WorldWideScience

Sample records for vetronics technology testbed

  1. Advanced Artificial Intelligence Technology Testbed

    Science.gov (United States)

    Anken, Craig S.

    1993-01-01

    The Advanced Artificial Intelligence Technology Testbed (AAITT) is a laboratory testbed for the design, analysis, integration, evaluation, and exercising of large-scale, complex, software systems, composed of both knowledge-based and conventional components. The AAITT assists its users in the following ways: configuring various problem-solving application suites; observing and measuring the behavior of these applications and the interactions between their constituent modules; gathering and analyzing statistics about the occurrence of key events; and flexibly and quickly altering the interaction of modules within the applications for further study.

  2. Space Station technology testbed: 2010 deep space transport

    Science.gov (United States)

    Holt, Alan C.

    1993-01-01

    A space station in a crew-tended or permanently crewed configuration will provide major R&D opportunities for innovative, technology and materials development and advanced space systems testing. A space station should be designed with the basic infrastructure elements required to grow into a major systems technology testbed. This space-based technology testbed can and should be used to support the development of technologies required to expand our utilization of near-Earth space, the Moon and the Earth-to-Jupiter region of the Solar System. Space station support of advanced technology and materials development will result in new techniques for high priority scientific research and the knowledge and R&D base needed for the development of major, new commercial product thrusts. To illustrate the technology testbed potential of a space station and to point the way to a bold, innovative approach to advanced space systems' development, a hypothetical deep space transport development and test plan is described. Key deep space transport R&D activities are described would lead to the readiness certification of an advanced, reusable interplanetary transport capable of supporting eight crewmembers or more. With the support of a focused and highly motivated, multi-agency ground R&D program, a deep space transport of this type could be assembled and tested by 2010. Key R&D activities on a space station would include: (1) experimental research investigating the microgravity assisted, restructuring of micro-engineered, materials (to develop and verify the in-space and in-situ 'tuning' of materials for use in debris and radiation shielding and other protective systems), (2) exposure of microengineered materials to the space environment for passive and operational performance tests (to develop in-situ maintenance and repair techniques and to support the development, enhancement, and implementation of protective systems, data and bio-processing systems, and virtual reality and

  3. Exploration Systems Health Management Facilities and Testbed Workshop

    Science.gov (United States)

    Wilson, Scott; Waterman, Robert; McCleskey, Carey

    2004-01-01

    Presentation Agenda : (1) Technology Maturation Pipeline (The Plan) (2) Cryogenic testbed (and other KSC Labs) (2a) Component / Subsystem technologies (3) Advanced Technology Development Center (ATDC) (3a) System / Vehic1e technologies (4) EL V Flight Experiments (Flight Testbeds).

  4. A commercial space technology testbed on ISS

    Science.gov (United States)

    Boyle, David R.

    2000-01-01

    There is a significant and growing commercial market for new, more capable communications and remote sensing satellites. Competition in this market strongly motivates satellite manufacturers and spacecraft component developers to test and demonstrate new space hardware in a realistic environment. External attach points on the International Space Station allow it to function uniquely as a space technology testbed to satisfy this market need. However, space industry officials have identified three critical barriers to their commercial use of the ISS: unpredictable access, cost risk, and schedule uncertainty. Appropriate NASA policy initiatives and business/technical assistance for industry from the Commercial Space Center for Engineering can overcome these barriers. .

  5. A Business-to-Business Interoperability Testbed: An Overview

    Energy Technology Data Exchange (ETDEWEB)

    Kulvatunyou, Boonserm [ORNL; Ivezic, Nenad [ORNL; Monica, Martin [Sun Microsystems, Inc.; Jones, Albert [National Institute of Standards and Technology (NIST)

    2003-10-01

    In this paper, we describe a business-to-business (B2B) testbed co-sponsored by the Open Applications Group, Inc. (OAGI) and the National Institute of Standard and Technology (NIST) to advance enterprise e-commerce standards. We describe the business and technical objectives and initial activities within the B2B Testbed. We summarize our initial lessons learned to form the requirements that drive the next generation testbed development. We also give an overview of a promising testing framework architecture in which to drive the testbed developments. We outline the future plans for the testbed development.

  6. Trace explosives sensor testbed (TESTbed)

    Science.gov (United States)

    Collins, Greg E.; Malito, Michael P.; Tamanaha, Cy R.; Hammond, Mark H.; Giordano, Braden C.; Lubrano, Adam L.; Field, Christopher R.; Rogers, Duane A.; Jeffries, Russell A.; Colton, Richard J.; Rose-Pehrsson, Susan L.

    2017-03-01

    A novel vapor delivery testbed, referred to as the Trace Explosives Sensor Testbed, or TESTbed, is demonstrated that is amenable to both high- and low-volatility explosives vapors including nitromethane, nitroglycerine, ethylene glycol dinitrate, triacetone triperoxide, 2,4,6-trinitrotoluene, pentaerythritol tetranitrate, and hexahydro-1,3,5-trinitro-1,3,5-triazine. The TESTbed incorporates a six-port dual-line manifold system allowing for rapid actuation between a dedicated clean air source and a trace explosives vapor source. Explosives and explosives-related vapors can be sourced through a number of means including gas cylinders, permeation tube ovens, dynamic headspace chambers, and a Pneumatically Modulated Liquid Delivery System coupled to a perfluoroalkoxy total-consumption microflow nebulizer. Key features of the TESTbed include continuous and pulseless control of trace vapor concentrations with wide dynamic range of concentration generation, six sampling ports with reproducible vapor profile outputs, limited low-volatility explosives adsorption to the manifold surface, temperature and humidity control of the vapor stream, and a graphical user interface for system operation and testing protocol implementation.

  7. Test-bed Assessment of Communication Technologies for a Power-Balancing Controller

    DEFF Research Database (Denmark)

    Findrik, Mislav; Pedersen, Rasmus; Hasenleithner, Eduard

    2016-01-01

    and control. In this paper, we present a Smart Grid test-bed that integrates various communication technologies and deploys a power balancing controller for LV grids. Control performance of the introduced power balancing controller is subsequently investigated and its robustness to communication network cross......Due to growing need for sustainable energy, increasing number of different renewable energy resources are being connected into distribution grids. In order to efficiently manage a decentralized power generation units, the smart grid will rely on communication networks for information exchange...

  8. University of Florida Advanced Technologies Campus Testbed

    Science.gov (United States)

    2017-09-21

    The University of Florida (UF) and its Transportation Institute (UFTI), the Florida Department of Transportation (FDOT) and the City of Gainesville (CoG) are cooperating to develop a smart transportation testbed on the University of Florida (UF) main...

  9. Development of a Tethered Formation Flight Testbed for ISS, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The development of a testbed for the development and demonstration of technologies needed by tethered formation flying satellites is proposed. Such a testbed would...

  10. Aerospace Engineering Systems and the Advanced Design Technologies Testbed Experience

    Science.gov (United States)

    VanDalsem, William R.; Livingston, Mary E.; Melton, John E.; Torres, Francisco J.; Stremel, Paul M.

    1999-01-01

    Continuous improvement of aerospace product development processes is a driving requirement across much of the aerospace community. As up to 90% of the cost of an aerospace product is committed during the first 10% of the development cycle, there is a strong emphasis on capturing, creating, and communicating better information (both requirements and performance) early in the product development process. The community has responded by pursuing the development of computer-based systems designed to enhance the decision-making capabilities of product development individuals and teams. Recently, the historical foci on sharing the geometrical representation and on configuration management are being augmented: 1) Physics-based analysis tools for filling the design space database; 2) Distributed computational resources to reduce response time and cost; 3) Web-based technologies to relieve machine-dependence; and 4) Artificial intelligence technologies to accelerate processes and reduce process variability. The Advanced Design Technologies Testbed (ADTT) activity at NASA Ames Research Center was initiated to study the strengths and weaknesses of the technologies supporting each of these trends, as well as the overall impact of the combination of these trends on a product development event. Lessons learned and recommendations for future activities are reported.

  11. A Reconfigurable Testbed Environment for Spacecraft Autonomy

    Science.gov (United States)

    Biesiadecki, Jeffrey; Jain, Abhinandan

    1996-01-01

    A key goal of NASA's New Millennium Program is the development of technology for increased spacecraft on-board autonomy. Achievement of this objective requires the development of a new class of ground-based automony testbeds that can enable the low-cost and rapid design, test, and integration of the spacecraft autonomy software. This paper describes the development of an Autonomy Testbed Environment (ATBE) for the NMP Deep Space I comet/asteroid rendezvous mission.

  12. Optical Network Testbeds Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Joe Mambretti

    2007-06-01

    This is the summary report of the third annual Optical Networking Testbed Workshop (ONT3), which brought together leading members of the international advanced research community to address major challenges in creating next generation communication services and technologies. Networking research and development (R&D) communities throughout the world continue to discover new methods and technologies that are enabling breakthroughs in advanced communications. These discoveries are keystones for building the foundation of the future economy, which requires the sophisticated management of extremely large qualities of digital information through high performance communications. This innovation is made possible by basic research and experiments within laboratories and on specialized testbeds. Initial network research and development initiatives are driven by diverse motives, including attempts to solve existing complex problems, the desire to create powerful new technologies that do not exist using traditional methods, and the need to create tools to address specific challenges, including those mandated by large scale science or government agency mission agendas. Many new discoveries related to communications technologies transition to wide-spread deployment through standards organizations and commercialization. These transition paths allow for new communications capabilities that drive many sectors of the digital economy. In the last few years, networking R&D has increasingly focused on advancing multiple new capabilities enabled by next generation optical networking. Both US Federal networking R&D and other national R&D initiatives, such as those organized by the National Institute of Information and Communications Technology (NICT) of Japan are creating optical networking technologies that allow for new, powerful communication services. Among the most promising services are those based on new types of multi-service or hybrid networks, which use new optical networking

  13. The Living With a Star Space Environment Testbed Program

    Science.gov (United States)

    Barth, Janet; LaBel, Kenneth; Day, John H. (Technical Monitor)

    2001-01-01

    NASA has initiated the Living with a Star (LWS) Program to develop the scientific understanding to address the aspects of the Connected Sun-Earth system that affects life and society. The Program Architecture includes science missions, theory and modeling and Space Environment Testbeds (SET). This current paper discusses the Space Environment Testbeds. The goal of the SET program is to improve the engineering approach to accomodate and/or mitigate the effects of solar variability on spacecraft design and operations. The SET Program will infuse new technologies into the space programs through collection of data in space and subsequent design and validation of technologies. Examples of these technologies are cited and discussed.

  14. Current Developments in DETER Cybersecurity Testbed Technology

    Science.gov (United States)

    2015-12-08

    Management Experimental cybersecurity research is often inherently risky. An experiment may involve releasing live malware code, operating a real botnet...imagine a worm that can only propagate by first contacting a “propagation service” (T1 constraint), composed with a testbed firewall (T2...experiment. Finally, T1 constraints might be enforced by (1) explicit modification of malware to constrain its behavior, (2) implicit constraints

  15. Deployment of a Testbed in a Brazilian Research Network using IPv6 and Optical Access Technologies

    Science.gov (United States)

    Martins, Luciano; Ferramola Pozzuto, João; Olimpio Tognolli, João; Chaves, Niudomar Siqueira De A.; Reggiani, Atilio Eduardo; Hortêncio, Claudio Antonio

    2012-04-01

    This article presents the implementation of a testbed and the experimental results obtained with it on the Brazilian Experimental Network of the government-sponsored "GIGA Project." The use of IPv6 integrated to current and emerging optical architectures and technologies, such as dense wavelength division multiplexing and 10-gigabit Ethernet on the core and gigabit capable passive optical network and optical distribution network on access, were tested. These protocols, architectures, and optical technologies are promising and part of a brand new worldwide technological scenario that has being fairly adopted in the networks of enterprises and providers of the world.

  16. Definition study for variable cycle engine testbed engine and associated test program

    Science.gov (United States)

    Vdoviak, J. W.

    1978-01-01

    The product/study double bypass variable cycle engine (VCE) was updated to incorporate recent improvements. The effect of these improvements on mission range and noise levels was determined. This engine design was then compared with current existing high-technology core engines in order to define a subscale testbed configuration that simulated many of the critical technology features of the product/study VCE. Detailed preliminary program plans were then developed for the design, fabrication, and static test of the selected testbed engine configuration. These plans included estimated costs and schedules for the detail design, fabrication and test of the testbed engine and the definition of a test program, test plan, schedule, instrumentation, and test stand requirements.

  17. Vacuum Nuller Testbed (VNT) Performance, Characterization and Null Control: Progress Report

    Science.gov (United States)

    Lyon, Richard G.; Clampin, Mark; Petrone, Peter; Mallik, Udayan; Madison, Timothy; Bolcar, Matthew R.; Noecker, M. Charley; Kendrick, Stephen; Helmbrecht, Michael

    2011-01-01

    Herein we report on the development. sensing and control and our first results with the Vacuum Nuller Testbed to realize a Visible Nulling Coronagraph (VNC) for exoplanet coronagraphy. The VNC is one of the few approaches that works with filled. segmented and sparse or diluted-aperture telescope systems. It thus spans a range of potential future NASA telescopes and could be Hown as a separate instrument on such a future mission. NASA/Goddard Space Flight Center (GSFC) has a well-established effort to develop VNC technologies. and has developed an incremental sequence of VNC testbeds to advance this approach and the enabling technologies associated with it. We discuss the continued development of the vacuum Visible Nulling Coronagraph testbed (VNT). Tbe VNT is an ultra-stable vibration isolated testbed that operates under closed-loop control within a vacuum chamber. It will be used to achieve an incremental sequence of three visible-light nulling milestones with sequentially higher contrasts of 10(sup 8), 10(sup 9) and ideally 10(sup 10) at an inner working angle of 2*lambda/D. The VNT is based on a modified Mach-Zehnder nulling interferometer, with a "W" configuration to accommodate a hex-packed MEMS based deformable mirror, a coherent fiber bundle and achromatic phase shifters. We discuss the initial laboratory results, the optical configuration, critical technologies and the null sensing and control approach.

  18. Vacuum nuller testbed (VNT) performance, characterization and null control: progress report

    Science.gov (United States)

    Lyon, Richard G.; Clampin, Mark; Petrone, Peter; Mallik, Udayan; Madison, Timothy; Bolcar, Matthew R.; Noecker, M. Charley; Kendrick, Stephen; Helmbrecht, Michael

    2011-10-01

    Herein we report on the development, sensing and control and our first results with the Vacuum Nuller Testbed to realize a Visible Nulling Coronagraph (VNC) for exoplanet coronagraphy. The VNC is one of the few approaches that works with filled, segmented and sparse or diluted-aperture telescope systems. It thus spans a range of potential future NASA telescopes and could be flown as a separate instrument on such a future mission. NASA/Goddard Space Flight Center (GSFC) has a well-established effort to develop VNC technologies, and has developed an incremental sequence of VNC testbeds to advance this approach and the enabling technologies associated with it. We discuss the continued development of the vacuum Visible Nulling Coronagraph testbed (VNT). The VNT is an ultra-stable vibration isolated testbed that operates under closed-loop control within a vacuum chamber. It will be used to achieve an incremental sequence of three visible-light nulling milestones with sequentially higher contrasts of 108, 109, and ideally 1010 at an inner working angle of 2*λ/D. The VNT is based on a modified Mach-Zehnder nulling interferometer, with a "W" configuration to accommodate a hex-packed MEMS based deformable mirror, a coherent fiber bundle and achromatic phase shifters. We discuss the initial laboratory results, the optical configuration, critical technologies and the null sensing and control approach.

  19. High contrast vacuum nuller testbed (VNT) contrast, performance, and null control

    Science.gov (United States)

    Lyon, Richard G.; Clampin, Mark; Petrone, Peter; Mallik, Udayan; Madison, Timothy; Bolcar, Matthew R.

    2012-09-01

    Herein we report on our Visible Nulling Coronagraph high-contrast result of 109 contrast averaged over a focal plane region extending from 1 - 4 λ/D with the Vacuum Nuller Testbed (VNT) in a vibration isolated vacuum chamber. The VNC is a hybrid interferometric/coronagraphic approach for exoplanet science. It operates with high Lyot stop efficiency for filled, segmented and sparse or diluted-aperture telescopes, thereby spanning the range of potential future NASA flight telescopes. NASA/Goddard Space Flight Center (GSFC) has a well-established effort to develop the VNC and its technologies, and has developed an incremental sequence of VNC testbeds to advance this approach and its enabling technologies. These testbeds have enabled advancement of high-contrast, visible light, nulling interferometry to unprecedented levels. The VNC is based on a modified Mach-Zehnder nulling interferometer, with a “W” configuration to accommodate a hex-packed MEMS based deformable mirror, a coherent fiber bundle and achromatic phase shifters. We give an overview of the VNT and discuss the high-contrast laboratory results, the optical configuration, critical technologies and null sensing and control.

  20. Visible nulling coronagraphy testbed development for exoplanet detection

    Science.gov (United States)

    Lyon, Richard G.; Clampin, Mark; Woodruff, Robert A.; Vasudevan, Gopal; Thompson, Patrick; Chen, Andrew; Petrone, Peter; Booth, Andrew; Madison, Timothy; Bolcar, Matthew; Noecker, M. Charley; Kendrick, Stephen; Melnick, Gary; Tolls, Volker

    2010-07-01

    Three of the recently completed NASA Astrophysics Strategic Mission Concept (ASMC) studies addressed the feasibility of using a Visible Nulling Coronagraph (VNC) as the prime instrument for exoplanet science. The VNC approach is one of the few approaches that works with filled, segmented and sparse or diluted aperture telescope systems and thus spans the space of potential ASMC exoplanet missions. NASA/Goddard Space Flight Center (GSFC) has a well-established effort to develop VNC technologies and has developed an incremental sequence of VNC testbeds to advance the this approach and the technologies associated with it. Herein we report on the continued development of the vacuum Visible Nulling Coronagraph testbed (VNT). The VNT is an ultra-stable vibration isolated testbed that operates under high bandwidth closed-loop control within a vacuum chamber. It will be used to achieve an incremental sequence of three visible light nulling milestones of sequentially higher contrasts of 108, 109 and 1010 at an inner working angle of 2*λ/D and ultimately culminate in spectrally broadband (>20%) high contrast imaging. Each of the milestones, one per year, is traceable to one or more of the ASMC studies. The VNT uses a modified Mach-Zehnder nulling interferometer, modified with a modified "W" configuration to accommodate a hex-packed MEMS based deformable mirror, a coherent fiber bundle and achromatic phase shifters. Discussed will be the optical configuration laboratory results, critical technologies and the null sensing and control approach.

  1. Closing the contrast gap between testbed and model prediction with WFIRST-CGI shaped pupil coronagraph

    Science.gov (United States)

    Zhou, Hanying; Nemati, Bijan; Krist, John; Cady, Eric; Prada, Camilo M.; Kern, Brian; Poberezhskiy, Ilya

    2016-07-01

    JPL has recently passed an important milestone in its technology development for a proposed NASA WFIRST mission coronagraph: demonstration of better than 1x10-8 contrast over broad bandwidth (10%) on both shaped pupil coronagraph (SPC) and hybrid Lyot coronagraph (HLC) testbeds with the WFIRST obscuration pattern. Challenges remain, however, in the technology readiness for the proposed mission. One is the discrepancies between the achieved contrasts on the testbeds and their corresponding model predictions. A series of testbed diagnoses and modeling activities were planned and carried out on the SPC testbed in order to close the gap. A very useful tool we developed was a derived "measured" testbed wavefront control Jacobian matrix that could be compared with the model-predicted "control" version that was used to generate the high contrast dark hole region in the image plane. The difference between these two is an estimate of the error in the control Jacobian. When the control matrix, which includes both amplitude and phase, was modified to reproduce the error, the simulated performance closely matched the SPC testbed behavior in both contrast floor and contrast convergence speed. This is a step closer toward model validation for high contrast coronagraphs. Further Jacobian analysis and modeling provided clues to the possible sources for the mismatch: DM misregistration and testbed optical wavefront error (WFE) and the deformable mirror (DM) setting for correcting this WFE. These analyses suggested that a high contrast coronagraph has a tight tolerance in the accuracy of its control Jacobian. Modifications to both testbed control model as well as prediction model are being implemented, and future works are discussed.

  2. High Contrast Vacuum Nuller Testbed (VNT) Contrast, Performance and Null Control

    Science.gov (United States)

    Lyon, Richard G.; Clampin, Mark; Petrone, Peter; Mallik, Udayan; Madison, Timothy; Bolcar, Matthew R.

    2012-01-01

    Herein we report on our Visible Nulling Coronagraph high-contrast result of 109 contrast averaged over a focal planeregion extending from 14 D with the Vacuum Nuller Testbed (VNT) in a vibration isolated vacuum chamber. TheVNC is a hybrid interferometriccoronagraphic approach for exoplanet science. It operates with high Lyot stopefficiency for filled, segmented and sparse or diluted-aperture telescopes, thereby spanning the range of potential futureNASA flight telescopes. NASAGoddard Space Flight Center (GSFC) has a well-established effort to develop the VNCand its technologies, and has developed an incremental sequence of VNC testbeds to advance this approach and itsenabling technologies. These testbeds have enabled advancement of high-contrast, visible light, nulling interferometry tounprecedented levels. The VNC is based on a modified Mach-Zehnder nulling interferometer, with a W configurationto accommodate a hex-packed MEMS based deformable mirror, a coherent fiber bundle and achromatic phase shifters.We give an overview of the VNT and discuss the high-contrast laboratory results, the optical configuration, criticaltechnologies and null sensing and control.

  3. Holodeck Testbed Project

    Science.gov (United States)

    Arias, Adriel (Inventor)

    2016-01-01

    The main objective of the Holodeck Testbed is to create a cost effective, realistic, and highly immersive environment that can be used to train astronauts, carry out engineering analysis, develop procedures, and support various operations tasks. Currently, the Holodeck testbed allows to step into a simulated ISS (International Space Station) and interact with objects; as well as, perform Extra Vehicular Activities (EVA) on the surface of the Moon or Mars. The Holodeck Testbed is using the products being developed in the Hybrid Reality Lab (HRL). The HRL is combining technologies related to merging physical models with photo-realistic visuals to create a realistic and highly immersive environment. The lab also investigates technologies and concepts that are needed to allow it to be integrated with other testbeds; such as, the gravity offload capability provided by the Active Response Gravity Offload System (ARGOS). My main two duties were to develop and animate models for use in the HRL environments and work on a new way to interface with computers using Brain Computer Interface (BCI) technology. On my first task, I was able to create precise computer virtual tool models (accurate down to the thousandths or hundredths of an inch). To make these tools even more realistic, I produced animations for these tools so they would have the same mechanical features as the tools in real life. The computer models were also used to create 3D printed replicas that will be outfitted with tracking sensors. The sensor will allow the 3D printed models to align precisely with the computer models in the physical world and provide people with haptic/tactile feedback while wearing a VR (Virtual Reality) headset and interacting with the tools. Getting close to the end of my internship the lab bought a professional grade 3D Scanner. With this, I was able to replicate more intricate tools at a much more time-effective rate. The second task was to investigate the use of BCI to control

  4. The DataTAG transatlantic testbed

    CERN Document Server

    Martin, O; Martin-Flatin, J P; Moroni, P; Nae, D; Newman, H; Ravot, S

    2005-01-01

    Wide area network testbeds allow researchers and engineers to test out new equipment, protocols and services in real-life situations, without jeopardizing the stability and reliability of production networks. The Data TransAtlantic Grid (DataTAG) testbed, deployed in 2002 between CERN, Geneva, Switzerland and StarLight, Chicago, IL, USA, is probably the largest testbed built to date. Jointly managed by CERN and Caltech, it is funded by the European Commission, the U.S. Department of Energy and the U.S. National Science Foundation. The main objectives of this testbed are to improve the Grid community's understanding of the networking issues posed by data- intensive Grid applications over transoceanic gigabit networks, design and develop new Grid middleware services, and improve the interoperability of European and U.S. Grid applications in High- Energy and Nuclear Physics. In this paper, we give an overview of this testbed, describe its various topologies over time, and summarize the main lessons learned after...

  5. Embedded Sensors and Controls to Improve Component Performance and Reliability -- Bench-scale Testbed Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Melin, Alexander M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kisner, Roger A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Drira, Anis [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Reed, Frederick K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-09-01

    Embedded instrumentation and control systems that can operate in extreme environments are challenging due to restrictions on sensors and materials. As a part of the Department of Energy's Nuclear Energy Enabling Technology cross-cutting technology development programs Advanced Sensors and Instrumentation topic, this report details the design of a bench-scale embedded instrumentation and control testbed. The design goal of the bench-scale testbed is to build a re-configurable system that can rapidly deploy and test advanced control algorithms in a hardware in the loop setup. The bench-scale testbed will be designed as a fluid pump analog that uses active magnetic bearings to support the shaft. The testbed represents an application that would improve the efficiency and performance of high temperature (700 C) pumps for liquid salt reactors that operate in an extreme environment and provide many engineering challenges that can be overcome with embedded instrumentation and control. This report will give details of the mechanical design, electromagnetic design, geometry optimization, power electronics design, and initial control system design.

  6. Project Morpheus: Lean Development of a Terrestrial Flight Testbed for Maturing NASA Lander Technologies

    Science.gov (United States)

    Devolites, Jennifer L.; Olansen, Jon B.

    2015-01-01

    NASA's Morpheus Project has developed and tested a prototype planetary lander capable of vertical takeoff and landing that is designed to serve as a testbed for advanced spacecraft technologies. The lander vehicle, propelled by a Liquid Oxygen (LOX)/Methane engine and sized to carry a 500kg payload to the lunar surface, provides a platform for bringing technologies from the laboratory into an integrated flight system at relatively low cost. In 2012, Morpheus began integrating the Autonomous Landing and Hazard Avoidance Technology (ALHAT) sensors and software onto the vehicle in order to demonstrate safe, autonomous landing and hazard avoidance. From the beginning, one of goals for the Morpheus Project was to streamline agency processes and practices. The Morpheus project accepted a challenge to tailor the traditional NASA systems engineering approach in a way that would be appropriate for a lower cost, rapid prototype engineering effort, but retain the essence of the guiding principles. This paper describes the tailored project life cycle and systems engineering approach for the Morpheus project, including the processes, tools, and amount of rigor employed over the project's multiple lifecycles since the project began in fiscal year (FY) 2011.

  7. Fast Physics Testbed for the FASTER Project

    Energy Technology Data Exchange (ETDEWEB)

    Lin, W.; Liu, Y.; Hogan, R.; Neggers, R.; Jensen, M.; Fridlind, A.; Lin, Y.; Wolf, A.

    2010-03-15

    This poster describes the Fast Physics Testbed for the new FAst-physics System Testbed and Research (FASTER) project. The overall objective is to provide a convenient and comprehensive platform for fast turn-around model evaluation against ARM observations and to facilitate development of parameterizations for cloud-related fast processes represented in global climate models. The testbed features three major components: a single column model (SCM) testbed, an NWP-Testbed, and high-resolution modeling (HRM). The web-based SCM-Testbed features multiple SCMs from major climate modeling centers and aims to maximize the potential of SCM approach to enhance and accelerate the evaluation and improvement of fast physics parameterizations through continuous evaluation of existing and evolving models against historical as well as new/improved ARM and other complementary measurements. The NWP-Testbed aims to capitalize on the large pool of operational numerical weather prediction products. Continuous evaluations of NWP forecasts against observations at ARM sites are carried out to systematically identify the biases and skills of physical parameterizations under all weather conditions. The highresolution modeling (HRM) activities aim to simulate the fast processes at high resolution to aid in the understanding of the fast processes and their parameterizations. A four-tier HRM framework is established to augment the SCM- and NWP-Testbeds towards eventual improvement of the parameterizations.

  8. COLUMBUS as Engineering Testbed for Communications and Multimedia Equipment

    Science.gov (United States)

    Bank, C.; Anspach von Broecker, G. O.; Kolloge, H.-G.; Richters, M.; Rauer, D.; Urban, G.; Canovai, G.; Oesterle, E.

    2002-01-01

    The paper presents ongoing activities to prepare COLUMBUS for communications and multimedia technology experiments. For this purpose, Astrium SI, Bremen, has studied several options how to best combine the given system architecture with flexible and state-of-the-art interface avionics and software. These activities have been conducted in coordination with, and partially under contract of, DLR and ESA/ESTEC. Moreover, Astrium SI has realized three testbeds for multimedia software and hardware testing under own funding. The experimental core avionics unit - about a half double rack - establishes the core of a new multi-user experiment facility for this type of investigation onboard COLUMBUS, which shall be available to all users of COLUMBUS. It allows for the connection of 2nd generation payload, that is payload requiring broadband data transfer and near-real-time access by the Principal Investigator on ground, to test highly interactive and near-realtime payload operation. The facility is also foreseen to test new equipment to provide the astronauts onboard the ISS/COLUMBUS with bi- directional hi-fi voice and video connectivity to ground, private voice coms and e-mail, and a multimedia workstation for ops training and recreation. Connection to an appropriate Wide Area Network (WAN) on Earth is possible. The facility will include a broadband data transmission front-end terminal, which is mounted externally on the COLUMBUS module. This Equipment provides high flexibility due to the complete transparent transmit and receive chains, the steerable multi-frequency antenna system and its own thermal and power control and distribution. The Equipment is monitored and controlled via the COLUMBUS internal facility. It combines several new hardware items, which are newly developed for the next generation of broadband communication satellites and operates in Ka -Band with the experimental ESA data relay satellite ARTEMIS. The equipment is also TDRSS compatible; the open loop

  9. INFN Tier-1 Testbed Facility

    International Nuclear Information System (INIS)

    Gregori, Daniele; Cavalli, Alessandro; Dell'Agnello, Luca; Dal Pra, Stefano; Prosperini, Andrea; Ricci, Pierpaolo; Ronchieri, Elisabetta; Sapunenko, Vladimir

    2012-01-01

    INFN-CNAF, located in Bologna, is the Information Technology Center of National Institute of Nuclear Physics (INFN). In the framework of the Worldwide LHC Computing Grid, INFN-CNAF is one of the eleven worldwide Tier-1 centers to store and reprocessing Large Hadron Collider (LHC) data. The Italian Tier-1 provides the resources of storage (i.e., disk space for short term needs and tapes for long term needs) and computing power that are needed for data processing and analysis to the LHC scientific community. Furthermore, INFN Tier-1 houses computing resources for other particle physics experiments, like CDF at Fermilab, SuperB at Frascati, as well as for astro particle and spatial physics experiments. The computing center is a very complex infrastructure, the hardaware layer include the network, storage and farming area, while the software layer includes open source and proprietary software. Software updating and new hardware adding can unexpectedly deteriorate the production activity of the center: therefore a testbed facility has been set up in order to reproduce and certify the various layers of the Tier-1. In this article we describe the testbed and the checks performed.

  10. Accelerating Innovation that Enhances Resource Recovery in the Wastewater Sector: Advancing a National Testbed Network.

    Science.gov (United States)

    Mihelcic, James R; Ren, Zhiyong Jason; Cornejo, Pablo K; Fisher, Aaron; Simon, A J; Snyder, Seth W; Zhang, Qiong; Rosso, Diego; Huggins, Tyler M; Cooper, William; Moeller, Jeff; Rose, Bob; Schottel, Brandi L; Turgeon, Jason

    2017-07-18

    This Feature examines significant challenges and opportunities to spur innovation and accelerate adoption of reliable technologies that enhance integrated resource recovery in the wastewater sector through the creation of a national testbed network. The network is a virtual entity that connects appropriate physical testing facilities, and other components needed for a testbed network, with researchers, investors, technology providers, utilities, regulators, and other stakeholders to accelerate the adoption of innovative technologies and processes that are needed for the water resource recovery facility of the future. Here we summarize and extract key issues and developments, to provide a strategy for the wastewater sector to accelerate a path forward that leads to new sustainable water infrastructures.

  11. SCaN Testbed Software Development and Lessons Learned

    Science.gov (United States)

    Kacpura, Thomas J.; Varga, Denise M.

    2012-01-01

    National Aeronautics and Space Administration (NASA) has developed an on-orbit, adaptable, Software Defined Radio (SDR)Space Telecommunications Radio System (STRS)-based testbed facility to conduct a suite of experiments to advance technologies, reduce risk, and enable future mission capabilities on the International Space Station (ISS). The SCAN Testbed Project will provide NASA, industry, other Government agencies, and academic partners the opportunity to develop and field communications, navigation, and networking technologies in the laboratory and space environment based on reconfigurable, SDR platforms and the STRS Architecture.The SDRs are a new technology for NASA, and the support infrastructure they require is different from legacy, fixed function radios. SDRs offer the ability to reconfigure on-orbit communications by changing software for new waveforms and operating systems to enable new capabilities or fix any anomalies, which was not a previous option. They are not stand alone devices, but required a new approach to effectively control them and flow data. This requires extensive software to be developed to utilize the full potential of these reconfigurable platforms. The paper focuses on development, integration and testing as related to the avionics processor system, and the software required to command, control, monitor, and interact with the SDRs, as well as the other communication payload elements. An extensive effort was required to develop the flight software and meet the NASA requirements for software quality and safety. The flight avionics must be radiation tolerant, and these processors have limited capability in comparison to terrestrial counterparts. A big challenge was that there are three SDRs onboard, and interfacing with multiple SDRs simultaneously complicatesd the effort. The effort also includes ground software, which is a key element for both the command of the payload, and displaying data created by the payload. The verification of

  12. LOS Throughput Measurements in Real-Time with a 128-Antenna Massive MIMO Testbed

    OpenAIRE

    Harris, Paul; Zhang, Siming; Beach, Mark; Mellios, Evangelos; Nix, Andrew; Armour, Simon; Doufexi, Angela; Nieman, Karl; Kundargi, Nikhil

    2017-01-01

    This paper presents initial results for a novel 128-antenna massive Multiple-Input, Multiple- Output (MIMO) testbed developed through Bristol Is Open in collaboration with National Instruments and Lund University. We believe that the results presented here validate the adoption of massive MIMO as a key enabling technology for 5G and pave the way for further pragmatic research by the massive MIMO community. The testbed operates in real-time with a Long-Term Evolution (LTE)-like PHY in Time Div...

  13. A remote integrated testbed for cooperating objects

    CERN Document Server

    Dios, Jose Ramiro Martinez-de; Bernabe, Alberto de San; Ollero, Anibal

    2013-01-01

    Testbeds are gaining increasing relevance in research domains and also in industrial applications. However, very few books devoted to testbeds have been published. To the best of my knowledge no book on this topic has been published. This book is particularly interesting for the growing community of testbed developers. I believe the book is also very interesting for researchers in robot-WSN cooperation.This book provides detailed description of a system that can be considered the first testbed that allows full peer-to-peer interoperability between heterogeneous robots and ubiquitous systems su

  14. Development of an Experimental Testbed for Research in Lithium-Ion Battery Management Systems

    Directory of Open Access Journals (Sweden)

    Mehdi Ferdowsi

    2013-10-01

    Full Text Available Advanced electrochemical batteries are becoming an integral part of a wide range of applications from household and commercial to smart grid, transportation, and aerospace applications. Among different battery technologies, lithium-ion (Li-ion batteries are growing more and more popular due to their high energy density, high galvanic potential, low self-discharge, low weight, and the fact that they have almost no memory effect. However, one of the main obstacles facing the widespread commercialization of Li-ion batteries is the design of reliable battery management systems (BMSs. An efficient BMS ensures electrical safety during operation, while increasing battery lifetime, capacity and thermal stability. Despite the need for extensive research in this field, the majority of research conducted on Li-ion battery packs and BMS are proprietary works conducted by manufacturers. The available literature, however, provides either general descriptions or detailed analysis of individual components of the battery system, and ignores addressing details of the overall system development. This paper addresses the development of an experimental research testbed for studying Li-ion batteries and their BMS design. The testbed can be configured in a variety of cell and pack architectures, allowing for a wide range of BMS monitoring, diagnostics, and control technologies to be tested and analyzed. General considerations that should be taken into account while designing Li-ion battery systems are reviewed and different technologies and challenges commonly encountered in Li-ion battery systems are investigated. This testbed facilitates future development of more practical and improved BMS technologies with the aim of increasing the safety, reliability, and efficiency of existing Li-ion battery systems. Experimental results of initial tests performed on the system are used to demonstrate some of the capabilities of the developed research testbed. To the authors

  15. Conceptual Design and Cost Estimate of a Subsonic NASA Testbed Vehicle (NTV) for Aeronautics Research

    Science.gov (United States)

    Nickol, Craig L.; Frederic, Peter

    2013-01-01

    A conceptual design and cost estimate for a subsonic flight research vehicle designed to support NASA's Environmentally Responsible Aviation (ERA) project goals is presented. To investigate the technical and economic feasibility of modifying an existing aircraft, a highly modified Boeing 717 was developed for maturation of technologies supporting the three ERA project goals of reduced fuel burn, noise, and emissions. This modified 717 utilizes midfuselage mounted modern high bypass ratio engines in conjunction with engine exhaust shielding structures to provide a low noise testbed. The testbed also integrates a natural laminar flow wing section and active flow control for the vertical tail. An eight year program plan was created to incrementally modify and test the vehicle, enabling the suite of technology benefits to be isolated and quantified. Based on the conceptual design and programmatic plan for this testbed vehicle, a full cost estimate of $526M was developed, representing then-year dollars at a 50% confidence level.

  16. An Overview of NASA's Subsonic Research Aircraft Testbed (SCRAT)

    Science.gov (United States)

    Baumann, Ethan; Hernandez, Joe; Ruhf, John C.

    2013-01-01

    National Aeronautics and Space Administration Dryden Flight Research Center acquired a Gulfstream III (GIII) aircraft to serve as a testbed for aeronautics flight research experiments. The aircraft is referred to as SCRAT, which stands for SubsoniC Research Aircraft Testbed. The aircraft's mission is to perform aeronautics research; more specifically raising the Technology Readiness Level (TRL) of advanced technologies through flight demonstrations and gathering high-quality research data suitable for verifying the technologies, and validating design and analysis tools. The SCRAT has the ability to conduct a range of flight research experiments throughout a transport class aircraft's flight envelope. Experiments ranging from flight-testing of a new aircraft system or sensor to those requiring structural and aerodynamic modifications to the aircraft can be accomplished. The aircraft has been modified to include an instrumentation system and sensors necessary to conduct flight research experiments along with a telemetry capability. An instrumentation power distribution system was installed to accommodate the instrumentation system and future experiments. An engineering simulation of the SCRAT has been developed to aid in integrating research experiments. A series of baseline aircraft characterization flights has been flown that gathered flight data to aid in developing and integrating future research experiments. This paper describes the SCRAT's research systems and capabilities.

  17. 77 FR 18793 - Spectrum Sharing Innovation Test-Bed Pilot Program

    Science.gov (United States)

    2012-03-28

    .... 120322212-2212-01] Spectrum Sharing Innovation Test-Bed Pilot Program AGENCY: National Telecommunications... Innovation Test-Bed pilot program to assess whether devices employing Dynamic Spectrum Access techniques can... Spectrum Sharing Innovation Test-Bed (Test-Bed) pilot program to examine the feasibility of increased...

  18. Cargo container inspection test program at ARPA's Nonintrusive Inspection Technology Testbed

    Science.gov (United States)

    Volberding, Roy W.; Khan, Siraj M.

    1994-10-01

    An x-ray-based cargo inspection system test program is being conducted at the Advanced Research Project Agency (ARPA)-sponsored Nonintrusive Inspection Technology Testbed (NITT) located in the Port of Tacoma, Washington. The test program seeks to determine the performance that can be expected from a dual, high-energy x-ray cargo inspection system when inspecting ISO cargo containers. This paper describes an intensive, three-month, system test involving two independent test groups, one representing the criminal smuggling element and the other representing the law enforcement community. The first group, the `Red Team', prepares ISO containers for inspection at an off-site facility. An algorithm randomly selects and indicates the positions and preparation of cargoes within a container. The prepared container is dispatched to the NITT for inspection by the `Blue Team'. After in-gate processing, it is queued for examination. The Blue Team inspects the container and decides whether or not to pass the container. The shipment undergoes out-gate processing and returns to the Red Team. The results of the inspection are recorded for subsequent analysis. The test process, including its governing protocol, the cargoes, container preparation, the examination and results available at the time of submission are presented.

  19. Benchmarking Diagnostic Algorithms on an Electrical Power System Testbed

    Science.gov (United States)

    Kurtoglu, Tolga; Narasimhan, Sriram; Poll, Scott; Garcia, David; Wright, Stephanie

    2009-01-01

    Diagnostic algorithms (DAs) are key to enabling automated health management. These algorithms are designed to detect and isolate anomalies of either a component or the whole system based on observations received from sensors. In recent years a wide range of algorithms, both model-based and data-driven, have been developed to increase autonomy and improve system reliability and affordability. However, the lack of support to perform systematic benchmarking of these algorithms continues to create barriers for effective development and deployment of diagnostic technologies. In this paper, we present our efforts to benchmark a set of DAs on a common platform using a framework that was developed to evaluate and compare various performance metrics for diagnostic technologies. The diagnosed system is an electrical power system, namely the Advanced Diagnostics and Prognostics Testbed (ADAPT) developed and located at the NASA Ames Research Center. The paper presents the fundamentals of the benchmarking framework, the ADAPT system, description of faults and data sets, the metrics used for evaluation, and an in-depth analysis of benchmarking results obtained from testing ten diagnostic algorithms on the ADAPT electrical power system testbed.

  20. Embedded Sensors and Controls to Improve Component Performance and Reliability -- Loop-scale Testbed Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Melin, Alexander M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kisner, Roger A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-09-01

    Embedded instrumentation and control systems that can operate in extreme environments are challenging to design and operate. Extreme environments limit the options for sensors and actuators and degrade their performance. Because sensors and actuators are necessary for feedback control, these limitations mean that designing embedded instrumentation and control systems for the challenging environments of nuclear reactors requires advanced technical solutions that are not available commercially. This report details the development of testbed that will be used for cross-cutting embedded instrumentation and control research for nuclear power applications. This research is funded by the Department of Energy's Nuclear Energy Enabling Technology program's Advanced Sensors and Instrumentation topic. The design goal of the loop-scale testbed is to build a low temperature pump that utilizes magnetic bearing that will be incorporated into a water loop to test control system performance and self-sensing techniques. Specifically, this testbed will be used to analyze control system performance in response to nonlinear and cross-coupling fluid effects between the shaft axes of motion, rotordynamics and gyroscopic effects, and impeller disturbances. This testbed will also be used to characterize the performance losses when using self-sensing position measurement techniques. Active magnetic bearings are a technology that can reduce failures and maintenance costs in nuclear power plants. They are particularly relevant to liquid salt reactors that operate at high temperatures (700 C). Pumps used in the extreme environment of liquid salt reactors provide many engineering challenges that can be overcome with magnetic bearings and their associated embedded instrumentation and control. This report will give details of the mechanical design and electromagnetic design of the loop-scale embedded instrumentation and control testbed.

  1. Recent Successes and Future Plans for NASA's Space Communications and Navigation Testbed on the International Space Station

    Science.gov (United States)

    Reinhart, Richard C.; Sankovic, John M.; Johnson, Sandra K.; Lux, James P.; Chelmins, David T.

    2014-01-01

    Flexible and extensible space communications architectures and technology are essential to enable future space exploration and science activities. NASA has championed the development of the Space Telecommunications Radio System (STRS) software defined radio (SDR) standard and the application of SDR technology to reduce the costs and risks of using SDRs for space missions, and has developed an on-orbit testbed to validate these capabilities. The Space Communications and Navigation (SCaN) Testbed (previously known as the Communications, Navigation, and Networking reConfigurable Testbed (CoNNeCT)) is advancing SDR, on-board networking, and navigation technologies by conducting space experiments aboard the International Space Station. During its first year(s) on-orbit, the SCaN Testbed has achieved considerable accomplishments to better understand SDRs and their applications. The SDR platforms and software waveforms on each SDR have over 1500 hours of operation and are performing as designed. The Ka-band SDR on the SCaN Testbed is NASAs first space Ka-band transceiver and is NASA's first Ka-band mission using the Space Network. This has provided exciting opportunities to operate at Ka-band and assist with on-orbit tests of NASA newest Tracking and Data Relay Satellites (TDRS). During its first year, SCaN Testbed completed its first on-orbit SDR reconfigurations. SDR reconfigurations occur when implementing new waveforms on an SDR. SDR reconfigurations allow a radio to change minor parameters, such as data rate, or complete functionality. New waveforms which provide new capability and are reusable across different missions provide long term value for reconfigurable platforms such as SDRs. The STRS Standard provides guidelines for new waveform development by third parties. Waveform development by organizations other than the platform provider offers NASA the ability to develop waveforms itself and reduce its dependence and costs on the platform developer. Each of these

  2. Virtual Factory Testbed

    Data.gov (United States)

    Federal Laboratory Consortium — The Virtual Factory Testbed (VFT) is comprised of three physical facilities linked by a standalone network (VFNet). The three facilities are the Smart and Wireless...

  3. The Objectives of NASA's Living with a Star Space Environment Testbed

    Science.gov (United States)

    Barth, Janet L.; LaBel, Kenneth A.; Brewer, Dana; Kauffman, Billy; Howard, Regan; Griffin, Geoff; Day, John H. (Technical Monitor)

    2001-01-01

    NASA is planning to fly a series of Space Environment Testbeds (SET) as part of the Living With A Star (LWS) Program. The goal of the testbeds is to improve and develop capabilities to mitigate and/or accommodate the affects of solar variability in spacecraft and avionics design and operation. This will be accomplished by performing technology validation in space to enable routine operations, characterize technology performance in space, and improve and develop models, guidelines and databases. The anticipated result of the LWS/SET program is improved spacecraft performance, design, and operation for survival of the radiation, spacecraft charging, meteoroid, orbital debris and thermosphere/ionosphere environments. The program calls for a series of NASA Research Announcements (NRAs) to be issued to solicit flight validation experiments, improvement in environment effects models and guidelines, and collateral environment measurements. The selected flight experiments may fly on the SET experiment carriers and flights of opportunity on other commercial and technology missions. This paper presents the status of the project so far, including a description of the types of experiments that are intended to fly on SET-1 and a description of the SET-1 carrier parameters.

  4. Development of a space-systems network testbed

    Science.gov (United States)

    Lala, Jaynarayan; Alger, Linda; Adams, Stuart; Burkhardt, Laura; Nagle, Gail; Murray, Nicholas

    1988-01-01

    This paper describes a communications network testbed which has been designed to allow the development of architectures and algorithms that meet the functional requirements of future NASA communication systems. The central hardware components of the Network Testbed are programmable circuit switching communication nodes which can be adapted by software or firmware changes to customize the testbed to particular architectures and algorithms. Fault detection, isolation, and reconfiguration has been implemented in the Network with a hybrid approach which utilizes features of both centralized and distributed techniques to provide efficient handling of faults within the Network.

  5. A Multi-Vehicles, Wireless Testbed for Networked Control, Communications and Computing

    Science.gov (United States)

    Murray, Richard; Doyle, John; Effros, Michelle; Hickey, Jason; Low, Steven

    2002-03-01

    We have constructed a testbed consisting of 4 mobile vehicles (with 4 additional vehicles being completed), each with embedded computing and communications capability for use in testing new approaches for command and control across dynamic networks. The system is being used or is planned to be used for testing of a variety of communications-related technologies, including distributed command and control algorithms, dynamically reconfigurable network topologies, source coding for real-time transmission of data in lossy environments, and multi-network communications. A unique feature of the testbed is the use of vehicles that have second order dynamics. Requiring real-time feedback algorithms to stabilize the system while performing cooperative tasks. The testbed was constructed in the Caltech Vehicles Laboratory and consists of individual vehicles with PC-based computation and controls, and multiple communications devices (802.11 wireless Ethernet, Bluetooth, and infrared). The vehicles are freely moving, wheeled platforms propelled by high performance dotted fairs. The room contains an access points for an 802.11 network, overhead visual sensing (to allow emulation of CI'S signal processing), a centralized computer for emulating certain distributed computations, and network gateways to control and manipulate communications traffic.

  6. Design, Development, and Testing of a UAV Hardware-in-the-Loop Testbed for Aviation and Airspace Prognostics Research

    Science.gov (United States)

    Kulkarni, Chetan; Teubert, Chris; Gorospe, George; Burgett, Drew; Quach, Cuong C.; Hogge, Edward

    2016-01-01

    The airspace is becoming more and more complicated, and will continue to do so in the future with the integration of Unmanned Aerial Vehicles (UAVs), autonomy, spacecraft, other forms of aviation technology into the airspace. The new technology and complexity increases the importance and difficulty of safety assurance. Additionally, testing new technologies on complex aviation systems & systems of systems can be very difficult, expensive, and sometimes unsafe in real life scenarios. Prognostic methodology provides an estimate of the health and risks of a component, vehicle, or airspace and knowledge of how that will change over time. That measure is especially useful in safety determination, mission planning, and maintenance scheduling. The developed testbed will be used to validate prediction algorithms for the real-time safety monitoring of the National Airspace System (NAS) and the prediction of unsafe events. The framework injects flight related anomalies related to ground systems, routing, airport congestion, etc. to test and verify algorithms for NAS safety. In our research work, we develop a live, distributed, hardware-in-the-loop testbed for aviation and airspace prognostics along with exploring further research possibilities to verify and validate future algorithms for NAS safety. The testbed integrates virtual aircraft using the X-Plane simulator and X-PlaneConnect toolbox, UAVs using onboard sensors and cellular communications, and hardware in the loop components. In addition, the testbed includes an additional research framework to support and simplify future research activities. It enables safe, accurate, and inexpensive experimentation and research into airspace and vehicle prognosis that would not have been possible otherwise. This paper describes the design, development, and testing of this system. Software reliability, safety and latency are some of the critical design considerations in development of the testbed. Integration of HITL elements in

  7. The design and implementation of the LLNL gigabit testbed

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, D. [Lawrence Livermore National Labs., CA (United States)

    1994-12-01

    This paper will look at the design and implementation of the LLNL Gigabit testbed (LGTB), where various high speed networking products, can be tested in one environment. The paper will discuss the philosophy behind the design of and the need for the testbed, the tests that are performed in the testbed, and the tools used to implement those tests.

  8. CubeSub - A CubeSat Based Submersible Testbed for Space Technology

    Science.gov (United States)

    Slettebo, Christian

    2016-01-01

    This report is a Master's Thesis in Aerospace Engineering, performed at the NASA Ames Research Center. It describes the development of the CubeSub, a submersible testbed compatible with the CubeSat form factor. The CubeSub will be used to mature technology and operational procedures to be used in space exploration, and possibly also as a tool for exploration of Earthly environments. CubeSats are carried as payloads, either containing technology to be tested or experiments and sensors for scientific use. The CubeSub is designed to be built up by modules, which can be assembled in different configurations to fulfill different needs. Each module is powered individually and intermodular communication is wireless, reducing the need for wiring. The inside of the hull is flooded with ambient water to simplify the interaction between payloads and surrounding environment. The overall shape is similar to that of a conventional AUV, slender and smooth. This is to make for a low drag, reduce the risk of snagging on surrounding objects and make it possible to deploy through an ice sheet via a narrow borehole. Rapid prototyping is utilized to a large extent, with full-scale prototypes being constructed through 3D-printing and with COTS (Commercial Off-The-Shelf) components. Arduino boards are used for control and internal communication. Modules required for basic operation have been designed, manufactured and tested. Each module is described with regards to its function, design and manufacturability. By performing tests in a pool it was found that the basic concept is sound and that future improvements include better controllability, course stability and waterproofing of electrical components. Further development is needed to make the CubeSub usable for its intended purposes. The largest gains are expected to be found by developing the software and improving controllability.

  9. The end-to-end testbed of the optical metrology system on-board LISA Pathfinder

    Energy Technology Data Exchange (ETDEWEB)

    Steier, F; Cervantes, F Guzman; Marin, A F GarcIa; Heinzel, G; Danzmann, K [Max-Planck-Institut fuer Gravitationsphysik (Albert-Einstein-Institut) and Universitaet Hannover (Germany); Gerardi, D, E-mail: frank.steier@aei.mpg.d [EADS Astrium Satellites GmbH, Friedrichshafen (Germany)

    2009-05-07

    LISA Pathfinder is a technology demonstration mission for the Laser Interferometer Space Antenna (LISA). The main experiment on-board LISA Pathfinder is the so-called LISA Technology Package (LTP) which has the aim to measure the differential acceleration between two free-falling test masses with an accuracy of 3 x 10{sup -14} ms{sup -2} Hz{sup -1/2} between 1 mHz and 30 mHz. This measurement is performed interferometrically by the optical metrology system (OMS) on-board LISA Pathfinder. In this paper, we present the development of an experimental end-to-end testbed of the entire OMS. It includes the interferometer and its sub-units, the interferometer backend which is a phasemeter and the processing of the phasemeter output data. Furthermore, three-axes piezo-actuated mirrors are used instead of the free-falling test masses for the characterization of the dynamic behaviour of the system and some parts of the drag-free and attitude control system (DFACS) which controls the test masses and the satellite. The end-to-end testbed includes all parts of the LTP that can reasonably be tested on earth without free-falling test masses. At its present status it consists mainly of breadboard components. Some of those have already been replaced by engineering models of the LTP experiment. In the next steps, further engineering and flight models will also be inserted in this testbed and tested against well-characterized breadboard components. The presented testbed is an important reference for the unit tests and can also be used for validation of the on-board experiment during the mission.

  10. A Testbed to Evaluate the FIWARE-Based IoT Platform in the Domain of Precision Agriculture

    Science.gov (United States)

    Martínez, Ramón; Pastor, Juan Ángel; Álvarez, Bárbara; Iborra, Andrés

    2016-01-01

    Wireless sensor networks (WSNs) represent one of the most promising technologies for precision farming. Over the next few years, a significant increase in the use of such systems on commercial farms is expected. WSNs present a number of problems, regarding scalability, interoperability, communications, connectivity with databases and data processing. Different Internet of Things middleware is appearing to overcome these challenges. This paper checks whether one of these middleware, FIWARE, is suitable for the development of agricultural applications. To the authors’ knowledge, there are no works that show how to use FIWARE in precision agriculture and study its appropriateness, its scalability and its efficiency for this kind of applications. To do this, a testbed has been designed and implemented to simulate different deployments and load conditions. The testbed is a typical FIWARE application, complete, yet simple and comprehensible enough to show the main features and components of FIWARE, as well as the complexity of using this technology. Although the testbed has been deployed in a laboratory environment, its design is based on the analysis of an Internet of Things use case scenario in the domain of precision agriculture. PMID:27886091

  11. Passive Thermal Design Approach for the Space Communications and Navigation (SCaN) Testbed Experiment on the International Space Station (ISS)

    Science.gov (United States)

    Siamidis, John; Yuko, Jim

    2014-01-01

    The Space Communications and Navigation (SCaN) Program Office at NASA Headquarters oversees all of NASAs space communications activities. SCaN manages and directs the ground-based facilities and services provided by the Deep Space Network (DSN), Near Earth Network (NEN), and the Space Network (SN). Through the SCaN Program Office, NASA GRC developed a Software Defined Radio (SDR) testbed experiment (SCaN testbed experiment) for use on the International Space Station (ISS). It is comprised of three different SDR radios, the Jet Propulsion Laboratory (JPL) radio, Harris Corporation radio, and the General Dynamics Corporation radio. The SCaN testbed experiment provides an on-orbit, adaptable, SDR Space Telecommunications Radio System (STRS) - based facility to conduct a suite of experiments to advance the Software Defined Radio, Space Telecommunications Radio Systems (STRS) standards, reduce risk (Technology Readiness Level (TRL) advancement) for candidate Constellation future space flight hardware software, and demonstrate space communication links critical to future NASA exploration missions. The SCaN testbed project provides NASA, industry, other Government agencies, and academic partners the opportunity to develop and field communications, navigation, and networking technologies in the laboratory and space environment based on reconfigurable, software defined radio platforms and the STRS Architecture.The SCaN testbed is resident on the P3 Express Logistics Carrier (ELC) on the exterior truss of the International Space Station (ISS). The SCaN testbed payload launched on the Japanese Aerospace Exploration Agency (JAXA) H-II Transfer Vehicle (HTV) and was installed on the ISS P3 ELC located on the inboard RAM P3 site. The daily operations and testing are managed out of NASA GRC in the Telescience Support Center (TSC).

  12. The Living With a Star Program Space Environment Testbed

    Science.gov (United States)

    Barth, Janet; Day, John H. (Technical Monitor)

    2001-01-01

    This viewgraph presentation describes the objective, approach, and scope of the Living With a Star (LWS) program at the Marshall Space Flight Center. Scientists involved in the project seek to refine the understanding of space weather and the role of solar variability in terrestrial climate change. Research and the development of improved analytic methods have led to increased predictive capabilities and the improvement of environment specification models. Specifically, the Space Environment Testbed (SET) project of LWS is responsible for the implementation of improved engineering approaches to observing solar effects on climate change. This responsibility includes technology development, ground test protocol development, and the development of a technology application model/engineering tool.

  13. Environment Emulation For Wsn Testbed

    Directory of Open Access Journals (Sweden)

    Radosław Kapłoniak

    2012-01-01

    Full Text Available The development of applications for wireless sensor networks is a challenging task. For this reason, several testbed platforms have been created. They simplify the manageability of nodes by offering easy ways of programming and debugging sensor nodes. These platforms, sometimes composed of dozens of sensors, provide a convenient way for carrying out research on medium access control and data exchange between nodes. In this article, we propose the extension of the WSN testbed, which could be used for evaluating and testing the functionality of sensor networks applications by emulating a real-world environment.

  14. A demonstration of remote survey and characterization of a buried waste site using the SRIP [Soldier Robot Interface Project] testbed

    International Nuclear Information System (INIS)

    Burks, B.L.; Richardson, B.S.; Armstrong, G.A.; Hamel, W.R.; Jansen, J.F.; Killough, S.M.; Thompson, D.H.; Emery, M.S.

    1990-01-01

    During FY 1990, the Oak Ridge National Laboratory (ORNL) supported the Department of Energy (DOE) Environmental Restoration and Waste Management (ER ampersand WM) Office of Technology Development through several projects including the development of a semiautonomous survey of a buried waste site using a remotely operated all-terrain robotic testbed borrowed from the US Army. The testbed was developed for the US Army's Human Engineering Laboratory (HEL) for the US Army's Soldier Robot Interface Project (SRIP). Initial development of the SRIP testbed was performed by a team including ORNL, HEL, Tooele Army Depot, and Odetics, Inc., as an experimental testbed for a variety of human factors issues related to military applications of robotics. The SRIP testbed was made available to the DOE and ORNL for the further development required for a remote landfill survey. The robot was modified extensively, equipped with environmental sensors, and used to demonstrate an automated remote survey of Solid Waste Storage Area No. 3 (SWSA 3) at ORNL on Tuesday, September 18, 1990. Burial trenches in this area containing contaminated materials were covered with soil nearly twenty years ago. This paper describes the SRIP testbed and work performed in FY 1990 to demonstrate a semiautonomous landfill survey at ORNL. 5 refs

  15. Creative thinking of design and redesign on SEAT aircraft cabin testbed: a case study

    NARCIS (Netherlands)

    Tan, C.F.; Chen, W.; Rauterberg, G.W.M.

    2009-01-01

    this paper, the intuition approach in the design and redesign of the environmental friendly innovative aircraft cabin simulator is presented.. The aircraft cabin simulator is a testbed that used for European Project SEAT (Smart tEchnologies for Stress free Air Travel). The SEAT project aims to

  16. Nuclear Instrumentation and Control Cyber Testbed Considerations – Lessons Learned

    Energy Technology Data Exchange (ETDEWEB)

    Jonathan Gray; Robert Anderson; Julio G. Rodriguez; Cheol-Kwon Lee

    2014-08-01

    Abstract: Identifying and understanding digital instrumentation and control (I&C) cyber vulnerabilities within nuclear power plants and other nuclear facilities, is critical if nation states desire to operate nuclear facilities safely, reliably, and securely. In order to demonstrate objective evidence that cyber vulnerabilities have been adequately identified and mitigated, a testbed representing a facility’s critical nuclear equipment must be replicated. Idaho National Laboratory (INL) has built and operated similar testbeds for common critical infrastructure I&C for over ten years. This experience developing, operating, and maintaining an I&C testbed in support of research identifying cyber vulnerabilities has led the Korean Atomic Energy Research Institute of the Republic of Korea to solicit the experiences of INL to help mitigate problems early in the design, development, operation, and maintenance of a similar testbed. The following information will discuss I&C testbed lessons learned and the impact of these experiences to KAERI.

  17. The OGC Innovation Program Testbeds - Advancing Architectures for Earth and Systems

    Science.gov (United States)

    Bermudez, L. E.; Percivall, G.; Simonis, I.; Serich, S.

    2017-12-01

    The OGC Innovation Program provides a collaborative agile process for solving challenging science problems and advancing new technologies. Since 1999, 100 initiatives have taken place, from multi-million dollar testbeds to small interoperability experiments. During these initiatives, sponsors and technology implementers (including academia and private sector) come together to solve problems, produce prototypes, develop demonstrations, provide best practices, and advance the future of standards. This presentation will provide the latest system architectures that can be used for Earth and space systems as a result of the OGC Testbed 13, including the following components: Elastic cloud autoscaler for Earth Observations (EO) using a WPS in an ESGF hybrid climate data research platform. Accessibility of climate data for the scientist and non-scientist users via on demand models wrapped in WPS. Standards descriptions for containerize applications to discover processes on the cloud, including using linked data, a WPS extension for hybrid clouds and linking to hybrid big data stores. OpenID and OAuth to secure OGC Services with built-in Attribute Based Access Control (ABAC) infrastructures leveraging GeoDRM patterns. Publishing and access of vector tiles, including use of compression and attribute options reusing patterns from WMS, WMTS and WFS. Servers providing 3D Tiles and streaming of data, including Indexed 3d Scene Layer (I3S), CityGML and Common DataBase (CDB). Asynchronous Services with advanced pushed notifications strategies, with a filter language instead of simple topic subscriptions, that can be use across OGC services. Testbed 14 will continue advancing topics like Big Data, security, and streaming, as well as making easier to use OGC services (e.g. RESTful APIs). The Call for Participation will be issued in December and responses are due on mid January 2018.

  18. Dr. Tulga Ersal at NSF Workshop Accessible Remote Testbeds ART'15

    Science.gov (United States)

    Event Archives Dr. Tulga Ersal at NSF Workshop Accessible Remote Testbeds ART'15 On November 12th, Dr Workshop on Accessible Remote Testbeds (ART'15) at Georgia Tech. From the event website: The rationale behind the ART'15 workshop is that remote-access testbeds could, if done right, significantly change how

  19. Vacuum Nuller Testbed Performance, Characterization and Null Control

    Science.gov (United States)

    Lyon, R. G.; Clampin, M.; Petrone, P.; Mallik, U.; Madison, T.; Bolcar, M.; Noecker, C.; Kendrick, S.; Helmbrecht, M. A.

    2011-01-01

    The Visible Nulling Coronagraph (VNC) can detect and characterize exoplanets with filled, segmented and sparse aperture telescopes, thereby spanning the choice of future internal coronagraph exoplanet missions. NASA/Goddard Space Flight Center (GSFC) has developed a Vacuum Nuller Testbed (VNT) to advance this approach, and assess and advance technologies needed to realize a VNC as a flight instrument. The VNT is an ultra-stable testbed operating at 15 Hz in vacuum. It consists of a MachZehnder nulling interferometer; modified with a "W" configuration to accommodate a hexpacked MEMS based deformable mirror (DM), coherent fiber bundle and achromatic phase shifters. The 2-output channels are imaged with a vacuum photon counting camera and conventional camera. Error-sensing and feedback to DM and delay line with control algorithms are implemented in a real-time architecture. The inherent advantage of the VNC is that it is its own interferometer and directly controls its errors by exploiting images from bright and dark channels simultaneously. Conservation of energy requires the sum total of the photon counts be conserved independent of the VNC state. Thus sensing and control bandwidth is limited by the target stars throughput, with the net effect that the higher bandwidth offloads stressing stability tolerances within the telescope. We report our recent progress with the VNT towards achieving an incremental sequence of contrast milestones of 10(exp 8) , 10(exp 9) and 10(exp 10) respectively at inner working angles approaching 2A/D. Discussed will be the optics, lab results, technologies, and null control. Shown will be evidence that the milestones have been achieved.

  20. SSERVI Analog Regolith Simulant Testbed Facility

    Science.gov (United States)

    Minafra, J.; Schmidt, G. K.

    2016-12-01

    SSERVI's goals include supporting planetary researchers within NASA, other government agencies; private sector and hardware developers; competitors in focused prize design competitions; and academic sector researchers. The SSERVI Analog Regolith Simulant Testbed provides opportunities for research scientists and engineers to study the effects of regolith analog testbed research in the planetary exploration field. This capability is essential to help to understand the basic effects of continued long-term exposure to a simulated analog test environment. The current facility houses approximately eight tons of JSC-1A lunar regolith simulant in a test bin consisting of a 4 meter by 4 meter area. SSERVI provides a bridge between several groups, joining together researchers from: 1) scientific and exploration communities, 2) multiple disciplines across a wide range of planetary sciences, and 3) domestic and international communities and partnerships. This testbed provides a means of consolidating the tasks of acquisition, storage and safety mitigation in handling large quantities of regolith simulant Facility hardware and environment testing scenarios include, but are not limited to the following; Lunar surface mobility, Dust exposure and mitigation, Regolith handling and excavation, Solar-like illumination, Lunar surface compaction profile, Lofted dust, Mechanical properties of lunar regolith, and Surface features (i.e. grades and rocks) Numerous benefits vary from easy access to a controlled analog regolith simulant testbed, and planetary exploration activities at NASA Research Park, to academia and expanded commercial opportunities in California's Silicon Valley, as well as public outreach and education opportunities.

  1. Report of the Interagency Optical Network Testbeds Workshop 2 September 12-14, 2006 NASA Ames Research Center

    Energy Technology Data Exchange (ETDEWEB)

    Joe Mambretti Richard desJardins

    2006-05-01

    A new generation of optical networking services and technologies is rapidly changing the world of communications. National and international networks are implementing optical services to supplement traditional packet routed services. On September 12-14, 2005, the Optical Network Testbeds Workshop 2 (ONT2), an invitation-only forum hosted by the NASA Research and Engineering Network (NREN) and co-sponsored by the Department of Energy (DOE), was held at NASA Ames Research Center in Mountain View, California. The aim of ONT2 was to help the Federal Large Scale Networking Coordination Group (LSN) and its Joint Engineering Team (JET) to coordinate testbed and network roadmaps describing agency and partner organization views and activities for moving toward next generation communication services based on leading edge optical networks in the 3-5 year time frame. ONT2 was conceived and organized as a sequel to the first Optical Network Testbeds Workshop (ONT1, August 2004, www.nren.nasa.gov/workshop7). ONT1 resulted in a series of recommendations to LSN. ONT2 was designed to move beyond recommendations to agree on a series of “actionable objectives” that would proactively help federal and partner optical network testbeds and advanced research and education (R&E) networks to begin incorporating technologies and services representing the next generation of advanced optical networks in the next 1-3 years. Participants in ONT2 included representatives from innovative prototype networks (Panel A), basic optical network research testbeds (Panel B), and production R&D networks (Panels C and D), including “JETnets,” selected regional optical networks (RONs), international R&D networks, commercial network technology and service providers (Panel F), and senior engineering and R&D managers from LSN agencies and partner organizations. The overall goal of ONT2 was to identify and coordinate short and medium term activities and milestones for researching, developing, identifying

  2. Real-time remote diagnostic monitoring test-bed in JET

    International Nuclear Information System (INIS)

    Castro, R.; Kneupner, K.; Vega, J.; De Arcas, G.; Lopez, J.M.; Purahoo, K.; Murari, A.; Fonseca, A.; Pereira, A.; Portas, A.

