WorldWideScience

Sample records for vh3-21 variable region

  1. Measure of uncertainty in regional grade variability

    NARCIS (Netherlands)

    Tutmez, B.; Kaymak, U.; Melin, P.; Castillo, O.; Gomez Ramirez, E.; Kacprzyk, J.; Pedrycz, W.

    2007-01-01

    Because the geological events are neither homogeneous nor isotropic, the geological investigations are characterized by particularly high uncertainties. This paper presents a hybrid methodology for measuring of uncertainty in regional grade variability. In order to evaluate the fuzziness in grade

  2. Climatological variability in regional air pollution

    International Nuclear Information System (INIS)

    Shannon, J.D.; Trexler, E.C. Jr.

    1995-01-01

    Although some air pollution modeling studies examine events that have already occurred (e.g., the Chernobyl plume) with relevant meteorological conditions largely known, most pollution modeling studies address expected or potential scenarios for the future. Future meteorological conditions, the major pollutant forcing function other than emissions, are inherently uncertain although much relevant information is contained in past observational data. For convenience in our discussions of regional pollutant variability unrelated to emission changes, we define meteorological variability as short-term (within-season) pollutant variability and climatological variability as year-to-year changes in seasonal averages and accumulations of pollutant variables. In observations and in some of our simulations the effects are confounded because for seasons of two different years both the mean and the within-season character of a pollutant variable may change. Effects of climatological and meteorological variability on means and distributions of air pollution parameters, particularly those related to regional visibility, are illustrated. Over periods of up to a decade climatological variability may mask or overstate improvements resulting from emission controls. The importance of including climatological uncertainties in assessing potential policies, particularly when based partly on calculated source-receptor relationships, is highlighted

  3. Extreme Variables in Star Forming Regions

    Science.gov (United States)

    Contreras Peña, Carlos Eduardo

    2015-01-01

    in two multi-epoch infrared surveys: the UKIDSS Galactic Plane Survey (GPS) and the Vista Variables in the Via Lactea (VVV). In order to further investigate the nature of the selected variable stars, we use photometric information arising from public surveys at near- to far-infrared wavelengths. In addition we have performed spectroscopic and photometric follow-up for a large subset of the samples arising from GPS and VVV. We analyse the widely separated two-epoch K-band photometry in the 5th, 7th and 8th data releases of the UKIDSS Galactic Plane Survey. We find 71 stars with ΔK > 1 mag, including 2 previously known OH/IR stars and a Nova. Even though the mid-plane is mostly excluded from the dataset, we find the majority (66%) of our sample to be within known star forming regions (SFRs), with two large concentrations in the Serpens OB2 association (11 stars) and the Cygnus-X complex (27 stars). The analysis of the multi-epoch K-band photometry of 2010-2012 data from VVV covering the Galactic disc at |b| explained as arising from shock-excited emission caused by molecular outflows. Whether these molecular outflows are related to outbursts events cannot be confirmed from our data. Adding the GPS and VVV spectroscopic results, we find that between 6 and 14 objects are new additions to the FUor class from their close resemblance to the near-infrared spectra of FUors, and at least 23 more objects are new additions to the eruptive variable class. For most of these we are unable to classify them into any of the original definitions for this variable class. In any case, we are adding up to 37 new stars to the eruptive variable class which would double the current number of known objects. We note that most objects are found to be deeply embedded optically invisible stars, thus increasing the number of objects belonging to this subclass by a much larger factor. In general, objects in our samples which are found to be likely eruptive variable stars show a mixture of

  4. Coral bleaching pathways under the control of regional temperature variability

    Science.gov (United States)

    Langlais, C. E.; Lenton, A.; Heron, S. F.; Evenhuis, C.; Sen Gupta, A.; Brown, J. N.; Kuchinke, M.

    2017-11-01

    Increasing sea surface temperatures (SSTs) are predicted to adversely impact coral populations worldwide through increasing thermal bleaching events. Future bleaching is unlikely to be spatially uniform. Therefore, understanding what determines regional differences will be critical for adaptation management. Here, using a cumulative heat stress metric, we show that characteristics of regional SST determine the future bleaching risk patterns. Incorporating observed information on SST variability, in assessing future bleaching risk, provides novel options for management strategies. As a consequence, the known biases in climate model variability and the uncertainties in regional warming rate across climate models are less detrimental than previously thought. We also show that the thresholds used to indicate reef viability can strongly influence a decision on what constitutes a potential refugia. Observing and understanding the drivers of regional variability, and the viability limits of coral reefs, is therefore critical for making meaningful projections of coral bleaching risk.

  5. Effects of short-term variability of meteorological variables on soil temperature in permafrost regions

    Science.gov (United States)

    Beer, Christian; Porada, Philipp; Ekici, Altug; Brakebusch, Matthias

    2018-03-01

    Effects of the short-term temporal variability of meteorological variables on soil temperature in northern high-latitude regions have been investigated. For this, a process-oriented land surface model has been driven using an artificially manipulated climate dataset. Short-term climate variability mainly impacts snow depth, and the thermal diffusivity of lichens and bryophytes. These impacts of climate variability on insulating surface layers together substantially alter the heat exchange between atmosphere and soil. As a result, soil temperature is 0.1 to 0.8 °C higher when climate variability is reduced. Earth system models project warming of the Arctic region but also increasing variability of meteorological variables and more often extreme meteorological events. Therefore, our results show that projected future increases in permafrost temperature and active-layer thickness in response to climate change will be lower (i) when taking into account future changes in short-term variability of meteorological variables and (ii) when representing dynamic snow and lichen and bryophyte functions in land surface models.

  6. Regional simulation of interannual variability over South America

    Science.gov (United States)

    Misra, V.; Dirmeyer, P. A.; Kirtman, B. P.; Juang, H.-M. Henry; Kanamitsu, M.

    2002-08-01

    Three regional climate simulations covering the austral summer season during three contrasting phases of the El Niño-Southern Oscillation cycle were conducted with the Regional Spectral Model (RSM) developed at the National Centers for Environmental Prediction (NCEP). The simulated interannual variability of precipitation over the Amazon River Basin, the Intertropical Convergence Zone, the Pacific and Atlantic Ocean basins, and extratropical South America compare reasonably well with observations. The RSM optimally filters the peturbations about a time-varying base field, thereby enhancing the information content of the global NCEP reanalysis. The model is better than the reanalysis in reproducing the observed interannual variability of outgoing longwave radiation at both high frequencies (3-30 days) and intraseasonal (30-60 days) scales. The low-level jet shows a peak in its speed in 1998 and a minimum in the 1999 simulations. The lag correlation of the jet index with convection over various areas in continental South America indicates that the jet induces precipitation over the Pampas region downstream. A detailed moisture budget was conducted over various subregions. This budget reveals that moisture flux convergence determines most of the interannual variability of precipitation over the Amazon Basin, the Atlantic Intertropical Convergence Zone, and the Nordeste region of Brazil. However, both surface evaporation and surface moisture flux convergence were found to be critical in determining the interannual variability of precipitation over the southern Pampas, Gran Chaco area, and the South Atlantic Convergence Zone.

  7. Internal variability in a regional climate model over West Africa

    Energy Technology Data Exchange (ETDEWEB)

    Vanvyve, Emilie; Ypersele, Jean-Pascal van [Universite catholique de Louvain, Institut d' astronomie et de geophysique Georges Lemaitre, Louvain-la-Neuve (Belgium); Hall, Nicholas [Laboratoire d' Etudes en Geophysique et Oceanographie Spatiales/Centre National d' Etudes Spatiales, Toulouse Cedex 9 (France); Messager, Christophe [University of Leeds, Institute for Atmospheric Science, Environment, School of Earth and Environment, Leeds (United Kingdom); Leroux, Stephanie [Universite Joseph Fourier, Laboratoire d' etude des Transferts en Hydrologie et Environnement, BP53, Grenoble Cedex 9 (France)

    2008-02-15

    Sensitivity studies with regional climate models are often performed on the basis of a few simulations for which the difference is analysed and the statistical significance is often taken for granted. In this study we present some simple measures of the confidence limits for these types of experiments by analysing the internal variability of a regional climate model run over West Africa. Two 1-year long simulations, differing only in their initial conditions, are compared. The difference between the two runs gives a measure of the internal variability of the model and an indication of which timescales are reliable for analysis. The results are analysed for a range of timescales and spatial scales, and quantitative measures of the confidence limits for regional model simulations are diagnosed for a selection of study areas for rainfall, low level temperature and wind. As the averaging period or spatial scale is increased, the signal due to internal variability gets smaller and confidence in the simulations increases. This occurs more rapidly for variations in precipitation, which appear essentially random, than for dynamical variables, which show some organisation on larger scales. (orig.)

  8. Regional impacts of ocean color on tropical Pacific variability

    Science.gov (United States)

    Anderson, W.; Gnanadesikan, A.; Wittenberg, A.

    2009-08-01

    The role of the penetration length scale of shortwave radiation into the surface ocean and its impact on tropical Pacific variability is investigated with a fully coupled ocean, atmosphere, land and ice model. Previous work has shown that removal of all ocean color results in a system that tends strongly towards an El Niño state. Results from a suite of surface chlorophyll perturbation experiments show that the mean state and variability of the tropical Pacific is highly sensitive to the concentration and distribution of ocean chlorophyll. Setting the near-oligotrophic regions to contain optically pure water warms the mean state and suppresses variability in the western tropical Pacific. Doing the same above the shadow zones of the tropical Pacific also warms the mean state but enhances the variability. It is shown that increasing penetration can both deepen the pycnocline (which tends to damp El Niño) while shifting the mean circulation so that the wind response to temperature changes is altered. Depending on what region is involved this change in the wind stress can either strengthen or weaken ENSO variability.

  9. Regional impacts of ocean color on tropical Pacific variability

    Directory of Open Access Journals (Sweden)

    W. Anderson

    2009-08-01

    Full Text Available The role of the penetration length scale of shortwave radiation into the surface ocean and its impact on tropical Pacific variability is investigated with a fully coupled ocean, atmosphere, land and ice model. Previous work has shown that removal of all ocean color results in a system that tends strongly towards an El Niño state. Results from a suite of surface chlorophyll perturbation experiments show that the mean state and variability of the tropical Pacific is highly sensitive to the concentration and distribution of ocean chlorophyll. Setting the near-oligotrophic regions to contain optically pure water warms the mean state and suppresses variability in the western tropical Pacific. Doing the same above the shadow zones of the tropical Pacific also warms the mean state but enhances the variability. It is shown that increasing penetration can both deepen the pycnocline (which tends to damp El Niño while shifting the mean circulation so that the wind response to temperature changes is altered. Depending on what region is involved this change in the wind stress can either strengthen or weaken ENSO variability.

  10. Characterizing CDOM Spectral Variability Across Diverse Regions and Spectral Ranges

    Science.gov (United States)

    Grunert, Brice K.; Mouw, Colleen B.; Ciochetto, Audrey B.

    2018-01-01

    Satellite remote sensing of colored dissolved organic matter (CDOM) has focused on CDOM absorption (aCDOM) at a reference wavelength, as its magnitude provides insight into the underwater light field and large-scale biogeochemical processes. CDOM spectral slope, SCDOM, has been treated as a constant or semiconstant parameter in satellite retrievals of aCDOM despite significant regional and temporal variabilities. SCDOM and other optical metrics provide insights into CDOM composition, processing, food web dynamics, and carbon cycling. To date, much of this work relies on fluorescence techniques or aCDOM in spectral ranges unavailable to current and planned satellite sensors (e.g., global variability in SCDOM and fit deviations in the aCDOM spectra using the recently proposed Gaussian decomposition method. From this, we investigate if global variability in retrieved SCDOM and Gaussian components is significant and regionally distinct. We iteratively decreased the spectral range considered and analyzed the number, location, and magnitude of fitted Gaussian components to understand if a reduced spectral range impacts information obtained within a common spectral window. We compared the fitted slope from the Gaussian decomposition method to absorption-based indices that indicate CDOM composition to determine the ability of satellite-derived slope to inform the analysis and modeling of large-scale biogeochemical processes. Finally, we present implications of the observed variability for remote sensing of CDOM characteristics via SCDOM.

  11. Assessment of regional air pollution variability in Istanbul

    International Nuclear Information System (INIS)

    Sen, Z.; Oztopal, A.

    2001-01-01

    Air pollution concentrations have temporal and spatial variations depending on the prevailing weather conditions, topographic features, city building heights and locations. When the measurements of air pollutants are available at set measurement sites, the regional variability degree of air pollutants is quantified using the point cumulative semi-variogram (PCSV). This technique provides a systematic method for calculating the changes in the concentrations of air pollutants with distance from a specific site. Regional variations of sulphur dioxide (SO 2 ) and total suspended particulate (TSP) matter concentrations in Istanbul city were evaluated using the PCSV concept. The data were available from 16 different air pollution measurement stations scattered all over the city for a period from 1988 to 1994. Monthly regional variation maps were drawn in and around the city at different radii of influence. These maps provide a reference for measuring future changes of air pollution in the city. (author)

  12. Mesopause region temperature variability and its trend in southern Brazil

    Science.gov (United States)

    Venturini, Mateus S.; Bageston, José V.; Caetano, Nattan R.; Peres, Lucas V.; Bencherif, Hassan; Schuch, Nelson J.

    2018-03-01

    Nowadays, the study of the upper atmosphere is increasing, mostly because of the need to understand the patterns of Earth's atmosphere. Since studies on global warming have become very important for the development of new technologies, understanding all regions of the atmosphere becomes an unavoidable task. In this paper, we aim to analyze the temperature variability and its trend in the mesosphere and lower thermosphere (MLT) region during a period of 12 years (from 2003 to 2014). For this purpose, three different heights, i.e., 85, 90 and 95 km, were focused on in order to investigate the upper atmosphere, and a geographic region different to other studies was chosen, in the southern region of Brazil, centered in the city of Santa Maria, RS (29°41'02'' S; 53°48'25'' W). In order to reach the objectives of this work, temperature data from the SABER instrument (Sounding of the Atmosphere using Broadband Emission Radiometry), aboard NASA's Thermosphere Ionosphere Mesosphere Energetics Dynamics (TIMED) satellite, were used. Finally, two cases were studied related to distinct grids of latitude/longitude used to obtain the mean temperature profiles. The first case considered a grid of 20° × 20° lat/long, centered in Santa Maria, RS, Brazil. In the second case, the region was reduced to a size of 15° × 15° in order to compare the results and discuss the two cases in terms of differences or similarities in temperature trends. Observations show that the size of the geographical area used for the average temperature profiles can influence the results of variability and trend of the temperature. In addition, reducing the time duration of analyses from 24 to 12 h a day also influences the trend significantly. For the smaller geographical region (15° × 15°) and the 12 h daily time window (09:00-21:00 UT) it was found that the main contributions for the temperature variability at the three heights were the annual and semi-annual cycles and the solar flux influence

  13. Impact of Variable-Resolution Meshes on Regional Climate Simulations

    Science.gov (United States)

    Fowler, L. D.; Skamarock, W. C.; Bruyere, C. L.

    2014-12-01

    The Model for Prediction Across Scales (MPAS) is currently being used for seasonal-scale simulations on globally-uniform and regionally-refined meshes. Our ongoing research aims at analyzing simulations of tropical convective activity and tropical cyclone development during one hurricane season over the North Atlantic Ocean, contrasting statistics obtained with a variable-resolution mesh against those obtained with a quasi-uniform mesh. Analyses focus on the spatial distribution, frequency, and intensity of convective and grid-scale precipitations, and their relative contributions to the total precipitation as a function of the horizontal scale. Multi-month simulations initialized on May 1st 2005 using ERA-Interim re-analyses indicate that MPAS performs satisfactorily as a regional climate model for different combinations of horizontal resolutions and transitions between the coarse and refined meshes. Results highlight seamless transitions for convection, cloud microphysics, radiation, and land-surface processes between the quasi-uniform and locally- refined meshes, despite the fact that the physics parameterizations were not developed for variable resolution meshes. Our goal of analyzing the performance of MPAS is twofold. First, we want to establish that MPAS can be successfully used as a regional climate model, bypassing the need for nesting and nudging techniques at the edges of the computational domain as done in traditional regional climate modeling. Second, we want to assess the performance of our convective and cloud microphysics parameterizations as the horizontal resolution varies between the lower-resolution quasi-uniform and higher-resolution locally-refined areas of the global domain.

  14. Regional climate change: Precipitation variability in mountainous part of Bulgaria

    Directory of Open Access Journals (Sweden)

    Nikolova Nina

    2007-01-01

    Full Text Available The aim of paper is to analyze temporal and spatial changes in monthly precipitation as well as extremely dry and wet months in mountainous part of Bulgaria. Study precipitation variability in mountainous part is very important because this part is the region where the rivers take its source from. Extreme values of monthly precipitation are important information for better understanding of the whole variability and trends in precipitation time series. The mean investigated period is 1951-2005 and the reference period is so called temporary climate - 1961- 1990. Extreme dry precipitation months are defined as a month whose monthly precipitation is lower than 10% of gamma distribution in the reference period 1961-1990. Extreme wet months are determined with respect to 90% percentiles of gamma distribution (monthly precipitation is higher than 90%. The result of the research show that in mountainous part of Bulgaria during 1950s and 1960s number of extremely wet months is higher than number of dry months. Decreasing of monthly precipitation is a feature for 1980s. This dry period continues till 2004. The years 2000 makes impression as driest year in high mountains with about 7 extremely dry months. The second dry year is 1993. The negative precipitation anomaly is most clearly determined during last decade at study area. The present research points out that fluctuation of precipitation in mountainous part of Bulgaria are coinciding with regional and global climate trends.

  15. Long term precipitation trends and variability within the Mediterranean region

    Directory of Open Access Journals (Sweden)

    C. M. Philandras

    2011-12-01

    Full Text Available In this study, the trends and variability of annual precipitation totals and annual rain days over land within the Mediterranean region are analyzed. Long term ground-based observations concerning, on one hand, monthly precipitation totals (1900–2010 and rain days (1965–2010 from 40 meteorological stations within the Mediterranean region were obtained from the Hellenic National Meteorological Service and the World Climate Data and Monitoring Programme (WCDMP of the World Meteorological Organization. On the other hand, high spatial resolution (0.5° × 0.5° gridded monthly data CRU TS 3.1 were acquired from the Climatic Research Unit, University of East Anglia, for the period 1901–2009. The two datasets were compared by means of trends and variability, while the influence of the North Atlantic Oscillation (NAO in the Mediterranean precipitation was examined. In the process, the climatic changes in the precipitation regime between the period 1961–1990 (reference period and the period 2071–2100 (future climate were presented using climate model simulations (RACMO2.1/KNMI. The future climate projections were based on SRES A1B.

    The findings of the analysis showed that statistically significant (95% confidence level negative trends of the annual precipitation totals exist in the majority of Mediterranean regions during the period 1901–2009, with an exception of northern Africa, southern Italy and western Iberian peninsula, where slight positive trends (not statistically significant at 95% CL appear. Concerning the annual number of rain days, a pronounced decrease of 20 %, statistically significant (95% confidence level, appears in representative meteorological stations of east Mediterranean, while the trends are insignificant for west and central Mediterranean. Additionally, NAO index was found to be anticorrelated with the precipitation totals and the number of rain days mainly in Spain, southern France, Italy and Greece. These

  16. Influence of Climate Variability on US Regional Homicide Rates

    Science.gov (United States)

    Harp, R. D.; Karnauskas, K. B.

    2017-12-01

    Recent studies have found consistent evidence of a relationship between temperature and criminal behavior. However, despite agreement in the overall relationship, little progress has been made in distinguishing between two proposed explanatory theories. The General Affective Aggression Model (GAAM) suggests that high temperatures create periods of higher heat stress that enhance individual aggressiveness, whereas the Routine Activities Theory (RAT) theorizes that individuals are more likely to be outdoors interacting with others during periods of pleasant weather with a resulting increase in both interpersonal interactions and victim availability. Further, few studies have considered this relationship within the context of climate change in a quantitative manner. In an effort to distinguish between the two theories, and to examine the statistical relationships on a broader spatial scale than previously, we combined data from the Supplementary Homicide Report (SHR—compiled by the Federal Bureau of Investigation) and the North American Regional Reanalysis (NARR—compiled by the National Centers for Environmental Protection, a branch of the National Oceanic and Atmospheric Administration). US homicide data described by the SHR was compared with seven relevant observed climate variables (temperature, dew point, relative humidity, accumulated precipitation, accumulated snowfall, snow cover, and snow depth) provided by the NARR atmospheric reanalysis. Relationships between homicide rates and climate variables, as well as reveal regional spatial patterns will be presented and discussed, along with the implications due to future climate change. This research lays the groundwork for the refinement of estimates of an oft-overlooked climate change impact, which has previously been estimated to cause an additional 22,000 murders between 2010 and 2099, including providing important constraints for empirical models of future violent crime incidences in the face of global

  17. Climate variability and wine quality over Portuguese regions

    Science.gov (United States)

    Gouveia, Célia M.; Gani, Érico A.; Liberato, Margarida L. R.

    2015-04-01

    characterized in each region by high/low quality wines. Finally, we also investigated how climate variability is related to DOC wine quality for different regions using North Atlantic Oscillation (NAO) index. Results reveal a strong dependence of wine quality for all regions on maximum temperature and precipitation during spring and summer (the growing season) as expected. However the role of temperature on wine quality seems to be distinct among the diverse regions probably due to their different climate zoning. Moreover, it is shown that the differences associated with high/low quality wine are in agreement with different synoptic fields patterns. Our results suggest that this type of analysis may be used in developing a tool that may help anticipating a vintage/high quality year, based on already available seasonal climate outlooks. Santo F.E., de Lima M.I.P., Ramos A.M., Trigo R.M., Trends in seasonal surface air temperature in mainland Portugal, since 1941, International Journal Climatolology, 34: 1814-1837, doi: 10.1002/joc.3803 (2014) de Lima M.I.P., Santo F.E., Ramos A.M. , Trigo, R.M., Trends and correlations in annual extreme precipitation indices for mainland Portugal, 1941-2007, Theoretical and Applied Climatology, DOI:10.1007/s00704-013-1079-6 (2014) Acknowledgements: This work was partially supported by national funds through FCT (Fundação para a Ciência e a Tecnologia, Portugal) under project QSECA (PTDC/AAGGLO/4155/2012).

  18. Regional softwood sawmill processing variables as influenced by productive capacity

    Science.gov (United States)

    P. H. Steele; F. G. Wagner; K. E. Skog

    The relationship between annual softwood sawmill production and lumber processing variables was examined using data from Sawmill Improvement Program (SIP) studies of 650 softwood mills. The variables were lumber recovery factor (LRF); headrig and resaw kerf width; total sawing variation, rough green size, and oversizing-undersizing for 4/4 and 8/4 lumber; planer...

  19. Regional impacts of ocean color on tropical Pacific variability

    OpenAIRE

    W. Anderson; A. Gnanadesikan; A. Wittenberg

    2009-01-01

    The role of the penetration length scale of shortwave radiation into the surface ocean and its impact on tropical Pacific variability is investigated with a fully coupled ocean, atmosphere, land and ice model. Previous work has shown that removal of all ocean color results in a system that tends strongly towards an El Niño state. Results from a suite of surface chlorophyll perturbation experiments show that the mean state and variability of the tropical Pacific is highly se...

  20. Climate Variability and Change in the Mediterranean Region

    Science.gov (United States)

    Lionello, Piero; Özsoy, Emin; Planton, Serge; Zanchetta, Giovanni

    2017-04-01

    This special issue collects new research results on the climate of the Mediterranean region. It covers traditional topics of the MedCLIVAR programme (www.medclivar.eu, Lionello et al. 2006, Lionello et al. 2012b) being devoted to papers addressing on-going and future climate changes in the Mediterranean region and their impacts on its environment.

  1. Regional variability among nonlinear chlorophyll-phosphorus relationships in lakes

    Science.gov (United States)

    Filstrup, Christopher T.; Wagner, Tyler; Soranno, Patricia A.; Stanley, Emily H.; Stow, Craig A.; Webster, Katherine E.; Downing, John A.

    2014-01-01

    The relationship between chlorophyll a (Chl a) and total phosphorus (TP) is a fundamental relationship in lakes that reflects multiple aspects of ecosystem function and is also used in the regulation and management of inland waters. The exact form of this relationship has substantial implications on its meaning and its use. We assembled a spatially extensive data set to examine whether nonlinear models are a better fit for Chl a—TP relationships than traditional log-linear models, whether there were regional differences in the form of the relationships, and, if so, which regional factors were related to these differences. We analyzed a data set from 2105 temperate lakes across 35 ecoregions by fitting and comparing two different nonlinear models and one log-linear model. The two nonlinear models fit the data better than the log-linear model. In addition, the parameters for the best-fitting model varied among regions: the maximum and lower Chl aasymptotes were positively and negatively related to percent regional pasture land use, respectively, and the rate at which chlorophyll increased with TP was negatively related to percent regional wetland cover. Lakes in regions with more pasture fields had higher maximum chlorophyll concentrations at high TP concentrations but lower minimum chlorophyll concentrations at low TP concentrations. Lakes in regions with less wetland cover showed a steeper Chl a—TP relationship than wetland-rich regions. Interpretation of Chl a—TP relationships depends on regional differences, and theory and management based on a monolithic relationship may be inaccurate.

  2. The spread amongst ENSEMBLES regional scenarios: regional climate models, driving general circulation models and interannual variability

    Energy Technology Data Exchange (ETDEWEB)

    Deque, M.; Somot, S. [Meteo-France, Centre National de Recherches Meteorologiques, CNRS/GAME, Toulouse Cedex 01 (France); Sanchez-Gomez, E. [Cerfacs/CNRS, SUC URA1875, Toulouse Cedex 01 (France); Goodess, C.M. [University of East Anglia, Climatic Research Unit, Norwich (United Kingdom); Jacob, D. [Max Planck Institute for Meteorology, Hamburg (Germany); Lenderink, G. [KNMI, Postbus 201, De Bilt (Netherlands); Christensen, O.B. [Danish Meteorological Institute, Copenhagen Oe (Denmark)

    2012-03-15

    Various combinations of thirteen regional climate models (RCM) and six general circulation models (GCM) were used in FP6-ENSEMBLES. The response to the SRES-A1B greenhouse gas concentration scenario over Europe, calculated as the difference between the 2021-2050 and the 1961-1990 means can be viewed as an expected value about which various uncertainties exist. Uncertainties are measured here by variance explained for temperature and precipitation changes over eight European sub-areas. Three sources of uncertainty can be evaluated from the ENSEMBLES database. Sampling uncertainty is due to the fact that the model climate is estimated as an average over a finite number of years (30) despite a non-negligible interannual variability. Regional model uncertainty is due to the fact that the RCMs use different techniques to discretize the equations and to represent sub-grid effects. Global model uncertainty is due to the fact that the RCMs have been driven by different GCMs. Two methods are presented to fill the many empty cells of the ENSEMBLES RCM x GCM matrix. The first one is based on the same approach as in FP5-PRUDENCE. The second one uses the concept of weather regimes to attempt to separate the contribution of the GCM and the RCM. The variance of the climate response is analyzed with respect to the contribution of the GCM and the RCM. The two filling methods agree that the main contributor to the spread is the choice of the GCM, except for summer precipitation where the choice of the RCM dominates the uncertainty. Of course the implication of the GCM to the spread varies with the region, being maximum in the South-western part of Europe, whereas the continental parts are more sensitive to the choice of the RCM. The third cause of spread is systematically the interannual variability. The total uncertainty about temperature is not large enough to mask the 2021-2050 response which shows a similar pattern to the one obtained for 2071-2100 in PRUDENCE. The uncertainty

  3. N-linked glycosylation of the immunoglobulin variable region

    NARCIS (Netherlands)

    van de Bovenkamp, Fleur S.; Derksen, Ninotska I. L.; Ooijevaar-de Heer, Pleuni; van Schie, Karin A.; Kruithof, Simone; Berkowska, Magdalena A.; van der Schoot, C. Ellen; Ijspeert, Hanna; van der Burg, Mirjam; Gils, Ann; Hafkenscheid, Lise; Toes, René E. M.; Rombouts, Yoann; Plomp, Rosina; Wuhrer, Manfred; van Ham, S. Marieke; Vidarsson, Gestur; Rispens, Theo

    2018-01-01

    N-glycosylation sites are introduced at positions in which glycans can affect antigen binding as a result of a specific clustering of progenitor glycosylation sites in the germline sequences of variable domain genes. By analyzing multiple human monoclonal and polyclonal (auto)antibody responses, we

  4. The Tokar Gap Jet: Regional Circulation, Diurnal Variability, and Moisture Transport Based on Numerical Simulations

    KAUST Repository

    Davis, Shannon R.; Pratt, Lawrence J.; Jiang, Houshuo

    2015-01-01

    The structure, variability, and regional connectivity of the Tokar Gap jet (TGJ) are described using WRF Model analyses and supporting atmospheric datasets from the East African–Red Sea–Arabian Peninsula (EARSAP) region during summer 2008. Sources

  5. Maps of mesoscale wind variability over the North Sea region

    DEFF Research Database (Denmark)

    Vincent, Claire Louise; Hahmann, Andrea N.; Badger, Jake

    Mesoscale wind fluctuations affect the operation of wind farms, particularly as the number of geographically concentrated wind farms in the North Sea increases (Akhmatov et al. 2007). The frequency and intensity of wind fluctuations could be considered as a new siting criterion, together with exi...... for a 1 year period. The model was run with a horizontal grid spacing of 2 km. The variability maps are created by integrating the average 24 hour spectra at every grid point over different time-scales....

  6. Variability or conservation of hepatitis C virus hypervariable region 1 ...

    Indian Academy of Sciences (India)

    Unknown

    in an agammaglobulinemic patient; Gastroenterology 10. 1072–1075. Lesniewsky R R, Boardway K M, Casey J M, Desai S M,. Devare S G and Leung T K 1993 Hypervariable region 5′- terminus of hepatitis C virus E2/NS1 encodes antigenically distinct variants; J. Med. Virol. 40 150–156. Li C, Candotti D and Allain J-P ...

  7. Variability or conservation of hepatitis C virus hypervariable region 1?

    Indian Academy of Sciences (India)

    The hypervariable region 1 (HVR1) of the E2 protein of hepatitis C virus (HCV) is highly heterogeneous in its primary sequence and is responsible for significant inter- and intra-individual variation of the infecting virus, which may represent an important pathogenetic mechanism leading to immune escape and persistent ...

  8. Regional frameworks applied to hydrology: can landscape-based frameworks capture the hydrologic variability?

    Science.gov (United States)

    R. McManamay; D. Orth; C. Dolloff; E. Frimpong

    2011-01-01

    Regional frameworks have been used extensively in recent years to aid in broad-scale management. Widely used landscape-based regional frameworks, such as hydrologic landscape regions (HLRs) and physiographic provinces, may provide predictive tools of hydrologic variability. However, hydrologic-based regional frameworks, created using only streamflow data, are also...

  9. Independent variable complexity for regional regression of the flow duration curve in ungauged basins

    Science.gov (United States)

    Fouad, Geoffrey; Skupin, André; Hope, Allen

    2016-04-01

    The flow duration curve (FDC) is one of the most widely used tools to quantify streamflow. Its percentile flows are often required for water resource applications, but these values must be predicted for ungauged basins with insufficient or no streamflow data. Regional regression is a commonly used approach for predicting percentile flows that involves identifying hydrologic regions and calibrating regression models to each region. The independent variables used to describe the physiographic and climatic setting of the basins are a critical component of regional regression, yet few studies have investigated their effect on resulting predictions. In this study, the complexity of the independent variables needed for regional regression is investigated. Different levels of variable complexity are applied for a regional regression consisting of 918 basins in the US. Both the hydrologic regions and regression models are determined according to the different sets of variables, and the accuracy of resulting predictions is assessed. The different sets of variables include (1) a simple set of three variables strongly tied to the FDC (mean annual precipitation, potential evapotranspiration, and baseflow index), (2) a traditional set of variables describing the average physiographic and climatic conditions of the basins, and (3) a more complex set of variables extending the traditional variables to include statistics describing the distribution of physiographic data and temporal components of climatic data. The latter set of variables is not typically used in regional regression, and is evaluated for its potential to predict percentile flows. The simplest set of only three variables performed similarly to the other more complex sets of variables. Traditional variables used to describe climate, topography, and soil offered little more to the predictions, and the experimental set of variables describing the distribution of basin data in more detail did not improve predictions

  10. Intraregional and inter-regional variability of herbicide sensitivity in common arable weed populations

    DEFF Research Database (Denmark)

    de Mol, Friederike; Gerowitt, Bärbel; Kaczmarek, Sylwia

    2015-01-01

    The question on intraregional versus inter-regional variability in herbicide sensitivity for weed populations is of major importance, both in extrapolation of model parameters and in herbicide zonal approval procedures. We hypothesised that inter-regional variability in herbicide sensitivity for ...

  11. Multiannual runoff variability in the upper Danube region

    International Nuclear Information System (INIS)

    Pekarova, P.

    2009-05-01

    The development of mankind has depended on availability of water resources. Already the first agricultural civilizations noticed the temporal variability of water resources and oscillation of the multi-annual dry and wet periods. The presented thesis summarizes results of more than fifteen years research activities of the author in the field of long-term runoff prediction. Statistical analysis of the runoff oscillations depends on availability of long time series of data. Systematic measurements of discharge in modern era started relatively late. The longest time series are available in Europe, but they do not exceed 200 years. Such long series are exceptional and in most parts of the world only much shorter series exist. Since studies dealing with the natural runoff oscillation and NAO phenomenon recently absent in Slovakia, there is the one aim of the thesis to fill in the gap in the long-term runoff fluctuation analysis and long-term discharge prediction methods development. The thesis focuses on the natural runoff cyclicity identification. In stochastic models, the climate changes scenarios caused by atmosphere warming are not involved however the runoff tele-connection around the Earth is studied. Scientific objectives of the thesis: 1. To reconstruct the Danube daily discharge series at Bratislava (1876-1890) based upon the Bratislava gauge daily water level observations; 2. to analyze variability and long term trends of the selected discharge Danube series characteristics for its Bratislava gauge; 3. to propose and develop the combined periodogram method for more exact spectral density identification in discharge time series; to analyze trends and periodicity in discharge long term series; to identify occurrence of the wet and dry periods over the world, to identify the influence of the NAO/AO/ENSO/QBO phenomena and the Sun activity on the runoff variability. 4. to present some long term stochastic prediction methods; to use two of them, the classical

  12. Winter climate variability and classification in the Bulgarian Mountainous Regions

    International Nuclear Information System (INIS)

    Petkova, Nadezhda; Koleva, Ekaterina

    2004-01-01

    The problems of snowiness and thermal conditions of winters are of high interest of investigations because of the more frequent droughts, occurred in the region. In the present study an attempt to reveal tendencies existing during the last 70 years of 20 th century in the course winter precipitation and,temperature as well as in some of the snow cover parameters. On the base of mean winter air temperature winters in the Bulgarian mountains were analyzed and classified. The main results of the study show that winter precipitation has decrease tendencies more significant in the highest parts of the mountains. On the other hand winter air temperature increases. It shows a relatively well-established maximum at the end of the studied period. In the Bulgarian mountains normal winters are about 35-40% of all winters. (Author)

  13. Climate Change and Climate Variability in the Latin American Region

    Science.gov (United States)

    Magrin, G. O.; Gay Garcia, C.; Cruz Choque, D.; Gimenez-Sal, J. C.; Moreno, A. R.; Nagy, G. J.; Nobre, C.; Villamizar, A.

    2007-05-01

    Over the past three decades LA was subjected to several climate-related impacts due to increased El Niño occurrences. Two extremely intense episodes of El Niño and other increased climate extremes happened during this period contributing greatly to augment the vulnerability of human systems to natural disasters. In addition to weather and climate, the main drivers of the increased vulnerability are demographic pressure, unregulated urban growth, poverty and rural migration, low investment in infrastructure and services, and problems in inter-sector coordination. As well, increases in temperature and increases/decreases in precipitation observed during the last part of 20th century have yet led to intensification of glaciers melting, increases in floods/droughts and forest fires frequency, increases in morbidity and mortality, increases in plant diseases incidence; lost of biodiversity, reduction in dairy cattle production, and problems with hydropower generation, highly affecting LA human system. For the end of the 21st century, the projected mean warming for LA ranges from 1 to 7.5ºC and the frequency of weather and climate extremes could increase. Additionally, deforestation is projected to continue leading to a reduction of 25 percent in Amazonia forest in 2020 and 40 percent in 2050. Soybeans planted area in South America could increase by 55 percent by 2020 enhancing aridity/desertification in many of the already water- stressed regions. By 2050 LA population is likely to be 50 percent larger than in 2000, and migration from the country sides to the cities will continue. In the near future, these predicted changes are very likely to severely affect a number of ecosystems and sectors distribution; b) Disappearing most tropical glaciers; c) Reducing water availability and hydropower generation; d) Increasing desertification and aridity; e) Severely affecting people, resources and economic activities in coastal areas; f) Increasing crop's pests and diseases

  14. Variability in regional background aerosols within the Mediterranean

    Science.gov (United States)

    Querol, X.; Alastuey, A.; Pey, J.; Cusack, M.; Pérez, N.; Mihalopoulos, N.; Theodosi, C.; Gerasopoulos, E.; Kubilay, N.; Koçak, M.

    2009-07-01

    The main objective of this study is the identification of major factors controlling levels and chemical composition of aerosols in the regional background (RB) along the Mediterranean Basin (MB). To this end, data on PM levels and speciation from Montseny (MSY, NE Spain), Finokalia (FKL, Southern Greece) and Erdemli (ERL, Southern Turkey) for the period 2001 to 2008 are evaluated. Important differences on PM levels and composition are evident when comparing the Western and Eastern MBs. The results manifest W-E and N-S PM10 and PM2.5 gradients along the MB, attributed to the higher frequency and intensity of African dust outbreaks in the EMB, while for PM1 very similar levels are encountered. PM in the EMB is characterized by higher levels of crustal material and sulphate as compared to WMB (and central European sites), however, RB nitrate and OC + EC levels are relatively constant across the Mediterranean and lower than other European sites. Marked seasonal trends are evidenced for PM levels, nitrate (WMB), ammonium and sulphate. Also relatively higher levels of V and Ni (WMB) are measured in the Mediterranean basin, probably as a consequence of high emissions from fuel-oil combustion (power generation, industrial and shipping emissions). Enhanced sulphate levels in EMB compared to WMB were measured. The high levels of sulphate in the EMB may deplete the available gas-phase NH3 so that little ammonium nitrate can form due to the low NH3 levels. This study illustrates the existence of three very important features within the Mediterranean that need to be accounted for when modeling climate effects of aerosols in the area, namely: a) the increasing gradient of dust from WMB to EMB; b) the change of hygroscopic behavior of mineral aerosols (dust) via nitration and sulfation; and c) the abundance of highly hygroscopic aerosols during high insolation (low cloud formation) periods.

  15. Multiannual runoff variability in the upper Danube region

    International Nuclear Information System (INIS)

    Pekarova, P.

    2009-05-01

    The main results and new knowledge of the presented Thesis can be summarized as follows: - The daily mean discharge time series of the river Danube at Bratislava has been supplemented with data from years 1876-1890. So it has been extended into the full-uninterrupted daily data series for the length of 130 years. Such series of the daily mean discharges is suitable for statistical analyses of the hydrological characteristics changes, and also for identification of the multi-annual (up to 30- years) cycles. - Using the combined periodogram method and the series filtration, in the discharge time series, the variegation cycles of dry and wet time periods were searched. For such objective, the time series were used, of more than 100 rivers of the world. From the longer cycles in the series the approximately 28-30 and 20-22 yrs. cycles of the dry and wet periods occurrence were identified. However, the cycle lengths is not exactly 28 and 21 years, but in the long term average, they come close to these values. From the shorter cycles, those with 7.8-, 6.5-, 5.2-; 4.14-, 3.65, and 2.4- years were identified. - These periods were documented for the discharge series of the analyzed rivers in various physiographic latitudes of the world. It is then possible to consider this piece of knowledge as generally valid for the whole Earth. These periods are connected with the Solar activity and with the thermohaline circulation (ocean conveyor belt). Their parts are also the El Nino, AO, NAO, and QBO phenomena. - Through the cross-correlations (two variables), time shift of the dry and wet periods was identified depending upon the geographical longitude and latitude of the river basins location. From these results it follows, that the dry and wet periods do not occur at the same time on various locations. This time shift depends upon the basins location, and it follows upon the shift in the precipitations occurrence. - The trend analysis did not indicate any significant trends in

  16. Climate change/variability science and adaptive strategies for state and regional transportation decision making.

    Science.gov (United States)

    2010-04-01

    The objective of this study was to generate a baseline understanding of current policy responses to climate : change/variability at the state and regional transportation-planning and -decision levels. Specifically, : researchers were interested in th...

  17. Changes of extreme precipitation and nonlinear influence of climate variables over monsoon region in China

    KAUST Repository

    Gao, Tao; Wang, Huixia Judy; Zhou, Tianjun

    2017-01-01

    of precipitation extremes over monsoon regions in China (MRC). However, research on monsoon extremes in China and their associations with climate variables is limited. In this study, we examine the space-time variations of extreme precipitation across the MRC

  18. Strong influence of variable treatment on the performance of numerically defined ecological regions.

    Science.gov (United States)

    Snelder, Ton; Lehmann, Anthony; Lamouroux, Nicolas; Leathwick, John; Allenbach, Karin

    2009-10-01

    Numerical clustering has frequently been used to define hierarchically organized ecological regionalizations, but there has been little robust evaluation of their performance (i.e., the degree to which regions discriminate areas with similar ecological character). In this study we investigated the effect of the weighting and treatment of input variables on the performance of regionalizations defined by agglomerative clustering across a range of hierarchical levels. For this purpose, we developed three ecological regionalizations of Switzerland of increasing complexity using agglomerative clustering. Environmental data for our analysis were drawn from a 400 m grid and consisted of estimates of 11 environmental variables for each grid cell describing climate, topography and lithology. Regionalization 1 was defined from the environmental variables which were given equal weights. We used the same variables in Regionalization 2 but weighted and transformed them on the basis of a dissimilarity model that was fitted to land cover composition data derived for a random sample of cells from interpretation of aerial photographs. Regionalization 3 was a further two-stage development of Regionalization 2 where specific classifications, also weighted and transformed using dissimilarity models, were applied to 25 small scale "sub-domains" defined by Regionalization 2. Performance was assessed in terms of the discrimination of land cover composition for an independent set of sites using classification strength (CS), which measured the similarity of land cover composition within classes and the dissimilarity between classes. Regionalization 2 performed significantly better than Regionalization 1, but the largest gains in performance, compared to Regionalization 1, occurred at coarse hierarchical levels (i.e., CS did not increase significantly beyond the 25-region level). Regionalization 3 performed better than Regionalization 2 beyond the 25-region level and CS values continued to

  19. Morphometric variability of Arctodiaptomus salinus (Copepoda) in the Mediterranean-Black Sea region

    OpenAIRE

    ANUFRIIEVA, Elena V.; SHADRIN, Nickolai V.

    2015-01-01

    Inter-species variability in morphological traits creates a need to know the range of variability of characteristics in the species for taxonomic and ecological tasks. Copepoda Arctodiaptomus salinus, which inhabits water bodies across Eurasia and North Africa, plays a dominant role in plankton of different water bodies-from fresh to hypersaline. This work assesses the intra- and inter-population morphometric variability of A. salinus in the Mediterranean-Black Sea region and discusses some o...

  20. Interannual variability in the extent of wetland-stream connectivity within the Prairie Pothole Region

    Science.gov (United States)

    Melanie Vanderhoof; Laurie Alexander

    2016-01-01

    The degree of hydrological connectivity between wetland systems and downstream receiving waters can be expected to influence the volume and variability of stream discharge. The Prairie Pothole Region contains a high density of depressional wetland features, a consequence of glacial retreat. Spatial variability in wetland density, drainage evolution, and precipitation...

  1. Development of a localized probabilistic sensitivity method to determine random variable regional importance

    International Nuclear Information System (INIS)

    Millwater, Harry; Singh, Gulshan; Cortina, Miguel

    2012-01-01

    There are many methods to identify the important variable out of a set of random variables, i.e., “inter-variable” importance; however, to date there are no comparable methods to identify the “region” of importance within a random variable, i.e., “intra-variable” importance. Knowledge of the critical region of an input random variable (tail, near-tail, and central region) can provide valuable information towards characterizing, understanding, and improving a model through additional modeling or testing. As a result, an intra-variable probabilistic sensitivity method was developed and demonstrated for independent random variables that computes the partial derivative of a probabilistic response with respect to a localized perturbation in the CDF values of each random variable. These sensitivities are then normalized in absolute value with respect to the largest sensitivity within a distribution to indicate the region of importance. The methodology is implemented using the Score Function kernel-based method such that existing samples can be used to compute sensitivities for negligible cost. Numerical examples demonstrate the accuracy of the method through comparisons with finite difference and numerical integration quadrature estimates. - Highlights: ► Probabilistic sensitivity methodology. ► Determines the “region” of importance within random variables such as left tail, near tail, center, right tail, etc. ► Uses the Score Function approach to reuse the samples, hence, negligible cost. ► No restrictions on the random variable types or limit states.

  2. Capturing subregional variability in regional-scale climate change vulnerability assessments of natural resources

    Science.gov (United States)

    Polly C. Buotte; David L. Peterson; Kevin S. McKelvey; Jeffrey A. Hicke

    2016-01-01

    Natural resource vulnerability to climate change can depend on the climatology and ecological conditions at a particular site. Here we present a conceptual framework for incorporating spatial variability in natural resource vulnerability to climate change in a regional-scale assessment. The framework was implemented in the first regional-scale vulnerability...

  3. Linking the uncertainty of low frequency variability in tropical forcing in regional climate change

    Energy Technology Data Exchange (ETDEWEB)

    Forest, Chris E. [Pennsylvania State Univ., University Park, PA (United States). Dept. of Meteorology; Barsugli, Joseph J. [Univ. of Colorado, Boulder, CO (United States). CIRES; Li, Wei [Pennsylvania State Univ., University Park, PA (United States). Dept. of Meteorology

    2015-02-20

    The project utilizes multiple atmospheric general circulation models (AGCMs) to examine the regional climate sensitivity to tropical sea surface temperature forcing through a series of ensemble experiments. The overall goal for this work is to use the global teleconnection operator (GTO) as a metric to assess the impact of model structural differences on the uncertainties in regional climate variability.

  4. Airborne black carbon concentrations over an urban region in western India-temporal variability, effects of meteorology, and source regions.

    Science.gov (United States)

    Bapna, Mukund; Sunder Raman, Ramya; Ramachandran, S; Rajesh, T A

    2013-03-01

    This study characterizes over 5 years of high time resolution (5 min), airborne black carbon (BC) concentrations (July 2003 to December 2008) measured over Ahmedabad, an urban region in western India. The data were used to obtain different time averages of BC concentrations, and these averages were then used to assess the diurnal, seasonal, and annual variability of BC over the study region. Assessment of diurnal variations revealed a strong association between BC concentrations and vehicular traffic. Peaks in BC concentration were co-incident with the morning (0730 to 0830, LST) and late evening (1930 to 2030, LST) rush hour traffic. Additionally, diurnal variability in BC concentrations during major festivals (Diwali and Dushera during the months of October/November) revealed an increase in BC concentrations due to fireworks displays. Maximum half hourly BC concentrations during the festival days were as high as 79.8 μg m(-3). However, the high concentrations rapidly decayed suggesting that local meteorology during the festive season was favorable for aerosol dispersion. A multiple linear regression (MLR) model with BC as the dependent variable and meteorological parameters as independent variables was fitted. The variability in temperature, humidity, wind speed, and wind direction accounted for about 49% of the variability in measured BC concentrations. Conditional probability function (CPF) analysis was used to identify the geographical location of local source regions contributing to the effective BC measured (at 880 nm) at the receptor site. The east north-east (ENE) direction to the receptor was identified as a major source region. National highway (NH8) and two coal-fired thermal power stations (at Gandhinagar and Sabarmati) were located in the identified direction, suggesting that local traffic and power plant emissions were likely contributors to the measured BC.

  5. Rainfall variability, climate change and regionalization in the African monsoon region

    International Nuclear Information System (INIS)

    Fontaine, Bernard; Roucou, Pascal; Vigaud, Nicolas; Camara, Moctar; Konare, Abdourahamane; Sanda, Seidou Ibrah; Diedhiou, Arona; Janicot, Serge

    2012-01-01

    This summary recalls some results at the end of the AMMA international experiment (2003-2010) in terms of variability of the African monsoon at the intra-seasonal to multi-decadal scales and of climate prospective. The results confirmed the weight of surface temperatures and marine tele-connections for inter-annual and decadal fluctuations and stressed the importance of atmospheric variability. They also described the dominant modes of intra-seasonal variability as their interactions with the surface. Several hypotheses involving memory effects related to soil water and vegetation, particularly in boreal spring and autumn have also been made. Prospective analysis from model output suggests rainfall surplus around 2050 over the Eastern-central Sahel and relative deficit to the West. Phase 2 of AMMA (2010-2020) will focus more on aspects that have a high social impact in direct collaboration with meteorological services predictability, prediction scores, operational indicators, evaluation of the part of anthropogenic forcing in the current and future variations. (authors)

  6. Improving preparedness of farmers to Climate Variability: A case study of Vidarbha region of Maharashtra, India

    Science.gov (United States)

    Swami, D.; Parthasarathy, D.; Dave, P.

    2016-12-01

    A key objective of the ongoing research is to understand the risk and vulnerability of agriculture and farming communities with respect to multiple climate change attributes, particularly monsoon variability and hydrology such as ground water availability. Climate Variability has always been a feature affecting Indian agriculture but the nature and characteristics of this variability is not well understood. Indian monsoon patterns are highly variable and most of the studies focus on larger domain such as Central India or Western coast (Ghosh et al., 2009) but district level analysis is missing i.e. the linkage between agriculture and climate variables at finer scale has not been investigated comprehensively. For example, Eastern Vidarbha region in Maharashtra is considered as one of the most agriculturally sensitive region in India, where every year a large number of farmers commit suicide. The main reasons for large number of suicides are climate related stressors such as droughts, hail storms, and monsoon variability aggravated with poor socio-economic conditions. Present study has tried to explore the areas in Vidarbha region of Maharashtra where famers and crop productivity, specifically cotton, sorghum, is highly vulnerable to monsoon variability, hydrological and socio-economic variables which are further modelled to determine the maximal contributing factor towards crops and farmers' vulnerability. After analysis using primary and secondary data, it will aid in decision making regarding field operations such as time of sowing, harvesting and irrigation requirements by optimizing the cropping pattern with climatic, hydrological and socio-economic variables. It also suggests the adaptation strategies to farmers regarding different types of cropping and water harvesting practices, optimized dates and timings for harvesting, sowing, water and nutrient requirements of particular crops according to the specific region. Primarily along with secondary analysis

  7. Moment-to-Moment BOLD Signal Variability Reflects Regional Changes in Neural Flexibility across the Lifespan.

    Science.gov (United States)

    Nomi, Jason S; Bolt, Taylor S; Ezie, C E Chiemeka; Uddin, Lucina Q; Heller, Aaron S

    2017-05-31

    Variability of neuronal responses is thought to underlie flexible and optimal brain function. Because previous work investigating BOLD signal variability has been conducted within task-based fMRI contexts on adults and older individuals, very little is currently known regarding regional changes in spontaneous BOLD signal variability in the human brain across the lifespan. The current study used resting-state fMRI data from a large sample of male and female human participants covering a wide age range (6-85 years) across two different fMRI acquisition parameters (TR = 0.645 and 1.4 s). Variability in brain regions including a key node of the salience network (anterior insula) increased linearly across the lifespan across datasets. In contrast, variability in most other large-scale networks decreased linearly over the lifespan. These results demonstrate unique lifespan trajectories of BOLD variability related to specific regions of the brain and add to a growing literature demonstrating the importance of identifying normative trajectories of functional brain maturation. SIGNIFICANCE STATEMENT Although brain signal variability has traditionally been considered a source of unwanted noise, recent work demonstrates that variability in brain signals during task performance is related to brain maturation in old age as well as individual differences in behavioral performance. The current results demonstrate that intrinsic fluctuations in resting-state variability exhibit unique maturation trajectories in specific brain regions and systems, particularly those supporting salience detection. These results have implications for investigations of brain development and aging, as well as interpretations of brain function underlying behavioral changes across the lifespan. Copyright © 2017 the authors 0270-6474/17/375539-10$15.00/0.

  8. NEAR-INFRARED VARIABILITY AMONG YOUNG STELLAR OBJECTS IN THE STAR FORMATION REGION CYGNUS OB7

    Energy Technology Data Exchange (ETDEWEB)

    Wolk, Scott J.; Rice, Thomas S. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Aspin, Colin [Institute for Astronomy, University of Hawaii at Manoa, 640 North Aohoku Place, Hilo, HI 96720 (United States)

    2013-08-20

    We present an analysis of near-infrared time-series photometry in J, H, and K bands for about 100 epochs of a 1 Degree-Sign Multiplication-Sign 1 Degree-Sign region of the Lynds 1003/1004 dark cloud in the Cygnus OB7 region. Augmented by data from the Wide-field Infrared Survey Explorer, we identify 96 candidate disk bearing young stellar objects (YSOs) in the region. Of these, 30 are clearly Class I or earlier. Using the Wide-Field Imaging Camera on the United Kingdom Infrared Telescope, we were able to obtain photometry over three observing seasons, with photometric uncertainty better than 0.05 mag down to J Almost-Equal-To 17. We study detailed light curves and color trajectories of {approx}50 of the YSOs in the monitored field. We investigate the variability and periodicity of the YSOs and find the data are consistent with all YSOs being variable in these wavelengths on timescales of a few years. We divide the variability into four observational classes: (1) stars with periodic variability stable over long timescales, (2) variables which exhibit short-lived cyclic behavior, (3) long-duration variables, and (4) stochastic variables. Some YSO variability defies simple classification. We can explain much of the observed variability as being due to dynamic and rotational changes in the disk, including an asymmetric or changing blocking fraction, changes to the inner disk hole size, as well as changes to the accretion rate. Overall, we find that the Class I:Class II ratio of the cluster is consistent with an age of <1 Myr, with at least one individual, wildly varying source {approx}100, 000 yr old. We have also discovered a Class II eclipsing binary system with a period of 17.87 days.

  9. Integrated Variable Speed Limits Control and Ramp Metering for Bottleneck Regions on Freeway

    Directory of Open Access Journals (Sweden)

    Ming-hui Ma

    2015-01-01

    Full Text Available To enhance the efficiency of the existing freeway system and therefore to mitigate traffic congestion and related problems on the freeway mainline lane-drop bottleneck region, the advanced strategy for bottleneck control is essential. This paper proposes a method that integrates variable speed limits and ramp metering for freeway bottleneck region control to relieve the chaos in bottleneck region. To this end, based on the analyses of spatial-temporal patterns of traffic flow, a macroscopic traffic flow model is extended to describe the traffic flow operating characteristic by considering the impacts of variable speed limits in mainstream bottleneck region. In addition, to achieve the goal of balancing the priority of the vehicles on mainline and on-ramp, increasing capacity, and reducing travel delay on bottleneck region, an improved control model, as well as an advanced control strategy that integrates variable speed limits and ramp metering, is developed. The proposed method is tested in simulation for a real freeway infrastructure feed and calibrates real traffic variables. The results demonstrate that the proposed method can substantially improve the traffic flow efficiency of mainline and on-ramp and enhance the quality of traffic flow at the investigated freeway mainline bottleneck.

  10. Regionalizing Africa: Patterns of Precipitation Variability in Observations and Global Climate Models

    Science.gov (United States)

    Badr, Hamada S.; Dezfuli, Amin K.; Zaitchik, Benjamin F.; Peters-Lidard, Christa D.

    2016-01-01

    Many studies have documented dramatic climatic and environmental changes that have affected Africa over different time scales. These studies often raise questions regarding the spatial extent and regional connectivity of changes inferred from observations and proxies and/or derived from climate models. Objective regionalization offers a tool for addressing these questions. To demonstrate this potential, applications of hierarchical climate regionalizations of Africa using observations and GCM historical simulations and future projections are presented. First, Africa is regionalized based on interannual precipitation variability using Climate Hazards Group Infrared Precipitation with Stations (CHIRPS) data for the period 19812014. A number of data processing techniques and clustering algorithms are tested to ensure a robust definition of climate regions. These regionalization results highlight the seasonal and even month-to-month specificity of regional climate associations across the continent, emphasizing the need to consider time of year as well as research question when defining a coherent region for climate analysis. CHIRPS regions are then compared to those of five GCMs for the historic period, with a focus on boreal summer. Results show that some GCMs capture the climatic coherence of the Sahel and associated teleconnections in a manner that is similar to observations, while other models break the Sahel into uncorrelated subregions or produce a Sahel-like region of variability that is spatially displaced from observations. Finally, shifts in climate regions under projected twenty-first-century climate change for different GCMs and emissions pathways are examined. A projected change is found in the coherence of the Sahel, in which the western and eastern Sahel become distinct regions with different teleconnections. This pattern is most pronounced in high-emissions scenarios.

  11. The discrete and localized nature of the variable emission from active regions

    Science.gov (United States)

    Arndt, Martina Belz; Habbal, Shadia Rifai; Karovska, Margarita

    1994-01-01

    Using data from the Extreme Ultraviolet (EUV) Spectroheliometer on Skylab, we study the empirical characteristics of the variable emission in active regions. These simultaneous multi-wavelength observations clearly confirm that active regions consist of a complex of loops at different temperatures. The variable emission from this complex has very well-defined properties that can be quantitatively summarized as follows: (1) It is localized predominantly around the footpoints where it occurs at discrete locations. (2) The strongest variability does not necessarily coincide with the most intense emission. (3) The fraction of the area of the footpoints, (delta n)/N, that exhibits variable emission, varies by +/- 15% as a function of time, at any of the wavelengths measured. It also varies very little from footpoint to footpoint. (4) This fractional variation is temperature dependent with a maximum around 10(exp 5) K. (5) The ratio of the intensity of the variable to the average background emission, (delta I)/(bar-I), also changes with temperature. In addition, we find that these distinctive characteristics persist even when flares occur within the active region.

  12. Climate Drivers of Spatiotemporal Variability of Precipitation in the Source Region of Yangtze River

    Science.gov (United States)

    Du, Y.; Berndtsson, R.; An, D.; Yuan, F.

    2017-12-01

    Variability of precipitation regime has significant influence on the environment sustainability in the source region of Yangtze River, especially when the vegetation degradation and biodiversity reduction have already occurred. Understanding the linkage between variability of local precipitation and global teleconnection patterns is essential for water resources management. Based on physical reasoning, indices of the climate drivers can provide a practical way of predicting precipitation. Due to high seasonal variability of precipitation, climate drivers of the seasonal precipitation also varies. However, few reports have gone through the teleconnections between large scale patterns with seasonal precipitation in the source region of Yangtze River. The objectives of this study are therefore (1) assessment of temporal trend and spatial variability of precipitation in the source region of Yangtze River; (2) identification of climate indices with strong influence on seasonal precipitation anomalies; (3) prediction of seasonal precipitation based on revealed climate indices. Principal component analysis and Spearman rank correlation were used to detect significant relationships. A feed-forward artificial neural network(ANN) was developed to predict seasonal precipitation using significant correlated climate indices. Different influencing climate indices were revealed for precipitation in each season, with significant level and lag times. Significant influencing factors were selected to be the predictors for ANN model. With correlation coefficients between observed and simulated precipitation over 0.5, the results were eligible to predict the precipitation of spring, summer and winter using teleconnections, which can improve integrated water resources management in the source region of Yangtze River.

  13. Regions of variability for a class of analytic and locally univalent ...

    Indian Academy of Sciences (India)

    f ′′(0) whenever f varies over the class C(A,B). Keywords. Janowski class; univalent functions; variability regions. 2000 Mathematics Subject Classification. 30C45. 1. Introduction and preliminary results. Let C be the complex plane. We use the following notations for open and closed discs with center c and radius r in the ...

  14. ESA STSE “SST Diurnal Variability: Regional Extend - Implications in Atmospheric Modelling”

    DEFF Research Database (Denmark)

    Karagali, Ioanna

    The diurnal variability of SST, driven by the coincident occurrence of low enough wind and solar heating, has been observed in various regions of the global ocean [4, 5, 6]. Atmospheric, oceanic and climate models are not adequately resolving the daily SST cycle, resulting in biases of the total...

  15. Representing major soil variability at regional scale by constrained Latin Hypercube Sampling of remote sensing data

    NARCIS (Netherlands)

    Mulder, V.L.; Bruin, de S.; Schaepman, M.E.

    2013-01-01

    This paper presents a sparse, remote sensing-based sampling approach making use of conditioned Latin Hypercube Sampling (cLHS) to assess variability in soil properties at regional scale. The method optimizes the sampling scheme for a defined spatial population based on selected covariates, which are

  16. Optical photometric variable stars towards the Galactic H II region NGC 2282

    Science.gov (United States)

    Dutta, Somnath; Mondal, Soumen; Joshi, Santosh; Jose, Jessy; Das, Ramkrishna; Ghosh, Supriyo

    2018-05-01

    We report here CCD I-band time series photometry of a young (2-5 Myr) cluster NGC 2282, in order to identify and understand the variability of pre-main-sequence (PMS) stars. The I-band photometry, down to ˜20.5 mag, enables us to probe the variability towards the lower mass end (˜0.1 M⊙) of PMS stars. From the light curves of 1627 stars, we identified 62 new photometric variable candidates. Their association with the region was established from H α emission and infrared (IR) excess. Among 62 variables, 30 young variables exhibit H α emission, near-IR (NIR)/mid-IR (MIR) excess or both and are candidate members of the cluster. Out of 62 variables, 41 are periodic variables, with a rotation rate ranging from 0.2-7 d. The period distribution exhibits a median period at ˜1 d, as in many young clusters (e.g. NGC 2264, ONC, etc.), but it follows a unimodal distribution, unlike others that have bimodality, with slow rotators peaking at ˜6-8 d. To investigate the rotation-disc and variability-disc connection, we derived the NIR excess from Δ(I - K) and the MIR excess from Spitzer [3.6]-[4.5] μm data. No conclusive evidence of slow rotation with the presence of discs around stars and fast rotation for discless stars is obtained from our periodic variables. A clear increasing trend of the variability amplitude with IR excess is found for all variables.

  17. Tannat grape composition responses to spatial variability of temperature in an Uruguay's coastal wine region

    Science.gov (United States)

    Fourment, Mercedes; Ferrer, Milka; González-Neves, Gustavo; Barbeau, Gérard; Bonnardot, Valérie; Quénol, Hervé

    2017-09-01

    Spatial variability of temperature was studied in relation to the berry basic composition and secondary compounds of the Tannat cultivar at harvest from vineyards located in Canelones and Montevideo, the most important wine region of Uruguay. Monitoring of berries and recording of temperature were performed in 10 commercial vineyards of Tannat situated in the southern coastal wine region of the country for three vintages (2012, 2013, and 2014). Results from a multivariate correlation analysis between berry composition and temperature over the three vintages showed that (1) Tannat responses to spatial variability of temperature were different over the vintages, (2) correlations between secondary metabolites and temperature were higher than those between primary metabolites, and (3) correlation values between berry composition and climate variables increased when ripening occurred under dry conditions (below average rainfall). For a particular studied vintage (2013), temperatures explained 82.5% of the spatial variability of the berry composition. Daily thermal amplitude was found to be the most important spatial mode of variability with lower values recorded at plots nearest to the sea and more exposed to La Plata River. The highest levels in secondary compounds were found in berries issued from plots situated as far as 18.3 km from La Plata River. The increasing knowledge of temperature spatial variability and its impact on grape berry composition contributes to providing possible issues to adapt grapevine to climate change.

  18. Morphometric variability of Arctodiaptomus salinus (Copepoda) in the Mediterranean-Black Sea region.

    Science.gov (United States)

    Anufriieva, Elena V; Shadrin, Nickolai V

    2015-11-18

    Inter-species variability in morphological traits creates a need to know the range of variability of characteristics in the species for taxonomic and ecological tasks. Copepoda Arctodiaptomus salinus, which inhabits water bodies across Eurasia and North Africa, plays a dominant role in plankton of different water bodies-from fresh to hypersaline. This work assesses the intra- and inter-population morphometric variability of A. salinus in the Mediterranean-Black Sea region and discusses some observed regularities. The variability of linear body parameters and proportions was studied. The impacts of salinity, temperature, and population density on morphological characteristics and their variability can manifest themselves in different ways at the intra- and inter-population levels. A significant effect of salinity, pH and temperature on the body proportions was not found. Their intra-population variability is dependent on temperature and salinity. Sexual dimorphism of A. salinus manifests in different linear parameters, proportions, and their variability. There were no effects of temperature, pH and salinity on the female/male parameter ratio. There were significant differences in the body proportions of males and females in different populations. The influence of temperature, salinity, and population density can be attributed to 80%-90% of intra-population variability of A. salinus. However, these factors can explain less than 40% of inter-population differences. Significant differences in the body proportions of males and females from different populations may suggest that some local populations of A. salinus in the Mediterranean-Black Sea region are in the initial stages of differentiation.

  19. YSOVAR: Mid-infrared variability in the star-forming region Lynds 1688

    Energy Technology Data Exchange (ETDEWEB)

    Günther, H. M.; Poppenhaeger, K.; Wolk, S. J.; Hora, J. L. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Cody, A. M. [Spitzer Science Center, California Institute of Technology, Pasadena, CA 91125 (United States); Covey, K. R. [Lowell Observatory, 1400 West Mars Hill Road, Flagstaff, AZ 86001 (United States); Hillenbrand, L. A. [Department of Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Plavchan, P. [NASA Exoplanet Science Institute, California Institute of Technology, 770 South Wilson Avenue, Pasadena, CA 91125 (United States); Rebull, L. M.; Stauffer, J. R. [Spitzer Science Center/Caltech, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Allen, L. [National Optical Astronomy Observatories, Tucson, AZ 85719 (United States); Bayo, A. [Max Planck Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Gutermuth, R. A. [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); Meng, H. Y. A. [Infrared Processing and Analysis Center, California Institute of Technology, MC 100-22, 770 South Wilson Avenue, Pasadena, CA 91125 (United States); Morales-Calderón, M. [Centro de Astrobiología (INTA-CSIC), ESAC Campus, P.O. Box 78, E-28691 Villanueva de la Canada (Spain); Parks, J. R. [Department of Physics and Astronomy, Georgia State University, 25 Park Place South, Atlanta, GA 30303 (United States); Song, Inseok, E-mail: hguenther@cfa.harvard.edu [Physics and Astronomy Department, University of Georgia, Athens, GA 30602-2451 (United States)

    2014-12-01

    The emission from young stellar objects (YSOs) in the mid-infrared (mid-IR) is dominated by the inner rim of their circumstellar disks. We present IR data from the Young Stellar Object VARiability (YSOVAR) survey of ∼800 objects in the direction of the Lynds 1688 (L1688) star-forming region over four visibility windows spanning 1.6 yr using the Spitzer Space Telescope in its warm mission phase. Among all light curves, 57 sources are cluster members identified based on their spectral energy distribution and X-ray emission. Almost all cluster members show significant variability. The amplitude of the variability is larger in more embedded YSOs. Ten out of 57 cluster members have periodic variations in the light curves with periods typically between three and seven days, but even for those sources, significant variability in addition to the periodic signal can be seen. No period is stable over 1.6 yr. Nonperiodic light curves often still show a preferred timescale of variability that is longer for more embedded sources. About half of all sources exhibit redder colors in a fainter state. This is compatible with time-variable absorption toward the YSO. The other half becomes bluer when fainter. These colors can only be explained with significant changes in the structure of the inner disk. No relation between mid-IR variability and stellar effective temperature or X-ray spectrum is found.

  20. Regional variability of farmer decision making and irrigation water use: insights from a data-scarce region of North India

    Science.gov (United States)

    O'Keeffe, Jimmy; Buytaert, Wouter; Brozović, Nick; Mijic, Ana

    2014-05-01

    Over the last fifty years, changes in agriculture brought about by the Green Revolution have transformed India from a famine-prone, drought-susceptible country into the worlds' third largest grain producer and one of the most intensively irrigated parts of the globe. Regionally, cheap energy, subsidised seeds and fertilisers, and in some areas Government purchase guarantees for grain promote the intensification of farming. While this allows farmers to survive, it also aggravates the drain agriculture is having on resources, particularly energy and water. Analysis at a regional scale, however, masks the considerable spatial variability that exists on a more localised level and must be taken into consideration to understand correctly aggregate system response to policy, hydrologic, and climatic change. In this study we present and analyse the results from over 100 farmer interviews conducted in the data-scarce districts of Jalaun and Sitapur on the Gangetic Plains of Uttar Pradesh during the post monsoon period of 2013. Variables such as the volumes and timing of irrigation water applied, sources of water, methods of abstraction and irrigation, and costs incurred are mapped, using qualitative data analysis and GIS. Large differences between the districts emerge, for instance in the region of Jalaun where cheaper canal water is available in addition to groundwater. This has enabled farmers to afford more water efficient technologies such as sprinklers, a practice not found in Sitapur which depends almost exclusively on more expensive diesel pumps. Results are used to delineate the spatial variability in water use practices, along with farmer behaviour and decision making. The primary data are compared with socio-economic information taken from regionally produced statistical abstracts. The combined data are used to identify the main drivers that influence farmer decision-making, which is in turn leading to groundwater overdraught in many parts of North India. Finally

  1. Internal and external variability in regional simulations of the Iberian Peninsula climate over the last millennium

    Directory of Open Access Journals (Sweden)

    J. J. Gómez-Navarro

    2012-01-01

    Full Text Available In this study we analyse the role of internal variability in regional climate simulations through a comparison of two regional paleoclimate simulations for the last millennium. They share the same external forcings and model configuration, differing only in the initial condition used to run the driving global model simulation. A comparison of these simulations allows us to study the role of internal variability in climate models at regional scales, and how it affects the long-term evolution of climate variables such as temperature and precipitation. The results indicate that, although temperature is homogeneously sensitive to the effect of external forcings, the evolution of precipitation is more strongly governed by random unpredictable internal dynamics. There are, however, some areas where the role of internal variability is lower than expected, allowing precipitation to respond to the external forcings. In this respect, we explore the underlying physical mechanisms responsible for it. This study identifies areas, depending on the season, in which a direct comparison between model simulations of precipitation and climate reconstructions would be meaningful, but also other areas where good agreement between them should not be expected even if both are perfect.

  2. High-resolution regional climate model evaluation using variable-resolution CESM over California

    Science.gov (United States)

    Huang, X.; Rhoades, A.; Ullrich, P. A.; Zarzycki, C. M.

    2015-12-01

    Understanding the effect of climate change at regional scales remains a topic of intensive research. Though computational constraints remain a problem, high horizontal resolution is needed to represent topographic forcing, which is a significant driver of local climate variability. Although regional climate models (RCMs) have traditionally been used at these scales, variable-resolution global climate models (VRGCMs) have recently arisen as an alternative for studying regional weather and climate allowing two-way interaction between these domains without the need for nudging. In this study, the recently developed variable-resolution option within the Community Earth System Model (CESM) is assessed for long-term regional climate modeling over California. Our variable-resolution simulations will focus on relatively high resolutions for climate assessment, namely 28km and 14km regional resolution, which are much more typical for dynamically downscaled studies. For comparison with the more widely used RCM method, the Weather Research and Forecasting (WRF) model will be used for simulations at 27km and 9km. All simulations use the AMIP (Atmospheric Model Intercomparison Project) protocols. The time period is from 1979-01-01 to 2005-12-31 (UTC), and year 1979 was discarded as spin up time. The mean climatology across California's diverse climate zones, including temperature and precipitation, is analyzed and contrasted with the Weather Research and Forcasting (WRF) model (as a traditional RCM), regional reanalysis, gridded observational datasets and uniform high-resolution CESM at 0.25 degree with the finite volume (FV) dynamical core. The results show that variable-resolution CESM is competitive in representing regional climatology on both annual and seasonal time scales. This assessment adds value to the use of VRGCMs for projecting climate change over the coming century and improve our understanding of both past and future regional climate related to fine

  3. Effects of Recent Regional Soil Moisture Variability on Global Net Ecosystem CO2 Exchange

    Science.gov (United States)

    Jones, L. A.; Madani, N.; Kimball, J. S.; Reichle, R. H.; Colliander, A.

    2017-12-01

    Soil moisture exerts a major regional control on the inter-annual variability of the global land sink for atmospheric CO2. In semi-arid regions, annual biomass production is closely coupled to variability in soil moisture availability, while in cold-season-affected regions, summer drought offsets the effects of advancing spring phenology. Availability of satellite solar-induced fluorescence (SIF) observations and improvements in atmospheric inversions has led to unprecedented ability to monitor atmospheric sink strength. However, discrepancies still exist between such top-down estimates as atmospheric inversion and bottom-up process and satellite driven models, indicating that relative strength, mechanisms, and interaction of driving factors remain poorly understood. We use soil moisture fields informed by Soil Moisture Active Passive Mission (SMAP) observations to compare recent (2015-2017) and historic (2000-2014) variability in net ecosystem land-atmosphere CO2 exchange (NEE). The operational SMAP Level 4 Carbon (L4C) product relates ground-based flux tower measurements to other bottom-up and global top-down estimates to underlying soil moisture and other driving conditions using data-assimilation-based SMAP Level 4 Soil Moisture (L4SM). Droughts in coastal Brazil, South Africa, Eastern Africa, and an anomalous wet period in Eastern Australia were observed by L4C. A seasonal seesaw pattern of below-normal sink strength at high latitudes relative to slightly above-normal sink strength for mid-latitudes was also observed. Whereas SMAP-based soil moisture is relatively informative for short-term temporal variability, soil moisture biases that vary in space and with season constrain the ability of the L4C estimates to accurately resolve NEE. Such biases might be caused by irrigation and plant-accessible ground-water. Nevertheless, SMAP L4C daily NEE estimates connect top-down estimates to variability of effective driving factors for accurate estimates of regional

  4. Uncertainties in Future Regional Sea Level Trends: How to Deal with the Internal Climate Variability?

    Science.gov (United States)

    Becker, M.; Karpytchev, M.; Hu, A.; Deser, C.; Lennartz-Sassinek, S.

    2017-12-01

    Today, the Climate models (CM) are the main tools for forecasting sea level rise (SLR) at global and regional scales. The CM forecasts are accompanied by inherent uncertainties. Understanding and reducing these uncertainties is becoming a matter of increasing urgency in order to provide robust estimates of SLR impact on coastal societies, which need sustainable choices of climate adaptation strategy. These CM uncertainties are linked to structural model formulation, initial conditions, emission scenario and internal variability. The internal variability is due to complex non-linear interactions within the Earth Climate System and can induce diverse quasi-periodic oscillatory modes and long-term persistences. To quantify the effects of internal variability, most studies used multi-model ensembles or sea level projections from a single model ran with perturbed initial conditions. However, large ensembles are not generally available, or too small, and computationally expensive. In this study, we use a power-law scaling of sea level fluctuations, as observed in many other geophysical signals and natural systems, which can be used to characterize the internal climate variability. From this specific statistical framework, we (1) use the pre-industrial control run of the National Center for Atmospheric Research Community Climate System Model (NCAR-CCSM) to test the robustness of the power-law scaling hypothesis; (2) employ the power-law statistics as a tool for assessing the spread of regional sea level projections due to the internal climate variability for the 21st century NCAR-CCSM; (3) compare the uncertainties in predicted sea level changes obtained from a NCAR-CCSM multi-member ensemble simulations with estimates derived for power-law processes, and (4) explore the sensitivity of spatial patterns of the internal variability and its effects on regional sea level projections.

  5. Impact of region contouring variability on image-based focal therapy evaluation

    Science.gov (United States)

    Gibson, Eli; Donaldson, Ian A.; Shah, Taimur T.; Hu, Yipeng; Ahmed, Hashim U.; Barratt, Dean C.

