WorldWideScience

Sample records for veterinary vaccine development

  1. Veterinary Replicon Vaccines

    NARCIS (Netherlands)

    Hikke, Mia C.; Pijlman, Gorben P.

    2017-01-01

    Vaccination is essential in livestock farming and in companion animal ownership. Nucleic acid vaccines based on DNA or RNA provide an elegant alternative to those classical veterinary vaccines that have performed suboptimally. Recent advances in terms of rational design, safety, and efficacy have

  2. Veterinary vaccines against Toxoplasma gondii.

    Science.gov (United States)

    Innes, Elisabeth A; Bartley, Paul M; Maley, Stephen; Katzer, Frank; Buxton, David

    2009-03-01

    Toxoplasma gondii has a very wide intermediate host range and is thought to be able to infect all warm blooded animals. The parasite causes a spectrum of different diseases and clinical symptoms within the intermediate hosts and following infection most animals develop adaptive humoral and cell-mediated immune responses. The development of protective immunity to T. gondii following natural infection in many host species has led researchers to look at vaccination as a strategy to control disease, parasite multiplication and establishment in animal hosts. A range of different veterinary vaccines are required to help control T. gondii infection which include vaccines to prevent congenital toxoplasmosis, reduce or eliminate tissue cysts in meat producing animals and to prevent oocyst shedding in cats. In this paper we will discuss some of the history, challenges and progress in the development of veterinary vaccines against T. gondii.

  3. Veterinary vaccines against Toxoplasma gondii

    Directory of Open Access Journals (Sweden)

    Elisabeth A Innes

    2009-03-01

    Full Text Available Toxoplasma gondii has a very wide intermediate host range and is thought to be able to infect all warm blooded animals. The parasite causes a spectrum of different diseases and clinical symptoms within the intermediate hosts and following infection most animals develop adaptive humoral and cell-mediated immune responses. The development of protective immunity to T. gondii following natural infection in many host species has led researchers to look at vaccination as a strategy to control disease, parasite multiplication and establishment in animal hosts. A range of different veterinary vaccines are required to help control T. gondii infection which include vaccines to prevent congenital toxoplasmosis, reduce or eliminate tissue cysts in meat producing animals and to prevent oocyst shedding in cats. In this paper we will discuss some of the history, challenges and progress in the development of veterinary vaccines against T. gondii.

  4. Veterinary and human vaccine evaluation methods

    Science.gov (United States)

    Knight-Jones, T. J. D.; Edmond, K.; Gubbins, S.; Paton, D. J.

    2014-01-01

    Despite the universal importance of vaccines, approaches to human and veterinary vaccine evaluation differ markedly. For human vaccines, vaccine efficacy is the proportion of vaccinated individuals protected by the vaccine against a defined outcome under ideal conditions, whereas for veterinary vaccines the term is used for a range of measures of vaccine protection. The evaluation of vaccine effectiveness, vaccine protection assessed under routine programme conditions, is largely limited to human vaccines. Challenge studies under controlled conditions and sero-conversion studies are widely used when evaluating veterinary vaccines, whereas human vaccines are generally evaluated in terms of protection against natural challenge assessed in trials or post-marketing observational studies. Although challenge studies provide a standardized platform on which to compare different vaccines, they do not capture the variation that occurs under field conditions. Field studies of vaccine effectiveness are needed to assess the performance of a vaccination programme. However, if vaccination is performed without central co-ordination, as is often the case for veterinary vaccines, evaluation will be limited. This paper reviews approaches to veterinary vaccine evaluation in comparison to evaluation methods used for human vaccines. Foot-and-mouth disease has been used to illustrate the veterinary approach. Recommendations are made for standardization of terminology and for rigorous evaluation of veterinary vaccines. PMID:24741009

  5. Veterinary vaccines: alternatives to antibiotics?

    Science.gov (United States)

    Potter, Andrew; Gerdts, Volker; Littel-van den Hurk, Sylvia van Drunen

    2008-12-01

    The prevention of infectious diseases of animals by vaccination has been routinely practiced for decades and has proved to be one of the most cost-effective methods of disease control. However, since the pioneering work of Pasteur in the 1880s, the composition of veterinary vaccines has changed very little from a conceptual perspective and this has, in turn, limited their application in areas such as the control of chronic infectious diseases. New technologies in the areas of vaccine formulation and delivery as well as our increased knowledge of disease pathogenesis and the host responses associated with protection from disease offer promising alternatives for vaccine formulation as well as targets for the prevention of bacterial disease. These new vaccines have the potential to lessen our reliance on antibiotics for disease control, but will only reach their full potential when used in combination with other intervention strategies.

  6. Enhancing the role of veterinary vaccines reducing zoonotic diseases of humans: Linking systems biology with vaccine development

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Leslie G.; Khare, Sangeeta; Lawhon, Sara D.; Rossetti, Carlos A.; Lewin, Harris A.; Lipton, Mary S.; Turse, Joshua E.; Wylie, Dennis C.; Bai, Yu; Drake, Kenneth L.

    2011-09-22

    The aim of research on infectious diseases is their prevention, and brucellosis and salmonellosis as such are classic examples of worldwide zoonoses for application of a systems biology approach for enhanced rational vaccine development. When used optimally, vaccines prevent disease manifestations, reduce transmission of disease, decrease the need for pharmaceutical intervention, and improve the health and welfare of animals, as well as indirectly protecting against zoonotic diseases of people. Advances in the last decade or so using comprehensive systems biology approaches linking genomics, proteomics, bioinformatics, and biotechnology with immunology, pathogenesis and vaccine formulation and delivery are expected to enable enhanced approaches to vaccine development. The goal of this paper is to evaluate the role of computational systems biology analysis of host:pathogen interactions (the interactome) as a tool for enhanced rational design of vaccines. Systems biology is bringing a new, more robust approach to veterinary vaccine design based upon a deeper understanding of the host pathogen interactions and its impact on the host's molecular network of the immune system. A computational systems biology method was utilized to create interactome models of the host responses to Brucella melitensis (BMEL), Mycobacterium avium paratuberculosis (MAP), Salmonella enterica Typhimurium (STM), and a Salmonella mutant (isogenic *sipA, sopABDE2) and linked to the basis for rational development of vaccines for brucellosis and salmonellosis as reviewed by Adams et al. and Ficht et al. [1,2]. A bovine ligated ileal loop biological model was established to capture the host gene expression response at multiple time points post infection. New methods based on Dynamic Bayesian Network (DBN) machine learning were employed to conduct a comparative pathogenicity analysis of 219 signaling and metabolic pathways and 1620 gene ontology (GO) categories that defined the host

  7. Oral vaccination of fish: Lessons from humans and veterinary species.

    Science.gov (United States)

    Embregts, Carmen W E; Forlenza, Maria

    2016-11-01

    The limited number of oral vaccines currently approved for use in humans and veterinary species clearly illustrates that development of efficacious and safe oral vaccines has been a challenge not only for fish immunologists. The insufficient efficacy of oral vaccines is partly due to antigen breakdown in the harsh gastric environment, but also to the high tolerogenic gut environment and to inadequate vaccine design. In this review we discuss current approaches used to develop oral vaccines for mass vaccination of farmed fish species. Furthermore, using various examples from the human and veterinary vaccine development, we propose additional approaches to fish vaccine design also considering recent advances in fish mucosal immunology and novel molecular tools. Finally, we discuss the pros and cons of using the zebrafish as a pre-screening animal model to potentially speed up vaccine design and testing for aquaculture fish species. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. [Modified vaccinia virus ankara (MVA)--development as recombinant vaccine and prospects for use in veterinary medicine].

    Science.gov (United States)

    Volz, Asisa; Fux, Robert; Langenmayer, Martin C; Sutter, Gerd

    2015-01-01

    Poxviruses as expression vectors are widely used in medical research for the development of recombinant vaccines and molecular therapies. Here we review recent accomplishments in vaccine research using recombinant modified vaccinia virus ankara (MVA). MVA is a highly attenuated vaccinia virus strain that originated from serial tissue culture passage in chicken embryo fibroblasts more than 40 years ago. Growth adaptation to avian host cells caused deletions and mutations in the viral genome affecting about 15% of the original genetic information. In consequence, MVA is replication-deficient in cells of mammalian origin and fails to produce many of the virulence factors encoded by conventional vaccinia virus. Because of its safety for the general environment MVA can be handled under conditions of biosafety level one. Non-replicating MVA can enter any target cell and activate its molecular life cycle to express all classes of viral and recombinant genes. Therefore, recombinant MVA have been established as an extremely safe and efficient vector system for vaccine development in medical research. By now, various recombinant MVA vaccines have been found safe and immunogenic when used for phase I/II clinical testing in humans, and suitable for industrial scale production following good practice of manufacturing. Thus, there is an obvious usefulness of recombinant MVA vaccines for novel prophylactic and therapeutic approaches also in veterinary medicine. Results from first studies in companion and farm animals are highly promising.

  9. Veterinary vaccines against Toxoplasma gondii

    OpenAIRE

    Innes, Elisabeth A.; Bartley, Paul M; Stephen Maley; Frank Katzer; David Buxton

    2009-01-01

    Toxoplasma gondii has a very wide intermediate host range and is thought to be able to infect all warm blooded animals. The parasite causes a spectrum of different diseases and clinical symptoms within the intermediate hosts and following infection most animals develop adaptive humoral and cell-mediated immune responses. The development of protective immunity to T. gondii following natural infection in many host species has led researchers to look at vaccination as a strategy to control disea...

  10. [Animal experimentation in the discovery and production of veterinary vaccines].

    Science.gov (United States)

    Audonnet, J Ch; Lechenet, J; Verschuere, B

    2007-08-01

    Veterinary vaccine research, development and production facilities must aim to improve animal welfare, respond to public concerns and meet regulatory requirements, while at the same time fulfilling their objective of producing evermore effective and safer vaccines. The use of animal experimentation for the development of new veterinary vaccines is inevitable, as no in vitro model can predict a candidate vaccine's ability to induce protection in the target species. Against the backdrop of ethical and regulatory constraints, constant progress is being made in creating the best possible conditions for animal experimentation. Keeping up to date with the constant changes in the field of animal ethics requires a particular effort on the part of the pharmaceutical industry, which must make careful changes to product registration documentation in accordance with each new development.

  11. Adjuvants for veterinary vaccines--types and modes of action.

    Science.gov (United States)

    Gerdts, Volker

    2015-01-01

    Adjuvants are used to improve the immune response to vaccines. Formulation with adjuvants can result in an earlier onset of immunity, an overall stronger immune response, a specific type of immunity, or a longer duration of immunity to the vaccine. Adjuvants were discovered empirically, and for decades, have been used in both humans and animals without understanding the mechanisms of action. With an improved understanding of the immune system, and in particular the interplay between innate and adaptive immunity, we are now getting better insight into the function of adjuvants. As a result, new adjuvants are being developed that are safe and highly effective for common use in humans and animals, as well as for use in high risk populations such as immunocompromised animals, neonates or very old animals. Furthermore, adjuvants can help to reduce the amount of antigen needed in the vaccine, increase the stability of the vaccine and enable alternatiye administration routes such as needle-free delivery of the vaccine. Here, I will provide an over view of the existing adjuvant technologies for veterinary vaccines and provide an outlook into some of the new technologies in preclinical and clinical development.

  12. Production of vaccines and therapeutic antibodies for veterinary applications in transgenic plants: an overview.

    Science.gov (United States)

    Floss, Doreen Manuela; Falkenburg, Dieter; Conrad, Udo

    2007-06-01

    During the past two decades, antibodies, antibody derivatives and vaccines have been developed for therapeutic and diagnostic applications in human and veterinary medicine. Numerous species of dicot and monocot plants have been genetically modified to produce antibodies or vaccines, and a number of diverse transformation methods and strategies to enhance the accumulation of the pharmaceutical proteins are now available. Veterinary applications are the specific focus of this article, in particular for pathogenic viruses, bacteria and eukaryotic parasites. We focus on the advantages and remaining challenges of plant-based therapeutic proteins for veterinary applications with emphasis on expression platforms, technologies and economic considerations.

  13. Potency testing of veterinary rabies vaccines: replacement of challenge by in vitro testing: considerations for development of alternative assays.

    Science.gov (United States)

    Lewis, C E; Fry, A M; Hermann, J R; Siev, D; Dusek, D M; Gatewood, D M

    2012-01-01

    Vaccination of domestic animals against rabies creates a critical barrier between wildlife reservoirs and the human population. Ensuring these vaccines are potent and effective is paramount in preventing human exposure to this deadly and costly disease. The National Institutes of Health (NIH) test is, at present, the most widely used and internationally recommended potency assay for batch testing inactivated rabies vaccines. This test has numerous inherent limitations and disadvantages, including a lack of precision. The NIH test requires a large number of animals and involves unrelieved pain and suffering. A relevant in vitro assay should provide a more accurate, reproducible, rapid, safe, and humane rabies vaccine potency test.

  14. 76 FR 50221 - International Workshop on Alternative Methods for Human and Veterinary Rabies Vaccine Testing...

    Science.gov (United States)

    2011-08-12

    ... HUMAN SERVICES International Workshop on Alternative Methods for Human and Veterinary Rabies Vaccine... ``International Workshop on Alternative Methods for Human and Veterinary Rabies Vaccine Testing: State of the... approaches that may reduce, refine, or replace animal use in human and veterinary rabies vaccine potency...

  15. Experimental Study on the Components in Polyvalent “Ghost” Salmonella Vaccine for Veterinary Use

    Directory of Open Access Journals (Sweden)

    Daniela Vasileva Pencheva

    2015-01-01

    Full Text Available Development of “ghost” Salmonella vaccines, inactivated by using a hybrid nanomaterial based on silver nanoparticles (AgNps stabilized via polyvinyl alcohol (PVA, is an innovative approach in vaccine production. For this purpose, a series of attempts to establish the components of the polyvalent “ghost” Salmonella vaccine and the most suitable methods for its preparation were performed. The following strains S. Enteritidis, S. Newport-Puerto Rico, and S. Typhimurium were chosen as appropriate candidates for their incorporation in order to create polyvalent Salmonella “ghost” vaccine for veterinary use.

  16. Novel Adjuvants and Immunomodulators for Veterinary Vaccines

    DEFF Research Database (Denmark)

    Heegaard, Peter M. H.; Fang, Yongxiang; Jungersen, Gregers

    2016-01-01

    in the vaccine is becoming a reality with our increased understanding of innate and adaptive immune activation. This will allow future vaccines to induce immune reactivity having adequate specificity as well as protective and recallable immune effector mechanisms in appropriate body compartments, including...

  17. 76 FR 79203 - Prospective Grant of Exclusive License: Veterinary Biological Products for Swine Influenza Vaccines

    Science.gov (United States)

    2011-12-21

    ... Biological Products for Swine Influenza Vaccines AGENCY: National Institutes of Health, Public Health Service... methods of use as Veterinary Influenza Vaccines. Sustained outbreaks of highly pathogenic influenza in... mechanism. These veterinary influenza vaccines are specifically designed for poultry, swine and equine...

  18. Farming of Plant-Based Veterinary Vaccines and Their Applications for Disease Prevention in Animals

    Directory of Open Access Journals (Sweden)

    Pit Sze Liew

    2015-01-01

    Full Text Available Plants have been studied for the production of pharmaceutical compounds for more than two decades now. Ever since the plant-made poultry vaccine against Newcastle disease virus made a breakthrough and went all the way to obtain regulatory approval, research to use plants for expression and delivery of vaccine proteins for animals was intensified. Indeed, in view of the high production costs of veterinary vaccines, plants represent attractive biofactories and offer many promising advantages in the production of recombinant vaccine proteins. Furthermore, the possibility of conducting immunogenicity and challenge studies in target animals has greatly exaggerated the progress. Although there are no edible plant-produced animal vaccines in the market, plant-based vaccine technology has great potentials. In this review, development, uses, and advantages of plant-based recombinant protein production in various expression platforms are discussed. In addition, examples of plant-based veterinary vaccines showing strong indication in terms of efficacy in animal disease prevention are also described.

  19. Veterinary Medical Genetics: A Developing Discipline.

    Science.gov (United States)

    Womack, James E.; Templeton, Joe W.

    1978-01-01

    Areas that will influence the development of veterinary medical genetics as a clinical discipline are discussed, some critical research areas of immediate concern are suggested, and misconceptions held by many practicing veterinarians which must be corrected at the level of veterinary education are identified. (JMD)

  20. Policies for the vaccination of cats and dogs in New Zealand veterinary practices.

    Science.gov (United States)

    Cave, N J; Jackson, R; Bridges, J P

    2016-05-01

    To determine current practices and attitudes towards vaccination of dogs and cats of veterinarians in New Zealand; the methods used for informing clients on which vaccines to use, and the preferred site for vaccination of cats. A postal questionnaire was sent to all 483 listed veterinary practices in New Zealand during February 2012. Some questions were specific to pet dogs, cats, or working farm dogs. Responses were categorised according to practice type and geographical region of the respondent. Factors associated with respondent recommendation of annual vaccination with modified live viral (MLV) vaccines were examined using logistic regression analysis. Vaccines that were considered to be essential for every animal were defined as core; those that may be recommended for animals whose location or lifestyle placed them at risk, were defined as non-core. There were 204 useable returns, equivalent to a response rate of 42.2%, distributed across the country. Annual vaccination with MLV vaccines of dogs was recommended by 54/198 (27.3%) respondents, and of cats by 107/181 (59.1%) respondents. Factors associated with the recommendation of annual administration of MLV vaccines to dogs included being a companion animal practice, a desire for policies on vaccination to be left to individual clinics, and having one veterinarian in the practice. Administration of the final vaccination for puppies was recommended at ≥14 weeks old by 55/185 (29.7%) respondents, and for kittens at ≥13 weeks old by 42/183 (23%) respondents. Of respondents that administered MLV vaccines annually, 62/103 (60.2%) believed reducing the frequency of vaccination would reduce income, and 52/103 (50.5%) considered it would have a negative effect on animal health. Advice to enable clients to decide which non-core vaccines were administered was given by 181/199 (91%) respondents. Factors considered when recommending a vaccine included consideration of risk to individual patients (190/203; 93

  1. Q Fever Knowledge, Attitudes and Vaccination Status of Australia’s Veterinary Workforce in 2014

    Science.gov (United States)

    Sellens, Emily; Norris, Jacqueline M.; Dhand, Navneet K.; Heller, Jane; Hayes, Lynne; Gidding, Heather F.; Willaby, Harold; Wood, Nicholas; Bosward, Katrina L.

    2016-01-01

    Q fever, caused by Coxiella burnetii, is a serious zoonotic disease in humans with a worldwide distribution. Many species of animals are capable of transmitting C. burnetii, and consequently all veterinary workers are at risk for this disease. An effective Q fever vaccine has been readily available and used in Australia for many years in at-risk groups, and the European Centre for Disease Prevention and Control has recently also called for the use of this vaccine among at-risk groups in Europe. Little is known about attitudes towards this vaccine and vaccine uptake in veterinary workers. This study aimed to determine the Q fever vaccination status of veterinarians and veterinary nurses in Australia and to assess and compare the knowledge and attitudes towards Q fever disease and vaccination of each cohort. An online cross-sectional survey performed in 2014 targeted all veterinarians and veterinary nurses in Australia. Responses from 890 veterinarians and 852 veterinary nurses were obtained. Binary, ordinal and multinomial logistic regression were used to make comparisons between the two cohorts. The results showed that 74% of veterinarians had sought vaccination compared to only 29% of veterinary nurses. Barriers to vaccination among those not vaccinated did not differ between cohorts, and included a lack of perceived risk, financial expense, time constraints, and difficulty in finding a vaccine provider. Poor knowledge and awareness of Q fever disease and vaccination were additional and notable barriers for the veterinary nursing cohort, suggesting veterinary clinics and veterinarians may not be meeting their legal responsibility to educate staff about risks and risk prevention. Further evaluation is needed to identify the drivers behind seeking and recommending vaccination so that recommendations can be made to improve vaccine uptake. PMID:26756210

  2. Q Fever Knowledge, Attitudes and Vaccination Status of Australia's Veterinary Workforce in 2014.

    Directory of Open Access Journals (Sweden)

    Emily Sellens

    Full Text Available Q fever, caused by Coxiella burnetii, is a serious zoonotic disease in humans with a worldwide distribution. Many species of animals are capable of transmitting C. burnetii, and consequently all veterinary workers are at risk for this disease. An effective Q fever vaccine has been readily available and used in Australia for many years in at-risk groups, and the European Centre for Disease Prevention and Control has recently also called for the use of this vaccine among at-risk groups in Europe. Little is known about attitudes towards this vaccine and vaccine uptake in veterinary workers. This study aimed to determine the Q fever vaccination status of veterinarians and veterinary nurses in Australia and to assess and compare the knowledge and attitudes towards Q fever disease and vaccination of each cohort. An online cross-sectional survey performed in 2014 targeted all veterinarians and veterinary nurses in Australia. Responses from 890 veterinarians and 852 veterinary nurses were obtained. Binary, ordinal and multinomial logistic regression were used to make comparisons between the two cohorts. The results showed that 74% of veterinarians had sought vaccination compared to only 29% of veterinary nurses. Barriers to vaccination among those not vaccinated did not differ between cohorts, and included a lack of perceived risk, financial expense, time constraints, and difficulty in finding a vaccine provider. Poor knowledge and awareness of Q fever disease and vaccination were additional and notable barriers for the veterinary nursing cohort, suggesting veterinary clinics and veterinarians may not be meeting their legal responsibility to educate staff about risks and risk prevention. Further evaluation is needed to identify the drivers behind seeking and recommending vaccination so that recommendations can be made to improve vaccine uptake.

  3. USDA regulatory guidelines and practices for veterinary Leptospira vaccine potency testing.

    Science.gov (United States)

    Srinivas, G B; Walker, A; Rippke, B

    2013-09-01

    Batch-release potency testing of leptospiral vaccines licensed by the United States Department of Agriculture (USDA) historically was conducted through animal vaccination-challenge models. The hamster vaccination-challenge assay was Codified in 1974 for bacterins containing Leptospira pomona, Leptospira icterohaemorrhagiae, and Leptospira canicola, and in 1975 for bacterins containing Leptospira grippotyphosa. In brief, 10 hamsters are vaccinated with a specified dilution of bacterin. After a holding period, the vaccinated hamsters, as well as nonvaccinated controls, are challenged with virulent Leptospira and observed for mortality. Eighty percent of vaccinated hamsters must survive in the face of a valid challenge. The high cost of the Codified tests, in terms of monetary expense and animal welfare, prompted the Center for Veterinary Biologics (CVB) to develop ELISA alternatives for them. Potency tests for other serogroups, such as Leptospira hardjo-bovis, that do not have Codified requirements for potency testing continue to be examined on a case-by-case basis. Published by Elsevier Ltd.

  4. Transgenic plants for the production of veterinary vaccines.

    Science.gov (United States)

    Dus Santos, María José; Wigdorovitz, Andrés

    2005-06-01

    The expression of antigens in transgenic plants has been increasingly used in the development of experimental vaccines, particularly oriented to the development of edible vaccines. Hence, this technology becomes highly suitable to express immunogenic proteins from pathogens. Foot and mouth disease virus, bovine rotavirus and bovine viral diarrhoea virus are considered to be the most important causative agents of economic loss of cattle production in Argentina, and they are thus optimal candidates for alternative means of immunization. Here, we present a review of our results corresponding to the expression of immunogenic proteins from these three viruses in alfalfa transgenic plants, and we discuss the possibility of using them for the development of plant-based vaccines.

  5. Bringing plant-based veterinary vaccines to market: Managing regulatory and commercial hurdles.

    Science.gov (United States)

    MacDonald, Jacqueline; Doshi, Ketan; Dussault, Marike; Hall, J Christopher; Holbrook, Larry; Jones, Ginny; Kaldis, Angelo; Klima, Cassidy L; Macdonald, Phil; McAllister, Tim; McLean, Michael D; Potter, Andrew; Richman, Alex; Shearer, Heather; Yarosh, Oksana; Yoo, Han Sang; Topp, Edward; Menassa, Rima

    2015-12-01

    The production of recombinant vaccines in plants may help to reduce the burden of veterinary diseases, which cause major economic losses and in some cases can affect human health. While there is abundant research in this area, a knowledge gap exists between the ability to create and evaluate plant-based products in the laboratory, and the ability to take these products on a path to commercialization. The current report, arising from a workshop sponsored by an Organisation for Economic Co-operation and Development (OECD) Co-operative Research Programme, addresses this gap by providing guidance in planning for the commercialization of plant-made vaccines for animal use. It includes relevant information on developing business plans, assessing market opportunities, manufacturing scale-up, financing, protecting and using intellectual property, and regulatory approval with a focus on Canadian regulations. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.

  6. An introduction to analytical methods for the postmarketing surveillance of veterinary vaccines.

    Science.gov (United States)

    Siev, D

    1999-01-01

    Any analysis of spontaneous AER data must consider the many biases inherent in the observation and reporting of vaccine adverse events. The absence of a clear probability structure requires statistical procedures to be used in a spirit of exploratory description rather than definitive confirmation. The extent of such descriptions should be temperate, without the implication that they extend to parent populations. It is important to recognize the presence of overdispersion in selecting methods and constructing models. Important stochastic or systematic features of the data may always be unknown. Our attempts to delineate what constitutes an AER have not eliminated all the fuzziness in its definition. Some count every event in a report as a separate AER. Besides confusing the role of event and report, this introduces a complex correlational structure, since multiple event descriptions received in a single report can hardly be considered independent. The many events described by one reporter would then become inordinately weighted. The alternative is to record an AER once, regardless of how many event descriptions it includes. As a practical compromise, many regard the simultaneous submission of several report forms by one reporter as a single AER, and the next submission by that reporter as another AER. This method is reasonable when reporters submit AERs very infrequently. When individual reporters make frequent reports, it becomes difficult to justify the inconsistency of counting multiple events as a single AER when they are submitted together, but as separate AERs when they are reported at different times. While either choice is imperfect, the latter approach is currently used by the USDA and its licensed manufacturers in developing a mandatory postmarketing surveillance system for veterinary immunobiologicals in the United States. Under the proposed system, summaries of an estimated 10,000 AERs received annually by the manufacturers would be submitted to the

  7. Immunogenic virus-like particles continuously expressed in mammalian cells as a veterinary rabies vaccine candidate.

    Science.gov (United States)

    Fontana, Diego; Kratje, Ricardo; Etcheverrigaray, Marina; Prieto, Claudio

    2015-08-20

    Rabies is one of the most lethal infectious diseases in the world, with a mortality approaching 100%. There are between 60,000 and 70,000 reported annual deaths, but this is probably an underestimation. Despite the fact that there are vaccines available for rabies, there is a real need of developing more efficacious and cheaper vaccines. This is particularly true for veterinary vaccines because dogs are still the main vector for rabies transmission to human beings. In a previous work, we described the development and characterization of rabies virus-like particles (RV-VLPs) expressed in HEK293 cells. We showed that RV-VLPs are able to induce a specific antibodies response. In this work, we show that VLPs are able to protect mice against virus challenge. Furthermore, we developed a VLPs expressing HEK-293 clone (sP2E5) that grows in serum free medium (SFM) reaching high cell densities. sP2E5 was cultured in perfusion mode in a 5 L bioreactor for 20 days, and the RV-VLPs produced were capable of triggering a protective immune response without the need of concentration or adjuvant addition. Further, these VLPs are able to induce the production of rabies virus neutralizing antibodies. These results demonstrate that RV-VLPs are a promising rabies vaccine candidate. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. EDQM biological reference preparation for rabies vaccine (inactivated) for veterinary use.

    Science.gov (United States)

    Daas, A; Bruckner, L; Milne, C

    2015-01-01

    Rabies is a deadly zoonotic disease. Control of rabies in animals by vaccination is an important strategy to protect humans from infection and control the spread of the disease. Requirements for the quality control of rabies vaccines (inactivated) for veterinary use include an in vivo quantitative potency determination as outlined in the Ph. Eur. monograph 0451. Performance of this assay requires a reference preparation calibrated in International Units (IU). A European Pharmacopeia (Ph. Eur.) Biological Reference Preparation (BRP) for rabies vaccines (inactivated) for veterinary use, calibrated in IU, has been established for this purpose. Due to the dwindling stocks of the current batch (batch 4) of Ph. Eur. BRP for rabies vaccines (inactivated) for veterinary use, a collaborative study was run as part of the EDQM Biological Standardisation Programme to establish BRP batch 5. Ten laboratories, including Official Medicines Control Laboratories and manufacturers, participated. The candidate BRP5 was assayed against the 6(th) International Standard for rabies vaccine using the in vivo vaccination-challenge assay (monograph 0451) to assign a potency value. The candidate was also compared to BRP batch 4 to establish continuity. Taking into account the results from the comparisons a potency of 10 IU/vial was assigned and in March 2015 the Ph. Eur. Commission adopted the material as Ph. Eur. BRP for rabies vaccines (inactivated) for veterinary use batch 5. In addition to the in vivo assay 3 laboratories tested the candidate material using their in-house in vitro assays for information.

  9. [Developments in HPV vaccination].

    Science.gov (United States)

    de Melker, Hester; Kenter, Gemma; van Rossum, Tekla; Conyn-van Spaendonck, Marina

    2012-01-01

    Vaccination against the human papilloma virus (HPV) has been included in the national Vaccination Programme of the Netherlands for 12-year-old girls since 2010. Vaccination coverage for the birth cohort of 1997 was 56.; there is a gradual increase in uptake. Continuous safety monitoring brought no new unknown serious side effects to light; many girls suffered from transient symptoms such as painful arm, fatigue and headache. After the current vaccines that protect against HPV types 2 and 4 types, respectively and induce some cross protection, vaccines are being developed that can induce broader protection. HPV vaccination of 12-year-old girls is cost-effective, even for relatively low vaccination coverage. The potential protection of HPV vaccination extends beyond prevention of cervical cancer by preventing other oncological manifestations of HPV infection in women as well as men and genital warts. The preventive HPV vaccines do not appear to be effective in treating existing abnormalities.

  10. Improving animal welfare and reducing animal use for veterinary vaccine potency testing: state of the science and future directions

    OpenAIRE

    STOKES William; BROWN Karen; KULPA-EDDY Jodie; SRINIVAS Geetha; HALDER Maria; DRAAYER Hans; GALVIN Jeffrey; CLAASEN Ivo; GIFFORD Glen; WOODLAND Ralph; DOELLING Vivian; JONES Brett

    2011-01-01

    Veterinary vaccines contribute to improved human and animal health and welfare by preventing diseases and deaths caused by a wide range of infectious agents. However, testing necessary to ensure vaccine effectiveness and safety can involve large numbers of animals and significant pain and distress. NICEATM and ICCVAM convened an international workshop to review the state of the science of human and veterinary vaccine potency and safety testing methods and to identify opportunities to advance ...

  11. Regulatory Acceptance and Use of Serology for Inactivated Veterinary Rabies Vaccines

    NARCIS (Netherlands)

    Schiffelers, Marie-Jeanne W. A.; Blaauboer, Bas J.; Bakker, Wieger E.; Hendriksen, Coenraad F. M.

    2015-01-01

    In April 2013 the mouse antibody serum neutralization test (SNT) was formally incorporated into European Pharmacopoeia monograph 0451 for potency testing of inactivated veterinary rabies vaccines. The SNT is designed to replace the highly variable and pain and distress causing NIH mouse rabies

  12. Potency control of modified live viral vaccines for veterinary use.

    Science.gov (United States)

    Terpstra, C; Kroese, A H

    1996-04-01

    This paper reviews various aspects of efficacy, and methods for assaying the potency of modified live viral vaccines. The pros and cons of parametric versus non-parametric methods for analysis of potency assays are discussed and critical levels of protection, as determined by the target(s) of vaccination, are exemplified. Recommendations are presented for designing potency assays on master virus seeds and vaccine batches.

  13. Vaccine development for syphilis.

    Science.gov (United States)

    Lithgow, Karen V; Cameron, Caroline E

    2017-01-01

    Syphilis, caused by the spirochete Treponema pallidum subspecies pallidum, continues to be a globally prevalent disease despite remaining susceptible to penicillin treatment. Syphilis vaccine development is a viable preventative approach that will serve to complement public health-oriented syphilis prevention, screening and treatment initiatives to deliver a two-pronged approach to stemming disease spread worldwide. Areas covered: This article provides an overview of the need for development of a syphilis vaccine, summarizes significant information that has been garnered from prior syphilis vaccine studies, discusses the critical aspects of infection that would have to be targeted by a syphilis vaccine, and presents the current understanding within the field of the correlates of protection needed to be achieved through vaccination. Expert commentary: Syphilis vaccine development should be considered a priority by industry, regulatory and funding agencies, and should be appropriately promoted and supported.

  14. 75 FR 65293 - Draft Guidelines on Pharmacovigilance of Veterinary Medicinal Products: Electronic Standards for...

    Science.gov (United States)

    2010-10-22

    ... Animal and Plant Health Inspection Service Draft Guidelines on Pharmacovigilance of Veterinary Medicinal... (VICH) has developed a draft guideline titled ``Pharmacovigilance of Veterinary Medicinal Products... guideline applies to pharmacovigilance and adverse event reporting on veterinary vaccines regulated by the...

  15. [Development of oral vaccines].

    Science.gov (United States)

    Matsubara, Akihiro; Shimizu, Yuya; Karamatsu, Katsuo; Yasutomi, Yasuhiro

    2008-10-01

    In the increasing crisis of pandemic of infectious diseases all over the world in recent years, it is the most necessary to develop readily available vaccines even in developing countries. Since many pathogens establish their initial infections through the mucosal surface in our bodies, the induction of mucosal immune responses by vaccines are thought to be important for the prevention of infectious diseases through mucosal site. Oral administration of vaccines has abilities to elicit mucosal immune responses at mucosal tissues with various advantages such as easy skill for administration, less stressful for vaccine recipients and safer than systemic injection. Here, we show our novel strategies for inducing mucosal immune responses by oral vaccine administration.

  16. [Development of new vaccines].

    Science.gov (United States)

    González-Romo, Fernando; Picazo, Juan J

    2015-10-01

    Recent and important advances in the fields of immunology, genomics, functional genomics, immunogenetics, immunogenomics, bioinformatics, microbiology, genetic engineering, systems biology, synthetic biochemistry, proteomics, metabolomics and nanotechnology, among others, have led to new approaches in the development of vaccines. The better identification of ideal epitopes, the strengthening of the immune response due to new adjuvants, and the search of new routes of vaccine administration, are good examples of advances that are already a reality and that will favour the development of more vaccines, their use in indicated population groups, or its production at a lower cost. There are currently more than 130 vaccines are under development against the more wished (malaria or HIV), difficult to get (CMV or RSV), severe re-emerging (Dengue or Ebola), increasing importance (Chagas disease or Leishmania), and nosocomial emerging (Clostridium difficile or Staphylococcus aureus) infectious diseases. Copyright © 2015. Published by Elsevier España, S.L.U.

  17. Changing the Face of Veterinary Medicine: Research and Clinical Developments at AAVMC Institutions.

    Science.gov (United States)

    Smith, Donald F; Hagstrom, Melena R

    2015-01-01

    This paper provides a 50-year overview of research and clinical advances in AAVMC member colleges in four representative fields of veterinary medicine: oncology, vaccine development, production medicine, and public health. Though emphasis is on the progress since the mid-1960s, the salient background and associated personnel in each field are also identified to the extent that their description informs more recent events. Advances in board certification and post-graduate clinical and research educational opportunities are also described.

  18. Community Perceptions on Integrating Animal Vaccination and Health Education by Veterinary and Public Health Workers in the Prevention of Brucellosis among Pastoral Communities of South Western Uganda.

    Directory of Open Access Journals (Sweden)

    Catherine Kansiime

    Full Text Available Brucellosis is a zoonotic disease of veterinary, public health, and economic significance in most developing countries, yet there are few studies that show integrated human and veterinary health care intervention focusing on integration at both activity and actors levels. The aim of our study, therefore, was to explore community perceptions on integration of animal vaccination and health education by veterinary and public health workers in the management of brucellosis in Uganda.This study used a qualitative design where six Focus Group Discussions (FGDs that were homogenous in nature were conducted, two from each sub-county, one with the local leaders, and another with pastoralists and farmers. Five Key Informant Interviews (KIIs with two public health workers and three veterinary extension workers from three sub-counties in Kiruhura district, Uganda were conducted. All FGDs were conducted in the local language and tape recorded with consent from the participants. KIIs were in English and later transcribed and analyzed using latent content data analysis method.All the groups mentioned that they lacked awareness on brucellosis commonly known as Brucella and its vaccination in animals. Respondents perceived improvement in human resources in terms of training and recruiting more health personnel, facilitation of the necessary activities such as sensitization of the communities about brucellosis, and provision of vaccines and diagnostic tests as very important in the integration process in the communities. The FGD participants also believed that community participation was crucial for sustainability and ownership of the integration process.The respondents reported limited knowledge of brucellosis and its vaccination in animals. The community members believed that mass animal vaccination in combination with health education about the disease is important and possible if it involves government and all other stakeholders such as wildlife authorities

  19. Community Perceptions on Integrating Animal Vaccination and Health Education by Veterinary and Public Health Workers in the Prevention of Brucellosis among Pastoral Communities of South Western Uganda.

    Science.gov (United States)

    Kansiime, Catherine; Atuyambe, Lynn M; Asiimwe, Benon B; Mugisha, Anthony; Mugisha, Samuel; Guma, Victor; Rwego, Innocent B; Rutebemberwa, Elizeus

    2015-01-01

    Brucellosis is a zoonotic disease of veterinary, public health, and economic significance in most developing countries, yet there are few studies that show integrated human and veterinary health care intervention focusing on integration at both activity and actors levels. The aim of our study, therefore, was to explore community perceptions on integration of animal vaccination and health education by veterinary and public health workers in the management of brucellosis in Uganda. This study used a qualitative design where six Focus Group Discussions (FGDs) that were homogenous in nature were conducted, two from each sub-county, one with the local leaders, and another with pastoralists and farmers. Five Key Informant Interviews (KIIs) with two public health workers and three veterinary extension workers from three sub-counties in Kiruhura district, Uganda were conducted. All FGDs were conducted in the local language and tape recorded with consent from the participants. KIIs were in English and later transcribed and analyzed using latent content data analysis method. All the groups mentioned that they lacked awareness on brucellosis commonly known as Brucella and its vaccination in animals. Respondents perceived improvement in human resources in terms of training and recruiting more health personnel, facilitation of the necessary activities such as sensitization of the communities about brucellosis, and provision of vaccines and diagnostic tests as very important in the integration process in the communities. The FGD participants also believed that community participation was crucial for sustainability and ownership of the integration process. The respondents reported limited knowledge of brucellosis and its vaccination in animals. The community members believed that mass animal vaccination in combination with health education about the disease is important and possible if it involves government and all other stakeholders such as wildlife authorities, community

  20. HIV Vaccine Development

    African Journals Online (AJOL)

    Jos, Plateau State, Nigeria. E-Mail: j idoko@yahoo.com. COMMON VACCINE PREVENTABLE. DISEASES: Chicken pox. Hepatitis A. Hepatitis В. Influenza ... ally reversed economic and social development in several countries[3]. Current prevention efforts - including condom education, clean needle distribution, peer ...

  1. Recent progress and future directions for reduction, refinement, and replacement of animal use in veterinary vaccine potency and safety testing: a report from the 2010 NICEATM-ICCVAM International Vaccine Workshop.

    Science.gov (United States)

    Stokes, W S; Kulpa-Eddy, J; Brown, K; Srinivas, G; McFarland, R

    2012-01-01

    Veterinary vaccines contribute to improved animal and human health and welfare by preventing infectious diseases. However, testing necessary to ensure vaccine effectiveness and safety can involve large numbers of animals and significant pain and distress. NICEATM and ICCVAM recently convened an international workshop to review the state of the science of human and veterinary vaccine potency and safety testing, and to identify priority activities to advance new and improved methods that can further reduce, refine and replace animal use. Rabies, Clostridium sp., and Leptospira sp. vaccines were identified as the highest priorities, while tests requiring live viruses and bacteria hazardous to laboratory workers, livestock, pets, and wildlife were also considered high priorities. Priority research, development and validation activities to address critical knowledge and data gaps were identified, including opportunities to apply new science and technology. Enhanced international harmonization and cooperation and closer collaborations between human and veterinary researchers were recommended to expedite progress. Implementation of the workshop recommendations is expected to advance new methods for vaccine testing that will benefit animal welfare and ensure continued and improved protection of human and animal health.

  2. Owners and Veterinary Surgeons in the United Kingdom Disagree about What Should Happen during a Small Animal Vaccination Consultation.

    Science.gov (United States)

    Belshaw, Zoe; Robinson, Natalie J; Dean, Rachel S; Brennan, Marnie L

    2018-01-18

    Dog and cat vaccination consultations are a common part of small animal practice in the United Kingdom. Few data are available describing what happens during those consultations or what participants think about their content. The aim of this novel study was to investigate the attitudes of dog and cat owners and veterinary surgeons towards the content of small animal vaccination consultations. Telephone interviews with veterinary surgeons and pet owners captured rich qualitative data. Thematic analysis was performed to identify key themes. This study reports the theme describing attitudes towards the content of the consultation. Diverse preferences exist for what should be prioritised during vaccination consultations, and mismatched expectations may lead to negative experiences. Vaccination consultations for puppies and kittens were described to have a relatively standardised structure with an educational and preventative healthcare focus. In contrast, adult pet vaccination consultations were described to focus on current physical health problems with only limited discussion of preventative healthcare topics. This first qualitative exploration of UK vaccination consultation expectations suggests that the content and consistency of adult pet vaccination consultations may not meet the needs or expectations of all participants. Redefining preventative healthcare to include all preventable conditions may benefit owners, pets and veterinary surgeons, and may help to provide a clearer structure for adult pet vaccination consultations. This study represents a significant advance our understanding of this consultation type.

  3. Developments in rabies vaccines.

    Science.gov (United States)

    Hicks, D J; Fooks, A R; Johnson, N

    2012-09-01

    The development of vaccines that prevent rabies has a long and distinguished history, with the earliest preceding modern understanding of viruses and the mechanisms of immune protection against disease. The correct application of inactivated tissue culture-derived vaccines is highly effective at preventing the development of rabies, and very few failures are recorded. Furthermore, oral and parenteral vaccination is possible for wildlife, companion animals and livestock, again using inactivated tissue culture-derived virus. However, rabies remains endemic in many regions of the world and causes thousands of human deaths annually. There also remain no means of prophylaxis for rabies once the virus enters the central nervous system (CNS). One reason for this is the poor immune response within the CNS to infection with rabies virus (RABV). New approaches to vaccination using modified rabies viruses that express components of the innate immune system are being applied to this problem. Preliminary reports suggest that direct inoculation of such viruses could trigger an effective anti-viral response and prevent a fatal outcome from RABV infection. © 2012 Crown copyright. Clinical and Experimental Immunology © 2012 British Society for Immunology.

  4. Vaccines against Toxoplasma gondii: new developments and perspectives.

    Science.gov (United States)

    Zhang, Nian-Zhang; Chen, Jia; Wang, Meng; Petersen, Eskild; Zhu, Xing-Quan

    2013-11-01

    Toxoplasmosis caused by the protozoan Toxoplasma gondii is a major public health problem, infecting one-third of the world human beings, and leads to abortion in domestic animals. A vaccine strategy would be an ideal tool for improving disease control. Many efforts have been made to develop vaccines against T. gondii to reduce oocyst shedding in cats and tissue cyst formation in mammals over the last 20 years, but only a live-attenuated vaccine based on the S48 strain has been licensed for veterinary use. Here, the authors review the recent development of T. gondii vaccines in cats, food-producing animals and mice, and present its future perspectives. However, a single or only a few antigen candidates revealed by various experimental studies are limited by only eliciting partial protective immunity against T. gondii. Future studies of T. gondii vaccines should include as many CTL epitopes as the live attenuated vaccines.

  5. Safety and Efficacy Profile of Commercial Veterinary Vaccines against Rift Valley Fever: A Review Study

    Directory of Open Access Journals (Sweden)

    Moataz Alhaj

    2016-01-01

    Full Text Available Rift Valley Fever (RVF is an infectious illness with serious clinical manifestations and health consequences in humans as well as a wide range of domestic ruminants. This review provides significant information about the prevention options of RVF along with the safety-efficacy profile of commercial vaccines and some of RVF vaccination strategies. Information presented in this paper was obtained through a systematic investigation of published data about RVF vaccines. Like other viral diseases, the prevention of RVF relies heavily on immunization of susceptible herds with safe and cost-effective vaccine that is able to confer long-term protective immunity. Several strains of RVF vaccines have been developed and are available in commercial production including Formalin-Inactivated vaccine, live attenuated Smithburn vaccine, and the most recent Clone13. Although Formalin-Inactivated vaccine and live attenuated Smithburn vaccine are immunogenic and widely used in prevention programs, they proved to be accompanied by significant concerns. Despite Clone13 vaccine being suggested as safe in pregnant ewes and as highly immunogenic along with its potential for differentiating infected from vaccinated animals (DIVA, a recent study raised concerns about the safety of the vaccine during the first trimester of gestation. Accordingly, RVF vaccines that are currently available in the market to a significant extent do not fulfill the requirements of safety, potency, and DIVA. These adverse effects stressed the need for developing new vaccines with an excellent safety profile to bridge the gap in safety and immunity. Bringing RVF vaccine candidates to local markets besides the absence of validated serological test for DIVA remain the major challenges of RVF control.

  6. Tuberculosis vaccine development: recent progress.

    Science.gov (United States)

    Orme, I M; McMurray, D N; Belisle, J T

    2001-03-01

    Recent years have seen a renewed effort to develop new vaccines against tuberculosis. As a result, several promising avenues of research have developed, including the production of recombinant vaccines, auxotrophic vaccines, DNA vaccines and subunit vaccines. In this article we briefly review this work, as well as consider the pros and cons of the animal models needed to test these new vaccines. Screening to date has been carried out in mouse and guinea pig models, which have been used to obtain basic information such as the effect of the vaccine on bacterial load, and whether the vaccine can prevent or reduce lung pathology. The results to date lead us to be optimistic that new candidate vaccines could soon be considered for evaluation in clinical trials.

  7. What is the veterinary professional identity? Preliminary findings from web-based continuing professional development in veterinary professionalism.

    Science.gov (United States)

    Armitage-Chan, E; Maddison, J; May, S A

    2016-03-26

    Professionalism and professional skills are increasingly being incorporated into veterinary curricula; however, lack of clarity in defining veterinary professionalism presents a potential challenge for directing course outcomes that are of benefit to the veterinary professional. An online continuing education course in veterinary professionalism was designed to address a deficit in postgraduate support in this area; as part of this course, delegates of varying practice backgrounds participated in online discussions reflecting on the implications of professional skills for their clinical practice. The discussions surrounding the role of the veterinary professional and reflecting on strengths and weaknesses in professional skills were analysed using narrative methodology, which provided an understanding of the defining skills and attributes of the veterinary professional, from the perspectives of those involved (i.e. how vets understood their own career identity). The veterinary surgeon was understood to be an interprofessional team member, who makes clinical decisions in the face of competing stakeholder needs and works in a complex environment comprising multiple and diverse challenges (stress, high emotions, financial issues, work-life balance). It was identified that strategies for accepting fallibility, and those necessary for establishing reasonable expectations of professional behaviour and clinical ability, are poorly developed. British Veterinary Association.

  8. Experimental Study on the Components in Polyvalent “Ghost” Salmonella Vaccine for Veterinary Use

    OpenAIRE

    Daniela Vasileva Pencheva; Elena Ilieva Velichkova; Denis Zdravkov Sandarov; Adrian Draganov Cardoso; Maria Hristova Mileva; Petia Dinkova Genova-Kalou; Rayna Bryaskova

    2015-01-01

    Development of “ghost” Salmonella vaccines, inactivated by using a hybrid nanomaterial based on silver nanoparticles (AgNps) stabilized via polyvinyl alcohol (PVA), is an innovative approach in vaccine production. For this purpose, a series of attempts to establish the components of the polyvalent “ghost” Salmonella vaccine and the most suitable methods for its preparation were performed. The following strains S. Enteritidis, S. Newport-Puerto Rico, and S. Typhimurium were chosen as appropria...

  9. Development of a moral judgment measure for veterinary education.

    Science.gov (United States)

    Verrinder, Joy M; Phillips, Clive J C

    2014-01-01

    Veterinarians increasingly face animal ethics issues, conflicts, and dilemmas, both in practice and in policy, such as the tension between clients' and animals' interests. Little has been done to measure the capacity of veterinarians to make ethical judgments to prevent and address these issues or to identify the effectiveness of strategies to build this capacity. The objectives of this study were, first, to develop a test to identify the capacity of veterinarians to make ethical decisions in relation to animal ethics issues and, second, to assess students' perceptions of the usefulness of three methods for the development of ethical decision making. The Veterinary Defining Issues Test (VetDIT) was piloted with 88 first-year veterinary students at an Australian university. The veterinary students were at a variety of reasoning stages in their use of the Personal Interest (PI), Maintaining Norms (MN), and Universal Principles (UP) reasoning methods in relation to both human ethics and animal ethics issues and operated at a higher level of reasoning for animal than human ethics. Thirty-eight students assessed three methods for developing ethical decision-making skills and identified these as being helpful in clarifying their positions, clarifying others' positions, increasing awareness of the complexity of making ethical decisions, using ethical frameworks and principles, and improving moral reasoning skills, with two methods identified as most helpful. These methods and the VetDIT have the potential to be used as tools for development and assessment of moral judgment in veterinary education to address animal ethics issues.

  10. Veterinary Preventive Medicine Curriculum Development at Louisiana State University

    Science.gov (United States)

    Hubbert, William T.

    1976-01-01

    The program aims at training veterinarians, with interdepartmental faculty participation the rule rather than the exception. Included in the curriculum are: avian medicine, herd health management, veterinary public health, veterinary food hygiene, and regulatory veterinary medicine. (LBH)

  11. Growth conditions of clostridium perfringens type B for production of toxins used to obtain veterinary vaccines.

    Science.gov (United States)

    Viana Brandi, Igor; Domenici Mozzer, Otto; Jorge, Edson Vander; Vieira Passos, Frederico Jose; Lopes Passos, Flavia Maria; Cangussu, Alex Sander Rodrigues; Macedo Sobrinho, Eliane

    2014-09-01

    The diseases caused for Clostridium perfringens are generically called enterotoxemias because toxins produced in the intestine may be absorbed into the general circulation. C. perfringens type B, grown in batch fermentation, produced toxins used to obtain veterinary vaccines. Glucose in concentrations of 1.4-111.1 mM was used to define the culture medium. The minimum concentration for a satisfactory production of vaccines against clostridial diseases was 55.6 mM. Best results were brought forth by meat and casein peptones, both in the concentration 5.0 g l(-1) in combination with glucose and a culture pH maintained at 6.5 throughout the fermentation process. The production of lactic, acetic and propionic organic acids was observed. Ethanol was the metabolite produced in the highest concentration when cultures maintained steady pH of 6.5 with exception of cultures with initial glucose concentration of 1.4 mM, where the highest production was of propionic acid. Maximal cell concentration and the highest toxin title concomitantly low yield coefficient to organic acids and ethanol were obtained using basal medium containing 111.1 mM glucose under a controlled pH culture (pH) 6.5 in batch fermentations of C. perfringens type B. These data contribute to improve process for industrial toxin production allowing better condition to produce a toxoid vaccine.

  12. Immunogenicity and protective efficacy of yeast extracts containing rotavirus-like particles: a potential veterinary vaccine.

    Science.gov (United States)

    Rodríguez-Limas, William A; Pastor, Ana Ruth; Esquivel-Soto, Ernesto; Esquivel-Guadarrama, Fernando; Ramírez, Octavio T; Palomares, Laura A

    2014-05-19

    Rotavirus is the most common cause of severe diarrhea in many animal species of economic interest. A simple, safe and cost-effective vaccine is required for the control and prevention of rotavirus in animals. In this study, we evaluated the use of Saccharomyces cerevisiae extracts containing rotavirus-like particles (RLP) as a vaccine candidate in an adult mice model. Two doses of 1mg of yeast extract containing rotavirus proteins (between 0.3 and 3 μg) resulted in an immunological response capable of reducing the replication of rotavirus after infection. Viral shedding in all mice groups diminished in comparison with the control group when challenged with 100 50% diarrhea doses (DD50) of murine rotavirus strain EDIM. Interestingly, when immunizing intranasally protection against rotavirus infection was observed even when no increase in rotavirus-specific antibody titers was evident, suggesting that cellular responses were responsible of protection. Our results indicate that raw yeast extracts containing rotavirus proteins and RLP are a simple, cost-effective alternative for veterinary vaccines against rotavirus. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Green synthesis and evaluation of silver nanoparticles as adjuvant in rabies veterinary vaccine.

    Science.gov (United States)

    Asgary, Vahid; Shoari, Alireza; Baghbani-Arani, Fahimeh; Sadat Shandiz, Seyed Ataollah; Khosravy, Mohammad Sadeq; Janani, Alireza; Bigdeli, Razieh; Bashar, Rouzbeh; Cohan, Reza Ahangari

    2016-01-01

    Green synthesis of nanoparticles by plant extracts plays a significant role in different applications. Recently, several studies were conducted on the use of nanoparticles as adjuvant. The main aim of this study was to evaluate green synthesized silver nanoparticles (AgNPs) as adjuvant in rabies veterinary vaccine and compare the results with the existing commercially available alum adjuvant. In the current study, AgNPs were prepared by the reduction of aqueous silver nitrate by leaf extract of Eucalyptus procera. The formation of AgNPs was confirmed by ultraviolet (UV)-visible spectrophotometer, scanning electron microscopy, dynamic light scattering, and X-ray diffraction analysis. Then, different amounts of AgNPs (200 µg, 400 µg, 600 µg, and 800 µg) were added to 1 mL of inactivated rabies virus. The loaded vaccines (0.5 mL) were injected intraperitoneally into six Naval Medical Research Institute mice in each group on days 1 and 7. On the 15th day, the mice were intracerebrally challenged with 0.03 mL of challenge rabies virus (challenge virus strain-11, 20 lethal dose [20 LD50]), and after the latency period of rabies disease in mice (5 days), the mice were monitored for 21 days. Neutralizing antibodies against rabies virus were also investigated using the rapid fluorescent focus inhibition test method. The National Institutes of Health test was performed to determine the potency of optimum concentration of AgNPs as adjuvant. In vitro toxicity of AgNPs was assessed in L929 cell line using MTT assay. In addition, in vivo toxicity of AgNPs and AgNPs-loaded vaccine was investigated according to the European Pharmacopeia 8.0. AgNPs were successfully synthesized, and the identity was confirmed by UV-visible spectrophotometry and X-ray diffraction analysis. The prepared AgNPs were spherical in shape, with an average size of 60 nm and a negative zeta potential of -14 mV as determined by dynamic light scattering technique. The highest percentage of viability was

  14. Cancer immunotherapy in veterinary medicine: Current options and new developments.

    Science.gov (United States)

    Regan, Daniel; Guth, Amanda; Coy, Jonathan; Dow, Steven

    2016-01-01

    Excitement in the field of tumor immunotherapy is being driven by several remarkable breakthroughs in recent years. This review will cover recent advances in cancer immunotherapy, including the use of T cell checkpoint inhibitors, engineered T cells, cancer vaccines, and anti-B cell and T cell antibodies. Inhibition of T cell checkpoint molecules such as PD-1 and CTLA-4 using monoclonal antibodies has achieved notable success against advanced tumors in humans, including melanoma, renal cell carcinoma, and non-small cell lung cancer. Therapy with engineered T cells has also demonstrated remarkable tumor control and regression in human trials. Autologous cancer vaccines have recently demonstrated impressive prolongation of disease-free intervals and survival times in dogs with lymphoma. In addition, caninized monoclonal antibodies targeting CD20 and CD52 just recently received either full (CD20) or conditional (CD52) licensing by the United States Department of Agriculture for clinical use in the treatment of canine B-cell and T-cell lymphomas, respectively. Thus, immunotherapy for cancer is rapidly moving to the forefront of cancer treatment options in veterinary medicine as well as human medicine. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. The rotavirus vaccine development pipeline.

    Science.gov (United States)

    Kirkwood, Carl D; Ma, Lyou-Fu; Carey, Megan E; Steele, A Duncan

    2017-04-07

    Rotavirus disease is a leading global cause of mortality and morbidity in children under 5years of age. The effectiveness of the two globally used oral rotavirus vaccines quickly became apparent when introduced into both developed and developing countries, with significant reductions in rotavirus-associated mortality and hospitalizations. However, the effectiveness and impact of the vaccines is reduced in developing country settings, where the burden and mortality is highest. New rotavirus vaccines, including live oral rotavirus candidates and non-replicating approaches continue to be developed, with the major aim to improve the global supply of rotavirus vaccines and for local implementation, and to improve vaccine effectiveness in developing settings. This review provides an overview of the new rotavirus vaccines in development by developing country manufacturers and provides a rationale why newer candidates continue to be explored. It describes the new live oral rotavirus vaccine candidates as well as the non-replicating rotavirus vaccines that are furthest along in development. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  16. Development of candidate rotavirus vaccines.

    Science.gov (United States)

    Bishop, R F

    1993-01-01

    Candidate rotavirus vaccines tested to date have been developed using a 'Jennerian' approach. Strains of bovine and simian rotaviruses that are naturally attenuated for humans have been assessed and found to confer immunity that is serotype specific in a varying proportion of recipients. The spectrum of protection has been widened by developing reassortants in which the bovine or simian gene coding for VP7 (the major outer capsid protein) has been replaced by the corresponding gene from human VP7 types 1, 2, 3 or 4. Once the protective antigen(s) are identified it may be possible to develop subunit vaccines that eliminate side effects sometimes observed with live vaccine candidates.

  17. Progress in Brucella vaccine development

    Science.gov (United States)

    YANG, Xinghong; SKYBERG, Jerod A.; CAO, Ling; CLAPP, Beata; THORNBURG, Theresa; PASCUAL, David W.

    2012-01-01

    Brucella spp. are zoonotic, facultative intracellular pathogens, which cause animal and human disease. Animal disease results in abortion of fetuses; in humans, it manifests flu-like symptoms with an undulant fever, with osteoarthritis as a common complication of infection. Antibiotic regimens for human brucellosis patients may last several months and are not always completely effective. While there are no vaccines for humans, several licensed live Brucella vaccines are available for use in livestock. The performance of these animal vaccines is dependent upon the host species, dose, and route of immunization. Newly engineered live vaccines, lacking well-defined virulence factors, retain low residual virulence, are highly protective, and may someday replace currently used animal vaccines. These also have possible human applications. Moreover, due to their enhanced safety and efficacy in animal models, subunit vaccines for brucellosis show great promise for their application in livestock and humans. This review summarizes the progress of brucellosis vaccine development and presents an overview of candidate vaccines. PMID:23730309

  18. Vaccine prophylaxis: achievements, problems, perspectives of development

    Directory of Open Access Journals (Sweden)

    Mavrutenkov V.V.

    2016-09-01

    Full Text Available The article presents medical and social aspects of immune prophylaxis of infectious diseases; the history of vaccines and vaccination is presented, as well as perspectives of development of vaccine prophylaxis.

  19. Clinical malaria vaccine development.

    NARCIS (Netherlands)

    Sauerwein, R.W.

    2009-01-01

    Malaria is a major economic and public health problem in mainly sub-Saharan Africa. Globally 300-500 million new infections occur each year with 1-3 million fatal cases in particular young children. The most effective way to reduce disease and death from infectious diseases is to vaccinate

  20. European Vaccine Initiative: lessons from developing malaria vaccines.

    Science.gov (United States)

    Geels, Mark J; Imoukhuede, Egeruan B; Imbault, Nathalie; van Schooten, Harry; McWade, Terry; Troye-Blomberg, Marita; Dobbelaer, Roland; Craig, Alister G; Leroy, Odile

    2011-12-01

    For over 10 years, the European Vaccine Initiative (EVI; European Malaria Vaccine Initiative until 2009) has contributed to the development of 24 malaria candidate vaccine antigens with 13 vaccine candidates being advanced into Phase I clinical trials, two of which have been transitioned for further clinical development in sub-Saharan Africa. Since its inception the EVI organization has operated as a funding agency, but with a clear service-oriented strategy. The scientific successes and difficulties encountered during these years and how these efforts have led to standardization and harmonization in vaccine development through large-scale European consortia are discussed. In the future, the EVI will remain instrumental in the pharmaceutical and clinical development of vaccines against 'diseases of poverty' with a continued focus on malaria. EVI will continue to focus on funding and managing preclinical evaluation up to Phase I/II clinical trials and strengthening the vaccine-development infrastructure in Europe, albeit with a global orientation.

  1. Vaccine development against Leishmania donovani

    Directory of Open Access Journals (Sweden)

    Amrita eDas

    2012-05-01

    Full Text Available Visceral leishmaniasis (VL caused by Leishmania donovani and Leishmania infantum/ chagasi represents the second most challenging infectious disease worldwide, affecting nearly 500,000 people and 60,000 deaths annually. Zoonotic VL (ZVL caused by L. infantum is re-emergent canid zoonoses which represents a complex epidemiological cycle in New world where domestic dogs serve as reservoir host responsible for potentially fatal human infection where dog culling is the only control measure for eliminating reservoir host. Lifelong immunity in human against reinfection has motivated several attempts in developing prophylactic vaccines against the disease but very few have progressed beyond experimental stage. Absence of any licensed vaccine along with high toxicity and increasing resistance to the current chemotherapeutic drugs has further complicated the situation in endemic regions of the world. Advances in vaccinology, including recombinant proteins, novel antigen-delivery systems/adjuvants, heterologous prime-boost regimens and strategies for intracellular antigen presentation, have contributed to recent advances in vaccine development against VL. Attempts to develop an effective vaccine for use in domestic dogs in areas of canine VL should be pursued for preventing human infection. Studies in animal models and human patients have revealed the pathogenic mechanisms of disease progression and features of protective immunity. This review will summarize the accumulated knowledge about pathogenesis, immune response and prerequisites for protective immunity against human VL. Authors will discuss promising vaccine targets, their developmental status and future prospects in a quest for rational vaccine development against VL. In addition, several challenges such as safety issues, a renewed and coordinated commitment to basic research, preclinical studies and trial design will be addressed to overcome the problems faced in developing effective vaccines

  2. A National Program for Instructional Development in Veterinary Pathology.

    Science.gov (United States)

    Ward, Billy, C.

    1979-01-01

    Results of a study by the American College of Veterinary Pathologists to investigate mechanisms to facilitate sharing of audiovisual programs include a content analysis in veterinary pathology, a guidebook for the preparation of instruction, 20 instructional programs, a lesson evaluation mechanism, and a proposal for sharing programs. (JMD)

  3. A novel site-II directed glycoprotein estimation ELISA to aid rabies vaccine manufacture for veterinary and human use.