    2010-01-01

    Based on the remote experimentation concept oriented to long pulse shots, a test-bed system has been implemented in JET. Its main functionality is the real-time monitoring, on remote, of a reflectometer diagnostic, to visualize different data outputs and status information. The architecture of the system is formed by: the data generator components, the data distribution system, an access control service, and the client applications. In the test-bed there is one data generator, which is the acquisition equipment associated with the reflectometer diagnostic that generates data and status information. The data distribution system has been implemented using a publishing-subscribing technology that receives data from data generators and redistributes them to client applications. And finally, for monitoring, a client application based on JAVA Web Start technology has been used. There are three interesting results from this project. The first one is the analysis of different aspects (data formats, data frame rate, data resolution, etc) related with remote real-time diagnostic monitoring oriented to long pulse experiments. The second one is the definition and implementation of an architecture, flexible enough to be applied to different types of data generated from other diagnostics, and that fits with remote access requirements. Finally, the third result is a secure system, taking into account internal networks and firewalls aspects of JET, and securing the access from remote users. For this last issue, PAPI technology has been used, enabling access control based on user attributes, enabling mobile users to monitor diagnostics in real-time, and enabling the integration of this service into the EFDA Federation (Castro et al., 2008 ).

  3. Real-time remote diagnostic monitoring test-bed in JET

    Energy Technology Data Exchange (ETDEWEB)

    Castro, R., E-mail: rodrigo.castro@ciemat.e [Asociacion EURATOM/CIEMAT para Fusion, Madrid (Spain); Kneupner, K. [EURATOM/UKAEA Fusion Association, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); Vega, J. [Asociacion EURATOM/CIEMAT para Fusion, Madrid (Spain); De Arcas, G.; Lopez, J.M. [Universidad Politecnica de Madrid, Grupo I2A2, Madrid (Spain); Purahoo, K. [EURATOM/UKAEA Fusion Association, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); Murari, A. [Associazione EURATOM-ENEA per la Fusione, Consorzio RFX, 4-35127 Padova (Italy); Fonseca, A. [Associacao EURATOM/IST, Lisbon (Portugal); Pereira, A.; Portas, A. [Asociacion EURATOM/CIEMAT para Fusion, Madrid (Spain)

    2010-07-15

    Based on the remote experimentation concept oriented to long pulse shots, a test-bed system has been implemented in JET. Its main functionality is the real-time monitoring, on remote, of a reflectometer diagnostic, to visualize different data outputs and status information. The architecture of the system is formed by: the data generator components, the data distribution system, an access control service, and the client applications. In the test-bed there is one data generator, which is the acquisition equipment associated with the reflectometer diagnostic that generates data and status information. The data distribution system has been implemented using a publishing-subscribing technology that receives data from data generators and redistributes them to client applications. And finally, for monitoring, a client application based on JAVA Web Start technology has been used. There are three interesting results from this project. The first one is the analysis of different aspects (data formats, data frame rate, data resolution, etc) related with remote real-time diagnostic monitoring oriented to long pulse experiments. The second one is the definition and implementation of an architecture, flexible enough to be applied to different types of data generated from other diagnostics, and that fits with remote access requirements. Finally, the third result is a secure system, taking into account internal networks and firewalls aspects of JET, and securing the access from remote users. For this last issue, PAPI technology has been used, enabling access control based on user attributes, enabling mobile users to monitor diagnostics in real-time, and enabling the integration of this service into the EFDA Federation (Castro et al., 2008 ).

  4. Implementation of standard testbeds for numerical relativity

    Energy Technology Data Exchange (ETDEWEB)

    Babiuc, M C [Department of Physics and Physical Science, Marshall University, Huntington, WV 25755 (United States); Husa, S [Friedrich Schiller University Jena, Max-Wien-Platz 1, 07743 Jena (Germany); Alic, D [Department of Physics, University of the Balearic Islands, Cra Valldemossa km 7.5, 07122 Palma de Mallorca (Spain); Hinder, I [Center for Gravitational Wave Physics, Pennsylvania State University, University Park, PA 16802 (United States); Lechner, C [Weierstrass Institute for Applied Analysis and Stochastics (WIAS), Mohrenstrasse 39, 10117 Berlin (Germany); Schnetter, E [Center for Computation and Technology, 216 Johnston Hall, Louisiana State University, Baton Rouge, LA 70803 (United States); Szilagyi, B; Dorband, N; Pollney, D; Winicour, J [Max-Planck-Institut fuer Gravitationsphysik (Albert-Einstein-Institut), Am Muehlenberg 1, 14076 Golm (Germany); Zlochower, Y [Center for Computational Relativity and Gravitation, School of Mathematical Sciences, Rochester Institute of Technology, 78 Lomb Memorial Drive, Rochester, New York 14623 (United States)

    2008-06-21

    We discuss results that have been obtained from the implementation of the initial round of testbeds for numerical relativity which was proposed in the first paper of the Apples with Apples Alliance. We present benchmark results for various codes which provide templates for analyzing the testbeds and to draw conclusions about various features of the codes. This allows us to sharpen the initial test specifications, design a new test and add theoretical insight.

  5. Evaluation of Unmanned Aircraft Systems (UAS) for Weather and Climate using the Multi-testbed approach

    Science.gov (United States)

    Baker, B.; Lee, T.; Buban, M.; Dumas, E. J.

    2017-12-01

    Evaluation of Unmanned Aircraft Systems (UAS) for Weather and Climate using the Multi-testbed approachC. Bruce Baker1, Ed Dumas1,2, Temple Lee1,2, Michael Buban1,21NOAA ARL, Atmospheric Turbulence and Diffusion Division, Oak Ridge, TN2Oak Ridge Associated Universities, Oak Ridge, TN The development of a small Unmanned Aerial System (sUAS) testbeds that can be used to validate, integrate, calibrate and evaluate new technology and sensors for routine boundary layer research, validation of operational weather models, improvement of model parameterizations, and recording observations within high-impact storms is important for understanding the importance and impact of using sUAS's routinely as a new observing platform. The goal of the multi-testbed approach is to build a robust set of protocols to assess the cost and operational feasibility of unmanned observations for routine applications using various combinations of sUAS aircraft and sensors in different locations and field experiments. All of these observational testbeds serve different community needs, but they also use a diverse suite of methodologies for calibration and evaluation of different sensors and platforms for severe weather and boundary layer research. The primary focus will be to evaluate meteorological sensor payloads to measure thermodynamic parameters and define surface characteristics with visible, IR, and multi-spectral cameras. This evaluation will lead to recommendations for sensor payloads for VTOL and fixed-wing sUAS.

  6. Distributed computing testbed for a remote experimental environment

    International Nuclear Information System (INIS)

    Butner, D.N.; Casper, T.A.; Howard, B.C.; Henline, P.A.; Davis, S.L.; Barnes, D.

    1995-01-01

    Collaboration is increasing as physics research becomes concentrated on a few large, expensive facilities, particularly in magnetic fusion energy research, with national and international participation. These facilities are designed for steady state operation and interactive, real-time experimentation. We are developing tools to provide for the establishment of geographically distant centers for interactive operations; such centers would allow scientists to participate in experiments from their home institutions. A testbed is being developed for a Remote Experimental Environment (REE), a ''Collaboratory.'' The testbed will be used to evaluate the ability of a remotely located group of scientists to conduct research on the DIII-D Tokamak at General Atomics. The REE will serve as a testing environment for advanced control and collaboration concepts applicable to future experiments. Process-to-process communications over high speed wide area networks provide real-time synchronization and exchange of data among multiple computer networks, while the ability to conduct research is enhanced by adding audio/video communication capabilities. The Open Software Foundation's Distributed Computing Environment is being used to test concepts in distributed control, security, naming, remote procedure calls and distributed file access using the Distributed File Services. We are exploring the technology and sociology of remotely participating in the operation of a large scale experimental facility

  7. Using the ISS as a testbed to prepare for the next generation of space-based telescopes

    Science.gov (United States)

    Postman, Marc; Sparks, William B.; Liu, Fengchuan; Ess, Kim; Green, Joseph; Carpenter, Kenneth G.; Thronson, Harley; Goullioud, Renaud

    2012-09-01

    The infrastructure available on the ISS provides a unique opportunity to develop the technologies necessary to assemble large space telescopes. Assembling telescopes in space is a game-changing approach to space astronomy. Using the ISS as a testbed enables a concentration of resources on reducing the technical risks associated with integrating the technologies, such as laser metrology and wavefront sensing and control (WFS&C), with the robotic assembly of major components including very light-weight primary and secondary mirrors and the alignment of the optical elements to a diffraction-limited optical system in space. The capability to assemble the optical system and remove and replace components via the existing ISS robotic systems such as the Special Purpose Dexterous Manipulator (SPDM), or by the ISS Flight Crew, allows for future experimentation as well as repair if necessary. In 2015, first light will be obtained by the Optical Testbed and Integration on ISS eXperiment (OpTIIX), a small 1.5-meter optical telescope assembled on the ISS. The primary objectives of OpTIIX include demonstrating telescope assembly technologies and end-to-end optical system technologies that will advance future large optical telescopes.

  8. Tower-Based Greenhouse Gas Measurement Network Design---The National Institute of Standards and Technology North East Corridor Testbed.

    Science.gov (United States)

    Lopez-Coto, Israel; Ghosh, Subhomoy; Prasad, Kuldeep; Whetstone, James

    2017-09-01

    The North-East Corridor (NEC) Testbed project is the 3rd of three NIST (National Institute of Standards and Technology) greenhouse gas emissions testbeds designed to advance greenhouse gas measurements capabilities. A design approach for a dense observing network combined with atmospheric inversion methodologies is described. The Advanced Research Weather Research and Forecasting Model with the Stochastic Time-Inverted Lagrangian Transport model were used to derive the sensitivity of hypothetical observations to surface greenhouse gas emissions (footprints). Unlike other network design algorithms, an iterative selection algorithm, based on a k -means clustering method, was applied to minimize the similarities between the temporal response of each site and maximize sensitivity to the urban emissions contribution. Once a network was selected, a synthetic inversion Bayesian Kalman filter was used to evaluate observing system performance. We present the performances of various measurement network configurations consisting of differing numbers of towers and tower locations. Results show that an overly spatially compact network has decreased spatial coverage, as the spatial information added per site is then suboptimal as to cover the largest possible area, whilst networks dispersed too broadly lose capabilities of constraining flux uncertainties. In addition, we explore the possibility of using a very high density network of lower cost and performance sensors characterized by larger uncertainties and temporal drift. Analysis convergence is faster with a large number of observing locations, reducing the response time of the filter. Larger uncertainties in the observations implies lower values of uncertainty reduction. On the other hand, the drift is a bias in nature, which is added to the observations and, therefore, biasing the retrieved fluxes.

  9. CAT/RF Simulation Lessons Learned

    Science.gov (United States)

    2003-06-11

    IVSS-2003-MAS-7 CAT /RF Simulation Lessons Learned Christopher Mocnik Vetronics Technology Area, RDECOM TARDEC Tim Lee DCS Corporation...developed a re- configurable Unmanned Ground Vehicle (UGV) simulation for the Crew integration and Automation Test bed ( CAT ) and Robotics Follower (RF...Advanced Technology Demonstration (ATD) experiments. This simulation was developed as a component of the Embedded Simulation System (ESS) of the CAT

  10. Autonomous power expert fault diagnostic system for Space Station Freedom electrical power system testbed

    Science.gov (United States)

    Truong, Long V.; Walters, Jerry L.; Roth, Mary Ellen; Quinn, Todd M.; Krawczonek, Walter M.

    1990-01-01

    The goal of the Autonomous Power System (APS) program is to develop and apply intelligent problem solving and control to the Space Station Freedom Electrical Power System (SSF/EPS) testbed being developed and demonstrated at NASA Lewis Research Center. The objectives of the program are to establish artificial intelligence technology paths, to craft knowledge-based tools with advanced human-operator interfaces for power systems, and to interface and integrate knowledge-based systems with conventional controllers. The Autonomous Power EXpert (APEX) portion of the APS program will integrate a knowledge-based fault diagnostic system and a power resource planner-scheduler. Then APEX will interface on-line with the SSF/EPS testbed and its Power Management Controller (PMC). The key tasks include establishing knowledge bases for system diagnostics, fault detection and isolation analysis, on-line information accessing through PMC, enhanced data management, and multiple-level, object-oriented operator displays. The first prototype of the diagnostic expert system for fault detection and isolation has been developed. The knowledge bases and the rule-based model that were developed for the Power Distribution Control Unit subsystem of the SSF/EPS testbed are described. A corresponding troubleshooting technique is also described.

  11. High Energy Nuclear Database: A Testbed for Nuclear Data Information Technology

    International Nuclear Information System (INIS)

    Brown, D A; Vogt, R; Beck, B; Pruet, J

    2007-01-01

    We describe the development of an on-line high-energy heavy-ion experimental database. When completed, the database will be searchable and cross-indexed with relevant publications, including published detector descriptions. While this effort is relatively new, it will eventually contain all published data from older heavy-ion programs as well as published data from current and future facilities. These data include all measured observables in proton-proton, proton-nucleus and nucleus-nucleus collisions. Once in general use, this database will have tremendous scientific payoff as it makes systematic studies easier and allows simpler benchmarking of theoretical models for a broad range of experiments. Furthermore, there is a growing need for compilations of high-energy nuclear data for applications including stockpile stewardship, technology development for inertial confinement fusion, target and source development for upcoming facilities such as the International Linear Collider and homeland security. This database is part of a larger proposal that includes the production of periodic data evaluations and topical reviews. These reviews would provide an alternative and impartial mechanism to resolve discrepancies between published data from rival experiments and between theory and experiment. Since this database will be a community resource, it requires the high-energy nuclear physics community's financial and manpower support. This project serves as a testbed for the further development of an object-oriented nuclear data format and database system. By using ''off-the-shelf'' software tools and techniques, the system is simple, robust, and extensible. Eventually we envision a ''Grand Unified Nuclear Format'' encapsulating data types used in the ENSDF, ENDF/B, EXFOR, NSR and other formats, including processed data formats

  12. M1 mirror print-through investigation and performance on the thermo-opto-mechanical testbed for the Space Interferometry Mission

    Science.gov (United States)

    Feria, V. Alfonso; Lam, Jonathan; Van Buren, Dave

    2006-06-01

    SIM PlanetQuest (SIM) is a large (9-meter baseline) space-borne optical interferometer that will determine the position and distance of stars to high accuracy. With microarcsecond measurements SIM will probe nearby stars for Earth-sized planets. To achieve this precision, SIM requires very tight manufacturing tolerances and high stability of optical components. To reduce technical risks, the SIM project developed an integrated thermal, mechanical and optical testbed (TOM3) to allow predictions of the system performance at the required high precision. The TOM3 testbed used full-scale brassboard optical components and picometer-class metrology to reach the SIM target performance levels. During the testbed integration and after one of the testbed mirrors, M1, was bonded into its mount, some surface distortion dimples that exceeded the optical specification were discovered. A detailed finite element model was used to analyze different load cases to try to determine the source of the M1 surface deformations. The same model was also used to compare with actual deformations due to varied thermal conditions on the TOM3 testbed. This paper presents the studies carried out to determine the source of the surface distortions on the M1 mirror as well as comparison and model validation during testing. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  13. A Novel UAV Electric Propulsion Testbed for Diagnostics and Prognostics

    Science.gov (United States)

    Gorospe, George E., Jr.; Kulkarni, Chetan S.

    2017-01-01

    This paper presents a novel hardware-in-the-loop (HIL) testbed for systems level diagnostics and prognostics of an electric propulsion system used in UAVs (unmanned aerial vehicle). Referencing the all electric, Edge 540T aircraft used in science and research by NASA Langley Flight Research Center, the HIL testbed includes an identical propulsion system, consisting of motors, speed controllers and batteries. Isolated under a controlled laboratory environment, the propulsion system has been instrumented for advanced diagnostics and prognostics. To produce flight like loading on the system a slave motor is coupled to the motor under test (MUT) and provides variable mechanical resistance, and the capability of introducing nondestructive mechanical wear-like frictional loads on the system. This testbed enables the verification of mathematical models of each component of the propulsion system, the repeatable generation of flight-like loads on the system for fault analysis, test-to-failure scenarios, and the development of advanced system level diagnostics and prognostics methods. The capabilities of the testbed are extended through the integration of a LabVIEW-based client for the Live Virtual Constructive Distributed Environment (LVCDC) Gateway which enables both the publishing of generated data for remotely located observers and prognosers and the synchronization the testbed propulsion system with vehicles in the air. The developed HIL testbed gives researchers easy access to a scientifically relevant portion of the aircraft without the overhead and dangers encountered during actual flight.

  14. Smart Antenna UKM Testbed for Digital Beamforming System

    Directory of Open Access Journals (Sweden)

    2009-03-01

    Full Text Available A new design of smart antenna testbed developed at UKM for digital beamforming purpose is proposed. The smart antenna UKM testbed developed based on modular design employing two novel designs of L-probe fed inverted hybrid E-H (LIEH array antenna and software reconfigurable digital beamforming system (DBS. The antenna is developed based on using the novel LIEH microstrip patch element design arranged into 4×1 uniform linear array antenna. An interface board is designed to interface to the ADC board with the RF front-end receiver. The modular concept of the system provides the capability to test the antenna hardware, beamforming unit, and beamforming algorithm in an independent manner, thus allowing the smart antenna system to be developed and tested in parallel, hence reduces the design time. The DBS was developed using a high-performance TMS320C6711TM floating-point DSP board and a 4-channel RF front-end receiver developed in-house. An interface board is designed to interface to the ADC board with the RF front-end receiver. A four-element receiving array testbed at 1.88–2.22 GHz frequency is constructed, and digital beamforming on this testbed is successfully demonstrated.

  15. Open-Source Based Testbed for Multioperator 4G/5G Infrastructure Sharing in Virtual Environments

    Directory of Open Access Journals (Sweden)

    Ricardo Marco Alaez

    2017-01-01

    Full Text Available Fourth-Generation (4G mobile networks are based on Long-Term Evolution (LTE technologies and are being deployed worldwide, while research on further evolution towards the Fifth Generation (5G has been recently initiated. 5G will be featured with advanced network infrastructure sharing capabilities among different operators. Therefore, an open-source implementation of 4G/5G networks with this capability is crucial to enable early research in this area. The main contribution of this paper is the design and implementation of such a 4G/5G open-source testbed to investigate multioperator infrastructure sharing capabilities executed in virtual architectures. The proposed design and implementation enable the virtualization and sharing of some of the components of the LTE architecture. A testbed has been implemented and validated with intensive empirical experiments conducted to validate the suitability of virtualizing LTE components in virtual infrastructures (i.e., infrastructures with multitenancy sharing capabilities. The impact of the proposed technologies can lead to significant saving of both capital and operational costs for mobile telecommunication operators.

  16. SSERVI Analog Regolith Simulant Testbed Facility

    Science.gov (United States)

    Minafra, Joseph; Schmidt, Gregory; Bailey, Brad; Gibbs, Kristina

    2016-10-01

    The Solar System Exploration Research Virtual Institute (SSERVI) at NASA's Ames Research Center in California's Silicon Valley was founded in 2013 to act as a virtual institute that provides interdisciplinary research centered on the goals of its supporting directorates: NASA Science Mission Directorate (SMD) and the Human Exploration & Operations Mission Directorate (HEOMD).Primary research goals of the Institute revolve around the integration of science and exploration to gain knowledge required for the future of human space exploration beyond low Earth orbit. SSERVI intends to leverage existing JSC1A regolith simulant resources into the creation of a regolith simulant testbed facility. The purpose of this testbed concept is to provide the planetary exploration community with a readily available capability to test hardware and conduct research in a large simulant environment.SSERVI's goals include supporting planetary researchers within NASA, other government agencies; private sector and hardware developers; competitors in focused prize design competitions; and academic sector researchers.SSERVI provides opportunities for research scientists and engineers to study the effects of regolith analog testbed research in the planetary exploration field. This capability is essential to help to understand the basic effects of continued long-term exposure to a simulated analog test environment.The current facility houses approximately eight tons of JSC-1A lunar regolith simulant in a test bin consisting of a 4 meter by 4 meter area, including dust mitigation and safety oversight.Facility hardware and environment testing scenarios could include, Lunar surface mobility, Dust exposure and mitigation, Regolith handling and excavation, Solar-like illumination, Lunar surface compaction profile, Lofted dust, Mechanical properties of lunar regolith, Surface features (i.e. grades and rocks)Numerous benefits vary from easy access to a controlled analog regolith simulant testbed, and

  17. Wavefront control performance modeling with WFIRST shaped pupil coronagraph testbed

    Science.gov (United States)

    Zhou, Hanying; Nemati, Bijian; Krist, John; Cady, Eric; Kern, Brian; Poberezhskiy, Ilya

    2017-09-01

    NASA's WFIRST mission includes a coronagraph instrument (CGI) for direct imaging of exoplanets. Significant improvement in CGI model fidelity has been made recently, alongside a testbed high contrast demonstration in a simulated dynamic environment at JPL. We present our modeling method and results of comparisons to testbed's high order wavefront correction performance for the shaped pupil coronagraph. Agreement between model prediction and testbed result at better than a factor of 2 has been consistently achieved in raw contrast (contrast floor, chromaticity, and convergence), and with that comes good agreement in contrast sensitivity to wavefront perturbations and mask lateral shear.

  18. The CMS Integration Grid Testbed

    CERN Document Server

    Graham, G E; Aziz, Shafqat; Bauerdick, L.A.T.; Ernst, Michael; Kaiser, Joseph; Ratnikova, Natalia; Wenzel, Hans; Wu, Yu-jun; Aslakson, Erik; Bunn, Julian; Iqbal, Saima; Legrand, Iosif; Newman, Harvey; Singh, Suresh; Steenberg, Conrad; Branson, James; Fisk, Ian; Letts, James; Arbree, Adam; Avery, Paul; Bourilkov, Dimitri; Cavanaugh, Richard; Rodriguez, Jorge Luis; Kategari, Suchindra; Couvares, Peter; DeSmet, Alan; Livny, Miron; Roy, Alain; Tannenbaum, Todd; Graham, Gregory E.; Aziz, Shafqat; Ernst, Michael; Kaiser, Joseph; Ratnikova, Natalia; Wenzel, Hans; Wu, Yujun; Aslakson, Erik; Bunn, Julian; Iqbal, Saima; Legrand, Iosif; Newman, Harvey; Singh, Suresh; Steenberg, Conrad; Branson, James; Fisk, Ian; Letts, James; Arbree, Adam; Avery, Paul; Bourilkov, Dimitri; Cavanaugh, Richard; Rodriguez, Jorge; Kategari, Suchindra; Couvares, Peter; Smet, Alan De; Livny, Miron; Roy, Alain; Tannenbaum, Todd

    2003-01-01

    The CMS Integration Grid Testbed (IGT) comprises USCMS Tier-1 and Tier-2 hardware at the following sites: the California Institute of Technology, Fermi National Accelerator Laboratory, the University of California at San Diego, and the University of Florida at Gainesville. The IGT runs jobs using the Globus Toolkit with a DAGMan and Condor-G front end. The virtual organization (VO) is managed using VO management scripts from the European Data Grid (EDG). Gridwide monitoring is accomplished using local tools such as Ganglia interfaced into the Globus Metadata Directory Service (MDS) and the agent based Mona Lisa. Domain specific software is packaged and installed using the Distrib ution After Release (DAR) tool of CMS, while middleware under the auspices of the Virtual Data Toolkit (VDT) is distributed using Pacman. During a continuo us two month span in Fall of 2002, over 1 million official CMS GEANT based Monte Carlo events were generated and returned to CERN for analysis while being demonstrated at SC2002. ...

  19. Carrier Plus: A sensor payload for Living With a Star Space Environment Testbed (LWS/SET)

    Science.gov (United States)

    Marshall, Cheryl J.; Moss, Steven; Howard, Regan; LaBel, Kenneth A.; Grycewicz, Tom; Barth, Janet L.; Brewer, Dana

    2003-01-01

    The Defense Threat Reduction Agency (DTR4) and National Aeronautics and Space Administration (NASA) Goddard Space Flight Center are collaborating to develop the Carrier Plus sensor experiment platform as a capability of the Space Environments Testbed (SET). The Space Environment Testbed (SET) provides flight opportunities for technology experiments as part of NASA's Living With a Star (LWS) program. The Carrier Plus will provide new capability to characterize sensor technologies such as state-of-the-art visible focal plane arrays (FPAs) in a natural space radiation environment. The technical objectives include on-orbit validation of recently developed FPA technologies and performance prediction methodologies, as well as characterization of the FPA radiation response to total ionizing dose damage, displacement damage and transients. It is expected that the sensor experiment will carry 4-6 FPAs and associated radiation correlative environment monitors (CEMs) for a 2006-2007 launch. Sensor technology candidates may include n- and p-charge coupled devices (CCDs), active pixel sensors (APS), and hybrid CMOS arrays. The presentation will describe the Carrier Plus goals and objectives, as well as provide details about the architecture and design. More information on the LWS program can be found at http://lws.gsfc.nasa.gov/. Business announcements for LWS/SET and program briefings are posted at http://lws-set.gsfc.nasa.gov

  20. High energy nuclear database: a test-bed for nuclear data information technology

    International Nuclear Information System (INIS)

    Brown, D.A.; Vogt, R.; Beck, B.; Pruet, J.; Vogt, R.

    2008-01-01

    We describe the development of an on-line high-energy heavy-ion experimental database. When completed, the database will be searchable and cross-indexed with relevant publications, including published detector descriptions. While this effort is relatively new, it will eventually contain all published data from older heavy-ion programs as well as published data from current and future facilities. These data include all measured observables in proton-proton, proton-nucleus and nucleus-nucleus collisions. Once in general use, this database will have tremendous scientific payoff as it makes systematic studies easier and allows simpler benchmarking of theoretical models for a broad range of experiments. Furthermore, there is a growing need for compilations of high-energy nuclear data for applications including stockpile stewardship, technology development for inertial confinement fusion, target and source development for upcoming facilities such as the International Linear Collider and homeland security. This database is part of a larger proposal that includes the production of periodic data evaluations and topical reviews. These reviews would provide an alternative and impartial mechanism to resolve discrepancies between published data from rival experiments and between theory and experiment. Since this database will be a community resource, it requires the high-energy nuclear physics community's financial and manpower support. This project serves as a test-bed for the further development of an object-oriented nuclear data format and database system. By using 'off-the-shelf' software tools and techniques, the system is simple, robust, and extensible. Eventually we envision a 'Grand Unified Nuclear Format' encapsulating data types used in the ENSDF, Endf/B, EXFOR, NSR and other formats, including processed data formats. (authors)

  1. Towards standard testbeds for numerical relativity

    International Nuclear Information System (INIS)

    Alcubierre, Miguel; Allen, Gabrielle; Bona, Carles; Fiske, David; Goodale, Tom; Guzman, F Siddhartha; Hawke, Ian; Hawley, Scott H; Husa, Sascha; Koppitz, Michael; Lechner, Christiane; Pollney, Denis; Rideout, David; Salgado, Marcelo; Schnetter, Erik; Seidel, Edward; Shinkai, Hisa-aki; Shoemaker, Deirdre; Szilagyi, Bela; Takahashi, Ryoji; Winicour, Jeff

    2004-01-01

    In recent years, many different numerical evolution schemes for Einstein's equations have been proposed to address stability and accuracy problems that have plagued the numerical relativity community for decades. Some of these approaches have been tested on different spacetimes, and conclusions have been drawn based on these tests. However, differences in results originate from many sources, including not only formulations of the equations, but also gauges, boundary conditions, numerical methods and so on. We propose to build up a suite of standardized testbeds for comparing approaches to the numerical evolution of Einstein's equations that are designed to both probe their strengths and weaknesses and to separate out different effects, and their causes, seen in the results. We discuss general design principles of suitable testbeds, and we present an initial round of simple tests with periodic boundary conditions. This is a pivotal first step towards building a suite of testbeds to serve the numerical relativists and researchers from related fields who wish to assess the capabilities of numerical relativity codes. We present some examples of how these tests can be quite effective in revealing various limitations of different approaches, and illustrating their differences. The tests are presently limited to vacuum spacetimes, can be run on modest computational resources and can be used with many different approaches used in the relativity community

  2. Towards standard testbeds for numerical relativity

    Energy Technology Data Exchange (ETDEWEB)

    Alcubierre, Miguel [Inst. de Ciencias Nucleares, Univ. Nacional Autonoma de Mexico, Apartado Postal 70-543, Mexico Distrito Federal 04510 (Mexico); Allen, Gabrielle; Goodale, Tom; Guzman, F Siddhartha; Hawke, Ian; Husa, Sascha; Koppitz, Michael; Lechner, Christiane; Pollney, Denis; Rideout, David [Max-Planck-Inst. fuer Gravitationsphysik, Albert-Einstein-Institut, 14476 Golm (Germany); Bona, Carles [Departament de Fisica, Universitat de les Illes Balears, Ctra de Valldemossa km 7.5, 07122 Palma de Mallorca (Spain); Fiske, David [Dept. of Physics, Univ. of Maryland, College Park, MD 20742-4111 (United States); Hawley, Scott H [Center for Relativity, Univ. of Texas at Austin, Austin, Texas 78712 (United States); Salgado, Marcelo [Inst. de Ciencias Nucleares, Univ. Nacional Autonoma de Mexico, Apartado Postal 70-543, Mexico Distrito Federal 04510 (Mexico); Schnetter, Erik [Inst. fuer Astronomie und Astrophysik, Universitaet Tuebingen, 72076 Tuebingen (Germany); Seidel, Edward [Max-Planck-Inst. fuer Gravitationsphysik, Albert-Einstein-Inst., 14476 Golm (Germany); Shinkai, Hisa-aki [Computational Science Div., Inst. of Physical and Chemical Research (RIKEN), Hirosawa 2-1, Wako, Saitama 351-0198 (Japan); Shoemaker, Deirdre [Center for Radiophysics and Space Research, Cornell Univ., Ithaca, NY 14853 (United States); Szilagyi, Bela [Dept. of Physics and Astronomy, Univ. of Pittsburgh, Pittsburgh, PA 15260 (United States); Takahashi, Ryoji [Theoretical Astrophysics Center, Juliane Maries Vej 30, 2100 Copenhagen, (Denmark); Winicour, Jeff [Max-Planck-Inst. fuer Gravitationsphysik, Albert-Einstein-Institut, 14476 Golm (Germany)

    2004-01-21

    In recent years, many different numerical evolution schemes for Einstein's equations have been proposed to address stability and accuracy problems that have plagued the numerical relativity community for decades. Some of these approaches have been tested on different spacetimes, and conclusions have been drawn based on these tests. However, differences in results originate from many sources, including not only formulations of the equations, but also gauges, boundary conditions, numerical methods and so on. We propose to build up a suite of standardized testbeds for comparing approaches to the numerical evolution of Einstein's equations that are designed to both probe their strengths and weaknesses and to separate out different effects, and their causes, seen in the results. We discuss general design principles of suitable testbeds, and we present an initial round of simple tests with periodic boundary conditions. This is a pivotal first step towards building a suite of testbeds to serve the numerical relativists and researchers from related fields who wish to assess the capabilities of numerical relativity codes. We present some examples of how these tests can be quite effective in revealing various limitations of different approaches, and illustrating their differences. The tests are presently limited to vacuum spacetimes, can be run on modest computational resources and can be used with many different approaches used in the relativity community.

  3. A Testbed For Validating the LHC Controls System Core Before Deployment

    CERN Document Server

    Nguyen Xuan, J

    2011-01-01

    Since the start-up of the LHC, it is crucial to carefully test core controls components before deploying them operationally. The Testbed of the CERN accelerator controls group was developed for this purpose. It contains different hardware (PPC, i386) running various operating systems (Linux and LynxOS) and core software components running on front-ends, communication middleware and client libraries. The Testbed first executes integration tests to verify that the components delivered by individual teams interoperate, and then system tests, which verify high-level, end-user functionality. It also verifies that different versions of components are compatible, which is vital, because not all parts of the operational LHC control system can be upgraded simultaneously. In addition, the Testbed can be used for performance and stress tests. Internally, the Testbed is driven by Atlassian Bamboo, a Continuous Integration server, which builds and deploys automatically new software versions into the Test...

  4. Real-Time Remote Diagnostic Monitoring Test-bed in JET

    Energy Technology Data Exchange (ETDEWEB)

    Castro, R. [Asociation Euratom/CIEMAT para Fusion, Madrid (Spain); Kneupner, K.; Purahoo, K. [EURATOM/UKAEA Fusion Association, Abingdon (United Kingdom); Vega, J.; Pereira, A.; Portas, A. [Association EuratomCIEMAT para Fusion, Madrid (Spain); De Arcas, G.; Lopez, J.M. [Universidad Politecnica de Madrid (Spain); Murari, A. [Consorzio RFX, Padova (Italy); Fonseca, A. [Associacao URATOM/IST, Lisboa (Portugal); Contributors, J.E. [JET-EFDA, Abingdon (United Kingdom)

    2009-07-01

    Based on the remote experimentation concept oriented to long pulse shots, a test-bed system has been implemented in JET. It integrates 2 functionalities. The first one is the real-time monitoring, on remote, of a reflectometer diagnostic, to visualize different data outputs and status information. The second one is the integration of dotJET (Diagnostic Overview Tool for JET), which internally provides at JET an overview about the current diagnostic systems state, in order to monitor, on remote, JET diagnostics status. The architecture of the system is formed by: the data generator components, the data distribution system, an access control service, and the client applications. In the test-bed there are two data generators: the acquisition equipment associated with the reflectometer diagnostic that generates data and status information, and dotJET server that centralize the access to the status information of JET diagnostics. The data distribution system has been implemented using a publishing-subscribing technology that receives data from data generators and redistributes them to client applications. And finally, for monitoring, a client application based on Java Web Start technology, and a dotJET client application have been used. There are 3 interesting results from this project. The first one is the analysis of different aspects (data formats, data frame rate, data resolution, etc) related with remote real-time diagnostic monitoring oriented to long pulse experiments. The second one is the definition and implementation of a flexible enough architecture, to be applied to different types of data generated from other diagnostics, and that fits with remote access requirements; and the third one is to have achieved a secure system, taking into account internal networks and firewalls aspects in JET, and securing the access from remote users. For this last issue, PAPI technology has been used, enabling access control based on user attributes, enabling mobile users to

  5. AMS San Diego Testbed - Calibration Data

    Data.gov (United States)

    Department of Transportation — The data in this repository were collected from the San Diego, California testbed, namely, I-15 from the interchange with SR-78 in the north to the interchange with...

  6. Mounted Smartphones as Measurement and Control Platforms for Motor-Based Laboratory Test-Beds

    Directory of Open Access Journals (Sweden)

    Jared A. Frank

    2016-08-01

    Full Text Available Laboratory education in science and engineering often entails the use of test-beds equipped with costly peripherals for sensing, acquisition, storage, processing, and control of physical behavior. However, costly peripherals are no longer necessary to obtain precise measurements and achieve stable feedback control of test-beds. With smartphones performing diverse sensing and processing tasks, this study examines the feasibility of mounting smartphones directly to test-beds to exploit their embedded hardware and software in the measurement and control of the test-beds. This approach is a first step towards replacing laboratory-grade peripherals with more compact and affordable smartphone-based platforms, whose interactive user interfaces can engender wider participation and engagement from learners. Demonstrative cases are presented in which the sensing, computation, control, and user interaction with three motor-based test-beds are handled by a mounted smartphone. Results of experiments and simulations are used to validate the feasibility of mounted smartphones as measurement and feedback control platforms for motor-based laboratory test-beds, report the measurement precision and closed-loop performance achieved with such platforms, and address challenges in the development of platforms to maintain system stability.

  7. Mounted Smartphones as Measurement and Control Platforms for Motor-Based Laboratory Test-Beds.

    Science.gov (United States)

    Frank, Jared A; Brill, Anthony; Kapila, Vikram

    2016-08-20

    Laboratory education in science and engineering often entails the use of test-beds equipped with costly peripherals for sensing, acquisition, storage, processing, and control of physical behavior. However, costly peripherals are no longer necessary to obtain precise measurements and achieve stable feedback control of test-beds. With smartphones performing diverse sensing and processing tasks, this study examines the feasibility of mounting smartphones directly to test-beds to exploit their embedded hardware and software in the measurement and control of the test-beds. This approach is a first step towards replacing laboratory-grade peripherals with more compact and affordable smartphone-based platforms, whose interactive user interfaces can engender wider participation and engagement from learners. Demonstrative cases are presented in which the sensing, computation, control, and user interaction with three motor-based test-beds are handled by a mounted smartphone. Results of experiments and simulations are used to validate the feasibility of mounted smartphones as measurement and feedback control platforms for motor-based laboratory test-beds, report the measurement precision and closed-loop performance achieved with such platforms, and address challenges in the development of platforms to maintain system stability.

  8. High Precision Testbed to Evaluate Ethernet Performance for In-Car Networks

    DEFF Research Database (Denmark)

    Revsbech, Kasper; Madsen, Tatiana Kozlova; Schiøler, Henrik

    2012-01-01

    Validating safety-critical real-time systems such as in-car networks often involves a model-based performance analysis of the network. An important issue performing such analysis is to provide precise model parameters, matching the actual equipment. One way to obtain such parameters is to derive...... them by measurements of the equipment. In this work we describe the design of a testbed enabling active measurements on up to 1 [Gb=Sec] Copper based Ethernet Switches. By use of the testbed it self, we conduct a series of tests where the precision of the testbed is estimated. We find a maximum error...

  9. Telescience testbed: Operational support functions for biomedical experiments

    Science.gov (United States)

    Yamashita, Masamichi; Watanabe, Satoru; Shoji, Takatoshi; Clarke, Andrew H.; Suzuki, Hiroyuki; Yanagihara, Dai

    A telescience testbed was conducted to study the methodology of space biomedicine with simulated constraints imposed on space experiments. An experimental subject selected for this testbedding was an elaborate surgery of animals and electrophysiological measurements conducted by an operator onboard. The standing potential in the ampulla of the pigeon's semicircular canal was measured during gravitational and caloric stimulation. A principal investigator, isolated from the operation site, participated in the experiment interactively by telecommunication links. Reliability analysis was applied to the whole layers of experimentation, including design of experimental objectives and operational procedures. Engineering and technological aspects of telescience are discussed in terms of reliability to assure quality of science. Feasibility of robotics was examined for supportive functions to reduce the workload of the onboard operator.

  10. TESTING THE APODIZED PUPIL LYOT CORONAGRAPH ON THE LABORATORY FOR ADAPTIVE OPTICS EXTREME ADAPTIVE OPTICS TESTBED

    International Nuclear Information System (INIS)

    Thomas, Sandrine J.; Dillon, Daren; Gavel, Donald; Soummer, Remi; Macintosh, Bruce; Sivaramakrishnan, Anand

    2011-01-01

    We present testbed results of the Apodized Pupil Lyot Coronagraph (APLC) at the Laboratory for Adaptive Optics (LAO). These results are part of the validation and tests of the coronagraph and of the Extreme Adaptive Optics (ExAO) for the Gemini Planet Imager (GPI). The apodizer component is manufactured with a halftone technique using black chrome microdots on glass. Testing this APLC (like any other coronagraph) requires extremely good wavefront correction, which is obtained to the 1 nm rms level using the microelectricalmechanical systems (MEMS) technology, on the ExAO visible testbed of the LAO at the University of Santa Cruz. We used an APLC coronagraph without central obstruction, both with a reference super-polished flat mirror and with the MEMS to obtain one of the first images of a dark zone in a coronagraphic image with classical adaptive optics using a MEMS deformable mirror (without involving dark hole algorithms). This was done as a complementary test to the GPI coronagraph testbed at American Museum of Natural History, which studied the coronagraph itself without wavefront correction. Because we needed a full aperture, the coronagraph design is very different from the GPI design. We also tested a coronagraph with central obstruction similar to that of GPI. We investigated the performance of the APLC coronagraph and more particularly the effect of the apodizer profile accuracy on the contrast. Finally, we compared the resulting contrast to predictions made with a wavefront propagation model of the testbed to understand the effects of phase and amplitude errors on the final contrast.

  11. Development of Liquid Propulsion Systems Testbed at MSFC

    Science.gov (United States)

    Alexander, Reginald; Nelson, Graham

    2016-01-01

    As NASA, the Department of Defense and the aerospace industry in general strive to develop capabilities to explore near-Earth, Cis-lunar and deep space, the need to create more cost effective techniques of propulsion system design, manufacturing and test is imperative in the current budget constrained environment. The physics of space exploration have not changed, but the manner in which systems are developed and certified needs to change if there is going to be any hope of designing and building the high performance liquid propulsion systems necessary to deliver crew and cargo to the further reaches of space. To further the objective of developing these systems, the Marshall Space Flight Center is currently in the process of formulating a Liquid Propulsion Systems testbed, which will enable rapid integration of components to be tested and assessed for performance in integrated systems. The manifestation of this testbed is a breadboard engine configuration (BBE) with facility support for consumables and/or other components as needed. The goal of the facility is to test NASA developed elements, but can be used to test articles developed by other government agencies, industry or academia. Joint government/private partnership is likely the approach that will be required to enable efficient propulsion system development. MSFC has recently tested its own additively manufactured liquid hydrogen pump, injector, and valves in a BBE hot firing. It is rapidly building toward testing the pump and a new CH4 injector in the BBE configuration to demonstrate a 22,000 lbf, pump-fed LO2/LCH4 engine for the Mars lander or in-space transportation. The value of having this BBE testbed is that as components are developed they may be easily integrated in the testbed and tested. MSFC is striving to enhance its liquid propulsion system development capability. Rapid design, analysis, build and test will be critical to fielding the next high thrust rocket engine. With the maturity of the

  12. Mounted Smartphones as Measurement and Control Platforms for Motor-Based Laboratory Test-Beds

    OpenAIRE

    Jared A. Frank; Anthony Brill; Vikram Kapila

    2016-01-01

    Laboratory education in science and engineering often entails the use of test-beds equipped with costly peripherals for sensing, acquisition, storage, processing, and control of physical behavior. However, costly peripherals are no longer necessary to obtain precise measurements and achieve stable feedback control of test-beds. With smartphones performing diverse sensing and processing tasks, this study examines the feasibility of mounting smartphones directly to test-beds to exploit their em...

  13. Wireless Sensor Networks TestBed: ASNTbed

    CSIR Research Space (South Africa)

    Dludla, AG

    2013-05-01

    Full Text Available Wireless sensor networks (WSNs) have been used in different types of applications and deployed within various environments. Simulation tools are essential for studying WSNs, especially for exploring large-scale networks. However, WSN testbeds...

  14. Test-bed for the remote health monitoring system for bridge structures using FBG sensors

    Science.gov (United States)

    Lee, Chin-Hyung; Park, Ki-Tae; Joo, Bong-Chul; Hwang, Yoon-Koog

    2009-05-01

    This paper reports on test-bed for the long-term health monitoring system for bridge structures employing fiber Bragg grating (FBG) sensors, which is remotely accessible via the web, to provide real-time quantitative information on a bridge's response to live loading and environmental changes, and fast prediction of the structure's integrity. The sensors are attached on several locations of the structure and connected to a data acquisition system permanently installed onsite. The system can be accessed through remote communication using an optical cable network, through which the evaluation of the bridge behavior under live loading can be allowed at place far away from the field. Live structural data are transmitted continuously to the server computer at the central office. The server computer is connected securely to the internet, where data can be retrieved, processed and stored for the remote web-based health monitoring. Test-bed revealed that the remote health monitoring technology will enable practical, cost-effective, and reliable condition assessment and maintenance of bridge structures.

  15. Growth plan for an inspirational test-bed of smart textile services

    NARCIS (Netherlands)

    Wensveen, S.A.G.; Tomico, O.; Bhomer, ten M.; Kuusk, K.

    2015-01-01

    In this pictorial we visualize the growth plan for an inspirational test-bed of smart textile product service systems. The goal of the test-bed is to inspire and inform the Dutch creative industries of textile, interaction and service design to combine their strengths and share opportunities. The

  16. The CMS integration grid testbed

    Energy Technology Data Exchange (ETDEWEB)

    Graham, Gregory E.

    2004-08-26

    The CMS Integration Grid Testbed (IGT) comprises USCMS Tier-1 and Tier-2 hardware at the following sites: the California Institute of Technology, Fermi National Accelerator Laboratory, the University of California at San Diego, and the University of Florida at Gainesville. The IGT runs jobs using the Globus Toolkit with a DAGMan and Condor-G front end. The virtual organization (VO) is managed using VO management scripts from the European Data Grid (EDG). Gridwide monitoring is accomplished using local tools such as Ganglia interfaced into the Globus Metadata Directory Service (MDS) and the agent based Mona Lisa. Domain specific software is packaged and installed using the Distribution After Release (DAR) tool of CMS, while middleware under the auspices of the Virtual Data Toolkit (VDT) is distributed using Pacman. During a continuous two month span in Fall of 2002, over 1 million official CMS GEANT based Monte Carlo events were generated and returned to CERN for analysis while being demonstrated at SC2002. In this paper, we describe the process that led to one of the world's first continuously available, functioning grids.

  17. SABA: A Testbed for a Real-Time MIMO System

    Directory of Open Access Journals (Sweden)

    Brühl Lars

    2006-01-01

    Full Text Available The growing demand for high data rates for wireless communication systems leads to the development of new technologies to increase the channel capacity thus increasing the data rate. MIMO (multiple-input multiple-output systems are best qualified for these applications. In this paper, we present a MIMO test environment for high data rate transmissions in frequency-selective environments. An overview of the testbed is given, including the analyzed algorithms, the digital signal processing with a new highly parallel processor to perform the algorithms in real time, as well as the analog front-ends. A brief overview of the influence of polarization on the channel capacity is given as well.

  18. X-ray Pulsar Navigation Algorithms and Testbed for SEXTANT

    Science.gov (United States)

    Winternitz, Luke M. B.; Hasouneh, Monther A.; Mitchell, Jason W.; Valdez, Jennifer E.; Price, Samuel R.; Semper, Sean R.; Yu, Wayne H.; Ray, Paul S.; Wood, Kent S.; Arzoumanian, Zaven; hide

    2015-01-01

    The Station Explorer for X-ray Timing and Navigation Technology (SEXTANT) is a NASA funded technologydemonstration. SEXTANT will, for the first time, demonstrate real-time, on-board X-ray Pulsar-based Navigation (XNAV), a significant milestone in the quest to establish a GPS-like navigation capability available throughout our Solar System and beyond. This paper describes the basic design of the SEXTANT system with a focus on core models and algorithms, and the design and continued development of the GSFC X-ray Navigation Laboratory Testbed (GXLT) with its dynamic pulsar emulation capability. We also present early results from GXLT modeling of the combined NICER X-ray timing instrument hardware and SEXTANT flight software algorithms.

  19. Wireless Testbed Bonsai

    Science.gov (United States)

    2006-02-01

    wireless sensor device network, and a about 200 Stargate nodes higher-tier multi-hop peer- to-peer 802.11b wireless network. Leading up to the full ExScal...deployment, we conducted spatial scaling tests on our higher-tier protocols on a 7 × 7 grid of Stargates nodes 45m and with 90m separations respectively...onW and its scaled version W̃ . III. EXPERIMENTAL SETUP Description of Kansei testbed. A stargate is a single board linux-based computer [7]. It uses a

  20. Optimizing Electric Vehicle Coordination Over a Heterogeneous Mesh Network in a Scaled-Down Smart Grid Testbed

    DEFF Research Database (Denmark)

    Bhattarai, Bishnu Prasad; Lévesque, Martin; Maier, Martin

    2015-01-01

    High penetration of renewable energy sources and electric vehicles (EVs) create power imbalance and congestion in the existing power network, and hence causes significant problems in the control and operation. Despite investing huge efforts from the electric utilities, governments, and researchers......, smart grid (SG) is still at the developmental stage to address those issues. In this regard, a smart grid testbed (SGT) is desirable to develop, analyze, and demonstrate various novel SG solutions, namely demand response, real-time pricing, and congestion management. In this paper, a novel SGT...... is developed in a laboratory by scaling a 250 kVA, 0.4 kV real low-voltage distribution feeder down to 1 kVA, 0.22 kV. Information and communication technology is integrated in the scaled-down network to establish real-time monitoring and control. The novelty of the developed testbed is demonstrated...

  1. SCDU Testbed Automated In-Situ Alignment, Data Acquisition and Analysis

    Science.gov (United States)

    Werne, Thomas A.; Wehmeier, Udo J.; Wu, Janet P.; An, Xin; Goullioud, Renaud; Nemati, Bijan; Shao, Michael; Shen, Tsae-Pyng J.; Wang, Xu; Weilert, Mark A.; hide

    2010-01-01

    In the course of fulfilling its mandate, the Spectral Calibration Development Unit (SCDU) testbed for SIM-Lite produces copious amounts of raw data. To effectively spend time attempting to understand the science driving the data, the team devised computerized automations to limit the time spent bringing the testbed to a healthy state and commanding it, and instead focus on analyzing the processed results. We developed a multi-layered scripting language that emphasized the scientific experiments we conducted, which drastically shortened our experiment scripts, improved their readability, and all-but-eliminated testbed operator errors. In addition to scientific experiment functions, we also developed a set of automated alignments that bring the testbed up to a well-aligned state with little more than the push of a button. These scripts were written in the scripting language, and in Matlab via an interface library, allowing all members of the team to augment the existing scripting language with complex analysis scripts. To keep track of these results, we created an easily-parseable state log in which we logged both the state of the testbed and relevant metadata. Finally, we designed a distributed processing system that allowed us to farm lengthy analyses to a collection of client computers which reported their results in a central log. Since these logs were parseable, we wrote query scripts that gave us an effortless way to compare results collected under different conditions. This paper serves as a case-study, detailing the motivating requirements for the decisions we made and explaining the implementation process.

  2. Integrating Simulated Physics and Device Virtualization in Control System Testbeds

    OpenAIRE

    Redwood , Owen; Reynolds , Jason; Burmester , Mike

    2016-01-01

    Part 3: INFRASTRUCTURE MODELING AND SIMULATION; International audience; Malware and forensic analyses of embedded cyber-physical systems are tedious, manual processes that testbeds are commonly not designed to support. Additionally, attesting the physics impact of embedded cyber-physical system malware has no formal methodologies and is currently an art. This chapter describes a novel testbed design methodology that integrates virtualized embedded industrial control systems and physics simula...

  3. Design of aircraft cabin testbed for stress free air travel experiment

    NARCIS (Netherlands)

    Tan, C.F.; Chen, W.; Rauterberg, G.W.M.

    2009-01-01

    The paper presents an aircraft cabin testbed that is designed and built for the stress free air travel experiment. The project is funded by European Union in the aim of improving air travel comfort during long haul flight. The testbed is used to test and validate the adaptive system that is capable

  4. Design and Development of a 200-kW Turbo-Electric Distributed Propulsion Testbed

    Science.gov (United States)

    Papathakis, Kurt V.; Kloesel, Kurt J.; Lin, Yohan; Clarke, Sean; Ediger, Jacob J.; Ginn, Starr

    2016-01-01

    The National Aeronautics and Space Administration (NASA) Armstrong Flight Research Center (AFRC) (Edwards, California) is developing a Hybrid-Electric Integrated Systems Testbed (HEIST) Testbed as part of the HEIST Project, to study power management and transition complexities, modular architectures, and flight control laws for turbo-electric distributed propulsion technologies using representative hardware and piloted simulations. Capabilities are being developed to assess the flight readiness of hybrid electric and distributed electric vehicle architectures. Additionally, NASA will leverage experience gained and assets developed from HEIST to assist in flight-test proposal development, flight-test vehicle design, and evaluation of hybrid electric and distributed electric concept vehicles for flight safety. The HEIST test equipment will include three trailers supporting a distributed electric propulsion wing, a battery system and turbogenerator, dynamometers, and supporting power and communication infrastructure, all connected to the AFRC Core simulation. Plans call for 18 high performance electric motors that will be powered by batteries and the turbogenerator, and commanded by a piloted simulation. Flight control algorithms will be developed on the turbo-electric distributed propulsion system.

  5. Photovoltaic Engineering Testbed: A Facility for Space Calibration and Measurement of Solar Cells on the International Space Station

    Science.gov (United States)

    Landis, Geoffrey A.; Bailey, Sheila G.; Jenkins, Phillip; Sexton, J. Andrew; Scheiman, David; Christie, Robert; Charpie, James; Gerber, Scott S.; Johnson, D. Bruce

    2001-01-01

    The Photovoltaic Engineering Testbed ("PET") is a facility to be flown on the International Space Station to perform calibration, measurement, and qualification of solar cells in the space environment and then returning the cells to Earth for laboratory use. PET will allow rapid turnaround testing of new photovoltaic technology under AM0 conditions.

  6. Digital Preservation Theory and Application: Transcontinental Persistent Archives Testbed Activity

    Directory of Open Access Journals (Sweden)

    Paul Watry

    2007-12-01

    Full Text Available The National Archives and Records Administration (NARA and EU SHAMAN projects are working with multiple research institutions on tools and technologies that will supply a comprehensive, systematic, and dynamic means for preserving virtually any type of electronic record, free from dependence on any specific hardware or software. This paper describes the joint development work between the University of Liverpool and the San Diego Supercomputer Center (SDSC at the University of California, San Diego on the NARA and SHAMAN prototypes. The aim is to provide technologies in support of the required generic data management infrastructure. We describe a Theory of Preservation that quantifies how communication can be accomplished when future technologies are different from those available at present. This includes not only different hardware and software, but also different standards for encoding information. We describe the concept of a “digital ontology” to characterize preservation processes; this is an advance on the current OAIS Reference Model of providing representation information about records. To realize a comprehensive Theory of Preservation, we describe the ongoing integration of distributed shared collection management technologies, digital library browsing, and presentation technologies for the NARA and SHAMAN Persistent Archive Testbeds.

  7. Versatile Electric Propulsion Aircraft Testbed, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — An all-electric aircraft testbed is proposed to provide a dedicated development environment for the rigorous study and advancement of electrically powered aircraft....

  8. Mounted Smartphones as Measurement and Control Platforms for Motor-Based Laboratory Test-Beds

    Science.gov (United States)

    Frank, Jared A.; Brill, Anthony; Kapila, Vikram

    2016-01-01

    Laboratory education in science and engineering often entails the use of test-beds equipped with costly peripherals for sensing, acquisition, storage, processing, and control of physical behavior. However, costly peripherals are no longer necessary to obtain precise measurements and achieve stable feedback control of test-beds. With smartphones performing diverse sensing and processing tasks, this study examines the feasibility of mounting smartphones directly to test-beds to exploit their embedded hardware and software in the measurement and control of the test-beds. This approach is a first step towards replacing laboratory-grade peripherals with more compact and affordable smartphone-based platforms, whose interactive user interfaces can engender wider participation and engagement from learners. Demonstrative cases are presented in which the sensing, computation, control, and user interaction with three motor-based test-beds are handled by a mounted smartphone. Results of experiments and simulations are used to validate the feasibility of mounted smartphones as measurement and feedback control platforms for motor-based laboratory test-beds, report the measurement precision and closed-loop performance achieved with such platforms, and address challenges in the development of platforms to maintain system stability. PMID:27556464

  9. Data Distribution Service-Based Interoperability Framework for Smart Grid Testbed Infrastructure

    Directory of Open Access Journals (Sweden)

    Tarek A. Youssef

    2016-03-01

    Full Text Available This paper presents the design and implementation of a communication and control infrastructure for smart grid operation. The proposed infrastructure enhances the reliability of the measurements and control network. The advantages of utilizing the data-centric over message-centric communication approach are discussed in the context of smart grid applications. The data distribution service (DDS is used to implement a data-centric common data bus for the smart grid. This common data bus improves the communication reliability, enabling distributed control and smart load management. These enhancements are achieved by avoiding a single point of failure while enabling peer-to-peer communication and an automatic discovery feature for dynamic participating nodes. The infrastructure and ideas presented in this paper were implemented and tested on the smart grid testbed. A toolbox and application programing interface for the testbed infrastructure are developed in order to facilitate interoperability and remote access to the testbed. This interface allows control, monitoring, and performing of experiments remotely. Furthermore, it could be used to integrate multidisciplinary testbeds to study complex cyber-physical systems (CPS.

  10. Comparison of two matrix data structures for advanced CSM testbed applications

    Science.gov (United States)

    Regelbrugge, M. E.; Brogan, F. A.; Nour-Omid, B.; Rankin, C. C.; Wright, M. A.

    1989-01-01

    The first section describes data storage schemes presently used by the Computational Structural Mechanics (CSM) testbed sparse matrix facilities and similar skyline (profile) matrix facilities. The second section contains a discussion of certain features required for the implementation of particular advanced CSM algorithms, and how these features might be incorporated into the data storage schemes described previously. The third section presents recommendations, based on the discussions of the prior sections, for directing future CSM testbed development to provide necessary matrix facilities for advanced algorithm implementation and use. The objective is to lend insight into the matrix structures discussed and to help explain the process of evaluating alternative matrix data structures and utilities for subsequent use in the CSM testbed.

  11. Mini-mast CSI testbed user's guide

    Science.gov (United States)

    Tanner, Sharon E.; Pappa, Richard S.; Sulla, Jeffrey L.; Elliott, Kenny B.; Miserentino, Robert; Bailey, James P.; Cooper, Paul A.; Williams, Boyd L., Jr.; Bruner, Anne M.

    1992-01-01

    The Mini-Mast testbed is a 20 m generic truss highly representative of future deployable trusses for space applications. It is fully instrumented for system identification and active vibrations control experiments and is used as a ground testbed at NASA-Langley. The facility has actuators and feedback sensors linked via fiber optic cables to the Advanced Real Time Simulation (ARTS) system, where user defined control laws are incorporated into generic controls software. The object of the facility is to conduct comprehensive active vibration control experiments on a dynamically realistic large space structure. A primary goal is to understand the practical effects of simplifying theoretical assumptions. This User's Guide describes the hardware and its primary components, the dynamic characteristics of the test article, the control law implementation process, and the necessary safeguards employed to protect the test article. Suggestions for a strawman controls experiment are also included.

  12. High-contrast imager for Complex Aperture Telescopes (HiCAT): testbed design and coronagraph developments

    Science.gov (United States)

    N'Diaye, Mamadou; Choquet, E.; Pueyo, L.; Elliot, E.; Perrin, M. D.; Wallace, J.; Anderson, R. E.; Carlotti, A.; Groff, T. D.; Hartig, G. F.; Kasdin, J.; Lajoie, C.; Levecq, O.; Long, C.; Macintosh, B.; Mawet, D.; Norman, C. A.; Shaklan, S.; Sheckells, M.; Sivaramakrishnan, A.; Soummer, R.

    2014-01-01

    We present a new high-contrast imaging testbed designed to provide complete solutions for wavefront sensing and control and starlight suppression with complex aperture telescopes (NASA APRA; Soummer PI). This includes geometries with central obstruction, support structures, and/or primary mirror segmentation. Complex aperture telescopes are often associated with large telescope designs, which are considered for future space missions. However, these designs makes high-contrast imaging challenging because of additional diffraction features in the point spread function. We present a novel optimization approach for the testbed optical and opto-mechanical design that minimizes the impact of both phase and amplitude errors from the wave propagation of testbed optics surface errors. This design approach allows us to define the specification for the bench optics, which we then compare to the manufactured parts. We discuss the testbed alignment and first results. We also present our coronagraph design for different testbed pupil shapes (AFTA or ATLAST), which involves a new method for the optimization of Apodized Pupil Lyot Coronagraphs (APLC).

  13. Aerodynamic design of the National Rotor Testbed.

    Energy Technology Data Exchange (ETDEWEB)

    Kelley, Christopher Lee [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-10-01

    A new wind turbine blade has been designed for the National Rotor Testbed (NRT) project and for future experiments at the Scaled Wind Farm Technology (SWiFT) facility with a specific focus on scaled wakes. This report shows the aerodynamic design of new blades that can produce a wake that has similitude to utility scale blades despite the difference in size and location in the atmospheric boundary layer. Dimensionless quantities circulation, induction, thrust coefficient, and tip-speed-ratio were kept equal between rotor scales in region 2 of operation. The new NRT design matched the aerodynamic quantities of the most common wind turbine in the United States, the GE 1.5sle turbine with 37c model blades. The NRT blade design is presented along with its performance subject to the winds at SWiFT. The design requirements determined by the SWiFT experimental test campaign are shown to be met.

  14. Use of Tabu Search in a Solver to Map Complex Networks onto Emulab Testbeds

    National Research Council Canada - National Science Library

    MacDonald, Jason E

    2007-01-01

    The University of Utah's solver for the testbed mapping problem uses a simulated annealing metaheuristic algorithm to map a researcher's experimental network topology onto available testbed resources...

  15. Development of a smart-antenna test-bed, demonstrating software defined digital beamforming

    NARCIS (Netherlands)

    Kluwer, T.; Slump, Cornelis H.; Schiphorst, Roelof; Hoeksema, F.W.

    2001-01-01

    This paper describes a smart-antenna test-bed consisting of ‘common of the shelf’ (COTS) hardware and software defined radio components. The use of software radio components enables a flexible platform to implement and test mobile communication systems as a real-world system. The test-bed is

  16. Integration of advanced teleoperation technologies for control of space robots

    Science.gov (United States)

    Stagnaro, Michael J.

    1993-01-01

    Teleoperated robots require one or more humans to control actuators, mechanisms, and other robot equipment given feedback from onboard sensors. To accomplish this task, the human or humans require some form of control station. Desirable features of such a control station include operation by a single human, comfort, and natural human interfaces (visual, audio, motion, tactile, etc.). These interfaces should work to maximize performance of the human/robot system by streamlining the link between human brain and robot equipment. This paper describes development of a control station testbed with the characteristics described above. Initially, this testbed will be used to control two teleoperated robots. Features of the robots include anthropomorphic mechanisms, slaving to the testbed, and delivery of sensory feedback to the testbed. The testbed will make use of technologies such as helmet mounted displays, voice recognition, and exoskeleton masters. It will allow tor integration and testing of emerging telepresence technologies along with techniques for coping with control link time delays. Systems developed from this testbed could be applied to ground control of space based robots. During man-tended operations, the Space Station Freedom may benefit from ground control of IVA or EVA robots with science or maintenance tasks. Planetary exploration may also find advanced teleoperation systems to be very useful.

  17. Report of the Interagency Optical Network Testbeds Workshop 2, NASA Ames Research Center, September 12-14, 2005

    Science.gov (United States)

    2005-01-01

    The Optical Network Testbeds Workshop 2 (ONT2), held on September 12-14, 2005, was cosponsored by the Department of Energy Office of Science (DOE/SC) and the National Aeronautics and Space Administration (NASA), in cooperation with the Joint Engineering Team (JET) of the Federal Networking and Information Technology Research and Development (NITRD) Program's Large Scale Networking (LSN) Coordinating Group. The ONT2 workshop was a follow-on to an August 2004 Workshop on Optical Network Testbeds (ONT1). ONT1 recommended actions by the Federal agencies to assure timely development and implementation of optical networking technologies and infrastructure. Hosted by the NASA Ames Research Center in Mountain View, California, the ONT2 workshop brought together representatives of the U.S. advanced research and education (R&E) networks, regional optical networks (RONs), service providers, international networking organizations, and senior engineering and R&D managers from Federal agencies and national research laboratories. Its purpose was to develop a common vision of the optical network technologies, services, infrastructure, and organizations needed to enable widespread use of optical networks; recommend activities for transitioning the optical networking research community and its current infrastructure to leading-edge optical networks over the next three to five years; and present information enabling commercial network infrastructure providers to plan for and use leading-edge optical network services in that time frame.

  18. Use of Bioregenerative Technologies for Advanced Life Support: Some Considerations for BIO-Plex and Related Testbeds

    Science.gov (United States)

    Wheeler, Raymond M.; Strayer, Richard F.

    1997-01-01

    A review of bioregenerative life support concepts is provided as a guide for developing ground-based testbeds for NASA's Advanced Life Support Program. Key among these concepts are the use of controlled environment plant culture for the production of food, oxygen, and clean water, and the use of bacterial bioreactors for degrading wastes and recycling nutrients. Candidate crops and specific bioreactor approaches are discussed based on experiences from the. Kennedy Space Center Advanced Life Support Breadboard Project, and a review of related literature is provided.

  19. NBodyLab: A Testbed for Undergraduates Utilizing a Web Interface to NEMO and MD-GRAPE2 Hardware

    Science.gov (United States)

    Johnson, V. L.; Teuben, P. J.; Penprase, B. E.

    An N-body simulation testbed called NBodyLab was developed at Pomona College as a teaching tool for undergraduates. The testbed runs under Linux and provides a web interface to selected back-end NEMO modeling and analysis tools, and several integration methods which can optionally use an MD-GRAPE2 supercomputer card in the server to accelerate calculation of particle-particle forces. The testbed provides a framework for using and experimenting with the main components of N-body simulations: data models and transformations, numerical integration of the equations of motion, analysis and visualization products, and acceleration techniques (in this case, special purpose hardware). The testbed can be used by students with no knowledge of programming or Unix, freeing such students and their instructor to spend more time on scientific experimentation. The advanced student can extend the testbed software and/or more quickly transition to the use of more advanced Unix-based toolsets such as NEMO, Starlab and model builders such as GalactICS. Cosmology students at Pomona College used the testbed to study collisions of galaxies with different speeds, masses, densities, collision angles, angular momentum, etc., attempting to simulate, for example, the Tadpole Galaxy and the Antenna Galaxies. The testbed framework is available as open-source to assist other researchers and educators. Recommendations are made for testbed enhancements.

  20. Context-aware local Intrusion Detection in SCADA systems : a testbed and two showcases

    NARCIS (Netherlands)

    Chromik, Justyna Joanna; Haverkort, Boudewijn R.H.M.; Remke, Anne Katharina Ingrid; Pilch, Carina; Brackmann, Pascal; Duhme, Christof; Everinghoff, Franziska; Giberlein, Artur; Teodorowicz, Thomas; Wieland, Julian

    2017-01-01

    This paper illustrates the use of a testbed that we have developed for context-aware local intrusion detection. This testbed is based on the co-simulation framework Mosaik and allows for the validation of local intrusion detection mechanisms at field stations in power distribution networks. For two

  1. An adaptable, low cost test-bed for unmanned vehicle systems research

    Science.gov (United States)

    Goppert, James M.

    2011-12-01

    An unmanned vehicle systems test-bed has been developed. The test-bed has been designed to accommodate hardware changes and various vehicle types and algorithms. The creation of this test-bed allows research teams to focus on algorithm development and employ a common well-tested experimental framework. The ArduPilotOne autopilot was developed to provide the necessary level of abstraction for multiple vehicle types. The autopilot was also designed to be highly integrated with the Mavlink protocol for Micro Air Vehicle (MAV) communication. Mavlink is the native protocol for QGroundControl, a MAV ground control program. Features were added to QGroundControl to accommodate outdoor usage. Next, the Mavsim toolbox was developed for Scicoslab to allow hardware-in-the-loop testing, control design and analysis, and estimation algorithm testing and verification. In order to obtain linear models of aircraft dynamics, the JSBSim flight dynamics engine was extended to use a probabilistic Nelder-Mead simplex method. The JSBSim aircraft dynamics were compared with wind-tunnel data collected. Finally, a structured methodology for successive loop closure control design is proposed. This methodology is demonstrated along with the rest of the test-bed tools on a quadrotor, a fixed wing RC plane, and a ground vehicle. Test results for the ground vehicle are presented.

