 (z = 0.36) starting 2012 February 3 until April 3 during a high activity state in the high energy (HE, E> 100 MeV) γ-ray band observed by AGILE and Fermi. MAGIC observations result in the detection of a source with significance of 6.0 standard deviations (σ). We study the multi-frequency behaviour of the source at the epoch of MAGIC observation, collecting quasi-simultaneous data at radio and optical (GASP-WEBT and F-Gamma collaborations, REM, Steward, Perkins, Liverpool, OVRO, and VLBA telescopes), X-ray (Swift satellite), and HE γ-ray frequencies. Methods: We study the VHE γ-ray emission, together with the multi-frequency light curves, 43 GHz radio maps, and spectral energy distribution (SED) of the source. The quasi-simultaneous multi-frequency SED from the millimetre radio band to VHE γ rays is modelled with a one-zone inverse Compton model. We study two different origins of the seed photons for the inverse Compton scattering, namely the infrared torus and a slow sheath surrounding the jet around the Very Long Baseline Array (VLBA) core. Results: We find that the VHE γ-ray emission detected from PKS 1510-089 in 2012 February-April agrees with the previous VHE observations of the source from 2009 March-April. We find no statistically significant variability during the MAGIC observations on daily, weekly, or monthly time scales, while the other two known VHE FSRQs (3C 279 and PKS 1222+216) have shown daily scale to sub-hour variability. The γ-ray SED combining AGILE, Fermi and MAGIC data joins smoothly and shows no hint of a break. The multi-frequency light curves suggest a common origin for the millimetre radio and HE γ-ray emission, and the HE

  1. Fermi LAT Observations of LS I +61 303: First Detection of an Orbital Modulation in GeV Gamma Rays

    Energy Technology Data Exchange (ETDEWEB)

    Abdo, A.A.; /Federal City Coll. /Naval Research Lab, Wash., D.C.; Ackermann, M.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Ajello, M.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Atwood, W.B.; /UC, Santa Cruz; Axelsson, M.; /Stockholm U., OKC /Stockholm U.; Baldini, L.; /INFN, Pisa; Ballet, J.; /DAPNIA, Saclay; Barbiellini, G.; /INFN, Trieste /Trieste U.; Bastieri, D.; /INFN, Padua /Padua U.; Baughman, B.M.; /Ohio State U.; Bechtol, K.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bellazzini, R.; /INFN, Pisa; Berenji, B.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Blandford, R.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bloom, E.D.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bonamente, E.; /INFN, Perugia /Perugia U.; Borgland, A.W.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bregeon, J.; /INFN, Pisa; Brez, A.; /INFN, Pisa; Brigida, M.; /Bari U. /INFN, Bari; Bruel, P.; /Ecole Polytechnique /Washington U., Seattle /Bari U. /INFN, Bari /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /IASF, Milan /Milan Polytechnic /DAPNIA, Saclay /ASDC, Frascati /INFN, Perugia /Perugia U. /NASA, Goddard /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /DAPNIA, Saclay /Naval Research Lab, Wash., D.C. /George Mason U. /NASA, Goddard /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /INFN, Perugia /Perugia U. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Montpellier U. /Sonoma State U. /Stockholm U., OKC /Royal Inst. Tech., Stockholm /Stockholm U. /DAPNIA, Saclay /NASA, Goddard /CSST, Baltimore /ASDC, Frascati /Naval Research Lab, Wash., D.C. /INFN, Trieste /Pavia U. /Bari U. /INFN, Bari /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /UC, Santa Cruz /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /SLAC /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Grenoble, CEN; /more authors..

    2012-04-02

    This Letter presents the first results from the observations of LS I +61{sup o}303 using Large Area Telescope data from the Fermi Gamma-Ray Space Telescope between 2008 August and 2009 March. Our results indicate variability that is consistent with the binary period, with the emission being modulated at 26.6 {+-} 0.5 days. This constitutes the first detection of orbital periodicity in high-energy gamma rays (20 MeV-100 GeV, HE). The light curve is characterized by a broad peak after periastron, as well as a smaller peak just before apastron. The spectrum is best represented by a power law with an exponential cutoff, yielding an overall flux above 100 MeV of 0.82 {+-} 0.03(stat) {+-} 0.07(syst) 10{sup -6} ph cm{sup -2} s{sup -1}, with a cutoff at 6.3 {+-} 1.1(stat) {+-} 0.4(syst) GeV and photon index {Gamma} = 2.21 {+-} 0.04(stat) {+-} 0.06(syst). There is no significant spectral change with orbital phase. The phase of maximum emission, close to periastron, hints at inverse Compton scattering as the main radiation mechanism. However, previous very high-energy gamma ray (>100 GeV, VHE) observations by MAGIC and VERITAS show peak emission close to apastron. This and the energy cutoff seen with Fermi suggest that the link between HE and VHE gamma rays is nontrivial.

  2. Astrophysics a very short introduction

    CERN Document Server

    Binney, James

    2016-01-01

    Astrophysics is the physics of the stars, and more widely the physics of the Universe. It enables us to understand the structure and evolution of planetary systems, stars, galaxies, interstellar gas, and the cosmos as a whole. In this Very Short Introduction, the leading astrophysicist James Binney shows how the field of astrophysics has expanded rapidly in the past century, with vast quantities of data gathered by telescopes exploiting all parts of the electromagnetic spectrum, combined with the rapid advance of computing power, which has allowed increasingly effective mathematical modelling. He illustrates how the application of fundamental principles of physics - the consideration of energy and mass, and momentum - and the two pillars of relativity and quantum mechanics, has provided insights into phenomena ranging from rapidly spinning millisecond pulsars to the collision of giant spiral galaxies. This is a clear, rigorous introduction to astrophysics for those keen to cut their teeth on a conceptual trea...

  3. Hyper-Kamiokande and Astrophysics

    Science.gov (United States)

    Yano, Takatomi; Hyper-Kamiokande proto Collaboration

    2017-09-01

    Hyper-Kamiokande (Hyper-K) is a proposed next generation underground large water Cherenkov detector. Recently a new detector design of Hyper-K is presented, as the two cylindrical pure water tanks. In the new design, each detector is surrounded by 40,000 newly developed photos sensors and provids the fiducial volume of 0.187 Mt. In total, the fiducial volume will be 0.37 Mt. Hyper-K will play the important role in several sciene of the next neutrino physics frontier, even in the neutrino astrophysics. The detection with large statistics of astrophysical neutrons, i.e., solar neutrino, supernova burst neutrino and supernova relic neutrino, will be remarkable information for both of particle physics and astrophysics.

  4. Advances in astronomy and astrophysics

    CERN Document Server

    Kopal, Zdenek

    1966-01-01

    Advances in Astronomy and Astrophysics, Volume 4 brings together numerous research works on different aspects of astronomy and astrophysics. This volume is composed of five chapters, and starts with a description of objective prism and its application in space observations. The next chapter deals with the possibilities of deriving reliable models of the figure, density distribution, and gravity field of the Moon based on data obtained through Earth-bound telescopes. These topics are followed by a discussion on the ideal partially relativistic, partially degenerate gas in an exact manner. A ch

  5. Reactor neutrons in nuclear astrophysics

    Science.gov (United States)

    Reifarth, René; Glorius, Jan; Göbel, Kathrin; Heftrich, Tanja; Jentschel, Michael; Jurado, Beatriz; Käppeler, Franz; Köster, Ulli; Langer, Christoph; Litvinov, Yuri A.; Weigand, Mario

    2017-09-01

    The huge neutron fluxes offer the possibility to use research reactors to produce isotopes of interest, which can be investigated afterwards. An example is the half-lives of long-lived isotopes like 129I. A direct usage of reactor neutrons in the astrophysical energy regime is only possible, if the corresponding ions are not at rest in the laboratory frame. The combination of an ion storage ring with a reactor and a neutron guide could open the path to direct measurements of neutron-induced cross sections on short-lived radioactive isotopes in the astrophysically interesting energy regime.

  6. Advances in astronomy and astrophysics

    CERN Document Server

    Kopal, Zdenek

    1968-01-01

    Advances in Astronomy and Astrophysics, Volume 6 brings together numerous research works on different aspects of astronomy and astrophysics. This volume is composed of five chapters, and starts with the description of improved methods for analyzing and classifying families of periodic orbits in a conservative dynamical system with two degrees of freedom. The next chapter describes the variation of fractional luminosity of distorted components of close binary systems in the course of their revolution, or the accompanying changes in radial velocity. This topic is followed by discussions on vari

  7. Advances in astronomy and astrophysics

    CERN Document Server

    Kopal, Zdenek

    1963-01-01

    Advances in Astronomy and Astrophysics, Volume 2 brings together numerous research works on different aspects of astronomy and astrophysics. This volume is composed of six chapters and begins with a summary of observational record on twilight extensions of the Venus cusps. The next chapter deals with the common and related properties of binary stars, with emphasis on the evaluation of their cataclysmic variables. Cataclysmic variables refer to an object in one of three classes: dwarf nova, nova, or supernova. These topics are followed by discussions on the eclipse phenomena and the eclipses i

  8. Advances in astronomy and astrophysics

    CERN Document Server

    Kopal, Zdenek

    1962-01-01

    Advances in Astronomy and Astrophysics, Volume 1 brings together numerous research works on different aspects of astronomy and astrophysics. This book is divided into five chapters and begins with an observational summary of the shock-wave theory of novae. The subsequent chapter provides the properties and problems of T tauri stars and related objects. These topics are followed by discussions on the structure and origin of meteorites and cosmic dust, as well as the models for evaluation of mass distribution in oblate stellar systems. The final chapter describes the methods of polarization mea

  9. Predictions of Gamma-ray Emission from Globular Cluster Millisecond Pulsars Above 100 MeV

    Science.gov (United States)

    Venter, C.; de Jaker, O.C.; Clapson, A.C.

    2009-01-01

    The recent Fermi detection of the globular cluster (GC) 47 Tucanae highlighted the importance of modeling collective gamma-ray emission of millisecond pulsars (MSPs) in GCs. Steady flux from such populations is also expected in the very high energy (VHE) domain covered by ground-based Cherenkov telescopes. We present pulsed curvature radiation (CR) as well as unpulsed inverse Compton (IC) calculations for an ensemble of MSPs in the GCs 47 Tucanae and Terzan 5. We demonstrate that the CR from these GCs should be easily detectable for Fermi, while constraints on the total number of MSps and the nebular B-field may be derived using the IC flux components.

  10. Broad Band Observations of Gravitationally Lensed Blazar during a Gamma-Ray Outburst

    Directory of Open Access Journals (Sweden)

    Julian Sitarek

    2016-09-01

    Full Text Available QSO B0218+357 is a gravitationally lensed blazar located at a cosmological redshift of 0.944. In July 2014 a GeV flare was observed by Fermi-LAT, triggering follow-up observations with the MAGIC telescopes at energies above 100 GeV. The MAGIC observations at the expected time of arrival of the trailing component resulted in the first detection of QSO B0218+357 in Very-High-Energy (VHE, >100 GeV gamma rays. We report here the observed multiwavelength emission during the 2014 flare.

  11. Nuclear physics and astrophysics experiments at ELI-NP: The emerging future

    Science.gov (United States)

    Balabanski, Dimiter L.

    2018-01-01

    The status of implementation of the ELI-NP high-power laser system and the high-brilliance gamma beam system is reported. The emerging experimental program at the facility in nuclear physics in astrophysics is discussed, with emphasis of the considered day-one experiments.

  12. Gamma-ray constraints on maximum cosmogenic neutrino fluxes and UHECR source evolution models

    Energy Technology Data Exchange (ETDEWEB)

    Gelmini, Graciela B. [Department of Physics and Astronomy, UCLA, 475 Portola Plaza, Los Angeles, CA 90095 (United States); Kalashev, Oleg [INR RAS, 60th October Anniversary pr. 7a, 117312 Moscow (Russian Federation); Semikoz, Dmitri V., E-mail: gelmini@physics.ucla.edu, E-mail: kalashev@ms2.inr.ac.ru, E-mail: dmitri.semikoz@apc.univ-paris7.fr [APC, College de France, 11 pl. Marcelin Berthelot, Paris 75005 (France)

    2012-01-01

    The dip model assumes that the ultra-high energy cosmic rays (UHECRs) above 10{sup 18} eV consist exclusively of protons and is consistent with the spectrum and composition measure by HiRes. Here we present the range of cosmogenic neutrino fluxes in the dip-model which are compatible with a recent determination of the extragalactic very high energy (VHE) gamma-ray diffuse background derived from 2.5 years of Fermi/LAT data. We show that the largest fluxes predicted in the dip model would be detectable by IceCube in about 10 years of observation and are within the reach of a few years of observation with the ARA project. In the incomplete UHECR model in which protons are assumed to dominate only above 10{sup 19} eV, the cosmogenic neutrino fluxes could be a factor of 2 or 3 larger. Any fraction of heavier nuclei in the UHECR at these energies would reduce the maximum cosmogenic neutrino fluxes. We also consider here special evolution models in which the UHECR sources are assumed to have the same evolution of either the star formation rate (SFR), or the gamma-ray burst (GRB) rate, or the active galactic nuclei (AGN) rate in the Universe and found that the last two are disfavored (and in the dip model rejected) by the new VHE gamma-ray background.

  13. Electric Currents along Astrophysical Jets

    Directory of Open Access Journals (Sweden)

    Ioannis Contopoulos

    2017-10-01

    Full Text Available Astrophysical black holes and their surrounding accretion disks are believed to be threaded by grand design helical magnetic fields. There is strong theoretical evidence that the main driver of their winds and jets is the Lorentz force generated by these fields and their associated electric currents. Several researchers have reported direct evidence for large scale electric currents along astrophysical jets. Quite unexpectedly, their directions are not random as would have been the case if the magnetic field were generated by a magnetohydrodynamic dynamo. Instead, in all kpc-scale detections, the inferred electric currents are found to flow away from the galactic nucleus. This unexpected break of symmetry suggests that a battery mechanism is operating around the central black hole. In the present article, we summarize observational evidence for the existence of large scale electric currents and their associated grand design helical magnetic fields in kpc-scale astrophysical jets. We also present recent results of general relativistic radiation magnetohydrodynamic simulations which show the action of the Cosmic Battery in the vicinity of astrophysical black holes.

  14. Astrophysics on the Lab Bench

    Science.gov (United States)

    Hughes, Stephen W.

    2010-01-01

    In this article some basic laboratory bench experiments are described that are useful for teaching high school students some of the basic principles of stellar astrophysics. For example, in one experiment, students slam a plastic water-filled bottle down onto a bench, ejecting water towards the ceiling, illustrating the physics associated with a…

  15. Nuclear astrophysics of light nuclei

    DEFF Research Database (Denmark)

    Fynbo, Hans Otto Uldall

    2013-01-01

    A review of nuclear astrophysics of light nuclei using radioactive beams or techniques developed for radioactive beams is given. We discuss Big Bang nucleosynthesis, with special focus on the lithium problem, aspects of neutrino-physics, helium-burning and finally selected examples of studies...

  16. Nuclear astrophysics at ISAC with DRAGON: Initial studies

    Energy Technology Data Exchange (ETDEWEB)

    Olin, Art; Bishop, Shawn; Buchmann, Lothar; Chatterjee, Mohan L.; Chen, Alan; D' Auria, John M.; Engel, Sabine; Gigliott, Dario; Greife, Uwe; Hunter, Don; Hussein, Ahmed; Hutcheon, Dave; Jewett, Cybele; King, Jim; Kubono, Shigeru; Lamey, Michael; Laird, Alison M.; Lewis, Rachel; Liu, Wenjie; Michimasa, Shin' ichiro; Ottewell, Dave; Parker, Peter; Rogers, Joel; Strieder, Frank; Wrede, Chris

    2003-06-30

    The new DRAGON recoil separator facility, designed and built to measure directly the rates of radiative proton and alpha capture reactions important for nuclear astrophysics, is now in operation at the TRIUMF-ISAC radioactive beams facility in Vancouver, Canada. Experiments have been conducted for the first time on the {sup 21}Na(p,{gamma}){sup 22}Mg reaction. The evolution of nova explosions, and particularly their {sup 22}Na abundance, depends sensitively on this reaction rate. Commissioning studies using the well-known stable beam reactions {sup 21}Ne(p,{gamma}){sup 22}Na, {sup 20}Ne(p,{gamma}){sup 21}Na, and {sup 24}Mg(p,{gamma}){sup 25}Al have shown that the recoil separator performs within its design specifications both in suppression power and acceptance. The first radioactive beam studies were done using a beam of 5 x 10{sup 821}Na atoms/s. Yield measurements recording simultaneously singles and coincident heavy-ion and gamma signals were performed, scanning in energy over the known resonance reported previously in {sup 22}Mg at E{sub cm} = 212 keV, and in addition, over a strong resonance observed at E{sub cm} {approx}822 keV.

  17. International Olympiad on Astronomy and Astrophysics

    Science.gov (United States)

    Soonthornthum, B.; Kunjaya, C.

    2011-01-01

    The International Olympiad on Astronomy and Astrophysics, an annual astronomy and astrophysics competition for high school students, is described. Examples of problems and solutions from the competition are also given. (Contains 3 figures.)

  18. Neutrino Astrophysics in the MeV band

    Science.gov (United States)

    Ojha, Roopesh; Kadler, Matthias; Mannheim, Karl; Krauss, Felicia; Buson, Sara; Fermi-LAT Collaboration

    2018-01-01

    Photohadronic emission models suggest both neutrinos and gamma-ray photons could be produced by accelerated protons in the relativistic jets of blazars. As the background spectrum falls rapidly with increasing energy, individual events with energies of the order of PeV and above are the best candidates in the search for their astrophysical origin. We present results from our search for possible blazar counterparts to high energy neutrinos detected by IceCube and discuss how such efforts would benefit enormously from observations in the MeV regime.

  19. The EXIST Mission for High-Energy Astrophysics

    Science.gov (United States)

    Fishman, G. J.; Grindlay, J. E.; Hong, J.

    2006-01-01

    The Energetic X-ray Imaging Survey Telescope (EXIST), under study to be the Black Hole Finder Probe in NASA's Beyond Einstein Program, would image the sky every 95min in the energy range 1 OkeV to 600 keV. Although the main scientific objectives of EXIST are the systematic, all-sky survey of heavily obscured AGNs and gamma-ray bursts, there is a substantial capability of EXIST for the observation of transient and persistent hard x-ray lines from several astrophysical sources.

  20. Probing the very-high-energy gamma-ray spectral curvature in the blazar PG 1553+113 with the MAGIC telescopes

    CERN Document Server

    Aleksić, J.; Antonelli, L A; Antoranz, P; Babic, A; Bangale, P; Barrio, J A; González, J Becerra; Bednarek, W; Bernardini, E; Biasuzzi, B; Biland, A; Blanch, O; Bonnefoy, S; Bonnoli, G; Borracci, F; Bretz, T; Carmona, E; Carosi, A; Colin, P; Colombo, E; Contreras, J.L; Cortina, J; Covino, S; Da Vela, P; Dazzi, F; De Angelis, A; De Caneva, G; De Lotto, B; Wilhelmi, E de Oña; Mendez, C Delgado; Prester, D Dominis; Dorner, D; Doro, M; Einecke, S; Eisenacher, D; Elsaesser, D; Fidalgo, D; Fonseca, M.V; Font, L; Frantzen, K; Fruck, C; Galindo, D; López, R J García; Garczarczyk, M; Terrats, D Garrido; Gaug, M; Godinović, N; Muñoz, A González; Gozzini, S R; Hadasch, D; Hanabata, Y; Hayashida, M; Herrera, J; Hose, J; Hrupec, D; Idec, W; Kadenius, V; Kellermann, H; Knoetig, M L; Kodani, K; Konno, Y; Krause, J; Kubo, H; Kushida, J; La Barbera, A; Lelas, D; Lewandowska, N; Lindfors, E; Lombardi, S; Longo, F; López, M; López-Coto, R; López-Oramas, A; Lorenz, E; Lozano, I; Makariev, M; Mallot, K; Maneva, G; Mannheim, K; Maraschi, L; Marcote, B; Mariotti, M; Martínez, M; Mazin, D; Menzel, U; Miranda, J M; Mirzoyan, R; Moralejo, A; Munar-Adrover, P; Nakajima, D; Neustroev, V; Niedzwiecki, A; Nilsson, K; Nishijima, K; Noda, K; Orito, R; Overkemping, A; Paiano, S; Palatiello, M; Paneque, D; Paoletti, R; Paredes, J M; Paredes-Fortuny, X; Persic, M; Poutanen, J; Moroni, P G Prada; Prandini, E; Puljak, I; Reinthal, R; Rhode, W; Ribó, M; Rico, J; Garcia, J Rodriguez; Rügamer, S; Saito, T; Saito, K; Satalecka, K; Scalzotto, V; Scapin, V; Schultz, C; Schweizer, T; Sillanpää, A; Sitarek, J; Snidaric, I; Sobczynska, D; Spanier, F; Stamerra, A; Steinbring, T; Storz, J; Strzys, M; Takalo, L; Takami, H; Tavecchio, F; Temnikov, P; Terzić, T; Tescaro, D; Teshima, M; Thaele, J; Tibolla, O; Torres, D F; Toyama, T; Treves, A; Vogler, P; Will, M; Zanin, R; D'Ammando, F; Lähteenmäki, A; Tornikoski, M; Hovatta, T; Readhead, A C S; Max-Moerbeck, W; Richards, J.L

    2015-01-01

    PG 1553+113 is a very-high-energy (VHE, E>100 GeV) gamma-ray emitter classified as a BL Lac object. Its redshift is constrained by intergalactic absorption lines in the range 0.40.2). The observed curvature is compatible with the extragalactic background light (EBL) imprint predicted by the current generation of EBL models assuming a redshift z~0.4. New constraints on the redshift were derived from the VHE spectrum. These constraints are compatible with previous limits and suggest that the source is most likely located around the optical lower limit, z=0.4. Finally, we find that the synchrotron self-Compton (SSC) model gives a satisfactory description of the observed multi-wavelength spectral energy distribution during the flare.

  1. News from Cosmic Gamma-ray Line Observations

    OpenAIRE

    Diehl, Roland

    2016-01-01

    The measurement of gamma rays at MeV energies from cosmic radioactivities is one of the key tools for nuclear astrophysics, in its study of nuclear reactions and how they shape objects such as massive stars and supernova explosions. Additionally, the unique gamma-ray signature from the annihilation of positrons falls into this same astronomical window, and positrons are often produced from radioactive beta decays. Nuclear gamma-ray telescopes face instrumental challenges from penetrating gamm...

  2. Astrophysical Probes of Dark Matter Interactions

    Science.gov (United States)

    Reece, Matthew

    The majority of matter in the universe is dark matter, made up of some particle beyond those in the Standard Model of particle physics. So far we have very little information about what dark matter is and how it interacts, except through gravity. Constraints from halo shapes and the Bullet Cluster give upper bounds on the self-interaction strength of dark matter, but these bounds are very weak: roughly the same size as nuclear physics cross sections, which are very large by the standards of particle physics. Given how little we know about dark matter, it is important to search for it in as broad a context as possible. Existing direct and indirect detection analyses are typically motivated by simple particle physics models like WIMP dark matter. This research will aim to widen the scope of searches for dark matter by considering a more complete range of particle physics models, working out their implications for astrophysical data, and interpreting existing data in terms of these new models. New models of dark matter can affect searches in a variety of ways. Signals may show up in conventional indirect detection searches, e.g. in gamma rays detected by Fermi-LAT or in antiprotons detected by AMS-02. The new particle physics content of the models could be reflected in surprising spectral shapes or other features of such signals, or in gamma rays with a different profile on the sky than expected in typical models. The PI has worked, for example, on a model in which signals may arise from a dark disk, which is just one of many possibilities. Signals of new dark matter models might also arise in more subtle ways. Structure in the dark sector could influence the development of structure in the visible sector, indirectly. For instance, a dark matter disk or other dark structures could alter the orbits of stars in the galaxy and may be detectable through detailed studies of the kinematics of stellar populations. Dark accretion disks could exist around astrophysical objects

  3. Astrophysical processes on the sun.

    Science.gov (United States)

    Parnell, Clare E

    2012-07-13

    Over the past two decades, there have been a series of major solar space missions, namely Yohkoh, SOHO, TRACE, and in the past 5 years, STEREO, Hinode and SDO, studying various aspects of the Sun and providing images and spectroscopic data with amazing temporal, spatial and spectral resolution. Over the same period, the type and nature of numerical models in solar physics have been completely revolutionized as a result of widespread accessibility to parallel computers. These unprecedented advances on both observational and theoretical fronts have led to significant improvements in our understanding of many aspects of the Sun's behaviour and furthered our knowledge of plasma physics processes that govern solar and other astrophysical phenomena. In this Theme Issue, the current perspectives on the main astrophysical processes that shape our Sun are reviewed. In this Introduction, they are discussed briefly to help set the scene.

  4. The Astrophysical Multipurpose Software Environment

    Science.gov (United States)

    Pelupessy, F. I.; van Elteren, A.; de Vries, N.; McMillan, S. L. W.; Drost, N.; Portegies Zwart, S. F.

    2013-09-01

    We present the open source Astrophysical Multi-purpose Software Environment (AMUSE), a component library for performing astrophysical simulations involving different physical domains and scales. It couples existing codes within a Python framework based on a communication layer using MPI. The interfaces are standardized for each domain and their implementation based on MPI guarantees that the whole framework is well-suited for distributed computation. It includes facilities for unit handling and data storage. Currently it includes codes for gravitational dynamics, stellar evolution, hydrodynamics and radiative transfer. Within each domain the interfaces to the codes are as similar as possible. We describe the design and implementation of AMUSE, as well as the main components and community codes currently supported and we discuss the code interactions facilitated by the framework. Additionally, we demonstrate how AMUSE can be used to resolve complex astrophysical problems by presenting example applications. http://www.amusecode.org The current version of the code is available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/557/A84

  5. Astrophysics with Microarcsecond Accuracy Astrometry

    Science.gov (United States)

    Unwin, Stephen C.

    2008-01-01

    Space-based astrometry promises to provide a powerful new tool for astrophysics. At a precision level of a few microarcsonds, a wide range of phenomena are opened up for study. In this paper we discuss the capabilities of the SIM Lite mission, the first space-based long-baseline optical interferometer, which will deliver parallaxes to 4 microarcsec. A companion paper in this volume will cover the development and operation of this instrument. At the level that SIM Lite will reach, better than 1 microarcsec in a single measurement, planets as small as one Earth can be detected around many dozen of the nearest stars. Not only can planet masses be definitely measured, but also the full orbital parameters determined, allowing study of system stability in multiple planet systems. This capability to survey our nearby stellar neighbors for terrestrial planets will be a unique contribution to our understanding of the local universe. SIM Lite will be able to tackle a wide range of interesting problems in stellar and Galactic astrophysics. By tracing the motions of stars in dwarf spheroidal galaxies orbiting our Milky Way, SIM Lite will probe the shape of the galactic potential history of the formation of the galaxy, and the nature of dark matter. Because it is flexibly scheduled, the instrument can dwell on faint targets, maintaining its full accuracy on objects as faint as V=19. This paper is a brief survey of the diverse problems in modern astrophysics that SIM Lite will be able to address.

  6. Diffractive Photon Production in $\\gamma p$ and $\\gamma \\gamma$ Interactions

    OpenAIRE

    Evanson, N G; Forshaw, J R

    1999-01-01

    We study the diffractive production of photons in gamma-p and gamma-gamma collisions. We specifically compute the rates for gamma*-p -> gamma-X and for gamma*-gamma* -> gamma-gamma, where X denotes the proton dissociation. We focus on the rates at large momentum transfers, -t >> Lambda^2, where we are most confident in the use of QCD perturbation theory. However, our calculations do allow us to study the -t -> 0 behaviour of the gamma*-gamma*-> gamma-gamma process in the region where the inco...

  7. Investigations of astrophysically interesting nuclear reactions by the use of gas target techniques

    Energy Technology Data Exchange (ETDEWEB)

    Hammer, J.W. [Inst. fuer Strahlenphysik, Univ. Stuttgart, Stuttgart (Germany)

    1998-06-01

    A brief review of the common properties of windowless and recirculating gas targets is presented. As example the Stuttgart gas target facility Rhinoceros in the extended and in the supersonic jet mode with its properties and techniques is explained, also with respect to gas purification techniques. Furthermore several typical experiments from the field of nuclear astrophysics with characteristic results are described (D({alpha},{gamma}){sup 6}Li, {sup 15}N({alpha},{gamma}){sup 19}F, {sup 16}O(p,{gamma}){sup 17}F, {sup 16}O({alpha},{gamma}){sup 20}Ne, {sup 20}Ne({alpha},{gamma}){sup 24}Mg, {sup 21}Ne({alpha},n){sup 24}Mg, {sup 18}O({alpha},n){sup 21}Ne, {sup 17}O({alpha},n){sup 20}Ne). In several cases the experimental sensitivity could be raised by up to a factor of 10{sup 6}. (orig.)

  8. Results and prospects in multi-messenger particle astrophysics

    Science.gov (United States)

    Mostafa, Miguel

    2017-01-01

    In high-energy particle astrophysics the old days were certainly not better than these. Our field has thrived in the past decade with experiments covering thousands of square kilometers to measure the suppression in the flux of the highest energy cosmic rays ever observed, instrumenting a cubic kilometer of Antarctic ice to discover astrophysical neutrinos, and measuring a change in arm length as small as 10-19 m for the ground-breaking direct observation of gravitational waves. Additionally, the current generation of space-borne and ground-based gamma-ray experiments have revealed a plethora of gamma-ray sources, including pulsars, compact binaries, the galactic center, and extragalactic sources such as starburst galaxies and radio galaxies. Before the next generation of instruments bring us yet another order of magnitude in sensitivity, we can combine current observations to probe physics beyond the standard model, and to extend the high-energy frontier well above the energies accessible to laboratory accelerators. One example of this potential is the search for dark-matter annihilation and decay products. To use the multi-messenger approach effectively for probing dark-matter signatures and physics beyond the LHC energy requires understanding the origin (or acceleration mechanism) and the propagation processes. High energy protons and nuclei, neutrinos, gamma-rays, X-rays, and gravitational waves bring new and complementary views of the astrophysical sources. By comparing observations through different windows, we can use the sites of violent phenomena as a laboratory to probe the physical processes under extreme conditions throughout the Universe, and to test the fundamental laws of particle physics and gravitation. As a community we need to engage in a bold synergistic approach to understanding the violent processes that give rise to the high-energy cosmic phenomena in the Universe. In this invited talk, I will present on-going multi-messenger studies to

  9. sup 4 sup 4 Ti atom counting for nuclear astrophysics

    CERN Document Server

    Hui, S K; Berkovits, D; Boaretto, E; Ghelberg, S; Hass, M; Hershkowitz, A; Navon, E

    2000-01-01

    The nuclide sup 4 sup 4 Ti (T sub 1 sub / sub 2 =59.2 yr) has recently become an important asset to nuclear astrophysics through the measurement of its cosmic radioactivity, yielding significant information on fresh sup 4 sup 4 Ti nucleosynthesis in supernovae. We propose to use AMS to determine the production rate of sup 4 sup 4 Ti by the main channel believed to be responsible for sup 4 sup 4 Ti astrophysical production, namely sup 4 sup 0 Ca(alpha,gamma). A preliminary experiment conducted at the Koffler 14UD Pelletron accelerator demonstrates a sensitivity of 1x10 sup - sup 1 sup 4 for the sup 4 sup 4 Ti/Ti ratio. The AMS detection was performed using sup 4 sup 4 Ti sup - ions sputtered from a TiO sub 2 sample, reducing considerably the sup 4 sup 4 Ca isobaric interference. The present limit corresponds effectively to sup 4 sup 4 Ti production with resonance strength in the range 10-100 meV for a one-day sup 4 sup 0 Ca(alpha,gamma) activation. Several such resonances are known to be responsible for sup 4 ...

  10. Gamma-Ray Astronomy Across 6 Decades of Energy: Synergy between Fermi, IACTs, and HAWC

    Science.gov (United States)

    Hui, C. Michelle

    2017-01-01

    Gamma Ray Observatories, Gamma-Ray Astrophysics, GeV TeV Sky Survey, Galaxy, Galactic Plane, Source Distribution, The gamma-ray sky is currently well-monitored with good survey coverage. Many instruments from different waveband/messenger (X rays, gamma rays, neutrinos, gravitational waves) available for simultaneous observations. Both wide-field and pointing instruments in development and coming online in the next decade LIGO

  11. Astrophysics of the Interstellar Medium

    CERN Document Server

    Maciel, Walter J

    2013-01-01

    The space between the stars includes a large variety of objects, where physical processes occur that are fundamental for the structure and evolution of galaxies. This book gives the reader some basic knowledge of these processes and at the same time, presents estimates of the main quantities relevant to the study of the interstellar medium. The book could be used as an introductory course on the interstellar medium  by science students or by readers interested in astrophysics with an adequate physics and mathematics background.

  12. Simulations of Astrophysical fluid instabilities

    Science.gov (United States)

    Calder, A. C.; Fryxell, B.; Rosner, R.; Dursi, L. J.; Olson, K.; Ricker, P. M.; Timmes, F. X.; Zingale, M.; MacNeice, P.; Tufo, H. M.

    2001-10-01

    We present direct numerical simulations of mixing at Rayleigh-Taylor unstable interfaces performed with the FLASH code, developed at the ASCI/Alliances Center for Astrophysical Thermonuclear Flashes at the University of Chicago. We present initial results of single-mode studies in two and three dimensions. Our results indicate that three-dimensional instabilities grow significantly faster than two-dimensional instabilities and that grid resolution can have a significant effect on instability growth rates. We also find that unphysical diffusive mixing occurs at the fluid interface, particularly in poorly resolved simulations. .

  13. Measurement of the EBL spectral energy distribution using the VHE γ-ray spectra of H.E.S.S. blazars

    Science.gov (United States)

    H. E. S. S. Collaboration; Abdalla, H.; Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; Akhperjanian, A. G.; Andersson, T.; Angüner, E. O.; Arakawa, M.; Arrieta, M.; Aubert, P.; Backes, M.; Balzer, A.; Barnard, M.; Becherini, Y.; Tjus, J. Becker; Berge, D.; Bernhard, S.; Bernlöhr, K.; Blackwell, R.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bonnefoy, S.; Bordas, P.; Bregeon, J.; Brun, F.; Brun, P.; Bryan, M.; Büchele, M.; Bulik, T.; Capasso, M.; Carr, J.; Casanova, S.; Cerruti, M.; Chakraborty, N.; Chaves, R. C. G.; Chen, A.; Chevalier, J.; Coffaro, M.; Colafrancesco, S.; Cologna, G.; Condon, B.; Conrad, J.; Cui, Y.; Davids, I. D.; Decock, J.; Degrange, B.; Deil, C.; Devin, J.; de Wilt, P.; Dirson, L.; Djannati-Ataï, A.; Domainko, W.; Donath, A.; Drury, L. O.'C.; Dutson, K.; Dyks, J.; Edwards, T.; Egberts, K.; Eger, P.; Ernenwein, J.-P.; Eschbach, S.; Farnier, C.; Fegan, S.; Fernandes, M. V.; Fiasson, A.; Fontaine, G.; Förster, A.; Funk, S.; Füßling, M.; Gabici, S.; Gallant, Y. A.; Garrigoux, T.; Giavitto, G.; Giebels, B.; Glicenstein, J. F.; Gottschall, D.; Goyal, A.; Grondin, M.-H.; Hahn, J.; Haupt, M.; Hawkes, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hinton, J. A.; Hofmann, W.; Hoischen, C.; Holch, T. L.; Holler, M.; Horns, D.; Ivascenko, A.; Iwasaki, H.; Jacholkowska, A.; Jamrozy, M.; Janiak, M.; Jankowsky, D.; Jankowsky, F.; Jingo, M.; Jogler, T.; Jouvin, L.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzyński, K.; Katsuragawa, M.; Katz, U.; Kerszberg, D.; Khangulyan, D.; Khélifi, B.; King, J.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Krakau, S.; Kraus, M.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lau, J.; Lees, J.-P.; Lefaucheur, J.; Lefranc, V.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Leser, E.; Lohse, T.; Lorentz, M.; Liu, R.; López-Coto, R.; Lypova, I.; Marandon, V.; Marcowith, A.; Mariaud, C.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; Meintjes, P. J.; Meyer, M.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Mohrmann, L.; Morå, K.; Moulin, E.; Murach, T.; Nakashima, S.; de Naurois, M.; Niederwanger, F.; Niemiec, J.; Oakes, L.; O'Brien, P.; Odaka, H.; Ohm, S.; Ostrowski, M.; Oya, I.; Padovani, M.; Panter, M.; Parsons, R. D.; Pekeur, N. W.; Pelletier, G.; Perennes, C.; Petrucci, P.-O.; Peyaud, B.; Piel, Q.; Pita, S.; Poon, H.; Prokhorov, D.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Rauth, R.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Richter, S.; Rieger, F.; Romoli, C.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Saito, S.; Salek, D.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwemmer, S.; Seglar-Arroyo, M.; Settimo, M.; Seyffert, A. S.; Shafi, N.; Shilon, I.; Simoni, R.; Sol, H.; Spanier, F.; Spengler, G.; Spies, F.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stycz, K.; Sushch, I.; Takahashi, T.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tibaldo, L.; Tiziani, D.; Tluczykont, M.; Trichard, C.; Tsuji, N.; Tuffs, R.; Uchiyama, Y.; van der Walt, D. J.; van Eldik, C.; van Rensburg, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Viana, A.; Vincent, P.; Vink, J.; Voisin, F.; Völk, H. J.; Vuillaume, T.; Wadiasingh, Z.; Wagner, S. J.; Wagner, P.; Wagner, R. M.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Yang, R.; Zaborov, D.; Zacharias, M.; Zanin, R.; Zdziarski, A. A.; Zech, A.; Zefi, F.; Ziegler, A.; Żywucka, N.