    2016-03-01

    Motivation: Focal therapy is an emerging low-morbidity treatment option for low-intermediate risk prostate cancer; however, challenges remain in accurately delivering treatment to specified targets and determining treatment success. Registered multi-parametric magnetic resonance imaging (MPMRI) acquired before and after treatment can support focal therapy evaluation and optimization; however, contouring variability, when defining the prostate, the clinical target volume (CTV) and the ablation region in images, reduces the precision of quantitative image-based focal therapy evaluation metrics. To inform the interpretation and clarify the limitations of such metrics, we investigated inter-observer contouring variability and its impact on four metrics. Methods: Pre-therapy and 2-week-post-therapy standard-of-care MPMRI were acquired from 5 focal cryotherapy patients. Two clinicians independently contoured, on each slice, the prostate (pre- and post-treatment) and the dominant index lesion CTV (pre-treatment) in the T2-weighted MRI, and the ablated region (post-treatment) in the dynamic-contrast- enhanced MRI. For each combination of clinician contours, post-treatment images were registered to pre-treatment images using a 3D biomechanical-model-based registration of prostate surfaces, and four metrics were computed: the proportion of the target tissue region that was ablated and the target:ablated region volume ratio for each of two targets (the CTV and an expanded planning target volume). Variance components analysis was used to measure the contribution of each type of contour to the variance in the therapy evaluation metrics. Conclusions: 14-23% of evaluation metric variance was attributable to contouring variability (including 6-12% from ablation region contouring); reducing this variability could improve the precision of focal therapy evaluation metrics.

  6. Comparing the potential for identification of lactobacillus spp. of 16s rDNA variable regions

    International Nuclear Information System (INIS)

    Riano Pachon, Diego Mauricio; Vanegas Lopez, Maria Consuelo; Gonzalez Garcia, Laura Natalia

    2013-01-01

    16s rDNA is used for bacterial identification because its variation rate between species allows differentiation. The gene for this ribosomal subunit has 9 variable regions and some of them give more information than others. We were interested in evaluating the potential for species identification of each region and their combinations. We extracted the V1 to V8 regions of 16s rDNA from different strains and species of Lactobacillus and analyzed them using STAP (ss-RNA Taxonomy Assigning Pipeline) and RDP (Ribosomal Database Project) multiclassifier packages. Phylogenetic trees obtained by maximum likelihood analyses were compared. Classification results show that many regions give the correct genus classification using RDP and STAP; however they are not enough to classify up to the level of species. V5V6 region presents the highest quantity of informative fragments but also present the highest rate of false negatives. V1V3 region presents the highest rate of true positives (species) using STAP and the region V5V8 in RDP (genus).The phylogenetic result shows that the reference topology could be obtained using different combination of regions as V1V3 and V1V8.The experimental validation was done using commercial strains from a probiotic tampon. Sequencing analysis show that the V1V3 region gives the same information and result as the complete 16s rDNA; the three isolated strains correspond to the strains indicated in the product. We conclude that the V1V3 region is the minimum required region to classify Lactobacillus spp. in the correct way and this region is useful in metagenomics to analyze probiotics samples.

  7. Two centuries of observed atmospheric variability and change over the North Sea region

    Science.gov (United States)

    Stendel, Martin; van den Besselaar, Else; Hannachi, Abdel; Kent, Elizabeth; Lefebvre, Christiana; Rosenhagen, Gudrun; Schenk, Frederik; van der Schrier, Gerard; Woollings, Tim

    2016-04-01

    In the upcoming North Sea Region Climate Change Assessment (NOSCCA), we present a synthesis of current knowledge about past, present and possible future climate change in the North Sea region. A climate change assessment from published scientific work has been conducted as a kind of regional IPCC report, and a book has been produced that will be published by Springer in 2016. In the framework of the NOSCCA project, we examine past and present studies of variability and changes in atmospheric variables within the North Sea region over the instrumental period, roughly the past 200 years, based on observations and reanalyses. The variables addressed in this presentation are large-scale circulation, pressure and wind, surface air temperature, precipitation and radiative properties (clouds, solar radiation, and sunshine duration). While air temperature over land, not unexpectedly, has increased everywhere in the North Sea region, with strongest trends in spring and in the north of the region, a precipitation increase has been observed in the north and a decrease in the south of the region. This pattern goes along with a north-eastward shift of storm tracks and is in agreement with climate model projections under enhanced greenhouse gas concentrations. For other variables, it is not obvious which part of the observed changes may be due to anthropogenic activities and which is internally forced. It remains also unclear to what extent atmospheric circulation over the North Sea region is influenced by distant factors, in particular Arctic sea-ice decline in recent decades. There are indications of an increase in the number of deep cyclones (but not in the total number of cyclones), while storminess since the late 19th century shows no robust trends. The persistence of circulation types appears to have increased over the last century, and consequently, there is an indication for 'more extreme' extreme events. However, changes in extreme weather events are difficult to assess

  8. Climatic variability of river outflow in the Pantanal region and the influence of sea surface temperature

    Science.gov (United States)

    Silva, Carlos Batista; Silva, Maria Elisa Siqueira; Ambrizzi, Tércio

    2017-07-01

    This paper investigates possible linear relationships between climate, hydrology, and oceanic surface variability in the Pantanal region (in South America's central area), over interannual and interdecadal time ranges. In order to verify the mentioned relations, lagged correlation analysis and linear adjustment between river discharge at the Pantanal region and sea surface temperature were used. Composite analysis for atmospheric fields, air humidity flux divergence, and atmospheric circulation at low and high levels, for the period between 1970 and 2003, was analyzed. Results suggest that the river discharge in the Pantanal region is linearly associated with interdecadal and interannual oscillations in the Pacific and Atlantic oceans, making them good predictors to continental hydrological variables. Considering oceanic areas, 51 % of the annual discharge in the Pantanal region can be linearly explained by mean sea surface temperature (SST) in the Subtropical North Pacific, Tropical North Pacific, Extratropical South Pacific, and Extratropical North Atlantic over the period. Considering a forecast approach in seasonal scale, 66 % of the monthly discharge variance in Pantanal, 3 months ahead of SST, is explained by the oceanic variables, providing accuracy around 65 %. Annual discharge values in the Pantanal region are strongly related to the Pacific Decadal Oscillation (PDO) variability (with 52 % of linear correlation), making it possible to consider an interdecadal variability and a consequent subdivision of the whole period in three parts: 1st (1970-1977), 2nd (1978-1996), and 3rd (1997-2003) subperiods. The three subperiods coincide with distinct PDO phases: negative, positive, and negative, respectively. Convergence of humidity flux at low levels and the circulation pattern at high levels help to explain the drier and wetter subperiods. During the wetter 2nd subperiod, the air humidity convergence at low levels is much more evident than during the other two

  9. Coupled decadal variability of the North Atlantic Oscillation, regional rainfall and karst spring discharges in the Campania region (southern Italy

    Directory of Open Access Journals (Sweden)

    P. De Vita

    2012-05-01

    Full Text Available Thus far, studies on climate change have focused mainly on the variability of the atmospheric and surface components of the hydrologic cycle, investigating the impact of this variability on the environment, especially with respect to the risks of desertification, droughts and floods. Conversely, the impacts of climate change on the recharge of aquifers and on the variability of groundwater flow have been less investigated, especially in Mediterranean karst areas whose water supply systems depend heavily upon groundwater exploitation.

    In this paper, long-term climatic variability and its influence on groundwater recharge were analysed by examining decadal patterns of precipitation, air temperature and spring discharges in the Campania region (southern Italy, coupled with the North Atlantic Oscillation (NAO.

    The time series of precipitation and air temperature were gathered over 90 yr, from 1921 to 2010, using 18 rain gauges and 9 air temperature stations with the most continuous functioning. The time series of the winter NAO index and of the discharges of 3 karst springs, selected from those feeding the major aqueducts systems, were collected for the same period.

    Regional normalised indexes of the precipitation, air temperature and karst spring discharges were calculated, and different methods were applied to analyse the related time series, including long-term trend analysis using smoothing numerical techniques, cross-correlation and Fourier analysis.

    The investigation of the normalised indexes highlighted the existence of long-term complex periodicities, from 2 to more than 30 yr, with differences in average values of up to approximately ±30% for precipitation and karst spring discharges, which were both strongly correlated with the winter NAO index.

    Although the effects of the North Atlantic Oscillation (NAO had already been demonstrated in the long-term precipitation and streamflow patterns of

  10. Some aspects of regional flow of variable-density groundwater in crystalline basement rock of Sweden

    International Nuclear Information System (INIS)

    Voss, C.I.; Andersson, Johan

    1991-12-01

    The distribution of saltwaters in the Baltic shield in Sweden is consistent with ongoing but incomplete Holocene flushing and depends on the geometry and connectivity of conductive structures at both regional and local scales, and on the surface topography. Numerical simulation of regional variable-density fluid flow during Holocene land-rise and coastal regression shows that the existence of any old saltwater, whether derived from submarine recharge in regions below Sweden's highest post-glacial coastline or geochemical processes, is an indication either of slow fluid movements through the bedrock over long times, or of long travel distances through fracture systems before arriving at measurement points. During the land-rise period, regional flow is not affected by the variable density of fluids in the upper few kilometers of the shield and the topography of the water table is the only driving force. The spatial distribution of meteoric flushing water and pre-Holocene waters may be complex, with the possibility of relatively fresh water in fracture zones below salty units even at depths of a few kilometers. The domination of the topographic driving force implies that deep saltwater is not necessarily stagnant, and significant saltwater flows may be expected to occur in well-connected horizons even at depth. Local topography variation and fracture zone location combine to create a complex flow field in which local topographic driving forces extend to considerable depth in some areas, whereas regional topographic forces predominate in others. Thus, a pattern may be difficult to discern in measurements of the regional saltwater distribution, although it is clear that the coastal region is the major zone of discharge for deeper pre-Holocene fluids. During the land-rise period, regional flow equilibrates with changing climatic conditions and coastal positions, while the distribution of flushing water and older waters lags and will perpetually change between successive

  11. Climatological variability in modeling of long-term regional transport and deposition of air pollutants

    International Nuclear Information System (INIS)

    Shannon, J.D.

    1984-01-01

    In a growing number of emission policy analyses, regulatory proceedings, and cost/benefit assessments, numerical models of long-range transport and deposition of air pollutants have been exercised to estimate source-receptor (S-R) relationships--for the particular meteorological conditions input to the model. The representativeness of the meteorological conditions, or the variability of the model estimates with climatological input from different years or corresponding seasons from different years, is seldom evaluated. Here, two full years (1980 and 1981) of meteorological data, as well as data from January and July of 1978, are used in the Advanced Statistical Trajectory Regional Air Pollution (ASTRAP) model (Shannon, 1981), one of the eight Memorandum of Intent (MOI) models, to estimate deposition for the S-R matrix combination of eleven source regions and nine receptors used in the MOI reports. (S-R matrices of dimensions 40 by 9 were also examined in the MOI reports.) Improvements in the ASTRAP model and in the emission inventory since the earlier work require recalculation of the two-month 1978 simulation in order for the comparison to isolate the effect of meteorological variability. The source regions are listed, and the receptor regions are provide. For completeness, an additional source region, the western states and provinces, has been added, as well as a total for the 48 contiguous states and 10 provinces. 4 references, 9 tables

  12. An observational and modeling study of the regional impacts of climate variability

    Science.gov (United States)

    Horton, Radley M.

    Climate variability has large impacts on humans and their agricultural systems. Farmers are at the center of this agricultural network, but it is often agricultural planners---regional planners, extension agents, commodity groups and cooperatives---that translate climate information for users. Global climate models (GCMs) are a leading tool for understanding and predicting climate and climate change. Armed with climate projections and forecasts, agricultural planners adapt their decision-making to optimize outcomes. This thesis explores what GCMs can, and cannot, tell us about climate variability and change at regional scales. The question is important, since high-quality regional climate projections could assist farmers and regional planners in key management decisions, contributing to better agricultural outcomes. To answer these questions, climate variability and its regional impacts are explored in observations and models for the current and future climate. The goals are to identify impacts of observed variability, assess model simulation of variability, and explore how climate variability and its impacts may change under enhanced greenhouse warming. Chapter One explores how well Goddard Institute for Space Studies (GISS) atmospheric models, forced by historical sea surface temperatures (SST), simulate climatology and large-scale features during the exceptionally strong 1997--1999 El Nino Southern Oscillation (ENSO) cycle. Reasonable performance in this 'proof of concept' test is considered a minimum requirement for further study of variability in models. All model versions produce appropriate local changes with ENSO, indicating that with correct ocean temperatures these versions are capable of simulating the large-scale effects of ENSO around the globe. A high vertical resolution model (VHR) provides the best simulation. Evidence is also presented that SST anomalies outside the tropical Pacific may play a key role in generating remote teleconnections even

  13. Life-history strategies associated with local population variability confer regional stability.

    Science.gov (United States)

    Pribil, Stanislav; Houlahan, Jeff E

    2003-07-07

    A widely held ecological tenet is that, at the local scale, populations of K-selected species (i.e. low fecundity, long lifespan and large body size) will be less variable than populations of r-selected species (i.e. high fecundity, short lifespan and small body size). We examined the relationship between long-term population trends and life-history attributes for 185 bird species in the Czech Republic and found that, at regional spatial scales and over moderate temporal scales (100-120 years), K-selected bird species were more likely to show both large increases and decreases in population size than r-selected species. We conclude that life-history attributes commonly associated with variable populations at the local scale, confer stability at the regional scale.

  14. Constancy despite variability: Local and regional macrofaunal diversity in intertidal seagrass beds

    Science.gov (United States)

    Boyé, Aurélien; Legendre, Pierre; Grall, Jacques; Gauthier, Olivier

    2017-12-01

    The importance of seagrass habitat for the diversity of benthic fauna has been extensively studied worldwide. Most of the information available is, however, about α diversity while little consideration has been given to β diversity. To fill the knowledge gaps regarding the variability of epifaunal and infaunal seagrass assemblages at large spatial and temporal scales, we scrutinized an extensive dataset covering five years of monitoring of eight intertidal Zostera marina meadows around Brittany (France). High species richness arose at the regional scale from the combination of high local diversity of the meadows and substantial among-meadows β diversity. Epifauna and infauna appeared as distinct self-communities as they displayed different spatial and temporal patterns and varied in their responses to local hydrological conditions. Infauna had higher total β diversity than epifauna due to a tighter link to the great variability of local environmental conditions in the region. Both exhibited substantial variations in species composition and community structure with variations of dominant species that were accompanied by extensive change in numerous rare species. The dominant epifaunal species were all grazers. Changes in species composition were induced mostly by species replacement and rarely by richness differences between meadows. Indeed, species richness remained within a narrow range for all seagrass beds, suggesting a potential carrying capacity for species richness of the meadows. Overall, all meadows contributed equally to the regional turnover of seagrass macrofauna, emphasizing high variability and complementarity among beds at the regional scale. The implications of this substantial within-seagrass variability for the functioning of benthic ecosystems at broad scale and for conservation purposes in habitat mosaics warrant further investigations but our results clearly advocate taking into account within-habitat variation when evaluating the diversity

  15. Continental and Marine Environmental changes in Europe induced by Global Climate variability and Regional Paleogeography Changes

    OpenAIRE

    Popescu , Speranta - Maria

    2008-01-01

    version originale; My PhD and post-doctorate researches have focused on paleoclimatic, paleogeographical and paleoenvironmental reconstruction of the Mediterranean Basin and its adjacent seas (i.e. the residual former Paratethys) since 11 Ma. During this time-interval the Mediterranean marine and continental environments were affected by significant paleogeographic changes, forced by global climate and sea-level variability, plate tectonics and regional uplift of Alps s.l. and Carpathians. Tw...

  16. Long-term Variability of H2CO Masers in Star-forming Regions

    Science.gov (United States)

    Andreev, N.; Araya, E. D.; Hoffman, I. M.; Hofner, P.; Kurtz, S.; Linz, H.; Olmi, L.; Lorran-Costa, I.

    2017-10-01

    We present results of a multi-epoch monitoring program on variability of 6 cm formaldehyde (H2CO) masers in the massive star-forming region NGC 7538 IRS 1 from 2008 to 2015, conducted with the Green Bank Telescope, the Westerbork Radio Telescope , and the Very Large Array. We found that the similar variability behaviors of the two formaldehyde maser velocity components in NGC 7538 IRS 1 (which was pointed out by Araya and collaborators in 2007) have continued. The possibility that the variability is caused by changes in the maser amplification path in regions with similar morphology and kinematics is discussed. We also observed 12.2 GHz methanol and 22.2 GHz water masers toward NGC 7538 IRS 1. The brightest maser components of CH3OH and H2O species show a decrease in flux density as a function of time. The brightest H2CO maser component also shows a decrease in flux density and has a similar LSR velocity to the brightest H2O and 12.2 GHz CH3OH masers. The line parameters of radio recombination lines and the 20.17 and 20.97 GHz CH3OH transitions in NGC 7538 IRS 1 are also reported. In addition, we observed five other 6 cm formaldehyde maser regions. We found no evidence of significant variability of the 6 cm masers in these regions with respect to previous observations, the only possible exception being the maser in G29.96-0.02. All six sources were also observed in the {{{H}}}213{CO} isotopologue transition of the 6 cm H2CO line; {{{H}}}213{CO} absorption was detected in five of the sources. Estimated column density ratios [{{{H}}}212{CO}]/[{{{H}}}213{CO}] are reported.

  17. Near-surface wind variability over the broader Adriatic region: insights from an ensemble of regional climate models

    Science.gov (United States)

    Belušić, Andreina; Prtenjak, Maja Telišman; Güttler, Ivan; Ban, Nikolina; Leutwyler, David; Schär, Christoph

    2018-06-01

    Over the past few decades the horizontal resolution of regional climate models (RCMs) has steadily increased, leading to a better representation of small-scale topographic features and more details in simulating dynamical aspects, especially in coastal regions and over complex terrain. Due to its complex terrain, the broader Adriatic region represents a major challenge to state-of-the-art RCMs in simulating local wind systems realistically. The objective of this study is to identify the added value in near-surface wind due to the refined grid spacing of RCMs. For this purpose, we use a multi-model ensemble composed of CORDEX regional climate simulations at 0.11° and 0.44° grid spacing, forced by the ERA-Interim reanalysis, a COSMO convection-parameterizing simulation at 0.11° and a COSMO convection-resolving simulation at 0.02° grid spacing. Surface station observations from this region and satellite QuikSCAT data over the Adriatic Sea have been compared against daily output obtained from the available simulations. Both day-to-day wind and its frequency distribution are examined. The results indicate that the 0.44° RCMs rarely outperform ERA-Interim reanalysis, while the performance of the high-resolution simulations surpasses that of ERA-Interim. We also disclose that refining the grid spacing to a few km is needed to properly capture the small-scale wind systems. Finally, we show that the simulations frequently yield the accurate angle of local wind regimes, such as for the Bora flow, but overestimate the associated wind magnitude. Finally, spectral analysis shows good agreement between measurements and simulations, indicating the correct temporal variability of the wind speed.

  18. Mitochondrial DNA control region variability in wild boars from west Balkans

    Directory of Open Access Journals (Sweden)

    Đan Mihajla

    2013-01-01

    Full Text Available The wild boar (Sus scrofa is one of most abundant game species in hunting areas of Balkan region. The large fraction of pre-glacial genetic diversity in wild boar populations from the Balkans was addressed due to high proportion of unique mtDNA haplotypes found in Greece, indicating Balkan as main refugial area for wild boars. The aim of the present study is to characterize mitochondrial DNA control region variability in wild boars from different areas in the West Balkan region, in order to evaluate level of genetic variability, to detect unique haplotypes and to infer possible structuring. The total number of 163 individuals from different sampling localities were included in the study. A fragment of the mtDNA control region was amplified and sequenced by standard procedures. Population genetic analyses were performed using several computer packages: BioEdit, ARLEQUIN 3.5.1.2., Network 4.6.0.0 and MEGA5. Eleven different haplotypes were identified and haplotype diversity was 0.676, nucleotide diversity 0.0026, and the average number of nucleotide differences (k 1.169. The mismatch distribution and neutrality tests indicated the expansion of the all populations. It is shown that high level of genetic diversity is present in the wild boars from the West Balkan region and we have managed to detect regional unique haplotypes in high frequency. Genetic diversity differences have been found in regional wild boar groups, clustering them in two main clusters, but further speculations on the reasons for the observed clustering are prevented due to restricted informativness of the single locus marker. Obtained knowledge of genetic variation in the wild boar may be relevant for improving knowledge of the phylogeny and phylogeography of the wild boars, but as well as for hunting societies and responsible authorities for the effective control of wild boar populations.

  19. The terroir of vineyards - climatic variability in an Austrian wine-growing region

    Science.gov (United States)

    Gerersdorfer, T.

    2010-09-01

    The description of a terroir is a concept in viticulture that relates the sensory attributes of wine to the environmental conditions in which the grapes grow. Many factors are involved including climate, soil, cultivar, human practices and all these factors interact manifold. The study area of Carnuntum is a small wine-growing region in the eastern part of Austria. It is rich of Roman remains which play a major role in tourism and the marketing strategies of the wines as well. An interdisciplinary study on the environmental characteristics particularly with regard to growing conditions of grapes was started in this region. The study is concerned with the description of the physiogeographic properties of the region and with the investigation of the dominating viticultural functions. Grape-vines depend on climatic conditions to a high extent. Compared to other influencing factors like soil, climate plays a significant role. In the framework of this interdisciplinary project climatic variability within the Carnuntum wine-growing region is investigated. On the one hand microclimatic variations are influenced by soil type and by canopy management. On the other hand the variability is a result of the topoclimate (altitude, aspect and slope) and therefore relief is a major terroir factor. Results of microclimatic measurements and variations are presented with focus on the interpretation of the relationship between relief, structure of the vineyards and the climatic conditions within the course of a full year period.

  20. Characterization of the Deep Water Surface Wave Variability in the California Current Region

    Science.gov (United States)

    Villas Bôas, Ana B.; Gille, Sarah T.; Mazloff, Matthew R.; Cornuelle, Bruce D.

    2017-11-01

    Surface waves are crucial for the dynamics of the upper ocean not only because they mediate exchanges of momentum, heat, energy, and gases between the ocean and the atmosphere, but also because they determine the sea state. The surface wave field in a given region is set by the combination of local and remote forcing. The present work characterizes the seasonal variability of the deep water surface wave field in the California Current region, as retrieved from over two decades of satellite altimetry data combined with wave buoys and wave model hindcast (WaveWatch III). In particular, the extent to which the local wind modulates the variability of the significant wave height, peak period, and peak direction is assessed. During spring/summer, regional-scale wind events of up to 10 m/s are the dominant forcing for waves off the California coast, leading to relatively short-period waves (8-10 s) that come predominantly from the north-northwest. The wave climatology throughout the California Current region shows average significant wave heights exceeding 2 m during most of the year, which may have implications for the planning and retrieval methods of the Surface Water and Ocean Topography (SWOT) satellite mission.

  1. Multi-region and single-cell sequencing reveal variable genomic heterogeneity in rectal cancer.

    Science.gov (United States)

    Liu, Mingshan; Liu, Yang; Di, Jiabo; Su, Zhe; Yang, Hong; Jiang, Beihai; Wang, Zaozao; Zhuang, Meng; Bai, Fan; Su, Xiangqian

    2017-11-23

    Colorectal cancer is a heterogeneous group of malignancies with complex molecular subtypes. While colon cancer has been widely investigated, studies on rectal cancer are very limited. Here, we performed multi-region whole-exome sequencing and single-cell whole-genome sequencing to examine the genomic intratumor heterogeneity (ITH) of rectal tumors. We sequenced nine tumor regions and 88 single cells from two rectal cancer patients with tumors of the same molecular classification and characterized their mutation profiles and somatic copy number alterations (SCNAs) at the multi-region and the single-cell levels. A variable extent of genomic heterogeneity was observed between the two patients, and the degree of ITH increased when analyzed on the single-cell level. We found that major SCNAs were early events in cancer development and inherited steadily. Single-cell sequencing revealed mutations and SCNAs which were hidden in bulk sequencing. In summary, we studied the ITH of rectal cancer at regional and single-cell resolution and demonstrated that variable heterogeneity existed in two patients. The mutational scenarios and SCNA profiles of two patients with treatment naïve from the same molecular subtype are quite different. Our results suggest each tumor possesses its own architecture, which may result in different diagnosis, prognosis, and drug responses. Remarkable ITH exists in the two patients we have studied, providing a preliminary impression of ITH in rectal cancer.

  2. Physical linkage of a human immunoglobulin heavy chain variable region gene segment to diversity and joining region elements

    International Nuclear Information System (INIS)

    Schroeder, H.W. Jr.; Walter, M.A.; Hofker, M.H.; Ebens, A.; Van Dijk, K.W.; Liao, L.C.; Cox, D.W.; Milner, E.C.B.; Perlmutter, R.M.

    1988-01-01

    Antibody genes are assembled from a series of germ-line gene segments that are juxtaposed during the maturation of B lymphocytes. Although diversification of the adult antibody repertoire results in large part from the combinatorial joining of these gene segments, a restricted set of antibody heavy chain variable (V H ), diversity (D H ), and joining (J H ) region gene segments appears preferentially in the human fetal repertoire. The authors report here that one of these early-expressed V H elements (termed V H 6) is the most 3' V H gene segment, positioned 77 kilobases on the 5' side of the J H locus and immediately adjacent to a set of previously described D H sequences. In addition to providing a physical map linking human V H , D H , and J H elements, these results support the view that the programmed development of the antibody V H repertoire is determined in part by the chromosomal position of these gene segments

  3. YSOVAR: MID-INFRARED VARIABILITY AMONG YSOs IN THE STAR FORMATION REGION GGD12-15

    Energy Technology Data Exchange (ETDEWEB)

    Wolk, Scott J.; Günther, H. Moritz; Poppenhaeger, Katja; Forbrich, J. [Harvard–Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Cody, A. M. [NASA Ames Research Center, M/S 244-5 Moffett Field, CA 94035 (United States); Rebull, L. M.; Stauffer, J. R. [Spitzer Science Center/Caltech, 1200 E. California Blvd., Pasadena, CA 91125 (United States); Gutermuth, R. A. [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); Hillenbrand, L. A. [Department of Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Plavchan, P. [Department of Physics Astronomy and Materials Science, Missouri State University, Springfield, MO 65897 (United States); Covey, K. R. [Department of Physics and Astronomy, Western Washington Univ., Bellingham, WA 98225-9164 (United States); Song, Inseok, E-mail: swolk@cfa.harvard.edu [Physics and Astronomy Department, University of Georgia, Athens, GA 30602-2451 (United States)

    2015-11-15

    We present an IR-monitoring survey with the Spitzer Space Telescope of the star-forming region GGD 12-15. More than 1000 objects were monitored, including about 350 objects within the central 5′, which is found to be especially dense in cluster members. The monitoring took place over 38 days and is part of the Young Stellar Object VARiability project. The region was also the subject of a contemporaneous 67 ks Chandra observation. The field includes 119 previously identified pre-main sequence star candidates. X-rays are detected from 164 objects, 90 of which are identified with cluster members. Overall, we find that about half the objects in the central 5′ are young stellar objects (YSOs) based on a combination of their spectral energy distribution, IR variability, and X-ray emission. Most of the stars with IR excess relative to a photosphere show large amplitude (>0.1 mag) mid-infrared (mid-IR) variability. There are 39 periodic sources, and all but one is found to be a cluster member. Almost half of the periodic sources do not show IR excesses. Overall, more than 85% of the Class I, flat spectrum, and Class II sources are found to vary. The amplitude of the variability is larger in more embedded YSOs. Most of the Class I/II objects exhibit redder colors in a fainter state, which is compatible with time-variable extinction. A few become bluer when fainter, which can be explained with significant changes in the structure of the inner disk. A search for changes in the IR due to X-ray events is carried out, but the low number of flares prevented an analysis of the direct impact of X-ray flares on the IR light curves. However, we find that X-ray detected Class II sources have longer timescales for change in the MIR than a similar set of non-X-ray detected Class IIs.

  4. Regional and landscape-scale variability of Landsat-observed vegetation dynamics in northwest Siberian tundra

    International Nuclear Information System (INIS)

    Frost, Gerald V; Epstein, Howard E; Walker, Donald A

    2014-01-01

    Widespread increases in Arctic tundra productivity have been documented for decades using coarse-scale satellite observations, but finer-scale observations indicate that changes have been very uneven, with a high degree of landscape- and regional-scale heterogeneity. Here we analyze time-series of the Normalized Difference Vegetation Index (NDVI) observed by Landsat (1984–2012), to assess landscape- and regional-scale variability of tundra vegetation dynamics in the northwest Siberian Low Arctic, a little-studied region with varied soils, landscape histories, and permafrost attributes. We also estimate spatio-temporal rates of land-cover change associated with expansion of tall alder (Alnus) shrublands, by integrating Landsat time-series with very-high-resolution imagery dating to the mid-1960s. We compiled Landsat time-series for eleven widely-distributed landscapes, and performed linear regression of NDVI values on a per-pixel basis. We found positive net NDVI trends (‘greening’) in nine of eleven landscapes. Net greening occurred in alder shrublands in all landscapes, and strong greening tended to correspond to shrublands that developed since the 1960s. Much of the spatial variability of greening within landscapes was linked to landscape physiography and permafrost attributes, while between-landscape variability largely corresponded to differences in surficial geology. We conclude that continued increases in tundra productivity in the region are likely in upland tundra landscapes with fine-textured, cryoturbated soils; these areas currently tend to support discontinuous vegetation cover, but are highly susceptible to rapid increases in vegetation cover, as well as land-cover changes associated with the development of tall shrublands. (paper)

  5. Intraseasonal variability of organized convective systems in the Central Andes: Relationship to Regional Dynamical Features

    Science.gov (United States)

    Mohr, K. I.; Slayback, D. A.; Nicholls, S.; Yager, K.

    2013-12-01

    The Andes extend from the west coast of Colombia (10N) to the southern tip of Chile (53S). In southern Peru and Bolivia, the Central Andes is split into separate eastern and western cordilleras, with a high plateau (≥ 3000 m), the Altiplano, between them. Because 90% of the Earth's tropical mountain glaciers are located in the Central Andes, our study focuses on this region, defining its zonal extent as 7S-21S and the meridional extent as the terrain 1000 m and greater. Although intense convection occurs during the wet season in the Altiplano, it is not included in the lists of regions with frequent or the most intense convection. The scarcity of in-situ observations with sufficient density and temporal resolution to resolve individual storms or even mesoscale-organized cloud systems and documented biases in microwave-based rainfall products in poorly gauged mountainous regions have impeded the development of an extensive literature on convection and convective systems in this region. With the tropical glaciers receding at unprecedented rates, leaving seasonal precipitation as an increasingly important input to the water balance in alpine valley ecosystems and streams, understanding the nature and characteristics of the seasonal precipitation becomes increasingly important for the rural economies in this region. Previous work in analyzing precipitation in the Central Andes has emphasized interannual variability with respect to ENSO, this is the first study to focus on shorter scale variability with respect to organized convection. The present study took advantage of the University of Utah's Precipitation Features database compiled from 14 years of TRMM observations (1998-2012), supplemented by field observations of rainfall and streamflow, historical gauge data, and long-term WRF-simulations, to analyze the intraseasonal variability of precipitating systems and their relationship regional dynamical features such as the Bolivian High. Through time series and

  6. Changes of extreme precipitation and nonlinear influence of climate variables over monsoon region in China

    KAUST Repository

    Gao, Tao

    2017-07-19

    The El Niño-Southern Oscillation (ENSO), Indian Ocean Dipole (IOD), North Atlantic Oscillation (NAO), Atlantic Multidecadal Oscillation (AMO) and Pacific decadal oscillation (PDO) are well understood to be major drivers for the variability of precipitation extremes over monsoon regions in China (MRC). However, research on monsoon extremes in China and their associations with climate variables is limited. In this study, we examine the space-time variations of extreme precipitation across the MRC, and assess the time-varying influences of the climate drivers using Bayesian dynamic linear regression and their combined nonlinear effects through fitting generalized additive models. Results suggest that the central-east and south China is dominated by less frequent but more intense precipitation. Extreme rainfalls show significant positive trends, coupled with a significant decline of dry spells, indicating an increasing chance of occurrence of flood-induced disasters in the MRC during 1960–2014. Majority of the regional indices display some abrupt shifts during the 1990s. The influences of climate variables on monsoon extremes exhibit distinct interannual or interdecadal variations. IOD, ENSO and AMO have strong impacts on monsoon and extreme precipitation, especially during the 1990s, which is generally consistent with the abrupt shifts in precipitation regimes around this period. Moreover, ENSO mainly affects moderate rainfalls and dry spells, while IOD has a more significant impact on precipitation extremes. These findings could be helpful for improving the forecasting of monsoon extremes in China and the evaluations of climate models.

  7. Use of variability modes to evaluate AR4 climate models over the Euro-Atlantic region

    Energy Technology Data Exchange (ETDEWEB)

    Casado, M.J.; Pastor, M.A. [Agencia Estatal de Meteorologia (AEMET), Madrid (Spain)

    2012-01-15

    This paper analyzes the ability of the multi-model simulations from the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) to simulate the main leading modes of variability over the Euro-Atlantic region in winter: the North-Atlantic Oscillation (NAO), the Scandinavian mode (SCAND), the East/Atlantic Oscillation (EA) and the East Atlantic/Western Russia mode (EA/WR). These modes of variability have been evaluated both spatially, by analyzing the intensity and location of their anomaly centres, as well as temporally, by focusing on the probability density functions and e-folding time scales. The choice of variability modes as a tool for climate model assessment can be justified by the fact that modes of variability determine local climatic conditions and their likely change may have important implications for future climate changes. It is found that all the models considered are able to simulate reasonably well these four variability modes, the SCAND being the mode which is best spatially simulated. From a temporal point of view the NAO and SCAND modes are the best simulated. UKMO-HadGEM1 and CGCM3.1(T63) are the models best at reproducing spatial characteristics, whereas CCSM3 and CGCM3.1(T63) are the best ones with regard to the temporal features. GISS-AOM is the model showing the worst performance, in terms of both spatial and temporal features. These results may bring new insight into the selection and use of specific models to simulate Euro-Atlantic climate, with some models being clearly more successful in simulating patterns of temporal and spatial variability than others. (orig.)

  8. Variability of the extent of the Hadley circulation in the southern hemisphere: a regional perspective

    Science.gov (United States)

    Nguyen, H.; Hendon, H. H.; Lim, E.-P.; Boschat, G.; Maloney, E.; Timbal, B.

    2018-01-01

    In order to understand the regional impacts of variations in the extent of the Hadley circulation in the Southern Hemisphere, regional Hadley circulations are defined in three sectors centered on the main tropical heat sources over Africa, Asia-Pacific (Maritime Continent) and the Americas. These regional circulations are defined by computing a streamfunction from the divergent component of the meridional wind. A major finding from this study is that year-to-year variability in the extent of the hemispheric Hadley circulation in the Southern Hemisphere is primarily governed by variations of the extent of the Hadley circulation in the Asia-Pacific sector, especially during austral spring and summer when there is little co-variability with the African sector, and the American sector exhibits an out of phase behavior. An expanded Hadley circulation in the Southern Hemisphere (both hemispherically and in the Asia-Pacific sector) is associated with La Niña conditions and a poleward expansion of the tropical wet zone in the Asia-Pacific sector. While La Niña also promotes expansion in the American and African sectors during austral winter, these tropical conditions tend to promote contraction in the two sectors during austral summer as a result of compensating convergence over the Americas and Africa sectors: a process driven by variations in the Walker circulation and Rossby wave trains emanating from the tropical Indian Ocean.

  9. Role of climate variability in the heatstroke death rates of Kanto region in Japan

    Science.gov (United States)

    Akihiko, Takaya; Morioka, Yushi; Behera, Swadhin K.

    2014-07-01

    The death toll by heatstroke in Japan, especially in Kanto region, has sharply increased since 1994 together with large interannual variability. The surface air temperature and humidity observed during boreal summers of 1980-2010 were examined to understand the role of climate in the death toll. The extremely hot days, when the daily maximum temperature exceeds 35°C, are more strongly associated with the death toll than the conventional Wet Bulb Globe Temperature index. The extremely hot days tend to be associated with El Niño/Southern Oscillation or the Indian Ocean Dipole, suggesting a potential link with tropical climate variability to the heatstroke related deaths. Also, the influence of these climate modes on the death toll has strengthened since 1994 probably related to global warming. It is possible to develop early warning systems based on seasonal climate predictions since recent climate models show excellent predictability skills for those climate modes.

  10. Climate related diseases. Current regional variability and projections to the year 2100

    Directory of Open Access Journals (Sweden)

    Błażejczyk Krzysztof

    2018-03-01

    Full Text Available The health of individuals and societies depends on different factors including atmospheric conditions which influence humans in direct and indirect ways. The paper presents regional variability of some climate related diseases (CRD in Poland: salmonellosis intoxications, Lyme boreliosis, skin cancers (morbidity and mortality, influenza, overcooling deaths, as well as respiratory and circulatory mortality. The research consisted of two stages: 1 statistical modelling basing on past data and 2 projections of CRD for three SRES scenarios of climate change (A1B, A2, B1 to the year 2100. Several simple and multiply regression models were found for the relationships between climate variables and CRD. The models were applied to project future levels of CRD. At the end of 21st century we must expect increase in: circulatory mortality, Lyme boreliosis infections and skin cancer morbidity and mortality. There is also projected decrease in: respiratory mortality, overcooling deaths and influenza infections.

  11. Using a predictive model to evaluate spatiotemporal variability in streamflow permanence across the Pacific Northwest region

    Science.gov (United States)

    Jaeger, K. L.

    2017-12-01

    The U.S. Geological Survey (USGS) has developed the PRObability Of Streamflow PERmanence (PROSPER) model, a GIS-based empirical model that provides predictions of the annual probability of a stream channel having year-round flow (Streamflow permanence probability; SPP) for any unregulated and minimally-impaired stream channel in the Pacific Northwest (Washington, Oregon, Idaho, western Montana). The model provides annual predictions for 2004-2016 at a 30-m spatial resolution based on monthly or annually updated values of climatic conditions, and static physiographic variables associated with the upstream basin. Prediction locations correspond to the channel network consistent with the National Hydrography Dataset stream grid and are publicly available through the USGS StreamStats platform (https://water.usgs.gov/osw/streamstats/). In snowmelt-driven systems, the most informative predictor variable was mean upstream snow water equivalent on May 1, which highlights the influence of late spring snow cover for supporting streamflow in mountain river networks. In non-snowmelt-driven systems, the most informative variable was mean annual precipitation. Streamflow permanence probabilities varied across the study area by geography and from year-to-year. Notably lower SPP corresponded to the climatically drier subregions of the study area. Higher SPP were concentrated in coastal and higher elevation mountain regions. In addition, SPP appeared to trend with average hydroclimatic conditions, which were also geographically coherent. The year-to-year variability lends support for the growing recognition of the spatiotemporal dynamism of streamflow permanence. An analysis of three focus basins located in contrasting geographical and hydroclimatic settings demonstrates differences in the sensitivity of streamflow permanence to antecedent climate conditions as a function of geography. Consequently, results suggest that PROSPER model can be a useful tool to evaluate regions of the

  12. Regional Community Climate Simulations with variable resolution meshes in the Community Earth System Model

    Science.gov (United States)

    Zarzycki, C. M.; Gettelman, A.; Callaghan, P.

    2017-12-01

    Accurately predicting weather extremes such as precipitation (floods and droughts) and temperature (heat waves) requires high resolution to resolve mesoscale dynamics and topography at horizontal scales of 10-30km. Simulating such resolutions globally for climate scales (years to decades) remains computationally impractical. Simulating only a small region of the planet is more tractable at these scales for climate applications. This work describes global simulations using variable-resolution static meshes with multiple dynamical cores that target the continental United States using developmental versions of the Community Earth System Model version 2 (CESM2). CESM2 is tested in idealized, aquaplanet and full physics configurations to evaluate variable mesh simulations against uniform high and uniform low resolution simulations at resolutions down to 15km. Different physical parameterization suites are also evaluated to gauge their sensitivity to resolution. Idealized variable-resolution mesh cases compare well to high resolution tests. More recent versions of the atmospheric physics, including cloud schemes for CESM2, are more stable with respect to changes in horizontal resolution. Most of the sensitivity is due to sensitivity to timestep and interactions between deep convection and large scale condensation, expected from the closure methods. The resulting full physics model produces a comparable climate to the global low resolution mesh and similar high frequency statistics in the high resolution region. Some biases are reduced (orographic precipitation in the western United States), but biases do not necessarily go away at high resolution (e.g. summertime JJA surface Temp). The simulations are able to reproduce uniform high resolution results, making them an effective tool for regional climate studies and are available in CESM2.

  13. Observations of regional and local variability in the optical properties of maritime clouds

    Energy Technology Data Exchange (ETDEWEB)

    White, A.B. [Univ. of Colorado at Boulder/National Oceanic and Atmospheric Administration, Boulder, CO (United States); Fairall, C.W. [Environmental Technology Lab., Boulder, CO (United States)

    1996-04-01

    White and Fairall (1995) calculated the optical properties of the marine boundary layer (MBL) clouds observed during the Atlantic Stratocumulus Transition Experiment (ASTEX) and compared their results with the results obtained by Fairall et al. for the MBL clouds observed during the First International Satellite Climatology Program (ISSCP) Regional Experiment (FIRE). They found a factor of two difference in the optical depth versus liquid water relationship that applies to the clouds observed in each case. In the present study, we present evidence to support this difference. We also investigate the local variability exhibited in the ASTEX optical properties using measurements of the boundary layer aerosol concentration.

  14. Collaborative Research: Improving Decadal Prediction of Arctic Climate Variability and Change Using a Regional Arctic

    Energy Technology Data Exchange (ETDEWEB)

    Gutowski, William J. [Iowa State Univ., Ames, IA (United States)

    2017-12-28

    This project developed and applied a regional Arctic System model for enhanced decadal predictions. It built on successful research by four of the current PIs with support from the DOE Climate Change Prediction Program, which has resulted in the development of a fully coupled Regional Arctic Climate Model (RACM) consisting of atmosphere, land-hydrology, ocean and sea ice components. An expanded RACM, a Regional Arctic System Model (RASM), has been set up to include ice sheets, ice caps, mountain glaciers, and dynamic vegetation to allow investigation of coupled physical processes responsible for decadal-scale climate change and variability in the Arctic. RASM can have high spatial resolution (~4-20 times higher than currently practical in global models) to advance modeling of critical processes and determine the need for their explicit representation in Global Earth System Models (GESMs). The pan-Arctic region is a key indicator of the state of global climate through polar amplification. However, a system-level understanding of critical arctic processes and feedbacks needs further development. Rapid climate change has occurred in a number of Arctic System components during the past few decades, including retreat of the perennial sea ice cover, increased surface melting of the Greenland ice sheet, acceleration and thinning of outlet glaciers, reduced snow cover, thawing permafrost, and shifts in vegetation. Such changes could have significant ramifications for global sea level, the ocean thermohaline circulation and heat budget, ecosystems, native communities, natural resource exploration, and commercial transportation. The overarching goal of the RASM project has been to advance understanding of past and present states of arctic climate and to improve seasonal to decadal predictions. To do this the project has focused on variability and long-term change of energy and freshwater flows through the arctic climate system. The three foci of this research are: - Changes

  15. Variability in the Water Footprint of Arable Crop Production across European Regions

    Directory of Open Access Journals (Sweden)

    Anne Gobin

    2017-02-01

    Full Text Available Crop growth and yield are affected by water use during the season: the green water footprint (WF accounts for rain water, the blue WF for irrigation and the grey WF for diluting agri-chemicals. We calibrated crop yield for FAO’s water balance model “Aquacrop” at field level. We collected weather, soil and crop inputs for 45 locations for the period 1992–2012. Calibrated model runs were conducted for wheat, barley, grain maize, oilseed rape, potato and sugar beet. The WF of cereals could be up to 20 times larger than the WF of tuber and root crops; the largest share was attributed to the green WF. The green and blue WF compared favourably with global benchmark values (R2 = 0.64–0.80; d = 0.91–0.95. The variability in the WF of arable crops across different regions in Europe is mainly due to variability in crop yield ( c v ¯ = 45% and to a lesser extent to variability in crop water use ( c v ¯ = 21%. The WF variability between countries ( c v ¯ = 14% is lower than the variability between seasons ( c v ¯ = 22% and between crops ( c v ¯ = 46%. Though modelled yields increased up to 50% under sprinkler irrigation, the water footprint still increased between 1% and 25%. Confronted with drainage and runoff, the grey WF tended to overestimate the contribution of nitrogen to the surface and groundwater. The results showed that the water footprint provides a measurable indicator that may support European water governance.

  16. Analysis of the relation between socioeconomic variables and truck trips in the metropolitan region of Rio de Janeiro

    Directory of Open Access Journals (Sweden)

    Beatriz Lagnier Gil Ferreira

    2016-04-01

    Full Text Available The goal of this paper is to analyze the relation between socioeconomic variables and freight trip generation, regarding the Metropolitan Region of Rio de Janeiro, through the use of linear regression models. A systematic literature review is conducted in order to identify which independent variables could be used in the models. The variables found are mostly related to the establishment, such as number of employees, floor area, number of stores among others; and socioeconomic variables, such as population, households and jobs in the region. The relation between the latter and number of truck trips is verified with linear regression models, and the results show that the models are valid and the variables are able to explain the freight flow in the region studied, contributing to  the region’s transport planning and  to the strategic planning  of companies that operate in the region.

  17. Quantifying uncertainty due to internal variability using high-resolution regional climate model simulations

    Science.gov (United States)

    Gutmann, E. D.; Ikeda, K.; Deser, C.; Rasmussen, R.; Clark, M. P.; Arnold, J. R.

    2015-12-01

    The uncertainty in future climate predictions is as large or larger than the mean climate change signal. As such, any predictions of future climate need to incorporate and quantify the sources of this uncertainty. One of the largest sources comes from the internal, chaotic, variability within the climate system itself. This variability has been approximated using the 30 ensemble members of the Community Earth System Model (CESM) large ensemble. Here we examine the wet and dry end members of this ensemble for cool-season precipitation in the Colorado Rocky Mountains with a set of high-resolution regional climate model simulations. We have used the Weather Research and Forecasting model (WRF) to simulate the periods 1990-2000, 2025-2035, and 2070-2080 on a 4km grid. These simulations show that the broad patterns of change depicted in CESM are inherited by the high-resolution simulations; however, the differences in the height and location of the mountains in the WRF simulation, relative to the CESM simulation, means that the location and magnitude of the precipitation changes are very different. We further show that high-resolution simulations with the Intermediate Complexity Atmospheric Research model (ICAR) predict a similar spatial pattern in the change signal as WRF for these ensemble members. We then use ICAR to examine the rest of the CESM Large Ensemble as well as the uncertainty in the regional climate model due to the choice of physics parameterizations.

  18. Late Holocene climate variability in the southwestern Mediterranean region: an integrated marine and terrestrial geochemical approach

    Directory of Open Access Journals (Sweden)

    C. Martín-Puertas

    2010-12-01

    Full Text Available A combination of marine (Alboran Sea cores, ODP 976 and TTR 300 G and terrestrial (Zoñar Lake, Andalucia, Spain geochemical proxies provides a high-resolution reconstruction of climate variability and human influence in the southwestern Mediterranean region for the last 4000 years at inter-centennial resolution. Proxies respond to changes in precipitation rather than temperature alone. Our combined terrestrial and marine archive documents a succession of dry and wet periods coherent with the North Atlantic climate signal. A dry period occurred prior to 2.7 cal ka BP – synchronously to the global aridity crisis of the third-millennium BC – and during the Medieval Climate Anomaly (1.4–0.7 cal ka BP. Wetter conditions prevailed from 2.7 to 1.4 cal ka BP. Hydrological signatures during the Little Ice Age are highly variable but consistent with more humidity than the Medieval Climate Anomaly. Additionally, Pb anomalies in sediments at the end of the Bronze Age suggest anthropogenic pollution earlier than the Roman Empire development in the Iberian Peninsula. The Late Holocene climate evolution of the in the study area confirms the see-saw pattern between the eastern and western Mediterranean regions and the higher influence of the North Atlantic dynamics in the western Mediterranean.

  19. Contributions of internal climate variability to mitigation of projected future regional sea level rise

    Science.gov (United States)

    Hu, A.; Bates, S. C.

    2017-12-01

    Observations indicate that the global mean surface temperature is rising, so does the global mean sea level. Sea level rise (SLR) can impose significant impacts on island and coastal communities, especially when SLR is compounded with storm surges. Here, via analyzing results from two sets of ensemble simulations from the Community Earth System Model version 1, we investigate how the potential SLR benefits through mitigating the future emission scenarios from business as usual to a mild-mitigation over the 21st Century would be affected by internal climate variability. Results show that there is almost no SLR benefit in the near term due to the large SLR variability due to the internal ocean dynamics. However, toward the end of the 21st century, the SLR benefit can be as much as a 26±1% reduction of the global mean SLR due to seawater thermal expansion. Regionally, the benefits from this mitigation for both near and long terms are heterogeneous. They vary from just a 11±5% SLR reduction in Melbourne, Australia to a 35±6% reduction in London. The processes contributing to these regional differences are the coupling of the wind-driven ocean circulation with the decadal scale sea surface temperature mode in the Pacific and Southern Oceans, and the changes of the thermohaline circulation and the mid-latitude air-sea coupling in the Atlantic.

  20. Impacts of Present and Future Climate Variability on Agriculture and Forestry in the Temperate Regions. Europe

    International Nuclear Information System (INIS)

    Maracchi, G.; Sirotenko, O.; Bindi, M.

    2005-01-01

    Agriculture and forestry will be particularly sensitive to changes in mean climate and climate variability in the northern and southern regions of Europe. Agriculture may be positively affected by climate change in the northern areas through the introduction of new crop species and varieties, higher crop production and expansion of suitable areas for crop cultivation. The disadvantages may be determined by an increase in need for plant protection, risk of nutrient leaching and accelerated breakdown of soil organic matter. In the southern areas the benefits of the projected climate change will be limited, while the disadvantages will be predominant. The increased water use efficiency caused by increasing CO2 will compensate for some of the negative effects of increasing water limitation and extreme weather events, but lower harvestable yields, higher yield variability and reduction in suitable areas of traditional crops are expected for these areas. Forestry in the Mediterranean region may be mainly affected by increases in drought and forest fires. In northern Europe, the increased precipitation is expected to be large enough to compensate for the increased evapotranspiration. On the other hand, however, increased precipitation, cloudiness and rain days and the reduced duration of snow cover and soil frost may negatively affect forest work and timber logging determining lower profitability of forest production and a decrease in recreational possibilities. Adaptation management strategies should be introduced, as effective tools, to reduce the negative impacts of climate change on agricultural and forestry sectors

  1. Climate variability and land cover change over the North American monsoon region (Invited)

    Science.gov (United States)

    Zeng, X.; Scheftic, W. D.; Broxton, P. D.

    2013-12-01

    The North American Monsoon System over Mexico and southwestern United States represents a weather/climate and ecosystem coupled "macrosystem". The weather and climate affect the seasonal and interannual variability of ecosystem, while the ecosystem change affects surface energy, water, and carbon fluxes that, in turn, affect weather and climate. Furthermore, long-term weather/climate data have a much coarser horizontal resolution than the satellite land cover data. Here the North American Regional Reanalysis (NARR) data at 32 km grid spacing will be combined with various satellite remote sensing products at 1 km and/or 8 km resolution from AVHRR, MODIS, and SPOT for the period of 1982 to present. Our analysis includes: a) precipitation, wind, and precipitable water data from NARR to characterize the North American monsoon; b) land cover type, normalized difference vegetation index (NDVI), green vegetation fraction, and leaf-area index (LAI) data to characterize the seasonal and interannual variability of ecosystem; c) assessing the consistency of various satellite products; and d) testing the coherence in the weather/climate and ecosystem variability.

  2. Regional regression models of percentile flows for the contiguous United States: Expert versus data-driven independent variable selection

    Directory of Open Access Journals (Sweden)

    Geoffrey Fouad

    2018-06-01

    New hydrological insights for the region: A set of three variables selected based on an expert assessment of factors that influence percentile flows performed similarly to larger sets of variables selected using a data-driven method. Expert assessment variables included mean annual precipitation, potential evapotranspiration, and baseflow index. Larger sets of up to 37 variables contributed little, if any, additional predictive information. Variables used to describe the distribution of basin data (e.g. standard deviation were not useful, and average values were sufficient to characterize physical and climatic basin conditions. Effectiveness of the expert assessment variables may be due to the high degree of multicollinearity (i.e. cross-correlation among additional variables. A tool is provided in the Supplementary material to predict percentile flows based on the three expert assessment variables. Future work should develop new variables with a strong understanding of the processes related to percentile flows.

  3. Interannual variability of mass transport in the Canary region from LADCP data

    Science.gov (United States)

    Comas-Rodríguez, Isis; Hernández-Guerra, Alonso; Vélez-Belchí, Pedro; Fraile-Nuez, Eugenio

    2010-05-01

    The variability of the Canary Current is a widely studied topic regarding its role as eastern boundary of the North Atlantic Subtropical Gyre. The Canary region provides indeed an interesting study area in terms of estimating variability scales of the Subtropical Gyre as well as the water masses dynamics. RAPROCAN (RAdial PROfunda de CANarias - Canary deep hydrographic section) is a project based on the reaching of these goals through the obtaining of hydrographic measures during cruises taking place approximately along 29°N, to the North of the Canary Archipelago, twice a year since 2006. The full depth sampling carried out allows the study of temperature and salinity distribution and the calculation of mass transports across the section. The transport estimates are compared to those obtained from previous measurements and estimates in the region. Therefore, transports and their variability through the last decade are quantified. The most significant advance made to previous works is the use of LADCP (Lowered Acoustic Doppler Current Profiler) data informing the initial geostrophic calculations. Thus, corrections are applied to each geostrophic profile considering the reference velocity obtained from LADCP data. ADCP-referenced transport estimates are obtained, providing a successful comparison between the velocity fields obtained from the hydrographic measures. While this work shows the interannual variability observed in winter since 1997, preliminary results confirm previous hypotheses about the magnitude of the Canary Current. Those results including LADCP data also provide new aspects in the circulation distribution across the Canary Archipelago. Also moored current meter data were taken into account in the up close study of the Current through the Lanzarote Passage. Interesting conclusions were drawn that certify the usefulness of LADCP data in referencing geostrophic calculations, while corroborating the results obtained through this methodology. Hence

  4. Improving plot- and regional-scale crop models for simulating impacts of climate variability and extremes

    Science.gov (United States)

    Tao, F.; Rötter, R.

    2013-12-01

    Many studies on global climate report that climate variability is increasing with more frequent and intense extreme events1. There are quite large uncertainties from both the plot- and regional-scale models in simulating impacts of climate variability and extremes on crop development, growth and productivity2,3. One key to reducing the uncertainties is better exploitation of experimental data to eliminate crop model deficiencies and develop better algorithms that more adequately capture the impacts of extreme events, such as high temperature and drought, on crop performance4,5. In the present study, in a first step, the inter-annual variability in wheat yield and climate from 1971 to 2012 in Finland was investigated. Using statistical approaches the impacts of climate variability and extremes on wheat growth and productivity were quantified. In a second step, a plot-scale model, WOFOST6, and a regional-scale crop model, MCWLA7, were calibrated and validated, and applied to simulate wheat growth and yield variability from 1971-2012. Next, the estimated impacts of high temperature stress, cold damage, and drought stress on crop growth and productivity based on the statistical approaches, and on crop simulation models WOFOST and MCWLA were compared. Then, the impact mechanisms of climate extremes on crop growth and productivity in the WOFOST model and MCWLA model were identified, and subsequently, the various algorithm and impact functions were fitted against the long-term crop trial data. Finally, the impact mechanisms, algorithms and functions in WOFOST model and MCWLA model were improved to better simulate the impacts of climate variability and extremes, particularly high temperature stress, cold damage and drought stress for location-specific and large area climate impact assessments. Our studies provide a good example of how to improve, in parallel, the plot- and regional-scale models for simulating impacts of climate variability and extremes, as needed for

  5. Source, variability, and transformation of nitrate in a regional karst aquifer: Edwards aquifer, central Texas

    Energy Technology Data Exchange (ETDEWEB)

    Musgrove, M., E-mail: mmusgrov@usgs.gov [U.S. Geological Survey, 1505 Ferguson Lane, Austin, TX 78754 (United States); Opsahl, S.P. [U.S. Geological Survey, 5563 DeZavala, Ste. 290, San Antonio, TX 78249 (United States); Mahler, B.J. [U.S. Geological Survey, 1505 Ferguson Lane, Austin, TX 78754 (United States); Herrington, C. [City of Austin Watershed Protection Department, Austin, TX 78704 (United States); Sample, T.L. [U.S. Geological Survey, 19241 David Memorial Dr., Ste. 180, Conroe, TX 77385 (United States); Banta, J.R. [U.S. Geological Survey, 5563 DeZavala, Ste. 290, San Antonio, TX 78249 (United States)

    2016-10-15

    Many karst regions are undergoing rapid population growth and expansion of urban land accompanied by increases in wastewater generation and changing patterns of nitrate (NO{sub 3}{sup −}) loading to surface and groundwater. We investigate variability and sources of NO{sub 3}{sup −} in a regional karst aquifer system, the Edwards aquifer of central Texas. Samples from streams recharging the aquifer, groundwater wells, and springs were collected during 2008–12 from the Barton Springs and San Antonio segments of the Edwards aquifer and analyzed for nitrogen (N) species concentrations and NO{sub 3}{sup −} stable isotopes (δ{sup 15}N and δ{sup 18}O). These data were augmented by historical data collected from 1937 to 2007. NO{sub 3}{sup −} concentrations and discharge data indicate that short-term variability (days to months) in groundwater NO{sub 3}{sup −} concentrations in the Barton Springs segment is controlled by occurrence of individual storms and multi-annual wet-dry cycles, whereas the lack of short-term variability in groundwater in the San Antonio segment indicates the dominance of transport along regional flow paths. In both segments, longer-term increases (years to decades) in NO{sub 3}{sup −} concentrations cannot be attributed to hydrologic conditions; rather, isotopic ratios and land-use change indicate that septic systems and land application of treated wastewater might be the source of increased loading of NO{sub 3}{sup −}. These results highlight the vulnerability of karst aquifers to NO{sub 3}{sup −} contamination from urban wastewater. An analysis of N-species loading in recharge and discharge for the Barton Springs segment during 2008–10 indicates an overall mass balance in total N, but recharge contains higher concentrations of organic N and lower concentrations of NO{sub 3}{sup −} than does discharge, consistent with nitrification of organic N within the aquifer and consumption of dissolved oxygen. This study demonstrates

  6. Source, variability, and transformation of nitrate in a regional karst aquifer: Edwards aquifer, central Texas

    International Nuclear Information System (INIS)

    Musgrove, M.; Opsahl, S.P.; Mahler, B.J.; Herrington, C.; Sample, T.L.; Banta, J.R.

    2016-01-01

    Many karst regions are undergoing rapid population growth and expansion of urban land accompanied by increases in wastewater generation and changing patterns of nitrate (NO 3 − ) loading to surface and groundwater. We investigate variability and sources of NO 3 − in a regional karst aquifer system, the Edwards aquifer of central Texas. Samples from streams recharging the aquifer, groundwater wells, and springs were collected during 2008–12 from the Barton Springs and San Antonio segments of the Edwards aquifer and analyzed for nitrogen (N) species concentrations and NO 3 − stable isotopes (δ 15 N and δ 18 O). These data were augmented by historical data collected from 1937 to 2007. NO 3 − concentrations and discharge data indicate that short-term variability (days to months) in groundwater NO 3 − concentrations in the Barton Springs segment is controlled by occurrence of individual storms and multi-annual wet-dry cycles, whereas the lack of short-term variability in groundwater in the San Antonio segment indicates the dominance of transport along regional flow paths. In both segments, longer-term increases (years to decades) in NO 3 − concentrations cannot be attributed to hydrologic conditions; rather, isotopic ratios and land-use change indicate that septic systems and land application of treated wastewater might be the source of increased loading of NO 3 − . These results highlight the vulnerability of karst aquifers to NO 3 − contamination from urban wastewater. An analysis of N-species loading in recharge and discharge for the Barton Springs segment during 2008–10 indicates an overall mass balance in total N, but recharge contains higher concentrations of organic N and lower concentrations of NO 3 − than does discharge, consistent with nitrification of organic N within the aquifer and consumption of dissolved oxygen. This study demonstrates that subaqueous nitrification of organic N in the aquifer, as opposed to in soils, might be a

  7. The Tokar Gap Jet: Regional Circulation, Diurnal Variability, and Moisture Transport Based on Numerical Simulations

    KAUST Repository

    Davis, Shannon R.

    2015-05-14

    The structure, variability, and regional connectivity of the Tokar Gap jet (TGJ) are described using WRF Model analyses and supporting atmospheric datasets from the East African–Red Sea–Arabian Peninsula (EARSAP) region during summer 2008. Sources of the TGJ’s unique quasi-diurnal nature and association with atypically high atmospheric moisture transport are traced back to larger-scale atmospheric dynamics influencing its forcing. These include seasonal shifts in the intertropical convergence zone (ITCZ), variability of the monsoon and North African wind regimes, and ties to other orographic flow patterns. Strong modulation of the TGJ by regional processes such as the desert heating cycle, wind convergence at the ITCZ surface front, and the local land–sea breeze cycle are described. Two case studies present the interplay of these influences in detail. The first of these was an “extreme” gap wind event on 12 July, in which horizontal velocities in the Tokar Gap exceeded 26 m s−1 and the flow from the jet extended the full width of the Red Sea basin. This event coincided with development of a large mesoscale convective complex (MCC) and precipitation at the entrance of the Tokar Gap as well as smaller gaps downstream along the Arabian Peninsula. More typical behavior of the TGJ during the 2008 summer is discussed using a second case study on 19 July. Downwind impact of the TGJ is evaluated using Lagrangian model trajectories and analysis of the lateral moisture fluxes (LMFs) during jet events. These results suggest means by which TGJ contributes to large LMFs and has potential bearing upon Sahelian rainfall and MCC development.

  8. Sensitivity of Sahelian Precipitation to Desert Dust under ENSO variability: a regional modeling study

    Science.gov (United States)

    Jordan, A.; Zaitchik, B. F.; Gnanadesikan, A.

    2016-12-01

    Mineral dust is estimated to comprise over half the total global aerosol burden, with a majority coming from the Sahara and Sahel region. Bounded by the Sahara Desert to the north and the Sahelian Savannah to the south, the Sahel experiences high interannual rainfall variability and a short rainy season during the boreal summer months. Observation-based data for the past three decades indicates a reduced dust emission trend, together with an increase in greening and surface roughness within the Sahel. Climate models used to study regional precipitation changes due to Saharan dust yield varied results, both in sign convention and magnitude. Inconsistency of model estimates drives future climate projections for the region that are highly varied and uncertain. We use the NASA-Unified Weather Research and Forecasting (NU-WRF) model to quantify the interaction and feedback between desert dust aerosol and Sahelian precipitation. Using nested domains at fine spatial resolution we resolve changes to mesoscale atmospheric circulation patterns due to dust, for representative phases of El Niño-Southern Oscillation (ENSO). The NU-WRF regional earth system model offers both advanced land surface data and resolvable detail of the mechanisms of the impact of Saharan dust. Results are compared to our previous work assessed over the Western Sahel using the Geophysical Fluid Dynamics Laboratory (GFDL) CM2Mc global climate model, and to other previous regional climate model studies. This prompts further research to help explain the dust-precipitation relationship and recent North African dust emission trends. This presentation will offer a quantitative analysis of differences in radiation budget, energy and moisture fluxes, and atmospheric dynamics due to desert dust aerosol over the Sahel.

  9. Aerosol and rainfall variability over the Indian monsoon region: distributions, trends and coupling

    Directory of Open Access Journals (Sweden)

    R. Gautam

    2009-09-01

    Full Text Available Aerosol solar absorption over the Indian monsoon region has a potential role of modulating the monsoon circulation and rainfall distribution as suggested by recent studies based on model simulations. Prior to the onset of the monsoon, northern India is influenced by significant dust transport that constitutes the bulk of the regional aerosol loading over the Gangetic-Himalayan region. In this paper, a multi-sensor characterization of the increasing pre-monsoon aerosol loading over northern India, in terms of their spatial, temporal and vertical distribution is presented. Aerosol transport from the northwestern arid regions into the Indo-Gangetic Plains and over the foothills of the Himalayas is found to be vertically extended to elevated altitudes (up to 5 km as observed from the space-borne lidar measurements (CALIPSO. In relation with the enhanced pre-monsoon aerosol loading and the associated solar absorption effects on tropospheric temperature anomalies, this paper investigates the monsoon rainfall variability over India in recent past decades from an observational viewpoint. It is found that the early summer monsoon rainfall over India is on the rise since 1950s, as indicated by historical rainfall data, with over 20% increase for the period 1950–2004. This large sustained increase in the early summer rainfall is led by the observed strengthening of the pre-monsoon tropospheric land-sea thermal gradient over the Indian monsoon region as indicated by microwave satellite measurements (MSU of tropospheric temperatures from 1979–2007. Combined analysis of changes in tropospheric temperatures and summer monsoon rainfall in the past three decades, suggest a future possibility of an emerging rainfall pattern of a wetter monsoon over South Asia in early summer followed by a drier period.

  10. A Study of Precipitation Climatology and Its Variability over Europe Using an Advanced Regional Model (WRF)

    KAUST Repository

    Dasari, Hari Prasad

    2015-03-06

    In recent years long-term precipitation trends on a regional scale have been given emphasis due to the impacts of global warming on regional hydrology. In this study, regional precipitation trends are simulated over the Europe continent for a 60-year period in 1950-2010 using an advanced regional model, WRF, to study extreme precipitation events over Europe. The model runs continuously for each year during the period at a horizontal resolution of 25 km with initial/ boundary conditions derived from the National Center for Environmental Prediction (NCEP) 2.5 degree reanalysis data sets. The E-OBS 0.25 degree rainfall observation analysis is used for model validation. Results indicate that the model could reproduce the spatial annual rainfall pattern over Europe with low amounts (250 - 750 mm) in Iberian Peninsula, moderate to large amounts (750 - 1500 mm) in central, eastern and northeastern parts of Europe and extremely heavy falls (1500 - 2000 mm) in hilly areas of Alps with a slight overestimation in Alps and underestimation in other parts of Europe. The regional model integrations showed increasing errors (mean absolute errors) and decreasing correlations with increasing time scale (daily to seasonal). Rainfall is simulated relatively better in Iberian Peninsula, northwest and central parts of Europe. A large spatial variability with the highest number of wet days over eastern, central Europe and Alps (~200 days/year) and less number of wet days over Iberian Peninsula (≤150 days/year) is also found in agreement with observations. The model could simulate the spatial rainfall climate variability reasonably well with low rainfall days (1 - 10 mm/days) in almost all zones, heavy rainfall events in western, northern, southeastern hilly and coastal zones and extremely heavy rainfall events in northern coastal zones. An increasing trend of heavy rainfall in central, southern and southeastern parts, a decreasing trend in Iberian Peninsula and a steady trend in other

  11. Spatial and temporal variability of rainfall in the Tocantins-Araguaia hydrographic region

    Directory of Open Access Journals (Sweden)

    Glauber Epifanio Loureiro

    2015-01-01

    Full Text Available Current paper examines the space-time dynamics of yearly rainfall of the Tocantins-Araguaia Hydrographic Region (TAHR, foregrounded on rainfall volume from isohyet maps and interpolated by Kriging geo-statistical method.  Rainfall space dynamics was undertaken by the analysis of descriptive statistics, Index of Meteorological Irregularity (IMI and Variation Coefficient. Temporal dynamics was analyzed through the distribution of total annual volume precipitation for each TAHR sub-basin by the Standardized Anomaly Index, trend and magnitude test provided by Mann-Kendall and Sen Tests. Results correlated with meteorological anomalies of the Atlantic (Dipole and Pacific (ENOS Oceans show a highly heterogeneous rainfall behavior with temporal variability. Or rather, a decrease of rainfall extensiveness during years of intense meteorological anomaly with a rainfall increase south of the High Tocantins and Araguaia sub-basins and a decrease of rainfall in the Lower Tocantins sub-basin, with El Niño features. Although the Mann-Kendall test does not show statistically a significant trend for rainfall in the TAHR region, Sen’s estimator reveals a decrease in rainfall in the High Tocantins (-1.24 km³ year-1 and Araguaia (-1.13 km³ year-1 sub-basins and a rainfall increase in the Lower Tocantins sub-basin (0.53 km³ year-1 and in the TAHR region (-1.5 km³ year-1.

  12. Antarctic climate variability on regional and continental scales over the last 2000 years

    Directory of Open Access Journals (Sweden)

    B. Stenni

    2017-11-01

    Full Text Available Climate trends in the Antarctic region remain poorly characterized, owing to the brevity and scarcity of direct climate observations and the large magnitude of interannual to decadal-scale climate variability. Here, within the framework of the PAGES Antarctica2k working group, we build an enlarged database of ice core water stable isotope records from Antarctica, consisting of 112 records. We produce both unweighted and weighted isotopic (δ18O composites and temperature reconstructions since 0 CE, binned at 5- and 10-year resolution, for seven climatically distinct regions covering the Antarctic continent. Following earlier work of the Antarctica2k working group, we also produce composites and reconstructions for the broader regions of East Antarctica, West Antarctica and the whole continent. We use three methods for our temperature reconstructions: (i a temperature scaling based on the δ18O–temperature relationship output from an ECHAM5-wiso model simulation nudged to ERA-Interim atmospheric reanalyses from 1979 to 2013, and adjusted for the West Antarctic Ice Sheet region to borehole temperature data, (ii a temperature scaling of the isotopic normalized anomalies to the variance of the regional reanalysis temperature and (iii a composite-plus-scaling approach used in a previous continent-scale reconstruction of Antarctic temperature since 1 CE but applied to the new Antarctic ice core database. Our new reconstructions confirm a significant cooling trend from 0 to 1900 CE across all Antarctic regions where records extend back into the 1st millennium, with the exception of the Wilkes Land coast and Weddell Sea coast regions. Within this long-term cooling trend from 0 to 1900 CE, we find that the warmest period occurs between 300 and 1000 CE, and the coldest interval occurs from 1200 to 1900 CE. Since 1900 CE, significant warming trends are identified for the West Antarctic Ice Sheet, the Dronning Maud Land coast and the

  13. Source, variability, and transformation of nitrate in a regional karst aquifer: Edwards aquifer, central Texas.

    Science.gov (United States)

    Musgrove, MaryLynn; Opsahl, Stephen P.; Mahler, Barbara J.; Herrington, Chris; Sample, Thomas; Banta, John

    2016-01-01

    Many karst regions are undergoing rapid population growth and expansion of urban land accompanied by increases in wastewater generation and changing patterns of nitrate (NO3−) loading to surface and groundwater. We investigate variability and sources of NO3− in a regional karst aquifer system, the Edwards aquifer of central Texas. Samples from streams recharging the aquifer, groundwater wells, and springs were collected during 2008–12 from the Barton Springs and San Antonio segments of the Edwards aquifer and analyzed for nitrogen (N) species concentrations and NO3− stable isotopes (δ15N and δ18O). These data were augmented by historical data collected from 1937 to 2007. NO3− concentrations and discharge data indicate that short-term variability (days to months) in groundwater NO3− concentrations in the Barton Springs segment is controlled by occurrence of individual storms and multi-annual wet-dry cycles, whereas the lack of short-term variability in groundwater in the San Antonio segment indicates the dominance of transport along regional flow paths. In both segments, longer-term increases (years to decades) in NO3− concentrations cannot be attributed to hydrologic conditions; rather, isotopic ratios and land-use change indicate that septic systems and land application of treated wastewater might be the source of increased loading of NO3−. These results highlight the vulnerability of karst aquifers to NO3− contamination from urban wastewater. An analysis of N-species loading in recharge and discharge for the Barton Springs segment during 2008–10 indicates an overall mass balance in total N, but recharge contains higher concentrations of organic N and lower concentrations of NO3−than does discharge, consistent with nitrification of organic N within the aquifer and consumption of dissolved oxygen. This study demonstrates that subaqueous nitrification of organic N in the aquifer, as opposed to in soils, might be a previously

  14. Magnetic Field Diagnostics and Spatio-Temporal Variability of the Solar Transition Region

    Science.gov (United States)

    Peter, H.

    2013-12-01

    Magnetic field diagnostics of the transition region from the chromosphere to the corona faces us with the problem that one has to apply extreme-ultraviolet (EUV) spectro-polarimetry. While for the coronal diagnostics techniques already exist in the form of infrared coronagraphy above the limb and radio observations on the disk, one has to investigate EUV observations for the transition region. However, so far the success of such observations has been limited, but various current projects aim to obtain spectro-polarimetric data in the extreme UV in the near future. Therefore it is timely to study the polarimetric signals we can expect from these observations through realistic forward modeling. We employ a 3D magneto-hydrodynamic (MHD) forward model of the solar corona and synthesize the Stokes I and Stokes V profiles of C iv (1548 Å). A signal well above 0.001 in Stokes V can be expected even if one integrates for several minutes to reach the required signal-to-noise ratio, and despite the rapidly changing intensity in the model (just as in observations). This variability of the intensity is often used as an argument against transition region magnetic diagnostics, which requires exposure times of minutes. However, the magnetic field is evolving much slower than the intensity, and therefore the degree of (circular) polarization remains rather constant when one integrates in time. Our study shows that it is possible to measure the transition region magnetic field if a polarimetric accuracy on the order of 0.001 can be reached, which we can expect from planned instrumentation.

  15. Characterizing isotopic variability of primary production and consumers in Great Plains ecosystems during protracted regional drought

    Science.gov (United States)

    Haveles, A. W.; Fox-Dobbs, K.; Talmadge, K. A.; Fetrow, A.; Fox, D. L.

    2012-12-01

    Over the last few years (2010-2012), the Great Plains of the central USA experienced protracted drought conditions, including historically severe drought during Summer, 2011. Drought severity in the region generally decreases with increasing latitude, but episodic drought is a fundamental trait of grassland ecosystems. Documenting above ground energy and nutrient flow with current drought is critical to understanding responses of grassland ecosystems in the region to predicted increased episodicity of rainfall and recurrence of drought due to anthropogenic climate change. Characterization of biogeochemical variability of modern ecosystems at the microhabitat, local landscape, and regional scales is also necessary to interpret biogeochemical records of ancient grasslands based on paleosols and fossil mammals. Here, we characterize three grassland ecosystems that span the drought gradient in the Great Plains (sites in the Texas panhandle, southwest Kansas, and northwest Nebraska). We measured δ13C and δ15N values of plants and consumers to characterize the biogeochemical variability within each ecosystem. Vegetation at each site is a mix of trees, shrubs, herbs, and cool- and warm-growing season grasses (C3 and C4, respectively). Thus, consumers have access to isotopically distinct sources of forage that vary in abundance with microhabitat (e.g., open grassland, shrub thicket, riparian woodland). Observations indicate herbivorous arthropod (grasshoppers and crickets) abundance follows drought severity, with high abundance of many species in Texas, and low abundance of few species in Nebraska. Small mammal (rodents) abundance follows the inverse pattern with 0.8%, 3.2% and 17.2% capture success in Texas, Kansas and Nebraska, respectively. The inverse abundance patterns of consumer groups may result from greater sensitivity of small mammal consumers with high metabolic needs to lower local net primary productivity and forage quality under drought conditions. As a

  16. Change features and regional distribution of temperature trend and variability joint mode in mainland China

    Science.gov (United States)

    Chen, Xi; Li, Ning; Zhang, Zhengtao; Feng, Jieling; Wang, Ye

    2018-05-01

    Adaption for temperature should be suitable to local conditions for regional differences in temperature change features. This paper proposed to utilize nine temperature modes that joint the trend (increasing/decreasing/unchanged) with variability (intensifying/weakening/unchanged) to investigate features of temperature change in mainland China. Monthly temperature data over the period 1960-2013 were obtained from 522 national basic and reference meteorological stations. Here, temperature trend (TT) was reflected by the trend of mean annual temperature (MAT) and the uptrend (downtrend) of inter-monthly sliding standard deviation (SSD) series with a sliding length of 29 years (348 months) was used for representing the intensification (weakening) of temperature variability (TV). The Mann-Kendall method and the least squares method were applied to assess the significance and quantify the magnitude of trend in MAT and SSD time series, respectively. The results show that there is a consistent warming trend throughout the country except for only three stations in which a cooling trend is identified. Moreover, the overall increasing rate in the north of 35° N is the highest, over 0.4 °C/decade for most stations. TV is weakened for almost 98% of the stations, indicating the low instability of temperature at a national scale. Finally, temperature mode (TM), for more than 90% of the stations, is the combination of an increasing TT with a weakened TV (mode 8). So, it is more important for people to adapt to the increasing temperature in these regions. Compared to using annual temperature data to calculate SSD, monthly data can accurately reflect the inter-monthly change of temperature and reserve more initial characteristics of temperature.