  2. Cooperative Search with Autonomous Vehicles in a 3D Aquatic Testbed

    Science.gov (United States)

    2012-01-01

    Cooperative Search with Autonomous Vehicles in a 3D Aquatic Testbed Matthew Keeter1, Daniel Moore2,3, Ryan Muller2,3, Eric Nieters1, Jennifer...Many applications for autonomous vehicles involve three-dimensional domains, notably aerial and aquatic environments. Such applications include mon...TYPE 3. DATES COVERED 00-00-2012 to 00-00-2012 4. TITLE AND SUBTITLE Cooperative Search With Autonomous Vehicles In A 3D Aquatic Testbed 5a

  3. PEER Testbed Study on a Laboratory Building: Exercising Seismic Performance Assessment

    OpenAIRE

    Comerio, Mary C.; Stallmeyer, John C.; Smith, Ryan; Makris, Nicos; Konstantinidis, Dimitrios; Mosalam, Khalid; Lee, Tae-Hyung; Beck, James L.; Porter, Keith A.; Shaikhutdinov, Rustem; Hutchinson, Tara; Chaudhuri, Samit Ray; Chang, Stephanie E.; Falit-Baiamonte, Anthony; Holmes, William T.

    2005-01-01

    From 2002 to 2004 (years five and six of a ten-year funding cycle), the PEER Center organized the majority of its research around six testbeds. Two buildings and two bridges, a campus, and a transportation network were selected as case studies to “exercise” the PEER performance-based earthquake engineering methodology. All projects involved interdisciplinary teams of researchers, each producing data to be used by other colleagues in their research. The testbeds demonstrat...

  4. Visible nulling coronagraph testbed results

    Science.gov (United States)

    Lyon, Richard G.; Clampin, Mark; Woodruff, Robert A.; Vasudevan, Gopal; Thompson, Patrick; Petrone, Peter; Madison, Timothy; Rizzo, Maxime; Melnick, Gary; Tolls, Volker

    2009-08-01

    We report on our recent laboratory results with the NASA/Goddard Space Flight Center (GSFC) Visible Nulling Coronagraph (VNC) testbed. We have experimentally achieved focal plane contrasts of 1 x 108 and approaching 109 at inner working angles of 2 * wavelength/D and 4 * wavelength/D respectively where D is the aperture diameter. The result was obtained using a broadband source with a narrowband spectral filter of width 10 nm centered on 630 nm. To date this is the deepest nulling result with a visible nulling coronagraph yet obtained. Developed also is a Null Control Breadboard (NCB) to assess and quantify MEMS based segmented deformable mirror technology and develop and assess closed-loop null sensing and control algorithm performance from both the pupil and focal planes. We have demonstrated closed-loop control at 27 Hz in the laboratory environment. Efforts are underway to first bring the contrast to > 109 necessary for the direct detection and characterization of jovian (Jupiter-like) and then to > 1010 necessary for terrestrial (Earth-like) exosolar planets. Short term advancements are expected to both broaden the spectral passband from 10 nm to 100 nm and to increase both the long-term stability to > 2 hours and the extent of the null out to a ~ 10 * wavelength / D via the use of MEMS based segmented deformable mirror technology, a coherent fiber bundle, achromatic phase shifters, all in a vacuum chamber at the GSFC VNC facility. Additionally an extreme stability textbook sized compact VNC is under development.

  5. Modular Algorithm Testbed Suite (MATS): A Software Framework for Automatic Target Recognition

    Science.gov (United States)

    2017-01-01

    NAVAL SURFACE WARFARE CENTER PANAMA CITY DIVISION PANAMA CITY, FL 32407-7001 TECHNICAL REPORT NSWC PCD TR-2017-004 MODULAR ...31-01-2017 Technical Modular Algorithm Testbed Suite (MATS): A Software Framework for Automatic Target Recognition DR...flexible platform to facilitate the development and testing of ATR algorithms. To that end, NSWC PCD has created the Modular Algorithm Testbed Suite

  6. Microgrid testbeds around the world: State of art

    International Nuclear Information System (INIS)

    Hossain, Eklas; Kabalci, Ersan; Bayindir, Ramazan; Perez, Ronald

    2014-01-01

    Highlights: • A detail discussion on microgrid project around the world such as North American, Europe, and Japan. • Key benefits of microgrid, issues with on-site generation, features. • Why we need distributed generation system with a brief introduction. • Distributed generation technologies with cost analysis. • The overview on existing distribution network. - Abstract: This paper deals with the recent evolution of microgrids being used around the world in real life applications as well as laboratory application for research. This study is intended to introduce the subject by reviewing the components level, structure and types of microgrid applications installed as a plant or modeled as a simulation environment. The paper also presents a survey regarding published papers on why the microgrid is required, and what the components and control systems are which constitute the actual microgrid studies. It leads the researcher to see the microgrid in terms of the actual bigger picture of today and creates a new outlook about the potential developments. Additionally, comparison of microgrids in various regions based on several parameters allows researchers to define the required criteria and features of a special microgrid that is chosen for a particular scenario. The authors of this paper also tabulated all the necessary information about microgrids, and proposed a standard microgrid for better power quality and optimizing energy generation. Consequently, it is focused on inadequate knowledge and technology gaps in the power system field with regards to the future, and it is this which has been illustrated for the reader. The existing microgrid testbeds all around the world have been studied and analyzed and several of them are explained as an example in this study. Later, those investigated distribution systems are classified based on region (North America, Europe and Asia) and, as presented in literature, a significant amount of deviation has been found

  7. Easy as Pi: A Network Coding Raspberry Pi Testbed

    Directory of Open Access Journals (Sweden)

    Chres W. Sørensen

    2016-10-01

    Full Text Available In the near future, upcoming communications and storage networks are expected to tolerate major difficulties produced by huge amounts of data being generated from the Internet of Things (IoT. For these types of networks, strategies and mechanisms based on network coding have appeared as an alternative to overcome these difficulties in a holistic manner, e.g., without sacrificing the benefit of a given network metric when improving another. There has been recurrent issues on: (i making large-scale deployments akin to the Internet of Things; (ii assessing and (iii replicating the obtained results in preliminary studies. Therefore, finding testbeds that can deal with large-scale deployments and not lose historic data in order to evaluate these mechanisms are greatly needed and desirable from a research perspective. However, this can be hard to manage, not only due to the inherent costs of the hardware, but also due to maintenance challenges. In this paper, we present the required key steps to design, setup and maintain an inexpensive testbed using Raspberry Pi devices for communications and storage networks with network coding capabilities. This testbed can be utilized for any applications requiring results replicability.

  8. Testbed for High-Acuity Imaging and Stable Photometry

    Science.gov (United States)

    Gregory, James

    This proposal from MIT Lincoln Laboratory (LL) accompanies the NASA/APRA proposal enti-tled THAI-SPICE: Testbed for High-Acuity Imaging - Stable Photometry and Image-Motion Compensa-tion Experiment (submitted by Eliot Young, Southwest Research Institute). The goal of the THAI-SPICE project is to demonstrate three technologies that will help low-cost balloon-borne telescopes achieve diffraction-limited imaging: stable pointing, passive thermal stabilization and in-flight monitoring of the wave front error. This MIT LL proposal supplies a key element of the pointing stabilization component of THAI-SPICE: an electronic camera based on an orthogonaltransfer charge-coupled device (OTCCD). OTCCD cameras have been demonstrated with charge-transfer efficiencies >0.99999, noise of 90%. In addition to supplying a camera with an OTCCD detector, MIT LL will help with integration and testing of the OTCCD with the THAI-SPICE payload’s guide camera.

  9. Graphical interface between the CIRSSE testbed and CimStation software with MCS/CTOS

    Science.gov (United States)

    Hron, Anna B.

    1992-01-01

    This research is concerned with developing a graphical simulation of the testbed at the Center for Intelligent Robotic Systems for Space Exploration (CIRSSE) and the interface which allows for communication between the two. Such an interface is useful in telerobotic operations, and as a functional interaction tool for testbed users. Creating a simulated model of a real world system, generates inevitable calibration discrepancies between them. This thesis gives a brief overview of the work done to date in the area of workcell representation and communication, describes the development of the CIRSSE interface, and gives a direction for future work in the area of system calibration. The CimStation software used for development of this interface, is a highly versatile robotic workcell simulation package which has been programmed for this application with a scale graphical model of the testbed, and supporting interface menu code. A need for this tool has been identified for the reasons of path previewing, as a window on teleoperation and for calibration of simulated vs. real world models. The interface allows information (i.e., joint angles) generated by CimStation to be sent as motion goal positions to the testbed robots. An option of the interface has been established such that joint angle information generated by supporting testbed algorithms (i.e., TG, collision avoidance) can be piped through CimStation as a visual preview of the path.

  10. Diffraction-based analysis of tunnel size for a scaled external occulter testbed

    Science.gov (United States)

    Sirbu, Dan; Kasdin, N. Jeremy; Vanderbei, Robert J.

    2016-07-01

    For performance verification of an external occulter mask (also called a starshade), scaled testbeds have been developed to measure the suppression of the occulter shadow in the pupil plane and contrast in the image plane. For occulter experiments the scaling is typically performed by maintaining an equivalent Fresnel number. The original Princeton occulter testbed was oversized with respect to both input beam and shadow propagation to limit any diffraction effects due to finite testbed enclosure edges; however, to operate at realistic space-mission equivalent Fresnel numbers an extended testbed is currently under construction. With the longer propagation distances involved, diffraction effects due to the edge of the tunnel must now be considered in the experiment design. Here, we present a diffraction-based model of two separate tunnel effects. First, we consider the effect of tunnel-edge induced diffraction ringing upstream from the occulter mask. Second, we consider the diffraction effect due to clipping of the output shadow by the tunnel downstream from the occulter mask. These calculations are performed for a representative point design relevant to the new Princeton occulter experiment, but we also present an analytical relation that can be used for other propagation distances.

  11. Implementation of a virtual link between power system testbeds at Marshall Spaceflight Center and Lewis Research Center

    Science.gov (United States)

    Doreswamy, Rajiv

    1990-01-01

    The Marshall Space Flight Center (MSFC) owns and operates a space station module power management and distribution (SSM-PMAD) testbed. This system, managed by expert systems, is used to analyze and develop power system automation techniques for Space Station Freedom. The Lewis Research Center (LeRC), Cleveland, Ohio, has developed and implemented a space station electrical power system (EPS) testbed. This system and its power management controller are representative of the overall Space Station Freedom power system. A virtual link is being implemented between the testbeds at MSFC and LeRC. This link would enable configuration of SSM-PMAD as a load center for the EPS testbed at LeRC. This connection will add to the versatility of both systems, and provide an environment of enhanced realism for operation of both testbeds.

  12. Cognitive Medical Wireless Testbed System (COMWITS)

    Science.gov (United States)

    2016-11-01

    Number: ...... ...... Sub Contractors (DD882) Names of other research staff Inventions (DD882) Scientific Progress This testbed merges two ARO grants...bit 64 bit CPU Intel Xeon Processor E5-1650v3 (6C, 3.5 GHz, Turbo, HT , 15M, 140W) Intel Core i7-3770 (3.4 GHz Quad Core, 77W) Dual Intel Xeon

  13. The Fourier-Kelvin Stellar Interferometer (FKSI) Nulling Testbed II: Closed-loop Path Length Metrology And Control Subsystem

    Science.gov (United States)

    Frey, B. J.; Barry, R. K.; Danchi, W. C.; Hyde, T. T.; Lee, K. Y.; Martino, A. J.; Zuray, M. S.

    2006-01-01

    The Fourier-Kelvin Stellar Interferometer (FKSI) is a mission concept for an imaging and nulling interferometer in the near to mid-infrared spectral region (3-8 microns), and will be a scientific and technological pathfinder for upcoming missions including TPF-I/DARWIN, SPECS, and SPIRIT. At NASA's Goddard Space Flight Center, we have constructed a symmetric Mach-Zehnder nulling testbed to demonstrate techniques and algorithms that can be used to establish and maintain the 10(exp 4) null depth that will be required for such a mission. Among the challenges inherent in such a system is the ability to acquire and track the null fringe to the desired depth for timescales on the order of hours in a laboratory environment. In addition, it is desirable to achieve this stability without using conventional dithering techniques. We describe recent testbed metrology and control system developments necessary to achieve these goals and present our preliminary results.

  14. A Method to Analyze Threats and Vulnerabilities by Using a Cyber Security Test-bed of an Operating NPP

    International Nuclear Information System (INIS)

    Kim, Yong Sik; Son, Choul Woong; Lee, Soo Ill

    2016-01-01

    In order to implement cyber security controls for an Operating NPP, a security assessment should conduct in advance, and it is essential to analyze threats and vulnerabilities for a cyber security risk assessment phase. It might be impossible to perform a penetration test or scanning for a vulnerability analysis because the test may cause adverse effects on the inherent functions of ones. This is the reason why we develop and construct a cyber security test-bed instead of using real I and C systems in the operating NPP. In this paper, we propose a method to analyze threats and vulnerabilities of a specific target system by using a cyber security test-bed. The test-bed is being developed considering essential functions of the selected safety and non-safety system. This paper shows the method to analyze threats and vulnerabilities of a specific target system by using a cyber security test-bed. In order to develop the cyber security test-bed with both safety and non-safety functions, test-bed functions analysis and preliminary threats and vulnerabilities identification have been conducted. We will determine the attack scenarios and conduct the test-bed based vulnerability analysis

  15. A Method to Analyze Threats and Vulnerabilities by Using a Cyber Security Test-bed of an Operating NPP

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Sik; Son, Choul Woong; Lee, Soo Ill [KHNP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    In order to implement cyber security controls for an Operating NPP, a security assessment should conduct in advance, and it is essential to analyze threats and vulnerabilities for a cyber security risk assessment phase. It might be impossible to perform a penetration test or scanning for a vulnerability analysis because the test may cause adverse effects on the inherent functions of ones. This is the reason why we develop and construct a cyber security test-bed instead of using real I and C systems in the operating NPP. In this paper, we propose a method to analyze threats and vulnerabilities of a specific target system by using a cyber security test-bed. The test-bed is being developed considering essential functions of the selected safety and non-safety system. This paper shows the method to analyze threats and vulnerabilities of a specific target system by using a cyber security test-bed. In order to develop the cyber security test-bed with both safety and non-safety functions, test-bed functions analysis and preliminary threats and vulnerabilities identification have been conducted. We will determine the attack scenarios and conduct the test-bed based vulnerability analysis.

  16. The development of the human exploration demonstration project (HEDP), a planetary systems testbed

    Science.gov (United States)

    Chevers, Edward S.; Korsmeyer, David J.

    1993-01-01

    The Human Exploration Demonstration Project (HEDP) is an ongoing task at the National Aeronautics and Space Administration's Ames Research Center to address the advanced technology requirements necessary to implement an integrated working and living environment for a planetary surface habitat. The integrated environment will consist of life support systems, physiological monitoring of project crew, a virtual environment workstation, and centralized data acquisition and habitat systems health monitoring. There will be several robotic systems on a simulated planetary landscape external to the habitat environment to provide representative work loads for the crew. This paper describes the status of the HEDP after one year, the major facilities composing the HEDP, the project's role as an Ames Research Center testbed, and the types of demonstration scenarios that will be run to showcase the technologies.

  17. An information technology enabled sustainability test-bed (ITEST) for occupancy detection through an environmental sensing network

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Bing; Lam, Khee Poh; Zhang, Rui; Chiou, Yun-Shang [Center for Building Performance and Diagnostics, Carnegie Mellon University, Pittsburgh, PA 15213 (United States); Andrews, Burton; Hoeynck, Michael; Benitez, Diego [Research and Technology Center, Robert BOSCH LLC, Pittsburgh, PA 15212 (United States)

    2010-07-15

    This paper describes a large-scale wireless and wired environmental sensor network test-bed and its application to occupancy detection in an open-plan office building. Detection of occupant presence has been used extensively in built environments for applications such as demand-controlled ventilation and security; however, the ability to discern the actual number of people in a room is beyond the scope of current sensing techniques. To address this problem, a complex sensor network is deployed in the Robert L. Preger Intelligent Workplace comprising a wireless ambient-sensing system, a wired carbon dioxide sensing system, and a wired indoor air quality sensing system. A wired camera network is implemented as well for establishing true occupancy levels to be used as ground truth information for deriving algorithmic relationships with the environment conditions. To our knowledge, this extensive and diverse ambient-sensing infrastructure of the ITEST setup as well as the continuous data-collection capability is unprecedented. Final results indicate that there are significant correlations between measured environmental conditions and occupancy status. An average of 73% accuracy on the occupancy number detection was achieved by Hidden Markov Models during testing periods. This paper serves as an exploration to the research of ITEST for occupancy detection in offices. In addition, its utility extends to a wide variety of other building technology research areas such as human-centered environmental control, security, energy efficient and sustainable green buildings. (author)

  18. NN-SITE: A remote monitoring testbed facility

    International Nuclear Information System (INIS)

    Kadner, S.; White, R.; Roman, W.; Sheely, K.; Puckett, J.; Ystesund, K.

    1997-01-01

    DOE, Aquila Technologies, LANL and SNL recently launched collaborative efforts to create a Non-Proliferation Network Systems Integration and Test (NN-Site, pronounced N-Site) facility. NN-Site will focus on wide area, local area, and local operating level network connectivity including Internet access. This facility will provide thorough and cost-effective integration, testing and development of information connectivity among diverse operating systems and network topologies prior to full-scale deployment. In concentrating on instrument interconnectivity, tamper indication, and data collection and review, NN-Site will facilitate efforts of equipment providers and system integrators in deploying systems that will meet nuclear non-proliferation and safeguards objectives. The following will discuss the objectives of ongoing remote monitoring efforts, as well as the prevalent policy concerns. An in-depth discussion of the Non-Proliferation Network Systems Integration and Test facility (NN-Site) will illuminate the role that this testbed facility can perform in meeting the objectives of remote monitoring efforts, and its potential contribution in promoting eventual acceptance of remote monitoring systems in facilities worldwide

  19. Analysis, Modeling, and Simulation (AMS) Testbed Development and Evaluation to Support Dynamic Mobility Applications (DMA) and Active Transportation and Demand Management (ATDM) Programs - calibration Report for Phoenix Testbed : Final Report. [supporting datasets - Phoenix Testbed

    Science.gov (United States)

    2017-07-26

    The datasets in this zip file are in support of FHWA-JPO-16-379, Analysis, Modeling, and Simulation (AMS) Testbed Development and Evaluation to Support Dynamic Mobility Applications (DMA) and Active Transportation and Demand Management (ATDM) Program...

  20. Prognostics-Enabled Power Supply for ADAPT Testbed, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Ridgetop's role is to develop electronic prognostics for sensing power systems in support of NASA/Ames ADAPT testbed. The prognostic enabled power systems from...

  1. Towards a Perpetual Sensor Network Testbed without Backchannel

    DEFF Research Database (Denmark)

    Johansen, Aslak; Bonnet, Philippe; Sørensen, Thomas

    2012-01-01

    The sensor network testbeds available today rely on a communication channel different from the mote radio - a backchannel - to facilitate mote reprogramming, health monitoring and performance analysis. Such backchannels are either supported as wired communication channels (USB or Ethernet), or vi...

  2. Data dissemination in the wild: A testbed for high-mobility MANETs

    DEFF Research Database (Denmark)

    Vingelmann, Peter; Pedersen, Morten Videbæk; Heide, Janus

    2012-01-01

    This paper investigates the problem of efficient data dissemination in Mobile Ad hoc NETworks (MANETs) with high mobility. A testbed is presented; which provides a high degree of mobility in experiments. The testbed consists of 10 autonomous robots with mobile phones mounted on them. The mobile...... information, and the goal is to convey that information to all devices. A strategy is proposed that uses UDP broadcast transmissions and random linear network coding to facilitate the efficient exchange of information in the network. An application is introduced that implements this strategy on Nokia phones...

  3. Designing, Implementing and Documenting the Atlas Networking Test-bed.

    CERN Document Server

    Martinsen, Hans Åge

    The A Toroidal LHC ApparatuS (Atlas) experiment at the Large Hadron Colider (LHC) in European Organization for Nuclear Research (CERN), Geneva is a production environment. To develop new architectures, test new equipment and evaluate new technologies a well supported test bench is needed. A new one is now being commissioned and I will take a leading role in its development, commissioning and operation. This thesis will cover the requirements, the implementation, the documentation and the approach to the different challenges in implementing the testbed. I will be joining the project in the early stages and start by following the work that my colleagues are doing and then, as I get a better understanding, more responsibility will be given to me. To be able to suggest and implement solutions I will have to understand what the requirements are and how to achieve these requirements with the given resources.

  4. Simulation to Flight Test for a UAV Controls Testbed

    Science.gov (United States)

    Motter, Mark A.; Logan, Michael J.; French, Michael L.; Guerreiro, Nelson M.

    2006-01-01

    The NASA Flying Controls Testbed (FLiC) is a relatively small and inexpensive unmanned aerial vehicle developed specifically to test highly experimental flight control approaches. The most recent version of the FLiC is configured with 16 independent aileron segments, supports the implementation of C-coded experimental controllers, and is capable of fully autonomous flight from takeoff roll to landing, including flight test maneuvers. The test vehicle is basically a modified Army target drone, AN/FQM-117B, developed as part of a collaboration between the Aviation Applied Technology Directorate (AATD) at Fort Eustis, Virginia and NASA Langley Research Center. Several vehicles have been constructed and collectively have flown over 600 successful test flights, including a fully autonomous demonstration at the Association of Unmanned Vehicle Systems International (AUVSI) UAV Demo 2005. Simulations based on wind tunnel data are being used to further develop advanced controllers for implementation and flight test.

  5. Automatic Integration Testbeds validation on Open Science Grid

    International Nuclear Information System (INIS)

    Caballero, J; Potekhin, M; Thapa, S; Gardner, R

    2011-01-01

    A recurring challenge in deploying high quality production middleware is the extent to which realistic testing occurs before release of the software into the production environment. We describe here an automated system for validating releases of the Open Science Grid software stack that leverages the (pilot-based) PanDA job management system developed and used by the ATLAS experiment. The system was motivated by a desire to subject the OSG Integration Testbed to more realistic validation tests. In particular those which resemble to every extent possible actual job workflows used by the experiments thus utilizing job scheduling at the compute element (CE), use of the worker node execution environment, transfer of data to/from the local storage element (SE), etc. The context is that candidate releases of OSG compute and storage elements can be tested by injecting large numbers of synthetic jobs varying in complexity and coverage of services tested. The native capabilities of the PanDA system can thus be used to define jobs, monitor their execution, and archive the resulting run statistics including success and failure modes. A repository of generic workflows and job types to measure various metrics of interest has been created. A command-line toolset has been developed so that testbed managers can quickly submit 'VO-like' jobs into the system when newly deployed services are ready for testing. A system for automatic submission has been crafted to send jobs to integration testbed sites, collecting the results in a central service and generating regular reports for performance and reliability.

  6. Automatic Integration Testbeds validation on Open Science Grid

    Science.gov (United States)

    Caballero, J.; Thapa, S.; Gardner, R.; Potekhin, M.

    2011-12-01

    A recurring challenge in deploying high quality production middleware is the extent to which realistic testing occurs before release of the software into the production environment. We describe here an automated system for validating releases of the Open Science Grid software stack that leverages the (pilot-based) PanDA job management system developed and used by the ATLAS experiment. The system was motivated by a desire to subject the OSG Integration Testbed to more realistic validation tests. In particular those which resemble to every extent possible actual job workflows used by the experiments thus utilizing job scheduling at the compute element (CE), use of the worker node execution environment, transfer of data to/from the local storage element (SE), etc. The context is that candidate releases of OSG compute and storage elements can be tested by injecting large numbers of synthetic jobs varying in complexity and coverage of services tested. The native capabilities of the PanDA system can thus be used to define jobs, monitor their execution, and archive the resulting run statistics including success and failure modes. A repository of generic workflows and job types to measure various metrics of interest has been created. A command-line toolset has been developed so that testbed managers can quickly submit "VO-like" jobs into the system when newly deployed services are ready for testing. A system for automatic submission has been crafted to send jobs to integration testbed sites, collecting the results in a central service and generating regular reports for performance and reliability.

  7. Implementation of a RPS Cyber Security Test-bed with Two PLCs

    International Nuclear Information System (INIS)

    Shin, Jinsoo; Heo, Gyunyoung; Son, Hanseong; An, Yongkyu; Rizwan, Uddin

    2015-01-01

    Our research team proposed the methodology to evaluate cyber security with Bayesian network (BN) as a cyber security evaluation model and help operator, licensee, licensor or regulator in granting evaluation priorities. The methodology allowed for overall evaluation of cyber security by considering architectural aspect of facility and management aspect of cyber security at the same time. In order to emphasize reality of this model by inserting true data, it is necessary to conduct a penetration test that pretends an actual cyber-attack. Through the collaboration with University of Illinois at Urbana-Champaign, which possesses the Tricon a safety programmable logic controller (PLC) used at nuclear power plants and develops a test-bed for nuclear power plant, a test-bed for reactor protection system (RPS) is being developed with the PLCs. Two PLCs are used to construct a simple test-bed for RPS, bi-stable processor (BP) and coincidence processor (CP). By using two PLCs, it is possible to examine cyber-attack against devices such as PLC, cyber-attack against communication between devices, and the effects of a PLC on the other PLC. Two PLCs were used to construct a test-bed for penetration test in this study. Advantages of using two or more PLCs instead of single PLC are as follows. 1) Results of cyber-attack reflecting characteristics among PLCs can be obtained. 2) Cyber-attack can be attempted using a method of attacking communication between PLCs. True data obtained can be applied to existing cyber security evaluation model to emphasize reality of the model

  8. Implementation of a RPS Cyber Security Test-bed with Two PLCs

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Jinsoo; Heo, Gyunyoung [Kyung Hee Univ., Yongin (Korea, Republic of); Son, Hanseong [Joongbu Univ., Geumsan (Korea, Republic of); An, Yongkyu; Rizwan, Uddin [University of Illinois at Urbana-Champaign, Urbana (United States)

    2015-10-15

    Our research team proposed the methodology to evaluate cyber security with Bayesian network (BN) as a cyber security evaluation model and help operator, licensee, licensor or regulator in granting evaluation priorities. The methodology allowed for overall evaluation of cyber security by considering architectural aspect of facility and management aspect of cyber security at the same time. In order to emphasize reality of this model by inserting true data, it is necessary to conduct a penetration test that pretends an actual cyber-attack. Through the collaboration with University of Illinois at Urbana-Champaign, which possesses the Tricon a safety programmable logic controller (PLC) used at nuclear power plants and develops a test-bed for nuclear power plant, a test-bed for reactor protection system (RPS) is being developed with the PLCs. Two PLCs are used to construct a simple test-bed for RPS, bi-stable processor (BP) and coincidence processor (CP). By using two PLCs, it is possible to examine cyber-attack against devices such as PLC, cyber-attack against communication between devices, and the effects of a PLC on the other PLC. Two PLCs were used to construct a test-bed for penetration test in this study. Advantages of using two or more PLCs instead of single PLC are as follows. 1) Results of cyber-attack reflecting characteristics among PLCs can be obtained. 2) Cyber-attack can be attempted using a method of attacking communication between PLCs. True data obtained can be applied to existing cyber security evaluation model to emphasize reality of the model.

  9. Variable Coding and Modulation Experiment Using NASA's Space Communication and Navigation Testbed

    Science.gov (United States)

    Downey, Joseph A.; Mortensen, Dale J.; Evans, Michael A.; Tollis, Nicholas S.

    2016-01-01

    National Aeronautics and Space Administration (NASA)'s Space Communication and Navigation Testbed on the International Space Station provides a unique opportunity to evaluate advanced communication techniques in an operational system. The experimental nature of the Testbed allows for rapid demonstrations while using flight hardware in a deployed system within NASA's networks. One example is variable coding and modulation, which is a method to increase data-throughput in a communication link. This paper describes recent flight testing with variable coding and modulation over S-band using a direct-to-earth link between the SCaN Testbed and the Glenn Research Center. The testing leverages the established Digital Video Broadcasting Second Generation (DVB-S2) standard to provide various modulation and coding options. The experiment was conducted in a challenging environment due to the multipath and shadowing caused by the International Space Station structure. Performance of the variable coding and modulation system is evaluated and compared to the capacity of the link, as well as standard NASA waveforms.

  10. Living with a Star (LWS) Space Environment Testbeds (SET), Mission Carrier Overview and Capabilities

    Science.gov (United States)

    Patschke, Robert; Barth, Janet; Label, Ken; Mariano, Carolyn; Pham, Karen; Brewer, Dana; Cuviello, Michael; Kobe, David; Wu, Carl; Jarosz, Donald

    2004-01-01

    NASA has initiated the Living With a Star (LWS) Program to develop the scientific understanding to address the aspects of the Connected Sun-Earth system that affect life and society. A goal of the program is to bridge the gap between science, engineering, and user application communities. This will enable future science, operational, and commercial objectives in space and atmospheric environments by improving engineering approaches to the accommodation and/or mitigation of the effects of solar variability on technological systems. The three program elements of the LWS Program are Science Missions; Targeted Research and Technology; and Space Environment Testbeds (SETS). SET is an ideal platform for small experiments performing research on space environment effects on technologies and on the mitigation of space weather effects. A short description of the LWS Program will be given, and the SET will be described in detail, giving the mission objectives, available carrier services, and upcoming flight opportunities.

  11. A Battery Certification Testbed for Small Satellite Missions

    Science.gov (United States)

    Cameron, Zachary; Kulkarni, Chetan S.; Luna, Ali Guarneros; Goebel, Kai; Poll, Scott

    2015-01-01

    A battery pack consisting of standard cylindrical 18650 lithium-ion cells has been chosen for small satellite missions based on previous flight heritage and compliance with NASA battery safety requirements. However, for batteries that transit through the International Space Station (ISS), additional certification tests are required for individual cells as well as the battery packs. In this manuscript, we discuss the development of generalized testbeds for testing and certifying different types of batteries critical to small satellite missions. Test procedures developed and executed for this certification effort include: a detailed physical inspection before and after experiments; electrical cycling characterization at the cell and pack levels; battery-pack overcharge, over-discharge, external short testing; battery-pack vacuum leak and vibration testing. The overall goals of these certification procedures are to conform to requirements set forth by the agency and identify unique safety hazards. The testbeds, procedures, and experimental results are discussed for batteries chosen for small satellite missions to be launched from the ISS.

  12. Multi-level infrastructure of interconnected testbeds of large-scale wireless sensor networks (MI2T-WSN)

    CSIR Research Space (South Africa)

    Abu-Mahfouz, Adnan M

    2012-06-01

    Full Text Available are still required for further testing before the real implementation. In this paper we propose a multi-level infrastructure of interconnected testbeds of large- scale WSNs. This testbed consists of 1000 sensor motes that will be distributed into four...

  13. The Airborne Optical Systems Testbed (AOSTB)

    Science.gov (United States)

    2017-05-31

    are the Atlantic Ocean and coastal waterways, which reflect back very little light at our SWIR operating wavelength of 1064 nm. The Airborne Optical...demonstrate our typical FOPEN capabilities, figure 5 shows two images taken over a forested area near Burlington, VT. Figure 5(a) is a 3D point...Systems Testbed (AOSTB) 1 - 6 STO-MP-SET-999 (a) (b) Fig. 5. Ladar target scan of a forested area in northern Vermont

  14. The Living With a Star Space Environment Testbed Payload

    Science.gov (United States)

    Xapsos, Mike

    2015-01-01

    This presentation outlines a brief description of the Living With a Star (LWS) Program missions and detailed information about the Space Environment Testbed (SET) payload consisting of a space weather monitor and carrier containing 4 board experiments.

  15. Optical testbed for the LISA phasemeter

    Science.gov (United States)

    Schwarze, T. S.; Fernández Barranco, G.; Penkert, D.; Gerberding, O.; Heinzel, G.; Danzmann, K.

    2016-05-01

    The planned spaceborne gravitational wave detector LISA will allow the detection of gravitational waves at frequencies between 0.1 mHz and 1 Hz. A breadboard model for the metrology system aka the phasemeter was developed in the scope of an ESA technology development project by a collaboration between the Albert Einstein Institute, the Technical University of Denmark and the Danish industry partner Axcon Aps. It in particular provides the electronic readout of the main interferometer phases besides auxiliary functions. These include clock noise transfer, ADC pilot tone correction, inter-satellite ranging and data transfer. Besides in LISA, the phasemeter can also be applied in future satellite geodesy missions. Here we show the planning and advances in the implementation of an optical testbed for the full metrology chain. It is based on an ultra-stable hexagonal optical bench. This bench allows the generation of three unequal heterodyne beatnotes with a zero phase combination, thus providing the possibility to probe the phase readout for non-linearities in an optical three signal test. Additionally, the utilization of three independent phasemeters will allow the testing of the auxiliary functions. Once working, components can individually be replaced with flight-qualified hardware in this setup.

  16. Termite: Emulation Testbed for Encounter Networks

    Directory of Open Access Journals (Sweden)

    Rodrigo Bruno

    2015-08-01

    Full Text Available Cutting-edge mobile devices like smartphones and tablets are equipped with various infrastructureless wireless interfaces, such as WiFi Direct and Bluetooth. Such technologies allow for novel mobile applications that take advantage of casual encounters between co-located users. However, the need to mimic the behavior of real-world encounter networks makes testing and debugging of such applications hard tasks. We present Termite, an emulation testbed for encounter networks. Our system allows developers to run their applications on a virtual encounter network emulated by software. Developers can model arbitrary encounter networks and specify user interactions on the emulated virtual devices. To facilitate testing and debugging, developers can place breakpoints, inspect the runtime state of virtual nodes, and run experiments in a stepwise fashion. Termite defines its own Petri Net variant to model the dynamically changing topology and synthesize user interactions with virtual devices. The system is designed to efficiently multiplex an underlying emulation hosting infrastructure across multiple developers, and to support heterogeneous mobile platforms. Our current system implementation supports virtual Android devices communicating over WiFi Direct networks and runs on top of a local cloud infrastructure. We evaluated our system using emulator network traces, and found that Termite is expressive and performs well.

  17. Optical testbed for the LISA phasemeter

    International Nuclear Information System (INIS)

    Schwarze, T S; Fernández Barranco, G; Penkert, D; Gerberding, O; Heinzel, G; Danzmann, K

    2016-01-01

    The planned spaceborne gravitational wave detector LISA will allow the detection of gravitational waves at frequencies between 0.1 mHz and 1 Hz. A breadboard model for the metrology system aka the phasemeter was developed in the scope of an ESA technology development project by a collaboration between the Albert Einstein Institute, the Technical University of Denmark and the Danish industry partner Axcon Aps. It in particular provides the electronic readout of the main interferometer phases besides auxiliary functions. These include clock noise transfer, ADC pilot tone correction, inter-satellite ranging and data transfer. Besides in LISA, the phasemeter can also be applied in future satellite geodesy missions. Here we show the planning and advances in the implementation of an optical testbed for the full metrology chain. It is based on an ultra-stable hexagonal optical bench. This bench allows the generation of three unequal heterodyne beatnotes with a zero phase combination, thus providing the possibility to probe the phase readout for non-linearities in an optical three signal test. Additionally, the utilization of three independent phasemeters will allow the testing of the auxiliary functions. Once working, components can individually be replaced with flight-qualified hardware in this setup. (paper)

  18. ASE-BAN, a Wireless Body Area Network Testbed

    DEFF Research Database (Denmark)

    Madsen, Jens Kargaard; Karstoft, Henrik; Toftegaard, Thomas Skjødeberg

    2010-01-01

    /actuators attached to the body and a host server application. The gateway uses the BlackFin BF533 processor from Analog Devices, and uses Bluetooth for wireless communication. Two types of sensors are attached to the network: an electro-cardio-gram sensor and an oximeter sensor. The testbed has been successfully...

  19. Operation Duties on the F-15B Research Testbed

    Science.gov (United States)

    Truong, Samson S.

    2010-01-01

    This presentation entails what I have done this past summer for my Co-op tour in the Operations Engineering Branch. Activities included supporting the F-15B Research Testbed, supporting the incoming F-15D models, design work, and other operations engineering duties.

  20. Construction of test-bed system of voltage management system to ...

    African Journals Online (AJOL)

    Construction of test-bed system of voltage management system to apply physical power system. ... Journal of Fundamental and Applied Sciences ... system of voltage management system (VMS) in order to apply physical power system.

  1. Bridging the Gap from Networking Technologies to Applications: Workshop Report

    Science.gov (United States)

    Johnson, Marjory J.; desJardins, Richard

    2000-01-01

    The objective of the Next Generation Internet (NGI) Federal program is threefold, encompassing development of networking technologies, high-performance network testbeds, and revolutionary applications. There have been notable advances in emerging network technologies and several nationwide testbeds have been established, but the integration of emerging technologies into applications is lagging. To help bridge this gap between developers of NGI networking technologies and developers of NGI applications, the NASA Research and Education Network (NREN) project hosted a two-day workshop at NASA Ames Research Center in August 1999. This paper presents a summary of the results of this workshop and also describes some of the challenges NREN is facing while incorporating new technologies into HPCC and other NASA applications. The workshop focused on three technologies - Quality of Service (QoS), advanced multicast, and security-and five major NGI application areas - telemedicine, digital earth, digital video, distributed data-intensive applications, and computational infrastructure applications. Network technology experts, application developers, and NGI testbed representatives came together at the workshop to promote cross-fertilization between the groups. Presentations on the first day, including an overview of the three technologies, application case studies and testbed status reports, laid the foundation for discussions on the second day. The objective of these latter discussions, held within smaller breakout groups, was to establish a coherent picture of the current status of the various pieces of each of the three technologies, to create a roadmap outlining future technology development, and to offer technological guidance to application developers. In this paper we first present a brief overview of the NGI applications that were represented at the workshop, focusing on the identification of technological advances that have successfully been incorporated in each

  2. Development of a Testbed for Wireless Underground Sensor Networks

    Directory of Open Access Journals (Sweden)

    Mehmet C. Vuran

    2010-01-01

    Full Text Available Wireless Underground Sensor Networks (WUSNs constitute one of the promising application areas of the recently developed wireless sensor networking techniques. WUSN is a specialized kind of Wireless Sensor Network (WSN that mainly focuses on the use of sensors that communicate through soil. Recent models for the wireless underground communication channel are proposed but few field experiments were realized to verify the accuracy of the models. The realization of field WUSN experiments proved to be extremely complex and time-consuming in comparison with the traditional wireless environment. To the best of our knowledge, this is the first work that proposes guidelines for the development of an outdoor WUSN testbed with the goals of improving the accuracy and reducing of time for WUSN experiments. Although the work mainly aims WUSNs, many of the presented practices can also be applied to generic WSN testbeds.

  3. Implementation of a Wireless Time Distribution Testbed Protected with Quantum Key Distribution

    Energy Technology Data Exchange (ETDEWEB)

    Bonior, Jason D [ORNL; Evans, Philip G [ORNL; Sheets, Gregory S [ORNL; Jones, John P [ORNL; Flynn, Toby H [ORNL; O' Neil, Lori Ross [Pacific Northwest National Laboratory (PNNL); Hutton, William [Pacific Northwest National Laboratory (PNNL); Pratt, Richard [Pacific Northwest National Laboratory (PNNL); Carroll, Thomas E. [Pacific Northwest National Laboratory (PNNL)

    2017-01-01

    Secure time transfer is critical for many timesensitive applications. the Global Positioning System (GPS) which is often used for this purpose has been shown to be susceptible to spoofing attacks. Quantum Key Distribution offers a way to securely generate encryption keys at two locations. Through careful use of this information it is possible to create a system that is more resistant to spoofing attacks. In this paper we describe our work to create a testbed which utilizes QKD and traditional RF links. This testbed will be used for the development of more secure and spoofing resistant time distribution protocols.

  4. Phased Array Antenna Testbed Development at the NASA Glenn Research Center

    Science.gov (United States)

    Lambert, Kevin M.; Kubat, Gregory; Johnson, Sandra K.; Anzic, Godfrey

    2003-01-01

    Ideal phased array antennas offer advantages for communication systems, such as wide-angle scanning and multibeam operation, which can be utilized in certain NASA applications. However, physically realizable, electronically steered, phased array antennas introduce additional system performance parameters, which must be included in the evaluation of the system. The NASA Glenn Research Center (GRC) is currently conducting research to identify these parameters and to develop the tools necessary to measure them. One of these tools is a testbed where phased array antennas may be operated in an environment that simulates their use. This paper describes the development of the testbed and its use in characterizing a particular K-Band, phased array antenna.

  5. A Matlab-Based Testbed for Integration, Evaluation and Comparison of Heterogeneous Stereo Vision Matching Algorithms

    Directory of Open Access Journals (Sweden)

    Raul Correal

    2016-11-01

    Full Text Available Stereo matching is a heavily researched area with a prolific published literature and a broad spectrum of heterogeneous algorithms available in diverse programming languages. This paper presents a Matlab-based testbed that aims to centralize and standardize this variety of both current and prospective stereo matching approaches. The proposed testbed aims to facilitate the application of stereo-based methods to real situations. It allows for configuring and executing algorithms, as well as comparing results, in a fast, easy and friendly setting. Algorithms can be combined so that a series of processes can be chained and executed consecutively, using the output of a process as input for the next; some additional filtering and image processing techniques have been included within the testbed for this purpose. A use case is included to illustrate how these processes are sequenced and its effect on the results for real applications. The testbed has been conceived as a collaborative and incremental open-source project, where its code is accessible and modifiable, with the objective of receiving contributions and releasing future versions to include new algorithms and features. It is currently available online for the research community.

  6. NASA Robotic Neurosurgery Testbed

    Science.gov (United States)

    Mah, Robert

    1997-01-01

    The detection of tissue interface (e.g., normal tissue, cancer, tumor) has been limited clinically to tactile feedback, temperature monitoring, and the use of a miniature ultrasound probe for tissue differentiation during surgical operations, In neurosurgery, the needle used in the standard stereotactic CT or MRI guided brain biopsy provides no information about the tissue being sampled. The tissue sampled depends entirely upon the accuracy with which the localization provided by the preoperative CT or MRI scan is translated to the intracranial biopsy site. In addition, no information about the tissue being traversed by the needle (e.g., a blood vessel) is provided. Hemorrhage due to the biopsy needle tearing a blood vessel within the brain is the most devastating complication of stereotactic CT/MRI guided brain biopsy. A robotic neurosurgery testbed has been developed at NASA Ames Research Center as a spin-off of technologies from space, aeronautics and medical programs. The invention entitled "Robotic Neurosurgery Leading to Multimodality Devices for Tissue Identification" is nearing a state ready for commercialization. The devices will: 1) improve diagnostic accuracy and precision of general surgery, with near term emphasis on stereotactic brain biopsy, 2) automate tissue identification, with near term emphasis on stereotactic brain biopsy, to permit remote control of the procedure, and 3) reduce morbidity for stereotactic brain biopsy. The commercial impact from this work is the potential development of a whole new generation of smart surgical tools to increase the safety, accuracy and efficiency of surgical procedures. Other potential markets include smart surgical tools for tumor ablation in neurosurgery, general exploratory surgery, prostate cancer surgery, and breast cancer surgery.

  7. Full-Scaled Advanced Systems Testbed: Ensuring Success of Adaptive Control Research Through Project Lifecycle Risk Mitigation

    Science.gov (United States)

    Pavlock, Kate M.

    2011-01-01

    The National Aeronautics and Space Administration's Dryden Flight Research Center completed flight testing of adaptive controls research on the Full-Scale Advance Systems Testbed (FAST) in January of 2011. The research addressed technical challenges involved with reducing risk in an increasingly complex and dynamic national airspace. Specific challenges lie with the development of validated, multidisciplinary, integrated aircraft control design tools and techniques to enable safe flight in the presence of adverse conditions such as structural damage, control surface failures, or aerodynamic upsets. The testbed is an F-18 aircraft serving as a full-scale vehicle to test and validate adaptive flight control research and lends a significant confidence to the development, maturation, and acceptance process of incorporating adaptive control laws into follow-on research and the operational environment. The experimental systems integrated into FAST were designed to allow for flexible yet safe flight test evaluation and validation of modern adaptive control technologies and revolve around two major hardware upgrades: the modification of Production Support Flight Control Computers (PSFCC) and integration of two, fourth-generation Airborne Research Test Systems (ARTS). Post-hardware integration verification and validation provided the foundation for safe flight test of Nonlinear Dynamic Inversion and Model Reference Aircraft Control adaptive control law experiments. To ensure success of flight in terms of cost, schedule, and test results, emphasis on risk management was incorporated into early stages of design and flight test planning and continued through the execution of each flight test mission. Specific consideration was made to incorporate safety features within the hardware and software to alleviate user demands as well as into test processes and training to reduce human factor impacts to safe and successful flight test. This paper describes the research configuration

  8. Earthbound Unmanned Autonomous Vehicles (UAVS) As Planetary Science Testbeds

    Science.gov (United States)

    Pieri, D. C.; Bland, G.; Diaz, J. A.; Fladeland, M. M.

    2014-12-01

    Recent advances in the technology of unmanned vehicles have greatly expanded the range of contemplated terrestrial operational environments for their use, including aerial, surface, and submarine. The advances have been most pronounced in the areas of autonomy, miniaturization, durability, standardization, and ease of operation, most notably (especially in the popular press) for airborne vehicles. Of course, for a wide range of planetary venues, autonomy at high cost of both money and risk, has always been a requirement. Most recently, missions to Mars have also featured an unprecedented degree of mobility. Combining the traditional planetary surface deployment operational and science imperatives with emerging, very accessible, and relatively economical small UAV platforms on Earth can provide flexible, rugged, self-directed, test-bed platforms for landed instruments and strategies that will ultimately be directed elsewhere, and, in the process, provide valuable earth science data. While the most direct transfer of technology from terrestrial to planetary venues is perhaps for bodies with atmospheres (and oceans), with appropriate technology and strategy accommodations, single and networked UAVs can be designed to operate on even airless bodies, under a variety of gravities. In this presentation, we present and use results and lessons learned from our recent earth-bound UAV volcano deployments, as well as our future plans for such, to conceptualize a range of planetary and small-body missions. We gratefully acknowledge the assistance of students and colleagues at our home institutions, and the government of Costa Rica, without which our UAV deployments would not have been possible. This work was carried out, in part, at the Jet Propulsion Laboratory of the California Institute of Technology under contract to NASA.

  9. LTE-Advanced/WLAN testbed

    OpenAIRE

    Plaisner, Denis

    2017-01-01

    Táto práca sa zaoberá skúmaním a vyhodnocovaním komunikácie štandardov LTE-Advance a WiFi (IEEE 802.11n/ac). Pri jednotlivých štandardoch je preskúmaný chybový parameter EVM. Pre prácu s jednotlivými štandardmi je navrhnuté univerzálne pracovisko (testbed). Toto univerzálne pracovisko slúži na nastavovanie vysielacieho a prijímacieho zariadenia a na spracovávanie prenášaných signálov a ich vyhodnocovanie. Pre túto prácu je vybrané prostredie Matlab, cez ktoré sa ovládajú použité prístroje ako...

  10. Building a ROS-Based Testbed for Realistic Multi-Robot Simulation: Taking the Exploration as an Example

    Directory of Open Access Journals (Sweden)

    Zhi Yan

    2017-09-01

    Full Text Available While the robotics community agrees that the benchmarking is of high importance to objectively compare different solutions, there are only few and limited tools to support it. To address this issue in the context of multi-robot systems, we have defined a benchmarking process based on experimental designs, which aimed at improving the reproducibility of experiments by making explicit all elements of a benchmark such as parameters, measurements and metrics. We have also developed a ROS (Robot Operating System-based testbed with the goal of making it easy for users to validate, benchmark, and compare different algorithms including coordination strategies. Our testbed uses the MORSE (Modular OpenRobots Simulation Engine simulator for realistic simulation and a computer cluster for decentralized computation. In this paper, we present our testbed in details with the architecture and infrastructure, the issues encountered in implementing the infrastructure, and the automation of the deployment. We also report a series of experiments on multi-robot exploration, in order to demonstrate the capabilities of our testbed.

  11. A MIMO-OFDM Testbed for Wireless Local Area Networks

    Directory of Open Access Journals (Sweden)

    Conrat Jean-Marc

    2006-01-01

    Full Text Available We describe the design steps and final implementation of a MIMO OFDM prototype platform developed to enhance the performance of wireless LAN standards such as HiperLAN/2 and 802.11, using multiple transmit and multiple receive antennas. We first describe the channel measurement campaign used to characterize the indoor operational propagation environment, and analyze the influence of the channel on code design through a ray-tracing channel simulator. We also comment on some antenna and RF issues which are of importance for the final realization of the testbed. Multiple coding, decoding, and channel estimation strategies are discussed and their respective performance-complexity trade-offs are evaluated over the realistic channel obtained from the propagation studies. Finally, we present the design methodology, including cross-validation of the Matlab, C++, and VHDL components, and the final demonstrator architecture. We highlight the increased measured performance of the MIMO testbed over the single-antenna system.

  12. A Testbed Environment for Buildings-to-Grid Cyber Resilience Research and Development

    Energy Technology Data Exchange (ETDEWEB)

    Sridhar, Siddharth; Ashok, Aditya; Mylrea, Michael E.; Pal, Seemita; Rice, Mark J.; Gourisetti, Sri Nikhil Gup

    2017-09-19

    The Smart Grid is characterized by the proliferation of advanced digital controllers at all levels of its operational hierarchy from generation to end consumption. Such controllers within modern residential and commercial buildings enable grid operators to exercise fine-grained control over energy consumption through several emerging Buildings-to-Grid (B2G) applications. Though this capability promises significant benefits in terms of operational economics and improved reliability, cybersecurity weaknesses in the supporting infrastructure could be exploited to cause a detrimental effect and this necessitates focused research efforts on two fronts. First, the understanding of how cyber attacks in the B2G space could impact grid reliability and to what extent. Second, the development and validation of cyber-physical application-specific countermeasures that are complementary to traditional infrastructure cybersecurity mechanisms for enhanced cyber attack detection and mitigation. The PNNL B2G testbed is currently being developed to address these core research needs. Specifically, the B2G testbed combines high-fidelity buildings+grid simulators, industry-grade building automation and Supervisory Control and Data Acquisition (SCADA) systems in an integrated, realistic, and reconfigurable environment capable of supporting attack-impact-detection-mitigation experimentation. In this paper, we articulate the need for research testbeds to model various B2G applications broadly by looking at the end-to-end operational hierarchy of the Smart Grid. Finally, the paper not only describes the architecture of the B2G testbed in detail, but also addresses the broad spectrum of B2G resilience research it is capable of supporting based on the smart grid operational hierarchy identified earlier.

  13. Adaptive Signal Processing Testbed: VME-based DSP board market survey

    Science.gov (United States)

    Ingram, Rick E.

    1992-04-01

    The Adaptive Signal Processing Testbed (ASPT) is a real-time multiprocessor system utilizing digital signal processor technology on VMEbus based printed circuit boards installed on a Sun workstation. The ASPT has specific requirements, particularly as regards to the signal excision application, with respect to interfacing with current and planned data generation equipment, processing of the data, storage to disk of final and intermediate results, and the development tools for applications development and integration into the overall EW/COM computing environment. A prototype ASPT was implemented using three VME-C-30 boards from Applied Silicon. Experience gained during the prototype development led to the conclusions that interprocessor communications capability is the most significant contributor to overall ASPT performance. In addition, the host involvement should be minimized. Boards using different processors were evaluated with respect to the ASPT system requirements, pricing, and availability. Specific recommendations based on various priorities are made as well as recommendations concerning the integration and interaction of various tools developed during the prototype implementation.

  14. Status of the Visible Nulling Coronagraph Technology Demonstration Program

    Science.gov (United States)

    Clampin, M.; Lyon, R.

    2012-01-01

    We report on the development, sensing and control of the Vacuum Nuller Testbed to realize a Visible Nulling Coronagraphy (VNC) for exoplanet detection and characterization. The VNC is one of the few approaches that works with filled, segmented and sparse or diluted-aperture telescope systems. It thus spans a range of potential future NASA telescopes and could be flown as a separate instrument on such a future mission. NASA/Goddard Space Flight Center has an established effort to develop VNC technologies, and an incremental sequence of testbeds to advance this approach and its critical technologies. We will highlight results demonstrating the achievement of our TDEM contrast milestones, and highlight the performance of our wavefront sensing and control concept.

  15. The Segmented Aperture Interferometric Nulling Testbed (SAINT) I: overview and air-side system description

    Science.gov (United States)

    Hicks, Brian A.; Lyon, Richard G.; Petrone, Peter; Ballard, Marlin; Bolcar, Matthew R.; Bolognese, Jeff; Clampin, Mark; Dogoda, Peter; Dworzanski, Daniel; Helmbrecht, Michael A.; Koca, Corina; Shiri, Ron

    2016-07-01

    This work presents an overview of the Segmented Aperture Interferometric Nulling Testbed (SAINT), a project that will pair an actively-controlled macro-scale segmented mirror with the Visible Nulling Coronagraph (VNC). SAINT will incorporate the VNC's demonstrated wavefront sensing and control system to refine and quantify end-to-end high-contrast starlight suppression performance. This pathfinder testbed will be used as a tool to study and refine approaches to mitigating instabilities and complex diffraction expected from future large segmented aperture telescopes.

  16. On-wire lithography-generated molecule-based transport junctions: a new testbed for molecular electronics.

    Science.gov (United States)

    Chen, Xiaodong; Jeon, You-Moon; Jang, Jae-Won; Qin, Lidong; Huo, Fengwei; Wei, Wei; Mirkin, Chad A

    2008-07-02

    On-wire lithography (OWL) fabricated nanogaps are used as a new testbed to construct molecular transport junctions (MTJs) through the assembly of thiolated molecular wires across a nanogap formed between two Au electrodes. In addition, we show that one can use OWL to rapidly characterize a MTJ and optimize gap size for two molecular wires of different dimensions. Finally, we have used this new testbed to identify unusual temperature-dependent transport mechanisms for alpha,omega-dithiol terminated oligo(phenylene ethynylene).

  17. Real-Time Simulation and Hardware-in-the-Loop Testbed for Distribution Synchrophasor Applications

    Directory of Open Access Journals (Sweden)

    Matthias Stifter

    2018-04-01

    Full Text Available With the advent of Distribution Phasor Measurement Units (D-PMUs and Micro-Synchrophasors (Micro-PMUs, the situational awareness in power distribution systems is going to the next level using time-synchronization. However, designing, analyzing, and testing of such accurate measurement devices are still challenging. Due to the lack of available knowledge and sufficient history for synchrophasors’ applications at the power distribution level, the realistic simulation, and validation environments are essential for D-PMU development and deployment. This paper presents a vendor agnostic PMU real-time simulation and hardware-in-the-Loop (PMU-RTS-HIL testbed, which helps in multiple PMUs validation and studies. The network of real and virtual PMUs was built in a full time-synchronized environment for PMU applications’ validation. The proposed testbed also includes an emulated communication network (CNS layer to replicate bandwidth, packet loss and collisions conditions inherent to the PMUs data streams’ issues. Experimental results demonstrate the flexibility and scalability of the developed PMU-RTS-HIL testbed by producing large amounts of measurements under typical normal and abnormal distribution grid operation conditions.

  18. Torpedo and countermeasures modelling in the Torpedo Defence System Testbed

    NARCIS (Netherlands)

    Benders, F.P.A.; Witberg, R.R.; H.J. Grootendorst, H.J.

    2002-01-01

    Several years ago, TNO-FEL started the development of the Torpedo Defence System Testbed (TDSTB) based on the TORpedo SIMulation (TORSIM) model and the Maritime Operations Simulation and Evaluation System (MOSES). MOSES provides the simulation and modelling environment for the evaluation and

  19. James Webb Space Telescope Optical Simulation Testbed: Segmented Mirror Phase Retrieval Testing

    Science.gov (United States)

    Laginja, Iva; Egron, Sylvain; Brady, Greg; Soummer, Remi; Lajoie, Charles-Philippe; Bonnefois, Aurélie; Long, Joseph; Michau, Vincent; Choquet, Elodie; Ferrari, Marc; Leboulleux, Lucie; Mazoyer, Johan; N’Diaye, Mamadou; Perrin, Marshall; Petrone, Peter; Pueyo, Laurent; Sivaramakrishnan, Anand

    2018-01-01

    The James Webb Space Telescope (JWST) Optical Simulation Testbed (JOST) is a hardware simulator designed to produce JWST-like images. A model of the JWST three mirror anastigmat is realized with three lenses in form of a Cooke Triplet, which provides JWST-like optical quality over a field equivalent to a NIRCam module, and an Iris AO segmented mirror with hexagonal elements is standing in for the JWST segmented primary. This setup successfully produces images extremely similar to NIRCam images from cryotesting in terms of the PSF morphology and sampling relative to the diffraction limit.The testbed is used for staff training of the wavefront sensing and control (WFS&C) team and for independent analysis of WFS&C scenarios of the JWST. Algorithms like geometric phase retrieval (GPR) that may be used in flight and potential upgrades to JWST WFS&C will be explored. We report on the current status of the testbed after alignment, implementation of the segmented mirror, and testing of phase retrieval techniques.This optical bench complements other work at the Makidon laboratory at the Space Telescope Science Institute, including the investigation of coronagraphy for segmented aperture telescopes. Beyond JWST we intend to use JOST for WFS&C studies for future large segmented space telescopes such as LUVOIR.

  20. Analysis, modeling, and simulation (AMS) testbed development and evaluation to support dynamic mobility applications (DMA) and active transportation and demand management (ATDM) programs : Dallas testbed analysis plan.

    Science.gov (United States)

    2016-06-16

    The primary objective of this project is to develop multiple simulation Testbeds/transportation models to evaluate theimpacts of DMA connected vehicle applications and the active and dynamic transportation management (ATDM)strategies. The outputs (mo...

  1. Large Scale Data Mining to Improve Usability of Data: An Intelligent Archive Testbed

    Science.gov (United States)

    Ramapriyan, Hampapuram; Isaac, David; Yang, Wenli; Morse, Steve

    2005-01-01

    Research in certain scientific disciplines - including Earth science, particle physics, and astrophysics - continually faces the challenge that the volume of data needed to perform valid scientific research can at times overwhelm even a sizable research community. The desire to improve utilization of this data gave rise to the Intelligent Archives project, which seeks to make data archives active participants in a knowledge building system capable of discovering events or patterns that represent new information or knowledge. Data mining can automatically discover patterns and events, but it is generally viewed as unsuited for large-scale use in disciplines like Earth science that routinely involve very high data volumes. Dozens of research projects have shown promising uses of data mining in Earth science, but all of these are based on experiments with data subsets of a few gigabytes or less, rather than the terabytes or petabytes typically encountered in operational systems. To bridge this gap, the Intelligent Archives project is establishing a testbed with the goal of demonstrating the use of data mining techniques in an operationally-relevant environment. This paper discusses the goals of the testbed and the design choices surrounding critical issues that arose during testbed implementation.

  2. Development of an Autonomous Navigation Technology Test Vehicle

    National Research Council Canada - National Science Library

    Tobler, Chad K

    2004-01-01

    .... In order to continue these research activities at CIMAR, a new Kawasaki Mule All-Terrain Vehicle was chosen to be automated as a test-bed for the purpose of developing and testing autonomous vehicle technologies...

  3. Towards Autonomous Operations of the Robonaut 2 Humanoid Robotic Testbed

    Science.gov (United States)

    Badger, Julia; Nguyen, Vienny; Mehling, Joshua; Hambuchen, Kimberly; Diftler, Myron; Luna, Ryan; Baker, William; Joyce, Charles

    2016-01-01

    The Robonaut project has been conducting research in robotics technology on board the International Space Station (ISS) since 2012. Recently, the original upper body humanoid robot was upgraded by the addition of two climbing manipulators ("legs"), more capable processors, and new sensors, as shown in Figure 1. While Robonaut 2 (R2) has been working through checkout exercises on orbit following the upgrade, technology development on the ground has continued to advance. Through the Active Reduced Gravity Offload System (ARGOS), the Robonaut team has been able to develop technologies that will enable full operation of the robotic testbed on orbit using similar robots located at the Johnson Space Center. Once these technologies have been vetted in this way, they will be implemented and tested on the R2 unit on board the ISS. The goal of this work is to create a fully-featured robotics research platform on board the ISS to increase the technology readiness level of technologies that will aid in future exploration missions. Technology development has thus far followed two main paths, autonomous climbing and efficient tool manipulation. Central to both technologies has been the incorporation of a human robotic interaction paradigm that involves the visualization of sensory and pre-planned command data with models of the robot and its environment. Figure 2 shows screenshots of these interactive tools, built in rviz, that are used to develop and implement these technologies on R2. Robonaut 2 is designed to move along the handrails and seat track around the US lab inside the ISS. This is difficult for many reasons, namely the environment is cluttered and constrained, the robot has many degrees of freedom (DOF) it can utilize for climbing, and remote commanding for precision tasks such as grasping handrails is time-consuming and difficult. Because of this, it is important to develop the technologies needed to allow the robot to reach operator-specified positions as

  4. Software Testbed for Developing and Evaluating Integrated Autonomous Subsystems

    Science.gov (United States)

    Ong, James; Remolina, Emilio; Prompt, Axel; Robinson, Peter; Sweet, Adam; Nishikawa, David

    2015-01-01

    To implement fault tolerant autonomy in future space systems, it will be necessary to integrate planning, adaptive control, and state estimation subsystems. However, integrating these subsystems is difficult, time-consuming, and error-prone. This paper describes Intelliface/ADAPT, a software testbed that helps researchers develop and test alternative strategies for integrating planning, execution, and diagnosis subsystems more quickly and easily. The testbed's architecture, graphical data displays, and implementations of the integrated subsystems support easy plug and play of alternate components to support research and development in fault-tolerant control of autonomous vehicles and operations support systems. Intelliface/ADAPT controls NASA's Advanced Diagnostics and Prognostics Testbed (ADAPT), which comprises batteries, electrical loads (fans, pumps, and lights), relays, circuit breakers, invertors, and sensors. During plan execution, an experimentor can inject faults into the ADAPT testbed by tripping circuit breakers, changing fan speed settings, and closing valves to restrict fluid flow. The diagnostic subsystem, based on NASA's Hybrid Diagnosis Engine (HyDE), detects and isolates these faults to determine the new state of the plant, ADAPT. Intelliface/ADAPT then updates its model of the ADAPT system's resources and determines whether the current plan can be executed using the reduced resources. If not, the planning subsystem generates a new plan that reschedules tasks, reconfigures ADAPT, and reassigns the use of ADAPT resources as needed to work around the fault. The resource model, planning domain model, and planning goals are expressed using NASA's Action Notation Modeling Language (ANML). Parts of the ANML model are generated automatically, and other parts are constructed by hand using the Planning Model Integrated Development Environment, a visual Eclipse-based IDE that accelerates ANML model development. Because native ANML planners are currently

  5. A Rural Next Generation Network (R-NGN and Its Testbed

    Directory of Open Access Journals (Sweden)

    Armein Z. R. Langi

    2007-05-01

    Full Text Available Rural Next Generation Networks (R-NGN technology allows Internet protocol (IP based systems to be used in rural areas. This paper reports a testbed of R-NGN that uses low cost Ethernet radio links, combined with media gateways and a softswitch. The network consists of point-to-point IP Ethernet 2.4 GHz wireless link, IP switches and gateways in each community, standard copper wires and telephone sets for users. It uses low power consumption, and suitable for low density users. This combination allows low cost systems as well as multiservices (voice, data, and multimedia for rural communications. An infrastructure has been deployed in two communities in Cipicung Girang, a village 10 km outside Bandung city, Indonesia. Two towers link the communities with a network of Institut Teknologi Bandung (ITB campus. In addition, local wirelines connect community houses to the network. Currently there are four houses connected to each community node (for a total of eight house, upon which we can perform various tests and measurements.

  6. A Rural Next Generation Network (R-NGN and Its Testbed

    Directory of Open Access Journals (Sweden)

    Armein Z. R. Langi

    2013-09-01

    Full Text Available Rural Next Generation Networks (R-NGN technology allows Internet protocol (IP based systems to be used in rural areas. This paper reports a testbed of R-NGN that uses low cost Ethernet radio links, combined with media gateways and a softswitch. The network consists of point-to-point IP Ethernet 2.4 GHz wireless link, IP switches and gateways in each community, standard copper wires and telephone sets for users. It uses low power consumption, and suitable for low density users. This combination allows low cost systems as well as multiservices (voice, data, and multimedia for rural communications. An infrastructure has been deployed in two communities in Cipicung Girang, a village 10 km outside Bandung city, Indonesia. Two towers link the communities with a network of Institut Teknologi Bandung (ITB campus. In addition, local wirelines connect community houses to the network. Currently there are four houses connected to each community node (for a total of eight house, upon which we can perform various tests and measurements.

  7. Solar Resource Assessment with Sky Imagery and a Virtual Testbed for Sky Imager Solar Forecasting

    Science.gov (United States)

    Kurtz, Benjamin Bernard

    In recent years, ground-based sky imagers have emerged as a promising tool for forecasting solar energy on short time scales (0 to 30 minutes ahead). Following the development of sky imager hardware and algorithms at UC San Diego, we present three new or improved algorithms for sky imager forecasting and forecast evaluation. First, we present an algorithm for measuring irradiance with a sky imager. Sky imager forecasts are often used in conjunction with other instruments for measuring irradiance, so this has the potential to decrease instrumentation costs and logistical complexity. In particular, the forecast algorithm itself often relies on knowledge of the current irradiance which can now be provided directly from the sky images. Irradiance measurements are accurate to within about 10%. Second, we demonstrate a virtual sky imager testbed that can be used for validating and enhancing the forecast algorithm. The testbed uses high-quality (but slow) simulations to produce virtual clouds and sky images. Because virtual cloud locations are known, much more advanced validation procedures are possible with the virtual testbed than with measured data. In this way, we are able to determine that camera geometry and non-uniform evolution of the cloud field are the two largest sources of forecast error. Finally, with the assistance of the virtual sky imager testbed, we develop improvements to the cloud advection model used for forecasting. The new advection schemes are 10-20% better at short time horizons.

  8. Extrasolar Planetary Imaging Coronagraph: Visible Nulling Coronagraph Testbed Results

    Science.gov (United States)

    Lyon, Richard G.

    2008-01-01

    The Extrasolar Planetary Imaging Coronagraph (EPIC) is a proposed NASA Discovery mission to image and characterize extrasolar giant planets in orbits with semi-major axes between 2 and 10 AU. EPIC will provide insights into the physical nature of a variety of planets in other solar systems complimenting radial velocity (RV) and astrometric planet searches. It will detect and characterize the atmospheres of planets identified by radial velocity surveys, determine orbital inclinations and masses, characterize the atmospheres around A and F stars, observed the inner spatial structure and colors of inner Spitzer selected debris disks. EPIC would be launched to heliocentric Earth trailing drift-away orbit, with a 3-year mission lifetime ( 5 year goal) and will revisit planets at least three times at intervals of 9 months. The starlight suppression approach consists of a visible nulling coronagraph (VNC) that enables high order starlight suppression in broadband light. To demonstrate the VNC approach and advance it's technology readiness the NASA Goddard Space Flight Center and Lockheed-Martin have developed a laboratory VNC and have demonstrated white light nulling. We will discuss our ongoing VNC work and show the latest results from the VNC testbed,

  9. Social media analytics and research testbed (SMART: Exploring spatiotemporal patterns of human dynamics with geo-targeted social media messages

    Directory of Open Access Journals (Sweden)

    Jiue-An Yang

    2016-06-01

    Full Text Available The multilevel model of meme diffusion conceptualizes how mediated messages diffuse over time and space. As a pilot application of implementing the meme diffusion, we developed the social media analytics and research testbed to monitor Twitter messages and track the diffusion of information in and across different cities and geographic regions. Social media analytics and research testbed is an online geo-targeted search and analytics tool, including an automatic data processing procedure at the backend and an interactive frontend user interface. Social media analytics and research testbed is initially designed to facilitate (1 searching and geo-locating tweet topics and terms in different cities and geographic regions; (2 filtering noise from raw data (such as removing redundant retweets and using machine learning methods to improve precision; (3 analyzing social media data from a spatiotemporal perspective; and (4 visualizing social media data in diagnostic ways (such as weekly and monthly trends, trend maps, top media, top retweets, top mentions, or top hashtags. Social media analytics and research testbed provides researchers and domain experts with a tool that can efficiently facilitate the refinement, formalization, and testing of research hypotheses or questions. Three case studies (flu outbreaks, Ebola epidemic, and marijuana legalization are introduced to illustrate how the predictions of meme diffusion can be examined and to demonstrate the potentials and key functions of social media analytics and research testbed.