    2017-10-01

    Very high-energy γ rays (VHE, E ≳ 100 GeV) propagating over cosmological distances can interact with the low-energy photons of the extragalactic background light (EBL) and produce electron-positron pairs. The transparency of the Universe to VHE γ rays is then directly related to the spectral energy distribution (SED) of the EBL. The observation of features in the VHE energy spectra of extragalactic sources allows the EBL to be measured, which otherwise is very difficult. An EBL model-independent measurement of the EBL SED with the H.E.S.S. array of Cherenkov telescopes is presented. It was obtained by extracting the EBL absorption signal from the reanalysis of high-quality spectra of blazars. From H.E.S.S. data alone the EBL signature is detected at a significance of 9.5σ, and the intensity of the EBL obtained in different spectral bands is presented together with the associated γ-ray horizon.

  14. About cosmic gamma ray lines

    Science.gov (United States)

    Diehl, Roland

    2017-06-01

    Gamma ray lines from cosmic sources convey the action of nuclear reactions in cosmic sites and their impacts on astrophysical objects. Gamma rays at characteristic energies result from nuclear transitions following radioactive decays or high-energy collisions with excitation of nuclei. The gamma-ray line from the annihilation of positrons at 511 keV falls into the same energy window, although of different origin. We present here the concepts of cosmic gamma ray spectrometry and the corresponding instruments and missions, followed by a discussion of recent results and the challenges and open issues for the future. Among the lessons learned are the diffuse radioactive afterglow of massive-star nucleosynthesis in 26Al and 60Fe gamma rays, which is now being exploited towards the cycle of matter driven by massive stars and their supernovae; large interstellar cavities and superbubbles have been recognised to be of key importance here. Also, constraints on the complex processes making stars explode as either thermonuclear or core-collapse supernovae are being illuminated by gamma-ray lines, in this case from shortlived radioactivities from 56Ni and 44Ti decays. In particular, the three-dimensionality and asphericities that have recently been recognised as important are enlightened in different ways through such gamma-ray line spectroscopy. Finally, the distribution of positron annihilation gamma ray emission with its puzzling bulge-dominated intensity disctribution is measured through spatially-resolved spectra, which indicate that annihilation conditions may differ in different parts of our Galaxy. But it is now understood that a variety of sources may feed positrons into the interstellar medium, and their characteristics largely get lost during slowing down and propagation of positrons before annihilation; a recent microquasar flare was caught as an opportunity to see positrons annihilate at a source.

  15. High Energy Astrophysics Science Archive Research Center

    Data.gov (United States)

    National Aeronautics and Space Administration — The High Energy Astrophysics Science Archive Research Center (HEASARC) is the primary archive for NASA missions dealing with extremely energetic phenomena, from...

  16. Advances IN Explosive Nuclear Astrophysics

    Science.gov (United States)

    Lotay, Gavin

    2016-09-01

    Breathtaking results from the Planck satellite mission and Hubble space telescope have highlighted the key role modern Astronomy is playing for our understanding of Big Bang Cosmology. However, not so widely publicized is the similar wealth of observational data now available on explosive stellar phenomena, such as X-ray bursts, novae and Supernovae. These astronomical events are responsible for the synthesis of almost all the chemical elements we find on Earth and observe in our Galaxy, as well as energy generation throughout the cosmos. Regrettably, understanding the latest collection of observational data is severely hindered by the current, large uncertainties in the underlying nuclear physics processes that drive such stellar scenarios. In order to resolve this issue, it is becoming increasingly clear that there is a need to explore the unknown properties and reactions of nuclei away from the line of stability. Consequently, state-of-the-art radioactive beam facilities have become terrestrial laboratories for the reproduction of explosive astrophysical events. In this talk, both direct and indirect methods for studying key astrophysical reactions using radioactive beams will be discussed.

  17. The Gamma-ray Albedo of the Moon

    OpenAIRE

    Moskalenko, Igor V.; Porter, Troy A.

    2007-01-01

    We use the GEANT4 Monte Carlo framework to calculate the gamma-ray albedo of the Moon due to interactions of cosmic ray (CR) nuclei with moon rock. Our calculation of the albedo spectrum agrees with the EGRET data. We show that the spectrum of gamma rays from the Moon is very steep with an effective cutoff around 3-4 GeV (600 MeV for the inner part of the Moon disk) and exhibits a narrow pion-decay line at 67.5 MeV, perhaps unique in astrophysics. Apart from other astrophysical sources, the a...

  18. Self-Organized Criticality in Astrophysics The Statistics of Nonlinear Processes in the Universe

    CERN Document Server

    Aschwanden, Markus

    2011-01-01

    The concept of ‘self-organized criticality’ (SOC) has been applied to a variety of problems, ranging from population growth and traffic jams to earthquakes, landslides and forest fires. The technique is now being applied to a wide range of phenomena in astrophysics, such as planetary magnetospheres, solar flares, cataclysmic variable stars, accretion disks, black holes and gamma-ray bursts, and also to phenomena in galactic physics and cosmology. Self-organized Criticality in Astrophysics introduces the concept of SOC and shows that, due to its universality and ubiquity, it is a law of nature. The theoretical framework and specific physical models are described, together with a range of applications in various aspects of astrophyics. The mathematical techniques, including the statistics of random processes, time series analysis, time scale and waiting time distributions, are presented and the results are applied to specific observations of astrophysical phenomena.

  19. Locating very high energy gamma-ray sources with arcminute accuracy

    Science.gov (United States)

    Akerlof, C. W.; Cawley, M. F.; Chantell, M.; Harris, K.; Lawrence, M. A.; Fegan, D. J.; Lang, M. J.; Hillas, A. M.; Jennings, D. G.; Lamb, R. C.

    1991-01-01

    The angular accuracy of gamma-ray detectors is intrinsically limited by the physical processes involved in photon detection. Although a number of pointlike sources were detected by the COS B satellite, only two have been unambiguously identified by time signature with counterparts at longer wavelengths. By taking advantage of the extended longitudinal structure of VHE gamma-ray showers, measurements in the TeV energy range can pinpoint source coordinates to arcminute accuracy. This has now been demonstrated with new data analysis procedures applied to observations of the Crab Nebula using Cherenkov air shower imaging techniques. With two telescopes in coincidence, the individual event circular probable error will be 0.13 deg. The half-cone angle of the field of view is effectively 1 deg.

  20. Dissecting the Gamma-Ray Background in Search of Dark Matter

    Energy Technology Data Exchange (ETDEWEB)

    Cholis, Ilias; Hooper, Dan; McDermott, Samuel D.

    2014-02-01

    Several classes of astrophysical sources contribute to the approximately isotropic gamma-ray background measured by the Fermi Gamma-Ray Space Telescope. In this paper, we use Fermi's catalog of gamma-ray sources (along with corresponding source catalogs at infrared and radio wavelengths) to build and constrain a model for the contributions to the extragalactic gamma-ray background from astrophysical sources, including radio galaxies, star-forming galaxies, and blazars. We then combine our model with Fermi's measurement of the gamma-ray background to derive constraints on the dark matter annihilation cross section, including contributions from both extragalactic and galactic halos and subhalos. The resulting constraints are competitive with the strongest current constraints from the Galactic Center and dwarf spheroidal galaxies. As Fermi continues to measure the gamma-ray emission from a greater number of astrophysical sources, it will become possible to more tightly constrain the astrophysical contributions to the extragalactic gamma-ray background. We project that with 10 years of data, Fermi's measurement of this background combined with the improved constraints on the astrophysical source contributions will yield a sensitivity to dark matter annihilations that exceeds the strongest current constraints by a factor of ~ 5 - 10.

  1. Determination of radiative capture cross-section for astrophysics from transfer reaction using radioactive ion beams

    CERN Document Server

    Beaumel, D

    2002-01-01

    Thermonuclear reactions are a source of stellar energy and play a crucial role for the nucleosynthesis in astrophysical sites. Among these reactions, the radiative capture process defined as: x + A -> B + gamma is a key reaction involved in all the basic astrophysical processes over the nuclear chart. In the case of the capture of charged particles like (p,gamma) reactions, cross-sections are strongly weakened due to the low incident energies as compared to the Coulomb barrier. Their measurement in laboratories is even more complicate when the capturing nucleus is radioactive, difficult or even impossible to be used as a target. Such radioactive nuclei are involved essentially in 'explosive' environments where capture reactions are fast enough to compete with the beta-decay process. Even in non-explosive situations, unstable nuclei are sometimes important as we shall see for the hydrogen burning in the sun. To circumvent the difficulties of direct measurements with radioactive nuclei, indirect methods have be...

  2. Astrophysical Probes of New Models of Dark Matter

    Science.gov (United States)

    Zurek, Kathryn

    One of the most pressing and relevant cosmological questions is on the nature of the dark matter. I propose a comprehensive program at the boundary of astrophysics and cosmology with particle physics, focused on the question on the nature of the Dark Matter (DM). Research at the boundary of the two fields is critically important as a plethora of experiments in both particle physics and astrophysics, such as direct and indirect detection of Dark Matter (DM) by the Fermi Gamma Ray Space Telescope (FGST), AMS-02, and Cosmic Microwave Background probes such as Planck, come online. At the same time, data from the Large Hadron Collider (LHC) will probe fundamental questions about Electroweak Symmetry Breaking and its implications for astrophysics and cosmology, as concerns especially the nature of the DM and the generation of the baryon asymmetry. Physics beyond the Standard Model (SM) is required to explain the astrophysical observation that DM dominates over ordinary matter by a ratio 5:1, as we learned through WMAP, as well as large scale structure surveys. Despite lacking an understanding of the properties of the DM, its presence is crucial for the formation of structure in the universe. Particle physics provides a framework for understanding what the DM could be. This proposal centers on building new models of DM, as well as studying their signatures both in the galaxy and on earth. While particle physics has provided a few popular candidates for DM (such as the supersymmetric neutralino), whose signatures have been extensively studied in the literature, it is important to consider other theoretically motivated candidates which provide distinct signatures. This proposal focuses on such new models of DM, especially models of DM from hidden sectors. For example, recently, the PAMELA experiment has observed a rise in the ratio of positron to electron flux at high energies. The flux may likely come from astrophysical objects nearby, such as pulsars. An intriguing

  3. Astrophysics with small satellites in Scandinavia

    DEFF Research Database (Denmark)

    Lund, Niels

    2003-01-01

    The small-satellites activities in the Scandinavian countries are briefly surveyed with emphasis on astrophysics research. (C) 2002 COSPAR. Published by Elsevier Science Ltd. All rights reserved.......The small-satellites activities in the Scandinavian countries are briefly surveyed with emphasis on astrophysics research. (C) 2002 COSPAR. Published by Elsevier Science Ltd. All rights reserved....

  4. Student Research in Computational Astrophysics

    Science.gov (United States)

    Blondin, J. M.

    1999-12-01

    Computational physics can shorten the long road from freshman physics major to independent research by providing students with powerful tools to deal with the complexities of modern research problems. At North Carolina State University we have introduced dozens of students to astrophysics research using the tools of computational fluid dynamics. We have used several formats for working with students, including the traditional approach of one-on-one mentoring, a more group-oriented format in which several students work together on one or more related projects, and a novel attempt to involve an entire class in a coordinated semester research project. The advantages and disadvantages of these formats will be discussed at length, but the single most important influence has been peer support. Having students work in teams or learn the tools of research together but tackle different problems has led to more positive experiences than a lone student diving into solo research. This work is supported by an NSF CAREER Award.

  5. Transfer reactions in nuclear astrophysics

    Science.gov (United States)

    Bardayan, D. W.

    2016-08-01

    To a high degree many aspects of the large-scale behavior of objects in the Universe are governed by the underlying nuclear physics. In fact the shell structure of nuclear physics is directly imprinted into the chemical abundances of the elements. The tranquility of the night sky is a direct result of the relatively slow rate of nuclear reactions that control and determines a star’s fate. Understanding the nuclear structure and reaction rates between nuclei is vital to understanding our Universe. Nuclear-transfer reactions make accessible a wealth of knowledge from which we can extract much of the required nuclear physics information. A review of transfer reactions for nuclear astrophysics is presented with an emphasis on the experimental challenges and opportunities for future development.

  6. Axions in astrophysics and cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Sikivie, P.

    1984-07-01

    Axion models often have a spontaneously broken exact discrete symmetry. In that case, they have discretely degenerate vacua and hence domain walls. The properties of the domain walls, the cosmological catastrophe they produce and the ways in which this catastrophe may be avoided are explained. Cosmology and astrophysics provide arguments that imply the axion decay constant should lie in the range 10/sup 8/ GeV less than or equal to f/sub a/ less than or equal to 10/sup 12/ GeV. Reasons are given why axions are an excellent candidate to constitute the dark matter of galactic halos. Using the coupling of the axions to the electromagnetic field, detectors are described to look for axions floating about in the halo of our galaxy and for axions emitted by the sun. (LEW)

  7. A holistic view of unstable dark matter. Spectral and anisotropy signatures in astrophysical backgrounds

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Le

    2010-11-15

    The nature of dark matter is one of the key outstanding problems in both particle and astrophysics. If dark matter decays or annihilates into electrons and positrons, it can affect diffuse radiation backgrounds observed in astrophysics. In this thesis, we propose a new, more general analysis of constraints on dark matter models. For any decaying dark matter model, constraints on mass and lifetime can be obtained by folding the specific dark matter decay spectrum with a response function. We derive these response functions from full-sky radio surveys and Fermi-LAT gamma-ray observations as well as from the local positron fluxes measured by the PAMELA satellite experiment and apply them to place constraints on some specific dark matter decay models. We also discuss the influence of astrophysical uncertainties on the response function, such as the uncertainties from propagation models and from the spatial distribution of the dark matter. Moreover, an anisotropy analysis of full-sky emission gamma-ray and radio maps is performed to identify possible signatures of annihilating dark matter. We calculate angular power spectra of the cosmological background of synchrotron emission from dark matter annihilations into electron positron pairs. We compare the power spectra with the anisotropy of astrophysical and cosmological radio backgrounds, from normal galaxies, radio-galaxies, galaxy cluster accretion shocks, the cosmic microwave background and Galactic foregrounds. In addition, we develop a numerical tool to compute gamma-ray emission from such electrons and positrons diffusing in the smooth host halo and in substructure halos with masses down to 10{sup -6}M{sub s}un. We show that, unlike the total gamma-ray angular power spectrum observed by Fermi-LAT, the angular power spectrum from the inverse Compton scattering is exponentially suppressed below an angular scale determined by the diffusion length of electrons and positrons. (orig.)

  8. Gamma-ray albedo of the moon

    OpenAIRE

    Moskalenko, Igor V.; Porter, Troy A.

    2007-01-01

    We use the GEANT4 Monte Carlo framework to calculate the gamma-ray albedo of the Moon due to interactions of cosmic ray (CR) nuclei with moon rock. Our calculation of the albedo spectrum agrees with the EGRET data. We show that the spectrum of gamma rays from the Moon is very steep with an effective cutoff around 4 GeV (600 MeV for the inner part of the Moon disc). Apart from other astrophysical sources, the albedo spectrum of the Moon is well understood, including its absolute normalisation;...

  9. Parametric Model for Astrophysical Proton-Proton Interactions and Applications

    Energy Technology Data Exchange (ETDEWEB)

    Karlsson, Niklas [KTH Royal Institute of Technology, Stockholm (Sweden)

    2007-01-01

    Observations of gamma-rays have been made from celestial sources such as active galaxies, gamma-ray bursts and supernova remnants as well as the Galactic ridge. The study of gamma rays can provide information about production mechanisms and cosmic-ray acceleration. In the high-energy regime, one of the dominant mechanisms for gamma-ray production is the decay of neutral pions produced in interactions of ultra-relativistic cosmic-ray nuclei and interstellar matter. Presented here is a parametric model for calculations of inclusive cross sections and transverse momentum distributions for secondary particles--gamma rays, e±, ve, $\\bar{v}$e, vμ and $\\bar{μ}$e--produced in proton-proton interactions. This parametric model is derived on the proton-proton interaction model proposed by Kamae et al.; it includes the diffraction dissociation process, Feynman-scaling violation and the logarithmically rising inelastic proton-proton cross section. To improve fidelity to experimental data for lower energies, two baryon resonance excitation processes were added; one representing the Δ(1232) and the other multiple resonances with masses around 1600 MeV/c2. The model predicts the power-law spectral index for all secondary particle to be about 0.05 lower in absolute value than that of the incident proton and their inclusive cross sections to be larger than those predicted by previous models based on the Feynman-scaling hypothesis. The applications of the presented model in astrophysics are plentiful. It has been implemented into the Galprop code to calculate the contribution due to pion decays in the Galactic plane. The model has also been used to estimate the cosmic-ray flux in the Large Magellanic Cloud based on HI, CO and gamma-ray observations. The transverse momentum distributions enable calculations when the proton distribution is anisotropic. It is shown that the gamma-ray spectrum and flux due to a

  10. Promising lines of investigations in the realms of laboratory astrophysics with the aid of powerful lasers

    Energy Technology Data Exchange (ETDEWEB)

    Belyaev, V. S., E-mail: belyaev@tsniimash.ru; Batishchev, P. A.; Bolshakov, V. V.; Elkin, K. S.; Karabadzhak, G. F.; Kovkov, D. V.; Matafonov, A. P.; Raykunov, G. G.; Yakhin, R. A. [Russian Space Agency, Central Research Institute of Machine Building (TsNIIMash) (Russian Federation); Pikuz, S. A.; Skobelev, I. Yu.; Faenov, A. Ya.; Fortov, V. E. [Russian Academy of Sciences (IVTAN), Joint Institute for High Temperatures (Russian Federation); Krainov, V. P. [Moscow Institute of Physics and Technology (State University) (Russian Federation); Rozanov, V. B. [Russian Academy of Sciences, Lebedev Institute of Physics (Russian Federation)

    2013-04-15

    The results of work on choosing and substantiating promising lines of research in the realms of laboratory astrophysics with the aid of powerful lasers are presented. These lines of research are determined by the possibility of simulating, under laboratory conditions, problematic processes of presentday astrophysics, such as (i) the generation and evolution of electromagnetic fields in cosmic space and the role of magnetic fields there at various spatial scales; (ii) the mechanisms of formation and evolution of cosmic gamma-ray bursts and relativistic jets; (iii) plasma instabilities in cosmic space and astrophysical objects, plasma jets, and shock waves; (iv) supernova explosions and mechanisms of the explosion of supernovae featuring a collapsing core; (v) nuclear processes in astrophysical objects; (vi) cosmic rays and mechanisms of their production and acceleration to high energies; and (vii) astrophysical sources of x-ray radiation. It is shown that the use of existing powerful lasers characterized by an intensity in the range of 10{sup 18}-10{sup 22} W/cm{sup 2} and a pulse duration of 0.1 to 1 ps and high-energy lasers characterized by an energy in excess of 1 kJ and a pulse duration of 1 to 10 ns makes it possible to perform investigations in laboratory astrophysics along all of the chosen promising lines. The results obtained by experimentally investigating laser plasma with the aid of the laser facility created at Central Research Institute of Machine Building (TsNIIMash) and characterized by a power level of 10 TW demonstrate the potential of such facilities for performing a number of experiments in the realms of laboratory astrophysics.

  11. General relativistic white dwarfs and their astrophysical implications

    Energy Technology Data Exchange (ETDEWEB)

    Boshkayev, Kuantay [Al-Farabi Kazakh National University, Almaty (Kazakhstan); Rueda, Jorge A.; Ruffini, Remo [Sapienza University of Rome, Rome (Italy); Siutsou, Ivan [ICRANet, Square of Republic, Pescara (Italy)

    2014-09-15

    We consider applications of general relativistic uniformly-rotating white dwarfs to several astrophysical phenomena related to the spin-up and the spin-down epochs and to delayed type Ia supernova explosions of super-Chandrasekhar white dwarfs, where we estimate the 'spinning down' lifetime due to magnetic-dipole braking. In addition, we describe the physical properties of Soft Gamma Repeaters and Anomalous X-Ray Pulsars as massive rapidly-rotating highly-magnetized white dwarfs. Particularly we consider one of the so-called low-magnetic-field magnetars SGR 0418+5729 as a massive rapidly-rotating highly- magnetized white dwarf and give bounds for the mass, radius, moment of inertia, and magnetic field by requiring the general relativistic uniformly rotating configurations to be stable.

  12. Worrying about the LHC, a lesson from astrophysics?

    CERN Multimedia

    CERN. Geneva

    2008-01-01

    To worry about the LHC is a popular sport. I shall share my own worries, hopefully original, and do it via a parable (for this method, I can quote earlier authors). The parable concerns a topic in astrophysics (gamma-ray bursts) which happens to be a simple exercise --but quite an interesting one-- on elementary particle-physics and beam dynamics, topics not unrelated to the LHC. Though most of the talk will be dedicated to the physics and, in particular, to its recent developments, the allegory will allow me to detect what, I shall argue, may be dangerous 'viruses' invading science. I do not have the decisive antidotes, but I shall discuss some possible ones.

  13. Applications of electrodynamics in theoretical physics and astrophysics.

    Science.gov (United States)

    Ginzburg, V. L.

    This book, revised from the third Russian edition of "Teoreticheskaya fizika i astrofizika", is translated by Oleg Glebov. The problems dealt with are associated with microscopic and macroscopic electrodynamics and material concerning the theory of transition radiation and transition scattering. Contents: 1. The Hamiltonian approach to electrodynamics. 2. Radiation reaction. 3. Uniformly accelerated charges. 4. Radiation emitted by relativistic and non-relativistic moving particles. 5. Synchrotron radiation. 6. Electrodynamics of a continuous medium. 7. The Čerenkov and Doppler effects. 8. Transition radiation and transition scattering. 9. Superluminal sources of radiation. 10. Reabsorption and transfer of radiation. 11. Electrodynamics of media with spatial dispersion. 12. Permittivity and wave propagation in plasmas. 13. The energy-momentum tensor and forces in macroscopic electrodynamics. Energy and heat liberated in a dispersive absorbing medium. 14. Fluctuations and van der Waals forces. 15. Wave scattering in a medium. 16. Astrophysics of cosmic rays. 17. X-ray astronomy. 18. Gamma-ray astronomy.

  14. Gamma Knife

    Science.gov (United States)

    ... tested on a regular basis to ensure the safety of patients and medical staff. top of page This page ... Brain Tumor Treatment Introduction to Cancer Therapy (Radiation Oncology) Cerebral ... to Gamma Knife Sponsored by Please ...

  15. Discovery of Very High Energy Gamma-Ray Emission from 1FGL J2001.1 4351 by MAGIC

    Energy Technology Data Exchange (ETDEWEB)

    Berger, Karsten; /IAC, La Laguna /Laguna U., Tenerife; Paneque, David; /Munich, Max Planck Inst. /SLAC; Giavitto, Gianluca; /Barcelona, IFAE

    2012-05-07

    We report the discovery of Very High Energy (VHE; >100 GeV) gamma-ray emission from the source 1FGL J2001.1+4351, (RA 20 01 13.5, dec 43 53 02.8, J2000), which is positionally consistent with the location of the flat spectrum radio source MG4 J200112+4352 (RA 20 01 12.9, dec 43 52 52.8, J2000). The VHE detection is based on a 1.5 hour-long observation performed on July 16th in stereoscopic mode with the two 17m diameter imaging Cherenkov telescopes on La Palma, Canary Islands, Spain. The preliminary analysis of the MAGIC data using the standard cuts optimized for soft energy spectra sources yields a detection of 125 gamma-rays above 90 GeV, corresponding to a pre-trail statistical significance of 7.6 standard deviations. The observed flux is estimated to be {approx}20% of the Crab nebula flux above 100 GeV. Earlier MAGIC observations indicated a substantially lower flux; hence indicating that the source is variable on a few days timescale.

  16. Studying Nuclear Astrophysics at NIF

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, R; Bernstein, L; Brune, C

    2009-07-01

    The National Ignition Facility's primary goal is to generate fusion energy. But the starlike conditions that it creates will also enable NIF scientists to study astrophysically important nuclear reactions. When scientists at the stadium-sized National Ignition Facility attempt to initiate fusion next year, 192 powerful lasers will direct 1.2 MJ of light energy toward a two-mm-diameter pellet of deuterium ({sup 2}H, or D) and tritium ({sup 3}H, or T). Some of that material will be gaseous, but most will be in a frozen shell. The idea is to initiate 'inertial confinement fusion', in which the two hydrogen isotopes fuse to produce helium-4, a neutron, and 17.6 MeV of energy. The light energy will be delivered to the inside walls of a hohlraum, a heavy-metal, centimeter-sized cylinder that houses the pellet. The container's heated walls will produce x rays that impinge on the pellet and ablate its outer surface. The exiting particles push inward on the pellet and compresses the DT fuel. Ultimately a hot spot develops at the pellet's center, where fusion produces {sup 4}He nuclei that have sufficient energy to propagate outward, trigger successive reactions, and finally react the frozen shell. Ignition should last several tens of picoseconds and generate more than 10 MJ of energy and roughly 10{sup 19} neutrons. The temperature will exceed 10{sup 8} K and fuel will be compressed to a density of several hundred g/cm{sup 3}, both considerably greater than at the center of the Sun. The figure shows a cutaway view of NIF. The extreme conditions that will be produced there simulate those in nuclear weapons and inside stars. For that reason, the facility is an important part of the US stockpile stewardship program, designed to assess the nation's aging nuclear stockpile without doing nuclear tests. In this Quick Study we consider a third application of NIF - using the extraordinary conditions it will produce to perform experiments in basic

  17. Gamma Processes

    Science.gov (United States)

    1986-01-01

    coupling two Gamma processes so that the marginal processes will have negative serial correlations. It is actually easier to implement this scheme...to analyze a long sequence of wind speeds. This sequence is very non-stationary, containing yearly cycles. The model actually used is v(n)G n , where P...1967). "Some Problems of Statistical Inference Relating to Double-Gamma Distribution," Trabajos de Estadistica , 18, 67-87. Hugus, D. K. (1982

  18. Scaling Extreme Astrophysical Phenomena to the Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Remington, B A

    2007-11-01

    High-energy-density (HED) physics refers broadly to the study of macroscopic collections of matter under extreme conditions of temperature and density. The experimental facilities most widely used for these studies are high-power lasers and magnetic-pinch generators. The HED physics pursued on these facilities is still in its infancy, yet new regimes of experimental science are emerging. Examples from astrophysics include work relevant to planetary interiors, supernovae, astrophysical jets, and accreting compact objects (such as neutron stars and black holes). In this paper, we review a selection of recent results in this new field of HED laboratory astrophysics and provide a brief look ahead to the coming decade.

  19. Implications of a nonvanishing $Z \\gamma \\gamma$ vertex on the $H\\to \\gamma \\gamma \\gamma$ decay

    OpenAIRE

    Cordero-Cid, A.; López-Osorio, M. A.; Martínez-Pascual, E.; Toscano, J. J.

    2014-01-01

    The $Z\\to \\gamma \\gamma$ and $H\\to \\gamma \\gamma \\gamma$ decays are strictly forbidden in the Standard Model, but they can be induced by theories that violate Lorentz symmetry or the CPT theorem. By assuming that a nonvanishing $Z\\gamma \\gamma$ vertex is induced in some context of new physics, and by analyzing the reaction $H\\to \\gamma Z^*\\to \\gamma \\gamma \\gamma$ in the $Z$ resonance, we obtain an estimation for the branching ratio of the $H\\to \\gamma \\gamma \\gamma$ decay. Specifically, it i...

  20. Local models of astrophysical discs

    Science.gov (United States)

    Latter, Henrik N.; Papaloizou, John

    2017-12-01

    Local models of gaseous accretion discs have been successfully employed for decades to describe an assortment of small-scale phenomena, from instabilities and turbulence, to dust dynamics and planet formation. For the most part, they have been derived in a physically motivated but essentially ad hoc fashion, with some of the mathematical assumptions never made explicit nor checked for consistency. This approach is susceptible to error, and it is easy to derive local models that support spurious instabilities or fail to conserve key quantities. In this paper we present rigorous derivations, based on an asympototic ordering, and formulate a hierarchy of local models (incompressible, Boussinesq and compressible), making clear which is best suited for a particular flow or phenomenon, while spelling out explicitly the assumptions and approximations of each. We also discuss the merits of the anelastic approximation, emphasizing that anelastic systems struggle to conserve energy unless strong restrictions are imposed on the flow. The problems encountered by the anelastic approximation are exacerbated by the disc's differential rotation, but also attend non-rotating systems such as stellar interiors. We conclude with a defence of local models and their continued utility in astrophysical research.

  1. Multiscale Modeling of Astrophysical Jets

    Directory of Open Access Journals (Sweden)

    James H. Beall

    2014-12-01

    Full Text Available We are developing the capability for a multi-scale code to model the energy deposition rate and momentum transfer rate of an astrophysical jet which generates strong plasma turbulence in its interaction with the ambient medium through which it propagates. We start with a highly parallelized version of the VH-1 Hydrodynamics Code (Coella and Wood 1984, and Saxton et al., 2005. We are also considering the PLUTO code (Mignone et al. 2007 to model the jet in the magnetohydrodynamic (MHD and relativistic, magnetohydrodynamic (RMHD regimes. Particle-in-Cell approaches are also being used to benchmark a wave-population models of the two-stream instability and associated plasma processes in order to determine energy deposition and momentum transfer rates for these modes of jet-ambient medium interactions. We show some elements of the modeling of these jets in this paper, including energy loss and heating via plasma processes, and large scale hydrodynamic and relativistic hydrodynamic simulations. A preliminary simulation of a jet from the galactic center region is used to lend credence to the jet as the source of the so-called the Fermi Bubble (see, e.g., Su, M. & Finkbeiner, D. P., 2012*It is with great sorrow that we acknowledge the loss of our colleague and friend of more than thirty years, Dr. John Ural Guillory, to his battle with cancer.

  2. DETECCIÓN DEL GENOMA DEL VIRUS DE LA HEPATITIS E (VHE EN MUESTRAS DE HECES DE CERDOS EN PLANTAS DE BENEFICIO DE ANTIOQUIA, COLOMBIA

    Directory of Open Access Journals (Sweden)

    J. E. Forero

    2014-01-01

    Full Text Available El Virus de la Hepatitis E (VHE es uno de los agentes causales de enfermedad hepáticaaguda en humanos, aunque también puede inducir hepatitis crónica en pacientes in-munocomprometidos. Existen cuatro genotipos que generan enfermedad en humanos:los genotipos 1 y 2 asociados con brotes epidémicos por consumo de aguas contami-nadas y los genotipos 3 y 4 de trasmisión zoonótica, implicados en brotes esporádicosen países desarrollados donde el cerdo es el principal reservorio. En Colombia existeevidencia serológica de la infección en humanos y cerdos: se ha detectado el genomaviral en hígados de cerdos en plantas de beneficio y expendios de carne; sin embargono se conoce lo suficiente sobre la infección en el país. Con el fin de determinar si loscerdos del departamento de Antioquia (Colombia están excretando VHE en la edad delbeneficio, se obtuvieron 152 muestras de heces de cerdos en cinco plantas de beneficiode distintas regiones del departamento en las que se determinó la presencia del genomaviral por medio RT-PCR. El porcentaje de positividad hallado fue del 26.9% (41/152;se encontró, además, que los cerdos que provenían de las subregiones Norte y Orientede Antioquia tuvieron el menor (11.6% y mayor (58.3% porcentaje de muestraspositivas, respectivamente. Estos resultados indican que los cerdos en el momento desacrificio están excretando el virus a través de sus heces y que el VHE está circulando enlas diferentes subregiones del departamento.

  3. A search for Gamma Ray Burst Neutrinos in AMANDA

    NARCIS (Netherlands)

    Duvoort, M.R.|info:eu-repo/dai/nl/30483212X

    2009-01-01

    To date, no neutrinos with energies in or above the GeV range have been identified from astrophysical objects. The aim of the two analyses described in this dissertation is to observe high-energy muon neutrinos from Gamma Ray Bursts (GRBs). GRBs are distant sources, which were discovered by

  4. Connections between laser hydrodynamics experiments and astrophysics

    Science.gov (United States)

    Drake, R. P.; Robey, H. A.; Remington, B. A.; Ryutov, D. D.; Calder, A.; Rosner, R.; Fryxell, B.; Arnett, D.; Zhang, Y.; Glimm, J.; Knauer, J.

    2002-11-01

    Recent and ongoing experiments have studied mechanisms that affect the evolution of supernovae, supernova remnants, and related systems. These experiments are designed to be well scaled from astrophysical systems to the laboratory. The experiments and some of the astrophysical systems involve time-dependent flows with very large Reynolds number. In contrast, numerical viscosity limits computer simulations of these phenomena to a Reynolds number of order 1000. Using our own experiments and other work in fluid dynamics as a guide, we will explore the implications for astrophysical systems. The key question is whether the astrophysical systems might evolve into a turbulent state that the computer simulations cannot reproduce. The US DOE and NASA supported this work.

  5. Code Validation With Laser Astrophysics Experiments

    Science.gov (United States)

    Calder, A. C.; Fryxell, B.; Rosner, R.; Dursi, L. J.; Ricker, P. M.; Timmes, F. X.; Zingale, M.; Kane, J. O.; Remington, B. A.; Drake, R. P.; Olson, K.; MacNeice, P.; Tufo, H. M.

    2001-05-01

    An essential part of numerical modeling is validating simulation codes with laboratory experiments that capture many of the physical processes of interest. Validation is difficult in astrophysics because the problems of interest typically encompass complex physics and involve conditions that are difficult to reproduce in a terrestrial laboratory. Laboratory astrophysics with intense lasers serves as an invaluable validation tool by providing the chance to experimentally probe environments similar to those in which complex astrophysical phenomena occur. We describe the process of validating FLASH, an adaptive mesh astrophysical simulation code for compressible, reactive flows. We present the results of validation simulations, principally simulations of laser experiments involving shock propagation through multi-layer targets performed at the Omega laser facility at the University of Rochester. This work was supported by the DOE ASCI/Alliances program at the University of Chicago under grant No. B341495.

  6. Problem-based learning in astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Raine, Derek [Department of Physics and Astronomy, University of Leicester, Leicester (United Kingdom); Collett, James [Department of Physical Sciences, University of Hertfordshire, Hatfield (United Kingdom)

    2003-03-01

    Problem-based learning (PBL) can be integrated into the curriculum in many different ways. We compare three examples of PBL in undergraduate astrophysics programmes, and discuss the strengths and weaknesses of the various approaches.

  7. Transport processes in space physics and astrophysics

    CERN Document Server

    Zank, Gary P

    2014-01-01

    Transport Processes in Space Physics and Astrophysics' is aimed at graduate level students to provide the necessary mathematical and physics background to understand the transport of gases, charged particle gases, energetic charged particles, turbulence, and radiation in an astrophysical and space physics context. Subjects emphasized in the work include collisional and collisionless processes in gases (neutral or plasma), analogous processes in turbulence fields and radiation fields, and allows for a simplified treatment of the statistical description of the system. A systematic study that addresses the common tools at a graduate level allows students to progress to a point where they can begin their research in a variety of fields within space physics and astrophysics. This book is for graduate students who expect to complete their research in an area of plasma space physics or plasma astrophysics. By providing a broad synthesis in several areas of transport theory and modeling, the work also benefits resear...

  8. Underground nuclear astrophysics: why and how

    CERN Document Server

    Best, A; Fülöp, Zs; Gyürky, Gy; Laubenstein, M; Napolitani, E; Rigato, V; Roca, V; Szücs, T

    2016-01-01

    The goal of nuclear astrophysics is to measure cross sections of nuclear physics reactions of interest in astrophysics. At stars temperatures, these cross sections are very low due to the suppression of the Coulomb barrier. Cosmic ray induced background can seriously limit the determination of reaction cross sections at energies relevant to astrophysical processes and experimental setups should be arranged in order to improve the signal-to-noise ratio. Placing experiments in underground sites, however, reduces this background opening the way towards ultra low cross section determination. LUNA (Laboratory for Underground Nuclear Astrophysics) was pioneer in this sense. Two accelerators were mounted at the INFN National Laboratories of Gran Sasso (LNGS) allowing to study nuclear reactions close to stellar energies. A summary of the relevant technology used, including accelerators, target production and characterisation, and background treatment is given.