    Science.gov (United States)

    Abhinay, Gontu; Dessain, Scott; Srikanth, Adabala; Senthilkumar, R L; Vidyasagar, Pitta; Praveen, Alagangula; Chandrasekhar Reddy, R V; Swapna Reddy, Erri; Rajendra, Lingala

    2014-01-03

    Although the World Health Organization recommends the use of in vitro techniques to qualify rabies vaccine lot release, very limited proposals have been made to arrive at a harmonized approach for wide scale usage. The present study proposed and evaluated the use of a novel avidin-biotin ELISA as an alternative to these in vivo tests in rabies vaccine manufacture. This assay utilized a neutralizing pan reactive monoclonal antibody (mAb) reactive with the conserved site-II of the natively folded rabies glycoprotein. Linear regression analysis of the in vitro glycoprotein estimates with the in vivo potency values, showed a good correlation (r(2)=0.8) with veterinary vaccines, but a poor correlation (r(2)=0.2) with human vaccines. However, we could qualitatively arrive at cut-off glycoprotein estimates from the ELISA, above which all the vaccines were declared to be protective by mouse challenge studies (>2.5IU/dose). Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Alternative methods and strategies to reduce, refine, and replace animal use for veterinary vaccine post-licensing safety testing: state of the science and future directions

    OpenAIRE

    KULPA-EDDY Jodie; SRINIVAS Geetha; HALDER Maria; BROWN Karen; DRAAYER Hans; GALVIN Jeffrey; CLAASEN Ivo; WOODLAND Ralph; DOELLING Vivian; JONES Brett; STOKES William

    2011-01-01

    NICEATM and ICCVAM convened an international workshop to review the state of the science of human and veterinary vaccine potency and safety testing methods and to identify opportunities to advance new and improved methods that can further reduce, refine, and replace animal use. Six topics were addressed in detail by speakers and workshop participants and are reported in a series of six reports. This workshop report, the last in the series, addresses methods and strategies for veterinary vacci...

  5. Accelerating vaccine development and deployment: report of a Royal Society satellite meeting.

    Science.gov (United States)

    Bregu, Migena; Draper, Simon J; Hill, Adrian V S; Greenwood, Brian M

    2011-10-12

    The Royal Society convened a meeting on the 17th and 18th November 2010 to review the current ways in which vaccines are developed and deployed, and to make recommendations as to how each of these processes might be accelerated. The meeting brought together academics, industry representatives, research sponsors, regulators, government advisors and representatives of international public health agencies from a broad geographical background. Discussions were held under Chatham House rules. High-throughput screening of new vaccine antigens and candidates was seen as a driving force for vaccine discovery. Multi-stakeholder, small-scale manufacturing facilities capable of rapid production of clinical grade vaccines are currently too few and need to be expanded. In both the human and veterinary areas, there is a need for tiered regulatory standards, differentially tailored for experimental and commercial vaccines, to allow accelerated vaccine efficacy testing. Improved cross-fertilization of knowledge between industry and academia, and between human and veterinary vaccine developers, could lead to more rapid application of promising approaches and technologies to new product development. Identification of best-practices and development of checklists for product development plans and implementation programmes were seen as low-cost opportunities to shorten the timeline for vaccine progression from the laboratory bench to the people who need it.

  6. Respiratory syncytial virus vaccine development

    Science.gov (United States)

    Hurwitz, Julia L

    2011-01-01

    Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract viral disease in infants and young children. Presently, there are no explicit recommendations for RSV treatment apart from supportive care. The virus is therefore responsible for an estimated 160,000 deaths per year worldwide. Despite half a century of dedicated research, there remains no licensed vaccine product. Herein are described past and current efforts to harness innate and adaptive immune potentials to combat RSV. A plethora of candidate vaccine products and strategies are reviewed. The development of a successful RSV vaccine may ultimately stem from attention to historical lessons, in concert with an integral partnering of immunology and virology research fields. PMID:21988307

  7. Influenza Vaccines: Unmet Needs and Recent Developments

    Science.gov (United States)

    Noh, Ji Yun

    2013-01-01

    Influenza is a worldwide public health concern. Since the introduction of trivalent influenza vaccine in 1978, vaccination has been the primary means of prevention and control of influenza. Current influenza vaccines have moderate efficacy, good safety, and acceptable tolerability; however, they have unsatisfactory efficacy in older adults, are dependent on egg supply for production, and are time-consuming to manufacture. This review outlines the unmet medical needs of current influenza vaccines. Recent developments in influenza vaccines are also described. PMID:24475351

  8. A retrospective analysis of veterinary medical curriculum development in The Netherlands

    NARCIS (Netherlands)

    Jaarsma, Debbie A D C; Scherpbier, Albert J J A; van Beukelen, Peter

    2009-01-01

    Over the past two decades, the Faculty of Veterinary Medicine of Utrecht University (FVMU) has introduced major curriculum changes to keep pace with modern veterinary educational developments worldwide. Changes to program outcomes have been proposed according to professional and societal demands,

  9. Dogs in the Hall: A Case Study of Affective Skill Development in an Urban Veterinary Program

    Science.gov (United States)

    Martin, Michael; Tummons, John; Ball, Anna; Bird, William

    2014-01-01

    The purpose of this bounded single case study was to explore how an urban high school veterinary program impacted students' affective skill development. The program was unique because students were required to participate in internships with local animal care businesses and care for animals within the school veterinary laboratory. The…

  10. Development and impact of human papillomavirus vaccines.

    Science.gov (United States)

    Darus, Christopher J; Mueller, Jennifer J

    2013-03-01

    Cervical cancer is a global health crisis that disproportionately affects developing nations and underserved populations. Two vaccines targeting HPV-16 and 18, which account for 70% of invasive cervical carcinomas, are licensed in the United States and numerous countries worldwide. Both vaccine formulations have shown excellent efficacy with minimal toxicity. Numerous questions remain, including cost-effectiveness, vaccination of males, societal acceptance of HPV vaccination, and cervical dysplasia screening in the HPV-immunized population. Access to vaccination for underserved populations both in developed and resource-poor nations remains an issue. Multivalent vaccines that encompass additional oncogenic HPV strains are under development.

  11. [Developments in tropical veterinary medicine at the Utrecht Faculty of Veterinary Medicine (1915-2013)].

    Science.gov (United States)

    Paling, Robert

    2014-01-01

    Education in livestock diseases in the tropics at the Faculty of Veterinary Medicine of Utrecht University started in 1915 at the Institute for Parasitic and Infectious Diseases. Subsequently, the Institute for Tropical and Protozoon Diseases was established in 1948 and here students and veterinarians were trained in tropical animal health. Research and training were mainly focused on African livestock diseases such as tick borne diseases and trypanosomosis. Training possibilities for students included an elective course ('Tropencursus'), membership of a debating club ('Tropische Kring'), and a traineeship in a project in a tropical country. From 1987 onwards training, education, research, and management of international collaborative projects in tropical animal health became the shared responsibility of the Department of Infectious Diseases and Immunology and the Office for International Cooperation. This article focuses on the last 50 years and highlights activities such as education, research, newsletters, networks, and project with African and Asian countries.

  12. Potency of veterinary rabies vaccines in The Netherlands: A case for continued vigilance.

    NARCIS (Netherlands)

    E.J.M. Rooijakkers; J.H.M. Nieuwenhuijs; A.A. Vermeulen; A.D.M.E. Osterhaus (Albert); G. van Steenis (Bert)

    1996-01-01

    textabstractCommercial rabies vaccines, used by veterinarians in the Netherlands, were collected for testing in the mouse potency test. Of the six vaccines tested, two were clearly below the minimal requirements for potency of 1.0 IU. Of these six vaccines the rabies virus glycoprotein (GP) and

  13. Development and trial of vaccines against Brucella

    Science.gov (United States)

    Lalsiamthara, Jonathan

    2017-01-01

    The search for ideal brucellosis vaccines remains active today. Currently, no licensed human or canine anti-brucellosis vaccines are available. In bovines, the most successful vaccine (S19) is only used in calves, as adult vaccination results in orchitis in male, prolonged infection, and possible abortion complications in pregnant female cattle. Another widely deployed vaccine (RB51) has a low protective efficacy. An ideal vaccine should exhibit a safe profile as well as enhance protective efficacy. However, currently available vaccines exhibit one or more major drawbacks. Smooth live attenuated vaccines suffer shortcomings such as residual virulence and serodiagnostic interference. Inactivated vaccines, in general, confer relatively low levels of protection. Recent developments to improve brucellosis vaccines include generation of knockout mutants by targeting genes involved in metabolism, virulence, and the lipopolysaccharide synthesis pathway, as well as generation of DNA vaccines, mucosal vaccines, and live vectored vaccines, have all produced varying degrees of success. Herein, we briefly review the bacteriology, pathogenesis, immunological implications, candidate vaccines, vaccinations, and models related to Brucella. PMID:28859268

  14. Progress in HIV vaccine development.

    Science.gov (United States)

    Hsu, Denise C; O'Connell, Robert J

    2017-05-04

    An HIV-1 vaccine is needed to curtail the HIV epidemic. Only one (RV144) out of the 6 HIV-1 vaccine efficacy trials performed showed efficacy. A potential mechanism of protection is the induction of functional antibodies to V1V2 region of HIV envelope. The 2 main current approaches to the generation of protective immunity are through broadly neutralizing antibodies (bnAb) and induction of functional antibodies (non-neutralizing Abs with other potential anti-viral functions). Passive immunization using bnAb has advanced into phase II clinical trials. The induction of bnAb using mimics of the natural Env trimer or B-cell lineage vaccine design is still in pre-clinical phase. An attempt at optimization of protective functional antibodies will be assessed next with the efficacy trial (HVTN702) about to start. With on-going optimization of prime/boost strategies, the development of mosaic immunogens, replication competent vectors, and emergence of new strategies designed to induce bnAb, the prospects for a preventive HIV vaccine have never been more promising.

  15. Oral vaccination of fish

    NARCIS (Netherlands)

    Embregts, Carmen W.E.; Forlenza, Maria

    2016-01-01

    The limited number of oral vaccines currently approved for use in humans and veterinary species clearly illustrates that development of efficacious and safe oral vaccines has been a challenge not only for fish immunologists. The insufficient efficacy of oral vaccines is partly due to antigen

  16. Bridging the Gap Between Validation and Implementation of Non-Animal Veterinary Vaccine Potency Testing Methods.

    Science.gov (United States)

    Dozier, Samantha; Brown, Jeffrey; Currie, Alistair

    2011-11-29

    In recent years, technologically advanced high-throughput techniques have been developed that replace, reduce or refine animal use in vaccine quality control tests. Following validation, these tests are slowly being accepted for use by international regulatory authorities. Because regulatory acceptance itself has not guaranteed that approved humane methods are adopted by manufacturers, various organizations have sought to foster the preferential use of validated non-animal methods by interfacing with industry and regulatory authorities. After noticing this gap between regulation and uptake by industry, we began developing a paradigm that seeks to narrow the gap and quicken implementation of new replacement, refinement or reduction guidance. A systematic analysis of our experience in promoting the transparent implementation of validated non-animal vaccine potency assays has led to the refinement of our paradigmatic process, presented here, by which interested parties can assess the local regulatory acceptance of methods that reduce animal use and integrate them into quality control testing protocols, or ensure the elimination of peripheral barriers to their use, particularly for potency and other tests carried out on production batches.

  17. Bridging the Gap Between Validation and Implementation of Non-Animal Veterinary Vaccine Potency Testing Methods

    Directory of Open Access Journals (Sweden)

    Alistair Currie

    2011-11-01

    Full Text Available In recent years, technologically advanced high-throughput techniques have been developed that replace, reduce or refine animal use in vaccine quality control tests. Following validation, these tests are slowly being accepted for use by international regulatory authorities. Because regulatory acceptance itself has not guaranteed that approved humane methods are adopted by manufacturers, various organizations have sought to foster the preferential use of validated non-animal methods by interfacing with industry and regulatory authorities. After noticing this gap between regulation and uptake by industry, we began developing a paradigm that seeks to narrow the gap and quicken implementation of new replacement, refinement or reduction guidance. A systematic analysis of our experience in promoting the transparent implementation of validated non-animal vaccine potency assays has led to the refinement of our paradigmatic process, presented here, by which interested parties can assess the local regulatory acceptance of methods that reduce animal use and integrate them into quality control testing protocols, or ensure the elimination of peripheral barriers to their use, particularly for potency and other tests carried out on production batches.

  18. Highlights of the 8th International Veterinary Immunology Symposium

    Science.gov (United States)

    Veterinary immunologists have expanded understanding of the immune systems for our companion animals and developed new vaccines and therapeutics. This manuscript summarizes the highlights of the 8th International Veterinary Immunology Symposium (8 th IVIS) held August 15th-19th, 2007, in Ouro Preto,...

  19. [Development of current smallpox vaccines].

    Science.gov (United States)

    Maksiutov, R A; Gavrilova, E V; Shchelkunov, S N

    2011-01-01

    The review gives data on the history of smallpox vaccination and shows the high topicality of designing the current safe vaccines against orthopoxviruses. Four generations of live smallpox, protein subunit, and DNA vaccines are considered. Analysis of the data published leads to the conclusion that it is promising to use the up-to-date generations of safe smallpox subunit or DNA vaccines for mass primary immunization with possible further revaccination with classical live vaccine.

  20. Risk in vaccine research and development quantified.

    Directory of Open Access Journals (Sweden)

    Esther S Pronker

    Full Text Available To date, vaccination is the most cost-effective strategy to combat infectious diseases. Recently, a productivity gap affects the pharmaceutical industry. The productivity gap describes the situation whereby the invested resources within an industry do not match the expected product turn-over. While risk profiles (combining research and development timelines and transition rates have been published for new chemical entities (NCE, little is documented on vaccine development. The objective is to calculate risk profiles for vaccines targeting human infectious diseases. A database was actively compiled to include all vaccine projects in development from 1998 to 2009 in the pre-clinical development phase, clinical trials phase I, II and III up to Market Registration. The average vaccine, taken from the preclinical phase, requires a development timeline of 10.71 years and has a market entry probability of 6%. Stratification by disease area reveals pandemic influenza vaccine targets as lucrative. Furthermore, vaccines targeting acute infectious diseases and prophylactic vaccines have shown to have a lower risk profile when compared to vaccines targeting chronic infections and therapeutic applications. In conclusion; these statistics apply to vaccines targeting human infectious diseases. Vaccines targeting cancer, allergy and autoimmune diseases require further analysis. Additionally, this paper does not address orphan vaccines targeting unmet medical needs, whether projects are in-licensed or self-originated and firm size and experience. Therefore, it remains to be investigated how these - and other - variables influence the vaccine risk profile. Although we find huge differences between the risk profiles for vaccine and NCE; vaccines outperform NCE when it comes to development timelines.

  1. Status of vaccine research and development of vaccines for malaria.

    Science.gov (United States)

    Birkett, Ashley J

    2016-06-03

    Despite recent progress in reducing deaths attributable to malaria, it continues to claim approximately 500,000 lives per year and is associated with approximately 200 million infections. New tools, including safe and effective vaccines, are needed to ensure that the gains of the last 15 years are leveraged toward achieving the ultimate goal of malaria parasite eradication. In 2015, the European Medicines Agency announced the adoption of a positive opinion for the malaria vaccine candidate most advanced in development, RTS,S/AS01, which provides modest protection against clinical malaria; in early 2016, WHO recommended large-scale pilot implementations of RTS,S in settings of moderate-to-high malaria transmission. In alignment with these advancements, the community goals and preferred product characteristics for next-generation vaccines have been updated to inform the development of vaccines that are highly efficacious in preventing clinical malaria, and those needed to accelerate parasite elimination. Next-generation vaccines, targeting all stages of the parasite lifecycle, are in early-stage development with the most advanced in Phase 2 trials. Importantly, progress is being made in the definition of feasible regulatory pathways to accelerate timelines, including for vaccines designed to interrupt transmission of parasites from humans to mosquitoes. The continued absence of financially lucrative, high-income markets to drive investment in malaria vaccine development points to continued heavy reliance on public and philanthropic funding. Copyright © 2016 World Health Organization. Published by Elsevier Ltd.. All rights reserved.

  2. Conjugate Meningococcal Vaccines Development: GSK Biologicals Experience

    Directory of Open Access Journals (Sweden)

    Jacqueline M. Miller

    2011-01-01

    Full Text Available Meningococcal diseases are serious threats to global health, and new vaccines specifically tailored to meet the age-related needs of various geographical areas are required. This paper focuses on the meningococcal conjugate vaccines developed by GSK Biologicals. Two combined conjugate vaccines were developed to help protect infants and young children in countries where the incidence of meningococcal serogroup C or serogroup C and Y disease is important: Hib-MenC-TT vaccine, which offers protection against Haemophilus influenzae type b and Neisseria meningitidis serogroup C diseases, is approved in several countries; and Hib-MenCY-TT vaccine, which adds N. meningitidis serogroup Y antigen, is currently in the final stages of development. Additionally, a tetravalent conjugate vaccine (MenACWY-TT designed to help protect against four meningococcal serogroups is presently being evaluated for global use in all age groups. All of these vaccines were shown to be highly immunogenic and to have clinically acceptable safety profiles.

  3. The quality of reporting and publication status of vaccines trials presented at veterinary conferences from 1988 to 2003.

    Science.gov (United States)

    Brace, Samantha; Taylor, Dan; O'Connor, Annette M

    2010-07-19

    Conference proceedings, although an importance source to learn about new interventions, are brief and not subject to external evaluation prior to publication. Studies in human medicine suggest that trial results from conference proceedings may be poorly reported. The primary objective of this study was to evaluate characteristics of veterinary vaccine studies published in conference proceedings. 154 cattle or swine vaccine trials presented at veterinary practitioner conferences held in the United States from 1988 to 2003 were the test base to evaluate the following: abstract-to-publication ratio, positive-outcome ratios, differences between proceeding and subsequent journal articles, and compliance with the CONSORT Statement extension for abstracts. The abstract-to-publication ratio was 5/89 for swine trials and 6/65 for cattle trials. The positive-outcome ratio for swine conference proceeding and journal articles was 57/89 and 4/5 respectively. The positive-outcome ratio for bovine conference proceeding and journal articles was 34/65 and 4/6 respectively. No major differences were found between conference proceedings and matching journal articles. Fewer than 10% of conference proceedings included: identification of the trials as randomized in the title, study design as field or challenge; the primary outcome; trial status; results for primary outcome; information about harms and funding source (2/89). When conference proceedings are subsequently published in journals; there is no significant difference in the data, however subsequent publication is uncommon. For many conference proceedings it would be difficult to assess the internal and external validity of the trial based on the information reported. (c) 2010 Elsevier Ltd. All rights reserved.

  4. Recent developments in leishmaniasis vaccine delivery systems.

    Science.gov (United States)

    Bhowmick, Sudipta; Ali, Nahid

    2008-07-01

    The observation that recovery from infection with Leishmania confers immunity to reinfection suggests that control of leishmaniasis by vaccination may be possible. New generation vaccines, particularly those based on recombinant proteins and DNA, are found to be less immunogenic. There is an urgent need for the development of new and improved vaccine adjuvants. Based on their principal mechanisms of action, adjuvants can be broadly separated into two classes: immunostimulatory adjuvants and vaccine delivery systems. Vaccine delivery systems can carry both antigen and adjuvant for effective delivery to the antigen-presenting cells (APCs). In this article, we review the adjuvants, the delivery systems and their combinations used in the search of an effective vaccine against leishmaniasis. Based on current knowledge, cationic liposomes appear to have better prospects as effective delivery systems for developing a vaccine for leishmaniasis.

  5. Nanovaccines: recent developments in vaccination

    Indian Academy of Sciences (India)

    Prakash

    2009-12-04

    Dec 4, 2009 ... of the major binding proteins, and reported that this vaccine could induce mucosal and cellular immunity, and neutralize antibody to various isolates of HIV. These exploratory studies may have implications for viral vaccines. Intranasal delivery of vaccines poses two major challenges: the first is accurate and ...

  6. Vaccine requirements and priorities for developing countries.

    Science.gov (United States)

    Thongcharoen, P

    1986-09-01

    The situation of viral vaccines used in Asian countries is reviewed, focusing on the following vaccines: smallpox, rabies, polio, measles, rubella, mumps, influenza, Japanese encephalitis, hepatitis B, varicella, dengue, and rotavirus. Vaccinations are among the most important strategies to combat communicable diseases caused by bacteria, fungi, parasites, and viruses. Active immunizations are more preferable in most instances than passive ones. It has taken almost 2 centuries to eradicate the highly contagious infection of smallpox from the world. In 1979 the World Health Organization (WHO) announced the global eradication of smallpox. Smallpox vaccination was 1st practiced in 1840 by Dr. Dan Beach Bradley, with the last 2 cases of smallpox reported in Thailand in 1962. Despite the achievement for many years of more ideal rabies vaccine, Semple vaccine continues to be used in developing countries. Attempts should be intensified to produce newer tissue culture vaccines in developing countries themselves and to eradicate vectors. Instances of poliomyelitis were reported in Indonesia, the Philippines, Sri Lanka, India, and Thailand as late as 1983-84, but only a few sporadic cases have occurred in Malaysia since 1980. This mixed record results from polio vaccine having been incorporated into national Expanded Program on Immunization (EPI) programs in many countries. Measles remains 1 of the most common viral infections in children in most developing nations, but morbidity and mortality rates are not accurately obtainable in these countries. Rubella outbreaks have been reported from many countries in Southeast Asia with congenital rubella syndromes due to maternal rubella on the increase in many countries, including Thailand. Children who receive the mumps vaccination are those receiving the combined MMR vaccines. Monovalent mumps vaccine is not obtainable in developing countries. Influenza vaccine is impracticable in most developing countries. Japanese encephalitis

  7. Recombinant Alpha, Beta, and Epsilon Toxins of Clostridium perfringens: Production Strategies and Applications as Veterinary Vaccines

    Science.gov (United States)

    Ferreira, Marcos Roberto A.; Moreira, Gustavo Marçal S. G.; da Cunha, Carlos Eduardo P.; Mendonça, Marcelo; Salvarani, Felipe M.; Moreira, Ângela N.; Conceição, Fabricio R.

    2016-01-01

    Clostridium perfringens is a spore-forming, commensal, ubiquitous bacterium that is present in the gastrointestinal tract of healthy humans and animals. This bacterium produces up to 18 toxins. The species is classified into five toxinotypes (A–E) according to the toxins that the bacterium produces: alpha, beta, epsilon, or iota. Each of these toxinotypes is associated with myriad different, frequently fatal, illnesses that affect a range of farm animals and humans. Alpha, beta, and epsilon toxins are the main causes of disease. Vaccinations that generate neutralizing antibodies are the most common prophylactic measures that are currently in use. These vaccines consist of toxoids that are obtained from C. perfringens cultures. Recombinant vaccines offer several advantages over conventional toxoids, especially in terms of the production process. As such, they are steadily gaining ground as a promising vaccination solution. This review discusses the main strategies that are currently used to produce recombinant vaccines containing alpha, beta, and epsilon toxins of C. perfringens, as well as the potential application of these molecules as vaccines for mammalian livestock animals. PMID:27879630

  8. Status of vaccine research and development of vaccines for leishmaniasis.

    Science.gov (United States)

    Gillespie, Portia M; Beaumier, Coreen M; Strych, Ulrich; Hayward, Tara; Hotez, Peter J; Bottazzi, Maria Elena

    2016-06-03

    A number of leishmaniasis vaccine candidates are at various stages of pre-clinical and clinical development. Leishmaniasis is a vector-borne neglected tropical disease (NTD) caused by a protozoan parasite of the genus Leishmania and transmitted to humans by the bite of a sand fly. Visceral leishmaniasis (VL, kala-azar) is a high mortality NTD found mostly in South Asia and East Africa, while cutaneous leishmaniasis (CL) is a disfiguring NTD highly endemic in the Middle East, Central Asia, North Africa, and the Americas. Estimates attribute 50,000 annual deaths and 3.3 million disability-adjusted life years to leishmaniasis. There are only a few approved drug treatments, no prophylactic drug and no vaccine. Ideally, an effective vaccine against leishmaniasis will elicit long-lasting immunity and protect broadly against VL and CL. Vaccines such as Leish-F1, F2 and F3, developed at IDRI and designed based on selected Leishmania antigen epitopes, have been in clinical trials. Other groups, including the Sabin Vaccine Institute in collaboration with the National Institutes of Health are investigating recombinant Leishmania antigens in combination with selected sand fly salivary gland antigens in order to augment host immunity. To date, both VL and CL vaccines have been shown to be cost-effective in economic modeling studies. Copyright © 2016 World Health Organization. Published by Elsevier Ltd.. All rights reserved.

  9. Development and evaluation of a virtual slaughterhouse simulator for training and educating veterinary students.

    Science.gov (United States)

    Seguino, Alessandro; Seguino, Ferruccio; Eleuteri, Antonio; Rhind, Susan M

    2014-01-01

    Veterinary surgeons working on farms and food-processing establishments play a fundamental role in safeguarding both public health and the welfare of animals under their care. An essential part of veterinary public health (VPH) undergraduate training in the UK involves students undertaking placements within abattoirs, a practice that remains vital to the educational experience of future veterinary professionals. However, several issues have adversely affected the ability of students to gain such extramural placements. For this reason, the Virtual Slaughterhouse Simulator (VSS) was developed to strengthen and enhance undergraduate VPH teaching at the Royal (Dick) School of Veterinary Studies, enabling students to explore a realistic abattoir work environment with embedded educational activities. The aim of this research project was to evaluate the VSS as a teaching and learning tool for training and educating veterinary students. Ninety-eight final-year veterinary students engaged with the prototype VSS, followed by assessment of their knowledge and behavior when faced with a "real-life" abattoir situation. Further evaluation of their experiences with the VSS was carried out using questionnaires and focus groups. The results of this investigation show that there is the potential for the VSS to enhance the student learning experience in basic abattoir procedures. This innovative tool provides a visually based learning resource that can support traditional lectures and practical classes and can also be used to stimulate interactive problem-solving activities embedded in the relevant context.

  10. NIGERIAN VETERINARY JOURNAL

    African Journals Online (AJOL)

    ADEYEYE

    Nigerian Veterinary Journal 38(2). 2017. Meseko et al. 124. NIGERIAN VETERINARY JOURNAL. ISSN 0331-3026. Nig. Vet. J., June 2017. Vol 38 (2): 124-128. SHORT COMMUNICATION. Fowlpox Virus from Backyard Poultry in Plateau State Nigeria: Isolation and Phylogeny of the P4b Gene Compared to a Vaccine Strain.

  11. Pharmaceutical companies pledge vaccines for developing countries.

    Science.gov (United States)

    Rovner, J

    2000-03-11

    After the opening of the Millennium Vaccine Initiative (MVI), a program which aims to help lower the toll of infectious disease, four pharmaceutical companies pledge to develop vaccines to fight infectious diseases in the developing world. The agreement by Merck, American Home Products, SmithKline Beecham, and Aventis Pharma came as President Clinton continued to advance the MVI program. Merck announced that it would give 5 million doses of its hepatitis B vaccine over the next 5 years; American Home Products stated that it would donate 10 million doses of its Hemophilus influenzae type b vaccine. Moreover, SmithKline Beecham announced it would do pediatric trials of its malaria vaccine in Africa and renewed a pledge made in 1998 to work with WHO to donate 5 billion doses of albendazole over the next 20 years to eradicate lymphatic filariasis. In addition, Aventis Pharma promised 50 million doses of its polio vaccine for ¿war-torn nations in Africa¿.

  12. The development of flavivirus vaccines | Pulmanausahakul | African ...

    African Journals Online (AJOL)

    Vaccine development to eliminate flaviviral infections has been marked by uneven progress and a large number of setbacks. To date, no single approach has proved successful in leading to vaccine development against a wide range of flaviviruses, but the application of modern techniques to the problem is opening up new ...

  13. Development of Novel Vaccines against Enterovirus-71

    Directory of Open Access Journals (Sweden)

    Pinn Tsin Isabel Yee

    2015-12-01

    Full Text Available The hand, foot and mouth disease is caused by a group of Enteroviruses such as Enterovirus 71 (EV-A71 and Coxsackievirus CV-A5, CV-A8, and CV-A16. Mild symptoms of EV-A71 infection in children range from high fever, vomiting, rashes and ulcers in mouth but can produce more severe symptoms such as brainstem and cerebellar encephalitis, leading up to cardiopulmonary failure and death. The lack of vaccines and antiviral drugs against EV-A71 highlights the urgency of developing preventive and treatment agents against EV-A71 to prevent further fatalities. Research groups have developed experimental inactivated vaccines, recombinant Viral Protein 1 (VP1 vaccine and virus-like particles (VLPs. The inactivated EV-A71 vaccine is considered the safest viral vaccine, as there will be no reversion to the infectious wild type strain. The recombinant VP1 vaccine is a cost-effective immunogen, while VLPs contain an arrangement of epitopes that can elicit neutralizing antibodies against the virus. As each type of vaccine has its advantages and disadvantages, increased studies are required in the development of such vaccines, whereby high efficacy, long-lasting immunity, minimal risk to those vaccinated, safe and easy production, low cost, dispensing the need for refrigeration and convenient delivery are the major goals in their design.

  14. 77 FR 68783 - Prospective Grant of Exclusive License: Veterinary Vaccines for Rift Valley Fever Virus

    Science.gov (United States)

    2012-11-16

    ... in the patent applications referred to below to Merial Limited, having a place of business in Duluth... conditions of 35 U.S.C. 209 and 37 CFR 404.7. Technology: The technology allows for the generation of... induce robust protective immunity following the administration of a single vaccine dose in a rat model of...

  15. Potency and control of modified live viral vaccines for veterinary use

    NARCIS (Netherlands)

    Terpstra, C.; Kroese, A.H.

    1996-01-01

    This paper reviews various aspects of efficacy, and methods for assaying the potency of modified live viral vaccines. The pros and cons of parametric versus non-parametric methods for analysis of potency assays are discussed and critical levels of protection, as determined by the target(s) of

  16. Unleashing the potential: women's development and ways of knowing as a perspective for veterinary medical education.

    Science.gov (United States)

    Taylor, Kay Ann; Robinson, Daniel C

    2009-01-01

    Women now dominate student enrollment in colleges of veterinary medicine in the USA, as well as in other countries. Projections indicate that this will remain a constant. The implications for teaching, learning, mentoring, leadership, professional development, student and faculty diversity, and curriculum structure are enormous. This article provides the groundwork for examining gender diversity in veterinary medical education. Women's development and ways of knowing are identified as paramount for understanding and benefiting students and faculty in their higher education experiences and in their professional lives. Seminal research focusing on women's development and ways of knowing is introduced, summarized, and contrasted to male-centered models, and implications for teaching practice are considered. Our underlying premise is that research about women's moral and intellectual development is relevant to veterinary education and supports the adoption of student-centered approaches to teaching and learning.

  17. Concepts Of Bioinformatics And Its Application In Veterinary ...

    African Journals Online (AJOL)

    Bioinformatics has advanced the course of research and future veterinary vaccines development because it has provided new tools for identification of vaccine targets from sequenced biological data of organisms. In Nigeria, there is lack of bioinformatics training in the universities, expect for short training courses in which ...

  18. Sokoto Journal of Veterinary Sciences

    African Journals Online (AJOL)

    um chafe

    191-203. FACULTY OF VETERINARY MEDICINE. USMANU DANFODIYO UNIVERSITY. P.M.B. 2346, SOKOTO. NIGERIA. Sokoto Journal of Veterinary Sciences. ISSN 1595-093X. Nwanta et al. /Sokoto Journal of Veterinary Sciences (2008). 7(2): 42-45. Field trial of Malaysian thermostable Newcastle disease vaccine in.

  19. Nanovaccines: recent developments in vaccination

    Indian Academy of Sciences (India)

    In the past 100 years, vaccination has contributed immensely to public health by preventing a number of infectious diseases. Attenuated, killed or part of the microorganism is employed to stimulate the immune system against it. Progress in biotechnology has provided protective immunity through DNA vaccines. In recent ...

  20. DENGUE VACCINE, CHALLENGES, DEVELOPMENT AND STRATEGIES

    Directory of Open Access Journals (Sweden)

    Dewi Marbawati

    2014-08-01

    Full Text Available ABSTRAKPenyakit demam Dengue endemik di lebih dari 100 negara di dunia. Obat anti virus Dengue efektif belum ditemukan danpengendalian vektor dinilai kurang efektif, sehingga diperlukan upaya pencegahan dengan vaksinasi. Vaksin Dengue yangideal adalah murah, mencakup 4 serotipe, efektif dalam memberikan kekebalan, cukup diberikan sekali seumur hidup, aman,memberi kekebalan jangka panjang, stabil dalam penyimpanan dan stabil secara genetis (tidak bermutasi. Beberapakandidat vaksin yang telah dan sedang dikembangkan oleh para peneliti di seluruh dunia adalah tetravalent live attenuatedvaccine, vaksin Chimera (ChimeriVax, vaksin subunit dan vaksin DNA. Vaksin Dengue dipandang sebagai pendekatan yangefektif dan berkesinambungan dalam mengendalikan penyakit Dengue. Tahun 2003 telah terbentuk Pediatric DengueVaccine Initiative (PDVI, yaitu sebuah konsorsium internasional yang bergerak dalam advokasi untuk meyakinkanmasyarakat internasional akan penting dan mendesaknya vaksin Dengue. Konsorsium vaksin Dengue Indonesia saat iniberupaya mengembangkan vaksin Dengue dengan menggunakan strain virus lokal.Kata kunci: Dengue, virus, vaksinABSTRACTDengue fever is endemic in more than 100 countries in the world. The effective dengue antiviral drug has not been found yet,and vector control is considered less effective. Prevention program by vaccination is needed. An ideal dengue vaccine shouldbe inexpensive, covering four serotypes (tetravalent, effective in providing immunity, given once a lifetime, safe, stable instorage and genetically. Several vaccine candidates have been and are being developed included attenuated tetravalentvaccine, ChimeriVax, sub- unit vaccines and DNA vaccines. Dengue vaccine is seen as an effective and sustainable approachto controll Dengue infection. In 2003, Pediatric Dengue Vaccine Initiative (PDVI has been formed as an internationalconsortium involved in advocacy to convince the international community about the essence and urgency

  1. Human capital gaps in vaccine development: an issue for global vaccine development and global health.

    Science.gov (United States)

    Cawein, Andrea; Emini, Emilio; Watson, Michael; Dailey, Joanna; Donnelly, John; Tresnan, Dina; Evans, Tom; Plotkin, Stanley; Gruber, William

    2017-05-01

    Despite the success of vaccines in reducing the morbidity and mortality associated with infectious diseases, many infectious diseases, both newly emerging and well known, lack vaccines. The global capability for beginning-to-end vaccine development has become limited, primarily owing to a scarcity of human capital necessary to guide the development of novel vaccines from the laboratory to the marketplace. Here, we identify and discuss the gaps in human capital necessary for robust vaccine development and make recommendations to begin to address these deficiencies. © 2017 New York Academy of Sciences.

  2. Development and pilot of Case Manager: a virtual-patient experience for veterinary students.

    Science.gov (United States)

    Byron, Julie K; Johnson, Susan E; Allen, L Clare V; Brilmyer, Cheryl; Griffiths, Robert P

    2014-01-01

    There is an increasing demand in veterinary education to engage students, teach and reinforce clinical reasoning, and provide access anytime/anywhere to quality learning opportunities. In addition, accrediting bodies are asking for more concrete documentation of essential clinical-skills outcomes. Unfortunately, during the clinical year in a referral hospital setting, students are at the mercy of chance regarding the types of cases they will encounter and the opportunities they will have to participate. Patient- and case-simulation technology is becoming more popular as a way to achieve these objectives in human and veterinary medical education. Many of the current options available to the veterinary medical education community to develop virtual-patient cases are too time-consuming, cost prohibitive, or difficult for the instructor or learner to use. In response, we developed a learning tool, Case Manager, which is low-cost and user-friendly. Case Manager was designed to meet the demands of veterinary education by providing students with an opportunity to cultivate clinical reasoning skills and allowing for real-time student feedback. We launched a pilot test with 37 senior veterinary medical students as part of their Small Animal Internal Medicine clinical rotation. Students reported that Case Manager increased their engagement with the material, improved diagnostic and problem-solving skills, and broadened their exposure to a variety of cases. In addition, students felt that Case Manager was superior to a more traditional, less interactive case presentation format.

  3. A history of hookworm vaccine development.

    Science.gov (United States)

    Schneider, Brent; Jariwala, Amar R; Periago, Maria Victoria; Gazzinelli, Maria Flávia; Bose, Swaroop N; Hotez, Peter J; Diemert, David J; Bethony, Jeffrey M

    2011-11-01

    The human hookworms Necator americanus and Ancylostoma duodenale remain among the most common infections of humans in areas of rural poverty in the developing regions of the world, with an estimated 1 billion people infected with one or more of these parasites. Herein, we review the nearly 100 years of research, development, animal testing, and fieldwork that have led to our current progress in recombinant hookworm vaccines. We begin with the identification of hookworm at the start of the 20th century in Southern US, then discuss the progress in developed countries to eliminate human hookworm infection, and then the industrial development and field use in the 1970s a canine hookworm vaccine(Ancylostoma caninum), and finally our progress to date in the development and clinical testing of an array of recombinant antigens to prevent human hookworm disease from N. americanus infection. Special attention is given to the challenges faced in the development of a vaccine against a blood-feeding nematode, including the epidemiology of infection (high prevalence of infection), pathogenesis (chronic infection that increases with the age of the host), and a robust immune response that fails to confer the protection in the host and a concomitant absence of correlates of protection by a successful vaccine could be developed and tested. Finally, we provide the optimal and acceptable profiles of a human hookworm vaccine, including the proposed indication, target population, and route of administration, as developed by the Human Hookworm Vaccine Initiative, the only group currently working on vaccines targeting this parasite.

  4. Nonclinical Development of BCG Replacement Vaccine Candidates

    Directory of Open Access Journals (Sweden)

    Bernd Eisele

    2013-04-01

    Full Text Available The failure of current Mycobacterium bovis bacille Calmette–Guérin (BCG vaccines, given to neonates to protect against adult tuberculosis and the risk of using these live vaccines in HIV-infected infants, has emphasized the need for generating new, more efficacious and safer replacement vaccines. With the availability of genetic techniques for constructing recombinant BCG (rBCG strains containing well-defined gene deletions or insertions, new vaccine candidates are under evaluation at both the preclinical and clinical stages of development. Since most BCG vaccines in use today were evaluated in clinical trials decades ago and are produced by outdated processes, the development of new BCG vaccines offers a number of advantages that include a modern well-defined manufacturing process along with state-of-the-art evaluation of safety and efficacy in target populations. We provide a description of the preclinical development of two novel rBCGs, VPM1002 that was constructed by adding a modified hly gene coding for the protein listeriolysin O (LLO from Listeria monocytogenes and AERAS-422, which carries a modified pfoA gene coding for the protein perfringolysin O (PFO from Clostridium perfringens, and three genes from Mycobacterium tuberculosis. Novel approaches like these should be helpful in generating stable and effective rBCG vaccine candidates that can be better characterized than traditional BCG vaccines.

  5. Nonclinical Development of BCG Replacement Vaccine Candidates.

    Science.gov (United States)

    Velmurugan, Kamalakannan; Grode, Leander; Chang, Rosemary; Fitzpatrick, Megan; Laddy, Dominick; Hokey, David; Derrick, Steven; Morris, Sheldon; McCown, David; Kidd, Reginald; Gengenbacher, Martin; Eisele, Bernd; Kaufmann, Stefan H E; Fulkerson, John; Brennan, Michael J

    2013-04-16

    The failure of current Mycobacterium bovis bacille Calmette-Guérin (BCG) vaccines, given to neonates to protect against adult tuberculosis and the risk of using these live vaccines in HIV-infected infants, has emphasized the need for generating new, more efficacious and safer replacement vaccines. With the availability of genetic techniques for constructing recombinant BCG (rBCG) strains containing well-defined gene deletions or insertions, new vaccine candidates are under evaluation at both the preclinical and clinical stages of development. Since most BCG vaccines in use today were evaluated in clinical trials decades ago and are produced by outdated processes, the development of new BCG vaccines offers a number of advantages that include a modern well-defined manufacturing process along with state-of-the-art evaluation of safety and efficacy in target populations. We provide a description of the preclinical development of two novel rBCGs, VPM1002 that was constructed by adding a modified hly gene coding for the protein listeriolysin O (LLO) from Listeria monocytogenes and AERAS-422, which carries a modified pfoA gene coding for the protein perfringolysin O (PFO) from Clostridium perfringens, and three genes from Mycobacterium tuberculosis. Novel approaches like these should be helpful in generating stable and effective rBCG vaccine candidates that can be better characterized than traditional BCG vaccines.

  6. Progress and controversies in developing cancer vaccines

    Directory of Open Access Journals (Sweden)

    Speiser Daniel E

    2005-04-01

    Full Text Available Abstract Immunotherapy has become a standard approach for cancer management, through the use of cytokines (eg: interleukin-2 and monoclonal antibodies. Cancer vaccines hold promise as another form of immunotherapy, and there has been substantial progress in identifying shared antigens recognized by T cells, in developing vaccine approaches that induce antigen-specific T cell responses in cancer patients, and in developing new technology for monitoring immune responses in various human tissue compartments. Dramatic clinical regressions of human solid tumors have occurred with some cancer vaccines, but the rate of those responses remains low. This article is part of a 2-part point:counterpoint series on peptide vaccines and adoptive therapy approaches for cancer. The current status of cancer vaccination, and associated challenges, are discussed. Emphasis is placed on the need to increase our knowledge of cancer immunobiology, as well as to improve monitoring of cellular immune function after vaccination. Progress in both areas will facilitate development of effective cancer vaccines, as well as of adoptive therapy. Effective cancer vaccines promise to be useful for treatment and prevention of cancer at low cost and with low morbidity.

  7. Developments in Veterinary Medical Education : Intentions, perceptions, learning processes and outcomes

    NARCIS (Netherlands)

    Jaarsma, A.D.C.|info:eu-repo/dai/nl/323051928

    2008-01-01

    The past decennia, veterinary medical education worldwide has gone through some rapid and major developments. Motivation for these developments were, among others, the explosion of (bio) medical knowledge, the related problem of curriculum overload and the mismatch between university and the

  8. Genomics and systems biology - How relevant are the developments to veterinary pharmacology, toxicology and therapeutics?

    NARCIS (Netherlands)

    Witkamp, R.F.

    2005-01-01

    This review discusses some of the recent developments in genomics and its current and future relevance for veterinary pharmacology and toxicology. With the rapid progress made in this field several new approaches in pharmacological and toxicological research have developed and drug discovery and

  9. Teacher development: a patchwork-text approach to enhancing critical reflection in veterinary and para-veterinary educators.

    Science.gov (United States)

    Silva-Fletcher, Ayona; May, Hilary; Magnier, Kirsty M; May, Stephen A

    2014-01-01

    Reflection is an essential component of teacher-development programs, and reliable, valid methods to teach, assess, and evaluate reflection are critical. However, it is important that appropriate methods are created for and evaluated across multiple disciplinary backgrounds, as the participants' backgrounds are a major factor in the development of critical reflection. The patchwork-text approach is a narrative process that is predominantly focused on the personal development of the individual. The current study used the patchwork-text approach for the development of reflection in participants with a science background who had not used a reflective approach for personal development before. Twenty summative essays and 103 formative essays from 21 participants who underwent a 1-year higher-education teacher-development program were analyzed to assess whether the quality and quantity of reflective writing was enhanced through a regular, iterative process of reflective writing with feedback. The analysis of the essays involved the use of a predefined set of criteria for identifying the different reflective levels from 1 to 4 and the calculation of a reflective score to evaluate the overall development. The results show a clear improvement of higher-level critical thinking as the participants progressed through their course. Higher levels of reflection were achieved particularly where a unit focused on a familiar area for the participant as opposed to one in which the participant had less experience. The analysis provides evidence that the patchwork text is a useful method for development and evaluation of reflection in participants with a veterinary/animal-science base.

  10. Clinical veterinary education: insights from faculty and strategies for professional development in clinical teaching.

    Science.gov (United States)

    Lane, India F; Strand, Elizabeth

    2008-01-01

    Missing in the recent calls for accountability and assurance of veterinary students' clinical competence are similar calls for competence in clinical teaching. Most clinician educators have no formal training in teaching theory or method. At the University of Tennessee College of Veterinary Medicine (UTCVM), we have initiated multiple strategies to enhance the quality of teaching in our curriculum and in clinical settings. An interview study of veterinary faculty was completed to investigate the strengths and weaknesses of clinical education; findings were used in part to prepare a professional development program in clinical teaching. Centered on principles of effective feedback, the program prepares participants to organize clinical rotation structure and orientation, maximize teaching moments, improve teaching and participation during formal rounds, and provide clearer summative feedback to students at the end of a rotation. The program benefits from being situated within a larger college-wide focus on teaching improvement. We expect the program's audience and scope to continue to expand.

  11. Evaluation of newly developed veterinary portable blood glucose meter with hematocrit correction in dogs and cats.

    Science.gov (United States)

    Mori, Akihiro; Oda, Hitomi; Onozawa, Eri; Shono, Saori; Sako, Toshinori

    2017-10-07

    This study evaluated the accuracy of a newly developed veterinary portable blood glucose meter (PBGM) with hematocrit correction in dogs and cats. Sixty-one dogs and 31 cats were used for the current study. Blood samples were obtained from each dog and cat one to six times. Acceptable results were obtained in error grid analysis between PBGM and reference method values (glucose oxidation methods) in both dogs and cats. Bland-Altman plot analysis revealed a mean difference between the PBGM value and reference method value of -1.975 mg/dl (bias) in dogs and 1.339 mg/dl (bias) in cats. Hematocrit values did not affect the results of the veterinary PBGM. Therefore, this veterinary PBGM is clinically useful in dogs and cats.

  12. Canine neuroanatomy: Development of a 3D reconstruction and interactive application for undergraduate veterinary education.

    Science.gov (United States)

    Raffan, Hazel; Guevar, Julien; Poyade, Matthieu; Rea, Paul M

    2017-01-01

    Current methods used to communicate and present the complex arrangement of vasculature related to the brain and spinal cord is limited in undergraduate veterinary neuroanatomy training. Traditionally it is taught with 2-dimensional (2D) diagrams, photographs and medical imaging scans which show a fixed viewpoint. 2D representations of 3-dimensional (3D) objects however lead to loss of spatial information, which can present problems when translating this to the patient. Computer-assisted learning packages with interactive 3D anatomical models have become established in medical training, yet equivalent resources are scarce in veterinary education. For this reason, we set out to develop a workflow methodology creating an interactive model depicting the vasculature of the canine brain that could be used in undergraduate education. Using MR images of a dog and several commonly available software programs, we set out to show how combining image editing, segmentation and surface generation, 3D modeling and texturing can result in the creation of a fully interactive application for veterinary training. In addition to clearly identifying a workflow methodology for the creation of this dataset, we have also demonstrated how an interactive tutorial and self-assessment tool can be incorporated into this. In conclusion, we present a workflow which has been successful in developing a 3D reconstruction of the canine brain and associated vasculature through segmentation, surface generation and post-processing of readily available medical imaging data. The reconstructed model was implemented into an interactive application for veterinary education that has been designed to target the problems associated with learning neuroanatomy, primarily the inability to visualise complex spatial arrangements from 2D resources. The lack of similar resources in this field suggests this workflow is original within a veterinary context. There is great potential to explore this method, and introduce

  13. Canine neuroanatomy: Development of a 3D reconstruction and interactive application for undergraduate veterinary education.

    Directory of Open Access Journals (Sweden)

    Hazel Raffan

    Full Text Available Current methods used to communicate and present the complex arrangement of vasculature related to the brain and spinal cord is limited in undergraduate veterinary neuroanatomy training. Traditionally it is taught with 2-dimensional (2D diagrams, photographs and medical imaging scans which show a fixed viewpoint. 2D representations of 3-dimensional (3D objects however lead to loss of spatial information, which can present problems when translating this to the patient. Computer-assisted learning packages with interactive 3D anatomical models have become established in medical training, yet equivalent resources are scarce in veterinary education. For this reason, we set out to develop a workflow methodology creating an interactive model depicting the vasculature of the canine brain that could be used in undergraduate education. Using MR images of a dog and several commonly available software programs, we set out to show how combining image editing, segmentation and surface generation, 3D modeling and texturing can result in the creation of a fully interactive application for veterinary training. In addition to clearly identifying a workflow methodology for the creation of this dataset, we have also demonstrated how an interactive tutorial and self-assessment tool can be incorporated into this. In conclusion, we present a workflow which has been successful in developing a 3D reconstruction of the canine brain and associated vasculature through segmentation, surface generation and post-processing of readily available medical imaging data. The reconstructed model was implemented into an interactive application for veterinary education that has been designed to target the problems associated with learning neuroanatomy, primarily the inability to visualise complex spatial arrangements from 2D resources. The lack of similar resources in this field suggests this workflow is original within a veterinary context. There is great potential to explore this

  14. Malnutrition and vaccination in developing countries

    Science.gov (United States)

    Prendergast, Andrew J.

    2015-01-01

    Malnutrition contributes to an estimated 45% of deaths among children under 5 years of age in developing countries, predominantly due to infections. Malnourished children therefore stand to benefit hugely from vaccination, but malnutrition has been described as the most common immunodeficiency globally, suggesting that they may not be able to respond effectively to vaccines. The immunology of malnutrition remains poorly characterized, but is associated with impairments in mucosal barrier integrity, and innate and adaptive immune dysfunction. Despite this, the majority of malnourished children can mount a protective immune response following vaccination, although the timing, quality and duration of responses may be impaired. This paper reviews the evidence for vaccine immunogenicity in malnourished children, discusses the importance of vaccination in prevention of malnutrition and highlights evidence gaps in our current knowledge. PMID:25964453

  15. Recombinant vaccines and the development of new vaccine strategies

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, I.P.; Leite, L.C.C. [Centro de Biotecnologia, Instituto Butantan, São Paulo, SP (Brazil)

    2012-09-07

    Vaccines were initially developed on an empirical basis, relying mostly on attenuation or inactivation of pathogens. Advances in immunology, molecular biology, biochemistry, genomics, and proteomics have added new perspectives to the vaccinology field. The use of recombinant proteins allows the targeting of immune responses focused against few protective antigens. There are a variety of expression systems with different advantages, allowing the production of large quantities of proteins depending on the required characteristics. Live recombinant bacteria or viral vectors effectively stimulate the immune system as in natural infections and have intrinsic adjuvant properties. DNA vaccines, which consist of non-replicating plasmids, can induce strong long-term cellular immune responses. Prime-boost strategies combine different antigen delivery systems to broaden the immune response. In general, all of these strategies have shown advantages and disadvantages, and their use will depend on the knowledge of the mechanisms of infection of the target pathogen and of the immune response required for protection. In this review, we discuss some of the major breakthroughs that have been achieved using recombinant vaccine technologies, as well as new approaches and strategies for vaccine development, including potential shortcomings and risks.

  16. Recombinant vaccines and the development of new vaccine strategies

    Directory of Open Access Journals (Sweden)

    I.P. Nascimento

    2012-12-01

    Full Text Available Vaccines were initially developed on an empirical basis, relying mostly on attenuation or inactivation of pathogens. Advances in immunology, molecular biology, biochemistry, genomics, and proteomics have added new perspectives to the vaccinology field. The use of recombinant proteins allows the targeting of immune responses focused against few protective antigens. There are a variety of expression systems with different advantages, allowing the production of large quantities of proteins depending on the required characteristics. Live recombinant bacteria or viral vectors effectively stimulate the immune system as in natural infections and have intrinsic adjuvant properties. DNA vaccines, which consist of non-replicating plasmids, can induce strong long-term cellular immune responses. Prime-boost strategies combine different antigen delivery systems to broaden the immune response. In general, all of these strategies have shown advantages and disadvantages, and their use will depend on the knowledge of the mechanisms of infection of the target pathogen and of the immune response required for protection. In this review, we discuss some of the major breakthroughs that have been achieved using recombinant vaccine technologies, as well as new approaches and strategies for vaccine development, including potential shortcomings and risks.

  17. Mucosal Vaccine Development Based on Liposome Technology.

    Science.gov (United States)

    Bernasconi, Valentina; Norling, Karin; Bally, Marta; Höök, Fredrik; Lycke, Nils Y

    2016-01-01

    Immune protection against infectious diseases is most effective if located at the portal of entry of the pathogen. Hence, there is an increasing demand for vaccine formulations that can induce strong protective immunity following oral, respiratory, or genital tract administration. At present, only few mucosal vaccines are found on the market, but recent technological advancements and a better understanding of the principles that govern priming of mucosal immune responses have contributed to a more optimistic view on the future of mucosal vaccines. Compared to live attenuated vaccines, subcomponent vaccines, most often protein-based, are considered safer, more stable, and less complicated to manufacture, but they require the addition of nontoxic and clinically safe adjuvants to be effective. In addition, another limiting factor is the large antigen dose that usually is required for mucosal vaccines. Therefore, the combination of mucosal adjuvants with the recent progress in nanoparticle technology provides an attractive solution to these problems. In particular, the liposome technology is ideal for combining protein antigen and adjuvant into an effective mucosal vaccine. Here, we describe and discuss recent progress in nanoparticle formulations using various types of liposomes that convey strong promise for the successful development of the next generation of mucosal vaccines.

  18. Vaccines in development against West Nile virus.

    Science.gov (United States)

    Brandler, Samantha; Tangy, Frederic

    2013-09-30

    West Nile encephalitis emerged in 1999 in the United States, then rapidly spread through the North American continent causing severe disease in human and horses. Since then, outbreaks appeared in Europe, and in 2012, the United States experienced a new severe outbreak reporting a total of 5,387 cases of West Nile virus (WNV) disease in humans, including 243 deaths. So far, no human vaccine is available to control new WNV outbreaks and to avoid worldwide spreading. In this review, we discuss the state-of-the-art of West Nile vaccine development and the potential of a novel safe and effective approach based on recombinant live attenuated measles virus (MV) vaccine. MV vaccine is a live attenuated negative-stranded RNA virus proven as one of the safest, most stable and effective human vaccines. We previously described a vector derived from the Schwarz MV vaccine strain that stably expresses antigens from emerging arboviruses, such as dengue, West Nile or chikungunya viruses, and is strongly immunogenic in animal models, even in the presence of MV pre-existing immunity. A single administration of a recombinant MV vaccine expressing the secreted form of WNV envelope glycoprotein elicited protective immunity in mice and non-human primates as early as two weeks after immunization, indicating its potential as a human vaccine.

  19. Training evidence-based veterinary medicine by collaborative development of critically appraised topics.

    Science.gov (United States)

    Arlt, Sebastian P; Haimerl, Peggy; Heuwieser, Wolfgang

    2012-01-01

    In current veterinary education, skills such as retrieving, critically appraising, interpreting, and applying the results of published scientific studies are rarely taught. In this study, the authors tested the concept of team-based development of critically appraised topics (CATs) in training students in evidence-based veterinary medicine (EBVM). The 116 participants were in their fifth year and attending the clinical rotation at the Clinic for Animal Reproduction. Students developed 18 CATs of varying quality on topics of their choice. Preparing the CATs in teams stimulated discussion on the topic and the quality of the retrieved papers. Evaluation of the project revealed that more than 90% of the students endorsed training in critical appraisal of information in veterinary education. In addition, more than 90% considered the development of CATs an effective exercise for assessing the quality of scientific literature. A provided literature evaluation form was perceived as a useful tool for systematically summarizing a publication's quality. In conclusion, team-based development of CATs during clinical rotations is highly valuable for training in EBVM. Learning and intrinsic motivation seem to be enhanced by creating a situation similar to veterinary practice because the task is embedded into an authentic clinical problem. This approach to clinical training helps to prepare students to integrate evidence from literature into practice.

  20. The 9th International Veterinary Immunology Symposium.

    Science.gov (United States)

    Lunney, Joan K; Kai, Chieko; Inumaru, Shigeki; Onodera, Takashi

    2012-07-15

    This special issue of Veterinary Immunology and Immunopathology summarizes the Proceedings of the 9th International Veterinary Immunology Symposium (9th IVIS) held August 2010, in Tokyo, Japan. Over 340 delegates from 30 countries discussed research progress analyzing the immune systems of numerous food animals and wildlife, probing basic immunity and the influence of stress, genetics, nutrition, endocrinology and reproduction. Major presentations addressed defense against pathogens and alternative control and prevention strategies including vaccines, adjuvants and novel biotherapeutics. A special Organisation for Economic Co-operation and Development (OECD) Co-operative Research Programme Sponsored Conference on "Vaccination and Diagnosis for Food Safety in Agriculture" highlighted the particular issue of "Immunology in Bovine Paratuberculosis". In April 2010 there was an outbreak of foot-and-mouth disease (FMD) in the southern part of Japan. This stimulated a special 9th IVIS session on FMD, sponsored by the World Organization for Animal Health (OIE) and the Ministry of Agriculture, Forestry and Fisheries (MAFF) of Japan, to discuss improvements of FMD vaccines, their use in FMD control, and risk assessment for decision management. The 9th IVIS was supported by the Veterinary Immunology Committee (VIC) of the International Union of Immunological Societies (IUIS) and included workshops for its MHC and Toolkit Committees. Finally VIC IUIS presented its 2010 Distinguished Service Award to Dr. Kazuya Yamanouchi for "outstanding contributions to the veterinary immunology community" and its 2010 Distinguished Veterinary Immunologist Award to Dr. Douglas F. Antczak for "outstanding research on equine immunology". Published by Elsevier B.V.

  1. NIGERIAN VETERINARY JOURNAL

    African Journals Online (AJOL)

    ADEYEYE

    Department of Veterinary Pathology and Microbiology; Faculty of Veterinary Medicine, Universiti Putra Malaysia, ... Parasitic diseases have a debilitating impact on human and animal health worldwide particularly in developing countries. Haemoparasitism have largely been ..... exerts a major health concern in domestic.

  2. Developing an online professional network for veterinary education: the NOVICE project.

    Science.gov (United States)

    Baillie, Sarah; Kinnison, Tierney; Forrest, Neil; Dale, Vicki H M; Ehlers, Jan P; Koch, Michael; Mándoki, Mira; Ciobotaru, Emilia; de Groot, Esther; Boerboom, Tobias B B; van Beukelen, Peter

    2011-01-01

    An online professional network for veterinarians, veterinary students, veterinary educationalists, and ICT (Information and Communication Technology) educationalists is being developed under the EU (European Union) Lifelong Learning Programme. The network uses Web 2.0, a term used to describe the new, more interactive version of the Internet, and includes tools such as wikis, blogs, and discussion boards. Focus groups conducted with qualified and student veterinarians within the project's five founding countries (The Netherlands, Germany, United Kingdom, Hungary, Romania) demonstrated that online professional communities can be valuable for accessing information and establishing contacts. Online networks have the potential to overcome common challenges to face-to-face communities-such as distance, cost, and timing-but they have their own drawbacks, such as security and professionalism issues. The Network Of Veterinary ICt in Education (NOVICE) was developed using Elgg, an open-source, free social networking platform, after several software options had been considered. NOVICE aims to promote the understanding of Web 2.0, confidence to use social software tools, and participation in an online community. Therefore, the Web site contains help sections, Frequently Asked Questions, and access to support from ICT experts. Five months after the network's launch (and just over one year into the project) 515 members from 28 countries had registered. Further research will include analysis of a core group's activities, which will inform ongoing support for and development of informal, lifelong learning in a veterinary context.

  3. The Development of an AIDS Mucosal Vaccine

    Directory of Open Access Journals (Sweden)

    Xian Tang

    2010-01-01

    Full Text Available It is well known that mucosal tissues contain the largest surface area of the human body and are the front line of natural host defense against various pathogens. In fact, more than 80% of infectious disease pathogens probably gain entry into the susceptible human hosts through open mucosal surfaces. Human immunodeficiency virus type one (HIV-1, a mainly sexually transmitted virus, also primarily targets the vaginal and gastrointestinal mucosa as entry sites for viral transmission, seeding, replication and amplification. Since HIV-1 establishes its early replication in vaginal or rectal mucosal tissues, the induction of sufficient mucosal immunity at the initial site of HIV-1 transmission becomes essential for a protective vaccine. However, despite the fact that current conventional vaccine strategies have remained unsuccessful in preventing HIV-1 infection, sufficient financial support and resources have yet to be given to develop a vaccine able to elicit protective mucosal immunity against sexual transmissions. Interestingly, Chinese ancestors invented variolation through intranasal administration about one thousand years ago, which led to the discovery of a successful smallpox vaccine and the final eradication of the disease. It is the hope for all mankind that the development of a mucosal AIDS vaccine will ultimately help control the AIDS pandemic. In order to discover an effective mucosal AIDS vaccine, it is necessary to have a deep understanding of mucosal immunology and to test various mucosal vaccination strategies.

  4. Comparative study on three locally developed live orf virus vaccines for sheep in Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Fahdel M. Housawi

    2012-02-01

    Full Text Available The epidemiology of orf virus infection in Saudi Arabia (SA has been researched since 1990. The results obtained during this period indicate that the disease is widespread, has great economic impact and that no vaccine has been used against it. The present study compares the immunogenicity and protective efficacy of three locally developed live orf virus vaccines. Two of them differ in their passage history in Vero cell culture and the third was used as a virulent virus in glycerine buffer. To the best of the authors’ knowledge, no similar comparative study has been conducted in the Middle East utilising three types of vaccines prepared from the same virus strain. Selection of the candidate seed orf virus and performance of the quality control tests were as laid out by the OIE for veterinary vaccine production. The vaccine seed virus was a field orf virus isolated from a previous orf outbreak in Saudi Arabia. A simple novel formula was developed to calculate the rate of reduction in the healing time (RHT % in the challenged sheep. This allowed direct comparison of the efficacy of the three types of vaccines employed in the present study. The efficacy of each vaccine was tested on a cohort of local Noemi sheep.

  5. New approaches to HIV vaccine development.

    Science.gov (United States)

    Haynes, Barton F

    2015-08-01

    Development of a safe and effective vaccine for HIV is a major global priority. However, to date, efforts to design an HIV vaccine with methods used for development of other successful viral vaccines have not succeeded due to HIV diversity, HIV integration into the host genome, and ability of HIV to consistently evade anti-viral immune responses. Recent success in isolation of potent broadly neutralizing antibodies (bnAbs), in discovery of mechanisms of bnAb induction, and in discovery of atypical mechanisms of CD8T cell killing of HIV-infected cells, have opened new avenues for strategies for HIV vaccine design. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Development of Globo-H cancer vaccine.