  10. Design and construction of a 76m long-travel laser enclosure for a space occulter testbed

    Science.gov (United States)

    Galvin, Michael; Kim, Yunjong; Kasdin, N. Jeremy; Sirbu, Dan; Vanderbei, Robert; Echeverri, Dan; Sagolla, Giuseppe; Rousing, Andreas; Balasubramanian, Kunjithapatham; Ryan, Daniel; Shaklan, Stuart; Lisman, Doug

    2016-07-01

    Princeton University is upgrading our space occulter testbed. In particular, we are lengthening it to 76m to achieve flightlike Fresnel numbers. This much longer testbed required an all-new enclosure design. In this design, we prioritized modularity and the use of commercial off-the-shelf (COTS) and semi-COTS components. Several of the technical challenges encountered included an unexpected slow beam drift and black paint selection. Herein we describe the design and construction of this long-travel laser enclosure.

  11. Oceanic Platform of the Canary Islands: an ocean testbed for ocean energy converters

    Science.gov (United States)

    González, Javier; Hernández-Brito, Joaquín.; Llinás, Octavio

    2010-05-01

    The Oceanic Platform of the Canary Islands (PLOCAN) is a Governmental Consortium aimed to build and operate an off-shore infrastructure to facilitate the deep sea research and speed up the technology associated. This Consortium is overseen by the Spanish Ministry of Science and Innovation and the Canarian Agency for Research and Innovation. The infrastructure consists of an oceanic platform located in an area with depths between 50-100 meters, close to the continental slope and four kilometers off the coast of Gran Canaria, in the archipelago of the Canary Islands. The process of construction will start during the first months of 2010 and is expected to be finished in mid-year 2011. PLOCAN serves five strategic lines: an integral observatory able to explore from the deep ocean to the atmosphere, an ocean technology testbed, a base for underwater vehicles, an innovation platform and a highly specialized training centre. Ocean energy is a suitable source to contribute the limited mix-energy conformed in the archipelago of the Canary Islands with a total population around 2 million people unequally distributed in seven islands. Islands of Gran Canaria and Tenerife support the 80% of the total population with 800.000 people each. PLOCAN will contribute to develop the ocean energy sector establishing a marine testbed allowing prototypes testing at sea under a meticulous monitoring network provided by the integral observatory, generating valuable information to developers. Reducing costs throughout an integral project management is an essential objective to be reach, providing services such as transportation, customs and administrative permits. Ocean surface for testing activities is around 8 km2 with a depth going from 50 to 100 meters, 4km off the coast. Selected areas for testing have off-shore wind power conditions around 500-600 W/m2 and wave power conditions around 6 kW/m in the East coast and 10 kW/m in the North coast. Marine currents in the Canary Islands are

  12. Development of optical packet and circuit integrated ring network testbed.

    Science.gov (United States)

    Furukawa, Hideaki; Harai, Hiroaki; Miyazawa, Takaya; Shinada, Satoshi; Kawasaki, Wataru; Wada, Naoya

    2011-12-12

    We developed novel integrated optical packet and circuit switch-node equipment. Compared with our previous equipment, a polarization-independent 4 × 4 semiconductor optical amplifier switch subsystem, gain-controlled optical amplifiers, and one 100 Gbps optical packet transponder and seven 10 Gbps optical path transponders with 10 Gigabit Ethernet (10GbE) client-interfaces were newly installed in the present system. The switch and amplifiers can provide more stable operation without equipment adjustments for the frequent polarization-rotations and dynamic packet-rate changes of optical packets. We constructed an optical packet and circuit integrated ring network testbed consisting of two switch nodes for accelerating network development, and we demonstrated 66 km fiber transmission and switching operation of multiplexed 14-wavelength 10 Gbps optical paths and 100 Gbps optical packets encapsulating 10GbE frames. Error-free (frame error rate optical packets of various packet lengths and packet rates, and stable operation of the network testbed was confirmed. In addition, 4K uncompressed video streaming over OPS links was successfully demonstrated. © 2011 Optical Society of America

  13. The Orlando TDWR testbed and airborne wind shear date comparison results

    Science.gov (United States)

    Campbell, Steven; Berke, Anthony; Matthews, Michael

    1992-01-01

    The focus of this talk is on comparing terminal Doppler Weather Radar (TDWR) and airborne wind shear data in computing a microburst hazard index called the F factor. The TDWR is a ground-based system for detecting wind shear hazards to aviation in the terminal area. The Federal Aviation Administration will begin deploying TDWR units near 45 airports in late 1992. As part of this development effort, M.I.T. Lincoln Laboratory operates under F.A.A. support a TDWR testbed radar in Orlando, FL. During the past two years, a series of flight tests has been conducted with instrumented aircraft penetrating microburst events while under testbed radar surveillance. These tests were carried out with a Cessna Citation 2 aircraft operated by the University of North Dakota (UND) Center for Aerospace Sciences in 1990, and a Boeing 737 operated by NASA Langley Research Center in 1991. A large data base of approximately 60 instrumented microburst penetrations has been obtained from these flights.

  14. Analysis, modeling, and simulation (AMS) testbed development and evaluation to support dynamic mobility applications (DMA) and active transportation and demand management (ATDM) programs - evaluation summary for the San Diego testbed

    Science.gov (United States)

    2017-08-01

    The primary objective of this project is to develop multiple simulation testbeds and transportation models to evaluate the impacts of Connected Vehicle Dynamic Mobility Applications (DMA) and Active Transportation and Demand Management (ATDM) strateg...

  15. Analysis, Modeling, and Simulation (AMS) Testbed Development and Evaluation to Support Dynamic Mobility Applications (DMA) and Active Transportation and Demand Management (ATDM) Programs - Evaluation Report for the San Diego Testbed

    Science.gov (United States)

    2017-07-01

    The primary objective of this project is to develop multiple simulation testbeds and transportation models to evaluate the impacts of Connected Vehicle Dynamic Mobility Applications (DMA) and Active Transportation and Demand Management (ATDM) strateg...

  16. Radiation beamline testbeds for the simulation of planetary and spacecraft environments for human and robotic mission risk assessment

    Science.gov (United States)

    Wilkins, Richard

    experimental areas associated with the above facilities. CRESSE has broad expertise in space radiation in the areas of space radiation environment modeling, Monte-Carlo radiation transport modeling, space radiation instrumentation and dosimetry, radiation effects on electronics, and multi-functional composite shielding materi-als. The BERT and ERNIE testbeds will be utilized in individual and collaborative research incorporating this expertise. The research goal is to maximize the technical readiness level (TRL) of radiation instrumentation for human and robotic missions, optimizing the return value of CRESSE for NASA exploration and international co-operative missions. Outcomes and knowledge from research utilizing BERT and ERNIE will be applied to a variety of scien-tific and engineering disciplines vital for safe and reliable execution of future space exploration missions, which can be negatively impacted by the space radiation environment. The testbeds will be central to a variety of university educational activities and educational goals of NASA. Specifically, BERT and ERNIE will enhance educational opportunities in science, technol-ogy, engineering and mathematics (STEM) disciplines for engineering and science students at PVAMU, a historically black college/university. Preliminary data on prototype testbed configurations, including simulated lunar regolith (JSC-1A stimulant based on Apollo 11 samples), regolith/polyethylene composites, and dry ice, will be presented to demonstrate the usefulness of BERT and ERNIE in radiation beam line experiments.

  17. Genetic Algorithm Phase Retrieval for the Systematic Image-Based Optical Alignment Testbed

    Science.gov (United States)

    Taylor, Jaime; Rakoczy, John; Steincamp, James

    2003-01-01

    Phase retrieval requires calculation of the real-valued phase of the pupil fimction from the image intensity distribution and characteristics of an optical system. Genetic 'algorithms were used to solve two one-dimensional phase retrieval problem. A GA successfully estimated the coefficients of a polynomial expansion of the phase when the number of coefficients was correctly specified. A GA also successfully estimated the multiple p h e s of a segmented optical system analogous to the seven-mirror Systematic Image-Based Optical Alignment (SIBOA) testbed located at NASA s Marshall Space Flight Center. The SIBOA testbed was developed to investigate phase retrieval techniques. Tiphilt and piston motions of the mirrors accomplish phase corrections. A constant phase over each mirror can be achieved by an independent tip/tilt correction: the phase Conection term can then be factored out of the Discrete Fourier Tranform (DFT), greatly reducing computations.

  18. TORCH Computational Reference Kernels - A Testbed for Computer Science Research

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, Alex; Williams, Samuel Webb; Madduri, Kamesh; Ibrahim, Khaled; Bailey, David H.; Demmel, James W.; Strohmaier, Erich

    2010-12-02

    For decades, computer scientists have sought guidance on how to evolve architectures, languages, and programming models in order to improve application performance, efficiency, and productivity. Unfortunately, without overarching advice about future directions in these areas, individual guidance is inferred from the existing software/hardware ecosystem, and each discipline often conducts their research independently assuming all other technologies remain fixed. In today's rapidly evolving world of on-chip parallelism, isolated and iterative improvements to performance may miss superior solutions in the same way gradient descent optimization techniques may get stuck in local minima. To combat this, we present TORCH: A Testbed for Optimization ResearCH. These computational reference kernels define the core problems of interest in scientific computing without mandating a specific language, algorithm, programming model, or implementation. To compliment the kernel (problem) definitions, we provide a set of algorithmically-expressed verification tests that can be used to verify a hardware/software co-designed solution produces an acceptable answer. Finally, to provide some illumination as to how researchers have implemented solutions to these problems in the past, we provide a set of reference implementations in C and MATLAB.

  19. Design and Prototyping of a Satellite Antenna Slew Testbed

    Science.gov (United States)

    2013-12-01

    beers and kind advice gave me a family away from home. To my familia here in the Bay Area; their constant support, understanding and surprise...Encoder Cable Maxon 275934 2 CAB 29 EPOS Power Cable Maxon 275829 2 CAB 30 Misc Hardware** NPS 30 - - Bill of Materials 35 closely match the actual ...computed trajectory. The position and velocity results were then implemented on the testbed motors for comparison of actual versus commanded values

  20. Design of a low-power testbed for Wireless Sensor Networks and verification

    NARCIS (Netherlands)

    van Hoesel, L.F.W.; Dulman, S.O.; Havinga, Paul J.M.; Kip, Harry J.

    In this document the design considerations and component choices of a testbed prototype device for wireless sensor networks will be discussed. These devices must be able to monitor their physical environment, process data and assist other nodes in forwarding sensor readings. For these tasks, five

  1. Testbed model and data assimilation for ARM

    International Nuclear Information System (INIS)

    Louis, J.F.

    1992-01-01

    The objectives of this contract are to further develop and test the ALFA (AER Local Forecast and Assimilation) model originally designed at AER for local weather prediction and apply it to three distinct but related purposes in connection with the Atmospheric Radiation Measurement (ARM) program: (a) to provide a testbed that simulates a global climate model in order to facilitate the development and testing of new cloud parametrizations and radiation models; (b) to assimilate the ARM data continuously at the scale of a climate model, using the adjoint method, thus providing the initial conditions and verification data for testing parameumtions; (c) to study the sensitivity of a radiation scheme to cloud parameters, again using the adjoint method, thus demonstrating the usefulness of the testbed model. The data assimilation will use a variational technique that minimizes the difference between the model results and the observation during the analysis period. The adjoint model is used to compute the gradient of a measure of the model errors with respect to nudging terms that are added to the equations to force the model output closer to the data. The radiation scheme that will be included in the basic ALFA model makes use of a gen two-stream approximation, and is designed for vertically inhonogeneous, multiple-scattering atmospheres. The sensitivity of this model to the definition of cloud parameters will be studied. The adjoint technique will also be used to compute the sensitivities. This project is designed to provide the Science Team members with the appropriate tools and modeling environment for proper testing and tuning of new radiation models and cloud parametrization schemes

  2. PAPI based federation as a test-bed for a common security infrastructure in EFDA sites

    International Nuclear Information System (INIS)

    Castro, R.; Vega, J.; Portas, A.; Lopez, D.R.; Balme, S.; Theis, J.M.; Lebourg, P.; Fernandes, H.; Neto, A.; Duarte, A.; Oliveira, F.; Reis, F.; Purahoo, K.; Thomsen, K.; Schiller, W.; Kadlecsik, J.

    2008-01-01

    Federated authentication and authorization systems provide several advantages to collaborative environments, for example, easy authentication integration, simpler user management, easier security policy implementation and quicker implementation of access control elements for new type of resources. A federation integrates different aspects that have to be coordinated by all the organizations involved. The most relevant are: definition of common schemas and attributes, definition of common policies and procedures, management of keys and certificates, management of common repositories and implementation of a home location service. A federation enabling collaboration of European sites has been put into operation. Four laboratories have been integrated and two more organizations (EFDA and KFKI/HAS) are finishing their integration. The federation infrastructure is based on Point of Access to Providers of Information (PAPI), a distributed authentication and authorization system. PAPI technology gives some important features, such as, single sign on for accessing to different resources, mobility for users, and compatibility with open and standard technologies: Java, JNLP protocol, XML-RPC and web technologies among others. In this article, the test-bed of EFDA federation is presented. Some examples of resources, securely shared inside the federation, are shown. Specific issues and experience gained in deploying federated collaboration systems will be addressed as well

  3. PAPI based federation as a test-bed for a common security infrastructure in EFDA sites

    Energy Technology Data Exchange (ETDEWEB)

    Castro, R. [Asociacion EURATOM/CIEMAT para Fusion, Madrid (Spain)], E-mail: rodrigo.castro@ciemat.es; Vega, J.; Portas, A. [Asociacion EURATOM/CIEMAT para Fusion, Madrid (Spain); Lopez, D.R. [Departamento RedIRIS, Entidad publica empresarial Red.es, Madrid (Spain); Balme, S.; Theis, J.M.; Lebourg, P. [Association EURATOM-CEA, CEA/DSM/Departement de Recherches sur la Fusion Controlee DRFC, CEA-Cadarache (France); Fernandes, H.; Neto, A.; Duarte, A.; Oliveira, F.; Reis, F. [Centro de Fusao Nuclear, Associacao EURATOM/IST, Lisboa (Portugal); Purahoo, K. [EURATOM/UKAEA Fusion Association, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Thomsen, K.; Schiller, W. [EFDA Close Support Unit Garching, Max Planck Institut fuer Plasmaphysik, Boltzmannstr. 2, D-85748 Garching (Germany); Kadlecsik, J. [KFKI R.I. for Particle and Nuclear Physics of the Hungarian Academy of Sciences, and the Association EURATOM/HAS, Budapest (Hungary)

    2008-04-15

    Federated authentication and authorization systems provide several advantages to collaborative environments, for example, easy authentication integration, simpler user management, easier security policy implementation and quicker implementation of access control elements for new type of resources. A federation integrates different aspects that have to be coordinated by all the organizations involved. The most relevant are: definition of common schemas and attributes, definition of common policies and procedures, management of keys and certificates, management of common repositories and implementation of a home location service. A federation enabling collaboration of European sites has been put into operation. Four laboratories have been integrated and two more organizations (EFDA and KFKI/HAS) are finishing their integration. The federation infrastructure is based on Point of Access to Providers of Information (PAPI), a distributed authentication and authorization system. PAPI technology gives some important features, such as, single sign on for accessing to different resources, mobility for users, and compatibility with open and standard technologies: Java, JNLP protocol, XML-RPC and web technologies among others. In this article, the test-bed of EFDA federation is presented. Some examples of resources, securely shared inside the federation, are shown. Specific issues and experience gained in deploying federated collaboration systems will be addressed as well.

  4. Automated tools and techniques for distributed Grid Software Development of the testbed infrastructure

    CERN Document Server

    Aguado Sanchez, C

    2007-01-01

    Grid technology is becoming more and more important as the new paradigm for sharing computational resources across different organizations in a secure way. The great powerfulness of this solution, requires the definition of a generic stack of services and protocols and this is the scope of the different Grid initiatives. As a result of international collaborations for its development, the Open Grid Forum created the Open Grid Services Architecture (OGSA) which aims to define the common set of services that will enable interoperability across the different implementations. This master thesis has been developed in this framework, as part of the two European-funded projects ETICS and OMII-Europe. The main objective is to contribute to the design and maintenance of large distributed development projects with the automated tool that enables to implement Software Engineering techniques oriented to achieve an acceptable level of quality at the release process. Specifically, this thesis develops the testbed concept a...

  5. BEATBOX v1.0: Background Error Analysis Testbed with Box Models

    Science.gov (United States)

    Knote, Christoph; Barré, Jérôme; Eckl, Max

    2018-02-01

    The Background Error Analysis Testbed (BEATBOX) is a new data assimilation framework for box models. Based on the BOX Model eXtension (BOXMOX) to the Kinetic Pre-Processor (KPP), this framework allows users to conduct performance evaluations of data assimilation experiments, sensitivity analyses, and detailed chemical scheme diagnostics from an observation simulation system experiment (OSSE) point of view. The BEATBOX framework incorporates an observation simulator and a data assimilation system with the possibility of choosing ensemble, adjoint, or combined sensitivities. A user-friendly, Python-based interface allows for the tuning of many parameters for atmospheric chemistry and data assimilation research as well as for educational purposes, for example observation error, model covariances, ensemble size, perturbation distribution in the initial conditions, and so on. In this work, the testbed is described and two case studies are presented to illustrate the design of a typical OSSE experiment, data assimilation experiments, a sensitivity analysis, and a method for diagnosing model errors. BEATBOX is released as an open source tool for the atmospheric chemistry and data assimilation communities.

  6. BEATBOX v1.0: Background Error Analysis Testbed with Box Models

    Directory of Open Access Journals (Sweden)

    C. Knote

    2018-02-01

    Full Text Available The Background Error Analysis Testbed (BEATBOX is a new data assimilation framework for box models. Based on the BOX Model eXtension (BOXMOX to the Kinetic Pre-Processor (KPP, this framework allows users to conduct performance evaluations of data assimilation experiments, sensitivity analyses, and detailed chemical scheme diagnostics from an observation simulation system experiment (OSSE point of view. The BEATBOX framework incorporates an observation simulator and a data assimilation system with the possibility of choosing ensemble, adjoint, or combined sensitivities. A user-friendly, Python-based interface allows for the tuning of many parameters for atmospheric chemistry and data assimilation research as well as for educational purposes, for example observation error, model covariances, ensemble size, perturbation distribution in the initial conditions, and so on. In this work, the testbed is described and two case studies are presented to illustrate the design of a typical OSSE experiment, data assimilation experiments, a sensitivity analysis, and a method for diagnosing model errors. BEATBOX is released as an open source tool for the atmospheric chemistry and data assimilation communities.

  7. The CELSS Antarctic Analog Project: An Advanced Life Support Testbed at the Amundsen-Scott South Pole Station, Antarctica

    Science.gov (United States)

    Straight, Christian L.; Bubenheim, David L.; Bates, Maynard E.; Flynn, Michael T.

    1994-01-01

    CELSS Antarctic Analog Project (CAAP) represents a logical solution to the multiple objectives of both the NASA and the National Science Foundation (NSF). CAAP will result in direct transfer of proven technologies and systems, proven under the most rigorous of conditions, to the NSF and to society at large. This project goes beyond, as it must, the generally accepted scope of CELSS and life support systems including the issues of power generation, human dynamics, community systems, and training. CAAP provides a vivid and starkly realistic testbed of Controlled Ecological Life Support System (CELSS) and life support systems and methods. CAAP will also be critical in the development and validation of performance parameters for future advanced life support systems.

  8. A technical description of the FlexHouse Project Testbed

    DEFF Research Database (Denmark)

    Sørensen, Jens Otto

    2000-01-01

    This paper describes the FlexHouse project testbed; a server dedicated to experiments within the FlexHouse project. The FlexHouse project is a project originating from The Business Computing Research Group at The Aarhus School of Business. The purpose of the project is to identify and develop...... methods that satisfy the following three requirements. Flexibility with respect to evolving data sources. Flexibility with respect to change of information needs. Efficiency with respect to view management....

  9. Testbed for a LiFi system integrated in streetlights

    OpenAIRE

    Monzón Baeza, Victor; Sánchez Fernández, Matilde Pilar; García-Armada, Ana; Royo, A.

    2015-01-01

    Proceeding at: 2015 European Conference on Networks and Communications (EuCNC) took place June 29 - July 2 in Paris, France. In this paper, a functional LiFi real-time testbed implemented on FPGAs is presented. The setup evaluates the performance of our design in a downlink scenario where the transmitter is embedded on the streetlights and a mobile phone’s camera is used as receiver, therefore achieving the goal of lighting and communicating simultaneously. To validate the ...

  10. Analysis, Modeling, and Simulation (AMS) Testbed Development and Evaluation to Support Dynamic Mobility Applications (DMA) and Active Transportation and Demand Management (ATDM) Programs : Evaluation Report for the San Diego Testbed : Draft Report.

    Science.gov (United States)

    2017-07-01

    The primary objective of this project is to develop multiple simulation testbeds and transportation models to evaluate the impacts of Connected Vehicle Dynamic Mobility Applications (DMA) and Active Transportation and Demand Management (ATDM) strateg...

  11. PlanetLab Europe as Geographically-Distributed Testbed for Software Development and Evaluation

    Directory of Open Access Journals (Sweden)

    Dan Komosny

    2015-01-01

    Full Text Available In this paper, we analyse the use of PlanetLab Europe for development and evaluation of geographically-oriented Internet services. PlanetLab is a global research network with the main purpose to support development of new Internet services and protocols. PlanetLab is divided into several branches; one of them is PlanetLab Europe. PlanetLab Europe consists of about 350 nodes at 150 geographically different sites. The nodes are accessible by remote login, and the users can run their software on the nodes. In the paper, we study the PlanetLab's properties that are significant for its use as a geographically distributed testbed. This includes node position accuracy, services availability and stability. We find a considerable number of location inaccuracies and a number of services that cannot be considered as reliable. Based on the results we propose a simple approach to nodes selection in testbeds for geographically-oriented Internet services development and evaluation.

  12. Sensing across large-scale cognitive radio networks: Data processing, algorithms, and testbed for wireless tomography and moving target tracking

    Science.gov (United States)

    Bonior, Jason David

    As the use of wireless devices has become more widespread so has the potential for utilizing wireless networks for remote sensing applications. Regular wireless communication devices are not typically designed for remote sensing. Remote sensing techniques must be carefully tailored to the capabilities of these networks before they can be applied. Experimental verification of these techniques and algorithms requires robust yet flexible testbeds. In this dissertation, two experimental testbeds for the advancement of research into sensing across large-scale cognitive radio networks are presented. System architectures, implementations, capabilities, experimental verification, and performance are discussed. One testbed is designed for the collection of scattering data to be used in RF and wireless tomography research. This system is used to collect full complex scattering data using a vector network analyzer (VNA) and amplitude-only data using non-synchronous software-defined radios (SDRs). Collected data is used to experimentally validate a technique for phase reconstruction using semidefinite relaxation and demonstrate the feasibility of wireless tomography. The second testbed is a SDR network for the collection of experimental data. The development of tools for network maintenance and data collection is presented and discussed. A novel recursive weighted centroid algorithm for device-free target localization using the variance of received signal strength for wireless links is proposed. The signal variance resulting from a moving target is modeled as having contours related to Cassini ovals. This model is used to formulate recursive weights which reduce the influence of wireless links that are farther from the target location estimate. The algorithm and its implementation on this testbed are presented and experimental results discussed.

  13. Conceptual Design for a Dual-Bell Rocket Nozzle System Using a NASA F-15 Airplane as the Flight Testbed

    Science.gov (United States)

    Jones, Daniel S.; Ruf, Joseph H.; Bui, Trong T.; Martinez, Martel; St. John, Clinton W.

    2014-01-01

    The dual-bell rocket nozzle was first proposed in 1949, offering a potential improvement in rocket nozzle performance over the conventional-bell nozzle. Despite the performance advantages that have been predicted, both analytically and through static test data, the dual-bell nozzle has still not been adequately tested in a relevant flight environment. In 2013 a proposal was constructed that offered a National Aeronautics and Space Administration (NASA) F-15 airplane as the flight testbed, with the plan to operate a dual-bell rocket nozzle during captive-carried flight. If implemented, this capability will permit nozzle operation into an external flow field similar to that of a launch vehicle, and facilitate an improved understanding of dual-bell nozzle plume sensitivity to external flow-field effects. More importantly, this flight testbed can be utilized to help quantify the performance benefit with the dual-bell nozzle, as well as to advance its technology readiness level. Toward this ultimate goal, this report provides plans for future flights to quantify the external flow field of the airplane near the nozzle experiment, as well as details on the conceptual design for the dual-bell nozzle cold-flow propellant feed system integration within the NASA F-15 Propulsion Flight Test Fixture. The current study shows that this concept of flight research is feasible, and could result in valuable flight data for the dual-bell nozzle.

  14. An Approach for Smart Antenna Testbed

    Science.gov (United States)

    Kawitkar, R. S.; Wakde, D. G.

    2003-07-01

    The use of wireless, mobile, personal communications services are expanding rapidly. Adaptive or "Smart" antenna arrays can increase channel capacity through spatial division. Adaptive antennas can also track mobile users, improving both signal range and quality. For these reasons, smart antenna systems have attracted widespread interest in the telecommunications industry for applications to third generation wireless systems.This paper aims to design and develop an advanced antennas testbed to serve as a common reference for testing adaptive antenna arrays and signal combining algorithms, as well as complete systems. A flexible suite of off line processing software should be written using matlab to perform system calibration, test bed initialization, data acquisition control, data storage/transfer, off line signal processing and analysis and graph plotting. The goal of this paper is to develop low complexity smart antenna structures for 3G systems. The emphasis will be laid on ease of implementation in a multichannel / multi-user environment. A smart antenna test bed will be developed, and various state-of-the-art DSP structures and algorithms will be investigated.Facing the soaring demand for mobile communications, the use of smart antenna arrays in mobile communications systems to exploit spatial diversity to further improve spectral efficiency has recently received considerable attention. Basically, a smart antenna array comprises a number of antenna elements combined via a beamforming network (amplitude and phase control network). Some of the benefits that can be achieved by using SAS (Smart Antenna System) include lower mobile terminal power consumption, range extension, ISI reduction, higher data rate support, and ease of integration into the existing base station system. In terms of economic benefits, adaptive antenna systems employed at base station, though increases the per base station cost, can increase coverage area of each cell site, thereby reducing

  15. Technology Advancement of the Visible Nulling Coronagraph

    Science.gov (United States)

    Lyon, Richard G.; Clampin, Mark; Petrone, Peter; Thompson, Patrick; Bolcar, Matt; Madison, Timothy; Woodruff, Robert; Noecker, Charley; Kendrick, Steve

    2010-01-01

    The critical high contrast imaging technology for the Extrasolar Planetary Imaging Coronagraph (EPIC) mission concept is the visible nulling coronagraph (VNC). EPIC would be capable of imaging jovian planets, dust/debris disks, and potentially super-Earths and contribute to answering how bright the debris disks are for candidate stars. The contrast requirement for EPIC is 10(exp 9) contrast at 125 milli-arseconds inner working angle. To advance the VNC technology NASA/Goddard Space Flight Center, in collaboration with Lockheed-Martin, previously developed a vacuum VNC testbed, and achieved narrowband and broadband suppression of the core of the Airy disk. Recently our group was awarded a NASA Technology Development for Exoplanet Missions to achieve two milestones: (i) 10(exp 8) contrast in narrowband light, and, (ii) 10(ecp 9) contrast in broader band light; one milestone per year, and both at 2 Lambda/D inner working angle. These will be achieved with our 2nd generation testbed known as the visible nulling testbed (VNT). It contains a MEMS based hex-packed segmented deformable mirror known as the multiple mirror array (MMA) and coherent fiber bundle, i.e. a spatial filter array (SFA). The MMA is in one interferometric arm and works to set the wavefront differences between the arms to zero. Each of the MMA segments is optically mapped to a single mode fiber of the SFA, and the SFA passively cleans the sub-aperture wavefront error leaving only piston, tip and tilt error to be controlled. The piston degree of freedom on each segment is used to correct the wavefront errors, while the tip/tilt is used to simultaneously correct the amplitude errors. Thus the VNT controls both amplitude and wavefront errors with a single MMA in closed-loop in a vacuum tank at approx.20 Hz. Herein we will discuss our ongoing progress with the VNT.

  16. Developing the science product algorithm testbed for Chinese next-generation geostationary meteorological satellites: Fengyun-4 series

    Science.gov (United States)

    Min, Min; Wu, Chunqiang; Li, Chuan; Liu, Hui; Xu, Na; Wu, Xiao; Chen, Lin; Wang, Fu; Sun, Fenglin; Qin, Danyu; Wang, Xi; Li, Bo; Zheng, Zhaojun; Cao, Guangzhen; Dong, Lixin

    2017-08-01

    Fengyun-4A (FY-4A), the first of the Chinese next-generation geostationary meteorological satellites, launched in 2016, offers several advances over the FY-2: more spectral bands, faster imaging, and infrared hyperspectral measurements. To support the major objective of developing the prototypes of FY-4 science algorithms, two science product algorithm testbeds for imagers and sounders have been developed by the scientists in the FY-4 Algorithm Working Group (AWG). Both testbeds, written in FORTRAN and C programming languages for Linux or UNIX systems, have been tested successfully by using Intel/g compilers. Some important FY-4 science products, including cloud mask, cloud properties, and temperature profiles, have been retrieved successfully through using a proxy imager, Himawari-8/Advanced Himawari Imager (AHI), and sounder data, obtained from the Atmospheric InfraRed Sounder, thus demonstrating their robustness. In addition, in early 2016, the FY-4 AWG was developed based on the imager testbed—a near real-time processing system for Himawari-8/AHI data for use by Chinese weather forecasters. Consequently, robust and flexible science product algorithm testbeds have provided essential and productive tools for popularizing FY-4 data and developing substantial improvements in FY-4 products.

  17. Development and experimentation of an eye/brain/task testbed

    Science.gov (United States)

    Harrington, Nora; Villarreal, James

    1987-01-01

    The principal objective is to develop a laboratory testbed that will provide a unique capability to elicit, control, record, and analyze the relationship of operator task loading, operator eye movement, and operator brain wave data in a computer system environment. The ramifications of an integrated eye/brain monitor to the man machine interface are staggering. The success of such a system would benefit users of space and defense, paraplegics, and the monitoring of boring screens (nuclear power plants, air defense, etc.)

  18. The University of Canberra quantum key distribution testbed

    International Nuclear Information System (INIS)

    Ganeshkumar, G.; Edwards, P.J.; Cheung, W.N.; Barbopoulos, L.O.; Pham, H.; Hazel, J.C.

    1999-01-01

    Full text: We describe the design, operation and preliminary results obtained from a quantum key distribution (QKD) testbed constructed at the University of Canberra. Quantum cryptographic systems use shared secret keys exchanged in the form of sequences of polarisation coded or phase encoded single photons transmitted over an optical communications channel. Secrecy of this quantum key rests upon fundamental laws of quantum physics: measurements of linear or circular photon polarisation states introduce noise into the conjugate variable and so reveal eavesdropping. In its initial realisation reported here, pulsed light from a 650nm laser diode is attenuated by a factor of 10 6 , plane-polarised and then transmitted through a birefringent liquid crystal modulator (LCM) to a polarisation sensitive single photon receiver. This transmitted key sequence consists of a 1 kHz train of weak coherent 100ns wide light pulses, polarisation coded according to the BB84 protocol. Each pulse is randomly assigned one of four polarisation states (two orthogonal linear and two orthogonal circular) by computer PCA operated by the sender ('Alice'). This quaternary polarisation shift keyed photon stream is detected by the receiver ('Bob') whose computer (PCB) randomly chooses either a linear or a circular polarisation basis. Computer PCB is also used for final key selection, authentication, privacy amplification and eavesdropping. We briefly discuss the realisation of a mesoscopic single photon QKD source and the use of the testbed to simulate a global quantum key distribution system using earth satellites. Copyright (1999) Australian Optical Society

  19. Definition of technology development missions for early space station satellite servicing, volume 1

    Science.gov (United States)

    1983-01-01

    The testbed role of an early manned space station in the context of a satellite servicing evolutionary development and flight demonstration technology plan which results in a satellite servicing operational capability is defined. A satellite servicing technology development mission (a set of missions) to be performed on an early manned space station is conceptually defined.

  20. ATM technology and beyond

    Science.gov (United States)

    Cheung, Nim K.

    1993-01-01

    Networks based on Asynchronous Transfer Mode (ATM) are expected to provide cost-effective and ubiquitous infrastructure to support broadband and multimedia services. In this paper, we give an overview of the ATM standards and its associated physical layer transport technologies. We use the experimental HIPPI-ATM-SONET (HAS) interface in the Nectar Gigabit Testbed to illustrate how one can use the SONET/ATM public network to provide transport for bursty gigabit applications.

  1. Cooperating expert systems for Space Station - Power/thermal subsystem testbeds

    Science.gov (United States)

    Wong, Carla M.; Weeks, David J.; Sundberg, Gale R.; Healey, Kathleen L.; Dominick, Jeffrey S.

    1988-01-01

    The Systems Autonomy Demonstration Project (SADP) is a NASA-sponsored series of increasingly complex demonstrations to show the benefits of integrating knowledge-based systems with conventional process control in real-time, real-world problem domains that can facilitate the operations and availability of major Space Station distributed systems. This paper describes the system design, objectives, approaches, and status of each of the testbed knowledge-based systems. Simplified schematics of the systems are shown.

  2. Extrasolar Planetary Imaging Coronagraph (EPIC): visible nulling cornagraph testbed results

    Science.gov (United States)

    Lyon, Richard G.; Clampin, Mark; Melnick, Gary; Tolls, Volker; Woodruff, Robert; Vasudevan, Gopal

    2008-07-01

    The Extrasolar Planetary Imaging Coronagraph (EPIC) is a NASA Astrophysics Strategic Mission Concept under study for the upcoming Exoplanet Probe. EPIC's mission would be to image and characterize extrasolar giant planets, and potential super-Earths, in orbits with semi-major axes between 2 and 10 AU. EPIC will provide insights into the physical nature of a variety of planets in other solar systems complimenting radial velocity (RV) and astrometric planet searches. It will detect and characterize the atmospheres of planets identified by radial velocity surveys and potentially some transits, determine orbital inclinations and masses, characterize the atmospheres of gas giants around A and F stars, observed the inner spatial structure and colors of inner Spitzer selected debris disks. EPIC would be launched into a heliocentric Earth trailing drift-away orbit, with a 3-year mission lifetime (5 year goal) and will revisit planets at least three times. The starlight suppression approach consists of a visible nulling coronagraph (VNC) that enables high order starlight suppression in broadband light. To demonstrate the VNC approach and advance it's technology readiness the NASA/Goddard Space Flight Center and Lockheed-Martin have developed a laboratory VNC and have demonstrated white light nulling. We will discuss our ongoing VNC work and show the latest results from the VNC testbed.

  3. Dynamic Testing of the NASA Hypersonic Project Combined Cycle Engine Testbed for Mode Transition Experiments

    Science.gov (United States)

    2011-01-01

    NASA is interested in developing technology that leads to more routine, safe, and affordable access to space. Access to space using airbreathing propulsion systems has potential to meet these objectives based on Airbreathing Access to Space (AAS) system studies. To this end, the NASA Fundamental Aeronautics Program (FAP) Hypersonic Project is conducting fundamental research on a Turbine Based Combined Cycle (TBCC) propulsion system. The TBCC being studied considers a dual flow-path inlet system. One flow-path includes variable geometry to regulate airflow to a turbine engine cycle. The turbine cycle provides propulsion from take-off to supersonic flight. The second flow-path supports a dual-mode scramjet (DMSJ) cycle which would be initiated at supersonic speed to further accelerate the vehicle to hypersonic speed. For a TBCC propulsion system to accelerate a vehicle from supersonic to hypersonic speed, a critical enabling technology is the ability to safely and effectively transition from the turbine to the DMSJ-referred to as mode transition. To experimentally test methods of mode transition, a Combined Cycle Engine (CCE) Large-scale Inlet testbed was designed with two flow paths-a low speed flow-path sized for a turbine cycle and a high speed flow-path designed for a DMSJ. This testbed system is identified as the CCE Large-Scale Inlet for Mode Transition studies (CCE-LIMX). The test plan for the CCE-LIMX in the NASA Glenn Research Center (GRC) 10- by 10-ft Supersonic Wind Tunnel (10x10 SWT) is segmented into multiple phases. The first phase is a matrix of inlet characterization (IC) tests to evaluate the inlet performance and establish the mode transition schedule. The second phase is a matrix of dynamic system identification (SysID) experiments designed to support closed-loop control development at mode transition schedule operating points for the CCE-LIMX. The third phase includes a direct demonstration of controlled mode transition using a closed loop control

  4. Optimal reliability design for over-actuated systems based on the MIT rule: Application to an octocopter helicopter testbed

    International Nuclear Information System (INIS)

    Chamseddine, Abbas; Theilliol, Didier; Sadeghzadeh, Iman; Zhang, Youmin; Weber, Philippe

    2014-01-01

    This paper addresses the problem of optimal reliability in over-actuated systems. Overloading an actuator decreases its overall lifetime and reduces its average performance over a long time. Therefore, performance and reliability are two conflicting requirements. While appropriate reliability is related to average loads, good performance is related to fast response and sufficient loads generated by actuators. Actuator redundancy allows us to address both performance and reliability at the same time by properly allocating desired loads among redundant actuators. The main contribution of this paper is the on-line optimization of the overall plant reliability according to performance objective using an MIT (Massachusetts Institute of Technology) rule-based method. The effectiveness of the proposed method is illustrated through an experimental application to an octocopter helicopter testbed

  5. Establishment of a sensor testbed at NIST for plant productivity monitoring

    Science.gov (United States)

    Allen, D. W.; Hutyra, L.; Reinmann, A.; Trlica, A.; Marrs, J.; Jones, T.; Whetstone, J. R.; Logan, B.; Reblin, J.

    2017-12-01

    Accurate assessments of biogenic carbon fluxes is challenging. Correlating optical signatures to plant activity allows for monitoring large regions. New methods, including solar-induced fluorescence (SIF), promise to provide more timely and accurate estimate of plant activity, but we are still developing a full understanding of the mechanistic leakage between plant assimilation of carbon and SIF. We have initiated a testbed to facilitate the evaluation of sensors and methods for remote monitoring of plant activity at the NIST headquarters. The test bed utilizes a forested area of mature trees in a mixed urban environment. A 1 hectare plot within the 26 hectare forest has been instrumented for ecophysiological measurements with an edge (100 m long) that is persistently monitored with multimodal optical sensors (SIF spectrometers, hyperspectral imagers, thermal infrared imaging, and lidar). This biological testbed has the advantage of direct access to the national scales maintained by NIST of measurements related to both the physical and optical measurements of interest. We offer a description of the test site, the sensors, and preliminary results from the first season of observations for ecological, physiological, and remote sensing based estimates of ecosystem productivity.

  6. Development of Research Reactor Simulator and Its Application to Dynamic Test-bed

    International Nuclear Information System (INIS)

    Kwon, Kee Choon; Park, Jae Chang; Lee, Seung Wook; Bang, Dane; Bae, Sung Won

    2014-01-01

    We developed HANARO and the Jordan Research and Training Reactor (JRTR) real-time simulator for operating staff training. The main purpose of this simulator is operator training, but we modified this simulator as a dynamic test-bed to test the reactor regulating system in HANARO or JRTR before installation. The simulator configuration is divided into hardware and software. The simulator hardware consists of a host computer, 6 operator stations, a network switch, and a large display panel. The simulator software is divided into three major parts: a mathematical modeling module, which executes the plant dynamic modeling program in real-time, an instructor station module that manages user instructions, and a human machine interface (HMI) module. The developed research reactors are installed in the Korea Atomic Energy Research Institute nuclear training center for reactor operator training. To use the simulator as a dynamic test-bed, the reactor regulating system modeling software of the simulator was replaced by a hardware controller and the simulator and target controller were interfaced with a hard-wired and network-based interface

  7. Adaptive Coding and Modulation Experiment With NASA's Space Communication and Navigation Testbed

    Science.gov (United States)

    Downey, Joseph; Mortensen, Dale; Evans, Michael; Briones, Janette; Tollis, Nicholas

    2016-01-01

    National Aeronautics and Space Administration (NASA)'s Space Communication and Navigation Testbed is an advanced integrated communication payload on the International Space Station. This paper presents results from an adaptive coding and modulation (ACM) experiment over S-band using a direct-to-earth link between the SCaN Testbed and the Glenn Research Center. The testing leverages the established Digital Video Broadcasting Second Generation (DVB-S2) standard to provide various modulation and coding options, and uses the Space Data Link Protocol (Consultative Committee for Space Data Systems (CCSDS) standard) for the uplink and downlink data framing. The experiment was conducted in a challenging environment due to the multipath and shadowing caused by the International Space Station structure. Several approaches for improving the ACM system are presented, including predictive and learning techniques to accommodate signal fades. Performance of the system is evaluated as a function of end-to-end system latency (round-trip delay), and compared to the capacity of the link. Finally, improvements over standard NASA waveforms are presented.

  8. Development of Research Reactor Simulator and Its Application to Dynamic Test-bed

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Kee Choon; Park, Jae Chang; Lee, Seung Wook; Bang, Dane; Bae, Sung Won [KAERI, Daejeon (Korea, Republic of)

    2014-08-15

    We developed HANARO and the Jordan Research and Training Reactor (JRTR) real-time simulator for operating staff training. The main purpose of this simulator is operator training, but we modified this simulator as a dynamic test-bed to test the reactor regulating system in HANARO or JRTR before installation. The simulator configuration is divided into hardware and software. The simulator hardware consists of a host computer, 6 operator stations, a network switch, and a large display panel. The simulator software is divided into three major parts: a mathematical modeling module, which executes the plant dynamic modeling program in real-time, an instructor station module that manages user instructions, and a human machine interface (HMI) module. The developed research reactors are installed in the Korea Atomic Energy Research Institute nuclear training center for reactor operator training. To use the simulator as a dynamic test-bed, the reactor regulating system modeling software of the simulator was replaced by a hardware controller and the simulator and target controller were interfaced with a hard-wired and network-based interface.

  9. Static and dynamic optimization of CAPE problems using a Model Testbed

    DEFF Research Database (Denmark)

    This paper presents a new computer aided tool for setting up and solving CAPE related static and dynamic optimisation problems. The Model Testbed (MOT) offers an integrated environment for setting up and solving a very large range of CAPE problems, including complex optimisation problems...... and dynamic optimisation, and how interfacing of solvers and seamless information flow can lead to more efficient solution of process design problems....

  10. First light of an external occulter testbed at flight Fresnel numbers

    Science.gov (United States)

    Kim, Yunjong; Sirbu, Dan; Hu, Mia; Kasdin, Jeremy; Vanderbei, Robert J.; Harness, Anthony; Shaklan, Stuart

    2017-01-01

    Many approaches have been suggested over the last couple of decades for imaging Earth-like planets. One of the main candidates for creating high-contrast for future Earth-like planets detection is an external occulter. The external occulter is a spacecraft flown along the line-of-sight of a space telescope to suppress starlight and enable high-contrast direct imaging of exoplanets. The occulter is typically tens of meters in diameter and the separation from the telescope is of the order of tens of thousands of kilometers. Optical testing of a full-scale external occulter on the ground is impossible because of the long separations. Therefore, laboratory verification of occulter designs is necessary to validate the optical models used to design and predict occulter performance. At Princeton, we have designed and built a testbed that allows verification of scaled occulter designs whose suppressed shadow is mathematically identical to that of space occulters. The goal of this experiment is to demonstrate a pupil plane suppression of better than 1e-9 with a corresponding image plane contrast of better than 1e-11. The occulter testbed uses a 77.2 m optical propagation distance to realize the flight Fresnel number of 14.5. The scaled mask is placed at 27.2 m from the artificial source and the camera is located 50.0 m from the scaled mask. We will use an etched silicon mask, manufactured by the Microdevices Lab(MDL) of the Jet Propulsion Laboratory(JPL), as the occulter. Based on conversations with MDL, we expect that 0.5 μm feature size is an achievable resolution in the mask manufacturing process and is therefore likely the indicator of the best possible performance. The occulter is illuminated by a diverging laser beam to reduce the aberrations from the optics before the occulter. Here, we present first light result of a sample design operating at a flight Fresnel number and the experimental setup of the testbed. We compare the experimental results with simulations

  11. Analysis, modeling, and simulation (AMS) testbed development and evaluation to support dynamic mobility applications (DMA) and active transportation and demand management (ATDM) programs — evaluation report for ATDM program. [supporting datasets - Pasadena Testbed

    Science.gov (United States)

    2017-07-26

    This zip file contains POSTDATA.ATT (.ATT); Print to File (.PRN); Portable Document Format (.PDF); and document (.DOCX) files of data to support FHWA-JPO-16-385, Analysis, modeling, and simulation (AMS) testbed development and evaluation to support d...

  12. The Living With a Star Space Environment Testbed Experiments

    Science.gov (United States)

    Xapsos, Michael A.

    2014-01-01

    The focus of the Living With a Star (LWS) Space Environment Testbed (SET) program is to improve the performance of hardware in the space radiation environment. The program has developed a payload for the Air Force Research Laboratory (AFRL) Demonstration and Science Experiments (DSX) spacecraft that is scheduled for launch in August 2015 on the SpaceX Falcon Heavy rocket. The primary structure of DSX is an Evolved Expendable Launch Vehicle (EELV) Secondary Payload Adapter (ESPA) ring. DSX will be in a Medium Earth Orbit (MEO). This oral presentation will describe the SET payload.

  13. EPIC: A Testbed for Scientifically Rigorous Cyber-Physical Security Experimentation

    OpenAIRE

    SIATERLIS CHRISTOS; GENGE BELA; HOHENADEL MARC

    2013-01-01

    Recent malware, like Stuxnet and Flame, constitute a major threat to Networked Critical Infrastructures (NCIs), e.g., power plants. They revealed several vulnerabilities in today's NCIs, but most importantly they highlighted the lack of an efficient scientific approach to conduct experiments that measure the impact of cyber threats on both the physical and the cyber parts of NCIs. In this paper we present EPIC, a novel cyber-physical testbed and a modern scientific instrument that can pr...

  14. Development of a Remotely Operated Vehicle Test-bed

    Directory of Open Access Journals (Sweden)

    Biao WANG

    2013-06-01

    Full Text Available This paper presents the development of a remotely operated vehicle (ROV, designed to serve as a convenient, cost-effective platform for research and experimental validation of hardware, sensors and control algorithms. Both of the mechanical and control system design are introduced. The vehicle with a dimension 0.65 m long, 0.45 m wide has been designed to have a frame structure for modification of mounted devices and thruster allocation. For control system, STM32 based MCU boards specially designed for this project, are used as core processing boards. And an open source, modular, flexible software is developed. Experiment results demonstrate the effectiveness of the test-bed.

  15. Testbed diversity as a fundamental principle for effective ICS security research

    OpenAIRE

    Green, Benjamin; Frey, Sylvain Andre Francis; Rashid, Awais; Hutchison, David

    2016-01-01

    The implementation of diversity in testbeds is essential to understanding and improving the security and resilience of Industrial Control Systems (ICS). Employing a wide spec- trum of equipment, diverse networks, and business processes, as deployed in real-life infrastructures, is particularly diffi- cult in experimental conditions. However, this level of di- versity is key from a security perspective, as attackers can exploit system particularities and process intricacies to their advantage....

  16. A Monocular Vision Measurement System of Three-Degree-of-Freedom Air-Bearing Test-Bed Based on FCCSP

    Science.gov (United States)

    Gao, Zhanyu; Gu, Yingying; Lv, Yaoyu; Xu, Zhenbang; Wu, Qingwen

    2018-06-01

    A monocular vision-based pose measurement system is provided for real-time measurement of a three-degree-of-freedom (3-DOF) air-bearing test-bed. Firstly, a circular plane cooperative target is designed. An image of a target fixed on the test-bed is then acquired. Blob analysis-based image processing is used to detect the object circles on the target. A fast algorithm (FCCSP) based on pixel statistics is proposed to extract the centers of object circles. Finally, pose measurements can be obtained when combined with the centers and the coordinate transformation relation. Experiments show that the proposed method is fast, accurate, and robust enough to satisfy the requirement of the pose measurement.

  17. FinFET centric variability-aware compact model extraction and generation technology supporting DTCO

    OpenAIRE

    Wang, Xingsheng; Cheng, Binjie; Reid, David; Pender, Andrew; Asenov, Plamen; Millar, Campbell; Asenov, Asen

    2015-01-01

    In this paper, we present a FinFET-focused variability-aware compact model (CM) extraction and generation technology supporting design-technology co-optimization. The 14-nm CMOS technology generation silicon on insulator FinFETs are used as testbed transistors to illustrate our approach. The TCAD simulations include a long-range process-induced variability using a design of experiment approach and short-range purely statistical variability (mismatch). The CM extraction supports a hierarchical...

  18. EMERGE - ESnet/MREN Regional Science Grid Experimental NGI Testbed

    Energy Technology Data Exchange (ETDEWEB)

    Mambretti, Joe; DeFanti, Tom; Brown, Maxine

    2001-07-31

    This document is the final report on the EMERGE Science Grid testbed research project from the perspective of the International Center for Advanced Internet Research (iCAIR) at Northwestern University, which was a subcontractor to this UIC project. This report is a compilation of information gathered from a variety of materials related to this project produced by multiple EMERGE participants, especially those at Electronic Visualization Lab (EVL) at the University of Illinois at Chicago (UIC), Argonne National Lab and iCAIR. The EMERGE Science Grid project was managed by Tom DeFanti, PI from EVL at UIC.

  19. Real-Time Emulation of Heterogeneous Wireless Networks with End-to-Edge Quality of Service Guarantees: The AROMA Testbed

    Directory of Open Access Journals (Sweden)

    Anna Umbert

    2010-01-01

    Full Text Available This work presents and describes the real-time testbed for all-IP Beyond 3G (B3G heterogeneous wireless networks that has been developed in the framework of the European IST AROMA project. The main objective of the AROMA testbed is to provide a highly accurate and realistic framework where the performance of algorithms, policies, protocols, services, and applications for a complete heterogeneous wireless network can be fully assessed and evaluated before bringing them to a real system. The complexity of the interaction between all-IP B3G systems and user applications, while dealing with the Quality of Service (QoS concept, motivates the development of this kind of emulation platform where different solutions can be tested in realistic conditions that could not be achieved by means of simple offline simulations. This work provides an in-depth description of the AROMA testbed, emphasizing many interesting implementation details and lessons learned during the development of the tool that may result helpful to other researchers and system engineers in the development of similar emulation platforms. Several case studies are also presented in order to illustrate the full potential and capabilities of the presented emulation platform.

  20. Development of an autonomous power system testbed

    International Nuclear Information System (INIS)

    Barton, J.R.; Adams, T.; Liffring, M.E.

    1985-01-01

    A power system testbed has been assembled to advance the development of large autonomous electrical power systems required for the space station, spacecraft, and aircraft. The power system for this effort was designed to simulate single- or dual-bus autonomous power systems, or autonomous systems that reconfigure from a single bus to a dual bus following a severe fault. The approach taken was to provide a flexible power system design with two computer systems for control and management. One computer operates as the control system and performs basic control functions, data and command processing, charge control, and provides status to the second computer. The second computer contains expert system software for mission planning, load management, fault identification and recovery, and sends load and configuration commands to the control system

  1. Photonic Technologies for Ultra-High-Speed Information Highways

    DEFF Research Database (Denmark)

    Bouchoule, S; Lèfevre, R.; Legros, E.

    1999-01-01

    The ACTS project HIGHWAY (AC067) addresses promising ultra-high speed optoelectronic components and system technologies for 40 Gbit/s time-division-multiplexed (TDM) transport systems. Advanced 40 Gbit/s TDM system lab demonstrators are to be realized and tested over installed field fiber testbeds....... This paper reviews the current status of 40 Gbit/s TDM components and subsystem technologies achieved in HIGHWAY. The results of HIGHWAY 40 Gbit/s TDM systems and field tests will be reported in a subsequent paper. (C) 1999 Academic Press....

  2. Full Scale Advanced Systems Testbed (FAST): Capabilities and Recent Flight Research

    Science.gov (United States)

    Miller, Christopher

    2014-01-01

    At the NASA Armstrong Flight Research Center research is being conducted into flight control technologies that will enable the next generation of air and space vehicles. The Full Scale Advanced Systems Testbed (FAST) aircraft provides a laboratory for flight exploration of these technologies. In recent years novel but simple adaptive architectures for aircraft and rockets have been researched along with control technologies for improving aircraft fuel efficiency and control structural interaction. This presentation outlines the FAST capabilities and provides a snapshot of the research accomplishments to date. Flight experimentation allows a researcher to substantiate or invalidate their assumptions and intuition about a new technology or innovative approach Data early in a development cycle is invaluable for determining which technology barriers are real and which ones are imagined Data for a technology at a low TRL can be used to steer and focus the exploration and fuel rapid advances based on real world lessons learned It is important to identify technologies that are mature enough to benefit from flight research data and not be tempted to wait until we have solved all the potential issues prior to getting some data Sometimes a stagnated technology just needs a little real world data to get it going One trick to getting data for low TRL technologies is finding an environment where it is okay to take risks, where occasional failure is an expected outcome Learning how things fail is often as valuable as showing that they work FAST has been architected to facilitate this type of testing for control system technologies, specifically novel algorithms and sensors Rapid prototyping with a quick turnaround in a fly-fix-fly paradigm Sometimes it's easier and cheaper to just go fly it than to analyze the problem to death The goal is to find and test control technologies that would benefit from flight data and find solutions to the real barriers to innovation. The FAST

  3. A low-cost test-bed for real-time landmark tracking

    Science.gov (United States)

    Csaszar, Ambrus; Hanan, Jay C.; Moreels, Pierre; Assad, Christopher

    2007-04-01

    A low-cost vehicle test-bed system was developed to iteratively test, refine and demonstrate navigation algorithms before attempting to transfer the algorithms to more advanced rover prototypes. The platform used here was a modified radio controlled (RC) car. A microcontroller board and onboard laptop computer allow for either autonomous or remote operation via a computer workstation. The sensors onboard the vehicle represent the types currently used on NASA-JPL rover prototypes. For dead-reckoning navigation, optical wheel encoders, a single axis gyroscope, and 2-axis accelerometer were used. An ultrasound ranger is available to calculate distance as a substitute for the stereo vision systems presently used on rovers. The prototype also carries a small laptop computer with a USB camera and wireless transmitter to send real time video to an off-board computer. A real-time user interface was implemented that combines an automatic image feature selector, tracking parameter controls, streaming video viewer, and user generated or autonomous driving commands. Using the test-bed, real-time landmark tracking was demonstrated by autonomously driving the vehicle through the JPL Mars yard. The algorithms tracked rocks as waypoints. This generated coordinates calculating relative motion and visually servoing to science targets. A limitation for the current system is serial computing-each additional landmark is tracked in order-but since each landmark is tracked independently, if transferred to appropriate parallel hardware, adding targets would not significantly diminish system speed.

  4. Wireless sensor network in a nuclear facility: A technology application proposal

    International Nuclear Information System (INIS)

    Maciel, F.; Fernandez, R. O; Vilugron, R. M

    2009-01-01

    This work presents an overview of a pretended testbed implementation in order to test a bunch of developments and work in WSN technology and to acquire confidence in deployment of WSN applications and to test the integration of WSN with legacy instrumentation or information systems to improve the information coverage. [es

  5. Smart City Pilot Projects Using LoRa and IEEE802.15.4 Technologies.

    Science.gov (United States)

    Pasolini, Gianni; Buratti, Chiara; Feltrin, Luca; Zabini, Flavio; De Castro, Cristina; Verdone, Roberto; Andrisano, Oreste

    2018-04-06

    Information and Communication Technologies (ICTs), through wireless communications and the Internet of Things (IoT) paradigm, are the enabling keys for transforming traditional cities into smart cities, since they provide the core infrastructure behind public utilities and services. However, to be effective, IoT-based services could require different technologies and network topologies, even when addressing the same urban scenario. In this paper, we highlight this aspect and present two smart city testbeds developed in Italy. The first one concerns a smart infrastructure for public lighting and relies on a heterogeneous network using the IEEE 802.15.4 short-range communication technology, whereas the second one addresses smart-building applications and is based on the LoRa low-rate, long-range communication technology. The smart lighting scenario is discussed providing the technical details and the economic benefits of a large-scale (around 3000 light poles) flexible and modular implementation of a public lighting infrastructure, while the smart-building testbed is investigated, through measurement campaigns and simulations, assessing the coverage and the performance of the LoRa technology in a real urban scenario. Results show that a proper parameter setting is needed to cover large urban areas while maintaining the airtime sufficiently low to keep packet losses at satisfactory levels.

  6. Smart City Pilot Projects Using LoRa and IEEE802.15.4 Technologies

    Directory of Open Access Journals (Sweden)

    Gianni Pasolini

    2018-04-01

    Full Text Available Information and Communication Technologies (ICTs, through wireless communications and the Internet of Things (IoT paradigm, are the enabling keys for transforming traditional cities into smart cities, since they provide the core infrastructure behind public utilities and services. However, to be effective, IoT-based services could require different technologies and network topologies, even when addressing the same urban scenario. In this paper, we highlight this aspect and present two smart city testbeds developed in Italy. The first one concerns a smart infrastructure for public lighting and relies on a heterogeneous network using the IEEE 802.15.4 short-range communication technology, whereas the second one addresses smart-building applications and is based on the LoRa low-rate, long-range communication technology. The smart lighting scenario is discussed providing the technical details and the economic benefits of a large-scale (around 3000 light poles flexible and modular implementation of a public lighting infrastructure, while the smart-building testbed is investigated, through measurement campaigns and simulations, assessing the coverage and the performance of the LoRa technology in a real urban scenario. Results show that a proper parameter setting is needed to cover large urban areas while maintaining the airtime sufficiently low to keep packet losses at satisfactory levels.

  7. Evaluasi Kinerja Layanan IPTV pada Jaringan Testbed WiMAX Berbasis Standar IEEE 802.16-2004

    Directory of Open Access Journals (Sweden)

    Prasetiyono Hari Mukti

    2015-09-01

    Full Text Available In this paper, a performance evaluation for IPTV Services over WiMAX testbed based on IEEE Standard 802.16-2004 will be described. The performance of the proposed system is evaluated in terms of delay, jitter, throughput and packet loss. Service performance evaluations are conducted on network topology of point-to-point in the variation of background traffic with different scheduling types. Background traffic is injected into the system to give the sense that the proposed system has variation traffic load. Scheduling type which are used in this paper are Best Effort (BE, Non-Real-Time Polling Service (nrtPS, Real-Time Polling Service (rtPS and Unsolicited Grant Service (UGS. The expemerintal results of IPTV service performance over the testbed network show that the maximum average of delay, jitter, packet loss and jitter are 16.581 ms, 58.515 ms, 0.67 Mbps dan 10.96%, respectively.

  8. Implementation of Real-Time Feedback Flow Control Algorithms on a Canonical Testbed

    Science.gov (United States)

    Tian, Ye; Song, Qi; Cattafesta, Louis

    2005-01-01

    This report summarizes the activities on "Implementation of Real-Time Feedback Flow Control Algorithms on a Canonical Testbed." The work summarized consists primarily of two parts. The first part summarizes our previous work and the extensions to adaptive ID and control algorithms. The second part concentrates on the validation of adaptive algorithms by applying them to a vibration beam test bed. Extensions to flow control problems are discussed.

  9. Coral-based Proxy Records of Ocean Acidification: A Pilot Study at the Puerto Rico Test-bed Site

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Coral cores collected nearby the Atlantic Ocean Acidification Test-bed (AOAT) at La Parguera, Puerto Rico were used to characterize the relationship between...

  10. Smart Grid: Network simulator for smart grid test-bed

    International Nuclear Information System (INIS)

    Lai, L C; Ong, H S; Che, Y X; Do, N Q; Ong, X J

    2013-01-01

    Smart Grid become more popular, a smaller scale of smart grid test-bed is set up at UNITEN to investigate the performance and to find out future enhancement of smart grid in Malaysia. The fundamental requirement in this project is design a network with low delay, no packet drop and with high data rate. Different type of traffic has its own characteristic and is suitable for different type of network and requirement. However no one understands the natural of traffic in smart grid. This paper presents the comparison between different types of traffic to find out the most suitable traffic for the optimal network performance.

  11. A Real-Time GPP Software-Defined Radio Testbed for the Physical Layer of Wireless Standards

    NARCIS (Netherlands)

    Schiphorst, Roelof; Hoeksema, F.W.; Slump, Cornelis H.

    2005-01-01

    We present our contribution to the general-purpose-processor-(GPP)-based radio. We describe a baseband software-defined radio testbed for the physical layer of wireless LAN standards. All physical layer functions have been successfully mapped on a Pentium 4 processor that performs these functions in

  12. A Method to Derive Monitoring Variables for a Cyber Security Test-bed of I and C System

    Energy Technology Data Exchange (ETDEWEB)

    Han, Kyung Soo; Song, Jae Gu; Lee, Joung Woon; Lee, Cheol Kwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    In the IT field, monitoring techniques have been developed to protect the systems connected by networks from cyber attacks and incidents. For the development of monitoring systems for I and C cyber security, it is necessary to review the monitoring systems in the IT field and derive cyber security-related monitoring variables among the proprietary operating information about the I and C systems. Tests for the development and application of these monitoring systems may cause adverse effects on the I and C systems. To analyze influences on the system and safely intended variables, the construction of an I and C system Test-bed should be preceded. This article proposes a method of deriving variables that should be monitored through a monitoring system for cyber security as a part of I and C Test-bed. The surveillance features and the monitored variables of NMS(Network Management System), a monitoring technique in the IT field, were reviewed in section 2. In Section 3, the monitoring variables for an I and C cyber security were derived by the of NMS and the investigation for information used for hacking techniques that can be practiced against I and C systems. The monitoring variables of NMS in the IT field and the information about the malicious behaviors used for hacking were derived as expected variables to be monitored for an I and C cyber security research. The derived monitoring variables were classified into the five functions of NMS for efficient management. For the cyber security of I and C systems, the vulnerabilities should be understood through a penetration test etc. and an assessment of influences on the actual system should be carried out. Thus, constructing a test-bed of I and C systems is necessary for the safety system in operation. In the future, it will be necessary to develop a logging and monitoring system for studies on the vulnerabilities of I and C systems with test-beds.

  13. NASA Langley's AirSTAR Testbed: A Subscale Flight Test Capability for Flight Dynamics and Control System Experiments

    Science.gov (United States)

    Jordan, Thomas L.; Bailey, Roger M.

    2008-01-01

    As part of the Airborne Subscale Transport Aircraft Research (AirSTAR) project, NASA Langley Research Center (LaRC) has developed a subscaled flying testbed in order to conduct research experiments in support of the goals of NASA s Aviation Safety Program. This research capability consists of three distinct components. The first of these is the research aircraft, of which there are several in the AirSTAR stable. These aircraft range from a dynamically-scaled, twin turbine vehicle to a propeller driven, off-the-shelf airframe. Each of these airframes carves out its own niche in the research test program. All of the airplanes have sophisticated on-board data acquisition and actuation systems, recording, telemetering, processing, and/or receiving data from research control systems. The second piece of the testbed is the ground facilities, which encompass the hardware and software infrastructure necessary to provide comprehensive support services for conducting flight research using the subscale aircraft, including: subsystem development, integrated testing, remote piloting of the subscale aircraft, telemetry processing, experimental flight control law implementation and evaluation, flight simulation, data recording/archiving, and communications. The ground facilities are comprised of two major components: (1) The Base Research Station (BRS), a LaRC laboratory facility for system development, testing and data analysis, and (2) The Mobile Operations Station (MOS), a self-contained, motorized vehicle serving as a mobile research command/operations center, functionally equivalent to the BRS, capable of deployment to remote sites for supporting flight tests. The third piece of the testbed is the test facility itself. Research flights carried out by the AirSTAR team are conducted at NASA Wallops Flight Facility (WFF) on the Eastern Shore of Virginia. The UAV Island runway is a 50 x 1500 paved runway that lies within restricted airspace at Wallops Flight Facility. The

  14. A Method to Derive Monitoring Variables for a Cyber Security Test-bed of I and C System

    International Nuclear Information System (INIS)

    Han, Kyung Soo; Song, Jae Gu; Lee, Joung Woon; Lee, Cheol Kwon

    2013-01-01

    In the IT field, monitoring techniques have been developed to protect the systems connected by networks from cyber attacks and incidents. For the development of monitoring systems for I and C cyber security, it is necessary to review the monitoring systems in the IT field and derive cyber security-related monitoring variables among the proprietary operating information about the I and C systems. Tests for the development and application of these monitoring systems may cause adverse effects on the I and C systems. To analyze influences on the system and safely intended variables, the construction of an I and C system Test-bed should be preceded. This article proposes a method of deriving variables that should be monitored through a monitoring system for cyber security as a part of I and C Test-bed. The surveillance features and the monitored variables of NMS(Network Management System), a monitoring technique in the IT field, were reviewed in section 2. In Section 3, the monitoring variables for an I and C cyber security were derived by the of NMS and the investigation for information used for hacking techniques that can be practiced against I and C systems. The monitoring variables of NMS in the IT field and the information about the malicious behaviors used for hacking were derived as expected variables to be monitored for an I and C cyber security research. The derived monitoring variables were classified into the five functions of NMS for efficient management. For the cyber security of I and C systems, the vulnerabilities should be understood through a penetration test etc. and an assessment of influences on the actual system should be carried out. Thus, constructing a test-bed of I and C systems is necessary for the safety system in operation. In the future, it will be necessary to develop a logging and monitoring system for studies on the vulnerabilities of I and C systems with test-beds

  15. Event metadata records as a testbed for scalable data mining

    International Nuclear Information System (INIS)

    Gemmeren, P van; Malon, D

    2010-01-01

    At a data rate of 200 hertz, event metadata records ('TAGs,' in ATLAS parlance) provide fertile grounds for development and evaluation of tools for scalable data mining. It is easy, of course, to apply HEP-specific selection or classification rules to event records and to label such an exercise 'data mining,' but our interest is different. Advanced statistical methods and tools such as classification, association rule mining, and cluster analysis are common outside the high energy physics community. These tools can prove useful, not for discovery physics, but for learning about our data, our detector, and our software. A fixed and relatively simple schema makes TAG export to other storage technologies such as HDF5 straightforward. This simplifies the task of exploiting very-large-scale parallel platforms such as Argonne National Laboratory's BlueGene/P, currently the largest supercomputer in the world for open science, in the development of scalable tools for data mining. Using a domain-neutral scientific data format may also enable us to take advantage of existing data mining components from other communities. There is, further, a substantial literature on the topic of one-pass algorithms and stream mining techniques, and such tools may be inserted naturally at various points in the event data processing and distribution chain. This paper describes early experience with event metadata records from ATLAS simulation and commissioning as a testbed for scalable data mining tool development and evaluation.