  9. Laboratory high-energy astrophysics on lasers

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, W.H.; Liedahl, D.A.; Walling, R.S.; Foord, M.E.; Osterheld, A.L.; Wilson, B.G.

    1994-12-01

    The tremendous range of temperatures and densities spanned by astrophysical plasmas has significant overlap with conditions attainable using high-power laser facilities. These facilities provide an opportunity to create, control, and characterize plasmas in the laboratory that mirror conditions in some of the most important cosmological systems. Moreover, laboratory experiments can enhance astrophysical understanding by focusing on and isolating important physical processes, without necessarily reproducing the exact conditions of the integral system. Basic study of radiative properties, transport phenomena, thermodynamic response and hydrodynamic evolution in plasmas under properly scaled conditions leads both directly and indirectly to improved models of complex astrophysical systems. In this paper, we will discuss opportunities for current and planned highpower lasers to contribute to the study of high-energy astrophysics.

  10. New insights from cosmic gamma rays

    Science.gov (United States)

    Roland, Diehl

    2016-04-01

    The measurement of gamma rays from cosmic sources at ~MeV energies is one of the key tools for nuclear astrophysics, in its study of nuclear reactions and their impacts on objects and phenomena throughout the universe. Gamma rays trace nuclear processes most directly, as they originate from nuclear transitions following radioactive decays or high-energy collisions with excitation of nuclei. Additionally, the unique gamma-ray signature from the annihilation of positrons falls into this astronomical window and is discussed here: Cosmic positrons are often produced from β-decays, thus also of nuclear physics origins. The nuclear reactions leading to radioactive isotopes occur inside stars and stellar explosions, which therefore constitute the main objects of such studies. In recent years, both thermonuclear and core-collapse supernova radioactivities have been measured though 56Ni, 56Co, and 44Ti lines, and a beginning has thus been made to complement conventional supernova observations with such measurements of the prime energy sources of supernova light created in their deep interiors. The diffuse radioactive afterglow of massive-star nucleosynthesis in gamma rays is now being exploited towards astrophysical studies on how massive stars feed back their energy and ejecta into interstellar gas, as part of the cosmic cycle of matter through generations of stars enriching the interstellar gas and stars with metals. Large interstellar cavities and superbubbles have been recognised to be the dominating structures where new massive-star ejecta are injected, from 26Al gamma-ray spectroscopy. Also, constraints on the complex interiors of stars derive from the ratio of 60Fe/26Al gamma rays. Finally, the puzzling bulge-dominated intensity distribution of positron annihilation gamma rays is measured in greater detail, but still not understood; a recent microquasar flare provided evidence that such objects may be prime sources for positrons in interstellar space, rather than

  11. Astrophysics teaching at Assam University, Silchar

    Science.gov (United States)

    Das, Himadri Sekhar

    The Department of Physics is established in 1996 and since, then, thirteen batches of students have completed their Master’s programmes in the subject. The Department introduced in the year 2001 Astrophysics as one special paper in PG level (in the second year). The syllabus of Astrophysics is designed to include courses from observational Astronomy to Theoretical Astrophysics and Cosmology. There are two theory papers (in third and fourth semesters), one practical paper (in third semester) and one project or dissertation paper (in fourth semester), each one carries 100 marks. The major instruments available in the department for carrying out the experimental work are Meade-16 inch telescope, Celestron-8 inch inches Telescope, Meade refracting telescopes (4 inches, 2 number), SSP-5, SSP-3 photometer, Sivo Fibre-fed Spectrometer, CCD (Meade 416 XT, ST-6), Goniometer, Limb darkening apparatus etc. The practical paper includes study of the variation of sunspots; measurement of the parallax of distant objects, on moon and on planets like Jupiter and Saturn, measurement of the magnitude of different stars, study of the light scattering properties of rough surfaces, analysis of the image by image processing software (IRAF) etc. The project papers are based on research oriented topics which covers latest trends in Astrophysics including solar system studies, Interstellar medium and star formation studies and some problems in gravito-optics. There are altogether 6 scholars who have been awarded PhD and 10 are registered for PhD in Astrophysics. Besides these, 8 scholars have been awarded M. Phil. in Astrophysics. The broad research area of Astrophysics includes light scattering properties of cosmic dust, star formation, gravito optics, polarization study of comets etc. The Astrophysics group is currently doing research in different fields and have very good publications in several peer reviewed journals of international status.

  12. Cosmological and astrophysical neutrino mass measurements

    DEFF Research Database (Denmark)

    Abazajian, K.N.; Calabrese, E.; Cooray, A.

    2011-01-01

    Cosmological and astrophysical measurements provide powerful constraints on neutrino masses complementary to those from accelerators and reactors. Here we provide a guide to these different probes, for each explaining its physical basis, underlying assumptions, current and future reach.......Cosmological and astrophysical measurements provide powerful constraints on neutrino masses complementary to those from accelerators and reactors. Here we provide a guide to these different probes, for each explaining its physical basis, underlying assumptions, current and future reach....

  13. EMPIRE: A code for nuclear astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Palumbo, A. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2013-12-11

    The nuclear reaction code EMPIRE is presented as a useful tool for nuclear astrophysics. EMPIRE combines a variety of the reaction models with a comprehensive library of input parameters providing a diversity of options for the user. With exclusion of the directsemidirect capture all reaction mechanisms relevant to the nuclear astrophysics energy range of interest are implemented in the code. Comparison to experimental data show consistent agreement for all relevant channels.

  14. Dictionary of geophysics, astrophysics, and astronomy

    CERN Document Server

    Matzner, Richard A

    2001-01-01

    The Dictionary of Geophysics, Astrophysics, and Astronomy provides a lexicon of terminology covering fields such as astronomy, astrophysics, cosmology, relativity, geophysics, meteorology, Newtonian physics, and oceanography. Authors and editors often assume - incorrectly - that readers are familiar with all the terms in professional literature. With over 4,000 definitions and 50 contributing authors, this unique comprehensive dictionary helps scientists to use terminology correctly and to understand papers, articles, and books in which physics-related terms appear.

  15. Astrophysical applications of gravitational microlensing

    Science.gov (United States)

    Mao, Shude

    2012-08-01

    Since the first discovery of microlensing events nearly two decades ago, gravitational microlensing has accumulated tens of TBytes of data and developed into a powerful astrophysical technique with diverse applications. The review starts with a theoretical overview of the field and then proceeds to discuss the scientific highlights. (1) Microlensing observations toward the Magellanic Clouds rule out the Milky Way halo being dominated by MAssive Compact Halo Objects (MACHOs). This confirms most dark matter is non-baryonic, consistent with other observations. (2) Microlensing has discovered about 20 extrasolar planets (16 published), including the first two Jupiter-Saturn like systems and the only five “cold Neptunes" yet detected. They probe a different part of the parameter space and will likely provide the most stringent test of core accretion theory of planet formation. (3) Microlensing provides a unique way to measure the mass of isolated stars, including brown dwarfs and normal stars. Half a dozen or so stellar mass black hole candidates have also been proposed. (4) High-resolution, target-of-opportunity spectra of highly-magnified dwarf stars provide intriguing “age" determinations which may either hint at enhanced helium enrichment or unusual bulge formation theories. (5) Microlensing also measured limb-darkening profiles for close to ten giant stars, which challenges stellar atmosphere models. (6) Data from surveys also provide strong constraints on the geometry and kinematics of the Milky Way bar (through proper motions); the latter indicates predictions from current models appear to be too anisotropic compared with observations. The future of microlensing is bright given the new capabilities of current surveys and forthcoming new telescope networks from the ground and from space. Some open issues in the field are identified and briefly discussed.

  16. Distance Measurement Solves Astrophysical Mysteries

    Science.gov (United States)

    2003-08-01

    Location, location, and location. The old real-estate adage about what's really important proved applicable to astrophysics as astronomers used the sharp radio "vision" of the National Science Foundation's Very Long Baseline Array (VLBA) to pinpoint the distance to a pulsar. Their accurate distance measurement then resolved a dispute over the pulsar's birthplace, allowed the astronomers to determine the size of its neutron star and possibly solve a mystery about cosmic rays. "Getting an accurate distance to this pulsar gave us a real bonanza," said Walter Brisken, of the National Radio Astronomy Observatory (NRAO) in Socorro, NM. Monogem Ring The Monogem Ring, in X-Ray Image by ROSAT satellite CREDIT: Max-Planck Institute, American Astronomical Society (Click on Image for Larger Version) The pulsar, called PSR B0656+14, is in the constellation Gemini, and appears to be near the center of a circular supernova remnant that straddles Gemini and its neighboring constellation, Monoceros, and is thus called the Monogem Ring. Since pulsars are superdense, spinning neutron stars left over when a massive star explodes as a supernova, it was logical to assume that the Monogem Ring, the shell of debris from a supernova explosion, was the remnant of the blast that created the pulsar. However, astronomers using indirect methods of determining the distance to the pulsar had concluded that it was nearly 2500 light-years from Earth. On the other hand, the supernova remnant was determined to be only about 1000 light-years from Earth. It seemed unlikely that the two were related, but instead appeared nearby in the sky purely by a chance juxtaposition. Brisken and his colleagues used the VLBA to make precise measurements of the sky position of PSR B0656+14 from 2000 to 2002. They were able to detect the slight offset in the object's apparent position when viewed from opposite sides of Earth's orbit around the Sun. This effect, called parallax, provides a direct measurement of

  17. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Editorial Board. Journal of Astrophysics and Astronomy. Chief Editor. Ram Sagar, Indian Institute of Astrophysics, Bengaluru. Associate Editor. Annapurni Subramaniam, Indian Institute of Astrophysics, Bengaluru T.P. Prabhu, Indian Institute of Astrophysics, Bengaluru. Editorial Board. P. Ajith, International Center for ...

  18. Cosmic matrix in the jubilee of relativistic astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Ruffini, R., E-mail: ruffini@icra.it [Dip. di Fisica, Sapienza University of Rome and ICRA Piazzale Aldo Moro 5, I–00185, Rome (Italy); ICRANet, Piazza della Repubblica 10, I–65122 Pescara (Italy); Université de Nice Sophie Antipolis, Nice, CEDEX 2, Grand Château Parc Valrose (France); ICRANet-Rio, Centro Brasileiro de Pesquisas Físicas, Rua Dr. Xavier Sigaud 150, Rio de Janeiro, RJ, 22290–180 (Brazil); Aimuratov, Y.; Enderli, M.; Kovacevic, M. [Dip. di Fisica, Sapienza University of Rome and ICRA Piazzale Aldo Moro 5, I–00185, Rome (Italy); Université de Nice Sophie Antipolis, Nice, CEDEX 2, Grand Château Parc Valrose (France); Belinski, V.; Bianco, C. L.; Izzo, L.; Moradi, R.; Muccino, M.; Rueda, J. A.; Vereshchagin, G. V.; Wang, Y.; Xue, S.-S. [Dip. di Fisica, Sapienza University of Rome and ICRA Piazzale Aldo Moro 5, I–00185, Rome (Italy); ICRANet, Piazza della Repubblica 10, I–65122 Pescara (Italy); Mathews, G. J. [ICRANet, Piazza della Repubblica 10, I–65122 Pescara (Italy); Center for Astrophysics, University of Notre Dame, US (United States); Penacchioni, A. V. [INPE - Av. dos Astronautas, 1758 - Sao Jose dos Campos - Sao Paulo – Brazil (Brazil); Pisani, G. B. [Dip. di Fisica, Sapienza University of Rome and ICRA Piazzale Aldo Moro 5, I–00185, Rome (Italy)

    2015-12-17

    Following the classical works on Neutron Stars, Black Holes and Cosmology, I outline some recent results obtained in the IRAP-PhD program of ICRANet on the “Cosmic Matrix”: a new astrophysical phenomenon recorded by the X- and Gamma-Ray satellites and by the largest ground based optical telescopes all over our planet. In 3 minutes it has been recorded the occurrence of a “Supernova”, the “Induced-Gravitational-Collapse” on a Neutron Star binary, the formation of a “Black Hole”, and the creation of a “Newly Born Neutron Star”. This presentation is based on a document describing activities of ICRANet and recent developments of the paradigm of the Cosmic Matrix in the comprehension of Gamma Ray Bursts (GRBs) presented on the occasion of the Fourteenth Marcel Grossmann Meeting on Recent Developments in Theoretical and Experimental General Relativity, Gravitation, and Relativistic Field Theory. A Portuguese version of this document can be downloaded at: http://www.icranet.org/documents/brochure{sub i}cranet{sub p}t.pdf.

  19. alpha-nucleus optical potential measurements for the astrophysical p-process

    CERN Document Server

    Fülöp, Z; Somorjai, E; Máté, Z; Zolnai, L; Galaviz, D; Babilon, M; Hillier, R; Mohr, P J; Zilges, A

    2003-01-01

    The heavy, proton-rich nuclei (p-nuclei) are produced by the so called astrophysical p-process during the explosive nucleosynthesis of massive stars. The (gamma,alpha) reaction rates show a strong dependence on the chosen alpha-nucleus potential, which makes them of special interest. Using this technique, the alpha-nucleus potentials of two proton rich nuclei ( sup 1 sup 4 sup 4 Sm and sup 9 sup 2 Mo) have been determined in the ATOMKI in the recent years [1,2]. These potentials have been used to calculate the (alpha,gamma) reaction cross sections, and their inverse (gamma,alpha) reaction rates can be calculated using detailed balance. (R.P.)

  20. Current and Future Research Programs at Stanford's Kavli Institute for Particle Astrophysics and Cosmology

    Science.gov (United States)

    Madejski, Greg

    2013-12-01

    The Kavli Institute of Particle Astrophysics and Cosmology, or KIPAC, at Stanford University, and the LeCosPA Institute at the Taiwan National University were sibling institutions even before their respective official births. The existence of both institutes was to a great extent facilitated by the foresight of Prof. Pisin Chen, current director of LeCosPA, and we fully envision the vibrant on-going collaboration between the two institutes for the years to come. This presentation highlights the current research direction of KIPAC, including the wide range of programs in particle astrophysics and cosmology. Of the on-going projects, the main current effort at KIPAC is the operation of, and the analysis of data from the Large Area Telescope on-board the space-borne Fermi Gamma-ray Space Telescope, which is described in more detail in the article by Prof. Kamae in these proceedings. That article focuses on the instrument, and the results gleaned from observations of our own Galaxy. Here, the second part of this article also includes the highlights for astrophysics of jets emanating from the vicinity of black holes, which are prominent gamma-ray sources detected by Fermi: this is the area of research of the article's author.

  1. Exploring the Cosmic Frontier Astrophysical Instruments for the 21st Century

    CERN Document Server

    Lobanov, Andrei P; Cesarsky, Catherine; Diamond, Phillip J

    2007-01-01

    In the coming decades, astrophysical science will benefit enormously from the construction and operation of several major international ground- and space based facilities, such as ALMA, Herschel/Planck, and SKA in the far infrared to radio band, Extremely Large Telescopes, JWST and GAIA in the optical to near infrared regime, XEUS and Constellation-X in the X-ray, and GLAST in the Gamma-ray regime. These and other new instruments will have a major impact in a wide range of scientific topics including the cosmological epoch of reionization, galactic dynamics and nuclear activity, stellar astronomy, extra-solar planets, gamma-ray bursts, X-ray binaries, and many others. On May 18-21, 2004, the Max-Planck-Society’s Harnack-Haus in Dahlem, Berlin hosted the international symposium "Exploring the Cosmic Frontier: Astrophysical Instruments for the 21st Century". The symposium in Berlin was dedicated to exploring the complementarity and synergies between different branches of astrophysical research, by presenting ...

  2. Gamma watermarking

    Science.gov (United States)

    Ishikawa, Muriel Y.; Wood, Lowell L.; Lougheed, Ronald W.; Moody, Kenton J.; Wang, Tzu-Fang

    2004-05-25

    A covert, gamma-ray "signature" is used as a "watermark" for property identification. This new watermarking technology is based on a unique steganographic or "hidden writing" digital signature, implemented in tiny quantities of gamma-ray-emitting radioisotopic material combinations, generally covertly emplaced on or within an object. This digital signature may be readily recovered at distant future times, by placing a sensitive, high energy-resolution gamma-ray detecting instrument reasonably precisely over the location of the watermark, which location may be known only to the object's owner; however, the signature is concealed from all ordinary detection means because its exceedingly low level of activity is obscured by the natural radiation background (including the gamma radiation naturally emanating from the object itself, from cosmic radiation and material surroundings, from human bodies, etc.). The "watermark" is used in object-tagging for establishing object identity, history or ownership. It thus may serve as an aid to law enforcement officials in identifying stolen property and prosecuting theft thereof. Highly effective, potentially very low cost identification-on demand of items of most all types is thus made possible.

  3. Plasma Astrophysics, Part I Fundamentals and Practice

    CERN Document Server

    Somov, Boris V

    2006-01-01

    This well-illustrated monograph is devoted to classic fundamentals, current practice, and perspectives of modern plasma astrophysics. The first part is unique in covering all the basic principles and practical tools required for understanding and working in plasma astrophysics. The second part presents the physics of magnetic reconnection and flares of electromagnetic origin in space plasmas within the solar system; single and double stars, relativistic objects, accretion disks, and their coronae are also covered. This book is designed mainly for professional researchers in astrophysics. However, it will also be interesting and useful to graduate students in space sciences, geophysics, as well as advanced students in applied physics and mathematics seeking a unified view of plasma physics and fluid mechanics.

  4. Plasma Astrophysics, part II Reconnection and Flares

    CERN Document Server

    Somov, Boris V

    2007-01-01

    This well-illustrated monograph is devoted to classic fundamentals, current practice, and perspectives of modern plasma astrophysics. The first part is unique in covering all the basic principles and practical tools required for understanding and working in plasma astrophysics. The second part presents the physics of magnetic reconnection and flares of electromagnetic origin in space plasmas within the solar system; single and double stars, relativistic objects, accretion disks, and their coronae are also covered. This book is designed mainly for professional researchers in astrophysics. However, it will also be interesting and useful to graduate students in space sciences, geophysics, as well as advanced students in applied physics and mathematics seeking a unified view of plasma physics and fluid mechanics.

  5. Astrophysical disks Collective and Stochastic Phenomena

    CERN Document Server

    Fridman, Alexei M; Kovalenko, Ilya G

    2006-01-01

    The book deals with collective and stochastic processes in astrophysical discs involving theory, observations, and the results of modelling. Among others, it examines the spiral-vortex structure in galactic and accretion disks , stochastic and ordered structures in the developed turbulence. It also describes sources of turbulence in the accretion disks, internal structure of disk in the vicinity of a black hole, numerical modelling of Be envelopes in binaries, gaseous disks in spiral galaxies with shock waves formation, observation of accretion disks in a binary system and mass distribution of luminous matter in disk galaxies. The editors adaptly brought together collective and stochastic phenomena in the modern field of astrophysical discs, their formation, structure, and evolution involving the methodology to deal with, the results of observation and modelling, thereby advancing the study in this important branch of astrophysics and benefiting Professional Researchers, Lecturers, and Graduate Students.

  6. Polarization measurements of gamma ray bursts and axion like particles

    CERN Document Server

    Rubbia, André

    2008-01-01

    A polarized gamma ray emission spread over a sufficiently wide energy band from a strongly magnetized astrophysical object like gamma ray bursts (GRBs) offers an opportunity to test the hypothesis of axion like particles (ALPs). Based on evidences of polarized gamma ray emission detected in several gamma ray bursts we estimated the level of ALPs induced dichroism, which could take place in the magnetized fireball environment of a GRB. This allows to estimate the sensitivity of polarization measurements of GRBs to the ALP-photon coupling. This sensitivity $\\gag\\le 2.2\\cdot 10^{-11} {\\rm GeV^{-1}}$ calculated for the ALP mass $m_a=10^{-3}~{\\rm eV}$ and MeV energy spread of gamma ray emission is competitive with the sensitivity of CAST and becomes even stronger for lower ALPs masses.

  7. Laboratory Astrophysics Division of the AAS (LAD)

    Science.gov (United States)

    Salama, Farid; Drake, R. P.; Federman, S. R.; Haxton, W. C.; Savin, D. W.

    2012-01-01

    The purpose of the Laboratory Astrophysics Division (LAD) is to advance our understanding of the Universe through the promotion of fundamental theoretical and experimental research into the underlying processes that drive the Cosmos. LAD represents all areas of astrophysics and planetary sciences. The first new AAS Division in more than 30 years, the LAD traces its history back to the recommendation from the scientific community via the White Paper from the 2006 NASA-sponsored Laboratory Astrophysics Workshop. This recommendation was endorsed by the Astronomy and Astrophysics Advisory Committee (AAAC), which advises the National Science Foundation (NSF), the National Aeronautics and Space Administration (NASA), and the U.S. Department of Energy (DOE) on selected issues within the fields of astronomy and astrophysics that are of mutual interest and concern to the agencies. In January 2007, at the 209th AAS meeting, the AAS Council set up a Steering Committee to formulate Bylaws for a Working Group on Laboratory Astrophysics (WGLA). The AAS Council formally established the WGLA with a five-year mandate in May 2007, at the 210th AAS meeting. From 2008 through 2012, the WGLA annually sponsored Meetings in-a-Meeting at the AAS Summer Meetings. In May 2011, at the 218th AAS meeting, the AAS Council voted to convert the WGLA, at the end of its mandate, into a Division of the AAS and requested draft Bylaws from the Steering Committee. In January 2012, at the 219th AAS Meeting, the AAS Council formally approved the Bylaws and the creation of the LAD. The inaugural gathering and the first business meeting of the LAD were held at the 220th AAS meeting in Anchorage in June 2012. You can learn more about LAD by visiting its website at http://lad.aas.org/ and by subscribing to its mailing list.

  8. Hard X-ray emission clumps in the gamma-Cygni supernova remnant: An INTEGRAL-ISGRI view

    NARCIS (Netherlands)

    Bykov, A.M.; Krassilchtchikov, A.M.; Uvarov, Y.A.; Bloemen, H.; Chevalier, R.A.; Gustov, M.Y.; Hermsen, W.; Lebrun, F.; Lozinskaya, T.A.; Rauw, G.; Smirnova, T.V.; Sturner, S.J.; Swings, J.-P.; Terrier, R.; Toptygin, I.N.

    2004-01-01

    Spatially resolved images of the galactic supernova remnant G78.2+2.1 (gamma-Cygni) in hard X-ray energy bands from 25 keV to 120 keV are obtained with the IBIS-ISGRI imager aboard the International Gamma-Ray Astrophysics Laboratory INTEGRAL. The images are dominated by localized clumps of about ten

  9. INTEGRAL Detection of the First Prompt Gamma-Ray Signal Coincident with the Gravitational-wave Event GW170817

    DEFF Research Database (Denmark)

    Savchenko, V.; Ferrigno, C.; Kuulkers, E.

    2017-01-01

    We report the INTernational Gamma-ray Astrophysics Laboratory (INTEGRAL) detection of the short gamma-ray burst GRB 170817A (discovered by Fermi-GBM) with a signal-to-noise ratio of 4.6, and, for the first time, its association with the gravitational waves (GWs) from binary neutron star (BNS...

  10. PREFACE: Second School on Cosmic Rays and Astrophysics

    Science.gov (United States)

    Zepeda, Arnulfo

    2008-02-01

    The physics of cosmic rays, gamma rays and neutrinos has become nowadays a subject of fast development. On the other hand present and planed experimental facilities installed in the American continent, attract and facilitate the involvement of local young researchers. For these reasons Professor Oscar Saavedra and his team of the high altitude cosmic ray Chacaltaya laboratory and the Universidad Mayor de San Andres in La Paz Bolivia, conceived the idea of organizing the First School on Cosmic Rays and Astrophysics in La Paz 9-20 August 2004. That school was possible, in spite of the scarcity of funds, thanks to the solidary participation of several distinguish lecturers who paid their travel and local expenses. Their lectures were made available on a CD by the local students. It was then decided that a second school be organized for 2006 in Mexico. It was held from 28 August to 15 September 15. Some of the lecturers in this Second School on Cosmic Rays and Astrophysics were too busy to write their lectures, but here we put at the disposal of the interested community the contributions of Roberto Battiston, Karen S Caballero, Edgar Casimiro, David Delepine, Giorgio Giacomelli, Gonzalo Rodríguez and Luis Villaseñor. This School was possible thanks to the financial assistance of CONACyT (Mexico), the Benemerita Universidad Autonoma de Puebla, Centro de Investigacion y de Estudios Avanzados (Cinvestav), the University of Torino and the Centro Latino Americano de Fisica. Arnulfo Zepeda The editors of these proceedings are: Rebeca López Rodrigo Pelayo Oscar Saavedra Arnulfo Zepeda

  11. The Astrophysics of Emission-Line Stars

    CERN Document Server

    Kogure, Tomokazu

    2007-01-01

    Many types of stars show conspicuous emission lines in their optical spectra. These stars are broadly referred to as emission line stars. Emission line stars are attractive to many people because of their spectacular phenomena and their variability. The Astrophysics of Emission Line Stars offers general information on emission line stars, starting from a brief introduction to stellar astrophysics, and then moving toward a broad overview of emission line stars including early and late type stars as well as pre-main sequence stars. Detailed references have been prepared along with an index for further reading.

  12. Byurakan Astrophysical Observatory as Cultural Centre

    Science.gov (United States)

    Mickaelian, A. M.; Farmanyan, S. V.

    2017-07-01

    NAS RA V. Ambartsumian Byurakan Astrophysical Observatory is presented as a cultural centre for Armenia and the Armenian nation in general. Besides being scientific and educational centre, the Observatory is famous for its unique architectural ensemble, rich botanical garden and world of birds, as well as it is one of the most frequently visited sightseeing of Armenia. In recent years, the Observatory has also taken the initiative of the coordination of the Cultural Astronomy in Armenia and in this field, unites the astronomers, historians, archaeologists, ethnographers, culturologists, literary critics, linguists, art historians and other experts. Keywords: Byurakan Astrophysical Observatory, architecture, botanic garden, tourism, Cultural Astronomy.

  13. On the saturation of astrophysical dynamos

    DEFF Research Database (Denmark)

    Dorch, Bertil; Archontis, Vasilis

    2004-01-01

    In the context of astrophysical dynamos we illustrate that the no-cosines flow, with zero mean helicity, can drive fast dynamo action and we study the dynamo's mode of operation during both the linear and non-linear saturation regimes. It turns out that in addition to a high growth rate in the li......In the context of astrophysical dynamos we illustrate that the no-cosines flow, with zero mean helicity, can drive fast dynamo action and we study the dynamo's mode of operation during both the linear and non-linear saturation regimes. It turns out that in addition to a high growth rate...

  14. Advances in astronomy and astrophysics 9

    CERN Document Server

    Kopal, Zdenek

    1972-01-01

    Advances in Astronomy and Astrophysics, Volume 9 covers reviews on the advances in astronomy and astrophysics. The book presents reviews on the Roche model and its applications to close binary systems. The text then describes the part played by lunar eclipses in the evolution of astronomy; the classical theory of lunar eclipses; deviations from geometrical theory; and the methods of photometric observations of eclipses. The problems of other phenomena related in one way or another to lunar eclipses are also considered. The book further tackles the infrared observation on the eclipsed moon, as

  15. Advances in astronomy and astrophysics 7

    CERN Document Server

    Kopal, Zdenek

    2013-01-01

    Advances in Astronomy and Astrophysics, Volume 7 covers reviews about the advances in astronomy and astrophysics. The book presents reviews on the scattering of electrons by diatomic molecules and on Babcock's theory of the 22-year solar cycle and the latitude drift of the sunspot zone. The text then describes reviews on the structures of the terrestrial planets (Earth, Venus, Mars, Mercury) and on type III solar radio bursts. The compact and dispersed cosmic matter is also considered with regard to the search for new cosmic objects and phenomena and on the nature of the ref shift from compact

  16. Magnetic processes in astrophysics theory, simulations, experiments

    CERN Document Server

    Rüdiger, Günther; Hollerbach, Rainer

    2013-01-01

    In this work the authors draw upon their expertise in geophysical and astrophysical MHD to explore the motion of electrically conducting fluids, the so-called dynamo effect, and describe the similarities and differences between different magnetized objects. They also explain why magnetic fields are crucial to the formation of the stars, and discuss promising experiments currently being designed to investigate some of the relevant physics in the laboratory. This interdisciplinary approach will appeal to a wide audience in physics, astrophysics and geophysics. This second edition covers such add

  17. White Paper on Nuclear Astrophysics and Low Energy Nuclear Physics - Part 1. Nuclear Astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Arcones, Almudena [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Escher, Jutta E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Others, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-04-04

    This white paper informs the nuclear astrophysics community and funding agencies about the scientific directions and priorities of the field and provides input from this community for the 2015 Nuclear Science Long Range Plan. It summarizes the outcome of the nuclear astrophysics town meeting that was held on August 21 - 23, 2014 in College Station at the campus of Texas A&M University in preparation of the NSAC Nuclear Science Long Range Plan. It also reflects the outcome of an earlier town meeting of the nuclear astrophysics community organized by the Joint Institute for Nuclear Astrophysics (JINA) on October 9 - 10, 2012 Detroit, Michigan, with the purpose of developing a vision for nuclear astrophysics in light of the recent NRC decadal surveys in nuclear physics (NP2010) and astronomy (ASTRO2010). The white paper is furthermore informed by the town meeting of the Association of Research at University Nuclear Accelerators (ARUNA) that took place at the University of Notre Dame on June 12 - 13, 2014. In summary we find that nuclear astrophysics is a modern and vibrant field addressing fundamental science questions at the intersection of nuclear physics and astrophysics. These questions relate to the origin of the elements, the nuclear engines that drive life and death of stars, and the properties of dense matter. A broad range of nuclear accelerator facilities, astronomical observatories, theory efforts, and computational capabilities are needed. With the developments outlined in this white paper, answers to long-standing key questions are well within reach in the coming decade.

  18. Modelling the high-energy emission from gamma-ray binaries using numerical relativistic hydrodynamics

    Science.gov (United States)

    Dubus, G.; Lamberts, A.; Fromang, S.

    2015-09-01

    Context. Detailed modelling of the high-energy emission from gamma-ray binaries has been propounded as a path to pulsar wind physics. Aims: Fulfilling this ambition requires a coherent model of the flow and its emission in the region where the pulsar wind interacts with the stellar wind of its companion. Methods: We have developed a code that follows the evolution and emission of electrons in the shocked pulsar wind based on inputs from a relativistic hydrodynamical simulation. The code is used to model the well-documented spectral energy distribution and orbital modulations from LS 5039. Results: The pulsar wind is fully confined by a bow shock and a back shock. The particles are distributed into a narrow Maxwellian, emitting mostly GeV photons, and a power law radiating very efficiently over a broad energy range from X-rays to TeV gamma rays. Most of the emission arises from the apex of the bow shock. Doppler boosting shapes the X-ray and very high energy (VHE) lightcurves, constraining the system inclination to i ≈ 35°. There is tension between the hard VHE spectrum and the level of X-ray to MeV emission, which requires differing magnetic field intensities that are hard to achieve with constant magnetisation σ and Lorentz factor Γp of the pulsar wind. Our best compromise implies σ ≈ 1 and Γp ≈ 5 × 103, so respectively higher and lower than the typical values in pulsar wind nebulae. Conclusions: The high value of σ derived here, where the wind is confined close to the pulsar, supports the classical picture that has pulsar winds highly magnetised at launch. However, such magnetisations will require that further investigations are based on relativistic MHD simulations. Movies associated to Figs. A.1-A.4 are available in electronic form at http://www.aanda.org

  19. DEEP BROADBAND OBSERVATIONS OF THE DISTANT GAMMA-RAY BLAZAR PKS 1424+240

    Energy Technology Data Exchange (ETDEWEB)

    Archambault, S. [Physics Department, McGill University, Montreal, QC H3A 2T8 (Canada); Aune, T. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States); Behera, B.; Chen, X.; Federici, S. [DESY, Platanenallee 6, D-15738 Zeuthen (Germany); Beilicke, M.; Bugaev, V. [Department of Physics, Washington University, St. Louis, MO 63130 (United States); Benbow, W.; Cerruti, M. [Fred Lawrence Whipple Observatory, Harvard-Smithsonian Center for Astrophysics, Amado, AZ 85645 (United States); Berger, K. [Department of Physics and Astronomy and the Bartol Research Institute, University of Delaware, Newark, DE 19716 (United States); Bird, R. [School of Physics, University College Dublin, Belfield, Dublin 4 (Ireland); Biteau, J. [Santa Cruz Institute for Particle Physics and Department of Physics, University of California, Santa Cruz, CA 95064 (United States); Byrum, K. [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Cardenzana, J. V [Department of Physics and Astronomy, Iowa State University, Ames, IA 50011 (United States); Ciupik, L. [Astronomy Department, Adler Planetarium and Astronomy Museum, Chicago, IL 60605 (United States); Connolly, M. P. [School of Physics, National University of Ireland Galway, University Road, Galway (Ireland); Cui, W. [Department of Physics, Purdue University, West Lafayette, IN 47907 (United States); Dumm, J. [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States); Errando, M. [Department of Physics and Astronomy, Barnard College, Columbia University, NY 10027 (United States); Falcone, A., E-mail: amy.furniss@gmail.com [Department of Astronomy and Astrophysics, 525 Davey Lab, Pennsylvania State University, University Park, PA 16802 (United States); Collaboration: VERITAS Collaboration; Fermi LAT Collaboration; and others

    2014-04-10

    We present deep VERITAS observations of the blazar PKS 1424+240, along with contemporaneous Fermi Large Area Telescope, Swift X-ray Telescope, and Swift UV Optical Telescope data between 2009 February 19 and 2013 June 8. This blazar resides at a redshift of z ≥ 0.6035, displaying a significantly attenuated gamma-ray flux above 100 GeV due to photon absorption via pair-production with the extragalactic background light. We present more than 100 hr of VERITAS observations over three years, a multiwavelength light curve, and the contemporaneous spectral energy distributions. The source shows a higher flux of (2.1 ± 0.3) × 10{sup –7} photons m{sup –2} s{sup –1} above 120 GeV in 2009 and 2011 as compared to the flux measured in 2013, corresponding to (1.02 ± 0.08) × 10{sup –7} photons m{sup –2} s{sup –1} above 120 GeV. The measured differential very high energy (VHE; E ≥ 100 GeV) spectral indices are Γ = 3.8 ± 0.3, 4.3 ± 0.6 and 4.5 ± 0.2 in 2009, 2011, and 2013, respectively. No significant spectral change across the observation epochs is detected. We find no evidence for variability at gamma-ray opacities of greater than τ = 2, where it is postulated that any variability would be small and occur on timescales longer than a year if hadronic cosmic-ray interactions with extragalactic photon fields provide a secondary VHE photon flux. The data cannot rule out such variability due to low statistics.

  20. Development and Applications of Position-Sensitive Solid-State Gamma Ray Detectors

    Science.gov (United States)

    2002-01-01

    astrophysics, medical imaging, nuclear physics, detection of fissile materials, and monitoring of environmental radioactivity . © 2001 Elsevier Science...presumed source is known (e.g. the location of a supernovae or novae in the astrophysical context) then separate energies of the incident gamma ray can...central region encompassing the radioactive regions was divided into 1 mm3 voxels, and each voxel was tested for consistency with the conical

  1. The opacity of the universe for high and very high energy {gamma}-rays

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Manuel

    2013-08-15

    The flux of high energy (HE, energy 100 MeVVHE, E>or similar 100 GeV) {gamma}-rays originating from cosmological sources is attenuated due to pair production in interactions with photons at ultraviolet to infrared wavelengths of the extragalactic background light (EBL). The main components contributing to the EBL photon density are the starlight integrated over cosmic time and the starlight reprocessed by dust in galaxies. Consequently, the EBL is an integral measure of the cosmic star formation history. Depending on the source distance, the Universe should be opaque to {gamma}-rays above a certain energy. Nevertheless, the number of detected {gamma}-ray sources has increased continuously in recent years. VHE emitting objects beyond redshifts of z>0.5 have been detected with imaging air Cherenkov telescopes (IACTs), while HE {gamma}-rays from active galactic nuclei (AGN) above redshifts z>or similar 3 have been observed with the Large Area Telescope (LAT) on board the Fermi satellite. In this work, a large sample of VHE {gamma}-ray spectra will be combined with data of the Fermi-LAT to derive upper limits on the EBL photon density at z = 0. Generic EBL realizations are used to correct AGN spectra for absorption, which are subsequently tested against model assumptions. The evolution of the EBL with redshift is accounted for, and a possible formation of electromagnetic cascades is considered. As a result, the EBL density is constrained over almost three orders of magnitude in wavelength, between 0.4 {mu}m and 100 {mu}m. At optical wavelengths, an EBL intensity above 24 nW m{sup -2}sr{sup -1} is ruled out, and between 8 {mu}m and 31 {mu}m it is limited to be below 5 nW m{sup -2}sr{sup -1}. In the infrared, the constraints are within a factor {proportional_to} 2 of lower limits derived from galaxy number counts. Additionally,the behavior of VHE spectra in the transition from the optical depth regimes {tau

  2. Evidence Of Quasi Periodic Modulation In The Gamma-Ray Blazar PG1553+113

    Science.gov (United States)

    Cutini, Sara; Ciprini, S.; Stamerra, A.; Thompson, D. J.; Perri, M.