  17. Peucedanum ostruthium (L. Koch: Morphological and phytochemical variability of twelve accessions from the Swiss alpine region

    Directory of Open Access Journals (Sweden)

    McCardell, Jessica Heather

    2016-07-01

    Full Text Available Ostruthin, a natural bioactive compound mainly occurring in the roots of Peucedanum ostruthium, is the focus of this study. P. ostruthium was collected from twelve locations in the Swiss alpine region and reared in an experimental field, subdivided into twelve lots over two years. In the spring and fall, a portion of each of the twelve accessions was harvested and separated into above and below ground plant parts. The dried plants were then extracted with 60 % ethanol using accelerated solvent extraction (ASE and analyzed using high pressure liquid chromatography (HPLC.The above and below ground plant parts were then analyzed concerning their dry matter yield (DMY, their ostruthin concentration and their ostruthin yield. Focusing on ostruthin, it was found that the below ground plant parts harvested in the fall rendered the highest ostruthin yield. Furthermore, a variability concerning ostruthin among the twelve accessions was found. This variability among the accessions is of interest with regards to a breeding program used to develop a cultivar with a high ostruthin yield.

  18. Understanding resilience of pastoralists to climate change and variability in the Southern Afar Region, Ethiopia

    Directory of Open Access Journals (Sweden)

    Muluken Mekuyie

    Full Text Available Change in climate and climate extremes are acknowledged as a vital challenge to pastoral production systems. Alternative systems that are accessible to a household in order to make a living could determine the household’s resilience at a given point in time. This study was conducted in the Southern Afar region in Ethiopia to understand the resilience of pastoralists to climate change and variability. A household questionnaire survey and focus group discussions were employed to collect primary data at household level. A total of 250 pastoral households were sampled using stratified random sampling. The data obtained were analysed using descriptive statistics and principal component analysis. The resilience of households to climate shocks and stresses was determined using a two-step modelling approach by clustering households into livelihood groups, gender and districts. The results indicated that agro-pastoral households were more resilient than pastoralists to climate-induced shock. Furthermore, households in the Gewane district were more resilient than those in the Amibara district. Female-headed households were less resilient than male-headed households. Enhancing livestock assets and productivity, social safety nets, access to market, credit, extension services and education, improving irrigation crop farming, and providing farm inputs significantly enhanced the resilience of pastoralists to climate change and variability. Keywords: Asset, Livelihood, Climate shock, Pastoralist, Resilience

  19. Providing a non-deterministic representation of spatial variability of precipitation in the Everest region

    Directory of Open Access Journals (Sweden)

    J. Eeckman

    2017-09-01

    Full Text Available This paper provides a new representation of the effect of altitude on precipitation that represents spatial and temporal variability in precipitation in the Everest region. Exclusive observation data are used to infer a piecewise linear function for the relation between altitude and precipitation and significant seasonal variations are highlighted. An original ensemble approach is applied to provide non-deterministic water budgets for middle and high-mountain catchments. Physical processes at the soil–atmosphere interface are represented through the Interactions Soil–Biosphere–Atmosphere (ISBA surface scheme. Uncertainties associated with the model parametrization are limited by the integration of in situ measurements of soils and vegetation properties. Uncertainties associated with the representation of the orographic effect are shown to account for up to 16 % of annual total precipitation. Annual evapotranspiration is shown to represent 26 % ± 1 % of annual total precipitation for the mid-altitude catchment and 34% ± 3 % for the high-altitude catchment. Snowfall contribution is shown to be neglectable for the mid-altitude catchment, and it represents up to 44 % ± 8 % of total precipitation for the high-altitude catchment. These simulations on the local scale enhance current knowledge of the spatial variability in hydroclimatic processes in high- and mid-altitude mountain environments.

  20. ANALYSIS AND PLANNING OF REGIONAL DEVELOPMENT - CONTEXTUAL VARIABLES TO DEVELOP A MODEL FOR MONITORING FINANCIAL INDICATORS AT REGIONAL LEVEL.

    Directory of Open Access Journals (Sweden)

    CRIS TINA GRADEA

    2013-12-01

    Full Text Available Application of quantitative techniques in regional analysis can provide an understanding of both the change in time of regional economic performance and the interdependencies between economic sectors, including the use of projections to test the potential future development of the region. Qualitative techniques allow also the explanation of the reason for regional development patterns occurring in a region and the improvement of analysts' ability to reflect on the results and economic opportunities for a future based on collective experience, wisdom and judgment of the actors in region economies.

  1. Changes of regional climate variability in central Europe during the past 250 years

    Science.gov (United States)

    Böhm, R.

    2012-05-01

    The paper uses the data potential of very long and homogenized instrumental climate time series in the south central Europe for analyzing one feature which is very dominant in the climate change debate --whether anthropogenic climate warming causes or goes along with an increase of climate extremes. The monthly resolved data of the HISTALP data collection provide 58 single series for the three climate elements, air pressure, air temperature and precipitation, that start earlier than 1831 and extend back to 1760 in some cases. Trends and long-term low frequent climate evolution is only shortly touched in the paper. The main goal is the analysis of trends or changes of high frequent interannual and interseasonal variability. In other words, it is features like extremely hot summers, very cold winters, excessively dry or wet seasons which the study aims at. The methods used are based on detrended highpass series whose variance is analyzed in discrete 30-year windows moving over the entire instrumental period. The analysis of discrete subintervals relies on the unique number of 8 (for precipitation 7) such "normal periods". The second approach is based on the same subintervals though not in fixed but moving windows over the entire instrumental period. The first result of the study is the clear evidence that there has been no increase of variability during the past 250 years in the region. The second finding is similar but concentrates on the recent three decades which are of particular interest because they are the first 30 years with dominating anthropogenic greenhouse gas forcing. We can show that also this recent anthropogenic normal period shows no widening of the PDF (probability density function) compared to the preceding ones. The third finding is based on the moving window technique. It shows that interannual variability changes show a clear centennial oscillating structure for all three climate elements in the region. For the time being we have no explanation

  2. Regional precipitation variability in East Asia related to climate and environmental factors during 1979-2012

    Science.gov (United States)

    Deng, Yinyin; Gao, Tao; Gao, Huiwang; Yao, Xiaohong; Xie, Lian

    2014-01-01

    This paper studies the inter-annual precipitation variations in different regions of East Asia from oceans to interior areas in China during 1979 – 2012. The results computed by Empirical Orthogonal Functions (EOF) demonstrate that the annual precipitation changes are mainly related to the El Niño-Southern Oscillation, East Asian summer monsoon and aerosols. We also found that the increased Sea surface temperature (SST) could explain the precipitation changes over the Northwest Pacific in the dry season (Oct. – May) and the East China Sea and the South China Sea in the rainy season (Jun. – Sep.). The precipitation changes over the ocean unexplained by SST were likely due to the water vapor transport dominated by dynamic factors. With the increased SST, the moisture transported from oceans to interior land was likely redistributed and caused the complicated regional variability of precipitation. Moreover, the impacts of aerosols on cloud and precipitation varied with different pollution levels and different seasons. PMID:25033387

  3. Assessing Regional Scale Variability in Extreme Value Statistics Under Altered Climate Scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Brunsell, Nathaniel [Univ. of Kansas, Lawrence, KS (United States); Mechem, David [Univ. of Kansas, Lawrence, KS (United States); Ma, Chunsheng [Wichita State Univ., KS (United States)

    2015-02-20

    Recent studies have suggested that low-frequency modes of climate variability can significantly influence regional climate. The climatology associated with extreme events has been shown to be particularly sensitive. This has profound implications for droughts, heat waves, and food production. We propose to examine regional climate simulations conducted over the continental United States by applying a recently developed technique which combines wavelet multi–resolution analysis with information theory metrics. This research is motivated by two fundamental questions concerning the spatial and temporal structure of extreme events. These questions are 1) what temporal scales of the extreme value distributions are most sensitive to alteration by low-frequency climate forcings and 2) what is the nature of the spatial structure of variation in these timescales? The primary objective is to assess to what extent information theory metrics can be useful in characterizing the nature of extreme weather phenomena. Specifically, we hypothesize that (1) changes in the nature of extreme events will impact the temporal probability density functions and that information theory metrics will be sensitive these changes and (2) via a wavelet multi–resolution analysis, we will be able to characterize the relative contribution of different timescales on the stochastic nature of extreme events. In order to address these hypotheses, we propose a unique combination of an established regional climate modeling approach and advanced statistical techniques to assess the effects of low-frequency modes on climate extremes over North America. The behavior of climate extremes in RCM simulations for the 20th century will be compared with statistics calculated from the United States Historical Climatology Network (USHCN) and simulations from the North American Regional Climate Change Assessment Program (NARCCAP). This effort will serve to establish the baseline behavior of climate extremes, the

  4. Regional variability of nitrate fluxes in the unsaturated zone and groundwater, Wisconsin, USA

    Science.gov (United States)

    Green, Christopher T.; Liao, Lixia; Nolan, Bernard T.; Juckem, Paul F.; Shope, Christopher L.; Tesoriero, Anthony J.; Jurgens, Bryant

    2018-01-01

    Process-based modeling of regional NO3− fluxes to groundwater is critical for understanding and managing water quality, but the complexity of NO3− reactive transport processes make implementation a challenge. This study introduces a regional vertical flux method (VFM) for efficient estimation of reactive transport of NO3− in the vadose zone and groundwater. The regional VFM was applied to 443 well samples in central-eastern Wisconsin. Chemical measurements included O2, NO3−, N2 from denitrification, and atmospheric tracers of groundwater age including carbon-14, chlorofluorocarbons, tritium, and tritiogenic helium. VFM results were consistent with observed chemistry, and calibrated parameters were in-line with estimates from previous studies. Results indicated that (1) unsaturated zone travel times were a substantial portion of the transit time to wells and streams (2) since 1945 fractions of applied N leached to groundwater have increased for manure-N, possibly due to increased injection of liquid manure, and decreased for fertilizer-N, and (3) under current practices and conditions, approximately 60% of the shallow aquifer will eventually be affected by downward migration of NO3−, with denitrification protecting the remaining 40%. Recharge variability strongly affected the unsaturated zone lag times and the eventual depth of the NO3− front. Principal components regression demonstrated that VFM parameters and predictions were significantly correlated with hydrogeochemical landscape features. The diverse and sometimes conflicting aspects of N management (e.g. limiting N volatilization versus limiting N losses to groundwater) warrant continued development of large-scale holistic strategies to manage water quality and quantity.

  5. Regional Variability of Nitrate Fluxes in the Unsaturated Zone and Groundwater, Wisconsin, USA

    Science.gov (United States)

    Green, Christopher T.; Liao, Lixia; Nolan, Bernard T.; Juckem, Paul F.; Shope, Christopher L.; Tesoriero, Anthony J.; Jurgens, Bryant C.

    2018-01-01

    Process-based modeling of regional NO3- fluxes to groundwater is critical for understanding and managing water quality, but the complexity of NO3- reactive transport processes makes implementation a challenge. This study introduces a regional vertical flux method (VFM) for efficient estimation of reactive transport of NO3- in the vadose zone and groundwater. The regional VFM was applied to 443 well samples in central-eastern Wisconsin. Chemical measurements included O2, NO3-, N2 from denitrification, and atmospheric tracers of groundwater age including carbon-14, chlorofluorocarbons, tritium, and tritiogenic helium. VFM results were consistent with observed chemistry, and calibrated parameters were in-line with estimates from previous studies. Results indicated that (1) unsaturated zone travel times were a substantial portion of the transit time to wells and streams, (2) since 1945 fractions of applied N leached to groundwater have increased for manure-N, possibly due to increased injection of liquid manure, and decreased for fertilizer-N, and (3) under current practices and conditions, approximately 60% of the shallow aquifer will eventually be affected by downward migration of NO3-, with denitrification protecting the remaining 40%. Recharge variability strongly affected the unsaturated zone lag times and the eventual depth of the NO3- front. Principal components regression demonstrated that VFM parameters and predictions were significantly correlated with hydrogeochemical landscape features. The diverse and sometimes conflicting aspects of N management (e.g., limiting N volatilization versus limiting N losses to groundwater) warrant continued development of large-scale holistic strategies to manage water quality and quantity.

  6. Climate and climate variability of the wind power resources in the Great Lakes region of the United States

    Science.gov (United States)

    X. Li; S. Zhong; X. Bian; W.E. Heilman

    2010-01-01

    The climate and climate variability of low-level winds over the Great Lakes region of the United States is examined using 30 year (1979-2008) wind records from the recently released North American Regional Reanalysis (NARR), a three-dimensional, high-spatial and temporal resolution, and dynamically consistent climate data set. The analyses focus on spatial distribution...

  7. Self-organizing map network-based precipitation regionalization for the Tibetan Plateau and regional precipitation variability

    Science.gov (United States)

    Wang, Nini; Yin, Jianchuan

    2017-12-01

    A precipitation-based regionalization for the Tibetan Plateau (TP) was investigated for regional precipitation trend analysis and frequency analysis using data from 1113 grid points covering the period 1900-2014. The results utilizing self-organizing map (SOM) network suggest that four clusters of precipitation coherent zones can be identified, including the southwestern edge, the southern edge, the southeastern region, and the north central region. Regionalization results of the SOM network satisfactorily represent the influences of the atmospheric circulation systems such as the East Asian summer monsoon, the south Asian summer monsoon, and the mid-latitude westerlies. Regionalization results also well display the direct impacts of physical geographical features of the TP such as orography, topography, and land-sea distribution. Regional-scale annual precipitation trend as well as regional differences of annual and seasonal total precipitation were investigated by precipitation index such as precipitation concentration index (PCI) and Standardized Anomaly Index (SAI). Results demonstrate significant negative long-term linear trends in southeastern TP and the north central part of the TP, indicating arid and semi-arid regions in the TP are getting drier. The empirical mode decomposition (EMD) method shows an evolution of the main cycle with 4 and 12 months for all the representative grids of four sub-regions. The cross-wavelet analysis suggests that predominant and effective period of Indian Ocean Dipole (IOD) on monthly precipitation is around ˜12 months, except for the representative grid of the northwestern region.

  8. Coupled ocean-atmosphere surface variability and its climate impacts in the tropical Atlantic region

    Science.gov (United States)

    Fontaine, B.; Janicot, Serge; Roucou, P.

    This study examines time evolution and statistical relationships involving the two leading ocean-atmosphere coupled modes of variability in the tropical Atlantic and some climate anomalies over the tropical 120°W-60°W region using selected historical files (75-y near global SSTs and precipitation over land), more recent observed data (30-y SST and pseudo wind stress in the tropical Atlantic) and reanalyses from the US National Centers for Environmental Prediction (NCEP/NCAR) reanalysis System on the period 1968-1997: surface air temperature, sea level pressure, moist static energy content at 850 hPa, precipitable water and precipitation. The first coupled mode detected through singular value decomposition of the SST and pseudo wind-stress data over the tropical Atlantic (30°N-20°S) expresses a modulation in the thermal transequatorial gradient of SST anomalies conducted by one month leading wind-stress anomalies mainly in the tropical north Atlantic during northern winter and fall. It features a slight dipole structure in the meridional plane. Its time variability is dominated by a quasi-decadal signal well observed in the last 20-30 ys and, when projected over longer-term SST data, in the 1920s and 1930s but with shorter periods. The second coupled mode is more confined to the south-equatorial tropical Atlantic in the northern summer and explains considerably less wind-stress/SST cross-covariance. Its time series features an interannual variability dominated by shorter frequencies with increased variance in the 1960s and 1970s before 1977. Correlations between these modes and the ENSO-like Nino3 index lead to decreasing amplitude of thermal anomalies in the tropical Atlantic during warm episodes in the Pacific. This could explain the nonstationarity of meridional anomaly gradients on seasonal and interannual time scales. Overall the relationships between the oceanic component of the coupled modes and the climate anomaly patterns denote thermodynamical

  9. Interannual variability in the atmospheric CO2 rectification over a boreal forest region

    Science.gov (United States)

    Chen, Baozhang; Chen, Jing M.; Worthy, Douglas E. J.

    2005-08-01

    Ecosystem CO2 exchange with the atmosphere and the planetary boundary layer (PBL) dynamics are correlated diurnally and seasonally. The strength of this kind of covariation is quantified as the rectifier effect, and it affects the vertical gradient of CO2 and thus the global CO2 distribution pattern. An 11-year (1990-1996, 1999-2002), continuous CO2 record from Fraserdale, Ontario (49°52'29.9″N, 81°34'12.3″W), along with a coupled vertical diffusion scheme (VDS) and ecosystem model named Boreal Ecosystem Productivity Simulator (BEPS), are used to investigate the interannual variability of the rectifier effect over a boreal forest region. The coupled model performed well (r2 = 0.70 and 0.87, at 40 m at hourly and daily time steps, respectively) in simulating CO2 vertical diffusion processes. The simulated annual atmospheric rectifier effect varies from 3.99 to 5.52 ppm, while the diurnal rectifying effect accounted for about a quarter of the annual total (22.8˜28.9%).The atmospheric rectification of CO2 is not simply influenced by terrestrial source and sink strengths, but by seasonal and diurnal variations in the land CO2 flux and their interaction with PBL dynamics. Air temperature and moisture are found to be the dominant climatic factors controlling the rectifier effect. The annual rectifier effect is highly correlated with annual mean temperature (r2 = 0.84), while annual mean air relative humidity can explain 51% of the interannual variation in rectification. Seasonal rectifier effect is also found to be more sensitive to climate variability than diurnal rectifier effect.

  10. Adaptation of rainfed agriculture to climatic variability in the Mixteca Alta Region of Oaxaca, Mexico

    Science.gov (United States)

    Rogé, P.; Friedman, A. R.; Astier, M.; Altieri, M.

    2015-12-01

    The traditional management systems of the Mixteca Alta Region of Oaxaca, Mexico offer historical lessons about resilience to climatic variability. We interviewed small farmers to inquire about the dynamics of abandonment and persistence of a traditional management systems. We interpret farmers' narratives from a perspective of general agroecological resilience. In addition, we facilitated workshops in small farmers described their adaptation to past climate challenges and identified 14 indicators that they subsequently used to evaluate the condition of their agroecosystems. The most recent years presented increasingly extreme climatic and socioeconomic hardships: increased temperatures, delayed rainy seasons, reduced capacity of soils to retain soil moisture, changing cultural norms, and reduced rural labor. Farmers reported that their cropping systems were changing for multiple reasons: more drought, later rainfall onset, decreased rural labor, and introduced labor-saving technologies. Examination of climate data found that farmers' climate narratives were largely consistent with the observational record. There have been increases in temperature and rainfall intensity, and an increase in rainfall seasonality that may be perceived as later rainfall onset. Farmers ranked landscape-scale indicators as more marginal than farmer management or soil quality indicators. From this analysis, farmers proposed strategies to improve the ability of their agroecosystems to cope with climatic variability. Notably, they recognized that social organizing and education are required for landscape-level indicators to be improved. Transformative change is required to develop novel cropping systems and complementary activities to agriculture that will allow for farming to be sustained in the face of these challenges. Climate change adaptation by small farmers involves much more than just a set of farming practices, but also community action to tackle collective problems.

  11. Seasonal and Intraseasonal Variability of Mesoscale Convective Systems over the South Asian Monsoon Region

    Energy Technology Data Exchange (ETDEWEB)

    Virts, Katrina S.; Houze, Robert A.

    2016-12-01

    Seasonal and intraseasonal differences in mesoscale convective systems (MCSs) over South Asia are examined using A-Train satellites, a ground-based lightning network, and reanalysis fields. Pre-monsoon (April-May) MCSs occur primarily over Bangladesh and the eastern Bay of Bengal. During the monsoon (June-September), small MCSs occur over the Meghalaya Plateau and northeast Himalayan notch, while large and connected MCSs are most widespread over the Bay of Bengal. Monsoon MCSs produce less lightning and exhibit more extensive stratiform and anvil reflectivity structures in CloudSat observations than do pre-monsoon MCSs. During the monsoon season, Bay of Bengal and Meghalaya Plateau MCSs vary with the 30-60 day northward-propagating intraseasonal oscillation, while northeast Himalayan notch MCSs are associated with weak large-scale anomalies but locally enhanced CAPE. During intraseasonal active periods, a zone of enhanced large and connected MCSs, precipitation, and lightning extends from the northeastern Arabian Sea southeast over India and the Bay of Bengal, flanked by suppressed anomalies. Spatial variability is observed within this enhancement zone: lightning is most enhanced where MCSs are less enhanced, and vice versa. Reanalysis composites indicate that Bay of Bengal MCSs are associated with monsoon depressions, which are frequent during active monsoon periods, while Meghalaya Plateau MCSs are most frequent at the end of break periods, as anomalous southwesterly winds strengthen moist advection toward the terrain. Over both regions, MCSs exhibit more extensive stratiform and anvil regions and less lightning when the large-scale environment is moister, and vice versa.

  12. Singular vector decomposition of the internal variability of the Canadian Regional Climate Model

    Energy Technology Data Exchange (ETDEWEB)

    Diaconescu, Emilia Paula; Laprise, Rene [University of Quebec at Montreal (UQAM), Department of Earth and Atmospheric Sciences, Canadian Network for Regional Climate Modelling and Diagnostics, P.O. Box 8888, Montreal, QC (Canada); Centre ESCER (Etude et Simulation du Climat a l' Echelle Regionale), Montreal, QC (Canada); Zadra, Ayrton [University of Quebec at Montreal (UQAM), Department of Earth and Atmospheric Sciences, Canadian Network for Regional Climate Modelling and Diagnostics, P.O. Box 8888, Montreal, QC (Canada); Environment Canada, Meteorological Research Division, Montreal, QC (Canada); Centre ESCER (Etude et Simulation du Climat a l' Echelle Regionale), Montreal, QC (Canada)

    2012-03-15

    Previous studies have shown that Regional Climate Models (RCM) internal variability (IV) fluctuates in time depending on synoptic events. This study focuses on the physical understanding of episodes with rapid growth of IV. An ensemble of 21 simulations, differing only in their initial conditions, was run over North America using version 5 of the Canadian RCM (CRCM). The IV is quantified in terms of energy of CRCM perturbations with respect to a reference simulation. The working hypothesis is that IV is arising through rapidly growing perturbations developed in dynamically unstable regions. If indeed IV is triggered by the growth of unstable perturbations, a large proportion of the CRCM perturbations must project onto the most unstable singular vectors (SVs). A set of ten SVs was computed to identify the orthogonal set of perturbations that provide the maximum growth with respect to the dry total-energy norm during the course of the CRCM ensemble of simulations. CRCM perturbations were then projected onto the subspace of SVs. The analysis of one episode of rapid growth of IV is presented in detail. It is shown that a large part of the IV growth is explained by initially small-amplitude unstable perturbations represented by the ten leading SVs, the SV subspace accounting for over 70% of the CRCM IV growth in 36 h. The projection on the leading SV at final time is greater than the projection on the remaining SVs and there is a high similarity between the CRCM perturbations and the leading SV after 24-36 h tangent-linear model integration. The vertical structure of perturbations revealed that the baroclinic conversion is the dominant process in IV growth for this particular episode. (orig.)

  13. Phase Variability of the Recent Climate in the North Atlantic Region

    Science.gov (United States)

    Serykh, Ilya; Anisimov, Mikhail; Byshev, Vladimir; Neiman, Victor; Romanov, Juri; Sidorova, Alexandra

    2014-05-01

    The atmospheric pressure and near-surface temperature differences between the Azores High and the Icelandic Low for the period of 1900-2012 within the spatial-temporal average-out (20º latitude, 20º longitude and 12 years) were considered. The secular term of phase states of the system under consideration was found to divide into three non-intersecting subsets. Each of that was put in consequence with one of three climatic scenarios related to the periods of 1905-1935 (relatively warm phase), 1940-1970 (colder phase) and 1980-2000 (warmer phase). A life time of such a scenario lasted about 20-35 years, and the transition from one scenario to another covered 4-6 years, i.e. it run comparatively quickly. The revealed non-overlapping sub-aggregates of the thermodynamic indices related to each particular climate scenario gave an idea to follow the circulation peculiarities and the interrelated temperature differences within the limits of the Northern Atlantic ocean-atmosphere regional system. The results of this analysis bear evidence that the most probable intermittent strengthening and weakening of Hadley and Ferrell circulations occurred there in coincided phase. The analogous character of the climate system behavior was also detected in some other regional atmospheric activity centers that can be considered as a witness on the global nature of the detected phase type of modern climate inter-decadal variability. Hence, we have the grounds to suppose that mentioned above the short-period inter-decadal excitations of the modern climate have a global nature and appears everywhere. Finally, the attention was paid to the fact that at the early XXI century the thermodynamic state of the Northern Atlantic regional climate system has shown a tendency to face towards the situation, similar to the cooler scenario of the 1940-1970. We used the heat content of upper 700m Atlantic Ocean layer data from NODC to calculate its anomalies for the periods of 1955-1970, 1980-2000 and

  14. Primer sets for cloning the human repertoire of T cell Receptor Variable regions

    Directory of Open Access Journals (Sweden)

    Santoro Claudio

    2008-08-01

    Full Text Available Abstract Background Amplification and cloning of naïve T cell Receptor (TR repertoires or antigen-specific TR is crucial to shape immune response and to develop immuno-based therapies. TR variable (V regions are encoded by several genes that recombine during T cell development. The cloning of expressed genes as large diverse libraries from natural sources relies upon the availability of primers able to amplify as many V genes as possible. Results Here, we present a list of primers computationally designed on all functional TR V and J genes listed in the IMGT®, the ImMunoGeneTics information system®. The list consists of unambiguous or degenerate primers suitable to theoretically amplify and clone the entire TR repertoire. We show that it is possible to selectively amplify and clone expressed TR V genes in one single RT-PCR step and from as little as 1000 cells. Conclusion This new primer set will facilitate the creation of more diverse TR libraries than has been possible using currently available primer sets.

  15. Primer sets for cloning the human repertoire of T cell Receptor Variable regions.

    Science.gov (United States)

    Boria, Ilenia; Cotella, Diego; Dianzani, Irma; Santoro, Claudio; Sblattero, Daniele

    2008-08-29

    Amplification and cloning of naïve T cell Receptor (TR) repertoires or antigen-specific TR is crucial to shape immune response and to develop immuno-based therapies. TR variable (V) regions are encoded by several genes that recombine during T cell development. The cloning of expressed genes as large diverse libraries from natural sources relies upon the availability of primers able to amplify as many V genes as possible. Here, we present a list of primers computationally designed on all functional TR V and J genes listed in the IMGT, the ImMunoGeneTics information system. The list consists of unambiguous or degenerate primers suitable to theoretically amplify and clone the entire TR repertoire. We show that it is possible to selectively amplify and clone expressed TR V genes in one single RT-PCR step and from as little as 1000 cells. This new primer set will facilitate the creation of more diverse TR libraries than has been possible using currently available primer sets.

  16. Regional Variability of Cd, Hg, Pb and C Concentrations in Different Horizons of Swedish Forest Soils

    International Nuclear Information System (INIS)

    Alriksson, A.

    2001-01-01

    Contents of cadmium (Cd), mercury (Hg), lead (Pb) and carbon(C) in the O, B and C horizons of podzolized forest soils in Sweden were surveyed. Concentrations and storage of Cd, Hg and Pb in the O and B horizons were high in southern Sweden and gradually decreased towards the north, though with considerable local variability. This pattern reflects the influence of anthropogenic emissions of these metals, as well as the effects of soil-forming processes. Parent till material, as represented by the C horizon concentration of the respective metal, accounted for little of the variation in metal concentration in the O horizon. For Cd and Pb, the correlations were not significant or slightly negative (R 2 = 0.12 and 0.09 respectively) depending on region, while for Hg the correlation was not significant or slightly positive (R 2 = 0.03 and 0.08). Furthermore, parent till material accounted for more of the variation in metal concentrations in the B horizons in the northern part of Sweden than in the middle and southernmost parts, where the concentration of total carbon had more influence. The correlation between the metal concentrations in the B and C horizon was strongest for Pb (R 2 = 0.63 and 0.36 in the two northernmost regions), lower for Cd (R 2 = 0.19 and 0.16) and not significant for Hg. For all soil horizons, total C concentration accounted for much of the variation in Hg concentration in particular (O-horizon R 2 = 0.15-0.69, B horizon R 2 = 0.36-0.50, C horizon R 2 = 0.23-0.50 and ns in one region). Ratios of metal concentrations between the B and C horizons were highest for Hg(maximum value of 30), indicating a relatively larger addition or retention of Hg compared to Cd and Pb (maximum value of 10)in the B horizon. This study indicate that factors other than parent material account for the large scale variation in O horizon concentrations of metals but patterns correspond well with those of atmospheric deposition of heavy metals and acidifying substances

  17. Modulation of extremes in the Atlantic region by modes of climate variability/change: A mechanistic coupled regional model study

    Energy Technology Data Exchange (ETDEWEB)

    Saravanan, Ramalingam [Texas A & M Univ., College Station, TX (United States)

    2015-01-09

    During the course of this project, we have accomplished the following: 1) Explored the parameter space of component models to minimize regional model bias 2) Assessed the impact of air-sea interaction on hurricanes, focusing in particular on the role of the oceanic barrier layer 3) Contributed to the activities of the U.S. CLIVAR Hurricane Working Group 4) Assessed the impact of lateral and lower boundary conditions on extreme flooding events in the U.S. Midwest in regional model simulations 5) Analyzed the concurrent impact of El Niño-Southern Oscillation and Atlantic Meridional Mode on Atlantic Hurricane activity using observations and regional model simulations

  18. Variability of Mediterranean aerosols properties at three regional background sites in the western Mediterranean Basin

    Science.gov (United States)

    Sicard, Michaël.; Totems, Julien; Barragan, Rubén.; Dulac, François; Mallet, Marc; Comerón, Adolfo; Alados-Arboledas, Lucas; Augustin, Patrick; Chazette, Patrick; Léon, Jean-François; Olmo-Reyes, Francisco José; Renard, Jean-Baptiste; Rocadenbosch, Francesc

    2014-10-01

    In the framework of the project ChArMEx (the Chemistry-Aerosol Mediterranean Experiment, http://charmex.lsce.ipsl.fr/), the variability of aerosol optical, microphysical and radiative properties is examined in three regional background sites on a southwest - northeast (SW-NE) straight line in the middle of the western Mediterranean Basin (WMB). The three sites are on the northward transport pathway of African dust: - Ersa, Corsica Island, France (43.00ºN, 9.36ºW, 80 m a.s.l), - Palma de Mallorca, Mallorca Island, Spain (39.55ºN, 2.62ºE, 10 m a.s.l) and - Alborán, Alboran Island, Spain (35.94ºN, 3.04ºW, 15 m a.s.l). AERONET (AErosol RObotic NETwork) sun-photometer products are mainly used. A preliminary analysis shows that at Ersa and Palma sites the annual aerosol optical depth (AOD) has a similar trend with a peak around 0.2 in July. The winter/spring AOD is lower in Palma than in Ersa, while it is reverse in summer/autumn. The aerosol particle size distribution (and the coarse mode fraction) shows clearly the SW-NE gradient with a decreasing coarse mode peak (and a decreasing coarse mode fraction from 0.5 - 0.35 - 0.2 in July) along the axis Alborán - Palma de Mallorca - Ersa. In addition to the seasonal and annual variability analysis, the analysis of AERONET products is completed with a large variety of ground-based and sounding balloons remote sensing and in situ instruments during the Special Observation Period (SOP) of the ADRIMED campaign in June 2013. The second part of the presentation will focus on the comparison of the observations at Palma de Mallorca and Ersa of the same long-range transported airmasses. The observations include lidar vertical profiles, balloon borne OPC (Optical Particle Counter) and MSG/SEVIRI AOD, among others.

  19. Variability and change of sea level and its components in the Indo-Pacific region during the altimetry era

    Science.gov (United States)

    Wu, Quran; Zhang, Xuebin; Church, John A.; Hu, Jianyu

    2017-03-01

    Previous studies have shown that regional sea level exhibits interannual and decadal variations associated with the modes of climate variability. A better understanding of those low-frequency sea level variations benefits the detection and attribution of climate change signals. Nonetheless, the contributions of thermosteric, halosteric, and mass sea level components to sea level variability and trend patterns remain unclear. By focusing on signals associated with dominant climate modes in the Indo-Pacific region, we estimate the interannual and decadal fingerprints and trend of each sea level component utilizing a multivariate linear regression of two adjoint-based ocean reanalyses. Sea level interannual, decadal, and trend patterns primarily come from thermosteric sea level (TSSL). Halosteric sea level (HSSL) is of regional importance in the Pacific Ocean on decadal time scale and dominates sea level trends in the northeast subtropical Pacific. The compensation between TSSL and HSSL is identified in their decadal variability and trends. The interannual and decadal variability of temperature generally peak at subsurface around 100 m but that of salinity tend to be surface-intensified. Decadal temperature and salinity signals extend deeper into the ocean in some regions than their interannual equivalents. Mass sea level (MassSL) is critical for the interannual and decadal variability of sea level over shelf seas. Inconsistencies exist in MassSL trend patterns among various estimates. This study highlights regions where multiple processes work together to control sea level variability and change. Further work is required to better understand the interaction of different processes in those regions.

  20. Modeling the South American regional smoke plume: aerosol optical depth variability and surface shortwave flux perturbation

    Directory of Open Access Journals (Sweden)

    N. E. Rosário

    2013-03-01

    Full Text Available Intra-seasonal variability of smoke aerosol optical depth (AOD and downwelling solar irradiance at the surface during the 2002 biomass burning season in South America was modeled using the Coupled Chemistry-Aerosol-Tracers Transport model with the Brazilian developments on the Regional Atmospheric Modeling System (CCATT-BRAMS. Measurements of total and fine mode fraction (FMF AOD from the AErosol RObotic NETwork (AERONET and solar irradiance at the surface from the Solar Radiation Network (SolRad-NET were used to evaluate model results. In general, the major features associated with AOD evolution over the southern part of the Amazon basin and cerrado ecosystem are captured by the model. The main discrepancies were found for high aerosol loading events. In the northeastern portion of the Amazon basin the model systematically underestimated total AOD, as expected, since smoke contribution is not dominant as it is in the southern portion and emissions other than smoke were not considered in the simulation. Better agreement was obtained comparing the model results with observed FMF AOD, which pointed out the relevance of coarse mode aerosol emission in that region. Likewise, major discrepancies over cerrado during high AOD events were found to be associated with coarse mode aerosol omission in our model. The issue of high aerosol loading events in the southern part of the Amazon was related to difficulties in predicting the smoke AOD field, which was discussed in the context of emissions shortcomings. The Cuiabá cerrado site was the only one where the highest quality AERONET data were unavailable for both total and FMF AOD. Thus, lower quality data were used. Root-mean-square error (RMSE between the model and observed FMF AOD decreased from 0.34 to 0.19 when extreme AOD events (FMF AOD550 nm ≥ 1.0 and Cuiabá were excluded from the analysis. Downward surface solar irradiance comparisons also followed similar trends when extreme AOD were excluded

  1. Evaluating climate variables, indexes and thresholds governing Arctic urban sustainability: case study of Russian permafrost regions

    Science.gov (United States)

    Anisimov, O. A.; Kokorev, V.

    2013-12-01

    Addressing Arctic urban sustainability today forces planners to deal with the complex interplay of multiple factors, including governance and economic development, demography and migration, environmental changes and land use, changes in the ecosystems and their services, and climate change. While the latter can be seen as a factor that exacerbates the existing vulnerabilities to other stressors, changes in temperature, precipitation, snow, river and lake ice, and the hydrological regime also have direct implications for the cities in the North. Climate change leads to reduced demand for heating energy, on one hand, and heightened concerns about the fate of the infrastructure built upon thawing permafrost, on the other. Changes in snowfall are particularly important and have direct implications for the urban economy, as together with heating costs, expenses for snow removal from streets, airport runways, roofs and ventilation corridors underneath buildings erected on pile foundations on permafrost constitute the bulk of the city's maintenance budget. Many cities are located in river valleys and are prone to flooding that leads to enormous economic losses and casualties, including human deaths. The severity of the northern climate has direct implications for demographic changes governed by regional migration and labor flows. Climate could thus be viewed as an inexhaustible public resource that creates opportunities for sustainable urban development. Long-term trends show that climate as a resource is becoming more readily available in the Russian North, notwithstanding the general perception that globally climate change is one of the challenges facing humanity in the 21st century. In this study we explore the sustainability of the Arctic urban environment under changing climatic conditions. We identify key governing variables and indexes and study the thresholds beyond which changes in the governing climatic parameters have significant impact on the economy

  2. Decadal Trends and Variability of Tropospheric Ozone over Oil and Gas Regions over 2005 - 2015

    Science.gov (United States)

    Zhou, Y.; Mao, H.; Sive, B. C.

    2017-12-01

    Tropospheric ozone (O3), which is produced largely by photochemical oxidation of nitrogen oxides (NOx) and volatile organic compounds, is a serious and ubiquitous air pollutant with strong negative health effects. Recent technological innovations such as horizontal drilling and hydraulic fracturing have accelerated oil and natural gas production in the U.S. since 2005. The additional input of O3 precursors from expanding natural gas production might prolong the effort to comply the current O3 standard (70 ppbv). The objective of this study is to investigate the impact of oil and gas extractions on variability and long term trends of O3 in the intermountain west under varying meteorological conditions. We investigated long-term O3 trends at 13 rural sites, which were within 100 km of the shale play in the U.S. intermountain west. Significant decreasing trends (-0.35 - -3.38 ppbv yr-1) were found in seasonal O3 design values at six sites in spring, summer, or fall, while no trends were found in wintertime O3 at any sites. Wintertime O3 at each site showed strong and consistent interannual variation over 2006 - 2015, and was negatively correlated with the Arctic Oscillation (AO) Index. The negative correlation was a result of multiple factors, such as in situ O3 photochemical production, stratospheric intrusion, and transport from the Arctic and California. In summer, wildfire emissions were the dominate driver to the interannual variations of high percentiles O3 at each site, while meteorological conditions (i.e., temperature and relative humidity) determined the interannual variations of low percentiles O3. Box model simulations indicated that O3 production rates were 31.51 ppbv h-1 over winters of 2012 - 2014 and 32.12 ppbv h-1 in summer 2014 around shale gas extraction regions.

  3. Human heavy-chain variable region gene family nonrandomly rearranged in familial chronic lymphocytic leukemia

    International Nuclear Information System (INIS)

    Shen, A.; Humphries, C.; Tucker, P.; Blattner, F.

    1987-01-01

    The authors have identified a family of human immunoglobulin heavy-chain variable-region (V/sub H/) genes, one member of which is rearranged in two affected members of a family in which the father and four of five siblings developed chronic lymphocytic leukemia. Cloning and sequencing of the rearranged V/sub H/ genes from leukemic lymphocytes of three affected siblings showed that two siblings had rearranged V/sub H/ genes (V/sub H/TS1 and V/sub H/WS1) that were 90% homologous. The corresponding germ-line gene, V/sub H/251, was found to part of a small (four gene) V/sub H/ gene family, which they term V/sub H/V. The DNA sequence homology to V/sub H/WS1 (95%) and V/sub H/TS1 (88%) and identical restriction sites on the 5' side of V/sub H/ confirm that rearrangement of V/sub H/251 followed by somatic mutation produced the identical V/sub H/ gene rearrangements in the two siblings. V/sub H/TS1 is not a functional V/sub H/ gene; a functional V/sub H/ rearrangement was found on the other chromosome of this patient. The other two siblings had different V/sub H/ gene rearrangements. All used different diversity genes. Mechanisms proposed for nonrandom selection of a single V/sub H/ gene include developmental regulation of this V/sub H/ gene rearrangement or selection of a subpopulation of B cells in which this V/sub H/ has been rearranged

  4. Transforming p21 ras protein: flexibility in the major variable region linking the catalytic and membrane-anchoring domains

    DEFF Research Database (Denmark)

    Willumsen, B M; Papageorge, A G; Hubbert, N

    1985-01-01

    or increasing it to 50 amino acids has relatively little effect on the capacity of the gene to induce morphological transformation of NIH 3T3 cells. Assays of GTP binding, GTPase and autophosphorylating activities of such mutant v-rasH-encoded proteins synthesized in bacteria indicated that the sequences...... that is required for post-translational processing, membrane localization and transforming activity of the proteins. We have now used the viral oncogene (v-rasH) of Harvey sarcoma virus to study the major variable region by deleting or duplicating parts of the gene. Reducing this region to five amino acids...... that encode these biochemical activities are located upstream from the major variable region. In the context of transformation, we propose that the region of sequence heterogeneity serves principally to connect the N-terminal catalytic domain with amino acids at the C terminus that are required to anchor...

  5. Searching for I-band variability in stars in the M/L spectral transition region

    Science.gov (United States)

    Ramsay, Gavin; Hakala, Pasi; Doyle, J. Gerry

    2015-10-01

    We report on I-band photometric observations of 21 stars with spectral types between M8 and L4 made using the Isaac Newton Telescope. The total amount of time for observations which had a cadence of test for photometric variability using the Kruskal-Wallis H-test and find that four sources (2MASS J10224821+5825453, 2MASS J07464256+2000321, 2MASS J16262034+3925190 and 2MASS J12464678+4027150) were found to be significantly variable at least on one epoch. Three of these sources are reported as photometrically variable for the first time. If we include sources which were deemed marginally variable, the number of variable sources is 6 (29 per cent). No flares were detected from any source. The percentage of sources which we found were variable is similar to previous studies. We summarize the mechanisms which have been put forward to explain the light curves of brown dwarfs.

  6. Hydroclimatic variability in the Lake Mondsee region and its relationships with large-scale climate anomaly patterns

    Science.gov (United States)

    Rimbu, Norel; Ionita, Monica; Swierczynski, Tina; Brauer, Achim; Kämpf, Lucas; Czymzik, Markus

    2017-04-01

    Flood triggered detrital layers in varved sediments of Lake Mondsee, located at the northern fringe of the European Alps (47°48'N,13°23'E), provide an important archive of regional hydroclimatic variability during the mid- to late Holocene. To improve the interpretation of the flood layer record in terms of large-scale climate variability, we investigate the relationships between observational hydrological records from the region, like the Mondsee lake level, the runoff of the lake's main inflow Griesler Ache, with observed precipitation and global climate patterns. The lake level shows a strong positive linear trend during the observational period in all seasons. Additionally, lake level presents important interannual to multidecadal variations. These variations are associated with distinct seasonal atmospheric circulation patterns. A pronounced anomalous anticyclonic center over the Iberian Peninsula is associated with high lake levels values during winter. This center moves southwestward during spring, summer and autumn. In the same time, a cyclonic anomaly center is recorded over central and western Europe. This anomalous circulation extends southwestward from winter to autumn. Similar atmospheric circulation patterns are associated with river runoff and precipitation variability from the region. High lake levels are associated with positive local precipitation anomalies in all seasons as well as with negative local temperature anomalies during spring, summer and autumn. A correlation analysis reveals that lake level, runoff and precipitation variability is related to large-scale sea surface temperature anomaly patterns in all seasons suggesting a possible impact of large-scale climatic modes, like the North Atlantic Oscillation and Atlantic Multidecadal Oscillation on hydroclimatic variability in the Lake Mondsee region. The results presented in this study can be used for a more robust interpretation of the long flood layer record from Lake Mondsee sediments

  7. Continental and Marine Environmental changes in Europe induced by Global Climate variability and Regional Palaeography Changes

    International Nuclear Information System (INIS)

    Popescu, S.M.

    2008-12-01

    dinoflagellate cyst records from DSDP Site 380 (7 - 4 Ma) were completed from 4 Ma to Present in order to evidence the impact of glacial-interglacial cycles over the regional vegetation and to reconstruct the climate variability for the last 7 Ma; d. I was the first to demonstrate the solar cycles forcing (Hale and Gleissberg cycles) on the regional vegetation (through the 'Thermophilus trees / Artemisia' ratio) since the Last Glacial Maximum were evidenced in cored sediments from the Black and Marmara seas (unpublished data), that is a unique outcome. Using the bio-metric approach on the dinoflagellate cysts in association with statistical analyses, I demonstrated that fluctuations in salinity are partially responsible for modifying size, shape and ornamentation of the cysts, providing the first reliable paleo-ecological and paleo-bio-geographic reconstructions of the brackish Paratethyan basins (Popescu et al., palynology, in press). Simultaneously, I performed experimental cultures on a living-dinoflagellate species (Scrippsiella trifida): suggested relationships between cyst morphological variations and stress under controlled salinity are confirmed by the preliminary results, while reproduction rate seems also modified (unpublished data). Hence, my palynological and biological expertise offers an exclusive tool for establishing a continuous high resolution chronology, paleo-climatic, paleo-bio-geographic and paleo-environmental reconstructions. This is particularly important for the basins impacted by important environmental changes, such as the Mediterranean and Black seas, the sediments of the latter being precisely dated for the first time by this approach. (author)

  8. Identification and verification of hybridoma-derived monoclonal antibody variable region sequences using recombinant DNA technology and mass spectrometry

    Science.gov (United States)

    Antibody engineering requires the identification of antigen binding domains or variable regions (VR) unique to each antibody. It is the VR that define the unique antigen binding properties and proper sequence identification is essential for functional evaluation and performance of recombinant antibo...

  9. Characterization of Campylobacter jejuni applying flaA short variable region sequencing, multilocus sequencing and Fourier transform infrared spectroscopy

    DEFF Research Database (Denmark)

    Josefsen, Mathilde Hartmann; Bonnichsen, Lise; Larsson, Jonas

    flaA short variable region sequencing and phenetic Fourier transform infrared (FTIR) spectroscopy was applied on a collection of 102 Campylobacter jejuni isolated from continuous sampling of organic, free range geese and chickens. FTIR has been shown to serve as a valuable tool in typing...

  10. Relationship between Eurasian large-scale patterns and regional climate variability over the Black and Baltic Seas

    Energy Technology Data Exchange (ETDEWEB)

    Stankunavicius, G.; Pupienis, D. [Vilnius Univ. (Lithuania). Dept. of Hydrology and Climatology; Basharin, D. [National Academy of Science of Ukraine, Sevastopol (Ukraine). Sevastopol Marine Hydrophysical Inst.

    2012-11-01

    Using a NCEP/NCAR Reanalysis dataset and the empirical orthogonal function (EOF) analysis approach we studied interannual to decadal variabilities of the sea-level air pressure (SLP) and the surface air temperature (SAT) fields over Eurasia during the 2nd part of the 20th century. Our results agree with those of the previous studies, which conclude that Eurasian trends are the result of storm-path changes driven by the interdecadal behaviour of the NAO-like meridional dipole pattern in the Atlantic. On interannual and decadal time scales, significant synchronous correlations between correspondent modes of SAT and SLP EOF patterns were found. This fact suggests that there is a strong and stable Eurasian interrelationship between SAT and SLP large-scale fields which affects the local climate of two sub-regions: the Black and Baltic Seas. The climate variability in these sub-regions was studied in terms of Eurasian large-scale surface-temperature and air-pressure patterns responses. We concluded that the sub-regional climate variability substantially differs over the Black and Baltic Seas, and depends on different Eurasian large-scale patterns. We showed that the Baltic Sea region is influenced by the patterns arising primary from NAO-like meridional dipole, as well as Scandinavian patterns, while the Black Sea's SAT/SLP variability is influenced mainly by the second mode EOF (eastern Atlantic) and large scale tropospheric wave structures. (orig.)

  11. Collaborative Proposal: Improving Decadal Prediction of Arctic Climate Variability and Change Using a Regional Arctic System Model (RASM)

    Energy Technology Data Exchange (ETDEWEB)

    Maslowski, Wieslaw [Naval Postgraduate School, Monterey, CA (United States). Dept. of Oceanography; Cassano, John J. [Univ. of Colorado, Boulder, CO (United States); Gutowski, Jr., William J. [Iowa State Univ., Ames, IA (United States); Lipscomb, William H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Nijssen, Bart [Univ. of Washington, Seattle, WA (United States); Roberts, Andrew [Naval Postgraduate School, Monterey, CA (United States). Dept. of Oceanography; Robertson, William [Univ. of Texas, El Paso, TX (United States); Tulaczyk, Slawek [Univ. of California, Santa Cruz, CA (United States); Zeng, Xubin [Univ. of Arizona, Tucson, AZ (United States)

    2011-05-15

    The primary outcome of the project was the development of the Regional Arctic System Model (RASM) and evaluation of its individual model components, coupling among them and fully coupled model results. Overall, we have demonstrated that RASM produces realistic mean and seasonal surface climate as well as its interannual and decadal variability and trends.

  12. Local-scale models reveal ecological niche variability in amphibian and reptile communities from two contrasting biogeographic regions

    Directory of Open Access Journals (Sweden)

    Alberto Muñoz

    2016-10-01

    Full Text Available Ecological Niche Models (ENMs are widely used to describe how environmental factors influence species distribution. Modelling at a local scale, compared to a large scale within a high environmental gradient, can improve our understanding of ecological species niches. The main goal of this study is to assess and compare the contribution of environmental variables to amphibian and reptile ENMs in two Spanish national parks located in contrasting biogeographic regions, i.e., the Mediterranean and the Atlantic area. The ENMs were built with maximum entropy modelling using 11 environmental variables in each territory. The contributions of these variables to the models were analysed and classified using various statistical procedures (Mann–Whitney U tests, Principal Components Analysis and General Linear Models. Distance to the hydrological network was consistently the most relevant variable for both parks and taxonomic classes. Topographic variables (i.e., slope and altitude were the second most predictive variables, followed by climatic variables. Differences in variable contribution were observed between parks and taxonomic classes. Variables related to water availability had the larger contribution to the models in the Mediterranean park, while topography variables were decisive in the Atlantic park. Specific response curves to environmental variables were in accordance with the biogeographic affinity of species (Mediterranean and non-Mediterranean species and taxonomy (amphibians and reptiles. Interestingly, these results were observed for species located in both parks, particularly those situated at their range limits. Our findings show that ecological niche models built at local scale reveal differences in habitat preferences within a wide environmental gradient. Therefore, modelling at local scales rather than assuming large-scale models could be preferable for the establishment of conservation strategies for herptile species in natural

  13. Local-scale models reveal ecological niche variability in amphibian and reptile communities from two contrasting biogeographic regions

    Science.gov (United States)

    Santos, Xavier; Felicísimo, Ángel M.

    2016-01-01

    Ecological Niche Models (ENMs) are widely used to describe how environmental factors influence species distribution. Modelling at a local scale, compared to a large scale within a high environmental gradient, can improve our understanding of ecological species niches. The main goal of this study is to assess and compare the contribution of environmental variables to amphibian and reptile ENMs in two Spanish national parks located in contrasting biogeographic regions, i.e., the Mediterranean and the Atlantic area. The ENMs were built with maximum entropy modelling using 11 environmental variables in each territory. The contributions of these variables to the models were analysed and classified using various statistical procedures (Mann–Whitney U tests, Principal Components Analysis and General Linear Models). Distance to the hydrological network was consistently the most relevant variable for both parks and taxonomic classes. Topographic variables (i.e., slope and altitude) were the second most predictive variables, followed by climatic variables. Differences in variable contribution were observed between parks and taxonomic classes. Variables related to water availability had the larger contribution to the models in the Mediterranean park, while topography variables were decisive in the Atlantic park. Specific response curves to environmental variables were in accordance with the biogeographic affinity of species (Mediterranean and non-Mediterranean species) and taxonomy (amphibians and reptiles). Interestingly, these results were observed for species located in both parks, particularly those situated at their range limits. Our findings show that ecological niche models built at local scale reveal differences in habitat preferences within a wide environmental gradient. Therefore, modelling at local scales rather than assuming large-scale models could be preferable for the establishment of conservation strategies for herptile species in natural parks. PMID

  14. Understanding Short-Term Nonmigrating Tidal Variability in the Ionospheric Dynamo Region from SABER Using Information Theory and Bayesian Statistics

    Science.gov (United States)

    Kumari, K.; Oberheide, J.

    2017-12-01

    Nonmigrating tidal diagnostics of SABER temperature observations in the ionospheric dynamo region reveal a large amount of variability on time-scales of a few days to weeks. In this paper, we discuss the physical reasons for the observed short-term tidal variability using a novel approach based on Information theory and Bayesian statistics. We diagnose short-term tidal variability as a function of season, QBO, ENSO, and solar cycle and other drivers using time dependent probability density functions, Shannon entropy and Kullback-Leibler divergence. The statistical significance of the approach and its predictive capability is exemplified using SABER tidal diagnostics with emphasis on the responses to the QBO and solar cycle. Implications for F-region plasma density will be discussed.

  15. Spatiotemporal Variability of Humidity Across the Contiguous United States and Southern Canada Using Regional Networks

    Science.gov (United States)

    Behnke, Ruben John

    The objective of this dissertation was to show that there is now enough observed humidity data available so that estimates of humidity, along with their necessary assumptions, can be replaced by measured humidity data. The range of applications that depend on humidity data is huge, ranging from water use efficiency of plants and plant stress to human health and agricultural practices. Biases due to the use of estimated humidity can be expected to have short and long impacts, decreasing the accuracy and precision of these, and many other, applications. Data from local, regional, and national observation networks was gathered, and custom quality control routines were written to remove bad data points from over 45000 stations, leaving 12533 usable stations. While still not at the same number of observations as temperature or precipitation, this number is nearly ten times as high as two decades ago. The work I performed consists of three major components, corresponding to the three main chapters of this dissertation. In chapter one, I describe data sources and quality control methods, along with some basic statistics of humidity, describing which geographic variables often used to predict temperature and precipitation can be used to do the same for humidity. Chapter two defines specific diurnal patterns (or "types") of dew point across the United States, including their attributes, causes, and potential influences. Chapter three analyzes biases in evapotranspiration, heat indices, and relative humidity levels that are a direct result of using estimated humidity data. Chapter four discusses contributions this work makes to the scientific community, and potential further research to build on what is presented here. While it may seem that the science of humidity should be well beyond data gathering and bias analysis, the fact remains that humidity is still very commonly estimated through the use of minimum temperature, and diurnal changes in dew point are often ignored

  16. Are revised models better models? A skill score assessment of regional interannual variability

    Science.gov (United States)

    Sperber, Kenneth R.; Participating AMIP Modelling Groups

    1999-05-01

    Various skill scores are used to assess the performance of revised models relative to their original configurations. The interannual variability of all-India, Sahel and Nordeste rainfall and summer monsoon windshear is examined in integrations performed under the experimental design of the Atmospheric Model Intercomparison Project. For the indices considered, the revised models exhibit greater fidelity at simulating the observed interannual variability. Interannual variability of all-India rainfall is better simulated by models that have a more realistic rainfall climatology in the vicinity of India, indicating the beneficial effect of reducing systematic model error.

  17. Evaluating the Impact of Localized GCM Grid Refinement on Regional Tropical Cyclone Climatology and Synoptic Variability using Variable-Resolution CAM-SE

    Science.gov (United States)

    Zarzycki, C.; Jablonowski, C.

    2013-12-01

    Using General Circulation Models (GCMs) to resolve sub-synoptic features in climate simulations has traditionally been difficult due to a multitude of atmospheric processes operating at subgrid scales requiring significant parameterization. For example, at traditional GCM horizontal grid resolutions of 50-300 km, tropical cyclones are generally under-resolved. This paper explores a novel variable-resolution global modeling approach that allows for high spatial resolutions in areas of interest, such as low-latitude ocean basins where tropical cyclogenesis occurs. Such multi-resolution GCM designs allow for targeted use of computing resources at the regional level while maintaining a globally-continuous model domain and may serve to bridge the gap between GCMs with uniform grids and boundary-forced limited area models. A statically-nested, variable-resolution option has recently been introduced into the Community Atmosphere Model's (CAM) Spectral Element (SE) dynamical core. A 110 km CAM-SE grid with a 28 km nest over the Atlantic Ocean has been coupled to land, ocean, and ice components within the Community Earth System Model (CESM). We present the results of a multi-decadal climate simulation using Atmospheric Model Intercomparison Project (AMIP) protocols, which force the model with historical sea surface temperatures and airborne chemical species. To investigate whether refinement improves the representation of tropical cyclones, we compare Atlantic storm statistics to observations with specific focus paid to intensity profiles and track densities. The resolution dependance of both cyclone structure and objective detection between refined and unrefined basins is explored. In addition, we discuss the potential impact of using variable-resolution grids on the large-scale synoptic interannual variability by comparing refined grid simulations to reanalysis data as well as an unrefined, globally-uniform CAM-SE simulation with identical forcing. We also evaluate the

  18. Santa Ana Winds of Southern California: Their Climatology and Variability Spanning 6.5 Decades from Regional Dynamical Modelling

    Science.gov (United States)

    Guzman-Morales, J.; Gershunov, A.

    2015-12-01

    Santa Ana Winds (SAWs) are an integral feature of the regional climate of Southern California/Northern Baja California region. In spite of their tremendous episodic impacts on the health, economy and mood of the region, climate-scale behavior of SAW is poorly understood. In the present work, we identify SAWs in mesoscale dynamical downscaling of a global reanalysis product and construct an hourly SAW catalogue spanning 65 years. We describe the long-term SAW climatology at relevant time-space resolutions, i.e, we developed local and regional SAW indices and analyse their variability on hourly, daily, annual, and multi-decadal timescales. Local and regional SAW indices are validated with available anemometer observations. Characteristic behaviors are revealed, e.g. the SAW intensity-duration relationship. At interdecadal time scales, we find that seasonal SAW activity is sensitive to prominent large-scale low-frequency modes of climate variability rooted in the tropical and north Pacific ocean-atmosphere system that are also known to affect the hydroclimate of this region. Lastly, we do not find any long-term trend in SAW frequency and intensity as previously reported. Instead, we identify a significant long-term trend in SAW behavior whereby contribution of extreme SAW events to total seasonal SAW activity has been increasing at the expense of moderate events. These findings motivate further investigation on SAW evolution in future climate and its impact on wildfires.

  19. Adaptive antibody diversification through N-linked glycosylation of the immunoglobulin variable region.

    Science.gov (United States)

    van de Bovenkamp, Fleur S; Derksen, Ninotska I L; Ooijevaar-de Heer, Pleuni; van Schie, Karin A; Kruithof, Simone; Berkowska, Magdalena A; van der Schoot, C Ellen; IJspeert, Hanna; van der Burg, Mirjam; Gils, Ann; Hafkenscheid, Lise; Toes, René E M; Rombouts, Yoann; Plomp, Rosina; Wuhrer, Manfred; van Ham, S Marieke; Vidarsson, Gestur; Rispens, Theo

    2018-02-20

    A hallmark of B-cell immunity is the generation of a diverse repertoire of antibodies from a limited set of germline V(D)J genes. This repertoire is usually defined in terms of amino acid composition. However, variable domains may also acquire N -linked glycans, a process conditional on the introduction of consensus amino acid motifs ( N -glycosylation sites) during somatic hypermutation. High levels of variable domain glycans have been associated with autoantibodies in rheumatoid arthritis, as well as certain follicular lymphomas. However, the role of these glycans in the humoral immune response remains poorly understood. Interestingly, studies have reported both positive and negative effects on antibody affinity. Our aim was to elucidate the role of variable domain glycans during antigen-specific antibody responses. By analyzing B-cell repertoires by next-generation sequencing, we demonstrate that N -glycosylation sites are introduced at positions in which glycans can affect antigen binding as a result of a specific clustering of progenitor glycosylation sites in the germline sequences of variable domain genes. By analyzing multiple human monoclonal and polyclonal (auto)antibody responses, we subsequently show that this process is subject to selection during antigen-specific antibody responses, skewed toward IgG4, and positively contributes to antigen binding. Together, these results highlight a physiological role for variable domain glycosylation as an additional layer of antibody diversification that modulates antigen binding.

  20. Increased topographical variability of task-related activation in perceptive and motor associative regions in adult autistics

    Directory of Open Access Journals (Sweden)

    Marie-Pier Poulin-Lord

    2014-01-01

    Conclusion: Different and possibly unique strategies are used by each autistic individual. That enhanced variability in localization of activations in the autistic group is found in regions typically more variable in non-autistics raises the possibility that autism involves an enhancement and/or an alteration of typical plasticity mechanisms. The current study also highlights the necessity to verify, in fMRI studies involving autistic people, that hypoactivation at the group level does not result from each individual successfully completing a task using a unique brain allocation, even by comparison to his own group.

  1. Pollen-based reconstruction of Holocene climate variability in the Eifel region evaluated with stable isotopes

    Science.gov (United States)

    Kühl, Norbert; Moschen, Robert; Wagner, Stefanie

    2010-05-01

    Pollen as well as stable isotopes have great potential as climate proxy data. While variability in these proxy data is frequently assumed to reflect climate variability, other factors than climate, including human impact and statistical noise, can often not be excluded as primary cause for the observed variability. Multiproxy studies offer the opportunity to test different drivers by providing different lines of evidence for environmental change such as climate variability and human impact. In this multiproxy study we use pollen and peat humification to evaluate to which extent stable oxygen and carbon isotope series from the peat bog "Dürres Maar" reflect human impact rather than climate variability. For times before strong anthropogenic vegetation change, isotope series from Dürres Maar were used to validate quantitative reconstructions based on pollen. Our study site is the kettle hole peat bog "Dürres Maar" in the Eifel low mountain range, Germany (450m asl), which grew 12m during the last 10,000 years. Pollen was analysed with a sum of at least 1000 terrestrial pollen grains throughout the profile to minimize statistical effects on the reconstructions. A recently developed probabilistic indicator taxa method ("pdf-method") was used for the quantitative climate estimates (January and July temperature) based on pollen. For isotope analysis, attention was given to use monospecific Sphagnum leaves whenever possible, reducing the potential of a species effect and any potential artefact that can originate from selective degradation of different morphological parts of Sphagnum plants (Moschen et al., 2009). Pollen at "Dürres Maar" reflect the variable and partly strong human impact on vegetation during the last 4000 years. Stable isotope time series were apparently not influenced by human impact at this site. This highlights the potential of stable isotope investigations from peat for climatic interpretation, because stable isotope series from lacustrine

  2. Accounting for CO2 variability over East Asia with a regional joint inversion system and its preliminary evaluation

    Science.gov (United States)

    Kou, Xingxia; Tian, Xiangjun; Zhang, Meigen; Peng, Zhen; Zhang, Xiaoling

    2017-10-01

    A regional surface carbon dioxide (CO2) flux inversion system, the Tan-Tracker-Region, was developed by incorporating an assimilation scheme into the Community Multiscale Air Quality (CMAQ) regional chemical transport model to resolve fine-scale CO2 variability over East Asia. The proper orthogonal decomposition-based ensemble four-dimensional variational data assimilation approach (POD-4DVar) is the core algorithm for the joint assimilation framework, and simultaneous assimilations of CO2 concentrations and surface CO2 fluxes are applied to help reduce the uncertainty in initial CO2 concentrations. A persistence dynamical model was developed to describe the evolution of the surface CO2 fluxes and help avoid the "signal-to-noise" problem; thus, CO2 fluxes could be estimated as a whole at the model grid scale, with better use of observation information. The performance of the regional inversion system was evaluated through a group of single-observation-based observing system simulation experiments (OSSEs). The results of the experiments suggest that a reliable performance of Tan-Tracker-Region is dependent on certain assimilation parameter choices, for example, an optimized window length of approximately 3 h, an ensemble size of approximately 100, and a covariance localization radius of approximately 320 km. This is probably due to the strong diurnal variation and spatial heterogeneity in the fine-scale CMAQ simulation, which could affect the performance of the regional inversion system. In addition, because all observations can be artificially obtained in OSSEs, the performance of Tan-Tracker-Region was further evaluated through different densities of the artificial observation network in different CO2 flux situations. The results indicate that more observation sites would be useful to systematically improve the estimation of CO2 concentration and flux in large areas over the model domain. The work presented here forms a foundation for future research in which a

  3. Assessment of soil variability of South moravian region based on the satellite imagery

    Czech Academy of Sciences Publication Activity Database

    Novák, J.; Lukas, V.; Rodriguez Moreno, Fernando; Křen, J.

    2018-01-01

    Roč. 66, č. 1 (2018), s. 119-129 ISSN 1211-8516 Institutional support: RVO:86652079 Keywords : Coefficient of variation * lpis * ndvi * pca * RapidEye * Remote sensing * sentinel 2 * Soil variability Subject RIV: DF - Soil Science OBOR OECD: Soil science

  4. Regional Variability and Uncertainty of Electric Vehicle Life Cycle CO₂ Emissions across the United States.

    Science.gov (United States)

    Tamayao, Mili-Ann M; Michalek, Jeremy J; Hendrickson, Chris; Azevedo, Inês M L

    2015-07-21

    We characterize regionally specific life cycle CO2 emissions per mile traveled for plug-in hybrid electric vehicles (PHEVs) and battery electric vehicles (BEVs) across the United States under alternative assumptions for regional electricity emission factors, regional boundaries, and charging schemes. We find that estimates based on marginal vs average grid emission factors differ by as much as 50% (using National Electricity Reliability Commission (NERC) regional boundaries). Use of state boundaries versus NERC region boundaries results in estimates that differ by as much as 120% for the same location (using average emission factors). We argue that consumption-based marginal emission factors are conceptually appropriate for evaluating the emissions implications of policies that increase electric vehicle sales or use in a region. We also examine generation-based marginal emission factors to assess robustness. Using these two estimates of NERC region marginal emission factors, we find the following: (1) delayed charging (i.e., starting at midnight) leads to higher emissions in most cases due largely to increased coal in the marginal generation mix at night; (2) the Chevrolet Volt has higher expected life cycle emissions than the Toyota Prius hybrid electric vehicle (the most efficient U.S. gasoline vehicle) across the U.S. in nearly all scenarios; (3) the Nissan Leaf BEV has lower life cycle emissions than the Prius in the western U.S. and in Texas, but the Prius has lower emissions in the northern Midwest regardless of assumed charging scheme and marginal emissions estimation method; (4) in other regions the lowest emitting vehicle depends on charge timing and emission factor estimation assumptions.

  5. Analysis of source regions and meteorological factors for the variability of spring PM10 concentrations in Seoul, Korea

    Science.gov (United States)

    Lee, Jangho; Kim, Kwang-Yul

    2018-02-01

    CSEOF analysis is applied for the springtime (March, April, May) daily PM10 concentrations measured at 23 Ministry of Environment stations in Seoul, Korea for the period of 2003-2012. Six meteorological variables at 12 pressure levels are also acquired from the ERA Interim reanalysis datasets. CSEOF analysis is conducted for each meteorological variable over East Asia. Regression analysis is conducted in CSEOF space between the PM10 concentrations and individual meteorological variables to identify associated atmospheric conditions for each CSEOF mode. By adding the regressed loading vectors with the mean meteorological fields, the daily atmospheric conditions are obtained for the first five CSEOF modes. Then, HYSPLIT model is run with the atmospheric conditions for each CSEOF mode in order to back trace the air parcels and dust reaching Seoul. The K-means clustering algorithm is applied to identify major source regions for each CSEOF mode of the PM10 concentrations in Seoul. Three main source regions identified based on the mean fields are: (1) northern Taklamakan Desert (NTD), (2) Gobi Desert and (GD), and (3) East China industrial area (ECI). The main source regions for the mean meteorological fields are consistent with those of previous study; 41% of the source locations are located in GD followed by ECI (37%) and NTD (21%). Back trajectory calculations based on CSEOF analysis of meteorological variables identify distinct source characteristics associated with each CSEOF mode and greatly facilitate the interpretation of the PM10 variability in Seoul in terms of transportation route and meteorological conditions including the source area.

  6. Temporal and spatial variability of frost-free seasons in the Great Lakes region of the United States

    Science.gov (United States)

    Lejiang Yu; Shiyuan Zhong; Xindi Bian; Warren E. Heilman; Jeffrey A. Andresen

    2014-01-01

    The frequency and timing of frost events and the length of the growing season are critical limiting factors in many human and natural ecosystems. This study investigates the temporal and spatial variability of the date of last spring frost (LSF), the date of first fall frost (FFF), and the length of the frost-free season (FFS) in the Great Lakes region of the United...

  7. Protection against Syphilis Correlates with Specificity of Antibodies to the Variable Regions of Treponema pallidum Repeat Protein K

    OpenAIRE

    Morgan, Cecilia A.; Lukehart, Sheila A.; Van Voorhis, Wesley C.

    2003-01-01

    Syphilis has been recognized as a disease since the late 1400s, yet there is no practical vaccine available. One impediment to the development of a vaccine is the lack of understanding of multiple reinfections in humans despite the development of robust immune responses during the first episode. It has been shown that the Treponema pallidum repeat protein K (TprK) differs in seven discrete variable (V) regions in isolates and that the antibody response during infection is directed to these V ...

  8. Validation of EURO-CORDEX regional climate models in reproducing the variability of precipitation extremes in Romania

    Science.gov (United States)

    Dumitrescu, Alexandru; Busuioc, Aristita

    2016-04-01

    EURO-CORDEX is the European branch of the international CORDEX initiative that aims to provide improved regional climate change projections for Europe. The main objective of this paper is to document the performance of the individual models in reproducing the variability of precipitation extremes in Romania. Here three EURO-CORDEX regional climate models (RCMs) ensemble (scenario RCP4.5) are analysed and inter-compared: DMI-HIRHAM5, KNMI-RACMO2.2 and MPI-REMO. Compared to previous studies, when the RCM validation regarding the Romanian climate has mainly been made on mean state and at station scale, a more quantitative approach of precipitation extremes is proposed. In this respect, to have a more reliable comparison with observation, a high resolution daily precipitation gridded data set was used as observational reference (CLIMHYDEX project). The comparison between the RCM outputs and observed grid point values has been made by calculating three extremes precipitation indices, recommended by the Expert Team on Climate Change Detection Indices (ETCCDI), for the 1976-2005 period: R10MM, annual count of days when precipitation ≥10mm; RX5DAY, annual maximum 5-day precipitation and R95P%, precipitation fraction of annual total precipitation due to daily precipitation > 95th percentile. The RCMs capability to reproduce the mean state for these variables, as well as the main modes of their spatial variability (given by the first three EOF patterns), are analysed. The investigation confirms the ability of RCMs to simulate the main features of the precipitation extreme variability over Romania, but some deficiencies in reproducing of their regional characteristics were found (for example, overestimation of the mea state, especially over the extra Carpathian regions). This work has been realised within the research project "Changes in climate extremes and associated impact in hydrological events in Romania" (CLIMHYDEX), code PN II-ID-2011-2-0073, financed by the Romanian

  9. Prevalence and variability of use of home mechanical ventilators, positive airway pressure and oxygen devices in the Lombardy region, Italy.

    Science.gov (United States)

    Vitacca, Michele; Barbano, Luca; Colombo, Daniele; Leoni, Olivia; Guffanti, Enrico

    2018-01-29

    Few studies have analyzed the prevalence and accessibility of home mechanical ventilation (HMV) in Italy. We aimed to investigate the prevalence and prescription variability of HMV as well as of long-term oxygen therapy (LTOT) and continuous positive airway pressure (CPAP), in the Lombardy Region. Prescribing rates of HMV (both noninvasive and tracheostomies), CPAP (auto-CPAP, CPAP/other sleep machines) and LTOT (liquid-O2, O2-gas, concentrators) in the 15 Local Healthcare districts of Lombardy were gathered from billing data for 2012 and compared. Crude rates (per 100,000 population) and rates for the different healthcare districts were calculated. In 2012, 6325 patients were on HMV (crude prescription rate: 63/100,000) with a high variation across districts (8/100,000 in Milano 1 vs 150/100,000 in Pavia). There were 14,237 patients on CPAP (crude prescription rate: 142/100,000; CPAP/other sleep machines 95.3% vs auto-CPAP 4.7%) with also high intra-regional variation (56/100,000 in Mantova vs. 260/100,000 in Pavia). There were 21,826 patients on LTOT (prescription rate: 217/100,000 rate; liquid-O2 94%, O2-gas 2.08%, O2-concentrators 3.8%), with again high intra-regional variation (100/100,000 in Bergamo vs 410/100,000 in Valle Camonica). The crude rate of HMV prescriptions in Lombardy is very high, with a high intra-regional variability in prescribing HMV, LTOT and CPAP which is partly explainable by the accessibility to specialist centers with HMV/sleep-study facilities. Analysis of administrative data and variability mapping can help identify areas of reduced access for an improved standardization of services. An audit among Health Payer and prescribers to interpret the described huge variability could be welcomed.

  10. HLA-E regulatory and coding region variability and haplotypes in a Brazilian population sample.

    Science.gov (United States)

    Ramalho, Jaqueline; Veiga-Castelli, Luciana C; Donadi, Eduardo A; Mendes-Junior, Celso T; Castelli, Erick C

    2017-11-01

    The HLA-E gene is characterized by low but wide expression on different tissues. HLA-E is considered a conserved gene, being one of the least polymorphic class I HLA genes. The HLA-E molecule interacts with Natural Killer cell receptors and T lymphocytes receptors, and might activate or inhibit immune responses depending on the peptide associated with HLA-E and with which receptors HLA-E interacts to. Variable sites within the HLA-E regulatory and coding segments may influence the gene function by modifying its expression pattern or encoded molecule, thus, influencing its interaction with receptors and the peptide. Here we propose an approach to evaluate the gene structure, haplotype pattern and the complete HLA-E variability, including regulatory (promoter and 3'UTR) and coding segments (with introns), by using massively parallel sequencing. We investigated the variability of 420 samples from a very admixed population such as Brazilians by using this approach. Considering a segment of about 7kb, 63 variable sites were detected, arranged into 75 extended haplotypes. We detected 37 different promoter sequences (but few frequent ones), 27 different coding sequences (15 representing new HLA-E alleles) and 12 haplotypes at the 3'UTR segment, two of them presenting a summed frequency of 90%. Despite the number of coding alleles, they encode mainly two different full-length molecules, known as E*01:01 and E*01:03, which corresponds to about 90% of all. In addition, differently from what has been previously observed for other non classical HLA genes, the relationship among the HLA-E promoter, coding and 3'UTR haplotypes is not straightforward because the same promoter and 3'UTR haplotypes were many times associated with different HLA-E coding haplotypes. This data reinforces the presence of only two main full-length HLA-E molecules encoded by the many HLA-E alleles detected in our population sample. In addition, this data does indicate that the distal HLA-E promoter is by

  11. Drought Variability and Land Degradation in Semiarid Regions: Assessment Using Remote Sensing Data and Drought Indices (1982–2011

    Directory of Open Access Journals (Sweden)

    Sergio M. Vicente-Serrano

    2015-04-01

    Full Text Available We analyzed potential land degradation processes in semiarid regions worldwide using long time series of remote sensing images and the Normalized Difference Vegetation Index (NDVI for the period 1981 to 2011. The objectives of the study were to identify semiarid regions showing a marked decrease in potential vegetation activity, indicative of the occurrence of land degradation processes, and to assess the possible influence of the observed drought trends quantified using the Standardized Precipitation Evapotranspiration Index (SPEI. We found that the NDVI values recorded during the period of maximum vegetation activity (NDVImax predominantly showed a positive evolution in the majority of the semiarid regions assessed, but NDVImax was highly correlated with drought variability, and the trends of drought events influenced trends in NDVImax at the global scale. The semiarid regions that showed most increase in NDVImax (the Sahel, northern Australia, South Africa were characterized by a clear positive trend in the SPEI values, indicative of conditions of greater humidity and lesser drought conditions. While changes in drought severity may be an important driver of NDVI trends and land degradation processes in semiarid regions worldwide, drought did not apparently explain some of the observed changes in NDVImax. This reflects the complexity of vegetation activity processes in the world’s semiarid regions, and the difficulty of defining a universal response to drought in these regions, where a number of factors (natural and anthropogenic may also affect on land degradation.