    Science.gov (United States)

    Danishefsky, Samuel J; Shue, Youe-Kong; Chang, Michael N; Wong, Chi-Huey

    2015-03-17

    The development of anticancer vaccines requires the identification of unique epitope markers, preferably expressed exclusively on the surface of cancer cells. This Account describes the path of development of a carbohydrate-based vaccine for metastatic breast cancer, including the selection and synthesis of Globo-H as the target, the development of the vaccine conjugate and adjuvant design, the study of the immune response and consideration of class switch, and the analysis of Globo-H distribution on the surface of various cancer cells, cancer stem cells, and normal cells. The first synthesis of Globo-H was accomplished through the use of glycal chemistry; this approach delivered sufficient material for evaluation in phase I human trials. The development of a programmable one-pot synthesis method rendered the synthesis more practical and enabled the midstage proof-of-concept phase II trial and late-stage phase III trial. Finally, enzymatic synthesis of Globo-H coupled with cofactor regeneration was used for the late-stage multicenter trials and manufacture of the product. Along this path of development, it was discovered that the vaccine induced antibodies to target not only Globo-H, but also SSEA3 and SSEA4. Moreover, these three glycolipids were found to be uniquely expressed not only on the cell surface of breast cancer but on 15 additional cancer types, suggesting the broad application of this vaccine in cancer treatment and perhaps cancer prevention. In addition, a new glycolipid adjuvant was designed to target the CD1d receptor on dendritic cells and B cells for presentation to and activation of T cells to modulate the immune response and induce a class switch from IgM to IgG, thereby overcoming the common problem of carbohydrate-based vaccines that often induce mainly IgM antibodies. As demonstrated in this vaccine development, the chemical approach to the synthesis and conjugation of carbohydrate-based immunogens provides the flexibility for access to

  7. The contribution of veterinary medicine to public health and poverty reduction in developing countries.

    Science.gov (United States)

    Muma, John B; Mwacalimba, Kennedy K; Munang'andu, Hetron M; Matope, Gift; Jenkins, Akinbowale; Siamudaala, Victor; Mweene, Aaron S; Marcotty, Tanguy

    2014-01-01

    Few studies have explicitly examined the linkages between human health, animal disease control and poverty alleviation. This paper reviews the contribution that veterinary medicine can make to poverty alleviation in sub-Saharan Africa. Our analysis attempts to explore aspects of this contribution under five themes: food production; food safety; impact and control of zoonotic infections; promotion of ecotourism; and environmental protection. While these areas of human activity have, more or less, fallen under the influence of the veterinary profession to varying degrees, we attempt to unify this mandate using a 'One Health' narrative, for the purpose of providing clarity on the linkages between the veterinary and other professions, livestock production and poverty alleviation. Future opportunities for improving health and reducing poverty in the context of developing African countries are also discussed. We conclude that veterinary science is uniquely positioned to play a key role in both poverty reduction and the promotion of health, a role that can be enhanced through the reorientation of the profession's goals and the creation of synergies with allied and related professions.

  8. Biomarkers in Veterinary Medicine.

    Science.gov (United States)

    Myers, Michael J; Smith, Emily R; Turfle, Phillip G

    2017-02-08

    This article summarizes the relevant definitions related to biomarkers; reviews the general processes related to biomarker discovery and ultimate acceptance and use; and finally summarizes and reviews, to the extent possible, examples of the types of biomarkers used in animal species within veterinary clinical practice and human and veterinary drug development. We highlight opportunities for collaboration and coordination of research within the veterinary community and leveraging of resources from human medicine to support biomarker discovery and validation efforts for veterinary medicine.

  9. Tanzania Veterinary Journal

    African Journals Online (AJOL)

    The Tanzania Veterinary Journal (The Tropical Veterinarian) is a biannual Journal, which publishes original contribution to knowledge on Veterinary Science, Animal Science and Production, and allied sciences including new techniques and developments in Veterinary Medicine. The target readers of the Journal are the ...

  10. Zika Vaccine Development: Flavivirus Foils

    Science.gov (United States)

    2016-09-01

    be transmitted sexually and its association with microcephaly 25-27. Methodical evaluation and open discourse regarding potential safety risks is... disease associated with it are significantly more problematic for the vast majority of infected patients than is Zika virus infection. Infection with...imperative, particularly considering that women of child-bearing age and pregnant women may be primary recipients of the vaccine. In this

  11. Liposomal adjuvant development for leishmaniasis vaccines.

    Science.gov (United States)

    Askarizadeh, Anis; Jaafari, Mahmoud Reza; Khamesipour, Ali; Badiee, Ali

    2017-08-01

    Leishmaniasis is a parasitic disease that ranges in severity from skin lesions to fatality. Since long-lasting protection is induced upon recovery from cutaneous leishmaniasis, development of an effective vaccine is promising. However, there is no vaccine for use in humans yet. It seems limited efficacy in leishmaniasis vaccines is due to lack of an appropriate adjuvant or delivery system. Hence, the use of particulate adjuvants such as liposomes for effective delivery to the antigen presenting cells (APCs) is a valuable strategy to enhance leishmaniasis vaccine efficacy. The extraordinary versatility of liposomes because of their unique amphiphilic and biphasic nature allows for using antigens or immunostimulators within the core, on the surface or within the bilayer, and modulates both the magnitude and the T-helper bias of the immune response. In this review article, we attempt to summarize the role of liposomal adjuvants in the development of Leishmania vaccines and describe the main physicochemical properties of liposomes like phospholipid composition, surface charge, and particle size during formulation design. We also suggest potentially useful formulation strategies in order for future experiments to have a chance to succeed as liposomal vaccines against leishmaniasis.

  12. Supporting Veterinary Preceptors in a Distributed Model of Education: A Faculty Development Needs Assessment.

    Science.gov (United States)

    Hashizume, Cary T; Hecker, Kent G; Myhre, Douglas L; Bailey, Jeremy V; Lockyer, Jocelyn M

    2016-01-01

    Effective faculty development for veterinary preceptors requires knowledge about their learning needs and delivery preferences. Veterinary preceptors at community practice locations in Alberta, Canada, were surveyed to determine their confidence in teaching ability and interest in nine faculty development topics. The study included 101 veterinarians (48.5% female). Of these, 43 (42.6%) practiced veterinary medicine in a rural location and 54 (53.5%) worked in mixed-animal or food-animal practice. Participants reported they were more likely to attend an in-person faculty development event than to participate in an online presentation. The likelihood of attending an in-person event differed with the demographics of the respondent. Teaching clinical reasoning, assessing student performance, engaging and motivating students, and providing constructive feedback were topics in which preceptors had great interest and high confidence. Preceptors were least confident in the areas of student learning styles, balancing clinical workload with teaching, and resolving conflict involving the student. Disparities between preceptors' interest and confidence in faculty development topics exist, in that topics with the lowest confidence scores were not rated as those of greatest interest. While the content and format of clinical teaching faculty development events should be informed by the interests of preceptors, consideration of preceptors' confidence in teaching ability may be warranted when developing a faculty development curriculum.

  13. Assessing Veterinary and Animal Science Students' Moral Judgment Development on Animal Ethics Issues.

    Science.gov (United States)

    Verrinder, Joy M; Phillips, Clive J C

    2015-01-01

    Little has been done to assess veterinarians' moral judgment in relation to animal ethics issues. Following development of the VetDIT, a new moral judgment measure for animal ethics issues, this study aimed to refine and further validate the VetDIT, and to identify effects of teaching interventions on moral judgment and changes in moral judgment over time. VetDIT-V1 was refined into VetDIT-V2, and V3 was developed as a post-intervention test to prevent repetition. To test these versions for comparability, veterinary and animal science students (n=271) were randomly assigned to complete different versions. The VetDIT discriminates between stages of moral judgment, condensed into three schemas: Personal Interest (PI), Maintaining Norms (MN), and Universal Principles (UP). There were no differences in the scores for MN and UP between the versions, and we equated PI scores to account for differences between versions. Veterinary science students (n=130) who completed a three-hour small-group workshop on moral development theory and ethical decision making increased their use of UP in moral reasoning, whereas students (n=271) who received similar information in a 50-minute lecture did not. A longitudinal comparison of matched first- and third-year students (n=39) revealed no moral judgment development toward greater use of UP. The VetDIT is therefore useful for assessing moral judgment of animal and human ethics issues in veterinary and other animal-related professions. Intensive small-group workshops using moral development knowledge and skills, rather than lectures, are conducive to developing veterinary students' moral judgment.

  14. Development of Stable Influenza Vaccine Powder Formulations: Challenges and Possibilities

    Science.gov (United States)

    Amorij, J-P.; Huckriede, A.; Wilschut, J.; Frijlink, H. W.

    2008-01-01

    Influenza vaccination represents the cornerstone of influenza prevention. However, today all influenza vaccines are formulated as liquids that are unstable at ambient temperatures and have to be stored and distributed under refrigeration. In order to stabilize influenza vaccines, they can be brought into the dry state using suitable excipients, stabilizers and drying processes. The resulting stable influenza vaccine powder is independent of cold-chain facilities. This can be attractive for the integration of the vaccine logistics with general drug distribution in Western as well as developing countries. In addition, a stockpile of stable vaccine formulations of potential vaccines against pandemic viruses can provide an immediate availability and simple distribution of vaccine in a pandemic outbreak. Finally, in the development of new needle-free dosage forms, dry and stable influenza vaccine powder formulations can facilitate new or improved targeting strategies for the vaccine compound. This review represents the current status of dry stable inactivated influenza vaccine development. Attention is given to the different influenza vaccine types (i.e. whole inactivated virus, split, subunit or virosomal vaccine), the rationale and need for stabilized influenza vaccines, drying methods by which influenza vaccines can be stabilized (i.e. lyophilization, spray drying, spray-freeze drying, vacuum drying or supercritical fluid drying), the current status of dry influenza vaccine development and the challenges for ultimate market introduction of a stable and effective dry-powder influenza vaccine. PMID:18338241

  15. Development of vaccines for Plasmodium vivax malaria.

    Science.gov (United States)

    Mueller, Ivo; Shakri, Ahmad Rushdi; Chitnis, Chetan E

    2015-12-22

    Plasmodium vivax continues to cause significant morbidity outside Africa with more than 50% of malaria cases in many parts of South and South-east Asia, Pacific islands, Central and South America being attributed to P. vivax infections. The unique biology of P. vivax, including its ability to form latent hypnozoites that emerge months to years later to cause blood stage infections, early appearance of gametocytes before clinical symptoms are apparent and a shorter development cycle in the vector makes elimination of P. vivax using standard control tools difficult. The availability of an effective vaccine that provides protection and prevents transmission would be a valuable tool in efforts to eliminate P. vivax. Here, we review the latest developments related to P. vivax malaria vaccines and discuss the challenges as well as directions toward the goal of developing highly efficacious vaccines against P. vivax malaria. Copyright © 2015. Published by Elsevier Ltd.

  16. Contraceptive Vaccines

    Directory of Open Access Journals (Sweden)

    M.V. Supotnitsky

    2014-02-01

    Full Text Available Researches to develop vaccines with contraceptive effect are being carried out since the 1920s. Since 1972, the contraceptive vaccines are one of the priority programs of the World Health Organization (WHO Special Programme of Research, Development and Research Training in Human Reproduction. Rockefeller Foundation participates in implementing the program. Openly declared objective of creating such vaccines — the regulation of the population in the Third World countries. There are currently three main directions of contraceptive vaccine design: 1 vaccines targeted at blocking the production of gametes; 2 impairing their function; 3 violating the fertilization process. Contraceptive vaccines for more than 10 years are widely used to reduce fertility and castration of wild and domestic animals. In the commercial realization there are veterinary vaccines Equity®, Improvac®, GonaCon®, Repro-BLOC (based on gonadotropin-releasing hormone; SpayVac™ and IVT-PZP® (based on zona pellucida antigens. Clinical studies have shown effective contraceptive action (in women of vaccines, in which human chorionic gonadotropin is used as an antigen. At the same time, there are found the side effects of such vaccines: for vaccines containing gonadotropin-releasing hormone and luteinizing hormone as antigenic components — castration, impotence; for vaccines containing follicle stimulating hormone — oligospermia; zona pellucida antigens — irreversible oophoritis. This paper discusses approaches to detection of sterilizing components in vaccines intended for mass prevention of infectious diseases, not reported by manufacturers, and the consequences of their use. Hidden use of contraceptive vaccines, which already took place, can be detected: 1 by the presence of antibodies to their antigenic components (in unvaccinated by contraceptive vaccines people such antibodies do not exist, except infertility cases; 2 by change in the hormonal levels of the

  17. Vaccine development for emerging virulent infectious diseases.

    Science.gov (United States)

    Maslow, Joel N

    2017-10-04

    The recent outbreak of Zaire Ebola virus in West Africa altered the classical paradigm of vaccine development and that for emerging infectious diseases (EIDs) in general. In this paper, the precepts of vaccine discovery and advancement through pre-clinical and clinical assessment are discussed in the context of the recent Ebola virus, Middle East Respiratory Syndrome coronavirus (MERS-CoV), and Zika virus outbreaks. Clinical trial design for diseases with high mortality rates and/or high morbidity in the face of a global perception of immediate need and the factors that drive design in the face of a changing epidemiology are presented. Vaccines for EIDs thus present a unique paradigm to standard development precepts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Development of Vaccines for Chikungunya Fever.

    Science.gov (United States)

    Erasmus, Jesse H; Rossi, Shannan L; Weaver, Scott C

    2016-12-15

    Chikungunya fever, an acute and often chronic arthralgic disease caused by the mosquito-borne chikungunya virus (CHIKV), has reemerged since 2004 to cause millions of cases. Because CHIKV exhibits limited antigenic diversity and is not known to be capable of reinfection, a vaccine could serve to both prevent disease and diminish human amplification during epidemic circulation. Here, we review the many promising vaccine platforms and candidates developed for CHIKV since the 1970s, including several in late preclinical or clinical development. We discuss the advantages and limitations of each, as well as the commercial and regulatory challenges to bringing a vaccine to market. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  19. Methods and processes of developing the Strengthening the Reporting of Observational Studies in Epidemiology - Veterinary (STROBE-Vet) statement

    DEFF Research Database (Denmark)

    Sargeant, J. M.; O'Connor, A. M.; Dohoo, I. R.

    2016-01-01

    Background: Reporting of observational studies in veterinary research presents challenges that often are not addressed in published reporting guidelines.Objective: To develop an extension of the STROBE (Strengthening the Reporting of Observational Studies in Epidemiology) statement that addresses...

  20. Methods and Processes of Developing the Strengthening the Reporting of Observational Studies in Epidemiology—Veterinary (STROBE-Vet) Statement

    DEFF Research Database (Denmark)

    Sargeant, J. M.; O'Connor, A. M.; Dohoo, I. R.

    2016-01-01

    Reporting of observational studies in veterinary research presents challenges that often are not addressed in published reporting guidelines. Our objective was to develop an extension of the STROBE (Strengthening the Reporting of Observational Studies in Epidemiology) statement that addresses uni...

  1. Methods and processes of developing the Strengthening the Reporting of Observational Studies in Epidemiology - Veterinary (STROBE-Vet) statement

    DEFF Research Database (Denmark)

    Sargeant, J. M.; O'Connor, A. M.; Dohoo, I. R.

    2016-01-01

    Background: The reporting of observational studies in veterinary research presents many challenges thatoften are not adequately addressed in published reporting guidelines.Objective: To develop an extension of the STROBE (Strengthening the Reporting of Observational Studiesin Epidemiology) statem...

  2. Development of Burkholderia mallei and pseudomallei vaccines.

    Science.gov (United States)

    Silva, Ediane B; Dow, Steven W

    2013-01-01

    Burkholderia mallei and Burkholderia pseudomallei are Gram-negative bacteria that cause glanders and melioidosis, respectively. Inhalational infection with either organism can result in severe and rapidly fatal pneumonia. Inoculation by the oral and cutaneous routes can also produce infection. Chronic infection may develop after recovery from acute infection with both agents, and control of infection with antibiotics requires prolonged treatment. Symptoms for both meliodosis and glanders are non-specific, making diagnosis difficult. B. pseudomallei can be located in the environment, but in the host, B. mallei and B. psedomallei are intracellular organisms, and infection results in similar immune responses to both agents. Effective early innate immune responses are critical to controlling the early phase of the infection. Innate immune signaling molecules such as TLR, NOD, MyD88, and pro-inflammatory cytokines such as IFN-γ and TNF-α play key roles in regulating control of infection. Neutrophils and monocytes are critical cells in the early infection for both microorganisms. Both monocytes and macrophages are necessary for limiting dissemination of B. pseudomallei. In contrast, the role of adaptive immune responses in controlling Burkholderia infection is less well understood. However, T cell responses are critical for vaccine protection from Burkholderia infection. At present, effective vaccines for prevention of glanders or meliodosis have not been developed, although recently development of Burkholderia vaccines has received renewed attention. This review will summarize current and past approaches to develop B. mallei and B. pseudomalllei vaccines, with emphasis on immune mechanisms of protection and the challenges facing the field. At present, immunization with live attenuated bacteria provides the most effective and durable immunity, and it is important therefore to understand the immune correlates of protection induced by live attenuated vaccines. Subunit

  3. Development of Burkholderia mallei and pseudomallei vaccines

    Science.gov (United States)

    Silva, Ediane B.; Dow, Steven W.

    2013-01-01

    Burkholderia mallei and Burkholderia pseudomallei are Gram-negative bacteria that cause glanders and melioidosis, respectively. Inhalational infection with either organism can result in severe and rapidly fatal pneumonia. Inoculation by the oral and cutaneous routes can also produce infection. Chronic infection may develop after recovery from acute infection with both agents, and control of infection with antibiotics requires prolonged treatment. Symptoms for both meliodosis and glanders are non-specific, making diagnosis difficult. B. pseudomallei can be located in the environment, but in the host, B. mallei and B. psedomallei are intracellular organisms, and infection results in similar immune responses to both agents. Effective early innate immune responses are critical to controlling the early phase of the infection. Innate immune signaling molecules such as TLR, NOD, MyD88, and pro-inflammatory cytokines such as IFN-γ and TNF-α play key roles in regulating control of infection. Neutrophils and monocytes are critical cells in the early infection for both microorganisms. Both monocytes and macrophages are necessary for limiting dissemination of B. pseudomallei. In contrast, the role of adaptive immune responses in controlling Burkholderia infection is less well understood. However, T cell responses are critical for vaccine protection from Burkholderia infection. At present, effective vaccines for prevention of glanders or meliodosis have not been developed, although recently development of Burkholderia vaccines has received renewed attention. This review will summarize current and past approaches to develop B. mallei and B. pseudomalllei vaccines, with emphasis on immune mechanisms of protection and the challenges facing the field. At present, immunization with live attenuated bacteria provides the most effective and durable immunity, and it is important therefore to understand the immune correlates of protection induced by live attenuated vaccines. Subunit

  4. Development of Vaccines Against Nocardiosis in Fishes.

    Science.gov (United States)

    Nayak, Sukanta K; Nakanishi, Teruyuki

    2016-01-01

    Nocardiosis, one of the most systemic and devastating diseases, is currently emerging as an important disease of cultured marine and freshwater fishes. The causative agent of this disease is Nocardia seriolae, a Gram-positive acid-fast bacterium. An effective vaccine/vaccination strategy against this pathogen is necessary to control the significant loss in aquaculture practices. In this chapter, we present the vaccination/immunization protocol in fish against both live (sublethal) and inactivated form of N. seriolae using ginbuna crucian carp (Carassius auratus langsdorfii) as a model. N. seriolae either in live (sublethal) form or inactivated antigenic form is found to elevate immunity in ginbuna and also can induce protective immunity upon challenge. In order to develop live vaccine, determination of sublethal dose is critical and needs to be established in the host fish species through pathogenicity and persistence studies. Herein for ginbuna, a sublethal dose of 10(6) CFU/mL was determined by pathogenicity study through a series of challenge doses followed by pathogen persistence study by microbiological and molecular techniques. On the other hand, for inactivated antigenic form, the concentration of the N. seriolae was approximately 10(8) CFU/mL. Although this study showed significant potential of both the forms of N. seriolae as candidate for vaccination, factors such as dose, duration and form need to be optimized in individual fish species.

  5. Bovine rotavirus pentavalent vaccine development in India.

    Science.gov (United States)

    Zade, Jagdish K; Kulkarni, Prasad S; Desai, Sajjad A; Sabale, Rajendra N; Naik, Sameer P; Dhere, Rajeev M

    2014-08-11

    A bovine rotavirus pentavalent vaccine (BRV-PV) containing rotavirus human-bovine (UK) reassortant strains of serotype G1, G2, G3, G4 and G9 has been developed by the Serum Institute of India Ltd, in collaboration with the National Institute of Allergy and Infectious Diseases (NIAID), USA. The vaccine underwent animal toxicity studies and Phase I and II studies in adults, toddlers and infants. It has been found safe and immunogenic and will undergo a large Phase III study to assess efficacy against severe rotavirus gastroenteritis. Copyright © 2014. Published by Elsevier Ltd.

  6. Impact of BRICS' investment in vaccine development on the global vaccine market.

    Science.gov (United States)

    Kaddar, Miloud; Milstien, Julie; Schmitt, Sarah

    2014-06-01

    Brazil, the Russian Federation, India, China and South Africa--the countries known as BRICS--have made considerable progress in vaccine production, regulation and development over the past 20 years. In 1993, all five countries were producing vaccines but the processes used were outdated and non-standardized, there was little relevant research and there was negligible international recognition of the products. By 2014, all five countries had strong initiatives for the development of vaccine technology and had greatly improved their national regulatory capacity. South Africa was then the only BRICS country that was not completely producing vaccines. South Africa is now in the process of re-establishing its own vaccine production and passing beyond the stage of simply importing, formulating and filling vaccine bulks. Changes in the public sector's price per dose of selected vaccines, the global market share represented by products from specific manufacturers, and the attractiveness, for multinational companies, of partnership and investment opportunities in BRICS companies have all been analysed. The results indicate that the BRICS countries have had a major impact on vaccine price and availability, with much of that impact attributable to the output of Indian vaccine manufacturers. China is expected to have a greater impact soon, given the anticipated development of Chinese vaccine manufacturers in the near future. BRICS' accomplishments in the field of vaccine development are expected to reshape the global vaccine market and accelerate access to vaccines in the developing world. The challenge is to turn these expectations into strategic actions and practical outcomes.

  7. The future of veterinary parasitology.

    Science.gov (United States)

    Coles, G C

    2001-07-12

    Current evidence suggests research in veterinary parasitology is in decline despite its importance. This is particularly true in the UK where research funds have been diverted into BSE. Decline in interest in veterinary parasitology is at least in part due to the success of major pharmaceutical companies in producing a range of effective and safe anti-parasitic drugs. Research is needed because of the effects of parasites on animal welfare and the economic costs of parasites. However, there is little information on the actual costs of animal parasites. Another major reason for research is the development of drug resistance in protozoa, helminths and arthropods of veterinary importance. This is a serious problem particularly for sheep and goats in the southern hemisphere. A prioritised list of research requirements is suggested: (i) new drugs; (ii) resistance management; (iii) vaccines; (iv) breeding for resistance; (v) improved diagnostics; (vi) zoonoses; (vii) global warming and parasites. There is a major political challenge to raise the profile of veterinary parasitology and thus the funding essential for its advancement and the continued welfare and productivity of animals.

  8. Salmonella as live trojan horse for vaccine development and cancer gene therapy.

    Science.gov (United States)

    Moreno, María; Kramer, M Gabriela; Yim, Lucía; Chabalgoity, José A

    2010-02-01

    The design of efficient vectors for vaccine development and cancer gene therapy is an area of intensive research. Bacteria-based vectors are being investigated as optimal vehicles for antigen and therapeutic gene delivery to immune and tumour cells. Attenuated Salmonella strains have shown great potential as live vectors with broad applications in human and veterinary medicine. An impressively high, and still growing, number of reports published over the last two decades have demonstrated the effectiveness in animal models of Salmonella-based therapies for the prevention and treatment of infectious and non-infectious diseases, as well as cancer. Further, the recent dramatic expansion in knowledge of genetics, biology and pathogenesis of the bacteria allows more rational design of Salmonella constructs tailored for specific applications. However, only few clinical trials have been conducted so far, and although they have conclusively demonstrated the safety of this system, the results on immunogenicity are less than optimal. Thus, more research particularly in target species is required to bring this system closer to human and veterinary use. In this review we first describe some particularities of the bacteria and its relationship with the host that could be on the basis of its success as vector, and then summarize the different strategies used so far to develop Salmonella-based vaccines for infectious diseases as well as for non-traditional indications such as prion and Alzheimer disease vaccination. Finally, we review the many different approaches that employ Salmonella for the design of new therapies for cancer.

  9. Vaccine victory | IDRC - International Development Research Centre

    International Development Research Centre (IDRC) Digital Library (Canada)

    2017-05-31

    May 31, 2017 ... A Canadian virologist created a breakthrough five-in-one livestock vaccine that could transform the lives of millions in Africa and beyond. Part of an ongoing series of stories about innovative projects in the developing world, a partnership between IDRC and Canadian Geographic. Read the full story Visit ...

  10. Development of orphan vaccines: an industry perspective.

    Science.gov (United States)

    Lang, J; Wood, S C

    1999-01-01

    The development of vaccines against rare emerging infectious diseases is hampered by many disincentives. In the face of growing in-house expenditures associated with research and development projects in a complex legal and regulatory environment, most pharmaceutical companies prioritize their projects and streamline their product portfolio. Nevertheless, for humanitarian reasons, there is a need to develop niche vaccines for rare diseases not preventable or curable by other means. The U.S. Orphan Drug Act of 1983 and a similar proposal from the European Commission (currently under legislative approval) provide financial and practical incentives for the research and development of drugs to treat rare diseases. In addition, updated epidemiologic information from experts in the field of emerging diseases; increased disease awareness among health professionals, patients, and the general public; a list of priority vaccines; emergence of a dedicated organization with strong leadership; and the long-term pharmacoeconomic viability of orphan products will be key factors in overcoming the complexity of orphan status and the limited need for vaccine.

  11. Enhancing Malaria Vaccine Development by the Naval Medical Research Center

    National Research Council Canada - National Science Library

    Hile, David

    2001-01-01

    A priority of DoD is to develop effective vaccines for preventing malaria. Developing malaria vaccines is complicated by the complexity of the parasite and of the human host's response to the infection...

  12. Veterinary Public Health in Italy: From Healthy Animals to Healthy Food, Contribution to Improve Economy in Developing Countries.

    Science.gov (United States)

    Cacaci, Margherita; Lelli, Rossella Colomba

    2017-06-22

    The role of the veterinarian as a public health officer is intrinsic to the history and the culture of veterinary organization in Italy. The Veterinary service being part of the Health administration since the birth of the Italian State in the XIX Century. In the second half of the last century the birth of the Italian National Health Service confirmed that the function of the Italian veterinary service was to analyze and reduce the risks for the human population connected to the relationship man-animal-environment, animal health, food safety and security. The Italian Veterinary Medicine School curricula, reflected this "model" of veterinarian as well. In the majority of countries in the world, Veterinary Services are organized within the Agriculture Administration with the main function to assure animal health and wellbeing. After the so-called "Mad-cow crisis" the awareness of the direct and essential role of veterinary services in the prevention of human illness has been officially recognized and in the third millennium the old concept of "one health" and "human-animal interface" has gained popularity worldwide.The concept of Veterinary Public Health, has evolved at International level and has incorporated the more than a century old vision of the Italian Veterinary medicine and it is defined as "the sum of the contributions to the physical, mental and social development of people through the knowledge and application of veterinary science" (WHO, Future trends in veterinary public health. Gruppo di lavoro OMS: TE, Italy, 1999, Available from: http://www.who.int/zoonoses/vph/en/ . Last visited 16 Feb 2016, 1999).On the subject of Cooperation, Sustainability and Public Health, the EXPO 2015 event and the activities of international organizations WHO, FAO and World Organization for Animal Health are refocusing at present their worldwide mandate to protect human health and the economy of both the poorest Countries and the developed countries, according to the "new

  13. Recent progress in mucosal vaccine development: potential and limitations.

    Science.gov (United States)

    Lycke, Nils

    2012-07-25

    Most pathogens access the body through the mucosal membranes. Therefore, effective vaccines that protect at these sites are much needed. However, despite early success with the live attenuated oral polio vaccine over 50 years ago, only a few new mucosal vaccines have been subsequently launched. This is partly due to problems with developing safe and effective mucosal adjuvants. In the past decade, however, the successful development of live attenuated mucosal vaccines against influenza virus and rotavirus infections has boosted interest in this field, and great expectations for new mucosal vaccines lie ahead. Here, I discuss the expanding knowledge and strategies used in the development of mucosal vaccines.

  14. AIDS vaccine for Asia Network (AVAN: expanding the regional role in developing HIV vaccines.

    Directory of Open Access Journals (Sweden)

    Stephen J Kent

    2010-09-01

    Full Text Available The HIV/AIDS pandemic continues to spread and an AIDS vaccine is urgently needed. Regional alliances and international collaborations can foster the development and evaluation of the next generation of AIDS vaccine candidates. The importance of coordinating and harmonizing efforts across regional alliances has become abundantly clear. We recently formed the AIDS Vaccine for Asia Network (AVAN to help facilitate the development of a regional AIDS vaccine strategy that accelerates research and development of an AIDS vaccine through government advocacy, improved coordination, and harmonization of research; develops clinical trial and manufacturing capacity; supports ethical and regulatory frameworks; and ensures community participation.

  15. [Current progress in the development of mucosal vaccines].

    Science.gov (United States)

    Takeyama, Natsumi; Yuki, Yoshikazu; Kiyono, Hiroshi

    2011-09-01

    Mucosal vaccination has several advantages compared with that of injection-type vaccination. Secretory IgA(SIgA) produced at mucosal surface plays a key role for inactivation of toxins and inhibition of pathogen invasion. Although oral or nasal vaccination with attenuated live microorganisms have been shown to be effective in the induction of protective immunity, these types of vaccine have the ability to infect transiently to the host. For the development of safe and effective mucosal vaccine, an obvious strategy is the preparation of inactivated subunit-type mucosal vaccine. Here we introduce our frontier technology for the development of rice-based oral vaccines, as a new generation of mucosal vaccine. Further, we also discuss recent progress in the development of other types of mucosal vaccine and adjuvant.

  16. Development of Burkholderia mallei and pseudomallei vaccines

    Directory of Open Access Journals (Sweden)

    Ediane Batista Silva

    2013-03-01

    Full Text Available B. mallei and B. pseudomallei are Gram-negative bacteria that cause glanders and melioidosis, respectively. Inhalational infection with either organism can result in severe and rapidly fatal pneumonia. Inoculation by the oral and cutaneous routes can also produce infection. chronic infection develops after recovery from acute infection with both agents, and control of infection with antibiotics requires prolonged treatment. Symptoms for both meliodosis and glanders are non-specific, making diagnosis difficult.B. pseudomallei can be located in the environment, but in the host, B. mallei and B. psedomallei are intracellular organisms. Thefection results in similar immune responses to both agents. Effective early innate immune responses are critical to controlling the early phase of the infection. Innate immune signaling molecules such as TLR, NOD, MyD88 and pro-inflammatory cytokines such as IFN- and TNF-α play key roles in regulating control of infection. Neutrophils and monocytes are critical cells in the early infection for these microorganisms. Both monocytes and macrophages are necessary for limiting dissemination of B. pseudomallei. In contrast, the role of adaptive immune responses in controlling Burkholderia infection is less well understood. However, T cell responses are critical for vaccine protection from Burkholderia infection. At present, effective vaccines for prevention of glanders or meliodosis have not been developed, although recently progress of Burkholderia vaccines has received renewed attention.This review will summarize current and past approaches to develop Burkholderia mallei and pseudomalllei vaccines, with emphasis on immune mechanisms of protection and the challenges facing the field. At present, immunization with live attenuated bacteria provides the most effective and durable immunity, and it is important therefore to understand the immune correlates of protection induced by live attenuated vaccines.

  17. Selected regulatory and scientific topics for candidate rotavirus vaccine development.

    Science.gov (United States)

    Henchal, L S; Midthun, K; Goldenthal, K L

    1996-09-01

    Various aspects of the development of rotavirus vaccine candidates are discussed. As is true with other vaccines, comprehensive testing must be done to detect the possible presence of adventitious agents in the vaccine and seed preparations. Consideration must also be given to other biologic materials that come in contact with the vaccine preparation during production to prevent the introduction of contaminants. The clinical testing of rotavirus vaccines from early safety and immunogenicity studies through final efficacy studies is also discussed. Issues surrounding coadministration of investigational rotavirus vaccines with US-licensed vaccines are ideally addressed before initiation of efficacy trials. Other subjects discussed are identification of correlates of protection, multivalent vaccines, foreign efficacy trials, safety data, and statistical considerations. Sponsors of investigational vaccines are urged to contact the Food and Drug Administration for guidance during the development process, especially before the investigational new drug application and pivotal efficacy trial stages.

  18. The Importance of Animal Models in Tuberculosis Vaccine Development

    OpenAIRE

    Acosta, Armando; Norazmi, Mohd Nor; Hernandez-Pando, Rogelio; Alvarez, Nadine; Borrero, Reinier; Infante, Juan F; Sarmiento, Maria E

    2011-01-01

    Research, development, and production of vaccines are still highly dependent on the use of animal models in the various evaluation steps. Despite this fact, there are strong interests and ongoing efforts to reduce the use of animals in vaccine development. Tuberculosis vaccine development is one important example of the complexities involved in the use of animal models for the production of new vaccines. This review summarises some of the general aspects related with the use of animals in vac...

  19. Obstacles and advances in SARS vaccine development.

    Science.gov (United States)

    Taylor, Deborah R

    2006-02-13

    The emergence of the severe acute respiratory syndrome (SARS) that resulted in a pandemic in 2003 spurred a flurry of interest in the development of vaccines to prevent and treat the potentially deadly viral infection. Researchers around the world pooled their scientific resources and shared early data in an unprecedented manner in light of the impending public health crisis. There are still large gaps in knowledge about the pathogenesis of this virus. While significant advances have been made in the development of animal models, the practicality of their use may be hampered by a lack of pathological similarity with human disease. Described here are issues related to progress in vaccine development and the obstacles that lie ahead for both researchers and regulatory agencies.

  20. Development of thermostable lyophilized inactivated polio vaccine.

    Science.gov (United States)

    Kraan, Heleen; van Herpen, Paul; Kersten, Gideon; Amorij, Jean-Pierre

    2014-10-01

    The aim of current study was to develop a dried inactivated polio vaccine (IPV) formulation with minimal loss during the drying process and improved stability when compared with the conventional liquid IPV. Extensive excipient screening was combined with the use of a Design of Experiment (DoE) approach in order to achieve optimal results with high probability. Although it was shown earlier that the lyophilization of a trivalent IPV while conserving its antigenicity is challenging, we were able to develop a formulation that showed minimal loss of potency during drying and subsequent storage at higher temperatures. This study showed the potential of a highly stable and safe lyophilized polio vaccine, which might be used in developing countries without the need of a cold-chain.

  1. Update on the Clinical Development of Candidate Malaria Vaccines

    National Research Council Canada - National Science Library

    Ballou, W. R; Arevalo-Herrera, Myriam; Carucci, Daniel; Richie, Thomas L; Corradin, Giampietro; Diggs, Carter; Druilhe, Pierre; Giersing, Birgitte K; Saul, Allan; Heppner, D. G

    2004-01-01

    ... powerful driver for stimulating clinical development of candidate vaccines for malaria. This new way forward promises to greatly increase the likelihood of bringing a safe and effective vaccine to licensure...

  2. A history of the development of Brucella vaccines.

    Science.gov (United States)

    Avila-Calderón, Eric Daniel; Lopez-Merino, Ahidé; Sriranganathan, Nammalwar; Boyle, Stephen M; Contreras-Rodríguez, Araceli

    2013-01-01

    Brucellosis is a worldwide zoonosis affecting animal and human health. In the last several decades, much research has been performed to develop safer Brucella vaccines to control the disease mainly in animals. Till now, no effective human vaccine is available. The aim of this paper is to review and discuss the importance of methodologies used to develop Brucella vaccines in pursuing this challenge.

  3. Advances in molecular biology: impact on rotavirus vaccine development.

    Science.gov (United States)

    Estes, M K

    1996-09-01

    The first candidate rotavirus vaccine was a live attenuated oral vaccine made by the classical empirical method of serial passage of virus in tissue culture cells. Current tetravalent vaccine candidates that are in the final stages of efficacy testing in the United States were made by genetic reassortment. This article briefly highlights how advances in the basic understanding of the molecular biology of rotaviruses have facilitated vaccine development. New approaches for second-generation vaccines and improvements in vaccine efficacy based on further exploitation of the tools and knowledge of rotavirus molecular biology and pathogenesis are discussed.

  4. Vaccines and global health

    Science.gov (United States)

    Greenwood, Brian; Salisbury, David; Hill, Adrian V. S.

    2011-01-01

    Vaccines have made a major contribution to global health in recent decades but they could do much more. In November 2011, a Royal Society discussion meeting, ‘New vaccines for global health’, was held in London to discuss the past contribution of vaccines to global health and to consider what more could be expected in the future. Papers presented at the meeting reviewed recent successes in the deployment of vaccines against major infections of childhood and the challenges faced in developing vaccines against some of the world's remaining major infectious diseases such as human immunodeficiency virus (HIV), malaria and tuberculosis. The important contribution that development of more effective veterinary vaccines could make to global health was also addressed. Some of the social and financial challenges to the development and deployment of new vaccines were reviewed. The latter issues were also discussed at a subsequent satellite meeting, ‘Accelerating vaccine development’, held at the Kavli Royal Society International Centre. Delegates at this meeting considered challenges to the more rapid development and deployment of both human and veterinary vaccines and how these might be addressed. Papers based on presentations at the discussion meeting and a summary of the main conclusions of the satellite meeting are included in this issue of Philosophical Transactions of the Royal Society B. PMID:21893534

  5. 77 FR 68783 - Prospective Grant of Co-Exclusive License: Veterinary Vaccines for Rift Valley Fever Virus

    Science.gov (United States)

    2012-11-16

    ... Deltamune Ltd., having a place of business in Centurion, South Africa. The patent rights in these inventions... generation of precisely defined attenuated vaccine constructs that contain complete deletions of critical... rat model of lethal disease. The vaccines can protect immunized animals against virulent virus...

  6. Position paper: improving governance for effective veterinary services in developing countries--a priority for donor funding.

    Science.gov (United States)

    Forman, S; Plante, C; Murray, G; Rey, B; Belton, D; Evans, B; Steinmetz, P

    2012-08-01

    Livestock contributes significantly to the world economy. However, animal diseases and food safety are still major constraints on livestock-sector productivity, economic growth, the reduction of poverty and food security. Efficient and effective governance of Veterinary Services throughout the world is a fundamental requirement for addressing the global animal health and related public health threats. Recent work by the World Organisation for Animal Health (OIE) through the application of the Tool for the Evaluation of Performance of Veterinary Services (PVS Tool) and related Gap Analysis (both of which form part of the PVS Pathway) has indicated that a significant proportion of the national Veterinary Services worldwide do not meet the essential requirements for good governance. This shortcoming poses a significant risk for many developing countries and their trading partners when considered in the context of the growing trade in animal-source foods, and the burgeoning global livestock population. Well-managed, transparent and credible Veterinary Services, in both the public and private sector, are essential for mitigating animal disease risks and ensuring sustainable incomes for vulnerable producers. They are also vital for limiting the public health risks posed by zoonotic diseases. This paper is intended to highlight the impact of governance on the delivery of veterinary services in a development context and the benefits generated by improving veterinary governance. It recognises 'global public good' elements embedded in the good governance of Veterinary Services, and it could also provide an operational development investment roadmap that builds on the OIE PVS Pathway, and innovative financing options based on government commitments supported by donor programmes.

  7. Accelerating vaccine development for African swine fever virus ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2018-01-12

    Jan 12, 2018 ... Expected results. By adopting this cutting-edge approach to the development of African swine fever vaccines, the overall expected result is the generation of a vaccine candidate that will undergo further testing and if successful, be produced as a new vaccine for ASF.

  8. Challenges and opportunities for meningococcal vaccination in the developing world.

    Science.gov (United States)

    Shaker, Rouba; Fayad, Danielle; Dbaibo, Ghassan

    2018-02-02

    Meningococcal disease continues to be a life threatening infection with high morbidity and mortality even in appropriately treated patients. Meningococcal vaccination plays a major role in the control of the disease; however, implementing vaccination remains problematic in the developing world. The objective of this review is to identify the challenges facing the use of meningococcal vaccines in the developing world in order to discuss the opportunities and available solutions to improve immunization in these countries. Inadequate epidemiologic information necessary to implement vaccination and financial challenges predominate. Multiple measures are needed to achieve the successful implementation of meningococcal conjugate vaccination programs that protect against circulating serogroups in developing countries including enhanced surveillance systems, financial support and aid through grants, product development partnerships that are the end result of effective collaboration and communication between different interdependent stakeholders to develop affordable vaccines, and demonstration of the cost-effectiveness of new meningococcal vaccines.

  9. A multi-dose serological assay suitable to quantify the potency of inactivated rabies vaccines for veterinary use.

    Science.gov (United States)

    Krämer, Beate; Kamphuis, Elisabeth; Hanschmann, Kay-Martin; Milne, Catherine; Daas, Arnold; Duchow, Karin

    2013-11-01

    The mouse vaccination-challenge test, which is the most widely used method for determining the potency of inactivated rabies vaccines, is imprecise, time-consuming, and causes severe distress to the test animals. An alternative single-dose serological method has been implemented in the European Pharmacopoeia Monograph 0451 to replace the mouse challenge test for batch release. This single-dose limit method provides semi-quantitative results, but is not suitable for quantifying potency. We have now extended this serological method to a multi-dose format which allows a quantification of vaccine potency. In studies including all rabies vaccine strains relevant for Europe, we found dose-dependency for all vaccines and standard preparations. We have demonstrated that the multi-dose serological approach provides reliable quantitative potency results and is more precise than the mouse vaccination-challenge test. We have shown that adjuvanted vaccines can be calibrated against non-adjuvanted material, and that reference material can be calibrated against the International Standard. The method is therefore capable of assigning potency with the additional advantage of requiring fewer animals and reducing distress. Once the applicability of the method has been further verified in a collaborative study, it can complement the single-dose assay and eventually eliminate the need for the mouse challenge test. Copyright © 2013 The International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.

  10. Electrochemotherapy as First Line Cancer Treatment: Experiences from Veterinary Medicine in Developing Novel Protocols.

    Science.gov (United States)

    Spugnini, E P; Azzarito, T; Fais, S; Fanciulli, M; Baldi, A

    2016-01-01

    Tumor microenvironment is one of the major obstacles to the efficacy of chemotherapy in cancer patients. The abnormal blood flow within the tumor results in uneven drug distribution. Electrochemotherapy (ECT) is a tumor treatment that adopts the systemic or local delivery of anticancer drugs with the application of permeabilizing electric pulses having appropriate amplitude and waveforms. This allows the use of lipophobic drugs that frequently have a narrow therapeutic index maintaining at the same time a reduced patient morbidity and preserving appropriate anticancer efficacy. Its use in humans is addressed to the treatment of cutaneous neoplasms or the palliation of skin tumor metastases, and a standard operating procedure has been devised. On the other hand, in veterinary oncology this approach is gaining popularity, thus becoming a first line treatment for different cancer histotypes, in a variety of clinical conditions due to its high efficacy and low toxicity. This review summarizes the state of the art in veterinary oncology as a preclinical model and reports the new protocols in terms of drugs and therapy combination that have been developed.

  11. [Rabies vaccines: Current status and prospects for development].

    Science.gov (United States)

    Starodubova, E S; Preobrazhenskaia, O V; Kuzmenko, Y V; Latanova, A A; Yarygina, E I; Karpov, V L

    2015-01-01

    Rabies is an infectious disease among humans and animals that remains incurable, despite its longstanding research history. The only way to prevent the disease is prompt treatment, including vaccination as an obligatory component and administration of antirabies immunoglobulin as a supplement. Since the first antirabies vaccination performed in the 19th century, a large number of different rabies vaccines have been developed. Progress in molecular biology and biotechnology enabled the development of effective and safe technologies of vaccine production. Currently, new-generation vaccines are being developed based on recombinant rabies virus strains or on the production of an individual recombinant rabies antigen-glycoprotein (G protein), either as a component of nonpathogenic viruses, or in plants, or in the form of DNA vaccines. In this review, the main modern trends in the development of rabies vaccines have been discussed.

  12. Immunoinformatics of Placental Malaria Vaccine Development

    DEFF Research Database (Denmark)

    Jessen, Leon Eyrich

    Malaria is an infectious disease caused by a protozoan parasite of the genus Plasmodium, which is transferred by female Anopheles mosquitos. WHO estimates that in 2012 there were 207 million cases of malaria, of which 627,000 were fatal. People living in malaria-endemic areas, gradually acquire...... immunity with multiple infections. Placental malaria (PM) is caused by P. falciparum sequestering in the placenta of pregnant women due to the presence of novel receptors in the placenta. An estimated 200,000 infants die a year as a result of PM. In 2004 the specific protein responsible...... and development in the field of placental malaria vaccine development....

  13. Impact of BRICS’ investment in vaccine development on the global vaccine market

    Science.gov (United States)

    Milstien, Julie; Schmitt, Sarah

    2014-01-01

    Abstract Brazil, the Russian Federation, India, China and South Africa – the countries known as BRICS – have made considerable progress in vaccine production, regulation and development over the past 20 years. In 1993, all five countries were producing vaccines but the processes used were outdated and non-standardized, there was little relevant research and there was negligible international recognition of the products. By 2014, all five countries had strong initiatives for the development of vaccine technology and had greatly improved their national regulatory capacity. South Africa was then the only BRICS country that was not completely producing vaccines. South Africa is now in the process of re-establishing its own vaccine production and passing beyond the stage of simply importing, formulating and filling vaccine bulks. Changes in the public sector’s price per dose of selected vaccines, the global market share represented by products from specific manufacturers, and the attractiveness, for multinational companies, of partnership and investment opportunities in BRICS companies have all been analysed. The results indicate that the BRICS countries have had a major impact on vaccine price and availability, with much of that impact attributable to the output of Indian vaccine manufacturers. China is expected to have a greater impact soon, given the anticipated development of Chinese vaccine manufacturers in the near future. BRICS’ accomplishments in the field of vaccine development are expected to reshape the global vaccine market and accelerate access to vaccines in the developing world. The challenge is to turn these expectations into strategic actions and practical outcomes. PMID:24940018

  14. Research progress in live attenuated Brucella vaccine development.

    Science.gov (United States)

    Wang, Zhen; Wu, Qingmin

    2013-01-01

    Brucella spp. are facultative intracellular bacteria that cause brucellosis, which is a globally occurring zoonotic disease that is characterized by abortion in domestic animals and undulant fever, arthritis, endocarditis, and meningitis in humans. There are currently no licensed vaccines against brucellosis for human use, and only a few licensed live Brucella vaccines are available for use in animals. However, the available animal vaccines may cause abortion and are associated with lower protection rates in animals and higher virulence in humans. Much research has been performed recently to develop novel Brucella vaccines for the prevention and control of animal brucellosis. This article discusses the approaches and strategies for novel live attenuated vaccine development.

  15. Review: New Vaccine Against Tuberculosis: Current Developments and Future Challenges

    Science.gov (United States)

    Liu, Jun

    2009-04-01

    Tuberculosis (TB) continues to be a global health threat. BCG was developed as an attenuated live vaccine for tuberculosis control nearly a century ago. Despite being the most widely used vaccine in human history, BCG is not an ideal vaccine and has two major limitations: its poor efficacy against adult pulmonary TB and its disconcerting safety in immunocompromised individuals. A safer and more effective TB vaccine is urgently needed. This review article discusses current strategies to develop the next generation of TB vaccines to replace BCG. While some progresses have been made in the past decade, significant challenges lie ahead.

  16. DNA vaccines: general concerns and its applications in human and veterinary medicine/ Vacina de DNA: aspectos gerais e sua aplicação na medicina humana e veterinária

    Directory of Open Access Journals (Sweden)

    Marilda Carlos Vidotto

    2007-08-01

    Full Text Available The vaccination with DNA is one of the most promising immunization techniques against a pathogens variety and tumors, for which the conventional methods have not been efficient. DNA vaccines are capable to induce immune humoral and cellular response, directed to lymphocytes CD4+ and CD8+, without the necessity of live microorganisms. In spite of the great potential of inducing protective immunity, the DNA vaccine not always has success. The immunity depends on several factors such as the selection of the target gene, construction of the expression vector, frequency and via of administration of the vaccine, amount of DNA, location of the antigen codified by the plasmid and age, health and species of vaccinated animals. This revision shows the development of some vaccines of DNA for diseases of interest in the veterinary and human medicine.A vacinação com DNA é uma das mais promissoras técnicas de imunização contra uma variedade de patógenos e tumores, para os quais os métodos convencionais não tem sido eficientes. Vacinas de DNA são capazes de induzir resposta imune humoral e celular, tanto para resposta de linfócitos CD4+ quanto CD8+, sem a necessidade de microrganismos vivos. Apesar do grande potencial de induzir imunidade protetora, a vacina de DNA nem sempre apresenta bons resultados. A imunidade depende de vários fatores como a seleção do gene alvo, construção do vetor de expressão, freqüência e via de administração da vacina, quantidade de DNA, localização do antígeno codificado pelo plasmídio e idade, saúde e espécies de animais vacinados. Esta revisão relata o desenvolvimento de algumas vacinas de DNA para doenças de interesse na medicina veterinária e humana.

  17. Vaxjo: A Web-Based Vaccine Adjuvant Database and Its Application for Analysis of Vaccine Adjuvants and Their Uses in Vaccine Development

    Directory of Open Access Journals (Sweden)

    Samantha Sayers

    2012-01-01

    Full Text Available Vaccine adjuvants are compounds that enhance host immune responses to co-administered antigens in vaccines. Vaxjo is a web-based central database and analysis system that curates, stores, and analyzes vaccine adjuvants and their usages in vaccine development. Basic information of a vaccine adjuvant stored in Vaxjo includes adjuvant name, components, structure, appearance, storage, preparation, function, safety, and vaccines that use this adjuvant. Reliable references are curated and cited. Bioinformatics scripts are developed and used to link vaccine adjuvants to different adjuvanted vaccines stored in the general VIOLIN vaccine database. Presently, 103 vaccine adjuvants have been curated in Vaxjo. Among these adjuvants, 98 have been used in 384 vaccines stored in VIOLIN against over 81 pathogens, cancers, or allergies. All these vaccine adjuvants are categorized and analyzed based on adjuvant types, pathogens used, and vaccine types. As a use case study of vaccine adjuvants in infectious disease vaccines, the adjuvants used in Brucella vaccines are specifically analyzed. A user-friendly web query and visualization interface is developed for interactive vaccine adjuvant search. To support data exchange, the information of vaccine adjuvants is stored in the Vaccine Ontology (VO in the Web Ontology Language (OWL format.

  18. Hepatitis A in the US Army: epidemiology and vaccine development.

    Science.gov (United States)

    Hoke, C H; Binn, L N; Egan, J E; DeFraites, R F; MacArthy, P O; Innis, B L; Eckels, K H; Dubois, D; D'Hondt, E; Sjogren, M H

    1992-01-01

    Control of hepatitis A has been an important concern for US military forces in war and peace. Immune serum globulin, although effective, is exceedingly cumbersome to use. The prevalence of antibody against hepatitis A is decreasing in young American soldiers, putting them at risk of hepatitis A during deployment. The US Army has been an active participant in development of hepatitis A vaccine. The first successful cell-culture-derived, formalin-inactivated hepatitis A vaccine was developed at the Walter Reed Army Institute of Research. This prototype vaccine was shown, in 1986, to be safe and immunogenic for humans. Since then we have evaluated the following issues related to the use of inactivated hepatitis A vaccines in military populations. Immunogenicity of vaccine derived from the CLF and HM175 strains; immunogenicity of hepatitis A vaccine given by jet injector; immunogenicity of hepatitis A vaccine when given with hepatitis B vaccine; immunogenicity when given in shortened schedules; safety and immunogenicity in Thai children; and efficacy under field conditions in the tropics. The hepatitis A vaccines which we tested are safe and highly immunogenic. Immunization by jet gun confers immunity equivalent to immunization by needle. Hepatitis A vaccine is equally potent when given with hepatitis B vaccine. Data on rapid immunization schedules and efficacy are under evaluation. We conclude that hepatitis A vaccine is a major improvement in our ability to prevent hepatitis A in soldiers.

  19. Reverse Vaccinology: Developing Vaccines in the Era of Genomics

    Science.gov (United States)

    Sette, Alessandro; Rappuoli, Rino

    2012-01-01

    The sequence of microbial genomes made all potential antigens of each pathogen available for vaccine development. This increased by orders of magnitude potential vaccine targets in bacteria, parasites, and large viruses and revealed virtually all their CD4+ and CD8+ T cell epitopes. The genomic information was first used for the development of a vaccine against serogroup B meningococcus, and it is now being used for several other bacterial vaccines. In this review, we will first summarize the impact that genome sequencing has had on vaccine development, and then we will analyze how the genomic information can help further our understanding of immunity to infection or vaccination and lead to the design of better vaccines by diving into the world of T cell immunity. PMID:21029963

  20. Vaccine Development for Zika Virus-Timelines and Strategies.

    Science.gov (United States)

    Durbin, Anna P

    2016-09-01

    Zika virus is a mosquito-borne Flavivirus that spread rapidly through South and Central America in 2015 to 2016. Microcephaly has been causally associated with Zika virus infection during pregnancy and the World Health Organization declared Zika virus as a Public Health Emergency of International Concern. To address this crisis, many groups have expressed their commitment to developing a Zika virus vaccine. Different strategies for Zika virus vaccine development are being considered including recombinant live attenuated vaccines, purified inactivated vaccines (PIVs), DNA vaccines, and viral vectored vaccines. Important to Zika virus vaccine development will be the target group chosen for vaccination and which end point(s) is chosen for efficacy determination. The first clinical trials of Zika virus vaccine candidates will begin in Q3/4 2016 but the pathway to licensure for a Zika virus vaccine is expected to take several years. Efforts are ongoing to accelerate Zika virus vaccine development and evaluation with the ultimate goal of reducing time to licensure. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  1. Methods and Processes of Developing the Strengthening the Reporting of Observational Studies in Epidemiology - Veterinary (STROBE-Vet) Statement

    DEFF Research Database (Denmark)

    Sargeant, J.M.; O'Connor, A.M.; Dohoo, I.R.

    2016-01-01

    ) statement that addresses unique reporting requirements for observational studies in veterinary medicine related to health, production, welfare, and food safety. Design: A consensus meeting of experts was organized to develop an extension of the STROBE statement to address observational studies in veterinary......Background:  The reporting of observational studies in veterinary research presents many challenges that often are not adequately addressed in published reporting guidelines. Objective: To develop an extension of the STROBE (Strengthening the Reporting of Observational Studies in Epidemiology...... medicine with respect to animal health, animal production, animal welfare, and food safety outcomes. Setting: Consensus meeting May 11–13, 2014 in Mississauga, Ontario, Canada. Participants: Seventeen experts from North America, Europe, and Australia attended the meeting. The experts were epidemiologists...

  2. Development of an HIV vaccine attitudes scale to predict HIV vaccine acceptability among vulnerable populations: L.A. VOICES

    OpenAIRE

    Lee, SJ; Newman, PA; Duan, N.; Cunningham, WE

    2014-01-01

    Background: Decade-long delays in successful implementation of Hepatitis B vaccines and ongoing obstacles in HPV vaccine roll-out suggest the importance of an implementation science approach to prepare for the effective translation of future HIV vaccines from clinical trials into routine practice. The objective of this study was to test HIV vaccine attitude items to develop reliable scales and to examine their association with HIV vaccine acceptability. Methods: HIV vaccine attitude items wer...

  3. Vaccines to prevent pneumonia in children - a developing country perspective.

    Science.gov (United States)

    Oliwa, Jacquie N; Marais, Ben J

    2017-03-01

    Pneumonia accounted for 15% of the 6.3 million deaths among children younger than five years in 2013, a total of approximately 935,000 deaths worldwide. Routine vaccination against common childhood illnesses has been identified as one of the most cost-effective strategies to prevent death from pneumonia. Vaccine-preventable or potentially preventable diseases commonly linked with respiratory tract infections include Streptococcus pneumoniae, Haemophilus influenza type-b (Hib), pertussis, influenza, measles, and tuberculosis. Although here have been great strides in the development and administration of effective vaccines, the countries that carry the largest disease burdens still struggle to vaccinate their children and newer conjugated vaccines remain out of reach for many. The Global Vaccine Action Plan (GVAP) has identified priority areas for innovation in research in all aspects of immunisation development and delivery to ensure equitable access to vaccines for all. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Guiding dengue vaccine development using knowledge gained from the success of the yellow fever vaccine.

    Science.gov (United States)

    Liang, Huabin; Lee, Min; Jin, Xia

    2016-01-01

    Flaviviruses comprise approximately 70 closely related RNA viruses. These include several mosquito-borne pathogens, such as yellow fever virus (YFV), dengue virus (DENV), and Japanese encephalitis virus (JEV), which can cause significant human diseases and thus are of great medical importance. Vaccines against both YFV and JEV have been used successfully in humans for decades; however, the development of a DENV vaccine has encountered considerable obstacles. Here, we review the protective immune responses elicited by the vaccine against YFV to provide some insights into the development of a protective DENV vaccine.

  5. Recent update in HIV vaccine development

    National Research Council Canada - National Science Library

    Shin, So Youn

    2016-01-01

    .... Disappointing results from previous clinical trials of VaxGen's AIDSVAXgp120 vaccine and MRKAd5 HIV-1 Gag/Pol/Nef vaccine emphasize that understanding the correlates of immune protection in HIV...

  6. Isolation, Specification, Molecular Biology Assessment and Vaccine Development of Clostridium in Iran: A Review

    Directory of Open Access Journals (Sweden)

    Reza Pilehchian Langroudi

    2015-11-01

    Full Text Available Context: The genus Clostridium, which consists of spore-forming anaerobes, can cause different diseases in domestic animals and human and some of them are serious and fatal. According to the increasing economic value of the meat and milk-producing animals, the importance of a certain number of such diseases in Iran is unquestionable. Evidence Acquisition: In Iran, and probably in other Near East countries, much attention was formerly paid to control more serious contagious diseases, such as rinderpest, anthrax, etc. resulting in the negligence of diseases such as enterotoxaemia. The epizootiological position has now changed whereby some of the contagious diseases are eradicated or are being methodically controlled.Now it is time to care about the other problems such as clostridial diseases, which threaten the health of the sheep and cattle. It is impossible to eradicate these infectious microorganisms, since they are normally found in the soil and the intestinal contents of apparently healthy animals. Therefore, it is necessary to resort to vaccination which in some cases has given encouraging results. To avoid the losses from such infections it is necessary to have the best possible vaccination information, methodically and regularity of the susceptible animals. Conclusions: This review refers to the veterinary aspects of the anaerobic clostridial diseases and vaccine development concerning the works carried out in Iran and especially at the Razi Serum and Vaccine Research Institute in the last eight decades.

  7. Nonclinical Development of BCG Replacement Vaccine Candidates

    OpenAIRE

    Bernd Eisele; Martin Gengenbacher; Reginald Kidd; David McCown; Sheldon Morris; Steven Derrick; David Hokey; Dominick Laddy; Rosemary Chang; Megan Fitzpatrick; Leander Grode; Kamalakannan Velmurugan; Kaufmann,Stefan H. E.; John Fulkerson; Brennan, Michael J.

    2013-01-01

    The failure of current Mycobacterium bovis bacille Calmette–Guérin (BCG) vaccines, given to neonates to protect against adult tuberculosis and the risk of using these live vaccines in HIV-infected infants, has emphasized the need for generating new, more efficacious and safer replacement vaccines. With the availability of genetic techniques for constructing recombinant BCG (rBCG) strains containing well-defined gene deletions or insertions, new vaccine candidates are under evaluation at both ...

  8. Leishmaniasis vaccine candidates for development: a global overview.

    Science.gov (United States)

    Khamesipour, Ali; Rafati, Sima; Davoudi, Noushin; Maboudi, Fereidoun; Modabber, Farrokh

    2006-03-01

    A vaccine against different forms of leishmaniasis should be feasible considering the wealth of information on genetics and biology of the parasite, clinical and experimental immunology of leishmaniasis, and the availability of vaccines that can protect experimental animals against challenge with different Leishmania species. However, there is no vaccine against any form of leishmaniasis for general human use. One major factor is the lack of a conceived market for human leishmaniasis vaccines. Hence pharmaceutical industries involved in vaccine development are not interested in investing millions of dollars and a decade that is required for developing a new vaccine. Besides, leishmaniasis is a local/regional problem and not a global one. According to the estimates of the World Health Organization, 90 per cent of visceral leishmaniasis occurs in five countries (Bangladesh, Brazil, India, Nepal and Sudan). Those in need are amongst the poorest people in these countries. It should therefore be the objectives of these countries to develop a vaccine. Fortunately, both Brazil and India have designated the control of visceral leishmaniasis as a top priority for their respective Ministries of Health. The purpose of this review is to present only the vaccines in use and those in development for use in dogs or humans. This is not an exhaustive review of vaccine discovery or the principles of clinical immunology underlying vaccine development.

  9. Developing and Fostering a Dynamic Program for Training in Veterinary Pathology and Clinical Pathology: Veterinary Students to Post-graduate Education

    Science.gov (United States)

    Lairmore, Michael D.; Oglesbee, Michael; Weisbrode, Steve E.; Wellman, Maxey; Rosol, Thomas; Stromberg, Paul

    2011-01-01

    Recent reports project a deficiency of veterinary pathologists, indicating a need to train highly qualified veterinary pathologists, particularly in academic veterinary medicine. The need to provide high-quality research training for veterinary pathologists has been recognized by the veterinary pathology training program of the Ohio State University (OSU) since its inception. The OSU program incorporates elements of both residency training and graduate education into a unified program. This review illustrates the components and structure of the training program and reflects on future challenges in training veterinary pathologists. Key elements of the OSU program include an experienced faculty, dedicated staff, and high-quality students who have a sense of common mission. The program is supported through cultural and infrastructure support. Financial compensation, limited research funding, and attractive work environments, including work–life balance, will undoubtedly continue to be forces in the marketplace for veterinary pathologists. To remain competitive and to expand the ability to train veterinary pathologists with research skills, programs must support strong faculty members, provide appropriate infrastructure support, and seek active partnerships with private industry to expand program opportunities. Shortages of trained faculty may be partially resolved by regional cooperation to share faculty expertise or through the use of communications technology to bridge distances between programs. To foster continued interest in academic careers, training programs will need to continue to evolve and respond to trainees' needs while maintaining strong allegiances to high-quality pathology training. Work–life balance, collegial environments that foster a culture of respect for veterinary pathology, and continued efforts to reach out to veterinary students to provide opportunities to learn about the diverse careers offered in veterinary pathology will pay long

  10. HIV-1 Polymorphism: a Challenge for Vaccine Development - A Review

    Directory of Open Access Journals (Sweden)

    Morgado MG

    2002-01-01

    Full Text Available The perspective for the development of anti-HIV/AIDS vaccines became a target sought by several research groups and pharmaceutical companies. However, the complex virus biology in addition to a striking genetic variability and the limited understanding of the immunological correlates of protection have made this an enormous scientific challenge not overcome so far. In this review we presented an updating of HIV-1 subtypes and recombinant viruses circulating in South American countries, focusing mainly on Brazil, as one of the challenges for HIV vaccine development. Moreover, we discussed the importance of stimulating developing countries to participate in the process of vaccine evaluation, not only testing vaccines according to already defined protocols, but also working together with them, in order to take into consideration their local information on virus diversity and host genetic background relevant for the vaccine development and testing, as well as including local virus based reagents to evaluate the immunogenicity of the candidate vaccines.