    2016-10-01

    For the first time a gamma-ray and multi-wavelength nearly-periodic oscillation in an active galactic nucleus is reported by the Fermi Large Area Telescope (LAT). A quasi-periodicity in the gamma-ray flux (E>100 MeV and E>1 GeV) is observed from the well-known GeV/TeV BL Lac object PG 1553+113. The significance of the 2.18 +/- 0.08 year-period gamma-ray modulation, seen in 3.5 oscillation maxima observed, is supported by significant cross-correlated variations observed in radio and optical flux light curves, through data collected in the OVRO, Tuorla, KAIT, and CSS monitoring programs and Swift UVOT and XRT. As a BL Lac object, the mechanism driving the observed modulation could arise from the jet itself or from the process feeding the jet. It might point to interesting physical phenomena such as pulsational accretion flow instabilities, jet precession, or the tantalizing possibility of a milli-parsec scale binary super massive black hole system An intense multi-wavelength campaign aimed at unbiased monitoring of the source activity, from radio to VHE (E>100 GeV) gamma rays, started in 2015. It aims at revealing the physical scenarios that can account for such a variability pattern and at covering the next maximum, expected between the end of 2016 and beginning of 2017.

  3. Discovery of Very High Energy Gamma Rays from PKS 1424+240 and Multiwavelength Constraints on its Redshift

    Energy Technology Data Exchange (ETDEWEB)

    Acciari, V.A.; /Harvard-Smithsonian Ctr. Astrophys.; Aliu, E.; /Delaware U., Bartol Inst.; Arlen, T.; /UCLA; Aune, T.; /UC, Santa Cruz; Bautista, M.; /McGill U.; Beilicke, M. /Washington U., St. Louis; Benbow, W.; /Harvard-Smithsonian Ctr. Astrophys.; Bottcher, M.; /Ohio U.; Boltuch, D.; /Delaware U., Bartol Inst.; Bradbury, S.M.; /Leeds U.; Buckley, J.H.; /Washington U., St. Louis; Bugaev, V.; /Washington U., St. Louis; Byrum, K.; /Argonne; Cannon, A.; /University Coll., Dublin; Cesarini, A.; /Natl. U. of Ireland, Galway; Chow, Y.C.; /UCLA; Ciupik, L.; /Roosevelt U., Chicago; Cogan, P.; /McGill U.; Cui, W.; /Purdue U.; Duke, C.; /Grinnell Coll.; Falcone, A.; /Penn State U. /Purdue U. /Utah U. /Roosevelt U., Chicago /Harvard-Smithsonian Ctr. Astrophys. /Purdue U. /Natl. U. of Ireland, Galway /Utah U. /University Coll., Dublin /McGill U. /Roosevelt U., Chicago /McGill U. /Delaware U., Bartol Inst. /Utah U. /Chicago U., EFI /Iowa State U. /Roosevelt U., Chicago /DePauw U. /Utah U. /Pittsburg State U. /Washington U., St. Louis /Iowa State U. /Natl. U. of Ireland, Galway /Utah U. /McGill U. /Washington U., St. Louis /McGill U. /McGill U. /Purdue U. /Anderson U. /Galway-Mayo Inst. of Tech. /Iowa State U. /UCLA; /more authors..

    2012-04-05

    We report the first detection of very-high-energy (VHE) gamma-ray emission above 140GeV from PKS 1424+240, a BL Lac object with an unknown redshift. The photon spectrum above 140GeV measured by VERITAS is well described by a power law with a photon index of 3.8 {+-}0.5{sub stat} {+-} 0.3{sub syst} and a flux normalization at 200 GeV of (5.1 {+-} 0.9{sub stat} {+-} 0.5{sub syst}) x 10{sup -11} TeV{sup -1} cm{sup -2} s{sup -1}, where stat and syst denote the statistical and systematical uncertainty, respectively. The VHE flux is steady over the observation period between MJD 54881 and 55003 (2009 February 19 to June 21). Flux variability is also not observed in contemporaneous high energy observations with the Fermi Large Area Telescope (LAT). Contemporaneous X-ray and optical data were also obtained from the Swift XRT and MDM observatory, respectively. The broadband spectral energy distribution (SED) is well described by a one-zone synchrotron self-Compton (SSC) model favoring a redshift of less than 0.1. Using the photon index measured with Fermi in combination with recent extragalactic background light (EBL) absorption models it can be concluded from the VERITAS data that the redshift of PKS 1424+240 is less than 0.66.

  4. Workshop on gravitational waves and relativistic astrophysics

    Indian Academy of Sciences (India)

    Discussions related to gravitational wave experiments viz. LIGO and LISA as well as to observations of supermassive black holes dominated the workshop sessions on gravitational waves and relativistic astrophysics in the ICGC-2004. A summary of seven papers that were presented in these workshop sessions has been ...

  5. Nuclear astrophysics and the Trojan Horse Method

    Energy Technology Data Exchange (ETDEWEB)

    Spitaleri, C. [University of Catania, Dipartimento di Fisica e Astronomia, Catania (Italy); Laboratori Nazionali del Sud - INFN, Catania (Italy); La Cognata, M.; Pizzone, R.G. [Laboratori Nazionali del Sud - INFN, Catania (Italy); Lamia, L. [University of Catania, Dipartimento di Fisica e Astronomia, Catania (Italy); Mukhamedzhanov, A.M. [Texas A and M University, Cyclotron Institute, College Station, TX (United States)

    2016-04-15

    In this review, we discuss the new recent results of the Trojan Horse Method that is used to determine reaction rates for nuclear processes in several astrophysical scenarios. The theory behind this technique is shortly presented. This is followed by an overview of some new experiments that have been carried out using this indirect approach. (orig.)

  6. Inverse Bremsstrahlung in Astrophysical Plasmas: The Absorption ...

    Indian Academy of Sciences (India)

    The electron–ion inverse Bremsstrahlung is considered here as a factor of the influence on the opacity of the different stellar atmospheres and other astrophysical plasmas. It is shown that this process can be successfully described in the frames of cut-off Coulomb potential model within the regions of the electron densities ...

  7. Minicourses in Astrophysics, Modular Approach, Vol. II.

    Science.gov (United States)

    Illinois Univ., Chicago.

    This is the second of a two-volume minicourse in astrophysics. It contains chapters on the following topics: stellar nuclear energy sources and nucleosynthesis; stellar evolution; stellar structure and its determination; and pulsars. Each chapter gives much technical discussion, mathematical treatment, diagrams, and examples. References are…

  8. Astronomical optical interferometry, II: Astrophysical results

    Directory of Open Access Journals (Sweden)

    Jankov S.

    2011-01-01

    Full Text Available Optical interferometry is entering a new age with several ground- based long-baseline observatories now making observations of unprecedented spatial resolution. Based on a great leap forward in the quality and quantity of interferometric data, the astrophysical applications are not limited anymore to classical subjects, such as determination of fundamental properties of stars; namely, their effective temperatures, radii, luminosities and masses, but the present rapid development in this field allowed to move to a situation where optical interferometry is a general tool in studies of many astrophysical phenomena. Particularly, the advent of long-baseline interferometers making use of very large pupils has opened the way to faint objects science and first results on extragalactic objects have made it a reality. The first decade of XXI century is also remarkable for aperture synthesis in the visual and near-infrared wavelength regimes, which provided image reconstructions from stellar surfaces to Active Galactic Nuclei. Here I review the numerous astrophysical results obtained up to date, except for binary and multiple stars milliarcsecond astrometry, which should be a subject of an independent detailed review, taking into account its importance and expected results at microarcsecond precision level. To the results obtained with currently available interferometers, I associate the adopted instrumental settings in order to provide a guide for potential users concerning the appropriate instruments which can be used to obtain the desired astrophysical information.

  9. Astronomical Optical Interferometry. II. Astrophysical Results

    Science.gov (United States)

    Jankov, S.

    2011-12-01

    Optical interferometry is entering a new age with several ground-based long-baseline observatories now making observations of unprecedented spatial resolution. Based on a great leap forward in the quality and quantity of interferometric data, the astrophysical applications are not limited anymore to classical subjects, such as determination of fundamental properties of stars; namely, their effective temperatures, radii, luminosities and masses, but the present rapid development in this field allowed to move to a situation where optical interferometry is a general tool in studies of many astrophysical phenomena. Particularly, the advent of long-baseline interferometers making use of very large pupils has opened the way to faint objects science and first results on extragalactic objects have made it a reality. The first decade of XXI century is also remarkable for aperture synthesis in the visual and near-infrared wavelength regimes, which provided image reconstructions from stellar surfaces to Active Galactic Nuclei. Here I review the numerous astrophysical results obtained up to date, except for binary and multiple stars milli-arcsecond astrometry, which should be a subject of an independent detailed review, taking into account its importance and expected results at micro-arcsecond precision level. To the results obtained with currently available interferometers, I associate the adopted instrumental settings in order to provide a guide for potential users concerning the appropriate instruments which can be used to obtain the desired astrophysical information.

  10. Virtually Lossless Compression of Astrophysical Images

    Directory of Open Access Journals (Sweden)

    Stefano Baronti

    2005-09-01

    Full Text Available We describe an image compression strategy potentially capable of preserving the scientific quality of astrophysical data, simultaneously allowing a consistent bandwidth reduction to be achieved. Unlike strictly lossless techniques, by which moderate compression ratios are attainable, and conventional lossy techniques, in which the mean square error of the decoded data is globally controlled by users, near-lossless methods are capable of locally constraining the maximum absolute error, based on user's requirements. An advanced lossless/near-lossless differential pulse code modulation (DPCM scheme, recently introduced by the authors and relying on a causal spatial prediction, is adjusted to the specific characteristics of astrophysical image data (high radiometric resolution, generally low noise, etc.. The background noise is preliminarily estimated to drive the quantization stage for high quality, which is the primary concern in most of astrophysical applications. Extensive experimental results of lossless, near-lossless, and lossy compression of astrophysical images acquired by the Hubble space telescope show the advantages of the proposed method compared to standard techniques like JPEG-LS and JPEG2000. Eventually, the rationale of virtually lossless compression, that is, a noise-adjusted lossles/near-lossless compression, is highlighted and found to be in accordance with concepts well established for the astronomers' community.

  11. Evolution and seismic tools for stellar astrophysics

    CERN Document Server

    Monteiro, Mario JPFG

    2008-01-01

    A collection of articles published by the journal "Astrophysics and Space Science, Volume 316, Number 1-4", August 2008. This work covers 10 evolution codes and 9 oscillation codes. It is suitable for researchers and research students working on the modeling of stars and on the implementation of seismic test of stellar models.

  12. Fermi: The Gamma-Ray Large Area Telescope Mission Status

    Science.gov (United States)

    McEnery, Julie

    2014-01-01

    Following its launch in June 2008, high-energy gamma-ray observations by the Fermi Gamma-ray Space Telescope have unveiled over 1000 new sources and opened an important and previously unexplored window on a wide variety of phenomena. These have included the discovery of an population of pulsars pulsing only in gamma rays; the detection of photons up to 10s of GeV from gamma-ray bursts, enhancing our understanding of the astrophysics of these powerful explosions; the detection of hundreds of active galaxies; a measurement of the high energy cosmic-ray electron spectrum which may imply the presence of nearby astrophysical particle accelerators; the determination of the diffuse gamma-ray emission with unprecedented accuracy and the constraints on phenomena such as supersymmetric dark-matter annihilations and exotic relics from the Big Bang. Continuous monitoring of the high-energy gamma-ray sky has uncovered numerous outbursts from active galaxies and the discovery of transient sources in our galaxy. In this talk I will describe the current status of the Fermi observatory and review the science highlights from Fermi.

  13. Fermi: The Gamma-Ray Large Area Space Telescope

    Science.gov (United States)

    McEnery, Julie

    2014-01-01

    Following its launch in June 2008, high-energy gamma-ray observations by the Fermi Gamma-ray Space Telescope have unveiled over 1000 new sources and opened an important and previously unexplored window on a wide variety of phenomena. These have included the discovery of an population of pulsars pulsing only in gamma rays; the detection of photons up to 10s of GeV from gamma-ray bursts, enhancing our understanding of the astrophysics of these powerful explosions; the detection of hundreds of active galaxies; a measurement of the high energy cosmic-ray electron spectrum which may imply the presence of nearby astrophysical particle accelerators; the determination of the diffuse gamma-ray emission with unprecedented accuracy and the constraints on phenomena such as supersymmetric dark-matter annihilations and exotic relics from the Big Bang. Continuous monitoring of the high-energy gamma-ray sky has uncovered numerous outbursts from active galaxies and the discovery of transient sources in our galaxy. In this talk I will describe the current status of the Fermi observatory and review the science highlights from Fermi.

  14. Fermi: The Gamma-Ray Large Area Telescope

    Science.gov (United States)

    McEnery, Julie

    2015-01-01

    Following its launch in June 2008, high-energy gamma-ray observations by the Fermi Gamma-ray Space Telescope have unveiled over 1000 new sources and opened an important and previously unexplored window on a wide variety of phenomena. These have included the discovery of an population of pulsars pulsing only in gamma rays; the detection of photons up to 10s of GeV from gamma-ray bursts, enhancing our understanding of the astrophysics of these powerful explosions; the detection of hundreds of active galaxies; a measurement of the high energy cosmic-ray electron spectrum which may imply the presence of nearby astrophysical particle accelerators; the determination of the diffuse gamma-ray emission with unprecedented accuracy and the constraints on phenomena such as supersymmetric dark-matter annihilations and exotic relics from the Big Bang. Continuous monitoring of the high-energy gamma-ray sky has uncovered numerous outbursts from active galaxies and the discovery of transient sources in our galaxy. In this talk I will describe the current status of the Fermi observatory and review the science highlights from Fermi.

  15. Gamma-ray constraints on supernova nucleosynthesis

    Science.gov (United States)

    Leising, Mark D.

    1994-01-01

    Gamma-ray spectroscopy holds great promise for probing nucleosynthesis in individual supernova explosions via short-lived radioactivity, and for measuring current global Galactic supernova nucleosynthesis with longer-lived radioactivity. It was somewhat surprising that the former case was realized first for a Type II supernova, when both Co-56 and Co-57 were detected in SN 1987A. These provide unprecedented constraints on models of Type II explosions and nucleosynthesis. Live Al-26 in the Galaxy might come from Type II supernovae, and if it is eventually shown to be so, can constrain massive star evolution, supernova nucleosynthesis, and the Galactic Type II supernova rate. Type Ia supernovae, thought to be thermonuclear explosions, have not yet been detected in gamma-rays. This is somewhat surprising given current models and recent Co-56 detection attempts. Ultimately, gamma-ray measurements can confirm their thermonuclear nature, probe the nuclear burning conditions, and help evaluate their contributions to Galactic nucleosynthesis. Type Ib/c supernovae are poorly understood. Whether they are core collapse or thermonuclear events might be ultimately settled by gamma-ray observations. Depending on details of the nuclear processing, any of these supernova types might contribute to a detectable diffuse glow of Fe-60 gamma-ray lines. Previous attempts at detection have come very close to expected emission levels. Remnants of any type of age less that a few centuries might be detectable as individual spots of Ti-44 gamma-ray line emission. It is in fact quite surprising that previous surveys have not discovered such spots, and the constraints on the combination of nucleosynthesis yields and supernova rates are very interesting. All of these interesting limits and possibilities mean that the next mission, International Gamma-Ray Astrophysics Laboratory (INTEGRAL), if it has sufficient sensitivity, is very likely to lead to the realization of much of the great potential

  16. The Astrophysics Simulation Collaboratory portal: A framework foreffective distributed research

    Energy Technology Data Exchange (ETDEWEB)

    Bondarescu, Ruxandra; Allen, Gabrielle; Daues, Gregory; Kelly,Ian; Russell, Michael; Seidel, Edward; Shalf, John; Tobias, Malcolm

    2003-03-03

    We describe the motivation, architecture, and implementation of the Astrophysics Simulation Collaboratory (ASC) portal. The ASC project provides a web-based problem solving framework for the astrophysics community that harnesses the capabilities of emerging computational grids.

  17. The Extragalactic Background Light and the Gamma-ray Opacity of the Universe

    Science.gov (United States)

    Dwek, Eli; Krennrich, Frank

    2012-01-01

    The extragalactic background light (EBL) is one of the fundamental observational quantities in cosmology. All energy releases from resolved and unresolved extragalactic sources, and the light from any truly diffuse background, excluding the cosmic microwave background (CMB), contribute to its intensity and spectral energy distribution. It therefore plays a crucial role in cosmological tests for the formation and evolution of stellar objects and galaxies, and for setting limits on exotic energy releases in the universe. The EBL also plays an important role in the propagation of very high energy gamma-rays which are attenuated en route to Earth by pair producing gamma-gamma interactions with the EBL and CMB. The EBL affects the spectrum of the sources, predominantly blazars, in the approx 10 GeV to 10 TeV energy regime. Knowledge of the EBL intensity and spectrum will allow the determination of the intrinsic blazar spectrum in a crucial energy regime that can be used to test particle acceleration mechanisms and VHE gamma-ray production models. Conversely, knowledge of the intrinsic gamma-ray spectrum and the detection of blazars at increasingly higher redshifts will set strong limits on the EBL and its evolution. This paper reviews the latest developments in the determination of the EBL and its impact on the current understanding of the origin and production mechanisms of gamma-rays in blazars, and on energy releases in the universe. The review concludes with a summary and future directions in Cherenkov Telescope Array techniques and in infrared ground-based and space observatories that will greatly improve our knowledge of the EBL and the origin and production of very high energy gamma-rays.

  18. 3rd Session of the Sant Cugat Forum on Astrophysics

    CERN Document Server

    Gravitational wave astrophysics

    2015-01-01

    This book offers review chapters written by invited speakers of the 3rd Session of the Sant Cugat Forum on Astrophysics — Gravitational Waves Astrophysics. All chapters have been peer reviewed. The book goes beyond normal conference proceedings in that it provides a wide panorama of the astrophysics of gravitational waves and serves as a reference work for researchers in the field.

  19. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Astrophysics and Astronomy. Anjan A. Sen. Articles written in Journal of Astrophysics and Astronomy. Volume 37 Issue 4 December 2016 pp 33 Review. Cosmology and Astrophysics using the Post-Reionization HI · Tapomoy Guha Sarkar Anjan A. Sen · More Details Abstract Fulltext PDF.

  20. News from Cosmic Gamma-ray Line Observations

    Science.gov (United States)

    Diehl, Roland

    The measurement of gamma rays at MeV energies from cosmic radioactivities is one of the key tools for nuclear astrophysics, in its study of nuclear reactions and how they shape objects such as massive stars and supernova explosions. Additionally, the unique gamma-ray signature from the annihilation of positrons falls into this same astronomical window, and positrons are often produced from radioactive beta decays. Nuclear gamma-ray telescopes face instrumental challenges from penetrating gamma rays and cosmic-ray induced backgrounds. But the astrophysical benefits of such efforts are underlined by the discoveries of nuclear gamma rays from the brightest of the expected sources. In recent years, both thermonuclear and core-collapse supernova radioactivity gamma rays have been measured in spectral detail, and complement conventional supernova observations with measurements of origins in deep supernova interiors, from the decay of 56Ni, 56Co, and 44Ti . The diffuse afterglow in gamma rays of radioactivity from massive-star nucleosynthesis is analysed on the large (galactic) scale, with findings important for recycling of matter between successive stellar generations: From 26Al gamma-ray line spectroscopy, interstellar cavities and superbubbles have been recognised in their importance for ejecta transport and recycling. Diffuse galactic emissions from radioactivity and positron-annihilation γ rays should be connected to nucleosynthesis sources: Recently new light has been shed on this connection, among others though different measurements of radioactive 60Fe, and through spectroscopy of positron annihilation gamma rays from a flaring microquasar and from different parts of our Galaxy.

  1. Stereotactic radiosurgery - Gamma Knife

    Science.gov (United States)

    ... Gamma Knife; Gamma Knife radiosurgery; Non-invasive neurosugery; Epilepsy - Gamma Knife ... problems ( arteriovenous malformation , arteriovenous fistula ) Some types of epilepsy Trigeminal neuralgia (severe nerve pain of the face) ...

  2. 78 FR 20356 - NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting

    Science.gov (United States)

    2013-04-04

    ... SPACE ADMINISTRATION NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting AGENCY... Administration (NASA) announces a meeting of the Astrophysics Subcommittee of the NASA Advisory Council (NAC... following topics: --Astrophysics Division Update --Report from Astrophysics Roadmap Team --James Webb Space...

  3. 76 FR 66998 - NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting.

    Science.gov (United States)

    2011-10-28

    ... SPACE ADMINISTRATION NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting... Space Administration (NASA) announces a meeting of the Astrophysics Subcommittee of the NASA Advisory... following topic: --Astrophysics Division Update --Results from Acting Astrophysics Division Director...

  4. gamma-gamma Interactions from Real to Virtual Photons

    OpenAIRE

    Sjöstrand, Torbjörn

    2000-01-01

    A `complete' framework for gamma-gamma / gamma*-gamma / gamma*-gamma* interactions is presented. The emphasis is on providing a model for gamma-gamma physics at all photon virtualities, including the difficult transition region around the rho meson mass.

  5. NASA Astrophysics Funds Strategic Technology Development

    Science.gov (United States)

    Seery, Bernard D.; Ganel, Opher; Pham, Bruce

    2016-01-01

    The COR and PCOS Program Offices (POs) reside at the NASA Goddard Space Flight Center (GSFC), serving as the NASA Astrophysics Division's implementation arm for matters relating to the two programs. One aspect of the PO's activities is managing the COR and PCOS Strategic Astrophysics Technology (SAT) program, helping mature technologies to enable and enhance future astrophysics missions. For example, the SAT program is expected to fund key technology developments needed to close gaps identified by Science and Technology Definition Teams (STDTs) planned to study several large mission concept studies in preparation for the 2020 Decadal Survey.The POs are guided by the National Research Council's "New Worlds, New Horizons in Astronomy and Astrophysics" Decadal Survey report, NASA's Astrophysics Implementation Plan, and the visionary Astrophysics Roadmap, "Enduring Quests, Daring Visions." Strategic goals include dark energy, gravitational waves, and X-ray observatories. Future missions pursuing these goals include, e.g., US participation in ESA's Euclid, Athena, and L3 missions; Inflation probe; and a large UV/Optical/IR (LUVOIR) telescope.To date, 65 COR and 71 PCOS SAT proposals have been received, of which 15 COR and 22 PCOS projects were funded. Notable successes include maturation of a new far-IR detector, later adopted by the SOFIA HAWC instrument; maturation of the H4RG near-IR detector, adopted by WFIRST; development of an antenna-coupled transition-edge superconducting bolometer, a technology deployed by BICEP2/BICEP3/Keck to measure polarization in the CMB signal; advanced UV reflective coatings implemented on the optics of GOLD and ICON, two heliophysics Explorers; and finally, the REXIS instrument on OSIRIS-REx is incorporating CCDs with directly deposited optical blocking filters developed by another SAT-funded project.We discuss our technology development process, with community input and strategic prioritization informing calls for SAT proposals and

  6. New developments and recent results in nuclear astrophysics at Louvain-la-Neuve

    CERN Document Server

    Cherubini, S; Couder, M; Galster, W; Graulich, J S; Leleux, P; Lipnik, P; Loiselet, M; Musumarra, A; Ninane, A; Ryckewaert, G; Vervier, J; Aliotta, M; Figuera, P; Lattuada, M; Pellegriti, M G; Spitaleri, C; Davinson, T; Di Pietro, A; Laird, A M; Ostrowski, A N; Shotter, A C; Woods, P J; Hinnefeld, J; Typel, S; Wolter, H

    2002-01-01

    Nuclear astrophysics using radioactive nuclear beams is one of the major research topics in Louvain-la-Neuve. Recently, experiment aiming at the measurement of (alpha,gamma), and (alpha,p) reactions have been performed. The sup 1 sup 5 O(alpha,gamma) sup 1 sup 9 Ne reaction was studied using an indirect method based on the study of the sup 1 sup 8 Ne(d, p) sup 1 sup 9 Ne sup *. Preliminary results of a new analysis of this experiment are presented here. The new mass recoil separator ARES, coupled to the new cyclotron CYCLONE-44, is now operational. The ARES project status and results of performance tests are reported here.

  7. Balloon-Borne, High-Energy Astrophysics: Experiences from the 1960s to the 1980s

    Science.gov (United States)

    Fishman, Gerald J.

    2008-01-01

    Observational high-energy astrophysics in the hard-x-ray and gamma-ray regions owes its development and initial successes to the balloon-borne development of detector systems, as well as pioneering observations, primarily in the timeframe from the 1960s to the 1990s. I will describe some of the first observations made by the Rice University balloon group in the 1960s, including the impetus for these observations. The appearance of SN 1987a led to several balloon-flight campaigns, sponsored by NASA, from Alice Springs, Australia in 1987 and 1988. During the 1980s, prototypes of instruments for the Compton Gamma Ray Observatory were flown on many balloon flights, which greatly enhanced the success of that mission.

  8. Fullerenes, PAHs, Amino Acids and High Energy Astrophysics

    Directory of Open Access Journals (Sweden)

    Susana Iglesias-Groth

    2014-12-01

    Full Text Available We present theoretical, observational and laboratory work on the spectral properties of fullerenes and hydrogenated fullerenes. Fullerenes in its various forms (individual, endohedral, hydrogenated, etc. can contribute to the UV bump in the extinction curves measured in many lines of sight of the Galaxy. They can also produce a large number of absorption features in the optical and near infrared which could be associated with diffuse interstellar bands. We summarise recent laboratory work on the spectral characterisation of fullerenes and hydrogenated fullerenes (for a range of temperatures. The recent detection of mid-IR bands of fullerenes in various astrophysical environments (planetary nebulae, reflection nebulae provide additional evidence for a link between fullerene families and diffuse interstellar bands. We describe recent observational work on near IR bands of C60+ in a protoplanetary nebula which support fullerene formation during the post-AGB phase. We also report on the survival of fullerenes to irradiation by high energy particles and gamma photons and laboratory work to explore the chemical  reactions that take place when fullerenes are exposed to this radiations in the presence of water, ammonia and other molecules as a potential path to form amino acids.

  9. White paper on nuclear astrophysics and low energy nuclear physics Part 1: Nuclear astrophysics

    Science.gov (United States)

    Arcones, Almudena; Bardayan, Dan W.; Beers, Timothy C.; Bernstein, Lee A.; Blackmon, Jeffrey C.; Messer, Bronson; Brown, B. Alex; Brown, Edward F.; Brune, Carl R.; Champagne, Art E.; Chieffi, Alessandro; Couture, Aaron J.; Danielewicz, Pawel; Diehl, Roland; El-Eid, Mounib; Escher, Jutta E.; Fields, Brian D.; Fröhlich, Carla; Herwig, Falk; Hix, William Raphael; Iliadis, Christian; Lynch, William G.; McLaughlin, Gail C.; Meyer, Bradley S.; Mezzacappa, Anthony; Nunes, Filomena; O'Shea, Brian W.; Prakash, Madappa; Pritychenko, Boris; Reddy, Sanjay; Rehm, Ernst; Rogachev, Grigory; Rutledge, Robert E.; Schatz, Hendrik; Smith, Michael S.; Stairs, Ingrid H.; Steiner, Andrew W.; Strohmayer, Tod E.; Timmes, F. X.; Townsley, Dean M.; Wiescher, Michael; Zegers, Remco G. T.; Zingale, Michael

    2017-05-01

    This white paper informs the nuclear astrophysics community and funding agencies about the scientific directions and priorities of the field and provides input from this community for the 2015 Nuclear Science Long Range Plan. It summarizes the outcome of the nuclear astrophysics town meeting that was held on August 21-23, 2014 in College Station at the campus of Texas A&M University in preparation of the NSAC Nuclear Science Long Range Plan. It also reflects the outcome of an earlier town meeting of the nuclear astrophysics community organized by the Joint Institute for Nuclear Astrophysics (JINA) on October 9-10, 2012 Detroit, Michigan, with the purpose of developing a vision for nuclear astrophysics in light of the recent NRC decadal surveys in nuclear physics (NP2010) and astronomy (ASTRO2010). The white paper is furthermore informed by the town meeting of the Association of Research at University Nuclear Accelerators (ARUNA) that took place at the University of Notre Dame on June 12-13, 2014. In summary we find that nuclear astrophysics is a modern and vibrant field addressing fundamental science questions at the intersection of nuclear physics and astrophysics. These questions relate to the origin of the elements, the nuclear engines that drive life and death of stars, and the properties of dense matter. A broad range of nuclear accelerator facilities, astronomical observatories, theory efforts, and computational capabilities are needed. With the developments outlined in this white paper, answers to long standing key questions are well within reach in the coming decade.

  10. Plasma Astrophysics, Part II Reconnection and Flares

    CERN Document Server

    Somov, Boris V

    2013-01-01

    This two-part book is devoted to classic fundamentals and current practices and perspectives of modern plasma astrophysics. This second part discusses the physics of magnetic reconnection and flares of electromagnetic origin in space plasmas in the solar system, single and double stars, relativistic objects, accretion disks and their coronae. More than 25% of the text is updated from the first edition, including the additions of new figures, equations and entire sections on topics such as topological triggers for solar flares and the magnetospheric physics problem. This book is aimed at professional researchers in astrophysics, but it will also be useful to graduate students in space sciences, geophysics, applied physics and mathematics, especially those seeking a unified view of plasma physics and fluid mechanics.

  11. Doppler tomography in fusion plasmas and astrophysics

    DEFF Research Database (Denmark)

    Salewski, Mirko; Geiger, B.; Heidbrink, W. W.

    2015-01-01

    Doppler tomography is a well-known method in astrophysics to image the accretion flow, often in the shape of thin discs, in compact binary stars. As accretion discs rotate, all emitted line radiation is Doppler-shifted. In fast-ion Dα (FIDA) spectroscopy measurements in magnetically confined plasma......, the Dα-photons are likewise Doppler-shifted ultimately due to gyration of the fast ions. In either case, spectra of Doppler-shifted line emission are sensitive to the velocity distribution of the emitters. Astrophysical Doppler tomography has lead to images of accretion discs of binaries revealing bright...... spots, spiral structures and flow patterns. Fusion plasma Doppler tomography has led to an image of the fast-ion velocity distribution function in the tokamak ASDEX Upgrade. This image matched numerical simulations very well. Here we discuss achievements of the Doppler tomography approach, its promise...

  12. Modern fluid dynamics for physics and astrophysics

    CERN Document Server

    Regev, Oded; Yecko, Philip A

    2016-01-01

    This book grew out of the need to provide students with a solid introduction to modern fluid dynamics. It offers a broad grounding in the underlying principles and techniques used, with some emphasis on applications in astrophysics and planetary science. The book comprehensively covers recent developments, methods and techniques, including, for example, new ideas on transitions to turbulence (via transiently growing stable linear modes), new approaches to turbulence (which remains the enigma of fluid dynamics), and the use of asymptotic approximation methods, which can give analytical or semi-analytical results and complement fully numerical treatments. The authors also briefly discuss some important considerations to be taken into account when developing a numerical code for computer simulation of fluid flows. Although the text is populated throughout with examples and problems from the field of astrophysics and planetary science, the text is eminently suitable as a general introduction to fluid dynamics. It...

  13. Neutrino particle astrophysics: status and outlook

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    The discovery of astrophysical neutrinos at high energy by IceCube raises a host of questions: What are the sources? Is there a Galactic as well as an extragalactic component? How does the astrophysical spectrum continue to lower energy where the dominant signal is from atmospheric neutrinos? Is there a measureable flux of cosmogenic neutrinos at higher energy? What is the connection to cosmic rays? At what level and in what energy region should we expect to see evidence of the π0 decay photons that must accompany the neutrinos at production? Such questions are stimulating much theoretical activity and many multi-wavelength follow-up observations as well as driving plans for new detectors. My goal in this presentation will be to connect the neutrino data and their possible interpretations to ongoing multi-messenger observations and to the design of future detectors.

  14. Numerical Methods for Radiation Magnetohydrodynamics in Astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Klein, R I; Stone, J M

    2007-11-20

    We describe numerical methods for solving the equations of radiation magnetohydrodynamics (MHD) for astrophysical fluid flow. Such methods are essential for the investigation of the time-dependent and multidimensional dynamics of a variety of astrophysical systems, although our particular interest is motivated by problems in star formation. Over the past few years, the authors have been members of two parallel code development efforts, and this review reflects that organization. In particular, we discuss numerical methods for MHD as implemented in the Athena code, and numerical methods for radiation hydrodynamics as implemented in the Orion code. We discuss the challenges introduced by the use of adaptive mesh refinement in both codes, as well as the most promising directions for future developments.

  15. International Conference on Particle Physics and Astrophysics

    CERN Document Server

    2015-01-01

    The International Conference on Particle Physics and Astrophysics (ICPPA-2015) will be held in Moscow, Russia, from October 5 to 10, 2015. The conference is organized by Center of Basic Research and Particle Physics of National Research Nuclear University “MEPhI”. The aim of the Conference is to promote contacts between scientists and development of new ideas in fundamental research. Therefore we will bring together experts and young scientists working on experimental and theoretical aspects of nuclear, particle, astroparticle physics and cosmology. ICPPA-2015, aims to present the most recent results in astrophysics and collider physics and reports from the main experiments currently taking data. The working languages of the conference are English and Russian.

  16. Electrodynamics and spacetime geometry: Astrophysical applications

    CERN Document Server

    Cabral, Francisco

    2016-01-01

    After a brief review of the foundations of (pre-metric) electromagnetism in differential forms, we proceed with the tensor formulation and explore physical consequences of Maxwell's equations in curved spacetime. The generalized Gauss and Maxwell-Amp\\`ere laws, as well as the wave equations, reveal potentially interesting astrophysical applications. The physical implications of these equations are explored and some solutions are obtained. In all cases new electromagnetic couplings and related phenomena are induced by the spacetime curvature. The applications of astrophysical interest considered here correspond essentially to the following geometries: the Schwarzschild spacetime and the spacetime around a rotating spherical mass in the weak field and slow rotation regime. In the latter, we use the Parameterised Post-Newtonian (PPN) formalism. In general, new electromagnetic effects induced by spacetime curvature include the following: Gravitational contributions for the decay of electric and magnetic fields in...

  17. A pair spectrometer for nuclear astrophysics experiments

    Energy Technology Data Exchange (ETDEWEB)

    Guerro, L.; Saltarelli, A.; Tabassam, U. [University of Camerino, Division of Physics, School of Science and Technology, Camerino (Italy); INFN, Sezione di Perugia, Perugia (Italy); Di Leva, A. [INFN, Napoli (Italy); University of Naples ' ' Federico II' ' , Physics Department, Naples (Italy); Gialanella, L.; De Cesare, N.; D' Onofrio, A.; Terrasi, F. [Second University of Naples, Department of Mathematics and Physics, Caserta (Italy); INFN, Napoli (Italy); Schuermann, D.; Romoli, M. [INFN, Napoli (Italy); Busso, M. [INFN, Sezione di Perugia, Perugia (Italy); University of Perugia, Department of Physics, Perugia (Italy)

    2014-11-15

    Non-radiative transitions in nuclear capture reactions between light nuclei play a relevant role in stellar nuclear astrophysics, where nuclear processes occur at typical energies from tens to hundreds of keV. At higher energies, instead, the E0 contributions may be shadowed by more intense transitions. The experimental study of E0 transitions requires a specific detection setup, able to uniquely identify events where an electron-positron pair is produced. A compact ΔE-E charged-particle spectrometer based on two silicon detectors has been designed to be installed in the jet gas target chamber of the recoil mass separator ERNA (European Recoil separator for Nuclear Astrophysics) at the CIRCE laboratory of Caserta, Italy. The detector design, its performances and the first foreseen applications are described. (orig.)

  18. Neutrino masses in astrophysics and cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Raffelt, G.G. [Max-Planck-Institut fuer Physik, Muenchen (Germany)

    1996-11-01

    Astrophysical and cosmological arguments and observations give us the most restrictive constraints on neutrino masses, electromagnetic couplings, and other properties. Conversely, massive neutrinos would contribute to the cosmic dark-matter density and would play an important role for the formation of structure in the universe. Neutrino oscillations may well solve the solar neutrino problem, and can have a significant impact on supernova physics. (author) 14 figs., tabs., 33 refs.

  19. Cosmology and Particle Astrophysics at Kavli Ipmu

    Science.gov (United States)

    Aihara, Hiroaki

    2013-12-01

    Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU) currently undertakes two large-scale projects in cosmology and particle astrophysics. One is Subaru Measurement of Images and Redshifts, the Sumire project. It observes images and redshifts of the galaxies using Subaru telescope to study cosmology and astronomy. The other is XMASS experiment aiming to detect the cold dark matter using liquid Xenon. We provide a brief introductory description of these projects.