  16. Ames life science telescience testbed evaluation

    Science.gov (United States)

    Haines, Richard F.; Johnson, Vicki; Vogelsong, Kristofer H.; Froloff, Walt

    1989-01-01

    Eight surrogate spaceflight mission specialists participated in a real-time evaluation of remote coaching using the Ames Life Science Telescience Testbed facility. This facility consisted of three remotely located nodes: (1) a prototype Space Station glovebox; (2) a ground control station; and (3) a principal investigator's (PI) work area. The major objective of this project was to evaluate the effectiveness of telescience techniques and hardware to support three realistic remote coaching science procedures: plant seed germinator charging, plant sample acquisition and preservation, and remote plant observation with ground coaching. Each scenario was performed by a subject acting as flight mission specialist, interacting with a payload operations manager and a principal investigator expert. All three groups were physically isolated from each other yet linked by duplex audio and color video communication channels and networked computer workstations. Workload ratings were made by the flight and ground crewpersons immediately after completing their assigned tasks. Time to complete each scientific procedural step was recorded automatically. Two expert observers also made performance ratings and various error assessments. The results are presented and discussed.

  17. Development of laser technology in Research Center of Laser Fusion

    International Nuclear Information System (INIS)

    Zheng Wanguo; Deng Ying; Zhou Wei

    2013-01-01

    This paper reviews the progress in the construction of SG-Ⅲ laser facility, integrated Testbed and XG-Ⅲ laser facility and that in the upgrade of the prototype of SG-Ⅲ, and the development in assembling and installing technology, and the achievements in maintaining cleanliness project and metrology in Laser Fusion Research Center, China Academy of Engineering Physics in China in 2012. (authors)

  18. Development and application of an actively controlled hybrid proton exchange membrane fuel cell - Lithium-ion battery laboratory test-bed based on off-the-shelf components

    Energy Technology Data Exchange (ETDEWEB)

    Yufit, V.; Brandon, N.P. [Dept. Earth Science and Engineering, Imperial College, London SW7 2AZ (United Kingdom)

    2011-01-15

    The use of commercially available components enables rapid prototyping and assembling of laboratory scale hybrid test-bed systems, which can be used to evaluate new hybrid configurations. The development of such a test-bed using an off-the-shelf PEM fuel cell, lithium-ion battery and DC/DC converter is presented here, and its application to a hybrid configuration appropriate for an unmanned underwater vehicle is explored. A control algorithm was implemented to regulate the power share between the fuel cell and the battery with a graphical interface to control, record and analyze the electrochemical and thermal parameters of the system. The results demonstrate the applicability of the test-bed and control algorithm for this application, and provide data on the dynamic electrical and thermal behaviour of the hybrid system. (author)

  19. Photovoltaic Shading Testbed for Module-Level Power Electronics: 2016 Performance Data Update

    Energy Technology Data Exchange (ETDEWEB)

    Deline, Chris [National Renewable Energy Lab. (NREL), Golden, CO (United States); Meydbray, Jenya [PV Evolution Labs (PVEL), Davis, CA (United States); Donovan, Matt [PV Evolution Labs (PVEL), Davis, CA (United States)

    2016-09-01

    The 2012 NREL report 'Photovoltaic Shading Testbed for Module-Level Power Electronics' provides a standard methodology for estimating the performance benefit of distributed power electronics under partial shading conditions. Since the release of the report, experiments have been conducted for a number of products and for different system configurations. Drawing from these experiences, updates to the test and analysis methods are recommended. Proposed changes in data processing have the benefit of reducing the sensitivity to measurement errors and weather variability, as well as bringing the updated performance score in line with measured and simulated values of the shade recovery benefit of distributed PV power electronics. Also, due to the emergence of new technologies including sub-module embedded power electronics, the shading method has been extended to include power electronics that operate at a finer granularity than the module level. An update to the method is proposed to account for these emerging technologies that respond to shading differently than module-level devices. The partial shading test remains a repeatable test procedure that attempts to simulate shading situations as would be experienced by typical residential or commercial rooftop photovoltaic (PV) systems. Performance data for multiple products tested using this method are discussed, based on equipment from Enphase, Solar Edge, Maxim Integrated and SMA. In general, the annual recovery of shading losses from the module-level electronics evaluated is 25-35%, with the major difference between different trials being related to the number of parallel strings in the test installation rather than differences between the equipment tested. Appendix D data has been added in this update.

  20. A testbed to explore the optimal electrical stimulation parameters for suppressing inter-ictal spikes in human hippocampal slices.

    Science.gov (United States)

    Min-Chi Hsiao; Pen-Ning Yu; Dong Song; Liu, Charles Y; Heck, Christi N; Millett, David; Berger, Theodore W

    2014-01-01

    New interventions using neuromodulatory devices such as vagus nerve stimulation, deep brain stimulation and responsive neurostimulation are available or under study for the treatment of refractory epilepsy. Since the actual mechanisms of the onset and termination of the seizure are still unclear, most researchers or clinicians determine the optimal stimulation parameters through trial-and-error procedures. It is necessary to further explore what types of electrical stimulation parameters (these may include stimulation frequency, amplitude, duration, interval pattern, and location) constitute a set of optimal stimulation paradigms to suppress seizures. In a previous study, we developed an in vitro epilepsy model using hippocampal slices from patients suffering from mesial temporal lobe epilepsy. Using a planar multi-electrode array system, inter-ictal activity from human hippocampal slices was consistently recorded. In this study, we have further transferred this in vitro seizure model to a testbed for exploring the possible neurostimulation paradigms to inhibit inter-ictal spikes. The methodology used to collect the electrophysiological data, the approach to apply different electrical stimulation parameters to the slices are provided in this paper. The results show that this experimental testbed will provide a platform for testing the optimal stimulation parameters of seizure cessation. We expect this testbed will expedite the process for identifying the most effective parameters, and may ultimately be used to guide programming of new stimulating paradigms for neuromodulatory devices.

  1. FloorNet: Deployment and Evaluation of a Multihop Wireless 802.11 Testbed

    Directory of Open Access Journals (Sweden)

    Zink Michael

    2010-01-01

    Full Text Available A lot of attention has been given to multihop wireless networks lately, but further research—in particular, through experimentation—is needed. This attention has motivated an increase in the number of 802.11-based deployments, both indoor and outdoor. These testbeds, which require a significant amount of resources during both deployment and maintenance, are used to run measurements in order to analyze and understand the limitation and differences between analytical or simulation-based figures and the results from real-life experimentation. This paper makes two major contributions: (i first, we describe a novel wireless multihop testbed, which we name FloorNet, that is deployed and operated under the false floor of a lab in our Computer Science building. This false floor provides a strong physical protection that prevents disconnections or misplacements, as well as radio shielding (to some extent thanks to the false floor panels—this later feature is assessed through experimentation; (ii second, by running exhaustive and controlled experiments we are able to analyze the performance limits of commercial off-the-shelf hardware, as well as to derive practical design criteria for the deployment and configuration of mesh networks. These results both provide valuable insights of wireless multihop performance and prove that FloorNet constitutes a valuable asset to research on wireless mesh networks.

  2. Interactive aircraft cabin testbed for stress-free air travel system experiment: an innovative concurrent design approach

    NARCIS (Netherlands)

    Tan, C.F.; Chen, W.; Rauterberg, G.W.M.

    2009-01-01

    In this paper, a study of the concurrent engineering design for the environmental friendly low cost aircraft cabin simulator is presented. The study describes the used of concurrent design technique in the design activity. The simulator is a testbed that was designed and built for research on

  3. High-Resolution Adaptive Optics Test-Bed for Vision Science

    International Nuclear Information System (INIS)

    Wilks, S.C.; Thomspon, C.A.; Olivier, S.S.; Bauman, B.J.; Barnes, T.; Werner, J.S.

    2001-01-01

    We discuss the design and implementation of a low-cost, high-resolution adaptive optics test-bed for vision research. It is well known that high-order aberrations in the human eye reduce optical resolution and limit visual acuity. However, the effects of aberration-free eyesight on vision are only now beginning to be studied using adaptive optics to sense and correct the aberrations in the eye. We are developing a high-resolution adaptive optics system for this purpose using a Hamamatsu Parallel Aligned Nematic Liquid Crystal Spatial Light Modulator. Phase-wrapping is used to extend the effective stroke of the device, and the wavefront sensing and wavefront correction are done at different wavelengths. Issues associated with these techniques will be discussed

  4. Design and development of cell queuing, processing, and scheduling modules for the iPOINT input-buffered ATM testbed

    Science.gov (United States)

    Duan, Haoran

    1997-12-01

    This dissertation presents the concepts, principles, performance, and implementation of input queuing and cell-scheduling modules for the Illinois Pulsar-based Optical INTerconnect (iPOINT) input-buffered Asynchronous Transfer Mode (ATM) testbed. Input queuing (IQ) ATM switches are well suited to meet the requirements of current and future ultra-broadband ATM networks. The IQ structure imposes minimum memory bandwidth requirements for cell buffering, tolerates bursty traffic, and utilizes memory efficiently for multicast traffic. The lack of efficient cell queuing and scheduling solutions has been a major barrier to build high-performance, scalable IQ-based ATM switches. This dissertation proposes a new Three-Dimensional Queue (3DQ) and a novel Matrix Unit Cell Scheduler (MUCS) to remove this barrier. 3DQ uses a linked-list architecture based on Synchronous Random Access Memory (SRAM) to combine the individual advantages of per-virtual-circuit (per-VC) queuing, priority queuing, and N-destination queuing. It avoids Head of Line (HOL) blocking and provides per-VC Quality of Service (QoS) enforcement mechanisms. Computer simulation results verify the QoS capabilities of 3DQ. For multicast traffic, 3DQ provides efficient usage of cell buffering memory by storing multicast cells only once. Further, the multicast mechanism of 3DQ prevents a congested destination port from blocking other less- loaded ports. The 3DQ principle has been prototyped in the Illinois Input Queue (iiQueue) module. Using Field Programmable Gate Array (FPGA) devices, SRAM modules, and integrated on a Printed Circuit Board (PCB), iiQueue can process incoming traffic at 800 Mb/s. Using faster circuit technology, the same design is expected to operate at the OC-48 rate (2.5 Gb/s). MUCS resolves the output contention by evaluating the weight index of each candidate and selecting the heaviest. It achieves near-optimal scheduling and has a very short response time. The algorithm originates from a

  5. Development of research reactor simulator and its application to dynamic test-bed

    International Nuclear Information System (INIS)

    Kwon, Kee-Choon; Baang, Dane; Park, Jae-Chang; Lee, Seung-Wook; Bae, Sung Won

    2014-01-01

    We developed a real-time simulator for 'High-flux Advanced Neutron Application ReactOr (HANARO), and the Jordan Research and Training Reactor (JRTR). The main purpose of this simulator is operator training, but we modified this simulator into a dynamic test-bed (DTB) to test the functions and dynamic control performance of reactor regulating system (RRS) in HANARO or JRTR before installation. The simulator hardware consists of a host computer, 6 operator stations, a network switch, and a large display panel. The software includes a mathematical model that implements plant dynamics in real-time, an instructor station module that manages user instructions, and a human machine interface module. The developed research reactor simulators are installed in the Korea Atomic Energy Research Institute nuclear training center for reactor operator training. To use the simulator as a dynamic test-bed, the reactor regulating system modeling software of the simulator was replaced by actual RRS cabinet, and was interfaced using a hard-wired and network-based interface. RRS cabinet generates control signals for reactor power control based on the various feedback signals from DTB, and the DTB runs plant dynamics based on the RRS control signals. Thus the Hardware-In-the-Loop Simulation between RRS and the emulated plant (DTB) has been implemented and tested in this configuration. The test result shows that the developed DTB and actual RRS cabinet works together simultaneously resulting in quite good dynamic control performances. (author)

  6. Implementation of Motion Simulation Software and Visual-Auditory Electronics for Use in a Low Gravity Robotic Testbed

    Science.gov (United States)

    Martin, William Campbell

    2011-01-01

    The Jet Propulsion Laboratory (JPL) is developing the All-Terrain Hex-Limbed Extra-Terrestrial Explorer (ATHLETE) to assist in manned space missions. One of the proposed targets for this robotic vehicle is a near-Earth asteroid (NEA), which typically exhibit a surface gravity of only a few micro-g. In order to properly test ATHLETE in such an environment, the development team has constructed an inverted Stewart platform testbed that acts as a robotic motion simulator. This project focused on creating physical simulation software that is able to predict how ATHLETE will function on and around a NEA. The corresponding platform configurations are calculated and then passed to the testbed to control ATHLETE's motion. In addition, imitation attitude, imitation attitude control thrusters were designed and fabricated for use on ATHLETE. These utilize a combination of high power LEDs and audio amplifiers to provide visual and auditory cues that correspond to the physics simulation.

  7. A numerical testbed for remote sensing of aerosols, and its demonstration for evaluating retrieval synergy from a geostationary satellite constellation of GEO-CAPE and GOES-R

    International Nuclear Information System (INIS)

    Wang, Jun; Xu, Xiaoguang; Ding, Shouguo; Zeng, Jing; Spurr, Robert; Liu, Xiong; Chance, Kelly; Mishchenko, Michael

    2014-01-01

    We present a numerical testbed for remote sensing of aerosols, together with a demonstration for evaluating retrieval synergy from a geostationary satellite constellation. The testbed combines inverse (optimal-estimation) software with a forward model containing linearized code for computing particle scattering (for both spherical and non-spherical particles), a kernel-based (land and ocean) surface bi-directional reflectance facility, and a linearized radiative transfer model for polarized radiance. Calculation of gas absorption spectra uses the HITRAN (HIgh-resolution TRANsmission molecular absorption) database of spectroscopic line parameters and other trace species cross-sections. The outputs of the testbed include not only the Stokes 4-vector elements and their sensitivities (Jacobians) with respect to the aerosol single scattering and physical parameters (such as size and shape parameters, refractive index, and plume height), but also DFS (Degree of Freedom for Signal) values for retrieval of these parameters. This testbed can be used as a tool to provide an objective assessment of aerosol information content that can be retrieved for any constellation of (planned or real) satellite sensors and for any combination of algorithm design factors (in terms of wavelengths, viewing angles, radiance and/or polarization to be measured or used). We summarize the components of the testbed, including the derivation and validation of analytical formulae for Jacobian calculations. Benchmark calculations from the forward model are documented. In the context of NASA's Decadal Survey Mission GEO-CAPE (GEOstationary Coastal and Air Pollution Events), we demonstrate the use of the testbed to conduct a feasibility study of using polarization measurements in and around the O 2 A band for the retrieval of aerosol height information from space, as well as an to assess potential improvement in the retrieval of aerosol fine and coarse mode aerosol optical depth (AOD) through the

  8. Human Exploration Spacecraft Testbed for Integration and Advancement (HESTIA)

    Science.gov (United States)

    Banker, Brian F.; Robinson, Travis

    2016-01-01

    The proposed paper will cover ongoing effort named HESTIA (Human Exploration Spacecraft Testbed for Integration and Advancement), led at the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) to promote a cross-subsystem approach to developing Mars-enabling technologies with the ultimate goal of integrated system optimization. HESTIA also aims to develop the infrastructure required to rapidly test these highly integrated systems at a low cost. The initial focus is on the common fluids architecture required to enable human exploration of mars, specifically between life support and in-situ resource utilization (ISRU) subsystems. An overview of the advancements in both integrated technologies, in infrastructure, in simulation, and in modeling capabilities will be presented, as well as the results and findings of integrated testing,. Due to the enormous mass gear-ratio required for human exploration beyond low-earth orbit, (for every 1 kg of payload landed on Mars, 226 kg will be required on Earth), minimization of surface hardware and commodities is paramount. Hardware requirements can be minimized by reduction of equipment performing similar functions though for different subsystems. If hardware could be developed which meets the requirements of both life support and ISRU it could result in the reduction of primary hardware and/or reduction in spares. Minimization of commodities to the surface of mars can be achieved through the creation of higher efficiency systems producing little to no undesired waste, such as a closed-loop life support subsystem. Where complete efficiency is impossible or impractical, makeup commodities could be manufactured via ISRU. Although, utilization of ISRU products (oxygen and water) for crew consumption holds great promise of reducing demands on life support hardware, there exist concerns as to the purity and transportation of commodities. To date, ISRU has been focused on production rates and purities for

  9. A Numerical Testbed for Remote Sensing of Aerosols, and its Demonstration for Evaluating Retrieval Synergy from a Geostationary Satellite Constellation of GEO-CAPE and GOES-R

    Science.gov (United States)

    Wang, Jun; Xu, Xiaoguang; Ding, Shouguo; Zeng, Jing; Spurr, Robert; Liu, Xiong; Chance, Kelly; Mishchenko, Michael I.

    2014-01-01

    We present a numerical testbed for remote sensing of aerosols, together with a demonstration for evaluating retrieval synergy from a geostationary satellite constellation. The testbed combines inverse (optimal-estimation) software with a forward model containing linearized code for computing particle scattering (for both spherical and non-spherical particles), a kernel-based (land and ocean) surface bi-directional reflectance facility, and a linearized radiative transfer model for polarized radiance. Calculation of gas absorption spectra uses the HITRAN (HIgh-resolution TRANsmission molecular absorption) database of spectroscopic line parameters and other trace species cross-sections. The outputs of the testbed include not only the Stokes 4-vector elements and their sensitivities (Jacobians) with respect to the aerosol single scattering and physical parameters (such as size and shape parameters, refractive index, and plume height), but also DFS (Degree of Freedom for Signal) values for retrieval of these parameters. This testbed can be used as a tool to provide an objective assessment of aerosol information content that can be retrieved for any constellation of (planned or real) satellite sensors and for any combination of algorithm design factors (in terms of wavelengths, viewing angles, radiance and/or polarization to be measured or used). We summarize the components of the testbed, including the derivation and validation of analytical formulae for Jacobian calculations. Benchmark calculations from the forward model are documented. In the context of NASA's Decadal Survey Mission GEOCAPE (GEOstationary Coastal and Air Pollution Events), we demonstrate the use of the testbed to conduct a feasibility study of using polarization measurements in and around the O2 A band for the retrieval of aerosol height information from space, as well as an to assess potential improvement in the retrieval of aerosol fine and coarse mode aerosol optical depth (AOD) through the

  10. Development of a hardware-in-the-loop testbed to demonstrate multiple spacecraft operations in proximity

    Science.gov (United States)

    Eun, Youngho; Park, Sang-Young; Kim, Geuk-Nam

    2018-06-01

    This paper presents a new state-of-the-art ground-based hardware-in-the-loop test facility, which was developed to verify and demonstrate autonomous guidance, navigation, and control algorithms for space proximity operations and formation flying maneuvers. The test facility consists of two complete spaceflight simulators, an aluminum-based operational arena, and a set of infrared motion tracking cameras; thus, the testbed is capable of representing space activities under circumstances prevailing on the ground. The spaceflight simulators have a maximum of five-degree-of-freedom in a quasi-momentum-free environment, which is produced by a set of linear/hemispherical air-bearings and a horizontally leveled operational arena. The tracking system measures the real-time three-dimensional position and attitude to provide state variables to the agents. The design of the testbed is illustrated in detail for every element throughout the paper. The practical hardware characteristics of the active/passive measurement units and internal actuators are identified in detail from various perspectives. These experimental results support the successful development of the entire facility and enable us to implement and verify the spacecraft proximity operation strategy in the near future.

  11. Link Adaptation for Mitigating Earth-To-Space Propagation Effects on the NASA SCaN Testbed

    Science.gov (United States)

    Kilcoyne, Deirdre K.; Headley, William C.; Leffke, Zach J.; Rowe, Sonya A.; Mortensen, Dale J.; Reinhart, Richard C.; McGwier, Robert W.

    2016-01-01

    In Earth-to-Space communications, well-known propagation effects such as path loss and atmospheric loss can lead to fluctuations in the strength of the communications link between a satellite and its ground station. Additionally, the typically unconsidered effect of shadowing due to the geometry of the satellite and its solar panels can also lead to link degradation. As a result of these anticipated channel impairments, NASA's communication links have been traditionally designed to handle the worst-case impact of these effects through high link margins and static, lower rate, modulation formats. The work presented in this paper aims to relax these constraints by providing an improved trade-off between data rate and link margin through utilizing link adaptation. More specifically, this work provides a simulation study on the propagation effects impacting NASA's SCaN Testbed flight software-defined radio (SDR) as well as proposes a link adaptation algorithm that varies the modulation format of a communications link as its signal-to-noise ratio fluctuates. Ultimately, the models developed in this work will be utilized to conduct real-time flight experiments on-board the NASA SCaN Testbed.

  12. An ODMG-compatible testbed architecture for scalable management and analysis of physics data

    International Nuclear Information System (INIS)

    Malon, D.M.; May, E.N.

    1997-01-01

    This paper describes a testbed architecture for the investigation and development of scalable approaches to the management and analysis of massive amounts of high energy physics data. The architecture has two components: an interface layer that is compliant with a substantial subset of the ODMG-93 Version 1.2 specification, and a lightweight object persistence manager that provides flexible storage and retrieval services on a variety of single- and multi-level storage architectures, and on a range of parallel and distributed computing platforms

  13. Segmented Aperture Interferometric Nulling Testbed (SAINT) II: component systems update

    Science.gov (United States)

    Hicks, Brian A.; Bolcar, Matthew R.; Helmbrecht, Michael A.; Petrone, Peter; Burke, Elliot; Corsetti, James; Dillon, Thomas; Lea, Andrew; Pellicori, Samuel; Sheets, Teresa; Shiri, Ron; Agolli, Jack; DeVries, John; Eberhardt, Andrew; McCabe, Tyler

    2017-09-01

    This work presents updates to the coronagraph and telescope components of the Segmented Aperture Interferometric Nulling Testbed (SAINT). The project pairs an actively-controlled macro-scale segmented mirror with the Visible Nulling Coronagraph (VNC) towards demonstrating capabilities for the future space observatories needed to directly detect and characterize a significant sample of Earth-sized worlds around nearby stars in the quest for identifying those which may be habitable and possibly harbor life. Efforts to improve the VNC wavefront control optics and mechanisms towards repeating narrowband results are described. A narrative is provided for the design of new optical components aimed at enabling broadband performance. Initial work with the hardware and software interface for controlling the segmented telescope mirror is also presented.

  14. Design of a nickel-hydrogen battery simulator for the NASA EOS testbed

    Science.gov (United States)

    Gur, Zvi; Mang, Xuesi; Patil, Ashok R.; Sable, Dan M.; Cho, Bo H.; Lee, Fred C.

    1992-01-01

    The hardware and software design of a nickel-hydrogen (Ni-H2) battery simulator (BS) with application to the NASA Earth Observation System (EOS) satellite is presented. The battery simulator is developed as a part of a complete testbed for the EOS satellite power system. The battery simulator involves both hardware and software components. The hardware component includes the capability of sourcing and sinking current at a constant programmable voltage. The software component includes the capability of monitoring the battery's ampere-hours (Ah) and programming the battery voltage according to an empirical model of the nickel-hydrogen battery stored in a computer.

  15. A Functional Neuroimaging Analysis of the Trail Making Test-B: Implications for Clinical Application

    Directory of Open Access Journals (Sweden)

    Mark D. Allen

    2011-01-01

    Full Text Available Recent progress has been made using fMRI as a clinical assessment tool, often employing analogues of traditional “paper and pencil” tests. The Trail Making Test (TMT, popular for years as a neuropsychological exam, has been largely ignored in the realm of neuroimaging, most likely because its physical format and administration does not lend itself to straightforward adaptation as an fMRI paradigm. Likewise, there is relatively more ambiguity about the neural systems associated with this test than many other tests of comparable clinical use. In this study, we describe an fMRI version of Trail Making Test-B (TMTB that maintains the core functionality of the TMT while optimizing its use for both research and clinical settings. Subjects (N = 32 were administered the Functional Trail Making Test-B (f-TMTB. Brain region activations elicited by the f-TMTB were consistent with expectations given by prior TMT neurophysiological studies, including significant activations in the ventral and dorsal visual pathways and the medial pre-supplementary motor area. The f-TMTB was further evaluated for concurrent validity with the traditional TMTB using an additional sample of control subjects (N = 100. Together, these results support the f-TMTB as a viable neuroimaging adaptation of the TMT that is optimized to evoke maximally robust fMRI activation with minimal time and equipment requirements.

  16. An SDR-Based Real-Time Testbed for GNSS Adaptive Array Anti-Jamming Algorithms Accelerated by GPU

    Directory of Open Access Journals (Sweden)

    Hailong Xu

    2016-03-01

    Full Text Available Nowadays, software-defined radio (SDR has become a common approach to evaluate new algorithms. However, in the field of Global Navigation Satellite System (GNSS adaptive array anti-jamming, previous work has been limited due to the high computational power demanded by adaptive algorithms, and often lack flexibility and configurability. In this paper, the design and implementation of an SDR-based real-time testbed for GNSS adaptive array anti-jamming accelerated by a Graphics Processing Unit (GPU are documented. This testbed highlights itself as a feature-rich and extendible platform with great flexibility and configurability, as well as high computational performance. Both Space-Time Adaptive Processing (STAP and Space-Frequency Adaptive Processing (SFAP are implemented with a wide range of parameters. Raw data from as many as eight antenna elements can be processed in real-time in either an adaptive nulling or beamforming mode. To fully take advantage of the parallelism resource provided by the GPU, a batched method in programming is proposed. Tests and experiments are conducted to evaluate both the computational and anti-jamming performance. This platform can be used for research and prototyping, as well as a real product in certain applications.

  17. Use-Driven Testbed for Evaluating Systems and Technologies (U-TEST), Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — NextGen will require the development of novel solutions to shape the airspace of tomorrow. Along with the ability to generate new systems and technologies comes the...

  18. Upconversion emission of BaTiO3 :Er nanocrystals

    Indian Academy of Sciences (India)

    Wintec

    Meneses-Nava M A, Barbosa-Garcia O and Salas P 2003. Appl. Phys. Lett. 83 4903. La Rosa E De, Salas P, Desirena H, Angeles C and Rodriguez. R A 2005 Appl. Phys. Lett. 87 241912. Matsuura D 2002 Appl. Phys. Lett. 81 4526. Pandozzi F, Vetrone F, Boyer J C, Naccache R, Capobianco. J A, Speghini A and Bettinelli ...

  19. Development and Integration of the Janus Robotic Lander: A Liquid Oxygen-Liquid Methane Propulsion System Testbed

    Science.gov (United States)

    Ponce, Raul

    Initiatives have emerged with the goal of sending humans to other places in our solar system. New technologies are being developed that will allow for more efficient space systems to transport future astronauts. One of those technologies is the implementation of propulsion systems that use liquid oxygen and liquid methane (LO2-LCH4) as propellants. The benefits of a LO2-LCH4 propulsion system are plenty. One of the main advantages is the possibility of manufacturing the propellants at the destination body. A space vehicle which relies solely on liquid oxygen and liquid methane for its main propulsion and reaction control engines is necessary to exploit this advantage. At the University of Texas at El Paso (UTEP) MIRO Center for Space Exploration Technology Research (cSETR) such a vehicle is being developed. Janus is a robotic lander vehicle with the capability of vertical take-off and landing (VTOL) which integrates several LO2-LCH 4 systems that are being devised in-house. The vehicle will serve as a testbed for the parallel operation of these propulsion systems while being fed from common propellant tanks. The following work describes the efforts done at the cSETR to develop the first prototype of the vehicle as well as the plan to move forward in the design of the subsequent prototypes that will lead to a flight vehicle. In order to ensure an eventual smooth integration of the different subsystems that will form part of Janus, requirements were defined for each individual subsystem as well as the vehicle as a whole. Preliminary testing procedures and layouts have also been developed and will be discussed to detail in this text. Furthermore, the current endeavors in the design of each subsystem and the way that they interact with one another within the lander will be explained.

  20. Laboratory Spacecraft Data Processing and Instrument Autonomy: AOSAT as Testbed

    Science.gov (United States)

    Lightholder, Jack; Asphaug, Erik; Thangavelautham, Jekan

    2015-11-01

    Recent advances in small spacecraft allow for their use as orbiting microgravity laboratories (e.g. Asphaug and Thangavelautham LPSC 2014) that will produce substantial amounts of data. Power, bandwidth and processing constraints impose limitations on the number of operations which can be performed on this data as well as the data volume the spacecraft can downlink. We show that instrument autonomy and machine learning techniques can intelligently conduct data reduction and downlink queueing to meet data storage and downlink limitations. As small spacecraft laboratory capabilities increase, we must find techniques to increase instrument autonomy and spacecraft scientific decision making. The Asteroid Origins Satellite (AOSAT) CubeSat centrifuge will act as a testbed for further proving these techniques. Lightweight algorithms, such as connected components analysis, centroid tracking, K-means clustering, edge detection, convex hull analysis and intelligent cropping routines can be coupled with the tradition packet compression routines to reduce data transfer per image as well as provide a first order filtering of what data is most relevant to downlink. This intelligent queueing provides timelier downlink of scientifically relevant data while reducing the amount of irrelevant downlinked data. Resulting algorithms allow for scientists to throttle the amount of data downlinked based on initial experimental results. The data downlink pipeline, prioritized for scientific relevance based on incorporated scientific objectives, can continue from the spacecraft until the data is no longer fruitful. Coupled with data compression and cropping strategies at the data packet level, bandwidth reductions exceeding 40% can be achieved while still downlinking data deemed to be most relevant in a double blind study between scientist and algorithm. Applications of this technology allow for the incorporation of instrumentation which produces significant data volumes on small spacecraft

  1. Development of a small-scale solar pond technology testbed for education purposes

    International Nuclear Information System (INIS)

    Rahmat, I.; Shazi, M.; Farizal, M.; Nor Azli; Fakhruldin M Hashim

    2006-01-01

    The search for clean energy sources that do not pollute have led researchers to test their ideas on a multitude of possible technology avenues. A number of these solutions rely on the sun. however, the initial financial investment required is great. These solutions, such as solar water heaters, depend on an insulated water tank to store the captured energy. A more effective device could be used to both capture and store copious amounts of sunlight energy, allowing almost continuous use even at night. Solar ponds show great promise in fulfilling this requirement. The one currently in operation at Universiti Teknologi PETRONAS is of the non-convecting type. It uses concentrated brine in the depths of the pond to capture solar energy. The energy is then trapped by the presence of a non-saline top layer, which insulates from convection heat losses. This phenomenon manifests itself as a rise in temperature of the brine. In this manner, thermal energy is contained in the pond, which can serve as the heat source for any appropriate power cycle or used for heating purposes. To make the technology feasible for education purposes it is imperative that its cost is lowered. The system is not dug out of the ground but uses a commercial bathtub to simulate the body of water. This method also greatly simplifies fabrication and maintenance. With this rudimentary setup, the highest temperature reached so far is 54 o C, achieved in a water depth of only 0.28 m. The next step is to increase the water depth, search for the most cost-effective side insulation and continue research into the appropriate energy extraction system to match the output and size of the solar pond. The main intent of this project is to educate students on this concept and develop it into an effective technology demonstrator. By keeping the cost low it can be turned into a viable secondary school Living Skills project to educate them on the potential of solar energy and the existence of alternative solutions in

  2. A robot hand testbed designed for enhancing embodiment and functional neurorehabilitation of body schema in subjects with upper limb impairment or loss.

    Science.gov (United States)

    Hellman, Randall B; Chang, Eric; Tanner, Justin; Helms Tillery, Stephen I; Santos, Veronica J

    2015-01-01

    Many upper limb amputees experience an incessant, post-amputation "phantom limb pain" and report that their missing limbs feel paralyzed in an uncomfortable posture. One hypothesis is that efferent commands no longer generate expected afferent signals, such as proprioceptive feedback from changes in limb configuration, and that the mismatch of motor commands and visual feedback is interpreted as pain. Non-invasive therapeutic techniques for treating phantom limb pain, such as mirror visual feedback (MVF), rely on visualizations of postural changes. Advances in neural interfaces for artificial sensory feedback now make it possible to combine MVF with a high-tech "rubber hand" illusion, in which subjects develop a sense of embodiment with a fake hand when subjected to congruent visual and somatosensory feedback. We discuss clinical benefits that could arise from the confluence of known concepts such as MVF and the rubber hand illusion, and new technologies such as neural interfaces for sensory feedback and highly sensorized robot hand testbeds, such as the "BairClaw" presented here. Our multi-articulating, anthropomorphic robot testbed can be used to study proprioceptive and tactile sensory stimuli during physical finger-object interactions. Conceived for artificial grasp, manipulation, and haptic exploration, the BairClaw could also be used for future studies on the neurorehabilitation of somatosensory disorders due to upper limb impairment or loss. A remote actuation system enables the modular control of tendon-driven hands. The artificial proprioception system enables direct measurement of joint angles and tendon tensions while temperature, vibration, and skin deformation are provided by a multimodal tactile sensor. The provision of multimodal sensory feedback that is spatiotemporally consistent with commanded actions could lead to benefits such as reduced phantom limb pain, and increased prosthesis use due to improved functionality and reduced cognitive burden.

  3. A robot hand testbed designed for enhancing embodiment and functional neurorehabilitation of body schema in subjects with upper limb impairment or loss

    Directory of Open Access Journals (Sweden)

    Randall B. Hellman

    2015-02-01

    Full Text Available Many upper limb amputees experience an incessant, post-amputation phantom limb pain and report that their missing limbs feel paralyzed in an uncomfortable posture. One hypothesis is that efferent commands no longer generate expected afferent signals, such as proprioceptive feedback from changes in limb configuration, and that the mismatch of motor commands and visual feedback is interpreted as pain. Non-invasive therapeutic techniques for treating phantom limb pain, such as mirror visual feedback (MVF, rely on visualizations of postural changes. Advances in neural interfaces for artificial sensory feedback now make it possible to combine MVF with a high-tech rubber hand illusion, in which subjects develop a sense of embodiment with a fake hand when subjected to congruent visual and somatosensory feedback. We discuss clinical benefits that could arise from the confluence of known concepts such as MVF and the rubber hand illusion, and new technologies such as neural interfaces for sensory feedback and highly sensorized robot hand testbeds, such as the BairClaw presented here. Our multi-articulating, anthropomorphic robot testbed can be used to study proprioceptive and tactile sensory stimuli during physical finger-object interactions. Conceived for artificial grasp, manipulation, and haptic exploration, the BairClaw could also be used for future studies on the neurorehabilitation of somatosensory disorders due to upper limb impairment or loss. A remote actuation system enables the modular control of tendon-driven hands. The artificial proprioception system enables direct measurement of joint angles and tendon tensions while temperature, vibration, and skin deformation are provided by a multimodal tactile sensor. The provision of multimodal sensory feedback that is spatiotemporally consistent with commanded actions could lead to benefits such as reduced phantom limb pain, and increased prosthesis use due to improved functionality and reduced

  4. Integrated Systems Health Management for Sustainable Habitats (Using Sustainability Base as a Testbed)

    Science.gov (United States)

    Martin, Rodney A.

    2017-01-01

    opportunity to test novel machine learning and controls capabilities. In this talk, key features of Sustainability Base that make it relevant to deep space habitat technology and its use of these kinds of subsystems previously listed will be presented. The fact that all such systems require less power to support human occupancy can be used as a focal point to serve as a testbed for deep space habitats that will need to operate within finite energy budgets.

  5. Human Exploration System Test-Bed for Integration and Advancement (HESTIA) Support of Future NASA Deep-Space Missions

    Science.gov (United States)

    Marmolejo, Jose; Ewert, Michael

    2016-01-01

    The Engineering Directorate at the NASA - Johnson Space Center is outfitting a 20-Foot diameter hypobaric chamber in Building 7 to support future deep-space Environmental Control & Life Support System (ECLSS) research as part of the Human Exploration System Test-bed for Integration and Advancement (HESTIA) Project. This human-rated chamber is the only NASA facility that has the unique experience, chamber geometry, infrastructure, and support systems capable of conducting this research. The chamber was used to support Gemini, Apollo, and SkyLab Missions. More recently, it was used to conduct 30-, 60-, and 90-day human ECLSS closed-loop testing in the 1990s to support the International Space Station and life support technology development. NASA studies show that both planetary surface and deep-space transit crew habitats will be 3-4 story cylindrical structures driven by human occupancy volumetric needs and launch vehicle constraints. The HESTIA facility offers a 3-story, 20-foot diameter habitat consistent with the studies' recommendations. HESTIA operations follow stringent processes by a certified test team that including human testing. Project management, analysis, design, acquisition, fabrication, assembly and certification of facility build-ups are available to support this research. HESTIA offers close proximity to key stakeholders including astronauts, Human Research Program (who direct space human research for the agency), Mission Operations, Safety & Mission Assurance, and Engineering Directorate. The HESTIA chamber can operate at reduced pressure and elevated oxygen environments including those proposed for deep-space exploration. Data acquisition, power, fluids and other facility resources are available to support a wide range of research. Recently completed HESTIA research consisted of unmanned testing of ECLSS technologies. Eventually, the HESTIA research will include humans for extended durations at reduced pressure and elevated oxygen to demonstrate

  6. The Soil Moisture Active Passive Mission (SMAP) Science Data Products: Results of Testing with Field Experiment and Algorithm Testbed Simulation Environment Data

    Science.gov (United States)

    Entekhabi, Dara; Njoku, Eni E.; O'Neill, Peggy E.; Kellogg, Kent H.; Entin, Jared K.

    2010-01-01

    Talk outline 1. Derivation of SMAP basic and applied science requirements from the NRC Earth Science Decadal Survey applications 2. Data products and latencies 3. Algorithm highlights 4. SMAP Algorithm Testbed 5. SMAP Working Groups and community engagement

  7. Flight Experiments for Living With a Star Space Environment Testbed (LWS-SET): Relationship to Technology

    Science.gov (United States)

    LaBel, Kenneth A.; Barth, Janet L.; Brewer, Dana A.

    2003-01-01

    This viewgraph presentation provides information on flight validation experiments for technologies to determine solar effects. The experiments are intended to demonstrate tolerance to a solar variant environment. The technologies tested are microelectronics, photonics, materials, and sensors.

  8. Technology development activities for housing research animals on Space Station Freedom

    Science.gov (United States)

    Jenner, Jeffrey W.; Garin, Vladimir M.; Nguyen, Frank D.

    1991-01-01

    The development and design of animal facilities are described in terms of the technological needs for NASA's Biological Flight Research Laboratory. Animal habitats are presented with illustrations which encompass waste-collection techniques for microgravity conditions that reduce the need for crew participation. The technology is intended to be highly compatible with animal morphology, and airflow is employed as the primary mechanism of waste control. The airflow can be utilized in the form of localized high-speed directed flow that simultaneously provides a clean animal habitat and low airflow rates. The design of an animal-habitat testbed is presented which capitalizes on contamination-control mechanisms and suitable materials for microgravity conditions. The developments in materials and technologies represent significant contributions for the design of the centrifuge facilities for the Space Station Freedom.

  9. CanOpen on RASTA: The Integration of the CanOpen IP Core in the Avionics Testbed

    Science.gov (United States)

    Furano, Gianluca; Guettache, Farid; Magistrati, Giorgio; Tiotto, Gabriele; Ortega, Carlos Urbina; Valverde, Alberto

    2013-08-01

    This paper presents the work done within the ESA Estec Data Systems Division, targeting the integration of the CanOpen IP Core with the existing Reference Architecture Test-bed for Avionics (RASTA). RASTA is the reference testbed system of the ESA Avionics Lab, designed to integrate the main elements of a typical Data Handling system. It aims at simulating a scenario where a Mission Control Center communicates with on-board computers and systems through a TM/TC link, thus providing the data management through qualified processors and interfaces such as Leon2 core processors, CAN bus controllers, MIL-STD-1553 and SpaceWire. This activity aims at the extension of the RASTA with two boards equipped with HurriCANe controller, acting as CANOpen slaves. CANOpen software modules have been ported on the RASTA system I/O boards equipped with Gaisler GR-CAN controller and acts as master communicating with the CCIPC boards. CanOpen serves as upper application layer for based on CAN defined within the CAN-in-Automation standard and can be regarded as the definitive standard for the implementation of CAN-based systems solutions. The development and integration of CCIPC performed by SITAEL S.p.A., is the first application that aims to bring the CANOpen standard for space applications. The definition of CANOpen within the European Cooperation for Space Standardization (ECSS) is under development.

  10. Systematic Benchmarking of Diagnostic Technologies for an Electrical Power System

    Science.gov (United States)

    Kurtoglu, Tolga; Jensen, David; Poll, Scott

    2009-01-01

    Automated health management is a critical functionality for complex aerospace systems. A wide variety of diagnostic algorithms have been developed to address this technical challenge. Unfortunately, the lack of support to perform large-scale V&V (verification and validation) of diagnostic technologies continues to create barriers to effective development and deployment of such algorithms for aerospace vehicles. In this paper, we describe a formal framework developed for benchmarking of diagnostic technologies. The diagnosed system is the Advanced Diagnostics and Prognostics Testbed (ADAPT), a real-world electrical power system (EPS), developed and maintained at the NASA Ames Research Center. The benchmarking approach provides a systematic, empirical basis to the testing of diagnostic software and is used to provide performance assessment for different diagnostic algorithms.

  11. Modular, Reconfigurable, High-Energy Technology Development

    Science.gov (United States)

    Carrington, Connie; Howell, Joe

    2006-01-01

    The Modular, Reconfigurable High-Energy (MRHE) Technology Demonstrator project was to have been a series of ground-based demonstrations to mature critical technologies needed for in-space assembly of a highpower high-voltage modular spacecraft in low Earth orbit, enabling the development of future modular solar-powered exploration cargo-transport vehicles and infrastructure. MRHE was a project in the High Energy Space Systems (HESS) Program, within NASA's Exploration Systems Research and Technology (ESR&T) Program. NASA participants included Marshall Space Flight Center (MSFC), the Jet Propulsion Laboratory (JPL), and Glenn Research Center (GRC). Contractor participants were the Boeing Phantom Works in Huntsville, AL, Lockheed Martin Advanced Technology Center in Palo Alto, CA, ENTECH, Inc. in Keller, TX, and the University of AL Huntsville (UAH). MRHE's technical objectives were to mature: (a) lightweight, efficient, high-voltage, radiation-resistant solar power generation (SPG) technologies; (b) innovative, lightweight, efficient thermal management systems; (c) efficient, 100kW-class, high-voltage power delivery systems from an SPG to an electric thruster system; (d) autonomous rendezvous and docking technology for in-space assembly of modular, reconfigurable spacecraft; (e) robotic assembly of modular space systems; and (f) modular, reconfigurable distributed avionics technologies. Maturation of these technologies was to be implemented through a series of increasingly-inclusive laboratory demonstrations that would have integrated and demonstrated two systems-of-systems: (a) the autonomous rendezvous and docking of modular spacecraft with deployable structures, robotic assembly, reconfiguration both during assembly and (b) the development and integration of an advanced thermal heat pipe and a high-voltage power delivery system with a representative lightweight high-voltage SPG array. In addition, an integrated simulation testbed would have been developed

  12. MODELING CIRCUMSTELLAR DISKS OF B-TYPE STARS WITH OBSERVATIONS FROM THE PALOMAR TESTBED INTERFEROMETER

    International Nuclear Information System (INIS)

    Grzenia, B. J.; Tycner, C.; Jones, C. E.; Sigut, T. A. A.; Rinehart, S. A.; Van Belle, G. T.

    2013-01-01

    Geometrical (uniform disk) and numerical models were calculated for a set of B-emission (Be) stars observed with the Palomar Testbed Interferometer (PTI). Physical extents have been estimated for the disks of a total of 15 stars via uniform disk models. Our numerical non-LTE models used parameters for the B0, B2, B5, and B8 spectral classes and following the framework laid by previous studies, we have compared them to infrared K-band interferometric observations taken at PTI. This is the first time such an extensive set of Be stars observed with long-baseline interferometry has been analyzed with self-consistent non-LTE numerical disk models.

  13. Atmospheric Fluctuation Measurements with the Palomar Testbed Interferometer

    Science.gov (United States)

    Linfield, R. P.; Lane, B. F.; Colavita, M. M.; PTI Collaboration

    Observations of bright stars with the Palomar Testbed Interferometer, at a wavelength of 2.2 microns, have been used to measure atmospheric delay fluctuations. The delay structure function Dτ(Δ t) was calculated for 66 scans (each >= 120s in length) on seven nights in 1997 and one in 1998. For all except one scan, Dτ exhibited a clean power law shape over the time interval 50-500 msec. Over shorter time intervals, the effect of the delay line servo loop corrupts Dτ. Over longer time intervals (usually starting at > 1s), the slope of Dτ decreases, presumably due to some combination of saturation e.g. finite turbulent layer thickness) and the effect of the finite wind speed crossing time on our 110 m baseline. The mean power law slopes for the eight nights ranged from 1.16 to 1.36, substantially flatter than the value of 1.67 for three dimensional Kolmogorov turbulence. Such sub-Kolmogorov slopes will result in atmospheric seeling (θ) that improves rapidly with increasing wavelength: θ propto λ1-(2β), where β is the observed power law slope of Dτ. The atmospheric errors in astrometric measurements with an interferometer will average down more quickly than in the Kolmogorov case.

  14. CERN: The Future of Information Technology

    CERN Multimedia

    CERN. Geneva; QEII Conference Centre

    2004-01-01

    Sell to CERN, partner with CERN and learn about its pivotal role in European Grids and e-business This afternoon event will highlight the key areas of distributed computing and enterprise applications to Information and Communication Technology companies. The meeting will be held as a joint forum with First Tuesday Geneva, a networking organisation for business and investors in the Geneva region. The CERN Openlab for DataGrid applications is a means by which companies may partner with CERN to testbed their hardware and software products for Grid applications. Grid technology developed at CERN is already being used for particle physics and healthcare applications, making the laboratory an ideal site for collaborative development. British companies are already participating in this initiative and the opportunity is now available to medium-sized IT companies. In addition, a number of enterprise applications will be described. This software has been developed to manage the unique engineering and administrative ch...

  15. Technology for national asset storage systems

    Science.gov (United States)

    Coyne, Robert A.; Hulen, Harry; Watson, Richard

    1993-01-01

    An industry-led collaborative project, called the National Storage Laboratory, was organized to investigate technology for storage systems that will be the future repositories for our national information assets. Industry participants are IBM Federal Systems Company, Ampex Recording Systems Corporation, General Atomics DISCOS Division, IBM ADSTAR, Maximum Strategy Corporation, Network Systems Corporation, and Zitel Corporation. Industry members of the collaborative project are funding their own participation. Lawrence Livermore National Laboratory through its National Energy Research Supercomputer Center (NERSC) will participate in the project as the operational site and the provider of applications. The expected result is an evaluation of a high performance storage architecture assembled from commercially available hardware and software, with some software enhancements to meet the project's goals. It is anticipated that the integrated testbed system will represent a significant advance in the technology for distributed storage systems capable of handling gigabyte class files at gigabit-per-second data rates. The National Storage Laboratory was officially launched on 27 May 1992.

  16. OPNET/Simulink Based Testbed for Disturbance Detection in the Smart Grid

    Energy Technology Data Exchange (ETDEWEB)

    Sadi, Mohammad A. H. [University of Memphis; Dasgupta, Dipankar [ORNL; Ali, Mohammad Hassan [University of Memphis; Abercrombie, Robert K [ORNL

    2015-01-01

    The important backbone of the smart grid is the cyber/information infrastructure, which is primarily used to communicate with different grid components. A smart grid is a complex cyber physical system containing a numerous and variety number of sources, devices, controllers and loads. Therefore, the smart grid is vulnerable to grid related disturbances. For such dynamic system, disturbance and intrusion detection is a paramount issue. This paper presents a Simulink and Opnet based co-simulated platform to carry out a cyber-intrusion in cyber network for modern power systems and the smart grid. The IEEE 30 bus power system model is used to demonstrate the effectiveness of the simulated testbed. The experiments were performed by disturbing the circuit breakers reclosing time through a cyber-attack. Different disturbance situations in the considered test system are considered and the results indicate the effectiveness of the proposed co-simulated scheme.

  17. User's guide to the Reliability Estimation System Testbed (REST)

    Science.gov (United States)

    Nicol, David M.; Palumbo, Daniel L.; Rifkin, Adam

    1992-01-01

    The Reliability Estimation System Testbed is an X-window based reliability modeling tool that was created to explore the use of the Reliability Modeling Language (RML). RML was defined to support several reliability analysis techniques including modularization, graphical representation, Failure Mode Effects Simulation (FMES), and parallel processing. These techniques are most useful in modeling large systems. Using modularization, an analyst can create reliability models for individual system components. The modules can be tested separately and then combined to compute the total system reliability. Because a one-to-one relationship can be established between system components and the reliability modules, a graphical user interface may be used to describe the system model. RML was designed to permit message passing between modules. This feature enables reliability modeling based on a run time simulation of the system wide effects of a component's failure modes. The use of failure modes effects simulation enhances the analyst's ability to correctly express system behavior when using the modularization approach to reliability modeling. To alleviate the computation bottleneck often found in large reliability models, REST was designed to take advantage of parallel processing on hypercube processors.

  18. Development of small-bore, high-current-density railgun as testbed for study of plasma-materials interaction. Progress report for October 16, 2000 - May 13, 2003

    International Nuclear Information System (INIS)

    Kyekyoon, Kim-Kevin

    2003-01-01

    The present document is a final technical report summarizing the progress made during 10/16/2000 - 05/13/2003 toward the development of a small-bore railgun with transaugmentation as a testbed for investigating plasma-materials interaction

  19. Electrodynamic Tethers and E-Sails as Active Experiment Testbeds and Technologies in Space

    Science.gov (United States)

    Gilchrist, B. E.; Wiegmann, B.; Johnson, L.; Bilen, S. G.; Habash Krause, L.; Miars, G.; Leon, O.

    2017-12-01

    The use of small-to-large flexible structures in space such as tethers continues to be studied for scientific and technology applications. Here we will consider tether electrodynamic and electrostatic interactions with magneto-plasmas in ionospheres, magnetospheres, and interplanetary space. These systems are enabling fundamental studies of basic plasma physics phenomena, allowing direct studies of the space environment, and generating technological applications beneficial for science missions. Electrodynamic tethers can drive current through the tether based on the Lorenz force adding or extracting energy from its orbit allowing for the study of charged bodies or plasma plumes moving through meso-sonic magnetoplasmas [1]. Technologically, this also generates propulsive forces requiring no propellant and little or no consumables in any planetary system with a magnetic field and ionosphere, e.g., Jupiter [2]. Further, so called electric sails (E-sails) are being studied to provide thrust through momentum exchange with the hypersonic solar wind. The E-sail uses multiple, very long (10s of km) charged, mostly bare rotating conducting tethers to deflect solar wind protons. It is estimated that a spacecraft could achieve a velocity over 100 km/s with time [3,4]. 1. Banks, P.M., "Review of electrodynamic tethers for space plasma science," J. Spacecraft and Rockets, vol. 26, no. 4, pp. 234-239, 1989. 2. Talley, C., J. Moore, D. Gallagher, and L. Johnson, "Propulsion and power from a rotating electrodynamic tether at Jupiter," 38th AIAA Aerospace Sciences Meeting and Exhibit, January 2000. 3. Janhunen, P., "The electric sail—A new propulsion method which may enable fast missions to the outer solar system," J. British Interpl. Soc., vol. 61, no. 8, pp. 322-325, 2008. 4. Wiegman, B., T. Scheider, A. Heaton, J. Vaughn, N. Stone, and K. Wright, "The Heliopause Electrostatic Rapid Transit System (HERTS)—Design, trades, and analyses performed in a two-year NASA investigation

  20. Experimental aerodynamic and acoustic model testing of the Variable Cycle Engine (VCE) testbed coannular exhaust nozzle system: Comprehensive data report

    Science.gov (United States)

    Nelson, D. P.; Morris, P. M.

    1980-01-01

    The component detail design drawings of the one sixth scale model of the variable cycle engine testbed demonstrator exhaust syatem tested are presented. Also provided are the basic acoustic and aerodynamic data acquired during the experimental model tests. The model drawings, an index to the acoustic data, an index to the aerodynamic data, tabulated and graphical acoustic data, and the tabulated aerodynamic data and graphs are discussed.

  1. Implementation strategies for load center automation on the space station module/power management and distribution testbed

    Science.gov (United States)

    Watson, Karen

    1990-01-01

    The Space Station Module/Power Management and Distribution (SSM/PMAD) testbed was developed to study the tertiary power management on modules in large spacecraft. The main goal was to study automation techniques, not necessarily develop flight ready systems. Because of the confidence gained in many of automation strategies investigated, it is appropriate to study, in more detail, implementation strategies in order to find better trade-offs for nearer to flight ready systems. These trade-offs particularly concern the weight, volume, power consumption, and performance of the automation system. These systems, in their present implementation are described.

  2. Soil-based filtration technology for air purification: potentials for environmental and space life support application

    Science.gov (United States)

    Nelson, Mark; Bohn, Hinrich

    Soil biofiltration, also known as Soil bed reactor (SBR), technology was originally developed in Germany to take advantage of the diversity in microbial mechanisms to control gases producing malodor in industrial processes. The approach has since gained wider international acceptance and seen numerous improvements, for example, by the use of high-organic compost beds to maximize microbial processes. This paper reviews the basic mechanisms which underlay soil processes involved in air purification, advantages and limitations of the technology and the cur-rent research status of the approach. Soil biofiltration has lower capital and operating/energetic costs than conventional technologies and is well adapted to handle contaminants in moderate concentrations. The systems can be engineered to optimize efficiency though manipulation of temperature, pH, moisture content, soil organic matter and airflow rates. SBR technology was modified for application in the Biosphere 2 project, which demonstrated in preparatory research with a number of closed system testbeds that soil could also support crop plants while also serving as soil filters with air pumps to push air through the soil. This Biosphere 2 research demonstrated in several closed system testbeds that a number of important trace gases could be kept under control and led to the engineering of the entire agricultural soil of Biosphere 2 to serve as a soil filtration unit for the facility. Soil biofiltration, coupled with food crop produc-tion, as a component of bioregenerative space life support systems has the advantages of lower energy use and avoidance of the consumables required for other air purification approaches. Expanding use of soil biofiltration can aid a number of environmental applications, from the mitigation of indoor air pollution, improvement of industrial air emissions and prevention of accidental release of toxic gases.

  3. Digital pathology: DICOM-conform draft, testbed, and first results.

    Science.gov (United States)

    Zwönitzer, Ralf; Kalinski, Thomas; Hofmann, Harald; Roessner, Albert; Bernarding, Johannes

    2007-09-01

    Hospital information systems are state of the art nowadays. Therefore, Digital Pathology, also labelled as Virtual Microscopy, has gained increased attention. Triggered by radiology, standardized information models and workflows were world-wide defined based on DICOM. However, DICOM-conform integration of Digital Pathology into existing clinical information systems imposes new problems requiring specific solutions concerning the huge amount of data as well as the special structure of the data to be managed, transferred, and stored. We implemented a testbed to realize and evaluate the workflow of digitized slides from acquisition to archiving. The experiences led to the draft of a DICOM-conform information model that accounted for extensions, definitions, and technical requirements necessary to integrate digital pathology in a hospital-wide DICOM environment. Slides were digitized, compressed, and could be viewed remotely. Real-time transfer of the huge amount of data was optimized using streaming techniques. Compared to a recent discussion in the DICOM Working Group for Digital Pathology (WG26) our experiences led to a preference of a JPEG2000/JPIP-based streaming of the whole slide image. The results showed that digital pathology is feasible but strong efforts by users and vendors are still necessary to integrate Digital Pathology into existing information systems.

  4. Save Maritime Systems Testbed

    Directory of Open Access Journals (Sweden)

    Bolles André

    2014-06-01

    Full Text Available ‘Safe voyage from berth to berth’ — this is the goal of all e-navigation strains, driven by new technologies, new infrastructures and new organizational structures on bridge, on shore as well as in the cloud. To facilitate these efforts suitable engineering and safety/risk assessment methods have to be applied. Understanding maritime transportation as a sociotechnical system allows system engineering methods to be applied. Formal and simulation based verification and validation of e-navigation technologies are important methods to obtain system safety and reliability. The modelling and simulation toolset HAGGIS provides methods for system specification and formal risk analysis. It provides a modelling framework for processes, fault trees and generic hazard specification and a physical world and maritime traffic simulation system. HAGGIS is accompanied by the physical test bed LABSKAUS which implements a reference port and waterway. Additionally, it contains an experimental Vessel Traffic Services (VTS implementation and a mobile integrated bridge enabling in situ experiments for technology evaluation, testing, ground research and demonstration. This paper describes an integrated seamless approach for developing new e-navigation technologies starting with virtual simulation based assessment and ending in physical real world demonstrations.

  5. Design and construction of a testbed for the application of real volcanic ash from the Eyjafjallajökull and Grimsvötn eruptions to microgas turbines

    Science.gov (United States)

    Weber, Konradin; Fischer, Christian; Lange, Martin; Schulz, Uwe; Naraparaju, Ravisankar; Kramer, Dietmar

    2017-04-01

    It is well known that volcanic ash clouds emitted from erupting volcanoes pose a considerable threat to the aviation. The volcanic ash particles can damage the turbine blades and their thermal barrier coatings as well as the bearings of the turbine. For a detailed investigation of this damaging effect a testbed was designed and constructed, which allowed to study the damaging effects of real volcanic ash to an especially for these investigations modified microgas turbine. The use of this microgas turbine had the advantage that it delivers near reality conditions, using kerosene and operating at similar temperatures as big turbines, but at a very cost effective level. The testbed consisted out of a disperser for the real volcanic ash and all the equipment needed to control the micro gas turbine. Moreover, in front and behind the microgas turbine the concentration and the distribution of the volcanic ash were measured online by optical particle counters (OPCs). The particle concentration and size distribution of the volcanic ash particles in the intake in front of the microgas turbine was measured by an optical particle counter (OPC) combined with an isokinetic intake. Behind the microgas turbine in the exhaust gas additionally to the measurement with a second OPC ash particles were caught with an impactor, in order to enable the later analysis with an electron microscope concerning the morphology to verify possible melting processes of the ash particles. This testbed is of high importance as it allows detailed investigations of the impact of volcanic ash to jet turbines and appropriate countermeasures.

  6. Tracking Activities in Complex Settings Using Smart Environment Technologies.

    Science.gov (United States)

    Singla, Geetika; Cook, Diane J; Schmitter-Edgecombe, Maureen

    2009-01-01

    The pervasive sensing technologies found in smart homes offer unprecedented opportunities for providing health monitoring and assistance to individuals experiencing difficulties living independently at home. A primary challenge that needs to be tackled to meet this need is the ability to recognize and track functional activities that people perform in their own homes and everyday settings. In this paper we look at approaches to perform real-time recognition of Activities of Daily Living. We enhance other related research efforts to develop approaches that are effective when activities are interrupted and interleaved. To evaluate the accuracy of our recognition algorithms we assess them using real data collected from participants performing activities in our on-campus smart apartment testbed.

  7. Analysis, modeling, and simulation (AMS) testbed development and evaluation to support dynamic mobility applications (DMA) and active transportation and demand management (ATDM) programs — evaluation report for ATDM program.

    Science.gov (United States)

    2017-07-16

    The primary objective of this project is to develop multiple simulation testbeds/transportation models to evaluate the impacts of Dynamic Mobility Applications (DMA) and the Active Transportation and Demand Management (ATDM) strategies. Specifically,...

  8. Analysis of 2D Torus and Hub Topologies of 100Mb/s Ethernet for the Whitney Commodity Computing Testbed

    Science.gov (United States)

    Pedretti, Kevin T.; Fineberg, Samuel A.; Kutler, Paul (Technical Monitor)

    1997-01-01

    A variety of different network technologies and topologies are currently being evaluated as part of the Whitney Project. This paper reports on the implementation and performance of a Fast Ethernet network configured in a 4x4 2D torus topology in a testbed cluster of 'commodity' Pentium Pro PCs. Several benchmarks were used for performance evaluation: an MPI point to point message passing benchmark, an MPI collective communication benchmark, and the NAS Parallel Benchmarks version 2.2 (NPB2). Our results show that for point to point communication on an unloaded network, the hub and 1 hop routes on the torus have about the same bandwidth and latency. However, the bandwidth decreases and the latency increases on the torus for each additional route hop. Collective communication benchmarks show that the torus provides roughly four times more aggregate bandwidth and eight times faster MPI barrier synchronizations than a hub based network for 16 processor systems. Finally, the SOAPBOX benchmarks, which simulate real-world CFD applications, generally demonstrated substantially better performance on the torus than on the hub. In the few cases the hub was faster, the difference was negligible. In total, our experimental results lead to the conclusion that for Fast Ethernet networks, the torus topology has better performance and scales better than a hub based network.

  9. Science and Technology Review July/August 2009

    Energy Technology Data Exchange (ETDEWEB)

    Bearinger, J P

    2009-06-29

    This month's issue has the following articles: (1) Game-Changing Science in the National Interest - Commentary by Tomas Diaz de la Rubia; (2) Preventing Close Encounters of the Orbiting Kind - The Testbed Environment for Space Situational Awareness is improving capabilities for monitoring and detecting threats to space operations; (3) A CAT Scanner for Nuclear Weapon Components - A new x-ray system images nuclear weapon components in three dimensions, promising unprecedented resolution and clarity; (4) Mass-Producing Positrons - Scientists reveal a new method for yielding a greater density of positrons at a much faster rate inside a laboratory setting; and (5) The Next Generation of Medical Diagnostic Devices - Portable medical diagnostic devices using ultrawideband technology help first responders evaluate injuries in emergency situations and could improve overall health care.

  10. Field Measurements of Perceived Air Quality in the Test-Bed for Innovative Climate Conditioning Technologies

    DEFF Research Database (Denmark)

    Kolarik, Jakub; Toftum, Jørn; Kabrhel, Michal

    the potential influence of aforementioned technologies on the perceived air quality. Additionally, the effect of Demand Controlled Ventilation (DCV) on the perceived air quality was tested. Measurements comprised of the assessments of perceived air quality and objective measurements of operative temperature...

  11. Ad Hoc on-Demand Distance Vector (AODV Routing Protocol Performance Evaluation on Hybrid Ad Hoc Network: Comparison of Result of Ns-2 Simulation and Implementation on Testbed using PDA

    Directory of Open Access Journals (Sweden)

    Riri Sari

    2010-10-01

    Full Text Available In Mobile Ad hoc NETwork (MANET, node supplemented with wireless equipment has the capacity to manage and organise autonomously, without the presence of network infrastructures. Hybrid ad hoc network, enable several nodes to move freely (mobile to create instant communication. Independent from infrastructure. They could access the Local Area Network (LAN or the Internet. Functionalities of ad hoc network very much dependent on the routing protocol that determines the routing around node. Ad hoc On-demand Distance Vector (AODV is one of routing protocols in ad hoc network which has a reactive characteristic. This protocol is the most common protocol being researched and used. In this Research, AODV protocol investigation was conducted by developing a testbed using Personal Computer, several Laptops (the Linux Red Hat operation system 9.0 and Fedora Core 2, and Personal Digital Assistant (PDA. This research also made a complete package by mean of cross compilation for PDA iPAQ. In general, results obtained from the simulation of AODV protocol using Network Simulator NS-2 are packet delivery ratio 99.89%, end-to-end delay of 0.14 seconds and routing overhead of 1,756.61 byte per second. Afterwards results from simulation were compared to results from testbed. Results obtained from testbed are as follows: the packet delivery ratio is 99.57%, the end-to-end delay is 1.004 seconds and the routing overhead is 1,360.36 byte per second.

  12. Design, Development and Pre-Flight Testing of the Communications, Navigation, and Networking Reconfigurable Testbed (Connect) to Investigate Software Defined Radio Architecture on the International Space Station

    Science.gov (United States)

    Over, Ann P.; Barrett, Michael J.; Reinhart, Richard C.; Free, James M.; Cikanek, Harry A., III

    2011-01-01

    The Communication Navigation and Networking Reconfigurable Testbed (CoNNeCT) is a NASA-sponsored mission, which will investigate the usage of Software Defined Radios (SDRs) as a multi-function communication system for space missions. A softwaredefined radio system is a communication system in which typical components of the system (e.g., modulators) are incorporated into software. The software-defined capability allows flexibility and experimentation in different modulation, coding and other parameters to understand their effects on performance. This flexibility builds inherent redundancy and flexibility into the system for improved operational efficiency, real-time changes to space missions and enhanced reliability/redundancy. The CoNNeCT Project is a collaboration between industrial radio providers and NASA. The industrial radio providers are providing the SDRs and NASA is designing, building and testing the entire flight system. The flight system will be integrated on the Express Logistics Carrier (ELC) on the International Space Station (ISS) after launch on the H-IIB Transfer Vehicle in 2012. This paper provides an overview of the technology research objectives, payload description, design challenges and pre-flight testing results.

  13. Thermal and Fluid Modeling of the CRYogenic Orbital TEstbed (CRYOTE) Ground Test Article (GTA)

    Science.gov (United States)

    Piryk, David; Schallhorn, Paul; Walls, Laurie; Stopnitzky, Benny; Rhys, Noah; Wollen, Mark

    2012-01-01

    The purpose of this study was to anchor thermal and fluid system models to data acquired from a ground test article (GTA) for the CRYogenic Orbital TEstbed - CRYOTE. To accomplish this analysis, it was broken into four primary tasks. These included model development, pre-test predictions, testing support at Marshall Space Flight Center (MSFC} and post-test correlations. Information from MSFC facilitated the task of refining and correlating the initial models. The primary goal of the modeling/testing/correlating efforts was to characterize heat loads throughout the ground test article. Significant factors impacting the heat loads included radiative environments, multi-layer insulation (MLI) performance, tank fill levels, tank pressures, and even contact conductance coefficients. This paper demonstrates how analytical thermal/fluid networks were established, and it includes supporting rationale for specific thermal responses seen during testing.

  14. High-speed civil transport issues and technology program

    Science.gov (United States)

    Hewett, Marle D.

    1992-01-01

    A strawman program plan is presented, consisting of technology developments and demonstrations required to support the construction of a high-speed civil transport. The plan includes a compilation of technology issues related to the development of a transport. The issues represent technical areas in which research and development are required to allow airframe manufacturers to pursue an HSCT development. The vast majority of technical issues presented require flight demonstrated and validated solutions before a transport development will be undertaken by the industry. The author believes that NASA is the agency best suited to address flight demonstration issues in a concentrated effort. The new Integrated Test Facility at NASA Dryden Flight Research Facility is considered ideally suited to the task of supporting ground validations of proof-of-concept and prototype system demonstrations before night demonstrations. An elaborate ground hardware-in-the-loop (iron bird) simulation supported in this facility provides a viable alternative to developing an expensive fill-scale prototype transport technology demonstrator. Drygen's SR-71 assets, modified appropriately, are a suitable test-bed for supporting flight demonstrations and validations of certain transport technology solutions. A subscale, manned or unmanned flight demonstrator is suitable for flight validation of transport technology solutions, if appropriate structural similarity relationships can be established. The author contends that developing a full-scale prototype transport technology demonstrator is the best alternative to ensuring that a positive decision to develop a transport is reached by the United States aerospace industry.