  11. Progress in Developing Virus-like Particle Influenza Vaccines

    Science.gov (United States)

    Quan, Fu-Shi; Lee, Young-Tae; Kim, Ki-Hye; Kim, Min-Chul; Kang, Sang-Moo

    2016-01-01

    Summary Recombinant vaccines based on virus-like particles (VLPs) or nanoparticles have been successful in their safety and efficacy in preclinical and clinical studies. The technology of expressing enveloped VLP vaccines has combined with molecular engineering of proteins in membrane-anchor and immunogenic forms mimicking the native conformation of surface proteins on the enveloped viruses. This review summarizes recent developments in influenza VLP vaccines against seasonal, pandemic, and avian influenza viruses from the perspective of use in humans. The immunogenicity and efficacies of influenza VLP vaccine in the homologous and cross-protection were reviewed. Discussions include limitations of current influenza vaccination strategies and future directions to confer broadly cross protective new influenza vaccines as well as vaccination. PMID:27058302

  12. Current Trends in West Nile Virus Vaccine Development

    Science.gov (United States)

    Amanna, Ian J.; Slifka, Mark K.

    2014-01-01

    West Nile virus (WNV) is a mosquito-borne flavivirus that has become endemic in the United States. From 1999-2012, there have been 37,088 reported cases of WNV and 1,549 deaths, resulting in a 4.2% case-fatality rate. Despite development of effective WNV vaccines for horses, there is no vaccine to prevent human WNV infection. Several vaccines have been tested in preclinical studies and to date there have been 8 clinical trials, with promising results in terms of safety and induction of antiviral immunity. Although mass vaccination is unlikely to be cost-effective, implementation of a targeted vaccine program may be feasible if a safe and effective vaccine can be brought to market. Further evaluation of new and advanced vaccine candidates is strongly encouraged. PMID:24689659

  13. A History of the Development of Brucella Vaccines

    OpenAIRE

    Eric Daniel Avila-Calderón; Ahidé Lopez-Merino; Nammalwar Sriranganathan; Boyle, Stephen M; Araceli Contreras-Rodríguez

    2013-01-01

    Brucellosis is a worldwide zoonosis affecting animal and human health. In the last several decades, much research has been performed to develop safer Brucella vaccines to control the disease mainly in animals. Till now, no effective human vaccine is available. The aim of this paper is to review and discuss the importance of methodologies used to develop Brucella vaccines in pursuing this challenge. CONACYT CB-2011-01, 169259 SIP-IPN 20110891, 20134610 ICYTDF-IPN (Project of Investiga...

  14. A History of the Development of Brucella Vaccines

    Directory of Open Access Journals (Sweden)

    Eric Daniel Avila-Calderón

    2013-01-01

    Full Text Available Brucellosis is a worldwide zoonosis affecting animal and human health. In the last several decades, much research has been performed to develop safer Brucella vaccines to control the disease mainly in animals. Till now, no effective human vaccine is available. The aim of this paper is to review and discuss the importance of methodologies used to develop Brucella vaccines in pursuing this challenge.

  15. Guideline development and impact assessment for registration of medical, dental and veterinary x-ray apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Colgan, P.; Harrison, D. [NSW Environment Protection Authority, Lidcombe, NSW, (Australia). Radiation Control Centre; Moore, W. [NSW Environmental Protection Authority, Chatswood, NSW, (Australia). Economics and Environmental Reporting Branch

    1996-10-01

    Under the NSW Radiation Control Act 1990, radiation apparatus used for diagnostic medical, dental and veterinary purposes will be required to become registered. The inspection required prior to registration will be conducted by a Consulting Radiation Expert who has been accredited by the Environment Protection Authority (EPA) as being competent in the field of quality assurance assessment of radiation apparatus used for diagnostic medical, dental and veterinary purposes. When regulating any activity in NSW, there is a requirement to undertake a regulatory impact statement of the proposed regulation. In addition, the introduction of any accompanying guideline requires a cost-benefit analysis. Costs may include enforcement, administrative and compliance activities. The calculation of benefit relies heavily on the improvement in apparatus performance (and hence dose reduction) that can be obtained with the introduction of a mandatory practice such as apparatus registration. This paper discusses the development of the registration guideline for NSW, including a summary of the public comments received. It further discusses the methodology and data used for the accompanying cost-benefit analysis. Information in this paper is presented in three parts: EPA field survey, cost analysis, and benefit analysis. For NSW it was estimated that the introduction of registration of these apparatus, over a two year period, would result in early replacement and repair costs (present values) to the medical industry of between $5.7 and $11.0 million, with an additional $2.5 million in EPA enforcement costs. The introduction of the proposed system of registration is expected to result in an estimated savings in quantifiable health detriment costs to NSW of between $11.8 and $17.7 million, and reduce the risk of radiation induced mortality. (authors). 4 refs., 11 tabs.

  16. Methods and Processes of Developing the Strengthening the Reporting of Observational Studies in Epidemiology - Veterinary (STROBE-Vet) Statement

    DEFF Research Database (Denmark)

    Sargeant, J. M.; O'Connor, A. M.; Dohoo, I. R.

    2016-01-01

    The reporting of observational studies in veterinary research presents many challenges that often are not adequately addressed in published reporting guidelines. A consensus meeting of experts was organized to develop an extension of the STROBE statement to address observational studies in veteri...

  17. 'Saving the lives of our dogs': the development of canine distemper vaccine in interwar Britain.

    Science.gov (United States)

    Bresalier, Michael; Worboys, Michael

    2014-06-01

    This paper examines the successful campaign in Britain to develop canine distemper vaccine between 1922 and 1933. The campaign mobilized disparate groups around the common cause of using modern science to save the nation's dogs from a deadly disease. Spearheaded by landed patricians associated with the country journal The Field, and funded by dog owners and associations, it relied on collaborations with veterinary professionals, government scientists, the Medical Research Council (MRC) and the commercial pharmaceutical house the Burroughs Wellcome Company (BWC). The social organization of the campaign reveals a number of important, yet previously unexplored, features of interwar science and medicine in Britain. It depended on a patronage system that drew upon a large base of influential benefactors and public subscriptions. Coordinated by the Field Distemper Fund, this system was characterized by close relationships between landed elites and their social networks with senior science administrators and researchers. Relations between experts and non-experts were crucial, with high levels of public engagement in all aspects of research and vaccine development. At the same time, experimental and commercial research supported under the campaign saw dynamic interactions between animal and human medicine, which shaped the organization of the MRC's research programme and demonstrated the value of close collaboration between veterinary and medical science, with the dog as a shared object and resource. Finally, the campaign made possible the translation of 'laboratory' findings into field conditions and commercial products. Rather than a unidirectional process, translation involved negotiations over the very boundaries of the 'laboratory' and the 'field', and what constituted a viable vaccine. This paper suggests that historians reconsider standard historical accounts of the nature of patronage, the role of animals, and the interests of landed elites in interwar British

  18. Prospects and Challenges in the Development of a Norovirus Vaccine.

    Science.gov (United States)

    Cortes-Penfield, Nicolas W; Ramani, Sasirekha; Estes, Mary K; Atmar, Robert L

    2017-08-01

    Norovirus is the leading cause of acute epidemic gastroenteritis among children under the age of 5 years and adults in the United States and in adults worldwide, accounting for an estimated 20% of episodes of acute gastroenteritis across all ages. No effective vaccine is presently available. This article provides an overview of the current state of norovirus vaccine development, emphasizing barriers and challenges in the development of an effective vaccine, correlates of protection used to assess vaccine efficacy, and the results of clinical trials of the major candidate vaccines. We performed an unstructured literature review of published articles listed in PubMed in the field of norovirus vaccine development, with an emphasis on studies in humans. Two candidate vaccines have reached clinical trials, and a number of other candidates are in the preclinical stages of development. Multivalent vaccination may be effective in inducing broadly neutralizing antibodies protective against challenge with novel and heterologous norovirus strains. Most identified correlates of protection have not been validated in large-scale challenge studies, nor have the degrees to which these correlates covary been assessed. Immune correlates of protection against norovirus infection need to be further developed to facilitate additional studies of the tolerability and efficacy of candidate norovirus vaccines in humans. Copyright © 2017 Elsevier HS Journals, Inc. All rights reserved.

  19. Vaccines against enteric infections for the developing world

    Science.gov (United States)

    Czerkinsky, Cecil; Holmgren, Jan

    2015-01-01

    Since the first licensure of the Sabin oral polio vaccine more than 50 years ago, only eight enteric vaccines have been licensed for four disease indications, and all are given orally. While mucosal vaccines offer programmatically attractive tools for facilitating vaccine deployment, their development remains hampered by several factors: —limited knowledge regarding the properties of the gut immune system during early life;—lack of mucosal adjuvants, limiting mucosal vaccine development to live-attenuated or killed whole virus and bacterial vaccines;—lack of correlates/surrogates of mucosal immune protection; and—limited knowledge of the factors contributing to oral vaccine underperformance in children from developing countries.There are now reasons to believe that the development of safe and effective mucosal adjuvants and of programmatically sound intervention strategies could enhance the efficacy of current and next-generation enteric vaccines, especially in lesser developed countries which are often co-endemic for enteric infections and malnutrition. These vaccines must be safe and affordable for the world's poorest, confer long-term protection and herd immunity, and must be able to contain epidemics. PMID:25964464

  20. Advancements in the development of subunit influenza vaccines

    Science.gov (United States)

    Zhang, Naru; Zheng, Bo-Jian; Lu, Lu; Zhou, Yusen; Jiang, Shibo; Du, Lanying

    2014-01-01

    The ongoing threat of influenza epidemics and pandemics has emphasized the importance of developing safe and effective vaccines against infections from divergent influenza viruses. In this review, we first introduce the structure and life cycle of influenza A viruses, describing major influenza A virus-caused pandemics. We then compare different types of influenza vaccines and discuss current advancements in the development of subunit influenza vaccines, particularly those based on nucleoprotein (NP), extracellular domain of matrix protein 2 (M2e) and hemagglutinin (HA) proteins. We also illustrate potential strategies for improving the efficacy of subunit influenza vaccines. PMID:25529753

  1. [Development of transcutaneous vaccination system for infectious disease countermeasure].

    Science.gov (United States)

    Matsuo, Kazuhiko

    2012-01-01

    The recent vigorous transnational migration of people and materials reflecting the development of transportation facilities, changes in social structure, and war disasters has increased the global spread of emerging and re-emerging infections. Once, as the 2009 pandemic influenza A (H1N1) virus, person-to-person transmission was achieved, the spread of pandemic cannot be contained in reality. Thus enhancement of the crisis-management structure against pandemic is critically important to maintain national function. On the basis of this social background, the development of vaccination, which is the only fundamental prophylaxis, is in attention, and earliest possible establishment of system that supply mass-vaccines in a short time is required. Even if, however, rapid manufacture of vaccine antigen is actualized, there are several problems that vaccine is not easily spread across the developing country and mass vaccination is not performed immediately at the time of the crisis, because conventional vaccination is performed mainly by injection. Our research group developed transcutaneous vaccine devices; a hydrogel patch and a dissolving microneedle array which delivered antigens to antigen-presenting cells in the epidermal layer. Our transcutaneous vaccination system receives a high evaluation as novel, easy-to-use, and less-invasive vaccination method against infections from home and abroad. In this review, we introduce the research progress resulted from our basic, preclinical, and clinical study for practical use.

  2. Strategic priorities for respiratory syncytial virus (RSV) vaccine development

    Science.gov (United States)

    Anderson, L.J.; Dormitzer, P.R.; Nokes, D.J.; Rappuoli, R.; Roca, A.; Graham, B.S.

    2013-01-01

    Although RSV has been a high priority for vaccine development, efforts to develop a safe and effective vaccine have yet to lead to a licensed product. Clinical and epidemiologic features of RSV disease suggest there are at least 4 distinct target populations for vaccines, the RSV naïve young infant, the RSV naïve child ≥6 months of age, pregnant women (to provide passive protection to newborns), and the elderly. These target populations raise different safety and efficacy concerns and may require different vaccination strategies. The highest priority target population is the RSV naïve child. The occurrence of serious adverse events associated with the first vaccine candidate for young children, formalin inactivated RSV (FI-RSV), has focused vaccine development for the young RSV naïve child on live virus vaccines. Enhanced disease is not a concern for persons previously primed by a live virus infection. A variety of live-attenuated viruses have been developed with none yet achieving licensure. New live-attenuated RSV vaccines are being developed and evaluated that maybe sufficiently safe and efficacious to move to licensure. A variety of subunit vaccines are being developed and evaluated primarily for adults in whom enhanced disease is not a concern. An attenuated parainfluenza virus 3 vector expressing the RSV F protein was evaluated in RSV naïve children. Most of these candidate vaccines have used the RSV F protein in various vaccine platforms including virus-like particles, nanoparticles, formulated with adjuvants, and expressed by DNA or virus vectors. The other surface glycoprotein, the G protein, has also been used in candidate vaccines. We now have tools to make and evaluate a wide range of promising vaccines. Costly clinical trials in the target population are needed to evaluate and select candidate vaccines for advancement to efficacy trials. Better data on RSV-associated mortality in developing countries, better estimates of the risk of long term

  3. Current and Novel Approaches to Vaccine Development Against Tuberculosis

    OpenAIRE

    Mark eCayabyab; Lilia eMacovei; Antonio eCampos-Neto

    2012-01-01

    Antibiotics and vaccines are the two most successful medical countermeasures that humans have created against a number of pathogens. However a select few e.g., Mycobacterium tuberculosis, the causative agent of tuberculosis (TB) have evaded eradication by vaccines and therapeutic approaches. TB is a global public health problem that kills 1.4 million people per year. The past decade has seen significant progress in developing new vaccine candidates, but the most fundamental questions in under...

  4. Antimicrobial Carbohydrate Vaccines: Development of Burkholderia pseudomallei immunogens

    OpenAIRE

    Donaldson, Matthew

    2013-01-01

    The potential bio-terror threat posed by Burkholderia pseudomallei highlights the need for an effective vaccine. Immunisation and challenge experiments in mice have demonstrated that the capsular polysaccharide (CPS-1) of B. pseudomallei, which is composed of β-1,3-linked 6-deoxy-D-manno-heptopyranose residues, is a promising candidate for vaccine development. This thesis set out to explore routes to potential vaccine candidates for Burkholderia pseudomallei infection based on ...

  5. Questions and Challenges in the Development of Mesenchymal Stromal/Stem Cell-Based Therapies in Veterinary Medicine.

    Science.gov (United States)

    Devireddy, Lax R; Boxer, Lynne; Myers, Michael J; Skasko, Mark; Screven, Rudell

    2017-10-01

    The therapeutic potential of stem cells has fascinated those interested in treating diseases in both human and animal subjects. Although the exact mechanism of action and the definitive effectiveness of stem cell therapies remain unclear, animal owner perceptions and a desire for improved treatment options have fueled the interest of clinicians and stakeholders. Standards do not yet exist to define the critical attributes of mesenchymal stem/stromal cell (MSC)-based products derived from veterinary species such as the dog, cat, and horse. This has led veterinary stakeholders to adopt those guidelines and criteria set forth for human MSC-based products; however, these criteria are not always applicable to MSCs from dogs, cats, and horses (e.g., variability in species-specific cell surface marker expression and antibody cross reactivity). Establishing useful standards and meaningful product quality criteria as well as the understanding of full spectrum of MSC functions and preclinical evidence for safety and therapeutic efficacy for veterinary (companion and recreational animals) MSC-based-products will be critical to furthering product development, and may ultimately facilitate the availability of FDA-approved MSC-based products for use in veterinary medicine.

  6. The Identification and Distribution of Cattle XCR1 and XCL1 among Peripheral Blood Cells: New Insights into the Design of Dendritic Cells Targeted Veterinary Vaccine.

    Directory of Open Access Journals (Sweden)

    Kun Li

    Full Text Available The chemokine (C motif receptor 1 (XCR1 and its ligandXCL1 have been intensively studied in the mouse and human immune systems. Here, we determined the molecular characteristics of cattle XCR1 and XCL1 and their distribution among peripheral blood cells. Cattle XCR1 mRNA expression was mainly restricted to CD26+CADM1+CD205+MHCII+CD11b- cells in blood that were otherwise lineage marker negative (lin-; these represented a subset of classic dendritic cells (DCs, not plasmacytoid DCs. Some of these DCs expressed CD11a, CD44, CD80 and CD86, but they did not express CD4, CD8, CD163 or CD172a. Cattle XCL1 was expressed in quiescent NK cells and in activated CD8+ T cells. Cattle XCR1+ DCs migrated chemotactically in response to mouse, but not to human, XCL1. The distribution characters of cattle XCR1 and XCL1 suggested a vital role in regulation of acquired immune responses and indicated a potential for a DC targeted veterinary vaccine in cattle using XCL1 fused antigens.

  7. New developments and concepts related to biomarker application to vaccines

    Science.gov (United States)

    Ahmed, S. Sohail; Black, Steve; Ulmer, Jeffrey

    2012-01-01

    Summary This minireview will provide a perspective on new developments and concepts related to biomarker applications for vaccines. In the context of preventive vaccines, biomarkers have the potential to predict adverse events in select subjects due to differences in genetic make‐up/underlying medical conditions or to predict effectiveness (good versus poor response). When expanding them to therapeutic vaccines, their utility in identification of patients most likely to respond favourably (or avoid potentially negative effects of treatment) becomes self‐explanatory. Despite the progress made so far on dissection of various pathways of biological significance in humans, there is still plenty to unravel about the mysteries related to the quantitative and qualitative aspects of the human host response. This review will provide a focused overview of new concepts and developments in the field of vaccine biomarkers including (i) vaccine‐dependent signatures predicting subject response and safety, (ii) predicting therapeutic vaccine efficacy in chronic diseases, (iii) exploring the genetic make‐up of the host that may modulate subject‐specific adverse events or affect the quality of immune responses, and (iv) the topic of volunteer stratification as a result of biomarker screening (e.g. for therapeutic vaccines but also potentially for preventive vaccines) or as a reflection of an effort to compare select groups (e.g. vaccinated subjects versus patients recovering from infection) to enable the discovery of clinically relevant biomarkers for preventive vaccines. PMID:21895991

  8. Killed oral cholera vaccines: history, development and implementation challenges.

    Science.gov (United States)

    Lopez, Anna Lena; Gonzales, Maria Liza Antoinette; Aldaba, Josephine G; Nair, G Balakrish

    2014-09-01

    Cholera is still a major global health problem, affecting mainly people living in unsanitary conditions and who are at risk for outbreaks of cholera. During the past decade, outbreaks are increasingly reported from more countries. From the early killed oral cholera vaccine, rapid improvements in vaccine development occurred as a result of a better understanding of the epidemiology of the disease, pathogenesis of cholera infection and immunity. The newer-generation oral killed cholera vaccines have been shown to be safe and effective in field trials conducted in cholera endemic areas. Likewise, they have been shown to be protective when used during outbreak settings. Aside from providing direct protection to vaccinated individuals, recent studies have demonstrated that these killed oral vaccines also confer indirect protection through herd immunity. Although new-generation oral cholera vaccines should not be considered in isolation from other preventive approaches in countries where they are most needed, especially improved water quality and sanitation, these vaccines serve as immediately available public health tools for preventing further morbidity and mortality from cholera. However, despite its availability for more than two decades, use of these vaccines has not been optimized. Although there are limitations of the currently available oral cholera vaccines, recent data show that the vaccines are safe, feasible to use even in difficult circumstances and able to provide protection in various settings. Clear identification of the areas and target population groups who will benefit from the use of the cholera vaccines will be required and strategies to facilitate accessibility and usage of these vaccines in these areas and population groups will need to be developed.

  9. WHO policy development processes for a new vaccine: case study of malaria vaccines.

    Science.gov (United States)

    Milstien, Julie; Cárdenas, Vicky; Cheyne, James; Brooks, Alan

    2010-06-24

    Recommendations from the World Health Organization (WHO) are crucial to inform developing country decisions to use, or not, a new intervention. This article analysed the WHO policy development process to predict its course for a malaria vaccine. The decision-making processes for one malaria intervention and four vaccines were classified through (1) consultations with staff and expert advisors to WHO's Global Malaria Programme (GMP) and Immunization, Vaccines and Biologicals Department (IVB); (2) analysis of the procedures and recommendations of the major policy-making bodies of these groups; (3) interviews with staff of partnerships working toward new vaccine availability; and (4) review and analyses of evidence informing key policy decisions. WHO policy formulation related to use of intermittent preventive treatment in infancy (IPTi) and the following vaccine interventions: Haemophilus influenzae type b conjugate vaccine (Hib), pneumococcal conjugate vaccine (PCV), rotavirus vaccine (RV), and human papillomavirus vaccine (HPV), five interventions which had relatively recently been through systematic WHO policy development processes as currently constituted, was analysed. Required information was categorized in three areas defined by a recent WHO publication on development of guidelines: safety and efficacy in relevant populations, implications for costs and population health, and localization of data to specific epidemiological situations. Data needs for a malaria vaccine include safety; the demonstration of efficacy in a range of epidemiological settings in the context of other malaria prevention interventions; and information on potential rebound in which disease increases subsequent to the intervention. In addition, a malaria vaccine would require attention to additional factors, such as costs and cost-effectiveness, supply and demand, impact of use on other interventions, and distribution issues. Although policy issues may be more complex for future vaccines

  10. WHO policy development processes for a new vaccine: case study of malaria vaccines

    Directory of Open Access Journals (Sweden)

    Cheyne James

    2010-06-01

    Full Text Available Abstract Background Recommendations from the World Health Organization (WHO are crucial to inform developing country decisions to use, or not, a new intervention. This article analysed the WHO policy development process to predict its course for a malaria vaccine. Methods The decision-making processes for one malaria intervention and four vaccines were classified through (1 consultations with staff and expert advisors to WHO's Global Malaria Programme (GMP and Immunization, Vaccines and Biologicals Department (IVB; (2 analysis of the procedures and recommendations of the major policy-making bodies of these groups; (3 interviews with staff of partnerships working toward new vaccine availability; and (4 review and analyses of evidence informing key policy decisions. Case description WHO policy formulation related to use of intermittent preventive treatment in infancy (IPTi and the following vaccine interventions: Haemophilus influenzae type b conjugate vaccine (Hib, pneumococcal conjugate vaccine (PCV, rotavirus vaccine (RV, and human papillomavirus vaccine (HPV, five interventions which had relatively recently been through systematic WHO policy development processes as currently constituted, was analysed. Required information was categorized in three areas defined by a recent WHO publication on development of guidelines: safety and efficacy in relevant populations, implications for costs and population health, and localization of data to specific epidemiological situations. Discussion and evaluation Data needs for a malaria vaccine include safety; the demonstration of efficacy in a range of epidemiological settings in the context of other malaria prevention interventions; and information on potential rebound in which disease increases subsequent to the intervention. In addition, a malaria vaccine would require attention to additional factors, such as costs and cost-effectiveness, supply and demand, impact of use on other interventions, and

  11. Understanding veterinary students' use of and attitudes toward the social networking site, Facebook, to assist in developing curricula to address online professionalism.

    Science.gov (United States)

    Coe, Jason B; Weijs, Cynthia A; Muise, Amy; Christofides, Emily; Desmarais, Serge

    2012-01-01

    Social media is an increasingly common form of communication, with Facebook being the preferred social-networking site among post-secondary students. Numerous studies suggest post-secondary students practice high self-disclosure on Facebook. Research evaluating veterinary students' use of social media found a notable proportion of student-posted content deemed inappropriate. Lack of discretion in posting content can have significant repercussions for aspiring veterinary professionals, their college of study, and the veterinary profession they represent. Veterinarians-in-training at three veterinary colleges across Canada were surveyed to explore their use of and attitude toward the social networking site, Facebook. Students were invited to complete an online survey with questions relating to their knowledge of privacy in relation to using Facebook, their views on the acceptability of posting certain types of information, and their level of professional accountability online. Linear regression modeling was used to further examine factors related to veterinary students' disclosure of personal information on Facebook. Need for popularity (pstudents' personal disclosure of information on Facebook. Understanding veterinary students' use of and attitudes toward social media, such as Facebook, reveals a need, and provides a basis, for developing educational programs to address online professionalism. Educators and administrators at veterinary schools may use this information to assist in developing veterinary curricula that addresses the escalating issue of online professionalism.

  12. GeoCREV: veterinary geographical information system and the development of a practical sub-national spatial data infrastructure

    Directory of Open Access Journals (Sweden)

    Nicola Ferrè

    2011-05-01

    Full Text Available This paper illustrates and discusses the key issues of the geographical information system (GIS developed by the Unit of Veterinary Epidemiology of the Veneto region (CREV, defined according to user needs, spatial data (availability, accessibility and applicability, development, technical aspects, inter-institutional relationships, constraints and policies. GeoCREV, the support system for decision-making, was designed to integrate geographic information and veterinary laboratory data with the main aim to develop a sub-national, spatial data infrastructure (SDI for the veterinary services of the Veneto region in north-eastern Italy. Its implementation required (i collection of data and information; (ii building a geodatabase; and (iii development of a WebGIS application. Tools for the management, collection, validation and dissemination of the results (public access and limited access were developed. The modular concept facilitates the updating and development of the system according to user needs and data availability. The GIS management practices that were followed to develop the system are outlined, followed by a detailed discussion of the key elements of the GIS implementation process (data model, technical aspects, inter-institutional relationship, user dimension and institutional framework. Problems encountered in organising the non-spatial data and the future work directions are also described.

  13. Scaling up development, production of CBPP vaccine for cattle in ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Development of a Subunit Vaccine for Contagious Bovine Pleuropneumonia in Africa (CIFSRF Phase 2). This project will allow researchers from Canada and Kenya to field trial a vaccine for contagious bovine pleuropneumonia. This endemic livestock disease affects the livelihoods of more than 24 million cattle producers ...

  14. Development of new generation influenza vaccines: Recipes for success?

    NARCIS (Netherlands)

    Pronker, E.S.; Claassen, E.; Osterhaus, A.D.M.E.

    2012-01-01

    As infectious diseases cause approximately 25% of the annual global mortality, vaccines are found to be a time proven and promising response to infectious disease need. However, like for pharmaceutical small molecules, vaccine development is lengthy, risky and resource demanding. Faced with an

  15. Successes and failures in human tuberculosis vaccine development.

    Science.gov (United States)

    Zenteno-Cuevas, Roberto

    2017-12-01

    Tuberculosis (TB) is an infectious disease caused mainly by Mycobacterium tuberculosis. In 2016, the WHO estimated 10.5 million new cases and 1.8 million deaths, making this disease the leading cause of death by an infectious agent. The current and projected TB situation necessitates the development of new vaccines with improved attributes compared to the traditional BCG method. Areas covered: In this review, the authors describe the most promising candidate vaccines against TB and discuss additional key elements in vaccine development, such as animal models, new adjuvants and immunization routes and new strategies for the identification of candidate vaccines. Expert opinion: At present, around 13 candidate vaccines for TB are in the clinical phase of evaluation; however, there is still no substitute for the BCG vaccine. One major impediment to developing an effective vaccine is our lack of understanding of several of the mechanisms associated with infection and the immune response against TB. However, the recent implementation of an entirely new set of technological advances will facilitate the proposal of new candidates. Finally, development of a new vaccine will require a major coordination of effort in order to achieve its effective administration to the people most in need of it.

  16. Efforts Towards The Development Of Recombinant Vaccines Against

    African Journals Online (AJOL)

    ABSTRACT. Hemorrhagic septicemia is caused by gram-negative bacterium of Pasteurella multocida (P. multocida) strains. Most of the current vaccines against P. multocida have shortcomings. Presently, there is increasing efforts towards construction of recombinant clone for vaccine development against P. multocida.

  17. Efforts towards the development of recombinant Vaccines against ...

    African Journals Online (AJOL)

    Hemorrhagic septicemia is caused by gram-negative bacterium of Pasteurella multocida (P. multocida) strains. Most of the current vaccines against P. multocida have shortcomings. Presently, there is increasing efforts towards construction of recombinant clone for vaccine development against P. multocida. In this review an ...

  18. Development of Analytical Method and Monitoring of Veterinary Drug Residues in Korean Animal Products.

    Science.gov (United States)

    Song, Jae-Sang; Park, Su-Jeong; Choi, Jung-Yun; Kim, Jin-Sook; Kang, Myung-Hee; Choi, Bo-Kyung; Hur, Sun Jin

    2016-01-01

    This study was conducted to determine the residual amount of veterinary drugs such as meloxicam, flunixin, and tulathromycin in animal products (beef, pork, horsemeat, and milk). Veterinary drugs have been widely used in the rearing of livestock to prevent and treat diseases. A total of 152 samples were purchased from markets located in major Korean cities (Seoul, Busan, Incheon, Daegu, Daejeon, Gwangju, Ulsan and Jeju), including Jeju. Veterinary drugs were analyzed by liquid chromatography-tandem mass spectrometry according to the Korean Food Standards Code. The resulting data, which are located within 70-120% of recovery range and less than 20% of relative standard deviations, are in compliance with the criteria of CODEX. A total of five veterinary drugs were detected in 152 samples, giving a detection rate of approximately 3.3%; and no food source violated the guideline values. Our result indicated that most of the veterinary drug residues in animal products were below the maximum residue limits specified in Korea.

  19. Development of Analytical Method and Monitoring of Veterinary Drug Residues in Korean Animal Products

    Science.gov (United States)

    Song, Jae-Sang; Park, Su-Jeong; Choi, Jung-Yun; Kim, Jin-Sook; Kang, Myung-Hee; Choi, Bo-Kyung

    2016-01-01

    This study was conducted to determine the residual amount of veterinary drugs such as meloxicam, flunixin, and tulathromycin in animal products (beef, pork, horsemeat, and milk). Veterinary drugs have been widely used in the rearing of livestock to prevent and treat diseases. A total of 152 samples were purchased from markets located in major Korean cities (Seoul, Busan, Incheon, Daegu, Daejeon, Gwangju, Ulsan and Jeju), including Jeju. Veterinary drugs were analyzed by liquid chromatography-tandem mass spectrometry according to the Korean Food Standards Code. The resulting data, which are located within 70-120% of recovery range and less than 20% of relative standard deviations, are in compliance with the criteria of CODEX. A total of five veterinary drugs were detected in 152 samples, giving a detection rate of approximately 3.3%; and no food source violated the guideline values. Our result indicated that most of the veterinary drug residues in animal products were below the maximum residue limits specified in Korea. PMID:27433102

  20. The path of malaria vaccine development: challenges and perspectives.

    Science.gov (United States)

    Arama, C; Troye-Blomberg, M

    2014-05-01

    Malaria is a life-threatening disease caused by parasites of the Plasmodium genus. In many parts of the world, the parasites have developed resistance to a number of antimalarial agents. Key interventions to control malaria include prompt and effective treatment with artemisinin-based combination therapies, use of insecticidal nets by individuals at risk and active research into malaria vaccines. Protection against malaria through vaccination was demonstrated more than 30 years ago when individuals were vaccinated via repeated bites by Plasmodium falciparum-infected and irradiated but still metabolically active mosquitoes. However, vaccination with high doses of irradiated sporozoites injected into humans has long been considered impractical. Yet, following recent success using whole-organism vaccines, the approach has received renewed interest; it was recently reported that repeated injections of irradiated sporozoites increased protection in 80 vaccinated individuals. Other approaches include subunit malaria vaccines, such as the current leading candidate RTS,S (consisting of fusion between a portion of the P. falciparum-derived circumsporozoite protein and the hepatitis B surface antigen), which has been demonstrated to induce reasonably good protection. Although results have been encouraging, the level of protection is generally considered to be too low to achieve eradication of malaria. There is great interest in developing new and better formulations and stable delivery systems to improve immunogenicity. In this review, we will discuss recent strategies to develop efficient malaria vaccines. © 2014 The Association for the Publication of the Journal of Internal Medicine.

  1. Edible vaccine: a new platform for the development of malaria vaccine.

    Science.gov (United States)

    Kumar, Choudhary Sudheer; Deepesh, Gupta; Mahavir, Yadav; Archana, Tiwari

    2012-01-01

    The plasmodium vivax is the most prevalent malaria parasite. The world essentially needs a malaria vaccine to alleviate the human suffering associated with the parasitic disease that kills more than one million people annually. The use of plants for the expression of the proteins of disease-causing vehicle in transgenic plants has been increasingly used in the development of experimental vaccines, largely oriented to the improvement of edible vaccines. Currently, through modern biotechnology, there has been a revival in obtaining a new edible vaccine against the malaria parasite from plant sources. Through genetic alteration, it is now recognized that plants are potentially a new source of recombinant proteins including vaccines, antibodies, blood substitutes, and other therapeutic entities. Plant-derived antibodies and other proteins are mostly valuable since they are free of mammalian viral vectors and human pathogens. Although significant progress has been achieved in the research for edible vaccine in Plasmodium falciparum, limited progress has been made in the Plasmodium vivax component that might be eligible for edible vaccine development. We describe the overall strategy recommended by plants, which include high biomass production and low cost of cultivation, relatively fast "gene to protein" time, low capital and operating costs, outstanding scalability, eukaryotic posttranslational modifications, and a relatively high protein yield.

  2. Large animal models for vaccine development and testing.

    Science.gov (United States)

    Gerdts, Volker; Wilson, Heather L; Meurens, Francois; van Drunen Littel-van den Hurk, Sylvia; Wilson, Don; Walker, Stewart; Wheler, Colette; Townsend, Hugh; Potter, Andrew A

    2015-01-01

    The development of human vaccines continues to rely on the use of animals for research. Regulatory authorities require novel vaccine candidates to undergo preclinical assessment in animal models before being permitted to enter the clinical phase in human subjects. Substantial progress has been made in recent years in reducing and replacing the number of animals used for preclinical vaccine research through the use of bioinformatics and computational biology to design new vaccine candidates. However, the ultimate goal of a new vaccine is to instruct the immune system to elicit an effective immune response against the pathogen of interest, and no alternatives to live animal use currently exist for evaluation of this response. Studies identifying the mechanisms of immune protection; determining the optimal route and formulation of vaccines; establishing the duration and onset of immunity, as well as the safety and efficacy of new vaccines, must be performed in a living system. Importantly, no single animal model provides all the information required for advancing a new vaccine through the preclinical stage, and research over the last two decades has highlighted that large animals more accurately predict vaccine outcome in humans than do other models. Here we review the advantages and disadvantages of large animal models for human vaccine development and demonstrate that much of the success in bringing a new vaccine to market depends on choosing the most appropriate animal model for preclinical testing. © The Author 2015. Published by Oxford University Press on behalf of the Institute for Laboratory Animal Research. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  3. Zika Virus: Immunity and Vaccine Development

    National Research Council Canada - National Science Library

    Pierson, Theodore C; Graham, Barney S

    2016-01-01

    The emergence of Zika virus in the Americas and Caribbean created an urgent need for vaccines to reduce transmission and prevent disease, particularly the devastating neurodevelopmental defects that occur in utero...

  4. Development of DNA vaccines for fish

    DEFF Research Database (Denmark)

    Heppell, Joël; Lorenzen, Niels; Armstrong, Neil K.

    1998-01-01

    Disease control is one of the major concerns in the aquaculture industry. However, there are no vaccines available for the prevention of many piscine infectious diseases, especially those of viral and parasitic origin. DNA-based vaccination could circumvent several problems associated...... no permanent tissue damage. To further investigate the ability of DNA-based vaccines to induce protective immunity in fish, viral haemorrhagic septicaemia virus G and N genes were cloned individually into an expression plasmid. Both G and N proteins produced in transfected fish cells appeared identical...... protein, killing the transfected host cells and ablating further expression of G protein and luciferase. Finally, young rainbow trout injected with the G construct, alone or together with the N construct, were strongly protected against challenge with live virus. These results suggest that DNA vaccines...

  5. Methods and processes of developing the Strengthening the Reporting of Observational Studies in Epidemiology - Veterinary (STROBE-Vet) statement

    DEFF Research Database (Denmark)

    Sargeant, J. M.; O'Connor, A. M.; Dohoo, I. R.

    2016-01-01

    ) statement that addresses unique reporting requirements for observational studies inveterinary medicine related to health, production, welfare, and food safety.Design: A consensus meeting of experts was organized to develop an extension of the STROBE statementto address observational studies in veterinary......Background: The reporting of observational studies in veterinary research presents many challenges thatoften are not adequately addressed in published reporting guidelines.Objective: To develop an extension of the STROBE (Strengthening the Reporting of Observational Studiesin Epidemiology...... medicine with respect to animal health, animal production,animal welfare, and food safety outcomes.Setting: Consensus meeting May 11–13, 2014 in Mississauga, Ontario, Canada.Participants: Seventeen experts from North America, Europe, and Australia attended the meeting. Theexperts were epidemiologists...

  6. Preclinical and clinical development of DNA vaccines for prostate cancer.

    Science.gov (United States)

    Colluru, V T; Johnson, Laura E; Olson, Brian M; McNeel, Douglas G

    2016-04-01

    Prostate cancer is the most commonly diagnosed cancer in the United States. It is also the second leading cause of cancer-related death in men, making it one of the largest public health concerns today. Prostate cancer is an ideal disease for immunotherapies because of the generally slow progression, the dispensability of the target organ in the patient population, and the availability of several tissue-specific antigens. As such, several therapeutic vaccines have entered clinical trials, with one autologous cellular vaccine (sipuleucel-T) recently gaining Food and Drug Administration approval after demonstrating overall survival benefit in randomized phase III clinical trials. DNA-based vaccines are safe, economical, alternative "off-the-shelf" approaches that have undergone extensive evaluation in preclinical models. In fact, the first vaccine approved in the United States for the treatment of cancer was a DNA vaccine for canine melanoma. Several prostate cancer-specific DNA vaccines have been developed in the last decade and have shown promising results in early phase clinical trials. This review summarizes anticancer human DNA vaccine trials, with a focus on those conducted for prostate cancer. We conclude with an outline of special considerations important for the development and successful translation of DNA vaccines from the laboratory to the clinic. © 2013 Published by Elsevier Inc.

  7. Status of vaccine research and development of vaccines for herpes simplex virus.

    Science.gov (United States)

    Johnston, Christine; Gottlieb, Sami L; Wald, Anna

    2016-06-03

    Herpes simplex virus type-1 (HSV-1) and -2 (HSV-2) are highly prevalent global pathogens which commonly cause recurrent oral and genital ulcerations. Less common but more serious complications include meningitis, encephalitis, neonatal infection, and keratitis. HSV-2 infection is a significant driver of the HIV epidemic, increasing the risk of HIV acquisition 3 fold. As current control strategies for genital HSV-2 infection, including antiviral therapy and condom use, are only partially effective, vaccines will be required to reduce infection. Both preventive and therapeutic vaccines for HSV-2 are being pursued and are in various stages of development. We will provide an overview of efforts to develop HSV-2 vaccines, including a discussion of the clinical need for an HSV vaccine, and status of research and development with an emphasis on recent insights from trials of vaccine candidates in clinical testing. In addition, we will touch upon aspects of HSV vaccine development relevant to low and middle income countries. Copyright © 2016 World Health Organization. Published by Elsevier Ltd.. All rights reserved.

  8. Status of vaccine research and development for Shigella.

    Science.gov (United States)

    Mani, Sachin; Wierzba, Thomas; Walker, Richard I

    2016-06-03

    Shigella are gram-negative bacteria that cause severe diarrhea and dysentery. In 2013, Shigella infections caused an estimated 34,400 deaths in children less than five years old and, in 2010, an estimated 40,000 deaths in persons older than five years globally. New disease burden estimates from newly deployed molecular diagnostic assays with increased sensitivity suggest that Shigella-associated morbidity may be much greater than previous disease estimates from culture-based methods. Primary prevention of this disease should be based on universal provision of potable water and sanitation methods and improved personal and food hygiene. However, an efficacious and low-cost vaccine would complement and accelerate disease reduction while waiting for universal access to water, sanitation, and hygiene improvements. This review article provides a landscape of Shigella vaccine development efforts. No vaccine is yet available, but human and animal challenge-rechallenge trials with virulent Shigella as well as observational studies in Shigella-endemic areas have shown that the incidence of disease decreases following Shigella infection, pointing to biological feasibility of a vaccine. Immunity to Shigella appears to be strain-specific, so a vaccine that covers the most commonly detected strains (i.e., S. flexneri 2a, 3a, 6, and S. sonnei) or a vaccine using cross-species conserved antigens would likely be most effective. Vaccine development and testing may be accelerated by use of animal models, such as the guinea pig keratoconjunctivitis or murine pneumonia models. Because there is no correlate of protection, however, human studies will be necessary to evaluate vaccine efficacy prior to deployment. A diversity of Shigella vaccine constructs are under development, including live attenuated, formalin-killed whole-cell, glycoconjugate, subunit, and novel antigen vaccines (e.g., Type III secretion system and outer membrane proteins). Copyright © 2016 World Health Organization

  9. Use of nonhuman primate models to develop mucosal AIDS vaccines.

    Science.gov (United States)

    Genescà, Meritxell; Miller, Christopher J

    2010-02-01

    The HIV vaccines tested in the halted Step efficacy trial and the modestly successful phase 3 RV144 trial were designed to elicit strong systemic immune responses; therefore, strategies to direct immune responses into mucosal sites should be tested in an effort to improve AIDS vaccine efficacy. However, as increased CD4(+) T-cell activation and recruitment to mucosal sites have the potential to enhance HIV transmission, mucosal immune responses to HIV vaccines should primarily consist of effector CD8(+) T cells and plasma cells. Controlling the level of mucosal T-cell activation may be a critical factor in developing an effective mucosal AIDS vaccine. Immunization routes and adjuvants that can boost antiviral immunity in mucosal surfaces offer a reasonable opportunity to improve AIDS vaccine efficacy. Nonhuman primate models offer the best system for preclinical evaluation of these approaches.

  10. Vaccine procurement and self-sufficiency in developing countries.

    Science.gov (United States)

    Woodle, D

    2000-06-01

    This paper discusses the movement toward self-sufficiency in vaccine supply in developing countries (and countries in transition to new economic and political systems) and explains special supply concerns about vaccine as a product class. It traces some history of donor support and programmes aimed at self-financing, then continues with a discussion about self-sufficiency in terms of institutional capacity building. A number of deficiencies commonly found in vaccine procurement and supply in low- and middle-income countries are characterized, and institutional strengthening with procurement technical assistance is described. The paper also provides information about a vaccine procurement manual being developed by the United States Agency for International Development (USAID) and the World Health Organization (WHO) for use in this environment. Two brief case studies are included to illustrate the spectrum of existing capabilities and different approaches to technical assistance aimed at developing or improving vaccine procurement capability. In conclusion, the paper discusses the special nature of vaccine and issues surrounding potential integration and decentralization of vaccine supply systems as part of health sector reform.

  11. Challenges in the research and development of new human vaccines

    Directory of Open Access Journals (Sweden)

    T. Barbosa

    2013-02-01

    Full Text Available The field of vaccinology was born from the observations by the fathers of vaccination, Edward Jenner and Louis Pasteur, that a permanent, positive change in the way our bodies respond to life-threatening infectious diseases can be obtained by specific challenge with the inactivated infectious agent performed in a controlled manner, avoiding the development of clinical disease upon exposure to the virulent pathogen. Many of the vaccines still in use today were developed on an empirical basis, essentially following the paradigm established by Pasteur, “isolate, inactivate, and inject” the disease-causing microorganism, and are capable of eliciting uniform, long-term immune memory responses that constitute the key to their proven efficacy. However, vaccines for pathogens considered as priority targets of public health concern are still lacking. The literature tends to focus more often on vaccine research problems associated with specific pathogens, but it is increasingly clear that there are common bottlenecks in vaccine research, which need to be solved in order to advance the development of the field as a whole. As part of a group of articles, the objective of the present report is to pinpoint these bottlenecks, exploring the literature for common problems and solutions in vaccine research applied to different situations. Our goal is to stimulate brainstorming among specialists of different fields related to vaccine research and development. Here, we briefly summarize the topics we intend to deal with in this discussion.

  12. Advances in the development of vaccines for dengue fever

    Directory of Open Access Journals (Sweden)

    Simmons M

    2012-05-01

    Full Text Available Monika Simmons1, Nimfa Teneza-Mora1, Robert Putnak21Viral and Rickettsial Diseases Department, Naval Medical Research Center, 2Division of Viral Diseases, Walter Reed Army Institute of Research, Silver Spring, MD, USAAbstract: Dengue fever is caused by the mosquito-borne dengue virus (DENV serotypes 1–4, and is the most common arboviral infection of humans in subtropical and tropical regions of the world. There are currently no prophylaxis or treatment options in the form of vaccines or antivirals, leaving vector control the only method of prevention. A particular challenge with DENV is that a successful vaccine has to be effective against all four serotypes without predisposing for antibody-mediated enhanced disease. In this review, we discuss the current lead vaccine candidates in clinical trials, as well as some second-generation vaccine candidates undergoing preclinical evaluation. In addition, we discuss DENV epidemiology, clinical disease and strategies used for Flavivirus antivirals in the past, the development of new DENV therapeutics, and their potential usefulness for prophylaxis and treatment.Keywords: tetravalent dengue vaccine, live attenuated vaccine, purified inactivated vaccine, DNA vaccine, antibody-dependent enhancement, antivirals

  13. The impact of globalization on vaccine development and availability.

    Science.gov (United States)

    Milstien, Julie B; Kaddar, Miloud; Kieny, Marie Paule

    2006-01-01

    Globalization is likely to affect many aspects of public health, one of which is vaccine-preventable communicable diseases. Important forces include increased funding initiatives supporting immunization at the global level; regulatory harmonization; widespread intellectual property rights provisions through the World Trade Organization agreements; the emergence of developing-country manufacturers as major players in vaccine supply; and the appearance of new communicable disease threats, including those potentially linked to bioterrorism. All of these forces can affect, either positively and negatively, the development and availability of vaccines. Harnessing these will be a challenge for policymakers and immunization stakeholders.

  14. Sokoto Journal of Veterinary Sciences

    African Journals Online (AJOL)

    um chafe

    2. 1Faculty of Veterinary Medicine, Ahmadu Bello Unviersity, Zaria, Nigeria. 2College of Agriculture and Animal Science, Ahmadu Bello University, Mando, Kaduna, Nigeria. Correspondence Author: Abstract. Village chickens in Kaduna State, Nigeria were vaccinated once with a Malaysian heat-resistant Newcastle disease ...

  15. Methods and Processes of Developing the Strengthening the Reporting of Observational Studies in Epidemiology - Veterinary (STROBE-Vet) Statement

    DEFF Research Database (Denmark)

    Sargeant, J. M.; O'Connor, A. M.; Dohoo, I. R.

    2016-01-01

    The reporting of observational studies in veterinary research presents many challenges that often are not adequately addressed in published reporting guidelines. A consensus meeting of experts was organized to develop an extension of the STROBE statement to address observational studies...... and biostatisticians, many of whom hold or have held editorial positions with relevant journals. Prior to the meeting, 19 experts completed a survey about whether they felt any of the 22 items of the STROBE statement should be modified and whether items should be added to address unique issues related to observational...... studies in animal species with health, production, welfare or food safety outcomes. At the meeting, the participants were provided with the survey responses and relevant literature concerning the reporting of veterinary observational studies. During the meeting, each STROBE item was discussed to determine...

  16. Methods and Processes of Developing the Strengthening the Reporting of Observational Studies in Epidemiology—Veterinary (STROBE-Vet) Statement

    DEFF Research Database (Denmark)

    Sargeant, J. M.; O'Connor, A. M.; Dohoo, I. R.

    2016-01-01

    Reporting of observational studies in veterinary research presents challenges that often are not addressed in published reporting guidelines. Our objective was to develop an extension of the STROBE (Strengthening the Reporting of Observational Studies in Epidemiology) statement that addresses...... unique reporting requirements for observational studies in veterinary medicine related to health, production, welfare, and food safety. We conducted a consensus meeting with 17 experts in Mississauga, Canada. Experts completed a premeeting survey about whether items in the STROBE statement should...... be modified or added to address unique issues related to observational studies in animal species with health, production, welfare, or food safety outcomes. During the meeting, each STROBE item was discussed to determine whether or not rewording was recommended, and whether additions were warranted. Anonymous...

  17. Possibilities and challenges for developing a successful vaccine for leishmaniasis.

    Science.gov (United States)

    Srivastava, Saumya; Shankar, Prem; Mishra, Jyotsna; Singh, Sarman

    2016-05-12

    Leishmaniasis is a vector-borne disease caused by different species of protozoan parasites of the genus Leishmania. It is a major health problem yet neglected tropical diseases, with approximately 350 million people worldwide at risk and more than 1.5 million infections occurring each year. Leishmaniasis has different clinical manifestations, including visceral (VL or kala-azar), cutaneous (CL), mucocutaneous (MCL), diffuse cutaneous (DCL) and post kala-azar dermal leishmaniasis (PKDL). Currently, the only mean to treat and control leishmaniasis is by rational medications and vector control. However, the number of available drugs is limited and even these are either exorbitantly priced, have toxic side effects or prove ineffective due to the emergence of resistant strains. On the other hand, the vector control methods are not so efficient. Therefore, there is an urgent need for developing a safe, effective, and affordable vaccine for the prevention of leishmaniasis. Although in recent years a large body of researchers has concentrated their efforts on this issue, yet only three vaccine candidates have gone for clinical trial, until date. These are: (i) killed vaccine in Brazil for human immunotherapy; (ii) live attenuated vaccine for humans in Uzbekistan; and (iii) second-generation vaccine for dog prophylaxis in Brazil. Nevertheless, there are at least half a dozen vaccine candidates in the pipeline. One can expect that, in the near future, the understanding of the whole genome of Leishmania spp. will expand the vaccine discovery and strategies that may provide novel vaccines. The present review focuses on the development and the status of various vaccines and potential vaccine candidates against leishmaniasis.

  18. Cost of Initial Development of PLATO Instruction in Veterinary Medicine. CERL Report X-43.

    Science.gov (United States)

    Grimes, George M.

    An academic program instituting the PLATO system of computer-assisted instruction at the University of Illinois College of Veterinary Medicine is discussed. Procedures involved setting up an organization, establishing an administrative system, studying capabilities of the system, studying factors making a lesson suitable for programming, and…

  19. A Method of Developing and Introducing Case-Based Learning to a Preclinical Veterinary Curriculum

    Science.gov (United States)

    Crowther, Emma; Baillie, Sarah

    2016-01-01

    Case-based learning (CBL) has been introduced as part of a major review of the veterinary curriculum at the University of Bristol. The initial aim was to improve integration between all first year subjects, i.e., basic science disciplines (anatomy, physiology, and biochemistry), animal management, and professional studies, while highlighting the…

  20. Options for improving effectiveness of rotavirus vaccines in developing countries

    Science.gov (United States)

    Cowley, Daniel; Bogdanovic-Sakran, Nada; Hutton, Melanie L.; Lyras, Dena; Kirkwood, Carl D.; Buttery, Jim P.

    2017-01-01

    ABSTRACT Rotavirus gastroenteritis is a leading global cause of mortality and morbidity in young children due to diarrhea and dehydration. Over 85% of deaths occur in developing countries. In industrialised countries, 2 live oral rotavirus vaccines licensed in 2006 quickly demonstrated high effectiveness, dramatically reducing severe rotavirus gastroenteritis admissions in many settings by more than 90%. In contrast, the same vaccines reduced severe rotavirus gastroenteritis by only 30–60% in developing countries, but have been proven life-saving. Bridging this “efficacy gap” offers the possibility to save many more lives of children under the age of 5. The reduced efficacy of rotavirus vaccines in developing settings may be related to differences in transmission dynamics, as well as host luminal, mucosal and immune factors. This review will examine strategies currently under study to target the issue of reduced efficacy and effectiveness of oral rotavirus vaccines in developing settings. PMID:27835052

  1. Nanotechnology Laboratory Collaborates with Army to Develop Botulism Vaccine | FNLCR

    Science.gov (United States)

    The Nanotechnology Characterization Laboratory (NCL) is collaborating with the Army to develop a candidate vaccine against botulism. Under a collaboration agreement between the National Cancer Institute and the U.S. Army Medical Research Institute of

  2. Dengue, zika, chikungunya and the development of vaccines

    Directory of Open Access Journals (Sweden)

    Isabel N. Kantor

    2018-01-01

    Full Text Available Dengue (DENV, zika (ZIKV and chikungunya (CHIKV, three arbovirosis transmitted by Aedes mosquitoes, have spread in recent decades in humid tropical and subtropical zones. Dengue is epidemic in subtropical areas of Argentina. DENV infection confers lasting immunity against the infecting serotype but increases the risk of serious disease upon reinfection by any of the other three. The recombinant tetravalent vaccine Dengvaxia® prevents severe dengue and hospitalization in seropositive subjects. In 2017, Dengvaxia was approved in Argentina, for ages 9 to 45, but is not included in the national vaccination calendar. Two other vaccines are in Phase III evaluation: one developed by NIAID / Instituto Butantan and the other by Takeda. ZIKV, a virus associated with microcephaly in newborns in Brazil, circulates since 2016 in Argentina. There is still not effective treatment nor vaccine with proven activity against ZIKV. There has been no active circulation of CHIKV in Argentina in 2017. Outbreaks of CHIKV fever have a complication: the development of chronic post-disease rheumatism. There are not approved vaccines for humans nor effective antiviral therapies. The seriousness of these virosis has contributed to a rapid progress in the knowledge of the infection processes and the immune response. For now, Aedes aegypti and A. albopictus vectors continue to expand, suggesting that the vaccine will be the most effective means of controlling these viruses. Here we summarize information about these arbovirosis in Argentina and Brazil and describe advances in the development and evaluation of vaccines.

  3. Live attenuated hepatitis A vaccines developed in China.

    Science.gov (United States)

    Xu, Zhi-Yi; Wang, Xuan-Yi

    2014-01-01

    Two live, attenuated hepatitis A vaccines, H 2 and LA-1 virus strains, were developed through serial passages of the viruses in cell cultures at 32 °C and 35 °C respectively. Both vaccines were safe and immunogenic, providing protection against clinical hepatitis A in 95% of the vaccinees, with a single dose by subcutaneous injection. The vaccine recipients were not protected from asymptomatic, subclinical hepatitis A virus (HAV) infection, which induced a similar antibody response as for unvaccinated subjects. A second dose caused anamnestic response and can be used for boosting. Oral immunization of human with H 2 vaccine or of marmoset with LA-1 vaccine failed, and no evidence was found for person-to-person transmission of the H 2 strain or for marmoset-to-marmoset transmission of LA-1 strain, by close contact. H 2 strain was genetically stable when passaged in marmosets, humans or cell cultures at 37 °C; 3 consecutive passages of the virus in marmosets did not cause virulence mutation. The live vaccines offer the benefits of low cost, single dose injection, long- term protection, and increased duration of immunity through subclinical infection. Improved sanitation and administration of 150 million doses of the live vaccines to children had led to a 90% reduction in the annual national incidence rate of hepatitis A in China during the 16-year period, from 1991 to 2006. Hepatitis A immunization with both live and inactivated HA vaccines was implemented in the national routine childhood immunization program in 2008 and around 92% of the 16 million annual births received the affordable live, attenuated vaccines at 18 months of age. Near elimination of the disease was achieved in China for 14 years following introduction of the H 2 live vaccine into the Expanded Immunization Program (EPI) in 1992.

  4. Live attenuated hepatitis A vaccines developed in China

    Science.gov (United States)

    Xu, Zhi-Yi; Wang, Xuan-Yi

    2014-01-01

    Two live, attenuated hepatitis A vaccines, H2 and LA-1 virus strains, were developed through serial passages of the viruses in cell cultures at 32 °C and 35 °C respectively. Both vaccines were safe and immunogenic, providing protection against clinical hepatitis A in 95% of the vaccinees, with a single dose by subcutaneous injection. The vaccine recipients were not protected from asymptomatic, subclinical hepatitis A virus (HAV) infection, which induced a similar antibody response as for unvaccinated subjects. A second dose caused anamnestic response and can be used for boosting. Oral immunization of human with H2 vaccine or of marmoset with LA-1 vaccine failed, and no evidence was found for person-to-person transmission of H2 strain or for marmoset-to-marmoset transmission of LA-1 strain by close contact. H2 strain was genetically stable when passaged in marmosets, humans or cell cultures at 37 °C; 3 consecutive passages of the virus in marmosets did not cause virulence mutation. The live vaccines offer the benefits of low cost, single dose injection, long- term protection, and increased duration of immunity through subclinical infection. Improved sanitation and administration of 150 million doses of the live vaccines to children had led to a 90% reduction in the annual national incidence rate of hepatitis A in China during the 16-year period, from 1991 to 2006. Hepatitis A (HA) immunization with both live and inactivated HA vaccines was implemented in the national routine childhood immunization program in 2008 and around 92% of the 16 million annual births received the affordable live, attenuated vaccines at 18 months of age. Near elimination of the disease was achieved in a county of China for 14 years following introduction of the H2 live vaccine into the Expanded Immunization Program (EPI) in 1992. PMID:24280971

  5. Competency-based veterinary education - An integrative approach to learning and assessment in the clinical workplace

    NARCIS (Netherlands)

    Bok, G.J.

    2014-01-01

    When graduating from veterinary school, veterinary professionals must be ready to enter the complex veterinary profession. Therefore, one of the major responsibilities of any veterinary school is to develop training programmes that support students’ competency development on the trajectory from

  6. Status of research and development of vaccines for Streptococcus pyogenes.

    Science.gov (United States)

    Steer, Andrew C; Carapetis, Jonathan R; Dale, James B; Fraser, John D; Good, Michael F; Guilherme, Luiza; Moreland, Nicole J; Mulholland, E Kim; Schodel, Florian; Smeesters, Pierre R

    2016-06-03

    Streptococcus pyogenes is an important global pathogen, causing considerable morbidity and mortality, especially in low and middle income countries where rheumatic heart disease and invasive infections are common. There is a number of promising vaccine candidates, most notably those based on the M protein, the key virulence factor for the bacterium. Vaccines against Streptococcus pyogenes are considered as impeded vaccines because of a number of crucial barriers to development. Considerable effort is needed by key players to bring current vaccine candidates through phase III clinical trials and there is a clear need to develop a roadmap for future development of current and new candidates. Copyright © 2016 World Health Organization. Published by Elsevier Ltd.. All rights reserved.

  7. Development and application of avian influenza vaccines in China.

    Science.gov (United States)

    Chen, Hualan; Bu, Zhigao

    2009-01-01

    Following the first detection of the highly pathogenic H5N1 avian influenza virus in sick geese in Guangdong Province in China in 1996, scientists began to develop vaccines in preparation for an avian influenza pandemic. An inactivated H5N2 vaccine was produced from a low pathogenic virus, A/turkey/England/N-28/73, and was used for buffer zone vaccination during H5N1 outbreaks in 2004 in China. We also generated a low pathogenic H5N1 reassortant virus (Re-1) that derives its HA and NA genes from the GS/GD/96 virus and six internal genes from the high-growth A/Puerto Rico/8/34 (PR8) virus using plasmid-based reverse genetics. The inactivated vaccine derived from the Re-1 strain could induce more than ten months of protective immunity in chickens after one-dose inoculation; most importantly, this vaccine is immunogenic for geese and ducks. We recently developed a Newcastle virus-vectored live vaccine that exhibits great promise for use in the field to prevent highly pathogenic avian influenza and Newcastle disease in chickens. Over 30 billion doses of these vaccines have been used in China and other countries, including Vietnam, Mongolia, and Egypt, and have played an important role in H5N1 avian influenza control in these countries.

  8. Ensuring the optimal safety of licensed vaccines: a perspective of the vaccine research, development, and manufacturing companies.

    Science.gov (United States)

    Kanesa-thasan, Niranjan; Shaw, Alan; Stoddard, Jeffrey J; Vernon, Thomas M

    2011-05-01

    Vaccine safety is increasingly a focus for the general public, health care providers, and vaccine manufacturers, because the efficacy of licensed vaccines is accepted as a given. Commitment to ensuring safety of all vaccines, including childhood vaccines, is addressed by the federal government, academia, and industry. Safety activities conducted by the vaccine research, development, and manufacturing companies occur at all stages of product development, from selection and formulation of candidate vaccines through postlicensure studies and surveillance of adverse-event reports. The contributions of multiple interacting functional groups are required to execute these tasks through the life cycle of a product. We describe here the safeguards used by vaccine manufacturers, including specific examples drawn from recent experience, and highlight some of the current challenges. Vaccine-risk communication becomes a critical area for partnership of vaccine companies with government, professional associations, and nonprofit advocacy groups to provide information on both benefits and risks of vaccines. The crucial role of the vaccine companies in ensuring the optimal vaccine-safety profile, often overlooked, will continue to grow with this dynamic arena.

  9. The moral case for the routine vaccination of children in developed and developing countries.

    Science.gov (United States)

    Dawson, Angus

    2011-06-01

    In developed countries some parents have decided not to provide routine vaccinations for their children, while in many developing countries there are inadequate rates of vaccination for various reasons. The consequences for children, and members of the community in which they live, can be significant and even tragic. Although some parents may worry that vaccines will harm their child, there is a broader moral case for vaccination that parents and policy makers should consider. This case has four components: benefits and harms, best interests, community benefits, and justice. This moral case should be central to deliberations about vaccination by parents and policy makers.

  10. IgE reactivity to vaccine components in dogs that developed immediate-type allergic reactions after vaccination.

    Science.gov (United States)

    Ohmori, Keitaro; Masuda, Kenichi; Maeda, Sadatoshi; Kaburagi, Yukiko; Kurata, Keigo; Ohno, Koichi; Deboer, Douglas J; Tsujimoto, Hajime; Sakaguchi, Masahiro

    2005-04-08

    Allergic reactions after vaccination are considered as an important practical problem in dogs; however, their immunological mechanism has not been well understood. The present study was designed to investigate the relationship between IgE reactivity to the vaccines and immediate-type allergic reactions after vaccination in dogs. Sera from 10 dogs that developed immediate-type allergic reactions such as circulatory collapse, cyanosis, dyspnea, facial edema, and vomiting within 1h after vaccination with non-rabies monovalent or combined vaccines and sera from 50 dogs that did not develop allergic reactions after vaccination were collected. Serum IgE reactivity to the injected vaccines was measured by fluorometric ELISA using a mouse monoclonal anti-dog IgE antibody. Then, IgE reactivity to fetal calf serum (FCS) and stabilizer proteins (gelatin, casein, and peptone) included in the vaccines was measured in sera that had high levels of IgE to the vaccines. Levels of serum specific IgE to the vaccines in dogs with immediate-type allergic reactions (59-4173 fluorescence units [FU], mean +/- S.D.: 992.5 +/- 1181.9 FU) were significantly higher than those in control dogs (38-192 FU, 92.4 +/- 43.3 FU) (P reactions and had high levels of serum specific IgE to the vaccines, seven had specific IgE directed to FCS. The IgE reactivity to the vaccines in sera from these dogs was almost completely inhibited by FCS. The other one dog had serum IgE directed to gelatin and casein included in the vaccine as stabilizers. The results obtained in this study suggest that immediate-type allergic reactions after vaccination in dogs were induced by type I hypersensitivity mediated by IgE directed to vaccine components. In addition, FCS, gelatin, and casein included in vaccines could be the causative allergens that induced immediate-type allergic reactions after vaccination in dogs.