  20. Color-charged Quark Matter in Astrophysics?

    OpenAIRE

    Qiu, Congxin; Xu, Renxin

    2006-01-01

    Color confinement is only a supposition, which has not been proved in QCD yet. It is proposed here that macroscopic quark gluon plasma in astrophysics could hardly maintain colorless because of causality. The authors expected that the existence of chromatic strange quark stars as well as chromatic strangelets preserved from the QCD phase transition in the early universe could be unavoidable if their colorless correspondents do exist.

  1. On Validating an Astrophysical Simulation Code

    Science.gov (United States)

    Calder, A. C.; Fryxell, B.; Plewa, T.; Rosner, R.; Dursi, L. J.; Weirs, V. G.; Dupont, T.; Robey, H. F.; Kane, J. O.; Remington, B. A.; Drake, R. P.; Dimonte, G.; Zingale, M.; Timmes, F. X.; Olson, K.; Ricker, P.; MacNeice, P.; Tufo, H. M.

    2002-11-01

    We present a case study of validating an astrophysical simulation code. Our study focuses on validating FLASH, a parallel, adaptive-mesh hydrodynamics code for studying the compressible, reactive flows found in many astrophysical environments. We describe the astrophysics problems of interest and the challenges associated with simulating these problems. We describe methodology and discuss solutions to difficulties encountered in verification and validation. We describe verification tests regularly administered to the code, present the results of new verification tests, and outline a method for testing general equations of state. We present the results of two validation tests in which we compared simulations to experimental data. The first is of a laser-driven shock propagating through a multilayer target, a configuration subject to both Rayleigh-Taylor and Richtmyer-Meshkov instabilities. The second test is a classic Rayleigh-Taylor instability, where a heavy fluid is supported against the force of gravity by a light fluid. Our simulations of the multilayer target experiments showed good agreement with the experimental results, but our simulations of the Rayleigh-Taylor instability did not agree well with the experimental results. We discuss our findings and present results of additional simulations undertaken to further investigate the Rayleigh-Taylor instability.

  2. Astrophysically Relevant Instabilities at a Decelerating Interface.

    Science.gov (United States)

    Calder, A. C.; Fryxell, B.; Rosner, R.; Kane, J.; Remington, B. A.; Robey, H.; Keiter, P.; Drake, R. P.; Knauer, J.; Dursi, L. J.; Olson, K.; Ricker, P. M.; Timmes, F. X.; Zingale, M.; Tufo, H.; MacNeice, P.

    2000-10-01

    Hydrodynamic instabilities play an important role in many astrophysical phenomena, and modern intense lasers offer the chance to experimentally investigate these instabilities in similar environments in a laboratory. In this poster, we report on experimental and theoretical progress in ongoing research in laser astrophysics. We presents results of simulations of experiments performed using the University of Rochester's Omega laser facility. These experiments involve shock propagation through multi-layer targets, and are designed to replicate the complex hydrodynamic instabilities thought to arise during supernovae explosions. The simulations were performed with the FLASH code, developed by the ASCI/ASAP Center for Astrophysical Thermonuclear Flashes at the University of Chicago, and we are planning on a study making use of a realistic equation of state. We present results of an experimental study of 2-D vs. 3-D perturbation growth rates also performed at the Omega laser facility. Data from experiments with nominally identical two-layer targets, but 2-D or 3-D perturbations, show clear differences between the evolution of 2-D vs. 3-D perturbations. We also present simulations showing qualitatively similar features for comparison. This work is supported by the US Department of Energy.

  3. Traversable braneworld wormholes supported by astrophysical observations

    Science.gov (United States)

    Wang, Deng; Meng, Xin-He

    2018-02-01

    In this study, we investigate the characteristics and properties of a traversable wormhole constrained by the current astrophysical observations in the framework of modified theories of gravity (MOG). As a concrete case, we study traversable wormhole space-time configurations in the Dvali-Gabadadze-Porrati (DGP) braneworld scenario, which are supported by the effects of the gravity leakage of extra dimensions. We find that the wormhole space-time structure will open in terms of the 2 σ confidence level when we utilize the joint constraints supernovae (SNe) Ia + observational Hubble parameter data (OHD) + Planck + gravitational wave (GW) and z wormholes can be divided into four classes during the evolutionary processes of the universe based on various energy conditions; (ii) we can offer a strict restriction to the local wormhole space-time structure by using the current astrophysical observations; and (iii) we can clearly identify a physical gravitational resource for the wormholes supported by astrophysical observations, namely the dark energy components of the universe or equivalent space-time curvature effects from MOG. Moreover, we find that the strong energy condition is always violated at low redshifts.

  4. High-Energy-Density, Laboratory-Astrophysics Studies of Jets and Bow Shocks

    Energy Technology Data Exchange (ETDEWEB)

    Foster, J M; Wilde, B H; Rosen, P A; Perry, T S; Khokhlov, A M; Coker, R F; Frank, A; Keiter, P A; Blue, B E; Drake, R P; Knauer, J P; Williams, R R

    2005-01-24

    Large-scale directional outflows of supersonic plasma, also known as ''jets'', are ubiquitous phenomena in astrophysics [1]. The interaction of such jets with surrounding matter often results in spectacular bow shocks, and intense radiation from radio to gamma-ray wavelengths. The traditional approach to understanding such phenomena is through theoretical analysis and numerical simulations. However, such numerical simulations have limited resolution, often assume axial symmetry, do not include all relevant physical processes, and fail to scale correctly in Reynolds number and perhaps other key dimensionless parameters. Additionally, they are frequently not tested by comparison with laboratory experiments. Recent advances in high-energy-density physics using large inertial-confinement-fusion devices now allow controlled laboratory experiments on macroscopic volumes of plasma of direct relevance relevant to astrophysics [2]. In this Letter we report the first results of experiments designed to study the evolution of supersonic plasma jets and the bow shocks they drive into a surrounding medium. Our experiments reveal both regular and highly complex flow patterns in the bow shock, thus opening a new window--complementary to computer simulations--into understanding the nature of three-dimensional astrophysical jets.

  5. Gamma-Ray Bursts The Brightest Explosions in the Universe

    CERN Document Server

    Vedrenne, Gilbert

    2009-01-01

    Since their discovery was first announced in 1973, gamma-ray bursts (GRBs) have been among the most fascination objects in the universe. While the initial mystery has gone, the fascination continues, sustained by the close connection linking GRBs with some of the most fundamental topics in modern astrophysics and cosmology. Both authors have been active in GRB observations for over two decades and have produced an outstanding account on both the history and the perspectives of GRB research.

  6. The Fermi Gamma-Ray Space Telescope, Exploding Stars, Neutron Stars, and Black Holes

    Science.gov (United States)

    Thompson, David J.

    2010-01-01

    Since August, 2008, the Fermi Gamma-ray Space Telescope has been scanning the sky, producing a full-sky image every three hours. These cosmic gamma-rays come from extreme astrophysical phenomena, many related to exploding stars (supernovae) or what these explosions leave behind: supernova remnants, neutron stars, and black holes. This talk uses sample Fermi results, plus simple demonstrations, to illustrate the exotic properties of these endpoints of stellar evolution.

  7. Cosmic Ray Astrophysics using The High Altitude Water Cherenkov (HAWC) Observatory in México

    Science.gov (United States)

    de la Fuente, Eduardo; Díaz-Vélez, Juan Carlos; Almada, Alberto Hernández; Nigoche-Netro, Alberto

    2017-06-01

    The High-Altitude Water Cherenkov (HAWC) TeV gamma-ray Observatory in México is ready to search and study gamma-ray emission regions, extremely high-energy cosmic-ray sources, and to identify transient phenomena. With a better Gamma/Hadron rejection method than other similar experiments, it will play a key role in triggering multi-wavelength and multi-messenger studies of active galaxies (AGN), gamma-ray bursts (GRB), supernova remnants (SNR), pulsar wind nebulae (PWN), Galactic Plane Sources, and Cosmic Ray Anisotropies. It has an instantaneous field-of-view of ˜2 str, equivalent to 15% of the whole sky and continuous operation (24 hours per day). The results obtained by HAWC-111 (111 detectors in operation) were presented on the proceedings of the International Cosmic Ray Conference 2015 and in [1]. The results obtained by HAWC-300 (full operation) are now under analysis and will be published in forthcoming papers starting in 2017 (see preliminary results on http://www.hawc-observatory.org/news/). Here we present the HAWC contributions on cosmic ray astrophysics via anisotropies studies, summarizing the HAWC detector and its upgrading by the installation of "outriggers".

  8. Workshop on the origin of the heavy elements: Astrophysical models and experimental challenges, Santa Fe, New Mexico, September 3-4, 1999

    Energy Technology Data Exchange (ETDEWEB)

    Robert C. Haight; John L. Ullmann; Daniel D. Strottman; Paul E. Koehler; Franz Kaeppeler

    2000-01-01

    This Workshop was held on September 3--4, 1999, following the 10th International Symposium on Capture Gamma-Ray Spectroscopy. Presentations were made by 14 speakers, 6 from the US and 8 from other countries on topics relevant to s-, r- and rp-process nucleosynthesis. Laboratory experiments, both present and planned, and astrophysical observations were represented as were astrophysical models. Approximately 50 scientists participated in this Workshop. These Proceedings consist of copies of vu-graphs presented at the Workshop. For further information, the interested readers are referred to the authors.

  9. RoboPol: blazar astrophysics from Skinakas with a unique optical

    Science.gov (United States)

    Pavlidou, V.

    2013-09-01

    Blazars are the most active galaxies known. They are powered by relativistic jets of matter speeding towards us almost head-on at the speed of light, radiating exclusively through extreme, non-thermal particle interactions, energized by accretion onto supermassive black holes. Despite intensive observational and theoretical efforts over the last four decades, the details of blazar astrophysics remain elusive. The launch of NASA's Fermi Gamma-ray Space Telescope in 2008 has provided an unprecedented opportunity for the systematic study of blazar jets and has prompted large-scale blazar monitoring efforts across wavelengths. In such a multi-wavelength campaign, a novel effect was discovered: fast changes in the optical polarization during gamma-ray flares. Such events probe the magnetic field structure in the jet and the evolution of disturbances responsible for blazar flares. Their systematic study can answer long-standing questions in our theoretical understanding of jets; however, until recently, optical polarimetry programs in operation were not adequate to find and follow similar events with the efficiency and time-resolution needed. RoboPol is a massive program of optical polarimetric monitoring of over 100 blazars, using an innovative, specially-designed and built polarimeter mounted on the 1.3 m telescope at Skinakas Observatory, a dynamical observing schedule, and a large amount of dedicated telescope time. The program is a collaboration between the University of Crete and the Foundation for Research and Technology - Hellas in Greece, the Max-Planck Institute for Radioastronomy in Germany, Caltech in the US, the Nicolaus Copernicus University in Poland, and the Inter-University Centre for Astronomy and Astrophysics in India. The instrument was successfully commissioned in March of 2013 and has been taking data since. In this talk we will review the RoboPol program, its potential for discovery in blazar astrophysics, and we will present results from its first

  10. Gamma ray generator

    Science.gov (United States)

    Firestone, Richard B; Reijonen, Jani

    2014-05-27

    An embodiment of a gamma ray generator includes a neutron generator and a moderator. The moderator is coupled to the neutron generator. The moderator includes a neutron capture material. In operation, the neutron generator produces neutrons and the neutron capture material captures at least some of the neutrons to produces gamma rays. An application of the gamma ray generator is as a source of gamma rays for calibration of gamma ray detectors.

  11. XMM-Newton Observations Reveal the X-ray Counterpart of the Very-high-energy gamma-ray Source HESS J1640-465

    Energy Technology Data Exchange (ETDEWEB)

    Funk, S.; Hinton, J.A.; Puhlhofer, G.; Aharonian, F.A.; Hofmann, W.; Reimer, O.; Wagner, S.; /KIPAC, Menlo Park /Heidelberg, Max Planck Inst. /Leeds U. /Dublin Inst. /Stanford U., HEPL; Funk, S.; Hinton, J.A.; Puehlhofer, G.; Aharonian, F.A.; Hofmann, W.; Reimer, O.; Wagner, S.

    2007-03-05

    We present X-ray observations of the as of yet unidentified very high-energy (VHE) {gamma}-ray source HESS J1640-465 with the aim of establishing a counterpart of this source in the keV energy range, and identifying the mechanism responsible for the VHE emission. The 21.8 ksec XMM-Newton observation of HESS J1640-465 in September 2005 represents a significant improvement in sensitivity and angular resolution over previous ASCA studies in this region. These new data show a hard-spectrum X-ray emitting object at the centroid of the H.E.S.S. source, within the shell of the radio Supernova Remnant (SNR) G338.3-0.0. This object is consistent with the position and flux previously measured by both ASCA and Swift-XRT but is now shown to be significantly extended. We argue that this object is very likely the counterpart to HESS J1640-465 and that both objects may represent the Pulsar Wind Nebula of an as of yet undiscovered pulsar associated with G338.3-0.0.

  12. Modules for Experiments in Stellar Astrophysics (MESA)

    Science.gov (United States)

    Paxton, Bill; Bildsten, Lars; Dotter, Aaron; Herwig, Falk; Lesaffre, Pierre; Timmes, Frank

    2011-01-01

    Stellar physics and evolution calculations enable a broad range of research in astrophysics. Modules for Experiments in Stellar Astrophysics (MESA) is a suite of open source, robust, efficient, thread-safe libraries for a wide range of applications in computational stellar astrophysics. A one-dimensional stellar evolution module, MESAstar, combines many of the numerical and physics modules for simulations of a wide range of stellar evolution scenarios ranging from very low mass to massive stars, including advanced evolutionary phases. MESAstar solves the fully coupled structure and composition equations simultaneously. It uses adaptive mesh refinement and sophisticated timestep controls, and supports shared memory parallelism based on OpenMP. State-of-the-art modules provide equation of state, opacity, nuclear reaction rates, element diffusion data, and atmosphere boundary conditions. Each module is constructed as a separate Fortran 95 library with its own explicitly defined public interface to facilitate independent development. Several detailed examples indicate the extensive verification and testing that is continuously performed and demonstrate the wide range of capabilities that MESA possesses. These examples include evolutionary tracks of very low mass stars, brown dwarfs, and gas giant planets to very old ages; the complete evolutionary track of a 1 M sun star from the pre-main sequence (PMS) to a cooling white dwarf; the solar sound speed profile; the evolution of intermediate-mass stars through the He-core burning phase and thermal pulses on the He-shell burning asymptotic giant branch phase; the interior structure of slowly pulsating B Stars and Beta Cepheids; the complete evolutionary tracks of massive stars from the PMS to the onset of core collapse; mass transfer from stars undergoing Roche lobe overflow; and the evolution of helium accretion onto a neutron star. MESA can be downloaded from the project Web site (http://mesa.sourceforge.net/).

  13. Bibliometric indicators of young authors in astrophysics

    DEFF Research Database (Denmark)

    Havemann, Frank; Larsen, Birger

    2015-01-01

    their first landmark paper with the distributions of these indicators over a random control group of young authors in astronomy and astrophysics. We find that field and citation-window normalisation substantially improves the predicting power of citation indicators. The sum of citation numbers normalised...... with expected citation numbers is the only indicator which shows differences between later stars and random authors significant on a 1 % level. Indicators of paper output are not very useful to predict later stars. The famous h-index makes no difference at all between later stars and the random control group....

  14. 3D Immersive Visualization with Astrophysical Data

    Science.gov (United States)

    Kent, Brian R.

    2017-01-01

    We present the refinement of a new 3D immersion technique for astrophysical data visualization.Methodology to create 360 degree spherical panoramas is reviewed. The 3D software package Blender coupled with Python and the Google Spatial Media module are used together to create the final data products. Data can be viewed interactively with a mobile phone or tablet or in a web browser. The technique can apply to different kinds of astronomical data including 3D stellar and galaxy catalogs, images, and planetary maps.

  15. Dimensional analysis and group theory in astrophysics

    CERN Document Server

    Kurth, Rudolf

    2013-01-01

    Dimensional Analysis and Group Theory in Astrophysics describes how dimensional analysis, refined by mathematical regularity hypotheses, can be applied to purely qualitative physical assumptions. The book focuses on the continuous spectral of the stars and the mass-luminosity relationship. The text discusses the technique of dimensional analysis, covering both relativistic phenomena and the stellar systems. The book also explains the fundamental conclusion of dimensional analysis, wherein the unknown functions shall be given certain specified forms. The Wien and Stefan-Boltzmann Laws can be si

  16. Physics, Astrophysics and Cosmology with Gravitational Waves.

    Science.gov (United States)

    Sathyaprakash, B S; Schutz, Bernard F

    2009-01-01

    Gravitational wave detectors are already operating at interesting sensitivity levels, and they have an upgrade path that should result in secure detections by 2014. We review the physics of gravitational waves, how they interact with detectors (bars and interferometers), and how these detectors operate. We study the most likely sources of gravitational waves and review the data analysis methods that are used to extract their signals from detector noise. Then we consider the consequences of gravitational wave detections and observations for physics, astrophysics, and cosmology.

  17. ASTROPHYSICS: Neutron Stars Imply Relativity's a Drag.

    Science.gov (United States)

    Schilling, G

    2000-09-01

    A new finding, based on x-rays from distant neutron stars, could be the first clear evidence of a weird relativistic effect called frame dragging, in which a heavy chunk of spinning matter wrenches the space-time around it like an eggbeater. Using data from NASA's Rossi X-ray Timing Explorer, three astronomers in Amsterdam found circumstantial evidence for frame dragging in the flickering of three neutron stars in binary systems. They announced their results in the 1 September issue of The Astrophysical Journal.

  18. Light dark matter versus astrophysical constraints

    OpenAIRE

    Cline, James M.; Frey, Andrew R.

    2011-01-01

    Hints of direct dark matter detection coming from the DAMA, CoGeNT experiments point toward light dark matter with isospin-violating and possibly inelastic couplings. However an array of astrophysical constraints are rapidly closing the window on light dark matter. We point out that if the relic density is determined by annihilation into invisible states, these constraints can be evaded. As an example we present a model of quasi-Dirac dark matter, interacting via two U(1) gauge bosons, one of...

  19. Showing Complex Astrophysical Settings Through Virtual Reality

    Science.gov (United States)

    Green, Joel; Smith, Denise; Smith, Louis Chad; Lawton, Brandon; Lockwood, Alexandra; Jirdeh, Hussein

    2018-01-01

    The James Webb Space Telescope (JWST), NASA’s next great observatory launching in spring 2019, will routinely showcase astrophysical concepts that will challenge the public's understanding. Emerging technologies such as virtual reality bring the viewer into the data and the concept in previously unimaginable immersive detail. For example, we imagine a spacefarer inside a protoplanetary disk, seeing the accretion process directly. STScI is pioneering some tools related to JWST for showcasing at AAS, and in local events, which I highlight here. If we develop materials properly tailored to this medium, we can reach more diverse audiences than ever before.

  20. Alpha resonant scattering for astrophysical reaction studies

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, H.; Kahl, D.; Nakao, T. [Center for Nuclear Study (CNS), University of Tokyo, RIKEN campus, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Wakabayashi, Y.; Kubano, S. [The Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Hashimoto, T. [Research Center for Nuclear Physics (RCNP), Osaka University, 10-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Hayakawa, S. [Istituto Nazionale Fisica Nucleare - Laboratori Nazionali del Sud (INFN-LNS), Via S. Sofia 62, 95125 Catania (Italy); Kawabata, T. [Department of Physics, Kyoto University, Kita-Shirakawa, Kyoto 606-8502 (Japan); Iwasa, N. [Department of Physics, Tohoku University, Aoba, Sendai, Miyagi 980-8578 (Japan); Teranishi, T. [Department of Physics, Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-8581 (Japan); Kwon, Y. K. [Institute for Basic Science, 70, Yuseong-daero 1689-gil, Yuseong-gu, Daejeon 305-811 (Korea, Republic of); Binh, D. N. [30 MeV Cyclotron Center, Tran Hung Dao Hospital, Hoan Kiem District, Hanoi (Viet Nam); Khiem, L. H.; Duy, N. G. [Institute of Physics, Vietnam Academy of Science and Technology, 18 Hong Quoc Viet, Nghia do, Hanoi (Viet Nam)

    2014-05-02

    Several alpha-induced astrophysical reactions have been studied at CRIB (CNS Radioactive Ion Beam separator), which is a low-energy RI beam separator at Center for Nuclear Study (CNS) of the University of Tokyo. One of the methods to study them is the α resonant scattering using the thick-target method in inverse kinematics. Among the recent studies at CRIB, the measurement of {sup 7}Be+α resonant scattering is discussed. Based on the result of the experiment, we evaluated the contributions of high-lying resonances for the {sup 7}Be(α,γ) reaction, and proposed a new cluster band in {sup 11}C.

  1. Reaction Studies for Explosive Nuclear Astrophysics

    Science.gov (United States)

    Woods, Philip J.

    The paper describes experimental approaches to measuring key nuclear astrophysical reactions involving radioactive isotopes. Specifically the paper considers the utilisation of (d, n) and (d, p) transfer reactions to probe the strengths of key resonances in the hydrogen burning/proton capture reactions 30P(p, γ) and 26Al(p, γ). The use of a radioactive target and silicon strip detector set-ups to study the key 26Al(n, p) and (n, α) destruction reactions relevant to explosive burning conditions in core collapse supernovae is also reported.

  2. Physics, Astrophysics and Cosmology with Gravitational Waves

    Directory of Open Access Journals (Sweden)

    Sathyaprakash B. S.

    2009-03-01

    Full Text Available Gravitational wave detectors are already operating at interesting sensitivity levels, and they have an upgrade path that should result in secure detections by 2014. We review the physics of gravitational waves, how they interact with detectors (bars and interferometers, and how these detectors operate. We study the most likely sources of gravitational waves and review the data analysis methods that are used to extract their signals from detector noise. Then we consider the consequences of gravitational wave detections and observations for physics, astrophysics, and cosmology.

  3. MAGIC gamma-ray telescopes hunting for neutrinos and their sources

    Science.gov (United States)

    Góra, D.; Bernardini, E.; Satalecka, K.; Noda, K.; Manganaro, M.; López, M.; MAGIC Collaboration

    2017-09-01

    The discovery of an astrophysical flux of high-energy neutrinos by the IceCube Collaboration marks a major breakthrough in the ongoing search for the origin of cosmic rays. Presumably, the neutrinos, together with gamma rays, result from pion decay, following hadronic interactions of protons accelerated in astrophysical objects to ultra-relativistic energies. So far, the neutrino sky map shows no significant indication of astrophysical sources. Here, we report first results from follow-up observations, of sky regions where IceCube has detected muon tracks from energetic neutrinos, using the MAGIC telescopes which are sensitive to gamma rays at TeV energies. Furthermore, we show that MAGIC has the potential to distinguish air showers induced by tau neutrinos from the background of hadronic showers in the PeV-EeV energy range, employing a novel analysis method to the data obtained with high-zenith angle observations.

  4. International spring school observing the X-and gamma-ray sky

    Energy Technology Data Exchange (ETDEWEB)

    Paul, J.; Longair, M.; Von Ballmoos, P.; Daigne, F.; Baring, M.; Gudel, M.; King, A.; Dotani, T.; Arnaud, M.; Gudel, M.; Malzac, J.; Servillat, M.; Soldi, S.; Corbel, S.; Beckmann, V.; Rodriguez, J.; Erlund, M.; Bodaghee, A.; Graham, J.; Ruiz, A.; Corbel, S.; Fabian, A.; Tagger, M.; Grenier, I.; Bernard, R.; Jackson, N.; Eckart, A.; Grenier, I.; Belloni, T.; Stella, L.; Vink, J.; KnodLseder, J.; Hermsen, W.; Ferrando, Ph.; Ibragimov, A

    2006-07-01

    This school, dedicated to young researchers, will clarify our present knowledge of the X-ray sky and give the opportunity to learn about the observatories and tools which are available. The contributions have been organized into 3 issues: -) fundamental physics, -) X-ray and Gamma-ray instruments and analysis techniques, and -) astrophysical objects. This document gathers only the slides of the presentations.

  5. Principal Component Analysis of Long-Lag, Wide-Pulse Gamma ...

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... Home; Journals; Journal of Astrophysics and Astronomy; Volume 35; Issue 3 ... Part VII: Other Topics Volume 35 Issue 3 September 2014 pp 527-528 ... We have carried out a Principal Component Analysis (PCA) of the temporal and spectral variables of 24 long-lag, wide-pulse gamma-ray bursts (GRBs) ...

  6. EDGE: explorer of diffuse emission and gamma-ray burst explosions

    NARCIS (Netherlands)

    den Herder, J.W.; Piro, L.; Ohashi, T.; Amati, L.; Atteia, J.; Barthelmy, S.D.; Barbera, M.; Barret, D.; Basso, S.; de Boer, M.; Borgani, S.; Boyarskiy, O.; Branchini, E.; Branduardi-Raymont, G.; Briggs, M.; Brunetti, G.; Budtz-Jorgensenf, C.; Burrows, D.N.; Campana, S.; Caroli, E.; Chincarini, G.; Christensen, F.; Cocchi, M.; Comastri, A.; Corsi, A.; Cotroneo, V.; Conconi, P.; Colasanti, L.; Cusamano, G.; Rosa, A.; Del Santo, M.; Ettori, S.; Ezoe, Y.; Ferrari, L.; Feroci, M.; Finger, M.; Fishman, G.; Fujimoto, R.; Galeazzi, M.; Galli, A.; Gatti, F.; Gehrels, N.; Gendre, B.; Ghirlanda, G.; Ghisellini, G.; Giommi, P.; Girardi, M.; Guzzo, L.; Haardt, F.; Hepburn, I.; Hermsen, W.; Hoevers, H.; Holland, A.; in 't Zand, J.J.M.; Ishisaki, Y.; Kawahara, H.; Kawai, N.; Kaastra, J.; Kippen, M.; de Korte, P.A.J.; Kouveliotou, C.; Kusenko, A.; Labanti, C.; Lieu, R.; Macculi, C.; Makishima, K.; Matt, G.; Mazotta, P.; McCammon, D.; Méndez, M.; Mineo, T.; Mitchell, S.; Mitsuda, K.; Molendi, S.; Moscardini, L.; Mushotzky, R.; Natalucci, L.; Nicastro, F.; O'Brien, P.; Osborne, J.; Paerels, F.; Page, M.; Paltani, S.; Pareschi, G.; Perinati, E.; Perola, C.; Ponman, T.; Rasmussen, A.; Roncarelli, M.; Rosati, P.; Ruchayskiy, O.; Quadrini, E.; Sakurai, I.; Salvaterra, R.; Sasaki, S.; Wijers, R.; et al., [Unknown

    2007-01-01

    How structures of various scales formed and evolved from the early Universe up to present time is a fundamental question of astrophysics. EDGE will trace the cosmic history of the baryons from the early generations of massive stars by Gamma-Ray Burst (GRB) explosions, through the period of galaxy

  7. Fermi Gamma-Ray Space Telescope: Highlights of the GeV Sky

    Science.gov (United States)

    Thomspon, D. J.

    2011-01-01

    Because high-energy gamma rays can be produced by processes that also produce neutrinos. the gamma-ray survey of the sky by the Fermi Gamma-ray Space Telescope offers a view of potenl ial targds for neutrino observations. Gamma-ray bursts. active galactic nuclei, and supernova remnants are all sites where hadronic, neutrino-producing interactions are plausible. Pulsars, pulsar wind nebulae, and binary sources are all phenomena that reveal leptonic particle acceleration through their gamma-ray emission. \\Vhile important to gamma-ray astrophysics. such sources are of less interest to neutrino studies. This talk will present a broad overview of the constantly changing sky seen with the Large Area Telescope (LAT) on the Fermi spacecraft.

  8. Advanced Telescope for High Energy Nuclear Astrophysics (ATHENA)

    National Research Council Canada - National Science Library

    Johnson, W. N; Dermer, C; Kroeger, R. A; Kurfess, J. D; Gehrels, N; Grindlay, J; Leising, M. D; Prince, T; Purcell, W; Ryan, J; Tumer, T

    1995-01-01

    We present a space mission concept for a low energy gamma-ray telescope, ATHENA, which is under investigation as the next major advance in gamma-ray spectroscopy following the current COMPTON Gamma...

  9. Long-term TeV and X-ray observations of the gamma-ray binary HESS J0632+057

    Energy Technology Data Exchange (ETDEWEB)

    Aliu, E.; Errando, M. [Department of Physics and Astronomy, Barnard College, Columbia University, New York, NY 10027 (United States); Archambault, S. [Physics Department, McGill University, Montreal, QC H3A 2T8 (Canada); Aune, T. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States); Behera, B.; Chen, X. [DESY, Platanenallee 6, D-15738 Zeuthen (Germany); Beilicke, M.; Buckley, J. H.; Bugaev, V. [Department of Physics, Washington University, St. Louis, MO 63130 (United States); Benbow, W.; Cerruti, M. [Fred Lawrence Whipple Observatory, Harvard-Smithsonian Center for Astrophysics, Amado, AZ 85645 (United States); Berger, K. [Department of Physics and Astronomy and the Bartol Research Institute, University of Delaware, Newark, DE 19716 (United States); Bird, R. [School of Physics, University College Dublin, Belfield, Dublin 4 (Ireland); Bouvier, A. [Santa Cruz Institute for Particle Physics and Department of Physics, University of California, Santa Cruz, CA 95064 (United States); Byrum, K. [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States); Ciupik, L. [Astronomy Department, Adler Planetarium and Astronomy Museum, Chicago, IL 60605 (United States); Connolly, M. P. [School of Physics, National University of Ireland Galway, University Road, Galway (Ireland); Cui, W. [Department of Physics, Purdue University, West Lafayette, IN 47907 (United States); Duke, C. [Department of Physics, Grinnell College, Grinnell, IA 50112-1690 (United States); Dumm, J., E-mail: gernot.maier@desy.de, E-mail: afalcone@astro.psu.edu, E-mail: pol.bordas@uni-tuebingen.de [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States); Collaboration: VERITAS Collaboration; H.E.S.S. Collaboration; and others

    2014-01-10

    HESS J0632+057 is the only gamma-ray binary known so far whose position in the sky allows observations with ground-based observatories in both the northern and southern hemispheres. Here we report on long-term observations of HESS J0632+057 conducted with the Very Energetic Radiation Imaging Telescope Array System and High Energy Stereoscopic System Cherenkov telescopes and the X-ray satellite Swift, spanning a time range from 2004 to 2012 and covering most of the system's orbit. The very-high-energy (VHE) emission is found to be variable and is correlated with that at X-ray energies. An orbital period of 315{sub −4}{sup +6} days is derived from the X-ray data set, which is compatible with previous results, P = (321 ± 5) days. The VHE light curve shows a distinct maximum at orbital phases close to 0.3, or about 100 days after periastron passage, which coincides with the periodic enhancement of the X-ray emission. Furthermore, the analysis of the TeV data shows for the first time a statistically significant (>6.5σ) detection at orbital phases 0.6-0.9. The obtained gamma-ray and X-ray light curves and the correlation of the source emission at these two energy bands are discussed in the context of the recent ephemeris obtained for the system. Our results are compared to those reported for other gamma-ray binaries.

  10. GLAST and Ground-Based Gamma-Ray Astronomy

    Science.gov (United States)

    McEnery, Julie

    2008-01-01

    The launch of the Gamma-ray Large Area Space Telescope together with the advent of a new generation of ground-based gamma-ray detectors such as VERITAS, HESS, MAGIC and CANGAROO, will usher in a new era of high-energy gamma-ray astrophysics. GLAST and the ground based gamma-ray observatories will provide highly complementary capabilities for spectral, temporal and spatial studies of high energy gamma-ray sources. Joint observations will cover a huge energy range, from 20 MeV to over 20 TeV. The LAT will survey the entire sky every three hours, allowing it both to perform uniform, long-term monitoring of variable sources and to detect flaring sources promptly. Both functions complement the high-sensitivity pointed observations provided by ground-based detectors. Finally, the large field of view of GLAST will allow a study of gamma-ray emission on large angular scales and identify interesting regions of the sky for deeper studies at higher energies. In this poster, we will discuss the science returns that might result from joint GLAST/ground-based gamma-ray observations and illustrate them with detailed source simulations.

  11. Gamma-ray line measurements from supernova explosions

    Science.gov (United States)

    Diehl, Roland

    2017-02-01

    Gamma ray lines are expected to be emitted as part of the afterglow of supernova explosions, because radioactive decay of freshly synthesised nuclei occurs. Significant radioactive gamma ray line emission is expected from 56Ni and 44Ti decay on time scales of the initial explosion (56Ni, τ ~days) and the young supernova remnant (44Ti,τ ~90 years). Less specific, and rather informative for the supernova population as a whole, are lessons from longer lived isotopes such as 26Al and 60Fe. From isotopes of elements heavier than iron group elements, any interesting gamma-ray line emission is too faint to be observable. Measurements with space-based gamma-ray telescopes have obtained interesting gamma ray line emissions from two core collapse events, Cas A and SN1987A, and one thermonuclear event, SN2014J. We discuss INTEGRAL data from all above isotopes, including all line and continuum signatures from these two objects, and the surveys for more supernovae, that have been performed by gamma ray spectrometry. Our objective here is to illustrate what can be learned from gamma-ray line emission properties about the explosions and their astrophysics.

  12. Solar, Stellar and Galactic Connections between Particle Physics and Astrophysics

    CERN Document Server

    Carraminana, Alberto

    2007-01-01

    This book collects extended and specialized reviews on topics linking astrophysics and particle physics at a level intermediate between a graduate student and a young researcher. The book includes also three reviews on observational techniques used in forefront astrophysics and short articles on research performed in Latin America. The reviews, updated and written by specialized researchers, describe the state of the art in the related research topics. This book is a valuable complement not only for research but also for lecturers in specialized course of high energy astrophysics, cosmic ray astrophysics and particle physics.

  13. Electrodynamics and spacetime geometry: Astrophysical applications

    Science.gov (United States)

    Cabral, Francisco; Lobo, Francisco S. N.

    2017-07-01

    After a brief review of the foundations of (pre-metric) electromagnetism, we explore some physical consequences of electrodynamics in curved spacetime. In general, new electromagnetic couplings and related phenomena are induced by the spacetime curvature. The applications of astrophysical interest considered here correspond essentially to the following geometries: the Schwarzschild spacetime and the spacetime around a rotating spherical mass in the weak field and slow rotation regime. In the latter, we use the Parameterised Post-Newtonian (PPN) formalism. We also explore the hypothesis that the electric and magnetic properties of vacuum reflect the spacetime isometries. Therefore, the permittivity and permeability tensors should not be considered homogeneous and isotropic a priori. For spherical geometries we consider the effect of relaxing the homogeneity assumption in the constitutive relations between the fields and excitations. This affects the generalized Gauss and Maxwell-Ampère laws, where the electric permittivity and magnetic permeability in vacuum depend on the radial coordinate in accordance with the local isometries of space. For the axially symmetric geometries we relax both the assumptions of homogeneity and isotropy. We explore simple solutions and discuss the physical implications related to different phenomena, such as the decay of electromagnetic fields in the presence of gravity, magnetic terms in Gauss law due to the gravitomagnetism of the spacetime around rotating objects, a frame-dragging effect on electric fields and the possibility of a spatial (radial) variability of the velocity of light in vacuum around spherical astrophysical objects for strong gravitational fields.

  14. Highlights of the NASA particle astrophysics program

    Energy Technology Data Exchange (ETDEWEB)

    Jones, William Vernon, E-mail: w.vernon.jones@nasa.gov [Astrophysics Division DH000, Science Mission Directorate, NASA Headquarters, Washington DC (United States)

    2014-07-01

    The NASA Particle Astrophysics Program covers Origin of the Elements, Nearest Sources of Cosmic Rays, How Cosmic Particle Accelerators Work, The Nature of Dark Matter, and Neutrino Astrophysics. Progress in each of these topics has come from sophisticated instrumentation flown on long duration balloon (LDB) flights around Antarctica over the past two decades. New opportunities including Super Pressure Balloons (SPB) and International Space Station (ISS) platforms are emerging for the next major step. Stable altitudes and long durations enabled by SPB flights ensure ultra-long duration balloon (ULDB) missions that can open doors to new science opportunities. The Alpha Magnetic Spectrometer (AMS) has been operating on the ISS since May 2011. The CALorimetric Electron Telescope (CALET) and Cosmic Ray Energetics And Mass (CREAM) experiments are being developed for launch to the Japanese Experiment Module Exposed Facility (JEM-EF) in 2015. And, the Extreme Universe Space Observatory (EUSO) is planned for launch to the ISS JEM-EF after 2017. Collectively, these four complementary ISS missions covering a large portion of the cosmic ray energy spectrum serve as a cosmic ray observatory. (author)

  15. Astrophysical Model Selection in Gravitational Wave Astronomy

    Science.gov (United States)

    Adams, Matthew R.; Cornish, Neil J.; Littenberg, Tyson B.