  12. Drought Variability and Land Degradation in Semiarid Regions: Assessment Using Remote Sensing Data and Drought Indices (1982–2011)

    KAUST Repository

    Vicente-Serrano, Sergio

    2015-04-14

    We analyzed potential land degradation processes in semiarid regions worldwide using long time series of remote sensing images and the Normalized Difference Vegetation Index (NDVI) for the period 1981 to 2011. The objectives of the study were to identify semiarid regions showing a marked decrease in potential vegetation activity, indicative of the occurrence of land degradation processes, and to assess the possible influence of the observed drought trends quantified using the Standardized Precipitation Evapotranspiration Index (SPEI). We found that the NDVI values recorded during the period of maximum vegetation activity (NDVImax) predominantly showed a positive evolution in the majority of the semiarid regions assessed, but NDVImax was highly correlated with drought variability, and the trends of drought events influenced trends in NDVImax at the global scale. The semiarid regions that showed most increase in NDVImax (the Sahel, northern Australia, South Africa) were characterized by a clear positive trend in the SPEI values, indicative of conditions of greater humidity and lesser drought conditions. While changes in drought severity may be an important driver of NDVI trends and land degradation processes in semiarid regions worldwide, drought did not apparently explain some of the observed changes in NDVImax. This reflects the complexity of vegetation activity processes in the world’s semiarid regions, and the difficulty of defining a universal response to drought in these regions, where a number of factors (natural and anthropogenic) may also affect on land degradation.

  13. Drought Variability and Land Degradation in Semiarid Regions: Assessment Using Remote Sensing Data and Drought Indices (1982–2011)

    KAUST Repository

    Vicente-Serrano, Sergio; Cabello, Daniel; Tomá s-Burguera, Miquel; Martí n-Herná ndez, Natalia; Beguerí a, Santiago; Azorin-Molina, Cesar; Kenawy, Ahmed

    2015-01-01

    We analyzed potential land degradation processes in semiarid regions worldwide using long time series of remote sensing images and the Normalized Difference Vegetation Index (NDVI) for the period 1981 to 2011. The objectives of the study were to identify semiarid regions showing a marked decrease in potential vegetation activity, indicative of the occurrence of land degradation processes, and to assess the possible influence of the observed drought trends quantified using the Standardized Precipitation Evapotranspiration Index (SPEI). We found that the NDVI values recorded during the period of maximum vegetation activity (NDVImax) predominantly showed a positive evolution in the majority of the semiarid regions assessed, but NDVImax was highly correlated with drought variability, and the trends of drought events influenced trends in NDVImax at the global scale. The semiarid regions that showed most increase in NDVImax (the Sahel, northern Australia, South Africa) were characterized by a clear positive trend in the SPEI values, indicative of conditions of greater humidity and lesser drought conditions. While changes in drought severity may be an important driver of NDVI trends and land degradation processes in semiarid regions worldwide, drought did not apparently explain some of the observed changes in NDVImax. This reflects the complexity of vegetation activity processes in the world’s semiarid regions, and the difficulty of defining a universal response to drought in these regions, where a number of factors (natural and anthropogenic) may also affect on land degradation.

  14. Sensitivity of extreme precipitation to temperature: the variability of scaling factors from a regional to local perspective

    Science.gov (United States)

    Schroeer, K.; Kirchengast, G.

    2018-06-01

    Potential increases in extreme rainfall induced hazards in a warming climate have motivated studies to link precipitation intensities to temperature. Increases exceeding the Clausius-Clapeyron (CC) rate of 6-7%/°C-1 are seen in short-duration, convective, high-percentile rainfall at mid latitudes, but the rates of change cease or revert at regionally variable threshold temperatures due to moisture limitations. It is unclear, however, what these findings mean in term of the actual risk of extreme precipitation on a regional to local scale. When conditioning precipitation intensities on local temperatures, key influences on the scaling relationship such as from the annual cycle and regional weather patterns need better understanding. Here we analyze these influences, using sub-hourly to daily precipitation data from a dense network of 189 stations in south-eastern Austria. We find that the temperature sensitivities in the mountainous western region are lower than in the eastern lowlands. This is due to the different weather patterns that cause extreme precipitation in these regions. Sub-hourly and hourly intensities intensify at super-CC and CC-rates, respectively, up to temperatures of about 17 °C. However, we also find that, because of the regional and seasonal variability of the precipitation intensities, a smaller scaling factor can imply a larger absolute change in intensity. Our insights underline that temperature precipitation scaling requires careful interpretation of the intent and setting of the study. When this is considered, conditional scaling factors can help to better understand which influences control the intensification of rainfall with temperature on a regional scale.

  15. Intraspecific Variability of Rotylenchulus reniformis from Cotton-growing Regions in the United States

    OpenAIRE

    Agudelo, Paula; Robbins, Robert T.; Stewart, James McD.; Szalanski, Allen L.

    2005-01-01

    Reniform nematode (Rotylenchulus reniformis) is a major pest of cotton in the southeastern United States. The objective of this study was to examine the variation of reniform nematode populations from cotton-growing locations in the United States where it is prevalent. Multivariate analysis of variance and discriminant analysis were used to determine the variability of morphology in males and immature females. Reproduction indices of populations were measured on selected soybean and cotton ge...

  16. Mesoscale variability in the Bransfield Strait region (Antarctica during Austral summer

    Directory of Open Access Journals (Sweden)

    M. A. García

    1994-08-01

    Full Text Available The Bransfield Strait is one the best-known areas of Antarctica's oceanic surroundings. In spite of this, the study of the mesoscale variability of its local circulation has been addressed only recently. This paper focuses on the mesoscale structure of local physical oceanographic conditions in the Bransfield Strait during the Austral summer as derived from the BIOANTAR 93 cruise and auxiliary remote sensing data. Moreover, data recovered from moored current meters allow identification of transient mesoscale phenomena.

  17. Intra-individual variability of ITS regions in entomopathogenic nematodes (Steinernematidae: Nematoda): implications for their taxonomy

    Czech Academy of Sciences Publication Activity Database

    Půža, Vladimír; Chundelová, Daniela; Nermuť, Jiří; Žurovcová, Martina; Mráček, Zdeněk

    2015-01-01

    Roč. 60, č. 4 (2015), s. 547-554 ISSN 1386-6141 R&D Projects: GA ČR GAP504/12/2352 Grant - others:GA JU(CZ) 052/2013/P Institutional support: RVO:60077344 Keywords : Steinernema * genetic diversity * intra-individual variability Subject RIV: EG - Zoology Impact factor: 1.767, year: 2015 http://link.springer.com/article/10.1007%2Fs10526-015-9664-5

  18. Making the best of climatic variability: options for upgrading rainfed farming in water scarce regions.

    Science.gov (United States)

    Rockström, J

    2004-01-01

    Coping with climatic variability for livelihood security is part of everyday life for rural communities in semi-arid and dry sub-humid savannas. Water scarcity caused by rainfall fluctuations is common, causing meteorological droughts and dry spells. However, this paper indicates, based on experiences in sub-Saharan Africa and India, that the social impact on rural societies of climatically induced droughts is exaggerated. Instead, water scarcity causing food deficits is more often caused by management induced droughts and dry spells. A conceptual framework to distinguish between manageable and unmanageable droughts is presented. It is suggested that climatic droughts require focus on social resilience building instead of land and water resource management. Focus is then set on the manageable part of climatic variability, namely the almost annual occurrence of dry spells, short 2-4 week periods of no rainfall, affecting farmer yields. On-farm experiences in savannas of sub-Saharan Africa of water harvesting systems for dry spell mitigation are presented. It is shown that bridging dry spells combined with soil fertility management can double and even triple on-farm yield levels. Combined with innovative systems to ensure maximum plant water availability and water uptake capacity, through adoption of soil fertility improvement and conservation tillage systems, there is a clear opportunity to upgrade rainfed farming systems in vulnerable savanna environments, through appropriate local management of climatic variability.

  19. High interannual variability of sea ice thickness in the Arctic region.

    Science.gov (United States)

    Laxon, Seymour; Peacock, Neil; Smith, Doug

    2003-10-30

    Possible future changes in Arctic sea ice cover and thickness, and consequent changes in the ice-albedo feedback, represent one of the largest uncertainties in the prediction of future temperature rise. Knowledge of the natural variability of sea ice thickness is therefore critical for its representation in global climate models. Numerical simulations suggest that Arctic ice thickness varies primarily on decadal timescales owing to changes in wind and ocean stresses on the ice, but observations have been unable to provide a synoptic view of sea ice thickness, which is required to validate the model results. Here we use an eight-year time-series of Arctic ice thickness, derived from satellite altimeter measurements of ice freeboard, to determine the mean thickness field and its variability from 65 degrees N to 81.5 degrees N. Our data reveal a high-frequency interannual variability in mean Arctic ice thickness that is dominated by changes in the amount of summer melt, rather than by changes in circulation. Our results suggest that a continued increase in melt season length would lead to further thinning of Arctic sea ice.

  20. ENSO variability reflected in precipitation oxygen isotopes across the Asian Summer Monsoon region

    Science.gov (United States)

    Cai, Zhongyin; Tian, Lide; Bowen, Gabriel J.

    2017-10-01

    Oxygen isotope signals (δ18O) from paleo-archives are important proxies for past Asian Summer Monsoon (ASM) climate reconstruction. However, causes of interannual variation in the δ18O values of modern precipitation across the ASM region remain in argument. We report interannual δ18O variation in southern Tibetan Plateau precipitation based on long-term observations at Lhasa. These data, together with precipitation δ18O records from five Global Network of Isotopes in Precipitation (GNIP) stations and two ice core δ18O records, were used to define a regional metric of ASM precipitation δ18O (ASMOI). Back-trajectory analyses for rainy season precipitation events indicate that moisture sources vary little between years with relatively high and low δ18O values, a result that is consistent for the south (Lhasa), southeast (Bangkok), and east ASM regions (Hong Kong). In contrast, δ18O values at these three locations are significantly correlated with convection in the estimated source regions and along transport paths. These results suggest that upstream convection, rather than moisture source change, causes interannual variation in ASM precipitation δ18O values. Contrasting values of the ASMOI in El Niño and La Niña years reveal a positive isotope-El Niño Southern Oscillation (ENSO) response (e.g., high values corresponding to warm phases), which we interpret as a response to changes in regional convection. We show that the isotope-ENSO response is amplified at high elevation sites and during La Niña years. These findings should improve interpretations of paleo-δ18O data as a proxy for past ASM variation and provide new opportunities to use data from this region to study paleo-ENSO activity.

  1. Precipitation and ice core isotopes from the Asian Summer Monsoon region reflect coherent ENSO variability

    Science.gov (United States)

    Cai, Z.; Tian, L.; Bowen, G. J.

    2017-12-01

    Oxygen isotope signals (δ18O) from paleo-archives are important proxies for past Asian Summer Monsoon (ASM) climate reconstruction. However, causes of interannual variation in the δ18O values of modern precipitation across the ASM region remain in argument. We report interannual δ18O variation in southern Tibetan Plateau precipitation based on long-term observations at Lhasa. These data, together with precipitation δ18O records from five Global Network of Isotopes in Precipitation (GNIP) stations and two ice core δ18O records, were used to define a regional metric of ASM precipitation δ18O (ASMOI). Back-trajectory analyses for rainy season precipitation events indicate that moisture sources vary little between years with relatively high and low δ18O values, a result that is consistent for the south (Lhasa), southeast (Bangkok), and east ASM regions (Hong Kong). In contrast, δ18O values at these three locations are significantly correlated with convection in the estimated source regions and along transport paths. These results suggest that upstream convection, rather than moisture source change, causes interannual variation in ASM precipitation δ18O values. Contrasting values of the ASMOI in El Niño and La Niña years reveal a positive isotope-El Niño Southern Oscillation (ENSO) response (e.g., high values corresponding to warm phases), which we interpret as a response to changes in regional convection. We show that the isotope-ENSO response is amplified at high elevation sites and during La Niña years. These findings should improve interpretations of paleo-δ18O data as a proxy for past ASM variation and provide new opportunities to use data from this region to study paleo-ENSO activity.

  2. Regional and depth variability of porcine meniscal mechanical properties through biaxial testing.

    Science.gov (United States)

    Kahlon, A; Hurtig, M B; Gordon, K D

    2015-01-01

    The menisci in the knee joint undergo complex loading in-vivo resulting in a multidirectional stress distribution. Extensive mechanical testing has been conducted to investigate the tissue properties of the knee meniscus, but the testing conditions do not replicate this complex loading regime. Biaxial testing involves loading tissue along two different directions simultaneously, which more accurately simulates physiologic loading conditions. The purpose of this study was to report mechanical properties of meniscal tissue resulting from biaxial testing, while simultaneously investigating regional variations in properties. Ten left, fresh porcine joints were obtained, and the medial and lateral menisci were harvested from each joint (twenty menisci total). Each menisci was divided into an anterior, middle and posterior region; and three slices (femoral, deep and tibial layers) were obtained from each region. Biaxial and constrained uniaxial testing was performed on each specimen, and Young's moduli were calculated from the resulting stress strain curves. Results illustrated significant differences in regional mechanical properties, with the medial anterior (Young's modulus (E)=11.14 ± 1.10 MPa), lateral anterior (E=11.54 ± 1.10 MPa) and lateral posterior (E=9.0 ± 1.2 MPa) regions exhibiting the highest properties compared to the medial central (E=5.0 ± 1.22 MPa), medial posterior (E=4.16 ± 1.13 MPa) and lateral central (E=5.6 ± 1.20 MPa) regions. Differences with depth were also significant on the lateral meniscus, with the femoral (E=12.7 ± 1.22 MPa) and tibial (E=8.6 ± 1.22 MPa) layers exhibiting the highest Young's moduli. This data may form the basis for future modeling of meniscal tissue, or may aid in the design of synthetic replacement alternatives. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Variability of effects of spatial climate data aggregation on regional yield simulation by crop models

    NARCIS (Netherlands)

    Hoffmann, H.; Zhao, G.; Bussel, van L.G.J.

    2015-01-01

    Field-scale crop models are often applied at spatial resolutions coarser than that of the arable field. However, little is known about the response of the models to spatially aggregated climate input data and why these responses can differ across models. Depending on the model, regional yield

  4. Quantitative remote sensing for monitoring forest canopy structural variables in the Three Gorges region of China

    NARCIS (Netherlands)

    Zeng, Y.

    2008-01-01

    Bridging various scales ranging from local to regional and global, remote sensing has facilitated extraordinary advances in modeling and mapping ecosystems and their functioning. Since forests are one of the most important natural resources on the terrestrial Earth surface, accurate and up-to-date

  5. Finding stability regions for preserving efficiency classification of variable returns to scale technology in data envelopment analysis

    Science.gov (United States)

    Zamani, P.; Borzouei, M.

    2016-12-01

    This paper addresses issue of sensitivity of efficiency classification of variable returns to scale (VRS) technology for enhancing the credibility of data envelopment analysis (DEA) results in practical applications when an additional decision making unit (DMU) needs to be added to the set being considered. It also develops a structured approach to assisting practitioners in making an appropriate selection of variation range for inputs and outputs of additional DMU so that this DMU be efficient and the efficiency classification of VRS technology remains unchanged. This stability region is simply specified by the concept of defining hyperplanes of production possibility set of VRS technology and the corresponding halfspaces. Furthermore, this study determines a stability region for the additional DMU within which, in addition to efficiency classification, the efficiency score of a specific inefficient DMU is preserved and also using a simulation method, a region in which some specific efficient DMUs become inefficient is provided.

  6. Cross-Regional Assessment Of Coupling And Variability In Precipitation-Runoff Relationships

    Science.gov (United States)

    Carey, S. K.; Tetzlaff, D.; Soulsby, C.; Buttle, J. M.; Laudon, H.; McDonnell, J. J.; McGuire, K. J.; Seibert, J.; Shanley, J. B.

    2011-12-01

    The higher mid-latitudes of the northern hemisphere are particularly sensitive to change due to the important role the zero-degree isotherm plays in the phase of precipitation and intermediate storage as snow. An international inter-catchment comparison program North-Watch seeks to improve our understanding of the sensitivity of northern catchments to change by examining their hydrological and biogeochemical variability and response. The catchments are located in Sweden (Krycklan), Scotland (Mharcaidh, Girnock and Strontian), the United States (Sleepers River, Hubbard Brook and HJ Andrews) and Canada (Catamaran, Dorset and Wolf Creek). For this study, 8 catchments with 10 continuous years of daily precipitation and runoff data were selected to assess the seasonal coupling of rainfall and runoff and the memory effect of runoff events on the hydrograph at different time scales. To assess the coupling and synchroneity of precipitation, continuous wavelet transforms and wavelet coherence were used. Wavelet spectra identified the relative importance of both annual versus seasonal flows while wavelet coherence was applied to identify over different time scales along the 10-year window how well precipitation and runoff were coupled. For example, while on a given day, precipitation may be closely coupled to runoff, a wet year may not necessarily be a high runoff year in catchments with large storage. Assessing different averaging periods in the variation of daily flows highlights the importance of seasonality in runoff response and the relative influence of rain versus snowmelt on flow magnitude and variability. Wet catchments with limited seasonal precipitation variability (Strontian, Girnock) have precipitation signals more closely coupled with runoff, whereas dryer catchments dominated by snow (Wolf Creek, Krycklan) have strongly coupling only during freshet. Most catchments with highly seasonal precipitation show strong intermittent coupling during their wet season. At

  7. On the cause of variability of the cosmic ray spectrum in the knee region

    Science.gov (United States)

    Loznikov, V. M.; Erokhin, N. S.; Zol'nikova, N. N.; Mikhailovskaya, L. A.

    2017-09-01

    Cosmic ray (CR) energy spectra for H, He, Si, and Fe nuclei with energy-to-charge number ratios ℰ/ Z in the range from 10 to 5 × 107 GeV are studied using observational data obtained at different times in different energy ranges: AMS-02, CREAM, Tibet ASγ, Tibet (hybrid), GRAPES-3, KASCADE, and KASCADE-Grande. Comparison of the H and He CR fluxes according to the KASCADE and KASCADE-Grande data (for different models of deconvolving CR spectra) with the Tibet ASγ and Tibet (hybrid) data obtained at another time in the range of ℰ/ Z ˜ 3 × 106 GeV demonstrates space weather-caused variability of the CR flux. This feature of CR energy spectra in the Tibet ASγ data is most clearly observed in the spectra of heavier nuclei (Si and Fe) according to the KASCADE-Grande and GRAPES-3 data. The variability in the energy spectra of all CRs in the vicinity of the "knee" is shown in the data of Yakutsk EAS, CASA-BLANCA, and Tibet-III experiments. The variability of the CR flux on a time scale on the order of several years exists only if the source corresponding to the peak in the energy spectrum is situated at a distance of no more than 1 pc from the Sun. Rapid surfatron acceleration of CRs may result from colliding interstellar clouds nearest to the Sun (LIC and G). This acceleration mechanism allows one to explain the variability of the CR spectrum in the range 103 GeV < ℰ/ Z < 108 GeV. Conditions for the trapping of strongly relativistic Fe nuclei by an electromagnetic wave, the dynamics of the components of the particle velocity and momentum, and the dependence of the particle acceleration rate on the initial parameters of the problem are analyzed using numerical calculations. The structure of the phase plane of the accelerated Fe nuclei is examined. Optimal conditions for the implementation of ultrarelativistic surfatron acceleration of Fe nuclei by an electromagnetic wave are formulated.

  8. Volumetric analysis of regional variability in the cerebellum of children with dyslexia.

    Science.gov (United States)

    Fernandez, Vindia G; Stuebing, Karla; Juranek, Jenifer; Fletcher, Jack M

    2013-12-01

    Cerebellar deficits and subsequent impairment in procedural learning may contribute to both motor difficulties and reading impairment in dyslexia. We used quantitative magnetic resonance imaging to investigate the role of regional variation in cerebellar anatomy in children with single-word decoding impairments (N = 23), children with impairment in fluency alone (N = 8), and typically developing children (N = 16). Children with decoding impairments (dyslexia) demonstrated no statistically significant differences in overall grey and white matter volumes or cerebellar asymmetry; however, reduced volume in the anterior lobe of the cerebellum relative to typically developing children was observed. These results implicate cerebellar involvement in dyslexia and establish an important foundation for future research on the connectivity of the cerebellum and cortical regions typically associated with reading impairment.

  9. Variable trajectory model for regional assessments of air pollution from sulfur compounds.

    Energy Technology Data Exchange (ETDEWEB)

    Powell, D.C.; McNaughton, D.J.; Wendell, L.L.; Drake, R.L.

    1979-02-01

    This report describes a sulfur oxides atmospheric pollution model that calculates trajectories using single-layer historical wind data as well as chemical transformation and deposition following discrete contaminant air masses. Vertical diffusion under constraints is calculated, but all horizontal dispersion is a funcion of trajectory variation. The ground-level air concentrations and deposition are calculated in a rectangular area comprising the northeastern United States and southeastern Canada. Calculations for a 29-day assessment period in April 1974 are presented along with a limited verification. Results for the studies were calculated using a source inventory comprising 61% of the anthropogenic SO/sub 2/ emissions. Using current model parameterization levels, predicted concentration values are most sensitive to variations in dry deposition of SO/sub 2/, wet deposition of sulfate, and transformation of SO/sub 2/ to sulfate. Replacing the variable mixed-layer depth and variable stability features of the model with constant definitions of each results in increased ground-level concentration predicions for SO/sub 2/ and particularly for sulfate.

  10. Explaining regional variation in home care use by demand and supply variables.

    Science.gov (United States)

    van Noort, Olivier; Schotanus, Fredo; van de Klundert, Joris; Telgen, Jan

    2018-02-01

    In the Netherlands, home care services like district nursing and personal assistance are provided by private service provider organizations and covered by private health insurance companies which bear legal responsibility for purchasing these services. To improve value for money, their procurement increasingly replaces fee-for-service payments with population based budgets. Setting appropriate population budgets requires adaptation to the legitimate needs of the population, whereas historical costs are likely to be influenced by supply factors as well, not all of which are necessarily legitimate. Our purpose is to explain home care costs in terms of demand and supply factors. This allows for adjusting historical cost patterns when setting population based budgets. Using expenses claims of 60 Dutch municipalities, we analyze eight demand variables and five supply variables with a multiple regression model to explain variance in the number of clients per inhabitant, costs per client and costs per inhabitant. Our models explain 69% of variation in the number of clients per inhabitant, 28% of costs per client and 56% of costs per inhabitant using demand factors. Moreover, we find that supply factors explain an additional 17-23% of variation. Predictors of higher utilization are home care organizations that are integrated with intramural nursing homes, higher competition levels among home care organizations and the availability of complementary services. Copyright © 2017. Published by Elsevier B.V.

  11. Inference of haplotypic phase and missing genotypes in polyploid organisms and variable copy number genomic regions

    Directory of Open Access Journals (Sweden)

    Balding David J

    2008-12-01

    Full Text Available Abstract Background The power of haplotype-based methods for association studies, identification of regions under selection, and ancestral inference, is well-established for diploid organisms. For polyploids, however, the difficulty of determining phase has limited such approaches. Polyploidy is common in plants and is also observed in animals. Partial polyploidy is sometimes observed in humans (e.g. trisomy 21; Down's syndrome, and it arises more frequently in some human tissues. Local changes in ploidy, known as copy number variations (CNV, arise throughout the genome. Here we present a method, implemented in the software polyHap, for the inference of haplotype phase and missing observations from polyploid genotypes. PolyHap allows each individual to have a different ploidy, but ploidy cannot vary over the genomic region analysed. It employs a hidden Markov model (HMM and a sampling algorithm to infer haplotypes jointly in multiple individuals and to obtain a measure of uncertainty in its inferences. Results In the simulation study, we combine real haplotype data to create artificial diploid, triploid, and tetraploid genotypes, and use these to demonstrate that polyHap performs well, in terms of both switch error rate in recovering phase and imputation error rate for missing genotypes. To our knowledge, there is no comparable software for phasing a large, densely genotyped region of chromosome from triploids and tetraploids, while for diploids we found polyHap to be more accurate than fastPhase. We also compare the results of polyHap to SATlotyper on an experimentally haplotyped tetraploid dataset of 12 SNPs, and show that polyHap is more accurate. Conclusion With the availability of large SNP data in polyploids and CNV regions, we believe that polyHap, our proposed method for inferring haplotypic phase from genotype data, will be useful in enabling researchers analysing such data to exploit the power of haplotype-based analyses.

  12. Morphological variability and distribution of the exotic Asian Mesocyclops thermocyclopoides (Copepoda: Cyclopoida: in the Neotropical region

    Directory of Open Access Journals (Sweden)

    Eduardo Suárez-Morales

    2011-10-01

    Full Text Available From a series of biological samples collected from different freshwater environments in Costa Rica, Central America, the exotic Asian cyclopoid Mesocyclops thermocyclopoides Harada, 1931 was identified. We analyzed the morphology and appendage ornamentation of different Neotropical populations of this species, including specimens from Honduras, southeastern Mexico, and Costa Rica. We also examined Asian specimens from Taiwan, Indonesia, Vietnam, and Thailand, and performed a comparison of the Neotropical and Asian populations including a Principal Component Analysis (PCA. The Neotropical and Asian specimens show subtle morphological variations in the antennules, antennae, mandibles, swimming legs 1-4, and fifth legs. Some characters in the Neotropical group appear to diverge from the Asian pattern and the PCA indicated that intercontinental populations of M. thermocyclopoides are far from being homogeneous. These intra-specific differences are described to expand the known morphological range of this species and to provide the first comparative analysis of an exotic copepod in the Americas. Our analysis suggests that the geographic isolation of the American populations and the subtle morphological divergences with respect to the Asian patterns could be related to speciation processes in the Neotropical region, but also intra-Asian differences are reported. In the Neotropical region this species appears to be restricted to southeastern Mexico, Central America, and one Caribbean island; its potential as biological control of mosquito might enhance its spread in the region.

  13. Spatiotemporal Variability and Covariability of Temperature, Precipitation, Soil Moisture, and Vegetation in North America for Regional Climate Model Applications

    Science.gov (United States)

    Castro, C. L.; Beltran-Przekurat, A. B.; Pielke, R. A.

    2007-05-01

    Previous work has established that the dominant modes of Pacific SSTs influence the summer climate of North America through large-scale forcing, and this effect is most pronounced during the early part of the season. It is hypothesized, then, that land surface influences become more dominant in the latter part of the season as remote teleconnection influences diminish. As a first step toward investigation of this hypothesis in a regional climate model (RCM) framework, the statistically signficant spatiotemporal patterns of variability and covariability in North American precipitation (specified by the standardized precipitation index, or SPI), soil moisture, and vegetation are determined for timescales from a month to six months. To specify these respective data we use: CPC gauge- derived precipitation (1950-2000), Variable Infiltration Capacity (VIC) Model and NOAH Model NLDAS soil moisture and temperature, and the Global Inventory Modeling and Mapping Studies Normalized Difference Vegetation Index (GIMMS-NDVI). The principal statistical tool used is multiple taper frequency singular value decomposition (MTM-SVD), and this is supplemented by wavelet analysis for specific areas of interest. The significant interannual variability in all of these data occur at a timescale of about 7 to 9 years and appears to be the integrated effect of remote SST forcing from the Pacific. Considering the entire year, the spatial pattern for precipitation resembles the typical ENSO winter signature. If the summer season is considered seperately, the out of phase relationship between precipitation anomalies in the central U.S. and core monsoon region is apparent. The largest soil moisture anomalies occur in the central U.S., since precipitation in this region has a consistent relationship to Pacific SSTs for the entire year. This helps to explain the approximately 20 year periodicity in drought conditions there. Unlike soil moisture, the largest anomalies in vegetation occur in the

  14. Variable-density ground-water flow and paleohydrology in the Waste Isolation Pilot Plant (WIPP) region, southeastern New Mexico

    International Nuclear Information System (INIS)

    Davies, P.B.

    1989-01-01

    Variable-density groundwater flow was studied near the Waste Isolation Pilot Plant in southeastern New Mexico. An analysis of the relative magnitude of pressure-related and density-related flow-driving forces indicates that density-related gravity effects are not significant at the plant and to the west but are significant in areas to the north, northeast, and south. A regional-scale model of variable-density groundwater flow in the Culebra Dolomite member of the Rustler Formation indicates that the flow velocities are relatively rapid west of the site and extremely slow east and northeast of the site. In the transition zone between those two extremes, which includes the plant, velocities are highly variable. Sensitivity simulations indicates that the central and western parts of the region, including the plant, are fairly well isolated from the eastern and northeastern boundaries. Vertical-flux simulations indicate that as much as 25% of total inflow to the Culebra could be entering as vertical flow, with most of this flow occurring west of the plant. A simple cross-sectional model was developed to examine the flow system as it drains through time following recharge during a past glacial pluvial. This model indicates that the system as a whole drains very slowly and that it apparently could have sustained flow from purely transient drainage following recharge of the system during the Pleistocene

  15. Tidal and sub-tidal sea level variability at the northern shelf of the Brazilian Northeast Region.

    Science.gov (United States)

    Frota, Felipe F; Truccolo, Eliane C; Schettini, Carlos A F

    2016-09-01

    A characterization of the sea level variability at tidal and sub-tidal frequencies at the northern shore of the Brazilian Northeast shelf for the period 2009-2011 is presented. The sea level data used was obtained from the Permanent Geodetic Tide Network from the Brazilian Institute of Geography and Statistics for the Fortaleza gauge station. Local wind data was also used to assess its effects on the low-frequency sea level variability. The variability of the sea level was investigated by classical harmonic analysis and by morphology assessment over the tidal signal. The low frequencies were obtained by low-pass filtering. The tidal range oscillated with the highest value of 3.3 m during the equinox and the lowest value of 0.7 m during the solstice. Differences between the spring and neap tides were as high as 1 m. A total of 59 tidal constituents were obtained from harmonic analysis, and the regional tide was classified as semi-diurnal pure with a form number of 0.11. An assessment of the monthly variability of the main tidal constituents (M2, S2, N2, O1, and K1) indicated that the main semi-diurnal solar S2 presented the highest variability, ranging from 0.21 to 0.41 m; it was the main element altering the form number through the years. The low frequency sea-level variability is negligible, although there is a persistent signal with an energy peak in the 10-15 day period, and it cannot be explained by the effects of local winds.

  16. Changes in intracranial morphology, regional cerebral water content and vital physiological variables during epidural bleeding

    International Nuclear Information System (INIS)

    Ganz, J.C.; Inst. of Surgical Research, National Hospital, Oslo; Thuomas, K.AA.; Inst. of Surgical Research, National Hospital, Oslo; Vlajkovic, S.; Inst. of Surgical Research, National Hospital, Oslo; Nilsson, P.; Inst. of Surgical Research, National Hospital, Oslo; Bergstroem, K.; Inst. of Surgical Research, National Hospital, Oslo; Ponten, U.; Inst. of Surgical Research, National Hospital, Oslo; Zwetnow, N.N.; Inst. of Surgical Research, National Hospital, Oslo

    1993-01-01

    Epidural bleeding was produced in 8 anaesthetised and heparinised dogs by an artificial system. Changes in vital physiological variables were related to intracranial shifts and tissue water content assessed with MR imaging. Six animals survived while 2 succumbed. In the surviving animals intracranial shifts and compressions remained unchanged from an early stage. The cerebral perfusion pressure was reduced from between 80 and 110 mm Hg to between 40 and 60 mm Hg. Some increase in supratentorial white matter tissue water was observed. In the lethal experiments cerebral perfusion pressure fell to less than 40 mm Hg. Moreover, secondary delayed anatomical changes were seen including hydrocephalus. Increase in cerebral tissue water was more intense and widespread than in the survivors. These findings indicate that the outcome of epidural bleeding is related to cerebral perfusion pressure with secondary deterioration resulting from additional volume loading from increased tissue water and hydrocephalus. (orig.)

  17. Multi-Site and Multi-Variables Statistical Downscaling Technique in the Monsoon Dominated Region of Pakistan

    Science.gov (United States)

    Khan, Firdos; Pilz, Jürgen

    2016-04-01

    South Asia is under the severe impacts of changing climate and global warming. The last two decades showed that climate change or global warming is happening and the first decade of 21st century is considered as the warmest decade over Pakistan ever in history where temperature reached 53 0C in 2010. Consequently, the spatio-temporal distribution and intensity of precipitation is badly effected and causes floods, cyclones and hurricanes in the region which further have impacts on agriculture, water, health etc. To cope with the situation, it is important to conduct impact assessment studies and take adaptation and mitigation remedies. For impact assessment studies, we need climate variables at higher resolution. Downscaling techniques are used to produce climate variables at higher resolution; these techniques are broadly divided into two types, statistical downscaling and dynamical downscaling. The target location of this study is the monsoon dominated region of Pakistan. One reason for choosing this area is because the contribution of monsoon rains in this area is more than 80 % of the total rainfall. This study evaluates a statistical downscaling technique which can be then used for downscaling climatic variables. Two statistical techniques i.e. quantile regression and copula modeling are combined in order to produce realistic results for climate variables in the area under-study. To reduce the dimension of input data and deal with multicollinearity problems, empirical orthogonal functions will be used. Advantages of this new method are: (1) it is more robust to outliers as compared to ordinary least squares estimates and other estimation methods based on central tendency and dispersion measures; (2) it preserves the dependence among variables and among sites and (3) it can be used to combine different types of distributions. This is important in our case because we are dealing with climatic variables having different distributions over different meteorological

  18. Hot regions of labile and stable soil organic carbon in Germany - Spatial variability and driving factors

    Science.gov (United States)

    Vos, Cora; Jaconi, Angélica; Jacobs, Anna; Don, Axel

    2018-06-01

    Atmospheric carbon dioxide levels can be mitigated by sequestering carbon in the soil. Sequestration can be facilitated by agricultural management, but its influence is not the same on all soil carbon pools, as labile pools with a high turnover may be accumulated much faster but are also more vulnerable to losses. The aims of this study were to (1) assess how soil organic carbon (SOC) is distributed among SOC fractions on a national scale in Germany, (2) identify factors influencing this distribution and (3) identify regions with high vulnerability to SOC losses. The SOC content and proportion of two different SOC fractions were estimated for more than 2500 mineral topsoils (soil texture, bulk soil C / N ratio, total SOC content and pH. For some regions, the drivers were linked to the land-use history of the sites. Arable topsoils in central and southern Germany were found to contain the highest proportions and contents of stable SOC fractions, and therefore have the lowest vulnerability to SOC losses. North-western Germany contains an area of sandy soils with unusually high SOC contents and high proportions of light SOC fractions, which are commonly regarded as representing a labile carbon pool. This is true for the former peat soils in this area, which have already lost and are at high risk of losing high proportions of their SOC stocks. Those black sands can, however, also contain high amounts of stable SOC due to former heathland vegetation and need to be treated and discussed separately from non-black sand agricultural soils. Overall, it was estimated that, in large areas all over Germany, over 30 % of SOC is stored in easily mineralisable forms. Thus, SOC-conserving management of arable soils in these regions is of great importance.

  19. Examining regional variability in work ethic within Mexico: Individual difference or shared value.

    Science.gov (United States)

    Arciniega, Luis M; Woehr, David J; Del Rincón, Germán A

    2018-02-19

    Despite the acceptance of work ethic as an important individual difference, little research has examined the extent to which work ethic may reflect shared environmental or socio-economic factors. This research addresses this concern by examining the influence of geographic proximity on the work ethic experienced by 254 employees from Mexico, working in 11 different cities in the Northern, Central and Southern regions of the country. Using a sequence of complementary analyses to assess the main source of variance on seven dimensions of work ethic, our results indicate that work ethic is most appropriately considered at the individual level. © 2018 International Union of Psychological Science.

  20. Observed Regional Climate Variability during the Last 50 Years in Reindeer Herding Cooperatives of Finnish Fell Lapland

    Directory of Open Access Journals (Sweden)

    Élise Lépy

    2017-10-01

    Full Text Available In Finnish Lapland, reindeer herders’ activity is strongly dependent on the surrounding natural environment, which is directly exposed to environmental changes and climatic variations. By assessing whether there is any evidence of change in climate in Fell Lapland over the last 50 years, this paper attempts to link global climatic trends with local conditions and respond to the need of information at the local level. It aims at assessing the changes in temperature, precipitation and snow cover at a regional and local scale, as well as determining the climatic trends for the period 1960–2011. Statistical methods were used to conduct analyses of the regional homogeneity, the annual and seasonal variability, and the cold intensity. The results show that the regional climate is not homogeneous and differences exist between locations. Nevertheless, it can be concluded that, in general, a warming trend is discernible for the period 1960–2011, frost and thaw cycles slightly increase, and variations in mean temperatures are more important in the winter. Precipitation is more variable according to the site but, in general, precipitation is increasing with time, especially in the winter, and the snow cover does not seem to contain any discernible trend.

  1. Multiresponse semiparametric regression for modelling the effect of regional socio-economic variables on the use of information technology

    Science.gov (United States)

    Wibowo, Wahyu; Wene, Chatrien; Budiantara, I. Nyoman; Permatasari, Erma Oktania

    2017-03-01

    Multiresponse semiparametric regression is simultaneous equation regression model and fusion of parametric and nonparametric model. The regression model comprise several models and each model has two components, parametric and nonparametric. The used model has linear function as parametric and polynomial truncated spline as nonparametric component. The model can handle both linearity and nonlinearity relationship between response and the sets of predictor variables. The aim of this paper is to demonstrate the application of the regression model for modeling of effect of regional socio-economic on use of information technology. More specific, the response variables are percentage of households has access to internet and percentage of households has personal computer. Then, predictor variables are percentage of literacy people, percentage of electrification and percentage of economic growth. Based on identification of the relationship between response and predictor variable, economic growth is treated as nonparametric predictor and the others are parametric predictors. The result shows that the multiresponse semiparametric regression can be applied well as indicate by the high coefficient determination, 90 percent.

  2. Obesity and Overweight Among Brazilian Early Adolescents: Variability Across Region, Socioeconomic Status, and Gender

    Directory of Open Access Journals (Sweden)

    Chris Fradkin

    2018-04-01

    Full Text Available IntroductionAs with most emerging nations, Brazil lacks up-to-date data on the prevalence of obesity and overweight among its children. Of particular concern is the lack of data on children in early adolescence, considered by many to be the crucial stage for weight-related healthcare.ObjectiveTo assess regional, socioeconomic, and gender differences in the prevalence of obesity and overweight among Brazilian early adolescents.MethodsA cross-sectional study was conducted on a racially diverse sample of students aged 10–13 years, from schools in three geographic regions (north, northeast, south (N = 1,738. Data on gender, age, race, socioeconomic status (SES, weight, and height were obtained. Weight class was calculated from age- and gender-adjusted body mass index, based on children’s weight and height. Bivariate and multivariable analyses, with post hoc tests, were conducted to estimate differences between groups and were corrected for multiple comparisons. Procedures were approved by institutional review boards at study sites.ResultsAnalyses revealed a higher prevalence of obesity and/or overweight among: (1 children of higher SES; (2 children in southern Brazil; (3 males; and (4 Black females.ConclusionThe most salient predictor of weight risk among Brazilian early adolescents is higher SES. This finding is consistent with previous findings of an inverse social gradient, in weight risk, among emerging-nation population groups.

  3. Seasonal variability of planktonic copepods (Copepoda: Crustacea in a tropical estuarine region in Brazil

    Directory of Open Access Journals (Sweden)

    Cristina de Oliveira Dias

    2009-12-01

    Full Text Available The Caravelas River estuary and adjacent coastal region were studied during the rainy and dry seasons of 2003-2004 to assess the copepod community structure. Abiotic and biotic parameters were measured, and the total density, frequency and percentage of copepod taxa were determined for each sampling period. Copepod densities showed significant differences between sampling periods, with higher densities in the rainy seasons (Mean: 90,941.80 ind.m-3; S.D.: 26,364.79. The sampling stations located to the north and south, in the coastal region adjacent to the Caravelas River estuary presented the lowest copepod density values. The copepod assemblage was composed mainly of estuarine and estuarine/coastal copepods. The seasonal variations in temperature and salinity influenced the abundance of species during the rainy and dry seasons, with the following dominant species alternating: Paracalanus quasimodo Bowman, 1971 in the rainy season of 2003, Parvocalanus crassirostris Dahl, 1894 in the dry season of 2003 and Acartia lilljeborgii Giesbrecht, 1892 in the rainy and dry seasons of 2004. Non-parametric multidimensional scaling indicated differences in copepod assemblages between sampling periods, but not between sampling stations.

  4. ESA STSE Project “Sea Surface Temperature Diurnal Variability: Regional Extend – Implications in Atmospheric Modelling”

    DEFF Research Database (Denmark)

    Karagali, Ioanna

    of the vertical extend of diurnal signals. Drifting buoys provide measurements close to the surface but are not always available. Moored buoys are generally not able to resolve the daily SST signal, which strongly weakens with depth within the upper water column. For such reasons, the General Ocean Turbulence......, atmospheric and oceanic modelling, bio-chemical processes and oceanic CO2 studies. The diurnal variability of SST, driven by the coincident occurrence of low enough wind and solar heating, is currently not properly understood. Atmospheric, oceanic and climate models are currently not adequately resolving...... the daily SST variability, resulting in biases of the total heat budget estimates and therefore, demised model accuracies. The ESA STSE funded project SSTDV:R.EX.-IM.A.M. aimed at characterising the regional extend of diurnal SST signals and their impact in atmospheric modelling. This study will briefly...

  5. Regional potential radiological consequences and their variability of failtRe events in a reprocessing plant

    International Nuclear Information System (INIS)

    Paretzke, H.G.; Friedland, W.; Geiss, H.; Muller, H.; Prohl, G.

    1984-01-01

    A computer program system has been developed for best estimate assessments of radiological consequences of accidental atmospheric releases of radionuclides. Computerized data bases as realistic as possible have been established and used describing weather sequences, land topography and usage, human population density, yield of agricultural products, etc. Input from the complex atmospheric transport program MUSEMEI and from the food chain program ECOSYS is combined with the main program BAMBUS to calculate site specific probability distributions for individual and regional collective exposures as functions of the time of year of the release, spatial location, exposure pathway, etc. In this paper, the principles of the program system are described and examples are given for its application to a selected hypothetical failure event in a reprocessing plant

  6. The variability and forcing of currents within a frontal region off the northeast coast of England

    Science.gov (United States)

    Gmitrowicz, E. M.; Brown, J.

    1993-08-01

    During the summer of 1988 a collaborative experiment between the Ministry of Agriculture, Fisheries and Food (MAFF), the Proudman Oceanographic Laboratory (POL) and University College North Wales (UCNW) was undertaken to study the dynamics of a near-shore frontal region off the northeast coast of England. The experiment is one of the most intensive studies of the current structure of a shelf sea front undertaken. Currents were measured using an ocean surface current RADAR (OSCR), ship-borne ADCP, Lagrangian drifters and moored current meters. The current meter moorings held conventional meters at mid-depth and near the bed and S4 electromagnetic current meters near the surface. The mean, low frequency (Continental Shelf Research, 1, 191-207) with some deviations due to nearshore effects.

  7. Variability of atmospheric aerosols at urban, regional and continental backgrounds in the western mediterranean basin

    OpenAIRE

    Pérez Lozano, Noemí

    2010-01-01

    Descripció del recurs: el 14 de febrer de 2011 El estudio de los niveles y composición del material particulado atmosférico (PM) medido simultáneamente en diferentes ambientes a escala regional se llevó a cabo en la cuenca del Mediterráneo Occidental con el fin de entender las fuentes y patrones de transformación y transporte de aerosoles en esta zona. Para esto, la medida de niveles y caracterización química de PM10, PM2.5 y PM1 se llevó a cabo en tres estaciones de monitoreo: Montsec (MS...

  8. Regional differences in low birth weight in Spain: biological, demographic and socioeconomic variables.

    Science.gov (United States)

    Fuster, Vicente; Zuluaga, Pilar; Colantonio, S E; Román-Busto, J

    2015-01-01

    The geographic and demographic dimensions of Spain, in terms of surface and number of inhabitants, and its heterogeneous socioeconomic development offer an adequate opportunity to study the provincial differences in birth weight from 1996 to 2010, focusing on possible factors determining the relative frequency of low birth weight. The study analysed geographic differences with regard to biological, demographic and socioeconomic factors that interfere with the female reproductive pattern. The variables considered here were: birth order, proportion of premature deliveries, mother's age, multiparity, mother's country of origin and professional qualifications. Two periods (1996-2000 and 2006-2010) were compared by means of principal components analysis. An increase in the relative frequency of deliveries weighing less than 2500 g occurred in most of the 52 geographic units studied, differences being significant in 42. Only in five cases was there a non-significant reduction in the proportion of low weight births. The first component after principal component analysis indicated that low birth weight was positively related to maternal age and to multiple deliveries, and negatively to the mother's low professional qualification. The second component related positively to the incidence of premature deliveries and to non-Spanish status and negatively in the case of primiparous mothers. The progressive increase in low birth weight incidence observed in Spain from 1996 onwards has occurred with considerable variation in each province. In part, this diversity can be attributed to the unequal reproductive patterns of immigrant mothers.

  9. 1990-2016 surface solar radiation variability and trend over the Piedmont region (northwest Italy)

    Science.gov (United States)

    Manara, Veronica; Bassi, Manuela; Brunetti, Michele; Cagnazzi, Barbara; Maugeri, Maurizio

    2018-05-01

    A new surface solar radiation database of 74 daily series is set up for the Piedmont region (northwest Italy) for the 1990-2016 period. All the series are subjected to a detailed quality control, homogenization and gap-filling procedure and are transformed into relative annual/seasonal anomaly series. Finally, a gridded version (0.5°×0.5°) of the database is generated. The resulting series show an increasing tendency of about + 2.5% per decade at annual scale, with strongest trend in autumn (+ 4% per decade). The only exception is winter, showing a negative but not significant trend. Considering the plain and mountain mean series, the trends are more intense for low than for high elevations with a negative vertical gradient of about - 0.03% per decade per 100 m at annual scale and values up to - 0.07% per decade per 100 m in spring. Focusing on clear days only (selected by CM SAF ClOud fractional cover dataset from METeosat first and second generation—Edition 1 satellite data over the 1991-2015 period), trend significance strongly increases and both low and high elevation records exhibit a positive trend in all seasons. However, the trends result slightly lower than for all-sky days (with the only exception of winter). The differences observed under clear-sky conditions between low and high elevations are more pronounced in winter, where the trend shows a negative vertical gradient of about - 0.1% per decade every 100 m. Overall, this paper shows how a high station density allows performing a more detailed quality control thanks to the higher performances in detecting the inhomogeneities with higher data availability and capturing regional peculiarities otherwise impossible to observe.

  10. Influence of Indian summer monsoon variability on the surface waves in the coastal regions of eastern Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    SanilKumar, V.; Jesbin, G.

    –885, 2016 www.ann-geophys.net/34/871/2016/ doi:10.5194/angeo-34-871-2016 © Author(s) 2016. CC Attribution 3.0 License. Influence of Indian summer monsoon variability on the surface waves in the coastal regions of eastern Arabian Sea V. Sanil Kumar and Jesbin... of the period. The annual average value is ∼ 1.5 m (Anoop et al., 2015). During the non-monsoon period, the land and sea breeze has a signif- icant influence on the wave climate of eastern AS (Glejin Ann. Geophys., 34, 871–885, 2016 www.ann-geophys.net/34...

  11. Characteristic time series and operation region of the system of two tank reactors (CSTR) with variable division of recirculation stream

    International Nuclear Information System (INIS)

    Merta, Henryk

    2006-01-01

    The paper deals with a system of a cascade of two tank reactors, being characterized by the variable stream of recirculating fluid at each stage. The assumed mathematical model enables one to determine the system's dynamics for the case when there is no time delay and for the opposite case. The time series of the conversion degree and of the dimensionless fluid temperature, characteristic for the system considered as well as the operation regions-the latter-basing on Feingenbaum diagrams with respect to the division ratio of the recirculating stream are presented

  12. Genetic variability and health of Norway spruce stands in the Regional Directorate of the State Forests in Krosno

    Directory of Open Access Journals (Sweden)

    Gutkowska Justyna

    2017-03-01

    Full Text Available The study was conducted in 2015 in six spruce stands situated in different forest districts administratively belonging to the Regional Directorate of State Forests in Krosno. Each spruce population was represented by 30 trees and assessed in terms of their current health status. Genetic analyses were performed on shoot samples from each tree using nine nuclear DNA markers and one mitochondrial DNA marker (nad1. The health status of the trees was described according to the classification developed by Szczepkowski and Tarasiuk (2005 and the correlation between health classes and the level of genetic variability was computed with STATISTICA (α = 0.05.

  13. Meteo-marine parameters for highly variable environment in coastal regions from satellite radar images

    Science.gov (United States)

    Pleskachevsky, A. L.; Rosenthal, W.; Lehner, S.

    2016-09-01

    The German Bight of the North Sea is the area with highly variable sea state conditions, intensive ship traffic and with a high density of offshore installations, e.g. wind farms in use and under construction. Ship navigation and the docking on offshore constructions is impeded by significant wave heights HS > 1.3 m. For these reasons, improvements are required in recognition and forecasting of sea state HS in the range 0-3 m. Thus, this necessitates the development of new methods to determine the distribution of meteo-marine parameters from remote sensing data with an accuracy of decimetres for HS. The operationalization of these methods then allows the robust automatic processing in near real time (NRT) to support forecast agencies by providing validations for model results. A new empirical algorithm XWAVE_C (C = coastal) for estimation of significant wave height from X-band satellite-borne Synthetic Aperture Radar (SAR) data has been developed, adopted for coastal applications using TerraSAR-X (TS-X) and Tandem-X (TD-X) satellites in the German Bight and implemented into the Sea Sate Processor (SSP) for fully automatic processing for NRT services. The algorithm is based on the spectral analysis of subscenes and the model function uses integrated image spectra parameters as well as local wind information from the analyzed subscene. The algorithm is able to recognize and remove the influence of non-sea state produced signals in the Wadden Sea areas such as dry sandbars as well as nonlinear SAR image distortions produced by e.g. short wind waves and breaking waves. Also parameters of very short waves, which are not visible in SAR images and produce only unsystematic clutter, can be accurately estimated. The SSP includes XWAVE_C, a pre-filtering procedure for removing artefacts such as ships, seamarks, buoys, offshore constructions and slicks, and an additional procedure performing a check of results based on the statistics of the whole scene. The SSP allows an

  14. ROTATIONAL VARIABILITY OF EARTH'S POLAR REGIONS: IMPLICATIONS FOR DETECTING SNOWBALL PLANETS

    International Nuclear Information System (INIS)

    Cowan, Nicolas B.; Robinson, Tyler; Agol, Eric; Meadows, Victoria S.; Shields, Aomawa L.; Livengood, Timothy A.; Deming, Drake; A'Hearn, Michael F.; Wellnitz, Dennis D.; Charbonneau, David; Lisse, Carey M.; Seager, Sara

    2011-01-01

    We have obtained the first time-resolved, disk-integrated observations of Earth's poles with the Deep Impact spacecraft as part of the EPOXI mission of opportunity. These data mimic what we will see when we point next-generation space telescopes at nearby exoplanets. We use principal component analysis (PCA) and rotational light curve inversion to characterize color inhomogeneities and map their spatial distribution from these unusual vantage points, as a complement to the equatorial views presented by Cowan et al. in 2009. We also perform the same PCA on a suite of simulated rotational multi-band light curves from NASA's Virtual Planetary Laboratory three-dimensional spectral Earth model. This numerical experiment allows us to understand what sorts of surface features PCA can robustly identify. We find that the EPOXI polar observations have similar broadband colors as the equatorial Earth, but with 20%-30% greater apparent albedo. This is because the polar observations are most sensitive to mid-latitudes, which tend to be more cloudy than the equatorial latitudes emphasized by the original EPOXI Earth observations. The cloudiness of the mid-latitudes also manifests itself in the form of increased variability at short wavelengths in the polar observations and as a dominant gray eigencolor in the south polar observation. We construct a simple reflectance model for a snowball Earth. By construction, our model has a higher Bond albedo than the modern Earth; its surface albedo is so high that Rayleigh scattering does not noticeably affect its spectrum. The rotational color variations occur at short wavelengths due to the large contrast between glacier ice and bare land in those wavebands. Thus, we find that both the broadband colors and diurnal color variations of such a planet would be easily distinguishable from the modern-day Earth, regardless of viewing angle.

  15. Next-Generation Satellite Precipitation Products for Understanding Global and Regional Water Variability

    Science.gov (United States)

    Hou, Arthur Y.

    2011-01-01

    A major challenge in understanding the space-time variability of continental water fluxes is the lack of accurate precipitation estimates over complex terrains. While satellite precipitation observations can be used to complement ground-based data to obtain improved estimates, space-based and ground-based estimates come with their own sets of uncertainties, which must be understood and characterized. Quantitative estimation of uncertainties in these products also provides a necessary foundation for merging satellite and ground-based precipitation measurements within a rigorous statistical framework. Global Precipitation Measurement (GPM) is an international satellite mission that will provide next-generation global precipitation data products for research and applications. It consists of a constellation of microwave sensors provided by NASA, JAXA, CNES, ISRO, EUMETSAT, DOD, NOAA, NPP, and JPSS. At the heart of the mission is the GPM Core Observatory provided by NASA and JAXA to be launched in 2013. The GPM Core, which will carry the first space-borne dual-frequency radar and a state-of-the-art multi-frequency radiometer, is designed to set new reference standards for precipitation measurements from space, which can then be used to unify and refine precipitation retrievals from all constellation sensors. The next-generation constellation-based satellite precipitation estimates will be characterized by intercalibrated radiometric measurements and physical-based retrievals using a common observation-derived hydrometeor database. For pre-launch algorithm development and post-launch product evaluation, NASA supports an extensive ground validation (GV) program in cooperation with domestic and international partners to improve (1) physics of remote-sensing algorithms through a series of focused field campaigns, (2) characterization of uncertainties in satellite and ground-based precipitation products over selected GV testbeds, and (3) modeling of atmospheric processes and

  16. A ˜50 ka record of monsoonal variability in the Darjeeling foothill region, eastern Himalayas

    Science.gov (United States)

    Ghosh, Ruby; Bera, Subir; Sarkar, Anindya; Paruya, Dipak Kumar; Yao, Yi-Feng; Li, Cheng-Sen

    2015-04-01

    Pollen, phytoliths and δ 13C signatures of soil organic matter from two fluvial sedimentary sequences of the Darjeeling foothill region, eastern Himalayas are used to portray palaeoclimatic oscillations and their impact on regional plant communities over the last ˜50 ka. Quantitative palaeoclimate estimation using coexistence approach on pollen data and other proxies indicate significant oscillations in precipitation during the late part of MIS 3 (46.4-25.9 ka), early and middle part of MIS 2 (25.9-15.6 ka), and 5.4 to 3.5 ka. Middle to late MIS 3 (ca 46.4-31 ka.) was characterized by a comparatively low monsoonal activity and slightly higher temperature than that during ca 31 ka onwards. Simultaneous expansion of deciduous trees and chloridoid grasses also imply a drier and warmer phase. Between 31 and 22.3 ka (late MIS 3 to mid-MIS 2), higher precipitation and a slightly cooler temperature led to an increase in evergreen elements over deciduous taxa and wet-loving panicoid grasses over dry-loving chloridoid grasses than earlier. After ca 22.3 ka, shrinking of forest cover, expansion of C4 chloridoid grasses, Asteraceae and Cheno-ams in the vegetation with lowering of temperature and precipitation characterized the onset of the LGM which continued till 18.3 ka. End of the LGM is manifested by a restoration in the forest cover and in the temperature and precipitation regime. Later, during 5.4 to 4.3 ka, a strong monsoonal activity supported a dense moist evergreen forest cover that subsequently declined during 4.3 to 3.5 ka. A further increase in deciduous elements and non-arboreals might be a consequence of reduced precipitation and higher temperature during this phase. A comparison between monsoonal rainfall, MAT and palaeoatmospheric CO2 with floral dynamics since last ˜50 ka indicates that these fluctuations in plant succession were mainly driven by monsoonal variations.

  17. Functional Versatility of AGY Serine Codons in Immunoglobulin Variable Region Genes

    Directory of Open Access Journals (Sweden)

    Thiago Detanico

    2016-11-01

    Full Text Available In systemic autoimmunity, autoantibodies directed against nuclear antigens (Ag often arise by somatic hypermutation (SHM that converts AGT and AGC (AGY Ser codons into Arg codons. This can occur by three different single-base changes. Curiously, AGY Ser codons are far more abundant in complementarity-determining regions (CDRs of IgV-region genes than expected for random codon use or from species-specific codon frequency data. CDR AGY codons are also more abundant than TCN Ser codons. We show that these trends hold even in cartilaginous fishes. Because AGC is a preferred target for SHM by activation-induced cytidine deaminase (AID, we asked whether the AGY abundance was solely due to a selection pressure to conserve high mutability in CDRs regardless of codon context but found that this was not the case. Instead, AGY triplets were selectively enriched in the Ser codon reading frame. Motivated by reports implicating a functional role for poly/autoreactive specificities in anti-viral antibodies, we also analyzed mutations at AGY in antibodies directed against a number of different viruses, and found that mutations producing Arg codons in anti-viral antibodies were indeed frequent. Unexpectedly, however, we also found that AGY codons mutated often to encode nearly all of the amino acids that are reported to provide the most frequent contacts with antigen (Ag. In many cases, mutations producing codons for these alternative amino acids in anti-viral antibodies were more frequent than those producing Arg codons. Mutations producing each of these key amino acids required only single-base changes in AGY. AGY is the only codon group in which 2/3rds of random mutations generate codons for these key residues. Finally, by directly analyzing x-ray structures of immune complexes from the RCSB protein database, we found that Ag-contact residues generated via somatic hypermutation occurred more often at AGY than at any other codon group. Thus, preservation of

  18. ASSESSING GLOBAL CLIMATE VARIABILITY UNDER COLDEST AND WARMEST PERIODS AT DIFFERENT LATITUDINAL REGIONS

    Directory of Open Access Journals (Sweden)

    Eleonora Runtunuwu

    2016-10-01

    Full Text Available Effect of climate change on water balance will play a key role in the biosphere system. To study the global climate change impact on water balance during 95-year period (1901-1995, long-term grid climatic data including global mean monthly temperature and precipitation at 0.5 x 0.5 degree resolution were analysed. The trend and variation of climate change, the time series of monthly air temperature and precipitation data were aggregated into annual arithmetic means for two extreme periods (1901-1920 and 1990-1995. The potential evapotranspiration (Eo was calculated using Thornthwaite method.The changes in mean annual value were obtained by subtracting the maximum period data from 1990 to 1995 (Max with the minimum period data from 1901 to 1920 (Min. The results revealed that over 95-year period, mean global air temperature increased by 0.57oC. The temperature increase varied greatly in Asia, with more than 3.0oC, especially at 45-70oN, as well over the northern part of America (60-65oN and Europe (55- 75oN. In low latitude across Asia, Africa, and South America, the variation was less than 1.5oC. In 80-85ºN region, the variation was relatively small and at higher latitudes it increasedsignificantly. Precipitation varied temporally and spatially. In the 40-45ºN and 40-45ºS regions, increasing precipitation of more than 100 mm occurred during the June-August andSeptember-November, especially in the northern hemisphere. The Eo increase of 2000 mm during 95 years occurred in the tropical northern America, middle Africa, and South-East Asia. A grid in Central Java of Indonesia showed that the Eo increase of 2500 mm during 95 years resulted in the decrease of growing period by 100 days. In coping with climate change, adjustment of cropping calendar is imperative.

  19. Intra-seasonal and Inter-annual variability of Bowen Ratio over rain-shadow region of North peninsular India

    Science.gov (United States)

    Morwal, S. B.; Narkhedkar, S. G.; Padmakumari, B.; Maheskumar, R. S.; Deshpande, C. G.; Kulkarni, J. R.

    2017-05-01

    Intra-seasonal and inter-annual variability of Bowen Ratio (BR) have been studied over the rain-shadow region of north peninsular India during summer monsoon season. Daily grid point data of latent heat flux (LHF), sensible heat flux (SHF) from NCEP/NCAR Reanalysis for the period 1970-2014 have been used to compute daily area-mean BR. Daily grid point rainfall data at a resolution of 0.25° × 0.25° from APHRODITE's Water Resources for the available period 1970-2007 have been used to study the association between rainfall and BR. The study revealed that BR rapidly decreases from 4.1 to 0.29 in the month of June and then remains nearly constant at the same value (≤0.1) in the rest of the season. High values of BR in the first half of June are indicative of intense thermals and convective clouds with higher bases. Low values of BR from July to September period are indicative of weak thermals and convective clouds with lower bases. Intra-seasonal and inter-annual variability of BR is found to be inversely related to precipitation over the region. BR analysis indicates that the land surface characteristics of the study region during July-September are similar to that over oceanic regions as far as intensity of thermals and associated cloud microphysical properties are concerned. Similar variation of BR is found in El Nino and La Nina years. During June, an increasing trend is observed in SHF and BR and decreasing trend in LHF from 1976 to 2014. Increasing trend in the SHF is statistically significant.

  20. Biological and Molecular Variability of Alfalfa mosaic virus Affecting Alfalfa Crop in Riyadh Region

    Directory of Open Access Journals (Sweden)

    Mohammed A. AL-Saleh

    2013-12-01

    Full Text Available In 2011–2012, sixty nine samples were collected from alfalfa plants showing viral infection symptoms in Riyadh region. Mechanical inoculation with sap prepared from two collected samples out of twenty five possitive for Alfalfa mosaic virus (AMV by ELISA were produced systemic mosaic on Vigna unguiculata and Nicotiana tabacum, local lesion on Chenopodium amaranticolor and C. quinoa. Vicia faba indicator plants that induce mosaic and mottle with AMV-Sagir isolate and no infection with AMV-Wadi aldawasser isolate. Approximately 700-bp was formed by RT-PCR using AMV coat protein specific primer. Samples from infected alfalfa gave positive results, while healthy plant gave negative result using dot blot hybridization assay. The nucleotide sequences of the Saudi isolates were compared with corresponding viral nucleotide sequences reported in GenBank. The obtained results showed that the AMV from Australia, Brazil, Puglia and China had the highest similarity with AMV-Sajer isolate. While, the AMV from Spain and New Zealaland had the lowest similarity with AMV-Sajer and Wadi aldawasser isolates. The data obtained in this study has been deposited in the GenBank under the accession numbers KC434083 and KC434084 for AMV-Sajer and AMV- Wadialdawasser respectively. This is the first report regarding the gnetic make up of AMV in Saudi Arabia.

  1. Genetic variability and population structure of Plasmodium falciparum parasite populations from different malaria ecological regions of Kenya.

    Science.gov (United States)

    Ingasia, Luicer A; Cheruiyot, Jelagat; Okoth, Sheila Akinyi; Andagalu, Ben; Kamau, Edwin

    2016-04-01

    Transmission intensity, movement of human and vector hosts, biogeographical features, and malaria control measures are some of the important factors that determine Plasmodium falciparum parasite genetic variability and population structure. Kenya has different malaria ecologies which might require different disease intervention methods. Refined parasite population genetic studies are critical for informing malaria control and elimination strategies. This study describes the genetic diversity and population structure of P. falciparum parasites from the different malaria ecological zones in Kenya. Twelve multi-locus microsatellite (MS) loci previously described were genotyped in 225 P. falciparum isolates collected between 2012 and 2013 from five sites; three in lowland endemic regions (Kisumu, Kombewa, and Malindi) and two in highland, epidemic regions (Kisii and Kericho). Parasites from the lowland endemic and highland epidemic regions of western Kenya had high genetic diversity compared to coastal lowland endemic region of Kenya [Malindi]. The Kenyan parasites had a mean genetic differentiation index (FST) of 0.072 (p=0.011). The multi-locus genetic analysis of the 12 MS revealed all the parasites had unique haplotypes. Significant linkage disequilibrium (LD) was observed in all the five parasite populations. Kisumu had the most significant index of association values (0.16; pKenya after introduction of the artemether-lumefantrine is important in refining the spread of drug resistant strains and malaria transmission for more effective control and eventual elimination of malaria in Kenya. Copyright © 2015. Published by Elsevier B.V.

  2. Protection against syphilis correlates with specificity of antibodies to the variable regions of Treponema pallidum repeat protein K.

    Science.gov (United States)

    Morgan, Cecilia A; Lukehart, Sheila A; Van Voorhis, Wesley C

    2003-10-01

    Syphilis has been recognized as a disease since the late 1400s, yet there is no practical vaccine available. One impediment to the development of a vaccine is the lack of understanding of multiple reinfections in humans despite the development of robust immune responses during the first episode. It has been shown that the Treponema pallidum repeat protein K (TprK) differs in seven discrete variable (V) regions in isolates and that the antibody response during infection is directed to these V regions. Immunization with TprK confers significant protection against infection with the homologous strain. We hypothesize that the antigenic diversity of TprK is involved in immune evasion, which contributes to the lack of heterologous protection. Here, using the rabbit model, we show a correlation between limited heterologous protection and tprK diversity in the challenge inoculum. We demonstrate that antibody responses to the V regions of one TprK molecule show limited cross-reactivity with heterologous TprK V regions.

  3. Temporal Variability and Characterization of Aerosols across the Pakistan Region during the Winter Fog Periods

    Directory of Open Access Journals (Sweden)

    Muhammad Fahim Khokhar

    2016-05-01

    Full Text Available Fog is a meteorological/environmental phenomenon which happens across the Indo-Gangetic Plains (IGP and leads to significant social and economic problems, especially posing significant threats to public health and causing disruptions in air and road traffic. Meteorological stations in Pakistan provide limited information regarding fog episodes as these provide only point observations. Continuous monitoring, as well as a spatially coherent picture of fog distribution, is possible through the use of satellite observations. This study focuses on the 2012–2015 winter fog episodes over the Pakistan region using the Moderate Resolution Image Spectrometer (MODIS, the Ozone Monitoring Instrument and the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO products. The main objective of the study was to map the spatial distribution of aerosols, their types, and to identify the aerosol origins during special weather conditions like fog in Pakistan. The study also included ground monitoring of particulate matter (PM concentrations, which were conducted during the 2014–2015 winter period only. Overall, this study is part of a multi-country project supported by the International Centre for Integrated Mountain Development (ICIMOD, started in 2014–2015 winter period, whereby scientists from Bangladesh, India and Nepal have also conducted measurements at their respective sites. A significant correlation between MODIS (AOD and AERONET Station (AOD data from Lahore was identified. Mass concentration of PM10 at all sampling sites within Lahore city exceeded the National Environmental Quality Standards (NEQS levels on most of the occasions. Smoke and absorbing aerosol were found to be major constituents of winter fog in Pakistan. Furthermore, an extended span of winter fog was also observed in Lahore city during the winter of 2014–2015. The Vertical Feature Mask (VFM provided by CALIPSO satellite confirmed the low-lying aerosol

  4. Interaction between the tidal and seasonal variability of the Gulf of Maine and Scotian Shelf region

    Science.gov (United States)

    Katavouta, Anna; Thompson, Keith; Lu, Youyu; Loder, John

    2017-04-01

    In the Gulf of Maine and Scotian Shelf (off the northeastern coast of North America) tides are large and can alter the local hydrographic properties, circulation, and sea surface height through processes such as tidal rectification, mixing, and horizontal advection. Furthermore, the stratification of the water column can influence tidal elevation and currents over the shelves (e.g., baroclinic tides). To investigate this interaction, a newly developed high resolution (1/36 degree) regional circulation model is used (GoMSS model). First, numerical experiments with and without density stratification are used to demonstrate the influence of stratification on the tides. GoMSS model is then used to interpret the physical mechanisms responsible for the largest seasonal variations in the M2 surface current which occur over, and to the north of, Georges Bank. An alternating pattern of highs and lows in the summer maximum M2 surface speed in the Gulf of Maine is identified, for the first time, in both the model output and observations by a high frequency coastal radar system. This pattern consists of extended striations in tidal speed aligned with the northern flank of Georges Bank that separates the Gulf of Maine from the North Atlantic. The striations are explained in terms of a linear superposition of the barotropic tide flowing across the northern flank of Georges Bank and the reflected, phase-locked baroclinic tide. The striations have amplitudes of about 0.1 m/s and longitudinal length scales of order 100 km, and are thus of practical significance.

  5. Predominant enteropathogens in acute diarrhea and associated variables in children at the Lambayeque Regional Hospital, Peru

    Directory of Open Access Journals (Sweden)

    Heber Silva-Díaz

    2017-01-01

    Full Text Available Objective: To determine the type and frequency of predominant enteropathogens in acute diarrhea and their associated characteristics in children treated at Hospital Regional Lambayeque (HRL - Peru. Materials and methods: A cross-sectional analytical study was carried out in 70 fecal samples between March and May 2015. These samples were studied by coproculture and immunochromatography for the detection of enteropathogenic bacteria and viruses, respectively, while enteroparasites were sought by direct microscopic examination, Kinyoun staining method and ELISA for the detection of coproantigens (Entamoeba histolytica, Giardia lamblia and Cryptosporidium spp. Leukocyte count and chemical tests (Benedict, Thevenon and Sudan III were also performed for the functional study of the diarrheal disease. Results: In 48.6% of the samples, the infectious etiology of diarrhea was detected, prevailing the parasitic cause (25.8%, followed by the bacterial (17.1% and viral (5.8% ones. The most common enteropathogens were G. lamblia (18.6% and Salmonella enteritidis (10.0%. An association between greater than 100 fecal leukocytes per field and the bacterial etiology (p=0.027 was observed, while less than 10 fecal leukocytes per field (p=0.002 and a positive Sudam III test (p=0.003 were associated with the parasitic etiology. Conclusions: In more than half of the samples (51.4% the infectious etiology of diarrhea could not be proven, whereas Giardia lamblia was the most frequent cause of diarrhea in the studied population. However, it is necessary to implement more sensitive and specific techniques for the detection of a greater range of enteropathogens with which to improve the diagnosis and treatment of the disease

  6. Cerebral perfusion computerized tomography: influence of reference vessels, regions of interest and interobserver variability

    International Nuclear Information System (INIS)

    Soustiel, Jean F.; Mor, Nadav; Zaaroor, Menashe; Goldsher, Dorith

    2006-01-01

    There are still no standardized guidelines for perfusion computerized tomography (PCT) analysis. A total of 61 PCT studies were analyzed using either the anterior cerebral artery (ACA) or the middle cerebral artery (MCA) as the arterial reference, and the superior sagittal sinus (SSS) or the vein of Galen (VG) as the venous reference. The sizes of regions of interest (ROI) were investigated comparing PCT results obtained using a hemispheric ROI combined with vascular pixel elimination with those obtained using five smaller ROIs located over the cortex and basal ganglia. In addition, interobserver variations were explored using a standardized protocol. MCA-based measurements of cerebral blood flow (CBF) and blood volume (CBV) were in accordance with those obtained with the ACA except in 16 patients with ischemic stroke, in whom CBF was overestimated by the ipsilateral MCA. Venous maximal intensity was significantly lower with the VG when compared with the SSS, resulting in overestimation of CBF and CBV. However, in 13.3% of patients the VG ROI yielded higher maximal intensities than the SSS ROI. There was no difference in PCT results between hemispheric ROI and averaged separate ROI when vascular pixel elimination was used. Finally, interobserver variations were as high as 11% for CBF and 12% for CBV. The present results suggest that pathological rather than anatomical considerations should dictate the choice of the arterial ROI. For venous ROI, although SSS seems to be adequate in most instances, deep cerebral veins may occasionally generate higher maximal intensities and should therefore be selected. Importantly, significant user-dependency should be taken into account. (orig.)

  7. Spatial and Temporal Variability of Some of Heavy Metals in Aerosols of Lenjanat Region, Esfahan

    Directory of Open Access Journals (Sweden)

    N. Namazi

    2016-02-01

    Full Text Available Introduction: Heavy metals released from stationaryand mobile origins can be transported in water, air and soil and can be even absorbed by plants, animals and human bodies. Trace elements are currently of great environmental concern. Nowadays, one of the most important environmental problems is pollution of agricultural soils occurs by heavy metals due to human activities. Atmospheric subsidence is one of the main sources of these elements which can result from industrial activities, fertilizers, sewage sludge, compost and pesticides. Heavy metals mapping of the atmosphere dusts indicates the status of pollution and its intensity in industrial regions. This information can also be used as a guideline for better management and pollution control. This study was performed to investigate the spatial and temporal availability of heavy metals in atmospheric dusts of Lenjanat region, Isfahan where agricultural land is extensively surrounded by industrial activities like steel making factory (Esfahan, cement making factory (Sepahan and Esfahan and Bamalead mine. Materials and Methods: Sampling was done from 60 points with the same altitude(three to six meters from the groundand their location was recorded by GPS. Glass traps (1×1 m2 covered by plastic mesh (2 × 2 cmvents were used to trap the dusts for four seasons of the year. Collected dust samples were passed through a 200 mm mesh screen size and the total weight of the dusts and the heavy metals content of Cd, Zn, Cu, Ni and Pbwere determined(with HNO3 60%. Data analysis was performed using Statistical 6.0 software. Analysis of spatial data via variogram was calculated and performed using Variowin, 2.2 software packages. After determination of the best fitting model, kriged maps of the total concentration of heavy metals were prepared by Surfer 8 software. Results and Discussion: The average concentrations of Zn, Pb and Cd in dust in most parts of the study area were much higher than the soil

  8. Variability of hepatitis C virus hypervariable region 1 (HVR-1) during the early phase of pegylated interferon and ribavirin therapy.

    Science.gov (United States)

    Caraballo Cortés, K; Laskus, T; Bukowska-Ośko, I; Pawełczyk, A; Berak, H; Horban, A; Fic, M; Radkowski, M

    2012-01-01

    Genetic variability of hepatitis C virus (HCV) is considered to be an important factor defining viral pathogenesis, persistence and resistance to treatment. The aim of the present study was to characterize HCV genetic heterogeneity within a hypervariable region 1 (HVR-1) before and during the early period of pegylated interferon alfa (PEG-IFN-α) and ribavirin treatment in correlation with treatment outcome. The study involved 24 patients treated with PEG-IFN-α and ribavirin whose sera were collected before (baseline) and at 7, 14, 21 28 and 56 day of treatment. HCV HVR-1 region was amplified by nested RT- PCR and subjected to SSCP (single strand conformational polymorphism) analysis. SSCP changes of HCV HVR-1 over time in each patient were compared to treatment outcome results. In 2/11 (18%) SVR+ and 8/13 (62%) SVR- treated patients, HVR-1 genetic changes manifested by new SSCP bands (new genetic variants) and were significantly more frequent in nonresponders (P HVR-1 variability during the early phase of PEG-IFN-α and ribavirin therapy may be predictive of treatment outcome.

  9. Suppression of Aggrus/podoplanin-induced platelet aggregation and pulmonary metastasis by a single-chain antibody variable region fragment

    International Nuclear Information System (INIS)

    Miyata, Kenichi; Takagi, Satoshi; Sato, Shigeo; Morioka, Hiroshi; Shiba, Kiyotaka; Minamisawa, Tamiko; Takami, Miho; Fujita, Naoya

    2014-01-01

    Almost all highly metastatic tumor cells possess high platelet aggregating abilities, thereby form large tumor cell-platelet aggregates in the microvasculature. Embolization of tumor cells in the microvasculature is considered to be the first step in metastasis to distant organs. We previously identified the platelet aggregation-inducing factor expressed on the surfaces of highly metastatic tumor cells and named as Aggrus. Aggrus was observed to be identical to the marker protein podoplanin (alternative names, T1α, OTS-8, and others). Aggrus is frequently overexpressed in several types of tumors and enhances platelet aggregation by interacting with the platelet receptor C-type lectin-like receptor 2 (CLEC-2). Here, we generated a novel single-chain antibody variable region fragment (scFv) by linking the variable regions of heavy and light chains of the neutralizing anti-human Aggrus monoclonal antibody MS-1 with a flexible peptide linker. Unfortunately, the generated KM10 scFv failed to suppress Aggrus-induced platelet aggregation in vitro. Therefore, we performed phage display screening and finally obtained a high-affinity scFv, K-11. K-11 scFv was able to suppress Aggrus-induced platelet aggregation in vitro. Moreover, K-11 scFv prevented the formation of pulmonary metastasis in vivo. These results suggest that K-11 scFv may be useful as metastasis inhibitory scFv and is expected to aid in the development of preclinical and clinical examinations of Aggrus-targeted cancer therapies

  10. Collaborative Proposal: Improving Decadal Prediction of Arctic Climate Variability and Change Using a Regional Arctic System Model (RASM)

    Energy Technology Data Exchange (ETDEWEB)

    Maslowski, Wieslaw [Naval Postgraduate School, Monterey, CA (United States)

    2016-10-17

    This project aims to develop, apply and evaluate a regional Arctic System model (RASM) for enhanced decadal predictions. Its overarching goal is to advance understanding of the past and present states of arctic climate and to facilitate improvements in seasonal to decadal predictions. In particular, it will focus on variability and long-term change of energy and freshwater flows through the arctic climate system. The project will also address modes of natural climate variability as well as extreme and rapid climate change in a region of the Earth that is: (i) a key indicator of the state of global climate through polar amplification and (ii) which is undergoing environmental transitions not seen in instrumental records. RASM will readily allow the addition of other earth system components, such as ecosystem or biochemistry models, thus allowing it to facilitate studies of climate impacts (e.g., droughts and fires) and of ecosystem adaptations to these impacts. As such, RASM is expected to become a foundation for more complete Arctic System models and part of a model hierarchy important for improving climate modeling and predictions.