  11. Radiation protection for veterinary practices

    Energy Technology Data Exchange (ETDEWEB)

    Wheelton, R.; McCaffery, A. (National Radiological Protection Board, Glasgow (United Kingdom). Scottish Centre)

    1993-01-01

    This brief article discusses radiation protection for diagnostic radiography in veterinary practices. It includes aspects such as a radiation protection adviser, personal dosimetry but in particular a Veterinary Monitoring Service, developed by the NRPB, which offers veterinary practitioners the convenience of making simple but essential measurements for themselves using photographic films contained in a 'vet pack' to determine the operating condition of their X-ray machine. (U.K.).

  12. Risk in Vaccine Research and Development Quantified

    NARCIS (Netherlands)

    E.S. Pronker (Esther); T.C. Weenen (Tamar); H.R. Commandeur (Harry); H.J.H.M. Claassen (Eric); A.D.M.E. Osterhaus (Albert)

    2013-01-01

    textabstractTo date, vaccination is the most cost-effective strategy to combat infectious diseases. Recently, a productivity gap affects the pharmaceutical industry. The productivity gap describes the situation whereby the invested resources within an industry do not match the expected product

  13. Risk in vaccine research and development quantified

    NARCIS (Netherlands)

    Pronker, E.S.; Commandeur, H.R.; Weenen, van H.; Claassen, H.J.H.M.; Osterhaus, A.D.

    2013-01-01

    To date, vaccination is the most cost-effective strategy to combat infectious diseases. Recently, a productivity gap affects the pharmaceutical industry. The productivity gap describes the situation whereby the invested resources within an industry do not match the expected product turn-over. While

  14. Clinical development of placental malaria vaccines and immunoassays harmonization

    DEFF Research Database (Denmark)

    Chêne, Arnaud; Houard, Sophie; Nielsen, Morten A

    2016-01-01

    Placental malaria caused by Plasmodium falciparum infection constitutes a major health problem manifesting as severe disease and anaemia in the mother, impaired fetal development, low birth weight or spontaneous abortion. Prevention of placental malaria currently relies on two key strategies...... that are losing efficacy due to spread of resistance: long-lasting insecticide-treated nets and intermittent preventive treatment during pregnancy. A placental malaria vaccine would be an attractive, cost-effective complement to the existing control tools. Two placental malaria vaccine candidates are currently...... in Phase Ia/b clinical trials. During two workshops hosted by the European Vaccine Initiative, one in Paris in April 2014 and the other in Brussels in November 2014, the main actors in placental malaria vaccine research discussed the harmonization of clinical development plans and of the immunoassays...

  15. Access to vaccine technologies in developing countries: Brazil and India.

    Science.gov (United States)

    Milstien, Julie B; Gaulé, Patrick; Kaddar, Miloud

    2007-11-01

    This study, conducted by visits, interviews, and literature search, analyzes how vaccine manufacturers in Brazil and India access technologies for innovative vaccines: through collaborations with academia and research institutions, technology transfer agreements with multinational corporations, public sector, or developing country organizations, or by importation and finishing of bulk products. Each has advantages and disadvantages in terms of speed, market, and ability to independently produce the product. Most manufacturers visited are very concerned about avoiding patent infringement, which might result in undeveloped or delayed products because of a lack of mastery of the patent landscape. Disregarding the patent picture could also threaten the market of a potential product. Although it is too soon to assess the effects of TRIPS on vaccine technology access in Brazil and India, a good understanding of intellectual property management will be useful. A case study on development of a new combination vaccine illustrates these findings.

  16. [Advances in the development of vaccines for bovine neosporosis].

    Science.gov (United States)

    Hecker, Yanina P; Venturini, María C; Campero, Carlos M; Odeón, Anselmo C; Moore, Dadín P

    2012-01-01

    Neosporosis, a disease caused by the obligate intracellular protozoan Neospora caninum, produces abortions in cattle. The severe economic losses in cattle industry justify the need to develop control measures for preventing bovine abortion. Apicomplexan parasitic resistance is associated with T helper 1 immune response mediated by CD4 cytotoxic T lymphocytes, the production of interferon-gamma, interleukin-12, tumor necrosis factor and immunoglobulin G2. The reduction of vertical transmission in subsequent pregnancies and the low levels of abortion repetition suggests the existence of protective immune mechanisms. Inoculation with live tachyzoites before mating protects against infection and abortion. Antecedents of the development of live vaccines against other protozoa stimulate research to develop a live vaccine against N. caninum. On the other hand, an inactivated vaccine with low efficacy against neosporosis is useful in the prevention of abortion in farms with epizootic disease. A neosporosis vaccine should avoid abortion, transplacental transmission and infection persistence. In the present work, advances in vaccine development including lysate of tachyzoites, live parasites, recombinant antigens and vaccine vectors are reviewed.

  17. Platform for Plasmodium vivax vaccine discovery and development.

    Science.gov (United States)

    Valencia, Sócrates Herrera; Rodríguez, Diana Carolina; Acero, Diana Lucía; Ocampo, Vanessa; Arévalo-Herrera, Myriam

    2011-08-01

    Plasmodium vivax is the most prevalent malaria parasite on the American continent. It generates a global burden of 80-100 million cases annually and represents a tremendous public health problem, particularly in the American and Asian continents. A malaria vaccine would be considered the most cost-effective measure against this vector-borne disease and it would contribute to a reduction in malaria cases and to eventual eradication. Although significant progress has been achieved in the search for Plasmodium falciparum antigens that could be used in a vaccine, limited progress has been made in the search for P. vivax components that might be eligible for vaccine development. This is primarily due to the lack of in vitro cultures to serve as an antigen source and to inadequate funding. While the most advanced P. falciparum vaccine candidate is currently being tested in Phase III trials in Africa, the most advanced P. vivax candidates have only advanced to Phase I trials. Herein, we describe the overall strategy and progress in P. vivax vaccine research, from antigen discovery to preclinical and clinical development and we discuss the regional potential of Latin America to develop a comprehensive platform for vaccine development.

  18. Challenges and future in vaccines, drug development, and immunomodulatory therapy.

    Science.gov (United States)

    Kling, Heather M; Nau, Gerard J; Ross, Ted M; Evans, Thomas G; Chakraborty, Krishnendu; Empey, Kerry M; Flynn, JoAnne L

    2014-08-01

    Pulmonary diseases and infections are among the top contributors to human morbidity and mortality worldwide, and despite the successful history of vaccines and antimicrobial therapeutics, infectious disease still presents a significant threat to human health. Effective vaccines are frequently unavailable in developing countries, and successful vaccines have yet to be developed for major global maladies, such as tuberculosis. Furthermore, antibiotic resistance poses a growing threat to human health. The "Challenges and Future in Vaccines, Drug Development, and Immunomodulatory Therapy" session of the 2013 Pittsburgh International Lung Conference highlighted several recent and current studies related to treatment and prevention of antibiotic-resistant bacterial infections, highly pathogenic influenza, respiratory syncytial virus, and tuberculosis. Research presented here focused on novel antimicrobial therapies, new vaccines that are either in development or currently in clinical trials, and the potential for immunomodulatory therapies. These studies are making important contributions to the areas of microbiology, virology, and immunology related to pulmonary diseases and infections and are paving the way for improvements in the efficacy of vaccines and antimicrobials.

  19. Considerations for sustainable influenza vaccine production in developing countries.

    Science.gov (United States)

    Nannei, Claudia; Chadwick, Christopher; Fatima, Hiba; Goldin, Shoshanna; Grubo, Myriam; Ganim, Alexandra

    2016-10-26

    Through its Global Action Plan for Influenza Vaccines (GAP), the World Health Organization (WHO) in collaboration with the United States Department of Health and Human Services has produced a checklist to support policy-makers and influenza vaccine manufacturers in identifying key technological, political, financial, and logistical issues affecting the sustainability of influenza vaccine production. This checklist highlights actions in five key areas that are beneficial for establishing successful local vaccine manufacturing. These five areas comprise: (1) the policy environment and health-care systems; (2) surveillance systems and influenza evidence; (3) product development and manufacturing; (4) product approval and regulation; and (5) communication to support influenza vaccination. Incorporating the checklist into national vaccine production programmes has identified the policy gaps and next steps for countries involved in GAP's Technology Transfer Initiative. Lessons learnt from country experiences provide context and insight that complement the checklist's goal of simplifying the complexities of influenza prevention, preparedness, and vaccine manufacturing. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Development of an HIV vaccine attitudes scale to predict HIV vaccine acceptability among vulnerable populations: L.A. VOICES.

    Science.gov (United States)

    Lee, Sung-Jae; Newman, Peter A; Duan, Naihua; Cunningham, William E

    2014-09-03

    Decade-long delays in successful implementation of Hepatitis B vaccines and ongoing obstacles in HPV vaccine roll-out suggest the importance of an implementation science approach to prepare for the effective translation of future HIV vaccines from clinical trials into routine practice. The objective of this study was to test HIV vaccine attitude items to develop reliable scales and to examine their association with HIV vaccine acceptability. HIV vaccine attitude items were assessed as part of the L.A. VOICES survey, a large-scale study conducted among underserved residents of Los Angeles, to identify factors that may influence HIV vaccine acceptability. Participants (n=1225) were randomly selected from public STD clinics, needle exchange sites and Latino community clinics using three-stage, venue-based time space sampling. Exploratory factor analysis across 20 items revealed four distinct factors - mistrust, HIV vaccine social concerns, risk compensation, and altruistic vaccination - with acceptable reliability coefficients for each subscale (Cronbach's α range 0.61-0.84). We found no significant differences in reliability by gender or by vaccine acceptability. Risk compensation (odds ratio (OR)=1.49; 95% CI=[1.18, 1.89]; p=0.001) and altruistic vaccination (OR=1.40; 95% CI=[1.14, 1.71]; p=0.001) were significantly and positively associated with HIV vaccine acceptability. We identified four HIV vaccine attitude scales with sound internal reliability parameters. In the aftermath of the first candidate vaccine to demonstrate efficacy against HIV infection, these scales may be helpful in bridging expectable research-to-practice gaps in future HIV vaccine dissemination among populations at risk. As HIV vaccine trials progress in the United States and globally, these measures also may be useful as a tool to assess and facilitate effective responses to community concerns about HIV vaccine trials and to target interventions to support recruitment and mitigate risk

  1. Developing Cultural Competence through the Introduction of Medical Spanish into the Veterinary Curriculum.

    Science.gov (United States)

    Tayce, Jordan D; Burnham, Suzanne; Mays, Glennon; Robles, Juan Carlos; Brightsmith, Donald J; Fajt, Virginia R; Posey, Dan

    The AAVMC has prioritized diversity as one of its core values. Its DiVersity Matters initiative is helping veterinary medicine prepare for the changing demographics of the United States. One example of the changing demographics is the growing Hispanic population. In 2013, the Texas A&M University College of Veterinary Medicine & Biomedical Sciences responded to the needs of this growing sector by introducing medical Spanish into the core curriculum for Doctor of Veterinary Medicine (DVM) students. The medical Spanish course takes place over 5 weeks during the second year of the curriculum, and is composed of lectures and group learning. While this may seem like a very compressed time frame for language learning, our goal is to provide students with basic medical vocabulary and a limited number of useful phrases. In this paper, we outline the implementation of a medical Spanish course in our curriculum, including our pedagogical approaches to the curricular design of the course, and an explanation of how we executed these approaches. We also discuss the successes and challenges that we have encountered, as well as our future plans for the course. We hope that the successes and challenges that we have encountered can serve as a model for others who plan to introduce a foreign language into their curriculum as a component of cultural competency.

  2. Ebola hemorrhagic Fever and the current state of vaccine development.

    Science.gov (United States)

    Hong, Joo Eun; Hong, Kee-Jong; Choi, Woo Young; Lee, Won-Ja; Choi, Yeon Hwa; Jeong, Chung-Hyeon; Cho, Kwang-Il

    2014-12-01

    Current Ebola virus outbreak in West Africa already reached the total number of 1,323 including 729 deaths by July 31st. the fatality is around 55% in the southeastern area of Guinea, Sierra Leone, Liberia, and Nigeria. The number of patients with Ebola Hemorrhagic Fever (EHF) was continuously increasing even though the any effective therapeutics or vaccines has not been developed yet. The Ebola virus in Guinea showed 98% homology with Zaire Ebola Virus. Study of the pathogenesis of Ebola virus infection and assess of the various candidates of vaccine have been tried for a long time, especially in United States and some European countries. Even though the attenuated live vaccine and DNA vaccine containing Ebola viral genes were tested and showed efficacy in chimpanzees, those candidates still need clinical tests requiring much longer time than the preclinical development to be approved for the practical treatment. It can be expected to eradicate Ebola virus by a safe and efficient vaccine development similar to the case of smallpox virus which was extinguished from the world by the variola vaccine.

  3. Novel vaccine development strategies for inducing mucosal immunity

    Science.gov (United States)

    Fujkuyama, Yoshiko; Tokuhara, Daisuke; Kataoka, Kosuke; Gilbert, Rebekah S; McGhee, Jerry R; Yuki, Yoshikazu; Kiyono, Hiroshi; Fujihashi, Kohtaro

    2012-01-01

    To develop protective immune responses against mucosal pathogens, the delivery route and adjuvants for vaccination are important. The host, however, strives to maintain mucosal homeostasis by responding to mucosal antigens with tolerance, instead of immune activation. Thus, induction of mucosal immunity through vaccination is a rather difficult task, and potent mucosal adjuvants, vectors or other special delivery systems are often used, especially in the elderly. By taking advantage of the common mucosal immune system, the targeting of mucosal dendritic cells and microfold epithelial cells may facilitate the induction of effective mucosal immunity. Thus, novel routes of immunization and antigen delivery systems also show great potential for the development of effective and safe mucosal vaccines against various pathogens. The purpose of this review is to introduce several recent approaches to induce mucosal immunity to vaccines, with an emphasis on mucosal tissue targeting, new immunization routes and delivery systems. Defining the mechanisms of mucosal vaccines is as important as their efficacy and safety, and in this article, examples of recent approaches, which will likely accelerate progress in mucosal vaccine development, are discussed. PMID:22380827

  4. [Development of the databases for ADI (acceptable daily intake) and relevant information on food additives, pesticides and veterinary drugs].

    Science.gov (United States)

    Sugita, Takiko; Sasaki, Shiho; Tanaka, Keiko; Toda, Miou; Uneyama, Chikako; Yamamoto, Miyako; Morikawa, Kaoru

    2006-01-01

    Databases for ADI (Acceptable Daily Intake) and relevant information on food additives, pesticides and veterinary drugs were developed. The databases we developed are easily accessible on the web, and contain ADIs, latest evaluation year, classification and use, as well as synonym and CAS registry number. The databases are designed to be easily updated by researchers as ADI and relevant information are updated or added without delay. The database for food additives has already provided from the homepage of NIHS, and the access log of the web site was 1325/month in December 2005 and 2179/month in March 2006.

  5. Dengue human infection models to advance dengue vaccine development.

    Science.gov (United States)

    Larsen, Christian P; Whitehead, Stephen S; Durbin, Anna P

    2015-12-10

    Dengue viruses (DENV) currently infect approximately 400 million people each year causing millions to seek care and overwhelming the health care infrastructure in endemic areas. Vaccines to prevent dengue and therapeutics to treat dengue are not currently available. The efficacy of the most advanced candidate vaccine against symptomatic dengue in general and DENV-2 in particular was much lower than expected, despite the ability of the vaccine to induce neutralizing antibody against all four DENV serotypes. Because seroconversion to the DENV serotypes following vaccination was thought to be indicative of induced protection, these results have made it more difficult to assess which candidate vaccines should or should not be evaluated in large studies in endemic areas. A dengue human infection model (DHIM) could be extremely valuable to down-select candidate vaccines or therapeutics prior to engaging in efficacy trials in endemic areas. Two DHIM have been developed to assess the efficacy of live attenuated tetravalent (LATV) dengue vaccines. The first model, developed by the Laboratory of Infectious Diseases at the U. S. National Institutes of Health, utilizes a modified DENV-2 strain DEN2Δ30. This virus was derived from the DENV-2 Tonga/74 that caused only very mild clinical infection during the outbreak from which it was recovered. DEN2Δ30 induced viremia in 100%, rash in 80%, and neutropenia in 27% of the 30 subjects to whom it was given. The Walter Reed Army Institute of Research (WRAIR) is developing a DHIM the goal of which is to identify DENV that cause symptomatic dengue fever. WRAIR has evaluated seven viruses and has identified two that meet dengue fever criteria. Both of these models may be very useful in the evaluation and down-selection of candidate dengue vaccines and therapeutics. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Design of clinical trials for therapeutic cancer vaccines development.

    Science.gov (United States)

    Mackiewicz, Jacek; Mackiewicz, Andrzej

    2009-12-25

    Advances in molecular and cellular biology as well as biotechnology led to definition of a group of drugs referred to as medicinal products of advanced technologies. It includes gene therapy products, somatic cell therapeutics and tissue engineering. Therapeutic cancer vaccines including whole cell tumor cells vaccines or gene modified whole cells belong to somatic therapeutics and/or gene therapy products category. The drug development is a multistep complex process. It comprises of two phases: preclinical and clinical. Guidelines on preclinical testing of cell based immunotherapy medicinal products have been defined by regulatory agencies and are available. However, clinical testing of therapeutic cancer vaccines is still under debate. It presents a serious problem since recently clinical efficacy of the number of cancer vaccines has been demonstrated that focused a lot of public attention. In general clinical testing in the current form is very expensive, time consuming and poorly designed what may lead to overlooking of products clinically beneficial for patients. Accordingly regulatory authorities and researches including Cancer Vaccine Clinical Trial Working Group proposed three regulatory solutions to facilitate clinical development of cancer vaccines: cost-recovery program, conditional marketing authorization, and a new development paradigm. Paradigm includes a model in which cancer vaccines are investigated in two types of clinical trials: proof-of-principle and efficacy. The proof-of-principle trial objectives are: safety; dose selection and schedule of vaccination; and demonstration of proof-of-principle. Efficacy trials are randomized clinical trials with objectives of demonstrating clinical benefit either directly or through a surrogate. The clinical end points are still under debate.

  7. Brucella abortus RB51: enhancing vaccine efficacy and developing multivalent vaccines.

    Science.gov (United States)

    Vemulapalli, Ramesh; He, Yongqun; Sriranganathan, Nammalwar; Boyle, Stephen M; Schurig, Gerhardt G

    2002-12-20

    Brucella abortus vaccine strain RB51 is an attenuated, stable rough mutant that is being used in many countries to control bovine brucellosis. Our earlier study demonstrated that the protective efficacy of strain RB51 can be significantly enhanced by overexpressing Cu-Zn superoxide dismutase (SOD), a homologous protective antigen. We have also previously demonstrated that strain RB51 can be engineered to express heterologous proteins and mice vaccinated with such recombinant RB51 strains develop a strong Th1 type of immune response to the foreign proteins. The present study is aimed at combining these two characteristics to generate new recombinant RB51 vaccines with enhanced abilities to protect against brucellosis and simultaneously able to protect against infections by Mycobacterium spp. We constructed two recombinant RB51 strains, RB51SOD/85A which overexpresses SOD with simultaneous expression of the 85A, a protective protein of Mycobacterium spp., and RB51ESAT which expresses ESAT-6, another protective protein of M. bovis, as a fusion protein with the signal sequence and few additional amino terminal amino acids of SOD. Mice vaccinated with these recombinant strains developed specific immune responses to the mycobacterial proteins and significantly enhanced protection against Brucella challenge compared to the mice vaccinated with strain RB51 alone. Copyright 2002 Elsevier Science B.V.

  8. Applying proteomics to tick vaccine development: where are we?

    Science.gov (United States)

    Villar, Margarita; Marina, Anabel; de la Fuente, José

    2017-03-01

    Ticks are second to mosquitoes as a vector of human diseases and are the first vector of animal diseases with a great impact on livestock farming. Tick vaccines represent a sustainable and effective alternative to chemical acaricides for the control of tick infestations and transmitted pathogens. The application of proteomics to tick vaccine development is a fairly recent area, which has resulted in the characterization of some tick-host-pathogen interactions and the identification of candidate protective antigens. Areas covered: In this article, we review the application and possibilities of various proteomic approaches for the discovery of tick and pathogen derived protective antigens, and the design of effective vaccines for the control of tick infestations and pathogen infection and transmission. Expert commentary: In the near future, the application of reverse proteomics, immunoproteomics, structural proteomics, and interactomics among other proteomics approaches will likely contribute to improve vaccine design to control multiple tick species with the ultimate goal of controlling tick-borne diseases.

  9. The search for animal models for Lassa fever vaccine development.

    Science.gov (United States)

    Lukashevich, Igor S

    2013-01-01

    Lassa virus (LASV) is the most prevalent arenavirus in West Africa and is responsible for several hundred thousand infections and thousands of deaths annually. The sizeable disease burden, numerous imported cases of Lassa fever (LF) and the possibility that LASV can be used as an agent of biological warfare make a strong case for vaccine development. Currently there is no licensed LF vaccine and research and devlopment is hampered by the high cost of nonhuman primate animal models and by biocontainment requirements (BSL-4). In addition, a successful LF vaccine has to induce a strong cell-mediated cross-protective immunity against different LASV lineages. All of these challenges will be addressed in this review in the context of available and novel animal models recently described for evaluation of LF vaccine candidates.

  10. [Prophylaxis of pertussis: development and use of acellular pertussis vaccine].

    Science.gov (United States)

    Chuprinina, R P; Alekseeva, I A; Ozeretskovskiĭ, N A

    2006-01-01

    Modern data substantiating the expediency of the use of acellular pertussis vaccine were analyzed. Serious postvaccinal complications caused by the action of the corpuscular pertussis component of adsorbed DPT vaccine served as the basis for the development of acellular pertussis vaccine (APV). During the period of 1990-1996 as many as 8 international field trials of the effectiveness of APV were carried out. The results of these trials and studies were evaluated in accordance with the unified programs and criteria. The vaccines under test differed by the composition of Bordetella pertussis purified antigens they contained, the methods of their purification and the detoxification of pertussis toxin. All tested APV, with the exception SKB-2, possessed pronounced prophylactic activity.

  11. Development of high-yield influenza A virus vaccine viruses.

    Science.gov (United States)

    Ping, Jihui; Lopes, Tiago J S; Nidom, Chairul A; Ghedin, Elodie; Macken, Catherine A; Fitch, Adam; Imai, Masaki; Maher, Eileen A; Neumann, Gabriele; Kawaoka, Yoshihiro

    2015-09-02

    Vaccination is one of the most cost-effective ways to prevent infection. Influenza vaccines propagated in cultured cells are approved for use in humans, but their yields are often suboptimal. Here, we screened A/Puerto Rico/8/34 (PR8) virus mutant libraries to develop vaccine backbones (defined here as the six viral RNA segments not encoding haemagglutinin and neuraminidase) that support high yield in cell culture. We also tested mutations in the coding and regulatory regions of the virus, and chimeric haemagglutinin and neuraminidase genes. A combination of high-yield mutations from these screens led to a PR8 backbone that improved the titres of H1N1, H3N2, H5N1 and H7N9 vaccine viruses in African green monkey kidney and Madin-Darby canine kidney cells. This PR8 backbone also improves titres in embryonated chicken eggs, a common propagation system for influenza viruses. This PR8 vaccine backbone thus represents an advance in seasonal and pandemic influenza vaccine development.

  12. Current and novel approaches to vaccine development against tuberculosis

    Science.gov (United States)

    Cayabyab, Mark J.; Macovei, Lilia; Campos-Neto, Antonio

    2012-01-01

    Antibiotics and vaccines are the two most successful medical countermeasures that humans have created against a number of pathogens. However a select few e.g., Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB) have evaded eradication by vaccines and therapeutic approaches. TB is a global public health problem that kills 1.4 million people per year. The past decade has seen significant progress in developing new vaccine candidates, but the most fundamental questions in understanding disease progression and protective host responses that are responsible for controlling Mtb infection still remain poorly resolved. Current TB treatment requires intense chemotherapy with several antimicrobials, while the only approved vaccine is the classical viable whole-cell based Bacille-Calmette-Guerin (BCG) that protects children from severe forms of TB, but fails to protect adults. Taken together, there is a growing need to conduct basic and applied research to develop novel vaccine strategies against TB. This review is focused on the discussion surrounding current strategies and innovations being explored to discover new protective antigens, adjuvants, and delivery systems in the hopes of creating an efficacious TB vaccine. PMID:23230563

  13. Developments in L2-based human papillomavirus (HPV) vaccines.

    Science.gov (United States)

    Schellenbacher, Christina; Roden, Richard B S; Kirnbauer, Reinhard

    2017-03-02

    Infections with sexually transmitted high-risk Human Papillomavirus (hrHPV), of which there are at least 15 genotypes, are responsible for a tremendous disease burden by causing cervical, and subsets of other ano-genital and oro-pharyngeal carcinomas, together representing 5% of all cancer cases worldwide. HPV subunit vaccines consisting of virus-like particles (VLP) self-assembled from major capsid protein L1 plus adjuvant have been licensed. Prophylactic vaccinations with the 2-valent (HPV16/18), 4-valent (HPV6/11/16/18), or 9-valent (HPV6/11/16/18/31/33/45/52/58) vaccine induce high-titer neutralizing antibodies restricted to the vaccine types that cause up to 90% of cervical carcinomas, a subset of other ano-genital and oro-pharyngeal cancers and 90% of benign ano-genital warts (condylomata). The complexity of manufacturing multivalent L1-VLP vaccines limits the number of included VLP types and thus the vaccines' spectrum of protection, leaving a panel of oncogenic mucosal HPV unaddressed. In addition, current vaccines do not protect against cutaneous HPV types causing benign skin warts, or against beta-papillomavirus (betaPV) types implicated in the development of non-melanoma skin cancer (NMSC) in immunosuppressed patients. In contrast with L1-VLP, the minor capsid protein L2 contains type-common epitopes that induce low-titer yet broadly cross-neutralizing antibodies to heterologous PV types and provide cross-protection in animal challenge models. Efforts to increase the low immunogenicity of L2 (poly)-peptides and thereby to develop broader-spectrum HPV vaccines are the focus of this review. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Characterizing chronic and acute health risks of residues of veterinary drugs in food: latest methodological developments by the joint FAO/WHO expert committee on food additives.

    Science.gov (United States)

    Boobis, Alan; Cerniglia, Carl; Chicoine, Alan; Fattori, Vittorio; Lipp, Markus; Reuss, Rainer; Verger, Philippe; Tritscher, Angelika

    2017-11-01

    The risk assessment of residues of veterinary drugs in food is a field that continues to evolve. The toxicological end-points to be considered are becoming more nuanced and in light of growing concern about the development of antimicrobial resistance, detailed analysis of the antimicrobial activity of the residues of veterinary drugs in food is increasingly incorporated in the assessment. In recent years, the Joint FAO/WHO Expert Committee on Food Additives (JECFA) has refined its approaches to provide a more comprehensive and fit-for-purpose risk assessment. This publication describes in detail the consideration of acute and chronic effects, the estimation of acute and chronic dietary exposure, current approaches for including microbiological endpoints in the risk assessment, and JECFA's considerations for the potential effects of food processing on residues from veterinary drugs. JECFA now applies these approaches in the development of health-based guidance values (i.e. safe exposure levels) for residues of veterinary drugs. JECFA, thus, comprehensively addresses acute and chronic risks by using corresponding estimates for acute and chronic exposure and suitable correction for the limited bioavailability of bound residues by the Gallo-Torres model. On a case-by-case basis, JECFA also considers degradation products that occur from normal food processing of food containing veterinary drug residues. These approaches will continue to be refined to ensure the most scientifically sound basis for the establishment of health-based guidance values for veterinary drug residues.

  15. TBVAC2020: Advancing Tuberculosis Vaccines from Discovery to Clinical Development

    Directory of Open Access Journals (Sweden)

    Stefan H. E. Kaufmann

    2017-10-01

    Full Text Available TBVAC2020 is a research project supported by the Horizon 2020 program of the European Commission (EC. It aims at the discovery and development of novel tuberculosis (TB vaccines from preclinical research projects to early clinical assessment. The project builds on previous collaborations from 1998 onwards funded through the EC framework programs FP5, FP6, and FP7. It has succeeded in attracting new partners from outstanding laboratories from all over the world, now totaling 40 institutions. Next to the development of novel vaccines, TB biomarker development is also considered an important asset to facilitate rational vaccine selection and development. In addition, TBVAC2020 offers portfolio management that provides selection criteria for entry, gating, and priority settings of novel vaccines at an early developmental stage. The TBVAC2020 consortium coordinated by TBVI facilitates collaboration and early data sharing between partners with the common aim of working toward the development of an effective TB vaccine. Close links with funders and other consortia with shared interests further contribute to this goal.

  16. Current status of syphilis vaccine development: need, challenges, prospects.

    Science.gov (United States)

    Cameron, Caroline E; Lukehart, Sheila A

    2014-03-20

    Syphilis is a multistage disease caused by the invasive spirochete Treponema pallidum subsp. pallidum. Despite inexpensive and effective antibiotic therapy, syphilis remains a prevalent disease in developing countries and has re-emerged as a public health threat in developed nations. In addition to the medical burden imparted by infectious syphilis, congenital syphilis is considered the most significant infectious disease affecting fetuses and newborns worldwide, and individuals afflicted with syphilis have an enhanced risk for HIV transmission and acquisition. The global disease burden of syphilis and failure of decades of public health efforts to stem the incidence of disease highlight the need for an effective syphilis vaccine. Although challenges associated with T. pallidum research have impeded understanding of this pathogen, the existence of a relevant animal model has enabled insight into the correlates of disease protection. Complete protection against infection has been achieved in the animal model using an extended immunization regimen of γ-irradiated T. pallidum, demonstrating the importance of treponemal surface components in generation of protective immunity and the feasibility of syphilis vaccine development. Syphilis is a prime candidate for development of a successful vaccine due to the (1) research community's accumulated knowledge of immune correlates of protection; (2) existence of a relevant animal model that enables effective pre-clinical analyses; (3) universal penicillin susceptibility of T. pallidum which enhances the attractiveness of clinical vaccine trials; and (4) significant public health benefit a vaccine would have on reduction of infectious/congenital syphilis and HIV rates. Critical personnel, research and market gaps need to be addressed before the goal of a syphilis vaccine can be realized, including recruitment of additional researchers to the T. pallidum research field with a proportional increase in research funding

  17. Cross-stage immunity for malaria vaccine development.

    Science.gov (United States)

    Nahrendorf, Wiebke; Scholzen, Anja; Sauerwein, Robert W; Langhorne, Jean

    2015-12-22

    A vaccine against malaria is urgently needed for control and eventual eradication. Different approaches are pursued to induce either sterile immunity directed against pre-erythrocytic parasites or to mimic naturally acquired immunity by controlling blood-stage parasite densities and disease severity. Pre-erythrocytic and blood-stage malaria vaccines are often seen as opposing tactics, but it is likely that they have to be combined into a multi-stage malaria vaccine to be optimally safe and effective. Since many antigenic targets are shared between liver- and blood-stage parasites, malaria vaccines have the potential to elicit cross-stage protection with immune mechanisms against both stages complementing and enhancing each other. Here we discuss evidence from pre-erythrocytic and blood-stage subunit and whole parasite vaccination approaches that show that protection against malaria is not necessarily stage-specific. Parasites arresting at late liver-stages especially, can induce powerful blood-stage immunity, and similarly exposure to blood-stage parasites can afford pre-erythrocytic immunity. The incorporation of a blood-stage component into a multi-stage malaria vaccine would hence not only combat breakthrough infections in the blood should the pre-erythrocytic component fail to induce sterile protection, but would also actively enhance the pre-erythrocytic potency of this vaccine. We therefore advocate that future studies should concentrate on the identification of cross-stage protective malaria antigens, which can empower multi-stage malaria vaccine development. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Developing VISO: Vaccine Information Statement Ontology for patient education.

    Science.gov (United States)

    Amith, Muhammad; Gong, Yang; Cunningham, Rachel; Boom, Julie; Tao, Cui

    2015-01-01

    To construct a comprehensive vaccine information ontology that can support personal health information applications using patient-consumer lexicon, and lead to outcomes that can improve patient education. The authors composed the Vaccine Information Statement Ontology (VISO) using the web ontology language (OWL). We started with 6 Vaccine Information Statement (VIS) documents collected from the Centers for Disease Control and Prevention (CDC) website. Important and relevant selections from the documents were recorded, and knowledge triples were derived. Based on the collection of knowledge triples, the meta-level formalization of the vaccine information domain was developed. Relevant instances and their relationships were created to represent vaccine domain knowledge. The initial iteration of the VISO was realized, based on the 6 Vaccine Information Statements and coded into OWL2 with Protégé. The ontology consisted of 132 concepts (classes and subclasses) with 33 types of relationships between the concepts. The total number of instances from classes totaled at 460, along with 429 knowledge triples in total. Semiotic-based metric scoring was applied to evaluate quality of the ontology.

  19. Reverse Genetics Approaches for the Development of Influenza Vaccines

    Science.gov (United States)

    Nogales, Aitor; Martínez-Sobrido, Luis

    2016-01-01

    Influenza viruses cause annual seasonal epidemics and occasional pandemics of human respiratory disease. Influenza virus infections represent a serious public health and economic problem, which are most effectively prevented through vaccination. However, influenza viruses undergo continual antigenic variation, which requires either the annual reformulation of seasonal influenza vaccines or the rapid generation of vaccines against potential pandemic virus strains. The segmented nature of influenza virus allows for the reassortment between two or more viruses within a co-infected cell, and this characteristic has also been harnessed in the laboratory to generate reassortant viruses for their use as either inactivated or live-attenuated influenza vaccines. With the implementation of plasmid-based reverse genetics techniques, it is now possible to engineer recombinant influenza viruses entirely from full-length complementary DNA copies of the viral genome by transfection of susceptible cells. These reverse genetics systems have provided investigators with novel and powerful approaches to answer important questions about the biology of influenza viruses, including the function of viral proteins, their interaction with cellular host factors and the mechanisms of influenza virus transmission and pathogenesis. In addition, reverse genetics techniques have allowed the generation of recombinant influenza viruses, providing a powerful technology to develop both inactivated and live-attenuated influenza vaccines. In this review, we will summarize the current knowledge of state-of-the-art, plasmid-based, influenza reverse genetics approaches and their implementation to provide rapid, convenient, safe and more effective influenza inactivated or live-attenuated vaccines. PMID:28025504

  20. Accelerating Vaccine Formulation Development Using Design of Experiment Stability Studies.

    Science.gov (United States)

    Ahl, Patrick L; Mensch, Christopher; Hu, Binghua; Pixley, Heidi; Zhang, Lan; Dieter, Lance; Russell, Ryann; Smith, William J; Przysiecki, Craig; Kosinski, Mike; Blue, Jeffrey T

    2016-10-01

    Vaccine drug product thermal stability often depends on formulation input factors and how they interact. Scientific understanding and professional experience typically allows vaccine formulators to accurately predict the thermal stability output based on formulation input factors such as pH, ionic strength, and excipients. Thermal stability predictions, however, are not enough for regulators. Stability claims must be supported by experimental data. The Quality by Design approach of Design of Experiment (DoE) is well suited to describe formulation outputs such as thermal stability in terms of formulation input factors. A DoE approach particularly at elevated temperatures that induce accelerated degradation can provide empirical understanding of how vaccine formulation input factors and interactions affect vaccine stability output performance. This is possible even when clear scientific understanding of particular formulation stability mechanisms are lacking. A DoE approach was used in an accelerated 37(°)C stability study of an aluminum adjuvant Neisseria meningitidis serogroup B vaccine. Formulation stability differences were identified after only 15 days into the study. We believe this study demonstrates the power of combining DoE methodology with accelerated stress stability studies to accelerate and improve vaccine formulation development programs particularly during the preformulation stage. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  1. Development of high-yield influenza B virus vaccine viruses.

    Science.gov (United States)

    Ping, Jihui; Lopes, Tiago J S; Neumann, Gabriele; Kawaoka, Yoshihiro

    2016-12-20

    The burden of human infections with influenza A and B viruses is substantial, and the impact of influenza B virus infections can exceed that of influenza A virus infections in some seasons. Over the past few decades, viruses of two influenza B virus lineages (Victoria and Yamagata) have circulated in humans, and both lineages are now represented in influenza vaccines, as recommended by the World Health Organization. Influenza B virus vaccines for humans have been available for more than half a century, yet no systematic efforts have been undertaken to develop high-yield candidates. Therefore, we screened virus libraries possessing random mutations in the six "internal" influenza B viral RNA segments [i.e., those not encoding the major viral antigens, hemagglutinin (HA) and neuraminidase NA)] for mutants that confer efficient replication. Candidate viruses that supported high yield in cell culture were tested with the HA and NA genes of eight different viruses of the Victoria and Yamagata lineages. We identified combinations of mutations that increased the titers of candidate vaccine viruses in mammalian cells used for human influenza vaccine virus propagation and in embryonated chicken eggs, the most common propagation system for influenza viruses. These influenza B virus vaccine backbones can be used for improved vaccine virus production.

  2. [Regulatory requirements regarding cell-based medicinal products for human and veterinary use - a comparison].

    Science.gov (United States)

    Kuhlmann-Gottke, Johanna; Duchow, Karin

    2015-11-01

    At present, there is no separate regulatory framework for cell-based medicinal products (CBMP) for veterinary use at the European or German level. Current European and national regulations exclusively apply to the corresponding medicinal products for human use. An increasing number of requests for the regulatory classification of CBMP for veterinary use, such as allogeneic stem cell preparations and dendritic cell-based autologous tumour vaccines, and a rise in scientific advice for companies developing these products, illustrate the need for adequate legislation. Currently, advice is given and decisions are made on a case-by-case basis regarding the regulatory classification and authorisation requirements.Since some of the CBMP - in particular in the area of stem-cell products - are developed in parallel for human and veterinary use, there is an urgent need to create specific legal definitions, regulations, and guidelines for these complex innovative products in the veterinary sector as well. Otherwise, there is a risk that that the current legal grey area regarding veterinary medicinal products will impede therapeutic innovations in the long run. A harmonised EU-wide approach is desirable. Currently the European legislation on veterinary medicinal products is under revision. In this context, veterinary therapeutics based on allogeneic cells and tissues will be defined and regulated. Certainly, the legal framework does not have to be as comprehensive as for human CBMP; a leaner solution is conceivable, similar to the special provisions for advanced-therapy medicinal products laid down in the German Medicines Act.

  3. Development of a Vaccine against Escherichia coli Urinary Tract Infections

    Directory of Open Access Journals (Sweden)

    Harry L. T. Mobley

    2015-12-01

    Full Text Available Urinary tract infection (UTI is the second most common infection in humans after those involving the respiratory tract. This results not only in huge annual economic costs, but in decreased workforce productivity and high patient morbidity. Most infections are caused by uropathogenic Escherichia coli (UPEC. Antibiotic treatment is generally effective for eradication of the infecting strain; however, documentation of increasing antibiotic resistance, allergic reaction to certain pharmaceuticals, alteration of normal gut flora, and failure to prevent recurrent infections represent significant barriers to treatment. As a result, approaches to prevent UTI such as vaccination represent a gap that must be addressed. Our laboratory has made progress toward development of a preventive vaccine against UPEC. The long-term research goal is to prevent UTIs in women with recurrent UTIs. Our objective has been to identify the optimal combination of protective antigens for inclusion in an effective UTI vaccine, optimal adjuvant, optimal dose, and optimal route of delivery. We hypothesized that a multi-subunit vaccine elicits antibody that protects against experimental challenge with UPEC strains. We have systematically identified four antigens that can individually protect experimentally infected mice from colonization of the bladder and/or kidneys by UPEC when administered intranasally with cholera toxin (CT as an adjuvant. To advance the vaccine for utility in humans, we will group the individual antigens, all associated with iron acquisition (IreA, Hma, IutA, FyuA, into an effective combination to establish a multi-subunit vaccine. We demonstrated for all four vaccine antigens that antigen-specific serum IgG represents a strong correlate of protection in vaccinated mice. High antibody titers correlate with low colony forming units (CFUs of UPEC following transurethral challenge of vaccinated mice. However, the contribution of cell-mediated immunity cannot

  4. Lock in, the state and vaccine development: lessons from the history of the polio vaccines

    NARCIS (Netherlands)

    Blume, S.S.

    2005-01-01

    Over the past two decades pharmaceutical industry interest in the development of vaccines against infectious diseases has grown. At the same time various partnerships and mechanisms have been established in order to reconcile the interests of private industry with the needs of public health systems

  5. MALVAC 2012 scientific forum: accelerating development of second-generation malaria vaccines

    Science.gov (United States)

    2012-01-01

    The World Health Organization (WHO) convened a malaria vaccines committee (MALVAC) scientific forum from 20 to 21 February 2012 in Geneva, Switzerland, to review the global malaria vaccine portfolio, to gain consensus on approaches to accelerate second-generation malaria vaccine development, and to discuss the need to update the vision and strategic goal of the Malaria Vaccine Technology Roadmap. This article summarizes the forum, which included reviews of leading Plasmodium falciparum vaccine candidates for pre-erythrocytic vaccines, blood-stage vaccines, and transmission-blocking vaccines. Other major topics included vaccine candidates against Plasmodium vivax, clinical trial site capacity development in Africa, trial design considerations for a second-generation malaria vaccine, adjuvant selection, and regulatory oversight functions including vaccine licensure. PMID:23140365

  6. Prevention and control of influenza and dengue through vaccine development.

    Science.gov (United States)

    Greenberg, David P; Robertson, Corwin A; Gordon, Daniel M

    2013-08-01

    Influenza and dengue are viral illnesses of global public health importance, especially among children. Accordingly, these diseases have been the focus of efforts to improve their prevention and control. Influenza vaccination offers the best protection against clinical disease caused by strains contained within the specific year's formulation. It is not uncommon for there to be a mismatch between vaccine strains and circulating strains, particularly with regards to the B lineages. For more than a decade, two distinct lineages of influenza B (Yamagata and Victoria) have co-circulated in the US with varying frequencies, but trivalent influenza vaccines contain only one B-lineage strain and do not offer adequate protection against the alternate B-lineage. Quadrivalent influenza vaccines (QIVs), containing two A strains (H1N1 and H3N2) and two B strains (one from each lineage) have been developed to help protect against the four strains predicted to be the most likely to be circulating. The QIV section of this article discusses epidemiology of pediatric influenza, importance of influenza B in children, potential benefits of QIV, and new quadrivalent vaccines. In contrast to influenza, a vaccine against dengue is not yet available in spite of many decades of research and development. A global increase in reports of dengue fever (DF) and its more severe presentations, dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS), suggest that US physicians will increasingly encounter patients with this disease. Similarities of the early signs and symptoms of influenza and dengue and the differences in disease management necessitates a better understanding of the epidemiology, clinical presentation, management, and prevention of DF by US physicians, including pediatricians. The article also provides a brief overview of dengue and discusses dengue vaccine development. Copyright 2013, SLACK Incorporated.

  7. 2013 update on current vaccination strategies in puppies and kittens.

    Science.gov (United States)

    Davis-Wurzler, Gina M

    2014-03-01

    Vaccines remain one of the practitioner's greatest tools in preventing disease and maintaining individual and population health. This article is an update to "Current Vaccination Strategies in Puppies and Kittens" published in Veterinary Clinics of North America, Small Animal Practitioner, in May 2006. There are now comprehensive guidelines readily available for small animal practitioners regarding canine and feline pediatric (and adult) vaccination recommendations. Perhaps more importantly, there is an increased dialogue regarding all aspects of preventive medicine, of which vaccination is only a small, yet significant portion; and an increased drive to provide scientific evidence for developing vaccination recommendations. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. [Immunology of tuberculosis and current status of vaccine development].

    Science.gov (United States)

    Ulrichs, T

    2008-03-01

    Even 125 year after the discovery of Mycobacterium tuberculosis as the aetiological agent of tuberculosis by Robert Koch, tuberculosis is still a global health emergency according to WHO. The high infection rate with M. tuberculosis that persists in the human host until a weakened host immune system allows a reactivation and complicated and expensive antituberculous chemotherapy urgently demand the development of new vaccines. Increasing numbers of multidrug-resistant tuberculosis, especially in the successor states of the former Soviet Union and China, further complicate an efficient tuberculosis control. For decades, there was no new release of an antituberculous drug to efficiently fight tuberculosis. Hence, also drug development has to keep up with the development of resistance by the pathogen. The following review describes the immune response to M. tuberculosis infection and the deduction of strategies for novel vaccines. Thanks to international financial support, several new vaccine candidates are already in the pipeline and close to clinical testing phases.

  9. Development of an Alternative Modified Live Influenza B Virus Vaccine

    Science.gov (United States)

    Finch, Courtney; Sutton, Troy; Obadan, Adebimpe; Aguirre, Isabel; Wan, Zhimin; Lopez, Diego; Geiger, Ginger; Gonzalez-Reiche, Ana Silvia; Ferreri, Lucas

    2017-01-01

    ABSTRACT Influenza B virus (IBV) is considered a major human pathogen, responsible for seasonal epidemics of acute respiratory illness. Two antigenically distinct IBV hemagglutinin (HA) lineages cocirculate worldwide with little cross-reactivity. Live attenuated influenza virus (LAIV) vaccines have been shown to provide better cross-protective immune responses than inactivated vaccines by eliciting local mucosal immunity and systemic B cell- and T cell-mediated memory responses. We have shown previously that incorporation of temperature-sensitive (ts) mutations into the PB1 and PB2 subunits along with a modified HA epitope tag in the C terminus of PB1 resulted in influenza A viruses (IAV) that are safe and effective as modified live attenuated (att) virus vaccines (IAV att). We explored whether analogous mutations in the IBV polymerase subunits would result in a stable virus with an att phenotype. The PB1 subunit of the influenza B/Brisbane/60/2008 strain was used to incorporate ts mutations and a C-terminal HA tag. Such modifications resulted in a B/Bris att strain with ts characteristics in vitro and an att phenotype in vivo. Vaccination studies in mice showed that a single dose of the B/Bris att candidate stimulated sterilizing immunity against lethal homologous challenge and complete protection against heterologous challenge. These studies show the potential of an alternative LAIV platform for the development of IBV vaccines. IMPORTANCE A number of issues with regard to the effectiveness of the LAIV vaccine licensed in the United States (FluMist) have arisen over the past three seasons (2013–2014, 2014–2015, and 2015–2016). While the reasons for the limited robustness of the vaccine-elicited immune response remain controversial, this problem highlights the critical importance of continued investment in LAIV development and creates an opportunity to improve current strategies so as to develop more efficacious vaccines. Our laboratory has developed an

  10. Development of an Alternative Modified Live Influenza B Virus Vaccine.

    Science.gov (United States)

    Santos, Jefferson J S; Finch, Courtney; Sutton, Troy; Obadan, Adebimpe; Aguirre, Isabel; Wan, Zhimin; Lopez, Diego; Geiger, Ginger; Gonzalez-Reiche, Ana Silvia; Ferreri, Lucas; Perez, Daniel R

    2017-06-15

    Influenza B virus (IBV) is considered a major human pathogen, responsible for seasonal epidemics of acute respiratory illness. Two antigenically distinct IBV hemagglutinin (HA) lineages cocirculate worldwide with little cross-reactivity. Live attenuated influenza virus (LAIV) vaccines have been shown to provide better cross-protective immune responses than inactivated vaccines by eliciting local mucosal immunity and systemic B cell- and T cell-mediated memory responses. We have shown previously that incorporation of temperature-sensitive ( ts ) mutations into the PB1 and PB2 subunits along with a modified HA epitope tag in the C terminus of PB1 resulted in influenza A viruses (IAV) that are safe and effective as modified live attenuated ( att ) virus vaccines (IAV att ). We explored whether analogous mutations in the IBV polymerase subunits would result in a stable virus with an att phenotype. The PB1 subunit of the influenza B/Brisbane/60/2008 strain was used to incorporate ts mutations and a C-terminal HA tag. Such modifications resulted in a B/Bris att strain with ts characteristics in vitro and an att phenotype in vivo Vaccination studies in mice showed that a single dose of the B/Bris att candidate stimulated sterilizing immunity against lethal homologous challenge and complete protection against heterologous challenge. These studies show the potential of an alternative LAIV platform for the development of IBV vaccines. IMPORTANCE A number of issues with regard to the effectiveness of the LAIV vaccine licensed in the United States (FluMist) have arisen over the past three seasons (2013-2014, 2014-2015, and 2015-2016). While the reasons for the limited robustness of the vaccine-elicited immune response remain controversial, this problem highlights the critical importance of continued investment in LAIV development and creates an opportunity to improve current strategies so as to develop more efficacious vaccines. Our laboratory has developed an alternative

  11. Experimental animal modelling for TB vaccine development

    Directory of Open Access Journals (Sweden)

    Pere-Joan Cardona

    2017-03-01

    Full Text Available Research for a novel vaccine to prevent tuberculosis is an urgent medical need. The current vaccine, BCG, has demonstrated a non-homogenous efficacy in humans, but still is the gold standard to be improved upon. In general, the main indicator for testing the potency of new candidates in animal models is the reduction of the bacillary load in the lungs at the acute phase of the infection. Usually, this reduction is similar to that induced by BCG, although in some cases a weak but significant improvement can be detected, but none of candidates are able to prevent establishment of infection. The main characteristics of several laboratory animals are reviewed, reflecting that none are able to simulate the whole characteristics of human tuberculosis. As, so far, no surrogate of protection has been found, it is important to test new candidates in several models in order to generate convincing evidence of efficacy that might be better than that of BCG in humans. It is also important to investigate the use of “in silico” and “ex vivo” models to better understand experimental data and also to try to replace, or at least reduce and refine experimental models in animals.

  12. Evaluation of vaccines against enteric infections: a clinical and public health research agenda for developing countries

    Science.gov (United States)

    Clemens, John

    2011-01-01

    Enteric infections are a major cause of morbidity and mortality in developing countries. To date, vaccines have played a limited role in public health efforts to control enteric infections. Licensed vaccines exist for cholera and typhoid, but these vaccines are used primarily for travellers; and there are two internationally licensed vaccines for rotavirus, but they are mainly used in affluent countries. The reasons that enteric vaccines are little used in developing countries are multiple, and certainly include financial and political constraints. Also important is the need for more cogent evidence on the performance of enteric vaccines in developing country populations. A partial inventory of research questions would include: (i) does the vaccine perform well in the most relevant settings? (ii) does the vaccine perform well in all epidemiologically relevant age groups? (iii) is there adequate evidence of vaccine safety once the vaccines have been deployed in developing countries? (iv) how effective is the vaccine when given in conjunction with non-vaccine cointerventions? (v) what is the level of vaccine protection against all relevant outcomes? and (vi) what is the expected population level of vaccine protection, including both direct and herd vaccine protective effects? Provision of evidence addressing these questions will help expand the use of enteric vaccines in developing countries. PMID:21893543

  13. Pig welfare assessment: development of a protocol and its use by veterinary undergraduates.

    Science.gov (United States)

    Wright, Angela J; Powney, Sonya L; Nevel, Amanda; Wathes, Christopher M

    2009-01-01

    A new approach to teaching welfare assessment is described and has been used with two cohorts of first-year veterinary undergraduates (totaling 515 students). The welfare assessment protocol was devised and trialed using pigs as an exemplar, but its principles are applicable to other species. A robust learning scheme was created, comprising didactic teaching, interactive seminars, practical hands-on training, and computer-based learning. Practical training included a formative virtual assessment of clinical signs of health and welfare using Questionmark Perception, which improved the students' performance significantly. Validation studies are being carried out to establish if acceptable levels of inter-observer variability can be achieved by students conducting on-farm assessments of pig welfare during their extramural studies program. The resulting assessments of welfare will be analyzed in a cross-sectional epidemiological study to identify risk factors for good and poor welfare, and the results will be fed back to participating farmers. This new approach enables veterinary students to learn key transferable skills in the early stages of their education and provides a strong grounding in a holistic approach to animal welfare.

  14. The Equine PeptideAtlas: a resource for developing proteomics-based veterinary research.

    Science.gov (United States)

    Bundgaard, Louise; Jacobsen, Stine; Sørensen, Mette A; Sun, Zhi; Deutsch, Eric W; Moritz, Robert L; Bendixen, Emøke

    2014-03-01

    Progress in MS-based methods for veterinary research and diagnostics is lagging behind compared to the human research, and proteome data of domestic animals is still not well represented in open source data repositories. This is particularly true for the equine species. Here we present a first Equine PeptideAtlas encompassing high-resolution tandem MS analyses of 51 samples representing a selection of equine tissues and body fluids from healthy and diseased animals. The raw data were processed through the Trans-Proteomic Pipeline to yield high quality identification of proteins and peptides. The current release comprises 24 131 distinct peptides representing 2636 canonical proteins observed at false discovery rates of 0.2% at the peptide level and 1.4% at the protein level. Data from the Equine PeptideAtlas are available for experimental planning, validation of new datasets, and as a proteomic data mining resource. The advantages of the Equine PeptideAtlas are demonstrated by examples of mining the contents for information on potential and well-known equine acute phase proteins, which have extensive general interest in the veterinary clinic. The extracted information will support further analyses, and emphasizes the value of the Equine PeptideAtlas as a resource for the design of targeted quantitative proteomic studies. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Veterinary Parasitology

    OpenAIRE

    Rondon, F. C. M.; Bevilaqua, C.M.L.; Franke,C.R.; Barros, R. S.; Oliveira,F.R.; Alcântara, Adriano Costa de; Diniz, A. T.

    2008-01-01

    Acesso restrito: Texto completo. p. 24-31 Visceral leishmaniasis (VL) is one of the most important reemerging parasitic disease in the world. The domestic dog is the main reservoir in urban environments. The aim of this work was to extend the knowledge on canine Leishmania infection in the city of Fortaleza in northeastern Brazil, identifying the risk factors inherent in dog susceptibility to the infection. Two populations were analyzed, domestic dogs from clinics and the Veterinary ...

  16. Development of replication-deficient adenovirus malaria vaccines.

    Science.gov (United States)

    Hollingdale, Michael R; Sedegah, Martha; Limbach, Keith

    2017-03-01

    Malaria remains a major threat to endemic populations and travelers, including military personnel to these areas. A malaria vaccine is feasible, as radiation attenuated sporozoites induce nearly 100% efficacy. Areas covered: This review covers current malaria clinical trials using adenoviruses and pre-clinical research. Heterologous prime-boost regimens, including replication-deficient human adenovirus 5 (HuAd5) carrying malaria antigens, are efficacious. However, efficacy appears to be adversely affected by pre-existing anti-HuAd5 antibodies. Current strategies focus on replacing HuAd5 with rarer human adenoviruses or adenoviruses isolated from non-human primates (NHPs). The chimpanzee adenovirus ChAd63 is undergoing evaluation in clinical trials including infants in malaria-endemic areas. Key antigens have been identified and are being used alone, in combination, or with protein subunit vaccines. Gorilla adenoviruses carrying malaria antigens are also currently being evaluated in preclinical models. These replacement adenovirus vectors will be successfully used to develop vaccines against malaria, as well as other infectious diseases. Expert commentary: Simplified prime-boost single shot regimens, dry-coated live vector vaccines or silicon microneedle arrays could be developed for malaria or other vaccines. Replacement vectors with similar or superior immunogenicity have rapidly advanced, and several are now in extensive Phase 2 and beyond in malaria as well as other diseases, notably Ebola.

  17. Overview of dendritic cell-based vaccine development for leishmaniasis.

    Science.gov (United States)

    Bagirova, M; Allahverdiyev, A M; Abamor, E S; Ullah, I; Cosar, G; Aydogdu, M; Senturk, H; Ergenoglu, B

    2016-11-01

    Leishmaniasis is one of the most serious vector-borne diseases in the world and is distributed over 98 countries. It is estimated that 350 million people are at risk for leishmaniasis. There are three different generation of vaccines that have been developed to provide immunity and protection against leishmaniasis. However, their use has been limited due to undesired side effects. These vaccines have also failed to provide effective and reliable protection and, as such, currently, there is no safe and effective vaccine for leishmaniasis. Dendritic cells (DCs) are a unique population of cells that come from bone marrow and become specialized to take up, process and present antigens to helper T cells in a mechanism similar to macrophages. By considering these significant features, DCs stimulated with different kinds of Leishmania antigens have been used in recent vaccine studies for leishmaniasis with promising results so far. In this review, we aim to review and combine the latest studies about this issue after defining potential problems in vaccine development for leishmaniasis and considering the importance of DCs in the immunopathogenesis of the disease. © 2016 John Wiley & Sons Ltd.

  18. Botulinum neurotoxin vaccines: Past history and recent developments.

    Science.gov (United States)

    Rusnak, Janice M; Smith, Leonard A

    2009-12-01

    Botulinum toxin may cause a neuroparalytic illness that may result in respiratory failure and require prolonged mechanical ventilation. As medical resources needed for supportive care of botulism in a bioterrorist event may quickly overwhelm the local healthcare systems, biodefense research efforts have been directed towards the development of a vaccine to prevent botulism. While human botulism has been caused only by toxin serotypes A, B, and E (rarely serotype F), all seven known immunologically distinct toxin serotypes (A - G) may potentially cause intoxication in humans from a bioterrorist event. A pentavalent (ABCDE) botulinum toxoid (PBT) has been administered as an investigation new drug (IND) to at-risk individuals for nearly 50 years. Due to declining immunogenicity of the PBT, research efforts have been directed at development of both improved (less local reactogenicity) botulinum toxoids and recombinant vaccines as potential vaccine candidates to replace the PBT.

  19. Development of Mucosal Vaccines Based on Lactic Acid Bacteria

    Science.gov (United States)

    Bermúdez-Humarán, Luis G.; Innocentin, Silvia; Lefèvre, Francois; Chatel, Jean-Marc; Langella, Philippe

    Today, sufficient data are available to support the use of lactic acid bacteria (LAB), notably lactococci and lactobacilli, as delivery vehicles for the development of new mucosal vaccines. These non-pathogenic Gram-positive bacteria have been safely consumed by humans for centuries in fermented foods. They thus constitute an attractive alternative to the attenuated pathogens (most popular live vectors actually studied) which could recover their pathogenic potential and are thus not totally safe for use in humans. This chapter reviews the current research and advances in the use of LAB as live delivery vectors of proteins of interest for the development of new safe mucosal vaccines. The use of LAB as DNA vaccine vehicles to deliver DNA directly to antigen-presenting cells of the immune system is also discussed.

  20. Respiratory Syncytial Virus: Current Progress in Vaccine Development

    Science.gov (United States)

    Rudraraju, Rajeev; Jones, Bart G.; Sealy, Robert; Surman, Sherri L.; Hurwitz, Julia L.

    2013-01-01

    Respiratory syncytial virus (RSV) is the etiological agent for a serious lower respiratory tract disease responsible for close to 200,000 annual deaths worldwide. The first infection is generally most severe, while re-infections usually associate with a milder disease. This observation and the finding that re-infection risks are inversely associated with neutralizing antibody titers suggest that immune responses generated toward a first RSV exposure can significantly reduce morbidity and mortality throughout life. For more than half a century, researchers have endeavored to design a vaccine for RSV that can mimic or improve upon natural protective immunity without adverse events. The virus is herein described together with the hurdles that must be overcome to develop a vaccine and some current vaccine development approaches. PMID:23385470

  1. Schistosomiasis vaccine development: progress and prospects

    Directory of Open Access Journals (Sweden)

    NR Bergquist

    1998-01-01

    Full Text Available The undisputed, worldwide success of chemotherapy notwithstanding, schistosomiasis continues to defy control efforts in as much rapid reinfection demands repeated treatment, sometimes as often as once a year. There is thus a need for a complementary tool with effect for the longer term, notably a vaccine. International efforts in this direction have been ongoing for several decades but, until the recombinant DNA techniques were introduced, antigen production remained an unsurmountable bottleneck. Although animal experiments have been highly productive and are still much needed, they probably do not reflect the human situation adequately and real progress can not be expected until more is known about human immune responses to schistosome infection. It is well-known that irradiated cercariae consistently produce high levels of protection in experimental animals but, for various reasons, this proof of principle cannot be directly exploited. Research has instead been focussed on the identification and testing of specific schistosome antigens. This work has been quite successful and is already at the stage where clinical trials are called for. Preliminary results from coordinated in vitro laboratory and field epidemiological studies regarding the protective potential of several antigens support the initiation of such trials. A series of meetings, organized earlier this year in Cairo, Egypt, reviewed recent progress, selecteded suitable vaccine candidates and made firm recommendations for future action including pledging support for large-scale production according to good manufacturing practice (GMP and Phase I trials. Scientists at the American Centers for Disease Control and Prevention (CDC have drawn up a detailed research plan. The major financial support will come from USAID, Cairo, which has established a scientific advisory group of Egyptian scientists and representatives from current and previous international donors such as WHO, NIAID, the

  2. Malaria Vaccine Development and How External Forces Shape It: An Overview

    Directory of Open Access Journals (Sweden)

    Veronique Lorenz

    2014-06-01

    Full Text Available The aim of this paper is to analyse the current status and scientific value of malaria vaccine approaches and to provide a realistic prognosis for future developments. We systematically review previous approaches to malaria vaccination, address how vaccine efforts have developed, how this issue may be fixed, and how external forces shape vaccine development. Our analysis provides significant information on the various aspects and on the external factors that shape malaria vaccine development and reveal the importance of vaccine development in our society.

  3. Development of starch based mucoadhesive vaginal drug delivery systems for application in veterinary medicine.

    Science.gov (United States)

    Gök, Mehmet Koray; Özgümüş, Saadet; Demir, Kamber; Cirit, Ümüt; Pabuccuoğlu, Serhat; Cevher, Erdal; Özsoy, Yıldız; Bacınoğlu, Süleyman

    2016-01-20

    The aim of this study was to prepare and evaluate the mucoadhesive, biocompatible and biodegradable progesterone containing vaginal tablets based on modified starch copolymers for the estrus synchronization of ewes. Starch-graft-poly(acrylic acid) copolymers (S-g-PAA) were synthesized and characterized. The vaginal tablets were fabricated with S-g-PAA and their equilibrium swelling degree (Qe) and matrix erosion (ME%) were determined in lactate buffer solution. In vitro, mucoadhesive properties of the tablets were investigated by using ewe vaginal mucosa and in vivo residence time were also investigated. In vitro and in vivo progesterone release profiles from the tablets were compared with two commercial products. Tablet formulation containing wheat starch based grafted copolymer (WS-g-PAA)gc indicated promising results and might be convenient as an alternative product to the commercial products in veterinary medicine. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Professional Veterinary Programs' Perceptions and Experiences Pertaining to Emotional Support Animals and Service Animals, and Recommendations for Policy Development.