    2012-01-01

    Theoretical studies in gravitational wave astronomy have mostly focused on the information that can be extracted from individual detections, such as the mass of a binary system and its location in space. Here we consider how the information from multiple detections can be used to constrain astrophysical population models. This seemingly simple problem is made challenging by the high dimensionality and high degree of correlation in the parameter spaces that describe the signals, and by the complexity of the astrophysical models, which can also depend on a large number of parameters, some of which might not be directly constrained by the observations. We present a method for constraining population models using a hierarchical Bayesian modeling approach which simultaneously infers the source parameters and population model and provides the joint probability distributions for both. We illustrate this approach by considering the constraints that can be placed on population models for galactic white dwarf binaries using a future space-based gravitational wave detector. We find that a mission that is able to resolve approximately 5000 of the shortest period binaries will be able to constrain the population model parameters, including the chirp mass distribution and a characteristic galaxy disk radius to within a few percent. This compares favorably to existing bounds, where electromagnetic observations of stars in the galaxy constrain disk radii to within 20%.

  16. $\\alpha$-cluster ANCs for nuclear astrophysics

    CERN Document Server

    Avila, M L; Koshchiy, E; Baby, L T; Belarge, J; Kemper, K W; Kuchera, A N; Santiago-Gonzalez, D

    2014-01-01

    Background. Many important $\\alpha$-particle induced reactions for nuclear astrophysics may only be measured using indirect techniques due to small cross sections at the energy of interest. One of such indirect technique, is to determine the Asymptotic Normalization Coefficients (ANC) for near threshold resonances extracted from sub-Coulomb $\\alpha$-transfer reactions. This approach provides a very valuable tool for studies of astrophysically important reaction rates since the results are practically model independent. However, the validity of the method has not been directly verified. Purpose. The aim of this letter is to verify the technique using the $^{16}$O($^6$Li,$d$)$^{20}$Ne reaction as a benchmark. The $^{20}$Ne nucleus has a well known $1^-$ state at excitation energy of 5.79 MeV with a width of 28 eV. Reproducing the known value with this technique is an ideal opportunity to verify the method. Method. The 1$^-$ state at 5.79 MeV is studied using the $\\alpha$-transfer reaction $^{16}$O($^6$Li,$d$)$^...

  17. Nuclear and High-Energy Astrophysics

    Science.gov (United States)

    Weber, Fridolin

    2003-10-01

    There has never been a more exciting time in the overlapping areas of nuclear physics, particle physics and relativistic astrophysics than today. Orbiting observatories such as the Hubble Space Telescope, Rossi X-ray Timing Explorer (RXTE), Chandra X-ray satellite, and the X-ray Multi Mirror Mission (XMM) have extended our vision tremendously, allowing us to see vistas with an unprecedented clarity and angular resolution that previously were only imagined, enabling astrophysicists for the first time ever to perform detailed studies of large samples of galactic and extragalactic objects. On the Earth, radio telescopes (e.g., Arecibo, Green Bank, Parkes, VLA) and instruments using adaptive optics and other revolutionary techniques have exceeded previous expectations of what can be accomplished from the ground. The gravitational wave detectors LIGO, LISA VIRGO, and Geo-600 are opening up a window for the detection of gravitational waves emitted from compact stellar objects such as neutron stars and black holes. Together with new experimental forefront facilities like ISAC, ORLAND and RIA, these detectors provide direct, quantitative physical insight into nucleosynthesis, supernova dynamics, accreting compact objects, cosmic-ray acceleration, and pairproduction in high energy sources which reinforce the urgent need for a strong and continuous feedback from nuclear and particle theory and theoretical astrophysics. In my lectures, I shall concentrate on three selected topics, which range from the behavior of superdense stellar matter, to general relativistic stellar models, to strange quark stars and possible signals of quark matter in neutron stars.

  18. Advancing Astrophysics with the Square Kilometre Array

    CERN Document Server

    Fender, Rob; Govoni, Federica; Green, Jimi; Hoare, Melvin; Jarvis, Matt; Johnston-Hollitt, Melanie; Keane, Evan; Koopmans, Leon; Kramer, Michael; Maartens, Roy; Macquart, Jean-Pierre; Mellema, Garrelt; Oosterloo, Tom; Prandoni, Isabella; Pritchard, Jonathan; Santos, Mario; Seymour, Nick; Stappers, Ben; Staveley-Smith, Lister; Tian, Wen Wu; Umana, Grazia; Wagg, Jeff; Bourke, Tyler L; AASKA14

    2015-01-01

    In 2014 it was 10 years since the publication of the comprehensive ‘Science with the Square Kilometre Array’ book and 15 years since the first such volume appeared in 1999. In that time numerous and unexpected advances have been made in the fields of astronomy and physics relevant to the capabilities of the Square Kilometre Array (SKA). The SKA itself progressed from an idea to a developing reality with a baselined Phase 1 design (SKA1) and construction planned from 2017. To facilitate the publication of a new, updated science book, which will be relevant to the current astrophysical context, the meeting "Advancing Astrophysics with the Square Kilometre Array" was held in Giardina Naxos, Sicily. Articles were solicited from the community for that meeting to document the scientific advances enabled by the first phase of the SKA and those pertaining to future SKA deployments, with expected gains of 5 times the Phase 1 sensitivity below 350 MHz, about 10 times the Phase 1 sensitivity above 350 MHz and with f...

  19. Astrophysical Plasmas: Codes, Models, and Observations

    Science.gov (United States)

    Canto, Jorge; Rodriguez, Luis F.

    2000-05-01

    The conference Astrophysical Plasmas: Codes, Models, and Observations was aimed at discussing the most recent advances, arid some of the avenues for future work, in the field of cosmical plasmas. It was held (hiring the week of October 25th to 29th 1999, at the Centro Nacional de las Artes (CNA) in Mexico City, Mexico it modern and impressive center of theaters and schools devoted to the performing arts. This was an excellent setting, for reviewing the present status of observational (both on earth and in space) arid theoretical research. as well as some of the recent advances of laboratory research that are relevant, to astrophysics. The demography of the meeting was impressive: 128 participants from 12 countries in 4 continents, a large fraction of them, 29% were women and most of them were young persons (either recent Ph.Ds. or graduate students). This created it very lively and friendly atmosphere that made it easy to move from the ionization of the Universe and high-redshift absorbers, to Active Galactic Nucleotides (AGN)s and X-rays from galaxies, to the gas in the Magellanic Clouds and our Galaxy, to the evolution of H II regions and Planetary Nebulae (PNe), and to the details of plasmas in the Solar System and the lab. All these topics were well covered with 23 invited talks, 43 contributed talks. and 22 posters. Most of them are contained in these proceedings, in the same order of the presentations.

  20. The CATS Service: An Astrophysical Research Tool

    Directory of Open Access Journals (Sweden)

    O V Verkhodanov

    2009-03-01

    Full Text Available We describe the current status of CATS (astrophysical CATalogs Support system, a publicly accessible tool maintained at Special Astrophysical Observatory of the Russian Academy of Sciences (SAO RAS (http://cats.sao.ru allowing one to search hundreds of catalogs of astronomical objects discovered all along the electromagnetic spectrum. Our emphasis is mainly on catalogs of radio continuum sources observed from 10 MHz to 245 GHz, and secondly on catalogs of objects such as radio and active stars, X-ray binaries, planetary nebulae, HII regions, supernova remnants, pulsars, nearby and radio galaxies, AGN and quasars. CATS also includes the catalogs from the largest extragalactic surveys with non-radio waves. In 2008 CATS comprised a total of about 109 records from over 400 catalogs in the radio, IR, optical and X-ray windows, including most source catalogs deriving from observations with the Russian radio telescope RATAN-600. CATS offers several search tools through different ways of access, e.g. via Web-interface and e-mail. Since its creation in 1997 CATS has managed about 105requests. Currently CATS is used by external users about 1500 times per day and since its opening to the public in 1997 has received about 4000 requests for its selection and matching tasks.

  1. Black Hole Astrophysics The Engine Paradigm

    CERN Document Server

    Meier, David L

    2012-01-01

    As a result of significant research over the past 20 years, black holes are now linked to some of the most spectacular and exciting phenomena in the Universe, ranging in size from those that have the same mass as stars to the super-massive objects that lie at the heart of most galaxies, including our own Milky Way. This book first introduces the properties of simple isolated holes, then adds in complications like rotation, accretion, radiation, and magnetic fields, finally arriving at a basic understanding of how these immense engines work. Black Hole Astrophysics • reviews our current knowledge of cosmic black holes and how they generate the most powerful observed pheonomena in the Universe; • highlights the latest, most up-to-date theories and discoveries in this very active area of astrophysical research; • demonstrates why we believe that black holes are responsible for important phenomena such as quasars, microquasars and gammaray bursts; • explains to the reader the nature of the violent and spe...

  2. Time-symmetric integration in astrophysics

    Science.gov (United States)

    Hernandez, David M.; Bertschinger, Edmund

    2018-01-01

    Calculating the long term solution of ordinary differential equations, such as those of the N-body problem, is central to understanding a wide range of dynamics in astrophysics, from galaxy formation to planetary chaos. Because generally no analytic solution exists to these equations, researchers rely on numerical methods which are prone to various errors. In an effort to mitigate these errors, powerful symplectic integrators have been employed. But symplectic integrators can be severely limited because they are not compatible with adaptive stepping and thus they have difficulty accommodating changing time and length scales. A promising alternative is time-reversible integration, which can handle adaptive time stepping, but the errors due to time-reversible integration in astrophysics are less understood. The goal of this work is to study analytically and numerically the errors caused by time-reversible integration, with and without adaptive stepping. We derive the modified differential equations of these integrators to perform the error analysis. As an example, we consider the trapezoidal rule, a reversible non-symplectic integrator, and show it gives secular energy error increase for a pendulum problem and for a Hénon-Heiles orbit. We conclude that using reversible integration does not guarantee good energy conservation and that, when possible, use of symplectic integrators is favored. We also show that time-symmetry and time-reversibility are properties that are distinct for an integrator.

  3. Art as a Vehicle for Nuclear Astrophysics

    Science.gov (United States)

    Kilburn, Micha

    2013-04-01

    One aim of the The Joint Institute for Nuclear Astrophysics (JINA) is to teach K-12 students concepts and ideas related to nuclear astrophysics. For students who have not yet seen the periodic table, this can be daunting, and we often begin with astronomy concepts. The field of astronomy naturally lends itself to an art connection through its beautiful images. Our Art 2 Science programming adopts a hands-on approach by teaching astronomy through student created art projects. This approach engages the students, through tactile means, visually and spatially. For younger students, we also include physics based craft projects that facilitate the assimilation of problem solving skills. The arts can be useful for aural and kinetic learners as well. Our program also includes singing and dancing to songs with lyrics that teach physics and astronomy concepts. The Art 2 Science programming has been successfully used in after-school programs at schools, community centers, and art studios. We have even expanded the program into a popular week long summer camp. I will discuss our methods, projects, specific goals, and survey results for JINA's Art 2 Science programs.

  4. Astrophysical Applications of Relativistic Shear Flows

    Science.gov (United States)

    Liang, Edison

    2017-10-01

    We review recent PIC simulation results of relativistic collisionless shear flows in both 2D and 3D. We apply these results to spine-sheath jet models of blazars and gamma-ray-bursters, and to shear flows near the horizon of rapidly spinning black holes. We will discuss magnetic field generation, particle energization and radiation processes, and their observational consequences.

  5. Theory and simulation of astrophysical explosions and turbulence

    Science.gov (United States)

    Miles, Aaron

    2008-04-01

    Supernova explosions are among the most dramatic in the universe. Type II supernovae follow the core collapse of a massive star, while Type Ia supernovae are typically believed to be thermonuclear explosions of carbon-oxygen white dwarfs that have accreted enough material to initiate carbon burning. In both cases, the explosion dynamics are complicated by hydrodynamic instabilities that make spherical symmetry impossible. Much of the work that is done on hydrodynamic mixing in SNe draws, on the one hand, on the fundamental instability problems of classical Rayleigh-Taylor (RT) and steady-shock Richtmyer-Meshkov (RM), and, on the other hand, on complex (often multiphysics) computational and experimental systems. These include numerical simulations of supernovae and laser-driven laboratory experiments that invoke Euler scaling to make connections to their much larger astrophysical counterparts. In this talk, we consider what additional insight is to be gained from considering a third fundamental instability problem that is more relevant than either RT or RM in isolation and somewhat less complex than the full system. Namely, we consider an idealized blast-wave-driven problem in which a localized source drives a divergent Taylor-Sedov blast wave that in turn drives a perturbed interface between heavier and lighter gamma-law fluids. Within this context, we use numerical simulations and simplified analytic models to consider the effect of the initial perturbation spectrum in determining the late-time asymptotic state of the mixing zone, the interaction of multiple unstable interfaces relevant to core-collapse supernovae, and the proximity of the forward shock to the developing instability. Finally, we discuss how laser-driven laboratory experiments might be used to help resolve some as yet unanswered questions in supernova explosion hydrodynamics.

  6. Fermi-LAT Observations of the Gamma-Ray Burst GRB 130427A

    Science.gov (United States)

    Ackermann, M.; Ajello, M.; Asano, K.; Atwood, W. B.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Baring, M. G.; Bastieri, D.; hide

    2013-01-01

    The observations of the exceptionally bright gamma-ray burst (GRB) 130427A by the Large Area Telescope aboard the Fermi Gamma-ray Space Telescope provide constraints on the nature of these unique astrophysical sources. GRB 130427A had the largest fluence, highest-energy photon (95 GeV), longest gamma-ray duration (20 hours), and one of the largest isotropic energy releases ever observed from a GRB. Temporal and spectral analyses of GRB 130427A challenge the widely accepted model that the nonthermal high-energy emission in the afterglow phase of GRBs is synchrotron emission radiated by electrons accelerated at an external shock.

  7. INTEGRAL Upper Limits on Gamma-Ray Emission Associated with the Gravitational Wave Event GW150914

    DEFF Research Database (Denmark)

    Savchenko, V.; Ferrigno, C.; Natalucci, L.

    Using observations of the INTErnational Gamma-Ray Astrophysics Laboratory (INTEGRAL), we place upper limits on the gamma-ray and hard X-ray prompt emission associated with the gravitational wave event GW150914, discovered by the LIGO/Virgo Collaboration. The omnidirectional view of the INTEGRAL...... MeV energy range for typical spectral models. Our results constrain the ratio of the energy promptly released in gamma-rays in the direction of the observer to the gravitational wave energy Eγ/EGW gravitational wave...

  8. INTEGRAL Upper Limits on Gamma-Ray Emission Associated with the Gravitational Wave Event GW150914

    DEFF Research Database (Denmark)

    Savchenko, V.; Ferrigno, C.; Mereghetti, S.

    2016-01-01

    Using observations of the INTErnational Gamma-Ray Astrophysics Laboratory (INTEGRAL), we place upper limits on the gamma-ray and hard X-ray prompt emission associated with the gravitational wave event GW150914, which was discovered by the LIGO/Virgo Collaboration. The omnidirectional view...... in the 75 keV-2 MeV energy range for typical spectral models. Our results constrain the ratio of the energy promptly released in gamma-rays in the direction of the observer to the gravitational wave energy Eγ/EGW ... of the gravitational wave source, based on the available predictions for prompt electromagnetic emission....

  9. Gamma-ray bursts

    National Research Council Canada - National Science Library

    Gehrels, Neil; Mészáros, Péter

    2012-01-01

    Gamma-ray bursts (GRBs) are bright flashes of gamma rays coming from the cosmos. They occur roughly once per day, typically last for tens of seconds, and are the most luminous events in the universe...

  10. Cosmic Ray Astrophysics using The High Altitude Water Cherenkov (HAWC Observatory in México

    Directory of Open Access Journals (Sweden)

    de la Fuente Eduardo

    2017-01-01

    Full Text Available The High-Altitude Water Cherenkov (HAWC TeV gamma–ray Observatory in México is ready to search and study gamma-ray emission regions, extremely high-energy cosmic-ray sources, and to identify transient phenomena. With a better Gamma/Hadron rejection method than other similar experiments, it will play a key role in triggering multi–wavelength and multi–messenger studies of active galaxies (AGN, gamma-ray bursts (GRB, supernova remnants (SNR, pulsar wind nebulae (PWN, Galactic Plane Sources, and Cosmic Ray Anisotropies. It has an instantaneous field-of-view of ∼2 str, equivalent to 15% of the whole sky and continuous operation (24 hours per day. The results obtained by HAWC–111 (111 detectors in operation were presented on the proceedings of the International Cosmic Ray Conference 2015 and in [1]. The results obtained by HAWC–300 (full operation are now under analysis and will be published in forthcoming papers starting in 2017 (see preliminary results on http://www.hawc-observatory.org/news/. Here we present the HAWC contributions on cosmic ray astrophysics via anisotropies studies, summarizing the HAWC detector and its upgrading by the installation of “outriggers”.

  11. Instrumental background in gamma-ray spectrometers flown in low earth orbit

    Science.gov (United States)

    Gehrels, Neil

    1992-01-01

    Techniques are presented for calculating the instrumental continuum background in gamma-ray spectrometers flown in low earth orbit (LEO), with special attention given to simple methods developed for scaling from the better-understood measurements and calculations of background in balloon-borne instruments to LEO (Gehrels, 1985). Results are presented in the form of predictions of the background and its components for spectrometers in LEO. These predictions are compared to the measured background for the HEAO 3 gamma-ray spectrometer (Mahoney et al., 1980), and predictions are made for the International Gamma-Ray Astrophysics Laboratory mission and the Nuclear Astrophysics Explorer (Matteson et al., 1990) spectrometers. A comparison is made of various orbit options. It is shown that a critical factor is the number of times the instrument passes through the South Atlantic Anomaly (which is the region of enhanced trapped particle fluxes in LEO) and the depth of penetration on each pass.

  12. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Astrophysics and Astronomy. P. Venkatakrishnan. Articles written in Journal of Astrophysics and Astronomy. Volume 21 Issue 3-4 September-December 2000 pp 171-172 Session III – Sunspots & Solar Cycle. Is a Sunspot in Static or Dynamic Equilibrium? P. Venkatakrishnan · More Details ...

  13. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... Home; Journals; Journal of Astrophysics and Astronomy. Shibu K. Mathew. Articles written in Journal of Astrophysics and Astronomy. Volume 21 Issue 3-4 September-December 2000 pp 233-236 Session V – Vector Magnetic Fields, Prominences, CMEs & Flares. A Rapidly Evolving Active Region NOAA ...

  14. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Astrophysics and Astronomy. Samir Dhurde. Articles written in Journal of Astrophysics and Astronomy. Volume 28 Issue 1 March 2007 pp 29-40. Kinematical Diagrams for Conical Relativistic Jets · Gopal-Krishna Pronoy Sircar Samir Dhurde · More Details Abstract Fulltext PDF. We present ...

  15. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Astrophysics and Astronomy. K. Duorah. Articles written in Journal of Astrophysics and Astronomy. Volume 36 Issue 3 September 2015 pp 375-383. A Comparative Study on SN II Progenitors for the Synthesis of Li and B with the help of Neutrinos · N. Lahkar S. Kalita H. L. Duorah K. Duorah.

  16. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Astrophysics and Astronomy. Visweshwar Ram Marthi. Articles written in Journal of Astrophysics and Astronomy. Volume 38 Issue 1 March 2017 pp 12 Review Article. Prowess – A Software Model for the Ooty Wide Field Array · Visweshwar Ram Marthi · More Details Abstract Fulltext PDF.

  17. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Astrophysics and Astronomy. Liu Zhong-bao. Articles written in Journal of Astrophysics and Astronomy. Volume 37 Issue 2 June 2016 pp 12. Stellar Spectral Classification with Locality Preserving Projections and Support Vector Machine · Liu Zhong-bao · More Details Abstract Fulltext PDF.

  18. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Astrophysics and Astronomy. F. Reale. Articles written in Journal of Astrophysics and Astronomy. Volume 29 Issue 1-2 March-June 2008 pp 339-343. SphinX: A Fast Solar Photometer in X-rays · J. Sylwester S. Kuzin Yu. D. Kotov F. Farnik F. Reale · More Details Abstract Fulltext PDF. The scientific ...

  19. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Astrophysics and Astronomy. B. B. Nath. Articles written in Journal of Astrophysics and Astronomy. Volume 37 Issue 4 December 2016 pp 34 Review. From Nearby Low Luminosity AGN to High Redshift Radio Galaxies: Science Interests with Square Kilometre Array · P. Kharb D. V. Lal V. Singh J.

  20. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Astrophysics and Astronomy. C. Mito. Articles written in Journal of Astrophysics and Astronomy. Volume 38 Issue 4 December 2017 pp 71 Research Article. Relativistic Dynamics in a Matter-Dominated Friedmann Universe · M. Langa D. S. Wamalwa C. Mito · More Details Abstract Fulltext PDF.

  1. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Astrophysics and Astronomy. Sagar Sethi. Articles written in Journal of Astrophysics and Astronomy. Volume 37 Issue 4 December 2016 pp 41 Review. Tracking Galaxy Evolution Through Low-Frequency Radio Continuum Observations using SKA and Citizen-Science Research using ...

  2. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Astrophysics and Astronomy. Siddharth S. Malu. Articles written in Journal of Astrophysics and Astronomy. Volume 32 Issue 4 December 2011 pp 541-544. 18 GHz SZ Measurements of the Bullet Cluster · Siddharth S. Malu Ravi Subrahmanyan · More Details Abstract Fulltext PDF. We present 18 ...

  3. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... Home; Journals; Journal of Astrophysics and Astronomy. A. A. Yeghiazaryan. Articles written in Journal of Astrophysics and Astronomy. Volume 37 Issue 1 March 2016 pp 1. H α Velocity Fields and Galaxy Interaction in the Quartet of Galaxies NGC 7769, 7770, 7771 and 7771A · A. A. Yeghiazaryan T. A. ...

  4. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... Home; Journals; Journal of Astrophysics and Astronomy. S. Kuzin. Articles written in Journal of Astrophysics and Astronomy. Volume 29 Issue 1-2 March-June 2008 pp 339-343. SphinX: A Fast Solar Photometer in X-rays · J. Sylwester S. Kuzin Yu. D. Kotov F. Farnik F. Reale · More Details Abstract Fulltext ...

  5. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Astrophysics and Astronomy. M. A. Banajh. Articles written in Journal of Astrophysics and Astronomy. Volume 28 Issue 1 March 2007 pp 9-16. Homotopy Continuation Method of Arbitrary Order of Convergence for Solving the Hyperbolic Form of Kepler's Equation · M. A. Sharaf M. A. Banajh A. A. ...

  6. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... Home; Journals; Journal of Astrophysics and Astronomy. H. M. Antia. Articles written in Journal of Astrophysics and Astronomy. Volume 21 Issue 3-4 September-December 2000 pp 353-356 Session VIII – Helioseismology. Temporal Variation of Large Scale Flows in the Solar Interior · Sarbani Basu H. M. ...

  7. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Astrophysics and Astronomy. Somak Raychaudhury. Articles written in Journal of Astrophysics and Astronomy. Volume 38 Issue 4 December 2017 pp 68 Research Article. Active Galactic Nucleus Feedback with the Square Kilometre Array and Implications for Cluster Physics and Cosmology.

  8. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Astrophysics and Astronomy. A. Gopakumar. Articles written in Journal of Astrophysics and Astronomy. Volume 37 Issue 4 December 2016 pp 36 Review. Neutron Star Physics in the Square Kilometre Array Era: An Indian Perspective · Sushan Konar Manjari Bagchi Debades Bandyopadhyay ...

  9. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Astrophysics and Astronomy. Mukul Mhaskey. Articles written in Journal of Astrophysics and Astronomy. Volume 34 Issue 3 September 2013 pp 273-296. On the Photometric Error Calibration for the Differential Light Curves of Point-like Active Galactic Nuclei · Arti Goyal Mukul Mhaskey ...

  10. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Astrophysics and Astronomy. M. Annadurai. Articles written in Journal of Astrophysics and Astronomy. Volume 38 Issue 2 June 2017 pp 34 Review Article. AstroSat – Configuration and Realization · K. H. Navalgund K. Suryanarayana Sarma Piyush Kumar Gaurav G. Nagesh M. Annadurai.

  11. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Astrophysics and Astronomy. S. J. Kang. Articles written in Journal of Astrophysics and Astronomy. Volume 35 Issue 3 September 2014 pp 385-386 Posters. Delta-function Approximation SSC Model in 3C 273 · S. J. Kang Y. G. Zheng Q. Wu · More Details Abstract Fulltext PDF. We obtain an ...

  12. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Astrophysics and Astronomy. Nagendra Kumar. Articles written in Journal of Astrophysics and Astronomy. Volume 29 Issue 1-2 March-June 2008 pp 243-248. Damping of Slow Magnetoacoustic Waves in an Inhomogeneous Coronal Plasma · Nagendra Kumar Pradeep Kumar Shiv Singh Anil ...

  13. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Astrophysics and Astronomy. Gerard Vauclair. Articles written in Journal of Astrophysics and Astronomy. Volume 21 Issue 3-4 September-December 2000 pp 319-322 Session VII – Magnetoconvection & Stellar Activity. The Space Stellar Photometry Mission COROT: Asteroseismology and Search ...

  14. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Astrophysics and Astronomy. A. V. Ananth. Articles written in Journal of Astrophysics and Astronomy. Volume 21 Issue 3-4 September-December 2000 pp 241-244 Session V – Vector Magnetic Fields, Prominences, CMEs & Flares. Stokes Polarimetry at the Kodaikanal Tower Tunnel Telescope.

  15. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Astrophysics and Astronomy. Journal of Astrophysics and Astronomy. Volumes & Issues. Volume 39. Issue 1. Feb 2018. Volume 38. Issue 1. Mar 2017; Issue 2. Jun 2017; Issue 3. Sep 2017; Issue 4. Dec 2017. Volume 37. Issue 1. Mar 2016; Issue 2. Jun 2016; Issue 3. Sep 2016; Issue 4. Dec 2016 ...

  16. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... Home; Journals; Journal of Astrophysics and Astronomy. J. Tao. Articles written in Journal of Astrophysics and Astronomy. Volume 32 Issue 1-2 March-June 2011 pp 67-71 Part 2. Blazar Observations in Infrared and Optical. Variability of Blazars · J. H. Fan Y. Liu Y. Li Q. F. Zhang J. Tao O. Kurtanidze.

  17. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Astrophysics and Astronomy. A. S. Pandya. Articles written in Journal of Astrophysics and Astronomy. Volume 38 Issue 2 June 2017 pp 30 Review Article. Large Area X-Ray Proportional Counter (LAXPC) Instrument on AstroSat and Some Preliminary Results from its Performance in the Orbit.

  18. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Astrophysics and Astronomy. I. S. Veselovsky. Articles written in Journal of Astrophysics and Astronomy. Volume 21 Issue 3-4 September-December 2000 pp 423-429 Session XI – Solar Wind & Interplanetary Magnetic Fields. Solar Wind Variation with the Cycle · I. S. Veselovsky A. V. Dmitriev ...

  19. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... Home; Journals; Journal of Astrophysics and Astronomy. Chetana Jain. Articles written in Journal of Astrophysics and Astronomy. Volume 28 Issue 4 December 2007 pp 175-184. Search for Orbital Motion of the Pulsar 4U 1626-67: Candidate for a Neutron Star with a Supernova Fall-back Accretion Disk.

  20. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Astrophysics and Astronomy. Yuvraj Harsha Sreedhar. Articles written in Journal of Astrophysics and Astronomy. Volume 35 Issue 1 March 2014 pp 55-68 General Editorial on Publication Ethics. Comparative Studies of Population Synthesis Models in the Framework of Modified Strömgren Filters.

  1. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Astrophysics and Astronomy. U. S. Kamath. Articles written in Journal of Astrophysics and Astronomy. Volume 37 Issue 4 December 2016 pp 38 Review. Interstellar Medium and Star Formation Studies with the Square Kilometre Array · P. Manoj S. Vig G. Maheswar U. S. Kamath A. Tej.

  2. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... Home; Journals; Journal of Astrophysics and Astronomy. Biswajit Paul. Articles written in Journal of Astrophysics and Astronomy. Volume 28 Issue 4 December 2007 pp 175-184. Search for Orbital Motion of the Pulsar 4U 1626-67: Candidate for a Neutron Star with a Supernova Fall-back Accretion Disk.

  3. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Astrophysics and Astronomy. D. J. Saikia. Articles written in Journal of Astrophysics and Astronomy. Volume 32 Issue 4 December 2011 pp 471-474. A Multifrequency Study of Five Large Radio Galaxies · A. Pirya S. Nandi D. J. Saikia C. Konar M. Singh · More Details Abstract Fulltext PDF.

  4. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... Home; Journals; Journal of Astrophysics and Astronomy. S. Ananthakrishnan. Articles written in Journal of Astrophysics and Astronomy. Volume 21 Issue 3-4 September-December 2000 pp 439-444 Session XI – Solar Wind & Interplanetary Magnetic Fields. Remote Sensing of the Heliospheric Solar Wind ...

  5. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Astrophysics and Astronomy. Annie Baglin. Articles written in Journal of Astrophysics and Astronomy. Volume 21 Issue 3-4 September-December 2000 pp 319-322 Session VII – Magnetoconvection & Stellar Activity. The Space Stellar Photometry Mission COROT: Asteroseismology and Search ...

  6. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Astrophysics and Astronomy. G. C. Anupama. Articles written in Journal of Astrophysics and Astronomy. Volume 34 Issue 2 June 2013 pp 175-192. Generation of a Near Infra-Red Guide Star Catalog for Thirty-Meter Telescope Observations · Smitha Subramanian Annapurni Subramaniam Luc ...

  7. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Astrophysics and Astronomy. J. O. Stenflo. Articles written in Journal of Astrophysics and Astronomy. Volume 21 Issue 3-4 September-December 2000 pp 451-457 Session XII – Conclusion. Summary Lecture · J. O. Stenflo · More Details Abstract Fulltext PDF. This summary lecture makes no ...

  8. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Astrophysics and Astronomy. C. R. Subrahmanya. Articles written in Journal of Astrophysics and Astronomy. Volume 38 Issue 1 March 2017 pp 10 Review Article. The Ooty Wide Field Array · C. R. Subrahmanya P. K. Manoharan Jayaram N. Chengalur · More Details Abstract Fulltext PDF.

  9. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Astrophysics and Astronomy. A. K. Singh. Articles written in Journal of Astrophysics and Astronomy. Volume 38 Issue 2 June 2017 pp 29 Review Article. Soft X-ray Focusing Telescope Aboard AstroSat: Design, Characteristics and Performance · K. P. Singh G. C. Stewart N. J. Westergaard S.

  10. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Astrophysics and Astronomy. C. Konar. Articles written in Journal of Astrophysics and Astronomy. Volume 32 Issue 4 December 2011 pp 471-474. A Multifrequency Study of Five Large Radio Galaxies · A. Pirya S. Nandi D. J. Saikia C. Konar M. Singh · More Details Abstract Fulltext PDF.

  11. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Astrophysics and Astronomy. Ashok Ambastha. Articles written in Journal of Astrophysics and Astronomy. Volume 21 Issue 3-4 September-December 2000 pp 233-236 Session V – Vector Magnetic Fields, Prominences, CMEs & Flares. A Rapidly Evolving Active Region NOAA 8032 observed on ...

  12. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... Home; Journals; Journal of Astrophysics and Astronomy. You-Dong Hu. Articles written in Journal of Astrophysics and Astronomy. Volume 35 Issue 3 September 2014 pp 423-427 Part V: Black Holes (or Binary Black Holes) in Blazars. Joint Spectral Analysis for Early Bright X-ray Flares of -Ray Bursts with ...

  13. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Astrophysics and Astronomy. M. S. Khan. Articles written in Journal of Astrophysics and Astronomy. Volume 27 Issue 4 December 2006 pp 373-379. Gravitational Clustering of Galaxies in an Expanding Universe · Naseer Iqbal Farooq Ahmad M. S. Khan · More Details Abstract Fulltext PDF.

  14. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Astrophysics and Astronomy. Farooq Ahmad. Articles written in Journal of Astrophysics and Astronomy. Volume 27 Issue 4 December 2006 pp 373-379. Gravitational Clustering of Galaxies in an Expanding Universe · Naseer Iqbal Farooq Ahmad M. S. Khan · More Details Abstract Fulltext PDF.

  15. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Astrophysics and Astronomy. Somnath Bharadwaj. Articles written in Journal of Astrophysics and Astronomy. Volume 22 Issue 4 December 2001 pp 293-307. HI Fluctuations at Large Redshifts: I–Visibility correlation · Somnath Bharadwaj Shiv K. Sethi · More Details Abstract Fulltext PDF.

  16. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Astrophysics and Astronomy. M. Ferricha-Alami. Articles written in Journal of Astrophysics and Astronomy. Volume 36 Issue 2 June 2015 pp 269-280. Tree Level Potential on Brane after Planck and BICEP2 · M. Ferricha-Alami A. Safsafi L. Lahlou H. Chakir M. Bennai · More Details Abstract Fulltext ...

  17. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Astrophysics and Astronomy. Karl Rakos. Articles written in Journal of Astrophysics and Astronomy. Volume 35 Issue 1 March 2014 pp 55-68 General Editorial on Publication Ethics. Comparative Studies of Population Synthesis Models in the Framework of Modified Strömgren Filters.

  18. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Astrophysics and Astronomy. Frank Verbunt. Articles written in Journal of Astrophysics and Astronomy. Volume 38 Issue 3 September 2017 pp 40 Review Article. A New Look at Distances and Velocities of Neutron Stars · Frank Verbunt Eric Cator · More Details Abstract Fulltext PDF. We take a ...

  19. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Astrophysics and Astronomy. Sergey V. Ershkov. Articles written in Journal of Astrophysics and Astronomy. Volume 38 Issue 1 March 2017 pp 5 Research Article. Forbidden Zones for Circular Regular Orbits of the Moons in Solar System, R3BP · Sergey V. Ershkov · More Details Abstract Fulltext ...

  20. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Astrophysics and Astronomy. Annapurni Subramaniam. Articles written in Journal of Astrophysics and Astronomy. Volume 34 Issue 2 June 2013 pp 175-192. Generation of a Near Infra-Red Guide Star Catalog for Thirty-Meter Telescope Observations · Smitha Subramanian Annapurni ...

  1. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Astrophysics and Astronomy. Corot team. Articles written in Journal of Astrophysics and Astronomy. Volume 21 Issue 3-4 September-December 2000 pp 319-322 Session VII – Magnetoconvection & Stellar Activity. The Space Stellar Photometry Mission COROT: Asteroseismology and Search for ...

  2. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Astrophysics and Astronomy. Manjari Bagchi. Articles written in Journal of Astrophysics and Astronomy. Volume 37 Issue 4 December 2016 pp 28 Review. Neutron Stars in the Light of Square Kilometre Array: Data, Statistics and Science · Mihir Arjunwadkar Akanksha Kashikar Manjari Bagchi.

  3. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Astrophysics and Astronomy. R. K. Manchanda. Articles written in Journal of Astrophysics and Astronomy. Volume 21 Issue 1-2 June 2000 pp 39-52. X-ray Measurements of Black Hole X-ray Binary Source GRS 1915+105 and the Evolution of Hard X-ray Spectrum · R. K. Manchanda.

  4. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Astrophysics and Astronomy. Yang Chen. Articles written in Journal of Astrophysics and Astronomy. Volume 33 Issue 2 June 2012 pp 213-220. Star Formation Rate Indicators in Wide-Field Infrared Survey Preliminary Release · Fei Shi Xu Kong James Wicker Yang Chen Zi-Qiang Gong Dong-Xin ...

  5. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Astrophysics and Astronomy. Hongqi Zhang. Articles written in Journal of Astrophysics and Astronomy. Volume 21 Issue 3-4 September-December 2000 pp 245-247 Session V – Vector Magnetic Fields, Prominences, CMEs & Flares. Twist of Magnetic Fields in Solar Active Regions.

  6. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Astrophysics and Astronomy. D. D. PAWAR. Articles written in Journal of Astrophysics and Astronomy. Volume 38 Issue 1 March 2017 pp 2 Research Article. Plane Symmetric Cosmological Model with Quark and Strange Quark Matter in f ( R , T ) Theory of Gravity · P. K. AGRAWAL D. D. PAWAR.

  7. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Astrophysics and Astronomy. R. Pandiyan. Articles written in Journal of Astrophysics and Astronomy. Volume 38 Issue 2 June 2017 pp 29 Review Article. Soft X-ray Focusing Telescope Aboard AstroSat: Design, Characteristics and Performance · K. P. Singh G. C. Stewart N. J. Westergaard S.

  8. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Astrophysics and Astronomy. Surajit Paul. Articles written in Journal of Astrophysics and Astronomy. Volume 32 Issue 4 December 2011 pp 533-536. Double Relics in the Outskirts of A3376: Accretion Flows Meet Merger Shocks? Ruta Kale K. S. Dwarakanath Joydeep Bagchi Surajit Paul.