  15. Use of Cultivation Data from the Algae Testbed Public Private Partnership as Utilized in NREL's Algae State of Technology Assessments

    Energy Technology Data Exchange (ETDEWEB)

    Knoshaug, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States); Laurens, Lieve [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kinchin, Christopher [National Renewable Energy Lab. (NREL), Golden, CO (United States); Davis, Ryan [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-10-01

    The Algae Testbed Public Private Partnership (ATP3) conducted algal growth experiments over the course of 16 months termed the Unified Field Studies (UFS). These experiments were conducted at 5 different geographic locations in Arizona (ASU), California (CP), Florida (FA), Georgia (GT), and Hawaii (CELL). The UFS sought to evaluate different algal biomass harvesting strategies using identical ponds, media, and operational conditions through all four seasons across different geographic regions to isolate the effects on productivity attributed to locational climate and seasonal variability, overlaid by the differing harvest strategies. Set up as the baseline against which other experiments would build upon, it must be emphasized that as per the stated, approved experimental goals of the ATP3 UFS, no attempts at growth or lipid accumulation optimization were made; rather, the primary focus of the UFS work was to cultivate algal biomass under deliberate, consistent conditions, time periods, and harvesting protocols, to provide public data on year-round outdoor biomass production that could be directly compared between one site and another (with accompanying climate data for each site). Thus the resulting productivity numbers in effect represent a conservative baseline of non-optimized algal growth one may expect at these sites. Also clearly weather can vary dramatically from season to season and from year to year, and even within a given 'season' where an individual season's data was typically based on 4-6 week operating windows. Thus these numbers also only reflect a short snapshot in time, and must be interpreted carefully in projecting what may be expected over many years or decades (for example, a 30-year facility lifetime as evaluated in techno-economic models).

  16. The GridEcon Platform: A Business Scenario Testbed for Commercial Cloud Services

    Science.gov (United States)

    Risch, Marcel; Altmann, Jörn; Guo, Li; Fleming, Alan; Courcoubetis, Costas

    Within this paper, we present the GridEcon Platform, a testbed for designing and evaluating economics-aware services in a commercial Cloud computing setting. The Platform is based on the idea that the exact working of such services is difficult to predict in the context of a market and, therefore, an environment for evaluating its behavior in an emulated market is needed. To identify the components of the GridEcon Platform, a number of economics-aware services and their interactions have been envisioned. The two most important components of the platform are the Marketplace and the Workflow Engine. The Workflow Engine allows the simple composition of a market environment by describing the service interactions between economics-aware services. The Marketplace allows trading goods using different market mechanisms. The capabilities of these components of the GridEcon Platform in conjunction with the economics-aware services are described in this paper in detail. The validation of an implemented market mechanism and a capacity planning service using the GridEcon Platform also demonstrated the usefulness of the GridEcon Platform.

  17. Time Distribution Using SpaceWire in the SCaN Testbed on ISS

    Science.gov (United States)

    Lux, James P.

    2012-01-01

    A paper describes an approach for timekeeping and time transfer among the devices on the CoNNeCT project s SCaN Testbed. It also describes how the clocks may be synchronized with an external time reference; e.g., time tags from the International Space Station (ISS) or RF signals received by a radio (TDRSS time service or GPS). All the units have some sort of counter that is fed by an oscillator at some convenient frequency. The basic problem in timekeeping is relating the counter value to some external time standard such as UTC. With SpaceWire, there are two approaches possible: one is to just use SpaceWire to send a message, and use an external wire for the sync signal. This is much the same as with the RS- 232 messages and l pps line from a GPS receiver. However, SpaceWire has an additional capability that was added to make it easier - it can insert and receive a special "timecode" word in the data stream.

  18. Use of Soft Computing Technologies For Rocket Engine Control

    Science.gov (United States)

    Trevino, Luis C.; Olcmen, Semih; Polites, Michael

    2003-01-01

    The problem to be addressed in this paper is to explore how the use of Soft Computing Technologies (SCT) could be employed to further improve overall engine system reliability and performance. Specifically, this will be presented by enhancing rocket engine control and engine health management (EHM) using SCT coupled with conventional control technologies, and sound software engineering practices used in Marshall s Flight Software Group. The principle goals are to improve software management, software development time and maintenance, processor execution, fault tolerance and mitigation, and nonlinear control in power level transitions. The intent is not to discuss any shortcomings of existing engine control and EHM methodologies, but to provide alternative design choices for control, EHM, implementation, performance, and sustaining engineering. The approaches outlined in this paper will require knowledge in the fields of rocket engine propulsion, software engineering for embedded systems, and soft computing technologies (i.e., neural networks, fuzzy logic, and Bayesian belief networks), much of which is presented in this paper. The first targeted demonstration rocket engine platform is the MC-1 (formerly FASTRAC Engine) which is simulated with hardware and software in the Marshall Avionics & Software Testbed laboratory that

  19. CoNNeCT Antenna Positioning System Dynamic Simulator Modal Model Correlation

    Science.gov (United States)

    Jones, Trevor M.; McNelis, Mark E.; Staab, Lucas D.; Akers, James C.; Suarez, Vicente J.

    2012-01-01

    The National Aeronautics and Space Administration (NASA) developed an on-orbit, adaptable, Software Defined Radios (SDR)/Space Telecommunications Radio System (STRS)-based testbed facility to conduct a suite of experiments to advance technologies, reduce risk, and enable future mission capabilities on the International Space Station (ISS). The Communications, Navigation, and Networking reConfigurable Testbed (CoNNeCT) Project will provide NASA, industry, other Government agencies, and academic partners the opportunity to develop and field communications, navigation, and networking technologies in both the laboratory and space environment based on reconfigurable, software-defined radio platforms and the STRS Architecture. The CoNNeCT Payload Operations Nomenclature is SCAN Testbed, and this nomenclature will be used in all ISS integration, safety, verification, and operations documentation. The SCAN Testbed (payload) is a Flight Releasable Attachment Mechanism (FRAM) based payload that will launch aboard the Japanese H-II Transfer Vehicle (HTV) Multipurpose Exposed Pallet (EP-MP) to the International Space Station (ISS), and will be transferred to the Express Logistics Carrier 3 (ELC3) via Extravehicular Robotics (EVR). The SCAN Testbed will operate on-orbit for a minimum of two years.

  20. A Future Accelerated Cognitive Distributed Hybrid Testbed for Big Data Science Analytics

    Science.gov (United States)

    Halem, M.; Prathapan, S.; Golpayegani, N.; Huang, Y.; Blattner, T.; Dorband, J. E.

    2016-12-01

    As increased sensor spectral data volumes from current and future Earth Observing satellites are assimilated into high-resolution climate models, intensive cognitive machine learning technologies are needed to data mine, extract and intercompare model outputs. It is clear today that the next generation of computers and storage, beyond petascale cluster architectures, will be data centric. They will manage data movement and process data in place. Future cluster nodes have been announced that integrate multiple CPUs with high-speed links to GPUs and MICS on their backplanes with massive non-volatile RAM and access to active flash RAM disk storage. Active Ethernet connected key value store disk storage drives with 10Ge or higher are now available through the Kinetic Open Storage Alliance. At the UMBC Center for Hybrid Multicore Productivity Research, a future state-of-the-art Accelerated Cognitive Computer System (ACCS) for Big Data science is being integrated into the current IBM iDataplex computational system `bluewave'. Based on the next gen IBM 200 PF Sierra processor, an interim two node IBM Power S822 testbed is being integrated with dual Power 8 processors with 10 cores, 1TB Ram, a PCIe to a K80 GPU and an FPGA Coherent Accelerated Processor Interface card to 20TB Flash Ram. This system is to be updated to the Power 8+, an NVlink 1.0 with the Pascal GPU late in 2016. Moreover, the Seagate 96TB Kinetic Disk system with 24 Ethernet connected active disks is integrated into the ACCS storage system. A Lightweight Virtual File System developed at the NASA GSFC is installed on bluewave. Since remote access to publicly available quantum annealing computers is available at several govt labs, the ACCS will offer an in-line Restricted Boltzmann Machine optimization capability to the D-Wave 2X quantum annealing processor over the campus high speed 100 Gb network to Internet 2 for large files. As an evaluation test of the cognitive functionality of the architecture, the

  1. NASA Electric Aircraft Test Bed (NEAT) Development Plan - Design, Fabrication, Installation

    Science.gov (United States)

    Dyson, Rodger W.

    2016-01-01

    As large airline companies compete to reduce emissions, fuel, noise, and maintenance costs, it is expected that more of their aircraft systems will shift from using turbofan propulsion, pneumatic bleed power, and hydraulic actuation, to instead using electrical motor propulsion, generator power, and electrical actuation. This requires new flight-weight and flight-efficient powertrain components, fault tolerant power management, and electromagnetic interference mitigation technologies. Moreover, initial studies indicate some combination of ambient and cryogenic thermal management and relatively high bus voltages when compared to state of practice will be required to achieve a net system benefit. Developing all these powertrain technologies within a realistic aircraft architectural geometry and under realistic operational conditions requires a unique electric aircraft testbed. This report will summarize existing testbed capabilities located in the U.S. and details the development of a unique complementary testbed that industry and government can utilize to further mature electric aircraft technologies.

  2. Propulsion/flight control integration technology (PROFIT) software system definition

    Science.gov (United States)

    Carlin, C. M.; Hastings, W. J.

    1978-01-01

    The Propulsion Flight Control Integration Technology (PROFIT) program is designed to develop a flying testbed dedicated to controls research. The control software for PROFIT is defined. Maximum flexibility, needed for long term use of the flight facility, is achieved through a modular design. The Host program, processes inputs from the telemetry uplink, aircraft central computer, cockpit computer control and plant sensors to form an input data base for use by the control algorithms. The control algorithms, programmed as application modules, process the input data to generate an output data base. The Host program formats the data for output to the telemetry downlink, the cockpit computer control, and the control effectors. Two applications modules are defined - the bill of materials F-100 engine control and the bill of materials F-15 inlet control.

  3. Results from a multi aperture Fizeau interferometer ground testbed: demonstrator for a future space-based interferometer

    Science.gov (United States)

    Baccichet, Nicola; Caillat, Amandine; Rakotonimbahy, Eddy; Dohlen, Kjetil; Savini, Giorgio; Marcos, Michel

    2016-08-01

    In the framework of the European FP7-FISICA (Far Infrared Space Interferometer Critical Assessment) program, we developed a miniaturized version of the hyper-telescope to demonstrate multi-aperture interferometry on ground. This setup would be ultimately integrated into a CubeSat platform, therefore providing the first real demonstrator of a multi aperture Fizeau interferometer in space. In this paper, we describe the optical design of the ground testbed and the data processing pipeline implemented to reconstruct the object image from interferometric data. As a scientific application, we measured the Sun diameter by fitting a limb-darkening model to our data. Finally, we present the design of a CubeSat platform carrying this miniature Fizeau interferometer, which could be used to monitor the Sun diameter over a long in-orbit period.

  4. Phase Retrieval Using a Genetic Algorithm on the Systematic Image-Based Optical Alignment Testbed

    Science.gov (United States)

    Taylor, Jaime R.

    2003-01-01

    NASA s Marshall Space Flight Center s Systematic Image-Based Optical Alignment (SIBOA) Testbed was developed to test phase retrieval algorithms and hardware techniques. Individuals working with the facility developed the idea of implementing phase retrieval by breaking the determination of the tip/tilt of each mirror apart from the piston motion (or translation) of each mirror. Presented in this report is an algorithm that determines the optimal phase correction associated only with the piston motion of the mirrors. A description of the Phase Retrieval problem is first presented. The Systematic Image-Based Optical Alignment (SIBOA) Testbeb is then described. A Discrete Fourier Transform (DFT) is necessary to transfer the incoming wavefront (or estimate of phase error) into the spatial frequency domain to compare it with the image. A method for reducing the DFT to seven scalar/matrix multiplications is presented. A genetic algorithm is then used to search for the phase error. The results of this new algorithm on a test problem are presented.

  5. The Climate-G testbed: towards a large scale data sharing environment for climate change

    Science.gov (United States)

    Aloisio, G.; Fiore, S.; Denvil, S.; Petitdidier, M.; Fox, P.; Schwichtenberg, H.; Blower, J.; Barbera, R.

    2009-04-01

    The Climate-G testbed provides an experimental large scale data environment for climate change addressing challenging data and metadata management issues. The main scope of Climate-G is to allow scientists to carry out geographical and cross-institutional climate data discovery, access, visualization and sharing. Climate-G is a multidisciplinary collaboration involving both climate and computer scientists and it currently involves several partners such as: Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), Institut Pierre-Simon Laplace (IPSL), Fraunhofer Institut für Algorithmen und Wissenschaftliches Rechnen (SCAI), National Center for Atmospheric Research (NCAR), University of Reading, University of Catania and University of Salento. To perform distributed metadata search and discovery, we adopted a CMCC metadata solution (which provides a high level of scalability, transparency, fault tolerance and autonomy) leveraging both on P2P and grid technologies (GRelC Data Access and Integration Service). Moreover, data are available through OPeNDAP/THREDDS services, Live Access Server as well as the OGC compliant Web Map Service and they can be downloaded, visualized, accessed into the proposed environment through the Climate-G Data Distribution Centre (DDC), the web gateway to the Climate-G digital library. The DDC is a data-grid portal allowing users to easily, securely and transparently perform search/discovery, metadata management, data access, data visualization, etc. Godiva2 (integrated into the DDC) displays 2D maps (and animations) and also exports maps for display on the Google Earth virtual globe. Presently, Climate-G publishes (through the DDC) about 2TB of data related to the ENSEMBLES project (also including distributed replicas of data) as well as to the IPCC AR4. The main results of the proposed work are: wide data access/sharing environment for climate change; P2P/grid metadata approach; production-level Climate-G DDC; high quality tools for

  6. Small Scale Turbopump Manufacturing Technology and Material Processes

    Science.gov (United States)

    Alvarez, Erika; Morgan, Kristin; Wells, Doug; Zimmerman, Frank

    2011-01-01

    As part of an internal research and development project, NASA Marshall Space Flight Center (MSFC) has been developing a high specific impulse 9,000-lbf LOX/LH2 pump-fed engine testbed with the capability to throttle 10:1. A Fuel Turbopump (FTP) with the ability to operate across a speed range of 30,000-rpm to 100,000-rpm was developed and analyzed. This small size and flight-like Fuel Turbopump has completed the design and analysis phase and is currently in the manufacturing phase. This paper highlights the manufacturing and processes efforts to fabricate an approximately 20-lb turbopump with small flow passages, intricately bladed components and approximately 3-in diameter impellers. As a result of the small scale and tight tolerances of the hardware on this turbopump, several unique manufacturing and material challenges were encountered. Some of the technologies highlighted in this paper include the use of powder metallurgy technology to manufacture small impellers, electron beam welding of a turbine blisk shroud, and casting challenges. The use of risk reduction efforts such as non-destructive testing (NDT) and evaluation (NDE), fractography, material testing, and component spin testing are also discussed in this paper.

  7. CFM technologies for space transportation: Multipurpose hydrogen testbed system definition and tank procurement

    Science.gov (United States)

    Fox, E. C.; Kiefel, E. R.; Mcintosh, G. L.; Sharpe, J. B.; Sheahan, D. R.; Wakefield, M. E.

    1993-01-01

    The development of a test bed tank and system for evaluating cryogenic fluid management technologies in a simulated upper stage liquid hydrogen tank is covered. The tank is 10 ft long and is 10 ft in diameter, and is an ASME certified tank constructed of 5083 aluminum. The tank is insulated with a combination of sprayed on foam insulation, covered by 45 layers of double aluminized mylar separated by dacron net. The mylar is applied by a continuous wrap system adapted from commercial applications, and incorporates variable spacing between the mylar to provide more space between those layers having a high delta temperature, which minimizes heat leak. It also incorporates a unique venting system which uses fewer large holes in the mylar rather than the multitude of small holes used conventionally. This significantly reduces radiation heat transfer. The test bed consists of an existing vacuum chamber at MSFC, the test bed tank and its thermal control system, and a thermal shroud (which may be heated) surrounding the tank. Provisions are made in the tank and chamber for inclusion of a variety of cryogenic fluid management experiments.

  8. Wind power integration in island-based smart grid projects : A comparative study between Jeju Smart Grid Test-bed and Smart Grid Gotland

    OpenAIRE

    Piehl, Hampus

    2014-01-01

    Smart grids seem to be the solution to use energy from renewable and intermittent energy sources in an efficient manner. There are many research projects around the world and two of them are Jeju Smart Grid Test-bed and Smart Grid Gotland. They have in common that they are both island-based projects and connected to the Powergrid on the mainland by HVDC-link. The purpose of this thesis is to compare the two projects and find out what challenges and strategies they have related to wind power i...

  9. GEO light imaging national testbed (GLINT) heliostat design and testing status

    Science.gov (United States)

    Thornton, Marcia A.; Oldenettel, Jerry R.; Hult, Dane W.; Koski, Katrina; Depue, Tracy; Cuellar, Edward L.; Balfour, Jim; Roof, Morey; Yarger, Fred W.; Newlin, Greg; Ramzel, Lee; Buchanan, Peter; Mariam, Fesseha G.; Scotese, Lee

    2002-01-01

    The GEO Light Imaging National Testbed (GLINT) will use three laser beams producing simultaneous interference fringes to illuminate satellites in geosynchronous earth orbit (GEO). The reflected returns will be recorded using a large 4,000 m2 'light bucket' receiver. This imaging methodology is termed Fourier Telescopy. A major component of the 'light bucket' will be an array of 40 - 80 heliostats. Each heliostat will have a mirrored surface area of 100 m2 mounted on a rigid truss structure which is supported by an A-frame. The truss structure attaches to the torque tube elevation drive and the A-frame structure rests on an azimuth ring that could provide nearly full coverage of the sky. The heliostat is designed to operate in 15 mph winds with jitter of less than 500 microradians peak-to- peak. One objective of the design was to minimize receiver cost to the maximum extent possible while maintaining GLINT system performance specifications. The mechanical structure weights approximately seven tons and is a simple fabricated steel framework. A prototype heliostat has been assembled at Stallion Range Center, White Sands Missile Range, New Mexico and is being tested under a variety of weather and operational conditions. The preliminary results of that testing will be presented as well as some finite element model analyses that were performed to predict the performance of the structure.

  10. The conceptual design of a hybrid life support system based on the evaluation and comparison of terrestrial testbeds

    Science.gov (United States)

    Czupalla, M.; Horneck, G.; Blome, H. J.

    This report summarizes a trade study of different options of a bioregenerative Life Support System (LSS) and a subsequent conceptual design of a hybrid LSS. The evaluation was based mainly on the terrestrial testbed projects MELISSA (ESA) and BIOS (Russia). In addition, some methods suggested by the Advanced Life Support Project (NASA) were considered. Computer models, including mass flows were established for each of the systems with the goal of closing system loops to the extent possible. In order to cope with the differences in the supported crew size and provided nutrition, all systems were scaled for supporting a crew of six for a 780 day Mars mission (180 days transport to Mars; 600 days surface period) as given in the NASA Design Reference Mission Scenario [Hoffman, S.J., Kaplan, D.L. Human exploration of Mars: the Reference Mission of the NASA Mars Exploratory Study, 1997]. All models were scaled to provide the same daily allowances, as of calories, to the crew. Equivalent System Mass (ESM) analysis was used to compare the investigated system models against each other. Following the comparison of the terrestrial systems, the system specific subsystem options for Food Supply, Solid Waste Processing, Water Management and Atmosphere Revitalization were evaluated in a separate trade study. The best subsystem technologies from the trade study were integrated into an overall design solution based on mass flow relationships. The optimized LSS is mainly a bioregenerative system, complemented by a few physico-chemical elements, with a total ESM of 18,088 kg, which is about 4 times higher than that of a pure physico-chemical LSS, as designed in an earlier study.

  11. An agent-oriented approach to automated mission operations

    Science.gov (United States)

    Truszkowski, Walt; Odubiyi, Jide

    1994-01-01

    As we plan for the next generation of Mission Operations Control Center (MOCC) systems, there are many opportunities for the increased utilization of innovative knowledge-based technologies. The innovative technology discussed is an advanced use of agent-oriented approaches to the automation of mission operations. The paper presents an overview of this technology and discusses applied operational scenarios currently being investigated and prototyped. A major focus of the current work is the development of a simple user mechanism that would empower operations staff members to create, in real time, software agents to assist them in common, labor intensive operations tasks. These operational tasks would include: handling routine data and information management functions; amplifying the capabilities of a spacecraft analyst/operator to rapidly identify, analyze, and correct spacecraft anomalies by correlating complex data/information sets and filtering error messages; improving routine monitoring and trend analysis by detecting common failure signatures; and serving as a sentinel for spacecraft changes during critical maneuvers enhancing the system's capabilities to support nonroutine operational conditions with minimum additional staff. An agent-based testbed is under development. This testbed will allow us to: (1) more clearly understand the intricacies of applying agent-based technology in support of the advanced automation of mission operations and (2) access the full set of benefits that can be realized by the proper application of agent-oriented technology in a mission operations environment. The testbed under development addresses some of the data management and report generation functions for the Explorer Platform (EP)/Extreme UltraViolet Explorer (EUVE) Flight Operations Team (FOT). We present an overview of agent-oriented technology and a detailed report on the operation's concept for the testbed.

  12. First results of the Test-Bed Telescopes (TBT) project: Cebreros telescope commissioning

    Science.gov (United States)

    Ocaña, Francisco; Ibarra, Aitor; Racero, Elena; Montero, Ángel; Doubek, Jirí; Ruiz, Vicente

    2016-07-01

    The TBT project is being developed under ESA's General Studies and Technology Programme (GSTP), and shall implement a test-bed for the validation of an autonomous optical observing system in a realistic scenario within the Space Situational Awareness (SSA) programme of the European Space Agency (ESA). The goal of the project is to provide two fully robotic telescopes, which will serve as prototypes for development of a future network. The system consists of two telescopes, one in Spain and the second one in the Southern Hemisphere. The telescope is a fast astrograph with a large Field of View (FoV) of 2.5 x 2.5 square-degrees and a plate scale of 2.2 arcsec/pixel. The tube is mounted on a fast direct-drive mount moving with speed up to 20 degrees per second. The focal plane hosts a 2-port 4K x 4K back-illuminated CCD with readout speeds up to 1MHz per port. All these characteristics ensure good survey performance for transients and fast moving objects. Detection software and hardware are optimised for the detection of NEOs and objects in high Earth orbits (objects moving from 0.1-40 arcsec/second). Nominal exposures are in the range from 2 to 30 seconds, depending on the observational strategy. Part of the validation scenario involves the scheduling concept integrated in the robotic operations for both sensors. Every night it takes all the input needed and prepares a schedule following predefined rules allocating tasks for the telescopes. Telescopes are managed by RTS2 control software, that performs the real-time scheduling of the observation and manages all the devices at the observatory.1 At the end of the night the observing systems report astrometric positions and photometry of the objects detected. The first telescope was installed in Cebreros Satellite Tracking Station in mid-2015. It is currently in the commissioning phase and we present here the first results of the telescope. We evaluate the site characteristics and the performance of the TBT Cebreros

  13. Improving Flight Software Module Validation Efforts : a Modular, Extendable Testbed Software Framework

    Science.gov (United States)

    Lange, R. Connor

    2012-01-01

    Ever since Explorer-1, the United States' first Earth satellite, was developed and launched in 1958, JPL has developed many more spacecraft, including landers and orbiters. While these spacecraft vary greatly in their missions, capabilities,and destination, they all have something in common. All of the components of these spacecraft had to be comprehensively tested. While thorough testing is important to mitigate risk, it is also a very expensive and time consuming process. Thankfully,since virtually all of the software testing procedures for SMAP are computer controlled, these procedures can be automated. Most people testing SMAP flight software (FSW) would only need to write tests that exercise specific requirements and then check the filtered results to verify everything occurred as planned. This gives developers the ability to automatically launch tests on the testbed, distill the resulting logs into only the important information, generate validation documentation, and then deliver the documentation to management. With many of the steps in FSW testing automated, developers can use their limited time more effectively and can validate SMAP FSW modules quicker and test them more rigorously. As a result of the various benefits of automating much of the testing process, management is considering this automated tools use in future FSW validation efforts.

  14. A test-bed modeling study for wave resource assessment

    Science.gov (United States)

    Yang, Z.; Neary, V. S.; Wang, T.; Gunawan, B.; Dallman, A.

    2016-02-01

    Hindcasts from phase-averaged wave models are commonly used to estimate standard statistics used in wave energy resource assessments. However, the research community and wave energy converter industry is lacking a well-documented and consistent modeling approach for conducting these resource assessments at different phases of WEC project development, and at different spatial scales, e.g., from small-scale pilot study to large-scale commercial deployment. Therefore, it is necessary to evaluate current wave model codes, as well as limitations and knowledge gaps for predicting sea states, in order to establish best wave modeling practices, and to identify future research needs to improve wave prediction for resource assessment. This paper presents the first phase of an on-going modeling study to address these concerns. The modeling study is being conducted at a test-bed site off the Central Oregon Coast using two of the most widely-used third-generation wave models - WaveWatchIII and SWAN. A nested-grid modeling approach, with domain dimension ranging from global to regional scales, was used to provide wave spectral boundary condition to a local scale model domain, which has a spatial dimension around 60km by 60km and a grid resolution of 250m - 300m. Model results simulated by WaveWatchIII and SWAN in a structured-grid framework are compared to NOAA wave buoy data for the six wave parameters, including omnidirectional wave power, significant wave height, energy period, spectral width, direction of maximum directionally resolved wave power, and directionality coefficient. Model performance and computational efficiency are evaluated, and the best practices for wave resource assessments are discussed, based on a set of standard error statistics and model run times.

  15. High Efficiency Traveling-Wave Tube Power Amplifier for Ka-Band Software Defined Radio on International Space Station-A Platform for Communications Technology Development

    Science.gov (United States)

    Simons, Rainee N.; Force, Dale A.; Kacpura, Thomas J.

    2013-01-01

    The design, fabrication and RF performance of the output traveling-wave tube amplifier (TWTA) for a space based Ka-band software defined radio (SDR) is presented. The TWTA, the SDR and the supporting avionics are integrated to forms a testbed, which is currently located on an exterior truss of the International Space Station (ISS). The SDR in the testbed communicates at Ka-band frequencies through a high-gain antenna directed to NASA s Tracking and Data Relay Satellite System (TDRSS), which communicates to the ground station located at White Sands Complex. The application of the testbed is for demonstrating new waveforms and software designed to enhance data delivery from scientific spacecraft and, the waveforms and software can be upgraded and reconfigured from the ground. The construction and the salient features of the Ka-band SDR are discussed. The testbed is currently undergoing on-orbit checkout and commissioning and is expected to operate for 3 to 5 years in space.

  16. Autonomous rendezvous and capture development infrastructure

    Science.gov (United States)

    Bryan, Thomas C.; Roe, Fred; Coker, Cindy; Nelson, Pam; Johnson, B.

    1991-01-01

    In the development of the technology for autonomous rendezvous and docking, key infrastructure capabilities must be used for effective and economical development. This involves facility capabilities, both equipment and personnel, to devise, develop, qualify, and integrate ARD elements and subsystems into flight programs. One effective way of reducing technical risks in developing ARD technology is the use of the ultimate test facility, using a Shuttle-based reusable free-flying testbed to perform a Technology Demonstration Test Flight which can be structured to include a variety of additional sensors, control schemes, and operational approaches. This conceptual testbed and flight demonstration will be used to illustrate how technologies and facilities at MSFC can be used to develop and prove an ARD system.

  17. Evaluating TCMS Train-to-Ground communication performances based on the LTE technology and discreet event simulations

    DEFF Research Database (Denmark)

    Bouaziz, Maha; Yan, Ying; Kassab, Mohamed

    2018-01-01

    is shared between the train and different passengers. The simulation is based on the discrete-events network simulator Riverbed Modeler. Next, second step focusses on a co-simulation testbed, to evaluate performances with real traffic based on Hardware-In-The-Loop and OpenAirInterface modules. Preliminary...... (Long Term Evolution) network as an alternative communication technology, instead of GSM-R (Global System for Mobile communications-Railway) because of some capacity and capability limits. First step, a pure simulation is used to evaluate the network load for a high-speed scenario, when the LTE network...... simulation and co-simulation results show that LTE provides good performance for the TCMS traffic exchange in terms of packet delay and data integrity...

  18. ARV robotic technologies (ART): a risk reduction effort for future unmanned systems

    Science.gov (United States)

    Jaster, Jeffrey F.

    2006-05-01

    The Army's ARV (Armed Robotic Vehicle) Robotic Technologies (ART) program is working on the development of various technological thrusts for use in the robotic forces of the future. The ART program will develop, integrate and demonstrate the technology required to advance the maneuver technologies (i.e., perception, mobility, tactical behaviors) and increase the survivability of unmanned platforms for the future force while focusing on reducing the soldiers' burden by providing an increase in vehicle autonomy coinciding with a decrease in the total number user interventions required to control the unmanned assets. This program will advance the state of the art in perception technologies to provide the unmanned platform an increasingly accurate view of the terrain that surrounds it; while developing tactical/mission behavior technologies to provide the Unmanned Ground Vehicle (UGV) the capability to maneuver tactically, in conjunction with the manned systems in an autonomous mode. The ART testbed will be integrated with the advanced technology software and associated hardware developed under this effort, and incorporate appropriate mission modules (e.g. RSTA sensors, MILES, etc.) to support Warfighter experiments and evaluations (virtual and field) in a military significant environment (open/rolling and complex/urban terrain). The outcome of these experiments as well as other lessons learned through out the program life cycle will be used to reduce the current risks that are identified for the future UGV systems that will be developed under the Future Combat Systems (FCS) program, including the early integration of an FCS-like autonomous navigation system onto a tracked skid steer platform.

  19. The CCPP-ARM Parameterization Testbed (CAPT): Where Climate Simulation Meets Weather Prediction

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, T J; Potter, G L; Williamson, D L; Cederwall, R T; Boyle, J S; Fiorino, M; Hnilo, J J; Olson, J G; Xie, S; Yio, J J

    2003-11-21

    To significantly improve the simulation of climate by general circulation models (GCMs), systematic errors in representations of relevant processes must first be identified, and then reduced. This endeavor demands, in particular, that the GCM parameterizations of unresolved processes should be tested over a wide range of time scales, not just in climate simulations. Thus, a numerical weather prediction (NWP) methodology for evaluating model parameterizations and gaining insights into their behavior may prove useful, provied that suitable adaptations are made for implementation in climate GCMs. This method entails the generation of short-range weather forecasts by realistically initialized climate GCM, and the application of six-hourly NWP analyses and observations of parameterized variables to evaluate these forecasts. The behavior of the parameterizations in such a weather-forecasting framework can provide insights on how these schemes might be improved, and modified parameterizations then can be similarly tested. In order to further this method for evaluating and analyzing parameterizations in climate GCMs, the USDOE is funding a joint venture of its Climate Change Prediction Program (CCPP) and Atmospheric Radiation Measurement (ARM) Program: the CCPP-ARM Parameterization Testbed (CAPT). This article elaborates the scientific rationale for CAPT, discusses technical aspects of its methodology, and presents examples of its implementation in a representative climate GCM. Numerical weather prediction methods show promise for improving parameterizations in climate GCMs.

  20. Recent progress on external occulter technology for imaging exosolar planets

    Science.gov (United States)

    Kasdin, N. J.; Vanderbei, R. J.; Sirbu, D.; Samuels, J.; Shaklan, S.; Lisman, D.; Thomson, M.; Cady, E.; Martin, S.

    Imaging planets orbiting nearby stars requires a system for suppressing the host starlight by at least ten orders of magnitude. One such approach uses an external occulter, a satellite flying far from the telescope and employing a large screen, or starshade, to suppress the incoming starlight. This trades the added complexity of building the precisely shaped starshade and flying it in formation against simplifications in the telescope since extremely precise wavefront control is no longer necessary. Much progress has been made recently in designing, testing and manufacturing starshade technology. In this paper we describe the design of starshades and report on recent accomplishments in manufacturing and measuring a prototype occulter petal as part of NASA's first Technology Development for Exoplanet Missions (TDEM) program. We demonstrate that the as-built petal is consistent with a full-size occulter achieving better than 10-10 contrast. We also discuss laboratory testing at the Princeton Occulter Testbed. These experiments use sub-scale, long-distance beam propagation to verify the diffraction analysis associated with occulter starlight suppression. We demonstrate roughly 10-10 suppression in the laboratory and discuss the important challenges and limitations.

  1. Langley's CSI evolutionary model: Phase O

    Science.gov (United States)

    Belvin, W. Keith; Elliott, Kenny B.; Horta, Lucas G.; Bailey, Jim P.; Bruner, Anne M.; Sulla, Jeffrey L.; Won, John; Ugoletti, Roberto M.

    1991-01-01

    A testbed for the development of Controls Structures Interaction (CSI) technology to improve space science platform pointing is described. The evolutionary nature of the testbed will permit the study of global line-of-sight pointing in phases 0 and 1, whereas, multipayload pointing systems will be studied beginning with phase 2. The design, capabilities, and typical dynamic behavior of the phase 0 version of the CSI evolutionary model (CEM) is documented for investigator both internal and external to NASA. The model description includes line-of-sight pointing measurement, testbed structure, actuators, sensors, and real time computers, as well as finite element and state space models of major components.

  2. Sensor System Performance Evaluation and Benefits from the NPOESS Airborne Sounder Testbed-Interferometer (NAST-I)

    Science.gov (United States)

    Larar, A.; Zhou, D.; Smith, W.

    2009-01-01

    Advanced satellite sensors are tasked with improving global-scale measurements of the Earth's atmosphere, clouds, and surface to enable enhancements in weather prediction, climate monitoring, and environmental change detection. Validation of the entire measurement system is crucial to achieving this goal and thus maximizing research and operational utility of resultant data. Field campaigns employing satellite under-flights with well-calibrated FTS sensors aboard high-altitude aircraft are an essential part of this validation task. The National Polar-orbiting Operational Environmental Satellite System (NPOESS) Airborne Sounder Testbed-Interferometer (NAST-I) has been a fundamental contributor in this area by providing coincident high spectral/spatial resolution observations of infrared spectral radiances along with independently-retrieved geophysical products for comparison with like products from satellite sensors being validated. This paper focuses on some of the challenges associated with validating advanced atmospheric sounders and the benefits obtained from employing airborne interferometers such as the NAST-I. Select results from underflights of the Aqua Atmospheric InfraRed Sounder (AIRS) and the Infrared Atmospheric Sounding Interferometer (IASI) obtained during recent field campaigns will be presented.

  3. Coordinate-Based Clustering Method for Indoor Fingerprinting Localization in Dense Cluttered Environments

    Directory of Open Access Journals (Sweden)

    Wen Liu

    2016-12-01

    Full Text Available Indoor positioning technologies has boomed recently because of the growing commercial interest in indoor location-based service (ILBS. Due to the absence of satellite signal in Global Navigation Satellite System (GNSS, various technologies have been proposed for indoor applications. Among them, Wi-Fi fingerprinting has been attracting much interest from researchers because of its pervasive deployment, flexibility and robustness to dense cluttered indoor environments. One challenge, however, is the deployment of Access Points (AP, which would bring a significant influence on the system positioning accuracy. This paper concentrates on WLAN based fingerprinting indoor location by analyzing the AP deployment influence, and studying the advantages of coordinate-based clustering compared to traditional RSS-based clustering. A coordinate-based clustering method for indoor fingerprinting location, named Smallest-Enclosing-Circle-based (SEC, is then proposed aiming at reducing the positioning error lying in the AP deployment and improving robustness to dense cluttered environments. All measurements are conducted in indoor public areas, such as the National Center For the Performing Arts (as Test-bed 1 and the XiDan Joy City (Floors 1 and 2, as Test-bed 2, and results show that SEC clustering algorithm can improve system positioning accuracy by about 32.7% for Test-bed 1, 71.7% for Test-bed 2 Floor 1 and 73.7% for Test-bed 2 Floor 2 compared with traditional RSS-based clustering algorithms such as K-means.

  4. Coordinate-Based Clustering Method for Indoor Fingerprinting Localization in Dense Cluttered Environments.

    Science.gov (United States)

    Liu, Wen; Fu, Xiao; Deng, Zhongliang

    2016-12-02

    Indoor positioning technologies has boomed recently because of the growing commercial interest in indoor location-based service (ILBS). Due to the absence of satellite signal in Global Navigation Satellite System (GNSS), various technologies have been proposed for indoor applications. Among them, Wi-Fi fingerprinting has been attracting much interest from researchers because of its pervasive deployment, flexibility and robustness to dense cluttered indoor environments. One challenge, however, is the deployment of Access Points (AP), which would bring a significant influence on the system positioning accuracy. This paper concentrates on WLAN based fingerprinting indoor location by analyzing the AP deployment influence, and studying the advantages of coordinate-based clustering compared to traditional RSS-based clustering. A coordinate-based clustering method for indoor fingerprinting location, named Smallest-Enclosing-Circle-based (SEC), is then proposed aiming at reducing the positioning error lying in the AP deployment and improving robustness to dense cluttered environments. All measurements are conducted in indoor public areas, such as the National Center For the Performing Arts (as Test-bed 1) and the XiDan Joy City (Floors 1 and 2, as Test-bed 2), and results show that SEC clustering algorithm can improve system positioning accuracy by about 32.7% for Test-bed 1, 71.7% for Test-bed 2 Floor 1 and 73.7% for Test-bed 2 Floor 2 compared with traditional RSS-based clustering algorithms such as K-means.

  5. Basic Requirements for Systems Software Research and Development

    Science.gov (United States)

    Kuszmaul, Chris; Nitzberg, Bill

    1996-01-01

    Our success over the past ten years evaluating and developing advanced computing technologies has been due to a simple research and development (R/D) model. Our model has three phases: (a) evaluating the state-of-the-art, (b) identifying problems and creating innovations, and (c) developing solutions, improving the state- of-the-art. This cycle has four basic requirements: a large production testbed with real users, a diverse collection of state-of-the-art hardware, facilities for evalua- tion of emerging technologies and development of innovations, and control over system management on these testbeds. Future research will be irrelevant and future products will not work if any of these requirements is eliminated. In order to retain our effectiveness, the numerical aerospace simulator (NAS) must replace out-of-date production testbeds in as timely a fashion as possible, and cannot afford to ignore innovative designs such as new distributed shared memory machines, clustered commodity-based computers, and multi-threaded architectures.

  6. Research and development of a phosphoric acid fuel cell/battery power source integrated in a test-bed bus. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-05-30

    This project, the research and development of a phosphoric acid fuel cell/battery power source integrated into test-bed buses, began as a multi-phase U.S. Department of Energy (DOE) project in 1989. Phase I had a goal of developing two competing half-scale (25 kW) brassboard phosphoric acid fuel cell systems. An air-cooled and a liquid-cooled fuel cell system were developed and tested to verify the concept of using a fuel cell and a battery in a hybrid configuration wherein the fuel cell supplies the average power required for operating the vehicle and a battery supplies the `surge` or excess power required for acceleration and hill-climbing. Work done in Phase I determined that the liquid-cooled system offered higher efficiency.

  7. An overview of the U.S. Army Research Laboratory's Sensor Information Testbed for Collaborative Research Environment (SITCORE) and Automated Online Data Repository (AODR) capabilities

    Science.gov (United States)

    Ward, Dennis W.; Bennett, Kelly W.

    2017-05-01

    The Sensor Information Testbed COllaberative Research Environment (SITCORE) and the Automated Online Data Repository (AODR) are significant enablers of the U.S. Army Research Laboratory (ARL)'s Open Campus Initiative and together create a highly-collaborative research laboratory and testbed environment focused on sensor data and information fusion. SITCORE creates a virtual research development environment allowing collaboration from other locations, including DoD, industry, academia, and collation facilities. SITCORE combined with AODR provides end-toend algorithm development, experimentation, demonstration, and validation. The AODR enterprise allows the U.S. Army Research Laboratory (ARL), as well as other government organizations, industry, and academia to store and disseminate multiple intelligence (Multi-INT) datasets collected at field exercises and demonstrations, and to facilitate research and development (R and D), and advancement of analytical tools and algorithms supporting the Intelligence, Surveillance, and Reconnaissance (ISR) community. The AODR provides a potential central repository for standards compliant datasets to serve as the "go-to" location for lessons-learned and reference products. Many of the AODR datasets have associated ground truth and other metadata which provides a rich and robust data suite for researchers to develop, test, and refine their algorithms. Researchers download the test data to their own environments using a sophisticated web interface. The AODR allows researchers to request copies of stored datasets and for the government to process the requests and approvals in an automated fashion. Access to the AODR requires two-factor authentication in the form of a Common Access Card (CAC) or External Certificate Authority (ECA)

  8. Advanced Diagnostic and Prognostic Testbed (ADAPT) Testability Analysis Report

    Science.gov (United States)

    Ossenfort, John

    2008-01-01

    As system designs become more complex, determining the best locations to add sensors and test points for the purpose of testing and monitoring these designs becomes more difficult. Not only must the designer take into consideration all real and potential faults of the system, he or she must also find efficient ways of detecting and isolating those faults. Because sensors and cabling take up valuable space and weight on a system, and given constraints on bandwidth and power, it is even more difficult to add sensors into these complex designs after the design has been completed. As a result, a number of software tools have been developed to assist the system designer in proper placement of these sensors during the system design phase of a project. One of the key functions provided by many of these software programs is a testability analysis of the system essentially an evaluation of how observable the system behavior is using available tests. During the design phase, testability metrics can help guide the designer in improving the inherent testability of the design. This may include adding, removing, or modifying tests; breaking up feedback loops, or changing the system to reduce fault propagation. Given a set of test requirements, the analysis can also help to verify that the system will meet those requirements. Of course, a testability analysis requires that a software model of the physical system is available. For the analysis to be most effective in guiding system design, this model should ideally be constructed in parallel with these efforts. The purpose of this paper is to present the final testability results of the Advanced Diagnostic and Prognostic Testbed (ADAPT) after the system model was completed. The tool chosen to build the model and to perform the testability analysis with is the Testability Engineering and Maintenance System Designer (TEAMS-Designer). The TEAMS toolset is intended to be a solution to span all phases of the system, from design and

  9. Definition, technology readiness, and development cost of the orbit transfer vehicle engine integrated control and health monitoring system elements

    Science.gov (United States)

    Cannon, I.; Balcer, S.; Cochran, M.; Klop, J.; Peterson, S.

    1991-01-01

    An Integrated Control and Health Monitoring (ICHM) system was conceived for use on a 20 Klb thrust baseline Orbit Transfer Vehicle (OTV) engine. Considered for space used, the ICHM was defined for reusability requirements for an OTV engine service free life of 20 missions, with 100 starts and a total engine operational time of 4 hours. Functions were derived by flowing down requirements from NASA guidelines, previous OTV engine or ICHM documents, and related contracts. The elements of an ICHM were identified and listed, and these elements were described in sufficient detail to allow estimation of their technology readiness levels. These elements were assessed in terms of technology readiness level, and supporting rationale for these assessments presented. The remaining cost for development of a minimal ICHM system to technology readiness level 6 was estimated. The estimates are within an accuracy range of minus/plus 20 percent. The cost estimates cover what is needed to prepare an ICHM system for use on a focussed testbed for an expander cycle engine, excluding support to the actual test firings.

  10. Use of Soft Computing Technologies for a Qualitative and Reliable Engine Control System for Propulsion Systems

    Science.gov (United States)

    Trevino, Luis; Brown, Terry; Crumbley, R. T. (Technical Monitor)

    2001-01-01

    The problem to be addressed in this paper is to explore how the use of Soft Computing Technologies (SCT) could be employed to improve overall vehicle system safety, reliability, and rocket engine performance by development of a qualitative and reliable engine control system (QRECS). Specifically, this will be addressed by enhancing rocket engine control using SCT, innovative data mining tools, and sound software engineering practices used in Marshall's Flight Software Group (FSG). The principle goals for addressing the issue of quality are to improve software management, software development time, software maintenance, processor execution, fault tolerance and mitigation, and nonlinear control in power level transitions. The intent is not to discuss any shortcomings of existing engine control methodologies, but to provide alternative design choices for control, implementation, performance, and sustaining engineering, all relative to addressing the issue of reliability. The approaches outlined in this paper will require knowledge in the fields of rocket engine propulsion (system level), software engineering for embedded flight software systems, and soft computing technologies (i.e., neural networks, fuzzy logic, data mining, and Bayesian belief networks); some of which are briefed in this paper. For this effort, the targeted demonstration rocket engine testbed is the MC-1 engine (formerly FASTRAC) which is simulated with hardware and software in the Marshall Avionics & Software Testbed (MAST) laboratory that currently resides at NASA's Marshall Space Flight Center, building 4476, and is managed by the Avionics Department. A brief plan of action for design, development, implementation, and testing a Phase One effort for QRECS is given, along with expected results. Phase One will focus on development of a Smart Start Engine Module and a Mainstage Engine Module for proper engine start and mainstage engine operations. The overall intent is to demonstrate that by

  11. Design of a Loose Part Monitoring System Test-bed using CompactRIO

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min-seok; Lee, Kwang-Dae; Lee, Eui-Jong [KHNP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    A loose part monitoring system (LPMS) is included in the NSSS integrity monitoring system (NIMS), which serves to detect loose parts in reactor coolant systems (RCS). LPMSs at Nuclear Power Plants (NPPs) in Korea follow the ASME OM standard and acquire data from 18 sensors simultaneously. Data acquisition requires a sampling rate of more than 50KHz along with a 12bit A/D converter. Existing LPMS equipment is composed of several different platforms, such as a digital signal processor (DSP), a field-programmable gate array (FPGA), a micro control unit (MCU), and electric circuit cards. These systems have vulnerabilities, such as discontinuance due to aging and incompatibility issues between different pieces of equipment. This paper suggests CompactRIO as a new platform. We devised a Test-bed using CompactRIO and demonstrate that the proposed method meets the criteria required by the standard. The LPMS provides an alert when an impact event occurs and provides information with which to analyze the location, energy, and mass of the loose parts. LPMSs in NPPs in Korea operate on a variety of platforms. Thus, these systems are vulnerable to discontinuances due to aging and incompatibilities arising from the use of different type of equipment. In order to solve these problems, this paper suggests CompactRIO as a new platform. It is a rugged, reconfigurable, high-performance industrial embedded system. The results of performance tests meet the criteria set by the current standard.

  12. Space Telecommunications Radio System (STRS) Architecture. Part 1; Tutorial - Overview

    Science.gov (United States)

    Handler, Louis M.; Briones, Janette C.; Mortensen, Dale J.; Reinhart, Richard C.

    2012-01-01

    Space Telecommunications Radio System (STRS) Architecture Standard provides a NASA standard for software-defined radio. STRS is being demonstrated in the Space Communications and Navigation (SCaN) Testbed formerly known as Communications, Navigation and Networking Configurable Testbed (CoNNeCT). Ground station radios communicating the SCaN testbed are also being written to comply with the STRS architecture. The STRS Architecture Tutorial Overview presents a general introduction to the STRS architecture standard developed at the NASA Glenn Research Center (GRC), addresses frequently asked questions, and clarifies methods of implementing the standard. The STRS architecture should be used as a base for many of NASA s future telecommunications technologies. The presentation will provide a basic understanding of STRS.

  13. Environmental assessment for the Atmospheric Radiation Measurement (ARM) Program: Southern Great Plains Cloud and Radiation Testbed (CART) site

    International Nuclear Information System (INIS)

    Policastro, A.J.; Pfingston, J.M.; Maloney, D.M.; Wasmer, F.; Pentecost, E.D.

    1992-03-01

    The Atmospheric Radiation Measurement (ARM) Program is aimed at supplying improved predictive capability of climate change, particularly the prediction of cloud-climate feedback. The objective will be achieved by measuring the atmospheric radiation and physical and meteorological quantities that control solar radiation in the earth's atmosphere and using this information to test global climate and related models. The proposed action is to construct and operate a Cloud and Radiation Testbed (CART) research site in the southern Great Plains as part of the Department of Energy's Atmospheric Radiation Measurement Program whose objective is to develop an improved predictive capability of global climate change. The purpose of this CART research site in southern Kansas and northern Oklahoma would be to collect meteorological and other scientific information to better characterize the processes controlling radiation transfer on a global scale. Impacts which could result from this facility are described

  14. Environmental assessment for the Atmospheric Radiation Measurement (ARM) Program: Southern Great Plains Cloud and Radiation Testbed (CART) site

    Energy Technology Data Exchange (ETDEWEB)

    Policastro, A.J.; Pfingston, J.M.; Maloney, D.M.; Wasmer, F.; Pentecost, E.D.

    1992-03-01

    The Atmospheric Radiation Measurement (ARM) Program is aimed at supplying improved predictive capability of climate change, particularly the prediction of cloud-climate feedback. The objective will be achieved by measuring the atmospheric radiation and physical and meteorological quantities that control solar radiation in the earth`s atmosphere and using this information to test global climate and related models. The proposed action is to construct and operate a Cloud and Radiation Testbed (CART) research site in the southern Great Plains as part of the Department of Energy`s Atmospheric Radiation Measurement Program whose objective is to develop an improved predictive capability of global climate change. The purpose of this CART research site in southern Kansas and northern Oklahoma would be to collect meteorological and other scientific information to better characterize the processes controlling radiation transfer on a global scale. Impacts which could result from this facility are described.

  15. The OTTI space experiments

    International Nuclear Information System (INIS)

    Brewer, D.A.; Clifton, K.S.; Pearson, S.D.; Barth, J.L.; LaBel, K.; Ritter, J.C.; Peden, J.; Campbell, A.; Liang, R.

    1999-01-01

    The orbiting technology tested initiative (OTTI) provides a concept for a series of space experiment platforms to be flown at 2-year interval over the next ten years. The long-term purpose of this program is to provide a convenient test-beds to simulate high radiation environments. The purposes of the first platform is to evaluate the on-orbit performance of novel, emerging, breakthrough technologies and advanced state-of-the-art devices in high radiation orbits and to provide correlations between the natural space radiation environment and the device response in the flight test-bed. This short article presents the concept of the OTTI program

  16. Frequency stabilized lasers for space applications

    Science.gov (United States)

    Lieber, Mike; Adkins, Mike; Pierce, Robert; Warden, Robert; Wallace, Cynthia; Weimer, Carl

    2014-09-01

    metrology, spectroscopy, atomic clocks and geodesy. This technology will be a key enabler to several proposed NASA science missions. Although lasers such as Q-switched Nd-YAG are now commonly used in space, other types of lasers - especially those with narrow linewidth - are still few in number and more development is required to advance their technology readiness. In this paper we discuss a reconfigurable laser frequency stabilization testbed, and end-to-end modeling to support system development. Two important features enabling testbed flexibility are that the controller, signal processing and interfaces are hosted on a field programmable gate array (FPGA) which has spacequalified equivalent parts, and secondly, fiber optic relay of the beam paths. Given the nonlinear behavior of lasers, FPGA implementation is a key system reliability aspect allowing on-orbit retuning of the control system and initial frequency acquisition. The testbed features a dual sensor system, one based upon a high finesse resonator cavity which provides relative stability through Pound-Drever-Hall (PDH) modulation and secondly an absolute frequency reference by dither locking to an acetylene gas cell (GC). To provide for differences between ground and space implementation, we have developed an end-to-end Simulink/ Matlab®-based control system model of the testbed components including the important noise sources. This model is in the process of being correlated to the testbed data which then can be used for trade studies, and estimation of space-based performance and sensitivities. A 1530 nm wavelength semiconductor laser is used for this initial work.

  17. Information technologies in environmental engineering. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Athanasiadis, Ioannis N.; Rizzoli, Andrea E. [Istituto dalle Molle di Studi sull' Intelligenza Artificiale (IDSIA), Manno (Switzerland); Mitkas, Pericles A. [Aristotle Univ. of Thessaloniki (Greece); Marx Gomez, Jorge (eds.) [Oldenburg Univ. (Germany). Abt. Wirtschaftsinformatik

    2009-07-01

    Information technologies have evolved to an enabling science for natural resource management and conservation, environmental engineering, scientific simulation and integrated assessment studies. Computing plays a significant role in every day practices of environmental engineers, natural scientists, economists, and social scientists. The complexity of natural phenomena requires interdisciplinary approaches, where computing science offers the infrastructure for environmental data collection and management, scientific simulations, decision support documentation and reporting. Ecology, environmental engineering and natural resource management comprise an excellent real-world testbed for IT system demonstration, while raising new challenges for computer science. Complexity, uncertainty and scaling issues of natural systems form a demanding application domain for sensor networks and earth observation systems; modelling, simulation and scientific workflows, data management and reporting, decision support and intelligent systems, distributed computing environments, geographical information systems, heterogeneous systems integration, software engineering, accounting systems and control systems. This books offers a collection of papers presented at the 4th International Symposium on Environmental Engineering, held in May 2009, in Thessaloniki, Greece. Recent success stories in ecoinformatics, promising ideas and new challenges are discussed among computer scientists, environmental engineers, economists and social scientists, demonstrating new paradigms for problem solving and decision making. (orig.)

  18. Application of NASA's Advanced Life Support Technologies for Waste Treatment, Water Purification and Recycle, and Food Production in Polar Regions

    Science.gov (United States)

    Bubenheim, David L.; Lewis, Carol E.; Covington, M. Alan (Technical Monitor)

    1995-01-01

    NASA's advanced life support technologies are being combined with Arctic science and engineering knowledge to address the unique needs of the remote communities of Alaska through the Advanced Life Systems for Extreme Environments (ALSEE) project. ALSEE is a collaborative effort involving NASA, the State of Alaska, the University of Alaska, the North Slope Borough of Alaska, and the National Science Foundation (NSF). The focus is a major issue in the state of Alaska and other areas of the Circumpolar North, the health and welfare of its people, their lives and the subsistence lifestyle in remote communities, economic opportunity, and care for the environment. The project primarily provides treatment and reduction of waste, purification and recycling of water. and production of food. A testbed is being established to demonstrate the technologies which will enable safe, healthy, and autonomous function of remote communities and to establish the base for commercial development of the resulting technology into new industries. The challenge is to implement the technological capabilities in a manner compatible with the social and economic structures of the native communities, the state, and the commercial sector. Additional information is contained in the original extended abstract.

  19. Evaluation of Future Internet Technologies for Processing and Distribution of Satellite Imagery

    Science.gov (United States)

    Becedas, J.; Perez, R.; Gonzalez, G.; Alvarez, J.; Garcia, F.; Maldonado, F.; Sucari, A.; Garcia, J.

    2015-04-01

    Satellite imagery data centres are designed to operate a defined number of satellites. For instance, difficulties when new satellites have to be incorporated in the system appear. This occurs because traditional infrastructures are neither flexible nor scalable. With the appearance of Future Internet technologies new solutions can be provided to manage large and variable amounts of data on demand. These technologies optimize resources and facilitate the appearance of new applications and services in the traditional Earth Observation (EO) market. The use of Future Internet technologies for the EO sector were validated with the GEO-Cloud experiment, part of the Fed4FIRE FP7 European project. This work presents the final results of the project, in which a constellation of satellites records the whole Earth surface on a daily basis. The satellite imagery is downloaded into a distributed network of ground stations and ingested in a cloud infrastructure, where the data is processed, stored, archived and distributed to the end users. The processing and transfer times inside the cloud, workload of the processors, automatic cataloguing and accessibility through the Internet are evaluated to validate if Future Internet technologies present advantages over traditional methods. Applicability of these technologies is evaluated to provide high added value services. Finally, the advantages of using federated testbeds to carry out large scale, industry driven experiments are analysed evaluating the feasibility of an experiment developed in the European infrastructure Fed4FIRE and its migration to a commercial cloud: SoftLayer, an IBM Company.

  20. Enabling Spacecraft Formation Flying through Position Determination, Control and Enhanced Automation Technologies

    Science.gov (United States)

    Bristow, John; Bauer, Frank; Hartman, Kate; How, Jonathan

    2000-01-01

    Formation Flying is revolutionizing the way the space community conducts science missions around the Earth and in deep space. This technological revolution will provide new, innovative ways for the community to gather scientific information, share that information between space vehicles and the ground, and expedite the human exploration of space. Once fully matured, formation flying will result in numerous sciencecraft acting as virtual platforms and sensor webs, gathering significantly more and better science data than call be collected today. To achieve this goal, key technologies must be developed including those that address the following basic questions posed by the spacecraft: Where am I? Where is the rest of the fleet? Where do I need to be? What do I have to do (and what am I able to do) to get there? The answers to these questions and the means to implement those answers will depend oil the specific mission needs and formation configuration. However, certain critical technologies are common to most formations. These technologies include high-precision position and relative-position knowledge including Global Positioning System (GPS) mid celestial navigation; high degrees of spacecraft autonomy inter-spacecraft communication capabilities; targeting and control including distributed control algorithms, and high precision control thrusters and actuators. This paper provides an overview of a selection of the current activities NASA/DoD/Industry/Academia are working to develop Formation Flying technologies as quickly as possible, the hurdles that need to be overcome to achieve our formation flying vision, and the team's approach to transfer this technology to space. It will also describe several of the formation flying testbeds, such as Orion and University Nanosatellites, that are being developed to demonstrate and validate many of these innovative sensing and formation control technologies.

  1. Experimental Validation of Advanced Dispersed Fringe Sensing (ADFS) Algorithm Using Advanced Wavefront Sensing and Correction Testbed (AWCT)

    Science.gov (United States)

    Wang, Xu; Shi, Fang; Sigrist, Norbert; Seo, Byoung-Joon; Tang, Hong; Bikkannavar, Siddarayappa; Basinger, Scott; Lay, Oliver

    2012-01-01

    Large aperture telescope commonly features segment mirrors and a coarse phasing step is needed to bring these individual segments into the fine phasing capture range. Dispersed Fringe Sensing (DFS) is a powerful coarse phasing technique and its alteration is currently being used for JWST.An Advanced Dispersed Fringe Sensing (ADFS) algorithm is recently developed to improve the performance and robustness of previous DFS algorithms with better accuracy and unique solution. The first part of the paper introduces the basic ideas and the essential features of the ADFS algorithm and presents the some algorithm sensitivity study results. The second part of the paper describes the full details of algorithm validation process through the advanced wavefront sensing and correction testbed (AWCT): first, the optimization of the DFS hardware of AWCT to ensure the data accuracy and reliability is illustrated. Then, a few carefully designed algorithm validation experiments are implemented, and the corresponding data analysis results are shown. Finally the fiducial calibration using Range-Gate-Metrology technique is carried out and a <10nm or <1% algorithm accuracy is demonstrated.

  2. Aspects of the quality of data from the Southern Great Plains (SGP) cloud and radiation testbed (CART) site broadband radiation sensors

    Energy Technology Data Exchange (ETDEWEB)

    Splitt, M.E. [Univ. of Oklahoma, Norman, OK (United States); Wesely, M.L. [Argonne National Lab., IL (United States)

    1996-04-01

    A systmatic evaluation of the performance of broadband radiometers at the Radiation Testbed (CART) site is needed to estimate the uncertainties of the irradiance observations. Here, net radiation observed with the net radiometer in the enrgy balance Bowen ratio station at the Central facility is compared with the net radiation computed as the sum of component irradiances recorded by nearby pyranameters and pyrgeometers. In addition, data obtained from the central facility pyranometers, pyrgeometers, and pyrheliometers are examined for April 1994, when intensive operations periods were being carried out. The data used in this study are from central facility radiometers in a solar and infrared observation station, and EBBR station, the so-called `BSRN` set of upward pointing radiometers, and a set of radiometers pointed down at the 25-m level of a 60-m tower.

  3. Overview of the Transport Rotorcraft Airframe Crash Testbed (TRACT) Full Scale Crash Tests

    Science.gov (United States)

    Annett, Martin; Littell, Justin

    2015-01-01

    The Transport Rotorcraft Airframe Crash Testbed (TRACT) full-scale tests were performed at NASA Langley Research Center's Landing and Impact Research Facility in 2013 and 2014. Two CH-46E airframes were impacted at 33-ft/s forward and 25-ft/s vertical combined velocities onto soft soil, which represents a severe, but potentially survivable impact scenario. TRACT 1 provided a baseline set of responses, while TRACT 2 included retrofits with composite subfloors and other crash system improvements based on TRACT 1. For TRACT 2, a total of 18 unique experiments were conducted to evaluate Anthropomorphic Test Devices (ATD) responses, seat and restraint performance, cargo restraint effectiveness, patient litter behavior, and activation of emergency locator transmitters and crash sensors. Combinations of Hybrid II, Hybrid III, and ES-2 ATDs were placed in forward and side facing seats and occupant results were compared against injury criteria. The structural response of the airframe was assessed based on accelerometers located throughout the airframe and using three-dimensional photogrammetric techniques. Analysis of the photogrammetric data indicated regions of maximum deflection and permanent deformation. The response of TRACT 2 was noticeably different in the horizontal direction due to changes in the cabin configuration and soil surface, with higher acceleration and damage occurring in the cabin. Loads from ATDs in energy absorbing seats and restraints were within injury limits. Severe injury was likely for ATDs in forward facing passenger seats.

  4. A boundary-layer cloud study using Southern Great Plains Cloud and radiation testbed (CART) data

    Energy Technology Data Exchange (ETDEWEB)

    Albrecht, B.; Mace, G.; Dong, X.; Syrett, W. [Pennsylvania State Univ., University Park, PA (United States)] [and others

    1996-04-01

    Boundary layer clouds-stratus and fairweather cumulus - are closely coupled involves the radiative impact of the clouds on the surface energy budget and the strong dependence of cloud formation and maintenance on the turbulent fluxes of heat and moisture in the boundary layer. The continuous data collection at the Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site provides a unique opportunity to study components of the coupling processes associated with boundary layer clouds and to provide descriptions of cloud and boundary layer structure that can be used to test parameterizations used in climate models. But before the CART data can be used for process studies and parameterization testing, it is necessary to evaluate and validate data and to develop techniques for effectively combining the data to provide meaningful descriptions of cloud and boundary layer characteristics. In this study we use measurements made during an intensive observing period we consider a case where low-level stratus were observed at the site for about 18 hours. This case is being used to examine the temporal evolution of cloud base, cloud top, cloud liquid water content, surface radiative fluxes, and boundary layer structure. A method for inferring cloud microphysics from these parameters is currently being evaluated.

  5. Enabling Technologies for Characterizing Exoplanet Systems with Exo-C

    Science.gov (United States)

    Cahoy, Kerri Lynn; Belikov, Ruslan; Stapelfeldt, Karl R.; Chakrabarti, Supriya; Trauger, John T.; Serabyn, Eugene; McElwain, Michael W.; Pong, Christopher M.; Brugarolas, Paul

    2015-01-01

    The Exoplanet Science and Technology Definition Team's Internal Coronagraph mission design, called 'Exo-C', utilizes several technologies that have advanced over the past decade with support from the Exoplanet Exploration Program. Following the flow of photons through the telescope, the science measurement is enabled by (i) a precision pointing system to keep the target exoplanet system precisely positioned on the detector during the integration time, (ii) high-performance coronagraphs to block the parent star's light so that the planet's reflected light can be detected, (iii) a wavefront control system to compensate for any wavefront errors such as those due to thermal or mechanical deformations in the optical path, especially errors with high spatial frequencies that could cause contrast-reducing speckles, and (iv) an integral field spectrograph (IFS) that provides moderate resolution spectra of the target exoplanets, permitting their characterization and comparison with models and other data sets. Technologies such as the wavefront control system and coronagraphs will also benefit from other funded efforts in progress, such as the Wide Field Infrared Survey Telescope Astrophysics Focused Telescope Assets (WFIRST-AFTA) program. Similarly, the Exo-C IFS will benefit from the Prototype Imaging Spectrograph for Coronagraphic Exoplanet Studies (PISCES) demonstration. We present specific examples for each of these technologies showing that the state of the art has advanced to levels that will meet the overall scientific, cost, and schedule requirements of the Exo-C mission. These capabilities have matured with testbed and/or ground-telescope demonstrations and have reached a technological readiness level (TRL) that supports their inclusion in the baseline design for potential flight at the end of this decade. While additional work remains to build and test flight-like components (that concurrently meet science as well as size, weight, power, and environmental

  6. AI Researchers, Video Games Are Your Friends!

    OpenAIRE

    Togelius, Julian

    2016-01-01

    If you are an artificial intelligence researcher, you should look to video games as ideal testbeds for the work you do. If you are a video game developer, you should look to AI for the technology that makes completely new types of games possible. This chapter lays out the case for both of these propositions. It asks the question "what can video games do for AI", and discusses how in particular general video game playing is the ideal testbed for artificial general intelligence research. It the...

  7. Aeronautics Autonomy Testbed Capability (AATC) Team Developed Concepts

    Science.gov (United States)

    Smith, Phillip J.

    2018-01-01

    In 2015, the National Aeronautics and Space Administration (NASA) formed a multi-center, interdisciplinary team of engineers from three different aeronautics research centers who were tasked with improving NASA autonomy research capabilities. This group was subsequently named the Aeronautics Autonomy Testbed Capability (AATC) team. To aid in confronting the autonomy research directive, NASA contracted IDEO, a design firm, to provide consultants and guides to educate NASA engineers through the practice of design thinking, which is an unconventional method for aerospace design processes. The team then began learning about autonomy research challenges by conducting interviews with a diverse group of researchers and pilots, military personnel and civilians, experts and amateurs. Part of this design thinking process involved developing ideas for products or programs known as concepts that could enable real world fulfillment of the most important latent needs identified through analysis of the interviews. The concepts are intended to be sacrificial, intermediate steps in the design thinking process and are presented in this report to record the efforts of the AATC group. Descriptions are provided in present tense to allow for further ideation and imagining the concept as reality as was attempted during the teams discussions and interviews. This does not indicate that the concepts are actually in practice within NASA though there may be similar existing programs independent of AATC. These concepts were primarily created at two distinct stages during the design thinking process. After the initial interviews, there was a workshop for concept development and the resulting ideas are shown in this work as from the First Round. As part of succeeding interviews, the team members presented the First Round concepts to refine the understanding of existing research needs. This knowledge was then used to generate an additional set of concepts denoted as the Second Round. Some

  8. WING/WORLD: An Open Experimental Toolkit for the Design and Deployment of IEEE 802.11-Based Wireless Mesh Networks Testbeds

    Directory of Open Access Journals (Sweden)

    Daniele Miorandi

    2010-01-01

    Full Text Available Wireless Mesh Networks represent an interesting instance of light-infrastructure wireless networks. Due to their flexibility and resiliency to network failures, wireless mesh networks are particularly suitable for incremental and rapid deployments of wireless access networks in both metropolitan and rural areas. This paper illustrates the design and development of an open toolkit aimed at supporting the design of different solutions for wireless mesh networking by enabling real evaluation, validation, and demonstration. The resulting testbed is based on off-the-shelf hardware components and open-source software and is focused on IEEE 802.11 commodity devices. The software toolkit is based on an “open” philosophy and aims at providing the scientific community with a tool for effective and reproducible performance analysis of WMNs. The paper describes the architecture of the toolkit, and its core functionalities, as well as its potential evolutions.

  9. Successful completion of the development and testing of a coal to fuel cell grade hydrogen technology package for New Zealand

    Energy Technology Data Exchange (ETDEWEB)

    Anthony H. Clemens; Tana P. Levi; Robert S. Whitney; Alister I. Gardiner

    2009-07-01

    A technology package for the production, from New Zealand lignite, of high purity hydrogen suitable for use in an alkaline fuel cell has been successfully developed and tested. The technology involves the integration of an air-blown 1 tonne per day fluidised bed gasifier with a range of downstream syngas clean-up components leading to the fuel cell. The development of the technology package was built on earlier work that showed New Zealand lignites to be among the most reactive in the world and well suited to fluidised bed gasification. The reason for their high reactivity was shown to be due to the presence of ion-exchanged calcium within the lignite structure. The clean-up line is comprised of some commonly used 'off the shelf' technologies. These include a cyclone and Venturi scrubber for particulate and condensables capture respectively and a high temperature water gas shift reactor. It also contains a less commonly used counterflow caustic wash packed column for H{sub 2}S removal and an experimental membrane for final hydrogen separation. The clean-up line is constructed so that it may be used to testbed other new syngas clean-up technologies. The paper describes the new technology package, considers several issues that arose during its development and how these were addressed. It also considers the future development of the technology including co-gasification with biomass and conversion to an oxygen blown unit for synfuel production. 20 refs., 4 figs., 1 tab.