    Science.gov (United States)

    Schoenfeld-Tacher, Regina M; Kogan, Lori R

    Given the unique nature of programs in professional veterinary medicine (PVM), the increasing numbers of students requesting accommodations for emotional support animals (ESAs) in higher education settings is of growing interest to student affairs and administrative staff in PVM settings. Since the legislation pertaining to this type of support animal differs from the laws governing disability service animals, colleges and universities now need to develop new policies and guidelines. Representatives from a sample of 28 PVM programs completed a survey about the prevalence of student requests for ESAs and service animals. PVM associate deans for academic affairs also reported their perceptions of this issue and the challenges these requests might pose within veterinary teaching laboratories and patient treatment areas. Responses indicated that approximately one third of PVM programs have received requests for ESAs (32.1%) in the last 2 years, 17.9% have had requests for psychiatric service animals, and 17.9% for other types of service animals. Despite this, most associate deans reported not having or not being aware of university or college policies pertaining to these issues. Most associate deans are interested in learning more about this topic. This paper provides general recommendations for establishing university or PVM program policies.

  5. Status of vaccine research and development for Campylobacter jejuni.

    Science.gov (United States)

    Riddle, Mark S; Guerry, Patricia

    2016-06-03

    Campylobacter jejuni is one of the leading causes of bacterial diarrhea worldwide and is associated with a number of sequelae, including Guillain-Barre Syndrome, reactive arthritis, irritable bowel syndrome and growth stunting/malnutrition. Vaccine development against C. jejuni is complicated by its antigenic diversity, a lack of small animal models, and a poor understanding of the bacterium's pathogenesis. Vaccine approaches have been limited to recombinant proteins, none of which have advanced beyond Phase I testing. Genomic analyses have revealed the presence of a polysaccharide capsule on C. jejuni. Given the success of capsule-conjugate vaccines for other mucosal pathogens of global importance, efforts to evaluate this established approach for C. jejuni are also being pursued. A prototypical capsule-conjugate vaccine has demonstrated efficacy against diarrheal disease in non-human primates and is currently in Phase I testing. In addition to proof of concept studies, more data on the global prevalence of capsular types, and a better understanding of the acute and chronic consequences of C. jejuni are needed to inform investments for a globally relevant vaccine. Copyright © 2016 World Health Organization. Published by Elsevier Ltd.. All rights reserved.

  6. Recent advances in canine leptospirosis: focus on vaccine development

    Directory of Open Access Journals (Sweden)

    Klaasen HLBM

    2015-06-01

    Full Text Available Henricus LBM (Eric Klaasen,1 Ben Adler2 1Global Companion Animals Research and Development, Merck Sharp and Dohme Animal Health, Boxmeer, the Netherlands; 2Department of Microbiology, Monash University, Clayton, VIC, Australia Abstract: Leptospirosis is a global infection of humans and animals caused by pathogenic Leptospira spp. Leptospirosis is a major zoonosis, with infection acquired from wild and domestic animals. It is also a significant cause of morbidity, mortality, and economic loss in production and companion animals. Leptospirosis in dogs is prevalent worldwide and as well as a cause of canine disease, it presents a zoonotic risk to human contacts. Canine leptospirosis does not differ greatly from the syndromes seen in other animal species, with hepatic, renal, and pulmonary involvement being the main manifestations. While the pathogenesis of disease is well documented at the whole animal level, the cellular and molecular basis remains obscure. Killed, whole-cell bacterin vaccines are licensed worldwide and have not changed greatly over the past several decades. Vaccine-induced immunity is restricted to serologically related serovars and is generally short-lived, necessitating annual revaccination. The appearance of new serovars as causes of canine leptospirosis requires constant epidemiological surveillance and tailoring of vaccines to cover emerging serovars. At the present time, there is no realistic prospect of alternative, non-bacterin vaccines in the foreseeable future. Keywords: canine leptospirosis, vaccines, diagnosis, epidemiology, pathogenesis

  7. Clinical vaccine development for H5N1 influenza.

    Science.gov (United States)

    Clegg, Christopher H; Rininger, Joseph A; Baldwin, Susan L

    2013-07-01

    H5N1 is a highly pathogenic avian influenza virus that can cause severe disease and death in humans. H5N1 is spreading rapidly in bird populations and there is great concern that this virus will begin to transmit between people and cause a global crisis. Vaccines are the cornerstone strategy for combating avian influenza but there are complex challenges for pandemic preparedness including the unpredictability of the vaccine target and the manufacturing requirement for rapid deployment. The less-than-optimal response against the 2009 H1N1 pandemic unmasked the limitations associated with influenza vaccine production and in 2010, the President's Council of Advisors on Science and Technology re-emphasized the need for new recombinant-based vaccines and adjuvants that can shorten production cycles, maximize immunogenicity and satisfy global demand. In this article, the authors review the efforts spent in developing an effective vaccine for H5N1 influenza and summarize clinical studies that highlight the progress made to date.

  8. Development of an Integrated Immunology and Vaccines Pharmacy Elective

    Directory of Open Access Journals (Sweden)

    Stephanie F James

    2017-07-01

    Full Text Available Objective: To describe an elective course on immunology and vaccines for pharmacy students that extends beyond basic immunization training. Design: A three credit-hour Immunology and Vaccines elective was developed and taught by an immunologist, policy research expert, and pharmacist. The learning objectives of the course included: understanding how the immune system works with vaccines to provide protection against infectious diseases, the history and policies involved in immunization practice, and how to counsel the vaccine hesitant individual. Classes were conducted using a variety of formats; group projects, lectures, films, literature reviews and guest speakers. An end-of-course evaluation was used to gauge student opinion on course value. Students were evaluated by four exams and a final group presentation. Conclusion: Students indicated that this course was valuable to their future pharmacy careers and provided insight into why people choose not to vaccinate and how they could use the course insight to properly educate such individuals. Conflict of Interest We declare no conflicts of interest or financial interests that the authors or members of their immediate families have in any product or service discussed in the manuscript, including grants (pending or received, employment, gifts, stock holdings or options, honoraria, consultancies, expert testimony, patents and royalties   Type: Note

  9. Perspectives on academic veterinary administration.

    Science.gov (United States)

    Gelberg, H B; Gelberg, S

    2001-09-15

    It is important for veterinary administrators to apply knowledge bases from other fields to their own unique administrative needs. For example, although some resources are written for business managers, the discussions of four key management competency areas, guidelines for mastering these skills, organizational assessment tools, and other self-help tools may provide interesting food-for-thought for veterinary administrators.(76) In developing their own administrative styles, administrators should seek to apply those principles that seem to intuitively fit with their personal research styles, work situations, managerial styles, administrative preferences, and unique organizational culture. Through strengthening their liaisons with community and university business programs, counseling agencies, employee assistance programs, and psychology researchers, administrators can continue to be exposed to and benefit from new paradigms for consideration in veterinary medical environments. Through these liaisons, the unique needs of veterinary medical environments are also communicated to individuals within the fields of psychology and business, thus stimulating new research that specifically targets veterinary medical environment leadership issues. Each field has unique contributions to help veterinary administrators work toward creating veterinary medical environments that are creative, energetic, visionary, pragmatic, and highly marketable in order to help administrators recruit and nurture the best and brightest veterinary researchers, teachers, and clinicians.

  10. Use of recombinant capsid proteins in the development of a vaccine against the foot-and-mouth disease virus

    Directory of Open Access Journals (Sweden)

    Belsham GJ

    2015-02-01

    Full Text Available Graham J Belsham, Anette Bøtner National Veterinary Institute, Technical University of Denmark, Kalvehave, Denmark Abstract: Foot-and-mouth disease remains one of the world's most economically important diseases of livestock. It is caused by foot-and-mouth disease virus, a member of the picornavirus family. The virus replicates very rapidly and can be efficiently transmitted between hosts by a variety of routes. The disease has been effectively controlled in some parts of the world but remains endemic in many others, thus there is a constant risk of introduction of the disease into areas that are normally free of foot-and-mouth disease with potentially huge economic consequences. To reduce the need for large-scale culling of infected, and potentially infected, animals there has been significant effort to develop new vaccines against this disease which avoid some, or all, of the deficiencies of current vaccines. A major focus has been on the use of systems that express the structural proteins of the virus that self-assemble to generate “empty capsid” particles which share many features with the intact virus but lack the ribonucleic acid genome and are therefore non-infectious. Such particles can be “designed” to improve their stability or modify their antigenicity and can be produced without “high containment” facilities. The development and use of such improved vaccines should assist in the global efforts to control this important disease. Keywords: picornavirus, diagnostic assays, virus structure, infection, immune responses

  11. Animal models for dengue vaccine development and testing.

    Science.gov (United States)

    Na, Woonsung; Yeom, Minjoo; Choi, Il-Kyu; Yook, Heejun; Song, Daesub

    2017-07-01

    Dengue fever is a tropical endemic disease; however, because of climate change, it may become a problem in South Korea in the near future. Research on vaccines for dengue fever and outbreak preparedness are currently insufficient. In addition, because there are no appropriate animal models, controversial results from vaccine efficacy assessments and clinical trials have been reported. Therefore, to study the mechanism of dengue fever and test the immunogenicity of vaccines, an appropriate animal model is urgently needed. In addition to mouse models, more suitable models using animals that can be humanized will need to be constructed. In this report, we look at the current status of model animal construction and discuss which models require further development.

  12. The future for vaccine development against Entamoeba histolytica

    Science.gov (United States)

    Quach, Jeanie; St-Pierre, Joëlle; Chadee, Kris

    2014-01-01

    Entamoeba histolytica is the causative agent of amebiasis, one of the top three parasitic causes of mortality worldwide. In the majority of infected individuals, E. histolytica asymptomatically colonizes the large intestine, while in others, the parasite breaches the mucosal epithelial barrier to cause amebic colitis and can disseminate to soft organs to cause abscesses. Vaccinations using native and recombinant forms of the parasite Gal-lectin have been successful in protecting animals against intestinal amebiasis and amebic liver abscess. Protection against amebic liver abscesses has also been reported by targeting other E. histolytica components including the serine-rich protein and the 29-kDa-reductase antigen. To date, vaccines against the Gal-lectin hold the most promise but clinical trials will be required to validate its efficacy in humans. Here, we review the current strategies and future perspectives involved in the development of a vaccine against E. histolytica. PMID:24504133

  13. Integrating customised video clips into The veterinary nursing curriculum to enhance practical competency training and the development of student confidence

    OpenAIRE

    Dunne, Karen; Brereton, Bernadette; Bree, Ronan; Dallat, John

    2015-01-01

    Competency training is a critical aspect of veterinary nursing education, as graduates must complete a practical competency assessment prior to registration as a veterinary nurse. Despite this absolute requirement for practical training across a range of domestic animal species, there is a lack of published literature on optimal teaching approaches. The aim of this project was to assess the value of customised video clips in the practical skills training of veterinary nursing students. The ef...

  14. Viral Vectors for Use in the Development of Biodefense Vaccines

    National Research Council Canada - National Science Library

    Lee, John S; Hadjipanayis, Angela G; Parker, Michael D

    2005-01-01

    ... agents of bioterrorism or biowarfare. The use of viruses, for example adenovirus, vaccinia virus, and Venezuelan equine encephalitis virus, as vaccine-vectors has enabled researchers to develop effective means for countering the threat of bioterrorism and biowarfare. An overview of the different viral vectors and the threats they counter will be discussed.

  15. Economic evaluations of hepatitis B vaccination for developing countries

    NARCIS (Netherlands)

    Tu, H.A.T.; Woerdenbag, H.J.; Kane, S.; Riewpaiboon, A.; van Hulst, M.; Postma, M.J.

    Economic evaluations, in particular cost-effectiveness, are important determinants for policy makers and stakeholders involved in decision-making for health interventions. Up until now, most evaluations of cost-effectiveness of hepatitis B vaccination have been performed in developed countries.

  16. Systems Biology and the Development of Vaccines and Drugs for ...

    African Journals Online (AJOL)

    We conclude the paper highlighting the procedures encompassing the back end phase and discuss their application to the development of vaccines and drugs for malaria treatment. Note that, malaria is the cause of significant global morbidity and mortality with 300-500 million cases annually. Our aims are not ends, but a ...

  17. Development of lactococcal GEM-based pneumococcal vaccines

    NARCIS (Netherlands)

    Audouy, Sandrine A. L.; van Selm, Saskia; van Roosmalen, Maarten L.; Post, Eduard; Kanninga, Rolf; Neef, Jolanda; Estevao, Silvia; Nieuwenhuis, Edward E. S.; Adrian, Peter V.; Leenhouts, Kees; Hermans, Peter W. M.

    2007-01-01

    We report the development of a novel protein-based nasal vaccine against Streptococcus pneumoniae, in which three pneumococcal proteins were displayed on the surface of a non-recombinant, killed Lactococcus lactis-derived delivery system, called Gram-positive Enhancer Matrix (GEM). The GEM particles

  18. Nanostructures for the development of vaccines against avian ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    State-of-the-art technologies developed in two laboratories will be combined: nanotechnology and a new adjuvant. These approaches will allow simple production of nanoparticles that do not require any special containment, as opposed to traditional vaccines produced in embryonated eggs. This project is a collaboration ...

  19. Viral Vectors for Use in the Development of Biodefense Vaccines

    Science.gov (United States)

    2005-06-17

    development . . . . . . . . . . . . . . . . . . 1308 6. Anti-vector immune responses associated with virus-vectored vaccines...to influence the outcome of a local election. Another radical group in Japan, the Aum Shinrikyo, allegedly conducted research on BoNT, B. anthracis...aflotoxin and actively researched Clostridium perfringins, rotavirus , echovi- rus 71, and camelpox virus for use in biological warfare [2,3]. Their

  20. Live bacterial delivery systems for development of mucosal vaccines

    NARCIS (Netherlands)

    Thole, J.E.R.; Dalen, P.J. van; Havenith, C.E.G.; Pouwels, P.H.; Seegers, J.F.M.L.; Tielen, F.D.; Zee, M.D. van der; Zegers, N.D.; Shaw, M.

    2000-01-01

    By expression of foreign antigens in attenuated strains derived from bacterial pathogens and in non-pathogenic commensal bacteria, recombinant vaccines are being developed that aim to stimulate mucosal immunity. Recent advances in the pathogenesis and molecular biology of these bacteria have allowed

  1. Development of novel vaccines using DNA shuffling and screening strategies.

    Science.gov (United States)

    Locher, Christopher P; Soong, Nay Wei; Whalen, Robert G; Punnonen, Juha

    2004-02-01

    DNA shuffling and screening technologies recombine and evolve genes in vitro to rapidly obtain molecules with improved biological activity and fitness. In this way, genes from related strains are bred like plants or livestock and their successive progeny are selected. These technologies have also been called molecular breeding-directed molecular evolution. Recent developments in bioinformatics-assisted computer programs have facilitated the design, synthesis and analysis of DNA shuffled libraries of chimeric molecules. New applications in vaccine development are among the key features of DNA shuffling and screening technologies because genes from several strains or antigenic variants of pathogens can be recombined to create novel molecules capable of inducing immune responses that protect against infections by multiple strains of pathogens. In addition, molecules such as co-stimulatory molecules and cytokines have been evolved to have improved T-cell proliferation and cytokine production compared with the wild-type human molecules. These molecules can be used to immunomodulate vaccine responsiveness and have multiple applications in infectious diseases, cancer, allergy and autoimmunity. Moreover, DNA shuffling and screening technologies can facilitate process development of vaccine manufacturing through increased expression of recombinant polypeptides and viruses. Therefore, DNA shuffling and screening technologies can overcome some of the challenges that vaccine development currently faces.

  2. New Paradigms for HIV/AIDS Vaccine Development

    Science.gov (United States)

    Hansen, Scott G.; Lifson, Jeffrey D.

    2012-01-01

    HIV-1 and its simian counterpart SIV have been exquisitely tailored by evolution to evade host immunity. By virtue of specific adaptations that thwart individual innate or adaptive immune mechanisms, and an overall replication strategy that provides for rapid establishment of a large, systemic viral population, capable of dynamic adaptation to almost all immune selection pressures, these viruses, once established, almost invariably stay one step ahead of the host, and in the vast majority of infected individuals, replicate indefinitely. Although many of vaccine approaches tested to date have been able to enhance the magnitude of the immune responses to HIV/SIV infection, most of these responses, whether cellular or humoral in nature, have largely failed to be both effectively anti-viral and targeted such that fully functional escape variants are not easily selected. Recent advances, however, have provided strong evidence that the initial stages of infection following mucosal transmission of these viruses are more vulnerable to immune intervention, and have led to the development of vaccine strategies that elicit responses able to effectively intervene in these early stages of infection, either preventing acquisition of infection or by establishing early, stringent, and durable control. Here, we place HIV/AIDS vaccine development in the context of the basic immunobiology of HIV/SIV, review the evidence for the vulnerability of early infection to immunity, and discuss how these newly recognized immune vulnerabilities might be exploited for the development of an effective HIV/AIDS vaccine. PMID:21942424

  3. Development of oral microencapsulated forms for delivering viral vaccines.

    Science.gov (United States)

    Nechaeva, Elena

    2002-10-01

    Rapid development in biotechnology during the last decade has allowed novel ideas in the development of antiviral vaccines to be considered and provides interesting technological approaches to their realization. Designing of microencapsulated forms for delivering bacterial and viral antigens or antigenic complexes using biodegradable biopolymers is an important novel direction. This approach involves the production of polymeric spherical particles with a diameter of 1 microm to 3 mm, containing isolated viral antigens or whole viral particles. Microencapsulated antigens administered orally are protected from low pH values of the gastric juice, bile acids, their salts and proteolytic enzymes of the gastrointestinal tract. The ability to drastically potentiate the immune response to encapsulated antigens, together with the ability to penetrate into the intestinal and respiratory mucosae upon oral and tracheal administrations, respectively, with induction of local and systemic immune reactions are the special merits of such polymers. However, the majority of data on microencapsulated viral vaccines has so far been obtained in animal models, as well as a limited number of studies on the protective effect they elicit. Certain success in the development of vaccines against a number of human viral infections, such as hepatitis B, cytomegalovirus and rotavirus, gives hope to successful completion of this research. Presumably, such vaccines will be safe and innocuous, simple in administration and capable of inducing both the systemic and local immune responses at the primary portal of viral infection.

  4. Vaccine safety monitoring systems in developing countries: an example of the Vietnam model.

    Science.gov (United States)

    Ali, Mohammad; Rath, Barbara; Thiem, Vu Dinh

    2015-01-01

    Only few health intervention programs have been as successful as vaccination programs with respect to preventing morbidity and mortality in developing countries. However, the success of a vaccination program is threatened by rumors and misunderstanding about the risks of vaccines. It is short-sighted to plan the introduction of vaccines into developing countries unless effective vaccine safety monitoring systems are in place. Such systems that track adverse events following immunization (AEFI) is currently lacking in most developing countries. Therefore, any rumor may affect the entire vaccination program. Public health authorities should implement the safety monitoring system of vaccines, and disseminate safety issues in a proactive mode. Effective safety surveillance systems should allow for the conduct of both traditional and alternative epidemiologic studies through the use of prospective data sets. The vaccine safety data link implemented in Vietnam in mid-2002 indicates that it is feasible to establish a vaccine safety monitoring system for the communication of vaccine safety in developing countries. The data link provided the investigators an opportunity to evaluate AEFI related to measles vaccine. Implementing such vaccine safety monitoring system is useful in all developing countries. The system should be able to make objective and clear communication regarding safety issues of vaccines, and the data should be reported to the public on a regular basis for maintaining their confidence in vaccination programs.

  5. Apicomplexan profilins in vaccine development applied to bovine neosporosis.

    Science.gov (United States)

    Mansilla, Florencia C; Capozzo, Alejandra V

    2017-12-01

    Neospora caninum, an intracellular protozoan parasite from the phylum Apicomplexa, is the etiologic agent of neosporosis, a disease considered as a major cause of reproductive loss in cattle and neuromuscular disease in dogs. Bovine neosporosis has a great economic impact in both meat and dairy industries, related to abortion, premature culling and reduced milk yields. Although many efforts have been made to restrain bovine neosporosis, there are still no efficacious control methods. Many vaccine-development studies focused in the apicomplexan proteins involved in the adhesion and invasion of the host cell. Among these proteins, profilins have recently emerged as potential vaccine antigens or even adjuvant candidates for several diseases caused by apicomplexan parasites. Profilins bind Toll-like receptors 11 and 12 initiating MyD88 signaling, that triggers IL-12 and IFN-γ production, which may promote protection against infection. Here we summarized the state-of-the-art of novel vaccine development based on apicomplexan profilins applied as antigens or adjuvants, and delved into recent advances on N. caninum vaccines using profilin in the mouse model and in cattle. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Ebola virus: immune mechanisms of protection and vaccine development.

    Science.gov (United States)

    Nyamathi, Adeline M; Fahey, John L; Sands, Heather; Casillas, Adrian M

    2003-04-01

    Vaccination is one of our most powerful antiviral strategies. Despite the emergence of deadly viruses such as Ebola virus, vaccination efforts have focused mainly on childhood communicable diseases. Although Ebola virus was once believed to be limited to isolated outbreaks in distant lands, forces of globalization potentiate outbreaks anywhere in the world through incidental transmission. Moreover, since this virus has already been transformed into weapon-grade material, the potential exists for it to be used as a biological weapon with catastrophic consequences for any population vulnerable to attack. Ebola hemorrhagic fever (EHF) is a syndrome that can rapidly lead to death within days of symptom onset. The disease directly affects the immune system and vascular bed, with correspondingly high mortality rates. Patients with severe disease produce dangerously high levels of inflammatory cytokines, which destroy normal tissue and microcirculation, leading to profound capillary leakage, renal failure, and disseminated intravascular coagulation. Vaccine development has been fraught with obstacles, primarily of a biosafety nature. Case reports of acutely ill patients with EHF showing improvement with the transfusion of convalescent plasma are at odds with animal studies demonstrating further viral replication with the same treatment. Using mRNA extracted from bone marrow of Ebola survivors, human monoclonal antibodies against Ebola virus surface protein have been experimentally produced and now raise the hope for the development of a safe vaccine.

  7. Humoral Immunity to Primary Smallpox Vaccination: Impact of Childhood versus Adult Immunization on Vaccinia Vector Vaccine Development in Military Populations.

    Science.gov (United States)

    Slike, Bonnie M; Creegan, Matthew; Marovich, Mary; Ngauy, Viseth

    2017-01-01

    Modified Vaccinia virus has been shown to be a safe and immunogenic vector platform for delivery of HIV vaccines. Use of this vector is of particular importance to the military, with the implementation of a large scale smallpox vaccination campaign in 2002 in active duty and key civilian personnel in response to potential bioterrorist activities. Humoral immunity to smallpox vaccination was previously shown to be long lasting (up to 75 years) and protective. However, using vaccinia-vectored vaccine delivery for other diseases on a background of anti-vector antibodies (i.e. pre-existing immunity) may limit their use as a vaccine platform, especially in the military. In this pilot study, we examined the durability of vaccinia antibody responses in adult primary vaccinees in a healthy military population using a standard ELISA assay and a novel dendritic cell neutralization assay. We found binding and neutralizing antibody (NAb) responses to vaccinia waned after 5-10 years in a group of 475 active duty military, born after 1972, who were vaccinated as adults with Dryvax®. These responses decreased from a geometric mean titer (GMT) of 250 to baseline (vaccination. This contrasted with a comparator group of adults, ages 35-49, who were vaccinated with Dryvax® as children. In the childhood vaccinees, titers persisted for >30 years with a GMT of 210 (range 112-3234). This data suggests limited durability of antibody responses in adult vaccinees compared to those vaccinated in childhood and further that adult vaccinia recipients may benefit similarly from receipt of a vaccinia based vaccine as those who are vaccinia naïve. Our findings may have implications for the smallpox vaccination schedule and support the ongoing development of this promising viral vector in a military vaccination program.

  8. Development of a VLP-based HCV vaccine candidate

    OpenAIRE

    Fernandes, Marina Isabel Ferreira

    2016-01-01

    Tese de mestrado, Biologia Molecular e Genética, Universidade de Lisboa, Faculdade de Ciências, 2016 The Hepatitis C Virus (HCV) infects approximately 3% of the world population, being one of the major causes of liver cirrhosis and hepatocellular carcinoma. The development of safe, effective and affordable prophylactic and therapeutic vaccines against HCV has become an important medical priority; however, there are many obstacles to its development. In recent years, strategies of viral ant...

  9. Roads to the development of improved pertussis vaccines paved by immunology

    Science.gov (United States)

    Brummelman, Jolanda; Wilk, Mieszko M.; Han, Wanda G.H.; van Els, Cécile A.C.M.; Mills, Kingston H.G.

    2015-01-01

    Current acellular pertussis vaccines have various shortcomings, which may contribute to their suboptimal efficacy and waning immunity in vaccinated populations. This calls for the development of new pertussis vaccines capable of inducing long-lived protective immunity. Immunization with whole cell pertussis vaccines and natural infection with Bordetella pertussis induce distinct and more protective immune responses when compared with immunization with acellular pertussis vaccines. Therefore, the immune responses induced with whole cell vaccine or after infection can be used as a benchmark for the development of third-generation vaccines against pertussis. Here, we review the literature on the immunology of B. pertussis infection and vaccination and discuss the lessons learned that will help in the design of improved pertussis vaccines. PMID:26347400

  10. Development, Production, and Postmarketing Surveillance of Hepatitis A Vaccines in China

    Science.gov (United States)

    Cui, Fuqiang; Liang, Xiaofeng; Wang, Fuzhen; Zheng, Hui; Hutin, Yvan J; Yang, Weizhong

    2014-01-01

    China has long experience using live attenuated and inactivated vaccines against hepatitis A virus (HAV) infection. We summarize this experience and provide recent data on adverse events after immunization (AEFIs) with hepatitis A vaccines in China. We reviewed the published literature (in Chinese and English) and the published Chinese regulatory documents on hepatitis A vaccine development, production, and postmarketing surveillance of AEFI. We described the safety, immunogenicity, and efficacy of hepatitis A vaccines and horizontal transmission of live HAV vaccine in China. In clinical trials, live HAV vaccine was associated with fever (0.4%–5% of vaccinees), rash (0%–1.1%), and elevated alanine aminotransferase (0.015%). Inactivated HAV vaccine was associated with fever (1%–8%), but no serious AEFIs were reported. Live HAV vaccine had seroconversion rates of 83% to 91%, while inactivated HAV vaccine had seroconversion rates of 95% to 100%. Community trials showed efficacy rates of 90% to 95% for live HAV and 95% to 100% for inactivated HAV vaccine. Postmarketing surveillance showed that HAV vaccination resulted in an AEFI incidence rate of 34 per million vaccinees, which accounted for 0.7% of adverse events reported to the China AEFI monitoring system. There was no difference in AEFI rates between live and inactivated HAV vaccines. Live and inactivated HAV vaccines manufactured in China were immunogenic, effective, and safe. Live HAV vaccine had substantial horizontal transmission due to vaccine virus shedding; thus, further monitoring of the safety of virus shedding is warranted. PMID:24681843

  11. Immune Response to Coccidioidomycosis and the Development of a Vaccine

    Directory of Open Access Journals (Sweden)

    Natalia Castro-Lopez

    2017-03-01

    Full Text Available Coccidioidomycosis is a fungal infection caused by Coccidioides posadasii and Coccidioides immitis. It is estimated that 150,000 new infections occur in the United States each year. The incidence of this infection continues to rise in endemic regions. There is an urgent need for the development of better therapeutic drugs and a vaccine against coccidioidomycosis. This review discusses the features of host innate and adaptive immune responses to Coccidioides infection. The focus is on the recent advances in the immune response and host-pathogen interactions, including the recognition of spherules by the host and defining the signal pathways that guide the development of the adaptive T-cell response to Coccidioides infection. Also discussed is an update on progress in developing a vaccine against these fungal pathogens.

  12. Laser In Veterinary Medicine

    Science.gov (United States)

    Newman, Carlton; Jaggar, David H.

    1982-12-01

    Lasers have been used for some time now on animals for experimental purposes prior to their use in human medical and surgical fields. However the use of lasers in veterinary medicine and surgery per se is a recent development. We describe the application of high and low intensity laser technology in a general overview of the current uses, some limitations to its use and future needs for future inquiry and development.

  13. [Veterinary dentistry: an update 2008].

    Science.gov (United States)

    van Foreest, Andries

    2008-12-01

    Rooted in human dentistry, veterinary dentistry has developed steadily in the Netherlands since the 1980s and is now recognized as an essential discipline of veterinary medicine. The availability of specialized tools and techniques has led to improved treatment outcomes and results, with the choice of treatment being largely determined by the functionality of the dentition and the costs involved. Domestic animals and horses with dental problems should be referred to dental veterinarians. The Working Group Veterinary Dentistry in the Netherlands is an association for skilled veterinarians with professional dental equipment at their disposal.

  14. Protein conjugate polysaccharide vaccines: Challenges in development and global implementation

    Directory of Open Access Journals (Sweden)

    Manisha Nair

    2012-01-01

    Replacement by nonvaccine serotypes;capsule switching;time duration of the antibody protective effect following vaccination;costs of the vaccines, programme costs, lack of knowledge of the disease burden, and targeting population groups for vaccination.

  15. Workshop report: Malaria vaccine development in Europe--preparing for the future.

    Science.gov (United States)

    Viebig, Nicola K; D'Alessio, Flavia; Draper, Simon J; Sim, B Kim Lee; Mordmüller, Benjamin; Bowyer, Paul W; Luty, Adrian J F; Jungbluth, Stefan; Chitnis, Chetan E; Hill, Adrian V S; Kremsner, Peter; Craig, Alister G; Kocken, Clemens H M; Leroy, Odile

    2015-11-17

    The deployment of a safe and effective malaria vaccine will be an important tool for the control of malaria and the reduction in malaria deaths. With the launch of the 2030 Malaria Vaccine Technology Roadmap, the malaria community has updated the goals and priorities for the development of such a vaccine and is now paving the way for a second phase of malaria vaccine development. During a workshop in Brussels in November 2014, hosted by the European Vaccine Initiative, key players from the European, North American and African malaria vaccine community discussed European strategies for future malaria vaccine development in the global context. The recommendations of the European malaria community should guide researchers, policy makers and funders of global health research and development in fulfilling the ambitious goals set in the updated Malaria Vaccine Technology Roadmap. Copyright © 2015.

  16. Mapping and analysis of West Nile virus-specific monoclonal antibodies: prospects for vaccine development

    NARCIS (Netherlands)

    Throsby, Mark; ter Meulen, Jan; Geuijen, Cecile; Goudsmit, Jaap; de Kruif, John

    2007-01-01

    Seasonal epidemics of West Nile virus (WNV) infection now occur throughout North America, causing clinical symptoms ranging from fever to encephalitis. There are no specific treatment options or licensed vaccines. Several classically developed vaccine candidates are being evaluated in clinical

  17. Development of Veterinary Anesthesia Simulations for Pre-Clinical Training: Design, Implementation, and Evaluation Based on Student Perspectives.

    Science.gov (United States)

    Jones, Jana L; Rinehart, Jim; Spiegel, Jacqueline Jordan; Englar, Ryane E; Sidaway, Brian K; Rowles, Joie

    2017-09-29

    Anesthesia simulations have been used in pre-clinical medical training for decades to help learners gain confidence and expertise in an operating room environment without danger to a live patient. The authors describe a veterinary anesthesia simulation environment (VASE) with anesthesia scenarios developed to provide a re-creation of a veterinarian's task environment while performing anesthesia. The VASE uses advanced computer technology with simulator inputs provided from standard monitoring equipment in common use during veterinary anesthesia and a commercial canine training mannequin that allows intubation, ventilation, and venous access. The simulation outputs are determined by a script that outlines routine anesthesia scenarios and describes the consequences of students' hands-on actions and interventions during preestablished anesthetic tasks and critical incidents. Patients' monitored physiologic parameters may be changed according to predetermined learner events and students' interventions to provide immediate learner feedback and clinical realism. A total of 96 students from the pre-clinical anesthesia course participated in the simulations and the pre- and post-simulation surveys evaluating students' perspectives. Results of the surveys and comparisons of overall categorical cumulative responses in the pre- and post-simulation surveys indicated improvement in learners' perceived preparedness and confidence as a result of the simulated anesthesia experience, with significant improvement in the strongly agree, moderately agree, and agree categories (p<.05 at a 95% CI). These results suggest that anesthesia simulations in the VASE may complement traditional teaching methods through experiential learning and may help foster classroom-to-clinic transference of knowledge and skills without harm to an animal.

  18. A potential disruptive technology in vaccine development: gene-based vaccines and their application to infectious diseases.

    Science.gov (United States)

    Kaslow, David C

    2004-10-01

    Vaccine development requires an amalgamation of disparate disciplines and has unique economic and regulatory drivers. Non-viral gene-based delivery systems, such as formulated plasmid DNA, are new and potentially disruptive technologies capable of providing 'cheaper, simpler, and more convenient-to-use' vaccines. Typically and somewhat ironically, disruptive technologies have poorer product performance, at least in the near-term, compared with the existing conventional technologies. Because successful product development requires that the product's performance must meet or exceed the efficacy threshold for a desired application, the appropriate selection of the initial product applications for a disruptive technology is critical for its successful evolution. In this regard, the near-term successes of gene-based vaccines will likely be for protection against bacterial toxins and acute viral and bacterial infections. Recent breakthroughs, however, herald increasing rather than languishing performance improvements in the efficacy of gene-based vaccines. Whether gene-based vaccines ultimately succeed in eliciting protective immunity in humans to persistent intracellular pathogens, such as HIV, malaria and tuberculosis, for which the conventional vaccine technologies have failed, remains to be determined. A success against any one of the persistent intracellular pathogens would be sufficient proof that gene-based vaccines represent a disruptive technology against which future vaccine technologies will be measured.

  19. Business models and opportunities for cancer vaccine developers.

    Science.gov (United States)

    Kudrin, Alex

    2012-10-01

    Despite of growing oncology pipeline, cancer vaccines contribute only to a minor share of total oncology-attributed revenues. This is mainly because of a limited number of approved products and limited sales from products approved under compassionate or via early access entry in smaller and less developed markets. However revenue contribution from these products is extremely limited and it remains to be established whether developers are breaking even or achieving profitability with existing sales. Cancer vaccine field is well recognized for high development costs and risks, low historical rates of investment return and high probability of failures arising in ventures, partnerships and alliances. The cost of reimbursement for new oncology agents is not universally acceptable to payers limiting the potential for a global expansion, market access and reducing probability of commercial success. In addition, the innovation in cancer immunotherapy is currently focused in small and mid-size biotech companies and academic institutions struggling for investment. Existing R&D innovation models are deemed unsustainable in current "value-for-money" oriented healthcare environment. New business models should be much more open to collaborative, networked and federated styles, which could help to outreach global, markets and increase cost-efficiencies across an entire value chain. Lessons learned from some developing countries and especially from South Korea illustrate that further growth of cancer vaccine industry will depends not only on new business models but also will heavily rely on regional support and initiatives from different bodies, such as governments, payers and regulatory bodies.

  20. Development of malaria vaccines that block transmission of parasites by mosquito vectors

    OpenAIRE

    Hisaeda, Hajime; Yasutomo, Koji

    2002-01-01

    Malaria is still one of the infectious diseases urgently requiring control and causes socioeconomic burdens on people residing in developing countries. Malaria vaccines are expected to control the disease. However, there is no effective vaccine available despite the intense efforts of malaria scientists. One strategy for a malaria vaccine is to prevent parasite spread by means of interfering with parasite development in mosquito vectors, which is the so-called transmission-blocking vaccine (T...

  1. Recent developments in nanocarrier-aided mucosal vaccination.

    Science.gov (United States)

    Kammona, Olga; Bourganis, Vassilis; Karamanidou, Theodora; Kiparissides, Costas

    2017-05-01

    To date, most of the licensed vaccines for mucosal delivery are based on live-attenuated viruses which carry the risk of regaining their pathogenicity. Therefore, the development of efficient nonviral vectors allowing the induction of potent humoral and cell-mediated immunity is regarded as an imperative scientific challenge as well as a commercial breakthrough for the pharma industries. For a successful translation to the clinic, such nanocarriers should protect the antigens from mucosal enzymes, facilitate antigen uptake by microfold cells and allow the copresentation of robust, safe for human use, mucosal adjuvants to antigen-presenting cells. Finally, the developed formulations should exhibit accuracy regarding the administered dose, a major drawback of mucosal vaccines in comparison with parenteral ones.

  2. Comparative Pathogenesis and Systems Biology for Biodefense Virus Vaccine Development

    Directory of Open Access Journals (Sweden)

    Gavin C. Bowick

    2010-01-01

    Full Text Available Developing vaccines to biothreat agents presents a number of challenges for discovery, preclinical development, and licensure. The need for high containment to work with live agents limits the amount and types of research that can be done using complete pathogens, and small markets reduce potential returns for industry. However, a number of tools, from comparative pathogenesis of viral strains at the molecular level to novel computational approaches, are being used to understand the basis of viral attenuation and characterize protective immune responses. As the amount of basic molecular knowledge grows, we will be able to take advantage of these tools not only to rationally attenuate virus strains for candidate vaccines, but also to assess immunogenicity and safety in silico. This review discusses how a basic understanding of pathogenesis, allied with systems biology and machine learning methods, can impact biodefense vaccinology.

  3. Three-year duration of immunity in cats vaccinated with a canarypox-vectored recombinant rabies virus vaccine.

    Science.gov (United States)

    Jas, D; Coupier, C; Toulemonde, C Edlund; Guigal, P-M; Poulet, H

    2012-11-19

    Despite the availability of efficacious vaccines for animals and humans, rabies is still a major zoonosis. Prevention of rabies in dogs and cats is key for reducing the risk of transmission of this deadly disease to humans. Most veterinary vaccines are adjuvanted inactivated vaccines and have been shown to provide one to four-year duration of immunity. In response to debates about the safety of adjuvanted vaccines in cats, a non-adjuvanted feline rabies vaccine with one-year duration of immunity claim was specifically developed using the canarypoxvirus vector technology. The objective of this study was to validate a vaccination program based on primary vaccination, revaccination one year later and boosters every three years. Seronegative cats were vaccinated at 12 weeks of age and received a booster vaccination one year later. This vaccination regimen induced a strong and sustained antibody response, and all vaccinated animals were protected against virulent rabies challenge carried out 3 years after vaccination. These results validated 3-year duration of immunity after a complete basic vaccination program consisting in primary vaccination from 12 weeks of age followed by revaccination one year later with a non-adjuvanted canarypox-vectored vaccine. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Malaria vaccine research and development: the role of the WHO MALVAC committee

    Science.gov (United States)

    2013-01-01

    The WHO Malaria Vaccine Advisory Committee (MALVAC) provides advice to WHO on strategic priorities, activities and technical issues related to global efforts to develop vaccines against malaria. MALVAC convened a series of meetings to obtain expert, impartial consensus views on the priorities and best practice for vaccine-related research and development strategies. The technical areas covered during these consultations included: guidance on clinical trial design for candidate sporozoite and asexual blood stage vaccines; measures of efficacy of malaria vaccines in Phase IIb and Phase III trials; standardization of immunoassays; the challenges of developing assays and designing trials for interventions against malaria transmission; modelling impact of anti-malarial interventions; whole organism malaria vaccines, and Plasmodium vivax vaccine-related research and evaluation. These informed discussions and opinions are summarized here to provide guidance on harmonization of strategies to help ensure high standards of practice and comparability between centres and the outcome of vaccine trials. PMID:24112689

  5. The history of veterinary medicine in Namibia

    Directory of Open Access Journals (Sweden)

    Herbert P. Schneider

    2012-04-01

    Full Text Available Until the middle of the 19th century, very few references exist regarding the occurrence of animal diseases in Namibia. With the introduction of contagious bovine pleuropneumonia (CBPP in 1859, this picture changed completely and livestock owners implemented various forms of disease control in an effort to contain the spread of this disease and minimise its devastating effects. After the establishment of the colonial administration in 1884, the first animal disease legislation was introduced in 1887 and the first veterinarian, Dr Wilhelm Rickmann, arrived in 1894. CBPP and the outbreak of rinderpest in 1897 necessitated a greatly expanded veterinary infrastructure and the first veterinary laboratory was erected at Gammams near Windhoek in 1897. To prevent the spread of rinderpest, a veterinary cordon line was established, which was the very beginning of the Veterinary Cordon Fence as it is known today. After the First World War, a small but dedicated corps of veterinarians again built up an efficient animal health service in the following decades, with veterinary private practice developing from the mid–1950s. The veterinary profession organised itself in 1947 in the form of a veterinary association and, in 1984, legislation was passed to regulate the veterinary profession by the establishment of the Veterinary Council of Namibia. The outbreak of foot and mouth disease in 1961 was instrumental in the creation of an effective veterinary service, meeting international veterinary standards of quality and performance which are still maintained today.

  6. The history of veterinary medicine in Namibia.

    Science.gov (United States)

    Schneider, Herbert P

    2012-05-16

    Until the middle of the 19th century, very few references exist regarding the occurrence of animal diseases in Namibia. With the introduction of contagious bovine pleuropneumonia (CBPP) in 1859, this picture changed completely and livestock owners implemented various forms of disease control in an effort to contain the spread of this disease and minimise its devastating effects. After the establishment of the colonial administration in 1884, the first animal disease legislation was introduced in 1887 and the first veterinarian, Dr Wilhelm Rickmann, arrived in 1894. CBPP and the outbreak of rinderpest in 1897 necessitated a greatly expanded veterinary infrastructure and the first veterinary laboratory was erected at Gammams near Windhoek in 1897. To prevent the spread of rinderpest, a veterinary cordon line was established, which was the very beginning of the Veterinary Cordon Fence as it is known today. After the First World War, a small but dedicated corps of veterinarians again built up an efficient animal health service in the following decades, with veterinary private practice developing from the mid-1950s. The veterinary profession organised itself in 1947 in the form of a veterinary association and, in 1984, legislation was passed to regulate the veterinary profession by the establishment of the Veterinary Council of Namibia. The outbreak of foot and mouth disease in 1961 was instrumental in the creation of an effective veterinary service, meeting international veterinary standards of quality and performance which are still maintained today.

  7. Transmission blocking malaria vaccines: Assays and candidates in clinical development.

    Science.gov (United States)

    Sauerwein, R W; Bousema, T

    2015-12-22

    Stimulated by recent advances in malaria control and increased funding, the elimination of malaria is now considered to be an attainable goal for an increasing number of malaria-endemic regions. This has boosted the interest in transmission-reducing interventions including vaccines that target sexual, sporogenic, and/or mosquito-stage antigens to interrupt malaria transmission (SSM-VIMT). SSM-VIMT aim to prevent human malaria infection in vaccinated communities by inhibiting parasite development within the mosquito after a blood meal taken from a gametocyte carrier. Only a handful of target antigens are in clinical development and progress has been slow over the years. Major stumbling blocks include (i) the expression of appropriately folded target proteins and their downstream purification, (ii) insufficient induction of sustained functional blocking antibody titers by candidate vaccines in humans, and (iii) validation of a number of (bio)-assays as correlate for blocking activity in the field. Here we discuss clinical manufacturing and testing of current SSM-VIMT candidates and the latest bio-assay development for clinical evaluation. New testing strategies are discussed that may accelerate the evaluation and application of SSM-VIMT. Copyright © 2015. Published by Elsevier Ltd.

  8. Controlled human infection models for vaccine development: Zika virus debate.

    Science.gov (United States)

    Gopichandran, Vijayaprasad

    2017-10-31

    An ethics panel, convened by the National Institute of Health and other research bodies in the USA, disallowed researchers from the Johns Hopkins University and University of Vermont from performing controlled human infection of healthy volunteers to develop a vaccine against Zika virus infection. The members published their ethical analysis and recommendations in February 2017. They have elaborated on the risks posed by human challenge with Zika virus to the volunteers and other uninvolved third parties and have systematically analysed the social value of such a human challenge experiment. They have also posited some mandatory ethical requirements which should be met before allowing the infection of healthy volunteers with the Zika virus. This commentary elaborates on the debate on the ethics of the human challenge model for the development of a Zika virus vaccine and the role of systematic ethical analysis in protecting the interests of research participants. It further analyses the importance of this debate to the development of a Zika vaccine in India.

  9. NIGERIAN VETERINARY JOURNAL

    African Journals Online (AJOL)

    ADEYEYE

    Nigerian Veterinary Journal 37(3). 2016. Okorie-Kanu et al. 160. NIGERIAN VETERINARY JOURNAL. ISSN 0331-3026. Nig. Vet. J., September 2016. Vol. 37 (3): ... Nigeria; 3Department of Veterinary Pathology and Microbiology, University of Nigeria, Nsukka, Enugu state,. Nigeria. ...... (ASVCP), International Veterinary.

  10. NIGERIAN VETERINARY JOURNAL

    African Journals Online (AJOL)

    ADEYEYE

    1Department of Veterinary Anatomy, Faculty of Veterinary Medicine, University of Ibadan, Nigeria.. 2Department of Veterinary Anatomy, College of Veterinary Medicine, Federal University of Abeokuta, Ogun State,. Nigeria. *Corresponding Authors: .... medial and lateral canthi of each eye. Philtrum Height (PH). Measured ...

  11. NIGERIAN VETERINARY JOURNAL

    African Journals Online (AJOL)

    ADEYEYE

    2000-07-02

    Jul 2, 2000 ... Nigerian Veterinary Journal 36(4). 2015. Owoyemi et al. 1341. NIGERIAN VETERINARY JOURNAL. ISSN 0331-3026. Nig. Vet. J., December 2015 ... medicine, 3Department of Veterinary Anatomy, Faculty of Veterinary Medicine, University of Ibadan, Nigeria. .... in wound or burn healing, internal intake of.

  12. Vaccinations

    Science.gov (United States)

    ... disease — reinforcing the importance of vaccines in your pet's preventive health care program. Are there risks? Any treatment carries some risk, but these risks should be weighed against the benefits of protecting your pet from potentially fatal diseases. ...

  13. Stem cells in veterinary medicine

    OpenAIRE

    Fortier, Lisa A; Travis, Alexander J

    2011-01-01

    The stem cell field in veterinary medicine continues to evolve rapidly both experimentally and clinically. Stem cells are most commonly used in clinical veterinary medicine in therapeutic applications for the treatment of musculoskeletal injuries in horses and dogs. New technologies of assisted reproduction are being developed to apply the properties of spermatogonial stem cells to preserve endangered animal species. The same methods can be used to generate transgenic animals for production o...

  14. Vaccine hesitancy

    Science.gov (United States)

    Dubé, Eve; Laberge, Caroline; Guay, Maryse; Bramadat, Paul; Roy, Réal; Bettinger, Julie A.

    2013-01-01

    Despite being recognized as one of the most successful public health measures, vaccination is perceived as unsafe and unnecessary by a growing number of individuals. Lack of confidence in vaccines is now considered a threat to the success of vaccination programs. Vaccine hesitancy is believed to be responsible for decreasing vaccine coverage and an increasing risk of vaccine-preventable disease outbreaks and epidemics. This review provides an overview of the phenomenon of vaccine hesitancy. First, we will characterize vaccine hesitancy and suggest the possible causes of the apparent increase in vaccine hesitancy in the developed world. Then we will look at determinants of individual decision-making about vaccination. PMID:23584253

  15. Intellectual property rights and challenges for development of affordable human papillomavirus, rotavirus and pneumococcal vaccines: Patent landscaping and perspectives of developing country vaccine manufacturers.

    Science.gov (United States)

    Chandrasekharan, Subhashini; Amin, Tahir; Kim, Joyce; Furrer, Eliane; Matterson, Anna-Carin; Schwalbe, Nina; Nguyen, Aurélia

    2015-11-17

    The success of Gavi, the Vaccine Alliance depends on the vaccine markets providing appropriate, affordable vaccines at sufficient and reliable quantities. Gavi's current supplier base for new and underutilized vaccines, such as the human papillomavirus (HPV), rotavirus, and the pneumococcal conjugate vaccine is very small. There is growing concern that following globalization of laws on intellectual property rights (IPRs) through trade agreements, IPRs are impeding new manufacturers from entering the market with competing vaccines. This article examines the extent to which IPRs, specifically patents, can create such obstacles, in particular for developing country vaccine manufacturers (DCVMs). Through building patent landscapes in Brazil, China, and India and interviews with manufacturers and experts in the field, we found intense patenting activity for the HPV and pneumococcal vaccines that could potentially delay the entry of new manufacturers. Increased transparency around patenting of vaccine technologies, stricter patentability criteria suited for local development needs and strengthening of IPRs management capabilities where relevant, may help reduce impediments to market entry for new manufacturers and ensure a competitive supplier base for quality vaccines at sustainably low prices. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Recent developments in mucosal vaccines against prion diseases.

    Science.gov (United States)

    Sakaguchi, Suehiro; Arakawa, Takeshi

    2007-02-01

    Bovine spongiform encephalopathy in cattle is highly suspected to be orally transmitted to humans through contaminated food, causing new variant Creutzfeldt-Jakob disease. However, no prophylactic procedures against these diseases, such as vaccines, in particular those stimulating mucosal protective immunity, have been established. The causative agents of these diseases, termed prions, consist of the host-encoded prion protein (PrP). Therefore, prions are immunologically tolerated, inducing no host antibody responses. This immune tolerance to PrP has hampered the development of vaccines against prions. We and others recently reported that the immune tolerance could be successfully broken and mucosal immunity could be stimulated by mucosal immunization of mice with PrP fused with bacterial enterotoxin or delivered using an attenuated Salmonella strain, eliciting significantly higher immunoglobulin A and G antibody responses against PrP. In this review, we will discuss these reports.

  17. New live mycobacterial vaccines: the Geneva consensus on essential steps towards clinical development

    NARCIS (Netherlands)

    Kamath, A.T.; Fruth, U.; Brennan, M.; Dobbelaer, R.; Hubrechts, P.; Ho, M.M.; Mayner, R.E.; Thole, J.E.R.; Walker, K.B.; Liu, C.M.; Lambert, P.H.

    2005-01-01

    As the disease caused by Mycobacterium tuberculosis continues to be a burden, which the world continues to suffer, there is a concerted effort to find new vaccines to combat this problem. Of the various vaccines strategies, one viable option is the development of live mycobacterial vaccines. A

  18. Development and evaluation of a potential universal Salmonella-vectored avian influenza vaccine

    Science.gov (United States)

    Development of vaccines for effective control of avian influenza (AI) virus in poultry and wild birds is in high demand. Most AI vaccines target the immunodominant antigens such as hemagglutinin (HA) and neuraminidase (NA); however, these vaccines only provide protection against a particular AI ser...

  19. Humoral Immunity to Primary Smallpox Vaccination: Impact of Childhood versus Adult Immunization on Vaccinia Vector Vaccine Development in Military Populations.

    Directory of Open Access Journals (Sweden)

    Bonnie M Slike

    Full Text Available Modified Vaccinia virus has been shown to be a safe and immunogenic vector platform for delivery of HIV vaccines. Use of this vector is of particular importance to the military, with the implementation of a large scale smallpox vaccination campaign in 2002 in active duty and key civilian personnel in response to potential bioterrorist activities. Humoral immunity to smallpox vaccination was previously shown to be long lasting (up to 75 years and protective. However, using vaccinia-vectored vaccine delivery for other diseases on a background of anti-vector antibodies (i.e. pre-existing immunity may limit their use as a vaccine platform, especially in the military. In this pilot study, we examined the durability of vaccinia antibody responses in adult primary vaccinees in a healthy military population using a standard ELISA assay and a novel dendritic cell neutralization assay. We found binding and neutralizing antibody (NAb responses to vaccinia waned after 5-10 years in a group of 475 active duty military, born after 1972, who were vaccinated as adults with Dryvax®. These responses decreased from a geometric mean titer (GMT of 250 to baseline (30 years with a GMT of 210 (range 112-3234. This data suggests limited durability of antibody responses in adult vaccinees compared to those vaccinated in childhood and further that adult vaccinia recipients may benefit similarly from receipt of a vaccinia based vaccine as those who are vaccinia naïve. Our findings may have implications for the smallpox vaccination schedule and support the ongoing development of this promising viral vector in a military vaccination program.

  20. Deinococcus Mn2+ -Peptide Complex: A Novel Approach to Alphavirus Vaccine Development

    Science.gov (United States)

    2016-08-05

    results suggest that this approach can easily be extended to any pathogen of interest. Introduction The discovery and commercial development of a...household products. An irradiated-cryopreserved malaria vaccine, PfSPZ, is also currently under clinical trials [13]. Yet, the long-standing tenet of...sporozoite malaria vaccine. Vaccine. 2009;27(27):3675-80. Epub 2008/12/17. doi: 10.1016/j.vaccine.2008.11.073. PubMed PMID: 19071177. 9. Carpenter CM

  1. Governance, veterinary legislation and quality.

    Science.gov (United States)

    Petitclerc, M

    2012-08-01

    This review of governance distinguishes between ends and means and, by highlighting the complexity and differing definitions of the concept, defines its scope and focuses discussion on its characteristics in order to establish an interrelationship between veterinary legislation and governance. Good governance must be backed by legislation, and good legislation must incorporate the principles and instruments of good governance. This article lists some of the main characteristics of governance and then reviews them in parallel with the methodology used to draft veterinary legislation, emphasising the importance of goal-setting and stakeholder participation. This article describes the criteria developed by the Veterinary Legislation Support Programme (VLSP) of the World Organisation for Animal Health (OIE) for assessing the quality of veterinary legislation. It then makes a comparison between the quality assurance process and the good governance process in order to demonstrate that the introduction and proper use of the tools for developing veterinary legislation offered by the OIE VLSP leads to a virtuous circle linking legislation with good governance. Ultimately, the most important point remains the implementation of legislation. Consequently, the author points out that satisfactory implementation relies not only on legislation that is technically and legally appropriate, acceptable, applicable, sustainable, correctly drafted, well thought through and designed for the long term, but also on the physical and legal capacity of official Veterinary Services to perform their administrative and enforcement duties, and on there being the means available for all those involved to discharge their responsibilities.

  2. Veterinary clinical pathologists in the biopharmaceutical industry.

    Science.gov (United States)

    Schultze, A Eric; Bounous, Denise I; Bolliger, Anne Provencher

    2008-06-01

    There is an international shortage of veterinary clinical pathologists in the workplace. Current trainees in veterinary clinical pathology may choose to pursue careers in academe, diagnostic laboratories, government health services, biopharmaceutical companies, or private practice. Academic training programs attempt to provide trainees with an exposure to several career choices. However, due to the proprietary nature of much of the work in the biopharmaceutical industry, trainees may not be fully informed regarding the nature of work for veterinary clinical pathologists and the myriad opportunities that await employment in the biopharmaceutical industry. The goals of this report are to provide trainees in veterinary clinical pathology and other laboratory personnel with an overview of the work-life of veterinary clinical pathologists employed in the biopharmaceutical industry, and to raise the profile of this career choice for those seeking to enter the workforce. Biographical sketches, job descriptions, and motivation for 3 successful veterinary clinical pathologists employed in the biopharmaceutical industry are provided. Current and past statistics for veterinary clinical pathologists employed in the biopharmaceutical industry are reviewed. An overview of the drug development process and involvement of veterinary clinical pathologists in the areas of discovery, lead optimization, and candidate evaluation are discussed. Additional duties for veterinary clinical pathologists employed in the biopharmaceutical industry include development of biomarkers and new technologies, service as scientific resources, diagnostic support services, and laboratory management responsibilities. There are numerous opportunities available for trainees in veterinary clinical pathology to pursue employment in the biopharmaceutical industry and enjoy challenging and rewarding careers.

  3. [Travelers' vaccines].

    Science.gov (United States)

    Ouchi, Kazunobu

    2011-09-01

    The number of Japanese oversea travelers has gradually increased year by year, however they usually pay less attention to the poor physical condition at the voyage place. Many oversea travelers caught vaccine preventable diseases in developing countries. The Vaccine Guideline for Oversea Travelers 2010 published by Japanese Society of Travel Health will be helpful for spreading the knowledge of travelers' vaccine and vaccine preventable diseases in developing countries. Many travelers' vaccines have not licensed in Japan. I hope these travelers' vaccines, such as typhoid vaccine, meningococcal vaccine, cholera vaccine and so on will be licensed in the near future.

  4. Manufacturing costs of HPV vaccines for developing countries.

    Science.gov (United States)

    Clendinen, Chaevia; Zhang, Yapei; Warburton, Rebecca N; Light, Donald W

    2016-11-21

    Nearly all of the 500,000 new cases of cervical cancer and 270,000 deaths occur in middle or lower income countries. Yet the two most prevalent HPV vaccines are unaffordable to most. Even prices to Gavi, the Vaccine Alliance, are unaffordable to graduating countries, once they lose Gavi subsidies. Merck and Glaxosmithkline (GSK) claim their prices to Gavi equal their manufacturing costs; but these costs remain undisclosed. We undertook this investigation to estimate those costs. Searches in published and commercial literature for information about the manufacturing of these vaccines. Interviews with experts in vaccine manufacturing. This detailed sensitivity analysis, based on the best available evidence, finds that after a first set of batches for affluent markets, manufacturing costs of Gardasil for developing countries range between $0.48 and $0.59 a dose, a fraction of its alleged costs of $4.50. Because volume of Cervarix is low, its per unit costs are much higher, though at comparable volumes, its costs would be similar. Given the recovery of fixed and annual costs from sales in affluent markets, Merck's break-even price to Gavi could be $0.50-$0.60, not $4.50. These savings could support Gavi programs to strengthen delivery and increase coverage. Outside Gavi, prices to lower- and middle-income countries, with profit, could also be lowered and made available to millions more adolescents at risk. These estimates and their policy implications deserve further discussion. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Human-animal chimeras for vaccine development: an endangered species or opportunity for the developing world?

    Directory of Open Access Journals (Sweden)

    Daar Abdallah S

    2010-05-01

    Full Text Available Abstract Background In recent years, the field of vaccines for diseases such as Human Immunodeficiency Virus (HIV which take a heavy toll in developing countries has faced major failures. This has led to a call for more basic science research, and development as well as evaluation of new vaccine candidates. Human-animal chimeras, developed with a 'humanized' immune system could be useful to study infectious diseases, including many neglected diseases. These would also serve as an important tool for the efficient testing of new vaccine candidates to streamline promising candidates for further trials in humans. However, developing human-animal chimeras has proved to be controversial. Discussion Development of human-animal chimeras for vaccine development has been slowed down because of opposition by some philosophers, ethicists and policy makers in the west-they question the moral status of such animals, and also express discomfort about transgression of species barriers. Such opposition often uses a contemporary western world view as a reference point. Human-animal chimeras are often being created for diseases which cause significantly higher morbidity and mortality in the developing world as compared to the developed world. We argue in our commentary that given this high disease burden, we should look at socio-cultural perspectives on human-animal chimera like beings in the developing world. On examination, it's clear that such beings have been part of mythology and cultural descriptions in many countries in the developing world. Summary To ensure that important research on diseases afflicting millions like malaria, HIV, Hepatitis-C and dengue continues to progress, we recommend supporting human-animal chimera research for vaccine development in developing countries (especially China and India which have growing technical expertise in the area. The negative perceptions in some parts of the west about human-animal chimeras can be used as an

  6. Human-animal chimeras for vaccine development: an endangered species or opportunity for the developing world?

    Science.gov (United States)

    Bhan, Anant; Singer, Peter A; Daar, Abdallah S

    2010-05-19

    In recent years, the field of vaccines for diseases such as Human Immunodeficiency Virus (HIV) which take a heavy toll in developing countries has faced major failures. This has led to a call for more basic science research, and development as well as evaluation of new vaccine candidates. Human-animal chimeras, developed with a 'humanized' immune system could be useful to study infectious diseases, including many neglected diseases. These would also serve as an important tool for the efficient testing of new vaccine candidates to streamline promising candidates for further trials in humans. However, developing human-animal chimeras has proved to be controversial. Development of human-animal chimeras for vaccine development has been slowed down because of opposition by some philosophers, ethicists and policy makers in the west-they question the moral status of such animals, and also express discomfort about transgression of species barriers. Such opposition often uses a contemporary western world view as a reference point. Human-animal chimeras are often being created for diseases which cause significantly higher morbidity and mortality in the developing world as compared to the developed world. We argue in our commentary that given this high disease burden, we should look at socio-cultural perspectives on human-animal chimera like beings in the developing world. On examination, it's clear that such beings have been part of mythology and cultural descriptions in many countries in the developing world. To ensure that important research on diseases afflicting millions like malaria, HIV, Hepatitis-C and dengue continues to progress, we recommend supporting human-animal chimera research for vaccine development in developing countries (especially China and India which have growing technical expertise in the area). The negative perceptions in some parts of the west about human-animal chimeras can be used as an opportunity for nurturing important vaccine development

  7. One world of veterinary medicine.

    Science.gov (United States)

    King, L J

    2009-08-01

    The veterinary profession finds itself in the midst of a new world order. Today veterinarians are part of a world that is exquisitely interconnected culturally, economically, socially, and professionally. As a consequence, societal needs and expectations of the profession are more demanding, critical and far-reaching. Veterinarians must play important roles in five intersecting domains of work: public health, bio-medical research, global food safety and security, ecosystem health and the more traditional role of caring for animals. To be successful in this broad and complex range of services and activities, veterinarians must possess an expanded knowledge base, acquire new skills, and develop a new mindset that will ensure their success and excellence in all these domains. The veterinary profession is becoming more fragmented and specialised, and it needs to be brought back together by a single sphere of knowledge or discipline that can serve as an intellectual foundation. The concept of One World of Veterinary Medicine can do just that. With this mindset veterinarians will become better connected to the world around and gain new public recognition and esteem. To achieve this, a special commitment by academic veterinary medicine is, of course, essential. Veterinary schools must lead an educational transformation that reaffirms the social contract of veterinarians and works to align diverse sectors, build a global community, find a common purpose and expand the 21st Century veterinary portfolio of services, activities, and new possibilities.

  8. Oral Vaccine Development by Molecular Display Methods Using Microbial Cells.

    Science.gov (United States)

    Shibasaki, Seiji; Ueda, Mitsuyoshi

    2016-01-01

    Oral vaccines are easier to administer than injectable vaccines. To induce an adequate immune response using vaccines, antigenic proteins are usually combined with adjuvant materials. This chapter presents methodologies for the design of oral vaccines using molecular display technology. In molecular display technology, antigenic proteins are displayed on a microbial cell surface with adjuvant ability. This technology would provide a quite convenient process to produce oral vaccines when the DNA sequence of an efficient antigenic protein is available. As an example, oral vaccines against candidiasis were introduced using two different molecular display systems with Saccharomyces cerevisiae and Lactobacillus casei.