  9. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Astrophysics and Astronomy. Siddharth Malu. Articles written in Journal of Astrophysics and Astronomy. Volume 32 Issue 4 December 2011 pp 529-532. Discovery of a Giant Radio Halo in a Massive Merging Cluster at = 0.443 · K. S. Dwarakanath Siddharth Malu Ruta Kale · More Details ...

  10. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Astrophysics and Astronomy. K. M. Hiremath. Articles written in Journal of Astrophysics and Astronomy. Volume 21 Issue 3-4 September-December 2000 pp 263-264 Session V – Vector Magnetic Fields, Prominences, CMEs & Flares. Emergence of Twisted Magnetic Flux Related Sigmoidal ...

  11. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... Home; Journals; Journal of Astrophysics and Astronomy; Volume 36; Issue 4. Volume 36, Issue 4. December 2015, pages 421-703. Special Issue on Spectral Line Shapes in Astrophysics. pp 421-425. Editorial · Milan S. Dimitrijević Luka Č. Popović · More Details Fulltext PDF. pp 427-432 Review.

  12. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Astrophysics and Astronomy. A. N. Ramaprakash. Articles written in Journal of Astrophysics and Astronomy. Volume 34 Issue 2 June 2013 pp 175-192. Generation of a Near Infra-Red Guide Star Catalog for Thirty-Meter Telescope Observations · Smitha Subramanian Annapurni Subramaniam ...

  13. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Astrophysics and Astronomy. Sudhir Kumar Gupta. Articles written in Journal of Astrophysics and Astronomy. Volume 27 Issue 2-3 June-September 2006 pp 315-320 Oral Presentations. Development of Solar Scintillometer · Sudhir Kumar Gupta Shibu K. Mathew P. Venkatakrishnan · More Details ...

  14. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Astrophysics and Astronomy. K. G. Arun. Articles written in Journal of Astrophysics and Astronomy. Volume 37 Issue 4 December 2016 pp 30 Review. Explosive and Radio-Selected Transients: Transient Astronomy with Square Kilometre Array and its Precursors · Poonam Chandra G. C. ...

  15. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Astrophysics and Astronomy. Y. K. Arora. Articles written in Journal of Astrophysics and Astronomy. Volume 38 Issue 2 June 2017 pp 31 Review Article. The Cadmium Zinc Telluride Imager on AstroSat · V. Bhalerao D. Bhattacharya A. Vibhute P. Pawar A. R. Rao M. K. Hingar Rakesh Khanna ...

  16. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Astrophysics and Astronomy. T. Roy Choudhury. Articles written in Journal of Astrophysics and Astronomy. Volume 37 Issue 4 December 2016 pp 27 Review. Probing Individual Sources during Reionization and Cosmic Dawn using Square Kilometre Array HI 21-cm Observations · Kanan K. Datta ...

  17. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Astrophysics and Astronomy. H. Poon. Articles written in Journal of Astrophysics and Astronomy. Volume 32 Issue 1-2 March-June 2011 pp 97-103 Part 2. Blazar Observations in Infrared and Optical. The Optical Microvariability and Spectral Changes of the BL Lacertae Object S5 0716+714.

  18. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Astrophysics and Astronomy. G. Srinivasan. Articles written in Journal of Astrophysics and Astronomy. Volume 25 Issue 3-4 September-December 2004 pp 143-183. A High Galactic Latitude HI 21 cm-line Absorption Survey using the GMRT: I. Observations and Spectra · Rekhesh Mohan K. S. ...

  19. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Astrophysics and Astronomy. Chandreyee Maitra. Articles written in Journal of Astrophysics and Astronomy. Volume 37 Issue 4 December 2016 pp 36 Review. Neutron Star Physics in the Square Kilometre Array Era: An Indian Perspective · Sushan Konar Manjari Bagchi Debades ...

  20. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Astrophysics and Astronomy. Rajesh Mondal. Articles written in Journal of Astrophysics and Astronomy. Volume 37 Issue 4 December 2016 pp 29 Review. Modelling the 21-cm Signal from the Epoch of Reionization and Cosmic Dawn · T. Roy Choudhury Kanan Datta Suman Majumdar ...

  1. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Astrophysics and Astronomy. Saumyadip Samui. Articles written in Journal of Astrophysics and Astronomy. Volume 37 Issue 4 December 2016 pp 29 Review. Modelling the 21-cm Signal from the Epoch of Reionization and Cosmic Dawn · T. Roy Choudhury Kanan Datta Suman Majumdar ...

  2. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Astrophysics and Astronomy. Shashanka R. Gurumath. Articles written in Journal of Astrophysics and Astronomy. Volume 36 Issue 3 September 2015 pp 355-374. Solar Wind Associated with Near Equatorial Coronal Hole · M. Hegde K. M. Hiremath Vijayakumar H. Doddamani Shashanka R.

  3. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... Home; Journals; Journal of Astrophysics and Astronomy. Avinash A. Deshpande. Articles written in Journal of Astrophysics and Astronomy. Volume 37 Issue 4 December 2016 pp 37 Review. Fast Transients with the Square Kilometre Array and its Pathfinders: An Indian Perspective · Yashwant Gupta ...

  4. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Astrophysics and Astronomy. Abhik Ghosh. Articles written in Journal of Astrophysics and Astronomy. Volume 37 Issue 4 December 2016 pp 35 Review. Prospects of Measuring the Angular Power Spectrum of the Diffuse Galactic Synchrotron Emission with SKA1 Low · Sk. Saiyad Ali Somnath ...

  5. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Astrophysics and Astronomy. T. R. Seshadri. Articles written in Journal of Astrophysics and Astronomy. Volume 37 Issue 4 December 2016 pp 42 Review Article. Probing Magnetic Fields with Square Kilometre Array and its Precursors · Subhashis Roy Sharanya Sur Kandaswamy Subramanian ...

  6. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Astrophysics and Astronomy. K. H. Navalgund. Articles written in Journal of Astrophysics and Astronomy. Volume 38 Issue 2 June 2017 pp 29 Review Article. Soft X-ray Focusing Telescope Aboard AstroSat: Design, Characteristics and Performance · K. P. Singh G. C. Stewart N. J. Westergaard S.

  7. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Astrophysics and Astronomy. Subhashis Roy. Articles written in Journal of Astrophysics and Astronomy. Volume 37 Issue 4 December 2016 pp 30 Review. Explosive and Radio-Selected Transients: Transient Astronomy with Square Kilometre Array and its Precursors · Poonam Chandra G. C. ...

  8. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Astrophysics and Astronomy. Prateek Sharma. Articles written in Journal of Astrophysics and Astronomy. Volume 37 Issue 4 December 2016 pp 31 Review. Clusters of Galaxies and the Cosmic Web with Square Kilometre Array · Ruta Kale K. S. Dwarakanath Dharam Vir Lal Joydeep Bagchi ...

  9. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Astrophysics and Astronomy. Abhirup Datta. Articles written in Journal of Astrophysics and Astronomy. Volume 37 Issue 4 December 2016 pp 27 Review. Probing Individual Sources during Reionization and Cosmic Dawn using Square Kilometre Array HI 21-cm Observations · Kanan K. Datta ...

  10. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Astrophysics and Astronomy. Ruta Kale. Articles written in Journal of Astrophysics and Astronomy. Volume 32 Issue 4 December 2011 pp 529-532. Discovery of a Giant Radio Halo in a Massive Merging Cluster at = 0.443 · K. S. Dwarakanath Siddharth Malu Ruta Kale · More Details Abstract ...

  11. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    The Journal of Astrophysics and Astronomy publishes papers on all aspects of Astrophysics and Astronomy, including instrumentation. The submission of a paper will be held to imply that it represents the results of original research not previously published; that it is not under consideration for publication, elsewhere; and ...

  12. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Astrophysics and Astronomy. Siddhartha Bhattacharyya. Articles written in Journal of Astrophysics and Astronomy. Volume 37 Issue 4 December 2016 pp 37 Review. Fast Transients with the Square Kilometre Array and its Pathfinders: An Indian Perspective · Yashwant Gupta Poonam Chandra ...

  13. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Astrophysics and Astronomy. Essy Samuel. Articles written in Journal of Astrophysics and Astronomy. Volume 38 Issue 2 June 2017 pp 31 Review Article. The Cadmium Zinc Telluride Imager on AstroSat · V. Bhalerao D. Bhattacharya A. Vibhute P. Pawar A. R. Rao M. K. Hingar Rakesh Khanna ...

  14. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Astrophysics and Astronomy. V. Ramasubramanian. Articles written in Journal of Astrophysics and Astronomy. Volume 38 Issue 2 June 2017 pp 19 Research Article. Metallicity of Sun-like G-stars that have Exoplanets · Shashanka R. Gurumath K. M. Hiremath V. Ramasubramanian · More Details ...

  15. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Astrophysics and Astronomy. Chao Lin. Articles written in Journal of Astrophysics and Astronomy. Volume 38 Issue 2 June 2017 pp 22 Research Article. Ratio of the Core to the Extended Emissions in the Comoving Frame for Blazars · Yun-Tian Li Shao-Yu Fu Huan-Jian Feng Si-Le He Chao Lin ...

  16. Theoretically Palatable Flavor Combinations of Astrophysical Neutrinos.

    Science.gov (United States)

    Bustamante, Mauricio; Beacom, John F; Winter, Walter

    2015-10-16

    The flavor composition of high-energy astrophysical neutrinos can reveal the physics governing their production, propagation, and interaction. The IceCube Collaboration has published the first experimental determination of the ratio of the flux in each flavor to the total. We present, as a theoretical counterpart, new results for the allowed ranges of flavor ratios at Earth for arbitrary flavor ratios in the sources. Our results will allow IceCube to more quickly identify when their data imply standard physics, a general class of new physics with arbitrary (incoherent) combinations of mass eigenstates, or new physics that goes beyond that, e.g., with terms that dominate the Hamiltonian at high energy.

  17. General relativity with applications to astrophysics

    CERN Document Server

    Straumann, Norbert

    2004-01-01

    This text provides a comprehensive and timely introduction to general relativity The foundations of the theory in Part I are thoroughly developed together with the required mathematical background from differential geometry in Part III The six chapters in Part II are devoted to tests of general relativity and to many of its applications Binary pulsars are studied in considerable detail Much space is devoted to the study of compact objects, especially to black holes This includes a detailed derivation of the Kerr solution, Israel's proof of his uniqueness theorem, and derivations of the basic laws of black hole physics The final chapter of this part contains Witten's proof of the positive energy theorem The book addresses undergraduate and graduate students in physics, astrophysics and mathematics It is very well structured and should become a standard text for a modern treatment of gravitational physics The clear presentation of differential geometry makes it also useful for string theory and other fields of ...

  18. Astrophysics for Older adults in Chicago.

    Science.gov (United States)

    Grin, Daniel; Landsberg, Randall H.; Flude, Karen

    2017-01-01

    Gerontology research continues to show that the adage "Use it or Lose it" is a clinical fact when it comes to cognitive engagement post-retirement. Here, I'll discuss a new program developed at the Kavli Institute for Cosmological Physics, bringing classes on astrophysics to older adults throughout the city, at retirement homes, at senior center, and at public libraries, bookended by an engaging trip to the Adler Planetarium. In my presentation, I'll present the gerontological and policy motivations for this program, the presenter training techniques, our partner collaboration strategy, and the results of our effort, which engaged hundreds of older adults throughout Chicago from a variety of socioeconomic strata.

  19. Few-body models for nuclear astrophysics

    Directory of Open Access Journals (Sweden)

    P. Descouvemont

    2014-02-01

    Full Text Available We present applications of microscopic models to nuclear reactions of astrophysical interest, and we essentially focus on few-body systems. The calculation of radiative-capture and transfer cross sections is outlined, and we discuss the corresponding reaction rates. Microscopic theories are briefly presented, and we emphasize on the matrix elements of four-body systems. The microscopic extension of the R-matrix theory to nuclear reactions is described. Applications to the 2H(d, γ4He, 2H(d, p3H and 2H(d, n3He reactions are presented. We show the importance of the tensor force to reproduce the low-energy behaviour of the cross sections.

  20. Astrophysical black holes in screened modified gravity

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Anne-Christine; Jha, Rahul; Muir, Jessica [Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA (United Kingdom); Gregory, Ruth, E-mail: acd@damtp.cam.ac.uk, E-mail: r.a.w.gregory@durham.ac.uk, E-mail: r.jha@damtp.cam.ac.uk, E-mail: jlmuir@umich.edu [Centre for Particle Theory, South Road, Durham, DH1 3LE (United Kingdom)

    2014-08-01

    Chameleon, environmentally dependent dilaton, and symmetron gravity are three models of modified gravity in which the effects of the additional scalar degree of freedom are screened in dense environments. They have been extensively studied in laboratory, cosmological, and astrophysical contexts. In this paper, we present a preliminary investigation into whether additional constraints can be provided by studying these scalar fields around black holes. By looking at the properties of a static, spherically symmetric black hole, we find that the presence of a non-uniform matter distribution induces a non-constant scalar profile in chameleon and dilaton, but not necessarily symmetron gravity. An order of magnitude estimate shows that the effects of these profiles on in-falling test particles will be sub-leading compared to gravitational waves and hence observationally challenging to detect.

  1. Nuclear astrophysics with radioactive ions at FAIR

    Science.gov (United States)

    Reifarth, R.; Altstadt, S.; Göbel, K.; Heftrich, T.; Heil, M.; Koloczek, A.; Langer, C.; Plag, R.; Pohl, M.; Sonnabend, K.; Weigand, M.; Adachi, T.; Aksouh, F.; Al-Khalili, J.; AlGarawi, M.; AlGhamdi, S.; Alkhazov, G.; Alkhomashi, N.; Alvarez-Pol, H.; Alvarez-Rodriguez, R.; Andreev, V.; Andrei, B.; Atar, L.; Aumann, T.; Avdeichikov, V.; Bacri, C.; Bagchi, S.; Barbieri, C.; Beceiro, S.; Beck, C.; Beinrucker, C.; Belier, G.; Bemmerer, D.; Bendel, M.; Benlliure, J.; Benzoni, G.; Berjillos, R.; Bertini, D.; Bertulani, C.; Bishop, S.; Blasi, N.; Bloch, T.; Blumenfeld, Y.; Bonaccorso, A.; Boretzky, K.; Botvina, A.; Boudard, A.; Boutachkov, P.; Boztosun, I.; Bracco, A.; Brambilla, S.; Briz Monago, J.; Caamano, M.; Caesar, C.; Camera, F.; Casarejos, E.; Catford, W.; Cederkall, J.; Cederwall, B.; Chartier, M.; Chatillon, A.; Cherciu, M.; Chulkov, L.; Coleman-Smith, P.; Cortina-Gil, D.; Crespi, F.; Crespo, R.; Cresswell, J.; Csatlós, M.; Déchery, F.; Davids, B.; Davinson, T.; Derya, V.; Detistov, P.; Diaz Fernandez, P.; DiJulio, D.; Dmitry, S.; Doré, D.; Dueñas, J.; Dupont, E.; Egelhof, P.; Egorova, I.; Elekes, Z.; Enders, J.; Endres, J.; Ershov, S.; Ershova, O.; Fernandez-Dominguez, B.; Fetisov, A.; Fiori, E.; Fomichev, A.; Fonseca, M.; Fraile, L.; Freer, M.; Friese, J.; Borge, M. G.; Galaviz Redondo, D.; Gannon, S.; Garg, U.; Gasparic, I.; Gasques, L.; Gastineau, B.; Geissel, H.; Gernhäuser, R.; Ghosh, T.; Gilbert, M.; Glorius, J.; Golubev, P.; Gorshkov, A.; Gourishetty, A.; Grigorenko, L.; Gulyas, J.; Haiduc, M.; Hammache, F.; Harakeh, M.; Hass, M.; Heine, M.; Hennig, A.; Henriques, A.; Herzberg, R.; Holl, M.; Ignatov, A.; Ignatyuk, A.; Ilieva, S.; Ivanov, M.; Iwasa, N.; Jakobsson, B.; Johansson, H.; Jonson, B.; Joshi, P.; Junghans, A.; Jurado, B.; Körner, G.; Kalantar, N.; Kanungo, R.; Kelic-Heil, A.; Kezzar, K.; Khan, E.; Khanzadeev, A.; Kiselev, O.; Kogimtzis, M.; Körper, D.; Kräckmann, S.; Kröll, T.; Krücken, R.; Krasznahorkay, A.; Kratz, J.; Kresan, D.; Krings, T.; Krumbholz, A.; Krupko, S.; Kulessa, R.; Kumar, S.; Kurz, N.; Kuzmin, E.; Labiche, M.; Langanke, K.; Lazarus, I.; Le Bleis, T.; Lederer, C.; Lemasson, A.; Lemmon, R.; Liberati, V.; Litvinov, Y.; Löher, B.; Lopez Herraiz, J.; Münzenberg, G.; Machado, J.; Maev, E.; Mahata, K.; Mancusi, D.; Marganiec, J.; Martinez Perez, M.; Marusov, V.; Mengoni, D.; Million, B.; Morcelle, V.; Moreno, O.; Movsesyan, A.; Nacher, E.; Najafi, M.; Nakamura, T.; Naqvi, F.; Nikolski, E.; Nilsson, T.; Nociforo, C.; Nolan, P.; Novatsky, B.; Nyman, G.; Ornelas, A.; Palit, R.; Pandit, S.; Panin, V.; Paradela, C.; Parkar, V.; Paschalis, S.; Pawłowski, P.; Perea, A.; Pereira, J.; Petrache, C.; Petri, M.; Pickstone, S.; Pietralla, N.; Pietri, S.; Pivovarov, Y.; Potlog, P.; Prokofiev, A.; Rastrepina, G.; Rauscher, T.; Ribeiro, G.; Ricciardi, M.; Richter, A.; Rigollet, C.; Riisager, K.; Rios, A.; Ritter, C.; Rodriguez Frutos, T.; Rodriguez Vignote, J.; Röder, M.; Romig, C.; Rossi, D.; Roussel-Chomaz, P.; Rout, P.; Roy, S.; Söderström, P.; Saha Sarkar, M.; Sakuta, S.; Salsac, M.; Sampson, J.; Sanchez, J.; Rio Saez, del; Sanchez Rosado, J.; Sanjari, S.; Sarriguren, P.; Sauerwein, A.; Savran, D.; Scheidenberger, C.; Scheit, H.; Schmidt, S.; Schmitt, C.; Schnorrenberger, L.; Schrock, P.; Schwengner, R.; Seddon, D.; Sherrill, B.; Shrivastava, A.; Sidorchuk, S.; Silva, J.; Simon, H.; Simpson, E.; Singh, P.; Slobodan, D.; Sohler, D.; Spieker, M.; Stach, D.; Stan, E.; Stanoiu, M.; Stepantsov, S.; Stevenson, P.; Strieder, F.; Stuhl, L.; Suda, T.; Sümmerer, K.; Streicher, B.; Taieb, J.; Takechi, M.; Tanihata, I.; Taylor, J.; Tengblad, O.; Ter-Akopian, G.; Terashima, S.; Teubig, P.; Thies, R.; Thoennessen, M.; Thomas, T.; Thornhill, J.; Thungstrom, G.; Timar, J.; Togano, Y.; Tomohiro, U.; Tornyi, T.; Tostevin, J.; Townsley, C.; Trautmann, W.; Trivedi, T.; Typel, S.; Uberseder, E.; Udias, J.; Uesaka, T.; Uvarov, L.; Vajta, Z.; Velho, P.; Vikhrov, V.; Volknandt, M.; Volkov, V.; von Neumann-Cosel, P.; von Schmid, M.; Wagner, A.; Wamers, F.; Weick, H.; Wells, D.; Westerberg, L.; Wieland, O.; Wiescher, M.; Wimmer, C.; Wimmer, K.; Winfield, J. S.; Winkel, M.; Woods, P.; Wyss, R.; Yakorev, D.; Yavor, M.; Zamora Cardona, J.; Zartova, I.; Zerguerras, T.; Zgura, M.; Zhdanov, A.; Zhukov, M.; Zieblinski, M.; Zilges, A.; Zuber, K.

    2016-01-01

    The nucleosynthesis of elements beyond iron is dominated by neutron captures in the s and r processes. However, 32 stable, proton-rich isotopes cannot be formed during those processes, because they are shielded from the s-process flow and r-process, β-decay chains. These nuclei are attributed to the p and rp process. For all those processes, current research in nuclear astrophysics addresses the need for more precise reaction data involving radioactive isotopes. Depending on the particular reaction, direct or inverse kinematics, forward or time-reversed direction are investigated to determine or at least to constrain the desired reaction cross sections. The Facility for Antiproton and Ion Research (FAIR) will offer unique, unprecedented opportunities to investigate many of the important reactions. The high yield of radioactive isotopes, even far away from the valley of stability, allows the investigation of isotopes involved in processes as exotic as the r or rp processes.

  2. Astrophysics and the evolution of the universe

    CERN Document Server

    Kisslinger, Leonard S

    2014-01-01

    The aim of this book is to teach undergraduate college or university students the basic physics concepts needed to understand the mathematics which describes the evolution of the universe, and based on this to teach the astrophysical theories behind evolution from very early times to the present. The book does not require students to have extensive knowledge of mathematics, like calculus, and includes material that explains concepts such as velocity, acceleration, and force. Based on this, fascinating topics such as Dark Matter, measuring Dark Energy via supernovae velocities, and the creation of mass via the Higgs mechanism are explained. All college students with an interest in science, especially astronomy, without extensive mathematical backgrounds should be able to use and learn from this book. Adults interested in topics like dark energy and the Higgs boson, which are in the news, can make use of this book as well.

  3. Relativistic astrophysics and cosmology a primer

    CERN Document Server

    Hoyng, Peter

    2006-01-01

    This book offers a succinct and self-contained treatment of general relativity and its application to neutron stars, black holes, gravitational waves and cosmology, at an intermediate level. The required mathematical concepts are introduced informally, following geometrical intuition as much as possible. The approach is theoretical, but there is ample discussion of observational aspects and instrumental issues where appropriate. Topical issues such as the Gravity Probe B mission, and the physics of interferometer detectors of gravitational waves and the angular power spectrum of the Cosmic Microwave Background are included. The book is written for advanced undergraduates and beginning graduate students in (astro)physics. The reader is assumed to be familiar with linear algebra and analysis, ordinary differential equations, special relativity, and basic thermal physics, but prior knowledge of differential geometry and general relativity is not required. Containing 140 exercises with extensive hints for their s...

  4. Studies of High Energy Particle Astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Nitz, David F [Michigan Technological University; Fick, Brian E [Michigan Technological University

    2014-07-30

    This report covers the progress of the Michigan Technological University particle astrophysics group during the period April 15th, 2011 through April 30th, 2014. The principal investigator is Professor David Nitz. Professor Brian Fick is the Co-PI. The focus of the group is the study of the highest energy cosmic rays using the Pierre Auger Observatory. The major goals of the Pierre Auger Observatory are to discover and understand the source or sources of cosmic rays with energies exceeding 10**19 eV, to identify the particle type(s), and to investigate the interactions of those cosmic particles both in space and in the Earth's atmosphere. The Pierre Auger Observatory in Argentina was completed in June 2008 with 1660 surface detector stations and 24 fluorescence telescopes arranged in 4 stations. It has a collecting area of 3,000 square km, yielding an aperture of 7,000 km**2 sr.

  5. New Prospects in High Energy Astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Blandford, Roger; /KIPAC, Menlo Park

    2011-11-15

    Recent discoveries using TeV, X-ray and radio telescopes as well as Ultra High Energy Cosmic Ray arrays are leading to new insights into longstanding puzzles in high energy astrophysics. Many of these insights come from combining observations throughout the electromagnetic and other spectra as well as evidence assembled from different types of source to propose general principles. Issues discussed in this general overview include methods of accelerating relativistic particles, and amplifying magnetic field, the dynamics of relativistic outflows and the nature of the prime movers that power them. Observational approaches to distinguishing hadronic, leptonic and electromagnetic outflows and emission mechanisms are discussed along with probes of the velocity field and the confinement mechanisms. Observations with GLAST promise to be very prescriptive for addressing these problems.

  6. The Fascination of Far-UV Astrophysics

    Science.gov (United States)

    Linsky, J. L.

    1998-05-01

    A one-day topical session will review the observational and theoretical status of astrophysical problems where data in the 900 to 1200 Angstroms range are essential for future advances. The session will include the study of FUV rest wavelengths at high redshifts. For example, the deuterium-to-hydrogen abundance ratio will address the Milky Way and QSO absorption line systems. The FUV spectral region is well known for its unique spectral features and important scientific problems they address. The Lyman series of atomic hydrogen provides the only means to determine the production of deuterium in the Big Bang and its subsequent processing during galactic chemical evolution. The resonance doublet of the O VI ion is the highest temperature resonance line available to study the abundance and kinematics of diffuse hot gas in the disk and halo of the Galaxy and hot gas in accretion disks. The Lyman and Werner bands, the only electronic transitions of molecular hydrogen, probe cold gas in the diffuse ISM as well as the outer regions of dense molecular clouds. Strong transitions of several ionization states of carbon, nitrogen, oxygen, neon, sulphur, and argon provide unique diagnostics for studying interstellar gas and emission plasmas. This special session focuses on recent observational material and how the data limit the range of acceptable pictures. This session will highlight key puzzles and describe anticipated progress from new instrumentation, in particular the Far Ultraviolet Spectroscopic Explorer (FUSE) mission, due to be launched in early 1999. The first talk of the session will summarize the critically important spectral diagnostics that reside in the FUV spectral region and show how they allow FUSE to address the main scientific objectives of FUV astrophysics. FUSE spectra will also enhance the value of longer wavelength spectra provided by HST and IUE, shorter wavelength spectra of EUVE and soon AXAF, lower sensitivity FUV spectra of Copernicus, and lower

  7. Parallel Information Phenomena of Biology and Astrophysics

    Science.gov (United States)

    Frieden, B. Roy; Soffer, Bernard H.

    The realms of biology and astrophysics are usually regarded as distinct, to be studied within individual frameworks. However, current searches for life in the universe, and the expectation of positive results, are guiding us toward a unification of biology and astrophysics called astrobiology. In this chapter the unifying aspect of Fisher information is shown to form two bridges of astrobiology: (i) In Section 5.1 quarter-power laws are found to both describe attributes of biology, such as metabolism rate, and attributes of the cosmos, in particular its universal constants, (ii) In Section 5.2 we find that the Lotka-Volterra growth equations of biology follow from quantum mechanics. Both these bridges follow, ultimately, from the extreme physical information EPI principle and, hence, are examples of the “cooperative” universe discussed in Chapter 1. That is, the universe cooperates with our goal of understanding it, through participatory observation. The participatory aspect of the effect (i) is the observation of biological and cosmological attributes obeying quarter-power laws. In the Lotka-Volterra quantum effect (ii) the participation is the observation of a general particle member that undergoes scattering by a complex potential. This potential causes the growth or depletion of the particle population levels to obey Lotka-Volterra equations. Effectively, the interaction potentials of a standard Hartree view of the scattering process become corresponding fitness coefficients of the L-V growth equations. The two ostensibly unrelated effects of scattering and biological growth are thereby intimately related; out of a common flow of Fisher information to the observer.

  8. On Gamma-Ray Bursts

    CERN Document Server

    Ruffini, Remo; Bianco, Carlo Luciano; Caito, Letizia; Chardonnet, Pascal; Cherubini, Christian; Dainotti, Maria Giovanna; Fraschetti, Federico; Geralico, Andrea; Guida, Roberto; Patricelli, Barbara; Rotondo, Michael; Hernandez, Jorge Armando Rueda; Vereshchagin, Gregory; Xue, She-Sheng

    2008-01-01

    (Shortened) We show by example how the uncoding of Gamma-Ray Bursts (GRBs) offers unprecedented possibilities to foster new knowledge in fundamental physics and in astrophysics. After recalling some of the classic work on vacuum polarization in uniform electric fields by Klein, Sauter, Heisenberg, Euler and Schwinger, we summarize some of the efforts to observe these effects in heavy ions and high energy ion collisions. We then turn to the theory of vacuum polarization around a Kerr-Newman black hole, leading to the extraction of the blackholic energy, to the concept of dyadosphere and dyadotorus, and to the creation of an electron-positron-photon plasma. We then present a new theoretical approach encompassing the physics of neutron stars and heavy nuclei. It is shown that configurations of nuclear matter in bulk with global charge neutrality can exist on macroscopic scales and with electric fields close to the critical value near their surfaces. These configurations may represent an initial condition for the...

  9. Higher Education Resources from the NASA SMD Astrophysics Forum

    Science.gov (United States)

    Meinke, Bonnie K.; Schultz, Gregory R.; Manning, James; Smith, Denise A.; Bianchi, Luciana; Blair, William P.; Fraknoi, Andrew

    2014-06-01

    The NASA Astrophysics Science Education and Public Outreach Forum (SEPOF) coordinates the work of individual NASA Science Mission Directorate (SMD) Astrophysics EPO projects and their teams into a coherent, effective, efficient, and sustainable effort. The Astrophysics Forum assists scientists and educators with becoming involved in SMD E/PO and makes SMD E/PO resources and expertise accessible to the science and education communities. Here we describe how the Astrophysics Forum and the Astrophysics E/PO community have focused efforts to support and engage the higher education community on enhancing awareness of the resources available to them. To ensure Astrophysics higher education efforts are grounded in audience needs, we held informal conversations with instructors of introductory astronomy courses, convened sessions with higher education faculty and E/PO professionals at conferences, and examined existing literature and findings of the SMD Higher Education Working Group. To address the expressed needs, the Astrophysics Forum collaborated with the Astrophysics E/PO community, researchers, and Astronomy 101 instructors to place individual science discoveries and learning resources into context for higher education audiences. Among these resources are two Resource Guides on the topics of cosmology and exoplanets. These fields are ripe with scientific developments that college instructors have told us they find challenging to stay current. Each guide includes a wide variety of sources and is available through the ASP website: http://www.astrosociety.org/education/astronomy-resource-guides/ To complement the resource guides, we are developing a series of slide sets to help Astronomy 101 instructors incorporate new discoveries from individual SMD Astrophysics missions in their classrooms. The “Astro 101 slide sets” are 5-7 slide presentations on a new development or discovery from a NASA SMD Astrophysics mission relevant to an Astronomy 101 topic. We intend for

  10. Gamma-ray Astronomy

    OpenAIRE

    Pohl, Martin

    2007-01-01

    This paper summarizes recents results in gamma-ray astronomy, most of which were derived with data from ground-based gamma-ray detectors. Many of the contributions presented at this conference involve multiwavelength studies which combine ground-based gamma-ray measurements with optical data or space-based X-ray and gamma-ray measurements. Besides measurements of the diffuse emission from the Galaxy, observations of blazars, gamma-ray bursts, and supernova remnants this paper also covers theo...

  11. 77 FR 38090 - NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting

    Science.gov (United States)

    2012-06-26

    ... SPACE ADMINISTRATION NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting AGENCY... Administration (NASA) announces a meeting of the Astrophysics Subcommittee (APS) of the NASA Advisory Council... the following topics: --Astrophysics Division Update --James Webb Space Telescope Update --Wide-Field...

  12. 77 FR 4370 - NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting

    Science.gov (United States)

    2012-01-27

    ... SPACE ADMINISTRATION NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting AGENCY... Administration (NASA) announces a meeting of the Astrophysics Subcommittee of the NASA Advisory Council (NAC... meeting includes the following topics: --Astrophysics Division Update --Update on Balloons Return to...

  13. 77 FR 62536 - Meeting of Astrophysics Subcommittee of the NASA Advisory Council Science Committee

    Science.gov (United States)

    2012-10-15

    ... SPACE ADMINISTRATION Meeting of Astrophysics Subcommittee of the NASA Advisory Council Science Committee... Space Administration (NASA) announces a meeting of the Astrophysics Subcommittee of the NASA Advisory... topics: --Astrophysics Division Update --Proposed Data Centers Study --Strategic Implementation for the...

  14. 76 FR 35481 - NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting

    Science.gov (United States)

    2011-06-17

    ... SPACE ADMINISTRATION NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting AGENCY... Administration (NASA) announces a meeting of the Astrophysics Subcommittee of the NASA Advisory Council (NAC... meeting includes the following topics: --Astrophysics Division Update. --Research and Analysis Update...

  15. 75 FR 51116 - NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting

    Science.gov (United States)

    2010-08-18

    ... SPACE ADMINISTRATION NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting AGENCY... Administration (NASA) announces a meeting of the Astrophysics Subcommittee of the NASA Advisory Council (NAC... the meeting includes the following topics: --Astrophysics Division Update --2010 Astronomy and...

  16. 75 FR 2893 - NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting

    Science.gov (United States)

    2010-01-19

    ... SPACE ADMINISTRATION NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting AGENCY... and Space Administration (NASA) announces a meeting of the Astrophysics Subcommittee of the NASA... the room. The agenda for the meeting includes the following topics: --Astrophysics Division Update...

  17. 78 FR 66384 - NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting

    Science.gov (United States)

    2013-11-05

    ... SPACE ADMINISTRATION NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting AGENCY... Administration (NASA) announces a meeting of the Astrophysics Subcommittee of the NASA Advisory Council (NAC... INFORMATION: The agenda for the meeting includes the following topics: --Astrophysics Division Update...

  18. 75 FR 33837 - NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting

    Science.gov (United States)

    2010-06-15

    ... SPACE ADMINISTRATION NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting AGENCY... and Space Administration (NASA) announces a meeting of the Astrophysics Subcommittee of the NASA... of the room. The agenda for the meeting includes the following topics: --Astrophysics Division Update...

  19. 75 FR 74089 - NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting

    Science.gov (United States)

    2010-11-30

    ... SPACE ADMINISTRATION NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting AGENCY... Administration (NASA) announces a meeting of the Astrophysics Subcommittee of the NASA Advisory Council (NAC... meeting includes the following topics: --Astrophysics Division Update --James Webb Space Telescope Update...

  20. 76 FR 5405 - NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting

    Science.gov (United States)

    2011-01-31

    ... SPACE ADMINISTRATION NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting AGENCY... Administration (NASA) announces a meeting of the Astrophysics Subcommittee of the NASA Advisory Council (NAC... meeting includes the following topics: --Astrophysics Division Update --Update from the James Webb Space...

  1. 75 FR 13597 - NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting

    Science.gov (United States)

    2010-03-22

    ... SPACE ADMINISTRATION NASA Advisory Council; Science Committee; Astrophysics Subcommittee; Meeting AGENCY... and Space Administration (NASA) announces a meeting of the Astrophysics Subcommittee of the NASA... following topics: --Astrophysics Division Update. --Kepler Data Release Policy. It is imperative that the...

  2. Air shower detectors in gamma-ray astronomy

    Energy Technology Data Exchange (ETDEWEB)

    Sinnis, Gus [Los Alamos National Laboratory

    2008-01-01

    Extensive air shower (EAS) arrays directly detect the particles in an EAS that reach the observation altitude. This detection technique effectively makes air shower arrays synoptic telescopes -- they are capable of simultaneously and continuously viewing the entire overhead sky. Typical air shower detectors have an effective field-of-view of 2 sr and operate nearly 100% of the time. These two characteristics make them ideal instruments for studying the highest energy gamma rays, extended sources and transient phenomena. Until recently air shower arrays have had insufficient sensitivity to detect gamma-ray sources. Over the past decade, the situation has changed markedly. Milagro, in the US, and the Tibet AS{gamma} array in Tibet, have detected very-high-energy gamma-ray emission from the Crab Nebula and the active galaxy Markarian 421 (both previously known sources). Milagro has discovered TeV diffuse emission from the Milky Way, three unidentified sources of TeV gamma rays, and several candidate sources of TeV gamma rays. Given these successes and the suite of existing and planned instruments in the GeV and TeV regime (AGILE, GLAST, HESS, VERITAS, CTA, AGIS and IceCube) there are strong reasons for pursuing a next generation of EAS detectors. In conjunction with these other instruments the next generation of EAS instruments could answer long-standing problems in astrophysics.

  3. Constraining axion by polarized prompt emission from gamma ray bursts

    CERN Document Server

    Rubbia, André

    2008-01-01

    A polarized gamma ray emission spread over a sufficiently wide energy band from a strongly magnetized astrophysical object like gamma ray bursts (GRBs) offers an opportunity to test the hypothesis of invisible axion. The axionic induced dichroism of gamma rays at different energies should cause a misalignment of the polarization plane for higher energy events relative to that one for lower energies events resulting in the loss of statistics needed to form a pattern of the polarization signal to be recognized in a detector. According to this, any evidence of polarized gamma rays coming from an object with extended magnetic field could be interpreted as a constraint on the existence of the invisible axion for a certain parameter range. Based on reports of polarized MeV emission detected in several GRBs we derive a constraint on the axion-photon coupling. This constraint $\\g_{a\\gamma\\gamma}\\le 2.2\\cdot 10^{-11} {\\rm GeV^{-1}}$ calculated for the axion mass $m_a=10^{-3} {\\rm eV}$ is competitive with the sensitivi...