  11. High-resolution spatial databases of monthly climate variables (1961-2010) over a complex terrain region in southwestern China

    Science.gov (United States)

    Wu, Wei; Xu, An-Ding; Liu, Hong-Bin

    2015-01-01

    Climate data in gridded format are critical for understanding climate change and its impact on eco-environment. The aim of the current study is to develop spatial databases for three climate variables (maximum, minimum temperatures, and relative humidity) over a large region with complex topography in southwestern China. Five widely used approaches including inverse distance weighting, ordinary kriging, universal kriging, co-kriging, and thin-plate smoothing spline were tested. Root mean square error (RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE) showed that thin-plate smoothing spline with latitude, longitude, and elevation outperformed other models. Average RMSE, MAE, and MAPE of the best models were 1.16 °C, 0.74 °C, and 7.38 % for maximum temperature; 0.826 °C, 0.58 °C, and 6.41 % for minimum temperature; and 3.44, 2.28, and 3.21 % for relative humidity, respectively. Spatial datasets of annual and monthly climate variables with 1-km resolution covering the period 1961-2010 were then obtained using the best performance methods. Comparative study showed that the current outcomes were in well agreement with public datasets. Based on the gridded datasets, changes in temperature variables were investigated across the study area. Future study might be needed to capture the uncertainty induced by environmental conditions through remote sensing and knowledge-based methods.

  12. Regional variability of grassland CO2 fluxes in Tyrol/Austria

    Science.gov (United States)

    Irschick, Christoph; Hammerle, Albin; Haslwanter, Alois; Wohlfahrt, Georg

    2010-05-01

    ecosystem respiration (RECO), (ii) GPP depended mainly on the amount of incident photosynthetically active radiation and the amount of green plant matter, the scale of influence of these two factors varying fourfold between the sites, and not so much on the available water, (iii) RECO was mainly affected by the soil temperature, but some evidence for priming effects was also found, (iv) the NEE was mainly influenced by GPP and to a lower extent by RECO. Taken together our results indicate that even within the same ecosystem type exposed to similar climate and land use, site selection may strongly affect the resulting NEE estimates. References: [1] D.D. Baldocchi, "Breathing of the terrestrial biosphere: lessons learned from a global network of carbon dioxide flux measurement systems", Australian Journal of Botany vol.56 (2008) pp. 1-26. [2] A. Hammerle, A. Haslwanter, U. Tappeiner, A. Cernusca, G. Wohlfahrt, "Leaf area controls on energy partitioning of a temperate mountain grassland", Biogeosciences vol.5 (2008) pp. 421 431. [3] G. Wohlfahrt, A. Hammerle, A. Haslwanter, M. Bahn, U. Tappeiner, A. Cernusca, "Seasonal and inter-annual variability of the net ecosystem CO2 exchange of a temperate mountain grassland: effects of weather and management", Journal of Geophysical Research 113 (2008) D08110, doi:10.1029/2007JD009286.

  13. Interannual Variability of Regional Hadley Circulation Intensity Over Western Pacific During Boreal Winter and Its Climatic Impact Over Asia-Australia Region

    Science.gov (United States)

    Huang, Ruping; Chen, Shangfeng; Chen, Wen; Hu, Peng

    2018-01-01

    This study investigates interannual variability of boreal winter regional Hadley circulation over western Pacific (WPHC) and its climatic impacts. A WPHC intensity index (WPHCI) is defined as the vertical shear of the divergent meridional winds. It shows that WPHCI correlates well with the El Niño-Southern Oscillation (ENSO). To investigate roles of the ENSO-unrelated part of WPHCI (WPHCIres), variables that are linearly related to the Niño-3 index have been removed. It reveals that meridional sea surface temperature gradient over the western Pacific plays an essential role in modulating the WPHCIres. The climatic impacts of WPHCIres are further investigated. Below-normal (above-normal) precipitation appears over south China (North Australia) when WPHCIres is stronger. This is due to the marked convergence (divergence) anomalies at the upper troposphere, divergence (convergence) at the lower troposphere, and the accompanied downward (upward) motion over south China (North Australia), which suppresses (enhances) precipitation there. In addition, a pronounced increase in surface air temperature (SAT) appears over south and central China when WPHCIres is stronger. A temperature diagnostic analysis suggests that the increase in SAT tendency over central China is primarily due to the warm zonal temperature advection and subsidence-induced adiabatic heating. In addition, the increase in SAT tendency over south China is primarily contributed by the warm meridional temperature advection. Further analysis shows that the correlation of WPHCIres with the East Asian winter monsoon (EAWM) is weak. Thus, this study may provide additional sources besides EAWM and ENSO to improve understanding of the Asia-Australia climate variability.

  14. OptMAVEn--a new framework for the de novo design of antibody variable region models targeting specific antigen epitopes.

    Directory of Open Access Journals (Sweden)

    Tong Li

    Full Text Available Antibody-based therapeutics provides novel and efficacious treatments for a number of diseases. Traditional experimental approaches for designing therapeutic antibodies rely on raising antibodies against a target antigen in an immunized animal or directed evolution of antibodies with low affinity for the desired antigen. However, these methods remain time consuming, cannot target a specific epitope and do not lead to broad design principles informing other studies. Computational design methods can overcome some of these limitations by using biophysics models to rationally select antibody parts that maximize affinity for a target antigen epitope. This has been addressed to some extend by OptCDR for the design of complementary determining regions. Here, we extend this earlier contribution by addressing the de novo design of a model of the entire antibody variable region against a given antigen epitope while safeguarding for immunogenicity (Optimal Method for Antibody Variable region Engineering, OptMAVEn. OptMAVEn simulates in silico the in vivo steps of antibody generation and evolution, and is capable of capturing the critical structural features responsible for affinity maturation of antibodies. In addition, a humanization procedure was developed and incorporated into OptMAVEn to minimize the potential immunogenicity of the designed antibody models. As case studies, OptMAVEn was applied to design models of neutralizing antibodies targeting influenza hemagglutinin and HIV gp120. For both HA and gp120, novel computational antibody models with numerous interactions with their target epitopes were generated. The observed rates of mutations and types of amino acid changes during in silico affinity maturation are consistent with what has been observed during in vivo affinity maturation. The results demonstrate that OptMAVEn can efficiently generate diverse computational antibody models with both optimized binding affinity to antigens and reduced

  15. Characteristics of aggregation of daily rainfall in a middle-latitudes region during a climate variability in annual rainfall amount

    Science.gov (United States)

    Lucero, Omar A.; Rozas, Daniel

    Climate variability in annual rainfall occurs because the aggregation of daily rainfall changes. A topic open to debate is whether that change takes place because rainfall becomes more intense, or because it rains more often, or a combination of both. The answer to this question is of interest for water resources planning, hydrometeorological design, and agricultural management. Change in the number of rainy days can cause major disruptions in hydrological and ecological systems, with important economic and social effects. Furthermore, the characteristics of daily rainfall aggregation in ongoing climate variability provide a reference to evaluate the capability of GCM to simulate changes in the hydrologic cycle. In this research, we analyze changes in the aggregation of daily rainfall producing a climate positive trend in annual rainfall in central Argentina, in the southern middle-latitudes. This state-of-the-art agricultural region has a semiarid climate with dry and wet seasons. Weather effects in the region influence world-market prices of several crops. Results indicate that the strong positive trend in seasonal and annual rainfall amount is produced by an increase in number of rainy days. This increase takes place in the 3-month periods January-March (summer) and April-June (autumn). These are also the 3-month periods showing a positive trend in the mean of annual rainfall. The mean of the distribution of annual number of rainy day (ANRD) increased in 50% in a 36-year span (starting at 44 days/year). No statistically significant indications on time changes in the probability distribution of daily rainfall amount were found. Non-periodic fluctuations in the time series of annual rainfall were analyzed using an integral wavelet transform. Fluctuations with a time scale of about 10 and 20 years construct the trend in annual rainfall amount. These types of non-periodic fluctuations have been observed in other regions of the world. This suggests that results of

  16. Variability in the sensitivity among model simulations of permafrost and carbon dynamics in the permafrost region between 1960 and 2009

    Science.gov (United States)

    McGuire, A. David; Koven, Charles; Lawrence, David M.; Clein, Joy S.; Xia, Jiangyang; Beer, Christian; Burke, Eleanor J.; Chen, Guangsheng; Chen, Xiaodong; Delire, Christine; Jafarov, Elchin; MacDougall, Andrew H.; Marchenko, Sergey S.; Nicolsky, Dmitry J.; Peng, Shushi; Rinke, Annette; Saito, Kazuyuki; Zhang, Wenxin; Alkama, Ramdane; Bohn, Theodore J.; Ciais, Philippe; Decharme, Bertrand; Ekici, Altug; Gouttevin, Isabelle; Hajima, Tomohiro; Hayes, Daniel J.; Ji, Duoying; Krinner, Gerhard; Lettenmaier, Dennis P.; Luo, Yiqi; Miller, Paul A.; Moore, John C.; Romanovsky, Vladimir; Schädel, Christina; Schaefer, Kevin; Schuur, Edward A.G.; Smith, Benjamin; Sueyoshi, Tetsuo; Zhuang, Qianlai

    2016-01-01

    A significant portion of the large amount of carbon (C) currently stored in soils of the permafrost region in the Northern Hemisphere has the potential to be emitted as the greenhouse gases CO2and CH4 under a warmer climate. In this study we evaluated the variability in the sensitivity of permafrost and C in recent decades among land surface model simulations over the permafrost region between 1960 and 2009. The 15 model simulations all predict a loss of near-surface permafrost (within 3 m) area over the region, but there are large differences in the magnitude of the simulated rates of loss among the models (0.2 to 58.8 × 103 km2 yr−1). Sensitivity simulations indicated that changes in air temperature largely explained changes in permafrost area, although interactions among changes in other environmental variables also played a role. All of the models indicate that both vegetation and soil C storage together have increased by 156 to 954 Tg C yr−1between 1960 and 2009 over the permafrost region even though model analyses indicate that warming alone would decrease soil C storage. Increases in gross primary production (GPP) largely explain the simulated increases in vegetation and soil C. The sensitivity of GPP to increases in atmospheric CO2 was the dominant cause of increases in GPP across the models, but comparison of simulated GPP trends across the 1982–2009 period with that of a global GPP data set indicates that all of the models overestimate the trend in GPP. Disturbance also appears to be an important factor affecting C storage, as models that consider disturbance had lower increases in C storage than models that did not consider disturbance. To improve the modeling of C in the permafrost region, there is the need for the modeling community to standardize structural representation of permafrost and carbon dynamics among models that are used to evaluate the permafrost C feedback and for the modeling and observational communities to

  17. Immunoglobulin Heavy Chain Variable Region and Major Histocompatibility Region Genes Are Linked to Induced Graves' Disease in Females From Two Very Large Families of Recombinant Inbred Mice

    Science.gov (United States)

    Aliesky, Holly; Banuelos, Bianca; Magana, Jessica; Williams, Robert W.; Rapoport, Basil

    2014-01-01

    Graves' hyperthyroidism is caused by antibodies to the TSH receptor (TSHR) that mimic thyroid stimulation by TSH. Stimulating TSHR antibodies and hyperthyroidism can be induced by immunizing mice with adenovirus expressing the human TSHR A-subunit. Prior analysis of induced Graves' disease in small families of recombinant inbred (RI) female mice demonstrated strong genetic control but did not resolve trait loci for TSHR antibodies or elevated serum T4. We investigated the genetic basis for induced Graves' disease in female mice of two large RI families and combined data with earlier findings to provide phenotypes for 178 genotypes. TSHR antibodies measured by inhibition of TSH binding to its receptor were highly significantly linked in the BXD set to the major histocompatibility region (chromosome 17), consistent with observations in 3 other RI families. In the LXS family, we detected linkage between T4 levels after TSHR-adenovirus immunization and the Ig heavy chain variable region (Igvh, chromosome 12). This observation is a key finding because components of the antigen binding region of Igs determine antibody specificity and have been previously linked to induced thyroid-stimulating antibodies. Data from the LXS family provide the first evidence in mice of a direct link between induced hyperthyroidism and Igvh genes. A role for major histocompatibility genes has now been established for genetic susceptibility to Graves' disease in both humans and mice. Future studies using arrays incorporating variation in the complex human Ig gene locus will be necessary to determine whether Igvh genes are also linked to Graves' disease in humans. PMID:25051451

  18. The transfer of seasonal isotopic variability between precipitation and drip water at eight caves in the monsoon regions of China

    Science.gov (United States)

    Duan, Wuhui; Ruan, Jiaoyang; Luo, Weijun; Li, Tingyong; Tian, Lijun; Zeng, Guangneng; Zhang, Dezhong; Bai, Yijun; Li, Jilong; Tao, Tao; Zhang, Pingzhong; Baker, Andy; Tan, Ming

    2016-06-01

    This study presents new stable isotope data for precipitation (δ18Op) and drip water (δ18Od) from eight cave sites in the monsoon regions of China (MRC), with monthly to bi-monthly sampling intervals from May-2011 to April-2014, to investigate the regional-scale climate forcing on δ18Op and how the isotopic signals are transmitted to various drip sites. The monthly δ18Op values show negative correlation with surface air temperature at all the cave sites except Shihua Cave, which is opposite to that expected from the temperature effect. In addition, although the monthly δ18Op values are negatively correlated with precipitation at all the cave sites, only three sites are significant at the 95% level. These indicate that, due to the various vapor sources, a large portion of variability in δ18Op in the MRC cannot be explained simply by either temperature or precipitation alone. All the thirty-four drip sites are classified into three types based on the δ18Od variability. About 82% of them are static drips with little discernable variation in δ18Od through the whole study period, but the drip rates of these drips are not necessary constant. Their discharge modes are site-specific and the oxygen isotopic composition of the stalagmites growing from them may record the average of multi-year climatic signals, which are modulated by the seasonality of recharge and potential effects of evaporation, and in some cases infiltration from large rainfall events. About 12% of the thirty-four drip sites are seasonal drips, although the amplitude of δ18Od is narrower than that of δ18Op, the monthly response of δ18Od to coeval precipitation is not completely damped, and some of them follow the seasonal trend of δ18Op very well. These drips may be mainly recharged by present-day precipitation, mixing with some stored water. Thus, the stalagmites growing under them may record portions of the seasonal climatic signals embedded in δ18Op. About 6% of the thirty-four drip sites

  19. IDENTIFICATION OF THOSE VARIABLES THAT HAVE A SIGNIFICANT INFLUENCE ON THE EXPECTED NUMBER OF DAYS OF STAYING IN THE CENTRE DEVELOPMENT REGION OF ROMANIA

    Directory of Open Access Journals (Sweden)

    Erika KULCSÁR

    2010-06-01

    Full Text Available I started from the assumption that there are more variables that have a significant influence on the expected number of days of staying in the Centre Development Region. To identify those variables this paper includes the analysis of variance with two variables that are not interacting, in this case the dependent variable is the question "How many days did you plan to stay in Centre Development Region?" and the independent variables are: "What is the purpose of your stay?" "What is the highest level of education?". Given that there are cases when interactions occur between variables, I also analyzed the interaction effects between the two independent variables. The paper also includes an ANOVA analysis with three variables between which interactions relationships occur. After identifying the dependency relations between the variables I found that the inclusion of the third variable, namely the "Marital status" of respondents, adds value to the model. Following the results obtained by ANOVA analysis, I identified those socio-demographic characteristics that, in my opinion, companies that operate on tourist market in the Center Development Region should consider when fundamenting marketing strategies in tourism.

  20. Isotopic source signatures: Impact of regional variability on the δ13CH4 trend and spatial distribution

    Science.gov (United States)

    Feinberg, Aryeh I.; Coulon, Ancelin; Stenke, Andrea; Schwietzke, Stefan; Peter, Thomas

    2018-02-01

    The atmospheric methane growth rate has fluctuated over the past three decades, signifying variations in methane sources and sinks. Methane isotopic ratios (δ13CH4) differ between emission categories, and can therefore be used to distinguish which methane sources have changed. However, isotopic modelling studies have mainly focused on uncertainties in methane emissions rather than uncertainties in isotopic source signatures. We simulated atmospheric δ13CH4 for the period 1990-2010 using the global chemistry-climate model SOCOL. Empirically-derived regional variability in the isotopic signatures was introduced in a suite of sensitivity simulations. These simulations were compared to a baseline simulation with commonly used global mean isotopic signatures. We investigated coal, natural gas/oil, wetland, livestock, and biomass burning source signatures to determine whether regional variations impact the observed isotopic trend and spatial distribution. Based on recently published source signature datasets, our calculated global mean isotopic signatures are in general lighter than the commonly used values. Trends in several isotopic signatures were also apparent during the period 1990-2010. Tropical livestock emissions grew during the 2000s, introducing isotopically heavier livestock emissions since tropical livestock consume more C4 vegetation than midlatitude livestock. Chinese coal emissions, which are isotopically heavy compared to other coals, increase during the 2000s leading to higher global values of δ13CH4 for coal emissions. EDGAR v4.2 emissions disagree with the observed atmospheric isotopic trend for almost all simulations, confirming past doubts about this emissions inventory. The agreement between the modelled and observed δ13CH4 interhemispheric differences improves when regional source signatures are used. Even though the simulated results are highly dependent on the choice of methane emission inventories, they emphasize that the commonly used

  1. Predicting superdeformed rotational band-head spin in A ∼ 190 mass region using variable moment of inertia model

    International Nuclear Information System (INIS)

    Uma, V.S.; Goel, Alpana; Yadav, Archana; Jain, A.K.

    2016-01-01

    The band-head spin (I 0 ) of superdeformed (SD) rotational bands in A ∼ 190 mass region is predicted using the variable moment of inertia (VMI) model for 66 SD rotational bands. The superdeformed rotational bands exhibited considerably good rotational property and rigid behaviour. The transition energies were dependent on the prescribed band-head spins. The ratio of transition energies over spin Eγ/ 2 I (RTEOS) vs. angular momentum (I) have confirmed the rigid behaviour, provided the band-head spin value is assigned correctly. There is a good agreement between the calculated and the observed transition energies. This method gives a very comprehensive interpretation for spin assignment of SD rotational bands which could help in designing future experiments for SD bands. (author)

  2. Seasonal Variability in Regional Ice Flow Due to Meltwater Injection Into the Shear Margins of Jakobshavn Isbræ

    Science.gov (United States)

    Cavanagh, J. P.; Lampkin, D. J.; Moon, T.

    2017-12-01

    The impact of meltwater injection into the shear margins of Jakobshavn Isbræ via drainage from water-filled crevasses on ice flow is examined. We use Landsat-8 Operational Land Imager panchromatic, high-resolution imagery to monitor the spatiotemporal variability of seven water-filled crevasse ponds during the summers of 2013 to 2015. The timing of drainage from water-filled crevasses coincides with an increase of 2 to 20% in measured ice velocity beyond Jakobshavn Isbræ shear margins, which we define as extramarginal ice velocity. Some water-filled crevasse groups demonstrate multiple drainage events within a single melt season. Numerical simulations show that hydrologic shear weakening due to water-filled crevasse drainage can accelerate extramarginal flow by as much as 35% within 10 km of the margins and enhance mass flux through the shear margins by 12%. This work demonstrates a novel mechanism through which surface melt can influence regional ice flow.

  3. Idiotypes as immunogens: facing the challenge of inducing strong therapeutic immune responses against the variable region of immunoglobulins

    International Nuclear Information System (INIS)

    López-Requena, Alejandro; Burrone, Oscar R.; Cesco-Gaspere, Michela

    2012-01-01

    Idiotype (Id)-based immunotherapy has been exploited as cancer treatment option. Conceived as therapy for malignancies bearing idiotypic antigens, it has been also extended to solid tumors because of the capacity of anti-idiotypic antibodies to mimic Id-unrelated antigens. In both these two settings, efforts are being made to overcome the poor immune responsiveness often experienced when using self immunoglobulins as immunogens. Despite bearing a unique gene combination, and thus particular epitopes, it is normally difficult to stimulate the immune response against antibody variable regions. Different strategies are currently used to strengthen Id immunogenicity, such as concomitant use of immune-stimulating molecules, design of Id-containing immunogenic recombinant proteins, specific targeting of relevant immune cells, and genetic immunization. This review focuses on the role of anti-Id vaccination in cancer management and on the current developments used to foster anti-idiotypic B and T cell responses.

  4. Idiotypes as immunogens: facing the challenge of inducing strong therapeutic immune responses against the variable region of immunoglobulins

    Energy Technology Data Exchange (ETDEWEB)

    López-Requena, Alejandro [Molecular Immunology Group, International Centre for Genetic Engineering and Biotechnology, Trieste (Italy); Immunobiology Division, Center of Molecular Immunology, Havana (Cuba); Bioengineering Research Institute, Biotech Pharmaceutical Co., Ltd, Beijing (China); Burrone, Oscar R.; Cesco-Gaspere, Michela, E-mail: cescogaspere@gmail.com [Molecular Immunology Group, International Centre for Genetic Engineering and Biotechnology, Trieste (Italy)

    2012-11-09

    Idiotype (Id)-based immunotherapy has been exploited as cancer treatment option. Conceived as therapy for malignancies bearing idiotypic antigens, it has been also extended to solid tumors because of the capacity of anti-idiotypic antibodies to mimic Id-unrelated antigens. In both these two settings, efforts are being made to overcome the poor immune responsiveness often experienced when using self immunoglobulins as immunogens. Despite bearing a unique gene combination, and thus particular epitopes, it is normally difficult to stimulate the immune response against antibody variable regions. Different strategies are currently used to strengthen Id immunogenicity, such as concomitant use of immune-stimulating molecules, design of Id-containing immunogenic recombinant proteins, specific targeting of relevant immune cells, and genetic immunization. This review focuses on the role of anti-Id vaccination in cancer management and on the current developments used to foster anti-idiotypic B and T cell responses.

  5. THE EVOLUTION OF ANNUAL MEAN TEMPERATURE AND PRECIPITATION QUANTITY VARIABILITY BASED ON ESTIMATED CHANGES BY THE REGIONAL CLIMATIC MODELS

    Directory of Open Access Journals (Sweden)

    Paula Furtună

    2013-03-01

    Full Text Available Climatic changes are representing one of the major challenges of our century, these being forcasted according to climate scenarios and models, which represent plausible and concrete images of future climatic conditions. The results of climate models comparison regarding future water resources and temperature regime trend can become a useful instrument for decision makers in choosing the most effective decisions regarding economic, social and ecologic levels. The aim of this article is the analysis of temperature and pluviometric variability at the closest grid point to Cluj-Napoca, based on data provided by six different regional climate models (RCMs. Analysed on 30 year periods (2001-2030,2031-2060 and 2061-2090, the mean temperature has an ascending general trend, with great varability between periods. The precipitation expressed trough percentage deviation shows a descending general trend, which is more emphazied during 2031-2060 and 2061-2090.

  6. A quantitative magnetic resonance histology atlas of postnatal rat brain development with regional estimates of growth and variability.

    Science.gov (United States)

    Calabrese, Evan; Badea, Alexandra; Watson, Charles; Johnson, G Allan

    2013-05-01

    There has been growing interest in the role of postnatal brain development in the etiology of several neurologic diseases. The rat has long been recognized as a powerful model system for studying neuropathology and the safety of pharmacologic treatments. However, the complex spatiotemporal changes that occur during rat neurodevelopment remain to be elucidated. This work establishes the first magnetic resonance histology (MRH) atlas of the developing rat brain, with an emphasis on quantitation. The atlas comprises five specimens at each of nine time points, imaged with eight distinct MR contrasts and segmented into 26 developmentally defined brain regions. The atlas was used to establish a timeline of morphometric changes and variability throughout neurodevelopment and represents a quantitative database of rat neurodevelopment for characterizing rat models of human neurologic disease. Published by Elsevier Inc.

  7. Seasonal variability in virtual height of ionospheric f/sub 2/ layer at the pakistan atmospheric region

    International Nuclear Information System (INIS)

    Jilani, A.A.; Afridi, F.A.K.; Mian, K.; Zai, M.A.K.Y.

    2013-01-01

    The aim of this study was to assess the seasonal variability in virtual height of ionospheric F/sub 2/ layer for Pakistan's atmospheric region (PAR). In this communication virtual height variations have been analyzed by the descriptive statistical techniques. These methodologies comprise an autoregressive strategy, linear regression and polynomial regression. The relevance of these models has been illuminated using predicted values of different parameters under the seasonal variation of ionospheric F/sub 2/ layer in virtual height that affect the radio wave propagation through the ionosphere. These techniques are implemented to theorize the physical process of varying the virtual heights that leads this study towards formulating the variations due to interaction of radio wave propagation with this ionospheric layer. (author)

  8. Description, evaluation and clinical decision making according to various fetal heart rate patterns. Inter-observer and regional variability

    DEFF Research Database (Denmark)

    Lidegaard, O; Bøttcher, L M; Weber, Tom

    1992-01-01

    departments, especially between departments far apart. It is concluded that we still need a scientific clarification of which specific heart rate changes are the best predictors of fetal stress. Artificial intelligence programs for interpreting fetal cardiotocograms and ECG signals constitute one promising......At 10 Danish obstetrical departments, 116 residents (42 senior and 74 junior) participated in a study to assess inter-observer and regional variability in the description and evaluation of and clinical decision regarding 11 fetal heart rate patterns. The 11 traces included normal as well...... as pathological patterns, and normal as well as clinically asphyxiated babies. Five antepartum and six intrapartum patterns were included. A total of 1,276 descriptions and evaluations were obtained. The degree of agreement in description of fetal heart rate changes was high regarding the baseline...

  9. Hydrological Impacts of Land Use Change and Climate Variability in the Headwater Region of the Heihe River Basin, Northwest China

    Science.gov (United States)

    Zhang, Ling; Nan, Zhuotong; Xu, Yi; Li, Shuo

    2016-01-01

    Land use change and climate variability are two key factors impacting watershed hydrology, which is strongly related to the availability of water resources and the sustainability of local ecosystems. This study assessed separate and combined hydrological impacts of land use change and climate variability in the headwater region of a typical arid inland river basin, known as the Heihe River Basin, northwest China, in the recent past (1995–2014) and near future (2015–2024), by combining two land use models (i.e., Markov chain model and Dyna-CLUE) with a hydrological model (i.e., SWAT). The potential impacts in the near future were explored using projected land use patterns and hypothetical climate scenarios established on the basis of analyzing long-term climatic observations. Land use changes in the recent past are dominated by the expansion of grassland and a decrease in farmland; meanwhile the climate develops with a wetting and warming trend. Land use changes in this period induce slight reductions in surface runoff, groundwater discharge and streamflow whereas climate changes produce pronounced increases in them. The joint hydrological impacts are similar to those solely induced by climate changes. Spatially, both the effects of land use change and climate variability vary with the sub-basin. The influences of land use changes are more identifiable in some sub-basins, compared with the basin-wide impacts. In the near future, climate changes tend to affect the hydrological regimes much more prominently than land use changes, leading to significant increases in all hydrological components. Nevertheless, the role of land use change should not be overlooked, especially if the climate becomes drier in the future, as in this case it may magnify the hydrological responses. PMID:27348224

  10. Hydrological Impacts of Land Use Change and Climate Variability in the Headwater Region of the Heihe River Basin, Northwest China.

    Science.gov (United States)

    Zhang, Ling; Nan, Zhuotong; Xu, Yi; Li, Shuo

    2016-01-01

    Land use change and climate variability are two key factors impacting watershed hydrology, which is strongly related to the availability of water resources and the sustainability of local ecosystems. This study assessed separate and combined hydrological impacts of land use change and climate variability in the headwater region of a typical arid inland river basin, known as the Heihe River Basin, northwest China, in the recent past (1995-2014) and near future (2015-2024), by combining two land use models (i.e., Markov chain model and Dyna-CLUE) with a hydrological model (i.e., SWAT). The potential impacts in the near future were explored using projected land use patterns and hypothetical climate scenarios established on the basis of analyzing long-term climatic observations. Land use changes in the recent past are dominated by the expansion of grassland and a decrease in farmland; meanwhile the climate develops with a wetting and warming trend. Land use changes in this period induce slight reductions in surface runoff, groundwater discharge and streamflow whereas climate changes produce pronounced increases in them. The joint hydrological impacts are similar to those solely induced by climate changes. Spatially, both the effects of land use change and climate variability vary with the sub-basin. The influences of land use changes are more identifiable in some sub-basins, compared with the basin-wide impacts. In the near future, climate changes tend to affect the hydrological regimes much more prominently than land use changes, leading to significant increases in all hydrological components. Nevertheless, the role of land use change should not be overlooked, especially if the climate becomes drier in the future, as in this case it may magnify the hydrological responses.

  11. Impact of catchment geophysical characteristics and climate on the regional variability of dissolved organic carbon (DOC) in surface water.

    Science.gov (United States)

    Cool, Geneviève; Lebel, Alexandre; Sadiq, Rehan; Rodriguez, Manuel J

    2014-08-15

    Dissolved organic carbon (DOC) is a recognized indicator of natural organic matter (NOM) in surface waters. The aim of this paper is twofold: to evaluate the impact of geophysical characteristics, climate and ecological zones on DOC concentrations in surface waters and, to develop a statistical model to estimate the regional variability of these concentrations. In this study, multilevel statistical analysis was used to achieve three specific objectives: (1) evaluate the influence of climate and geophysical characteristics on DOC concentrations in surface waters; (2) compare the influence of geophysical characteristics and ecological zones on DOC concentrations in surface waters; and (3) develop a model to estimate the most accurate DOC concentrations in surface waters. The case study involved 115 catchments from surface waters in the Province of Quebec, Canada. Results showed that mean temperatures recorded 60 days prior to sampling, total precipitation 10 days prior to sampling and percentages of wetlands, coniferous forests and mixed forests have a significant positive influence on DOC concentrations in surface waters. The catchment mean slope had a significant negative influence on DOC concentrations in surface waters. Water type (lake or river) and deciduous forest variables were not significant. The ecological zones had a significant influence on DOC concentrations. However, geophysical characteristics (wetlands, forests and slope) estimated DOC concentrations more accurately. A model describing the variability of DOC concentrations was developed and can be used, in future research, for estimating DBPs in drinking water as well evaluating the impact of climate change on the quality of surface waters and drinking water. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Prevalence of cardiovascular risk factors, the association with socioeconomic variables in adolescents from low-income region.

    Science.gov (United States)

    Nascimento-Ferreira, Marcus Vinicius; De Moraes, Augusto Cesar F; Carvalho, Heraclito B; Moreno, Luis A; Gomes Carneiro, André Luiz; dos Reis, Victor Manuel M; Torres-Leal, Francisco Leonardo

    2014-01-01

    To estimate the prevalence of obesity, overweight, abdominal obesity and high blood pressure in a sample of adolescents from a low-income city in Brazil and to estimate the relationship with the socioeconomic status of the family, the education level of the family provider and the type of school. This cross-sectional study randomly sampled 1,014 adolescents (54.8% girls), between 14-19 years of age, attending high school from Imperatriz (MA). The outcomes of this study were: obesity and overweight, abdominal obesity and high blood pressure (systolic and/ or diastolic). The independent variables were: socioeconomic status (SES) of the family, education level of the family provider (ELFP) and type of school. The confounding variables were: gender, age and physical activity level. Prevalence was estimated, and the association between the endpoints and the independent variables was analyzed using a prevalence ratio (PR), with a 95% confidence interval, estimated by Poisson regression. The overall prevalence of obesity was 3.8%, overweight, 13.1%, abdominal obesity, 22.7% and high blood pressure, 21.3%. The adjusted analysis indicated that girls with high SES showed an increased likelihood to be overweight (PR=1.71 [95% IC: 1.13-2.87]), while private school boys had an increased likelihood of obesity (PR=1.79 [95% CI: 1.04-3.08]) and abdominal obesity (PR =1.64 [95% CI: 1.06-2.54]). The prevalence of CVDR is high in adolescents from this low-income region. Boys from private schools are more likely to have obesity and abdominal obesity, and girls with high SES are more likely to be overweight. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  13. Spatial variability of the response to climate change in regional groundwater systems -- examples from simulations in the Deschutes Basin, Oregon

    Science.gov (United States)

    Waibel, Michael S.; Gannett, Marshall W.; Chang, Heejun; Hulbe, Christina L.

    2013-01-01

    We examine the spatial variability of the response of aquifer systems to climate change in and adjacent to the Cascade Range volcanic arc in the Deschutes Basin, Oregon using downscaled global climate model projections to drive surface hydrologic process and groundwater flow models. Projected warming over the 21st century is anticipated to shift the phase of precipitation toward more rain and less snow in mountainous areas in the Pacific Northwest, resulting in smaller winter snowpack and in a shift in the timing of runoff to earlier in the year. This will be accompanied by spatially variable changes in the timing of groundwater recharge. Analysis of historic climate and hydrologic data and modeling studies show that groundwater plays a key role in determining the response of stream systems to climate change. The spatial variability in the response of groundwater systems to climate change, particularly with regard to flow-system scale, however, has generally not been addressed in the literature. Here we simulate the hydrologic response to projected future climate to show that the response of groundwater systems can vary depending on the location and spatial scale of the flow systems and their aquifer characteristics. Mean annual recharge averaged over the basin does not change significantly between the 1980s and 2080s climate periods given the ensemble of global climate models and emission scenarios evaluated. There are, however, changes in the seasonality of groundwater recharge within the basin. Simulation results show that short-flow-path groundwater systems, such as those providing baseflow to many headwater streams, will likely have substantial changes in the timing of discharge in response changes in seasonality of recharge. Regional-scale aquifer systems with flow paths on the order of many tens of kilometers, in contrast, are much less affected by changes in seasonality of recharge. Flow systems at all spatial scales, however, are likely to reflect

  14. Functional interpretation of representative soil spatial-temporal variability at the Central region of European territory of Russia

    Science.gov (United States)

    Vasenev, I.

    2012-04-01

    The essential spatial and temporal variability is mutual feature for most natural and man-changed soils at the Central region of European territory of Russia. The original spatial heterogeneity of forest and forest-steppe soils has been further complicated by a specific land-use history and different-direction soil successions due to environmental changes and human impacts. For demand-driven land-use planning and decision making the quantitative analysis, modeling and functional-ecological interpretation of representative soil cover patterns spatial variability is an important and challenging task that receives increasing attention from scientific society, private companies, governmental and environmental bodies. On basis of long-term different-scale soil mapping, key plot investigation, land quality and land-use evaluation, soil forming and degradation processes modeling, functional-ecological typology of the zonal set of elementary soil cover patterns (ESCP) has been done in representative natural and man transformed ecosystems of the forest, forest-steppe and steppe zones at the Central region of European territory of Russia (ETR). The validation and ranging of the limiting factors of functional quality and ecological state have been made for dominating and most dynamical components of ESCP regional-typological forms - with application of local GIS, traditional regression kriging and correlation tree models. Development, zonal-regional differentiation and verification of the basic set of criteria and algorithms for logically formalized distinguishing of the most "stable" & "hot" areas in soil cover patterns make it possible for quantitative assessment of dominating in them elementary landscape, soil-forming and degradation processes. The received data essentially expand known ranges of the soil forming processes (SFP) rate «in situ». In case of mature forests mutual for them the windthrow impacts and lateral processes make SFPs more active and complex both in

  15. Technical Note: An operational landslide early warning system at regional scale based on space-time-variable rainfall thresholds

    Science.gov (United States)

    Segoni, S.; Battistini, A.; Rossi, G.; Rosi, A.; Lagomarsino, D.; Catani, F.; Moretti, S.; Casagli, N.

    2015-04-01

    We set up an early warning system for rainfall-induced landslides in Tuscany (23 000 km2). The system is based on a set of state-of-the-art intensity-duration rainfall thresholds (Segoni et al., 2014b) and makes use of LAMI (Limited Area Model Italy) rainfall forecasts and real-time rainfall data provided by an automated network of more than 300 rain gauges. The system was implemented in a WebGIS to ease the operational use in civil protection procedures: it is simple and intuitive to consult, and it provides different outputs. When switching among different views, the system is able to focus both on monitoring of real-time data and on forecasting at different lead times up to 48 h. Moreover, the system can switch between a basic data view where a synoptic scenario of the hazard can be shown all over the region and a more in-depth view were the rainfall path of rain gauges can be displayed and constantly compared with rainfall thresholds. To better account for the variability of the geomorphological and meteorological settings encountered in Tuscany, the region is subdivided into 25 alert zones, each provided with a specific threshold. The warning system reflects this subdivision: using a network of more than 300 rain gauges, it allows for the monitoring of each alert zone separately so that warnings can be issued independently. An important feature of the warning system is that the visualization of the thresholds in the WebGIS interface may vary in time depending on when the starting time of the rainfall event is set. The starting time of the rainfall event is considered as a variable by the early warning system: whenever new rainfall data are available, a recursive algorithm identifies the starting time for which the rainfall path is closest to or overcomes the threshold. This is considered the most hazardous condition, and it is displayed by the WebGIS interface. The early warning system is used to forecast and monitor the landslide hazard in the whole region

  16. Modeling actual evapotranspiration with routine meteorological variables in the data-scarce region of the Tibetan Plateau: Comparisons and implications

    Science.gov (United States)

    Ma, Ning; Zhang, Yinsheng; Xu, Chong-Yu; Szilagyi, Jozsef

    2015-08-01

    Quantitative estimation of actual evapotranspiration (ETa) by in situ measurements and mathematical modeling is a fundamental task for physical understanding of ETa as well as the feedback mechanisms between land and the ambient atmosphere. However, the ETa information in the Tibetan Plateau (TP) has been greatly impeded by the extremely sparse ground observation network in the region. Approaches for estimating ETa solely from routine meteorological variables are therefore important for investigating spatiotemporal variations of ETa in the data-scarce region of the TP. Motivated by this need, the complementary relationship (CR) and Penman-Monteith approaches were evaluated against in situ measurements of ETa on a daily basis in an alpine steppe region of the TP. The former includes the Nonlinear Complementary Relationship (Nonlinear-CR) as well as the Complementary Relationship Areal Evapotranspiration (CRAE) models, while the latter involves the Katerji-Perrier and the Todorovic models. Results indicate that the Nonlinear-CR, CRAE, and Katerji-Perrier models are all capable of efficiently simulating daily ETa, provided their parameter values were appropriately calibrated. The Katerji-Perrier model performed best since its site-specific parameters take the soil water status into account. The Nonlinear-CR model also performed well with the advantage of not requiring the user to choose between a symmetric and asymmetric CR. The CRAE model, even with a relatively low Nash-Sutcliffe efficiency (NSE) value, is also an acceptable approach in this data-scarce region as it does not need information of wind speed and ground surface conditions. In contrast, application of the Todorovic model was found to be inappropriate in the dry regions of the TP due to its significant overestimation of ETa as it neglects the effect of water stress on the bulk surface resistance. Sensitivity analysis of the parameter values demonstrated the relative importance of each parameter in the

  17. Spatiotemporal Phylogenetic Analysis and Molecular Characterisation of Infectious Bursal Disease Viruses Based on the VP2 Hyper-Variable Region.

    Directory of Open Access Journals (Sweden)

    Abdulahi Alfonso-Morales

    Full Text Available Infectious bursal disease is a highly contagious and acute viral disease caused by the infectious bursal disease virus (IBDV; it affects all major poultry producing areas of the world. The current study was designed to rigorously measure the global phylogeographic dynamics of IBDV strains to gain insight into viral population expansion as well as the emergence, spread and pattern of the geographical structure of very virulent IBDV (vvIBDV strains.Sequences of the hyper-variable region of the VP2 (HVR-VP2 gene from IBDV strains isolated from diverse geographic locations were obtained from the GenBank database; Cuban sequences were obtained in the current work. All sequences were analysed by Bayesian phylogeographic analysis, implemented in the Bayesian Evolutionary Analysis Sampling Trees (BEAST, Bayesian Tip-association Significance testing (BaTS and Spatial Phylogenetic Reconstruction of Evolutionary Dynamics (SPREAD software packages. Selection pressure on the HVR-VP2 was also assessed. The phylogeographic association-trait analysis showed that viruses sampled from individual countries tend to cluster together, suggesting a geographic pattern for IBDV strains. Spatial analysis from this study revealed that strains carrying sequences that were linked to increased virulence of IBDV appeared in Iran in 1981 and spread to Western Europe (Belgium in 1987, Africa (Egypt around 1990, East Asia (China and Japan in 1993, the Caribbean Region (Cuba by 1995 and South America (Brazil around 2000. Selection pressure analysis showed that several codons in the HVR-VP2 region were under purifying selection.To our knowledge, this work is the first study applying the Bayesian phylogeographic reconstruction approach to analyse the emergence and spread of vvIBDV strains worldwide.

  18. Spatiotemporal Phylogenetic Analysis and Molecular Characterisation of Infectious Bursal Disease Viruses Based on the VP2 Hyper-Variable Region.

    Science.gov (United States)

    Alfonso-Morales, Abdulahi; Martínez-Pérez, Orlando; Dolz, Roser; Valle, Rosa; Perera, Carmen L; Bertran, Kateri; Frías, Maria T; Majó, Natàlia; Ganges, Llilianne; Pérez, Lester J

    2013-01-01

    Infectious bursal disease is a highly contagious and acute viral disease caused by the infectious bursal disease virus (IBDV); it affects all major poultry producing areas of the world. The current study was designed to rigorously measure the global phylogeographic dynamics of IBDV strains to gain insight into viral population expansion as well as the emergence, spread and pattern of the geographical structure of very virulent IBDV (vvIBDV) strains. Sequences of the hyper-variable region of the VP2 (HVR-VP2) gene from IBDV strains isolated from diverse geographic locations were obtained from the GenBank database; Cuban sequences were obtained in the current work. All sequences were analysed by Bayesian phylogeographic analysis, implemented in the Bayesian Evolutionary Analysis Sampling Trees (BEAST), Bayesian Tip-association Significance testing (BaTS) and Spatial Phylogenetic Reconstruction of Evolutionary Dynamics (SPREAD) software packages. Selection pressure on the HVR-VP2 was also assessed. The phylogeographic association-trait analysis showed that viruses sampled from individual countries tend to cluster together, suggesting a geographic pattern for IBDV strains. Spatial analysis from this study revealed that strains carrying sequences that were linked to increased virulence of IBDV appeared in Iran in 1981 and spread to Western Europe (Belgium) in 1987, Africa (Egypt) around 1990, East Asia (China and Japan) in 1993, the Caribbean Region (Cuba) by 1995 and South America (Brazil) around 2000. Selection pressure analysis showed that several codons in the HVR-VP2 region were under purifying selection. To our knowledge, this work is the first study applying the Bayesian phylogeographic reconstruction approach to analyse the emergence and spread of vvIBDV strains worldwide.

  19. Accounting for inter-annual and seasonal variability in regionalization of hydrologic response in the Great Lakes basin

    Science.gov (United States)

    Kult, J. M.; Fry, L. M.; Gronewold, A. D.

    2012-12-01

    Methods for predicting streamflow in areas with limited or nonexistent measures of hydrologic response typically invoke the concept of regionalization, whereby knowledge pertaining to gauged catchments is transferred to ungauged catchments. In this study, we identify watershed physical characteristics acting as primary drivers of hydrologic response throughout the US portion of the Great Lakes basin. Relationships between watershed physical characteristics and hydrologic response are generated from 166 catchments spanning a variety of climate, soil, land cover, and land form regimes through regression tree analysis, leading to a grouping of watersheds exhibiting similar hydrologic response characteristics. These groupings are then used to predict response in ungauged watersheds in an uncertainty framework. Results from this method are assessed alongside one historical regionalization approach which, while simple, has served as a cornerstone of Great Lakes regional hydrologic research for several decades. Our approach expands upon previous research by considering multiple temporal characterizations of hydrologic response. Due to the substantial inter-annual and seasonal variability in hydrologic response observed over the Great Lakes basin, results from the regression tree analysis differ considerably depending on the level of temporal aggregation used to define the response. Specifically, higher levels of temporal aggregation for the response metric (for example, indices derived from long-term means of climate and streamflow observations) lead to improved watershed groupings with lower within-group variance. However, this perceived improvement in model skill occurs at the cost of understated uncertainty when applying the regression to time series simulations or as a basis for model calibration. In such cases, our results indicate that predictions based on long-term characterizations of hydrologic response can produce misleading conclusions when applied at shorter

  20. Temporal and spatial patterns of wetland extent influence variability of surface water connectivity in the Prairie Pothole Region, United States

    Science.gov (United States)

    Vanderhoof, Melanie; Alexander, Laurie C.; Todd, Jason

    2016-01-01

    Context. Quantifying variability in landscape-scale surface water connectivity can help improve our understanding of the multiple effects of wetlands on downstream waterways. Objectives. We examined how wetland merging and the coalescence of wetlands with streams varied both spatially (among ecoregions) and interannually (from drought to deluge) across parts of the Prairie Pothole Region. Methods. Wetland extent was derived over a time series (1990-2011) using Landsat imagery. Changes in landscape-scale connectivity, generated by the physical coalescence of wetlands with other surface water features, were quantified by fusing static wetland and stream datasets with Landsat-derived wetland extent maps, and related to multiple wetness indices. The usage of Landsat allows for decadal-scale analysis, but limits the types of surface water connections that can be detected. Results. Wetland extent correlated positively with the merging of wetlands and wetlands with streams. Wetness conditions, as defined by drought indices and runoff, were positively correlated with wetland extent, but less consistently correlated with measures of surface water connectivity. The degree of wetland-wetland merging was found to depend less on total wetland area or density, and more on climate conditions, as well as the threshold for how wetland/upland was defined. In contrast, the merging of wetlands with streams was positively correlated with stream density, and inversely related to wetland density. Conclusions. Characterizing the degree of surface water connectivity within the Prairie Pothole Region in North America requires consideration of 1) climate-driven variation in wetness conditions and 2) within-region variation in wetland and stream spatial arrangements.

  1. Spatiotemporal variability and meteorological control of particulate matter pollution in a large open-pit coal mining region in Colombia

    Science.gov (United States)

    Morales Rincon, L. A.; Jimenez-Pizarro, R.; Porras-Diaz, H.

    2012-12-01

    Luis Morales-Rincon (1), Hernan Porras-Diaz (1), Rodrigo Jiménez (2,*) (1) Geomatic Research Group, Department of Civil Engineering, Universidad Industrial de Santander, Bucaramanga, Santander 680002, Colombia; (2) Air Quality Research Group, Department of Chemical and Environmental Engineering, Universidad Nacional de Colombia, Bogota, DC 111321, Colombia *Corresponding author: phone +57-1-316-5000 ext. 14099, fax +57-1-316-5334, e-mail rjimenezp@unal.edu.co The semi-desertic area of Central Cesar, Colombia, produced approximately 44 million tons of coal in 2011. This mining activity has been intensively developed since 2005. There are currently 7 large-scale mining projects in that area. The coal industry has strongly impacted not only the ecosystems, but also the neighboring communities around the coal mines. The main goal of the research work was to characterize spatial and temporal variations of particulate matter (total suspended particulates - TSP - and particulate matter below 10 μm - PM10) as measured at various air quality monitoring stations in Cesar's coal industry region as well as to study the relationship between these variability and meteorological factors. The analysis of the meteorological time series of revealed a complex atmospheric circulation in the region. No clear repetitive diurnal circulation patterns were observed, i.e. statistical mean patterns do not physically represent the actual atmospheric circulation. We attribute this complexity to the interdependence between local and synoptic phenomena over a low altitude, relatively flat area. On the other hand, a comparison of air quality in the mining area with a perimeter station indicates that coal industry in central Cesar has a mayor effect on the levels of particulate matter in the region. Particulate matter concentration is highly variable throughout the year. The strong correlation between TSP and PM10 indicates that secondary aerosols are of minor importance. Furthermore, particle

  2. Low numbers of repeat units in variable number of tandem repeats (VNTR) regions of white spot syndrome virus are correlated with disease outbreaks

    NARCIS (Netherlands)

    Tran Thi Tuyet, H.; Zwart, M.P.; Phuong, N.T.; Jong, de M.C.M.; Vlak, J.M.

    2012-01-01

    White spot syndrome virus (WSSV) is the most important pathogen in shrimp farming systems worldwide including the Mekong Delta, Vietnam. The genome of WSSV is characterized by the presence of two major 'indel regions' found at ORF14/15 and ORF23/24 (WSSV-Thailand) and three regions with variable

  3. [Effects of land use and environmental factors on the variability of soil quality indicators in hilly Loess Plateau region of China].

    Science.gov (United States)

    Xu, Ming-Xiang; Liu, Guo-Bin; Zhao, Yun-Ge

    2011-02-01

    Classical statistics methods were adopted to analyze the soil quality variability, its affecting factors, and affecting degree at a regional scale (700 km2) in the central part of hilly Loess Plateau region of China. There existed great differences in the variability of test soil quality indicators. Soil pH, structural coefficient, silt content, specific gravity, bulk density, total porosity, capillary porosity, and catalase activity were the indicators with weak variability; soil nutrients (N, P, and K) contents, CaCO3 content, cation exchange capacity (CEC), clay content, micro-aggregate mean mass diameter, aggregate mean mass diameter, water-stable aggregates, respiration rate, microbial quotient, invertase and phosphatase activities, respiratory quotient, and microbial carbon and nitrogen showed medium variation; while soil labile organic carbon and phosphorus contents, erosion-resistance, permeability coefficient, and urease activity were the indicators with strong variability. The variability of soil CaCO3, total P and K, CEC, texture, and specific gravity, etc. was correlated with topography and other environmental factors, while the variability of dynamic soil quality indicators, including soil organic matter content, nitrogen content, water-stable aggregates, permeability, microbial biomass carbon and nitrogen, enzyme activities, and respiration rate, was mainly correlated with land use type. Overall, land use pattern explained 97% of the variability of soil quality indicators in the region. It was suggested that in the evaluation of soil quality in hilly Loess Plateau region, land use type and environmental factors should be fully considered.

  4. Variabilidade local e regional da evapotranspiração estimada pelo algoritmo SEBAL Local and regional variability of evapotranspiration estimated by SEBAL algorithm

    Directory of Open Access Journals (Sweden)

    Luis C. J. Moreira

    2010-12-01

    balance. The hourly evapotranspiration values obtained were greater than 0.60 mm h-1 in irrigated or dense native vegetation areas, from 0.35 to 0.60 mm h-1 in sparse vegetation areas and almost null in degradated areas. The analysis of hourly evapotranspiration means by Tukey test at 5% probability level showed not only a significant variability locally but also at a regional scale in the state of Ceará.

  5. Spatial variability of initial 230Th/ 232Th in modern Porites from the inshore region of the Great Barrier Reef

    Science.gov (United States)

    Clark, Tara R.; Zhao, Jian-xin; Feng, Yue-xing; Done, Terry J.; Jupiter, Stacy; Lough, Janice; Pandolfi, John M.

    2012-02-01

    The main limiting factor in obtaining precise and accurate uranium-series (U-series) ages of corals that lived during the last few hundred years is the ability to constrain and correct for initial thorium-230 ( 230Th 0), which is proportionally much higher in younger samples. This is becoming particularly important in palaeoecological research where accurate chronologies, based on the 230Th chronometer, are required to pinpoint changes in coral community structure and the timing of mortality events in recent time (e.g. since European settlement of northern Australia in the 1850s). In this study, thermal ionisation mass spectrometry (TIMS) U-series dating of 43 samples of known ages collected from living Porites spp. from the far northern, central and southern inshore regions of the Great Barrier Reef (GBR) was performed to spatially constrain initial 230Th/ 232Th ( 230Th/ 232Th 0) variability. In these living Porites corals, the majority of 230Th/ 232Th 0 values fell within error of the conservative bulk Earth 230Th/ 232Th atomic value of 4.3 ± 4.3 × 10 -6 (2 σ) generally assumed for 230Th 0 corrections where the primary source is terrestrially derived. However, the results of this study demonstrate that the accuracy of 230Th ages can be further improved by using locally determined 230Th/ 232Th 0 values for correction, supporting the conclusion made by Shen et al. (2008) for the Western Pacific. Despite samples being taken from regions adjacent to contrasting levels of land modification, no significant differences were found in 230Th/ 232Th 0 between regions exposed to varying levels of sediment during river runoff events. Overall, 39 of the total 43 230Th/ 232Th 0 atomic values measured in samples from inshore reefs across the entire region show a normal distribution ranging from 3.5 ± 1.1 to 8.1 ± 1.1 × 10 -6, with a weighted mean of 5.76 ± 0.34 × 10 -6 (2 σ, MSWD = 8.1). Considering the scatter of the data, the weighted mean value with a more

  6. Paleolimnological reconstruction of environmental variability during the Late Pleistocene and Holocene in the south-east Baltic region

    Science.gov (United States)

    Kublitskiy, Iurii; Subetto, Dmitriy; Druzhinina, Olga; Kulkova, Marianna; Arslanov, Khikmatula

    2016-04-01

    The main goal of our research is the high-resolution reconstruction of environmental and climatic changes in SE Baltic region since the Last Glacial Maximum by palaeolimnological data. The 6 objects - lakes and peat-bogs, were studied since 2009 in the Kaliningrad region, Russian Federation. According to palaeolimnological studies of bottom sediments of the Kamyshovoe Lake (N 54°22,6`; E22°42,8`, 189 m a.s.l.), located in the Vishtynets Highland, the south-east part of Kaliningrad district, the environmental and climatic changes after the late glacial have been reconstructed. At that moment the radiocarbon and loss-on-ignition (LOI) data, geochemistry and diatom analysis for the whole sediment core, and pollen analyze for the bottom part of the core have been completed. According to the pollen data the Alleröd interstadial starts at 13 200 cal. yrs BP and is marked by the rising of birch and pine pollen. The transition to the Younger Dryas around 12 700 cal. yrs BP corresponds with the development of patches of shrublands in which light-demanding species, such as juniper, flourished and communities of steppe herbs. The late Preboreal is marked by the appearance of Populus and an increase of the role of grasses in the vegetation cover 11 300-11 100 cal. yrs BP (Druzinina et al., 2015). The Holocene climatic zones have been identified by LOI and geochemistry analyses. The Boreal period started about 10 200 cal. yrs BP, Atlantic around 9100 cal. yrs BP, Subboreal 5800 cal. yrs BP, and Subatlantic 3200 cal. yrs BP (Kublitskiy et al., 2015). During the conference the new palaeolimnological data of environmental variability during the late Pleistocene and Holocene in SE Baltic region will be presented. Acknowledgements The investigations have been granted by the Russian Fund for Basic Research (12-05-33013, 13-05-41457, 15-35-50721). References Druzhinina, O., Subetto, D., Stančikaitė, M., Vaikutienė, G., Kublitsky, J., Arslanov, Kh., 2015. Sediment record from the

  7. Overview of surface ozone variability in East Asia-North Pacific region during IGAC/APARE (1994--1996).

    Science.gov (United States)

    Lam, K S; Wang, T J; Wang, T; Tang, J; Kajii, Y; Liu, C M; Shim, S G

    2004-01-01

    Surface ozone (O3) was measured at Oki Island (Japan), Cheju Island (South Korea), Lanyu Island (Taiwan Province, China), Cape D'Aguilar (Hong Kong SAR) and Lin'an, Longfenshan, Waliguan (China mainland) during January 1994--December 1996 as a component of IGAC/APARE (International Global Atmospheric Chemistry/East Asia-North Pacific Regional Experiment). This paper gave a joint discussion on the observational results at these stations over the study region. Investigations showed that the average of surface O3 mixing ratios at the seven sites are 47.9+/-15.8, 48.1+/-17.9, 30.2+/-16.4, 31.6+/-17.5, 36.3+/-17.5, 34.8+/-11.5 and 48.2+/-9.5 ppbv, respectively. Significant diurnal variations of surface O3 have been observed at Oki, Cheju, D'Aguilar, Lin'an and Longfenshan. Their annual averaged diurnal differences range from 8 to 23 ppbv and differ in each season. Surface O3 at Lanyu and Waliguan do not show strong diurnal variability. Seasonal cycles of surface O3 showed difference at the temperate and the subtropical remote sites. Oki has a summer minimum-spring maximum, while Lanyu has a summer minimum-autumn maximum. The suburban sites at D'Aguilar and Lin'an report high-level O3 in autumn and low level O3 in summer. Surface O3 remains-high in autumn and low in winter at the rural site Longfenshan. For the global background station Waliguan, surface O3 exhibits a broad spring-summer maximum and autumn-winter minimum. The backward air trajectories to these sites have shown different pathways of long-range transport of air pollution from East Asia Continent to North Pacific Ocean. Surface O3 was found to be strongly and positively correlated with CO at Oki and Lanyu, especially in spring and autumn, reflecting the substantial photochemical buildup of O3 on a regional scale. It is believed that the regional sources of pollution in East Asia have enhanced the average surface O3 concentrations in the background atmosphere of North Pacific.

  8. Regional Variability of Agriculturally-Derived Nitrate-Nitrogen in Shallow Groundwater in China, 2004–2014

    Directory of Open Access Journals (Sweden)

    Jing Li

    2018-05-01

    Full Text Available Increasing diffuse nitrate loading of groundwater has long been a major environmental and health concern in China, but little is known about the spatial and temporal variability of nitrate concentrations in groundwater at regional scales. The aim of this study was to assess the spatial distribution and variation of nitrate-nitrogen (NO3−-N concentrations in groundwater. We used groundwater quality monitoring data and soil physical characteristics from 21 agro-ecosystems in China for years 2004 to 2014. The results indicated that NO3−-N concentrations were highly variable in shallow groundwater across the landscape. Over the study period, most of the NO3−-N concentrations were below the World Health Organization permissible limit for drinking water (<10 mg N·L. NO3−-N concentrations in groundwater neither significantly increased nor decreased in most agro-ecosystems, but fluctuated with seasons. In addition, groundwater NO3−-N under purple soil (6.81 mg·L−1 and Aeolian sandy soil (6.02 mg·L−1 were significantly higher (p < 0.05 than that under other soil types, and it was medium-high (4.49 mg·L−1 under aquic cinnamon soil. Elevated nitrate concentrations occurred mainly in oasis agricultural areas of northwestern China, where farmlands with coarse-textured soils use flood irrigation. Therefore, arid and semi-arid areas are expected to sustain high NO3−-N concentrations in groundwater. Mitigation strategies can prevent this problem, and include control of N fertilizer input, balanced fertilization, proper rotation system, adoption of improved irrigation methods, and establishment of environmental policies.

  9. Variability of sub-micrometer particle number size distributions and concentrations in the Western Mediterranean regional background

    Directory of Open Access Journals (Sweden)

    Michael Cusack

    2013-02-01

    Full Text Available This study focuses on the daily and seasonal variability of particle number size distributions and concentrations, performed at the Montseny (MSY regional background station in the western Mediterranean from October 2010 to June 2011. Particle number concentrations at MSY were shown to be within range of various other sites across Europe reported in literature, but the seasonality of the particle number size distributions revealed significant differences. The Aitken mode is the dominant particle mode at MSY, with arithmetic mean concentrations of 1698 cm3, followed by the accumulation mode (877 cm−3 and the nucleation mode (246 cm−3. Concentrations showed a strong seasonal variability with large increases in particle number concentrations observed from the colder to warmer months. The modality of median size distributions was typically bimodal, except under polluted conditions when the size distribution was unimodal. During the colder months, the daily variation of particle number size distributions are strongly influenced by a diurnal breeze system, whereby the Aitken and accumulation modes vary similarly to PM1 and BC mass concentrations, with nocturnal minima and sharp day-time increases owing to the development of a diurnal mountain breeze. Under clean air conditions, high levels of nucleation and lower Aitken mode concentrations were measured, highlighting the importance of new particle formation as a source of particles in the absence of a significant condensation sink. During the warmer months, nucleation mode concentrations were observed to be relatively elevated both under polluted and clean conditions due to increased photochemical reactions, with enhanced subsequent growth owing to elevated concentrations of condensable organic vapours produced from biogenic volatile organic compounds, indicating that nucleation at MSY does not exclusively occur under clean air conditions. Finally, mixing of air masses between polluted and non

  10. Variability in methane emissions from West Siberia's shallow boreal lakes on a regional scale and its environmental controls

    Directory of Open Access Journals (Sweden)

    A. F. Sabrekov

    2017-08-01

    Full Text Available Small lakes represent an important source of atmospheric CH4 from northern wetlands. However, spatiotemporal variations in flux magnitudes and the lack of knowledge about their main environmental controls contribute large uncertainty into the global CH4 budget. In this study, we measured methane fluxes from small lakes using chambers and bubble traps. Field investigations were carried out in July–August 2014 within the West Siberian middle and southern taiga zones. The average and median of measured methane chamber fluxes were 0.32 and 0.30 mgCH4 m−2 h−1 for middle taiga lakes and 8.6 and 4.1 mgCH4 m−2 h−1 for southern taiga lakes, respectively. Pronounced flux variability was found during measurements on individual lakes, between individual lakes and between zones. To analyze these differences and the influences of environmental controls, we developed a new dynamic process-based model. It shows good performance with emission rates from the southern taiga lakes and poor performance for individual lakes in the middle taiga region. The model shows that, in addition to well-known controls such as temperature, pH and lake depth, there are significant variations in the maximal methane production potential between these climatic zones. In addition, the model shows that variations in gas-filled pore space in lake sediments are capable of controlling the total methane emissions from individual lakes. The CH4 emissions exhibited distinct zonal differences not only in absolute values but also in their probability density functions: the middle taiga lake fluxes were best described by a lognormal distribution while the southern taiga lakes followed a power-law distribution. The latter suggests applicability of self-organized criticality theory for methane emissions from the southern taiga zone, which could help to explain the strong variability within individual lakes.

  11. The Variable Regions of Lactobacillus rhamnosus Genomes Reveal the Dynamic Evolution of Metabolic and Host-Adaptation Repertoires.

    Science.gov (United States)

    Ceapa, Corina; Davids, Mark; Ritari, Jarmo; Lambert, Jolanda; Wels, Michiel; Douillard, François P; Smokvina, Tamara; de Vos, Willem M; Knol, Jan; Kleerebezem, Michiel

    2016-07-02

    Lactobacillus rhamnosus is a diverse Gram-positive species with strains isolated from different ecological niches. Here, we report the genome sequence analysis of 40 diverse strains of L. rhamnosus and their genomic comparison, with a focus on the variable genome. Genomic comparison of 40 L. rhamnosus strains discriminated the conserved genes (core genome) and regions of plasticity involving frequent rearrangements and horizontal transfer (variome). The L. rhamnosus core genome encompasses 2,164 genes, out of 4,711 genes in total (the pan-genome). The accessory genome is dominated by genes encoding carbohydrate transport and metabolism, extracellular polysaccharides (EPS) biosynthesis, bacteriocin production, pili production, the cas system, and the associated clustered regularly interspaced short palindromic repeat (CRISPR) loci, and more than 100 transporter functions and mobile genetic elements like phages, plasmid genes, and transposons. A clade distribution based on amino acid differences between core (shared) proteins matched with the clade distribution obtained from the presence-absence of variable genes. The phylogenetic and variome tree overlap indicated that frequent events of gene acquisition and loss dominated the evolutionary segregation of the strains within this species, which is paralleled by evolutionary diversification of core gene functions. The CRISPR-Cas system could have contributed to this evolutionary segregation. Lactobacillus rhamnosus strains contain the genetic and metabolic machinery with strain-specific gene functions required to adapt to a large range of environments. A remarkable congruency of the evolutionary relatedness of the strains' core and variome functions, possibly favoring interspecies genetic exchanges, underlines the importance of gene-acquisition and loss within the L. rhamnosus strain diversification. © The Author(s) 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  12. Temporal Variability of Total Ozone in the Asian Region Inferred from Ground-Based and Satellite Measurement Data

    Science.gov (United States)

    Visheratin, K. N.; Nerushev, A. F.; Orozaliev, M. D.; Zheng, Xiangdong; Sun, Shumen; Liu, Li

    2017-12-01

    This paper reports investigation data on the temporal variability of total ozone content (TOC) in the Central Asian and Tibet Plateau mountain regions obtained by conventional methods, as well as by spectral, cross-wavelet, and composite analyses. The data of ground-based observation stations located at Huang He, Kunming, and Lake Issyk-Kul, along with the satellite data obtained at SBUV/SBUV2 (SBUV merged total and profile ozone data, Version 8.6) for 1980-2013 and OMI (Ozone Monitoring Instrument) and TOU (Total Ozone Unit) for 2009-2013 have been used. The average relative deviation from the SBUV/SBUV2 data is less than 1% in Kunming and Issyk-Kul for the period of 1980-2013, while the Huang He Station is characterized by an excess of the satellite data over the ground-based information at an average deviation of 2%. According to the Fourier analysis results, the distribution of amplitudes and the periods of TOC oscillations within a range of over 14 months is similar for all series analyzed. Meanwhile, according to the cross-wavelet and composite analyses results, the phase relationships between the series may considerably differ, especially in the periods of 5-7 years. The phase of quasi-decennial oscillations in the Kunming Station is close to the 11-year oscillations of the solar cycle, while in the Huang He and Issyk-Kul stations the TOC variations go ahead of the solar cycle.

  13. GIS-modelling of the spatial variability of flash flood hazard in Abu Dabbab catchment, Red Sea Region, Egypt

    Directory of Open Access Journals (Sweden)

    Islam Abou El-Magd

    2010-06-01

    Full Text Available In the mountainous area of the Red Sea region in southeastern Egypt, the development of new mining activities or/and domestic infrastructures require reliable and accurate information about natural hazards particularly flash flood. This paper presents the assessment of flash flood hazards in the Abu Dabbab drainage basin. Remotely sensed data were used to delineate the alluvial active channels, which were integrated with morphometric parameters extracted from digital elevation models (DEM into geographical information systems (GIS to construct a hydrological model that provides estimates about the amount of surface runoff as well as the magnitude of flash floods. The peak discharge is randomly varied at different cross-sections along the main channel. Under consistent 10 mm rainfall event, the selected cross-section in middle of the main channel is prone to maximum water depth at 80 cm, which decreases to nearly 30 cm at the outlet due to transmission loss. The estimation of spatial variability of flow parameters within the catchment at different confluences of the constituting sub-catchments can be considered and used in planning for engineering foundations and linear infrastructures with the least flash flood hazard. Such information would, indeed, help decision makers and planning to minimize such hazards.

  14. Identification and verification of hybridoma-derived monoclonal antibody variable region sequences using recombinant DNA technology and mass spectrometry.

    Science.gov (United States)

    Babrak, Lmar; McGarvey, Jeffery A; Stanker, Larry H; Hnasko, Robert

    2017-10-01

    Antibody engineering requires the identification of antigen binding domains or variable regions (VR) unique to each antibody. It is the VR that define the unique antigen binding properties and proper sequence identification is essential for functional evaluation and performance of recombinant antibodies (rAb). This determination can be achieved by sequence analysis of immunoglobulin (Ig) transcripts obtained from a monoclonal antibody (MAb) producing hybridoma and subsequent expression of a rAb. However the polyploidy nature of a hybridoma cell often results in the added expression of aberrant immunoglobulin-like transcripts or even production of anomalous antibodies which can confound production of rAb. An incorrect VR sequence will result in a non-functional rAb and de novo assembly of Ig primary structure without a sequence map is challenging. To address these problems, we have developed a methodology which combines: 1) selective PCR amplification of VR from both the heavy and light chain IgG from hybridoma, 2) molecular cloning and DNA sequence analysis and 3) tandem mass spectrometry (MS/MS) on enzyme digests obtained from the purified IgG. Peptide analysis proceeds by evaluating coverage of the predicted primary protein sequence provided by the initial DNA maps for the VR. This methodology serves to both identify and verify the primary structure of the MAb VR for production as rAb. Published by Elsevier Ltd.

  15. Landscape and Residential Variables Associated with Plague-Endemic Villages in the West Nile Region of Uganda

    Science.gov (United States)

    MacMillan, Katherine; Enscore, Russell E.; Ogen-Odoi, Asaph; Borchert, Jeff N.; Babi, Nackson; Amatre, Gerald; Atiku, Linda A.; Mead, Paul S.; Gage, Kenneth L.; Eisen, Rebecca J.

    2011-01-01

    Plague, caused by the bacteria Yersinia pestis, is a severe, often fatal disease. This study focuses on the plague-endemic West Nile region of Uganda, where limited information is available regarding environmental and behavioral risk factors associated with plague infection. We conducted observational surveys of 10 randomly selected huts within historically classified case and control villages (four each) two times during the dry season of 2006 (N = 78 case huts and N = 80 control huts), which immediately preceded a large plague outbreak. By coupling a previously published landscape-level statistical model of plague risk with this observational survey, we were able to identify potential residence-based risk factors for plague associated with huts within historic case or control villages (e.g., distance to neighboring homestead and presence of pigs near the home) and huts within areas previously predicted as elevated risk or low risk (e.g., corn and other annual crops grown near the home, water storage in the home, and processed commercial foods stored in the home). The identified variables are consistent with current ecologic theories on plague transmission dynamics. This preliminary study serves as a foundation for future case control studies in the area. PMID:21363983

  16. Registration in the Danish Regional Nonmelanoma Skin Cancer Dermatology Database: completeness of registration and accuracy of key variables

    Directory of Open Access Journals (Sweden)

    Anna L Lamberg

    2010-05-01

    Full Text Available Anna L Lamberg1, Deirdre Cronin-Fenton2, Anne B Olesen11Department of Dermatology, 2Department of Clinical Epidemiology, Aarhus University Hospital, Aarhus, C, DenmarkObjective: To validate a clinical database for nonmelanoma skin cancer (NMSC with the aim of monitoring and predicting the prognosis of NMSC treated by dermatologists in clinics in the central and north Denmark regions.Methods: We assessed the completeness of registration of patients and follow-up visits, and positive predictive value (PPV, negative predictive value (NPV, sensitivity, and specificity of registrations in the database. We used the Danish Pathology Registry (DPR (n = 288 and a review of randomly selected medical records (n = 67 from two clinics as gold standards.Results: The completeness of registration of patients was 62% and 76% with DPR and medical record review as gold standards, respectively. The completeness of registration of 1st and 2nd follow up visits was 85% and 69%, respectively. The PPV and NPV ranged from 85% to 99%, and the sensitivity and specificity from 67% to 100%.Conclusion: Overall, the accuracy of variables registered in the NMSC database was satisfactory but completeness of patient registration and follow-up visits were modest. The NMSC database is a potentially valuable tool for monitoring and facilitating improvement of NMSC treatment in dermatology clinics. However, there is still room for improvement of registration of both patients and their follow-up visits.Keywords: nonmelanoma skin cancer, validation, database, positive predictive value, completeness

  17. Long-Term Variability of UV Irradiance in the Moscow Region according to Measurement and Modeling Data

    Science.gov (United States)

    Chubarova, N. E.; Pastukhova, A. S.; Galin, V. Ya.; Smyshlyaev, S. P.

    2018-03-01

    We have found distinct long-period changes in erythemal UV radiation ( Q er) characterized by a pronounced decrease at the end of the 1970s and a statistically significant positive trend of more than 5%/10 years since 1979 over the territory of the Moscow region according to the measurements and reconstruction model. The positive Q er trend is shown to be associated mainly with a decrease in the effective cloud amount and total ozone content (TOC). Due to these variations, UV resources have significantly changed in spring for the population with the most vulnerable skin type I, which means a transition from the UV optimum to UV moderate excess conditions. The simulation experiments using the INM-RSHU chemistry climate model (CCM) for several scenarios with and without anthropogenic factors have revealed that the variations in the anthropogenic emissions of halogens have the most significant impact on the variability of TOC and Q er. Among natural factors, noticeable effects are observed due to volcanic aerosol. The calculations of the cloud transmittance of Q er are generally consistent with the measurements; however, they do not reproduce the observed value of the positive trend.

  18. Technical Note: An operational landslide early warning system at regional scale based on space-time variable rainfall thresholds

    Science.gov (United States)

    Segoni, S.; Battistini, A.; Rossi, G.; Rosi, A.; Lagomarsino, D.; Catani, F.; Moretti, S.; Casagli, N.

    2014-10-01

    We set up an early warning system for rainfall-induced landslides in Tuscany (23 000 km2). The system is based on a set of state-of-the-art intensity-duration rainfall thresholds (Segoni et al., 2014b), makes use of LAMI rainfall forecasts and real-time rainfall data provided by an automated network of more than 300 rain-gauges. The system was implemented in a WebGIS to ease the operational use in civil protection procedures: it is simple and intuitive to consult and it provides different outputs. Switching among different views, the system is able to focus both on monitoring of real time data and on forecasting at different lead times up to 48 h. Moreover, the system can switch between a very straightforward view where a synoptic scenario of the hazard can be shown all over the region and a more in-depth view were the rainfall path of rain-gauges can be displayed and constantly compared with rainfall thresholds. To better account for the high spatial variability of the physical features, which affects the relationship between rainfall and landslides, the region is subdivided into 25 alert zones, each provided with a specific threshold. The warning system reflects this subdivision: using a network of 332 rain gauges, it allows monitoring each alert zone separately and warnings can be issued independently from an alert zone to another. An important feature of the warning system is the use of thresholds that may vary in time adapting at the conditions of the rainfall path recorded by the rain-gauges. Depending on when the starting time of the rainfall event is set, the comparison with the threshold may produce different outcomes. Therefore, a recursive algorithm was developed to check and compare with the thresholds all possible starting times, highlighting the worst scenario and showing in the WebGIS interface at what time and how much the rainfall path has exceeded or will exceed the most critical threshold. Besides forecasting and monitoring the hazard scenario

  19. In situ study of the impact of inter- and intra-reader variability on region of interest (ROI) analysis in preclinical molecular imaging.

    Science.gov (United States)

    Habte, Frezghi; Budhiraja, Shradha; Keren, Shay; Doyle, Timothy C; Levin, Craig S; Paik, David S

    2013-01-01

    We estimated reader-dependent variability of region of interest (ROI) analysis and evaluated its impact on preclinical quantitative molecular imaging. To estimate reader variability, we used five independent image datasets acquired each using microPET and multispectral fluorescence imaging (MSFI). We also selected ten experienced researchers who utilize molecular imaging in the same environment that they typically perform their own studies. Nine investigators blinded to the data type completed the ROI analysis by drawing ROIs manually that delineate the tumor regions to the best of their knowledge and repeated the measurements three times, non-consecutively. Extracted mean intensities of voxels within each ROI are used to compute the coefficient of variation (CV) and characterize the inter- and intra-reader variability. The impact of variability was assessed through random samples iterated from normal distributions for control and experimental groups on hypothesis testing and computing statistical power by varying subject size, measured difference between groups and CV. The results indicate that inter-reader variability was 22.5% for microPET and 72.2% for MSFI. Additionally, mean intra-reader variability was 10.1% for microPET and 26.4% for MSFI. Repeated statistical testing showed that a total variability of CV variability has been observed mainly due to differences in the ROI placement and geometry drawn between readers, which may adversely affect statistical power and erroneously lead to negative study outcomes.

  20. Features of ozone intraannual variability in polar regions based on ozone sounding data obtained at the Resolute and Amundsen-Scott stations

    Energy Technology Data Exchange (ETDEWEB)

    Gruzdev, A.N.; Sitnov, S.A. (AN SSSR, Institut Fiziki Atmosfery, Moscow (USSR))

    1991-04-01

    Ozone sounding data obtained at the Resolute and Amundsen-Scott stations are used to analyze ozone intraannual variability in Southern and Northern polar regions. For the Arctic, in particular, features associated with winter stratospheric warmings, stratospheric-tropospheric exchange, and the isolated evolution of surface ozone are noted. Correlative connections between ozone and temperature making it possible to concretize ozone variability mechanisms are analyzed. 31 refs.