  9. Updates on the web-based VIOLIN vaccine database and analysis system.

    Science.gov (United States)

    He, Yongqun; Racz, Rebecca; Sayers, Samantha; Lin, Yu; Todd, Thomas; Hur, Junguk; Li, Xinna; Patel, Mukti; Zhao, Boyang; Chung, Monica; Ostrow, Joseph; Sylora, Andrew; Dungarani, Priya; Ulysse, Guerlain; Kochhar, Kanika; Vidri, Boris; Strait, Kelsey; Jourdian, George W; Xiang, Zuoshuang

    2014-01-01

    The integrative Vaccine Investigation and Online Information Network (VIOLIN) vaccine research database and analysis system (http://www.violinet.org) curates, stores, analyses and integrates various vaccine-associated research data. Since its first publication in NAR in 2008, significant updates have been made. Starting from 211 vaccines annotated at the end of 2007, VIOLIN now includes over 3240 vaccines for 192 infectious diseases and eight noninfectious diseases (e.g. cancers and allergies). Under the umbrella of VIOLIN, >10 relatively independent programs are developed. For example, Protegen stores over 800 protective antigens experimentally proven valid for vaccine development. VirmugenDB annotated over 200 'virmugens', a term coined by us to represent those virulence factor genes that can be mutated to generate successful live attenuated vaccines. Specific patterns were identified from the genes collected in Protegen and VirmugenDB. VIOLIN also includes Vaxign, the first web-based vaccine candidate prediction program based on reverse vaccinology. VIOLIN collects and analyzes different vaccine components including vaccine adjuvants (Vaxjo) and DNA vaccine plasmids (DNAVaxDB). VIOLIN includes licensed human vaccines (Huvax) and veterinary vaccines (Vevax). The Vaccine Ontology is applied to standardize and integrate various data in VIOLIN. VIOLIN also hosts the Ontology of Vaccine Adverse Events (OVAE) that logically represents adverse events associated with licensed human vaccines.

  10. Immunogenicity of HPV prophylactic vaccines: Serology assays and their use in HPV vaccine evaluation and development.

    Science.gov (United States)

    Pinto, Ligia A; Dillner, Joakim; Beddows, Simon; Unger, Elizabeth R

    2018-01-17

    When administered as standard three-dose schedules, the licensed HPV prophylactic vaccines have demonstrated extraordinary immunogenicity and efficacy. We summarize the immunogenicity of these licensed vaccines and the most commonly used serology assays, with a focus on key considerations for one-dose vaccine schedules. Although immune correlates of protection against infection are not entirely clear, both preclinical and clinical evidence point to neutralizing antibodies as the principal mechanism of protection. Thus, immunogenicity assessments in vaccine trials have focused on measurements of antibody responses to the vaccine. Non-inferiority of antibody responses after two doses of HPV vaccines separated by 6 months has been demonstrated and this evidence supported the recent WHO recommendations for two-dose vaccination schedules in both boys and girls 9-14 years of age. There is also some evidence suggesting that one dose of HPV vaccines may provide protection similar to the currently recommended two-dose regimens but robust data on efficacy and immunogenicity of one-dose vaccine schedules are lacking. In addition, immunogenicity has been assessed and reported using different methods, precluding direct comparison of results between different studies and vaccines. New head-to-head vaccine trials evaluating one-dose immunogenicity and efficacy have been initiated and an increase in the number of trials relying on immunobridging is anticipated. Therefore, standardized measurement and reporting of immunogenicity for the up to nine HPV types targeted by the current vaccines is now critical. Building on previous HPV serology assay standardization and harmonization efforts initiated by the WHO HPV LabNet in 2006, new secondary standards, critical reference reagents and testing guidelines will be generated as part of a new partnership to facilitate harmonization of the immunogenicity testing in new HPV vaccine trials. Copyright © 2018 Elsevier Ltd. All rights

  11. Developing Universal Influenza Vaccines: Hitting the Nail, Not Just on the Head

    Directory of Open Access Journals (Sweden)

    Lidewij C. M. Wiersma

    2015-03-01

    Full Text Available Influenza viruses have a huge impact on public health. Current influenza vaccines need to be updated annually and protect poorly against antigenic drift variants or novel emerging subtypes. Vaccination against influenza can be improved in two important ways, either by inducing more broadly protective immune responses or by decreasing the time of vaccine production, which is relevant especially during a pandemic outbreak. In this review, we outline the current efforts to develop so-called “universal influenza vaccines”, describing antigens that may induce broadly protective immunity and novel vaccine production platforms that facilitate timely availability of vaccines.

  12. Developing Universal Influenza Vaccines: Hitting the Nail, Not Just on the Head

    Science.gov (United States)

    Wiersma, Lidewij C. M.; Rimmelzwaan, Guus F.; de Vries, Rory D.

    2015-01-01

    Influenza viruses have a huge impact on public health. Current influenza vaccines need to be updated annually and protect poorly against antigenic drift variants or novel emerging subtypes. Vaccination against influenza can be improved in two important ways, either by inducing more broadly protective immune responses or by decreasing the time of vaccine production, which is relevant especially during a pandemic outbreak. In this review, we outline the current efforts to develop so-called “universal influenza vaccines”, describing antigens that may induce broadly protective immunity and novel vaccine production platforms that facilitate timely availability of vaccines. PMID:26343187

  13. Development of antifertility vaccine using sperm specific proteins

    Directory of Open Access Journals (Sweden)

    A H Bandivdekar

    2014-01-01

    Full Text Available Sperm proteins are known to be associated with normal fertilization as auto- or iso-antibodies to these proteins may cause infertility. Therefore, sperm proteins have been considered to be the potential candidate for the development of antifertility vaccine. Some of the sperm proteins proved to be promising antigens for contraceptive vaccine includes lactate dehydrogenase (LDH-C4, protein hyaluronidase (PH-20, and Eppin. Immunization with LDH-C4 reduced fertility in female baboons but not in female cynomolgus macaques. Active immunization with PH-20 resulted in 100 per cent inhibition of fertility in male guinea pigs but it induced autoimmune orchitis. Immunization with Eppin elicited high antibody titres in 78 per cent of immunized monkeys and induced infertility but the immunopathological effect of immunization was not examined. Human sperm antigen (80kDa HSA is a sperm specific, highly immunogenic and conserved sperm protein. Active immunization with 80kDa HSA induced immunological infertility in male and female rats. Partial N-terminal amino acid sequence of 80kDa HSA (Peptide NT and its peptides (Peptides 1, 2, 3 and 4 obtained by enzymatic digestion did not show homology with any of the known proteins in gene bank. Peptides NT, 1, 2 and 4 were found to mimic immunobiological activity of native protein. Passive administration of antibodies to peptides NT, 1, 2 and 4 induced infertility in male and female rats and peptide 1 was found to be most effective in suppressing fertility. Active immunization with keyhole limpet haemocynin (KLH conjugated synthetic peptide 1 impaired fertility in all the male rabbits and six of the seven male marmosets. The fertility was restored following decline in antibody titre. All these findings on 80kDA HAS suggest that the synthetic Peptide-1 of 80kDa HSA is the promising candidate for development of male contraceptive vaccine.

  14. Welcome to Veterinary Medicine: Research and Reports

    Directory of Open Access Journals (Sweden)

    Musser JMB

    2011-09-01

    Full Text Available Musser Jeffrey MBDepartment of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, TX, USAThis year marks the 250th anniversary of the Royal Veterinary School in Lyon, France, the world's first veterinary college. Since its inception, many changes have occurred in veterinary medicine such as views on education and didactic learning, demographics of our profession, and standards of practice in animal husbandry, medicine, surgery, anesthesia, and vaccinology. In fact, the concept of infectious diseases has changed - remember the germ theory was proposed a mere 140 years ago. However, one constant tenet in our profession has been the need to disseminate progresses, innovations, advances, and developments in veterinary sciences. Published reports are the foundation for the growth of medicine and science. What would the state of medicine be if Pasteur, Koch, Bourgelat, or Theobald Smith had not published their works?

  15. Development and evaluation of accessories to improve the posture of veterinary surgeons in surgical procedures conducted in the field

    Directory of Open Access Journals (Sweden)

    V.A.S. Vulcani

    Full Text Available ABSTRACT The study was conducted based on the information collected on rural properties in the state of Goiás, during practical classes of Surgical Clinic in Large Animals at the Veterinary Hospital of the Escola de Veterinária e Zootecnia of the Universidade Federal de Goiás and during the implementation of outreach projects developed by the institution. An acropostite-phimosis surgical procedure in the bulls in the field was selected, lasting over 30 minutes and requiring movements, posture and strength on the part of the surgeon. Devices were proposed and developed to provide improved comfort and safety to surgeons. The first device was a stool to be used by the professional during the execution of the surgical intervention. The use enabled the surgeon to sit down and rest their feet on the ground, reducing knee bending and distributing the support forces in various muscle groups. For the movement restriction of the surgeon, another accessory was developed to support the foreskin of the animal. Made of wood, this other device serves as a support for keeping the foreskin away from the ground and close to the surgeon. Its length, width and thickness established a good relation with the stool height, providing minimal discomfort to the professional. The third device was designed to assist in the immobilization of the animal and increase safety for the patient and surgical team. A fourth accessory was designed to protect the scapular region and avoid the occurrence of injuries in the radial nerve, myopathies and traumas during the rollover or prolonged stay of the animal in lateral decubitus. The choice of the shape, dimensions and softness of the device was mainly based on the weight of the animal. Such devices have proven to be effective, reducing the time of surgery, making cervical and lumbar movement easier, in addition to providing better support to the surgeon, reducing risks of musculoskeletal diseases.

  16. Vaccine-associated Leptospira antibodies in client-owned dogs.

    Science.gov (United States)

    Martin, L E R; Wiggans, K T; Wennogle, S A; Curtis, K; Chandrashekar, R; Lappin, M R

    2014-01-01

    Long-term microscopic agglutination test (MAT) results after vaccination with 4-serovar Leptospira vaccines are not available for all vaccines used in client-owned dogs. To determine antibody responses of client-owned dogs given 1 of 4 commercially available Leptospira vaccines. Healthy client-owned dogs (n = 32) with no history of Leptospira vaccination for at least the previous year. Dogs were given 1 of 4 Leptospira vaccines on week 0 and then approximately on week 3 and week 52. Sera were collected before vaccine administration on week 0 and then within 3 days of week 3, within 2 days of week 4, and approximately on weeks 7, 15, 29, 52, and 56. Antibody titers against Leptospira serovars bratislava, canicola, grippotyphosa, hardjo, icterohemorrhagiae, and pomona and were determined by MAT. When compared among vaccines, MAT results varied in maximal titers, the serovars inducing maximal titers, and the time required to reach maximal titers. Each vaccine induced at least some MAT titers ≥1 : 800. Most dogs were negative for antibodies against all serovars 1 year after vaccination, and anamnestic responses were variable. Dogs vaccinated with Leptospira vaccines have variable MAT titers over time, and antibodies should not be used to predict resistance to Leptospira infection. MAT titers ≥1 : 800 can develop after Leptospira spp. vaccination, which can complicate the clinical diagnosis of leptospirosis. Copyright © 2014 by the American College of Veterinary Internal Medicine.

  17. Developing an information resources management strategy for regulatory veterinary medicine: a national imperative.

    Science.gov (United States)

    Miller, L E; Honeycutt, T L; Cowen, P; Morrow, W E; Hueston, W D

    1994-10-15

    Lack of a standardized information technology management strategy has resulted in state and federal information systems evolving separately, rather than in tandem. Absence of an information management strategy will eventually affect regulatory program management, epidemiologic research, and domestic and international livestock trade. Producers will ultimately pay the price for the lack of regulatory coordination of US animal health and disease information. The longer the development of state and federal information technology management strategies is postponed, the more cost-, labor-, and time-intensive correcting the deficiency will be. Development of a national information resources management environment is the first step in constructing state and federal information technology strategies.

  18. Development of stable influenza vaccine powder formulations : Challenges and possibilities

    NARCIS (Netherlands)

    Amorij, J-P; Huckriede, A; Wilschut, J; Frijlink, H W; Hinrichs, W L J

    2008-01-01

    Influenza vaccination represents the cornerstone of influenza prevention. However, today all influenza vaccines are formulated as liquids that are unstable at ambient temperatures and have to be stored and distributed under refrigeration. In order to stabilize influenza vaccines, they can be brought

  19. Advances in development and evaluation of bovine herpesvirus 1 vaccines

    NARCIS (Netherlands)

    Oirschot, van J.T.; Kaashoek, M.J.; Rijsewijk, F.A.M.

    1996-01-01

    This review deals with conventional and modern bovine herpesvirus 1 (BHV1) vaccines. Conventional vaccines are widely used to prevent clinical signs of infectious bovine rhinotracheitis. The use of conventional vaccines, however, does not appear to have resulted in reduction of the prevalence of

  20. Veterinary Technologists and Technicians

    Science.gov (United States)

    ... State & Area Data Explore resources for employment and wages by state and area for veterinary technologists and technicians. Similar Occupations Compare the job duties, education, job growth, and pay of veterinary technologists and ...

  1. Development of cross-protective influenza A vaccines based on cellular responses

    Directory of Open Access Journals (Sweden)

    Peter Christiaan Soema

    2015-05-01

    Full Text Available Seasonal influenza vaccines provide protection against matching influenza A virus (IAV strains mainly through the induction of neutralizing serum IgG antibodies. However, these antibodies fail to confer a protective effect against mismatched IAV. This lack of efficacy against heterologous influenza strains has spurred the vaccine development community to look for other influenza vaccine concepts, which have the ability to elicit cross-protective immune responses.One of the concepts that is currently been worked on are influenza vaccines inducing influenza-specific T cell responses. T cells are able to lyse infected host cells, thereby clearing the virus. More interestingly, these T cells can recognize highly conserved epitopes of internal influenza proteins, making cellular responses less vulnerable to antigenic variability. T cells are therefore cross-reactive against many influenza strains, and thus are a promising concept for future influenza vaccines. Despite their potential, there are currently no T cell based IAV vaccines on the market. Selection of the proper antigen, appropriate vaccine formulation and evaluation of the efficacy of T cell vaccines remains challenging, both in preclinical and clinical settings.In this review, we will discuss the current developments in influenza T cell vaccines, focusing on existing protein-based and novel peptide-based vaccine formulations. Furthermore, we will discuss the feasibility of influenza T cell vaccines and their possible use in the future.

  2. Adjuvants and delivery systems in veterinary vaccinology: current state and future developments

    DEFF Research Database (Denmark)

    Heegaard, Peter M. H.; Dedieu, Laurence; Johnson, Nicholas

    2011-01-01

    low immunogenicity themselves. The development of such adjuvants may take advantage of the increased knowledge of the molecular mechanisms and factors controlling these responses. However, knowledge of such molecular details of immune mechanisms is relatively scarce for species other than humans...

  3. Animal poxvirus vaccines: a comprehensive review.

    Science.gov (United States)

    Bhanuprakash, Veerakyathappa; Hosamani, Madhusudan; Venkatesan, Gnanavel; Balamurugan, Vinayagamurthy; Yogisharadhya, Revanaiah; Singh, Raj Kumar

    2012-11-01

    The family Poxviridae includes several viruses of medical and veterinary importance. Global concerted efforts combined with an intensive mass-vaccination campaign with highly efficaceious live vaccine of vaccinia virus have led to eradication of smallpox. However, orthopoxviruses affecting domestic animals continue to cause outbreaks in several endemic countries. Different kinds of vaccines starting from conventional inactivated/attenuated to recombinant protein-based vaccines have been used for control of poxvirus infections. Live virus homologous vaccines are currently in use for diseases including capripox, parapox, camelpox and fowlpox, and these vaccines are highly effective in eliciting (with the exception of parapoxviruses) long-lasting immunity. Attenuated strains of poxviruses have been exploited as vectored vaccines to deliver heterologous immunogens, many of them being licensed for use in animals. Worthy of note are vaccinia virus, fowlpox virus, capripoxvirus, parapoxvirus and canary pox, which have been successfully used for developing new-generation vaccines targeting many important pathogens. Remarkable features of these vaccines are thermostability and their ability to engender both cellular and humoral immune responses to the target pathogens. This article updates the important vaccines available for poxviruses of livestock and identifies some of the research gaps in the present context of poxvirus research.

  4. Investing in vaccines for developing countries: How public-private partnerships can confront neglected diseases.

    Science.gov (United States)

    Yaïch, Mansour

    2009-06-01

    This commentary discusses the barrier of vaccine price on sustainable immunization programs in developing countries and offers examples of new mechanisms driven by public-private partnerships to overcome issues of affordability. These mechanisms include Advance Market Commitments with vaccine manufacturers, which take a demand-pull approach to ensure increased production of available vaccines or development of new vaccines for neglected diseases. A second approach applies a supply-push mechanism, such as technology transfer to developing-country manufacturers. A public-private partnership that set long-term, maximum public-sector pricing to increase access of a Japanese encephalitis vaccine for the developing world is highlighted. Lessons learned from this experience can be applied to address common obstacles to new vaccine introduction in resource-limited countries, including issues of affordability, manufacturing capacity, equity in access and quality assurance.

  5. Approaches to tuberculosis mucosal vaccine development using nanoparticles and microparticles: a review.

    Science.gov (United States)

    Caetano, Liliana Aranha; Almeida, António José; Gonćalves, Lídia Maria Diogo

    2014-09-01

    Next-generation vaccines for tuberculosis should be designed to prevent the infection and to achieve sterile eradication of Mycobacterium tuberculosis. Mucosal vaccination is a needle-free vaccine strategy that provides protective immunity against pathogenic bacteria and viruses in both mucosal and systemic compartments, being a promising alternative to current tuberculosis vaccines. Micro and nanoparticles have shown great potential as delivery systems for mucosal vaccines. In this review, the immunological principles underlying mucosal vaccine development will be discussed, and the application of mucosal adjuvants and delivery systems to the enhancement of protective immune responses at mucosal surfaces will be reviewed, in particular those envisioned for oral and nasal routes of administration. An overview of the essential vaccine candidates for tuberculosis in clinical trials will be provided, with special emphasis on the potential different antigens and immunization regimens.

  6. Bacterial superglue enables easy development of efficient virus-like particle based vaccines

    DEFF Research Database (Denmark)

    Thrane, Susan; Janitzek, Christoph M; Matondo, Sungwa

    2016-01-01

    BACKGROUND: Virus-like particles (VLPs) represent a significant advance in the development of subunit vaccines, combining high safety and efficacy. Their particulate nature and dense repetitive subunit organization makes them ideal scaffolds for display of vaccine antigens. Traditional approaches...... vaccine antigens fused to SpyCatcher or SpyTag resulted in formation of antigen-VLP complexes with coupling efficiencies (% occupancy of total VLP binding sites) ranging from 22-88 %. In mice, spy-VLP vaccines presenting the malaria proteins Pfs25 or VAR2CSA markedly increased antibody titer, affinity......, longevity and functional efficacy compared to corresponding vaccines employing monomeric proteins. The spy-VLP vaccines also effectively broke B cell self-tolerance and induced potent and durable antibody responses upon vaccination with cancer or allergy-associated self-antigens (PD-L1, CTLA-4 and IL-5...

  7. Veterinary practice marketeer.

    Science.gov (United States)

    Phillips, Justin

    2015-01-24

    Justin Phillips is marketing manager at White Cross Vets and the Veterinary Marketing Association's (VMA's) Young Veterinary Marketeer of the Year. Here, he describes what he does and why he believes other practices should embrace marketing to improve their quality and client care. British Veterinary Association.

  8. Nigerian Veterinary Journal

    African Journals Online (AJOL)

    The Nigerian Veterinary Journal (NVJ) has been in existence since 1971. The NVJ is published by the Nigerian Veterinary Medical Association (NVMA) as part of the association's commitment to the advancement of Veterinary Medicine in Nigeria and other parts of the world, with a general view of enhancing the livestock ...

  9. NIGERIAN VETERINARY JOURNAL

    African Journals Online (AJOL)

    ADEYEYE

    Nigerian Veterinary Journal 38(3). 2017. Gberindyer et al. 250. NIGERIAN VETERINARY JOURNAL. ISSN 0331-3026. Nig. Vet. J., September 2017. Vol 38 (3): 250-259. ORIGINAL ARTICLE. Drugs Prescription Pattern in Dogs Diagnosed with Parvovirus Enteritis in Some Veterinary Clinics in Nigeria. Gberindyer, F. A.. 1.

  10. NIGERIAN VETERINARY JOURNAL

    African Journals Online (AJOL)

    ADEYEYE

    1Department of Veterinary Anatomy, Michael Okpara University of Agriculture, Umudike, Nigeria, 2Department of. Veterinary Anatomy ... laboratory technologists and academic staff of the departments of veterinary anatomy, pathology and public health. Design of the ... Early histology and histopathology based research was ...

  11. NIGERIAN VETERINARY JOURNAL

    African Journals Online (AJOL)

    ADEYEYE

    Nigerian Veterinary Journal 38(2). 2017. Mustapha et al. 129 ... 1 Department of Veterinary Anatomy, College of Veterinary Medicine, Federal University of Agriculture Abeokuta,. Abeokuta, Ogun State; 2 ..... lamina 9; IB: Internal basilar nucleus; ICI: Intercalated nucleus; ICo9: Intercostal muscle motor neurons of lamina 9; ...

  12. NIGERIAN VETERINARY JOURNAL

    African Journals Online (AJOL)

    ADEYEYE

    Nigerian Veterinary Journal 37(3). 2016. Thomas et al. 123 .... Veterinary Medicine, Federal University of. Agriculture Abeokuta and were ..... immunogenic Salmonella ghost confers protection against internal organ colonization and egg contamination. Veterinary immunology and immunopathology,. 162(1-2): 41–50. JOSHI ...

  13. NIGERIAN VETERINARY JOURNAL

    African Journals Online (AJOL)

    ADEYEYE

    1288. NIGERIAN VETERINARY JOURNAL. ISSN 0331-3026. Nig. Vet. J., December 2015. Vol. 36 (4): 1288-1298. ORIGINAL ARTICLE. Anatomical Studies of ... 1Veterinary Teaching Hospital, Faculty of Veterinary Medicine, University of Ilorin, Ilorin, Nigeria; 2 Department of .... back, the internal organs were measured in.

  14. Reaching more children with vaccines in developing countries: key challenges of innovation and delivery.

    Science.gov (United States)

    Popova, Olga; Ibarra de Palacios, Patricia

    2016-01-01

    As we reach the deadline for the United Nations fourth Millennium Development Goal to reduce child mortality, many inequalities in vaccine access still exist, particularly for children in developing countries. Here we discuss some of the barriers to vaccine access in these countries, as well as some of the innovative approaches that could address these. Finally, we discuss the need to create a global environment conducive to innovation directed at low-resource settings, aimed to ultimately increase vaccine coverage.

  15. Socioeconomic differences in childhood vaccination in developed countries: a systematic review of quantitative studies.

    Science.gov (United States)

    Bocquier, Aurélie; Ward, Jeremy; Raude, Jocelyn; Peretti-Watel, Patrick; Verger, Pierre

    2017-11-01

    The reasons for vaccine hesitancy and its relation to individual socioeconomic status (SES) must be better understood. Areas covered: This review focused on developed countries with programs addressing major financial barriers to vaccination access. We systematically reviewed differences by SES in uptake of publicly funded childhood vaccines and in cognitive determinants (beliefs, attitudes) of parental decisions about vaccinating their children. Using the PRISMA statement to guide this review, we searched three electronic databases from January 2000 through April 2016. We retained 43 articles; 34 analyzed SES differences in childhood vaccine uptake, 7 examined differences in its cognitive determinants, and 2 both outcomes. Expert commentary: Results suggest that barriers to vaccination access persist among low-SES children in several settings. Vaccination programs could be improved to provide all mandatory and recommended vaccines 100% free of charge, in both public organizations and private practices, and to reimburse vaccine administration. Multicomponent interventions adapted to the context could also be effective in reducing these inequalities. For specific vaccines (notably for measles, mumps, and rubella), in UK and Germany, uptake was lowest among the most affluent. Interventions carefully tailored to respond to specific concerns of vaccine-hesitant parents, without reinforcing hesitancy, are needed.

  16. Development of a SARS Coronavirus Vaccine from Recombinant Spike Protein Plus Delta Inulin Adjuvant.

    Science.gov (United States)

    McPherson, Clifton; Chubet, Richard; Holtz, Kathy; Honda-Okubo, Yoshikazu; Barnard, Dale; Cox, Manon; Petrovsky, Nikolai

    2016-01-01

    Given periodic outbreaks of fatal human infections caused by coronaviruses, development of an optimal coronavirus vaccine platform capable of rapid production is an ongoing priority. This chapter describes the use of an insect cell expression system for rapid production of a recombinant vaccine against severe acute respiratory syndrome coronavirus (SARS). Detailed methods are presented for expression, purification, and release testing of SARS recombinant spike protein antigen, followed by adjuvant formulation and animal testing. The methods herein described for rapid development of a highly protective SARS vaccine are equally suited to rapid development of vaccines against other fatal human coronavirus infections, e.g., the MERS coronavirus.

  17. Development of vaccines against Plasmodium falciparum malaria: taking lessons from naturally acquired protective immunity

    DEFF Research Database (Denmark)

    Hviid, Lars

    2007-01-01

    The acquisition of substantial anti-malarial protection in people naturally exposed to P. falciparum is often cited as evidence that malaria vaccines can be developed, but is rarely used to guide the development. We are pursuing the development of vaccines based on antigens and immune responses...

  18. Quality vaccines for all people: Report on the 16th annual general meeting of the Developing Countries Vaccine Manufacturers' Network, 05-07th October 2015, Bangkok, Thailand.

    Science.gov (United States)

    Pagliusi, Sonia; Ting, Ching-Chia; Khomvilai, Sumana

    2016-06-30

    The Developing Countries Vaccine Manufacturers Network (DCVMN) assembled high-profile leaders from global health organisations and vaccine manufactures for its 16th Annual General Meeting to work towards a common goal: providing quality vaccines for all people. Vaccines contribute to a healthy community and robust health system; the Ebola outbreak has raised awareness of the threat and damage one single infectious disease can make, and it is clear that the world was not prepared. However, more research to better understand emerging infectious agents might lead to suitable vaccines which help prevent future outbreaks. DCVMN members presented their progress in developing novel vaccines against Dengue, HPV, Chikungunya, Cholera, cell-based influenza and other vaccines, demonstrating the commitment towards eliminating and eradicating preventable diseases worldwide through global collaboration and technology transfer. The successful introduction of novel Sabin-IPV and Oral Cholera vaccine in China and Korea respectively in 2015 was highlighted. In order to achieve global immunisation, local authorities and community leaders play an important role in the decision-making in vaccine introduction and uptake, based on the ability of vaccines to protect vaccinated people and protect non-vaccinated in the community through herd immunity. Reducing the risk of vaccine shortages can also be achieved by increasing regulatory convergence at regional and international levels. Combatting preventable diseases remains challenging, and collective efforts for improving multi-centre clinical trials, creating regional vaccine security strategies, fostering developing vaccine markets and procurement, and building trust in vaccines were discussed. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Current views on the potential for development of a HIV vaccine.

    Science.gov (United States)

    Cohen, Kristen W; Frahm, Nicole

    2017-03-01

    Despite many recent advances in the HIV prevention landscape, an effective vaccine remains the most promising tool to end the HIV-1 pandemic. Areas covered: This review summarizes past HIV vaccine efficacy trials and current vaccine strategies as well as new approaches about to move into first-in-human trials. Expert opinion: Despite many setbacks in early HIV vaccine efficacy trials, the success of RV144 has provided the glimmer of hope necessary to invigorate the vaccine field, and has led to the development of a large number of vaccine strategies aiming at inducing an array of different immune responses. The follow-up pox-protein trials, developed to replicate and enhance the polyfunctional antibody responses induced by the RV144 regimen, are already reaching efficacy trials, while a large body of work providing a more complete understanding of the development of broadly neutralizing antibodies is now being translated into immunogen design using several different strategies. T-cell based vaccines, fallen out of favor after Ad5-based trials showed increased infection rates in Ad5 seropositive vaccine recipients, are experiencing a comeback based in part on the promising results from non-human primate challenge studies using rhCMV-based immunogens. This diverse array of vaccine candidates may finally allow us to identify a broadly effective HIV vaccine able to contain the epidemic.

  20. [Introduction of vaccination against human papillomavirus in developing countries: update and perspectives].

    Science.gov (United States)

    Hessel, L

    2009-08-01

    Cervical cancer and other diseases related to human papillomavirus (HPV) represent a global public health problem. Safe and effective vaccines are now available and already used in many industrialized countries. Immunization offers the best hope for protecting the population against a disease that is the second most deadly cancer in the developing world and the first most deadly in Africa. The World Health Organization currently recommends introduction of HVP vaccination in developing countries. Widespread vaccination could be beneficial in numerous domains other than primary prevention of cervical cancer. Efforts to overcome the numerous obstacles and speed up implementation of HVP vaccination programs are now underway in many areas ranging from related scientific issues such as epidemiology and clinical research to administrative concerns such as healthcare economics, vaccination guidelines, public acceptation, program funding, and universal access. Vaccine manufacturers have committed themselves to working in partnership with national and international organizations to ensure access to HPV vaccine for all countries regardless of economic level, Although numerous issues must be resolved to optimize the use of HPV vaccines and ensure synergistic integration of vaccination, screening and treatment, current initiatives and efforts should allow introduction of HPV vaccination in developing countries in a not too distant future.

  1. Development and evaluation of an automated histology classification system for veterinary pathology.

    Science.gov (United States)

    Hattel, Arthur; Monga, Vishal; Srinivas, Umamahesh; Gillespie, Jim; Brooks, Jason; Fisher, Jenny; Jayarao, Bhushan

    2013-11-01

    A 2-stage algorithmic framework was developed to automatically classify digitized photomicrographs of tissues obtained from bovine liver, lung, spleen, and kidney into different histologic categories. The categories included normal tissue, acute necrosis, and inflammation (acute suppurative; chronic). In the current study, a total of 60 images per category (normal; acute necrosis; acute suppurative inflammation) were obtained from liver samples, 60 images per category (normal; acute suppurative inflammation) were obtained from spleen and lung samples, and 60 images per category (normal; chronic inflammation) were obtained from kidney samples. An automated support vector machine (SVM) classifier was trained to assign each test image to a specific category. Using 10 training images/category/organ, 40 test images/category/organ were examined. Employing confusion matrices to represent category-specific classification accuracy, the classifier-attained accuracies were found to be in the 74-90% range. The same set of test images was evaluated using a SVM classifier trained on 20 images/category/organ. The average classification accuracies were noted to be in the 84-95% range. The accuracy in correctly identifying normal tissue and specific tissue lesions was markedly improved by a small increase in the number of training images. The preliminary results from the study indicate the importance and potential use of automated image classification systems in the histologic identification of normal tissues and specific tissue lesions.

  2. Development of Live-Attenuated Influenza Vaccines against Outbreaks of H5N1 Influenza

    Directory of Open Access Journals (Sweden)

    Yinglei Yi

    2012-12-01

    Full Text Available Several global outbreaks of highly pathogenic avian influenza (HPAI H5N1 virus have increased the urgency of developing effective and safe vaccines against H5N1. Compared with H5N1 inactivated vaccines used widely, H5N1 live-attenuated influenza vaccines (LAIVs have advantages in vaccine efficacy, dose-saving formula, long-lasting effect, ease of administration and some cross-protective immunity. Furthermore, H5N1 LAIVs induce both humoral and cellular immune responses, especially including improved IgA production at the mucosa. The current trend of H5N1 LAIVs development is toward cold-adapted, temperature-sensitive or replication-defective vaccines, and moreover, H5N1 LAIVs plus mucosal adjuvants are promising candidates. This review provides an update on the advantages and development of H5N1 live-attenuated influenza vaccines.

  3. Human papilloma virus vaccination for control of cervical cancer: a challenge for developing countries.

    Science.gov (United States)

    Bello, F A; Enabor, O O; Adewole, I F

    2011-03-01

    Primary HPV prevention may be the key to reducing incidence and burden of cervical cancer particularly in resource-poor countries. Vaccination programmes are already established in several developed regions, but several grey areas stand in the path of similar success in developing countries. This review sought to identify challenges of HPV vaccination in developing countries and discuss vaccine use, pitfalls and controversies; areas requiring collaborative efforts were identified. A Pub Med search was done; key words included Human papilloma virus, HPV vaccine and sub-Saharan Africa. Other resources included locally-published articles and additional internet resources. The potential benefit of mass HPV vaccination appears enormous. However, the challenges of competing health demands, poverty, ignorance, religion, culture, weak health system, establishment of an effective intersectoral collaboration and underfunding must be overcome to make maximal vaccine uptake a reality. Education and effective communication is crucial in achieving successful immunization programmes.

  4. The mucosal immune system: From dentistry to vaccine development.

    Science.gov (United States)

    Kiyono, Hiroshi; Azegami, Tatsuhiko

    2015-01-01

    The oral cavity is the beginning of the aero-digestive tract, which is covered by mucosal epithelium continuously under the threat of invasion of pathogens, it is thus protected by the mucosal immune system. In the early phase of our scientific efforts for the demonstration of mucosal immune system, dental science was one of major driving forces due to their foreseeability to use oral immunity for the control of oral diseases. The mucosal immune system is divided functionally into, but interconnected inductive and effector sites. Intestinal Peyer's patches (PPs) are an inductive site containing antigen-sampling M cells and immunocompetent cells required to initiate antigen-specific immune responses. At effector sites, PP-originated antigen-specific IgA B cells become plasma cells to produce polymeric IgA and form secretory IgA by binding to poly-Ig receptor expressed on epithelial cells for protective immunity. The development of new-generation mucosal vaccines, including the rice-based oral vaccine MucoRice, on the basis of the coordinated mucosal immune system is a promising strategy for the control of mucosal infectious diseases.

  5. Development of vaccines against Crimean-Congo haemorrhagic fever virus.

    Science.gov (United States)

    Dowall, Stuart D; Carroll, Miles W; Hewson, Roger

    2017-10-20

    Crimean-Congo haemorrhagic fever virus (CCHFV) is a deadly human pathogen of the utmost seriousness being highly lethal causing devastating disease symptoms that result in intense and prolonged suffering to those infected. During the past 40years, this virus has repeatedly caused sporadic outbreaks responsible for relatively low numbers of human casualties, but with an alarming fatality rate of up to 80% in clinically infected patients. CCHFV is transmitted to humans by Hyalomma ticks and contact with the blood of viremic livestock, additionally cases of human-to-human transmission are not uncommon in nosocomial settings. The incidence of CCHF closely matches the geographical range of permissive ticks, which are widespread throughout Africa, Asia, the Middle East and Europe. As such, CCHFV is the most widespread tick-borne virus on earth. It is a concern that recent data shows the geographic distribution of Hyalomma ticks is expanding. Migratory birds are also disseminating Hyalomma ticks into more northerly parts of Europe thus potentially exposing naïve human populations to CCHFV. The virus has been imported into the UK on two occasions in the last five years with the first fatal case being confirmed in 2012. A licensed vaccine to CCHF is not available. In this review, we discuss the background and complications surrounding this limitation and examine the current status and recent advances in the development of vaccines against CCHFV. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  6. Development, Theoretical Framework, and Outcome Evaluation from Implementation of a Parent and Teacher-Delivered Adolescent Intervention on Adolescent Vaccination

    OpenAIRE

    Gargano, Lisa M; Herbert, Natasha L; Painter, Julia E.; Sales, Jessica M.; Vogt, Tara M.; Morfaw, Christopher; Jones, LaDawna M.; Murray4, Dennis; DiClemente, Ralph J.; Hughes, James M.

    2014-01-01

    The Advisory Committee on Immunization Practices recommended immunization schedule for adolescents includes three vaccines (Tdap, HPV, and MCV4) and annual influenza vaccination. Given the increasing number of recommended vaccines for adolescents and health and economic costs associated with non-vaccination, it is imperative that effective strategies for increasing vaccination rates among adolescents be developed. This article describes the development, theoretical framework, and initial firs...

  7. Immune response profiles of calves following vaccination with live BCG and inactivated Mycobacterium bovis vaccine candidates.

    Directory of Open Access Journals (Sweden)

    E M D L van der Heijden

    Full Text Available Conventional control and eradication strategies for bovine tuberculosis (BTB face tremendous difficulties in developing countries; countries with wildlife reservoirs, a complex wildlife-livestock-human interface or a lack of veterinary and veterinary public health surveillance. Vaccination of cattle and other species might in some cases provide the only suitable control strategy for BTB, while in others it may supplement existing test-and-slaughter schemes. However, the use of live BCG has several limitations and the global rise of HIV/AIDS infections has furthermore warranted the exploration of inactivated vaccine preparations. The aim of this study was to compare the immune response profiles in response to parenteral vaccination with live BCG and two inactivated vaccine candidates in cattle. Twenty-four mixed breed calves (Bos taurus aged 4-6 months, were allocated to one of four groups and vaccinated sub-cutaneously with live M. bovis BCG (Danish 1331, formalin-inactivated M. bovis BCG, heat-killed M. bovis or PBS/Montanide™ (control. Interferon-γ responsiveness and antibody production were measured prior to vaccination and at weekly intervals thereafter for twelve weeks. At nine weeks post-priming, animals were skin tested using tuberculins and MTBC specific protein cocktails and subsequently challenged through intranodular injection of live M. bovis BCG. The animals in the heat-killed M. bovis group demonstrated strong and sustained cell-mediated and humoral immune responses, significantly higher than the control group in response to vaccination, which may indicate a protective immune profile. Animals in this group showed reactivity to the skin test reagents, confirming good vaccine take. Lastly, although not statistically significant, recovery of BCG after challenge was lowest in the heat-killed M. bovis group. In conclusion, the parenteral heat-killed M. bovis vaccine proved to be clearly immunogenic in cattle in the present study

  8. Immune response profiles of calves following vaccination with live BCG and inactivated Mycobacterium bovis vaccine candidates.

    Science.gov (United States)

    van der Heijden, E M D L; Chileshe, J; Vernooij, J C M; Gortazar, C; Juste, R A; Sevilla, I; Crafford, J E; Rutten, V P M G; Michel, A L

    2017-01-01

    Conventional control and eradication strategies for bovine tuberculosis (BTB) face tremendous difficulties in developing countries; countries with wildlife reservoirs, a complex wildlife-livestock-human interface or a lack of veterinary and veterinary public health surveillance. Vaccination of cattle and other species might in some cases provide the only suitable control strategy for BTB, while in others it may supplement existing test-and-slaughter schemes. However, the use of live BCG has several limitations and the global rise of HIV/AIDS infections has furthermore warranted the exploration of inactivated vaccine preparations. The aim of this study was to compare the immune response profiles in response to parenteral vaccination with live BCG and two inactivated vaccine candidates in cattle. Twenty-four mixed breed calves (Bos taurus) aged 4-6 months, were allocated to one of four groups and vaccinated sub-cutaneously with live M. bovis BCG (Danish 1331), formalin-inactivated M. bovis BCG, heat-killed M. bovis or PBS/Montanide™ (control). Interferon-γ responsiveness and antibody production were measured prior to vaccination and at weekly intervals thereafter for twelve weeks. At nine weeks post-priming, animals were skin tested using tuberculins and MTBC specific protein cocktails and subsequently challenged through intranodular injection of live M. bovis BCG. The animals in the heat-killed M. bovis group demonstrated strong and sustained cell-mediated and humoral immune responses, significantly higher than the control group in response to vaccination, which may indicate a protective immune profile. Animals in this group showed reactivity to the skin test reagents, confirming good vaccine take. Lastly, although not statistically significant, recovery of BCG after challenge was lowest in the heat-killed M. bovis group. In conclusion, the parenteral heat-killed M. bovis vaccine proved to be clearly immunogenic in cattle in the present study, urging further

  9. Mucosal vaccines: a paradigm shift in the development of mucosal adjuvants and delivery vehicles.

    Science.gov (United States)

    Srivastava, Atul; Gowda, Devegowda Vishakante; Madhunapantula, SubbaRao V; Shinde, Chetan G; Iyer, Meenakshi

    2015-04-01

    Mucosal immune responses are the first-line defensive mechanisms against a variety of infections. Therefore, immunizations of mucosal surfaces from which majority of infectious agents make their entry, helps to protect the body against infections. Hence, vaccinization of mucosal surfaces by using mucosal vaccines provides the basis for generating protective immunity both in the mucosal and systemic immune compartments. Mucosal vaccines offer several advantages over parenteral immunization. For example, (i) ease of administration; (ii) non-invasiveness; (iii) high-patient compliance; and (iv) suitability for mass vaccination. Despite these benefits, to date, only very few mucosal vaccines have been developed using whole microorganisms and approved for use in humans. This is due to various challenges associated with the development of an effective mucosal vaccine that can work against a variety of infections, and various problems concerned with the safe delivery of developed vaccine. For instance, protein antigen alone is not just sufficient enough for the optimal delivery of antigen(s) mucosally. Hence, efforts have been made to develop better prophylactic and therapeutic vaccines for improved mucosal Th1 and Th2 immune responses using an efficient and safe immunostimulatory molecule and novel delivery carriers. Therefore, in this review, we have made an attempt to cover the recent advancements in the development of adjuvants and delivery carriers for safe and effective mucosal vaccine production. © 2015 APMIS. Published by John Wiley & Sons Ltd.

  10. Staying current by searching the veterinary literature.

    Science.gov (United States)

    Buchanan, Robert A; Wooldridge, Anne A

    2011-01-01

    The body of knowledge in veterinary medicine and the biomedical sciences continues to grow logarithmically, and learning about new developments in veterinary medicine requires successful navigation of recently published literature worldwide. This article examines how veterinarians can use different types of automated services from databases and publishers to search the current and past literature, access articles, and manage references that are found.

  11. HPV induced cervical carcinogenesis: molecular basis and vaccine development.

    Science.gov (United States)

    Kaufmann, A M; Backsch, C; Schneider, A; Dürst, M

    2002-11-01

    Association of infection with papillomavirus and dysplasia of the cervix uteri has been firmly established. There are only few cervical cancers where no HPV DNA is detectable. The mechanism of epithelial cell immortalization by interaction with tumour suppressor genes p53 and pRb by viral oncogenes E6 and E7 is elucidated. Progression of the HPV infected cell to a malignant phenotype involves further modification of host gene expression and/or mutations. The appearance of chromosomal aberrations can lead to mutational inactivation or loss of tumour suppressor genes (TSG), activation and amplification of oncogenes, with importance for the process of carcinogenesis. Oncogene amplification, with exception of few reports, seems not to be a major mechanism in cervical carcinogenesis. In contrast, cytogenetic and loss of heterozygosity (LOH) results from CIN and invasive cancer demonstrate alterations at specific chromosomal regions, pointing at localisation of TSG. Genetic alterations at chromosomes 3p, 6p, 1lq were frequently found early in tumour development Primary invasive carcinoma showed additional allelic losses at chromosome arms 6q, 17p and 18q. Useful biological diagnostic and prognostic markers for high-risk HPV infection and malignant progression may be p16NK4 p27Kip, and NET-I/C4.8. Putative senescence genes relevant for HPV-induced carcinogenesis are localized on chromosomes 2, 4 and 10. Genes for Telomerase suppression are presumably located on chromosomes 3, 4 and 6. Natural immune responses to HPV infection exist Therefore, immune therapy is an attractive possibility for prevention and therapy of HPV infection. To date, vaccine development has reached clinical evaluation. Prophylaxis aims at the induction of virus neutralizing antibodies to capsid proteins. Virus-like particle vaccines are currently tested in clinical trials. Due to the long lag period between infection and clinical manifestation trials will take a long time until conclusive results are

  12. Nanoparticle based tailoring of adjuvant function: the role in vaccine development.

    Science.gov (United States)

    Prashant, Chandravilas Keshvan; Kumar, Manoj; Dinda, Amit Kumar

    2014-09-01

    Vaccination is one of the most powerful therapeutic tools for prevention and management of various infective and non-infective diseases including malignancy. Mass vaccination is a great strategy for eradicating major infectious diseases throughout the world like small pox. Application of nanotechnology for antigen delivery is a unique area of research and development which can change the vaccination strategy and policy in future. Nanocarriers can enhance antigen presentation including modulation of antigen processing pathways according to the specific need. The current review explores the pros and cons of application of different nanomaterials for antigen presentation and vaccine development.

  13. Present status of human papillomavirus vaccine development and implementation.

    Science.gov (United States)

    Herrero, Rolando; González, Paula; Markowitz, Lauri E

    2015-05-01

    Oncogenic human papillomavirus (HPV) infection is the cause of nearly all cervical cancers and a proportion of other anogenital and oropharyngeal cancers. A bivalent vaccine containing HPV 16 and 18 and a quadrivalent vaccine containing HPV 6, 11, 16, and 18 antigens are in use in vaccination programmes around the world. In clinical trials, three vaccine doses provided 90-100% protection against cervical infection and pre-cancer related to HPV 16 and 18 in women aged 15-26 years who were not infected at vaccination. Partial cross-protection against other HPV types has been reported but its duration is unknown. The vaccines were also efficacious at the prevention of HPV 16 and 18 infections at other anatomical sites in both sexes. Immunobridging studies allowed licensing of the vaccines for use starting at age 9 years for both sexes. Two-dose schedules elicit high antibody concentrations, leading to the recommendation of two-dose schedules for girls aged 9-14 years. Pre-licensure and post-licensure studies have provided data supporting vaccine safety. In 2014, a nonavalent vaccine containing HPV 6, 11, 16, 18, 31, 33, 45, 52, and 58 antigens was licensed by the US Food and Drug Administration. HPV vaccination was first introduced in high-income countries owing to vaccine cost, logistic challenges, and competing health priorities. Since 2011, vaccine prices have lowered, allowing the introduction of the vaccine in some middle-income countries. Funding of the vaccine by the GAVI Alliance in 2012 led to demonstration projects in some low-income countries. By 2014, more than 57 countries had included the HPV vaccine in their national health programmes. Data from several countries have shown the effect of vaccination on HPV infection and associated disease, and provided evidence of herd immunity. Expansion of programmes to countries with the highest burden of disease is beginning, but further efforts are needed to realise the potential of HPV vaccines. Copyright © 2015

  14. From empiricism to rational design: a personal perspective of the evolution of vaccine development.

    Science.gov (United States)

    De Gregorio, Ennio; Rappuoli, Rino

    2014-07-01

    Vaccination, which is the most effective medical intervention that has ever been introduced, originated from the observation that individuals who survived a plague or smallpox would not get the disease twice. To mimic the protective effects of natural infection, Jenner - and later Pasteur - inoculated individuals with attenuated or killed disease-causing agents. This empirical approach inspired a century of vaccine development and the effective prophylaxis of many infectious diseases. From the 1980s, several waves of new technologies have enabled the development of novel vaccines that would not have been possible using the empirical approach. The technological revolution in the field of vaccination is now continuing, and it is delivering novel and safer vaccines. In this Timeline article, we provide our views on the transition from empiricism to rational vaccine design.

  15. The introduction of new vaccines into developing countries. IV: Global Access Strategies.

    Science.gov (United States)

    Mahoney, Richard T; Krattiger, Anatole; Clemens, John D; Curtiss, Roy

    2007-05-16

    This paper offers a framework for managing a comprehensive Global Access Strategy for new vaccines in developing countries. It is aimed at strengthening the ability of public-sector entities to reach their goals. The Bill and Melinda Gates Foundation and The Rockefeller Foundation have been leaders in stimulating the creation of new organizations - public/private product development partnerships (PDPs) - that seek to accelerate vaccine development and distribution to meet the health needs of the world's poor. Case studies of two of these PDPs - the Salmonella Anti-pneumococcal Vaccine Program and the Pediatric Dengue Vaccine Initiative - examine development of such strategies. Relying on the application of innovation theory, the strategy leads to the identification of six Components of Innovation which cover all aspects of the vaccine innovation process. Appropriately modified, the proposed framework can be applied to the development and introduction of other products in developing countries including drugs, and nutritional and agricultural products.

  16. [Advances in the development of new vaccines against tuberculosis. 100 years after the introduction of BCG].

    Science.gov (United States)

    Krysztopa-Grzybowska, Katarzyna; Lutyńska, Anna

    2014-06-09

    The BCG vaccine used in the world for nearly 100 years protects children against the most severe forms of tuberculosis, but its effectiveness in preventing the most commonly occurring tuberculosis and the one burdened with the highest risk of transmission in adults is very diverse. Contraindications for BCG vaccination include HIV infection and other conditions of immunosuppression. Tuberculosis is a global problem difficult to control because of three main reasons: poor diagnostics in developing countries, long-term therapy or discontinuation of treatment resulting in the emergence of drug-resistant mycobacteria, and the availability of a TB vaccine which only protects children from the most severe forms of tuberculosis. BCG has little to no efficacy in preventing the most common adult pulmonary TB. The development of a more effective vaccine against tuberculosis is undoubtedly still a public health priority in order to improve control of the disease throughout the world. Elimination of TB as a global public health goal by 2050 is particularly ambitious and its achievement depends on the development and application of new intervention measures and newly designed vaccines. Currently, 14 newly developed products are undergoing clinical trials. These include a prophylactic vaccine capable of replacing the current BCG, booster vaccines to increase the effects of BCG, and therapeutic vaccines. The aim of the study is to present the current state of knowledge on cutting-edge research into new vaccines against tuberculosis, their efficacy, immunogenicity and potential use in the future.

  17. Advances in the development of new vaccines against tuberculosis. 100 years after the introduction of BCG

    Directory of Open Access Journals (Sweden)

    Katarzyna Krysztopa-Grzybowska

    2014-06-01

    Full Text Available The BCG vaccine used in the world for nearly 100 years protects children against the most severe forms of tuberculosis, but its effectiveness in preventing the most commonly occurring tuberculosis and the one burdened with the highest risk of transmission in adults is very diverse. Contraindications for BCG vaccination include HIV infection and other conditions of immunosuppression. Tuberculosis is a global problem difficult to control because of three main reasons: poor diagnostics in developing countries, long-term therapy or discontinuation of treatment resulting in the emergence of drug-resistant mycobacteria, and the availability of a TB vaccine which only protects children from the most severe forms of tuberculosis. BCG has little to no efficacy in preventing the most common adult pulmonary TB. The development of a more effective vaccine against tuberculosis is undoubtedly still a public health priority in order to improve control of the disease throughout the world. Elimination of TB as a global public health goal by 2050 is particularly ambitious and its achievement depends on the development and application of new intervention measures and newly designed vaccines. Currently, 14 newly developed products are undergoing clinical trials. These include a prophylactic vaccine capable of replacing the current BCG, booster vaccines to increase the effects of BCG, and therapeutic vaccines. The aim of the study is to present the current state of knowledge on cutting-edge research into new vaccines against tuberculosis, their efficacy, immunogenicity and potential use in the future.

  18. Dendritic cell-targeting DNA-based mucosal adjuvants for the development of mucosal vaccines

    OpenAIRE

    Kataoka, Kosuke; Fujihashi, Kohtaro

    2009-01-01

    In order to establish effective mucosal immunity against various mucosal pathogens, vaccines must be delivered via the mucosal route and contain effective adjuvant(s). Since mucosal adjuvants can simply mix with the antigen, it is relatively easy to adapt them for different types of vaccine development. Even in simple admixture vaccines, the adjuvant itself must be prepared without any complications. Thus, CpG oligodeoxynucleotides or plasmids encoding certain cDNA(s) would be potent mucosal ...

  19. Development of mismatch amplification mutation assays for the differentiation of MS1 vaccine strain from wild-type Mycoplasma synoviae and MS-H vaccine strains

    Science.gov (United States)

    Kreizinger, Zsuzsa; Sulyok, Kinga Mária; Grózner, Dénes; Bekő, Katinka; Dán, Ádám; Szabó, Zoltán

    2017-01-01

    Mycoplasma synoviae is an economically significant pathogen in the poultry industry, inducing respiratory disease and infectious synovitis in chickens and turkeys, and eggshell apex abnormality in chickens. Eradication, medication and vaccination are the options for controlling M. synoviae infection. Currently there are two commercial, live, attenuated vaccines available against M. synoviae: the temperature sensitive MS-H vaccine strain and the NAD independent MS1 vaccine strain. Differentiation of vaccine strains from field isolates is essential during vaccination and eradication programs. The present study provides melt-curve and agarose gel based mismatch amplification mutation assays (MAMA) to discriminate the MS1 vaccine strain from the MS-H vaccine strain and wild-type M. synoviae isolates. The assays are based on the A/C single nucleotide polymorphism at nt11 of a HIT family protein coding gene. The melt- and agarose-MAMAs reliably distinguish the MS1 vaccine strain genotype from the MS-H vaccine strain and wild-type M. synoviae isolate genotype from 102 template number/DNA sample. No cross-reactions with other avian Mycoplasma species were observed. The assays can be performed directly on clinical samples and they can be run simultaneously with the previously described MAMAs designed for the discrimination of the MS-H vaccine strain. The developed assays are applicable in laboratories with limited facilities and promote the rapid, simple and cost effective differentiation of the MS1 vaccine strain. PMID:28419134

  20. Development of a BCG challenge model for the testing of vaccine candidates against tuberculosis in cattle.

    Science.gov (United States)

    Villarreal-Ramos, Bernardo; Berg, Stefan; Chamberlain, Laura; McShane, Helen; Hewinson, R Glyn; Clifford, Derek; Vordermeier, Martin

    2014-09-29

    Vaccination is being considered as part of a sustainable strategy for the control of bovine tuberculosis (BTB) in the UK. The live attenuated Mycobacterium bovis bacillus Calmette-Guerin (BCG) has been used experimentally to vaccinate cattle against BTB. However, BCG confers partial protection against BTB and therefore, there is a need to develop improved vaccines. BTB vaccine efficacy experiments require the use of biosafety level 3 facilities which are expensive to maintain, generally oversubscribed and represent a bottle neck for the testing of vaccine candidates. One indicator of the induction of protective responses would be the ability of the host's immune response to control/kill mycobacteria. In this work we have evaluated an intranodal BCG challenge for the selection of vaccine candidates at biosafety level 2 which are capable of inducing mycobactericidal responses. To our knowledge, this is the first such report. Whilst BCG only confers partial protection, it is still the standard against which other vaccines are judged. Therefore we tested the BCG intranodal challenge in BCG (Danish strain) vaccinated cattle and showed that vaccinated cattle had lower BCG cfu counts than naïve cattle at 14 and 21 days after intranodal challenge with BCG (Tokyo strain). This model could help prioritize competing TB vaccine candidates and exploration of primary and secondary immune responses to mycobacteria. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  1. Veterinary History Museum in Zagreb - on the occasion of a jubilee monograph on the collection of veterinary instruments of the Zagreb University Faculty of Medicine.

    Science.gov (United States)

    Vucevac Bajt, Vesna

    2010-01-01

    To mark its 90th anniversary, the Faculty of Veterinary Medicine, University of Zagreb, published a book Collection of Veterinary Instruments from the Museum of Veterinary History, which is a significant contribution to the history of veterinary medicine of Croatia. The presented collection is on display in the Museum of Veterinary History at the Faculty of Veterinary Medicine. The Museum, an integral part of the Department of History of Veterinary Medicine, was founded by decree in 1936. It houses several collections: archives, veterinary and related literature, a collection of veterinary instruments, and a collection of horseshoes. The monograph presents the veterinary instruments which were of utmost importance for the development of veterinary science and practice.

  2. Varicella zoster vaccines and their implications for development of HSV vaccines

    Energy Technology Data Exchange (ETDEWEB)

    Gershon, Anne A., E-mail: aag1@columbia.edu [Department of Pediatrics, Columbia University College of Physicians and Surgeons, 620W. 168th Street, NY, NY 10032 (United States)

    2013-01-05

    Live attenuated vaccines to prevent varicella and zoster have been available in the US for the past 17 years, with a resultant dramatic decrease in varicella incidence and a predicted future decrease in the incidence of zoster. The pathogenesis and immune responses to varicella zoster virus (VZV) as well as the safety and effectiveness of VZV vaccines are reviewed. The lack of sterilizing immunity provided by VZV vaccines has not prevented them from being safe and effective. Virological and pathological information concerning parallels and differences between VZV and herpes simplex virus (HSV) are highlighted. Although VZV and HSV are distinct pathogens, they appear to have similarities in target organs and immunity that provide an expectation of a high likelihood for the success of vaccination against HSV, and predicted to be similar to that of VZV.

  3. Emerging markets & emerging needs: developing countries vaccine manufacturers' perspective & its current status.

    Science.gov (United States)

    Jadhav, Suresh S; Gautam, Manish; Gairola, Sunil

    2009-06-01

    The success of vaccination has remained an important contribution towards public health in both industrialised and developing countries. However, there are still unmet public health needs in vaccine preventable diseases owing to issues related to affordability, supply, public awareness, research and development, intellectual property, skilled human resource, etc. Various global initiatives are being taken to tackle such issues. DCVMN, Developing Country Vaccine Manufacturers' Network, is one of such novel initiatives by developing countries, and is playing an important role in facilitating cheaper and quality vaccines to children of the world. DCVMN has become an international body for emerging vaccine manufacturers from the developing world. This manuscript provides an overview of DCVMN with respect to its origin, objectives, achievements, limitations and expectations.

  4. Methods and Processes of Developing the Strengthening the Reporting of Observational Studies in Epidemiology—Veterinary (STROBE-Vet) Statement

    DEFF Research Database (Denmark)

    Sargeant, J. M.; O'Connor, A. M.; Dohoo, I. R.

    2016-01-01

    unique reporting requirements for observational studies in veterinary medicine related to health, production, welfare, and food safety. We conducted a consensus meeting with 17 experts in Mississauga, Canada. Experts completed a premeeting survey about whether items in the STROBE statement should...... be modified or added to address unique issues related to observational studies in animal species with health, production, welfare, or food safety outcomes. During the meeting, each STROBE item was discussed to determine whether or not rewording was recommended, and whether additions were warranted. Anonymous...... should improve reporting of observational studies in veterinary research by recognizing unique features of observational studies involving food-producing and companion animals, products of animal origin, aquaculture, and wildlife....

  5. Recommendations for Clinical Pathology Data Generation, Interpretation, and Reporting in Target Animal Safety Studies for Veterinary Drug Development.

    Science.gov (United States)

    Siska, William; Gupta, Aradhana; Tomlinson, Lindsay; Tripathi, Niraj; von Beust, Barbara

    Clinical pathology testing is routinely performed in target animal safety studies in order to identify potential toxicity associated with administration of an investigational veterinary pharmaceutical product. Regulatory and other testing guidelines that address such studies provide recommendations for clinical pathology testing but occasionally contain outdated analytes and do not take into account interspecies physiologic differences that affect the practical selection of appropriate clinical pathology tests. Additionally, strong emphasis is often placed on statistical analysis and use of reference intervals for interpretation of test article-related clinical pathology changes, with limited attention given to the critical scientific review of clinically, toxicologically, or biologically relevant changes. The purpose of this communication from the Regulatory Affairs Committee of the American Society for Veterinary Clinical Pathology is to provide current recommendations for clinical pathology testing and data interpretation in target animal safety studies and thereby enhance the value of clinical pathology testing in these studies.

  6. Veterinary orthodontics.

    Science.gov (United States)

    Kraut, J M; Kraut, I

    1990-07-01

    Orthodontic correction for dogs in both practical and beneficial. We have treated several dogs in our practice and have developed a manageable, fully fixed technique for solving various malocclusions. The case presented herein was a pseudo Class III malocclusion with all incisors in crossbite and an anterior open bite.

  7. Entwicklung neuer Kommunikationswege - Einsatz und Nutzen von Foren in der Tiermedizin [Development of new structures - Message boarding: application and use in veterinary medicine

    Directory of Open Access Journals (Sweden)

    Ehlers, Jan P.

    2008-11-01

    Full Text Available [english] The availability of information and communication in german veterinary medicine is widespread and web-based media is a growing factor in this phenomenon. Parallel to this development, social and professional networks are becoming increasingly more important in the profession. The goal of the internet-based message board with the domain name Foren4Vet.de (founded 2002, is to establish a point of contact for professional members, students, and individuals interested in studying veterinary medicine. Today, in cooperation with the School of Veterinary Medicine in Hannover and with the veterinary panel of the Association of Medical Education, Foren4Vet provides an integrative platform for all members of the veterinary medicine profession. An online evaluation of the website showed a high demand for such a platform especially among the younger group of student users. Part of the website offers secure access for authorized members only, ensuring closed-group communication between professional groups and individuals associated with the university. At the same time, the message board supports the increasing demand for asynchronous and interdisciplinary communication. [german] Information und Kommunikation der veterinärmedizinischen Berufsgruppe findet heutzutage vielerorts statt, dabei gewinnen webbasierte Medien stetig an Bedeutung. Gleichzeitig nimmt die Bildung von fachlichen und sozialen Netzwerken innerhalb der Veterinärmedizin einen immer größeren Stellenwert ein. Im Jahr 2002 wurde die Diskussionsplattform Foren4Vet gegründet mit dem Ziel, eine Anlaufstelle für Mitglieder dieser Berufsgruppe zu sein und einen Austausch zu ermöglichen. Foren4Vet erfreut sich zunehmenden Interesses und bietet durch Kooperation mit der Tierärztlichen Hochschule Hannover und dem Ausschuss Tiermedizin der GMA, sowie anderen veterinärmedizinischen Projekten eine einheitliche und übergreifende Forenplattform. In einer Online-Befragung der Nutzer

  8. Next generation dengue vaccines: A review of the preclinical development pipeline.

    Science.gov (United States)

    Vannice, Kirsten S; Roehrig, John T; Hombach, Joachim

    2015-12-10

    Dengue represents a significant and growing public health problem across the globe, with approximately half of the world's population at risk. The increasing and expanding burden of dengue has highlighted the need for new tools to prevent dengue, including development of dengue vaccines. Recently, the first dengue vaccine candidate was evaluated in Phase 3 clinical trials, and other vaccine candidates are under clinical evaluation. There are also a number of candidates in preclinical development, based on diverse technologies, with promising results in animal models and likely to move into clinical trials and could eventually be next-generation dengue vaccines. This review provides an overview of the various technological approaches to dengue vaccine development with specific focus on candidates in preclinical development and with evaluation in non-human primates. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Scaling up development, production of CBPP vaccine for cattle in ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    This project will allow researchers from Canada and Kenya to field trial a vaccine for contagious bovine pleuropneumonia. This endemic livestock disease affects the livelihoods of more than 24 million cattle producers and results in annual losses estimated at US$1 billion across sub-Saharan Africa. About the vaccine Using ...

  10. Progress in the development of vaccines against rumen methanogens.

    Science.gov (United States)

    Wedlock, D N; Janssen, P H; Leahy, S C; Shu, D; Buddle, B M

    2013-06-01

    Vaccination against rumen methanogens offers a practical approach to reduce methane emissions in livestock, particularly ruminants grazing on pasture. Although successful vaccination strategies have been reported for reducing the activity of the rumen-dwelling organism Streptococcus bovis in sheep and S. bovis and Lactobacillus spp. in cattle, earlier approaches using vaccines based on whole methanogen cells to reduce methane production in sheep have produced less promising results. An anti-methanogen vaccine will need to have broad specificity against methanogens commonly found in the rumen and induce antibody in saliva resulting in delivery of sufficiently high levels of antibodies to the rumen to reduce methanogen activity. Our approach has focussed on identifying surface and membrane-associated proteins that are conserved across a range of rumen methanogens. The identification of potential vaccine antigens has been assisted by recent advances in the knowledge of rumen methanogen genomes. Methanogen surface proteins have been shown to be immunogenic in ruminants and vaccination of sheep with these proteins induced specific antibody responses in saliva and rumen contents. Current studies are directed towards identifying key candidate antigens and investigating the level and types of salivary antibodies produced in sheep and cattle vaccinated with methanogen proteins, stability of antibodies in the rumen and their impact on rumen microbial populations. In addition, there is a need to identify adjuvants that stimulate high levels of salivary antibody and are suitable for formulating with protein antigens to produce a low-cost and effective vaccine.