  4. GammaWorkshops Proceedings

    DEFF Research Database (Denmark)

    Strålberg, Elisabeth; Klemola, Seppo; Nielsen, Sven Poul

    Due to a sparse interaction during the last years between practioners in gamma ray spectrometry in the Nordic countries, a NKS activity was started in 2009. This GammaSem was focused on seminars relevant to gamma spectrometry. A follow up seminar was held in 2010. As an outcome of these activities...... it was suggested that the 2011 meeting should be focused on practical issues, e.g. different corrections needed in gamma spectrometric measurements. This three day’s meeting, GammaWorkshops, was held in September at Risø-DTU. Experts on different topics relevant for gamma spectrometric measurements were invited...... to the GammaWorkshops. The topics included efficiency transfer, true coincidence summing corrections, self-attenuation corrections, measurement of natural radionuclides (natural decay series), combined measurement uncertainty calculations, and detection limits. These topics covered both lectures and practical...

  5. Comparison of the LUNA 3He(alpha,gamma)7Be activation results with earlier measurements and model calculations

    CERN Document Server

    Gyurky, Gy; Confortola, F; Costantini, H; Formicola, A; Bonetti, R; Broggini, C; Corvisiero, P; Elekes, Z; Fülöp, Z; Gervino, G; Guglielmetti, A; Gustavino, C; Imbriani, G; Junker, M; Laubenstein, M; Lemut, A; Limata, B; Lozza, V; Marta, M; Menegazzo, R; Prati, P; Roca, V; Rolfs, C; Alvarez, C Rossi; Somorjai, E; Straniero, O; Strieder, F; Terrasi, F; Trautvetter, H P

    2007-01-01

    Recently, the LUNA collaboration has carried out a high precision measurement on the 3He(alpha,gamma)7Be reaction cross section with both activation and on-line gamma-detection methods at unprecedented low energies. In this paper the results obtained with the activation method are summarized. The results are compared with previous activation experiments and the zero energy extrapolated astrophysical S factor is determined using different theoretical models.

  6. Detection of terrestrial gamma-ray flashes with the AGILE satellite

    Science.gov (United States)

    Ursi, A.; Marisaldi, M.; Tavani, M.; Sanò, P.; Casella, D.; Dietrich, S.

    2017-05-01

    Terrestrial gamma-ray flashes are brief submillisecond gamma-ray emissions, produced during thunderstorms and strictly correlated to lightning and atmospheric electric activity. Serendipitously discovered in 1994 by the Compton Gamma Ray Observatory, these elusive events have been further investigated by several missions and satellites devoted to high-energy astrophysics, such as RHESSI, AGILE and Fermi. Terrestrial gamma-ray flashes are thought to be bremsstrahlung gamma-rays, produced at the top of thunderclouds by avalanches of electrons accelerated within thunderstorm strong electric fields and abruptly braked in the atmosphere. Exhibiting energies ranging from few keV up to several tens of MeV, terrestrial gamma-ray flashes are the most energetic phenomenon naturally occurring on Earth and they can represent a severe risk for airplanes and aircraft transports, both for the crew and the on board electronics, that should be carefully investigated and understood. The AGILE (Astrorivelatore Gamma ad Immagini LEggero) satellite is an entirely Italian mission, launched in 2007 and still operational, aimed at investigating gamma-ray emissions from cosmic sources. The wide energy range and the unique submillisecond trigger logic of its on-board instruments, together with the narrow quasi-equatorial orbit of the spacecraft, make AGILE a very suitable instrument to detect and investigate terrestrial gamma-ray flashes. Recent improvements rose up the terrestrial gamma-ray flashes detection rate and lead to the observation, for the first time, of multiple events occurring within single thunderstorm processes.

  7. Calibration and simulation of a gamma array for DRAGON at ISAC

    CERN Document Server

    Gigliotti, D G; Hussein, A H

    2003-01-01

    A gamma ray detector has been built for the DRAGON facility at TRIUMF to detect the gamma ray emitted in astrophysically important proton and alpha radiative capture reactions. The gamma detector was designed to balance cost with maximum solid angle coverage and efficiency. To study the properties of the current design, GEANT simulations are being carried out and compared with prototype measurements using calibration sources and radioactive beams supplied by ISAC. Simulations will be compared with data allowing a realistic simulation to be produced. This modified simulation will then be used to provide efficiency predictions of the gamma array when an actual experiment's parameters are inputted. Using the simulated efficiency of the array, cross sections for radiative capture can be calculated from the measured gamma ray yields, for the individual reactions. The following will outline some initial results of background suppression of beam related experiments. Also shown, are some preliminary comparison of poi...

  8. New Worlds / New Horizons Science with an X-ray Astrophysics Probe

    Science.gov (United States)

    Smith, Randall K.; Bookbinder, Jay A.; Hornschemeier, Ann E.; Bandler, Simon; Brandt, W. N.; Hughes, John P.; McCammon, Dan; Matsumoto, Hironori; Mushotzky, Richard; Osten, Rachel A.; hide

    2014-01-01

    In 2013 NASA commenced a design study for an X-ray Astrophysics Probe to address the X-ray science goals and program prioritizations of the Decadal Survey New World New Horizons (NWNH) with a cost cap of approximately $1B. Both the NWNH report and 2011 NASA X-ray mission concept study found that high-resolution X-ray spectroscopy performed with an X-ray microcalorimeter would enable the most highly rated NWNH X-ray science. Here we highlight some potential science topics, namely: 1) a direct, strong-field test of General Relativity via the study of accretion onto black holes through relativistic broadened Fe lines and their reverberation in response to changing hard X-ray continuum, 2) understanding the evolution of galaxies and clusters by mapping temperatures, abundances and dynamics in hot gas, 3) revealing the physics of accretion onto stellar-mass black holes from companion stars and the equation of state of neutron stars through timing studies and time-resolved spectroscopy of X-ray binaries and 4) feedback from AGN and star formation shown in galaxy-scale winds and jets. In addition to these high-priority goals, an X-ray astrophysics probe would be a general-purpose observatory that will result in invaluable data for other NWNH topics such as stellar astrophysics, protostars and their impact on protoplanetary systems, X-ray spectroscopy of transient phenomena such as high-z gamma-ray bursts and tidal capture of stars by massive black holes, and searches for dark matter decay.

  9. Artium mater in relativistic astrophysics : New perspectives for a European-Latin American PhD program

    Science.gov (United States)

    Chardonnet, Pascal

    2015-12-01

    Following the successful scientific space missions by the European Space Agency (ESA) and the European Southern Observatory (ESO) in Chile, as well as the high-energy particle activities at CERN in Genve, we have created a Ph.D. program dedicated to the formation of scientists in the field of relativistic astrophysics. The students of such a program will lead the theoretical developments of one of the most active fields of research, based on the above observational and experimental facilities. This program needs expertise in the most advanced topics of mathematical and theoretical physics, and in relativistic field theories. It requires the ability to model the observational data received from the above facilities, as well as all the basic knowledge in astronomy, astrophysics and cosmology. This activity is necessarily international, no single university can cover the broad expertises. From this, the proposed program of the IRAP Ph.D., in one of the youngest and most dynamical French universities, pole of research and teaching in the Euro-Mediterranean region (PRES): the University of Nice. It benefits from the presence of the astrophysics research institute of Observatoire de la Cte d'Azur involved in relativistic and non-photonic astrophysics. The participation of the Freie Universitaet Berlin, Oldenburg and Bremen Universities and of the Einstein Institute in Potsdam offers the possibility of teaching in relativistic field theories at the highest level. The University of Savoy offers the link to the particle physics at CERN. The activities at the University of Rome, at Stockholm University and at ICRANet offer teaching programs in all the fields of relativistic astrophysics, including cosmology, the physics of gravitational collapse, gamma-ray bursts, and black hole physics. Finally, the University of Ferrara will be present with lectures and researches in the topics they have pioneered such as x-ray astrophysics and observational cosmology. Through ICRANet the

  10. Antiproton signatures from astrophysical and dark matter sources at the galactic center

    Energy Technology Data Exchange (ETDEWEB)

    Cembranos, J.A.R.; Gammaldi, V.; Maroto, A.L., E-mail: cembra@ucm.es, E-mail: vivigamm@ucm.es, E-mail: maroto@fis.ucm.es [Departamento de Física Teórica I, Facultad Ciencias Físicas, Universidad Complutense Madrid, Ciudad Universitaria, E-28040 Madrid (Spain)

    2015-03-01

    The center of our Galaxy is a complex region characterized by extreme phenomena. The presence of the supermassive Sagittarius A* black hole, a high dark matter density and an even higher baryonic density are able to produce very energetic processes. Indeed, high energetic gamma-rays have been observed by different telescopes, although their origin is not clear. In this work, we estimate the possible antiproton flux component associated with this signal. The expected secondary astrophysical antiproton background already saturates the observed data. It implies that any other important astrophysical source leads to an inconsistent excess. We estimate the sensitivity of PAMELA to this new primary antiproton source, which depends on the diffusion model and its spectral features. In particular, we consider antiproton spectra described by a power-law, a monochromatic signal and a Standard Model particle-antiparticle channel production. This latter spectrum is typical in the production from annihilating or decaying dark matter. We pay particular attention to the case of a heavy dark matter candidate, which could be associated with the High Energy Stereoscopic System (HESS) data observed from the J1745-290 source.

  11. XXII SLAC summer institute on particle physics: Proceedings. Particle physics, astrophysics and cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Chan, J; DePorcel, L [eds.

    1996-02-01

    The seven-day school portion of the Institute revolved around the question of dark matter: where is it and what is it? Reviews were given of microlensing searches for baryonic dark matter, of dark matter candidates in the form of neutrinos and exotic particles, and of low-noise detection techniques used to search for the latter. The history of the universe, from the Big Bang to the role of dark matter in the formation of large-scale structure, was also covered. Other lecture series described the astrophysics that might be done with x-ray timing experiments and through the detection of gravitational radiation. As in past years, the lectures each morning were followed by stimulating afternoon discussion sessions, in which students could pursue with the lecturers the topics that most interested them. The Institute concluded with a three-day topical conference covering recent developments in theory and experiment. Highlights from the astrophysical and cosmological arenas included observations of anisotropy in the cosmic microwave background, and of the mysterious gamma-ray bursters. From terrestrial accelerators came tantalizing hints of the top quark and marked improvements in precision electroweak measurements, among many other results. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  12. Spontaneous magnetic reconnection. Collisionless reconnection and its potential astrophysical relevance

    Science.gov (United States)

    Treumann, R. A.; Baumjohann, W.

    2015-10-01

    The present review concerns the relevance of collisionless reconnection in the astrophysical context. Emphasis is put on recent developments in theory obtained from collisionless numerical simulations in two and three dimensions. It is stressed that magnetic reconnection is a universal process of particular importance under collisionless conditions, when both collisional and anomalous dissipation are irrelevant. While collisional (resistive) reconnection is a slow, diffusive process, collisionless reconnection is spontaneous. On any astrophysical time scale, it is explosive. It sets on when electric current widths become comparable to the leptonic inertial length in the so-called lepton (electron/positron) "diffusion region", where leptons de-magnetise. Here, the magnetic field contacts its oppositely directed partner and annihilates. Spontaneous reconnection breaks the original magnetic symmetry, violently releases the stored free energy of the electric current, and causes plasma heating and particle acceleration. Ultimately, the released energy is provided by mechanical motion of either the two colliding magnetised plasmas that generate the current sheet or the internal turbulence cascading down to lepton-scale current filaments. Spontaneous reconnection in such extended current sheets that separate two colliding plasmas results in the generation of many reconnection sites (tearing modes) distributed over the current surface, each consisting of lepton exhausts and jets which are separated by plasmoids. Volume-filling factors of reconnection sites are estimated to be as large as {sheet. Lepton currents inside exhausts may be strong enough to excite Buneman and, for large thermal pressure anisotropy, also Weibel instabilities. They bifurcate and break off into many small-scale current filaments and magnetic flux ropes exhibiting turbulent magnetic power spectra of very flat power-law shape W_b∝ k^{-α } in wavenumber k with power becoming as low as α ≈ 2

  13. Astrophysical targets of the Fresnel diffractive imager

    Science.gov (United States)

    Koechlin, L.; Deba, P.; Raksasataya, T.

    2017-11-01

    The Fresnel Diffractive imager is an innovative concept of distributed space telescope, for high resolution (milli arc-seconds) spectro-imaging in the IR, visible and UV domains. This paper presents its optical principle and the science that can be done on potential astrophysical targets. The novelty lies in the primary optics: a binary Fresnel array, akin to a binary Fresnel zone plate. The main interest of this approach is the relaxed manufacturing and positioning constraints. While having the resolution and imaging capabilities of lens or mirrors of equivalent size, no optical material is involved in the focusing process: just vacuum. A Fresnel array consists of millions void subapertures punched into a large and thin opaque membrane, that focus light by diffraction into a compact and highly contrasted image. The positioning law of the aperture edges drives the image quality and contrast. This optical concept allows larger and lighter apertures than solid state optics, aiming to high angular resolution and high dynamic range imaging, in particular for UV applications. Diffraction focusing implies very long focal distances, up to dozens of kilometers, which requires at least a two-vessel formation flying in space. The first spacecraft, "the Fresnel Array spacecraft", holds the large punched foil: the Fresnel Array. The second, the "Receiver spacecraft" holds the field optics and focal instrumentation. A chromatism correction feature enables moderately large (20%) relative wavebands, and fields of a few to a dozen arc seconds. This Fresnel imager is adapted to high contrast stellar environments: dust disks, close companions and (we hope) exoplanets. Specific to the particular grid-like pattern of the primary focusing zone plate, is the very high dynamic range achieved in the images, in the case of compact objects. Large stellar photospheres may also be mapped with Fresnel arrays of a few meters opertaing in the UV. Larger and more complex fields can be imaged with

  14. Fermi-LAT Detection of Gamma-Ray Emission in the Vicinity of the Star Forming Regions W43 and Westerlund 2

    Science.gov (United States)

    Lemoine-Goumard, M.; Ferrara, E.; Grondin, M.-H.; Martin, P.; Renaud, M.

    2011-01-01

    Particle acceleration in massive star forming regions can proceed via a large variety of possible emission scenarios, including high-energy gamma-ray production in the colliding wind zone of the massive Wolf-Rayet binary (here WR 20a and WR I2Ia), collective wind scenarios, diffusive shock acceleration at the boundaries of wind-blown bubbles in the stellar cluster, and outbreak phenomena from hot stellar winds into the interstellar medium. In view of the recent Fermi-LAT detection of HESS JI023-575 (in the vicinity of Westerlund 2), we examine another very high energy (VHE) gamma-ray source, HESS JI848-0145 (in the vicinity ofW43), possibly associated with a massive star cluster. Considering multi-wavelength data, in particular TeV gamma-rays, we examine the available evidence that the gamma-ray emission coincident with Westerlund 2 and W43 could originate in particles accelerated by the above-mentioned mechanisms in massive star clusters.

  15. Gamma-rays from Dark Matter Annihilation in the Central Region of the Galaxy

    Energy Technology Data Exchange (ETDEWEB)

    Serpico, Pasquale Dario; /CERN; Hooper, Dan; /Fermilab /Chicago U., Astron. Astrophys. Ctr.

    2009-02-01

    In this article, we review the prospects for the FERMI satellite (formerly known as GLAST) to detect gamma-rays from dark matter annihilations in the Central Region of the Milky Way, in light of the recent observations and discoveries of Imaging Atmospheric Cherenkov Telescopes. While the existence of significant astrophysical backgrounds in this part of the sky limits FERMI's discovery potential to some degree, this can be mitigated by exploiting the peculiar energy spectrum and angular distribution of the dark matter annihilation signal relative to those of astrophysical backgrounds.

  16. Shape: A 3D Modeling Tool for Astrophysics.

    Science.gov (United States)

    Steffen, Wolfgang; Koning, Nicholas; Wenger, Stephan; Morisset, Christophe; Magnor, Marcus

    2011-04-01

    We present a flexible interactive 3D morpho-kinematical modeling application for astrophysics. Compared to other systems, our application reduces the restrictions on the physical assumptions, data type, and amount that is required for a reconstruction of an object's morphology. It is one of the first publicly available tools to apply interactive graphics to astrophysical modeling. The tool allows astrophysicists to provide a priori knowledge about the object by interactively defining 3D structural elements. By direct comparison of model prediction with observational data, model parameters can then be automatically optimized to fit the observation. The tool has already been successfully used in a number of astrophysical research projects.

  17. Recent Developments in Astrophysical and Cosmological Exploitation of Microwave Surveys

    DEFF Research Database (Denmark)

    Burigana, Carlo; Davies, Rodney D.; De Bernardis, Paolo

    2013-01-01

    In this paper, we focus on the astrophysical results and the related cosmological implications derived from recent microwave surveys, with emphasis to those coming from the Planck mission. We critically discuss the impact of systematic effects and the role of methods to separate the cosmic...... microwave background (CMB) signal from the astrophysical emissions and each different astrophysical component from the others. We then review the state-of-the-art diffuse emissions, extragalactic sources, cosmic infrared background and galaxy clusters, addressing the information they provide to our global...

  18. Recent Nuclear Astrophysics Data Activities in the US

    Energy Technology Data Exchange (ETDEWEB)

    Bardayan, D.W.; Blackmon, J.C.; Browne, E.; Firestone, R.B.; Hale, G.M.; Hoffman, R.D.; Ma, Z.; McLane, V.; Norman, E.B.; Shu, N.; Smith, D.L.; Smith, M.S.; Van Wormer, L.A.; Woosley, S.E.; Wu, S.-C.

    1999-08-30

    Measurements in nuclear physics laboratories form the empirical foundation for new, realistic, sophisticated theoretical models of a wide variety of astrophysical systems. The predictive power of these models has, in many instances, a strong dependence on the input nuclear data, and more extensive and accurate nuclear data is required for these models than ever before. Progress in astrophysics can be aided by providing scientists with more usable, accurate, and significant amounts of nuclear data in a timely fashion in formats that can be easily incorporated into their models. A number of recent data compilations, evaluations, calculations, and disseminations that address nuclear astrophysics data needs will be described.

  19. Transporte de energía en fuentes gamma

    Science.gov (United States)

    Pellizza, L. J.; Douna, V. M.; Pedrosa, S. E.

    2017-10-01

    Gamma-ray emission observed in different astrophysical systems, originates in non-thermal populations of particles (mainly protons and electrons) accelerated to relativistic energies. The understanding of how these populations and the emitted radiation gain, transport and lose energy through interactions within the system or in their journey to the observer, is important for the assessment of the nature of -ray sources. As the agents of these interactions are radiation, matter, and magnetic fields, it also serves as a means to investigate the properties of these fields, and to explore the injection of energy from -ray sources into their environment. In the present article, we discuss some topical issues in Relativistic Astrophysics and Cosmology, which can be addressed by the study of the energy transport driven by relativistic particles.

  20. Computing Across the Physics and Astrophysics Curriculum

    Science.gov (United States)

    DeGioia Eastwood, Kathy; James, M.; Dolle, E.

    2012-01-01

    Computational skills are essential in today's marketplace. Bachelors entering the STEM workforce report that their undergraduate education does not adequately prepare them to use scientific software and to write programs. Computation can also increase student learning; not only are the students actively engaged, but computational problems allow them to explore physical problems that are more realistic than the few that can be solved analytically. We have received a grant from the NSF CCLI Phase I program to integrate computing into our upper division curriculum. Our language of choice is Matlab; this language had already been chosen for our required sophomore course in Computational Physics because of its prevalence in industry. For two summers we have held faculty workshops to help our professors develop the needed expertise, and we are now in the implementation and evaluation stage. The end product will be a set of learning materials in the form of computational modules that we will make freely available. These modules will include the assignment, pedagogical goals, Matlab code, samples of student work, and instructor comments. At this meeting we present an overview of the project as well as modules written for a course in upper division stellar astrophysics. We acknowledge the support of the NSF through DUE-0837368.

  1. Absorber Coatings for Mid-Infrared Astrophysics

    Science.gov (United States)

    Baker, Dahlia Anne; Wollack, Edward; Rostem, Karwan

    2017-01-01

    Control over optical response is an important aspect of instrument design for astrophysical imaging. Here we consider a mid-infrared absorber coating proposed for use on HIRMES (High Resolution Mid-Infrared Spectrometer), a cryogenic spectrometer which will fly on the SOFIA (Stratospheric Observatory for Infrared Astronomy) aircraft. The aim of this effort is to develop an absorptive coating for the 20-200 microns spectral range based on a graphene loaded epoxy binder (Epotek 377H) and glass microsphere scatterers (3M K1). The coatings electromagnetic response was modeled using a Matlab script and the glass microspheres were characterized by the measured size distribution, the dielectric constant, and the filling fraction. Images of the microspheres taken by a microscope were used to determine the size distribution with an ImageJ particle analysis program. Representative test samples for optical evaluation were fabricated for characterization via infrared Fourier transform spectroscopy. The optical tests will determine the material’s absorptance and reflectance. These test results will be compared to the modeled response.

  2. The Advanced Telescope for High Energy Astrophysics

    Science.gov (United States)

    Guainazzi, Matteo

    2017-08-01

    Athena (the Advanced Telescope for High Energy Astrophysics) is a next generation X-ray observatory currently under study by ESA for launch in 2028. Athena is designed to address the Hot and Energetic Universe science theme, which addresses two key questions: 1) How did ordinary matter evolve into the large scale structures we see today? 2) How do black holes grow and shape the Universe. To address these topics Athena employs an innovative X-ray telescope based on Silicon Pore Optics technology to deliver extremely light weight and high throughput, while retaining excellent angular resolution. The mirror can be adjusted to focus onto one of two focal place instruments: the X-ray Integral Field Unit (X-IFU) which provides spatially-resolved, high resolution spectroscopy, and the Wide Field Imager (WFI) which provides spectral imaging over a large field of view, as well as high time resolution and count rate tolerance. Athena is currently in Phase A and the study status will be reviewed, along with the scientific motivations behind the mission.

  3. Welcome to the Universe an astrophysical tour

    CERN Document Server

    DeGrasse Tyson, Neil; Gott, Richard J

    2016-01-01

    Welcome to the Universe is a personal guided tour of the cosmos by three of today's leading astrophysicists. Inspired by the enormously popular introductory astronomy course that Neil deGrasse Tyson, Michael A. Strauss, and J. Richard Gott taught together at Princeton, this book covers it all--from planets, stars, and galaxies to black holes, wormholes, and time travel. Describing the latest discoveries in astrophysics, the informative and entertaining narrative propels you from our home solar system to the outermost frontiers of space. How do stars live and die? Why did Pluto lose its planetary status? What are the prospects of intelligent life elsewhere in the universe? How did the universe begin? Why is it expanding and why is its expansion accelerating? Is our universe alone or part of an infinite multiverse? Answering these and many other questions, the authors open your eyes to the wonders of the cosmos, sharing their knowledge of how the universe works. Breathtaking in scope and stunningly illustrate...

  4. AstroDance: Teaching Astrophysics Through Dance?

    Science.gov (United States)

    Noel-Storr, Jacob; Campanelli, M.; Bochner, J.; Warfield, T.; Bischof, H.; Zlochower, Y.; Nordhaus, J.; Watkins, G.; NSF CRPA AstroDance Team

    2014-01-01

    Through a collaboration involving scientists, artists and educators, members of the Center for Computational Relativity and Gravitation and the National Technical Institute for the Deaf at the Rochester Institute of Technology we developed a unique project for Communicating Research to Public Audiences. The project used dance and multi-media theater techniques to expose a broad audience, about half of which is comprised of deaf and hard-of-hearing individuals, to an aesthetic, educational performance representing the concepts of gravitational physics in astrophysical settings. Since deaf and hard-of-hearing people rely heavily on visual communication for learning and gaining access to information, dance and multi-media theater provide a kinesthetic and visual experience that is fully accessible to them, as well as hearing audience members, and help facilitate their learning and development of non-linguistic representations of concepts. Here we present the results of our research into the learning outcomes for the diverse audiences of this project in terms of both knowledge and attitudes towards science.

  5. Light dark matter versus astrophysical constraints

    Energy Technology Data Exchange (ETDEWEB)

    Cline, James M., E-mail: jcline@physics.mcgill.ca [Physics Department, McGill University, Montreal, QC, H3A2T8 (Canada); Frey, Andrew R., E-mail: a.frey@uwinnipeg.ca [Department of Physics and Winnipeg Institute for Theoretical Physics, University of Winnipeg, Winnipeg, MB, R3B2E9 (Canada)

    2012-01-05

    Hints of direct dark matter detection coming from the DAMA, CoGeNT experiments point toward light dark matter with isospin-violating and possibly inelastic couplings. However an array of astrophysical constraints are rapidly closing the window on light dark matter. We point out that if the relic density is determined by annihilation into invisible states, these constraints can be evaded. As an example we present a model of quasi-Dirac dark matter, interacting via two U(1) gauge bosons, one of which couples to baryon number and the other which kinetically mixes with the photon. Annihilation is primarily into 'dark neutrinos' that do not mix with the SM, but which could provide an extra component of dark radiation. The model could soon be tested by several experiments searching for such light gauge bosons, and we predict that both could be detected. The model also requires a fourth generation of quarks, whose existence might increase the production cross section of Higgs bosons at the Tevatron and LHC.

  6. Gamma-Light: High-Energy Astrophysics above 10 MeV

    DEFF Research Database (Denmark)

    Morselli, Aldo; Argan, Andrea; Barbiellini, Guido

    2013-01-01

    The energy range between 10 and 50 MeV is an experimentally very difficult range and remained uncovered since the time of COMPTEL. Here we propose a possible mission to cover this energy range.......The energy range between 10 and 50 MeV is an experimentally very difficult range and remained uncovered since the time of COMPTEL. Here we propose a possible mission to cover this energy range....

  7. Optical constants in the hard X-ray/Soft gamma ray range of selected materials for multilayer reflectors

    DEFF Research Database (Denmark)

    Cooper-Jensen, Carsten P.; Romaine, S.; Bruni, R.

    2007-01-01

    Future Astrophysics missions operating in the hard X-ray/Soft Gamma ray range is slated to carry novel focusing telescopes based on the use of depth graded multilayer reflectors. Current design studies show that, at the foreseen focal lengths, it should be feasible to focus X-rays at energies...

  8. Radiative capture reaction {sup 7}Be(p,{gamma}){sup 8}B in the continuum shell model

    Energy Technology Data Exchange (ETDEWEB)

    Bennaceur, K.; Ploszajczak, M. [Grand Accelerateur National d`Ions Lourds (GANIL), Caen (France); Nowacki, F. [Grand Accelerateur National d`Ions Lourds (GANIL), Caen (France)]|[Lab. de Physique Theorique Strasbourg, Strasbourg (France); Okolowicz, J. [Grand Accelerateur National d`Ions Lourds (GANIL), Caen (France)]|[Inst. of Nuclear Physics, Krakow (Poland)

    1998-06-01

    We present here the first application of realistic shell model (SM) including coupling between many-particle (quasi-)bound states and the continuum of one-particle scattering states to the calculation of the total capture cross section and the astrophysical factor in the reaction {sup 7}Be(p,{gamma}){sup 8}B. (orig.)

  9. $\\beta$3$p$-spectroscopy and proton-$\\gamma$ width determination in the decay of $^{31}$Ar

    CERN Multimedia

    We propose to perform a detailed study of the $\\beta$-decay of the dripline nucleus $^{31}$Ar. This will allow a detailed study of the $\\beta$-delayed 3$p$-decay as well as provide important information on the resonances of $^{30}$S and $^{29}$P, in particular the ratio between the $p$- and $\\gamma$- partial widths relevant for astrophysics.

  10. Detection of and optical transient following the 13 March 2000 short/hard gamma-ray burst

    Czech Academy of Sciences Publication Activity Database

    Castro-Tirado, A.J.; Castro Cerón, J. M.; Gorosabel, J.; Páta, P.; Soldán, Jan; Hudec, René; Jelínek, Martin; Topinka, Martin; Bernas, M.; Mateo Sanguino, T. J.; de Ugarte Postigo, A.; Berná, J. A.; Henden, A.; Vrba, F.; Canzian, B.; Harris, H.; Delfosse, X.; de Pontieu, B.; Polcar, J.; Sánchez-Fernández, C.; de la Morena, B. A.; Más-Hesse, J. M.; Torres Riera, J.; Barthelmy, S. D.

    2002-01-01

    Roč. 393, č. 3 (2002), s. L55-L59 ISSN 0004-6361 R&D Projects: GA ČR GA205/99/0145 Institutional research plan: CEZ:AV0Z1003909 Keywords : gamma rays * optical transients Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 3.781, year: 2002

  11. Gamma-ray triangles

    DEFF Research Database (Denmark)

    Ibarra, Alejandro; Lopez-Gehler, Sergio; Molinaro, Emiliano

    2016-01-01

    We introduce a new type of gamma-ray spectral feature, which we denominate gamma-ray triangle. This spectral feature arises in scenarios where dark matter self-annihilates via a chiral interaction into two Dirac fermions, which subsequently decay in flight into another fermion and a photon....... The resulting photon spectrum resembles a sharp triangle and can be readily searched for in the gamma-ray sky. Using data from the Fermi-LAT and H.E.S.S. instruments, we find no evidence for such a spectral feature and, therefore, set strong upper bounds on the corresponding annihilation cross section....... A concrete realization of a scenario yielding gamma-ray triangles consists of an asymmetric dark matter model where the dark matter particle carries lepton number. We show explicitly that this class of models can lead to intense gamma-ray spectral features, potentially at the reach of upcoming gamma...

  12. Gamma Splines and Wavelets

    Directory of Open Access Journals (Sweden)

    Hannu Olkkonen

    2013-01-01

    Full Text Available In this work we introduce a new family of splines termed as gamma splines for continuous signal approximation and multiresolution analysis. The gamma splines are born by -times convolution of the exponential by itself. We study the properties of the discrete gamma splines in signal interpolation and approximation. We prove that the gamma splines obey the two-scale equation based on the polyphase decomposition. to introduce the shift invariant gamma spline wavelet transform for tree structured subscale analysis of asymmetric signal waveforms and for systems with asymmetric impulse response. Especially we consider the applications in biomedical signal analysis (EEG, ECG, and EMG. Finally, we discuss the suitability of the gamma spline signal processing in embedded VLSI environment.

  13. INTEGRAL and XMM-Newton observations of the weak gamma-ray burst GRB 030227

    DEFF Research Database (Denmark)

    Mereghetti, S.; Gotz, D.; Tiengo, A.

    2003-01-01

    We present International Gamma-Ray Astrophysical Laboratory ( INTEGRAL) and XMM-Newton observations of the prompt gamma-ray emission and the X-ray afterglow of GRB 030227, the first gamma-ray burst for which the quick localization obtained with the INTEGRAL Burst Alert System has led to the disco......We present International Gamma-Ray Astrophysical Laboratory ( INTEGRAL) and XMM-Newton observations of the prompt gamma-ray emission and the X-ray afterglow of GRB 030227, the first gamma-ray burst for which the quick localization obtained with the INTEGRAL Burst Alert System has led...... to the discovery of X-ray and optical afterglows. GRB 030227 had a duration of about 20 s and a peak flux of similar to1.1 photons cm(-2) s(-1) in the 20-200 keV energy range. The time-averaged spectrum can be fitted by a single power law with photon index similar to2, and we find some evidence for a hard......-to-soft spectral evolution. The X-ray afterglow has been detected starting only 8 hr after the prompt emission, with a 0.2-10 keV flux decreasing as t(-1) from 1.3 x 10(-12) to 5 x 10(-13) ergs cm(-2) s(-1). The afterglow spectrum is well described by a power law with photon index modified by a 1.94 +/- 0...

  14. Fermi: The Gamma-Ray Large Area Space Telescope Mission Status

    Science.gov (United States)

    McEnery, Julie E

    2014-01-01

    Following its launch in June 2008, high-energy gamma-ray observations by the Fermi Gamma-ray Space Telescope have unveiled over 1000 new sources and opened an important and previously unexplored window on a wide variety of phenomena. These have included the discovery of a population of pulsars pulsing only in gamma rays; the detection of photons up to 10s of gigaelectronvolts from gamma-ray bursts, enhancing our understanding of the astrophysics of these powerful explosions; the detection of hundreds of active galaxies; a measurement of the high energy cosmic-ray electron spectrum which may imply the presence of nearby astrophysical particle accelerators; the determination of the diffuse gamma-ray emission with unprecedented accuracy and the constraints on phenomena such as super-symmetric dark-matter annihilations and exotic relics from the Big Bang. Continuous monitoring of the high-energy gamma-ray sky has uncovered numerous outbursts from active galaxies and the discovery of transient sources in our galaxy. In this talk I will describe the current status of the Fermi observatory and review the science highlights from Fermi.

  15. Beta and Gamma Gradients

    DEFF Research Database (Denmark)

    Løvborg, Leif; Gaffney, C. F.; Clark, P. A.

    1985-01-01

    Experimental and/or theoretical estimates are presented concerning, (i) attenuation within the sample of beta and gamma radiation from the soil, (ii) the gamma dose within the sample due to its own radioactivity, and (iii) the soil gamma dose in the proximity of boundaries between regions...... of differing radioactivity. It is confirmed that removal of the outer 2 mm of sample is adequate to remove influence from soil beta dose and estimates are made of the error introduced by non-removal. Other evaluations include variation of the soil gamma dose near the ground surface and it appears...

  16. RPC gamma sensitivity simulation

    CERN Document Server

    Altieri, S; Bruno, G; Gianini, G; Merlo, M; Ratti, S P; Riccardi, C; Torre, P; Viola, L; Vitulo, P; Abbrescia, M; Colaleo, A; Iaselli, Giuseppe; Loddo, F; Maggi, M; Marangelli, B; Natali, S; Nuzzo, S; Pugliese, G; Ranieri, A; Romano, F; Salvemini, A

    2000-01-01

    A method to simulate resistive plate chambers (RPCs) gamma sensitivity has been developed using a Monte Carlo code. The sensitivity has been evaluated as a function of the gamma energy in the range 0.1-100 MeV and for different spectra. To evaluate the response of the detector in a Large Hadron Collider (LHC) background environment the gamma energy spectrum expected in the CMS muon barrel has been taken into account and the RPC gamma sensitivity evaluated as a function of the detector size. (3 refs).

  17. Astrophysics is easy! an introduction for the amateur astronomer

    CERN Document Server

    Inglis, Mike

    2007-01-01

    With some justification, many amateur astronomers believe astrophysics is a very difficult subject, requiring at least degree-level mathematics to understand it properly. This isn’t necessarily the case. Mike Inglis' quantitative approach to the subject explains all aspects of astrophysics in simple terms and cuts through the incomprehensible mathematics with which this fascinating subject is all too often associated. Astrophysics is Easy! begins by looking at the H-R diagram and other basic tools of astrophysics, then ranges across the universe, from a first look at the interstellar medium and nebulae, through the birth, evolution and death of stars, to the physics of galaxies and clusters of galaxies. A unique feature of this book is the way that Dr. Inglis lists example objects for practical observation at every stage, so that practical astronomers can go and look at the object or objects under discussion – using only easily-available commercial amateur equipment.

  18. CASAS: A tool for composing automatically and semantically astrophysical services

    Science.gov (United States)

    Louge, T.; Karray, M. H.; Archimède, B.; Knödlseder, J.

    2017-07-01

    Multiple astronomical datasets are available through internet and the astrophysical Distributed Computing Infrastructure (DCI) called Virtual Observatory (VO). Some scientific workflow technologies exist for retrieving and combining data from those sources. However selection of relevant services, automation of the workflows composition and the lack of user-friendly platforms remain a concern. This paper presents CASAS, a tool for semantic web services composition in astrophysics. This tool proposes automatic composition of astrophysical web services and brings a semantics-based, automatic composition of workflows. It widens the services choice and eases the use of heterogeneous services. Semantic web services composition relies on ontologies for elaborating the services composition; this work is based on Astrophysical Services ONtology (ASON). ASON had its structure mostly inherited from the VO services capacities. Nevertheless, our approach is not limited to the VO and brings VO plus non-VO services together without the need for premade recipes. CASAS is available for use through a simple web interface.

  19. Structure of proton-rich nuclei of astrophysical interest

    Energy Technology Data Exchange (ETDEWEB)

    Roeckl, E. [Gesellschaft fuer Schwerionenforschung (GSI), Darmstadt (Germany)

    1998-06-01

    Recent experimental data concerning proton-rich nuclei between A=20 and A=100 are presented and discussed with respect to their relevance to the astrophysical rp process and to the calibration of solar neutrino detectors. (orig.)

  20. Global transmission coefficients in Hauser-Feshbach calculations for astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Rauscher, T. [Inst. fuer Physik, Univ. Basel, Basel (Switzerland)

    1998-06-01

    The current status of optical potentials employed in the prediction of thermonuclear reaction rates for astrophysics in the Hauser-Feshbach formalism is discussed. Special emphasis is put on {alpha}+nucleus potentials. Further experimental efforts are motivated. (orig.)