  1. Drought mitigation in perennial crops by fertilization and adjustments of regional yield models for future climate variability

    Science.gov (United States)

    Kantola, I. B.; Blanc-Betes, E.; Gomez-Casanovas, N.; Masters, M. D.; Bernacchi, C.; DeLucia, E. H.

    2017-12-01

    Increased variability and intensity of precipitation in the Midwest agricultural belt due to climate change is a major concern. The success of perennial bioenergy crops in replacing maize for bioethanol production is dependent on sustained yields that exceed maize, and the marketing of perennial crops often emphasizes the resilience of perennial agriculture to climate stressors. Land conversion from maize for bioethanol to Miscanthus x giganteus (miscanthus) increases yields and annual evapotranspiration rates (ET). However, establishment of miscanthus also increases biome water use efficiency (the ratio between net ecosystem productivity after harvest and ET), due to greater belowground biomass in miscanthus than in maize or soybean. In 2012, a widespread drought reduced the yield of 5-year-old miscanthus plots in central Illinois by 36% compared to the previous two years. Eddy covariance data indicated continued soil water deficit during the hydrologically-normal growing season in 2013 and miscanthus yield failed to rebound as expected, lagging behind pre-drought yields by an average of 53% over the next three years. In early 2014, nitrogen fertilizer was applied to half of mature (7-year-old) miscanthus plots in an effort to improve yields. In plots with annual post-emergence application of 60 kg ha-1 of urea, peak biomass was 29% greater than unfertilized miscanthus in 2014, and 113% greater in 2015, achieving statistically similar yields to the pre-drought average. Regional-scale models of perennial crop productivity use 30-year climate averages that are inadequate for predicting long-term effects of short-term extremes on perennial crops. Modeled predictions of perennial crop productivity incorporating repeated extreme weather events, observed crop response, and the use of management practices to mitigate water deficit demonstrate divergent effects on predicted yields.

  2. Control region variability of haplogroup C1d and the tempo of the peopling of the Americas.

    Directory of Open Access Journals (Sweden)

    Gonzalo Figueiro

    Full Text Available BACKGROUND: Among the founding mitochondrial haplogroups involved in the peopling of the Americas, haplogroup C1d has been viewed as problematic because of its phylogeny and because of the estimates of its antiquity, apparently being much younger than other founding haplogroups. Several recent analyses, based on data from the entire mitochondrial genome, have contributed to an advance in the resolution of these problems. The aim of our analysis is to compare the conclusions drawn from the available HVR-I and HVR-II data for haplogroup C1d with the ones based on whole mitochondrial genomes. METHODOLOGY/PRINCIPAL FINDINGS: HVR-I and HVR-II sequences defined as belonging to haplogroup C1d by standard criteria were gathered from the literature as well as from population studies carried out in Uruguay. Sequence phylogeny was reconstructed using median-joining networks, geographic distribution of lineages was analyzed and the age of the most recent common ancestor estimated using the ρ-statistic and two different mutation rates. The putative ancestral forms of the haplogroup were found to be more widespread than the derived lineages, and the lineages defined by np 194 were found to be widely distributed and of equivalent age. CONCLUSIONS/SIGNIFICANCE: The analysis of control region sequences is found to still harbor great potential in tracing microevolutionary phenomena, especially those found to have occurred in more recent times. Based on the geographic distributions of the alleles of np 7697 and np 194, both discussed as possible basal mutations of the C1d phylogeny, we suggest that both alleles were part of the variability of the haplogroup at the time of its entrance. Moreover, based on the mutation rates of the different sites stated to be diagnostic, it is possible that the anomalies found when analyzing the haplogroup are due to paraphyly.

  3. Collaborative Proposal: Improving Decadal Prediction of Arctic Climate Variability and Change Using a Regional Arctic System Model (RASM)

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, William [Univ. of Texas, El Paso, TX (United States)

    2016-11-18

    RASM is a multi-disciplinary project, which brings together researchers from six state universities, one military postgraduate school, and one DoE laboratory to address the core modeling objectives of the arctic research community articulated in the Arctic System Modeling report by Roberts et al. (2010b). This report advocates the construction of a regional downscaling tool to generate probabilistic decadal projections of Greenland ice sheet retreat, evolution of arctic sea ice cover, changes in land surface vegetation, and regional processes leading to arctic amplification. Unified coupled models such as RASM are ideal for this purpose because they simulate fine-scale physics, essential for the realistic representation of intra-annual variability, in addition to processes fundamental to long term climatic shifts (Hurrell et al. 2009). By using RASM with boundary conditions from a global model, we can generate many-member ensembles essential for understanding uncertainty in regional climate projections (Hawkins and Sutton 2009). This probabilistic approach is computationally prohibitive for high-resolution global models in the foreseeable future, and also for regional models interactively nested within global simulations. Yet it is fundamental for quantifying uncertainty in decadal forecasts to make them useful for decision makers (Doherty et al. 2009). For this reason, we have targeted development of ensemble generation techniques as a core project task (Task 4.5). Environmental impact assessment specialists need high-fidelity regional ensemble projections to improve the accuracy of their work (Challinor et al. 2009; Moss et al. 2010). This is especially true of the Arctic, where economic, social and national interests are rapidly reshaping the high north in step with regional climate change. During the next decade, considerable oil and gas discoveries are expected across many parts of the marine and terrestrial Arctic (Gautier et al. 2009), the economics of the

  4. Exploring the Links in Monthly to Decadal Variability of the Atmospheric Water Balance Over the Wettest Regions in ERA-20C

    Science.gov (United States)

    Nogueira, M.

    2017-10-01

    Monthly-to-decadal variability of the regional precipitation over Intertropical Convergence Zone and north-Atlantic and north-Pacific storm tracks was investigated using ERA-20C reanalysis. Satellite-based precipitation (P) and evaporation (E) climatological patterns were well reproduced by ERA-20C. Regional P and E monthly time series displayed 20% differences, but these decreased rapidly with time scale ( 10% at yearly time scales). Spectral analysis showed good scale-by-scale statistical agreement between ERA-20C and observations. Using ERA-Interim showed no improvement despite the much wider range of information assimilated (including satellites). Remarkably high Detrended Cross-Correlation Analysis coefficients (ρDCCA > 0.7 and often ρDCCA > 0.9) revealed tight links between the nonperiodic variability of P, moisture divergence (DIV), and pressure velocity (ω) at monthly-to-decadal time scales over all the wet regions. In contrast, ρDCCA was essentially nonsignificant between nonperiodic P and E or sea surface temperature (SST). Thus, the nonperiodic monthly-to-decadal variability of precipitation in these regions is almost fully controlled by dynamics and not by local E or SST (suggested by Clausius-Clapeyron relation). Analysis of regional nonperiodic standard deviations and power spectra (and respective spectral exponents, β) provided further robustness to this conclusion. Finally, clear transitions in β for P, DIV, and ω between tropical and storm track regions were found. The latter is dominated by transient storms, with energy accumulation at synoptic scales and β β values (0.2 to 0.4) were found in the tropics, implying longer-range autocorrelations and slower decreasing variability and information creation with time scale, consistent with the important forcing from internal modes of variability (e.g., El Niño-Southern Oscillation).

  5. Monoclonal Antibodies Directed toward the Hepatitis C Virus Glycoprotein E2 Detect Antigenic Differences Modulated by the N-Terminal Hypervariable Region 1 (HVR1), HVR2, and Intergenotypic Variable Region.

    Science.gov (United States)

    Alhammad, Yousef; Gu, Jun; Boo, Irene; Harrison, David; McCaffrey, Kathleen; Vietheer, Patricia T; Edwards, Stirling; Quinn, Charles; Coulibaly, Fásseli; Poumbourios, Pantelis; Drummer, Heidi E

    2015-12-01

    Hepatitis C virus (HCV) envelope glycoproteins E1 and E2 form a heterodimer and mediate receptor interactions and viral fusion. Both E1 and E2 are targets of the neutralizing antibody (NAb) response and are candidates for the production of vaccines that generate humoral immunity. Previous studies demonstrated that N-terminal hypervariable region 1 (HVR1) can modulate the neutralization potential of monoclonal antibodies (MAbs), but no information is available on the influence of HVR2 or the intergenotypic variable region (igVR) on antigenicity. In this study, we examined how the variable regions influence the antigenicity of the receptor binding domain of E2 spanning HCV polyprotein residues 384 to 661 (E2661) using a panel of MAbs raised against E2661 and E2661 lacking HVR1, HVR2, and the igVR (Δ123) and well-characterized MAbs isolated from infected humans. We show for a subset of both neutralizing and nonneutralizing MAbs that all three variable regions decrease the ability of MAbs to bind E2661 and reduce the ability of MAbs to inhibit E2-CD81 interactions. In addition, we describe a new MAb directed toward the region spanning residues 411 to 428 of E2 (MAb24) that demonstrates broad neutralization against all 7 genotypes of HCV. The ability of MAb24 to inhibit E2-CD81 interactions is strongly influenced by the three variable regions. Our data suggest that HVR1, HVR2, and the igVR modulate exposure of epitopes on the core domain of E2 and their ability to prevent E2-CD81 interactions. These studies suggest that the function of HVR2 and the igVR is to modulate antibody recognition of glycoprotein E2 and may contribute to immune evasion. This study reveals conformational and antigenic differences between the Δ123 and intact E2661 glycoproteins and provides new structural and functional data about the three variable regions and their role in occluding neutralizing and nonneutralizing epitopes on the E2 core domain. The variable regions may therefore function to

  6. Preliminary results from the ESA STSE project on SST diurnal variability, its regional extent and implications in atmospheric modelling (SSTDV:R.EX.–IM.A.M.)

    DEFF Research Database (Denmark)

    Karagali, Ioanna; Hasager, Charlotte Bay; Høyer, Jacob L.

    2013-01-01

    This study presents some preliminary results of the ESA Support To Science Element (STSE) funded project on the Diurnal Variability of the Sea Surface Temperature, regarding its Regional Extend and Implications in Atmospheric Modelling (SSTDV:R.EX.–IM.A.M.). Comparisons of SEVIRI SST with AATSR...

  7. Regional deep hyperthermia: impact of observer variability in CT-based manual tissue segmentation on simulated temperature distribution

    Science.gov (United States)

    Aklan, Bassim; Hartmann, Josefin; Zink, Diana; Siavooshhaghighi, Hadi; Merten, Ricarda; Putz, Florian; Ott, Oliver; Fietkau, Rainer; Bert, Christoph

    2017-06-01

    The aim of this study was to systematically investigate the influence of the inter- and intra-observer segmentation variation of tumors and organs at risk on the simulated temperature coverage of the target. CT scans of six patients with tumors in the pelvic region acquired for radiotherapy treatment planning were used for hyperthermia treatment planning. To study the effect of inter-observer variation, three observers manually segmented in the CT images of each patient the following structures: fat, muscle, bone and the bladder. The gross tumor volumes (GTV) were contoured by three radiation oncology residents and used as the hyperthermia target volumes. For intra-observer variation, one of the observers of each group contoured the structures of each patient three times with a time span of one week between the segmentations. Moreover, the impact of segmentation variations in organs at risk (OARs) between the three inter-observers was investigated on simulated temperature distributions using only one GTV. The spatial overlap between individual segmentations was assessed by the Dice similarity coefficient (DSC) and the mean surface distance (MSD). Additionally, the temperatures T90/T10 delivered to 90%/10% of the GTV, respectively, were assessed for each observer combination. The results of the segmentation similarity evaluation showed that the DSC of the inter-observer variation of fat, muscle, the bladder, bone and the target was 0.68  ±  0.12, 0.88  ±  0.05, 0.73  ±  0.14, 0.91  ±  0.04 and 0.64  ±  0.11, respectively. Similar results were found for the intra-observer variation. The MSD results were similar to the DSCs for both observer variations. A statistically significant difference (p  <  0.05) was found for T90 and T10 in the predicted target temperature due to the observer variability. The conclusion is that intra- and inter-observer variations have a significant impact on the temperature coverage of the

  8. Delayed Gadolinium-Enhanced MRI of Cartilage (dGEMRIC): Intra- and Interobserver Variability in Standardized Drawing of Regions of Interest

    International Nuclear Information System (INIS)

    Tiderius, C.J.; Tjoernstrand, J.; Aakeson, P.; Soedersten, K.; Dahlberg, L.; Leander, P.

    2004-01-01

    Purpose: To establish the reproducibility of a standardized region of interest (ROI) drawing procedure in delayed gadolinium-enhanced magnetic resonance imaging (MRI) of cartilage (dGEMRIC). Material and Methods: A large ROI in lateral and medial femoral weight-bearing cartilage was drawn in images of 12 healthy male volunteers by 6 investigators with different skills in MRI. The procedure was done twice, with a 1-week interval. Calculated T1-values were evaluated for intra- and interobserver variability. Results: The mean interobserver variability for both compartments ranged between 1.3% and 2.3% for the 6 different investigators without correlation to their experience in MRI. Post-contrast intra-observer variability was low in both the lateral and the medial femoral cartilage, 2.6% and 1.5%, respectively. The larger variability in lateral than in medial cartilage was related to slightly longer and thinner ROIs. Conclusion: Intra-observer variability and interobserver variability are both low when a large standardized ROI is used in dGEMRIC. The experience of the investigator does not affect the variability, which further supports a clinical applicability of the method

  9. Hospitalizations for ambulatory care sensitive conditions and quality of primary care: their relation with socioeconomic and health care variables in the Madrid regional health service (Spain).

    Science.gov (United States)

    Magán, Purificación; Alberquilla, Angel; Otero, Angel; Ribera, José Manuel

    2011-01-01

    Hospitalizations for ambulatory care sensitive conditions (ACSH) have been proposed as an indirect indicator of the effectiveness and quality of care provided by primary health care. To investigate the association of ACSH rates with population socioeconomic factors and with characteristics of primary health care. Cross-sectional, ecologic study. Using hospital discharge data, ACSH were selected from the list of conditions validated for Spain. All 34 health districts in the Region of Madrid, Spain. Individuals aged 65 years or older residing in the region of Madrid between 2001 and 2003, inclusive. Age- and gender-adjusted ACSH rates in each health district. The adjusted ACSH rate per 1000 population was 35.37 in men and 20.45 in women. In the Poisson regression analysis, an inverse relation was seen between ACSH rates and the socioeconomic variables. Physician workload was the only health care variable with a statistically significant relation (rate ratio of 1.066 [95% CI; 1.041-1.091]). These results were similar in the analyses disaggregated by gender. In the multivariate analyses that included health care variables, none of the health care variables were statistically significant. ACSH may be more closely related with socioeconomic variables than with characteristics of primary care activity. Therefore, other factors outside the health system must be considered to improve health outcomes in the population.

  10. Quantifying the effects of climate variability and human activities on runoff for Kaidu River Basin in arid region of northwest China

    Science.gov (United States)

    Chen, Zhongsheng; Chen, Yaning; Li, Baofu

    2013-02-01

    Much attention has recently been focused on the effects that climate variability and human activities have had on runoff. In this study, data from the Kaidu River Basin in the arid region of northwest China were analyzed to investigate changes in annual runoff during the period of 1960-2009. The nonparametric Mann-Kendall test and the Mann-Kendall-Sneyers test were used to identify trend and step change point in the annual runoff. It was found that the basin had a significant increasing trend in annual runoff. Step change point in annual runoff was identified in the basin, which occurred in the year around 1993 dividing the long-term runoff series into a natural period (1960-1993) and a human-induced period (1994-2009). Then, the hydrologic sensitivity analysis method was employed to evaluate the effects of climate variability and human activities on mean annual runoff for the human-induced period based on precipitation and potential evapotranspiration. In 1994-2009, climate variability was the main factor that increased runoff with contribution of 90.5 %, while the increasing percentage due to human activities only accounted for 9.5 %, showing that runoff in the Kaidu River Basin is more sensitive to climate variability than human activities. This study quantitatively distinguishes the effects between climate variability and human activities on runoff, which can do duty for a reference for regional water resources assessment and management.

  11. Using non-systematic surveys to investigate effects of regional climate variability on Australasian gannets in the Hauraki Gulf, New Zealand

    Science.gov (United States)

    Srinivasan, Mridula; Dassis, Mariela; Benn, Emily; Stockin, Karen A.; Martinez, Emmanuelle; Machovsky-Capuska, Gabriel E.

    2015-05-01

    Few studies have investigated regional and natural climate variability on seabird populations using ocean reanalysis datasets (e.g. Simple Ocean Data Assimilation (SODA)) that integrate atmospheric information to supplement ocean observations and provide improved estimates of ocean conditions. Herein we use a non-systematic dataset on Australasian gannets (Morus serrator) from 2001 to 2009 to identify potential connections between Gannet Sightings Per Unit Effort (GSPUE) and climate and oceanographic variability in a region of known importance for breeding seabirds, the Hauraki Gulf (HG), New Zealand. While no statistically significant relationships between GSPUE and global climate indices were determined, there was a significant correlation between GSPUE and regional SST anomaly for HG. Also, there appears to be a strong link between global climate indices and regional climate in the HG. Further, based on cross-correlation function coefficients and lagged multiple regression models, we identified potential leading and lagging climate variables, and climate variables but with limited predictive capacity in forecasting future GSPUE. Despite significant inter-annual variability and marginally cooler SSTs since 2001, gannet sightings appear to be increasing. We hypothesize that at present underlying physical changes in the marine ecosystem may be insufficient to affect supply of preferred gannet main prey (pilchard Sardinops spp.), which tolerate a wide thermal range. Our study showcases the potential scientific value of lengthy non-systematic data streams and when designed properly (i.e., contain abundance, flock size, and spatial data), can yield useful information in climate impact studies on seabirds and other marine fauna. Such information can be invaluable for enhancing conservation measures for protected species in fiscally constrained research environments.

  12. Intraseasonal variability in the far-east pacific: investigation of the role of air-sea coupling in a regional coupled model

    Energy Technology Data Exchange (ETDEWEB)

    Small, R.J. [Naval Research Laboratory, Jacobs Technology, Stennis Space Center, MS (United States); University of Hawaii, International Pacific Research Center, POST 401, Honolulu, HI (United States); Xie, Shang-Ping [University of Hawaii, International Pacific Research Center, POST 401, Honolulu, HI (United States); University of Hawaii, Department of Meteorology, School of Ocean and Earth Science and Technology, Honolulu, HI (United States); Maloney, Eric D. [Colorado State University, Department of Atmospheric Science, Fort Collins, CO (United States); Szoeke, Simon P. de [Oregon State University, College of Oceanic and Atmospheric Sciences, Corvallis, OR (United States); Miyama, Toru [Frontier Research for Global Change, Yokohama (Japan)

    2011-03-15

    Intraseasonal variability in the eastern Pacific warm pool in summer is studied, using a regional ocean-atmosphere model, a linear baroclinic model (LBM), and satellite observations. The atmospheric component of the model is forced by lateral boundary conditions from reanalysis data. The aim is to quantify the importance to atmospheric deep convection of local air-sea coupling. In particular, the effect of sea surface temperature (SST) anomalies on surface heat fluxes is examined. Intraseasonal (20-90 day) east Pacific warm-pool zonal wind and outgoing longwave radiation (OLR) variability in the regional coupled model are correlated at 0.8 and 0.6 with observations, respectively, significant at the 99% confidence level. The strength of the intraseasonal variability in the coupled model, as measured by the variance of outgoing longwave radiation, is close in magnitude to that observed, but with a maximum located about 10 further west. East Pacific warm pool intraseasonal convection and winds agree in phase with those from observations, suggesting that remote forcing at the boundaries associated with the Madden-Julian oscillation determines the phase of intraseasonal convection in the east Pacific warm pool. When the ocean model component is replaced by weekly reanalysis SST in an atmosphere-only experiment, there is a slight improvement in the location of the highest OLR variance. Further sensitivity experiments with the regional atmosphere-only model in which intraseasonal SST variability is removed indicate that convective variability has only a weak dependence on the SST variability, but a stronger dependence on the climatological mean SST distribution. A scaling analysis confirms that wind speed anomalies give a much larger contribution to the intraseasonal evaporation signal than SST anomalies, in both model and observations. A LBM is used to show that local feedbacks would serve to amplify intraseasonal convection and the large-scale circulation. Further

  13. Closing the sea level budget on a regional scale: Trends and variability on the Northwestern European continental shelf.

    Science.gov (United States)

    Frederikse, Thomas; Riva, Riccardo; Kleinherenbrink, Marcel; Wada, Yoshihide; van den Broeke, Michiel; Marzeion, Ben

    2016-10-28

    Long-term trends and decadal variability of sea level in the North Sea and along the Norwegian coast have been studied over the period 1958-2014. We model the spatially nonuniform sea level and solid earth response to large-scale ice melt and terrestrial water storage changes. GPS observations, corrected for the solid earth deformation, are used to estimate vertical land motion. We find a clear correlation between sea level in the North Sea and along the Norwegian coast and open ocean steric variability in the Bay of Biscay and west of Portugal, which is consistent with the presence of wind-driven coastally trapped waves. The observed nodal cycle is consistent with tidal equilibrium. We are able to explain the observed sea level trend over the period 1958-2014 well within the standard error of the sum of all contributing processes, as well as the large majority of the observed decadal sea level variability.

  14. Variability among the Most Rapidly Evolving Plastid Genomic Regions is Lineage-Specific: Implications of Pairwise Genome Comparisons in Pyrus (Rosaceae) and Other Angiosperms for Marker Choice

    Science.gov (United States)

    Ter-Voskanyan, Hasmik; Allgaier, Martin; Borsch, Thomas

    2014-01-01

    Plastid genomes exhibit different levels of variability in their sequences, depending on the respective kinds of genomic regions. Genes are usually more conserved while noncoding introns and spacers evolve at a faster pace. While a set of about thirty maximum variable noncoding genomic regions has been suggested to provide universally promising phylogenetic markers throughout angiosperms, applications often require several regions to be sequenced for many individuals. Our project aims to illuminate evolutionary relationships and species-limits in the genus Pyrus (Rosaceae)—a typical case with very low genetic distances between taxa. In this study, we have sequenced the plastid genome of Pyrus spinosa and aligned it to the already available P. pyrifolia sequence. The overall p-distance of the two Pyrus genomes was 0.00145. The intergenic spacers between ndhC–trnV, trnR–atpA, ndhF–rpl32, psbM–trnD, and trnQ–rps16 were the most variable regions, also comprising the highest total numbers of substitutions, indels and inversions (potentially informative characters). Our comparative analysis of further plastid genome pairs with similar low p-distances from Oenothera (representing another rosid), Olea (asterids) and Cymbidium (monocots) showed in each case a different ranking of genomic regions in terms of variability and potentially informative characters. Only two intergenic spacers (ndhF–rpl32 and trnK–rps16) were consistently found among the 30 top-ranked regions. We have mapped the occurrence of substitutions and microstructural mutations in the four genome pairs. High AT content in specific sequence elements seems to foster frequent mutations. We conclude that the variability among the fastest evolving plastid genomic regions is lineage-specific and thus cannot be precisely predicted across angiosperms. The often lineage-specific occurrence of stem-loop elements in the sequences of introns and spacers also governs lineage-specific mutations

  15. Variability among the most rapidly evolving plastid genomic regions is lineage-specific: implications of pairwise genome comparisons in Pyrus (Rosaceae and other angiosperms for marker choice.

    Directory of Open Access Journals (Sweden)

    Nadja Korotkova

    Full Text Available Plastid genomes exhibit different levels of variability in their sequences, depending on the respective kinds of genomic regions. Genes are usually more conserved while noncoding introns and spacers evolve at a faster pace. While a set of about thirty maximum variable noncoding genomic regions has been suggested to provide universally promising phylogenetic markers throughout angiosperms, applications often require several regions to be sequenced for many individuals. Our project aims to illuminate evolutionary relationships and species-limits in the genus Pyrus (Rosaceae-a typical case with very low genetic distances between taxa. In this study, we have sequenced the plastid genome of Pyrus spinosa and aligned it to the already available P. pyrifolia sequence. The overall p-distance of the two Pyrus genomes was 0.00145. The intergenic spacers between ndhC-trnV, trnR-atpA, ndhF-rpl32, psbM-trnD, and trnQ-rps16 were the most variable regions, also comprising the highest total numbers of substitutions, indels and inversions (potentially informative characters. Our comparative analysis of further plastid genome pairs with similar low p-distances from Oenothera (representing another rosid, Olea (asterids and Cymbidium (monocots showed in each case a different ranking of genomic regions in terms of variability and potentially informative characters. Only two intergenic spacers (ndhF-rpl32 and trnK-rps16 were consistently found among the 30 top-ranked regions. We have mapped the occurrence of substitutions and microstructural mutations in the four genome pairs. High AT content in specific sequence elements seems to foster frequent mutations. We conclude that the variability among the fastest evolving plastid genomic regions is lineage-specific and thus cannot be precisely predicted across angiosperms. The often lineage-specific occurrence of stem-loop elements in the sequences of introns and spacers also governs lineage-specific mutations. Sequencing

  16. Daily temperature changes and variability in ENSEMBLES regional models predictions: Evaluation and intercomparison for the Ebro Valley (NE Iberia)

    KAUST Repository

    El Kenawy, Ahmed M.; Ló pez-Moreno, Juan Ignacio; McCabe, Matthew; Brunsell, Nathaniel A.; Vicente-Serrano, Sergio M.

    2014-01-01

    We employ a suite of regional climate models (RCMs) to assess future changes in summer (JJA) maximum temperature (Tmax) over the Ebro basin, the largest hydrological division in the Iberian Peninsula. Under the A1B emission scenario, future changes

  17. Effect of weather data aggregation on regional crop simulation for different crops, production conditions, and response variables

    NARCIS (Netherlands)

    Zhao, Gang; Hoffmann, Holger; Bussel, Van L.G.J.; Enders, Andreas; Specka, Xenia; Sosa, Carmen; Yeluripati, Jagadeesh; Tao, Fulu; Constantin, Julie; Raynal, Helene; Teixeira, Edmar; Grosz, Balázs; Doro, Luca; Zhao, Zhigan; Nendel, Claas; Kiese, Ralf; Eckersten, Henrik; Haas, Edwin; Vanuytrecht, Eline; Wang, Enli; Kuhnert, Matthias; Trombi, Giacomo; Moriondo, Marco; Bindi, Marco; Lewan, Elisabet; Bach, Michaela; Kersebaum, Kurt Christian; Rötter, Reimund; Roggero, Pier Paolo; Wallach, Daniel; Cammarano, Davide; Asseng, Senthold; Krauss, Gunther; Siebert, Stefan

    2015-01-01

    We assessed the weather data aggregation effect (DAE) on the simulation of cropping systems for different crops, response variables, and production conditions. Using 13 processbased crop models and the ensemble mean, we simulated 30 yr continuous cropping systems for 2 crops (winter wheat and

  18. Regional and hemispheric influences on temporal variability in baseline carbon monoxide and ozone over the Northeast US

    Science.gov (United States)

    Interannual variability in baseline carbon monoxide (CO) and ozone (O3), defined as mixing ratios under minimal influence of recent and local emissions, was studied for seven rural sites in the Northeast US over 2001–2010. Annual baseline CO exhibited statistically signific...

  19. Spatio-temporal variability in accretion and erosion of coastal foredunes in the Netherlands: regional climate and local topography.

    Science.gov (United States)

    Keijsers, Joep G S; Poortinga, Ate; Riksen, Michel J P M; Maroulis, Jerry

    2014-01-01

    Depending on the amount of aeolian sediment input and dune erosion, dune size and morphology change over time. Since coastal foredunes play an important role in the Dutch coastal defence, it is important to have good insight in the main factors that control these changes. In this paper the temporal variations in foredune erosion and accretion were studied in relation to proxies for aeolian transport potential and storminess using yearly elevation measurements from 1965 to 2012 for six sections of the Dutch coast. Longshore differences in the relative impacts of erosion and accretion were examined in relation to local beach width. The results show that temporal variability in foredune accretion and erosion is highest in narrow beach sections. Here, dune erosion alternates with accretion, with variability displaying strong correlations with yearly values of storminess (maximum sea levels). In wider beach sections, dune erosion is less frequent, with lower temporal variability and stronger correlations with time series of transport potential. In erosion dominated years, eroded volumes decrease from narrow to wider beaches. When accretion dominates, dune-volume changes are relatively constant alongshore. Dune erosion is therefore suggested to control spatial variability in dune-volume changes. On a scale of decades, the volume of foredunes tends to increase more on wider beaches. However, where widths exceed 200 to 300 m, this trend is no longer observed.

  20. A SYSTEMATIC SEARCH FOR COROTATING INTERACTION REGIONS IN APPARENTLY SINGLE GALACTIC WOLF-RAYET STARS. II. A GLOBAL VIEW OF THE WIND VARIABILITY

    International Nuclear Information System (INIS)

    Chene, A.-N.; St-Louis, N.

    2011-01-01

    This study is the second part of a survey searching for large-scale spectroscopic variability in apparently single Wolf-Rayet (WR) stars. In a previous paper (Paper I), we described and characterized the spectroscopic variability level of 25 WR stars observable from the northern hemisphere and found 3 new candidates presenting large-scale wind variability, potentially originating from large-scale structures named corotating interaction regions (CIRs). In this second paper, we discuss an additional 39 stars observable from the southern hemisphere. For each star in our sample, we obtained 4-5 high-resolution spectra with a signal-to-noise ratio of ∼100 and determined its variability level using the approach described in Paper I. In total, 10 new stars are found to show large-scale spectral variability of which 7 present CIR-type changes (WR 8, WR 44, WR55, WR 58, WR 61, WR 63, WR 100). Of the remaining stars, 20 were found to show small-amplitude changes and 9 were found to show no spectral variability as far as can be concluded from the data on hand. Also, we discuss the spectroscopic variability level of all single galactic WR stars that are brighter than v ∼ 12.5, and some WR stars with 12.5 < v ≤ 13.5, i.e., all the stars presented in our two papers and four more stars for which spectra have already been published in the literature. We find that 23/68 stars (33.8%) present large-scale variability, but only 12/54 stars (∼22.1%) are potentially of CIR type. Also, we find that 31/68 stars (45.6%) only show small-scale variability, most likely due to clumping in the wind. Finally, no spectral variability is detected based on the data on hand for 14/68 (20.6%) stars. Interestingly, the variability with the highest amplitude also has the widest mean velocity dispersion.

  1. Multi-site study of diffusion metric variability: effects of site, vendor, field strength, and echo time on regions-of-interest and histogram-bin analyses.

    Science.gov (United States)

    Helmer, K G; Chou, M-C; Preciado, R I; Gimi, B; Rollins, N K; Song, A; Turner, J; Mori, S

    2016-02-27

    It is now common for magnetic-resonance-imaging (MRI) based multi-site trials to include diffusion-weighted imaging (DWI) as part of the protocol. It is also common for these sites to possess MR scanners of different manufacturers, different software and hardware, and different software licenses. These differences mean that scanners may not be able to acquire data with the same number of gradient amplitude values and number of available gradient directions. Variability can also occur in achievable b-values and minimum echo times. The challenge of a multi-site study then, is to create a common protocol by understanding and then minimizing the effects of scanner variability and identifying reliable and accurate diffusion metrics. This study describes the effect of site, scanner vendor, field strength, and TE on two diffusion metrics: the first moment of the diffusion tensor field (mean diffusivity, MD), and the fractional anisotropy (FA) using two common analyses (region-of-interest and mean-bin value of whole brain histograms). The goal of the study was to identify sources of variability in diffusion-sensitized imaging and their influence on commonly reported metrics. The results demonstrate that the site, vendor, field strength, and echo time all contribute to variability in FA and MD, though to different extent. We conclude that characterization of the variability of DTI metrics due to site, vendor, field strength, and echo time is a worthwhile step in the construction of multi-center trials.

  2. The Role of Indian Ocean SST Anomalies in Modulating Regional Rainfall Variability and Long-term Change

    Science.gov (United States)

    Ummenhofer, C. C.; Sen Gupta, A.; England, M. H.

    2008-12-01

    In a series of atmospheric general circulation model simulations, the potential impact of Indian Ocean sea surface temperature (SST) anomalies in modulating low- to mid-latitude precipitation around the Indian Ocean rim countries is explored. The relative importance of various characteristic tropical and subtropical Indian Ocean SST poles, both individually and in combination, to regional precipitation changes is quantified. A mechanism for the rainfall modulation is proposed, by which the SST anomalies induce changes in the thermal properties of the atmosphere, resulting in a reorganization of the large-scale atmospheric circulation across the Indian Ocean basin. Across western and southern regions of Australia, rainfall anomalies are found to be due to modulations in the meridional thickness gradient, thermal wind, and baroclinicity, leading to changes in the moisture flux onto the continent. The pattern of large-scale circulation changes over the tropical Indian Ocean and adjacent land masses is consistent with an anomalous strengthening of the Walker cell, leading to variations in precipitation of opposite sign across western and eastern regions of the basin. Links between long-term changes in Indian Ocean surface properties and regional precipitation changes in Indian Ocean rim countries are also discussed in a broader context with implications for water management and seasonal forecasting.

  3. Sociological Variables Perceived in the Study of Ghanaian Languages in Central and Western Regional Colleges of Education in Ghana

    Science.gov (United States)

    Quaicoe, Kate; Adams, Francis Hull; Bersah, Vivian Adoboah; Baah, Kwabena Appiah

    2015-01-01

    The study was conducted in two Colleges of Education in the Western and Central Regions of Ghana to find out how Colleges of Education students and tutors perceive the study of Ghanaian Languages. The target population comprised all staff and students of the Colleges of Education but the accessible population comprised students and tutors of the…

  4. Ultrafast 2-dimensional image monitoring and array-based passive cavitation detection for ultrasound contrast agent destruction in a variably sized region.

    Science.gov (United States)

    Xu, Shanshan; Hu, Hong; Jiang, Hujie; Xu, Zhi'an; Wan, Mingxi

    2014-11-01

    A combined approach was proposed, based on programmable ultrasound equipment, to simultaneously monitor surviving microbubbles and detect cavitation activity during microbubble destruction in a variably sized region for use in ultrasound contrast agent (UCA)-enhanced therapeutic ultrasound applications. A variably sized focal region wherein the acoustic pressure was above the UCA fragmentation threshold was synthesized at frequencies of 3, 4, 5, and 6 MHz with a linear broadband imaging probe. The UCAs' temporal and spatial distribution during the microbubbles' destruction was monitored in a 2-dimensional imaging plane at 5 MHz and a frame rate of 400 Hz, and simultaneously, broadband noise emissions during the microbubbles' fragmentation were extracted by using the backscattered signals produced by the focused release bursts (ie, destruction pulses) themselves. Afterward, the temporal evolution of broadband noise emission, the surviving microbubbles in a region of interest (ROI), and the destruction area in a static UCA suspension were computed. Then the inertial cavitation dose, destruction rate of microbubbles in the ROI, and area of the destruction region were determined. It was found that an increasing pulse length and a decreasing transmit aperture and excitation frequency were correlated with an increased inertial cavitation dose, microbubble destruction rate, and destruction area. Furthermore, it was obvious that the microbubble destruction rate was significantly correlated with the inertial cavitation dose (P cavitation dose could be regulated by manipulating the transmission parameters. © 2014 by the American Institute of Ultrasound in Medicine.

  5. A 21-Year Record of Arctic Sea Ice Extents and Their Regional, Seasonal, and Monthly Variability and Trends

    Science.gov (United States)

    Parkinson, Claire L.; Cavalieri, Donald J.; Zukor, Dorothy J. (Technical Monitor)

    2001-01-01

    Satellite passive-microwave data have been used to calculate sea ice extents over the period 1979-1999 for the north polar sea ice cover as a whole and for each of nine regions. Over this 21-year time period, the trend in yearly average ice extents for the ice cover as a whole is -32,900 +/- 6,100 sq km/yr (-2.7 +/- 0.5 %/decade), indicating a reduction in sea ice coverage that has decelerated from the earlier reported value of -34,000 +/- 8,300 sq km/yr (-2.8 +/- 0.7 %/decade) for the period 1979-1996. Regionally, the reductions are greatest in the Arctic Ocean, the Kara and Barents Seas, and the Seas of Okhotsk and Japan, whereas seasonally, the reductions are greatest in summer, for which season the 1979-1999 trend in ice extents is -41,600 +/- 12,900 sq km/ yr (-4.9 +/- 1.5 %/decade). On a monthly basis, the reductions are greatest in July and September for the north polar ice cover as a whole, in September for the Arctic Ocean, in June and July for the Kara and Barents Seas, and in April for the Seas of Okhotsk and Japan. Only two of the nine regions show overall ice extent increases, those being the Bering Sea and the Gulf of St. Lawrence.For neither of these two regions is the increase statistically significant, whereas the 1079 - 1999 ice extent decreases are statistically significant at the 99% confidence level for the north polar region as a whole, the Arctic Ocean, the Seas of Okhotsk and Japan, and Hudson Bay.

  6. Behavior of variable V3 region from 16S rDNA of lactic acid bacteria in denaturing gradient gel electrophoresis.

    Science.gov (United States)

    Ercolini, D; Moschetti, G; Blaiotta, G; Coppola, S

    2001-03-01

    Separation of amplified V3 region from 16S rDNA by denaturing gradient gel electrophoresis (DGGE) was tested as a tool for differentiation of lactic acid bacteria commonly isolated from food. Variable V3 regions of 21 reference strains and 34 wild strains referred to species belonging to the genera Pediococcus, Enterococcus, Lactococcus, Lactobacillus, Leuconostoc, Weissella, and Streptococcus were analyzed. DGGE profiles obtained were species-specific for most of the cultures tested. Moreover, it was possible to group the remaining LAB reference strains according to the migration of their 16S V3 region in the denaturing gel. The results are discussed with reference to their potential in the analysis of LAB communities in food, besides shedding light on taxonomic aspects.

  7. Tropospheric Ozone Assessment Report: Assessment of global-scale model performance for global and regional ozone distributions, variability, and trends

    Directory of Open Access Journals (Sweden)

    P. J. Young

    2018-01-01

    Full Text Available The goal of the Tropospheric Ozone Assessment Report (TOAR is to provide the research community with an up-to-date scientific assessment of tropospheric ozone, from the surface to the tropopause. While a suite of observations provides significant information on the spatial and temporal distribution of tropospheric ozone, observational gaps make it necessary to use global atmospheric chemistry models to synthesize our understanding of the processes and variables that control tropospheric ozone abundance and its variability. Models facilitate the interpretation of the observations and allow us to make projections of future tropospheric ozone and trace gas distributions for different anthropogenic or natural perturbations. This paper assesses the skill of current-generation global atmospheric chemistry models in simulating the observed present-day tropospheric ozone distribution, variability, and trends. Drawing upon the results of recent international multi-model intercomparisons and using a range of model evaluation techniques, we demonstrate that global chemistry models are broadly skillful in capturing the spatio-temporal variations of tropospheric ozone over the seasonal cycle, for extreme pollution episodes, and changes over interannual to decadal periods. However, models are consistently biased high in the northern hemisphere and biased low in the southern hemisphere, throughout the depth of the troposphere, and are unable to replicate particular metrics that define the longer term trends in tropospheric ozone as derived from some background sites. When the models compare unfavorably against observations, we discuss the potential causes of model biases and propose directions for future developments, including improved evaluations that may be able to better diagnose the root cause of the model-observation disparity. Overall, model results should be approached critically, including determining whether the model performance is acceptable for

  8. Influence of soil physical and chemical variables on species composition and richness of plants in the arid region of Tabuk, Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Al-Mutairi Khalid Awadh

    2017-06-01

    Full Text Available The present study aims to investigate the effect of soil physical and chemical variables on the species richness and the floristic composition in four sites (Alwaz, Alqan, Sharma and Zetah of Tabuk region in the Northwestern part of Arabian Peninsula. Only organic matter (OM, pH and calcium (Ca showed significant differences (P < 0.05 amongst the four studied sites. Only magnesium and sodium were selected in the forward regression model and showed to be strong drivers of species richness of plants in Tabuk region (Adj-R2 = 0.438, F2,13 = 6.85, P = 0.009. The multivariate analysis of canonical correspondence analysis (CCA was applied to reveal the effect of the physical and chemical variables on the species composition of the plants. The CCA classifies the plant species into three groups based on their preference to the environmental variables. The first group of plant species (Group 1 is characterised by positive preference to the chloride (Cl and negative relationship with OM and pH. The second group (Group 2 is positively correlated with most of the soil variables such as OM, calcium (Ca, potassium (K, bicarbonate (HCO3, electrical conductivity (EC, sulphate (SO4 and sodium (Na. The third group (Group 3 has positive relationship with carbonate (CO3 and negative relationship with EC and magnesium (Mg. The chloride, sodium, sulphate, EC and carbonate are the main environmental factors influencing the plant species composition in Tabuk region. The cluster analysis based on the Euclidian measure shows that Alqan and Zetah have closer species composition compared to Sharma.

  9. Spatial and temporal variability of drought in the arid region of China and its relationships to teleconnection indices

    Science.gov (United States)

    Wang, Huaijun; Chen, Yaning; Pan, Yingping; Li, Weihong

    2015-04-01

    We studied the drought patterns in the arid region of northwestern China between 1960 and 2010 using the Palmer Drought Severity Index (PDSI). The general evolution of drought was obtained by empirical orthogonal function (EOF), rotated empirical orthogonal function (REOF), the Mann-Kendall test, and the continuous wavelet transform method. Additionally, relationships between rotated principal component time series (RPCs) and seven selected climate indices were analyzed. The results showed that: (1) Four moisture-related spatial patterns (North Xinjiang, western South Xinjiang, Central Xinjiang, and the Hexi Corridor) were objectively defined by REOF analysis. These patterns are related to distinct geographical areas and are associated with distinct temporal variations. (2) The PDSI increased significantly in most regions of Xinjiang, while decreased in the eastern Hexi Corridor. The significant 4-8 year band is the major period band for the annual and seasonal PDSI derived. (3) The seasonal REOFs (RPCs) and EOFs (PCs) have consistent spatial distribution patterns with the annual REOF. The seasonal trends of PDSI are also the same as the annual PDSI trends, indicating space-time consistency between annual PDSI and seasonal PDSI. (4) The drought evolution in this region is affected by the area of northern hemisphere polar vortex, the Arctic Oscillation, and the North Atlantic Oscillation. In addition, the changes of drought in South Xinjiang and the Hexi Corridor may also be associated with the Tibetan Plateau High. Changes in drought pattern are expected to have a strong impact on the economic livelihood of the region, especially for agricultural production.

  10. Positive selection in the chromosome 16 VKORC1 genomic region has contributed to the variability of anticoagulant response in humans.

    Directory of Open Access Journals (Sweden)

    Blandine Patillon

    Full Text Available VKORC1 (vitamin K epoxide reductase complex subunit 1, 16p11.2 is the main genetic determinant of human response to oral anticoagulants of antivitamin K type (AVK. This gene was recently suggested to be a putative target of positive selection in East Asian populations. In this study, we genotyped the HGDP-CEPH Panel for six VKORC1 SNPs and downloaded chromosome 16 genotypes from the HGDP-CEPH database in order to characterize the geographic distribution of footprints of positive selection within and around this locus. A unique VKORC1 haplotype carrying the promoter mutation associated with AVK sensitivity showed especially high frequencies in all the 17 HGDP-CEPH East Asian population samples. VKORC1 and 24 neighboring genes were found to lie in a 505 kb region of strong linkage disequilibrium in these populations. Patterns of allele frequency differentiation and haplotype structure suggest that this genomic region has been submitted to a near complete selective sweep in all East Asian populations and only in this geographic area. The most extreme scores of the different selection tests are found within a smaller 45 kb region that contains VKORC1 and three other genes (BCKDK, MYST1 (KAT8, and PRSS8 with different functions. Because of the strong linkage disequilibrium, it is not possible to determine if VKORC1 or one of the three other genes is the target of this strong positive selection that could explain present-day differences among human populations in AVK dose requirement. Our results show that the extended region surrounding a presumable single target of positive selection should be analyzed for genetic variation in a wide range of genetically diverse populations in order to account for other neighboring and confounding selective events and the hitchhiking effect.

  11. The influence of climate variability on chemical composition of European wines: a regional scale study (Italy and Slovenia)

    Science.gov (United States)

    Barbante, Carlo; Polo, Fabio; Cozzi, Giulio; Ogrinc, Nives; Turetta, Clara

    2016-04-01

    Climate change is having an increasing influence on vine phenology and grape composition, affecting vinifications, wine chemistry and the quality of productions. Wine grape cultivation provides a good test case for measuring indirect impacts mediated by changes in agriculture, because viticulture is sensitive to climate and is concentrated in Mediterranean climate regions that are global biodiversity hotspots. Moreover, on a regional level and on a shorter time scale, the seasonal weather conditions modify the quality of yields determining the final properties of wine. In the present research, we studied wines from Italy and Slovenia with the purpose of differentiating them by the different vintages (from 2009 to 2012), which are supposed to be influenced by temperature and rain during each year's growing season. Specific chemical techniques were used, in particular mass spectrometry (ICP-MS) and isotopic mass spectrometry (IRMS), both of which are usually employed to detect wine adulterations and to establish the geographical provenance of wines. In particular, we investigated the relationship between macro- and micro-elements, Rare Earth Elements and stable isotopes [δ13C, δ18O, (D/H)I, (D/H)II]. The datasets were examined via statistical techniques to show their relation to weather conditions as well as their mutual connection. Italian and Slovenian wines were distinguished, with the exception of few samples, by both TEs and REEs results. This separation, due to different elemental compositions, may be justified as being part of two distinct environmental and geographical belongings (terroir) but also to the processes of wine production, from the harvest to the bottling, which have certainly interfered and characterized the products. In the case of Italian wines the weather conditions were evidenced with an important separation of stable isotopes which they confirmed to be very sensitive Regarding Slovenian wines, the studied regions were characterized of

  12. Spatial and Temporal Variability of Groundwater Recharge in a Sandstone Aquifer in a Semi-Arid Region

    Science.gov (United States)

    Manna, F.; Murray, S.; Abbey, D.; Martin, P.; Cherry, J.; Parker, B. L.

    2017-12-01

    Groundwater recharge estimates are required to constrain groundwater fluxes over a 11.5 km2 site, located on an upland ridge of southern California. The site is a decommissioned industrial research facility that features chemical contamination of the underlying sedimentary bedrock aquifer and recharge values are necessary to quantify the volumetric flow rate available to transport contaminants. As a first step to assess recharge, Manna et al. (2016) used to chloride mass balance method based on on-site measurements of bulk atmospheric chloride deposition comprised of dry fallout and precipitation, 1490 groundwater samples, and measurements of chloride in surface water runoff. However, this study only provided site-wide long-term average value and did not address spatial and temporal variability of recharge. To this purpose, a spatially distributed hydrological model was used to reflect the site-specific conditions and represent the transient nature of recharge, runoff, storage and evapotranspiration over a 20-year period in a catchment (2.16 km2) of the study area. The integrated model was developed using MIKESHE employing a 20 by 20 m finite difference grid and using on-site measured physical and hydrological input parameters. We found that recharge is highly variable across the study area, with values that span over three orders of magnitude. The main factors affecting recharge are land use and topography: lower recharge values were found in vegetated areas, whereas higher values were found in areas with exposed bedrock at the surface and along the main drainages of the catchment. Analyzing the seasonal variability of the water budget components, evapotranspiration is the dominant process throughout the year and recharge occurs episodically only during the winter season. These results are validated by the comparison of measured and simulated water levels and overland flow rates and are consistent with a previous study carried out at the site using the chloride

  13. The Climate Variability & Predictability (CVP) Program at NOAA - Observing and Understanding Processes Affecting the Propagation of Intraseasonal Oscillations in the Maritime Continent Region

    Science.gov (United States)

    Lucas, S. E.

    2017-12-01

    The Climate Variability & Predictability (CVP) Program supports research aimed at providing process-level understanding of the climate system through observation, modeling, analysis, and field studies. This vital knowledge is needed to improve climate models and predictions so that scientists can better anticipate the impacts of future climate variability and change. To achieve its mission, the CVP Program supports research carried out at NOAA and other federal laboratories, NOAA Cooperative Institutes, and academic institutions. The Program also coordinates its sponsored projects with major national and international scientific bodies including the World Climate Research Programme (WCRP), the International and U.S. Climate Variability and Predictability (CLIVAR/US CLIVAR) Program, and the U.S. Global Change Research Program (USGCRP). The CVP program sits within NOAA's Climate Program Office (http://cpo.noaa.gov/CVP). In 2017, the CVP Program had a call for proposals focused on observing and understanding processes affecting the propagation of intraseasonal oscillations in the Maritime Continent region. This poster will present the recently funded CVP projects, the expected scientific outcomes, the geographic areas of their work in the Maritime Continent region, and the collaborations with the Office of Naval Research, Indonesian Agency for Meteorology, Climatology and Geophysics (BMKG), Japan Agency for Marine-Earth Science and Technology (JAMSTEC) and other partners.

  14. Variability of Snow Ablation: Consequences for Runoff Generation at the Process Scale and Lessons for Large Cold Regions Catchments

    Science.gov (United States)

    Pomeroy, J. W.; Carey, S. K.; Granger, R. J.; Hedstrom, N. R.; Janowicz, R.; Pietroniro, A.; Quinton, W. L.

    2002-12-01

    The supply of water to large northern catchments such as the Mackenzie and Yukon Rivers is dominated by snowmelt runoff from first order mountain catchments. In order to understand the timing, peak and duration of the snowmelt freshet at larger scale it is important to appreciate the spatial and temporal variability of snowmelt and runoff processes at the source. For this reason a comprehensive hydrology study of a Yukon River headwaters catchment, Wolf Creek Research Basin, near Whitehorse, has focussed on the spatial variability of snow ablation and snowmelt runoff generation and the consequences for the water balance in a mountain tundra zone. In northern mountain tundra, surface energetics vary with receipt of solar radiation, shrub vegetation cover and initial snow accumulation. Therefore the timing of snowmelt is controlled by aspect, in that south facing slopes become snow-free 4-5 weeks before the north facing. Runoff generation differs widely between the slopes; there is normally no spring runoff generated from the south facing slope as all meltwater evaporates or infiltrates. On the north facing slope, snowmelt provides substantial runoff to hillside macropores which rapidly route water to the stream channel. Macropore distribution is associated with organic terrain and discontinuous permafrost, which in turn result from the summer surface energetics. Therefore the influence of small-scale snow redistribution and energetics as controlled by topography must be accounted for when calculating contributing areas to larger scale catchments, and estimating the effectiveness of snowfall in generating streamflow. This concept is quite distinct from the drainage controlled contributing area that has been found useful in temperate-zone hydrology.

  15. A Field Study of Pixel-Scale Variability of Raindrop Size Distribution in the MidAtlantic Region

    Science.gov (United States)

    Tokay, Ali; D'adderio, Leo Pio; Wolff, David P.; Petersen, Walter A.

    2016-01-01

    The spatial variability of parameters of the raindrop size distribution and its derivatives is investigated through a field study where collocated Particle Size and Velocity (Parsivel2) and two-dimensional video disdrometers were operated at six sites at Wallops Flight Facility, Virginia, from December 2013 to March 2014. The three-parameter exponential function was employed to determine the spatial variability across the study domain where the maximum separation distance was 2.3 km. The nugget parameter of the exponential function was set to 0.99 and the correlation distance d0 and shape parameter s0 were retrieved by minimizing the root-mean-square error, after fitting it to the correlations of physical parameters. Fits were very good for almost all 15 physical parameters. The retrieved d0 and s0 were about 4.5 km and 1.1, respectively, for rain rate (RR) when all 12 disdrometers were reporting rainfall with a rain-rate threshold of 0.1 mm h1 for 1-min averages. The d0 decreased noticeably when one or more disdrometers were required to report rain. The d0 was considerably different for a number of parameters (e.g., mass-weighted diameter) but was about the same for the other parameters (e.g., RR) when rainfall threshold was reset to 12 and 18 dBZ for Ka- and Ku-band reflectivity, respectively, following the expected Global Precipitation Measurement missions spaceborne radar minimum detectable signals. The reduction of the database through elimination of a site did not alter d0 as long as the fit was adequate. The correlations of 5-min rain accumulations were lower when disdrometer observations were simulated for a rain gauge at different bucket sizes.

  16. Assessment of the intensity and spatial variability of urban heat islands over the Indian cities for Regional Climate Analysis

    Science.gov (United States)

    Sultana, S.; Satyanarayana, A. N. V.

    2016-12-01

    The Urban heat island (UHI) in general developed over cities, due to the drastic changes in land use and land cover (LULC), has profound impact on the atmospheric circulation patterns due to the changes in the energy transport mechanism which in turn affect the regional climate. In this study, an attempt has been made to quantify the intensity of UHI, and to identify the pockets of UHI over cities during last decade over fast developing cosmopolitan Indian cities such as New Delhi, Mumbai and Kolkata. For this purpose, Landsat TM and ETM+ images during winter period, in about 5 year intervals from 2002 to 2013, has been selected to retrieve the brightness temperatures and land use/cover, from which Land Surface Temperature (LST) has been estimated using Normalized Difference Vegetation Index (NDVI). Normalized Difference Build-up Index (NDBI) and Normalized Difference Bareness Index (NDBaI) are estimated to extract build-up areas and bare land from the satellite images to identify the UHI pockets over the study area. For this purpose image processing and GIS tools were employed. Results reveal a significant increase in the intensity of UHI and increase in its area of influence over all the three cities. An increase of 2 to 2.5 oC of UHI intensity over the study regions has been noticed. The range of increase in UHI intensity is found to be more over New Delhi compared to Mumbai and Kolkata which is more or less same. The number of hotspot pockets of UHI has also been increased as seen from the spatial distribution of LST, NDVI and NDBI. This result signifies the impact of rapid urbanization and infrastructural developments has a direct consequence in modulating the regional climate over the Indian cities.

  17. Mapping the regional influence of genetics on brain structure variability--a tensor-based morphometry study.

    Science.gov (United States)

    Brun, Caroline C; Leporé, Natasha; Pennec, Xavier; Lee, Agatha D; Barysheva, Marina; Madsen, Sarah K; Avedissian, Christina; Chou, Yi-Yu; de Zubicaray, Greig I; McMahon, Katie L; Wright, Margaret J; Toga, Arthur W; Thompson, Paul M

    2009-10-15

    Genetic and environmental factors influence brain structure and function profoundly. The search for heritable anatomical features and their influencing genes would be accelerated with detailed 3D maps showing the degree to which brain morphometry is genetically determined. As part of an MRI study that will scan 1150 twins, we applied Tensor-Based Morphometry to compute morphometric differences in 23 pairs of identical twins and 23 pairs of same-sex fraternal twins (mean age: 23.8+/-1.8 SD years). All 92 twins' 3D brain MRI scans were nonlinearly registered to a common space using a Riemannian fluid-based warping approach to compute volumetric differences across subjects. A multi-template method was used to improve volume quantification. Vector fields driving each subject's anatomy onto the common template were analyzed to create maps of local volumetric excesses and deficits relative to the standard template. Using a new structural equation modeling method, we computed the voxelwise proportion of variance in volumes attributable to additive (A) or dominant (D) genetic factors versus shared environmental (C) or unique environmental factors (E). The method was also applied to various anatomical regions of interest (ROIs). As hypothesized, the overall volumes of the brain, basal ganglia, thalamus, and each lobe were under strong genetic control; local white matter volumes were mostly controlled by common environment. After adjusting for individual differences in overall brain scale, genetic influences were still relatively high in the corpus callosum and in early-maturing brain regions such as the occipital lobes, while environmental influences were greater in frontal brain regions that have a more protracted maturational time-course.

  18. THE NON-THERMAL, TIME-VARIABLE RADIO EMISSION FROM Cyg OB2 no. 5: A WIND-COLLISION REGION

    International Nuclear Information System (INIS)

    Ortiz-Leon, Gisela N.; Loinard, Laurent; RodrIguez, Luis F.; Dzib, Sergio A.; Mioduszewski, Amy J.

    2011-01-01

    The radio emission from the well-studied massive stellar system Cyg OB2 no. 5 is known to fluctuate with a period of 6.7 years between a low-flux state, when the emission is entirely of free-free origin, and a high-flux state, when an additional non-thermal component (of hitherto unknown nature) appears. In this paper, we demonstrate that the radio flux of that non-thermal component is steady on timescales of hours and that its morphology is arc-like. This shows that the non-thermal emission results from the collision between the strong wind driven by the known contact binary in the system and that of an unseen companion on a somewhat eccentric orbit with a 6.7 year period and a 5-10 mas semimajor axis. Together with the previously reported wind-collision region located about 0.''8 to the northeast of the contact binary, so far Cyg OB2 no. 5 appears to be the only multiple system known to harbor two radio-imaged wind-collision regions.

  19. The impact of an urban-industrial region on the magnitude and variability of persistent organic pollutant deposition to Lake Michigan.

    Science.gov (United States)

    Hornbuckle, Keri C; Green, Mark L

    2003-09-01

    A predictive model for gas-phase PCBs and trans-nonachlor over Lake Michigan has been constructed and the resulting data examined for trends. In this paper, we describe the model results to show how the magnitude and variability of a plume of contaminants from the Chicago area contributes to a highly variable region of net contaminant deposition over the entire lake. For the whole lake, gross annual deposition of PCBs is approximately 3200 kg, although the net annual gas exchange is not significantly different from zero. The data-driven model illustrates that on a daily basis, the net exchange of persistent organic pollutants (POPs) can change from net deposition to net volatilization depending on the area of plume impact. These findings suggest that i) control of urban areas can accelerate the rate of volatilization from lakes; and ii) release of POPs from urban areas is largely a result of volatilization processes.

  20. Assessment of regional left ventricular function by Dual Source Computed Tomography: Interobserver variability and validation to laevocardiography

    Energy Technology Data Exchange (ETDEWEB)

    Pflederer, T. [Department of Internal Medicine 2 (Cardiology), University of Erlangen (Germany)], E-mail: tobiaspflederer@web.de; Ho, K.T. [Department of Cardiology, Tan Tock Seng Hospital (Singapore)], E-mail: contact@ttsh.com.sg; Anger, T. [Department of Internal Medicine 2 (Cardiology), University of Erlangen (Germany)], E-mail: thomas.anger@uk-erlangen.de; Kraehner, R. [Department of Internal Medicine 2 (Cardiology), University of Erlangen (Germany)], E-mail: robert.kraehner@uk-erlangen.de; Ropers, D. [Department of Internal Medicine 2 (Cardiology), University of Erlangen (Germany)], E-mail: dieter.ropers@uk-erlangen.de; Muschiol, G. [Department of Internal Medicine 2 (Cardiology), University of Erlangen (Germany)], E-mail: gerd.muschiol@uk-erlangen.de; Renz, A. [Department of Internal Medicine 2 (Cardiology), University of Erlangen (Germany)], E-mail: alexandra.renz@uk-erlangen.de; Daniel, W.G. [Department of Internal Medicine 2 (Cardiology), University of Erlangen (Germany)], E-mail: werner.daniel@uk-erlangen.de; Achenbach, S. [Department of Internal Medicine 2 (Cardiology), University of Erlangen (Germany)], E-mail: stephan.achenbach@uk-erlangen.de

    2009-10-15

    Objective: Assessment of left ventricular function is possible in contrast-enhanced cardiac CT data sets. However, rapid ventricular motion especially in systole can lead to artifacts. Dual Source Computed Tomography (DSCT) has high temporal resolution which effectively limits motion artifact. We therefore assessed the accuracy of DSCT to detect regional left ventricular wall motion abnormalities in comparison to invasive cine angiocardiography. Methods: We analyzed DSCT data sets of 50 patients (39 male, 11 female, mean age: 61 {+-} 10 years) which were acquired after intravenous injection of 55-70 mL contrast agent (rotation time: 330 ms, collimation: 2 mm x 64 mm x 0.6 mm, 120 kV, 380 mAs, ECG-correlated tube current modulation). 10 data sets consisting of transaxial slices with a slice thickness of 1.5 mm, an increment of 1.0 mm and a matrix of 256 x 256 pixels were reconstructed at 10 time instants during the cardiac cycle (0-90% in 10% increments). The data sets were analyzed visually by two independent readers, using standard left ventricular planes, concerning regional wall motion abnormalities. DSCT was verified in a blinded fashion against cine ventriculography performed during cardiac catheterization (RAO and LAO projection), using a 7-segment model. Analysis was performed on a per-patient (presence of at least one hypo-, a- or dyskinetic segment) and on a per-segment basis. Results: Concerning the presence of a wall motion abnormality, the two observers agreed in 340/350 segments (97%) and 48/50 patients (96%). In invasive cine angiocardiography, 22 of 50 patients displayed at least one segment with abnormal contraction. To detect these patients, DSCT showed a sensitivity of 95% (21/22), specificity of 96% (27/28), positive predictive value of 95% and negative predictive value of 96%. Out of a total of 350 left ventricular segments, 66 segments had abnormal contraction in cine angiocardiography (34 hypokinetic, 26 akinetic, 6 dyskinetic). For detection

  1. [Genetic variability of the bacterium Ralstonia solanacearum (Burkholderiales: Burholderiaceae) in the banana-growing region of Uraba (Colombia)].

    Science.gov (United States)

    Cardozo, Carolina; Rodríguez, Paola; Cotes, José Miguel; Marín, Mauricio

    2010-03-01

    The banana moko disease, caused by the bacterium Ralstonia solanacearum, is one of the most important phytopathological problems of the banana agribusiness in tropical countries. In Uraba and Magdalena (Colombia), the main exporting regions of banana in Colombia, this disease causes a destruction estimated in 16.5 ha/year. The bacterium presents an extremely high level of genetic variation that affects control measures. This is the first study of its variation in Colombia and was done with AFLP molecular markers on a population of 100 isolates from banana plants, soils and "weeds". The high level of genetic diversity, with Nei and Shannon indexes of h=0.32 and I=0.48, respectively, and the AMOVA, showed that this population is subestructured (Fst=0.66): the host is the main factor of differentiation. Even so, previous tests show that all varieties have pathogenicity on Musa.

  2. The genus Artemisia L. in the northern region of Saudi Arabia: essential oil variability and antibacterial activities.

    Science.gov (United States)

    Guetat, Arbi; Al-Ghamdi, Faraj A; Osman, Ahmed K

    2017-03-01

    Four species of the genus Artemisia L. (Artemisia monosperma, Artemisia scoparia, Artemisia judaica and Artemisia sieberi) growing in the northern region of Saudi Arabia were investigated with respect to their volatile oil contents. The yield of oil varied between 0.30 and 0.41%, % (w/w). A. monosperma showed the highest number of compounds with 30 components representing 93.78% of oil composition. However, A. judaica showed the lowest number of compounds with only 16 components representing 87.47% of essential oil. A. scoparia and A. sieberi are both composed of 17 components, representing 97.14 and 94.2% of total oil composition. A. sieberi and A. judaica were dominated by spathulenol (30.42 and 28.41%, respectively). For A. monosperma, butanoic acid (17.87%) was a major component. However, A. scoparia was a chemotype of acenaphthene. (83.23%). Essential oil of studied species showed high antibacterial activities against common human pathogens.

  3. Spatial variability of sediment erosion processes using GIS analysis within watersheds in a historically mined region, Patagonia Mountains, Arizona

    Science.gov (United States)

    Brady, Laura M.; Gray, Floyd; Wissler, Craig A.; Guertin, D. Phillip

    2001-01-01

    In this study, a geographic information system (GIS) is used to integrate and accurately map field studies, information from remotely sensed data, watershed models, and the dispersion of potentially toxic mine waste and tailings. The purpose of this study is to identify erosion rates and net sediment delivery of soil and mine waste/tailings to the drainage channel within several watershed regions to determine source areas of sediment delivery as a method of quantifying geo-environmental analysis of transport mechanisms in abandoned mine lands in arid climate conditions. Users of this study are the researchers interested in exploration of approaches to depicting historical activity in an area which has no baseline data records for environmental analysis of heavily mined terrain.

  4. Direct and semi-direct aerosol radiative effect on the Mediterranean climate variability using a coupled regional climate system model

    Science.gov (United States)

    Nabat, Pierre; Somot, Samuel; Mallet, Marc; Sevault, Florence; Chiacchio, Marc; Wild, Martin

    2015-02-01

    A fully coupled regional climate system model (CNRM-RCSM4) has been used over the Mediterranean region to investigate the direct and semi-direct effects of aerosols, but also their role in the radiation-atmosphere-ocean interactions through multi-annual ensemble simulations (2003-2009) with and without aerosols and ocean-atmosphere coupling. Aerosols have been taken into account in CNRM-RCSM4 through realistic interannual monthly AOD climatologies. An evaluation of the model has been achieved, against various observations for meteorological parameters, and has shown the ability of CNRM-RCSM4 to reproduce the main patterns of the Mediterranean climate despite some biases in sea surface temperature (SST), radiation and cloud cover. The results concerning the aerosol radiative effects show a negative surface forcing on average because of the absorption and scattering of the incident radiation. The SW surface direct effect is on average -20.9 Wm-2 over the Mediterranean Sea, -14.7 Wm-2 over Europe and -19.7 Wm-2 over northern Africa. The LW surface direct effect is weaker as only dust aerosols contribute (+4.8 Wm-2 over northern Africa). This direct effect is partly counterbalanced by a positive semi-direct radiative effect over the Mediterranean Sea (+5.7 Wm-2 on average) and Europe (+5.0 Wm-2) due to changes in cloud cover and atmospheric circulation. The total aerosol effect is consequently negative at the surface and responsible for a decrease in land (on average -0.4 °C over Europe, and -0.5 °C over northern Africa) and sea surface temperature (on average -0.5 °C for the Mediterranean SST). In addition, the latent heat loss is shown to be weaker (-11.0 Wm-2) in the presence of aerosols, resulting in a decrease in specific humidity in the lower troposphere, and a reduction in cloud cover and precipitation. Simulations also indicate that dust aerosols warm the troposphere by absorbing solar radiation, and prevent radiation from reaching the surface, thus

  5. Impacts of Present and Future Climate Change and Climate Variability on Agriculture in the Temperate Regions. North America

    International Nuclear Information System (INIS)

    Motha, Raymond P.; Baier, W.

    2005-01-01

    The potential impact of climate variability and climate change on agricultural production in the United States and Canada varies generally by latitude. Largest reductions are projected in southern crop areas due to increased temperatures and reduced water availability. A longer growing season and projected increases in CO2 may enhance crop yields in northern growing areas. Major factors in these scenarios analyzes are increased drought tendencies and more extreme weather events, both of which are detrimental to agriculture. Increasing competition for water between agriculture and non-agricultural users also focuses attention on water management issues. Agriculture also has impact on the greenhouse gas balance. Forests and soils are natural sinks for CO2. Removal of forests and changes in land use, associated with the conversion from rural to urban domains, alters these natural sinks. Agricultural livestock and rice cultivation are leading contributors to methane emission into the atmosphere. The application of fertilizers is also a significant contributor to nitrous oxide emission into the atmosphere. Thus, efficient management strategies in agriculture can play an important role in managing the sources and sinks of greenhouse gases. Forest and land management can be effective tools in mitigating the greenhouse effect

  6. Sensitivity of tree ring growth to local and large-scale climate variability in a region of Southeastern Brazil

    Science.gov (United States)

    Venegas-González, Alejandro; Chagas, Matheus Peres; Anholetto Júnior, Claudio Roberto; Alvares, Clayton Alcarde; Roig, Fidel Alejandro; Tomazello Filho, Mario

    2016-01-01

    We explored the relationship between tree growth in two tropical species and local and large-scale climate variability in Southeastern Brazil. Tree ring width chronologies of Tectona grandis (teak) and Pinus caribaea (Caribbean pine) trees were compared with local (Water Requirement Satisfaction Index—WRSI, Standardized Precipitation Index—SPI, and Palmer Drought Severity Index—PDSI) and large-scale climate indices that analyze the equatorial pacific sea surface temperature (Trans-Niño Index-TNI and Niño-3.4-N3.4) and atmospheric circulation variations in the Southern Hemisphere (Antarctic Oscillation-AAO). Teak trees showed positive correlation with three indices in the current summer and fall. A significant correlation between WRSI index and Caribbean pine was observed in the dry season preceding tree ring formation. The influence of large-scale climate patterns was observed only for TNI and AAO, where there was a radial growth reduction in months preceding the growing season with positive values of the TNI in teak trees and radial growth increase (decrease) during December (March) to February (May) of the previous (current) growing season with positive phase of the AAO in teak (Caribbean pine) trees. The development of a new dendroclimatological study in Southeastern Brazil sheds light to local and large-scale climate influence on tree growth in recent decades, contributing in future climate change studies.

  7. Inter-annual rainfall variability in the eastern Antilles and coupling with the regional and intra-seasonal circulation

    Science.gov (United States)

    Jury, Mark R.

    2016-11-01

    Climate variability in the eastern Antilles island chain is analyzed via principal component analysis of high-resolution monthly rainfall in the period 1981-2013. The second mode reflecting higher rainfall in July-October season between Martinique and Grenada is the focus of this study. Higher rainfall corresponds with a weakened trade wind and boundary current along the southern edge of the Caribbean. This quells the coastal upwelling off Venezuela and builds the freshwater plume east of Trinidad. There is corresponding upper easterly wind flow that intensifies passing tropical waves. During a storm event over the Antilles on 4-5 October 2010, there was inflow from east of Guyana where low salinity and high sea temperatures enable surplus latent heat fluxes. A N-S convective rain band forms ˜500 km east of the cyclonic vortex. Many features at the weather timescale reflect the seasonal correlation and composite difference maps and El Nino Southern Oscillation (ENSO) modulation of oceanic inter-basin transfers.

  8. Variability of morphological needle traits of Scots pine (Pinus sylvestris L. among populations from mountain and lowland regions of Poland

    Directory of Open Access Journals (Sweden)

    Łabiszak Bartosz

    2017-06-01

    Full Text Available The main goal of this work was to examine interpopulational needle traits variability of Scots pine (Pinus sylvestris L. from four mountain, one foothill and three lowland, natural populations located in Poland. This choice of locations was motivated by the presumed different origins of mountainous populations and the necessity to demonstrate how closely they are related to lowland populations. Variation in the studied populations was determined using seven morphological traits of needles: 1 - needle length, 2 - number of stomatal rows on the flat side of a needle, 3 - number of stomata per 2 mm of needle length on the flat side, 4 - number of stomatal rows on the convex side of a needle, 5 - number of stomata per 2 mm of needle length on the convex side, 6 - number of serrations per 2 mm of the needle length on the left side and 7 - number of serrations per 2 mm of the needle length on the right side. Biometric data were analysed statistically, and it was found that (i needle traits differentiate studied populations; (ii the postulated division of the population into two groups is reflected in the obtained results; and (iii a particularly strong relationship was found between two relict pine populations from the Pieniny (Sokolica, Kazalnica, Czertezik and Tatra Mts. (Wielke Koryciska, which may be the result of the common origins and history of these two populations

  9. Estimating regional spatial and temporal variability of PM(2.5) concentrations using satellite data, meteorology, and land use information.

    Science.gov (United States)

    Liu, Yang; Paciorek, Christopher J; Koutrakis, Petros

    2009-06-01

    Studies of chronic health effects due to exposures to particulate matter with aerodynamic diameters meteorologic information to estimate ground-level PM(2.5) concentrations. We developed a two-stage generalized additive model (GAM) for U.S. Environmental Protection Agency PM(2.5) concentrations in a domain centered in Massachusetts. The AOD model represents conditions when AOD retrieval is successful; the non-AOD model represents conditions when AOD is missing in the domain. The AOD model has a higher predicting power judged by adjusted R(2) (0.79) than does the non-AOD model (0.48). The predicted PM(2.5) concentrations by the AOD model are, on average, 0.8-0.9 microg/m(3) higher than the non-AOD model predictions, with a more smooth spatial distribution, higher concentrations in rural areas, and the highest concentrations in areas other than major urban centers. Although AOD is a highly significant predictor of PM(2.5), meteorologic parameters are major contributors to the better performance of the AOD model. GOES aerosol/smoke product (GASP) AOD is able to summarize a set of weather and land use conditions that stratify PM(2.5) concentrations into two different spatial patterns. Even if land use regression models do not include AOD as a predictor variable, two separate models should be fitted to account for different PM(2.5) spatial patterns related to AOD availability.

  10. Daily temperature changes and variability in ENSEMBLES regional models predictions: Evaluation and intercomparison for the Ebro Valley (NE Iberia)

    KAUST Repository

    El Kenawy, Ahmed M.

    2014-12-18

    We employ a suite of regional climate models (RCMs) to assess future changes in summer (JJA) maximum temperature (Tmax) over the Ebro basin, the largest hydrological division in the Iberian Peninsula. Under the A1B emission scenario, future changes in both mean values and their corresponding time varying percentiles were examined by comparing the control period (1971-2000) with two future time slices: 2021-2050 and 2071-2100. Here, the rationale is to assess how lower/upper tails of temperature distributions will change in the future and whether these changes will be consistent with those of the mean. The model validation results demonstrate significant differences among the models in terms of their capability to representing the statistical characteristics (e.g., mean, skewness and asymmetry) of the observed climate. The results also indicate that the current substantial warming observed in the Ebro basin is expected to continue during the 21st century, with more intense warming occurring at higher altitudes and in areas with greater distance from coastlines. All models suggest that the region will experience significant positive changes in both the cold and warm tails of temperature distributions. However, the results emphasize that future changes in the lower and upper tails of the summer Tmax distribution may not follow the same warming rate as the mean condition. In particular, the projected changes in the warm tail of the summer Tmax are shown to be significantly larger than changes in both mean values and the cold tail, especially at the end of the 21st century. The finding suggests that much of the changes in the summer Tmax percentiles will be driven by a shift in the entire distribution of temperature rather than only changes in the central tendency. Better understanding of the possible implications of future climate systems provides information useful for vulnerability assessments and the development of local adaptation strategies for multi

  11. Average niche breadths of species in lake macrophyte communities respond to ecological gradients variably in four regions on two continents.

    Science.gov (United States)

    Alahuhta, Janne; Virtala, Antti; Hjort, Jan; Ecke, Frauke; Johnson, Lucinda B; Sass, Laura; Heino, Jani

    2017-05-01

    Different species' niche breadths in relation to ecological gradients are infrequently examined within the same study and, moreover, species niche breadths have rarely been averaged to account for variation in entire ecological communities. We investigated how average environmental niche breadths (climate, water quality and climate-water quality niches) in aquatic macrophyte communities are related to ecological gradients (latitude, longitude, altitude, species richness and lake area) among four distinct regions (Finland, Sweden and US states of Minnesota and Wisconsin) on two continents. We found that correlations between the three different measures of average niche breadths and ecological gradients varied considerably among the study regions, with average climate and average water quality niche breadth models often showing opposite trends. However, consistent patterns were also found, such as widening of average climate niche breadths and narrowing of average water quality niche breadths of aquatic macrophytes along increasing latitudinal and altitudinal gradients. This result suggests that macrophyte species are generalists in relation to temperature variations at higher latitudes and altitudes, whereas species in southern, lowland lakes are more specialised. In contrast, aquatic macrophytes growing in more southern nutrient-rich lakes were generalists in relation to water quality, while specialist species are adapted to low-productivity conditions and are found in highland lakes. Our results emphasise that species niche breadths should not be studied using only coarse-scale data of species distributions and corresponding environmental conditions, but that investigations on different kinds of niche breadths (e.g., climate vs. local niches) also require finer resolution data at broad spatial extents.