  10. ESIP's Earth Science Knowledge Graph (ESKG) Testbed Project: An Automatic Approach to Building Interdisciplinary Earth Science Knowledge Graphs to Improve Data Discovery

    Science.gov (United States)

    McGibbney, L. J.; Jiang, Y.; Burgess, A. B.

    2017-12-01

    Big Earth observation data have been produced, archived and made available online, but discovering the right data in a manner that precisely and efficiently satisfies user needs presents a significant challenge to the Earth Science (ES) community. An emerging trend in information retrieval community is to utilize knowledge graphs to assist users in quickly finding desired information from across knowledge sources. This is particularly prevalent within the fields of social media and complex multimodal information processing to name but a few, however building a domain-specific knowledge graph is labour-intensive and hard to keep up-to-date. In this work, we update our progress on the Earth Science Knowledge Graph (ESKG) project; an ESIP-funded testbed project which provides an automatic approach to building a dynamic knowledge graph for ES to improve interdisciplinary data discovery by leveraging implicit, latent existing knowledge present within across several U.S Federal Agencies e.g. NASA, NOAA and USGS. ESKG strengthens ties between observations and user communities by: 1) developing a knowledge graph derived from various sources e.g. Web pages, Web Services, etc. via natural language processing and knowledge extraction techniques; 2) allowing users to traverse, explore, query, reason and navigate ES data via knowledge graph interaction. ESKG has the potential to revolutionize the way in which ES communities interact with ES data in the open world through the entity, spatial and temporal linkages and characteristics that make it up. This project enables the advancement of ESIP collaboration areas including both Discovery and Semantic Technologies by putting graph information right at our fingertips in an interactive, modern manner and reducing the efforts to constructing ontology. To demonstrate the ESKG concept, we will demonstrate use of our framework across NASA JPL's PO.DAAC, NOAA's Earth Observation Requirements Evaluation System (EORES) and various USGS

  11. Transformational Element Level Arrays (TELA) Testbed (Preprint)

    National Research Council Canada - National Science Library

    Dalrymple, Thomas; Buck, Jonathan; Buxa, Peter; McCann, John; Neidhard, Robert; Scalzi, Gary; Shreffler, Caleb; Spendley, Dan; Watson, Paul

    2007-01-01

    .... Previous work at AFRL has resulted in many technologies that support these needs. Many components exist today that were only theoretical a few years ago, such as phased array antennas that support 10...

  12. “Modular Biospheres” New testbed platforms for public environmental education and research

    Science.gov (United States)

    Nelson, M.; Dempster, W. F.; Allen, J. P.

    This paper will review the potential of a relatively new type of testbed platform for environmental education and research because of the unique advantages resulting from their material closure and separation from the outside environment. These facilities which we term "modular biospheres", have emerged from research centered on space life support research but offer a wider range of application. Examples of this type of facility include the Bios-3 facility in Russia, the Japanese CEEF (Closed Ecological Experiment Facility), the NASA Kennedy Space Center Breadboard facility, the Biosphere 2 Test Module and the Laboratory Biosphere. Modular biosphere facilities offer unique research and public real-time science education opportunities. Ecosystem behavior can be studied since initial state conditions can be precisely specified and tracked over different ranges of time. With material closure (apart from very small air exchange rate which can be determined), biogeochemical cycles between soil and soil microorganisms, water, plants, and atmosphere can be studied in detail. Such studies offer a major advance from studies conducted with phytotrons which because of their small size, limit the number of organisms to a very small number, and which crucially do not have a high degree of atmospheric, water and overall material closure. Modular biospheres take advantage of the unique properties of closure, as representing a distinct system "metabolism" and therefore are essentially a "mini-world". Though relatively large in comparison with most phytotrons and ecological microcosms, which are now standard research and educational tools, modular biospheres are small enough that they can be economically reconfigured to reflect a changing research agenda. Some design elements include lighting via electric lights and/or sunlight, hydroponic or soil substrate for plants, opaque or glazed structures, and variable volume chambers or other methods to handle atmospheric pressure

  13. Research Instrumentation for Investigating Vibration Delocalization and Control of Nearly Periodic Structures via Piezoelectric Networks

    National Research Council Canada - National Science Library

    Wang, Kon-Well

    2002-01-01

    The overall goal of this DURIP project is to acquire major facilities that are critical in the development of a comprehensive experimental testbed for advancing the technology of low vibration periodic structures (e.g...

  14. A MITgcm/DART ensemble analysis and prediction system with application to the Gulf of Mexico

    KAUST Repository

    Hoteit, Ibrahim; Hoar, Timothy J.; Gopalakrishnan, Ganesh; Collins, Nancy S.; Anderson, Jeffrey L.; Cornuelle, Bruce D.; Kö hl, Armin; Heimbach, Patrick

    2013-01-01

    Research Testbed (DART) assimilation package with the Massachusetts Institute of Technology ocean general circulation model (MITgcm). The MITgcm/DART system supports the assimilation of a wide range of ocean observations and uses an ensemble approach

  15. HESTIA Phase I Test Results: The Air Revitalization System

    Science.gov (United States)

    Wright, Sarah E.; Hansen, Scott W.

    2016-01-01

    In any human spaceflight mission, a number of Environmental Control & Life Support System (ECLSS) technologies work together to provide the conditions astronauts need to live healthily, productively, and comfortably in space. In a long-duration mission, many of these ECLSS technologies may use materials supplied by In-Situ Resource Utilization (ISRU), introducing more interactions between systems. The Human Exploration Spacecraft Test-bed for Integration & Advancement (HESTIA) Project aims to create a test-bed to evaluate ECLSS and ISRU technologies and how they interact in a high-fidelity, closed-loop, human-rated analog habitat. Air purity and conditioning are essential components within any ECLSS and for HESTIA's first test they were achieved with the Air Revitalization System (ARS) described below. The ARS provided four essential functions to the test-bed chamber: cooling the air, removing humidity from the air, removing trace contaminants, and scrubbing carbon dioxide (CO2) from the air. In this case, the oxygen supply function was provided by ISRU. In the current configuration, the ARS is a collection of different subsystems. A fan circulates the air, while a condensing heat exchanger (CHX) pulls humidity out of the air. A Trace Contaminant Removal System (TCRS) filters the air of potentially harmful contaminants. Lastly, a Reactive Plastic Lithium Hydroxide (RP-LiOH) unit removes CO2 from the breathing air. During the HESTIA Phase I test in September 2015, the ARS and its individual components each functioned as expected, although further analysis is underway. During the Phase I testing and in prior bench-top tests, the energy balance of heat removed by the CHX was not equal to the cooling it received. This indicated possible instrument error and therefore recalibration of the instruments and follow-up testing is planned in 2016 to address the issue. The ARS was tested in conjunction with two other systems: the Human Metabolic Simulator (HMS) and the

  16. NREL Topic 1 Final Report: Cohesive Application of Standards-Based Connected Devices to Enable Clean Energy Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Hudgins, Andrew P. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Sparn, Bethany F. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Jin, Xin [National Renewable Energy Lab. (NREL), Golden, CO (United States); Seal, Brian [Electric Power Research Inst. (EPRI), Palo Alto, CA (United States)

    2018-02-21

    This document is the final report of a two-year development, test, and demonstration project entitled 'Cohesive Application of Standards-Based Connected Devices to Enable Clean Energy Technologies.' The project was part of the National Renewable Energy Laboratory's (NREL) Integrated Network Test-bed for Energy Grid Research and Technology (INTEGRATE) initiative. The Electric Power Research Institute (EPRI) and a team of partners were selected by NREL to carry out a project to develop and test how smart, connected consumer devices can act to enable the use of more clean energy technologies on the electric power grid. The project team includes a set of leading companies that produce key products in relation to achieving this vision: thermostats, water heaters, pool pumps, solar inverters, electric vehicle supply equipment, and battery storage systems. A key requirement of the project was open access at the device level - a feature seen as foundational to achieving a future of widespread distributed generation and storage. The internal intelligence, standard functionality and communication interfaces utilized in this project result in the ability to integrate devices at any level, to work collectively at the level of the home/business, microgrid, community, distribution circuit or other. Collectively, the set of products serve as a platform on which a wide range of control strategies may be developed and deployed.

  17. Data systems and computer science programs: Overview

    Science.gov (United States)

    Smith, Paul H.; Hunter, Paul

    1991-01-01

    An external review of the Integrated Technology Plan for the Civil Space Program is presented. The topics are presented in viewgraph form and include the following: onboard memory and storage technology; advanced flight computers; special purpose flight processors; onboard networking and testbeds; information archive, access, and retrieval; visualization; neural networks; software engineering; and flight control and operations.

  18. Experimental demonstration of an OpenFlow based software-defined optical network employing packet, fixed and flexible DWDM grid technologies on an international multi-domain testbed.

    Science.gov (United States)

    Channegowda, M; Nejabati, R; Rashidi Fard, M; Peng, S; Amaya, N; Zervas, G; Simeonidou, D; Vilalta, R; Casellas, R; Martínez, R; Muñoz, R; Liu, L; Tsuritani, T; Morita, I; Autenrieth, A; Elbers, J P; Kostecki, P; Kaczmarek, P

    2013-03-11

    Software defined networking (SDN) and flexible grid optical transport technology are two key technologies that allow network operators to customize their infrastructure based on application requirements and therefore minimizing the extra capital and operational costs required for hosting new applications. In this paper, for the first time we report on design, implementation & demonstration of a novel OpenFlow based SDN unified control plane allowing seamless operation across heterogeneous state-of-the-art optical and packet transport domains. We verify and experimentally evaluate OpenFlow protocol extensions for flexible DWDM grid transport technology along with its integration with fixed DWDM grid and layer-2 packet switching.

  19. EM-50 Tanks Focus Area retrieval process development and enhancements. FY97 technology development summary report

    International Nuclear Information System (INIS)

    Rinker, M.W.; Bamberger, J.A.; Alberts, D.G.

    1997-09-01

    The Retrieval Process Development and Enhancements (RPD and E) activities are part of the US Department of Energy (DOE) EM-50 Tanks Focus Area, Retrieval and Closure program. The purpose of RPD and E is to understand retrieval processes, including emerging and existing technologies, and to gather data on these processes, so that end users have requisite technical bases to make retrieval decisions. Technologies addressed during FY97 include enhancements to sluicing, the use of pulsed air to assist mixing, mixer pumps, innovative mixing techniques, confined sluicing retrieval end effectors, borehole mining, light weight scarification, and testing of Russian-developed retrieval equipment. Furthermore, the Retrieval Analysis Tool was initiated to link retrieval processes with tank waste farms and tank geometric to assist end users by providing a consolidation of data and technical information that can be easily assessed. The main technical accomplishments are summarized under the following headings: Oak Ridge site-gunite and associated tanks treatability study; pulsed air mixing; Oak Ridge site-Old Hydrofracture Facility; hydraulic testbed relocation; cooling coil cleaning end effector; light weight scarifier; innovative tank mixing; advanced design mixer pump; enhanced sluicing; Russian retrieval equipment testing; retrieval data analysis and correlation; simulant development; and retrieval analysis tool (RAT)

  20. Energy Systems Integration: Demonstrating Distribution Feeder Voltage Control

    Energy Technology Data Exchange (ETDEWEB)

    2017-01-01

    Overview fact sheet about the Smarter Grid Solutions Integrated Network Testbed for Energy Grid Research and Technology Experimentation (INTEGRATE) project at the Energy Systems Integration Facility. INTEGRATE is part of the U.S. Department of Energy's Grid Modernization Initiative.

  1. Energy Systems Integration: Demonstrating Distributed Grid-Edge Control Hierarchy

    Energy Technology Data Exchange (ETDEWEB)

    2017-01-01

    Overview fact sheet about the OMNETRIC Group Integrated Network Testbed for Energy Grid Research and Technology Experimentation (INTEGRATE) project at the Energy Systems Integration Facility. INTEGRATE is part of the U.S. Department of Energy's Grid Modernization Initiative.

  2. Autonomous, agile micro-satellites and supporting technologies

    International Nuclear Information System (INIS)

    Breitfeller, E; Dittman, M D; Gaughan, R J; Jones, M S; Kordas, J F; Ledebuhr, A G; Ng, L C; Whitehead, J C; Wilson, B

    1999-01-01

    This paper updates the on-going effort at Lawrence Livermore National Laboratory to develop autonomous, agile micro-satellites (MicroSats). The objective of this development effort is to develop MicroSats weighing only a few tens of kilograms, that are able to autonomously perform precision maneuvers and can be used telerobotically in a variety of mission modes. The required capabilities include satellite rendezvous, inspection, proximity-operations, docking, and servicing. The MicroSat carries an integrated proximity-operations sensor-suite incorporating advanced avionics. A new self-pressurizing propulsion system utilizing a miniaturized pump and non-toxic mono-propellant hydrogen peroxide was successfully tested. This system can provide a nominal 25 kg MicroSat with 200-300 m/s delta-v including a warm-gas attitude control system. The avionics is based on the latest PowerPC processor using a CompactPCI bus architecture, which is modular, high-performance and processor-independent. This leverages commercial-off-the-shelf (COTS) technologies and minimizes the effects of future changes in processors. The MicroSat software development environment uses the Vx-Works real-time operating system (RTOS) that provides a rapid development environment for integration of new software modules, allowing early integration and test. We will summarize results of recent integrated ground flight testing of our latest non-toxic pumped propulsion MicroSat testbed vehicle operated on our unique dynamic air-rail

  3. Real-Time Signal Processing for Multiantenna Systems: Algorithms, Optimization, and Implementation on an Experimental Test-Bed

    Directory of Open Access Journals (Sweden)

    Haustein Thomas

    2006-01-01

    Full Text Available A recently realized concept of a reconfigurable hardware test-bed suitable for real-time mobile communication with multiple antennas is presented in this paper. We discuss the reasons and prerequisites for real-time capable MIMO transmission systems which may allow channel adaptive transmission to increase link stability and data throughput. We describe a concept of an efficient implementation of MIMO signal processing using FPGAs and DSPs. We focus on some basic linear and nonlinear MIMO detection and precoding algorithms and their optimization for a DSP target, and a few principal steps for computational performance enhancement are outlined. An experimental verification of several real-time MIMO transmission schemes at high data rates in a typical office scenario is presented and results on the achieved BER and throughput performance are given. The different transmission schemes used either channel state information at both sides of the link or at one side only (transmitter or receiver. Spectral efficiencies of more than 20 bits/s/Hz and a throughput of more than 150 Mbps were shown with a single-carrier transmission. The experimental results clearly show the feasibility of real-time high data rate MIMO techniques with state-of-the-art hardware and that more sophisticated baseband signal processing will be an essential part of future communication systems. A discussion on implementation challenges towards future wireless communication systems supporting higher data rates (1 Gbps and beyond or high mobility concludes the paper.

  4. Quantum Testbeds Stakeholder Workshop (QTSW) Report meeting purpose and agenda.

    Energy Technology Data Exchange (ETDEWEB)

    Hebner, Gregory A.

    2017-04-01

    Quantum computing (QC) is a promising early-stage technology with the potential to provide scientific computing capabilities far beyond what is possible with even an Exascale computer in specific problems of relevance to the Office of Science. These include (but are not limited to) materials modeling, molecular dynamics, and quantum chromodynamics. However, commercial QC systems are not yet available and the technical maturity of current QC hardware, software, algorithms, and systems integration is woefully incomplete. Thus, there is a significant opportunity for DOE to define the technology building blocks, and solve the system integration issues to enable a revolutionary tool. Once realized, QC will have world changing impact on economic competitiveness, the scientific enterprise, and citizen well-being. Prior to this workshop, DOE / Office of Advanced Scientific Computing Research (ASCR) hosted a workshop in 2015 to explore QC scientific applications. The goal of that workshop was to assess the viability of QC technologies to meet the computational requirements in support of DOE’s science and energy mission and to identify the potential impact of these technologies.

  5. SYNTHETIC DESIGN AND THE ART OF VIRTUAL REALITY IN ...

    African Journals Online (AJOL)

    defined to be a form of human-computer interaction in which real or imaginary .... tagged Game Bots: A 3D Virtual World Testbed, for Multi-agent Research. ... is only a soft touch as the VR technology itself is light-based thereby creating.

  6. Empowering Geoscience with Improved Data Assimilation Using the Data Assimilation Research Testbed "Manhattan" Release.

    Science.gov (United States)

    Raeder, K.; Hoar, T. J.; Anderson, J. L.; Collins, N.; Hendricks, J.; Kershaw, H.; Ha, S.; Snyder, C.; Skamarock, W. C.; Mizzi, A. P.; Liu, H.; Liu, J.; Pedatella, N. M.; Karspeck, A. R.; Karol, S. I.; Bitz, C. M.; Zhang, Y.

    2017-12-01

    The capabilities of the Data Assimilation Research Testbed (DART) at NCAR have been significantly expanded with the recent "Manhattan" release. DART is an ensemble Kalman filter based suite of tools, which enables researchers to use data assimilation (DA) without first becoming DA experts. Highlights: significant improvement in efficient ensemble DA for very large models on thousands of processors, direct read and write of model state files in parallel, more control of the DA output for finer-grained analysis, new model interfaces which are useful to a variety of geophysical researchers, new observation forward operators and the ability to use precomputed forward operators from the forecast model. The new model interfaces and example applications include the following: MPAS-A; Model for Prediction Across Scales - Atmosphere is a global, nonhydrostatic, variable-resolution mesh atmospheric model, which facilitates multi-scale analysis and forecasting. The absence of distinct subdomains eliminates problems associated with subdomain boundaries. It demonstrates the ability to consistently produce higher-quality analyses than coarse, uniform meshes do. WRF-Chem; Weather Research and Forecasting + (MOZART) Chemistry model assimilates observations from FRAPPÉ (Front Range Air Pollution and Photochemistry Experiment). WACCM-X; Whole Atmosphere Community Climate Model with thermosphere and ionosphere eXtension assimilates observations of electron density to investigate sudden stratospheric warming. CESM (weakly) coupled assimilation; NCAR's Community Earth System Model is used for assimilation of atmospheric and oceanic observations into their respective components using coupled atmosphere+land+ocean+sea+ice forecasts. CESM2.0; Assimilation in the atmospheric component (CAM, WACCM) of the newly released version is supported. This version contains new and extensively updated components and software environment. CICE; Los Alamos sea ice model (in CESM) is used to assimilate

  7. An interactive physics-based unmanned ground vehicle simulator leveraging open source gaming technology: progress in the development and application of the virtual autonomous navigation environment (VANE) desktop

    Science.gov (United States)

    Rohde, Mitchell M.; Crawford, Justin; Toschlog, Matthew; Iagnemma, Karl D.; Kewlani, Guarav; Cummins, Christopher L.; Jones, Randolph A.; Horner, David A.

    2009-05-01

    It is widely recognized that simulation is pivotal to vehicle development, whether manned or unmanned. There are few dedicated choices, however, for those wishing to perform realistic, end-to-end simulations of unmanned ground vehicles (UGVs). The Virtual Autonomous Navigation Environment (VANE), under development by US Army Engineer Research and Development Center (ERDC), provides such capabilities but utilizes a High Performance Computing (HPC) Computational Testbed (CTB) and is not intended for on-line, real-time performance. A product of the VANE HPC research is a real-time desktop simulation application under development by the authors that provides a portal into the HPC environment as well as interaction with wider-scope semi-automated force simulations (e.g. OneSAF). This VANE desktop application, dubbed the Autonomous Navigation Virtual Environment Laboratory (ANVEL), enables analysis and testing of autonomous vehicle dynamics and terrain/obstacle interaction in real-time with the capability to interact within the HPC constructive geo-environmental CTB for high fidelity sensor evaluations. ANVEL leverages rigorous physics-based vehicle and vehicle-terrain interaction models in conjunction with high-quality, multimedia visualization techniques to form an intuitive, accurate engineering tool. The system provides an adaptable and customizable simulation platform that allows developers a controlled, repeatable testbed for advanced simulations. ANVEL leverages several key technologies not common to traditional engineering simulators, including techniques from the commercial video-game industry. These enable ANVEL to run on inexpensive commercial, off-the-shelf (COTS) hardware. In this paper, the authors describe key aspects of ANVEL and its development, as well as several initial applications of the system.

  8. Report of the Interagency Optical Network Testbeds Workshop 2 (ONT2)

    Data.gov (United States)

    Networking and Information Technology Research and Development, Executive Office of the President — ...Develop a common vision of the optical network technologies, services, infrastructure, and organizations needed to enable widespread use of optical networks...

  9. Turbine Aeration Design Software for Mitigating Adverse Environmental Impacts Resulting From Conventional Hydropower Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Gulliver, John S. [Univ. of Minnesota, Minneapolis, MN (United States)

    2015-03-01

    Conventional hydropower turbine aeration test-bed for computational routines and software tools for improving environmental mitigation technologies for conventional hydropower systems. In achieving this goal, we have partnered with Alstom, a global leader in energy technology development and United States power generation, with additional funding from the Initiative for Renewable Energy and the Environment (IREE) and the College of Science and Engineering (CSE) at the UMN

  10. Approaching the new reality. [changes in NASA space programs due to US economy

    Science.gov (United States)

    Diaz, Al V.

    1993-01-01

    The focus on more frequent access to space through smaller, less costly missions, and on NASA's role as a source of technological advance within the U.S. economy is discussed. The Pluto fast flyby mission is examined as an illustration of this approach. Testbeds are to be developed to survive individual programs, becoming permanent facilities, to allow for technological upgrades on an ongoing basis.

  11. Future space-based direct imaging platforms: high fidelity simulations and instrument testbed development

    Science.gov (United States)

    Hicks, Brian A.; Eberhardt, Andrew; SAINT, VNC, LUVOIR

    2017-06-01

    The direct detection and characterization of habitable zone (HZ) Earth-like exoplanets is predicated on light gathering power of a large telescope operating with tens of millicarcsecond angular resolution, and at contrast scales on the order of 0.1 ppb. Accessing a statistically significant sample of planets to search for habitable worlds will likely build on the knowledge and insfrastructure gained through JWST, later advancing to assembly in space or formation flying approaches that may eventually be used to achieve even greater photometric sensitivity or resolution. in order to address contrast, a means of starlight suppression is needed that contends with complex aperture diffraction. The Visible Nulling Coronagraph (VNC) is one such approach that destructively interferes starlight to enable detection and characterization of extrasolar objects.The VNC is being incorporated into an end-to-end telescope-coronagraph system demonstrator called the Segmented Aperture Interferometric Nulling Testbed (SAINT). Development of the VNC has a rich legacy, and successfully demonstrating its capability with SAINT will mark milestones towards meeting the high-contrast direct imaging needs of future large space telescopes. SAINT merges the VNC with an actively-controlled segmented aperture telescope via a fine pointing system and aims to demonstrate 1e-8 contrast nulling of a segmented aperture at an inner working angle of four diffraction radii over a 20 nm visible bandpass. The system comprises four detectors for wavefront sensing, one of which is the high-contrast focal plane. The detectors provide feedback to control the segmented telescope primary mirror, a fast steering mirror, a segmented deformable mirror, and a delay stage. All of these components must work in concert with passive optical elements that are designed, fabricated, and aligned pairwise to achieve the requisite wavefront symmetry needed to push the state of the art in broadband destructive interferometric

  12. Test-beds for molecular electronics: metal-molecules-metal junctions based on Hg electrodes.

    Science.gov (United States)

    Simeone, Felice Carlo; Rampi, Maria Anita

    2010-01-01

    produced results, are convenient test-beds for molecular electronics and represent a useful complement to physics-based experimental methods.

  13. Active Structural Control for Aircraft Efficiency with the X-56A Aircraft

    Science.gov (United States)

    Ouellette, Jeffrey

    2015-01-01

    The X-56A Multi-Utility Technology Testbed is an experimental aircraft designed to study active control of flexible structures. The vehicle is easily reconfigured to allow for testing of different configurations. The vehicle is being used to study new sensor, actuator, modeling and controls technologies. These new technologies will allow for lighter vehicles and new configurations that exceed the efficiency currently achievable. A description of the vehicle and the current research efforts that it enables are presented.

  14. Experimental aerodynamic and acoustic model testing of the Variable Cycle Engine (VCE) testbed coannular exhaust nozzle system

    Science.gov (United States)

    Nelson, D. P.; Morris, P. M.

    1980-01-01

    Aerodynamic performance and jet noise characteristics of a one sixth scale model of the variable cycle engine testbed exhaust system were obtained in a series of static tests over a range of simulated engine operating conditions. Model acoustic data were acquired. Data were compared to predictions of coannular model nozzle performance. The model, tested with an without a hardwall ejector, had a total flow area equivalent to a 0.127 meter (5 inch) diameter conical nozzle with a 0.65 fan to primary nozzle area ratio and a 0.82 fan nozzle radius ratio. Fan stream temperatures and velocities were varied from 422 K to 1089 K (760 R to 1960 R) and 434 to 755 meters per second (1423 to 2477 feet per second). Primary stream properties were varied from 589 to 1089 K (1060 R to 1960 R) and 353 to 600 meters per second (1158 to 1968 feet per second). Exhaust plume velocity surveys were conducted at one operating condition with and without the ejector installed. Thirty aerodynamic performance data points were obtained with an unheated air supply. Fan nozzle pressure ratio was varied from 1.8 to 3.2 at a constant primary pressure ratio of 1.6; primary pressure ratio was varied from 1.4 to 2.4 while holding fan pressure ratio constant at 2.4. Operation with the ejector increased nozzle thrust coefficient 0.2 to 0.4 percent.

  15. Energy Systems Integration: Demonstrating Distributed Resource Communications

    Energy Technology Data Exchange (ETDEWEB)

    2017-01-01

    Overview fact sheet about the Electric Power Research Institute (EPRI) and Schneider Electric Integrated Network Testbed for Energy Grid Research and Technology Experimentation (INTEGRATE) project at the Energy Systems Integration Facility. INTEGRATE is part of the U.S. Department of Energy's Grid Modernization Initiative.

  16. A Testbed for Highly-Scalable Mission Critical Information Systems

    National Research Council Canada - National Science Library

    Birman, Kenneth P

    2005-01-01

    ...". The basic idea is to implement a communication platform using these new protocols, and then integrate the platform with standard Web Services tools and technologies to achieve a uniquely easy to use...

  17. Open Orchestration Cloud Radio Access Network (OOCRAN) Testbed

    OpenAIRE

    Floriach-Pigem, Marti; Xercavins-Torregrosa, Guillem; Marojevic, Vuk; Gelonch-Bosch, Antoni

    2017-01-01

    The Cloud radio access network (C-RAN) offers a revolutionary approach to cellular network deployment, management and evolution. Advances in software-defined radio (SDR) and networking technology, moreover, enable delivering software-defined everything through the Cloud. Resources will be pooled and dynamically allocated leveraging abstraction, virtualization, and consolidation techniques; processes will be automated using common application programming interfaces; and network functions and s...

  18. Qualitative knowledge engineering for nuclear applications

    International Nuclear Information System (INIS)

    Kim, Jae H.; Kim, Ko R.; Lee, Jae C.; Choi, You R.

    1998-01-01

    After the TMI nuclear power plant accident, plant safety and operational efficiency became more important areas of artificial intelligence. They need to build artificial intelligence systems which can predict and explain plant behaviors in earlier phases. We have a 3-year plan to develop hybrid modeling technology of artificial intelligence and related prototype subsystems. After concept design of autonomous power plant in the first year, basic and essential AI technologies were studied and applied to nuclear power plant subsystems, such as the underwater bubble detection subsystem and the eddy current test (ECT) subsystem this year. We developed diagnostic algorithm and experimented it on a testbed we prepared. The testbed system consists of ultrasonic sensor arrays and signal processors, which generates bubble image data and ultrasonic signal distribution data. The essential algorithm to guess the bubble image and its position was studied and developed using two different technologies: the neural network technology and the ultrasonic tomography technology. We developed diagnostic algorithms through ECT data analysis and applied it on an ECT subsystem. During the analysis of ECT data, we concentrated on structure analysis of physical data and internal data, and especially on segmentation scheme of ECT data. The diagnostic algorithm was studied and developed using two different technologies: Fourier descriptors technology and neural network technology. In order to verify the diagnostic algorithms, we have developed the prototype diagnostic programs which proved its good performance. (author). 15 refs., 5 tabs., 25 figs

  19. From Lunar Regolith to Fabricated Parts: Technology Developments and the Utilization of Moon Dirt

    Science.gov (United States)

    McLemore, C. A.; Fikes, J. C.; McCarley, K. S.; Good, J. E.; Gilley, S. D.; Kennedy, J. P.

    2008-01-01

    The U.S. Space Exploration Policy has as a cornerstone the establishment of an outpost on the moon. This lunar outpost wil1 eventually provide the necessary planning, technology development, testbed, and training for manned missions in the future beyond the Moon. As part of the overall activity, the National Aeronautics and Space Administration (NASA) is investigating how the in situ resources can be utilized to improve mission success by reducing up-mass, improving safety, reducing risk, and bringing down costs for the overall mission. Marshall Space Flight Center (MSFC), along with other NASA centers, is supporting this endeavor by exploring how lunar regolith can be mined for uses such as construction, life support, propulsion, power, and fabrication. An infrastructure capable of fabrication and nondestructive evaluation will be needed to support habitat structure development and maintenance, tools and mechanical parts fabrication, as well as repair and replacement of space-mission hardware such as life-support items, vehicle components, and crew systems, This infrastructure will utilize the technologies being developed under the In Situ Fabrication and Repair (ISFR) element, which is working in conjunction with the technologies being developed under the In Situ Resources Utilization (ISRU) element, to live off the land. The ISFR Element supports the Space Exploration Initiative by reducing downtime due to failed components; decreasing risk to crew by recovering quickly from degraded operation of equipment; improving system functionality with advanced geometry capabilities; and enhancing mission safety by reducing assembly part counts of original designs where possible. This paper addresses the need and plan for understanding the properties of the lunar regolith to determine the applicability of using this material in a fabrication process. This effort includes the development of high fidelity simulants that will be used in fabrication processes on the ground to

  20. Early results of experiments with responsive open learning environments

    OpenAIRE

    Friedrich, M.; Wolpers, M.; Shen, R.; Ullrich, C.; Klamma, R.; Renzel, D.; Richert, A.; Heiden, B. von der

    2011-01-01

    Responsive open learning environments (ROLEs) are the next generation of personal learning environments (PLEs). While PLEs rely on the simple aggregation of existing content and services mainly using Web 2.0 technologies, ROLEs are transforming lifelong learning by introducing a new infrastructure on a global scale while dealing with existing learning management systems, institutions, and technologies. The requirements engineering process in highly populated test-beds is as important as the t...

  1. Energy-Efficient and Comfortable Buildings through Multivariate Integrated Control (ECoMIC)

    Energy Technology Data Exchange (ETDEWEB)

    Birru, Dagnachew [Philips Electronics North America Corporation, Andover, MA (United States); Wen, Yao-Jung [Philips Electronics North America Corporation, Andover, MA (United States); Rubinstein, Francis M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Clear, Robert D. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2013-10-28

    developed control technology were evaluated and verified through both simulations and testbed implementations. Simulations coupling a DOE medium office reference building in EnergyPlus building simulation software and a prototype controller in Matlab were performed. During summer time in a mixed-humid climate zone, the simulations revealed reductions of 27% and 42% in electric lighting load and cooling load, respectively, when compared to an advanced base case with daylight dimming and blinds automatically tilted to block direct sun. Two single-room testbeds were established. The testbed at Philips Lighting business building (Rosemont, IL) was designed for quantifying energy performance of integrated controls. This particular implementation achieved 40% and 79% savings on lighting and HVAC energy, respectively, compared to a relatively simple base case operated on predefined schedules. While the resulting energy savings was very encouraging, it should be noted that there may be several caveats associated with it. 1) The test was run during late spring and early summer, and the savings numbers might not be directly used to extrapolate the annual energy savings. 2) Due to the needs for separate control and metering of the small-scale demonstrator within a large building, the HVAC system, hence the corresponding savings, did not represent a typical energy code-compliant design. 3) The light level in the control case was regulated at a particular setpoint, which was lower than then the full-on light level in the base case, and the savings resulted from tuning down the light level to the setpoint was not attributable to the contribution of the developed technology. The testbed at the Lawrence Berkeley National Laboratory (Berkeley, CA) specifically focused on glare control integration, and has demonstrated the feasibility and capability of the glare detection and prevention technique. While the short one-month test in this testbed provided a functional indication of the

  2. National Renewable Energy Laboratory (NREL) Topic 2 Final Report: End-to-End Communication and Control System to Support Clean Energy Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Hudgins, Andrew P. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Carrillo, Ismael M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Jin, Xin [National Renewable Energy Lab. (NREL), Golden, CO (United States); Simmins, John [Electric Power Research Inst. (EPRI), Palo Alto, CA (United States)

    2018-02-21

    This document is the final report of a two-year development, test, and demonstration project, 'Cohesive Application of Standards- Based Connected Devices to Enable Clean Energy Technologies.' The project was part of the National Renewable Energy Laboratory's (NREL's) Integrated Network Testbed for Energy Grid Research and Technology (INTEGRATE) initiative hosted at Energy Systems Integration Facility (ESIF). This project demonstrated techniques to control distribution grid events using the coordination of traditional distribution grid devices and high-penetration renewable resources and demand response. Using standard communication protocols and semantic standards, the project examined the use cases of high/low distribution voltage, requests for volt-ampere-reactive (VAR) power support, and transactive energy strategies using Volttron. Open source software, written by EPRI to control distributed energy resources (DER) and demand response (DR), was used by an advanced distribution management system (ADMS) to abstract the resources reporting to a collection of capabilities rather than needing to know specific resource types. This architecture allows for scaling both horizontally and vertically. Several new technologies were developed and tested. Messages from the ADMS based on the common information model (CIM) were developed to control the DER and DR management systems. The OpenADR standard was used to help manage grid events by turning loads off and on. Volttron technology was used to simulate a homeowner choosing the price at which to enter the demand response market. Finally, the ADMS used newly developed algorithms to coordinate these resources with a capacitor bank and voltage regulator to respond to grid events.

  3. Living with a Star Space Environment Testbed

    Science.gov (United States)

    Barth, Janet

    2003-01-01

    Summary of activities: (1) FYO1 NRA - Model development and data mining. (2) FY03 NRA - Flight investigations. (3) SET carrier development. (4) Study for accommodation of SET carrier to support advanced detectors. (5) Collaboration with other programs: LWS TR&T to maximize synergy between TR&T space environment research and SET space environment effects research. LWS Data System to optimize dissemination of SET data. NASA Electronic Parts and Packaging Program to leverage ground testing of technologies. Defense Threat Reduction Agency to leverage ground testing and common interests in advanced detectors. and Air Force Research Laboratory to leverage flight opportunities. (6) Education and Public Outreach.

  4. Independent Peer Review of Communications, Navigation, and Networking re-Configurable Testbed (CoNNeCT) Project Antenna Pointing Subsystem (APS) Integrated Gimbal Assembly (IGA) Structural Analysis

    Science.gov (United States)

    Raju, Ivatury S.; Larsen, Curtis E.; Pellicciotti, Joseph W.

    2010-01-01

    Glenn Research Center Chief Engineer's Office requested an independent review of the structural analysis and modeling of the Communications, Navigation, and Networking re-Configurable Testbed (CoNNeCT) Project Antenna Pointing Subsystem (APS) Integrated Gimbal Assembly (IGA) to be conducted by the NASA Engineering and Safety Center (NESC). At this time, the IGA had completed its critical design review (CDR). The assessment was to be a peer review of the NEi-NASTRAN1 model of the APS Antenna, and not a peer review of the design and the analysis that had been completed by the GRC team for CDR. Thus, only a limited amount of information was provided on the structural analysis. However, the NESC team had difficulty separating analysis concerns from modeling issues. The team studied the NASTRAN model, but did not fully investigate how the model was used by the CoNNeCT Project and how the Project was interpreting the results. The team's findings, observations, and NESC recommendations are contained in this report.

  5. Design and Implementation of a Smart Home System Using Multisensor Data Fusion Technology

    Science.gov (United States)

    Chou, Po-Huan; Chang, Hsing-Cheng; Lin, Shyan-Lung; Yang, Shih-Chin; Su, Heng-Yi; Chang, Chih-Chien; Cheng, Yuan-Sheng; Kuo, Yu-Chen

    2017-01-01

    This paper aims to develop a multisensor data fusion technology-based smart home system by integrating wearable intelligent technology, artificial intelligence, and sensor fusion technology. We have developed the following three systems to create an intelligent smart home environment: (1) a wearable motion sensing device to be placed on residents’ wrists and its corresponding 3D gesture recognition algorithm to implement a convenient automated household appliance control system; (2) a wearable motion sensing device mounted on a resident’s feet and its indoor positioning algorithm to realize an effective indoor pedestrian navigation system for smart energy management; (3) a multisensor circuit module and an intelligent fire detection and alarm algorithm to realize a home safety and fire detection system. In addition, an intelligent monitoring interface is developed to provide in real-time information about the smart home system, such as environmental temperatures, CO concentrations, communicative environmental alarms, household appliance status, human motion signals, and the results of gesture recognition and indoor positioning. Furthermore, an experimental testbed for validating the effectiveness and feasibility of the smart home system was built and verified experimentally. The results showed that the 3D gesture recognition algorithm could achieve recognition rates for automated household appliance control of 92.0%, 94.8%, 95.3%, and 87.7% by the 2-fold cross-validation, 5-fold cross-validation, 10-fold cross-validation, and leave-one-subject-out cross-validation strategies. For indoor positioning and smart energy management, the distance accuracy and positioning accuracy were around 0.22% and 3.36% of the total traveled distance in the indoor environment. For home safety and fire detection, the classification rate achieved 98.81% accuracy for determining the conditions of the indoor living environment. PMID:28714884

  6. Design and Implementation of a Smart Home System Using Multisensor Data Fusion Technology.

    Science.gov (United States)

    Hsu, Yu-Liang; Chou, Po-Huan; Chang, Hsing-Cheng; Lin, Shyan-Lung; Yang, Shih-Chin; Su, Heng-Yi; Chang, Chih-Chien; Cheng, Yuan-Sheng; Kuo, Yu-Chen

    2017-07-15

    This paper aims to develop a multisensor data fusion technology-based smart home system by integrating wearable intelligent technology, artificial intelligence, and sensor fusion technology. We have developed the following three systems to create an intelligent smart home environment: (1) a wearable motion sensing device to be placed on residents' wrists and its corresponding 3D gesture recognition algorithm to implement a convenient automated household appliance control system; (2) a wearable motion sensing device mounted on a resident's feet and its indoor positioning algorithm to realize an effective indoor pedestrian navigation system for smart energy management; (3) a multisensor circuit module and an intelligent fire detection and alarm algorithm to realize a home safety and fire detection system. In addition, an intelligent monitoring interface is developed to provide in real-time information about the smart home system, such as environmental temperatures, CO concentrations, communicative environmental alarms, household appliance status, human motion signals, and the results of gesture recognition and indoor positioning. Furthermore, an experimental testbed for validating the effectiveness and feasibility of the smart home system was built and verified experimentally. The results showed that the 3D gesture recognition algorithm could achieve recognition rates for automated household appliance control of 92.0%, 94.8%, 95.3%, and 87.7% by the 2-fold cross-validation, 5-fold cross-validation, 10-fold cross-validation, and leave-one-subject-out cross-validation strategies. For indoor positioning and smart energy management, the distance accuracy and positioning accuracy were around 0.22% and 3.36% of the total traveled distance in the indoor environment. For home safety and fire detection, the classification rate achieved 98.81% accuracy for determining the conditions of the indoor living environment.

  7. On-line Configuration of Network Emulator for Intelligent Energy System Testbed Applications

    DEFF Research Database (Denmark)

    Kemal, Mohammed Seifu; Iov, Florin; Olsen, Rasmus Løvenstein

    2015-01-01

    Intelligent energy networks (or Smart Grids) provide efficient solutions for a grid integrated with near-real-time communication technologies between various grid assets in power generation, transmission and distribution systems. The design of a communication network associated with intelligent...... power system involves detailed analysis of its communication requirements, a proposal of the appropriate protocol architecture, the choice of appropriate communication technologies for each case study, and a means to support heterogeneous communication technology management system. This paper discuses...

  8. Concepts and Strategies for Transparency Monitoring of Nuclear Materials at the Back End of the Fuel/Weapons Cycle

    International Nuclear Information System (INIS)

    COSTIN, LAURENCE; DAVIES, PETER; PREGENZER, ARIAN L.

    1999-01-01

    Representatives of the Department of Energy, the national laboratories, the Waste Isolation Pilot Plant (WIPP), and others gathered to initiate the development of broad-based concepts and strategies for transparency monitoring of nuclear materials at the back end of the fuel/weapons cycle, including both geologic disposal and monitored retrievable storage. The workshop focused on two key questions: ''Why should we monitor?'' and ''What should we monitor?'' These questions were addressed by identifying the range of potential stakeholders, concerns that stakeholders may have, and the information needed to address those concerns. The group constructed a strategic framework for repository transparency implementation, organized around the issues of safety (both operational and environmental), diversion (assuring legitimate use and security), and viability (both political and economic). Potential concerns of the international community were recognized as the possibility of material diversion, the multinational impacts of potential radionuclide releases, and public and political perceptions of unsafe repositories. The workshop participants also identified potential roles that the WIPP may play as a monitoring technology development and demonstration test-bed facility. Concepts for WIPP'S potential test-bed role include serving as (1) an international monitoring technology and development testing facility, (2) an international demonstration facility, and (3) an education and technology exchange center on repository transparency technologies

  9. CECE: Expanding the Envelope of Deep Throttling Technology in Liquid Oxygen/Liquid Hydrogen Rocket Engines for NASA Exploration Missions

    Science.gov (United States)

    Giuliano, Victor J.; Leonard, Timothy G.; Lyda, Randy T.; Kim, Tony S.

    2010-01-01

    As one of the first technology development programs awarded by NASA under the Vision for Space Exploration, the Pratt & Whitney Rocketdyne (PWR) Deep Throttling, Common Extensible Cryogenic Engine (CECE) program was selected by NASA in November 2004 to begin technology development and demonstration toward a deep throttling, cryogenic engine supporting ongoing trade studies for NASA s Lunar Lander descent stage. The CECE program leverages the maturity and previous investment of a flight-proven hydrogen/oxygen expander cycle engine, the PWR RL10, to develop and demonstrate an unprecedented combination of reliability, safety, durability, throttlability, and restart capabilities in high-energy, cryogenic, in-space propulsion. The testbed selected for the deep throttling demonstration phases of this program was a minimally modified RL10 engine, allowing for maximum current production engine commonality and extensibility with minimum program cost. Four series of demonstrator engine tests have been successfully completed between April 2006 and April 2010, accumulating 7,436 seconds of hot fire time over 47 separate tests. While the first two test series explored low power combustion (chug) and system instabilities, the third test series investigated and was ultimately successful in demonstrating several mitigating technologies for these instabilities and achieved a stable throttling ratio of 13:1. The fourth test series significantly expanded the engine s operability envelope by successfully demonstrating a closed-loop control system and extensive transient modeling to enable lower power engine starting, faster throttle ramp rates, and mission-specific ignition testing. The final hot fire test demonstrated a chug-free, minimum power level of 5.9%, corresponding to an overall 17.6:1 throttling ratio achieved. In total, these tests have provided an early technology demonstration of an enabling cryogenic propulsion concept with invaluable system-level technology data

  10. A Proof-of-Concept for Semantically Interoperable Federation of IoT Experimentation Facilities

    Directory of Open Access Journals (Sweden)

    Jorge Lanza

    2016-06-01

    Full Text Available The Internet-of-Things (IoT is unanimously identified as one of the main pillars of future smart scenarios. The potential of IoT technologies and deployments has been already demonstrated in a number of different application areas, including transport, energy, safety and healthcare. However, despite the growing number of IoT deployments, the majority of IoT applications tend to be self-contained, thereby forming application silos. A lightweight data centric integration and combination of these silos presents several challenges that still need to be addressed. Indeed, the ability to combine and synthesize data streams and services from diverse IoT platforms and testbeds, holds the promise to increase the potentiality of smart applications in terms of size, scope and targeted business context. In this article, a proof-of-concept implementation that federates two different IoT experimentation facilities by means of semantic-based technologies will be described. The specification and design of the implemented system and information models will be described together with the practical details of the developments carried out and its integration with the existing IoT platforms supporting the aforementioned testbeds. Overall, the system described in this paper demonstrates that it is possible to open new horizons in the development of IoT applications and experiments at a global scale, that transcend the (silo boundaries of individual deployments, based on the semantic interconnection and interoperability of diverse IoT platforms and testbeds.

  11. A Proof-of-Concept for Semantically Interoperable Federation of IoT Experimentation Facilities.

    Science.gov (United States)

    Lanza, Jorge; Sanchez, Luis; Gomez, David; Elsaleh, Tarek; Steinke, Ronald; Cirillo, Flavio

    2016-06-29

    The Internet-of-Things (IoT) is unanimously identified as one of the main pillars of future smart scenarios. The potential of IoT technologies and deployments has been already demonstrated in a number of different application areas, including transport, energy, safety and healthcare. However, despite the growing number of IoT deployments, the majority of IoT applications tend to be self-contained, thereby forming application silos. A lightweight data centric integration and combination of these silos presents several challenges that still need to be addressed. Indeed, the ability to combine and synthesize data streams and services from diverse IoT platforms and testbeds, holds the promise to increase the potentiality of smart applications in terms of size, scope and targeted business context. In this article, a proof-of-concept implementation that federates two different IoT experimentation facilities by means of semantic-based technologies will be described. The specification and design of the implemented system and information models will be described together with the practical details of the developments carried out and its integration with the existing IoT platforms supporting the aforementioned testbeds. Overall, the system described in this paper demonstrates that it is possible to open new horizons in the development of IoT applications and experiments at a global scale, that transcend the (silo) boundaries of individual deployments, based on the semantic interconnection and interoperability of diverse IoT platforms and testbeds.

  12. Coronagraph Focal-Plane Phase Masks Based on Photonic Crystal Technology: Recent Progress and Observational Strategy

    Science.gov (United States)

    Murakami, Naoshi; Nishikawa, Jun; Sakamoto, Moritsugu; Ise, Akitoshi; Oka, Kazuhiko; Baba, Naoshi; Murakami, Hiroshi; Tamura, Motohide; Traub, Wesley A.; Mawet, Dimitri; hide

    2012-01-01

    Photonic crystal, an artificial periodic nanostructure of refractive indices, is one of the attractive technologies for coronagraph focal-plane masks aiming at direct imaging and characterization of terrestrial extrasolar planets. We manufactured the eight-octant phase mask (8OPM) and the vector vortex mask (VVM) very precisely using the photonic crystal technology. Fully achromatic phase-mask coronagraphs can be realized by applying appropriate polarization filters to the masks. We carried out laboratory experiments of the polarization-filtered 8OPM coronagraph using the High-Contrast Imaging Testbed (HCIT), a state-of-the-art coronagraph simulator at the Jet Propulsion Laboratory (JPL). We report the experimental results of 10-8-level contrast across several wavelengths over 10% bandwidth around 800nm. In addition, we present future prospects and observational strategy for the photonic-crystal mask coronagraphs combined with differential imaging techniques to reach higher contrast. We proposed to apply a polarization-differential imaging (PDI) technique to the VVM coronagraph, in which we built a two-channel coronagraph using polarizing beam splitters to avoid a loss of intensity due to the polarization filters. We also proposed to apply an angular-differential imaging (ADI) technique to the 8OPM coronagraph. The 8OPM/ADI mode avoids an intensity loss due to a phase transition of the mask and provides a full field of view around central stars. We present results of preliminary laboratory demonstrations of the PDI and ADI observational modes with the phase-mask coronagraphs.

  13. TASKA - Tandem Spiegelmaschine Karlsruhe. Vol. 1

    International Nuclear Information System (INIS)

    1982-06-01

    TASKA (Tandem Spiegelmaschine Karlsruhe) is a near term engineering test facility based on a tandem mirror concept with thermal barriers. The main objectives of this study were to develop a preconceptual design of a facility that could provide engineering design information for a Demonstration Fusion Power Reactor. Thus TASKA has to serve as testbed for technologies of plasma engineering, superconducting magnets, materials, plasma heating, breeding and test blankets, tritium technology, and remote handling. (orig.) [de

  14. High-Rate Field Demonstration of Large-Alphabet Quantum Key Distribution

    Science.gov (United States)

    2017-05-22

    Institute of Technology, Cambridge , MA 02139, USA 2Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, MA 02420, USA Distribution A...the detectors or the readout electronics — is saturated by the incoming photon flux, 3 as illustrated in Figure 1(b). In this regime, which extends to...The deployed-fiber testbed comprised a pair of dark fibers running between the main campus of MIT in Cambridge , MA, and MIT Lincoln Laboratory in

  15. TASKA - Tandem Spiegelmaschine Karlsruhe. Vol. 2

    International Nuclear Information System (INIS)

    1982-06-01

    TASKA (Tandem Spiegelmaschine Karlsruhe) is a near term engineering test facility based on a tandem mirror concept with thermal barriers. The main objectives of this study were to develop a preconceptual design of a facility that could provide engineering design information for a Demonstration Fusion Power Reactor. Thus TASKA has to serve as testbed for technologies of plasma engineering, superconducting magnets, materials, plasma heating, breeding and test blankets, tritium technology, and remote handling. (orig.) [de

  16. Data systems and computer science space data systems: Onboard networking and testbeds

    Science.gov (United States)

    Dalton, Dan

    1991-01-01

    The technical objectives are to develop high-performance, space-qualifiable, onboard computing, storage, and networking technologies. The topics are presented in viewgraph form and include the following: justification; technology challenges; program description; and state-of-the-art assessment.

  17. Artificial Intelligence for Refining Multi-Aircraft Testbed Environments, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA is researching various concepts, procedures, standards, and technologies intended for NextGen Airspace. Complex, distributed airspace simulations that utilize...

  18. LISA technologies in new light: exploring alternatives for charge management and optical bench construction

    Science.gov (United States)

    Ciani, Giacomo; Chilton, Andrew; Olatunde, Taiwo; Apple, Stephen; Conklin, John W.; Mueller, Guido

    2015-08-01

    A LISA-like gravitational wave observatory is the choice candidate for ESA's L3 large mission scheduled to launch in 2034. The LISA Test Package (LTP) mission will launch later this year and test many critical technologies needed for such an observatory, among which are picometer interferometry in space and UV charge management of the Test Mass (TM). The design of these subsystems has been frozen many years ago during the final formulation of the LTP mission; since then, the LISA mission concept has evolved and new technologies have become available, making it possible to re-think the way these subsystem are implemented. With the final formulation of the L3 mission still years in the future and the LTP results expected in about one year, now is an ideal time look for areas of possible improvement and explore alternative implementations that can enhance performance, reduce costs or mitigate risks.Recently developed UV LED are lighter, cheaper and more powerful than traditional mercury lamps; in addition, their fast response time can be used to implement AC discharge techniques that can save even more space and power, and provide a more precise control of the charge.The most recent iteration of the mission baseline design allows for eliminating some of the optical components initially deemed essential; paired with the use of polarization multiplexing, this permits a redesign of the optical bench that simplifies the layout and enables a modular approach to machining and assembly, thus reducing the risks and costs associated with the current monolithic design without compromising the picometer stability of the optical path.Leveraging on extensive previous experience with LISA interferometry and the availability of a torsion pendulum-based LISA test-bed, the University of Florida LISA group is working at developing, demonstrating and optimizing both these technologies. I will describe the most recent advancements and results.

  19. A Logic Programming Testbed for Inductive Thought and Specification.

    Science.gov (United States)

    Neff, Norman D.

    This paper describes applications of logic programming technology to the teaching of the inductive method in computer science and mathematics. It discusses the nature of inductive thought and its place in those fields of inquiry, arguing that a complete logic programming system for supporting inductive inference is not only feasible but necessary.…

  20. Nuclear waste repository transparency technology test bed demonstrations at WIPP

    International Nuclear Information System (INIS)

    Betsill J, David; Elkins, Ned Z.; Wu, Chuan-Fu; Mewhinney, James D.; Aamodt, Paul

    2000-01-01

    repository, the Waste Isolation Pilot Plant (WIPP) offers a unique opportunity to serve as an international cooperative test bed for developing and demonstrating technologies and processes in a fully operational repository system setting. To address the substantial national security implications for the US resulting from the lack of integrated, transparent management and disposition of nuclear materials at the back-end of the nuclear fuel and weapons cycles, it is proposed that WIPP be used as a test bed to develop and demonstrate technologies that will enable the transparent and proliferation-resistant geologic isolation of nuclear materials. The objectives of this initiative are to: (1) enhance public confidence in safe, secure geologic isolation of nuclear materials; (2) develop, test, and demonstrate transparency measures and technologies for the back-end of nuclear fuel cycle; and (3) foster international collaborations leading to workable, effective, globally-accepted standards for the transparent monitoring of geological repositories for nuclear materials. Test-bed activities include: development and testing of monitoring measures and technologies; international demonstration experiments; transparency workshops; visiting scientist exchanges; and educational outreach. These activities are proposed to be managed by the Department of Energy/Carlsbad Area Office (DOE/CAO) as part of The Center for Applied Repository and Underground Studies (CARUS)

  1. [Development and evaluation of the medical imaging distribution system with dynamic web application and clustering technology].

    Science.gov (United States)

    Yokohama, Noriya; Tsuchimoto, Tadashi; Oishi, Masamichi; Itou, Katsuya

    2007-01-20

    It has been noted that the downtime of medical informatics systems is often long. Many systems encounter downtimes of hours or even days, which can have a critical effect on daily operations. Such systems remain especially weak in the areas of database and medical imaging data. The scheme design shows the three-layer architecture of the system: application, database, and storage layers. The application layer uses the DICOM protocol (Digital Imaging and Communication in Medicine) and HTTP (Hyper Text Transport Protocol) with AJAX (Asynchronous JavaScript+XML). The database is designed to decentralize in parallel using cluster technology. Consequently, restoration of the database can be done not only with ease but also with improved retrieval speed. In the storage layer, a network RAID (Redundant Array of Independent Disks) system, it is possible to construct exabyte-scale parallel file systems that exploit storage spread. Development and evaluation of the test-bed has been successful in medical information data backup and recovery in a network environment. This paper presents a schematic design of the new medical informatics system that can be accommodated from a recovery and the dynamic Web application for medical imaging distribution using AJAX.

  2. Analytical study of the effects of the Low-Level Jet on moisture convergence and vertical motion fields at the Southern Great Plains Cloud and Radiation Testbed site

    Energy Technology Data Exchange (ETDEWEB)

    Bian, X.; Zhong, S.; Whiteman, C.D.; Stage, S.A. [Pacific Northwest National Lab., Richland, WA (United States)

    1996-04-01

    The Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) is located in a region that is strongly affected by a prominent meteorological phenomenon--the Great Plains Low-Level Jet (LLJ). Observations have shown that the LLJ plays a vital role in spring and summertime cloud formation and precipitation over the Great Plains. An improved understanding of the LLJ characteristics and its impact on the environment is necessary for addressing the fundamental issue of development and testing of radiational transfer and cloud parameterization schemes for the general circulation models (GCMs) using data from the SGP CART site. A climatological analysis of the summertime LLJ over the SGP has been carried out using hourly observations from the National Oceanic and Atmospheric Administration (NOAA) Wind Profiler Demonstration Network and from the ARM June 1993 Intensive Observation Period (IOP). The hourly data provide an enhanced temporal and spatial resolution relative to earlier studies which used 6- and 12-hourly rawinsonde observations at fewer stations.

  3. Follow on Research for Multi-Utility Technology Test Bed Aircraft at NASA Dryden Flight Research Center (FY13 Progress Report)

    Science.gov (United States)

    Pak, Chan-Gi

    2013-01-01

    Modern aircraft employ a significant fraction of their weight in composite materials to reduce weight and improve performance. Aircraft aeroservoelastic models are typically characterized by significant levels of model parameter uncertainty due to the composite manufacturing process. Small modeling errors in the finite element model will eventually induce errors in the structural flexibility and mass, thus propagating into unpredictable errors in the unsteady aerodynamics and the control law design. One of the primary objectives of Multi Utility Technology Test-bed (MUTT) aircraft is the flight demonstration of active flutter suppression, and therefore in this study, the identification of the primary and secondary modes for the structural model tuning based on the flutter analysis of MUTT aircraft. The ground vibration test-validated structural dynamic finite element model of the MUTT aircraft is created in this study. The structural dynamic finite element model of MUTT aircraft is improved using the in-house Multi-disciplinary Design, Analysis, and Optimization tool. In this study, two different weight configurations of MUTT aircraft have been improved simultaneously in a single model tuning procedure.

  4. Building and measuring a high performance network architecture

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, William T.C.; Toole, Timothy; Fisher, Chuck; Dugan, Jon; Wheeler, David; Wing, William R; Nickless, William; Goddard, Gregory; Corbato, Steven; Love, E. Paul; Daspit, Paul; Edwards, Hal; Mercer, Linden; Koester, David; Decina, Basil; Dart, Eli; Paul Reisinger, Paul; Kurihara, Riki; Zekauskas, Matthew J; Plesset, Eric; Wulf, Julie; Luce, Douglas; Rogers, James; Duncan, Rex; Mauth, Jeffery

    2001-04-20

    Once a year, the SC conferences present a unique opportunity to create and build one of the most complex and highest performance networks in the world. At SC2000, large-scale and complex local and wide area networking connections were demonstrated, including large-scale distributed applications running on different architectures. This project was designed to use the unique opportunity presented at SC2000 to create a testbed network environment and then use that network to demonstrate and evaluate high performance computational and communication applications. This testbed was designed to incorporate many interoperable systems and services and was designed for measurement from the very beginning. The end results were key insights into how to use novel, high performance networking technologies and to accumulate measurements that will give insights into the networks of the future.

  5. Wireless Spectrum Research & Development Senior Steering Group's Testbed Information Portal

    Data.gov (United States)

    Networking and Information Technology Research and Development, Executive Office of the President — This application contains a list of Federal R&D sites that are available for public-private collaborative research efforts in the field of spectrum and wireless...

  6. Using the EXECO toolbox to perform automatic and reproducible cloud experiments

    OpenAIRE

    Imbert , Matthieu; Pouilloux , Laurent; Rouzaud-Cornabas , Jonathan; Lèbre , Adrien; Hirofuchi , Takahiro

    2013-01-01

    International audience; his paper describes EXECO, a library that provides easy and efficient control of local or remote, standalone or parallel, processes execution, as well as tools designed for scripting distributed computing experiments on any computing platform. After discussing the EXECO internals, we illustrate its interest by presenting two experiments dealing with virtualization technologies on the Grid’5000 testbed.

  7. Extensions to Traditional Spatial Data Infrastructures: Integration of Social Media, Synchronization of Datasets, and Data on the Go in GeoPackages

    Science.gov (United States)

    Simonis, Ingo

    2015-04-01

    Traditional Spatial Data Infrastructures focus on aspects such as description and discovery of geospatial data, integration of these data into processing workflows, and representation of fusion or other data analysis results. Though lots of interoperability agreements still need to be worked out to achieve a satisfying level of interoperability within large scale initiatives such as INSPIRE, new technologies, use cases and requirements are constantly emerging from the user community. This paper focuses on three aspects that came up recently: The integration of social media data into SDIs, synchronization aspects between datasets used by field workers in shared resources environments, and the generation and maintenance of data for mixed mode online/offline situations that can be easily packed, delivered, modified, and synchronized with reference data sets. The work described in this paper results from the latest testbed executed by the Open Geospatial Consortium, OGC. The testbed is part of the interoperability program (IP), which constitutes a significant part of the OGC standards development process. The IP has a number of instruments to enhance geospatial standards and technologies, such as Testbeds, Pilot Projects, Interoperability Experiments, and Interoperability Expert Services. These activities are designed to encourage rapid development, testing, validation, demonstration and adoption of open, consensus based standards and best practices. The latest global activity, testbed-11, aims at exploring new technologies and architectural approaches to enrich and extend traditional spatial data infrastructures with data from Social Media, improved data synchronization, and the capability to take data to the field in new synchronized data containers called GeoPackages. Social media sources are a valuable supplement to providing up to date information in distributed environments. Following an uncoordinated crowdsourcing approach, social media data can be both

  8. Integration of educational and scientific-technological areas during the process of education of aerospace engineers

    Science.gov (United States)

    Mayorova, Vera

    2011-09-01

    test-beds for quick and affordable trial-and-test of new technologies and design solutions in aerospace followed by implementation of selected efficiencies in the industry; development and improvement of ground control infrastructure based in the university, which includes the Mission Control Center and the Earth Remote Sensing Center; development of cooperative partnerships with international partners in the field of microsatellite technologies with the goal of sharing experience, uniting efforts in preparing and running scientific and educational experiments and creating next-generation spacecraft by multi-national student groups. Such approaches allow creating seamless environment that unites educational, scientific and innovative processes. This allows students to develop high professionalism, modern engineering thinking and stable engineering skills at an early stage of education at the university.

  9. Air Vehicle Technology Integration Program (AVTIP) Delivery Order 0015: Open Control Platform (OCP) Software Enabled Control (SEC) Hardware in the Loop Simulation - OCP Hardware Integration

    National Research Council Canada - National Science Library

    Paunicka, James L

    2005-01-01

    ...) project sponsored by the DARPA Software Enabled Control (SEC) Program. The purpose of this project is to develop the capability to be an OCP test-bed and to evaluate the OCP controls and simulation environment for a specific test case...

  10. Design and implementation of a low cost experimental testbed for ...

    African Journals Online (AJOL)

    As wireless sensor networks (WSNs) become essential part of modern day infrastructure, researchers have presented loads of algorithms and models aimed at optimizing several aspects of the technology. These models are often developed and analyzed in simulated environments. The obvious need to experiment and ...

  11. FY 2011 Second Quarter: Demonstration of New Aerosol Measurement Verification Testbed for Present-Day Global Aerosol Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Koch, D

    2011-03-20

    The regional-scale Weather Research and Forecasting (WRF) model is being used by a DOE Earth System Modeling (ESM) project titled “Improving the Characterization of Clouds, Aerosols and the Cryosphere in Climate Models” to evaluate the performance of atmospheric process modules that treat aerosols and aerosol radiative forcing in the Arctic. We are using a regional-scale modeling framework for three reasons: (1) It is easier to produce a useful comparison to observations with a high resolution model; (2) We can compare the behavior of the CAM parameterization suite with some of the more complex and computationally expensive parameterizations used in WRF; (3) we can explore the behavior of this parameterization suite at high resolution. Climate models like the Community Atmosphere Model version 5 (CAM5) being used within the Community Earth System Model (CESM) will not likely be run at mesoscale spatial resolutions (10–20 km) until 5–10 years from now. The performance of the current suite of physics modules in CAM5 at such resolutions is not known, and current computing resources do not permit high-resolution global simulations to be performed routinely. We are taking advantage of two tools recently developed under PNNL Laboratory Directed Research and Development (LDRD) projects for this activity. The first is the Aerosol Modeling Testbed (Fast et al., 2011b), a new computational framework designed to streamline the process of testing and evaluating aerosol process modules over a range of spatial and temporal scales. The second is the CAM5 suite of physics parameterizations that have been ported into WRF so that their performance and scale dependency can be quantified at mesoscale spatial resolutions (Gustafson et al., 2010; with more publications in preparation).

  12. Performance Support Technology to Assess Training Effectiveness: Functional and Test-Bed Requirements

    Science.gov (United States)

    1992-10-01

    Su22ort Technologv SN Conge ~t ------------------ ------------------------------ 1. Compliance with TRADOC policy 1.1 Job aid that lays out SOP. 1.2 Tutorial...Inverse area . .Mark area after matched I-Custom cursor w rong respons,,e ¶Try again (Change Response TUpe jane) Erase feedback: SOK" Edit dlsplag OK...MANAGER for GROUP rou Choose an option: U - USER NAMES *2* A - ACTIVITIES *2* F - FILE MANAGEMENr C - CODEWORD E - ERROP REPORT *PRESENT* S - SPECIAL

  13. Use-Driven Testbed for Evaluating Systems and Technologies (U-TEST), Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The limitations of current airspace management have necessitated the planning and development of the Next Generation Air Transportation System (NextGen). NextGen...

  14. Review of Enabling Technologies to Facilitate Secure Compute Customization

    Energy Technology Data Exchange (ETDEWEB)

    Aderholdt, Ferrol [Tennessee Technological University; Caldwell, Blake A [ORNL; Hicks, Susan Elaine [ORNL; Koch, Scott M [ORNL; Naughton, III, Thomas J [ORNL; Pelfrey, Daniel S [ORNL; Pogge, James R [Tennessee Technological University; Scott, Stephen L [Tennessee Technological University; Shipman, Galen M [ORNL; Sorrillo, Lawrence [ORNL

    2014-12-01

    High performance computing environments are often used for a wide variety of workloads ranging from simulation, data transformation and analysis, and complex workflows to name just a few. These systems may process data for a variety of users, often requiring strong separation between job allocations. There are many challenges to establishing these secure enclaves within the shared infrastructure of high-performance computing (HPC) environments. The isolation mechanisms in the system software are the basic building blocks for enabling secure compute enclaves. There are a variety of approaches and the focus of this report is to review the different virtualization technologies that facilitate the creation of secure compute enclaves. The report reviews current operating system (OS) protection mechanisms and modern virtualization technologies to better understand the performance/isolation properties. We also examine the feasibility of running ``virtualized'' computing resources as non-privileged users, and providing controlled administrative permissions for standard users running within a virtualized context. Our examination includes technologies such as Linux containers (LXC [32], Docker [15]) and full virtualization (KVM [26], Xen [5]). We categorize these different approaches to virtualization into two broad groups: OS-level virtualization and system-level virtualization. The OS-level virtualization uses containers to allow a single OS kernel to be partitioned to create Virtual Environments (VE), e.g., LXC. The resources within the host's kernel are only virtualized in the sense of separate namespaces. In contrast, system-level virtualization uses hypervisors to manage multiple OS kernels and virtualize the physical resources (hardware) to create Virtual Machines (VM), e.g., Xen, KVM. This terminology of VE and VM, detailed in Section 2, is used throughout the report to distinguish between the two different approaches to providing virtualized execution

  15. Enabling Technologies for Cognitive Optical Networks

    DEFF Research Database (Denmark)

    Borkowski, Robert

    Cognition is a new paradigm for optical networking, in which the network has capabilities to observe, plan, decide, and act autonomously in order to optimize the end-to-end performance and minimize the need for human supervision. This PhD thesis expands the state of the art on cognitive optical......, and machine learning algorithms that make cognition possible. Secondly, advanced optical performance monitoring (OPM) capabilities performed via digital signal processing (DSP) that provide CONs with necessary feedback information allowing for autonomous network optimization. The research results presented...... in this thesis were carried out in the framework of the EU project Cognitive Heterogeneous Reconfigurable Optical Network (CHRON), whose aim was to develop an architecture and implement a testbed of a cognitive network able to self-configure and self-optimize to efficiently use available resources. In order...

  16. A Testbed for Implementing Prognostic Methodologies on Cryogenic Propellant Loading Systems

    Data.gov (United States)

    National Aeronautics and Space Administration — Prognostics technologies determine the health state of a system and predict its remaining useful life. With this information, operators are able to make...

  17. Satellite Servicing's Autonomous Rendezvous and Docking Testbed on the International Space Station

    Science.gov (United States)

    Naasz, Bo J.; Strube, Matthew; Van Eepoel, John; Barbee, Brent W.; Getzandanner, Kenneth M.