  12. Regional-scale winter-spring temperature variability and chilling damage dynamics over the past two centuries in southeastern China

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Jianping; Zhang, Qi-Bin; Lv, Lixin; Zhang, Chao [Institute of Botany, Chinese Academy of Sciences, State Key Laboratory of Vegetation and Environmental Change, Beijing (China)

    2012-08-15

    Winter-spring cold extreme is a kind of serious natural disaster for southeastern China. As such events are recorded in discrete documents, long and continuous records are required to understand their characteristics and driving forces. Here we report a regional-scale winter-spring (January-April) temperature reconstruction based on a tree-ring network of pine trees (Pinus massoniana) from five sampling sites over a large spatial scale (25-29 N, 111-115 E) in southeastern China. The regional tree-ring chronology explains 48.6% of the instrumental temperature variance during the period 1957-2008. The reconstruction shows six relatively warm intervals (i.e., {proportional_to}1849-1855, {proportional_to}1871-1888, {proportional_to}1909-1920, {proportional_to}1939-1944, {proportional_to}1958-1968, 1997-2007) and five cold intervals (i.e., {proportional_to}1860-1870, {proportional_to}1893-1908, {proportional_to}1925-1934, {proportional_to}1945-1957, {proportional_to}1982-1996) during 1849-2008. The last decade and the 1930s were the warmest and coldest decades, respectively, in the past 160 years. The composite analysis of 500-hPa geopotential height fields reveals that distinctly different circulation patterns occurred in the instrumental and pre-instrumental periods. The winter-spring cold extremes in southeastern China are associated with Ural-High ridge pattern for the instrumental period (1957-2008), whereas the cold extremes in pre-instrumental period (1871-1956) are associated with North circulation pattern. (orig.)

  13. Simulating Complex, Cold-region Process Interactions Using a Multi-scale, Variable-complexity Hydrological Model

    Science.gov (United States)

    Marsh, C.; Pomeroy, J. W.; Wheater, H. S.

    2017-12-01

    Accurate management of water resources is necessary for social, economic, and environmental sustainability worldwide. In locations with seasonal snowcovers, the accurate prediction of these water resources is further complicated due to frozen soils, solid-phase precipitation, blowing snow transport, and snowcover-vegetation-atmosphere interactions. Complex process interactions and feedbacks are a key feature of hydrological systems and may result in emergent phenomena, i.e., the arising of novel and unexpected properties within a complex system. One example is the feedback associated with blowing snow redistribution, which can lead to drifts that cause locally-increased soil moisture, thus increasing plant growth that in turn subsequently impacts snow redistribution, creating larger drifts. Attempting to simulate these emergent behaviours is a significant challenge, however, and there is concern that process conceptualizations within current models are too incomplete to represent the needed interactions. An improved understanding of the role of emergence in hydrological systems often requires high resolution distributed numerical hydrological models that incorporate the relevant process dynamics. The Canadian Hydrological Model (CHM) provides a novel tool for examining cold region hydrological systems. Key features include efficient terrain representation, allowing simulations at various spatial scales, reduced computational overhead, and a modular process representation allowing for an alternative-hypothesis framework. Using both physics-based and conceptual process representations sourced from long term process studies and the current cold regions literature allows for comparison of process representations and importantly, their ability to produce emergent behaviours. Examining the system in a holistic, process-based manner can hopefully derive important insights and aid in development of improved process representations.

  14. Selective interaction of heparin with the variable region 3 within surface glycoprotein of laboratory-adapted feline immunodeficiency virus.

    Directory of Open Access Journals (Sweden)

    Qiong-Ying Hu

    Full Text Available Heparan sulfate proteoglycans (HSPG can act as binding receptors for certain laboratory-adapted (TCA strains of feline immunodeficiency virus (FIV and human immunodeficiency virus (HIV. Heparin, a soluble heparin sulfate (HS, can inhibit TCA HIV and FIV entry mediated by HSPG interaction in vitro. In the present study, we further determined the selective interaction of heparin with the V3 loop of TCA of FIV. Our current results indicate that heparin selectively inhibits infection by TCA strains, but not for field isolates (FS. Heparin also specifically interferes with TCA surface glycoprotein (SU binding to CXCR4, by interactions with HSPG binding sites on the V3 loop of the FIV envelope protein. Peptides representing either the N- or C-terminal side of the V3 loop and containing HSPG binding sites were able to compete away the heparin block of TCA SU binding to CXCR4. Heparin does not interfere with the interaction of SU with anti-V3 antibodies that target the CXCR4 binding region or with the interaction between FS FIV and anti-V3 antibodies since FS SU has no HSPG binding sites within the HSPG binding region. Our data show that heparin blocks TCA FIV infection or entry not only through its competition of HSPG on the cell surface interaction with SU, but also by its interference with CXCR4 binding to SU. These studies aid in the design and development of heparin derivatives or analogues that can inhibit steps in virus infection and are informative regarding the HSPG/SU interaction.

  15. SRSF1-3 contributes to diversification of the immunoglobulin variable region gene by promoting accumulation of AID in the nucleus

    OpenAIRE

    Kawaguchi, Yuka; Nariki, Hiroaki; Kawamoto, Naoko; Kanehiro, Yuichi; Miyazaki, Satoshi; Suzuki, Mari; Magari, Masaki; Tokumitsu, Hiroshi; Kanayama, Naoki

    2017-01-01

     Activation-induced cytidine deaminase (AID) is essential for diversification of the Ig variable region (IgV). AID is excluded from the nucleus, where it normally functions. However, the molecular mechanisms responsible for regulating AID localization remain to be elucidated. The SR-protein splicing factor SRSF1 is a nucleocytoplasmic shuttling protein, a splicing isoform of which called SRSF1-3, has previously been shown to contribute to IgV diversification in chicken DT40 cells. In this stu...

  16. Synoptic meteorological modes of variability for fine particulate matter (PM2.5) air quality in major metropolitan regions of China

    Science.gov (United States)

    Leung, Danny M.; Tai, Amos P. K.; Mickley, Loretta J.; Moch, Jonathan M.; van Donkelaar, Aaron; Shen, Lu; Martin, Randall V.

    2018-05-01

    In his study, we use a combination of multivariate statistical methods to understand the relationships of PM2.5 with local meteorology and synoptic weather patterns in different regions of China across various timescales. Using June 2014 to May 2017 daily total PM2.5 observations from ˜ 1500 monitors, all deseasonalized and detrended to focus on synoptic-scale variations, we find strong correlations of daily PM2.5 with all selected meteorological variables (e.g., positive correlation with temperature but negative correlation with sea-level pressure throughout China; positive and negative correlation with relative humidity in northern and southern China, respectively). The spatial patterns suggest that the apparent correlations with individual meteorological variables may arise from common association with synoptic systems. Based on a principal component analysis of 1998-2017 meteorological data to diagnose distinct meteorological modes that dominate synoptic weather in four major regions of China, we find strong correlations of PM2.5 with several synoptic modes that explain 10 to 40 % of daily PM2.5 variability. These modes include monsoonal flows and cold frontal passages in northern and central China associated with the Siberian High, onshore flows in eastern China, and frontal rainstorms in southern China. Using the Beijing-Tianjin-Hebei (BTH) region as a case study, we further find strong interannual correlations of regionally averaged satellite-derived annual mean PM2.5 with annual mean relative humidity (RH; positive) and springtime fluctuation frequency of the Siberian High (negative). We apply the resulting PM2.5-to-climate sensitivities to the Intergovernmental Panel on Climate Change (IPCC) Coupled Model Intercomparison Project Phase 5 (CMIP5) climate projections to predict future PM2.5 by the 2050s due to climate change, and find a modest decrease of ˜ 0.5 µg m-3 in annual mean PM2.5 in the BTH region due to more frequent cold frontal ventilation

  17. The impacts of aerosol loading, composition, and water uptake on aerosol extinction variability in the Baltimore–Washington, D.C. region

    Directory of Open Access Journals (Sweden)

    A. J. Beyersdorf

    2016-01-01

    Full Text Available In order to utilize satellite-based aerosol measurements for the determination of air quality, the relationship between aerosol optical properties (wavelength-dependent, column-integrated extinction measured by satellites and mass measurements of aerosol loading (PM2.5 used for air quality monitoring must be understood. This connection varies with many factors including those specific to the aerosol type – such as composition, size, and hygroscopicity – and to the surrounding atmosphere, such as temperature, relative humidity (RH, and altitude, all of which can vary spatially and temporally. During the DISCOVER-AQ (Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality project, extensive in situ atmospheric profiling in the Baltimore, MD–Washington, D.C. region was performed during 14 flights in July 2011. Identical flight plans and profile locations throughout the project provide meaningful statistics for determining the variability in and correlations between aerosol loading, composition, optical properties, and meteorological conditions. Measured water-soluble aerosol mass was composed primarily of ammonium sulfate (campaign average of 32 % and organics (57 %. A distinct difference in composition was observed, with high-loading days having a proportionally larger percentage of sulfate due to transport from the Ohio River Valley. This composition shift caused a change in the aerosol water-uptake potential (hygroscopicity such that higher relative contributions of inorganics increased the bulk aerosol hygroscopicity. These days also tended to have higher relative humidity, causing an increase in the water content of the aerosol. Conversely, low-aerosol-loading days had lower sulfate and higher black carbon contributions, causing lower single-scattering albedos (SSAs. The average black carbon concentrations were 240 ng m−3 in the lowest 1 km, decreasing to 35

  18. Possible Climate Change/Variability and Human Impacts, Vulnerability of African Drought Prone Regions, its Water Resources and Capacity Building

    Science.gov (United States)

    Gan, T. Y. Y.; Qin, X.; Ito, M.; Hülsmann, S.; Xixi, L.; Liong, S. Y.; Disse, M.; Koivusalo, H. J.

    2017-12-01

    This review article discusses the climate, water resources and historical droughts of Africa, drought indices, vulnerability, impact of global warming and landuse to drought-prone regions in West, Southern, and Greater Horn of Africa, which have suffered recurrent severe droughts in the past. Recent studies detected warming and drying trends in Africa since the mid-20th century. Based on the 4th Assessment Report of the Intergovernmental Panel of Climate Change, and that of the 5th Coupled Model Intercomparison Project (CMIP5), both northern and southern Africa are projected to experience drying such as decreasing precipitation, runoff and soil moisture in the 21st Century and could become more vulnerable to impact of droughts. The daily maximum temperature is projected to increase up to 8oC (RCP8.5 of CMIP5), precipitation indices such as total wet day precipitation (PRCPTOT) and heavy precipitation days (R10mm) could decrease, while warm spell duration (WSDI) and consecutive dry days (CDD) could increase. Uncertainties of the above long-term projections, teleconnections to climate anomalies such as ENSO and Madden Julian Oscillation which could also affect water resources of Africa, and capacity building in terms of physical infrastructure and non-structural solutions, are also discussed. Given traditional climate and hydrologic data observed in Africa are generally limited, satellite data should also be exploited to fill in the data gap for Africa in future.

  19. Satellite observations of high northern latitude vegetation productivity changes between 1982 and 2008: ecological variability and regional differences

    Energy Technology Data Exchange (ETDEWEB)

    Beck, Pieter S A; Goetz, Scott J, E-mail: pbeck@whrc.org [Woods Hole Research Center, 149 Woods Hole Road, Falmouth, MA 02540 (United States)

    2011-10-15

    To assess ongoing changes in high latitude vegetation productivity we compared spatiotemporal patterns in remotely sensed vegetation productivity in the tundra and boreal zones of North America and Eurasia. We compared the long-term GIMMS (Global Inventory Modeling and Mapping Studies) NDVI (Normalized Difference Vegetation Index) to the more recent and advanced MODIS (Moderate Resolution Imaging Spectroradiometer) NDVI data set, and mapped circumpolar trends in a gross productivity metric derived from the former. We then analyzed how temporal changes in productivity differed along an evergreen-deciduous gradient in boreal Alaska, along a shrub cover gradient in Arctic Alaska, and during succession after fire in boreal North America and northern Eurasia. We find that the earlier reported contrast between trends of increasing tundra and decreasing boreal forest productivity has amplified in recent years, particularly in North America. Decreases in boreal forest productivity are most prominent in areas of denser tree cover and, particularly in Alaska, evergreen forest stands. On the North Slope of Alaska, however, increases in tundra productivity do not appear restricted to areas of higher shrub cover, which suggests enhanced productivity across functional vegetation types. Differences in the recovery of post-disturbance vegetation productivity between North America and Eurasia are described using burn chronosequences, and the potential factors driving regional differences are discussed.

  20. Satellite observations of high northern latitude vegetation productivity changes between 1982 and 2008: ecological variability and regional differences

    International Nuclear Information System (INIS)

    Beck, Pieter S A; Goetz, Scott J

    2011-01-01

    To assess ongoing changes in high latitude vegetation productivity we compared spatiotemporal patterns in remotely sensed vegetation productivity in the tundra and boreal zones of North America and Eurasia. We compared the long-term GIMMS (Global Inventory Modeling and Mapping Studies) NDVI (Normalized Difference Vegetation Index) to the more recent and advanced MODIS (Moderate Resolution Imaging Spectroradiometer) NDVI data set, and mapped circumpolar trends in a gross productivity metric derived from the former. We then analyzed how temporal changes in productivity differed along an evergreen-deciduous gradient in boreal Alaska, along a shrub cover gradient in Arctic Alaska, and during succession after fire in boreal North America and northern Eurasia. We find that the earlier reported contrast between trends of increasing tundra and decreasing boreal forest productivity has amplified in recent years, particularly in North America. Decreases in boreal forest productivity are most prominent in areas of denser tree cover and, particularly in Alaska, evergreen forest stands. On the North Slope of Alaska, however, increases in tundra productivity do not appear restricted to areas of higher shrub cover, which suggests enhanced productivity across functional vegetation types. Differences in the recovery of post-disturbance vegetation productivity between North America and Eurasia are described using burn chronosequences, and the potential factors driving regional differences are discussed.

  1. Land surveys show regional variability of historical fire regimes and dry forest structure of the western United States.

    Science.gov (United States)

    Baker, William L; Williams, Mark A

    2018-03-01

    An understanding of how historical fire and structure in dry forests (ponderosa pine, dry mixed conifer) varied across the western United States remains incomplete. Yet, fire strongly affects ecosystem services, and forest restoration programs are underway. We used General Land Office survey reconstructions from the late 1800s across 11 landscapes covering ~1.9 million ha in four states to analyze spatial variation in fire regimes and forest structure. We first synthesized the state of validation of our methods using 20 modern validations, 53 historical cross-validations, and corroborating evidence. These show our method creates accurate reconstructions with low errors. One independent modern test reported high error, but did not replicate our method and made many calculation errors. Using reconstructed parameters of historical fire regimes and forest structure from our validated methods, forests were found to be non-uniform across the 11 landscapes, but grouped together in three geographical areas. Each had a mixture of fire severities, but dominated by low-severity fire and low median tree density in Arizona, mixed-severity fire and intermediate to high median tree density in Oregon-California, and high-severity fire and intermediate median tree density in Colorado. Programs to restore fire and forest structure could benefit from regional frameworks, rather than one size fits all. © 2018 by the Ecological Society of America.

  2. Terrestrial climate variability and seasonality changes in the Mediterranean region between 15 000 and 4000 years BP deduced from marine pollen records

    Directory of Open Access Journals (Sweden)

    I. Dormoy

    2009-10-01

    Full Text Available Pollen-based climate reconstructions were performed on two high-resolution pollen marines cores from the Alboran and Aegean Seas in order to unravel the climatic variability in the coastal settings of the Mediterranean region between 15 000 and 4000 years BP (the Lateglacial, and early to mid-Holocene. The quantitative climate reconstructions for the Alboran and Aegean Sea records focus mainly on the reconstruction of the seasonality changes (temperatures and precipitation, a crucial parameter in the Mediterranean region. This study is based on a multi-method approach comprising 3 methods: the Modern Analogues Technique (MAT, the recent Non-Metric Multidimensional Scaling/Generalized Additive Model method (NMDS/GAM and Partial Least Squares regression (PLS. The climate signal inferred from this comparative approach confirms that cold and dry conditions prevailed in the Mediterranean region during the Oldest and Younger Dryas periods, while temperate conditions prevailed during the Bølling/Allerød and the Holocene. Our records suggest a West/East gradient of decreasing precipitation across the Mediterranean region during the cooler Late-glacial and early Holocene periods, similar to present-day conditions. Winter precipitation was highest during warm intervals and lowest during cooling phases. Several short-lived cool intervals (i.e. Older Dryas, another oscillation after this one (GI-1c2, Gerzensee/Preboreal Oscillations, 8.2 ka event, Bond events connected to the North Atlantic climate system are documented in the Alboran and Aegean Sea records indicating that the climate oscillations associated with the successive steps of the deglaciation in the North Atlantic area occurred in both the western and eastern Mediterranean regions. This observation confirms the presence of strong climatic linkages between the North Atlantic and Mediterranean regions.

  3. Representation of fine scale atmospheric variability in a nudged limited area quasi-geostrophic model: application to regional climate modelling

    Science.gov (United States)

    Omrani, H.; Drobinski, P.; Dubos, T.

    2009-09-01

    In this work, we consider the effect of indiscriminate nudging time on the large and small scales of an idealized limited area model simulation. The limited area model is a two layer quasi-geostrophic model on the beta-plane driven at its boundaries by its « global » version with periodic boundary condition. This setup mimics the configuration used for regional climate modelling. Compared to a previous study by Salameh et al. (2009) who investigated the existence of an optimal nudging time minimizing the error on both large and small scale in a linear model, we here use a fully non-linear model which allows us to represent the chaotic nature of the atmosphere: given the perfect quasi-geostrophic model, errors in the initial conditions, concentrated mainly in the smaller scales of motion, amplify and cascade into the larger scales, eventually resulting in a prediction with low skill. To quantify the predictability of our quasi-geostrophic model, we measure the rate of divergence of the system trajectories in phase space (Lyapunov exponent) from a set of simulations initiated with a perturbation of a reference initial state. Predictability of the "global", periodic model is mostly controlled by the beta effect. In the LAM, predictability decreases as the domain size increases. Then, the effect of large-scale nudging is studied by using the "perfect model” approach. Two sets of experiments were performed: (1) the effect of nudging is investigated with a « global » high resolution two layer quasi-geostrophic model driven by a low resolution two layer quasi-geostrophic model. (2) similar simulations are conducted with the two layer quasi-geostrophic LAM where the size of the LAM domain comes into play in addition to the first set of simulations. In the two sets of experiments, the best spatial correlation between the nudge simulation and the reference is observed with a nudging time close to the predictability time.

  4. Spatial and temporal variability in the Quality of Surface water in a semi-arid mediterranean region (river orontes- Lebanon)

    International Nuclear Information System (INIS)

    SLIM, K.; SAAD, Z.; KAZPARD, V.; EL SAMAD, O.; NASREDDINE, M.

    2004-01-01

    The Orontes River is an international river, with its headwaters in Lebanon, its middle section in Syria and its mouth in Turkey. Fresh surface waters were sampled monthly during the year 2000 and analyzed for major ions and for trace metals. Sea-salt aerosols in rainwater partially influence the major ion composition in the river. The concentration of major cations and anions fall within the range of the most common natural Concentration of major ion assemblages established for world river(MCNC), with a cation and anion dominance in the order of Ca > Mg > Na> K and HCO3 > SO4 > Cl, which tend to be predominantly influenced by chemical weathering of rocks and minerals in a semi-arid region. Ca and HCO3 are mostly derived from the dissolution of carbonate rocks. The sources of SO4 could be attributed to anhydrite minerals and to anthropogenic impact from fertilizers. Increases in nutrient concentrations are attributed mainly to the increasing influence of agricultural runoff. δ18 0/ δH plots shows that the data either fits the Mediterranean Meteoric Water Line(MMWL) or have elevated values that indicate evaporative isotope enrichment in a semi-arid climate. The correlation matrix for trace elements shows a high coefficient of correlation for Fe, Zn and Cu indicating that these elements could be controlled by the same chemistry in water. The bicarbonate-alkaline type of Orontes surface water contribute to the formation of trace metals-carbonate complexes such as FeCO3(aq) and ZnCO3 (aq). The good correlation between Pb, Cd and Cr reflects the effect of increasing urbanization in the catchments. (author)

  5. American cutaneous leishmaniasis cases in the metropolitan region of Manaus, Brazil: association with climate variables over time

    Directory of Open Access Journals (Sweden)

    Rodrigo Augusto Ferreira de Souza

    2015-05-01

    Full Text Available A temporal series of the normalized difference vegetation index (NDVI and other environmental parameters covering the years 2002- 2009 was used for the study of the potential association between the climate and the number of cases of American cutaneous leishmaniasis (CL in Manaus Metropolitan Region (MMR, State of Amazonas, Brazil. The results show that CL has a marked seasonality and a strong linkage with local climate conditions. Dry and warm conditions favor the vector, while the maximum number of CL cases occurs during the following wet season. This has a clear relation to the El Niño/La Niña Southern Oscillation (ENSO and the results presented here show that uncharacteristic dry conditions in the MMR follow El Niño after a lag period of 3 months, while wet conditions follow La Niña, again after a lag period of 3 months. El Niño brings dry conditions with warming of the land surface leading to increased growth of trees and bushes as indicated by rising NDVI values, eventually producing increased numbers of CL cases, with a peak of new cases occurring 4 to 5 months later. La Niña, on the other hand, produces wet and cool weather, which is less favorable for the leishmaniasis vector and therefore results in comparatively lower number of CL cases. Since these seasonal climate changes affect the dynamics of the CL vector, and thus the number of CL cases, a close watch of the ENSO phenomenon and the weather type it brings should be useful for monitoring and control of CL in the MMR.

  6. Diversity in the 18S SSU rRNA V4 hyper-variable region of Theileria spp. in Cape buffalo (Syncerus caffer) and cattle from southern Africa.

    Science.gov (United States)

    Mans, Ben J; Pienaar, Ronel; Latif, Abdalla A; Potgieter, Fred T

    2011-05-01

    Sequence variation within the 18S SSU rRNA V4 hyper-variable region can affect the accuracy of real-time hybridization probe-based diagnostics for the detection of Theileria spp. infections. This is relevant for assays that use non-specific primers, such as the real-time hybridization assay for T. parva (Sibeko et al. 2008). To assess the effect of sequence variation on this test, the Theileria 18S gene from 62 buffalo and 49 cattle samples was cloned and ∼1000 clones sequenced. Twenty-six genotypes were detected which included known and novel genotypes for the T. buffeli, T. mutans, T. taurotragi and T. velifera clades. A novel genotype related to T. sp. (sable) was also detected in 1 bovine sample. Theileria genotypic diversity was higher in buffalo compared to cattle. Polymorphism within the T. parva hyper-variable region was confirmed by aberrant real-time melting peaks and supported by sequencing of the S5 ribosomal gene. Analysis of the S5 gene suggests that this gene can be a marker for species differentiation. T. parva, T. sp. (buffalo) and T. sp. (bougasvlei) remain the only genotypes amplified by the primer set of the hybridization assay. Therefore, the 18S sequence diversity observed does not seem to affect the current real-time hybridization assay for T. parva.

  7. Cloning and molecular characterization of the cDNAs encoding the variable regions of an anti-CD20 monoclonal antibody.

    Science.gov (United States)

    Shanehbandi, Dariush; Majidi, Jafar; Kazemi, Tohid; Baradaran, Behzad; Aghebati-Maleki, Leili

    2017-01-01

    CD20-based targeting of B-cells in hematologic malignancies and autoimmune disorders is associated with outstanding clinical outcomes. Isolation and characterization of VH and VL cDNAs encoding the variable regions of the heavy and light chains of monoclonal antibodies (MAb) is necessary to produce next generation MAbs and their derivatives such as bispecific antibodies (bsAb) and single-chain variable fragments (scFv). This study was aimed at cloning and characterization of the VH and VL cDNAs from a hybridoma cell line producing an anti-CD20 MAb. VH and VL fragments were amplified, cloned and characterized. Furthermore, amino acid sequences of VH, VL and corresponding complementarity-determining regions (CDR) were determined and compared with those of four approved MAbs including Rituximab (RTX), Ibritumomab tiuxetan, Ofatumumab and GA101. The cloned VH and VL cDNAs were found to be functional and follow a consensus pattern. Amino acid sequences corresponding to the VH and VL fragments also indicated noticeable homologies to those of RTX and Ibritumomab. Furthermore, amino acid sequences of the relating CDRs had remarkable similarities to their counterparts in RTX and Ibritumomab. Successful recovery of VH and VL fragments encourages the development of novel CD20 targeting bsAbs, scFvs, antibody conjugates and T-cells armed with chimeric antigen receptors.

  8. Diversity and structure of microcrustacean assemblages (Cladocera and Copepoda and limnological variability in perennial and intermittent pools in a semi-arid region, Bahia, Brazil

    Directory of Open Access Journals (Sweden)

    Nadson R. Simões

    2011-12-01

    Full Text Available Temporary wetlands undergo recurrent drought due to the scarcity of water, which disrupts the hydrological connectivity with adjacent aquatic systems. However, some environments retain water for longer periods, allowing greater persistence of the community. The current study evaluated differences in the microcrustacean assemblages and limnological variability between perennial and intermittent pools in a semi-arid region of Brazil. The abiotic features (water temperature, pH, total alkalinity, electrical conductivity and depth of intermittent pools were affected more than perennial pools due to loss of water volume. This may have contributed to a higher average richness and diversity index in some intermittent pools and differences in the structure of the assemblages. The lowest species richness and diversity were recorded where physical factors, such as a large quantity of suspended solids and variability in the electrical conductivity of the water and pH, make the environment unsuitable for these organisms. These results suggest that community development in intermittent pools is interrupted by the dry season; when the water returns, due to rainfall or rising groundwater, each pond undergoes a different process of colonization. In these circumstances, the biological importance of temporary aquatic environments is clear, since such pools provide shelters and have an important role in the maintenance of the regional diversity of aquatic environments.

  9. Bacterial and Archaeal Communities Variability Associated with Upwelling and Anthropogenic Pressures in the Protection Area of Arraial do Cabo (Cabo Frio region - RJ).

    Science.gov (United States)

    Coelho-Souza, Sergio A; Araújo, Fábio V; Cury, Juliano C; Jesus, Hugo E; Pereira, Gilberto C; Guimarães, Jean R D; Peixoto, Raquel S; Dávila, Alberto M R; Rosado, Alexandre S

    2015-09-01

    Upwelling systems contain a high diversity of pelagic microorganisms and their composition and activity are defined by factors like temperature and nutrient concentration. Denaturing gradient gel electrophoresis (DGGE) technique was used to verify the spatial and temporal genetic variability of Bacteria and Archaea in two stations of the Arraial do Cabo coastal region, one under upwelling pressure and another under anthropogenic pressure. In addition, biotic and abiotic variables were measured in surface and deep waters from three other stations between these stations. Six samplings were done during a year and adequately represented the degrees of upwelling and anthropogenic pressures to the system. Principal Component Analysis (PCA) showed negative correlations between the concentrations of ammonia and phosphorous with prokaryotic secondary production and the total heterotrophic bacteria. PCA also showed negative correlation between temperature and the abundance of prokaryotic cells. Bacterial and archaeal compositions were changeable as were the oceanographic conditions, and upwelling had a regional pressure while anthropogenic pressure was punctual. We suggest that the measurement of prokaryotic secondary production was associated with both Bacteria and Archaea activities, and that substrate availability and temperature determine nutrients cycling.

  10. Analysis of the variability of extra-tropical cyclones at the regional scale for the coasts of Northern Germany and investigation of their coastal impacts

    Science.gov (United States)

    Schaaf, Benjamin; Feser, Frauke

    2015-04-01

    The evaluation of long-term changes in wind speeds is very important for the coastal areas and the protection measures. Therefor the wind variability at the regional scale for the coast of Northern Germany shall be analysed. In order to derive changes in storminess it is essential to analyse long, homogeneous meteorological time series. Wind measurements often suffer from inconsistencies which arise from changes in instrumentation, observation method, or station location. Reanalysis data take into account such inhomogeneities of observation data and convert these measurements into a consistent, gridded data set with the same grid spacing and time intervals. This leads to a smooth, homogeneous data set, but with relatively low resolution (about 210 km for the longest reanalysis data set, the NCEP reanalysis starting in 1948). Therefore a high-resolution regional atmospheric model will be used to bring these reanalyses to a higher resolution, using in addition to a dynamical downscaling approach the spectral nudging technique. This method 'nudges' the large spatial scales of the regional climate model towards the reanalysis, while the smaller spatial scales are left unchanged. It was applied successfully in a number of applications, leading to realistic atmospheric weather descriptions of the past. With the regional climate model COSMO-CLM a very high-resolution data set was calculated for the last 67 years, the period from 1948 until now. The model area is North Germany with the coastal area of the North sea and parts of the Baltic sea. This is one of the first model simulations on climate scale with a very high resolution of 2.8 km, so even small scale effects can be detected. With this hindcast-simulation there are numerous options of evaluation. One can create wind climatologies for regional areas such as for the metropolitan region of Hamburg. Otherwise one can investigate individual storms in a case study. With a filtering and tracking program the course of

  11. Hillslope terracing effects on the spatial variability of plant development as assessed by NDVI in vineyards of the Priorat region (NE Spain).

    Science.gov (United States)

    Martínez-Casasnovas, José A; Ramos, María Concepción; Espinal-Utgés, Sílvia

    2010-04-01

    The availability of heavy machinery and the vineyard restructuring and conversion plans of the European Union Common Agricultural Policy (Commission Regulation EC no. 1227/2000 of 31 May 2000) have encouraged the restructuring of many vineyards on hillslopes of Mediterranean Europe, through the creation of terraces to favor the mechanization of agricultural work. Terrace construction requires cutting and filling operations that create soil spatial variability, which affects soil properties and plant development. In the present paper, we study the effects of hillslope terracing on the spatial variability of the normalized difference vegetation index (NDVI) in fields of the Priorat region (NE Spain) during 2004, 2005, and 2006. This index was computed from high-resolution remote sensing data (Quickbird-2). Detailed digital terrain models before and after terrace construction were used to assess the earth movements. The results indicate that terracing by heavy machinery induced high variability on the NDVI values over the years, showing significant differences as effect of the cut and fill operations.

  12. Variability in the precore and core promoter regions of HBV strains in Morocco: characterization and impact on liver disease progression.

    Directory of Open Access Journals (Sweden)

    Bouchra Kitab

    Full Text Available BACKGROUND: Hepatitis B virus (HBV is one of the most common human pathogens that cause aggressive hepatitis and advanced liver disease (AdLD, including liver cirrhosis and Hepatocellular Carcinoma. The persistence of active HBV replication and liver damage after the loss of hepatitis B e antigen (HBeAg has been frequently associated with mutations in the pre-core (pre-C and core promoter (CP regions of HBV genome that abolish or reduce HBeAg expression. The purpose of this study was to assess the prevalence of pre-C and CP mutations and their impact on the subsequent course of liver disease in Morocco. METHODS/PRINCIPAL FINDINGS: A cohort of 186 patients with HBeAg-negative chronic HBV infection was studied (81 inactive carriers, 69 with active chronic hepatitis, 36 with AdLD. Pre-C and CP mutations were analyzed by PCR-direct sequencing method. The pre-C stop codon G1896A mutation was the most frequent (83.9% and was associated with a lower risk of AdLD development (OR, 0.4; 95% CI, 0.15-1.04; p = 0.04. HBV-DNA levels in patients with G1896A were not significantly different from the other patients carrying wild-type strains (p = 0.84. CP mutations C1653T, T1753V, A1762T/G1764A, and C1766T/T1768A were associated with higher HBV-DNA level and increased liver disease severity. Multiple logistic regression analysis showed that older age (≥ 40 years, male sex, high viral load (>4.3 log(10 IU/mL and CP mutations C1653T, T1753V, A1762T/G1764A, and C1766T/T1768A were independent risk factors for AdLD development. Combination of these mutations was significantly associated with AdLD (OR, 7.52; 95% CI, 4.8-8; p<0.0001. CONCLUSIONS: This study shows for the first time the association of HBV viral load and CP mutations with the severity of liver disease in Moroccan HBV chronic carriers. The examination of CP mutations alone or in combination could be helpful for prediction of the clinical outcome.

  13. Variability of wet troposphere delays over inland reservoirs as simulated by a high-resolution regional climate model

    Science.gov (United States)

    Clark, E.; Lettenmaier, D. P.

    2014-12-01

    Satellite radar altimetry is widely used for measuring global sea level variations and, increasingly, water height variations of inland water bodies. Existing satellite radar altimeters measure water surfaces directly below the spacecraft (approximately at nadir). Over the ocean, most of these satellites use radiometry to measure the delay of radar signals caused by water vapor in the atmosphere (also known as the wet troposphere delay (WTD)). However, radiometry can only be used to estimate this delay over the largest inland water bodies, such as the Great Lakes, due to spatial resolution issues. As a result, atmospheric models are typically used to simulate and correct for the WTD at the time of observations. The resolutions of these models are quite coarse, at best about 5000 km2 at 30˚N. The upcoming NASA- and CNES-led Surface Water and Ocean Topography (SWOT) mission, on the other hand, will use interferometric synthetic aperture radar (InSAR) techniques to measure a 120-km-wide swath of the Earth's surface. SWOT is expected to make useful measurements of water surface elevation and extent (and storage change) for inland water bodies at spatial scales as small as 250 m, which is much smaller than current altimetry targets and several orders of magnitude smaller than the models used for wet troposphere corrections. Here, we calculate WTD from very high-resolution (4/3-km to 4-km) simulations of the Weather Research and Forecasting (WRF) regional climate model, and use the results to evaluate spatial variations in WTD. We focus on six U.S. reservoirs: Lake Elwell (MT), Lake Pend Oreille (ID), Upper Klamath Lake (OR), Elephant Butte (NM), Ray Hubbard (TX), and Sam Rayburn (TX). The reservoirs vary in climate, shape, use, and size. Because evaporation from open water impacts local water vapor content, we compare time series of WTD over land and water in the vicinity of each reservoir. To account for resolution effects, we examine the difference in WRF

  14. [Identification of new conserved and variable regions in the 16S rRNA gene of acetic acid bacteria and acetobacteraceae family].

    Science.gov (United States)

    Chakravorty, S; Sarkar, S; Gachhui, R

    2015-01-01

    The Acetobacteraceae family of the class Alpha Proteobacteria is comprised of high sugar and acid tolerant bacteria. The Acetic Acid Bacteria are the economically most significant group of this family because of its association with food products like vinegar, wine etc. Acetobacteraceae are often hard to culture in laboratory conditions and they also maintain very low abundances in their natural habitats. Thus identification of the organisms in such environments is greatly dependent on modern tools of molecular biology which require a thorough knowledge of specific conserved gene sequences that may act as primers and or probes. Moreover unconserved domains in genes also become markers for differentiating closely related genera. In bacteria, the 16S rRNA gene is an ideal candidate for such conserved and variable domains. In order to study the conserved and variable domains of the 16S rRNA gene of Acetic Acid Bacteria and the Acetobacteraceae family, sequences from publicly available databases were aligned and compared. Near complete sequences of the gene were also obtained from Kombucha tea biofilm, a known Acetobacteraceae family habitat, in order to corroborate the domains obtained from the alignment studies. The study indicated that the degree of conservation in the gene is significantly higher among the Acetic Acid Bacteria than the whole Acetobacteraceae family. Moreover it was also observed that the previously described hypervariable regions V1, V3, V5, V6 and V7 were more or less conserved in the family and the spans of the variable regions are quite distinct as well.

  15. Predictive Models of Primary Tropical Forest Structure from Geomorphometric Variables Based on SRTM in the Tapajós Region, Brazilian Amazon.

    Science.gov (United States)

    Bispo, Polyanna da Conceição; Dos Santos, João Roberto; Valeriano, Márcio de Morisson; Graça, Paulo Maurício Lima de Alencastro; Balzter, Heiko; França, Helena; Bispo, Pitágoras da Conceição

    2016-01-01

    Surveying primary tropical forest over large regions is challenging. Indirect methods of relating terrain information or other external spatial datasets to forest biophysical parameters can provide forest structural maps at large scales but the inherent uncertainties need to be evaluated fully. The goal of the present study was to evaluate relief characteristics, measured through geomorphometric variables, as predictors of forest structural characteristics such as average tree basal area (BA) and height (H) and average percentage canopy openness (CO). Our hypothesis is that geomorphometric variables are good predictors of the structure of primary tropical forest, even in areas, with low altitude variation. The study was performed at the Tapajós National Forest, located in the Western State of Pará, Brazil. Forty-three plots were sampled. Predictive models for BA, H and CO were parameterized based on geomorphometric variables using multiple linear regression. Validation of the models with nine independent sample plots revealed a Root Mean Square Error (RMSE) of 3.73 m2/ha (20%) for BA, 1.70 m (12%) for H, and 1.78% (21%) for CO. The coefficient of determination between observed and predicted values were r2 = 0.32 for CO, r2 = 0.26 for H and r2 = 0.52 for BA. The models obtained were able to adequately estimate BA and CO. In summary, it can be concluded that relief variables are good predictors of vegetation structure and enable the creation of forest structure maps in primary tropical rainforest with an acceptable uncertainty.

  16. Regional environment and hydrology changes documented by lake sediments from Lake Dalianhai, northeastern Tibetan Plateau since the last glacial maximum and their relationship with Asian summer monsoon variability

    Science.gov (United States)

    Wu, D.; Chen, F.; Zhou, A.; Abbott, M. B.

    2016-12-01

    Variability of the Asian summer monsoon (ASM) significantly affects environment and hydrology conditions within its area of influence, as well as economic and social development. Thus it is important to investigate the variability of the ASM on various time-scales and to explore its underlying forcing mechanisms, in order to improve our ability to predict the long-term trends of regional and global climate. Northeastern Tibetan Plateau, a margin area of modern ASM, is sensitive to summer monsoon changes. Existing paleoclimate records from this region contain conflicting evidence for the timing of summer monsoon advance into this region: an early arrival pre-Younger Dryas or a late arrival at the beginning of the Holocene. In addition, it is also debated that whether the Holocene ASM maximum in this region occurred during the early Holocene or the middle Holocene. Here we present a high-resolution record of a 52-m drilling core from Lake Dalianhai in this region. Multiply geochemistry indexes were obtained from the sediment core. 22 AMS 14C data from plant remains and bulk organic matters illustrate that the upper 52 m core covered the whole period since the last glacial maximum (LGM). The results generally indicate that the Lake Dalianhai was occupied by very shallow water body with eolian sand surrounding the lake from 20 to 15 ka BP (1ka=1000 cal yr). With the beginning of the B/A warm period, the sedimentary sequence changed to grey lacustrine clay abruptly. The sedimentary environment was relatively stable under a high lake level state during the B/A period which was marked with fine mean grain size, and high exogenous detrital element content (such as Al, K, Ti and Rb), but with low organic matter content. This perhaps was caused by the increasing of ASM precipitation. Increased contents of element Ca, Sr, and Br, as well as TOC and TN, highlight the increase of ASM during the Holocene. However, reddish lacustrine clay with lower magnetic susceptibility and

  17. Seven year satellite observations of the mean structures and variabilities in the regional aerosol distribution over the oceanic areas around the Indian subcontinent

    Directory of Open Access Journals (Sweden)

    S. K. Nair

    2005-09-01

    Full Text Available Aerosol distribution over the oceanic regions around the Indian subcontinent and its seasonal and interannual variabilities are studied using the aerosol optical depth (AOD derived from NOAA-14 and NOAA-16 AVHRR data for the period of November 1995–December 2003. The air-mass types over this region during the Asian summer monsoon season (June–September are significantly different from those during the Asian dry season (November–April. Hence, the aerosol loading and its properties over these oceanic regions are also distinctly different in these two periods. During the Asian dry season, the Arabian Sea and Bay of Bengal are dominated by the transport of aerosols from Northern Hemispheric landmasses, mainly the Indian subcontinent, Southeast Asia and Arabia. This aerosol transport is rather weak in the early part of the dry season (November–January compared to that in the later period (February–April. Large-scale transport of mineral dust from Arabia and the production of sea-salt aerosols, due to high surface wind speeds, contribute to the high aerosol loading over the Arabian Sea region during the summer monsoon season. As a result, the monthly mean AOD over the Arabian Sea shows a clear annual cycle with the highest values occurring in July. The AOD over the Bay of Bengal and the Southern Hemisphere Indian Ocean also displays an annual cycle with maxima during March and October, respectively. The amplitude of the annual variation is the largest in coastal Arabia and the least in the Southern Hemisphere Indian Ocean. The interannual variability in AOD is the largest over the Southeast Arabian Sea (seasonal mean AOD varies from 0.19 to 0.42 and the northern Bay of Bengal (seasonal mean AOD varies from 0.24 to 0.39 during the February–April period and is the least over the Southern Hemisphere Indian Ocean. This study also investigates the altitude regions and pathways of dominant aerosol transport by combining the AOD distribution with

  18. Low numbers of repeat units in variable number of tandem repeats (VNTR) regions of white spot syndrome virus are correlated with disease outbreaks.

    Science.gov (United States)

    Hoa, T T T; Zwart, M P; Phuong, N T; de Jong, M C M; Vlak, J M

    2012-11-01

    White spot syndrome virus (WSSV) is the most important pathogen in shrimp farming systems worldwide including the Mekong Delta, Vietnam. The genome of WSSV is characterized by the presence of two major 'indel regions' found at ORF14/15 and ORF23/24 (WSSV-Thailand) and three regions with variable number tandem repeats (VNTR) located in ORF75, ORF94 and ORF125. In the current study, we investigated whether or not the number of repeat units in the VNTRs correlates with virus outbreak status and/or shrimp farming practice. We analysed 662 WSSV samples from individual WSSV-infected Penaeus monodon shrimp from 104 ponds collected from two important shrimp farming regions of the Mekong Delta: Ca Mau and Bac Lieu. Using this large data set and statistical analysis, we found that for ORF94 and ORF125, the mean number of repeat units (RUs) in VNTRs was significantly lower in disease outbreak ponds than in non-outbreak ponds. Although a higher mean RU number was observed in the improved-extensive system than in the rice-shrimp or semi-intensive systems, these differences were not significant. VNTR sequences are thus not only useful markers for studying WSSV genotypes and populations, but specific VNTR variants also correlate with disease outbreaks in shrimp farming systems. © 2012 Blackwell Publishing Ltd.

  19. Use of antibodies against the variable regions of the T-cell receptor alpha/beta heterodimer for the study of cutaneous T-cell lymphomas.

    Science.gov (United States)

    Ralfkiaer, E; Wollf-Sneedorff, A; Vejlsgaard, G L

    1991-11-01

    Recent studies have suggested that antibodies against the variable (V) regions of the T-cell antigen receptor (TCR) may be used as markers for clonality and malignancy in T-cell infiltrates. We have investigated this by examining biopsy samples from 45 patients with cutaneous T-cell lymphomas (CTCL) for reactivity with seven antibodies against different V-gene families on the TCR alpha/beta heterodimer, i.e. ICI (V beta 5a), W112 (V beta 5b), OT145 (V beta 6a), 16G8 (V beta 8a), S511 (V beta 12a), F1 (V alpha 2a) and LC4 (alpha beta Va). Serial biopsies were available in 13 patients and a total of 62 samples were studied. The neoplastic cells in five cases were positive for either V beta 5 (one case), V beta 6 (one case), V beta 8 (two cases) or V beta 12 (one case). In the remaining 40 cases, no staining was seen of the neoplastic cells. These findings indicate that while antibodies against the TCR V-regions may be used as clonotypic markers for certain T-cell neoplasms, there is as yet not a sufficient number of anti-TCR V-region antibodies available for the routine diagnosis of these conditions.

  20. Variability in the growth and nodulation of soybean in response to elevation and soil properties in the himalayan region of kashmir-pakistan

    International Nuclear Information System (INIS)

    Rahim, N.; Abbasi, M.K.

    2017-01-01

    This study was conducted to examine the variability of soybean nodulation and growth in relation to elevation and soil properties across the slopping uplands of the Himalayan region of Rawalakot Azad Jammu and Kashmir (AJK), Pakistan in order to find efficient native N2 fixing bacteria adapted to local soil and climatic characteristics. Soils from twenty two different sites with variable altitude were collected and analyzed for different physico-chemical characteristics including the quantitative estimation of rhizobium population through most probable number (MPN) technique. Soybean cultivar William-82 was grown in these soils under greenhouse condition for determining the nodulation potential (number and mass) and plant growth characteristics. Morphology of the nodules were observed through optical and transmission electron microscopy. Principal component analysis (PCA) and Biplot graph were used to jointly interpret the relationship between variables and soils (treatments). Soil altitude ranged from 855 m to 3000 m while organic matter content varied between 0.8% to 3.5% and pH from 6.0 to 8.1. The indigenous rhizobia population varied between 5.0 x104 to 8.0 x106 CFU g-1 showing the existence of a substantial rhizobial population in these soils. The number of nodules per plant varied from 7 to 40 (CV 38%) suggesting site/location as an important factor contributing towards rhizobia population and impacting root nodulation. The electron microscopy of green plant nodules showed densely populated bacteria in these cells and nodule tissue cells were completely infected with bacteria. The growth characteristics of soybean i.e. shoot length, shoot fresh and dry weight, root length, root fresh and dry weight varied among the sites but in general a vigorous and healthy plant growth was observed reflecting N assimilation from native soils. Results showed a substantial variability between sites and this is likely to be due to inter/intra species diversity, as well as

  1. Regional Scale Variability in Background and Source δ13C of Methane in the Atlantic, Europe and the Arctic: Cautionary Tales for Isotopic Modeling

    Science.gov (United States)

    Lowry, D.; Fisher, R. E.; France, J. L.; Lanoiselle, M.; Zazzeri, G.; Nisbet, E. G.

    2013-12-01

    Modeling studies of methane δ13C, both of modern atmosphere and glacial palaeoclimates have used a global isotopic signature for each of the main source categories, whereas detailed studies of source fluxes, such as boreal wetlands, suggest that on the centimeter to meter scale there is very great variability. In recent years we have been reassessing the usefulness of using a generic source value from source up to regional scale through sampling campaigns in the European Arctic, the UK and onboard ships sailing the Atlantic up to the Arctic Ocean. Currently the boreal wetland source of methane dominates above 60°N. Within Finland this source varies at the wetland scale from -74 to -66‰ depending on wetland type and seasonal variability in temperature and water table. Lapland road trips and ship sampling suggest that these emissions are homogenized to -70 to -67‰ in the well-mixed regional atmosphere. An infrequent boreal forest fire emission adds a -30 to -26‰ component into the mix, and such inputs have been observed in the Mace Head (Ireland) isotopic record of 2002. The story is much more complex once the latitudes of heavily urbanized and agricultural areas of Northern Europe are reached. Isotopic signatures applied to UK and EC inventories suggest that national emissions can vary from -42 to -60‰ depending on source mix, but even this is too simplified. Fugitive emissions from gas distribution systems vary based on the source of the gas, with biogenic-dominated supplies from west Siberia at -50‰ to thermogenic gas of the Southern North Sea fields at -32‰. Coal emissions are also source-dependent and have a similar range to gas, but unlike pipeline-homogenized gas can vary from one mine to the next. Emissions from ruminants vary due to C3 and C4 plant diets, with C4 closer to -50‰ while C3 emissions are in the low -60's. A recent whole barn experiment in the UK recorded -66‰. Landfill signatures also vary. Sites engineered in the last decade

  2. Data sets used in the analysis presented in the manuscript “Regional and Hemispheric Influences on Temporal Variability in Baseline Carbon Monoxide and Ozone over the Northeast US”

    Data.gov (United States)

    U.S. Environmental Protection Agency — This dataset documents that all of the data analyzed in the manuscript "Regional and Hemispheric Influences on Temporal Variability in Baseline Carbon Monoxide and...

  3. Immunoglobulin variable region sequences of two human monoclonal antibodies directed to an onco-developmental carbohydrate antigen, lactotetraosylceramide (LcOse4Cer).

    Science.gov (United States)

    Yago, K; Zenita, K; Ohwaki, I; Harada, R; Nozawa, S; Tsukazaki, K; Iwamori, M; Endo, N; Yasuda, N; Okuma, M

    1993-11-01

    A human monoclonal antibody, 11-50, was generated and was shown to recognize an onco-developmental carbohydrate antigen, LcOse4Cer. The isotype of this antibody was IgM, lambda, similar to the previously known human anti-LcOse4 antibodies, such as IgMWOO and HMST-1. We raised a murine anti-idiotypic antibody G3 (IgG1, kappa) against 11-50, and tested its reactivity towards the affinity purified human polyclonal anti-LcOse4 antibodies prepared from pooled human sera using a Gal beta 1-->3GlcNAc beta-immobilized column. The results indicated that at least a part of the human polyclonal anti-LcOse4 antibodies shared the G3 idiotype with 11-50. We further analyzed the sequence of variable regions of the two anti-LcOse4 antibodies, 11-50 and HMST-1. Sequence analysis of the heavy chain variable regions indicated that the VH regions of these two antibodies were highly homologous to each other (93.5% at the nucleic acid level), and these antibodies utilized the germline genes VH1.9III and hv3005f3 as the VH segments, which are closely related germline genes of the VHIII family. It was noted that these germline VH genes are frequently utilized in fetal B cells. The JH region of both antibodies was encoded by the JH4 gene. For the light chain, the V lambda segments of the two antibodies were 96.3% homologous to each other at the nucleic acid level. The V lambda segments of both antibodies showed the highest homology to the rearranged V lambda gene called V lambda II.DS among reported V lambda genes, while the exact germline V lambda genes encoding the two antibodies were not yet registered in available sequence databanks. The amino acid sequences of the J lambda segments of both antibodies were identical. These results indicate that the two human antibodies recognizing the onco-developmental carbohydrate antigen Lc4 are encoded by the same or very homologous germline genes.

  4. The size of the narrow-line-emitting region in the Seyfert 1 galaxy NGC 5548 from emission-line variability

    International Nuclear Information System (INIS)

    Peterson, B. M.; Denney, K. D.; De Rosa, G.; Grier, C. J.; Pogge, R. W.; Kochanek, C. S.; Bentz, M. C.; Vestergaard, M.; Kilerci-Eser, E.; G. Galilei, Università di Padova, Vicolo dell'Osservatorio 3 I-35122, Padova (Italy))" data-affiliation=" (Dipartimento di Fisica e Astronomia G. Galilei, Università di Padova, Vicolo dell'Osservatorio 3 I-35122, Padova (Italy))" >Dalla Bontà, E.; G. Galilei, Università di Padova, Vicolo dell'Osservatorio 3 I-35122, Padova (Italy))" data-affiliation=" (Dipartimento di Fisica e Astronomia G. Galilei, Università di Padova, Vicolo dell'Osservatorio 3 I-35122, Padova (Italy))" >Ciroi, S.

    2013-01-01

    The narrow [O III] λλ4959, 5007 emission-line fluxes in the spectrum of the well-studied Seyfert 1 galaxy NGC 5548 are shown to vary with time. From this we show that the narrow-line-emitting region has a radius of only 1-3 pc and is denser (n e ∼ 10 5 cm –3 ) than previously supposed. The [O III] line width is consistent with virial motions at this radius given previous determinations of the black hole mass. Since the [O III] emission-line flux is usually assumed to be constant and is therefore used to calibrate spectroscopic monitoring data, the variability has ramifications for the long-term secular variations of continuum and emission-line fluxes, though it has no effect on shorter-term reverberation studies. We present corrected optical continuum and broad Hβ emission-line light curves for the period 1988-2008.

  5. The size of the narrow-line-emitting region in the Seyfert 1 galaxy NGC 5548 from emission-line variability

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, B. M.; Denney, K. D.; De Rosa, G.; Grier, C. J.; Pogge, R. W.; Kochanek, C. S. [Department of Astronomy, The Ohio State University, 140 W 18th Avenue, Columbus, OH 43210 (United States); Bentz, M. C. [Department of Physics and Astronomy, Georgia State University, 25 Park Place, Suite 610, Atlanta, GA 30303 (United States); Vestergaard, M.; Kilerci-Eser, E. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark); Dalla Bontà, E.; Ciroi, S. [Dipartimento di Fisica e Astronomia " G. Galilei," Università di Padova, Vicolo dell' Osservatorio 3 I-35122, Padova (Italy)

    2013-12-20

    The narrow [O III] λλ4959, 5007 emission-line fluxes in the spectrum of the well-studied Seyfert 1 galaxy NGC 5548 are shown to vary with time. From this we show that the narrow-line-emitting region has a radius of only 1-3 pc and is denser (n {sub e} ∼ 10{sup 5} cm{sup –3}) than previously supposed. The [O III] line width is consistent with virial motions at this radius given previous determinations of the black hole mass. Since the [O III] emission-line flux is usually assumed to be constant and is therefore used to calibrate spectroscopic monitoring data, the variability has ramifications for the long-term secular variations of continuum and emission-line fluxes, though it has no effect on shorter-term reverberation studies. We present corrected optical continuum and broad Hβ emission-line light curves for the period 1988-2008.

  6. Summer monsoon rainfall variability over North East regions of India and its association with Eurasian snow, Atlantic Sea Surface temperature and Arctic Oscillation

    Science.gov (United States)

    Prabhu, Amita; Oh, Jaiho; Kim, In-won; Kripalani, R. H.; Mitra, A. K.; Pandithurai, G.

    2017-10-01

    This observational study during the 29-year period from 1979 to 2007 evaluates the potential role of Eurasian snow in modulating the North East-Indian Summer Monsoon Rainfall with a lead time of almost 6 months. This link is manifested by the changes in high-latitude atmospheric winter snow variability over Eurasia associated with Arctic Oscillation (AO). Excessive wintertime Eurasian snow leads to an anomalous cooling of the overlying atmosphere and is associated with the negative mode of AO, inducing a meridional wave-train descending over the tropical north Atlantic and is associated with cooling of this region. Once the cold anomalies are established over the tropical Atlantic, it persists up to the following summer leading to an anomalous zonal wave-train further inducing a descending branch over NE-India resulting in weak summer monsoon rainfall.

  7. Description and assessment of regional sea-level trends and variability from altimetry and tide gauges at the northern Australian coast

    Science.gov (United States)

    Gharineiat, Zahra; Deng, Xiaoli

    2018-05-01

    This paper aims at providing a descriptive view of the low-frequency sea-level changes around the northern Australian coastline. Twenty years of sea-level observations from multi-mission satellite altimetry and tide gauges are used to characterize sea-level trends and inter-annual variability over the study region. The results show that the interannual sea-level fingerprint in the northern Australian coastline is closely related to El Niño Southern Oscillation (ENSO) and Madden-Julian Oscillation (MJO) events, with the greatest influence on the Gulf Carpentaria, Arafura Sea, and the Timor Sea. The basin average of 14 tide-gauge time series is in strong agreement with the basin average of the altimeter data, with a root mean square difference of 18 mm and a correlation coefficient of 0.95. The rate of the sea-level trend over the altimetry period (6.3 ± 1.4 mm/yr) estimated from tide gauges is slightly higher than that (6.1 ± 1.3 mm/yr) from altimetry in the time interval 1993-2013, which can vary with the length of the time interval. Here we provide new insights into examining the significance of sea-level trends by applying the non-parametric Mann-Kendall test. This test is applied to assess if the trends are significant (upward or downward). Apart from a positive rate of sea-level trends are not statistically significant in this region due to the effects of natural variability. The findings suggest that altimetric trends are not significant along the coasts and some parts of the Gulf Carpentaria (14°S-8°S), where geophysical corrections (e.g., ocean tides) cannot be estimated accurately and altimeter measurements are contaminated by reflections from the land.

  8. Growing Region Segmentation Software (GRES) for quantitative magnetic resonance imaging of multiple sclerosis: intra- and inter-observer agreement variability: a comparison with manual contouring method

    International Nuclear Information System (INIS)

    Parodi, Roberto C.; Sardanelli, Francesco; Renzetti, Paolo; Rosso, Elisabetta; Losacco, Caterina; Ferrari, Alessandra; Levrero, Fabrizio; Pilot, Alberto; Inglese, Matilde; Mancardi, Giovanni L.

    2002-01-01

    Lesion area measurement in multiple sclerosis (MS) is one of the key points in evaluating the natural history and in monitoring the efficacy of treatments. This study was performed to check the intra- and inter-observer agreement variability of a locally developed Growing Region Segmentation Software (GRES), comparing them to those obtained using manual contouring (MC). From routine 1.5-T MRI study of clinically definite multiple sclerosis patients, 36 lesions seen on proton-density-weighted images (PDWI) and 36 enhancing lesion on Gd-DTPA-BMA-enhanced T1-weighted images (Gd-T1WI) were randomly chosen and were evaluated by three observers. The mean range of lesion size was 9.9-536.0 mm 2 on PDWI and 3.6-57.2 mm 2 on Gd-T1WI. The median intra- and inter-observer agreement were, respectively, 97.1 and 90.0% using GRES on PDWI, 81.0 and 70.0% using MC on PDWI, 88.8 and 80.0% using GRES on Gd-T1WI, and 85.8 and 70.0% using MC on Gd-T1WI. The intra- and inter-observer agreements were significantly greater for GRES compared with MC (P<0.0001 and P=0.0023, respectively) for PDWI, while no difference was found between GRES an MC for Gd-T1WI. The intra-observer variability for GRES was significantly lower on both PDWI (P=0.0001) and Gd-T1WI (P=0.0067), whereas for MC the same result was found only for PDWI (P=0.0147). These data indicate that GRES reduces both the intra- and the inter-observer variability in assessing the area of MS lesions on PDWI and may prove useful in multicentre studies. (orig.)

  9. Loss of genetic variability in a hatchery strain of Senegalese sole (Solea senegalensis revealed by sequence data of the mitochondrial DNA control region and microsatellite markers

    Directory of Open Access Journals (Sweden)

    Pablo Sánchez

    2012-06-01

    Full Text Available Comparisons of the levels of genetic variation within and between a hatchery F1 (FAR, n=116 of Senegalese sole, Solea senegalensis, and its wild donor population (ATL, n = 26, both native to the SW Atlantic coast of the Iberian peninsula, as well as between the wild donor population and a wild western Mediterranean sample (MED, n=18, were carried out by characterizing 412 base pairs of the nucleotide sequence of the mitochondrial DNA control region I, and six polymorphic microsatellite loci. FAR showed a substantial loss of genetic variability (haplotypic diversity, h=0.49±0.066; nucleotide diversity, π=0.006±0.004; private allelic richness, pAg=0.28 to its donor population ATL (h=0.69±0.114; π=0.009±0.006; pAg=1.21. Pairwise FST values of microsatellite data were highly significant (P < 0.0001 between FAR and ATL (0.053 and FAR and MED (0.055. The comparison of wild samples revealed higher values of genetic variability in MED than in ATL, but only with mtDNA CR-I sequence data (h=0.948±0.033; π=0.030±0.016. However, pairwise ΦST and FST values between ATL and MED were highly significant (P < 0.0001 with mtDNA CR-I (0.228 and with microsatellite data (0.095, respectively. While loss of genetic variability in FAR could be associated with the sampling error when the broodstock was established, the results of parental and sibship inference suggest that most of these losses can be attributed to a high variance in reproductive success among members of the broodstock, particularly among females.

  10. NEAR-INFRARED PERIODIC AND OTHER VARIABLE FIELD STARS IN THE FIELD OF THE CYGNUS OB7 STAR-FORMING REGION

    Energy Technology Data Exchange (ETDEWEB)

    Wolk, Scott J.; Rice, Thomas S. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Aspin, Colin A. [Institute for Astronomy, University of Hawaii at Manoa, 640 North Aohoku Place, Hilo, HI 96720 (United States)

    2013-04-15

    We present a subset of the results of a three-season, 124 night, near-infrared monitoring campaign of the dark clouds Lynds 1003 and Lynds 1004 in the Cygnus OB7 star-forming region. In this paper, we focus on the field star population. Using three seasons of UKIRT J, H, and K-band observations spanning 1.5 years, we obtained high-quality photometry on 9200 stars down to J = 17 mag, with photometric uncertainty better than 0.04 mag. After excluding known disk-bearing stars we identify 149 variables-1.6% of the sample. Of these, about 60 are strictly periodic, with periods predominantly <2 days. We conclude this group is dominated by eclipsing binaries. A few stars have long period signals of between 20 and 60 days. About 25 stars have weak modulated signals, but it was not clear if these were periodic. Some of the stars in this group may be diskless young stellar objects with relatively large variability due to cool starspots. The remaining {approx}60 stars showed variations which appear to be purely stochastic.

  11. Genotyping analysis of Helicobacter pylori using multiple-locus variable-number tandem-repeats analysis in five regions of China and Japan

    Directory of Open Access Journals (Sweden)

    Zhang Jinyong

    2011-09-01

    Full Text Available Abstract Background H. pylori (Helicobacter pylori is the major causative agent of chronic active gastritis. The population of H. pylori shows a high genomic variability among isolates. And the polymorphism of repeat-units of genomics had participated the important process of evolution. Its long term colonization of the stomach caused different clinical outcomes, which may relate to the high degree of genetic variation of H. pylori. A variety of molecular typing tools have been developed to access genetic relatedness in H. pylori isolates. However, there is still no standard genotyping system of this bacterium. The MLVA (Multi-locus of variable number of tandem repeat analysis method is useful for performing phylogenetic analysis and is widely used in bacteria genotyping; however, there's little application in H. pylori analysis. This article is the first application of the MLVA method to investigate H. pylori from different districts and ethnic groups of China. Results MLVA of 12 VNTR loci with high discrimination power based on 30 candidates were performed on a collection of 202 strains of H. pylori which originated from five regions of China and Japan. Phylogenetic tree was constructed using MLVA profiles. 12 VNTR loci presented with high various polymorphisms, and the results demonstrated very close relationships between genotypes and ethnic groups. Conclusions This study used MLVA methodology providing a new perspective on the ethnic groups and distribution characteristics of H. pylori.

  12. Variability of 14C reservoir age and air-sea flux of CO2 in the Peru-Chile upwelling region during the past 12,000 years

    Science.gov (United States)

    Carré, Matthieu; Jackson, Donald; Maldonado, Antonio; Chase, Brian M.; Sachs, Julian P.

    2016-01-01

    The variability of radiocarbon marine reservoir age through time and space limits the accuracy of chronologies in marine paleo-environmental archives. We report here new radiocarbon reservoir ages (ΔR) from the central coast of Chile ( 32°S) for the Holocene period and compare these values to existing reservoir age reconstructions from southern Peru and northern Chile. Late Holocene ΔR values show little variability from central Chile to Peru. Prior to 6000 cal yr BP, however, ΔR values were markedly increased in southern Peru and northern Chile, while similar or slightly lower-than-modern ΔR values were observed in central Chile. This extended dataset suggests that the early Holocene was characterized by a substantial increase in the latitudinal gradient of marine reservoir age between central and northern Chile. This change in the marine reservoir ages indicates that the early Holocene air-sea flux of CO2 could have been up to five times more intense than in the late Holocene in the Peruvian upwelling, while slightly reduced in central Chile. Our results show that oceanic circulation changes in the Humboldt system during the Holocene have substantially modified the air-sea carbon flux in this region.

  13. Variable wide range of lens power and its improvement in a liquid-crystal lens using highly resistive films divided into two regions with different diameters

    Science.gov (United States)

    Kawamura, Marenori; Sato, Susumu

    2018-05-01

    The variable range of lens power of a liquid-crystal (LC) lens driven by two voltages is discussed on the basis of calculated and experimental results. The LC lens has two electrodes, which are a circularly hole-patterned electrode and a circular electrode, in addition to a common electrode, and highly resistive transparent films. The variable range of lens power increases with increasing driving voltage applied across the circularly hole-patterned electrode and the common electrode, and with decreasing diameter of highly resistive films. However, the optical-phase retardation profile tends to deviate from a parabolic curve in these cases. As a method to improve the trade-off properties, the highly resistive film is divided into two regions with different diameters, where the sheet resistance of an outer film is larger than that of an inner one. The improved LC lens has a lens power that varies in a wide range, and it exhibits a good parabolic phase retardation profile.

  14. DEVELOPMENT OF A MULTIPLE-LOCUS VARIABLE NUMBER OF TANDEM REPEAT ANALYSIS (MLVA FOR HELICOBACTER PYLORI AND ITS APPLICATION TO HELICOBACTER PYLORI ISOLATES FROM ROSTOV REGION,RUSSIA

    Directory of Open Access Journals (Sweden)

    Sorokin VM

    2012-09-01

    Full Text Available Stomach infection with Helicobacter pylori (H. pylori is the second most common infectious disease of humans. The severe pathological consequences of this infection include gastric and duodenal ulcer disease, the development of gastric mucosal atrophy, gastric carcinoma, and, more rarely, malignant tumors of the lymphoma. H. pylori infections cause very high morbidity and mortality and are of particular concern in developing countries, where H. pylori prevalences as high as 90% have been reported. The population of H. pylori shows a high genomic variability among isolates. And the polymorphism of repeat-units of genomics had participated the important process of evolution. A variety of molecular typing tools have been developed to access genetic relatedness in H. pylori isolates. However, there is still no standard genotyping system of this bacterium. The MLVA (Multi-Locus of Variable number of tandem repeat Analysis method is useful for performing phylogenetic analysis and is widely used in bacteria genotyping; however, there's little application in H. pylori analysis. This article is the first application of the MLVA method to investigate H. pylori isolates in Russia. MLVA of 4 VNTR loci with high discrimination power based on 10 candidates were performed on a collection of 22 strains of H. pylori which originated from Rostov region of Russia. This method provides a starting point on which improvements to the method and comparisons to other techniques can be made.

  15. Evaluating the role of soil variability on groundwater pollution and recharge at regional scale by integrating a process-based vadose zone model in a stochastic approach

    Science.gov (United States)

    Coppola, Antonio; Comegna, Alessandro; Dragonetti, Giovanna; Lamaddalena, Nicola; Zdruli, Pandi

    2013-04-01

    Interpreting and predicting the evolution of water resources and soils at regional scale are continuing challenges for natural scientists. Examples include non-point source (NPS) pollution of soil and surface and subsurface water from agricultural chemicals and pathogens, as well as overexploitation of groundwater resources. The presence and build up of NPS pollutants may be harmful for both soil and groundwater resources. The accumulation of salts and trace elements in soils can significantly impact crop productivity, while loading of salts, nitrates, trace elements and pesticides into groundwater supplies can deteriorate a source of drinking and irrigation water. Consequently, predicting the spatial distribution and fate of NPS pollutants in soils at applicative scales is now considered crucial for maintaining the fragile balance between crop productivity and the negative environmental impacts of NPS pollutants, which is a basis of sustainable agriculture. Soil scientists and hydrologists are regularly asked to assist state agencies to understand these critical environmental issues. The most frequent inquiries are related to the development of mathematical models needed for analyzing the impacts of alternative land-use and best management use and management of soil and water resources. Different modelling solutions exist, mainly differing on the role of the vadose zone and its horizontal and vertical variability in the predictive models. The vadose zone (the region from the soil surface to the groundwater surface) is a complex physical, chemical and biological ecosystem that controls the passage of NPS pollutants from the soil surface where they have been deposited or accumulated due to agricultural activities, to groundwater. Physically based distributed hydrological models require the internal variability of the vadose zone be explored at a variety of scales. The equations describing fluxes and storage of water and solutes in the unsaturated zone used in these

  16. AAV8 capsid variable regions at the two-fold symmetry axis contribute to high liver transduction by mediating nuclear entry and capsid uncoating

    International Nuclear Information System (INIS)

    Tenney, Rebeca M.; Bell, Christie L.; Wilson, James M.

    2014-01-01

    Adeno-associated virus serotype 8 (AAV8) is a promising vector for liver-directed gene therapy. Although efficient uncoating of viral capsids has been implicated in AAV8's robust liver transduction, much about the biology of AAV8 hepatotropism remains unclear. Our study investigated the structural basis of AAV8 liver transduction efficiency by constructing chimeric vector capsids containing sequences derived from AAV8 and AAV2 – a highly homologous yet poorly hepatotropic serotype. Engineered vectors containing capsid variable regions (VR) VII and IX from AAV8 in an AAV2 backbone mediated near AAV8-like transduction in mouse liver, with higher numbers of chimeric genomes detected in whole liver cells and isolated nuclei. Interestingly, chimeric capsids within liver nuclei also uncoated similarly to AAV8 by 6 weeks after administration, in contrast with AAV2, of which a significantly smaller proportion were uncoated. This study links specific AAV capsid regions to the transduction ability of a clinically relevant AAV serotype. - Highlights: • We construct chimeric vectors to identify determinants of AAV8 liver transduction. • An AAV2-based vector with 17 AAV8 residues exhibited high liver transduction in mice. • This vector also surpassed AAV2 in cell entry, nuclear entry and onset of expression. • Most chimeric vector particles were uncoated at 6 weeks, like AAV8 and unlike AAV2. • Chimera retained heparin binding and was antigenically distinct from AAV2 and AAV8

  17. AAV8 capsid variable regions at the two-fold symmetry axis contribute to high liver transduction by mediating nuclear entry and capsid uncoating

    Energy Technology Data Exchange (ETDEWEB)

    Tenney, Rebeca M.; Bell, Christie L.; Wilson, James M., E-mail: wilsonjm@mail.med.upenn.edu

    2014-04-15

    Adeno-associated virus serotype 8 (AAV8) is a promising vector for liver-directed gene therapy. Although efficient uncoating of viral capsids has been implicated in AAV8's robust liver transduction, much about the biology of AAV8 hepatotropism remains unclear. Our study investigated the structural basis of AAV8 liver transduction efficiency by constructing chimeric vector capsids containing sequences derived from AAV8 and AAV2 – a highly homologous yet poorly hepatotropic serotype. Engineered vectors containing capsid variable regions (VR) VII and IX from AAV8 in an AAV2 backbone mediated near AAV8-like transduction in mouse liver, with higher numbers of chimeric genomes detected in whole liver cells and isolated nuclei. Interestingly, chimeric capsids within liver nuclei also uncoated similarly to AAV8 by 6 weeks after administration, in contrast with AAV2, of which a significantly smaller proportion were uncoated. This study links specific AAV capsid regions to the transduction ability of a clinically relevant AAV serotype. - Highlights: • We construct chimeric vectors to identify determinants of AAV8 liver transduction. • An AAV2-based vector with 17 AAV8 residues exhibited high liver transduction in mice. • This vector also surpassed AAV2 in cell entry, nuclear entry and onset of expression. • Most chimeric vector particles were uncoated at 6 weeks, like AAV8 and unlike AAV2. • Chimera retained heparin binding and was antigenically distinct from AAV2 and AAV8.

  18. Explaining the mechanisms through which regional atmospheric circulation variability drives summer temperatures and glacial melt in western High Mountain Asia (HMA)

    Science.gov (United States)

    Forsythe, Nathan; Fowler, Hayley; Blenkinsop, Stephen; Li, Xiaofeng; Pritchard, David

    2017-04-01

    Comprehension of mechanisms by which atmospheric circulation influences sub-regional temperature and water resources variability in high-elevation mountainous catchments is of great scientific urgency due to the dependency of large downstream populations on the river flows these basins provide. In this work we quantify a regional atmospheric pattern, the Karakoram Zonal Shear (KZS), with a very pronounced annual cycle which we standardise into a dimensionless (seasonal) circulation metric the Karakoram Zonal Index (KZI). Going beyond previous regional circulation metrics such as the "middle-upper tropospheric temperature index" (MUTTI) or the Webster and Yang Monsoonal Index (WYMI) which have focused solely on the South Asian Summer Monsoon (June to September) season, the KZS/KZI provides an indicator which captures the influence and interactions of the westerly jet throughout the entire annual cycle. Use of the KZS and KZI have led us to identify a further regional atmospheric system, the Karakoram Vortex, which propagates "warm high" (anticyclonic postitive temperature anomaly) and "cold low" (cyclonic negative temperature anomaly) patterns across a very broad swath of Central and South Asia in winter but over a much more constrained area of western HMA in summer. The KV exerts this temperature influence through a combination of adiabatic effects and large-scale advection. Quantify KV influence, the KZI shows strong and statistically significantly near surface (2m) air temperatures both across western HMA both as observed through local meteorological stations and as estimated by an ensemble of global meteorological reanalyses. We show that this strong influence on temperature translates to important consequences for meltwater generation from highly glaciated Indus river tributaries which is logical given that previous studies have established the role of air temperature in modulating glacially-derived river flows in western HMA. By improving the understanding of

  19. Source Regions of the Interplanetary Magnetic Field and Variability in Heavy-Ion Elemental Composition in Gradual Solar Energetic Particle Events

    Science.gov (United States)

    Ko, Yuan-Kuen; Tylka, Allan J.; Ng, Chee K.; Wang, Yi-Ming; Dietrich, William F.

    2013-01-01

    Gradual solar energetic particle (SEP) events are those in which ions are accelerated to their observed energies by interactions with a shock driven by a fast coronal mass-ejection (CME). Previous studies have shown that much of the observed event-to-event variability can be understood in terms of shock speed and evolution in the shock-normal angle. But an equally important factor, particularly for the elemental composition, is the origin of the suprathermal seed particles upon which the shock acts. To tackle this issue, we (1) use observed solar-wind speed, magnetograms, and the PFSS model to map the Sun-L1 interplanetary magnetic field (IMF) line back to its source region on the Sun at the time of the SEP observations; and (2) then look for correlation between SEP composition (as measured by Wind and ACE at approx. 2-30 MeV/nucleon) and characteristics of the identified IMF-source regions. The study is based on 24 SEP events, identified as a statistically-significant increase in approx. 20 MeV protons and occurring in 1998 and 2003-2006, when the rate of newly-emergent solar magnetic flux and CMEs was lower than in solar-maximum years and the field-line tracing is therefore more likely to be successful. We find that the gradual SEP Fe/O is correlated with the field strength at the IMF-source, with the largest enhancements occurring when the footpoint field is strong, due to the nearby presence of an active region. In these cases, other elemental ratios show a strong charge-to-mass (q/M) ordering, at least on average, similar to that found in impulsive events. These results lead us to suggest that magnetic reconnection in footpoint regions near active regions bias the heavy-ion composition of suprathermal seed ions by processes qualitatively similar to those that produce larger heavy-ion enhancements in impulsive SEP events. To address potential technical concerns about our analysis, we also discuss efforts to exclude impulsive SEP events from our event sample.

  20. Selective amplification of T-cell receptor variable region species is demonstrable but not essential in early lesions of psoriasis vulgaris: analysis by anchored polymerase chain reaction and hypervariable region size spectratyping.

    Science.gov (United States)

    Vekony, M A; Holder, J E; Lee, A J; Horrocks, C; Eperon, I C; Camp, R D

    1997-07-01

    Several groups have investigated the role of T cells in the pathogenesis of psoriasis by determination of T-cell receptor (TCR) B-chain variable (V) region usage, both in chronic plaque (psoriasis vulgaris) and guttate forms, with various results. Because there are no data on TCR expression in early psoriasis vulgaris, when specific cellular immune events may be expected to be most pronounced, we have analyzed early lesions (less than 3 wk old) of ten patients, with highly reproducible results. We have developed a highly controlled anchored polymerase chain reaction (PCR) method in which TCR beta chain species are all amplified with the same primer pair and products are quantified by dot blot hybridization with BV family-specific oligonucleotide probes. Overexpression of certain TCR BV genes was observed in the majority of lesional biopsies, but in samples in which the expanded BV family formed more than 10% of total lesional BV (half of the samples analyzed), BV2 and BV6 predominated. The consistency of overexpression of these BV species between patients was much less than in previous studies of TCRBV usage in established chronic plaque psoriasis lesions. Complementarity-determining region 3 (CDR3) size spectratyping demonstrated evidence for selective clonal T cell accumulation in less than half of the lesional samples showing BV expansion. These results indicate that selective amplification of TCRBV species occurs in early psoriasis vulgaris but is not essential to the pathogenic process and may be more important in the maintenance or expansion of chronic lesions.

  1. Altered phenotypic expression of immunoglobulin heavy-chain variable-region (VH) genes in Alicia rabbits probably reflects a small deletion in the VH genes closest to the joining region.

    Science.gov (United States)

    Allegrucci, M; Newman, B A; Young-Cooper, G O; Alexander, C B; Meier, D; Kelus, A S; Mage, R G

    1990-07-01

    Rabbits of the Alicia strain have a mutation (ali) that segregates with the immunoglobulin heavy-chain (lgh) locus and has a cis effect upon the expression of heavy-chain variable-region (VH) genes encoding the a2 allotype. In heterozygous a1/ali or a3/ali rabbits, serum immunoglobulins are almost entirely the products of the normal a1 or a3 allele and only traces of a2 immunoglobulin are detectable. Adult homozygous ali/ali rabbits likewise have normal immunoglobulin levels resulting from increased production of a-negative immunoglobulins and some residual ability to produce the a2 allotype. By contrast, the majority of the immunoglobulins of wild-type a2 rabbits are a2-positive and only a small percentage are a-negative. Genomic DNAs from homozygous mutant and wild-type animals were indistinguishable by Southern analyses using a variety of restriction enzyme digests and lgh probes. However, when digests with infrequently cutting enzymes were analyzed by transverse alternating-field electrophoresis, the ali DNA fragments were 10-15 kilobases smaller than the wild type. These fragments hybridized to probes both for VH and for a region of DNA a few kilobases downstream of the VH genes nearest the joining region. We suggest that this relatively small deletion affects a segment containing 3' VH genes with important regulatory functions, the loss of which leads to the ali phenotype. These results, and the fact that the 3' VH genes rearrange early in B-cell development, indicate that the 3' end of the VH locus probably plays a key role in regulation of VH gene expression.

  2. Spatial and temporal variability of fluoride concentrations in groundwater resources of Larestan and Gerash regions in Iran from 2003 to 2010.

    Science.gov (United States)

    Amini, Hassan; Haghighat, Gholam Ali; Yunesian, Masud; Nabizadeh, Ramin; Mahvi, Amir Hossein; Dehghani, Mohammad Hadi; Davani, Rahim; Aminian, Abd-Rasool; Shamsipour, Mansour; Hassanzadeh, Naser; Faramarzi, Hossein; Mesdaghinia, Alireza

    2016-02-01

    There is discrepancy about intervals of fluoride monitoring in groundwater resources by Iranian authorities. Spatial and temporal variability of fluoride in groundwater resources of Larestan and Gerash regions in Iran were analyzed from 2003 to 2010 using a geospatial information system and the Mann-Kendall trend test. The mean concentrations of fluoride for the 8-year period in the eight cities and 31 villages were 1.6 and 2.0 mg/l, respectively; the maximum values were 2.4 and 3.8 mg/l, respectively. Spatial, temporal, and spatiotemporal variability of fluoride in overall groundwater resources were relatively constant over the years. However, results of the Mann-Kendall trend test revealed a monotonic trend in the time series of one city and 11 villages for the 8-year period. Specifically, one city and three villages showed positive significant Kendall's Tau values, suggesting an upward trend in fluoride concentrations over the 8-year period. In contrast, seven villages displayed negative significant Kendall's Tau values, arguing for a downward trend in fluoride concentrations over the years. From 2003 to 2010, approximately 52 % of the Larestan and Gerash areas have had fluoride concentrations above the maximum permissible Iranian drinking water standard fluoride level (1.4 mg/l), and about 116,000 people were exposed to such excess amounts. Therefore, our study supports for a close monitoring of fluoride concentrations from health authorities in monthly intervals, especially in villages and cities that showed positive trend in fluoride concentrations. Moreover, we recommend simultaneous implementation of cost-effective protective measures or interventions until a standard fluoride level is achieved.

  3. Fat-Related Anthropometric Variables and Regional Patterns of Body Size and Adiposity of Adolescents in Aba South LGA, Abia State, Nigeria.

    Science.gov (United States)

    Eme, Paul Eze; Onuoha, Nnenna Ola; Mbah, Obioma B

    2016-05-04

    This study assessed fat-related anthropometric variables and regional patterns of body size and adiposity of adolescents in Aba South LGA. A total number of 600 adolescents who were secondary school students aged 10 to 19 years wereselected from 61 registered secondary schools. A multi-random sampling technique was used to select the patients. Ethical approval and informed consent were obtained from the patients who participated in the study. Each patient was subjected to weight, height, mid-upper arm circumference (MUAC), and skinfolds measurements using standard methods. Body fat percentage was calculated by the formulas described by Slaughter, Siris, and Shailk equations. Descriptive statistics of frequencies, percentages, mean, and standard deviation were used to examine the gender-specific anthropometric indices. Chi-square and independent t test were also applied to determine the differences between the parameters or variables of the genders at P< .05. The respondents aged 19 years had the highest measurement for triceps (14.60 mm), thigh (35.05 mm), and MUAC (25.95 mm), while those aged 18 years had the highest measurement for suprailiac (15.00 mm) and subscapular (16.94 mm). Females had more fat deposits than males in all the skinfold sites. They also had a significantly (P = .05) higher body fat percentage than males. A multiple regression analysis revealed that maximum calf fat was a strong predictor of body fat percentage of the patients. High prevalence of obesity was found in this study, and the 3 equations of body fat percentage showed similar findings that more females than males had higher body fat percentage. © The Author(s) 2016.

  4. Landsat classification of surface-water presence during multiple years to assess response of playa wetlands to climatic variability across the Great Plains Landscape Conservation Cooperative region

    Science.gov (United States)

    Manier, Daniel J.; Rover, Jennifer R.

    2018-02-15

    To improve understanding of the distribution of ecologically important, ephemeral wetland habitats across the Great Plains, the occurrence and distribution of surface water in playa wetland complexes were documented for four different years across the Great Plains Landscape Conservation Cooperative (GPLCC) region. This information is important because it informs land and wildlife managers about the timing and location of habitat availability. Data with an accurate timestamp that indicate the presence of water, the percent of the area inundated with water, and the spatial distribution of playa wetlands with water are needed for a host of resource inventory, monitoring, and research applications. For example, the distribution of inundated wetlands forms the spatial pattern of available habitat for resident shorebirds and water birds, stop-over habitats for migratory birds, connectivity and clustering of wetland habitats, and surface waters that recharge the Ogallala aquifer; there is considerable variability in the distribution of playa wetlands holding water through time. Documentation of these spatially and temporally intricate processes, here, provides data required to assess connections between inundation and multiple environmental drivers, such as climate, land use, soil, and topography. Climate drivers are understood to interact with land cover, land use and soil attributes in determining the amount of water that flows overland into playa wetlands. Results indicated significant spatial variability represented by differences in the percent of playas inundated among States within the GPLCC. Further, analysis-of-variance comparison of differences in inundation between years showed significant differences in all cases. Although some connections with seasonal moisture patterns may be observed, the complex spatial-temporal gradients of precipitation, temperature, soils, and land use need to be combined as covariates in multivariate models to effectively account for

  5. Interannual variability of a precipitation gradient along the semi-arid catchment areas for the metropolitan region of Lima- Peru in relation to atmospheric circulation at the mesoscale

    Science.gov (United States)

    Otto, Marco; Seidel, Jochen; Trachte, Katja

    2013-04-01

    The main moisture source for precipitation on the western slopes of the Central Andes is located east of the mountain range known as the Amazon basin. However, the Andean mountains, which reach up to 6000 m a.s.l., strongly influence climatic conditions along the Pacific coastline of South America as a climatic barrier for the low-level tropospheric flow and associated moisture transport from the Amazon basin. Additional, large scale subsidence caused by the South Pacific High inhabits convective rainfall at the Pacific coast where large metropolitan areas such as the Peruvian capital Lima are located. Two contrasts in precipitation can be found while crossing the Andean mountains from West to East. On the Pacific coast, at the location of the metropolitan area of Lima, no more than 10 mm mean annual rainfall occurs. In contrast, up to 1000 mm mean annual rainfall occur only 100 km east of Lima within the upper region (4000 m .a.s.l.) of the Western Cordillera. The transition takes place along the western slopes of the Western Cordillera and is characterised by a strong precipitation gradient. Here, catchment areas are located that provide most of the water resources needed to sustain an urban area of approximately 10 million people. This study investigates the interannual variability of the precipitation gradient between 1998 and 2012. The analysis is based on daily precipitation data of 22 rain gauge station, daily rainfall data of the Tropical Rainfall Mission (TRMM 3B42) at 0.25 degrees and reanalysis data at 36 km spatial resolution at the mesoscale. The reanalysis data was produced using the Weather Research and Forecasting Model. Station data was provided by the Peruvian weather service during the project "Sustainable Water and Wastewater Management in Urban Growth Centres Coping with Climate Change - Concepts for Lima Metropolitana (Peru) (LiWa)", which is financed by the German Federal Ministry of Education and Research (BMBF). We are interested in the

  6. Identification and characterization of a highly variable region in mitochondrial genomes of fusarium species and analysis of power generation from microbial fuel cells

    Science.gov (United States)

    Hamzah, Haider Mousa

    In the microbial fuel cell (MFC) project, power generation from Shewanella oneidensis MR-1 was analyzed looking for a novel system for both energy generation and sustainability. The results suggest the possibility of generating electricity from different organic substances, which include agricultural and industrial by-products. Shewanella oneidensis MR-1 generates usable electrons at 30°C using both submerged and solid state cultures. In the MFC biocathode experiment, most of the CO2 generated at the anodic chamber was converted into bicarbonate due the activity of carbonic anhydrase (CA) of the Gluconobacter sp.33 strain. These findings demonstrate the possibility of generation of electricity while at the same time allowing the biomimetic sequestration of CO2 using bacterial CA. In the mitochondrial genomes project, the filamentous fungal species Fusarium oxysporum was used as a model. This species causes wilt of several important agricultural crops. A previous study revealed that a highly variable region (HVR) in the mitochondrial DNA (mtDNA) of three species of Fusarium contained a large, variable unidentified open reading frame (LV-uORF). Using specific primers for two regions of the LV-uORF, six strains were found to contain the ORF by PCR and database searches identified 18 other strains outside of the Fusarium oxysporum species complex. The LV-uORF was also identified in three isolates of the F. oxysporum species complex. Interestingly, several F. oxysporum isolates lack the LV-uORF and instead contain 13 ORFs in the HVR, nine of which are unidentified. The high GC content and codon usage of the LV-uORF indicate that it did not co-evolve with other mt genes and was horizontally acquired and was introduced to the Fusarium lineage prior to speciation. The nonsynonymous/synonymous (dN/dS) ratio of the LV-uORFs (0.43) suggests it is under purifying selection and the putative polypeptide is predicted to be located in the mitochondrial membrane. Growth assays

  7. The Ross Sea Dipole - temperature, snow accumulation and sea ice variability in the Ross Sea region, Antarctica, over the past 2700 years

    Science.gov (United States)

    Bertler, Nancy A. N.; Conway, Howard; Dahl-Jensen, Dorthe; Emanuelsson, Daniel B.; Winstrup, Mai; Vallelonga, Paul T.; Lee, James E.; Brook, Ed J.; Severinghaus, Jeffrey P.; Fudge, Taylor J.; Keller, Elizabeth D.; Baisden, W. Troy; Hindmarsh, Richard C. A.; Neff, Peter D.; Blunier, Thomas; Edwards, Ross; Mayewski, Paul A.; Kipfstuhl, Sepp; Buizert, Christo; Canessa, Silvia; Dadic, Ruzica; Kjær, Helle A.; Kurbatov, Andrei; Zhang, Dongqi; Waddington, Edwin D.; Baccolo, Giovanni; Beers, Thomas; Brightley, Hannah J.; Carter, Lionel; Clemens-Sewall, David; Ciobanu, Viorela G.; Delmonte, Barbara; Eling, Lukas; Ellis, Aja; Ganesh, Shruthi; Golledge, Nicholas R.; Haines, Skylar; Handley, Michael; Hawley, Robert L.; Hogan, Chad M.; Johnson, Katelyn M.; Korotkikh, Elena; Lowry, Daniel P.; Mandeno, Darcy; McKay, Robert M.; Menking, James A.; Naish, Timothy R.; Noerling, Caroline; Ollive, Agathe; Orsi, Anaïs; Proemse, Bernadette C.; Pyne, Alexander R.; Pyne, Rebecca L.; Renwick, James; Scherer, Reed P.; Semper, Stefanie; Simonsen, Marius; Sneed, Sharon B.; Steig, Eric J.; Tuohy, Andrea; Ulayottil Venugopal, Abhijith; Valero-Delgado, Fernando; Venkatesh, Janani; Wang, Feitang; Wang, Shimeng; Winski, Dominic A.; Winton, V. Holly L.; Whiteford, Arran; Xiao, Cunde; Yang, Jiao; Zhang, Xin

    2018-02-01

    High-resolution, well-dated climate archives provide an opportunity to investigate the dynamic interactions of climate patterns relevant for future projections. Here, we present data from a new, annually dated ice core record from the eastern Ross Sea, named the Roosevelt Island Climate Evolution (RICE) ice core. Comparison of this record with climate reanalysis data for the 1979-2012 interval shows that RICE reliably captures temperature and snow precipitation variability in the region. Trends over the past 2700 years in RICE are shown to be distinct from those in West Antarctica and the western Ross Sea captured by other ice cores. For most of this interval, the eastern Ross Sea was warming (or showing isotopic enrichment for other reasons), with increased snow accumulation and perhaps decreased sea ice concentration. However, West Antarctica cooled and the western Ross Sea showed no significant isotope temperature trend. This pattern here is referred to as the Ross Sea Dipole. Notably, during the Little Ice Age, West Antarctica and the western Ross Sea experienced colder than average temperatures, while the eastern Ross Sea underwent a period of warming or increased isotopic enrichment. From the 17th century onwards, this dipole relationship changed. All three regions show current warming, with snow accumulation declining in West Antarctica and the eastern Ross Sea but increasing in the western Ross Sea. We interpret this pattern as reflecting an increase in sea ice in the eastern Ross Sea with perhaps the establishment of a modern Roosevelt Island polynya as a local moisture source for RICE.

  8. Population-Level Transcriptomic Responses of the Southern Ocean Salp Salpa thompsoni to Environment Variability of the Western Antarctic Peninsula Region

    Science.gov (United States)

    Bucklin, A. C.; Batta Lona, P. G.; Maas, A. E.; O'Neill, R. J.; Wiebe, P. H.

    2015-12-01

    In response to the changing Antarctic climate, the Southern Ocean salp Salpa thompsoni has shown altered patterns of distribution and abundance that are anticipated to have profound impacts on pelagic food webs and ecosystem dynamics. The physiological and molecular processes that underlay ecological function and biogeographical distribution are key to understanding present-day dynamics and predicting future trajectories. This study examined transcriptome-wide patterns of gene expression in relation to biological and physical oceanographic conditions in coastal, shelf and offshore waters of the Western Antarctic Peninsula (WAP) region during austral spring and summer 2011. Based on field observations and collections, seasonal changes in the distribution and abundance of salps of different life stages were associated with differences in water mass structure of the WAP. Our observations are consistent with previous suggestions that bathymetry and currents in Bransfield Strait could generate a retentive cell for an overwintering population of S. thompsoni, which may generate the characteristic salp blooms found throughout the region later in summer. The statistical analysis of transcriptome-wide patterns of gene expression revealed differences among salps collected in different seasons and from different habitats (i.e., coastal versus offshore) in the WAP. Gene expression patterns also clustered by station in austral spring - but not summer - collections, suggesting stronger heterogeneity of environmental conditions. During the summer, differentially expressed genes covered a wider range of functions, including those associated with stress responses. Future research using novel molecular transcriptomic / genomic characterization of S. thompsoni will allow more complete understanding of individual-, population-, and species-level responses to environmental variability and prediction of future dynamics of Southern Ocean food webs and ecosystems.

  9. The Ross Sea Dipole – temperature, snow accumulation and sea ice variability in the Ross Sea region, Antarctica, over the past 2700 years

    Directory of Open Access Journals (Sweden)

    N. A. N. Bertler

    2018-02-01

    Full Text Available High-resolution, well-dated climate archives provide an opportunity to investigate the dynamic interactions of climate patterns relevant for future projections. Here, we present data from a new, annually dated ice core record from the eastern Ross Sea, named the Roosevelt Island Climate Evolution (RICE ice core. Comparison of this record with climate reanalysis data for the 1979–2012 interval shows that RICE reliably captures temperature and snow precipitation variability in the region. Trends over the past 2700 years in RICE are shown to be distinct from those in West Antarctica and the western Ross Sea captured by other ice cores. For most of this interval, the eastern Ross Sea was warming (or showing isotopic enrichment for other reasons, with increased snow accumulation and perhaps decreased sea ice concentration. However, West Antarctica cooled and the western Ross Sea showed no significant isotope temperature trend. This pattern here is referred to as the Ross Sea Dipole. Notably, during the Little Ice Age, West Antarctica and the western Ross Sea experienced colder than average temperatures, while the eastern Ross Sea underwent a period of warming or increased isotopic enrichment. From the 17th century onwards, this dipole relationship changed. All three regions show current warming, with snow accumulation declining in West Antarctica and the eastern Ross Sea but increasing in the western Ross Sea. We interpret this pattern as reflecting an increase in sea ice in the eastern Ross Sea with perhaps the establishment of a modern Roosevelt Island polynya as a local moisture source for RICE.

  10. Comparison of variable region 3 sequences of human immunodeficiency virus type 1 from infected children with the RNA and DNA sequences of the virus populations of their mothers.

    Science.gov (United States)

    Scarlatti, G; Leitner, T; Halapi, E; Wahlberg, J; Marchisio, P; Clerici-Schoeller, M A; Wigzell, H; Fenyö, E M; Albert, J; Uhlén, M

    1993-01-01

    We have compared the variable region 3 sequences from 10 human immunodeficiency virus type 1 (HIV-1)-infected infants to virus sequences from the corresponding mothers. The sequences were derived from DNA of uncultured peripheral blood mononuclear cells (PBMC), DNA of cultured PBMC, and RNA from serum collected at or shortly after delivery. The infected infants, in contrast to the mothers, harbored homogeneous virus populations. Comparison of sequences from the children and clones derived from DNA of the corresponding mothers showed that the transmitted virus represented either a minor or a major virus population of the mother. In contrast to an earlier study, we found no evidence of selection of minor virus variants during transmission. Furthermore, the transmitted virus variant did not show any characteristic molecular features. In some cases the transmitted virus was more related to the virus RNA population of the mother and in other cases it was more related to the virus DNA population. This suggests that either cell-free or cell-associated virus may be transmitted. These data will help AIDS researchers to understand the mechanism of transmission and to plan strategies for prevention of transmission. PMID:8446584

  11. Apparent diffusion coefficient measurement in glioma: Influence of region-of-interest determination methods on apparent diffusion coefficient values, interobserver variability, time efficiency, and diagnostic ability.

    Science.gov (United States)

    Han, Xu; Suo, Shiteng; Sun, Yawen; Zu, Jinyan; Qu, Jianxun; Zhou, Yan; Chen, Zengai; Xu, Jianrong

    2017-03-01

    To compare four methods of region-of-interest (ROI) placement for apparent diffusion coefficient (ADC) measurements in distinguishing low-grade gliomas (LGGs) from high-grade gliomas (HGGs). Two independent readers measured ADC parameters using four ROI methods (single-slice [single-round, five-round and freehand] and whole-volume) on 43 patients (20 LGGs, 23 HGGs) who had undergone 3.0 Tesla diffusion-weighted imaging and time required for each method of ADC measurements was recorded. Intraclass correlation coefficients (ICCs) were used to assess interobserver variability of ADC measurements. Mean and minimum ADC values and time required were compared using paired Student's t-tests. All ADC parameters (mean/minimum ADC values of three single-slice methods, mean/minimum/standard deviation/skewness/kurtosis/the10 th and 25 th percentiles/median/maximum of whole-volume method) were correlated with tumor grade (low versus high) by unpaired Student's t-tests. Discriminative ability was determined by receiver operating characteristic curves. All ADC measurements except minimum, skewness, and kurtosis of whole-volume ROI differed significantly between LGGs and HGGs (all P determination methods. Whole-volume histogram analysis did not yield better results than single-slice methods and took longer. Mean ADC value derived from single-round ROI is the most optimal parameter for differentiating LGGs from HGGs. 3 J. Magn. Reson. Imaging 2017;45:722-730. © 2016 International Society for Magnetic Resonance in Medicine.

  12. Detection of Chromosome X;18 Breakpoints and Translocation of the Xq22.3;18q23 Regions Resulting in Variable Fertility Phenotypes

    Directory of Open Access Journals (Sweden)

    Attila Szvetko

    2012-01-01

    Full Text Available We describe a familial pattern of gonosomal-autosomal translocation between the X and 18 chromosomes, balanced and unbalanced forms, in male and female siblings. The proposita was consulted for hypergonadotropic hypogonadism. Karyotype analysis revealed a balanced 46, X, t(X;18(q22.3;q23 genotype. The sister of the proband presented with oligomenorrhea with irregular menses and possesses an unbalanced form of the translocation 46, X, der(X, t(X;18(q22.3;q23. The brother of the proband was investigated and was found to possess the balanced form of the same translocation, resulting in disrupted spermatogenesis. Maternal investigation revealed the progenitor karyotype 46, X, t(X;18(q22.3;q23. Maternal inheritance and various genomic events contributed to the resultant genotypes. Primary infertility was initially diagnosed in all progeny; however, the male individual recently fathered twins. We briefly review the mechanisms associated with X;18 translocations and describe a pattern of inheritance, where breakpoints and translocation of the Xq22.3;18q23 regions have resulted in variable fertility.

  13. Genetic Variability and Symbiotic Efficiency of Erythrina velutina Willd. Root Nodule Bacteria from the Semi-Arid Region in Northeastern Brazil

    Directory of Open Access Journals (Sweden)

    Kelly Alexsandra Souza Menezes

    Full Text Available ABSTRACT Legume-rhizobia symbiosis is a cross-kingdom association that results in large amounts of nitrogen incorporated in food webs. For the Brazilian semi-arid region, data on genetic variability and symbiotic efficiency of Papilionoidae rhizobial communities are very scarce. The aim of this study was to evaluate the genetic variability and the symbiotic efficiency of eight rhizobial isolates obtained from “mulungu” (Erythrina velutina Willd. nodules. For 16S rRNA gene sequencing, the genomic DNA was extracted using a commercial kit, amplified with universal primers, and subjected to sequencing reactions. For the isolate ESA 71, PCR amplifications for nodC and nodA genes were attempted. Rhizobial efficiency was assessed by two greenhouse experiments. The first assay was carried out under gnotobiotic conditions, with sterile sand as a substrate; the second experiment was conducted in a non-sterile soil. For both experiments, the inoculation treatments consisted of a single inoculation of each isolate, in addition to a treatment with Bradyrhizobium elkanii BR 5609 as a reference strain. Furthermore, two non-inoculated control treatments, supplied and not supplied with mineral N, were also evaluated. Bacterial identification indicated that both α and β-rhizobia could be found in “mulungu” root nodules. Three isolates where classified within the Rhizobium genus, four bacteria belonged to Bradyrhizobium and one isolate clustered with Burkholderia. Positive amplification of an intragenic fragment of the nodA gene using a primer set to β-rhizobia could be found for ESA 71 (Burkholderia. All bacterial isolates were effective in colonizing “mulungu” roots. In the first experiment, all inoculated treatments and N fertilization increased the N concentration in “mulungu” shoot tissues. For total N in the shoots, the isolates ESA 70, ESA 72, and ESA 75 stood out. In the non-sterile substrate experiment, the isolates ESA 70, ESA 71, ESA

  14. Modeling regional aerosol and aerosol precursor variability over California and its sensitivity to emissions and long-range transport during the 2010 CalNex and CARES campaigns

    Science.gov (United States)

    Fast, J. D.; Allan, J.; Bahreini, R.; Craven, J.; Emmons, L.; Ferrare, R.; Hayes, P. L.; Hodzic, A.; Holloway, J.; Hostetler, C.; Jimenez, J. L.; Jonsson, H.; Liu, S.; Liu, Y.; Metcalf, A.; Middlebrook, A.; Nowak, J.; Pekour, M.; Perring, A.; Russell, L.; Sedlacek, A.; Seinfeld, J.; Setyan, A.; Shilling, J.; Shrivastava, M.; Springston, S.; Song, C.; Subramanian, R.; Taylor, J. W.; Vinoj, V.; Yang, Q.; Zaveri, R. A.; Zhang, Q.

    2014-09-01

    The performance of the Weather Research and Forecasting regional model with chemistry (WRF-Chem) in simulating the spatial and temporal variations in aerosol mass, composition, and size over California is quantified using the extensive meteorological, trace gas, and aerosol measurements collected during the California Nexus of Air Quality and Climate Experiment (CalNex) and the Carbonaceous Aerosol and Radiative Effects Study (CARES) conducted during May and June of 2010. The overall objective of the field campaigns was to obtain data needed to better understand processes that affect both climate and air quality, including emission assessments, transport and chemical aging of aerosols, aerosol radiative effects. Simulations were performed that examined the sensitivity of aerosol concentrations to anthropogenic emissions and to long-range transport of aerosols into the domain obtained from a global model. The configuration of WRF-Chem used in this study is shown to reproduce the overall synoptic conditions, thermally driven circulations, and boundary layer structure observed in region that controls the transport and mixing of trace gases and aerosols. Reducing the default emissions inventory by 50% led to an overall improvement in many simulated trace gases and black carbon aerosol at most sites and along most aircraft flight paths; however, simulated organic aerosol was closer to observed when there were no adjustments to the primary organic aerosol emissions. We found that sulfate was better simulated over northern California whereas nitrate was better simulated over southern California. While the overall spatial and temporal variability of aerosols and their precursors were simulated reasonably well, we show cases where the local transport of some aerosol plumes were either too slow or too fast, which adversely affects the statistics quantifying the differences between observed and simulated quantities. Comparisons with lidar and in situ measurements indicate

  15. Inter-annual variability of air mass and acidified pollutants transboundary exchange in the north-eastern part of the EANET region

    Science.gov (United States)

    Gromov, Sergey A.; Trifonova-Yakovleva, Alisa; Gromov, Sergey S.

    2016-04-01

    ]. This dataset provides comprehensive monthly statistics on the wind meteorological regime at the stations of interest in a given range of altitudes. Based on long-term source observational data, the dataset is assumed being representative up to date, which allowed us to estimate monthly pollutant fluxes for the years 2006-2008 over segments of the Russian border and its whole [4]. In the current phase of our study, we calculate the inter-annual variations in the transboundary pollutant fluxes for 2000-2012 using longer-term EANET data and transient changes in air mass fluxes derived from the meteorological wind fields from ERA INTERIM re-analysis [5]. We gauge similar average air transport terms and dynamics from the statistical and reanalysis data, which bolsters our earlier findings. The reanalysis data, being naturally more variable, convolutes the variations in net air fluxes and pollutant concentrations into several episodes we emphasise, in addition to the integral pollutant transfer terms we estimate. At last, we discuss on the possibility of climate change effect on the flux strength and dynamics together with regional air quality tendencies in North-East Asia countries. References: Izrael, Yu.A., et al.: Monitoring of the Transboundary Air Pollution Transport. Gidrometeoizdat, Leningrad, 303 p., 187 (in Russian). Akimoto H., et al.: Periodic Report of the State of Acid Deposition in East Asia. Part I: Regional Assessment. EANET-UNEP/RRC.AP-ADORC, 258 p., 2006. Brukhan, F.F.: Aeroclimatic Characteristics of the Mean Winds over USSR (ed. Ignatjushina E.N.). Gidrometeoizdat, Moscow, 54 p., 1984 (in Russian). Gromov S.A., et al.: First-order evaluation of transboundary pollution fluxes in areas of EANET stations in Eastern Siberia and the Russian Far East. EANET Science Bulletin, vol. 3, pp. 195-203, 2013. Dee, D. P., et al.: The ERA-Interim reanalysis: configuration and performance of the data assimilation system, Quart. J. Royal Met. Soc., 137, 553-597, doi: 10

  16. Assessing temporal and spatial variability of phytoplankton composition in a large reservoir in the Brazilian northeastern region under intense drought conditions

    Directory of Open Access Journals (Sweden)

    Hortência de Souza Barroso

    2017-11-01

    Full Text Available The present study was carried out in Castanhão Reservoir, a large aquatic system in the Brazilian semi-arid region that serves multiples uses as water drinking supply and intensive fish-cage aquaculture site. In order to understand the effects of environmental conditions on the spatial and temporal variability of the phytoplankton functional groups (FG and the main ‘characterizing taxa’, sub-superficial water samples were collected from March 2012 to August 2013, a period distinguished by the continuous drop in reservoir volume due to rainfall shortage. Eighteen functional groups and 102 total phytoplankton taxa were found in the Castanhão reservoir during the study. No significant differences were observed relative to spatial variation of total phytoplankton composition throughout the reservoir (PERMANOVA, P>0.05. On the other hand, according to cluster analysis results, three temporal phases have been identified (Similarity Profile, P<0.05, based on 102 phytoplankton taxa. The ‘characterizing taxa’ was found using the Similarity Percentage procedure (cut-off 90%, being thus defined as those taxa that contributed the most to the similarity within each temporal phase. Nineteen ‘characterizing taxa’ described the Castanhão reservoir, with predominance of those typical of mixing and turbidity conditions. Cyanobacteria dominated through the three temporal phases. According to the redundancy analysis, nutrient availability and water transparency were found to influence the phytoplankton temporal dynamics. The phase I (rainy season was most represented by Planktolyngbya minor/Pl. limnetica (FG = S1, which reached best performance under strongly decreased phosphate-P concentrations and low water transparency. In phase II (dry season, Romeria victoriae (FG = ? outcompeted other cyanobacteria probably due the increase in water transparency and decrease in ammonium-N. Finally, in phase III (rainy season the decrease of water transparency

  17. Spatial variability in soil properties and diagnostic leaf characteristics of apple (Malus domestica) in apple growing region of Dheerkot Azad Jammu and Kashmir (AJK), Pakistan

    International Nuclear Information System (INIS)

    Arjumend, T.; Abbasi, M. K.

    2016-01-01

    Scientific information on the spatial variability in soil properties and nutrient status is important for understanding ecosystem processes and evaluating agricultural land management practices. This study aims to characterize the spatial variation of selected soil properties and the nutrient status of ten representative sites of apple growing region, and also to evaluate the nutrient contents of apple leaves of the same sites from sub-division Dheerkot, Azad Jammu and Kashmir, (AJK) Pakistan. The sampling sites were: Hill, Chamankot, Chamyati-1 (upper), Chamyati-2 (lower), Dheerkot, Kotli, Karry, Sanghar, Neelabut, and Hanschoki. The treatments included; sites = 10; depths = 04 (0-15, 15-30, 30-45, and 45-60 cm) with 3 replications. Results indicated that texture of all the sites (except one) were loam or clay loam having silt and clay the dominant soil fractions. The soils were neutral to slightly alkaline, pH ranging from 7.2 to 8.3, non-saline, and moderately calcareous (CaCO/sub 3/ 0.00-8.97 percent). The nutrient index (NI) value for soil organic matter (SOM), available P and K were 2.5, 1.5 and 2.1 showing high, medium, and medium range, respectively. The concentration of AB-DTPA extractable Fe, Mn, Cu, and Zn showed high levels of Fe (10.2-16.8 mg kg-1) and Mn (0.90-2.71 mg kg/sup -1/) while Zn (0.42-2.31 mg kg/sup -1/) deficiency was observed in few samples. All the sites were severely deficient in Cu concentration (1.35-2.05 mg kg/sup -1/). The diagnosis of apples leaves indicated that none of the samples was deficient in N (2.30-3.49 percent) and P (0.13-0.33 percent) while out of ten sites, nine sites showed severe deficiency of K (0.85-1.40 percent). The study demonstrated a significant variation in different physico-chemical properties of the soils collected from the same ecological region. In order to overcome the deficiency of some of the nutrients observed both in soil and plant samples, proper fertilization especially the use of organic manures is

  18. SRSF1-3 contributes to diversification of the immunoglobulin variable region gene by promoting accumulation of AID in the nucleus.

    Science.gov (United States)

    Kawaguchi, Yuka; Nariki, Hiroaki; Kawamoto, Naoko; Kanehiro, Yuichi; Miyazaki, Satoshi; Suzuki, Mari; Magari, Masaki; Tokumitsu, Hiroshi; Kanayama, Naoki

    2017-04-01

    Activation-induced cytidine deaminase (AID) is essential for diversification of the Ig variable region (IgV). AID is excluded from the nucleus, where it normally functions. However, the molecular mechanisms responsible for regulating AID localization remain to be elucidated. The SR-protein splicing factor SRSF1 is a nucleocytoplasmic shuttling protein, a splicing isoform of which called SRSF1-3, has previously been shown to contribute to IgV diversification in chicken DT40 cells. In this study, we examined whether SRSF1-3 functions in IgV diversification by promoting nuclear localization of AID. AID expressed alone was localized predominantly in the cytoplasm. In contrast, co-expression of AID with SRSF1-3 led to the nuclear accumulation of both AID and SRSF1-3 and the formation of a protein complex that contained them both, although SRSF1-3 was dispensable for nuclear import of AID. Expression of either SRSF1-3 or a C-terminally-truncated AID mutant increased IgV diversification in DT40 cells. However, overexpression of exogenous SRSF1-3 was unable to further enhance IgV diversification in DT40 cells expressing the truncated AID mutant, although SRSF1-3 was able to form a protein complex with the AID mutant. These results suggest that SRSF1-3 promotes nuclear localization of AID probably by forming a nuclear protein complex, which might stabilize nuclear AID and induce IgV diversification in an AID C-terminus-dependent manner. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. SRBreak: A read-depth and split-read framework to identify breakpoints of different events inside simple copy-number variable regions

    Directory of Open Access Journals (Sweden)

    HOANG T NGUYEN

    2016-09-01

    Full Text Available Copy-number variation (CNV has been associated with increased risk of complex diseases. High throughput sequencing (HTS technologies facilitate the detection of copy-number variable regions (CNVRs and their breakpoints. This helps in understanding genome structures of genomes as well as their evolution process. Various approaches have been proposed for detecting CNV breakpoints, but currently it is still challenging for tools based on a single analysis method to identify breakpoints of CNVs. It has been shown, however, that pipelines which integrate multiple approaches are able to report more reliable breakpoints. Here, based on HTS data, we have developed a pipeline to identify approximate breakpoints (±10 bp relating to different ancestral events within a specific CNVR. The pipeline combines read-depth and split-read information to infer breakpoints, using information from multiple samples to allow an imputation approach to be taken. The main steps involve using a normal mixture model to cluster samples into different groups, followed by simple kernel-based approaches to maximise information obtained from read-depth and split-read approaches, after which common breakpoints of groups are inferred. The pipeline uses split-read information directly from CIGAR strings of BAM files, without using a re-alignment step. On simulated data sets, it was able to report breakpoints for very low-coverage samples including those for which only single-end reads were available. When applied to three loci from existing human resequencing data sets (NEGR1, LCE3, IRGM the pipeline obtained good concordance with results from the 1000 Genomes Project (92%, 100% and 82%, respectively.The package is available at https://github.com/hoangtn/SRBreak, and also as a docker-based application at https://registry.hub.docker.com/u/hoangtn/srbreak/.

  20. Variability of some morphological traits of one-year old red oak, black walnut, birch and wild pear seedlings in the nurseries of Jastrebac region

    Directory of Open Access Journals (Sweden)

    Krstić Milun

    2002-01-01

    Full Text Available Five morphological and quantitative characteristics of one-year old seedlings of Red oak (Quercus rubra L, Black walnut (Juglans nigra L, Wild pear (Pyrus pygrowser Borkh and Birch (Betula verrucosa Ehrh were studied. The seedlings were produced and cultivated in the controlled conditions of the nursery in the region of Jastrebac, by the classical method. Aboveground seedling height, root collar diameter, root length, number of secondary roots and the leaf assimilation area were analysed. Intraspecific and interspecific variability of morphological features of the above species were assessed by the comparative analysis and statistical methods The comparative analysis shows the great individual variability of seedlings, which can indicate their genetic potential, adaptation to environment conditions, further spontaneous selection and the development in natural conditions. This justifies the need of the quality assessment and the first selection already in the nursery, in order to ensure the quality planting material and to reduce the risk of afforestation failure One-year old birch seedlings have the lowest average height (18.8 cm. Black walnut and Wild pear seedlings are approximately twice as high, and Red oak about 2.5 times higher. At the same time Red oak seedlings have for about one-fourth greater height than Black walnut, and for one-third greater height than Wild pear. Wild pear seedlings attain the averagely twice larger root collar diameter than Birch (2.8 cm, Red oak seedlings about 2.5 times larger diameter, and Black walnut 3.5 times larger diameter. Black walnut has a larger root collar diameter than Red oak for about one third, and almost twice larger than Wild pear. Birch, Red oak and Wild pear have almost twice longer root (1.8-1.9 times, Black walnut about 2.25 times longer. The total assimilation area of a Birch seedling is averagely 89.0 cm2. Compared to birch, wild pear has approximately double assimilation area per tree, Red

  1. Distribution of Campylobacter jejuni isolates from turkey farms and different stages at slaughter using pulsed-field gel electrophoresis and flaA-short variable region sequencing.

    Science.gov (United States)

    Perko-Mäkelä, P; Alter, T; Isohanni, P; Zimmermann, S; Lyhs, U

    2011-09-01

    The aim of this study was to assess the diversity of thermotolerant Campylobacter spp. isolated from turkey flocks at six rearing farms 1-2 weeks prior to slaughter (360 faecal swab samples) and from 11 different stages at the slaughterhouse (636 caecal, environmental, neck skin and meat samples). A total of 121 Campylobacter isolates were identified to species level using a multiplex PCR assay and were typed by pulsed-field gel electrophoresis (PFGE) and flaA-short variable region (SVR) sequencing. All Campylobacter isolates were identified as Campylobacter jejuni. PFGE analysis with KpnI restriction enzyme resulted in 11 PFGE types (I-XI) and flaA SVR typing yielded in nine flaA-SVR alleles. The Campylobacter-positive turkey flocks A, C and E were colonized by a limited number of Campylobacter clones at the farm and slaughter. The present study confirms the traceability of flock-specific strains (PFGE types I, V and IX; flaA types 21, 36 and 161) from the farm along the entire processing line to meat cuts. It seems that stress factors such as high temperature of the defeathering water (54-56 °C), drying of the carcass skin during air chilling (24 h at 2 °C), and oxygen in the air could not eliminate Campylobacter completely. Campylobacter-negative flocks became contaminated during processing by the same subtypes of Campylobacter introduced into the slaughter house by preceeding positive flocks even if they were slaughtered on subsequent days. Proper and efficient cleaning and disinfection of slaughter and processing premises are needed to avoid cross-contamination, especially in countries with a low prevalence of Campylobacter spp. The majority of flaA SVR alleles displayed a distinct association with a specific PFGE type. However, a linear relationship for all strains among both typing methods could not be established. To specify genetic relatedness of strains, a combination of different genotyping methods, is needed. © 2011 Blackwell Verlag GmbH.

  2. Seasonal and spatial variability of the OM/OC mass ratios and high regional correlation between oxalic acid and zinc in Chinese urban organic aerosols

    Directory of Open Access Journals (Sweden)

    L. Xing

    2013-04-01

    Full Text Available We calculated the organic matter to organic carbon mass ratios (OM/OC mass ratios in PM2.5 collected from 14 Chinese cities during summer and winter of 2003 and analyzed the causes for their seasonal and spatial variability. The OM/OC mass ratios were calculated two ways. Using a mass balance method, the calculated OM/OC mass ratios averaged 1.92 ± 0.39 year-round, with no significant seasonal or spatial variation. The second calculation was based on chemical species analyses of the organic compounds extracted from the PM2.5 samples using dichloromethane/methanol and water. The calculated OM/OC mass ratio in summer was relatively high (1.75 ± 0.13 and spatially-invariant due to vigorous photochemistry and secondary organic aerosol (OA production throughout the country. The calculated OM/OC mass ratio in winter (1.59 ± 0.18 was significantly lower than that in summer, with lower values in northern cities (1.51 ± 0.07 than in southern cities (1.65 ± 0.15. This likely reflects the wider usage of coal for heating purposes in northern China in winter, in contrast to the larger contributions from biofuel and biomass burning in southern China in winter. On average, organic matter constituted 36% and 34% of Chinese urban PM2.5 mass in summer and winter, respectively. We report, for the first time, a high regional correlation between Zn and oxalic acid in Chinese urban aerosols in summer. This is consistent with the formation of stable Zn oxalate complex in the aerosol phase previously proposed by Furukawa and Takahashi (2011. We found that many other dicarboxylic acids were also highly correlated with Zn in the summer Chinese urban aerosol samples, suggesting that they may also form stable organic complexes with Zn. Such formation may have profound implications for the atmospheric abundance and hygroscopic properties of aerosol dicarboxylic acids.

  3. Seasonal and spatial variability of the OM/OC mass ratios and high regional correlation between oxalic acid and zinc in Chinese urban organic aerosols

    Science.gov (United States)

    Xing, L.; Fu, T.-M.; Cao, J. J.; Lee, S. C.; Wang, G. H.; Ho, K. F.; Cheng, M.-C.; You, C.-F.; Wang, T. J.

    2013-04-01

    We calculated the organic matter to organic carbon mass ratios (OM/OC mass ratios) in PM2.5 collected from 14 Chinese cities during summer and winter of 2003 and analyzed the causes for their seasonal and spatial variability. The OM/OC mass ratios were calculated two ways. Using a mass balance method, the calculated OM/OC mass ratios averaged 1.92 ± 0.39 year-round, with no significant seasonal or spatial variation. The second calculation was based on chemical species analyses of the organic compounds extracted from the PM2.5 samples using dichloromethane/methanol and water. The calculated OM/OC mass ratio in summer was relatively high (1.75 ± 0.13) and spatially-invariant due to vigorous photochemistry and secondary organic aerosol (OA) production throughout the country. The calculated OM/OC mass ratio in winter (1.59 ± 0.18) was significantly lower than that in summer, with lower values in northern cities (1.51 ± 0.07) than in southern cities (1.65 ± 0.15). This likely reflects the wider usage of coal for heating purposes in northern China in winter, in contrast to the larger contributions from biofuel and biomass burning in southern China in winter. On average, organic matter constituted 36% and 34% of Chinese urban PM2.5 mass in summer and winter, respectively. We report, for the first time, a high regional correlation between Zn and oxalic acid in Chinese urban aerosols in summer. This is consistent with the formation of stable Zn oxalate complex in the aerosol phase previously proposed by Furukawa and Takahashi (2011). We found that many other dicarboxylic acids were also highly correlated with Zn in the summer Chinese urban aerosol samples, suggesting that they may also form stable organic complexes with Zn. Such formation may have profound implications for the atmospheric abundance and hygroscopic properties of aerosol dicarboxylic acids.

  4. Regional variability in bed-sediment concentrations of wastewater compounds, hormones and PAHs for portions of coastal New York and New Jersey impacted by hurricane Sandy

    Science.gov (United States)

    Phillips, Patrick J.; Gibson, Cathy A; Fisher, Shawn C.; Fisher, Irene; Reilly, Timothy J.; Smalling, Kelly L.; Romanok, Kristin M.; Foreman, William T.; ReVello, Rhiannon C.; Focazio, Michael J.; Jones, Daniel K.

    2016-01-01

    Bed sediment samples from 79 coastal New York and New Jersey, USA sites were analyzed for 75 compounds including wastewater associated contaminants, PAHs, and other organic compounds to assess the post-Hurricane Sandy distribution of organic contaminants among six regions. These results provide the first assessment of wastewater compounds, hormones, and PAHs in bed sediment for this region. Concentrations of most wastewater contaminants and PAHs were highest in the most developed region (Upper Harbor/Newark Bay, UHNB) and reflected the wastewater inputs to this area. Although the lack of pre-Hurricane Sandy data for most of these compounds make it impossible to assess the effect of the storm on wastewater contaminant concentrations, PAH concentrations in the UHNB region reflect pre-Hurricane Sandy conditions in this region. Lower hormone concentrations than predicted by the total organic carbon relation occurred in UHNB samples, suggesting that hormones are being degraded in the UHNB region.

  5. Unveiling the pan-genome of the SXT/R391 family of ICEs: molecular characterisation of new variable regions of SXT/R391-like ICEs detected in Pseudoalteromonas sp. and Vibrio scophthalmi.

    Science.gov (United States)

    Rodríguez-Blanco, Arturo; Lemos, Manuel L; Osorio, Carlos R

    2016-08-01

    Integrating conjugative elements (ICEs) of the SXT/R391 family have been identified in fish-isolated bacterial strains collected from marine aquaculture environments of the northwestern Iberian Peninsula. Here we analysed the variable regions of two ICEs, one preliminarily characterised in a previous study (ICEVscSpa3) and one newly identified (ICEPspSpa1). Bacterial strains harboring these ICEs were phylogenetically assigned to Vibrio scophthalmi and Pseudoalteromonas sp., thus constituting the first evidence of SXT/R391-like ICEs in the genus Pseudoalteromonas to date. Variable DNA regions, which confer element-specific properties to ICEs of this family, were characterised. Interestingly, the two ICEs contained 29 genes not found in variable DNA insertions of previously described ICEs. Most notably, variable gene content for ICEVscSpa3 showed similarity to genes potentially involved in housekeeping functions of replication, nucleotide metabolism and transcription. For these genes, closest homologues were found clustered in the genome of Pseudomonas psychrotolerans L19, suggesting a transfer as a block to ICEVscSpa3. Genes encoding antibiotic resistance, restriction modification systems and toxin/antitoxin systems were absent from hotspots of ICEVscSpa3. In contrast, the variable gene content of ICEPspSpa1 included genes involved in restriction/modification functions in two different hotspots and genes related to ICE maintenance. The present study unveils a relatively large number of novel genes in SXT/R391-ICEs, and demonstrates the major role of ICE elements as contributors to horizontal gene transfer.

  6. Regionally variable chemistry, auto-heterotrophic coupling and vertical carbon flux in the northwestern Indian Ocean: A case study for biochemical pump

    Digital Repository Service at National Institute of Oceanography (India)

    Rajendran, A; Biddanda, B.

    Large scale regional differences in surface productivity as well as water column chemistry exist in the Arabian Sea environment in north-south direction. The available primary productivity data are incorporated into existing global ocean carbon flux...

  7. Specific gravity of hybrid poplars in the north-central region, USA: within-tree variability and site × genotype effects

    Science.gov (United States)

    William L. Headlee; Ronald S. Jr. Zalesny; Richard B. Hall; Edmund O. Bauer; Bradford Bender; Bruce A. Birr; Raymond O. Miller; Jesse A. Randall; Adam H. Wiese

    2013-01-01

    Specific gravity is an important consideration for traditional uses of hybrid poplars for pulp and solid wood products, as well as for biofuels and bioenergy production. While specific gravity has been shown to be under strong genetic control and subject to within-tree variability, the role of genotype × environment interactions is poorly understood. Most...

  8. Immunoglobulin diversification in B cell malignancies: internal splicing of heavy chain variable region as a by-product of somatic hypermutation

    NARCIS (Netherlands)

    Bende, R. J.; Aarts, W. M.; Pals, S. T.; van Noesel, C. J. M.

    2002-01-01

    In this study we describe alternative splicing of somatically mutated immunoglobulin (Ig) variable heavy chain (V-H) genes in three distinct primary B cell non-Hodgkin's lymphomas (B-NHL). In two V4-34 expressing lymphomas, ie a post-germinal center type B cell chronic lymphocytic leukemia (B-CLL)

  9. Variability of Disk Emission in Pre-main-sequence and Related Stars. IV. Investigating the Structural Changes in the Inner Disk Region of MWC 480

    Science.gov (United States)

    Fernandes, Rachel B.; Long, Zachary C.; Pikhartova, Monika; Sitko, Michael L.; Grady, Carol A.; Russell, Ray W.; Luria, David M.; Tyler, Dakotah B.; Bayyari, Ammar; Danchi, William; Wisniewski, John P.

    2018-04-01

    We present five epochs of near-IR observations of the protoplanetary disk around MWC 480 (HD 31648) obtained with the SpeX spectrograph on NASA’s Infrared Telescope Facility between 2007 and 2013, inclusive. Using the measured line fluxes in the Pa β and Br γ lines, we found the mass accretion rates to be (1.26–2.30) × 10‑7 M ⊙ yr‑1 and (1.4–2.01) × 10‑7 M ⊙ yr‑1, respectively, but which varied by more than 50% from epoch to epoch. The spectral energy distribution reveals a variability of about 30% between 1.5 and 10 μm during this same period of time. We investigated the variability using of the continuum emission of the disk in using the Monte-Carlo Radiative Transfer Code HOCHUNK3D. We find that varying the height of the inner rim successfully produces a change in the NIR flux but lowers the far-IR emission to levels below all measured fluxes. Because the star exhibits bipolar flows, we utilized a structure that simulates an inner disk wind to model the variability in the near-IR, without producing flux levels in the far-IR that are inconsistent with existing data. For this object, variable near-IR emission due to such an outflow is more consistent with the data than changing the scale height of the inner rim of the disk.

  10. Temporal variability in groundwater and surface water quality in humid agricultural catchments; Driving processes and consequences for regional water quality monitoring

    NARCIS (Netherlands)

    Rozemeijer, Joachim; Van Der Velde, Ype

    2014-01-01

    Considering the large temporal variability in surface water quality is essential for adequate water quality policy and management. Neglecting these dynamics may easily lead to decreased effectiveness of measures to improve water quality and to inefficient water quality monitoring. The objective of

  11. Temporal variability in groundwater and surface water quality in humid agricultural catchments; driving processes and consequences for regional water quality monitoring

    NARCIS (Netherlands)

    Rozemeijer, J.; Velde, van der Y.

    2014-01-01

    Considering the large temporal variability in surface water quality is essential for adequate water quality policy and management. Neglecting these dynamics may easily lead to decreased effectiveness of measures to improve water quality and to inefficient water quality monitoring. The objective of

  12. A Fiji multi-coral δ18O composite approach to obtaining a more accurate reconstruction of the last two-centuries of the ocean-climate variability in the South Pacific Convergence Zone region

    Science.gov (United States)

    Dassié, Emilie P.; Linsley, Braddock K.; Corrège, Thierry; Wu, Henry C.; Lemley, Gavin M.; Howe, Steve; Cabioch, Guy

    2014-12-01

    The limited availability of oceanographic data in the tropical Pacific Ocean prior to the satellite era makes coral-based climate reconstructions a key tool for extending the instrumental record back in time, thereby providing a much needed test for climate models and projections. We have generated a unique regional network consisting of five Porites coral δ18O time series from different locations in the Fijian archipelago. Our results indicate that using a minimum of three Porites coral δ18O records from Fiji is statistically sufficient to obtain a reliable signal for climate reconstruction, and that application of an approach used in tree ring studies is a suitable tool to determine this number. The coral δ18O composite indicates that while sea surface temperature (SST) variability is the primary driver of seasonal δ18O variability in these Fiji corals, annual average coral δ18O is more closely correlated to sea surface salinity (SSS) as previously reported. Our results highlight the importance of water mass advection in controlling Fiji coral δ18O and salinity variability at interannual and decadal time scales despite being located in the heavy rainfall region of the South Pacific Convergence Zone (SPCZ). The Fiji δ18O composite presents a secular freshening and warming trend since the 1850s coupled with changes in both interannual (IA) and decadal/interdecadal (D/I) variance. The changes in IA and D/I variance suggest a re-organization of climatic variability in the SPCZ region beginning in the late 1800s to period of a more dominant interannual variability, which could correspond to a southeast expansion of the SPCZ.

  13. Detecting relationships between the interannual variability in climate records and ecological time series using a multivariate statistical approach - four case studies for the North Sea region

    Energy Technology Data Exchange (ETDEWEB)

    Heyen, H. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Gewaesserphysik

    1998-12-31

    A multivariate statistical approach is presented that allows a systematic search for relationships between the interannual variability in climate records and ecological time series. Statistical models are built between climatological predictor fields and the variables of interest. Relationships are sought on different temporal scales and for different seasons and time lags. The possibilities and limitations of this approach are discussed in four case studies dealing with salinity in the German Bight, abundance of zooplankton at Helgoland Roads, macrofauna communities off Norderney and the arrival of migratory birds on Helgoland. (orig.) [Deutsch] Ein statistisches, multivariates Modell wird vorgestellt, das eine systematische Suche nach potentiellen Zusammenhaengen zwischen Variabilitaet in Klima- und oekologischen Zeitserien erlaubt. Anhand von vier Anwendungsbeispielen wird der Klimaeinfluss auf den Salzgehalt in der Deutschen Bucht, Zooplankton vor Helgoland, Makrofauna vor Norderney, und die Ankunft von Zugvoegeln auf Helgoland untersucht. (orig.)

  14. Establishing temporally and spatially variable soil hydraulic data for use in a runoff simulation in a loess region of the Netherlands

    NARCIS (Netherlands)

    Stolte, J.; Ritsema, C.J.; Veerman, G.J.; Hamminga, W.

    1996-01-01

    Soil hydraulic functions for run-off simulation were collected in catchment areas in a loess region. Each soil horizon was sampled and water retention and hydraulic conductivity characteristics were determined. Run-off generation during standard rain events was quantified by simulation. Based on the

  15. Local and regional variability in fish community structure, richness and diversity of 56 Danish lakes with contrasting depth and trophic state

    DEFF Research Database (Denmark)

    Menezes, Rosemberg; Borchsenius, Finn; Svenning, J.-C.

    Habitat distribution of fish might be influenced by food availability, competition, predation,composition of aquatic plants and water clarity. It has been found that a shift from a turbid to a clear water state in a lake lead to higher proportion of piscivorous fish and a habitat shift of prey fish...... oligotrophic lakes due to high turbidity leading to loss of submerged macrophytes and thus habitat variability. Also the influence of piscivorous birds on the fish distribution in the littoral zone may differ between lake types leading to a more homogeneous distribution along the littoral area in eutrophic...

  16. Superflux chlorophyll-a analysis: An assessment of variability in results introduced prior to fluorometric analysis. [chesapeake bay and shelf regions

    Science.gov (United States)

    Cibik, S. J.; Rutledge, C. K.; Robertson, C. N.

    1981-01-01

    Several experiments were undertaken to identify variability in results that came from procedural differences in the processing of chlorophyll samples prior to fluorometric analysis. T-tests on group means indicated that significant differences (alpha = 0.05) in phaeopigment a concentrations did result in samples not initially screened, but not in the chlorophyll a concentrations. Highly significant differences (alpha = 0.001) in group means were found in samples which were held in acetone after filtering as compared to unfiltered seawater samples held for the same period. No difference in results was found between the 24-hour extraction and samples which were processed immediately.

  17. The SRCR/SID region of DMBT1 defines a complex multi-allele system representing the major basis for its variability in cancer

    DEFF Research Database (Denmark)

    Mollenhauer, Jan; Müller, Hanna; Kollender, Gaby

    2002-01-01

    Deleted in malignant brain tumors 1 (DMBT1) at 10q25.3-q26.1 has been proposed as a candidate tumor-suppressor gene for brain and epithelial cancer. DMBT1 encodes a multifunctional mucin-like protein presumably involved in epithelial differentiation and protection. The gene consists of highly...... homologous and repeating exon and intron sequences. This specifically applies to the region coding for the repetitive scavenger receptor cysteine-rich (SRCR) domains and SRCR-interspersed domains (SIDs) that constitutes the major part of the gene. This particular structure may previously have interfered...... with the delineation of DMBT1 alterations in cancer. Uncovering these, however, is of mechanistic importance. By a combined approach, we conducted a detailed mutational analysis, starting from a panel of 51 tumors, including 46 tumor cell lines and five primary tumors. Alterations in the repetitive region were present...

  18. The paradox of cooling streams in a warming world: Regional climate trends do not parallel variable local trends in stream temperature in the Pacific continental United States

    Science.gov (United States)

    Arismendi, Ivan; Johnson, Sherri; Dunham, Jason B.; Haggerty, Roy; Hockman-Wert, David

    2012-01-01

    Temperature is a fundamentally important driver of ecosystem processes in streams. Recent warming of terrestrial climates around the globe has motivated concern about consequent increases in stream temperature. More specifically, observed trends of increasing air temperature and declining stream flow are widely believed to result in corresponding increases in stream temperature. Here, we examined the evidence for this using long-term stream temperature data from minimally and highly human-impacted sites located across the Pacific continental United States. Based on hypothesized climate impacts, we predicted that we should find warming trends in the maximum, mean and minimum temperatures, as well as increasing variability over time. These predictions were not fully realized. Warming trends were most prevalent in a small subset of locations with longer time series beginning in the 1950s. More recent series of observations (1987-2009) exhibited fewer warming trends and more cooling trends in both minimally and highly human-influenced systems. Trends in variability were much less evident, regardless of the length of time series. Based on these findings, we conclude that our perspective of climate impacts on stream temperatures is clouded considerably by a lack of long-termdata on minimally impacted streams, and biased spatio-temporal representation of existing time series. Overall our results highlight the need to develop more mechanistic, process-based understanding of linkages between climate change, other human impacts and stream temperature, and to deploy sensor networks that will provide better information on trends in stream temperatures in the future.

  19. Recommendations for Making Anti-Poaching Programs More Effective in the Southern African Region through the Analysis of Key Variables Impacting Upon the Poaching of Elephants in Botswana

    Science.gov (United States)

    2012-06-08

    Conference on Environment and Development (UNCED) that was held in Rio de Janeiro from 3-14 June 1992 concentrated on the state of the global environment...creeks and rivers . Deep sands characterize some other parts of this region. Northern Botswana experiences annual heavy rainfalls and as such, it is...low plains, creeks and rivers characterize Northeastern Botswana. During rainy seasons, the plains are usually muddy. The creeks and rivers constantly

  20. Working motivation as mediating variable for the influence of Spiritual quotient towards working performance: a study in the Regional Secretary of Puncak Jaya

    OpenAIRE

    NUHUJANAN ROMUALDUS PHILIPPUS; TROENO EKA AFNAN; NOERMIJATI N.; SUDIRO ACHMAD

    2016-01-01

    Spiritual quotient is an important element for an individual to achieve self-actualization. An individual who understands his or her talent and potentiality is creative, visionary and flexible. Such individual has strong motivation to improve his/her performance. The purpose of the study was to analyze the influence of spiritual quotient towards working performance that was mediated by working motivation. The subjects were 89 employees working in the Regional Secretary of Puncak Jaya. The pop...

  1. Regional and temporal variability of melts during a Cordilleran magma pulse: Age and chemical evolution of the jurassic arc, eastern mojave desert, California

    Science.gov (United States)

    Barth, A.P.; Wooden, J.L.; Miller, David; Howard, Keith A.; Fox, Lydia; Schermer, Elizabeth R.; Jacobson, C.E.

    2017-01-01

    Intrusive rock sequences in the central and eastern Mojave Desert segment of the Jurassic Cordilleran arc of the western United States record regional and temporal variations in magmas generated during the second prominent pulse of Mesozoic continental arc magmatism. U/Pb zircon ages provide temporal control for describing variations in rock and zircon geochemistry that reflect differences in magma source components. These source signatures are discernible through mixing and fractionation processes associated with magma ascent and emplacement. The oldest well-dated Jurassic rocks defining initiation of the Jurassic pulse are a 183 Ma monzodiorite and a 181 Ma ignimbrite. Early to Middle Jurassic intrusive rocks comprising the main stage of magmatism include two high-K calc-alkalic groups: to the north, the deformed 183–172 Ma Fort Irwin sequence and contemporaneous rocks in the Granite and Clipper Mountains, and to the south, the 167–164 Ma Bullion sequence. A Late Jurassic suite of shoshonitic, alkali-calcic intrusive rocks, the Bristol Mountains sequence, ranges in age from 164 to 161 Ma and was emplaced as the pulse began to wane. Whole-rock and zircon trace-element geochemistry defines a compositionally coherent Jurassic arc with regional and secular variations in melt compositions. The arc evolved through the magma pulse by progressively greater input of old cratonic crust and lithospheric mantle into the arc magma system, synchronous with progressive regional crustal thickening.

  2. Spatial correlation between the predictor variables and the weighting values calculated during the mapping of the environmental factors of mass movements in the Beni Idder region (northern Rif

    Directory of Open Access Journals (Sweden)

    Ait Brahim L.

    2018-01-01

    Full Text Available The Tleta of Beni Ider region located in the SW of Tetouan (Rif Septentrional knows many mass instabilities. The diagnostic via the inventory, the mapping and the characterization of mass movements was made by using satellite imagery, aerial photography and field data coupled with existing documents (geological, geomorphological,…. The understanding of both their spatial distribution and the mechanism generating them, is very complex because of the existence of an important number of natural factors (geological, geomorphological, hydrological in a relative mountainous landscape with deep valleys, steep slopes and significant elevation changes. Thus, a multidisciplinary approach was adopted to elaborate the landslide susceptibility map of the region taking into account interactions and causal relationships between the various natural parameters that tend to accentuate and aggravate the setting of landslides. The multidisciplinary database allowed us to evaluate the susceptibility thanks to a bivariate probabiliste model (Weight of Evidence. The obtained landslide susceptibility map is a major contribution to the development of urban development plans in the region.

  3. Variability Bugs:

    DEFF Research Database (Denmark)

    Melo, Jean

    . Although many researchers suggest that preprocessor-based variability amplifies maintenance problems, there is little to no hard evidence on how actually variability affects programs and programmers. Specifically, how does variability affect programmers during maintenance tasks (bug finding in particular......)? How much harder is it to debug a program as variability increases? How do developers debug programs with variability? In what ways does variability affect bugs? In this Ph.D. thesis, I set off to address such issues through different perspectives using empirical research (based on controlled...... experiments) in order to understand quantitatively and qualitatively the impact of variability on programmers at bug finding and on buggy programs. From the program (and bug) perspective, the results show that variability is ubiquitous. There appears to be no specific nature of variability bugs that could...

  4. The Florida Seagrass Integrated Mapping and Monitoring (SIMM) Program: Indications of the effects of regional climate variability on these vital ecosystems

    Science.gov (United States)

    Yarbro, L.; Carlson, P. R., Jr.

    2016-12-01

    The SIMM program was developed to protect and manage seagrass resources in Florida by providing a collaborative vehicle for seagrass mapping, monitoring, data sharing, and reporting. We summarize and interpret mapping data and field assessments of seagrass abundance and diversity and water quality gathered by regional scientists and managers who work in estuaries from the Panhandle to the northeast Florida coast. Since 2013, regional reports summarizing the status and trends of seagrass ecosystems have been available on the web. The format provides current information for a wide stakeholder community. Ongoing collaborative efforts of more than 30 seagrass researchers and managers provide timely information on environmental and ecosystem changes in these important systems. Since the first published seagrass assessments in 2009, we have observed large changes in seagrass abundance and diversity in several regions; most but not all changes were likely due to variations in water quality that determine the light available to benthic vegetation. In the Panhandle and the Big Bend, in 2012-2104, increases in the frequency and severity of storms and resulting runoff reduced water quality which in turn decreased the abundance and distribution of seagrasses. The storm pattern resulted from changes in the subtropical jet stream and persisted for 3 years. In south Florida, heat and drought elevated salinities to extreme levels in Florida Bay in 2015; the resulting stratification along with high temperatures caused die-off of thousands of hectares of seagrass in the north central Bay. Extremely wet conditions in southeast Florida in 2015-2016 strained the water management system, resulting in large releases of polluted freshwater to estuaries on the southwest and southeast coasts, reducing light availability and causing large blooms of noxious algae. While other regions have also experienced algal blooms that reduced available light (Indian River Lagoon), seagrasses have

  5. Study of the daily and seasonal atmospheric CH4 mixing ratio variability in a rural Spanish region using 222Rn tracer

    Science.gov (United States)

    Grossi, Claudia; Vogel, Felix R.; Curcoll, Roger; Àgueda, Alba; Vargas, Arturo; Rodó, Xavier; Morguí, Josep-Anton

    2018-04-01

    The ClimaDat station at Gredos (GIC3) has been continuously measuring atmospheric (dry air) mixing ratios of carbon dioxide (CO2) and methane (CH4), as well as meteorological parameters, since November 2012. In this study we investigate the atmospheric variability of CH4 mixing ratios between 2013 and 2015 at GIC3 with the help of co-located observations of 222Rn concentrations, modelled 222Rn fluxes and modelled planetary boundary layer heights (PBLHs). Both daily and seasonal changes in atmospheric CH4 can be better understood with the help of atmospheric concentrations of 222Rn (and the corresponding fluxes). On a daily timescale, the variation in the PBLH is the main driver for 222Rn and CH4 variability while, on monthly timescales, their atmospheric variability seems to depend on emission changes. To understand (changing) CH4 emissions, nocturnal fluxes of CH4 were estimated using two methods: the radon tracer method (RTM) and a method based on the EDGARv4.2 bottom-up emission inventory, both using FLEXPARTv9.0.2 footprints. The mean value of RTM-based methane fluxes (FR_CH4) is 0.11 mg CH4 m-2 h-1 with a standard deviation of 0.09 or 0.29 mg CH4 m-2 h-1 with a standard deviation of 0.23 mg CH4 m-2 h-1 when using a rescaled 222Rn map (FR_CH4_rescale). For our observational period, the mean value of methane fluxes based on the bottom-up inventory (FE_CH4) is 0.33 mg CH4 m-2 h-1 with a standard deviation of 0.08 mg CH4 m-2 h-1. Monthly CH4 fluxes based on RTM (both FR_CH4 and FR_CH4_rescale) show a seasonality which is not observed for monthly FE_CH4 fluxes. During January-May, RTM-based CH4 fluxes present mean values 25 % lower than during June-December. This seasonal increase in methane fluxes calculated by RTM for the GIC3 area appears to coincide with the arrival of transhumant livestock at GIC3 in the second half of the year.

  6. Universal Inverse Power-Law Distribution for Fractal Fluctuations in Dynamical Systems: Applications for Predictability of Inter-Annual Variability of Indian and USA Region Rainfall

    Science.gov (United States)

    Selvam, A. M.

    2017-01-01

    Dynamical systems in nature exhibit self-similar fractal space-time fluctuations on all scales indicating long-range correlations and, therefore, the statistical normal distribution with implicit assumption of independence, fixed mean and standard deviation cannot be used for description and quantification of fractal data sets. The author has developed a general systems theory based on classical statistical physics for fractal fluctuations which predicts the following. (1) The fractal fluctuations signify an underlying eddy continuum, the larger eddies being the integrated mean of enclosed smaller-scale fluctuations. (2) The probability distribution of eddy amplitudes and the variance (square of eddy amplitude) spectrum of fractal fluctuations follow the universal Boltzmann inverse power law expressed as a function of the golden mean. (3) Fractal fluctuations are signatures of quantum-like chaos since the additive amplitudes of eddies when squared represent probability densities analogous to the sub-atomic dynamics of quantum systems such as the photon or electron. (4) The model predicted distribution is very close to statistical normal distribution for moderate events within two standard deviations from the mean but exhibits a fat long tail that are associated with hazardous extreme events. Continuous periodogram power spectral analyses of available GHCN annual total rainfall time series for the period 1900-2008 for Indian and USA stations show that the power spectra and the corresponding probability distributions follow model predicted universal inverse power law form signifying an eddy continuum structure underlying the observed inter-annual variability of rainfall. On a global scale, man-made greenhouse gas related atmospheric warming would result in intensification of natural climate variability, seen immediately in high frequency fluctuations such as QBO and ENSO and even shorter timescales. Model concepts and results of analyses are discussed with reference

  7. Short-term relationship between meteorological variables and hip fractures: an analysis carried out in a health area of the Autonomous Region of Valencia, Spain (1996-2005).

    Science.gov (United States)

    Tenías, José María; Estarlich, Marisa; Fuentes-Leonarte, Virginia; Iñiguez, Carmen; Ballester, Ferran

    2009-10-01

    Diverse studies have shown a seasonal influence on the incidence of hip fracture (HF), possibly associated with adverse meteorological conditions. In this paper, we present an analysis of the short-term relationship between meteorological conditions and the incidence of HF in people over 45 years of age living in a Mediterranean climate zone. HF cases admitted to the two reference hospitals in the health area were selected. The meteorological variables (temperature, relative humidity, rain, wind, and other conditions) were obtained from a weather station centrally located within the area under study. The trend and seasonality of the time series were analyzed with the aid of Poisson regression modeling. The relationship between the incidence of a hip fracture and the meteorological conditions, both on the same day and on the day previous to the patient's admission to the hospital were correlated in a case-crossover analysis with the control periods selected in accordance with two different methods of approximation (symmetric and semi-metric). The results were analyzed for different subgroups defined by age (older or younger than 75 years of age) and sex of subject and by type of fracture (cervical or pertrochanteric). 2121 patients admitted for HF were selected. Of these, 1598 (75.3%) were women and 523 (24.7%) were men. The average age of the subjects was 80, with patients ranging from 45-99 years of age. The time/weather series showed a positive tendency, with a greater occurrence of cases in the autumn and winter months. The case-crossover analysis showed a significant relationship between the daily duration of wind and the incidence of HFs. Divided into quartiles, the windiest days (quartile 4) were associated with a 32% increased risk of HF (OR 1.32 CI 95% 1.10-1.58) with respect to the calmest days (quartile 1), especially in patients under 75 (OR 1.53; CI 95% 1.02-2.29). The remaining meteorological variables were not associated in any significant fashion

  8. Twitter as a Potential Disaster Risk Reduction Tool. Part III: Evaluating Variables that Promoted Regional Twitter Use for At-risk Populations During the 2013 Hattiesburg F4 Tornado.

    Science.gov (United States)

    Cooper, Guy Paul; Yeager, Violet; Burkle, Frederick M; Subbarao, Italo

    2015-06-29

    Study goals attempt to identify the variables most commonly associated with successful tweeted messages and determine which variables have the most influence in promoting exponential dissemination of information (viral spreading of the message) and trending (becoming popular) in the given disaster affected region. Part II describes the detailed extraction and triangulation filtration methodological approach to acquiring twitter data for the 2013 Hattiesburg Tornado. The data was then divided into two 48 hour windows before and after the tornado impact with a 2 hour pre-tornado buffer to capture tweets just prior to impact. Criteria-based analysis was completed for Tweets and users. The top 100 pre-Tornado and post-Tornado retweeted users were compared to establish the variability among the top retweeted users during the 4 day span.  Pre-Tornado variables that were correlated to higher retweeted rates include total user tweets (0.324), and total times message retweeted (0.530).  Post-Tornado variables that were correlated to higher retweeted rates include total hashtags in a retweet (0.538) and hashtags #Tornado (0.378) and #Hattiesburg (0.254). Overall hashtags usage significantly increased during the storm. Pre-storm there were 5,763 tweets with a hashtag and post-storm there was 13,598 using hashtags. Twitter's unique features allow it to be considered a unique social media tool applicable for emergency managers and public health officials for rapid and accurate two way communication.  Additionally, understanding how variables can be properly manipulated plays a key role in understanding how to use this social media platform for effective, accurate, and rapid mass information communication.

  9. Variability in oil tocopherol concentration and composition of traditional and high oleic sunflower hybrids (Helianthus annuus L. in the Pampean region (Argentina

    Directory of Open Access Journals (Sweden)

    Mateo, Carmen

    2006-09-01

    Full Text Available Tocopherols are natural antioxidants that increase the stability of food fat and fulfill an important biological requirement in humans. There are no previous studies on the variability of tocopherol concentration and composition in the oil of sunflower traditional hybrids (TH and high oleic sunflower hybrids (HOH from different environments in Argentina. The objective of this work was to detect and  examine that variability. Seed samples were obtained from i seven TH grown in four locations (Experiment I and, ii five hybrids (three HOH and two traditional ones grown in three locations (Experiment II. Concentrations of total tocopherol in oil ranged from 634 to 1054 μg g oil–1. α-tocopherol accounted for 90.8 to 97% of the total tocopherols. Total and α-tocopherol concentrations were highly genetically determined (more than 80%. In Experiment I, a significant, although low in value, interaction between hybrid and location was found for total and α-tocopherol concentrations. In Experiment II, mean values for total tocopherol concentration in HOH and in each environment were larger than in TH. Significant differences for total and α-tocopherol concentration were not found among HOH and environments. The variation of tocopherol concentration for each hybrid across environments was higher than the variation among hybrids in the same environment. To obtain oil with high tocopherol concentration, both hybrid and environment must be selected.Los tocoferoles son antioxidantes naturales que aumentan la estabilidad de los aceites y cumplen una importante actividad biológica en humanos. No son conocidos estudios sobre la variabilidad del contenido y composición de tocoferoles en el aceite de híbridos de girasol tradicionales (HT y “alto oleico” (HAO sembrados en diferentes ambientes en Argentina. El objetivo de este trabajo fue detectar y examinar esa variabilidad. Las semillas fueron obtenidas de a 7 HT sembrados en 4 localidades

  10. Chrysophyte cysts from lake sediments reveal the submillennial winter/spring climate variability in the northwestern Mediterranean region throughout the Holocene

    Energy Technology Data Exchange (ETDEWEB)

    Pla, Sergi [Queen' s University, PEARL, Department of Biology, Kingston, ON (Canada); Catalan, Jordi [CSIC, CSIC-UB Limnology Group, Centre for Advanced Studies of Blanes (CEAB), Blanes (Spain)

    2005-02-01

    In the last decade, much effort was dedicated to the reconstruction of past climate at high temporal resolution. Here, we show the suitability of chrysophyte cysts from lake sediments for revealing continental climate variability when used in sensitive sites, such as those in high mountains. We demonstrate that altitude is a main factor influencing the present distribution of chrysophytes and develop a transfer function to evaluate the local ''altitude anomaly'' on a lake site throughout time. Based on our knowledge of chrysophyte ecology, the altitude anomalies are interpreted as winter/spring climate signatures. The method was applied to a Holocene record from a lake in the Pyrenees showing submillennial climatic variability in this northwestern Mediterranean zone. A warming trend was present from the early Holocene to 4 kyear BP. Comparison with pollen-based reconstructions of summer temperatures denoted a contrasting decrease in continentality between the two parts of the Holocene. Oscillations of 1 cycle per ca. 2,000 years appeared throughout the record. The warmest Holocene winters were recorded during the Medieval Warm Period at ca. AD900 and 450 and the Roman Warm Period (2.7-2.4 kyear BP). Winters in the period AD1,050-1,175 were inferred to be as cold as in the Little Ice Age. The period between 3 and 7 kyear BPshowed lower intensity in the fluctuations than in early and late Holocene. The cold event, 8,200 years ago, appeared embedded in a warm fluctuation. Another cold fluctuation was recorded around 9 kyear BP, which is in agreement with Irish and Greenland records. (orig.)

  11. Characterization of regional left ventricular function in nonhuman primates using magnetic resonance imaging biomarkers: a test-retest repeatability and inter-subject variability study.

    Directory of Open Access Journals (Sweden)

    Smita Sampath

    Full Text Available Pre-clinical animal models are important to study the fundamental biological and functional mechanisms involved in the longitudinal evolution of heart failure (HF. Particularly, large animal models, like nonhuman primates (NHPs, that possess greater physiological, biochemical, and phylogenetic similarity to humans are gaining interest. To assess the translatability of these models into human diseases, imaging biomarkers play a significant role in non-invasive phenotyping, prediction of downstream remodeling, and evaluation of novel experimental therapeutics. This paper sheds insight into NHP cardiac function through the quantification of magnetic resonance (MR imaging biomarkers that comprehensively characterize the spatiotemporal dynamics of left ventricular (LV systolic pumping and LV diastolic relaxation. MR tagging and phase contrast (PC imaging were used to quantify NHP cardiac strain and flow. Temporal inter-relationships between rotational mechanics, myocardial strain and LV chamber flow are presented, and functional biomarkers are evaluated through test-retest repeatability and inter subject variability analyses. The temporal trends observed in strain and flow was similar to published data in humans. Our results indicate a dominant dimension based pumping during early systole, followed by a torsion dominant pumping action during late systole. Early diastole is characterized by close to 65% of untwist, the remainder of which likely contributes to efficient filling during atrial kick. Our data reveal that moderate to good intra-subject repeatability was observed for peak strain, strain-rates, E/circumferential strain-rate (CSR ratio, E/longitudinal strain-rate (LSR ratio, and deceleration time. The inter-subject variability was high for strain dyssynchrony, diastolic strain-rates, peak torsion and peak untwist rate. We have successfully characterized cardiac function in NHPs using MR imaging. Peak strain, average systolic strain

  12. Interannual variability in the extent and intensity of tropical dry forest deciduousness in the Mexican Yucatan (2000-2016): Drivers and Links to Regional Atmospheric Conditions

    Science.gov (United States)

    Cuba, Nicholas Joseph

    The dry topical forests of the southern Yucatan Peninsula experience multiple natural and anthropogenic disturbances, as well as substantial interannual climate variability that can result in stark interannual differences in vegetation phenology. Dry season deciduousness is a typical response to limit tree water loss during prolonged periods of hot and dry conditions, and this behavior has both direct implications for ecosystem functioning, and the potential to indicate climate conditions when observed using remotely-sensed data. The first research paper of this dissertation advances methods to assess the accuracy of remotely-sensed measurements of canopy conditions using in-situ observations. Linear regression models show the highest correlation (R2 = 0.751) between in-situ canopy gap fraction and Landsat NDWISWIR2. MODIS time series NDWISWIR2 are created for the period March 2000-February 2011, and exhib