    2011-01-01

    The Space Servicing Capabilities Project (SSCP) at NASA's Goddard Space Flight Center (GSFC) has been tasked with developing systems for servicing space assets. Starting in 2009, the SSCP completed a study documenting potential customers and the business case for servicing, as well as defining several notional missions and required technologies. In 2010, SSCP moved to the implementation stage by completing several ground demonstrations and commencing development of two International Space Station (ISS) payloads-the Robotic Refueling Mission (RRM) and the Dextre Pointing Package (DPP)--to mitigate new technology risks for a robotic mission to service existing assets in geosynchronous orbit. This paper introduces the DPP, scheduled to fly in July of 2012 on the third operational SpaceX Dragon mission, and its Autonomous Rendezvous and Docking (AR&D) instruments. The combination of sensors and advanced avionics provide valuable on-orbit demonstrations of essential technologies for servicing existing vehicles, both cooperative and non-cooperative.

  18. Les Robertson, CERN's LCG project manager

    CERN Multimedia

    Maximilien Brice

    2003-01-01

    "The LCG will provide a vital test-bed for the new Grid computing technologies that are set to revolutionise the way scientists use the world's computing resources in areas ranging from fundamental research to medical diagnosis," said Les Robertson, CERN's LCG project manager. The Grid is a new method of sharing processing power between computers in centres around the world.

  19. Spatial Data Management System (SDMS)

    Science.gov (United States)

    Hutchison, Mark W.

    1994-01-01

    The Spatial Data Management System (SDMS) is a testbed for retrieval and display of spatially related material. SDMS permits the linkage of large graphical display objects with detail displays and explanations of its smaller components. SDMS combines UNIX workstations, MIT's X Window system, TCP/IP and WAIS information retrieval technology to prototype a means of associating aggregate data linked via spatial orientation. SDMS capitalizes upon and extends previous accomplishments of the Software Technology Branch in the area of Virtual Reality and Automated Library Systems.

  20. Development of Open Test-bed for Autonomous Operation in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Kim, Seungmin; Heo, Gyunyoung

    2017-01-01

    Nuclear power plants also recognize the need for automation. However, it is dangerous technology to have a significant impact on human society. In addition, due to the uncertain legal responsibility for autonomous operation, the application and development speed of nuclear energy related automation technology will be significantly decrease compared to other industries. It is argued that the application of AI and automation technology to power plants should not be prematurely applied or not based on the principle of applying proven technology since nuclear power plants are the highest level security operated facilities. As described above, the overall algorithm of the Test Bed is an autonomous operation algorithm (rulebased algorithm, learning-based algorithm, semiautonomous operation algorithm) to judge the entry condition of the procedure through condition monitoring and to enter the appropriate operating procedure. In order to make a test bed, the investigation for the heuristic part of the existing procedures and the heuristic part from the circumstance which is not specified in the procedure is needed. In the learning based and semi-autonomous operation algorithms, using MARS to extract its operating data and operational logs and try out various diagnostic algorithms as described above. Through the completion of these future tasks, the test bed which can compared with actual operators will be constructed and that it will be able to check its effectiveness by improving competitively with other research teams through the characteristics of shared platform.

  1. Development of a Tethered Formation Flight Testbed for ISS, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose an innovative, cost-effective flight experiment that will not only reduce the technology risk for future NASA missions but also take full advantage of the...

  2. Towards Mars — Stratospheric Balloons as Test-Beds for Mars Exploration

    Science.gov (United States)

    Dannenberg, K.

    2018-04-01

    The abstract deals with the possibilities to use stratospheric balloons for Mars science and technology needs, especially with the opportunities offered by the new European infrastructure project HEMERA, recently selected by the European Commission.

  3. NASA Stennis Space Center Integrated System Health Management Test Bed and Development Capabilities

    Science.gov (United States)

    Figueroa, Fernando; Holland, Randy; Coote, David

    2006-01-01

    Integrated System Health Management (ISHM) is a capability that focuses on determining the condition (health) of every element in a complex System (detect anomalies, diagnose causes, prognosis of future anomalies), and provide data, information, and knowledge (DIaK)-not just data-to control systems for safe and effective operation. This capability is currently done by large teams of people, primarily from ground, but needs to be embedded on-board systems to a higher degree to enable NASA's new Exploration Mission (long term travel and stay in space), while increasing safety and decreasing life cycle costs of spacecraft (vehicles; platforms; bases or outposts; and ground test, launch, and processing operations). The topics related to this capability include: 1) ISHM Related News Articles; 2) ISHM Vision For Exploration; 3) Layers Representing How ISHM is Currently Performed; 4) ISHM Testbeds & Prototypes at NASA SSC; 5) ISHM Functional Capability Level (FCL); 6) ISHM Functional Capability Level (FCL) and Technology Readiness Level (TRL); 7) Core Elements: Capabilities Needed; 8) Core Elements; 9) Open Systems Architecture for Condition-Based Maintenance (OSA-CBM); 10) Core Elements: Architecture, taxonomy, and ontology (ATO) for DIaK management; 11) Core Elements: ATO for DIaK Management; 12) ISHM Architecture Physical Implementation; 13) Core Elements: Standards; 14) Systematic Implementation; 15) Sketch of Work Phasing; 16) Interrelationship Between Traditional Avionics Systems, Time Critical ISHM and Advanced ISHM; 17) Testbeds and On-Board ISHM; 18) Testbed Requirements: RETS AND ISS; 19) Sustainable Development and Validation Process; 20) Development of on-board ISHM; 21) Taxonomy/Ontology of Object Oriented Implementation; 22) ISHM Capability on the E1 Test Stand Hydraulic System; 23) Define Relationships to Embed Intelligence; 24) Intelligent Elements Physical and Virtual; 25) ISHM Testbeds and Prototypes at SSC Current Implementations; 26) Trailer

  4. Experimental Demonstration of a Cognitive Optical Network for Reduction of Restoration Time

    DEFF Research Database (Denmark)

    Kachris, Christoforos; Klonidis, Dimitris; Francescon, Antonio

    2014-01-01

    This paper presents the implementation and performance evaluation of a cognitive heterogeneous optical network testbed. The testbed integrates the CMP, the data plane and the cognitive system and reduces by 48% the link restoration time.......This paper presents the implementation and performance evaluation of a cognitive heterogeneous optical network testbed. The testbed integrates the CMP, the data plane and the cognitive system and reduces by 48% the link restoration time....

  5. Empirical assessment of a prismatic daylight-redirecting window film in a full-scale office testbed

    Energy Technology Data Exchange (ETDEWEB)

    Thanachareonkit, Anothai; Lee, Eleanor S.; McNeil, Andrew

    2013-08-31

    Daylight redirecting systems with vertical windows have the potential to offset lighting energy use in deep perimeter zones. Microstructured prismatic window films can be manufactured using low-cost, roll-to-roll fabrication methods and adhered to the inside surface of existing windows as a retrofit measure or installed as a replacement insulating glass unit in the clerestory portion of the window wall. A clear film patterned with linear, 50-250 micrometer high, four-sided asymmetrical prisms was fabricated and installed in the south-facing, clerestory low-e, clear glazed windows of a full-scale testbed facility. Views through the film were distorted. The film was evaluated in a sunny climate over a two-year period to gauge daylighting and visual comfort performance. The daylighting aperture was small (window-towall ratio of 0.18) and the lower windows were blocked off to isolate the evaluation to the window film. Workplane illuminance measurements were made in the 4.6 m (15 ft) deep room furnished as a private office. Analysis of discomfort glare was conducted using high dynamic range imaging coupled with the evalglare software tool, which computes the daylight glare probability and other metrics used to evaluate visual discomfort. The window film was found to result in perceptible levels of discomfort glare on clear sunny days from the most conservative view point in the rear of the room looking toward the window. Daylight illuminance levels at the rear of the room were significantly increased above the reference window condition, which was defined as the same glazed clerestory window but with an interior Venetian blind (slat angle set to the cut-off angle), for the equinox to winter solstice period on clear sunny days. For partly cloudy and overcast sky conditions, daylight levels were improved slightly. To reduce glare, the daylighting film was coupled with a diffusing film in an insulating glazing unit. The diffusing film retained the directionality of the

  6. Hazardous waste retrieval strategies using a high-pressure water jet scarifier

    International Nuclear Information System (INIS)

    Hatchell, B.K.; Rinker, M.W.; Mullen, O.D.

    1995-08-01

    The Waste Dislodging and Conveyance Program is sponsored by the US Department of Energy Office of Technology Development to investigate waste dislodging and conveyance processes suitable for the retrieval of high-level radioactive waste. This program, represented by industry, national laboratories, and academia, has proposed a baseline technology of high-pressure water jet dislodging and pneumatic conveyance integrated as a scarifier as a means of retrieval of waste inside Hanford single-shell tanks. A testing program has been initiated to investigate system deployment techniques to determine appropriate mining strategies, level of control, sensor requirements, and address integration issues associated with deploying the scarifier by a long robotic manipulator arm. A test facility denoted the Hydraulics Testbed (HTB) is being constructed to achieve these objectives and to allow longer-duration, multiple-pass tests on large waste fields using a versatile gantry-style manipulator. Mining strategy tests with materials simulating salt cake and sludge waste forms will be conducted to evaluate the effectiveness of mining strategies, forces related to scarifier and conveyance line, and retrieval rate. This paper will describe the testbed facility and testing program and present initial test results to date

  7. Smart Technology Brings Power to the People

    Energy Technology Data Exchange (ETDEWEB)

    Hammerstrom, Donald J.; Gephart, Julie M.

    2006-12-01

    Imagine you’re at home one Saturday morning on the computer, as your son takes a shower, your daughter is watching TV, and a load of laundry is in your washer and dryer. Meanwhile, the fragrance of fresh-brewed coffee fills the house. You hear a momentary beep from the dryer that tells you that if you were to look, a high-energy price indicator would be displayed on the front panels of some of your favorite appliances. This tells you that you could save money right now by using less energy. (You’ve agreed to this arrangement to help your utility avoid a substation upgrade. In return, you get a lower rate most of the time.) So you turn off some of the unneeded lights in your home and opt to wait until evening to run the dishwasher. Meanwhile, some of your largest appliances have automatically responded to this signal and have already reduced your home’s energy consumption, saving you money. On January 11, 2006, demonstration projects were launched in 200 homes in the Pacific Northwest region of the United States to test and speed adoption of new smart grid technologies that can make the power grid more resilient and efficient. Pacific Northwest National Laboratory, a U.S. Department of Energy national laboratory in Richland, Washington, is managing the yearlong study called the Pacific Northwest GridWise™ Testbed Demonstration, a project funded primarily by DOE. Through the GridWise™ Demonstration projects, researchers are gaining insight into energy consumers’ behavior while testing new technologies designed to bring the electric transmission system into the information age. Northwest utilities, appliance manufacturers and technology companies are also supporting this effort to demonstrate the devices and assess the resulting consumer response. A combination of devices, software and advanced analytical tools will give homeowners more information about their energy use and cost, and we want to know if this will modify their behavior. Approximately 100

  8. Design and Development of a Rapid Research, Design, and Development Platform for In-Situ Testing of Tools and Concepts for Trajectory-Based Operations

    Science.gov (United States)

    Underwood, Matthew C.

    2017-01-01

    To provide justification for equipping a fleet of aircraft with avionics capable of supporting trajectory-based operations, significant flight testing must be accomplished. However, equipping aircraft with these avionics and enabling technologies to communicate the clearances required for trajectory-based operations is cost-challenging using conventional avionics approaches. This paper describes an approach to minimize the costs and risks of flight testing these technologies in-situ, discusses the test-bed platform developed, and highlights results from a proof-of-concept flight test campaign that demonstrates the feasibility and efficiency of this approach.

  9. In-Space Manufacturing: Pioneering a Sustainable Path to Mars

    Science.gov (United States)

    Werkheiser, Niki

    2015-01-01

    ISM is responsible for developing the on-demand manufacturing capabilities that will be required for affordable, sustainable operations during Exploration Missions (in-transit and on-surface) to destinations such as Mars. This includes advancing the needed technologies, as well as establishing the skills & processes (such as certification and characterization) that will enable the technologies to go from novel to institutionalized. These technologies are evolving rapidly due to terrestrial markets. ISM is leveraging this commercial development to develop these capabilities within a realistic timeframe and budget. ISM utilizes the International Space Station (ISS) as a test-bed to adapt these technologies for microgravity operations and evolve the current operations mindset from earth-reliant to earth-independent.

  10. Network-Centric Maritime Radiation Awareness and Interdiction Experiments: C2 Experimentation

    International Nuclear Information System (INIS)

    Bordetsky, A; Dougan, A D; Nekoogar, F

    2006-01-01

    The paper addresses technological and operational challenges of developing a global plug-and-play Maritime Domain Security testbed for the Global War on Terrorism mission. This joint NPS-LLNL project is based on the NPS Tactical Network Topology (TNT) composed of long-haul OFDM networks combined with self-forming wireless mesh links to air, surface, ground, and underwater unmanned vehicles. This long-haul network is combined with ultra-wideband (UWB) communications systems for wireless communications in harsh radio propagation channels. LLNL's UWB communication prototypes are designed to overcome shortcomings of the present narrowband communications systems in heavy metallic and constricted corridors inside ships. In the center of our discussion are networking solutions for the Maritime Interdiction Operation (MIO) Experiments in which geographically distributed command centers and subject matter experts collaborate with the Boarding Party in real time to facilitate situational understanding and course of action selection. The most recent experiment conducted via the testbed extension to the Alameda Island exercised several key technologies aimed at improving MIO. These technologies included UWB communications from within the ship to Boarding Party leader sending data files and pictures, advanced radiation detection equipment for search and identification, biometric equipment to record and send fingerprint files to facilitate rapid positive identification of crew members, and the latest updates of the NPS Tactical Network Topology facilitating reachback to LLNL, Biometric Fusion Center, USCG, and DTRA experts

  11. The Fast Alternative Cryogenic Experiment Testbed

    Science.gov (United States)

    Nash, Alfred; Holmes, Warren

    2000-01-01

    One of the challenges in the area of cryogenics for space exploration in the next millennium is providing the capability for inexpensive, frequent, access to space. Faced with this challenge during the International Space Station (ISS) build era, when other Space Shuttle manifesting opportunities are unavailable, a "proof of concept" cryostat has been developed to demonstrate the ability to accommodate low temperature science investigations within the constraints of the Hitchhiker siderail carrier. The Hitchhiker siderail carrier is available on a "mass available" basis during the ISS build era. In fact, several hitchhiker payloads flew with the deployment of the Unity module. Hitchhiker siderail carrier payloads have historically flown an average of about four times a year. A hybrid Solid Neon - Superfluid Helium cryostat has been developed with Janis Research Company to accommodate instruments of 16.5 cm diameter and 30 cm. length. This hybrid approach was taken in part to provide adequate on-orbit lifetime for instruments with high (conducted) heat loads from the instrumentation wiring. Mass, volume, lifetime and the launch hold scenario were all design drivers. In addition, with Ball Aerospace and Technologies Corporation, a multichannel VME architecture Germanium Resistance Thermometer (GRT) readout and heater control servo system has been developed. In a flight system, the cryostat and electronics payloads would be umbilically attached in a paired Hitchhiker siderail mount, and permit on-orbit command and telemetry capability. The results of performance tests of both the cryostat, and a helium sample instrument will be presented. The instrument features a self contained, miniaturized, nano-Kelvin resolution High Resolution Thermometer (HRT). This high level of thermal resolution is achieved through the utilization of a dc Superconducting Quantum Interference Device (SQUID). Although developed for the Low Temperature Microgravity Fundamental Physics

  12. LISA and LISA PathFinder, the endeavour to detect low frequency GWs

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, H [Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2BW (United Kingdom); Boatella, C [Institut d' Estudis Espacials de Catalunya (IEEC), Edifici Nexus, Gran Capita 2-4, 08034 Barcelona (Spain); Chmeissani, M [Institut de Fisica d' Altes Energies (IFAE), Edifici C, Universitat Autonoma de Barcelona, 08193 Bellaterra (Barcelona) (Spain); Conchillo, A [Institut d' Estudis Espacials de Catalunya (IEEC), Edifici Nexus, Gran Capita 2-4, 08034 Barcelona (Spain); Garcia-Berro, E [Institut d' Estudis Espacials de Catalunya (IEEC), Edifici Nexus, Gran Capita 2-4, 08034 Barcelona (Spain); Grimani, C [Universita degli Studi di Urbino, and INFN Florence, Istituto di Fisica, Via Santa Chiara 27, 61029 Urbino (Italy); Hajdas, W [Department of Particles and Matter, Paul Scherrer Institut, ODRA 120, 5232 Villigen (Switzerland); Lobo, A [Institut d' Estudis Espacials de Catalunya (IEEC), Edifici Nexus, Gran Capita 2-4, 08034 Barcelona (Spain); Martinez, L [AtIpic, Parc Tecnologic del Valles, 08290 Cerdanyola del Valles, Barcelona (Spain); Nofrarias, M [Institut d' Estudis Espacials de Catalunya (IEEC), Edifici Nexus, Gran Capita 2-4, 08034 Barcelona (Spain); Ortega, J A [Institut d' Estudis Espacials de Catalunya (IEEC), Edifici Nexus, Gran Capita 2-4, 08034 Barcelona (Spain); Puigdengoles, C [Institut de Fisica d' Altes Energies (IFAE), Edifici C, Universitat Autonoma de Barcelona, 08193 Bellaterra (Barcelona) (Spain); Ramos-Castro, J [Departament d' Enginyeria Electronica, UPC, Campus Nord, Edif. C4, Jordi Girona 1-3, 08034 Barcelona (Spain); Sanjuan, J [Institut d' Estudis Espacials de Catalunya (IEEC), Edifici Nexus, Gran Capita 2-4, 08034 Barcelona (Spain); Wass, P [Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2BW (United Kingdom); Xirgu, X [Institut d' Estudis Espacials de Catalunya (IEEC), Edifici Nexus, Gran Capita 2-4, 08034 Barcelona (Spain)

    2007-05-15

    This is a review about LISA and its technology demonstrator, LISAPathFinder. We first describe the conceptual problems which need to be overcome in order to set up a working interferometric detector of low frequency Gravitational Waves (GW), then summarise the solutions to them as currently conceived by the LISA mission team. This will show that some of these solutions require new technological abilities which are still under development, and which need proper test before being fully implemented. LISAPathFinder (LPF) is the the testbed for such technologies. The final part of the paper will address the ideas and concepts behind the PathFinder as well as their impact on LISA.

  13. LISA and LISA PathFinder, the endeavour to detect low frequency GWs

    International Nuclear Information System (INIS)

    Araujo, H; Boatella, C; Chmeissani, M; Conchillo, A; Garcia-Berro, E; Grimani, C; Hajdas, W; Lobo, A; Martinez, L; Nofrarias, M; Ortega, J A; Puigdengoles, C; Ramos-Castro, J; Sanjuan, J; Wass, P; Xirgu, X

    2007-01-01

    This is a review about LISA and its technology demonstrator, LISAPathFinder. We first describe the conceptual problems which need to be overcome in order to set up a working interferometric detector of low frequency Gravitational Waves (GW), then summarise the solutions to them as currently conceived by the LISA mission team. This will show that some of these solutions require new technological abilities which are still under development, and which need proper test before being fully implemented. LISAPathFinder (LPF) is the the testbed for such technologies. The final part of the paper will address the ideas and concepts behind the PathFinder as well as their impact on LISA

  14. Operational Analysis on Torpedo Defence

    NARCIS (Netherlands)

    Grootendorst, H.J.; Benders, F.P.A.; Fitski, H.J.; Veldhoven, E.R. van

    2007-01-01

    Since 1998, TNO Defence, Security and Safety has performed operational analysis with the Underwater Warfare Testbed, which provides an environment for evaluation and validation of systems, concepts, and tactics. On top of this testbed the Torpedo Defence System TestBed has been built to simulate

  15. Energy Consumption Model and Measurement Results for Network Coding-enabled IEEE 802.11 Meshed Wireless Networks

    DEFF Research Database (Denmark)

    Paramanathan, Achuthan; Rasmussen, Ulrik Wilken; Hundebøll, Martin

    2012-01-01

    This paper presents an energy model and energy measurements for network coding enabled wireless meshed networks based on IEEE 802.11 technology. The energy model and the energy measurement testbed is limited to a simple Alice and Bob scenario. For this toy scenario we compare the energy usages...... for a system with and without network coding support. While network coding reduces the number of radio transmissions, the operational activity on the devices due to coding will be increased. We derive an analytical model for the energy consumption and compare it to real measurements for which we build...... a flexible, low cost tool to be able to measure at any given node in a meshed network. We verify the precision of our tool by comparing it to a sophisticated device. Our main results in this paper are the derivation of an analytical energy model, the implementation of a distributed energy measurement testbed...

  16. EVALUATING THE ACCURACY OF DEM GENERATION ALGORITHMS FROM UAV IMAGERY

    Directory of Open Access Journals (Sweden)

    J. J. Ruiz

    2013-08-01

    Full Text Available In this work we evaluated how the use of different positioning systems affects the accuracy of Digital Elevation Models (DEMs generated from aerial imagery obtained with Unmanned Aerial Vehicles (UAVs. In this domain, state-of-the-art DEM generation algorithms suffer from typical errors obtained by GPS/INS devices in the position measurements associated with each picture obtained. The deviations from these measurements to real world positions are about meters. The experiments have been carried out using a small quadrotor in the indoor testbed at the Center for Advanced Aerospace Technologies (CATEC. This testbed houses a system that is able to track small markers mounted on the UAV and along the scenario with millimeter precision. This provides very precise position measurements, to which we can add random noise to simulate errors in different GPS receivers. The results showed that final DEM accuracy clearly depends on the positioning information.

  17. Advanced technology mobile robotics vehicle fleet

    International Nuclear Information System (INIS)

    McGovern, D.E.

    1987-03-01

    A fleet of vehicles is being developed and maintained by Sandia National Laboratories for studies in remote control and autonomous operation. The vehicles range from modified commercial vehicles to specially constructed mobile platforms and are utilized as testbeds for developing concepts in the areas of remote control (teleoperation) and computer control (autonomy). Actuators control the vehicle speed, brakes, and steering via manual input from a remote driving station or through some level of digital computer control. On-board processing may include simple vehicle control functions or may allow for unmanned, autonomous operation. Communication links are provided for digital communication between control computers, television transmission for vehicle vision, and voice for local control. SNL can develop, test, and evaluate sensors, processing requirements, various methods of actuator implementation, operator controlled feedback requirements, and vehicle operations. A description of the major features and uses for each of the vehicles in the fleet is provided

  18. Development of a Smart MicroGrid Testbed

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Wei-Jen; Wetz, David

    2013-04-25

    Demand for electricity is rapidly increasing thereby applying pressure to expand generation and distribution capacity worldwide. The expansion of traditional services not only imposes burdens on financial resources but also encounters many challenges from community residents who oppose the construction of new power generation plants or transmission facilities in their backyard. From the integrated resource planning point of view, a feasible and economical remedy is, therefore, to utilize existing dispersed generation capacity known as distributed generation (DG) and/or renewable energy resources that may exist in the vicinity of the load centers. The main criteria for selecting the type of fuel source for a DG is its local availability, conversion system technological advancement, impact on the environment, and operating cost. DG’s have existed in the market for many years. Large diesel or gas powered generation sets are used in stand-by mode to power up vital services such as hospitals, financial and commercial compounds, telecommunication centers and industrial premises. Wind turbines, photovoltaic energy sources, and fuel cells are new comers that are now competing in size and efficiency with many standard generating sets. With this in mind, they are being used in many places not only as stand-by units but as the prime source of power particularly when the $/kWhr rate is high[1-5].

  19. Mission-Critical Systems Design Framework

    Directory of Open Access Journals (Sweden)

    Kyriakos Houliotis

    2018-03-01

    Full Text Available Safety-critical systems are well documented and standardized (e.g. IEC 61508, RTCA DO-178B within system design cycles. However in Defence and Security, systems that are critical to the success of a Mission are not defined within the literature nor are there any guidelines in defining criticality in their design or operational capabilities. When it comes to Vetronics (Vehicle Electronics, a mission-critical system, is a system with much complexity and mixed criticality levels that is a part of the overall platform (military vehicle offering integrated system capabilities. In this paper, a framework is presented, providing guidelines in designing efficiently and effectively mission-critical systems considering principles of Interoperable Open Architectures (IOA, mission-critical integrity levels and following new standardization activities such as NATO Generic Vehicle Architecture (NGVA. A Defensive Aid Suite (DAS system is used as a case study to illustrate how this framework can be exploited. The indention of this extension is to provide an approach to precisely estimate threats in order to de-risk missions in the very early stages.

  20. Trace Gas Measurements from the GeoTASO and GCAS Airborne Instruments: An Instrument and Algorithm Test-Bed for Air Quality Observations from Geostationary Orbit

    Science.gov (United States)

    Nowlan, C. R.; Liu, X.; Janz, S. J.; Leitch, J. W.; Al-Saadi, J. A.; Chance, K.; Cole, J.; Delker, T.; Follette-Cook, M. B.; Gonzalez Abad, G.; Good, W. S.; Kowalewski, M. G.; Loughner, C.; Pickering, K. E.; Ruppert, L.; Soo, D.; Szykman, J.; Valin, L.; Zoogman, P.

    2016-12-01

    The Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) and the GEO-CAPE Airborne Simulator (GCAS) instruments are pushbroom sensors capable of making remote sensing measurements of air quality and ocean color. Originally developed as test-bed instruments for the Geostationary Coastal and Air Pollution Events (GEO-CAPE) decadal survey, these instruments are now also part of risk reduction for the upcoming Tropospheric Emissions: Monitoring of Pollution (TEMPO) and Geostationary Environment Monitoring Spectrometer (GEMS) geostationary satellite missions, and will provide validation capabilities after the satellite instruments are in orbit. GeoTASO and GCAS flew on two different aircraft in their first intensive air quality field campaigns during the DISCOVER-AQ missions over Texas in 2013 and Colorado in 2014. GeoTASO was also deployed in 2016 during the KORUS-AQ field campaign to make measurements of trace gases and aerosols over Korea. GeoTASO and GCAS collect spectra of backscattered solar radiation in the UV and visible that can be used to derive 2-D maps of trace gas columns below the aircraft at spatial resolutions on the order of 250 x 500 m. We present spatially resolved maps of trace gas retrievals of ozone, nitrogen dioxide, formaldehyde and sulfur dioxide over urban areas and power plants from flights during the field campaigns, and comparisons with data from ground-based spectrometers, in situ monitoring instruments, and satellites.

  1. Design and Development of a 200-kW Turbo-Electric Distributed Propulsion Testbed

    Science.gov (United States)

    Papathakis, Kurt V.

    2017-01-01

    There a few NASA funded electric and hybrid electric projects from different NASA Centers, including the NASA Armstrong Flight Research Center (AFRC) (Edwards, California). Each project identifies a specific technology gap that is currently inhibiting the growth and proliferation of relevant technologies in commercial aviation. This paper describes the design and development of a turbo-electric distributed propulsion (TeDP) hardware-in-the-loop (HIL) simulation bench, which is a test bed for discovering turbo-electric control, distributed electric control, power management control, and integration competencies while providing risk mitigation for future turbo-electric flying demonstrators.

  2. Department of Nuclear Equipment '' High Technology Center - HITEC '' - Overview

    International Nuclear Information System (INIS)

    Krawczyk, P.

    2010-01-01

    Full text: The Department of Nuclear Equipment, also known under the brand '' HITEC '' plays a unique role in the Institute. It combines research and development with manufacturing activities in the area of accelerator technology applications in medicine and industrial radiography. In 2010, the Department continued intense development efforts in the framework of Project No. POIG.01.01-14-012/08-00 (known under the short name of '' Accelerators and Detectors '') funded by EU Structural Funds. As described in detail elsewhere in this Report, these efforts resulted in substantial progress in the design and manufacture of the first model of a medical multi-energy accelerator for advanced radiotherapy. This model is an important testbed for a number of technologies and solutions that will be implemented in the final accelerator. Also, design and manufacture of the elements for an intra-surgery accelerator was carried out. It is worth noting that participation in the '' Accelerators and Detectors '' Project allowed HITEC to modernize significantly its manufacturing and testing capabilities. In 2010, the new equipment was successfully implemented for use in a manufacturing regime. The year 2010 also saw the completion of two R(and)D projects co-financed by the Polish Ministry of Science and Higher Education: · Multileaf Collimator as a Precision Device for Irradiation Field Delimiting in Medical Accelerators; · 4? Recessed Ionization Chamber with Internal Power Supply. In both cases, full scale prototypes of the respective devices were manufactured. In response to market interest HITEC started in 2010 a concept study of a compact low energy industrial radiography accelerator. Subsequently, HITEC received an order to develop and manufacture such a device and the development work was started. On completion the new device will extend the range of commercially available accelerators. In parallel to the above, HITEC continued to extend its engagement in scientific

  3. Data Analysis Techniques for a Lunar Surface Navigation System Testbed

    Science.gov (United States)

    Chelmins, David; Sands, O. Scott; Swank, Aaron

    2011-01-01

    NASA is interested in finding new methods of surface navigation to allow astronauts to navigate on the lunar surface. In support of the Vision for Space Exploration, the NASA Glenn Research Center developed the Lunar Extra-Vehicular Activity Crewmember Location Determination System and performed testing at the Desert Research and Technology Studies event in 2009. A significant amount of sensor data was recorded during nine tests performed with six test subjects. This paper provides the procedure, formulas, and techniques for data analysis, as well as commentary on applications.

  4. Security-Enhanced Autonomous Network Management

    Science.gov (United States)

    Zeng, Hui

    2015-01-01

    Ensuring reliable communication in next-generation space networks requires a novel network management system to support greater levels of autonomy and greater awareness of the environment and assets. Intelligent Automation, Inc., has developed a security-enhanced autonomous network management (SEANM) approach for space networks through cross-layer negotiation and network monitoring, analysis, and adaptation. The underlying technology is bundle-based delay/disruption-tolerant networking (DTN). The SEANM scheme allows a system to adaptively reconfigure its network elements based on awareness of network conditions, policies, and mission requirements. Although SEANM is generically applicable to any radio network, for validation purposes it has been prototyped and evaluated on two specific networks: a commercial off-the-shelf hardware test-bed using Institute of Electrical Engineers (IEEE) 802.11 Wi-Fi devices and a military hardware test-bed using AN/PRC-154 Rifleman Radio platforms. Testing has demonstrated that SEANM provides autonomous network management resulting in reliable communications in delay/disruptive-prone environments.

  5. Flight Test Results for the F-16XL With a Digital Flight Control System

    Science.gov (United States)

    Stachowiak, Susan J.; Bosworth, John T.

    2004-01-01

    In the early 1980s, two F-16 airplanes were modified to extend the fuselage length and incorporate a large area delta wing planform. These two airplanes, designated the F-16XL, were designed by the General Dynamics Corporation (now Lockheed Martin Tactical Aircraft Systems) (Fort Worth, Texas) and were prototypes for a derivative fighter evaluation program conducted by the United States Air Force. Although the concept was never put into production, the F-16XL prototypes provided a unique planform for testing concepts in support of future high-speed supersonic transport aircraft. To extend the capabilities of this testbed vehicle the F-16XL ship 1 aircraft was upgraded with a digital flight control system. The added flexibility of a digital flight control system increases the versatility of this airplane as a testbed for aerodynamic research and investigation of advanced technologies. This report presents the handling qualities flight test results covering the envelope expansion of the F-16XL with the digital flight control system.

  6. Exploring virtualisation tools with a new virtualisation provisioning method to test dynamic grid environments for ALICE grid jobs over ARC grid middleware

    International Nuclear Information System (INIS)

    Wagner, B; Kileng, B

    2014-01-01

    The Nordic Tier-1 centre for LHC is distributed over several computing centres. It uses ARC as the internal computing grid middleware. ALICE uses its own grid middleware AliEn to distribute jobs and the necessary software application stack. To make use of most of the AliEn infrastructure and software deployment methods for running ALICE grid jobs on ARC, we are investigating different possible virtualisation technologies. For this a testbed and possible framework for bridging different middleware systems is under development. It allows us to test a variety of virtualisation methods and software deployment technologies in the form of different virtual machines.

  7. Detection of Social Interaction in Smart Spaces.

    Science.gov (United States)

    Cook, Diane J; Crandall, Aaron; Singla, Geetika; Thomas, Brian

    2010-02-01

    The pervasive sensing technologies found in smart environments offer unprecedented opportunities for monitoring and assisting the individuals who live and work in these spaces. An aspect of daily life that is important for one's emotional and physical health is social interaction. In this paper we investigate the use of smart environment technologies to detect and analyze interactions in smart spaces. We introduce techniques for collect and analyzing sensor information in smart environments to help in interpreting resident behavior patterns and determining when multiple residents are interacting. The effectiveness of our techniques is evaluated using two physical smart environment testbeds.

  8. Biobotic insect swarm based sensor networks for search and rescue

    Science.gov (United States)

    Bozkurt, Alper; Lobaton, Edgar; Sichitiu, Mihail; Hedrick, Tyson; Latif, Tahmid; Dirafzoon, Alireza; Whitmire, Eric; Verderber, Alexander; Marin, Juan; Xiong, Hong

    2014-06-01

    The potential benefits of distributed robotics systems in applications requiring situational awareness, such as search-and-rescue in emergency situations, are indisputable. The efficiency of such systems requires robotic agents capable of coping with uncertain and dynamic environmental conditions. For example, after an earthquake, a tremendous effort is spent for days to reach to surviving victims where robotic swarms or other distributed robotic systems might play a great role in achieving this faster. However, current technology falls short of offering centimeter scale mobile agents that can function effectively under such conditions. Insects, the inspiration of many robotic swarms, exhibit an unmatched ability to navigate through such environments while successfully maintaining control and stability. We have benefitted from recent developments in neural engineering and neuromuscular stimulation research to fuse the locomotory advantages of insects with the latest developments in wireless networking technologies to enable biobotic insect agents to function as search-and-rescue agents. Our research efforts towards this goal include development of biobot electronic backpack technologies, establishment of biobot tracking testbeds to evaluate locomotion control efficiency, investigation of biobotic control strategies with Gromphadorhina portentosa cockroaches and Manduca sexta moths, establishment of a localization and communication infrastructure, modeling and controlling collective motion by learning deterministic and stochastic motion models, topological motion modeling based on these models, and the development of a swarm robotic platform to be used as a testbed for our algorithms.

  9. Network-Centric Maritime Radiation Awareness and Interdiction Experiments: C2 Experimentation

    Energy Technology Data Exchange (ETDEWEB)

    Bordetsky, A; Dougan, A D; Nekoogar, F

    2006-08-07

    The paper addresses technological and operational challenges of developing a global plug-and-play Maritime Domain Security testbed for the Global War on Terrorism mission. This joint NPS-LLNL project is based on the NPS Tactical Network Topology (TNT) composed of long-haul OFDM networks combined with self-forming wireless mesh links to air, surface, ground, and underwater unmanned vehicles. This long-haul network is combined with ultra-wideband (UWB) communications systems for wireless communications in harsh radio propagation channels. LLNL's UWB communication prototypes are designed to overcome shortcomings of the present narrowband communications systems in heavy metallic and constricted corridors inside ships. In the center of our discussion are networking solutions for the Maritime Interdiction Operation (MIO) Experiments in which geographically distributed command centers and subject matter experts collaborate with the Boarding Party in real time to facilitate situational understanding and course of action selection. The most recent experiment conducted via the testbed extension to the Alameda Island exercised several key technologies aimed at improving MIO. These technologies included UWB communications from within the ship to Boarding Party leader sending data files and pictures, advanced radiation detection equipment for search and identification, biometric equipment to record and send fingerprint files to facilitate rapid positive identification of crew members, and the latest updates of the NPS Tactical Network Topology facilitating reachback to LLNL, Biometric Fusion Center, USCG, and DTRA experts.

  10. CRYogenic Orbital TEstbed Ground Test Article Thermal Analysis

    Science.gov (United States)

    Piryk, David; Schallhorn, Paul; Walls, Laurie; Stopnitzky, Benny; Rhys, Noah; Wollen, Mark

    2012-01-01

    The purpose of this study was to anchor thermal and fluid system models to CRYOTE ground test data. The CRYOTE ground test artide was jointly developed by Innovative Engineering Solutions, United Launch Alliance and NASA KSC. The test article was constructed out of a titanium alloy tank, Sapphire 77 composite skin (similar to G10), an external secondary payload adapter ring, thermal vent system, multi layer insulation and various data acquisition instrumentation. In efforts to understand heat loads throughout this system, the GTA (filled with liquid nitrogen for safety purposes) was subjected to a series of tests in a vacuum chamber at Marshall Space Flight Center. By anchoring analytical models against test data, higher fidelity thermal environment predictions can be made for future flight articles which would eventually demonstrate critical cryogenic fluid management technologies such as system chilldown, transfer, pressure control and long term storage. Significant factors that influenced heat loads included radiative environments, multi-layer insulation performance, tank fill levels and pressures and even contact conductance coefficients. This report demonstrates how analytical thermal/fluid networks were established and includes supporting rationale for specific thermal responses.

  11. Technology for an intelligent, free-flying robot for crew and equipment retrieval in space

    Science.gov (United States)

    Erickson, J. D.; Reuter, G. J.; Healey, Kathleen J.; Phinney, D. E.

    1990-01-01

    Crew rescue and equipment retrieval is a Space Station Freedom requirement. During Freedom's lifetime, there is a high probability that a number of objects will accidently become separated. Members of the crew, replacement units, and key tools are examples. Retrieval of these objects within a short time is essential. Systems engineering studies were conducted to identify system requirements and candidate approaches. One such approach, based on a voice-supervised, intelligent, free-flying robot was selected for further analysis. A ground-based technology demonstration, now in its second phase, was designed to provide an integrated robotic hardware and software testbed supporting design of a space-borne system. The ground system, known as the EVA Retriever, is examining the problem of autonomously planning and executing a target rendezvous, grapple, and return to base while avoiding stationary and moving obstacles. The current prototype is an anthropomorphic manipulator unit with dexterous arms and hands attached to a robot body and latched in a manned maneuvering unit. A precision air-bearing floor is used to simulate space. Sensor data include two vision systems and force/proximity/tactile sensors on the hands and arms. Planning for a shuttle file experiment is underway. A set of scenarios and strawman requirements were defined to support conceptual development. Initial design activities are expected to begin in late 1989 with the flight occurring in 1994. The flight hardware and software will be based on lessons learned from both the ground prototype and computer simulations.

  12. Waypoint Generation Based on Sensor Aimpoint

    Science.gov (United States)

    2009-03-01

    United States Government . AFIT/GAE/ENV/09-M01 WAYPOINT GENERATION BASED ON SENSOR AIMPOINT THESIS Presented to the Faculty Department of Aeronautical...BATCAM. Aviones physics parameters for the Procerus testbed, the Unicorn UAV, were provided by Procerus, which allowed another simulated MAV to 48 be...flown in the HIL tests. The AFIT Advanced Navigation Technologies (ANT) Center did not own a Unicorn UAV, so it could not be flown in flight tests

  13. Workshop on the Suborbital Science Sounding Rocket Program, Volume 1

    Science.gov (United States)

    1991-01-01

    The unique characteristics of the sounding rocket program is described, with its importance to space science stressed, especially in providing UARS correlative measurements. The program provided opportunities to do innovative scientific studies in regions not other wise accessible; it was a testbed for developing new technologies; and its key attributes were flexibility, reliability, and economy. The proceedings of the workshop are presented in viewgraph form, including the objectives of the workshop and the workshop agenda.

  14. Voice Over Internet Protocol Testbed Design for Non-Intrusive, Objective Voice Quality Assessment

    National Research Council Canada - National Science Library

    Manka, David L

    2007-01-01

    Voice over Internet Protocol (VoIP) is an emerging technology with the potential to assist the United States Marine Corps in solving communication challenges stemming from modern operational concepts...

  15. Construction of an optical test-bed for eLISA

    International Nuclear Information System (INIS)

    Lieser, Maike; Isleif, K-S; Schuster, S; Tröbs, M; Veith, S; Heinzel, G; Danzmann, K; Fitzsimons, E; Killow, C; Perreur-Lloyd, M; Robertson, D; Ward, H

    2016-01-01

    In the planned eLISA mission a key part of the system is the optical bench that holds the interferometers for reading out the inter-spacecraft distance and the test mass position. We report on ongoing technology development for the eLISA optical system like the back-link between the optical benches and the science interferometer where the local beam is interfered with the received beam from the distant spacecraft. The focus will be on a setup to investigate the tilt-to-pathlength coupling in the science interferometer. To test the science interferometer in the lab a second bench providing a laser beam and a reference interferometer is needed. We present a setup with two ultra-stable low expansion glass benches and bonded optics. To suppress the tilt-to-pathlength coupling to the required level (few μm/rad) imaging optics are placed in front of the interferometer photo diodes. (paper)

  16. HyspIRI Low Latency Concept and Benchmarks

    Science.gov (United States)

    Mandl, Dan

    2010-01-01

    Topics include HyspIRI low latency data ops concept, HyspIRI data flow, ongoing efforts, experiment with Web Coverage Processing Service (WCPS) approach to injecting new algorithms into SensorWeb, low fidelity HyspIRI IPM testbed, compute cloud testbed, open cloud testbed environment, Global Lambda Integrated Facility (GLIF) and OCC collaboration with Starlight, delay tolerant network (DTN) protocol benchmarking, and EO-1 configuration for preliminary DTN prototype.

  17. Feasibility of Early Functional Rehabilitation in Acute Stroke Survivors using the Balance-Bed – A Technology that Emulates Microgravity

    Directory of Open Access Journals (Sweden)

    Lars I.E. Oddsson

    2015-05-01

    Full Text Available Evidence-based guidelines recommend early functional rehabilitation of stroke patients when risk of patient harm can be managed. Current tools do not allow balance training under load conditions sufficiently low for acute stroke patients. This single-arm pilot study tested feasibility and safety for acute stroke survivors to use Balance-Bed, a technology for balance exercises in supine initially developed to emulate microgravity effects on balance. Nine acute stroke patients (50-79 yrs. participated in 3-10 sessions over 16-46 days as part of their rehabilitation in a hospital inpatient setting. Standard inpatient measures of outcome were monitored where lack of progress from admission to discharge might indicate possible harm. Total FIM scores at admission (median 40, range 22-53 changed to (74, 50-96, Motor FIM scores from (23, 13-32 to (50, 32-68 and Berg Balance scores from (3, 0-6 to (19, 7-43 at discharge. Changes reached Minimal Clinical Important Difference for a sufficient proportion (>0.6 of the patients to indicate no harm to the patients. In addition, therapists reported the technology was safe, provided a positive experience for the patient and fit within the rehabilitation program. They reported the device should be easier to set up and exit. We conclude acute stroke patients tolerated Balance-Bed exercises such as standing on one or two legs, squats, stepping in place as well as balance perturbations provided by the therapist. We believe this is the first time it has been demonstrated that acute stroke patients can safely perform whole body balance training including balance perturbations as part of their rehabilitation program. Future studies should include a control group and compare outcomes from best practices to interventions using the Balance-Bed. In addition, the technology is relevant for countermeasure development for spaceflight and as a test-bed of balance function under microgravity-like conditions.

  18. SU-G-JeP1-07: Development of a Programmable Motion Testbed for the Validation of Ultrasound Tracking Algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, A; Matrosic, C; Zagzebski, J; Bednarz, B [University of Wisconsin, Madison, WI (United States)

    2016-06-15

    Purpose: To develop an advanced testbed that combines a 3D motion stage and ultrasound phantom to optimize and validate 2D and 3D tracking algorithms for real-time motion management during radiation therapy. Methods: A Siemens S2000 Ultrasound scanner utilizing a 9L4 transducer was coupled with the Washington University 4D Phantom to simulate patient motion. The transducer was securely fastened to the 3D stage and positioned to image three cylinders of varying contrast in a Gammex 404GS LE phantom. The transducer was placed within a water bath above the phantom in order to maintain sufficient coupling for the entire range of simulated motion. A programmed motion sequence was used to move the transducer during image acquisition and a cine video was acquired for one minute to allow for long sequence tracking. Images were analyzed using a normalized cross-correlation block matching tracking algorithm and compared to the known motion of the transducer relative to the phantom. Results: The setup produced stable ultrasound motion traces consistent with those programmed into the 3D motion stage. The acquired ultrasound images showed minimal artifacts and an image quality that was more than suitable for tracking algorithm verification. Comparisons of a block matching tracking algorithm with the known motion trace for the three features resulted in an average tracking error of 0.59 mm. Conclusion: The high accuracy and programmability of the 4D phantom allows for the acquisition of ultrasound motion sequences that are highly customizable; allowing for focused analysis of some common pitfalls of tracking algorithms such as partial feature occlusion or feature disappearance, among others. The design can easily be modified to adapt to any probe such that the process can be extended to 3D acquisition. Further development of an anatomy specific phantom better resembling true anatomical landmarks could lead to an even more robust validation. This work is partially funded by NIH

  19. SU-G-JeP1-07: Development of a Programmable Motion Testbed for the Validation of Ultrasound Tracking Algorithms

    International Nuclear Information System (INIS)

    Shepard, A; Matrosic, C; Zagzebski, J; Bednarz, B

    2016-01-01

    Purpose: To develop an advanced testbed that combines a 3D motion stage and ultrasound phantom to optimize and validate 2D and 3D tracking algorithms for real-time motion management during radiation therapy. Methods: A Siemens S2000 Ultrasound scanner utilizing a 9L4 transducer was coupled with the Washington University 4D Phantom to simulate patient motion. The transducer was securely fastened to the 3D stage and positioned to image three cylinders of varying contrast in a Gammex 404GS LE phantom. The transducer was placed within a water bath above the phantom in order to maintain sufficient coupling for the entire range of simulated motion. A programmed motion sequence was used to move the transducer during image acquisition and a cine video was acquired for one minute to allow for long sequence tracking. Images were analyzed using a normalized cross-correlation block matching tracking algorithm and compared to the known motion of the transducer relative to the phantom. Results: The setup produced stable ultrasound motion traces consistent with those programmed into the 3D motion stage. The acquired ultrasound images showed minimal artifacts and an image quality that was more than suitable for tracking algorithm verification. Comparisons of a block matching tracking algorithm with the known motion trace for the three features resulted in an average tracking error of 0.59 mm. Conclusion: The high accuracy and programmability of the 4D phantom allows for the acquisition of ultrasound motion sequences that are highly customizable; allowing for focused analysis of some common pitfalls of tracking algorithms such as partial feature occlusion or feature disappearance, among others. The design can easily be modified to adapt to any probe such that the process can be extended to 3D acquisition. Further development of an anatomy specific phantom better resembling true anatomical landmarks could lead to an even more robust validation. This work is partially funded by NIH

  20. Towards Flexible SDN-based Management for Cloud-based Mobile Networks

    DEFF Research Database (Denmark)

    Artuso, Matteo; Caba, Cosmin Marius; Christiansen, Henrik Lehrmann

    2016-01-01

    New technologies and architectures arise in the telecommunications industry in order to cater to the ever growing demands in terms of resource utilization, manageability and user experience. C-RAN and SDN represent two such novel paradigms, both advocating for centralization of a set of resources...... for sharing the physical infrastructure. A testbed based on Floodlight and Mininet has been implemented to show the benefits of using this automatic management tool for sharing the mobile site capacity....

  1. Intelligent Spectrum Handoff via Docitive Learning in Cognitive Radio Networks (CRNs)

    Science.gov (United States)

    2017-03-01

    Release; Distribution Unlimited. 22 error style to seek proper MDP settings, it may find a neighboring SU with similar traffic QoS demands, and...for CRN testbed implementation (Figure 20). USRP products are a family of computer-hosted hardware units offered by Ettus Research LLC and its parent ...Networking Technologies for Software-Defined Radio and White Space, 2010. Boston, MA, USA, 2010, pp. 1-6. [26] T. R. Newman and T. Bose, “A cognitive radio

  2. Active vibration absorber for the CSI evolutionary model - Design and experimental results. [Controls Structures Interaction

    Science.gov (United States)

    Bruner, Anne M.; Belvin, W. Keith; Horta, Lucas G.; Juang, Jer-Nan

    1991-01-01

    The development of control of large flexible structures technology must include practical demonstrations to aid in the understanding and characterization of controlled structures in space. To support this effort, a testbed facility has been developed to study practical implementation of new control technologies under realistic conditions. The paper discusses the design of a second order, acceleration feedback controller which acts as an active vibration absorber. This controller provides guaranteed stability margins for collocated sensor/actuator pairs in the absence of sensor/actuator dynamics and computational time delay. Experimental results in the presence of these factors are presented and discussed. The robustness of this design under model uncertainty is demonstrated.

  3. Use of COTS in the Multimission Advanced Ground Intelligent Control (MAGIC) program

    Energy Technology Data Exchange (ETDEWEB)

    Crowley, N.L.

    1997-11-01

    This tutorial will discuss the experiences of the Space System Technologies Division of the USAF Phillips Laboratory (PL/VTS) in developing a COTS-based satellite control system. The system`s primary use is a testbed for new technologies that are intended for future integration into the operational satellite control system. As such, the control system architecture must be extremely open and flexible so we can integrate new components and functions easily and also provide our system to contractors for their component work. The system is based on commercial hardware, is based on Windows NT, and makes the maximum use of COTS components and industry standards.

  4. Results of the astrometry and direct imaging testbed for exoplanet detection

    Science.gov (United States)

    Bendek, Eduardo A.; Belikov, Ruslan; Pluzhnik, Eugene; Guyon, Olivier; Milster, Thomas; Johnson, Lee; Finan, Emily; Knight, Justin; Rodack, Alexander

    2017-09-01

    Measuring masses of long-period planets around F, G, and K stars is necessary to characterize exoplanets and assess their habitability. Imaging stellar astrometry offers a unique opportunity to solve radial velocity system inclination ambiguity and determine exoplanet masses. The main limiting factor in sparse-field astrometry, besides photon noise, is the non-systematic dynamic distortions that arise from perturbations in the optical train. Even space optics suffer from dynamic distortions in the optical system at the sub-μas level. To overcome this limitation we propose a diffractive pupil that uses an array of dots on the primary mirror creating polychromatic diffraction spikes in the focal plane, which are used to calibrate the distortions in the optical system. By combining this technology with a high-performance coronagraph, measurements of planetary systems orbits and masses can be obtained faster and more accurately than by applying traditional techniques separately. In this paper, we present the results of the combined astrometry and and highcontrast imaging experiments performed at NASA Ames Research Center as part of a Technology Development for Exoplanet Missions program. We demonstrated 2.38x10-5 λ/D astrometric accuracy per axis and 1.72x10-7 raw contrast from 1.6 to 4.5 λ/D. In addition, using a simple average subtraction post-processing we demonstrated no contamination of the coronagraph field down to 4.79x10-9 raw contrast.

  5. Proceedings from the 2nd International Symposium on Formation Flying Missions and Technologies

    Science.gov (United States)

    2004-01-01

    Topics discussed include: The Stellar Imager (SI) "Vision Mission"; First Formation Flying Demonstration Mission Including on Flight Nulling; Formation Flying X-ray Telescope in L2 Orbit; SPECS: The Kilometer-baseline Far-IR Interferometer in NASA's Space Science Roadmap Presentation; A Tight Formation for Along-track SAR Interferometry; Realization of the Solar Power Satellite using the Formation Flying Solar Reflector; SIMBOL-X : Formation Flying for High-Energy Astrophysics; High Precision Optical Metrology for DARWIN; Close Formation Flight of Micro-Satellites for SAR Interferometry; Station-Keeping Requirements for Astronomical Imaging with Constellations of Free-Flying Collectors; Closed-Loop Control of Formation Flying Satellites; Formation Control for the MAXIM Mission; Precision Formation Keeping at L2 Using the Autonomous Formation Flying Sensor; Robust Control of Multiple Spacecraft Formation Flying; Virtual Rigid Body (VRB) Satellite Formation Control: Stable Mode-Switching and Cross-Coupling; Electromagnetic Formation Flight (EMFF) System Design, Mission Capabilities, and Testbed Development; Navigation Algorithms for Formation Flying Missions; Use of Formation Flying Small Satellites Incorporating OISL's in a Tandem Cluster Mission; Semimajor Axis Estimation Strategies; Relative Attitude Determination of Earth Orbiting Formations Using GPS Receivers; Analysis of Formation Flying in Eccentric Orbits Using Linearized Equations of Relative Motion; Conservative Analytical Collision Probabilities for Orbital Formation Flying; Equations of Motion and Stability of Two Spacecraft in Formation at the Earth/Moon Triangular Libration Points; Formations Near the Libration Points: Design Strategies Using Natural and Non-Natural Ares; An Overview of the Formation and Attitude Control System for the Terrestrial Planet Finder Formation Flying Interferometer; GVE-Based Dynamics and Control for Formation Flying Spacecraft; GNC System Design for a New Concept of X

  6. Comparison of High-Fidelity Computational Tools for Wing Design of a Distributed Electric Propulsion Aircraft

    Science.gov (United States)

    Deere, Karen A.; Viken, Sally A.; Carter, Melissa B.; Viken, Jeffrey K.; Derlaga, Joseph M.; Stoll, Alex M.

    2017-01-01

    A variety of tools, from fundamental to high order, have been used to better understand applications of distributed electric propulsion to aid the wing and propulsion system design of the Leading Edge Asynchronous Propulsion Technology (LEAPTech) project and the X-57 Maxwell airplane. Three high-fidelity, Navier-Stokes computational fluid dynamics codes used during the project with results presented here are FUN3D, STAR-CCM+, and OVERFLOW. These codes employ various turbulence models to predict fully turbulent and transitional flow. Results from these codes are compared for two distributed electric propulsion configurations: the wing tested at NASA Armstrong on the Hybrid-Electric Integrated Systems Testbed truck, and the wing designed for the X-57 Maxwell airplane. Results from these computational tools for the high-lift wing tested on the Hybrid-Electric Integrated Systems Testbed truck and the X-57 high-lift wing presented compare reasonably well. The goal of the X-57 wing and distributed electric propulsion system design achieving or exceeding the required ?? (sub L) = 3.95 for stall speed was confirmed with all of the computational codes.

  7. Progress on Variable Cycle Engines

    Science.gov (United States)

    Westmoreland, J. S.; Howlett, R. A.; Lohmann, R. P.

    1979-01-01

    Progress in the development and future requirements of the Variable Stream Control Engine (VSCE) are presented. The two most critical components of this advanced system for future supersonic transports, the high performance duct burner for thrust augmentation, and the low jet coannular nozzle were studied. Nozzle model tests substantiated the jet noise benefit associated with the unique velocity profile possible with a coannular nozzle system on a VSCE. Additional nozzle model performance tests have established high thrust efficiency levels only at takeoff and supersonic cruise for this nozzle system. An experimental program involving both isolated component and complete engine tests has been conducted for the high performance, low emissions duct burner with good results and large scale testing of these two components is being conducted using a F100 engine as the testbed for simulating the VSCE. Future work includes application of computer programs for supersonic flow fields to coannular nozzle geometries, further experimental testing with the duct burner segment rig, and the use of the Variable Cycle Engine (VCE) Testbed Program for evaluating the VSCE duct burner and coannular nozzle technologies.

  8. Experimental Results From a 2kW Brayton Power Conversion Unit

    Science.gov (United States)

    Hervol, David; Mason, Lee; Birchenough, Arthur

    2003-01-01

    This paper presents experimental test results from operation of a 2 kWe Brayton power conversion unit. The Brayton converter was developed for a solar dynamic power system flight experiment planned for the Mir Space Station in 1997. The flight experiment was cancelled, but the converter was tested at Glenn Research Center as part of the Solar Dynamic Ground Test Demonstration system which included a solar concentrator, heat receiver, and space radiator. In preparation for the current testing, the heat receiver was removed and replaced with an electrical resistance heater, simulating the thermal input of a steady-state nuclear source. The converter was operated over a full range of thermal input power levels and rotor speeds to generate an overall performance map. The converter unit will serve as the centerpiece of a Nuclear Electric Propulsion Testbed at Glenn. Future potential uses for the Testbed include high voltage electrical controller development, integrated electric thruster testing and advanced radiator demonstration testing to help guide high power Brayton technology development for Nuclear Electric Propulsion (NEP).

  9. Photon technology. Hard photon technology; Photon technology. Hard photon gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Research results of hard photon technology have been summarized as a part of novel technology development highly utilizing the quantum nature of photon. Hard photon technology refers to photon beam technologies which use photon in the 0.1 to 200 nm wavelength region. Hard photon has not been used in industry due to the lack of suitable photon sources and optical devices. However, hard photon in this wavelength region is expected to bring about innovations in such areas as ultrafine processing and material synthesis due to its atom selective reaction, inner shell excitation reaction, and spatially high resolution. Then, technological themes and possibility have been surveyed. Although there are principle proposes and their verification of individual technologies for the technologies of hard photon generation, regulation and utilization, they are still far from the practical applications. For the photon source technology, the laser diode pumped driver laser technology, laser plasma photon source technology, synchrotron radiation photon source technology, and vacuum ultraviolet photon source technology are presented. For the optical device technology, the multi-layer film technology for beam mirrors and the non-spherical lens processing technology are introduced. Also are described the reduction lithography technology, hard photon excitation process, and methods of analysis and measurement. 430 refs., 165 figs., 23 tabs.

  10. Improved beam jitter control methods for high energy laser systems

    OpenAIRE

    Frist, Duane C.

    2009-01-01

    Approved for public release, distribution unlimited The objective of this research was to develop beam jitter control methods for a High Energy Laser (HEL) testbed. The first step was to characterize the new HEL testbed at NPS. This included determination of natural frequencies and component models which were used to create a Matlab/Simulink model of the testbed. Adaptive filters using Filtered-X Least Mean Squares (FX-LMS) and Filtered-X Recursive Least Square (FX-RLS) were then implement...

  11. A Reference Software Architecture to Support Unmanned Aircraft Integration in the National Airspace System

    Science.gov (United States)

    2012-07-01

    and Avoid ( SAA ) testbed that provides some of the core services . This paper describes the general architecture and a SAA testbed implementation that...that provides data and software services to enable a set of Unmanned Aircraft (UA) platforms to operate in a wide range of air domains which may...implemented by MIT Lincoln Laboratory in the form of a Sense and Avoid ( SAA ) testbed that provides some of the core services . This paper describes the general

  12. Logistics environment awareness system prototype based on modular Internet of Things platform

    OpenAIRE

    Aksentijević, Saša; Krnjak, David; Tijan, Edvard

    2015-01-01

    Internet of Things (IoT) is a completely new paradigm of interconnected computing devices in the market segment that has started emerging from 2013, while trends have been recognized in 2014 and most predictions are related to the period until 2020. Anticipating widespread use of IoT technology in logistics chains reported by leading sector players, a dedicated logistics testbed IoT platform named MiOT is created and tested using Raspberry PI minicomputer, with research goal to evaluate possi...

  13. Performance measurement, modeling, and evaluation of integrated concurrency control and recovery algorithms in distributed data base systems

    Energy Technology Data Exchange (ETDEWEB)

    Jenq, B.C.

    1986-01-01

    The performance evaluation of integrated concurrency-control and recovery mechanisms for distributed data base systems is studied using a distributed testbed system. In addition, a queueing network model was developed to analyze the two phase locking scheme in the distributed testbed system. The combination of testbed measurement and analytical modeling provides an effective tool for understanding the performance of integrated concurrency control and recovery algorithms in distributed database systems. The design and implementation of the distributed testbed system, CARAT, are presented. The concurrency control and recovery algorithms implemented in CARAT include: a two phase locking scheme with distributed deadlock detection, a distributed version of optimistic approach, before-image and after-image journaling mechanisms for transaction recovery, and a two-phase commit protocol. Many performance measurements were conducted using a variety of workloads. A queueing network model is developed to analyze the performance of the CARAT system using the two-phase locking scheme with before-image journaling. The combination of testbed measurements and analytical modeling provides significant improvements in understanding the performance impacts of the concurrency control and recovery algorithms in distributed database systems.

  14. The Development of Two Composite Energy Absorbers for Use in a Transport Rotorcraft Airframe Crash Testbed (TRACT 2) Full-Scale Crash Test

    Science.gov (United States)

    Littell, Justin D.; Jackson, Karen E.; Annett, Martin S.; Seal, Michael D.; Fasanella, Edwin L.

    2015-01-01

    Two composite energy absorbers were developed and evaluated at NASA Langley Research Center through multi-level testing and simulation performed under the Transport Rotorcraft Airframe Crash Testbed (TRACT) research program. A conical-shaped energy absorber, designated the conusoid, was evaluated that consisted of four layers of hybrid carbon-Kevlar plain weave fabric oriented at [+45deg/-45deg/-45deg/+45deg] with respect to the vertical direction. A sinusoidal-shaped energy absorber, designated the sinusoid, was developed that consisted of hybrid carbon-Kevlar plain weave fabric face sheets, two layers for each face sheet oriented at +/-45deg with respect to the vertical direction, and a closed-cell ELFOAM P200 polyisocyanurate (2.0-lb/cu ft) foam core. The design goal for the energy absorbers was to achieve average floor-level accelerations of between 25- and 40-g during the full-scale crash test of a retrofitted CH-46E helicopter airframe, designated TRACT 2. Variations in both designs were assessed through dynamic crush testing of component specimens. Once the designs were finalized, subfloor beams of each configuration were fabricated and retrofitted into a barrel section of a CH-46E helicopter. A vertical drop test of the barrel section was conducted onto concrete to evaluate the performance of the energy absorbers prior to retrofit into TRACT 2. The retrofitted airframe was crash tested under combined forward and vertical velocity conditions onto soft soil. Finite element models were developed of all test articles and simulations were performed using LS-DYNA, a commercial nonlinear explicit transient dynamic finite element code. Test-analysis results are presented for each energy absorber as comparisons of time-history responses, as well as predicted and experimental structural deformations and progressive damage under impact loading for each evaluation level.

  15. Genetic Algorithm Design And Testing of a Random Element 3-D 2.4 Ghz Phased Array Transmit Antenna Constructed of Commercial Rf Microchips

    National Research Council Canada - National Science Library

    Esswein, Lance

    2003-01-01

    ..., development and evaluation of a test-bed array. The test-bed array was constructed of commercially available components, including a unique and innovative application of a quadrature modulator microchip used in commercial communications applications...

  16. Demonstration of automated proximity and docking technologies

    Science.gov (United States)

    Anderson, Robert L.; Tsugawa, Roy K.; Bryan, Thomas C.

    An autodock was demonstrated using straightforward techniques and real sensor hardware. A simulation testbed was established and validated. The sensor design was refined with improved optical performance and image processing noise mitigation techniques, and the sensor is ready for production from off-the-shelf components. The autonomous spacecraft architecture is defined. The areas of sensors, docking hardware, propulsion, and avionics are included in the design. The Guidance Navigation and Control architecture and requirements are developed. Modular structures suitable for automated control are used. The spacecraft system manager functions including configuration, resource, and redundancy management are defined. The requirements for autonomous spacecraft executive are defined. High level decisionmaking, mission planning, and mission contingency recovery are a part of this. The next step is to do flight demonstrations. After the presentation the following question was asked. How do you define validation? There are two components to validation definition: software simulation with formal and vigorous validation, and hardware and facility performance validated with respect to software already validated against analytical profile.

  17. Photon technology. Laser process technology; Photon technology. Laser process gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    For developing laser process technology by interaction between substance and photon, the present state, system, R and D issues and proposal of such technology were summarized. Development of the photon technology aims at the modification of bonding conditions of substances by quantum energy of photon, and the new process technology for generating ultra- high temperature and pressure fields by concentrating photon on a minute region. Photon technology contributes to not only the conventional mechanical and thermal forming and removal machining but also function added machining (photon machining) in quantum level and new machining technology ranging from macro- to micro-machining, creating a new industrial field. This technology extends various fields from the basis of physics and chemistry to new bonding technology. Development of a compact high-quality high-power high-efficiency photon source, and advanced photon transmission technology are necessary. The basic explication of an unsolved physicochemical phenomenon related to photon and substance, and development of related application technologies are essential. 328 refs., 147 figs., 13 tabs.

  18. An Intelligent Archive Testbed Incorporating Data Mining

    Science.gov (United States)

    Ramapriyan, H.; Isaac, D.; Yang, W.; Bonnlander, B.; Danks, D.

    2009-01-01

    Many significant advances have occurred during the last two decades in remote sensing instrumentation, computation, storage, and communication technology. A series of Earth observing satellites have been launched by U.S. and international agencies and have been operating and collecting global data on a regular basis. These advances have created a data rich environment for scientific research and applications. NASA s Earth Observing System (EOS) Data and Information System (EOSDIS) has been operational since August 1994 with support for pre-EOS data. Currently, EOSDIS supports all the EOS missions including Terra (1999), Aqua (2002), ICESat (2002) and Aura (2004). EOSDIS has been effectively capturing, processing and archiving several terabytes of standard data products each day. It has also been distributing these data products at a rate of several terabytes per day to a diverse and globally distributed user community (Ramapriyan et al. 2009). There are other NASA-sponsored data system activities including measurement-based systems such as the Ocean Data Processing System and the Precipitation Processing system, and several projects under the Research, Education and Applications Solutions Network (REASoN), Making Earth Science Data Records for Use in Research Environments (MEaSUREs), and the Advancing Collaborative Connections for Earth-Sun System Science (ACCESS) programs. Together, these activities provide a rich set of resources constituting a value chain for users to obtain data at various levels ranging from raw radiances to interdisciplinary model outputs. The result has been a significant leap in our understanding of the Earth systems that all humans depend on for their enjoyment, livelihood, and survival. The trend in the community today is towards many distributed sets of providers of data and services. Despite this, visions for the future include users being able to locate, fuse and utilize data with location transparency and high degree of

  19. TRL-6 for JWST Wavefront Sensing and Control

    Science.gov (United States)

    Feinberg, Lee; Dean, Bruce; Smith, Scott; Aronstein, David; Shiri, Ron; Lyon, Rick; Hayden, Bill; Bowers, Chuck; Acton, D. Scott; Shields, Duncan; hide

    2007-01-01

    NASA's Technology Readiness Level (TRL)-6 is documented for the James Webb Space Telescope (JWST) Wavefront Sensing and Control (WFSC) subsystem. The WFSC subsystem is needed to align the Optical Telescope Element (OTE) after all deployments have occurred, and achieves that requirement through a robust commissioning sequence consisting of unique commissioning algorithms, all of which are part of the WFSC algorithm suite. This paper identifies the technology need, algorithm heritage, describes the finished TRL-6 design platform, and summarizes the TRL-6 test results and compliance. Additionally, the performance requirements needed to satisfy JWST science goals as well as the criterion that relate to the TRL-6 Testbed Telescope (TBT) performance requirements are discussed

  20. The status of the Brazilian spherical detector

    International Nuclear Information System (INIS)

    Aguiar, O D; Andrade, L A; Filho, L Camargo; Costa, C A; Araujo, J C N de; Neto, E C de Rey; Souza, S T de; Fauth, A C; Frajuca, C; Frossati, G; Furtado, S R; Furtado, V G S; Magalhaes, N S; Jr, R M Marinho; Matos, E S; Meliani, M T; Melo, J L; Miranda, O D; Jr, N F Oliveira; Ribeiro, K L; Salles, K B M; Stellati, C; Jr, W F Velloso

    2002-01-01

    The first phase of the Brazilian Graviton Project is the construction and operation of the gravitational wave detector Mario Schenberg at the Physics Institute of the University of Sao Paulo. This gravitational wave spherical antenna is planned to feature a sensitivity better than h = 10 -21 Hz -1/2 at the 3.0-3.4 kHz bandwidth, and to work not only as a detector, but also as a testbed for the development of new technologies. Here we present the status of this detector