  11. Development of a Human Papillomavirus Vaccination Intervention for Australian Adolescents

    Science.gov (United States)

    Cooper, Spring C.; Davies, Cristyn; McBride, Kate; Blades, Joanna; Stoney, Tanya; Marshall, Helen; Skinner, S. Rachel

    2016-01-01

    Objective: Australia has implemented a nation-wide programme providing a human papillomavirus (HPV) vaccine to girls and boys through school-based programmes. Previous research has identified three distinct areas for attention: (1) lack of understanding about HPV and HPV vaccination, (2) young people's desire for involvement in decision-making…

  12. Recent Developments in Livestock and Wildlife Brucellosis Vaccination

    Science.gov (United States)

    Live attenuated brucellosis vaccines have been available for protecting domestic livestock against B. melitensis or B. abortus for more than 60 years. Current vaccines are effective in preventing abortion and transmission of brucellosis, but poor at preventing infection or seroconversion. In addit...

  13. Approaches toward the development of DNA vaccine for influenza ...

    African Journals Online (AJOL)

    The main goals of this investigation were to prepare a viral DNA vaccine to help stimulate the immune system of poultry and to increase the efficiency of this vaccine. To accomplish this work, a strain of H5N1 circulating in Egypt was confirmed using rapid diagnostic methods and also, reverse transcriptase polymerase chain ...

  14. Plant glycans: friend or foe in vaccine development?

    NARCIS (Netherlands)

    Bosch, H.J.; Schots, A.

    2010-01-01

    Plants are an attractive platform for the production of N-glycosylated subunit vaccines. Wild type glycosylation of plants can be exploited to produce vaccines that antigen-presenting cells effectively take up, degrade and present to cells of the adaptive immune system. Alternatively,

  15. Developments in the formulation and delivery of spray dried vaccines

    NARCIS (Netherlands)

    Kanojia, Gaurav; Have, Rimko Ten; Soema, Peter C; Frijlink, Henderik; Amorij, Jean-Pierre; Kersten, Gideon

    2017-01-01

    Spray drying is a promising method for the stabilization of vaccines, which are usually formulated as liquids. Usually, vaccine stability is improved by spray drying in the presence of a range of excipients. Unlike freeze drying, there is no freezing step involved, thus the damage related to this

  16. Systems biology applied to vaccine and immunotherapy development

    Directory of Open Access Journals (Sweden)

    Marincola Francesco M

    2011-09-01

    Full Text Available Abstract Immunotherapies, including vaccines, represent a potent tool to prevent or contain disease with high morbidity or mortality such as infections and cancer. However, despite their widespread use, we still have a limited understanding of the mechanisms underlying the induction of protective immune responses. Immunity is made of a multifaceted set of integrated responses involving a dynamic interaction of thousands of molecules; among those is a growing appreciation for the role the innate immunity (i.e. pathogen recognition receptors - PRRs plays in determining the nature and duration (immune memory of adaptive T and B cell immunity. The complex network of interactions between immune manipulation of the host (immunotherapy on one side and innate and adaptive responses on the other might be fully understood only employing the global level of investigation provided by systems biology. In this framework, the advancement of high-throughput technologies, together with the extensive identification of new genes, proteins and other biomolecules in the "omics" era, facilitate large-scale biological measurements. Moreover, recent development of new computational tools enables the comprehensive and quantitative analysis of the interactions between all of the components of immunity over time. Here, we review recent progress in using systems biology to study and evaluate immunotherapy and vaccine strategies for infectious and neoplastic diseases. Multi-parametric data provide novel and often unsuspected mechanistic insights while enabling the identification of common immune signatures relevant to human investigation such as the prediction of immune responsiveness that could lead to the improvement of the design of future immunotherapy trials. Thus, the paradigm switch from "empirical" to "knowledge-based" conduct of medicine and immunotherapy in particular, leading to patient-tailored treatment.

  17. R&D in Vaccines Targeting Neglected Diseases: An Exploratory Case Study Considering Funding for Preventive Tuberculosis Vaccine Development from 2007 to 2014

    Directory of Open Access Journals (Sweden)

    Theolis Costa Barbosa Bessa

    2017-01-01

    Full Text Available Based on an exploratory case study regarding the types of institutions funding the research and development to obtain new tuberculosis vaccines, this article intends to provoke discussion regarding the provision of new vaccines targeting neglected disease. Although our findings and discussion are mainly relevant to the case presented here, some aspects are more generally applicable, especially regarding the dynamics of development in vaccines to prevent neglected diseases. Taking into account the dynamics of innovation currently seen at work in the vaccine sector, a highly concentrated market dominated by few multinational pharmaceutical companies, we feel that global PDP models can play an important role throughout the vaccine development cycle. In addition, the authors call attention to issues surrounding the coordination of actors and resources in the research, development, manufacturing, and distribution processes of vaccine products arising from PDP involvement.

  18. Development and evaluation of rapid novel isothermal amplification assays for important veterinary pathogens: Chlamydia psittaci and Chlamydia pecorum

    Directory of Open Access Journals (Sweden)

    Martina Jelocnik

    2017-09-01

    Full Text Available Background Chlamydia psittaci and Chlamydia pecorum are important veterinary pathogens, with the former also being responsible for zoonoses, and the latter adversely affecting koala populations in Australia and livestock globally. The rapid detection of these organisms is still challenging, particularly at the point-of-care (POC. In the present study, we developed and evaluated rapid, sensitive and robust C. psittaci-specific and C. pecorum-specific Loop Mediated Isothermal Amplification (LAMP assays for detection of these pathogens. Methods and Materials The LAMP assays, performed in a Genie III real-time fluorometer, targeted a 263 bp region of the C. psittaci-specific Cps_0607 gene or a 209 bp region of a C. pecorum-specific conserved gene CpecG_0573, and were evaluated using a range of samples previously screened using species-specific quantitative PCRs (qPCRs. Species-specificity for C. psittaci and C. pecorum LAMP targets was tested against DNA samples from related chlamydial species and a range of other bacteria. In order to evaluate pathogen detection in clinical samples, C. psittaci LAMP was evaluated using a total of 26 DNA extracts from clinical samples from equine and avian hosts, while for C. pecorum LAMP, we tested a total of 63 DNA extracts from clinical samples from koala, sheep and cattle hosts. A subset of 36 C. pecorum samples was also tested in a thermal cycler (instead of a real-time fluorometer using newly developed LAMP and results were determined as an end point detection. We also evaluated rapid swab processing (without DNA extraction to assess the robustness of these assays. Results Both LAMP assays were demonstrated to species-specific, highly reproducible and to be able to detect as little as 10 genome copy number/reaction, with a mean amplification time of 14 and 24 min for C. psittaci and C. pecorum, respectively. When testing clinical samples, the overall congruence between the newly developed LAMP assays and q

  19. Development and evaluation of rapid novel isothermal amplification assays for important veterinary pathogens: Chlamydia psittaci and Chlamydia pecorum.

    Science.gov (United States)

    Jelocnik, Martina; Islam, Md Mominul; Madden, Danielle; Jenkins, Cheryl; Branley, James; Carver, Scott; Polkinghorne, Adam

    2017-01-01

    Chlamydia psittaci and Chlamydia pecorum are important veterinary pathogens, with the former also being responsible for zoonoses, and the latter adversely affecting koala populations in Australia and livestock globally. The rapid detection of these organisms is still challenging, particularly at the point-of-care (POC). In the present study, we developed and evaluated rapid, sensitive and robust C. psittaci-specific and C. pecorum-specific Loop Mediated Isothermal Amplification (LAMP) assays for detection of these pathogens. The LAMP assays, performed in a Genie III real-time fluorometer, targeted a 263 bp region of the C. psittaci-specific Cps_0607 gene or a 209 bp region of a C. pecorum-specific conserved gene CpecG_0573, and were evaluated using a range of samples previously screened using species-specific quantitative PCRs (qPCRs). Species-specificity for C. psittaci and C. pecorum LAMP targets was tested against DNA samples from related chlamydial species and a range of other bacteria. In order to evaluate pathogen detection in clinical samples, C. psittaci LAMP was evaluated using a total of 26 DNA extracts from clinical samples from equine and avian hosts, while for C. pecorum LAMP, we tested a total of 63 DNA extracts from clinical samples from koala, sheep and cattle hosts. A subset of 36 C. pecorum samples was also tested in a thermal cycler (instead of a real-time fluorometer) using newly developed LAMP and results were determined as an end point detection. We also evaluated rapid swab processing (without DNA extraction) to assess the robustness of these assays. Both LAMP assays were demonstrated to species-specific, highly reproducible and to be able to detect as little as 10 genome copy number/reaction, with a mean amplification time of 14 and 24 min for C. psittaci and C. pecorum, respectively. When testing clinical samples, the overall congruence between the newly developed LAMP assays and qPCR was 92.3% for C. psittaci (91.7% sensitivity and 92

  20. The Entangled History of Sadoka (Rinderpest) and Veterinary Science in Tanzania and the Wider World, 1891-1901.

    Science.gov (United States)

    Sunseri, Thaddeus

    2015-01-01

    Scholarship on the Tanzanian Rinderpest epizootic of the 1890s has assumed that German colonizers understood from the start that they were confronting the same disease that had afflicted Eurasia for centuries. Outward indicators of the epizootic, known locally as sadoka, especially wildlife destruction, were unknown in Europe, leading German veterinarians to doubt that the African disease was Rinderpest. Financial constraints and conflicting development agendas, especially tension between ranching and pastoralism, deterred early colonial applications of veterinary science that might have led to an early diagnosis. European veterinarians, guarding their authority against medical researchers, opposed inoculation therapies in the case of Rinderpest in favor of veterinary policing despite recent breakthroughs in vaccine research. The virus was not identified before reaching South Africa in 1896, but this breakthrough had little influence on policy in East Africa. Yet emergent international disease conventions directed at bubonic plague entangled with veterinary policy in East Africa.

  1. Veterinary Forensic Pathology: The Search for Truth.

    Science.gov (United States)

    McDonough, S P; McEwen, B J

    2016-09-01

    Veterinary forensic pathology is emerging as a distinct discipline, and this special issue is a major step forward in establishing the scientific basis of the discipline. A forensic necropsy uses the same skill set needed for investigations of natural disease, but the analytical framework and purpose of forensic pathology differ significantly. The requirement of legal credibility and all that it entails distinguishes the forensic from routine diagnostic cases. Despite the extraordinary depth and breadth of knowledge afforded by their training, almost 75% of veterinary pathologists report that their training has not adequately prepared them to handle forensic cases. Many veterinary pathologists, however, are interested and willing to develop expertise in the discipline. Lessons learned from tragic examples of wrongful convictions in medical forensic pathology indicate that a solid foundation for the evolving discipline of veterinary forensic pathology requires a commitment to education, training, and certification. The overarching theme of this issue is that the forensic necropsy is just one aspect in the investigation of a case of suspected animal abuse or neglect. As veterinary pathologists, we must be aware of the roles filled by other veterinary forensic experts involved in these cases and how our findings are an integral part of an investigation. We hope that the outcome of this special issue of the journal is that veterinary pathologists begin to familiarize themselves with not only forensic pathology but also all aspects of veterinary forensic science. © The Author(s) 2016.

  2. Accreditation of Veterinary Medical Education: Part II--Influence of the American Veterinary Medical Association

    Science.gov (United States)

    Bauer, Elizabeth K.

    1975-01-01

    Traces the development, since its founding in 1863, of the American Veterinary Medical Association (AVMA) influence over the standards of training required in the veterinary profession. Attention is focused on the roles of the U.S. Department of Agriculture, the military, and the land-grant colleges in that development. (JT)

  3. RTS,S malaria vaccine development: progress and considerations for postapproval introduction

    Directory of Open Access Journals (Sweden)

    Asante KP

    2016-06-01

    Full Text Available Kwaku Poku Asante, George Adjei, Yeetey Enuameh, Seth Owusu-Agyei Kintampo Health Research Centre, Kintampo, Brong Ahafo Region, Ghana Abstract: Though the burden of malaria has decreased in the last decade in some sub-Saharan African countries, it is still high in others, and there is no malaria vaccine in use. The development of malaria vaccines in combination with current control programs could be effective in reducing the malaria burden. In this paper, we review and discuss the progress made in the RTS,S malaria vaccine development and considerations for its postapproval process. We conclude that the development of malaria vaccines has been a long process confronted with challenges of funding, difficulty in identifying malaria antigens that correlate with protection, and development of adjuvant systems among others. The scientific approval of the vaccine by the European Medicines Agency in July 2015 and subsequent recommendations for pilot implementation studies by the World Health Organization made history as the first human parasite vaccine. It is also a major public health achievement as the vaccine has the potential to prevent thousands of malaria cases. However, there are implementation challenges such as cold chain systems, community acceptance, and monitoring of adverse events post-licensure that need to be carefully addressed. Keywords: malaria, vaccines, challenges, introduction, Africa, implementation considerations 

  4. Development of a classical swine fever subunit marker vaccine and companion diagnostic test

    NARCIS (Netherlands)

    Moormann, R.J.; Bouma, A.; Kramps, J.A.; Terpstra, C.; Smit, de H.J.

    2000-01-01

    The development of a classical swine fever (CSF) subunit marker vaccine, based on viral envelope glycoprotein E2, and a companion diagnostic test, based on a second viral envelope glycoprotein E(RNS), will be described. Important properties of the vaccine, such as onset and duration of immunity, and

  5. Establishing the pig as a large animal model for vaccine development against human cancer

    DEFF Research Database (Denmark)

    Overgaard, Nana Haahr; Frøsig, Thomas Mørch; Welner, Simon

    2015-01-01

    and the porcine immunome is closer related to the human counterpart, we here introduce pigs as a supplementary large animal model for human cancer vaccine development. IDO and RhoC, both important in human cancer development and progression, were used as vaccine targets and 12 pigs were immunized with overlapping......C-derived peptides across all groups with no adjuvant being superior. These findings support the further use of pigs as a large animal model for vaccine development against human cancer.......Immunotherapy has increased overall survival of metastatic cancer patients, and cancer antigens are promising vaccine targets. To fulfill the promise, appropriate tailoring of the vaccine formulations to mount in vivo cytotoxic T cell (CTL) responses toward co-delivered cancer antigens is essential...

  6. Veterinary Services Program

    Data.gov (United States)

    Federal Laboratory Consortium — Mission:To provide quality veterinary medical care and environmental enrichment programs for all animals, representing nine different species.To provide guidance for...

  7. Mastitis vaccines in dairy cows: Recent developments and recommendations of application

    Directory of Open Access Journals (Sweden)

    Zuhair Bani Ismail

    2017-09-01

    Full Text Available The objective of this review article was to summarize the most recent clinical field trials that have been published evaluating the use of different types of vaccines against mastitis pathogens in dairy cows. Mastitis is one of the most common and economically important diseases in dairy cows in the world. The disease is considered an important welfare issue facing the dairy industry in addition to the loss of production and premature removal or death of affected cows. Losses are also related to high cost of veterinary medicines and the cost of unsalable milk of treated cows. Mastitis can be caused by either contagious or environmental pathogens both of which are best prevented rather than treated. In addition to the application of best management practices in the parlor during milking, vaccination against common udder pathogens is widely practiced in many dairy farms to prevent or reduce the severity of clinical mastitis. In this review, the most recent clinical field studies that evaluated the use of different types of vaccines in dairy cows are summarized.

  8. Development of a DNA vaccine targeting human papillomavirus type 16 oncoprotein E6.

    Science.gov (United States)

    Peng, Shiwen; Ji, Hongxiu; Trimble, Cornelia; He, Liangmei; Tsai, Ya-Chea; Yeatermeyer, Jessica; Boyd, David A K; Hung, Chien-Fu; Wu, T-C

    2004-08-01

    Human papillomavirus (HPV), particularly type 16 (HPV-16), is present in more than 99% of cervical cancers. The HPV oncoproteins E6 and E7 are constantly expressed and therefore represent ideal targets for HPV vaccine development. We previously developed DNA vaccines encoding calreticulin (CRT) linked to HPV-16 E7 and generated potent E7-specific CD8(+) T-cell immune responses and antitumor effects against an E7-expressing tumor. Since vaccines targeting E6 also represent an important strategy for controlling HPV-associated lesions, we developed a DNA vaccine encoding CRT linked to E6 (CRT/E6). Our results indicated that the CRT/E6 DNA vaccine, but not a wild-type E6 DNA vaccine, generated significant E6-specific CD8(+) T-cell immune responses in vaccinated mice. Mapping of the immunodominant epitope of E6 revealed that an E6 peptide comprising amino acids (aa) 48 to 57 (E6 aa48-57), presented by H-2K(b), is the optimal peptide and that the region of E6 comprising aa 50 to 57 represents the minimal core sequence required for activating E6-specific CD8(+) T lymphocytes. We also demonstrated that E6 aa48-57 contains cytotoxic T-lymphocyte epitopes naturally presented by E6-expressing TC-1 cells. Vaccination with a CRT/E6 but not a CRT/mtE6 (lacking aa 50 to 57 of E6) DNA vaccine could protect vaccinated mice from challenge with E6-expressing TC-1 tumors. Thus, our data indicate that E6 aa48-57 contains the immunodominant epitope and that a CRT/E6 DNA vaccine may be useful for control of HPV infection and HPV-associated lesions.

  9. Vaccines for bovine neosporosis: current status and key aspects for development.

    Science.gov (United States)

    Horcajo, P; Regidor-Cerrillo, J; Aguado-Martínez, A; Hemphill, A; Ortega-Mora, L M

    2016-12-01

    Bovine neosporosis is a worldwide concern due to its global distribution and great economic impact. Reproductive failure in cattle due to abortion leads to major economic losses associated with the disease. Currently, there is no treatment or vaccine available against abortion or transmission caused by Neospora caninum infection in cattle. However, vaccination is considered the best measure of control against bovine neosporosis. Several host and parasite factors can influence the dynamics of the infection in bovines. Moreover, the availability of well-defined infection models is a key factor for the evaluation of vaccine candidates. However, working with cattle is not easy due to difficult handling, facilities and costs, and therefore, 'more affordable' models could be used for screening of promising vaccines to establish proof of concept. So far, live-attenuated vaccines have shown good efficacy against exogenous transplacental transmission; however, they have relevant disadvantages and associated risks, which render inactivated or subunit vaccines the best way forward. The identification of novel potential targets and vaccines, and the application of innovative vaccine technologies in harmonized experimental animal models, will accelerate the development of an effective vaccine against bovine neosporosis. © 2016 John Wiley & Sons Ltd.

  10. The study of H. pylori putative candidate factors for single- and multi-component vaccine development.

    Science.gov (United States)

    Mirzaei, Nasrin; Poursina, Farkhondeh; Moghim, Sharareh; Rashidi, Niloufar; Ghasemian Safaei, Hajieh

    2017-09-01

    Helicobacter pylori has grown to colonize inside the stomach of nearly half of the world's population, turning into the most prevalent infections in the universe. Medical care failures noticeably confirm the need for a vaccine to hinder or deal with H. pylori. This review is planned to discuss the most known factors as a vaccine candidate, including single (AhpC, BG, CagA, KatA, Fla, Hsp, HWC, Lpp, LPS, NAP, OMP, OMV, SOD, Tpx, Urease, VacA) and multi-component vaccines. Many promising results in the field of single and multivalent vaccine can be seen, but there is no satisfactory outcome and neither a prophylactic nor a therapeutic vaccine to treat or eradicate the infection in human has been acquired. Hence, selecting suitable antigen is an important factor as an appropriate adjuvant. Taken all together, the development of efficient anti-H. pylori vaccines relies on the fully understanding of the interactions between H. pylori and its host immune system. Therefore, more work should be done on epitope mapping, analysis of molecular structure, and determination of the antigen determinant region as well due to design a vaccine, preferably a multi-component vaccine to elicit specific CD4 T-cell responses that are required for H. pylori vaccine efficacy.

  11. Development of Human Papillomavirus (HPV) Vaccines: A Review of Literature and Clinical Update.

    Science.gov (United States)

    Sangar, Vikrant Chadrakant; Ghongane, Balasaheb; Mathur, Gaurav

    2016-01-01

    The casual relationship concerning Human papillomaviruses (HPV) and cervical cancer is already established. Therefore, such HPV-associated malignancies might be prevented by prophylactic HPV vaccines. From 2009, two prophylactic HPV L1 Virus-Like Particle vaccines namely, Gardasil®; - quadrivalent (Merck) and Cervarix™ - bivalent (GlaxoSmithKline) are widely commercially available. By Aug 2014, 58 countries had introduced HPV vaccination in their national immunization program; this has led to numerous publications on safety and real world effectiveness. We have also seen long-term immunogenicity and efficacy data emerging. Data on cross-protection has also evolved. In clinical trials, it is observed that vaccinating adolescents results in higher immunological response than young adults hence to achieve best HPV vaccine efficacy it is advisable to immunize before the onset of sexual activity. Recently we have seen development of 2 dose vaccine schedule for adolescent, and emerging evidences even point that single dose of HPV vaccines can result in high efficacy, this observation is currently under consideration but if accepted will greatly impact vaccination coverage. In terms of safety, pregnancy registry did not find any unexpected patterns in fetal or maternal outcomes. This review only focuses on the efficacy and safety data of both Food and Drug Administration approved vaccines from clinical phase I to phase IV.

  12. A systematic review and meta-analysis for the adverse effects, immunogenicity and efficacy of Lyme disease vaccines: Guiding novel vaccine development.

    Science.gov (United States)

    Badawi, Alaa; Shering, Maria; Rahman, Shusmita; Lindsay, L Robbin

    2017-04-20

    Lyme borreliosis (LB) is the most prevalent arthropod-borne infectious disease in North America. Currently, no vaccine is available to prevent LB in humans, although monovalent and multivalent vaccines have been developed in the past. The aim of the current study is to conduct a systematic review and meta-analysis to evaluate and compare the findings from these two classes of vaccines for their reactogenicity, immunogenicity and efficacy, in the hope this may assist in the development of future vaccines. A search strategy was developed for online databases (PubMed, Ovid MEDLINE, and Embase). Search terms used were "vaccine/vaccination", "Lyme disease/Borreliosis", "clinical trial(s)" and "efficacy". Only seven clinical trials were included to compare the results of the monovalent vaccines to those of the multivalent one. Meta-analyses were conducted to evaluate the reactogenicity and immunogenicity of the two vaccine classes. Odds ratio (OR) for LB (and 95% confidence intervals; 95% CI) were calculated for the efficacy of the monovalent vaccine from three different clinical trials at different dose schedules. Incidence of redness (local adverse effect) and fever (systemic side effect) were, respectively, 6.8- and 2.9-fold significantly lower (p < 0.05) in individuals who received multivalent vaccines compared to those receiving the monovalent one. Incidences of all other local and systemic adverse effects were non-significantly lower in the multivalent vaccine compared to the monovalent vaccines. Seroprotection was comparable among individuals who received the two vaccine classes at the 30 μg dose level. Efficacy in the prevention of LB was only evaluated for the monovalent vaccines. OR of LB ranged from 0.49 (95% CI: 0.14-0.70; p < 0.005, vs. placebo) to 0.31 (95% CI: 0.26-0.63; p < 0.005) for the initial and final doses respectively, with an overall OR of 0.4 (95% CI: 0.26-0.63, p < 0.001). The current study further validates that the monovalent and multivalent

  13. Approaches and Perspectives for Development of African Swine Fever Virus Vaccines

    Directory of Open Access Journals (Sweden)

    Marisa Arias

    2017-10-01

    Full Text Available African swine fever (ASF is a complex disease of swine, caused by a large DNA virus belonging to the family Asfarviridae. The disease shows variable clinical signs, with high case fatality rates, up to 100%, in the acute forms. ASF is currently present in Africa and Europe where it circulates in different scenarios causing a high socio-economic impact. In most affected regions, control has not been effective in part due to lack of a vaccine. The availability of an effective and safe ASFV vaccines would support and enforce control–eradication strategies. Therefore, work leading to the rational development of protective ASF vaccines is a high priority. Several factors have hindered vaccine development, including the complexity of the ASF virus particle and the large number of proteins encoded by its genome. Many of these virus proteins inhibit the host’s immune system thus facilitating virus replication and persistence. We review previous work aimed at understanding ASFV–host interactions, including mechanisms of protective immunity, and approaches for vaccine development. These include live attenuated vaccines, and “subunit” vaccines, based on DNA, proteins, or virus vectors. In the shorter to medium term, live attenuated vaccines are the most promising and best positioned candidates. Gaps and future research directions are evaluated.

  14. Malaria Vaccine Development: Are Bacterial Flagellin Fusion Proteins the Bridge between Mouse and Humans?

    Directory of Open Access Journals (Sweden)

    Daniel Y. Bargieri

    2011-01-01

    Full Text Available In the past 25 years, the development of an effective malaria vaccine has become one of the biggest riddles in the biomedical sciences. Experimental data using animal infection models demonstrated that it is possible to induce protective immunity against different stages of malaria parasites. Nonetheless, the vast body of knowledge has generated disappointments when submitted to clinical conditions and presently a single antigen formulation has progressed to the point where it may be translated into a human vaccine. In parallel, new means to increase the protective effects of antigens in general have been pursued and depicted, such as the use of bacterial flagellins as carriers/adjuvants. Flagellins activate pathways in the innate immune system of both mice and humans. The recent report of the first Phase I clinical trial of a vaccine containing a Salmonella flagellin as carrier/adjuvant may fuel the use of these proteins in vaccine formulations. Herein, we review the studies on the use of recombinant flagellins as vaccine adjuvants with malarial antigens in the light of the current state of the art of malaria vaccine development. The available information indicates that bacterial flagellins should be seriously considered for malaria vaccine formulations to the development of effective human vaccines.

  15. Carbohydrate vaccines: developing sweet solutions to sticky situations?

    Science.gov (United States)

    Astronomo, Rena D.; Burton, Dennis R.

    2013-01-01

    The realm of carbohydrate vaccines has expanded far beyond the capsular polysaccharides of bacterial pathogens to include a diverse collection of targets representing nearly every biological kingdom. Recent technological advances in glycobiology and glycochemistry are paving the way for a new era in carbohydrate vaccine design enabling greater efficiency in the identification, synthesis and evaluation of unique glycan epitopes found on a plethora of pathogens and malignant cells. This article reviews the progress being made in addressing challenges posed by targeting the surface carbohydrates of bacteria, protozoa, helminths, viruses, fungi and cancer for vaccine purposes. PMID:20357803

  16. Improving immunogenicity, efficacy and safety of vaccines through innovation in clinical assay development and trial design: the Phacilitate Vaccine Forum, Washington D.C. 2011.

    Science.gov (United States)

    Moldovan, Ioana R; Tary-Lehmann, Magdalena

    2011-06-01

    The 9th Annual Vaccine Forum organized by Phacilitate in Washington D.C. 2011 brought together 50+ senior level speakers and over 400 participants representing all the key stakeholders concerning vaccines. The main focus of the meeting was to define priorities in the global vaccines sector from funding to manufacturing and evaluation of vaccine efficacy. A special session was devoted to improving immunogenicity, efficacy and safety of vaccines through innovation in clinical assay development and trial design. The current regulatory approach to clinical assay specification, validation and standardization that enable more direct comparisons of efficacy between trials was illustrated by the success in meningococcal vaccine development. The industry approach to validation strategies was exemplified by a new serologic test used on the diagnostic of pneumococcal pneumonia. The application of the Animal Rule to bridge clinical and non-clinical studies in botulism has allowed significant progress in developing one of the first vaccines to seek approval under the FDA Animal Efficacy Rule. An example of pushing the boundaries in the correlation of immunological responses and efficacy points was represented by a recent cell-based influenza vaccine for which the same correlates of protection apply as for the traditional, egg-based flue vaccine. In the field of HIV phase 2b studies are underway, based on promising results obtained with some vaccine candidates. The conclusion of this session was that creativity in vaccine design and evaluation is beneficial and can lead to innovative new vaccine designs as well as to validated assays to assess vaccine efficacy.

  17. Novel Mycoplasma hyosynoviae vaccination of one herd failed to prevent lameness in finishing pigs

    OpenAIRE

    Lauritsen, Klara Tølbøll; Nielsen, Elisabeth Okholm; Christensen, Dennis; Jungersen, Gregers

    2013-01-01

    Infection with Mycoplasma hyosynoviae (M. hyosynoviae) is a known cause of arthritis and lameness in finishing pigs. Although antibiotic therapy will cure many cases, other ways of preventing M. hyosynoviae arthritis are warranted. The National Veterinary Institute has recently developed a M. hyosynoviae vaccine formulated with formalin-fixed whole-cell M. hyosynoviae and CAF01 (Statens Serum Institut, Denmark) as an adjuvant. This vaccine has recently shown promising results in experimentall...

  18. How the research-based industry approaches vaccine development and establishes priorities.

    Science.gov (United States)

    André, F E

    2002-01-01

    Over the past two decades, progress in immunology, molecular biology and genomics as well as some technological breakthroughs in computer science has opened the way to the development of prophylactic vaccines against most acute infectious diseases. Therapeutic vaccines against chronic infections, allergic conditions, auto-immune diseases and cancer have also come into the realm of possibility. It is estimated that wordwide there are about 400 vaccine projects in R&D laboratories of academic institutions, research institutes and vaccine manufacturers. Most of these projects will not yield a licensed vaccine for routine or even targeted immunisation. This is mostly not because of scientific barriers but due to financial and politicoeconomic obstades that make their development feasible only by the handful of major research-based vaccine manufacturers that nowadays all form part of large global pharmaceutical corporations. Such enterprises have to be profitable to survive and priority setting, when it comes to R&D projects, has to take into account potential return on all investments, particularly as it currently costs between 200 and 500 million US dollars to bring a new vaccine from the concept stage to market. Factors that influence the decision to embark upon an R&D project on a new vaccine include the medical need for the vaccine, gauged by the global burden of the targeted disease, potential and probable market size - judged on volume (number of doses required) and value (total sales) -, probability of success and expertise of the company in the field (both R&D and marketing) as well as the likelihood of competitors taking a large part of the market. Moral imperatives such as the urgent need for vaccines against HIV/AIDS, malaria and an improved vaccine against tuberculosis to save the several millions of lives claimed each year by these diseases also play a role. However, for such investments to be sustainable other sources of financing than the commercial

  19. 150th anniversary of veterinary education and the veterinary profession in North America.

    Science.gov (United States)

    Smith, Donald F

    2010-01-01

    This article is the first in a series of three to be published in the Journal of Veterinary Medical Education (JVME). These articles are abridged versions of six lectures that make up an elective course on the history of the veterinary profession in North America offered at Cornell University's College of Veterinary Medicine in spring 2010. The course was based in large part on an oral history collection titled "An Enduring Veterinary Legacy"(1) that captures interesting and relevant veterinary stories. The course was designed to increase awareness of the history of veterinary medicine as we approach the sesquicentennial of the American Veterinary Medical Association (AVMA) in 2013 and as we join with our international colleagues in marking the 250th anniversary of the establishment of the world's first veterinary college in Lyon, France, in 2011.(2) The overarching goal of this course and the articles is to record and also to share first-person stories that describe the development of veterinary education and the veterinary profession in North America from the mid-1860s to the present. In the process, it is hoped that this history will encourage respect, love, and admiration for the veterinary profession and an appreciation of veterinary medicine as a versatile profession. The articles are somewhat Cornell-centric because the lectures on which they are based were presented to Cornell students at their home institution. However, it is hoped that the events are representative of the broader American experience. For educators interested in the course itself, a brief synopsis and a summary of student evaluations for the first year of presentation is appended here and in subsequent articles in this series.

  20. Veterinary microbiology and microbial disease

    National Research Council Canada - National Science Library

    Quinn, P. J

    2011-01-01

    "Veterinary Microbiology is one of the core subjects for veterinary students. Fully revised and expanded, this new edition covers every aspect of veterinary microbiology for students in both paraclinical and clinical years...

  1. Sahel Journal of Veterinary Sciences

    African Journals Online (AJOL)

    The Sahel Journal of Veterinary Sciences is the official journal of the Faculty of Veterinary Medicine, University of Maiduguri, Maiduguri, Nigeria. The journal welcomes original research articles, short communications and reviews on all aspects of veterinary sciences and related disciplines.

  2. Rapid development of a DNA vaccine for Zika virus.

    Science.gov (United States)

    Dowd, Kimberly A; Ko, Sung-Youl; Morabito, Kaitlyn M; Yang, Eun Sung; Pelc, Rebecca S; DeMaso, Christina R; Castilho, Leda R; Abbink, Peter; Boyd, Michael; Nityanandam, Ramya; Gordon, David N; Gallagher, John Robert; Chen, Xuejun; Todd, John-Paul; Tsybovsky, Yaroslav; Harris, Audray; Huang, Yan-Jang S; Higgs, Stephen; Vanlandingham, Dana L; Andersen, Hanne; Lewis, Mark G; De La Barrera, Rafael; Eckels, Kenneth H; Jarman, Richard G; Nason, Martha C; Barouch, Dan H; Roederer, Mario; Kong, Wing-Pui; Mascola, John R; Pierson, Theodore C; Graham, Barney S

    2016-10-14

    Zika virus (ZIKV) was identified as a cause of congenital disease during the explosive outbreak in the Americas and Caribbean that began in 2015. Because of the ongoing fetal risk from endemic disease and travel-related exposures, a vaccine to prevent viremia in women of childbearing age and their partners is imperative. We found that vaccination with DNA expressing the premembrane and envelope proteins of ZIKV was immunogenic in mice and nonhuman primates, and protection against viremia after ZIKV challenge correlated with serum neutralizing activity. These data not only indicate that DNA vaccination could be a successful approach to protect against ZIKV infection, but also suggest a protective threshold of vaccine-induced neutralizing activity that prevents viremia after acute infection. Copyright © 2016, American Association for the Advancement of Science.

  3. [The development of mucosal vaccine using bacterial function for targeting mucosal tissues].

    Science.gov (United States)

    Suzuki, Hidehiko; Kondoh, Masuo; Yagi, Kiyohito; Kiyono, Hiroshi; Kunisawa, Jun

    2014-01-01

    Most pathogens invade body through the mucosal epithelium, which is a primary target to prevent the infectious diseases. Mucosal vaccine has been considered to be an effective strategy to establish immunosurveillance against pathogens by the induction of antigen-specific immune responses at both mucosal and systemic immune compartments. The development of antigen delivery system and mucosal adjuvants are required for the sufficient induction of protective immunity in the development of mucosal vaccine. In this review, we shed light on the recent advances in the development of antigen delivery system using microbial functions for mucosal vaccines.

  4. Prospects and perspectives for development of a vaccine against herpes simplex virus infections.

    Science.gov (United States)

    McAllister, Shane C; Schleiss, Mark R

    2014-11-01

    Herpes simplex viruses 1 and 2 are human pathogens that lead to significant morbidity and mortality in certain clinical settings. The development of effective antiviral medications, however, has had little discernible impact on the epidemiology of these pathogens, largely because the majority of infections are clinically silent. Decades of work have gone into various candidate HSV vaccines, but to date none has demonstrated sufficient efficacy to warrant licensure. This review examines developments in HSV immunology and vaccine development published since 2010, and assesses the prospects for improved immunization strategies that may result in an effective, licensed vaccine in the near future.

  5. Ebola Virus: Immune Mechanisms of Protection and Vaccine Development

    OpenAIRE

    Nyamathi, AM; Fahey, JL; Sands, H; Casillas, AM

    2003-01-01

    Vaccination is one of our most powerful antiviral strategies. Despite the emergence of deadly viruses such as Ebola virus, vaccination efforts have focused mainly on childhood communicable diseases. Although Ebola virus was once believed to be limited to isolated outbreaks in distant lands, forces of globalization potentiate outbreaks anywhere in the world through incidental transmission. Moreover, since this virus has already been transformed into weapongrade material, the potential exists f...

  6. Status of vaccine research and development of vaccines for HIV-1.

    Science.gov (United States)

    Safrit, Jeffrey T; Fast, Patricia E; Gieber, Lisa; Kuipers, Hester; Dean, Hansi J; Koff, Wayne C

    2016-06-03

    Human immunodeficiency virus (HIV) is the cause of one of the most lethal pandemics in human history, although in recent years access to highly effective anti-retroviral therapy has provided new hope worldwide. Transmission of HIV by sexual contact, childbirth and injection drug use has been reduced, but 2 million are newly infected each year, and much of the transmission is from people who do not know their status. In addition to known methods, a preventive vaccine is needed to end the pandemic. The extraordinary mutability and genetic diversity of HIV is an enormous challenge, but vaccines are being designed for broad coverage. Computer-aided design of mosaic immunogens, incorporating many epitopes from the entire genome or from conserved regions aim to induce CD8+ T cells to kill virus-infected cells or inhibit virus replication, while trimeric envelope proteins or synthetic mimics aim to induce broadly reactive neutralizing antibodies similar to those cloned from some infected patients. Induction of more potent and durable responses may require new adjuvants or replicating chimeric vectors chimeras that bear HIV genes. Passive or genetic delivery of broadly neutralizing antibodies may provide broad protection and/or lead to insights for vaccine designers. Proof-of-concept trials in non-human primates and in one human efficacy trial have provided scientific clues for a vaccine that could provide broad and durable protection against HIV. The use of vaccines to destroy HIV reservoirs as part of therapy or cure is now also being explored. Copyright © 2016 World Health Organization. Published by Elsevier Ltd.. All rights reserved.

  7. NIGERIAN VETERINARY JOURNAL

    African Journals Online (AJOL)

    ADEYEYE

    Department of Veterinary Pathology, College of Veterinary Medicine, Michael Okpara University of Agriculture,. Umudike, P.M.B 7267 Umuahia, Abia State, Nigeria. *Corresponding author: Email: docoleji@yahoo.com; Tel. No:+234 8034509991. SUMMARY. This study investigated comparatively the genetic influence on the ...

  8. Archives: Nigerian Veterinary Journal

    African Journals Online (AJOL)

    Items 1 - 49 of 49 ... Archives: Nigerian Veterinary Journal. Journal Home > Archives: Nigerian Veterinary Journal. Log in or Register to get access to full text downloads. Username, Password, Remember me, or Register · Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives. 1 - 49 of 49 Items ...

  9. Nigerian Veterinary Journal (1)

    African Journals Online (AJOL)

    The importance of computers in all works of life need not to be overemphasized. However, in. Nigeria, the application of computers in veterinary medicine has not been fully utilized. Computer aided diagnosis is a process that has significantly improved the practice of veterinary medicine in other parts of the world. This paper ...

  10. Nigerian Veterinary Journal: Submissions

    African Journals Online (AJOL)

    SCOPE The Editorial Board of the Nigerian Veterinary Journal (NVJ) welcomes contributions in the form of original research papers, review articles, clinical case reports, and short communications on all aspects of Veterinary Medicine, Surgery and Animal Production. Submissions are accepted on the understanding that ...

  11. Archives: Ethiopian Veterinary Journal

    African Journals Online (AJOL)

    Items 1 - 16 of 16 ... Archives: Ethiopian Veterinary Journal. Journal Home > Archives: Ethiopian Veterinary Journal. Log in or Register to get access to full text downloads. Username, Password, Remember me, or Register · Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives. 1 - 16 of 16 Items ...

  12. Archives: Tanzania Veterinary Journal

    African Journals Online (AJOL)

    Items 1 - 15 of 15 ... Archives: Tanzania Veterinary Journal. Journal Home > Archives: Tanzania Veterinary Journal. Log in or Register to get access to full text downloads. Username, Password, Remember me, or Register · Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives. 1 - 15 of 15 Items ...

  13. NIGERIAN VETERINARY JOURNAL

    African Journals Online (AJOL)

    ADEYEYE

    Nigerian Veterinary Journal 37(3). 2016. Meseko et al. 155. NIGERIAN VETERINARY JOURNAL. ISSN 0331-3026. Nig. Vet. J., September 2016. Vol. 37 (3): 155-159. SHORT COMMUNICATION. Detection of Haemagglutination inhibition antibody to Pandemic and. Classical Swine Influenza Virus in Commercial Piggery in ...

  14. NIGERIAN VETERINARY JOURNAL

    African Journals Online (AJOL)

    ADEYEYE

    Nigerian Veterinary Journal 37(1). 2016. Igado et al. 54. NIGERIAN VETERINARY JOURNAL. ISSN 0331-3026. Nig. Vet. J., March 2016. Vol. 37 (1): 54-63. ORIGINAL ARTICLE. Cranio-facial and Ocular Morphometrics of the Male Greater Cane Rat. (Thryonomys swinderianus). Igado, O. O.. 1. *; Adebayo, A. O.. 2.

  15. NIGERIAN VETERINARY JOURNAL

    African Journals Online (AJOL)

    ADEYEYE

    Nigerian Veterinary Journal 37(3). 2016. Ogunro et al. 187. NIGERIAN VETERINARY JOURNAL. ISSN 0331-3026. Nig. Vet. J., September 2016. Vol. 37 (3): 187-191. CASE REPORT. Management of Epitheliogenesis Imperfecta in a Piglet (Sus Scrofa domesticus) in Ibadan, Nigeria. Ogunro, B. N.. 1. ; Otuh, P. I.. 1.

  16. Open Veterinary Journal

    African Journals Online (AJOL)

    Open Veterinary Journal is a peer reviewed international open access online and printed journal that publishes high-quality original research articles, reviews, short communications and case reports dedicated to all aspects of veterinary sciences and its related subjects. Other websites associated with this journal: ...

  17. Open Veterinary Journal: Contact

    African Journals Online (AJOL)

    Principal Contact. Dr. Ibrahim Eldaghayes Faculty of Veterinary Medicine, University of Tripoli Faculty of Veterinary Medicine, University of Tripoli, P. O. Box 13662, Tripoli, Libya Phone: +218 21 462 8422. Fax: +218 21 462 8421. Email: ibrahim.eldaghayes@vetmed.edu.ly ...

  18. NIGERIAN VETERINARY JOURNAL

    African Journals Online (AJOL)

    ADEYEYE

    variegatum (Acari: Ixodidae) Ticks from Nigeria. Ogo, N. I.. 1. ; Okubanjo, O. O.. 2. ; Inuwa, H. M.. 3 and Agbede, R. I. S.. 4. 1National Veterinary Research Institute, Vom, Plateau State. 2Department of Veterinary Parasitology and. Entomology, Ahmadu Bello University, Zaria, Nigeria. 3Department of Biochemistry, Ahmadu ...

  19. NIGERIAN VETERINARY JOURNAL

    African Journals Online (AJOL)

    ADEYEYE

    Vet. J., December 2015. Vol. 36 (4): 1272-1282. ORIGINAL ARTICLE. Gross and Morphometric Anatomical Changes of the Thyroid Gland in the West African Dwarf ... Department of Veterinary Anatomy, Faculty of Veterinary Medicine, University of Nigeria, Nsukka, Nigeria. .... common carotid artery, internal jugular vein,.

  20. NIGERIAN VETERINARY JOURNAL

    African Journals Online (AJOL)

    ADEYEYE

    Vet. J., March 2016. Vol. 37 (1): 45-53. ORIGINAL ARTICLE. A Retrospective Evaluation of Intravenous Fluid Usage in Animal. Patients Treated at Veterinary Teaching Hospital Nsukka, 2005-2015 ... 2Department of Veterinary Medicine, University of Nigeria, Nsukka. ... they carried with them their own internal sea.

  1. NIGERIAN VETERINARY JOURNAL

    African Journals Online (AJOL)

    ADEYEYE

    SUMMARY. The prevalence and morphological pathology of renal failure in exotic breeds of dog in Lagos and Ogun States, within Southwestern Nigeria were determined from postmortem records of the. Department of Veterinary Pathology, College of Veterinary Medicine, Federal University of. Agriculture, Abeokuta ...

  2. NIGERIAN VETERINARY JOURNAL

    African Journals Online (AJOL)

    ADEYEYE

    at the Maiduguri municipal abattoir and were used for this study. Thyroid glands collected were transported in ice packs to the Department of Veterinary Pathology laboratory, University of Maiduguri, Nigeria for gross examination and thereafter, fixed and sent to Department of Veterinary. Anatomy, University of Abuja, were it ...

  3. Development, validation and different approaches for the measurement uncertainty of a multi-class veterinary drugs residues LC-MS method for feeds.

    Science.gov (United States)

    Valese, Andressa Camargo; Molognoni, Luciano; de Souza, Naielly Coelho; de Sá Ploêncio, Leandro Antunes; Costa, Ana Carolina Oliveira; Barreto, Fabiano; Daguer, Heitor

    2017-05-15

    A sensitive method for the simultaneous residues analysis of 62 veterinary drugs in feeds by liquid chromatography-tandem mass spectrometry has been developed and validated in accordance to Commission Decision 657/2002/EC. Additionally, limits of detection (LOD), limits of quantitation (LOQ), matrix effects and measurement uncertainty were also assessed. Extraction was performed for all analytes and respective internal standards in a single step and chromatographic separation was achieved in only 12min. LOQ were set to 0.63-5.00μgkg-1 (amphenicols), 0.63-30.00μgkg-1 (avermectins), 0.63μgkg-1 (benzimidazoles), 0.25-200.00μgkg-1 (coccidiostats), 0.63-200.00μgkg-1 (lincosamides and macrolides), 0.25-5.00μgkg-1 (nitrofurans), 0.63-20.00μgkg-1 (fluoroquinolones and quinolones), 15.00μgkg-1 (quinoxaline), 0.63-7.50μgkg-1 (sulfonamides), 0.63-20.00μgkg-1 (tetracyclines), 0.25μgkg-1 (β-agonists), and 30.00μgkg-1 (β-lactams). The top-down approach was adequate for the calculation of measurement uncertainty for all analytes, except the banned substances, which should be rather assessed by the bottom-up approach. Routine analysis of different types of feeds was then carried out. An interesting profile of residues of veterinary drugs among samples was revealed, enlightening the need for stricter control in producing animals. Among the total of 27 feed samples, 20 analytes could be detected/quantified, ranging from trace levels to very high concentrations. A high throughput screening/confirmatory method for the residue analysis of several veterinary drugs in feeds was proposed as a helpful control tool. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Team-based learning increases active engagement and enhances development of teamwork and communication skills in a first-year course for veterinary and animal science undergraduates.

    Science.gov (United States)

    Hazel, Susan J; Heberle, Nicole; McEwen, Margaret-Mary; Adams, Karen

    2013-01-01

    Team-based learning (TBL) was implemented into a first-year course (Principles in Animal Behaviour, Welfare and Ethics) for BSc Veterinary Bioscience (VB) and Animal Science (AS) students. TBL is now used widely in teaching medical students, but has had more limited uptake in veterinary education. This study reports its use over 2 years with cohorts of 126 and 138 students in 2011 and 2012, respectively. Average individual marks for multiple-choice question (MCQ) tests in the Readiness Assurance component of TBL were higher for the teams than for individuals for each session, explicitly demonstrating the advantages of teamwork. Students reported that they felt actively involved and that TBL helped them both with their learning and in developing other important skills, such as teamwork and communication. Qualitative analysis of written feedback from the students revealed positive themes of discussion, application, revelation, socializing, engagement, clarification, and retention/revision. In 2011 negative comments included the need to shorten the TBL sessions, but in 2012 tightening of the timelines meant that this was no longer a major concern. Requests to provide better introductory and background materials and ambiguity in questions in the TBL activities were what students least liked about the TBL. However, most comments were positive rather than negative in nature, and many students preferred the TBL to lectures. With requirements for curricula to teach professional skills, such as communication and teamwork, and the positive results from TBL's implementation, it is hoped that this study will encourage others to trial the use of TBL in veterinary education.

  5. Considerations on the aquaculture development and on the use of veterinary drugs: special issue for fluoroquinolones--a review.

    Science.gov (United States)

    Quesada, Silvia Pilco; Paschoal, Jonas Augusto Rizzato; Reyes, Felix Guillermo Reyes

    2013-09-01

    Aquaculture has become an important source of fish available for human consumption. In order to achieve greater productivity, intensive fish cultivation systems are employed, which can cause greater susceptibility to diseases caused by viruses, bacteria, fungi, and parasites. Antimicrobial substances are compounds used in livestock production with the objectives of inhibiting the growth of microorganisms and treatment or prevention of diseases. It is well recognized that the issues of antimicrobial use in food animals are of global concern about its impact on food safety. This paper present an overview of the aquaculture production in the whole world, raising the particularities in Brazil, highlighting the importance of the use of veterinary drugs in this system of animal food production, and address the potential risks arising from their indiscriminate use and their impacts on aquaculture production as they affect human health and the environment. The manuscript also discusses the analytical methods commonly used in the determination of veterinary drug residues in fish, with special issue for fluroquinolones residues and with emphasis on employment of LC-MS/MS analytical technique. © 2013 Institute of Food Technologists®

  6. Studies of the Outer Membrane Proteins of Campylobacter Jejuni for Vaccine Development

    Science.gov (United States)

    1991-11-26

    AD-A245 442 AD___1111111i1i11l 01 li[i ] i 1 I1 STUDIES OF THE OUTER MEMBRANE PROTEINS OF CAMPYLOBACTER JEJUNI FOR VACCINE DEVELOPMENT MIDTERM...the Outer Membrane Proteins of Campylobacter 90PP0820 Jejuni for Vaccine Development ____ ___ ___ ____ _ _ ___ ___ ___ ____ ___ ___61102A .1 6...Enteritis in Thailand. Although Campylobacter enteritis is usually an inflammatory process in developed countries, watery diarrhea is common in the

  7. Reported rabies pre-exposure immunization of students at US Colleges of Veterinary Medicine.

    Science.gov (United States)

    Lindenmayer, Joann M; Wright, James C; Nusbaum, Kenneth E; Saville, William J A; Evanson, Timothy C; Pappaioanou, Marguerite

    2013-01-01

    In 2008, the US experienced a disruption in human rabies vaccine supplies, leading public health authorities to prioritize vaccine release for post-exposure prophylaxis (PEP) and limit vaccine supplies for pre-exposure prophylaxis (PreEP) in high-risk groups. In 2008, the Association of American Veterinary Medical Colleges (AAVMC) surveyed its member institutions on rabies vaccination policies and practices. Senior administrators at Colleges of Veterinary Medicine (CVMs) and departments of veterinary science and comparative medicine were asked to identify the person most knowledgeable about their institution's student rabies vaccination program. Respondents were asked to describe their policies and procedures for administering PreEP to veterinary medical students and staff and to estimate the annual demand for student and staff PreEP vaccine. Twenty-one CVMs responded. Twenty (95%) reported requiring PreEP of veterinary medical students and 16 (80%) of those 20 required vaccination upon matriculation. An estimated 7,309 doses of vaccine were required for PreEP of an estimated 2,436 first-year US veterinary medical students. Seventy-two percent of respondents administered PreEP in August, September, and October, coinciding with the highest public demand for PEP. CVMs should consider altering the timing of rabies vaccine administration to veterinary medical students and staff to other months, thereby helping to ensure that PEP rabies vaccine will be available to people with validated rabies exposures and to ensure that supplies will be available for PreEP of students and staff. AAVMC may wish to identify and support a point of coordination to facilitate the purchase and distribution of human rabies vaccine among its US member CVMs.

  8. VaxCelerate II: rapid development of a self-assembling vaccine for Lassa fever.

    Science.gov (United States)

    Leblanc, Pierre; Moise, Leonard; Luza, Cybelle; Chantaralawan, Kanawat; Lezeau, Lynchy; Yuan, Jianping; Field, Mary; Richer, Daniel; Boyle, Christine; Martin, William D; Fishman, Jordan B; Berg, Eric A; Baker, David; Zeigler, Brandon; Mais, Dale E; Taylor, William; Coleman, Russell; Warren, H Shaw; Gelfand, Jeffrey A; De Groot, Anne S; Brauns, Timothy; Poznansky, Mark C

    2014-01-01

    Development of effective vaccines against emerging infectious diseases (EID) can take as much or more than a decade to progress from pathogen isolation/identification to clinical approval. As a result, conventional approaches fail to produce field-ready vaccines before the EID has spread extensively. Lassa is a prototypical emerging infectious disease endemic to West Africa for which no successful vaccine is available. We established the VaxCelerate Consortium to address the need for more rapid vaccine development by creating a platform capable of generating and pre-clinically testing a new vaccine against specific pathogen targets in less than 120 d A self-assembling vaccine is at the core of the approach. It consists of a fusion protein composed of the immunostimulatory Mycobacterium tuberculosis heat shock protein 70 (MtbHSP70) and the biotin binding protein, avidin. Mixing the resulting protein (MAV) with biotinylated pathogen-specific immunogenic peptides yields a self-assembled vaccine (SAV). To meet the time constraint imposed on this project, we used a distributed R&D model involving experts in the fields of protein engineering and production, bioinformatics, peptide synthesis/design and GMP/GLP manufacturing and testing standards. SAV immunogenicity was first tested using H1N1 influenza specific peptides and the entire VaxCelerate process was then tested in a mock live-fire exercise targeting Lassa fever virus. We demonstrated that the Lassa fever vaccine induced significantly increased class II peptide specific interferon-γ CD4(+) T cell responses in HLA-DR3 transgenic mice compared to peptide or MAV alone controls. We thereby demonstrated that our SAV in combination with a distributed development model may facilitate accelerated regulatory review by using an identical design for each vaccine and by applying safety and efficacy assessment tools that are more relevant to human vaccine responses than current animal models.

  9. Immunogenic Apoptosis as a Novel Tool for Anticancer Vaccine Development

    Directory of Open Access Journals (Sweden)

    Barbara Montico

    2018-02-01

    Full Text Available Immunogenic apoptosis, or more appropriately called immunogenic cell death (ICD, is a recently described form of apoptosis induced by a specific set of chemotherapeutic drugs or by physical therapeutic modalities, such as ionizing irradiation and photodynamic therapy. The peculiar characteristic of ICD is the ability to favor recognition and elimination of dying tumor cells by phagocytes in association with the release of pro-inflammatory molecules (such as cytokines and high-mobility group box-1. While in vitro and animal models pointed to ICD as one of the molecular mechanisms mediating the clinical efficacy of some anticancer agents, it is hard to clearly demonstrate its contribution in cancer patients. Clinical evidence suggests that the induction of ICD alone is possibly not sufficient to fully subvert the immunosuppressive tumor microenvironment. However, interesting results from recent studies contemplate the exploitation of ICD for improving the immunogenicity of cancer cells to use them as an antigen cargo in the development of dendritic cell (DC vaccines. Herein, we discuss the effects of danger signals expressed or released by cancer cells undergoing ICD on the maturation and activation of immature and mature DC, highlighting the potential added value of ICD in adoptive immunotherapy protocols.

  10. A glance at Taenia saginata infection, diagnosis, vaccine, biological control and treatment.

    Science.gov (United States)

    Silva, Claudio V; Costa-Cruz, Julia M

    2010-10-01

    The Taenia saginata taeniasis-cysticercosis complex is a cosmopolitan zoonosis of great medical, veterinary and economic importance where humans play an important role as the carrier of adult stage and cattle as carrier of the larval stage of the parasite. Here we reviewed aspects concerning diagnosis, vaccine development, biological control and treatment of the disease.

  11. TSOL18 Vaccine Antigen of Taenia solium: Development of Monoclonal Antibodies and Field Testing of the Vaccine in Cameroon

    Directory of Open Access Journals (Sweden)

    Assana, E.

    2010-01-01

    necropsy at the end of the trial (110 vaccinated; 102 controls. Viable T. solium cysticerci were identified in 20 control pigs (prevalence 19.6%, including 14 animals that had estimated total body burdens of > 1000 cysticerci. No cysticerci were found in any of the vaccinated animals indicating that the vaccine provided a very high level of protection (P< 0.0001 against naturally acquired infection with T. solium in pigs. Combined application of TSOL18 vaccination and a single oxfendazole treatment in pigs is a simple and relatively sustainable procedure that has the potential to control T. solium transmission in endemic areas and, indirectly, reduce the number of new cases of neurocysticercosis in humans. In chapter 6, the similarity of the antibody responses of pigs and mice to TSOL18 antigen is highlighted. Four IgG1 monoclonal antibodies (MoAb were produced against the conformational epitopes of TSOL18. It was shown that pig antisera inhibit the binding of these MoAbs in a competition ELISA, indicating that pig and mouse antibodies against TSOL18 vaccine react with the same conformational epitopes. For this reason, monoclonal antibodies raised in mice immunized with TSOL18 could be a valuable source of antibodies for further characterisation of the host-protective epitopes of the vaccine. A monoclonal antibody-based inhibitive enzyme-linked immunosorbent assay (mi-ELISA was developed. Serum samples of TSOL18-vaccinated and non-vaccinated pigs were used. In all the vaccinated and protected pigs screened at necropsy, anti-TSOL18 antibodies inhibited the binding of a monoclonal antibody (Mab25D12C1 specific to the conformational epitopes of TSOL18 antigen, suggesting an immune response that correlates with protection. This result was in agreement with the results obtained in an indirect ELISA, which showed that all the vaccinated and protected pigs had developed antibodies to the TSOL18 vaccine. In chapter 7 the efficacy of the TSOL18 vaccine is compared with that of

  12. Multi-stage subunit vaccine development against Mycobacterium paratuberculosis and Johne’s disease in ruminants

    DEFF Research Database (Denmark)

    Jungersen, Gregers

    , but in vaccination-challenge studies protection was not associated with level of FET-specific IFN-γ production, and Map-specific IFN-γ production appeared as a surrogate of disease with an inverse relationship to level of Map in tissues at slaughter. Polyfunctional T cells were induced by FET vaccination, but could...... in macrophages. The disease progression is very slow with neonatal animals being the most susceptible to infection, but without development of detectable IFN-γ responses for months after infection and rarely with clinical disease before the second or third year of life. Available whole cell vaccines against...... paratuberculosis provide only partial protection and interfere with diagnostic tests for JD and surveillance for bovine TB. In contrast, recombinant subunit vaccines can be designed to be used without compromising control of bTB and Map. Taking advantage of data from mouse TB studies, and early Map vaccination...

  13. Progress, prospects, and problems in Epstein-Barr virus vaccine development.

    Science.gov (United States)

    Balfour, Henry H

    2014-06-01

    Epstein-Barr virus (EBV) is responsible for a farrago of acute and chronic human diseases including cancer. A prophylactic vaccine could reduce this disease burden. Several EBV vaccines have been given to humans but none has been sufficiently studied to establish safety and efficacy. EBV vaccine development has been hampered by the lack of an animal model other than subhuman primates, proprietary issues, selection of an appropriate adjuvant, and failure to reach consensus on what an EBV vaccine could or should actually achieve. A recent conference at the U.S. National Institutes of Health emphasizing the global importance of EBV vaccine and advocating a phase 3 trial to prevent infectious mononucleosis should encourage research that could eventually lead to its licensure. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Pre-clinical and clinical development of the first placental malaria vaccine.

    Science.gov (United States)

    Pehrson, Caroline; Salanti, Ali; Theander, Thor G; Nielsen, Morten A

    2017-06-01

    Malaria during pregnancy is a massive health problem in endemic areas. Placental malaria infections caused by Plasmodium falciparum are responsible for up to one million babies being born with a low birth weight every year. Significant efforts have been invested into preventing the condition. Areas covered: Pub Med was searched using the broad terms 'malaria parasite placenta' to identify studies of interactions between parasite and host, 'prevention of placental malaria' to identify current strategies to prevent placental malaria, and 'placental malaria vaccine' to identify pre-clinical vaccine development. However, all papers from these searches were not systematically included. Expert commentary: The first phase I clinical trials of vaccines are well underway. Trials testing efficacy are more complicated to carry out as only women that are exposed to parasites during pregnancy will contribute to endpoint measurements, further it may require extensive follow-up to establish protection. Future second generation vaccines may overcome the inherent challenges in making an effective placental malaria vaccine.

  15. Development of a Multi-Stage Vaccine against Paratuberculosis in Cattle

    DEFF Research Database (Denmark)

    Thakur, Aneesh

    to considerable economic losses to farming community. Paratuberculosis is a staged infection in which young calves acquire the infection in the first months of life, may progress into a prolonged asymptomatic stage of about 2-5 years and may eventually become clinically infected animals. Vaccination with whole......-cell live or inactivated vaccines prevents or delays the development of clinical stage of the disease but does not eliminate MAP and is usually accompanied by interference with bovine tuberculosis diagnostics as well as local tissue damage. Subunit vaccines with well-defined antigens in combination...... vaccine with activation of protective immune response in experimentally challenged calves, with a focus on cell-mediated immune responses chiefly interferon gamma (IFN-γ) and polyfunctional T cells. The antigen composition of the vaccines was selected based on previous immunogenicity studies in cattle...

  16. A New Scientific Paradigm may be Needed to Finally Develop an HIV Vaccine.

    Science.gov (United States)

    Esparza, José

    2015-01-01

    The bulk of current HIV vaccine research is conducted within the infectious disease paradigm that has been very successful in developing vaccines against many other viral diseases. Different HIV vaccine concepts, based on the induction of neutralizing antibodies and/or cell mediated immunity, have been developed and clinically tested over the last 30 years, resulting in a few small successes and many disappointments. As new scientific knowledge is obtained, HIV vaccine concepts are constantly modified with the hope that the newly introduced tweaks (or paradigm drifts) will provide the solution to one of the most difficult challenges that modern biomedical research is confronting. Efficacy trials have been critical in guiding HIV vaccine development. However, from the five phase III efficacy trials conducted to date, only one (RV144) resulted in modest efficacy. The results from RV144 were surprising in many ways, including the identified putative correlates of protection (or risk), which did not include neutralizing antibodies or cytotoxic T-cells. The solution to the HIV vaccine challenge may very well come from approaches based on the current paradigm. However, at the same time, out-of-the-paradigm ideas should be systematically explored to complement the current efforts. New mechanisms are needed to identify and support the innovative research that will hopefully accelerate the development of an urgently needed HIV vaccine.

  17. Influence of potential protective mechanisms on the development of live rotavirus vaccines.

    Science.gov (United States)

    Ward, Richard L; Clark, H Fred; Offit, Paul A

    2010-09-01

    Rotaviruses cause extensive morbidity and mortality worldwide, thus corroborating the need for a vaccine that is effective in all socioeconomic environments. Vaccines evaluated in clinical trials have all been live attenuated rotaviruses that are delivered orally to mimic the excellent protection observed after natural infection. The mechanisms by which these vaccine candidates or wild-type rotaviruses elicit protection are not fully understood. During the 1980s, several candidate vaccines provided little protection, particularly in developing countries, and were discontinued. Two, however, are in the process of being licensed worldwide, and several others are undergoing clinical trials. Development of live rotavirus vaccines has been highly influenced by views regarding the importance of serotype-specific neutralizing antibody. Development of several candidate vaccines is based on the concept that neutralizing antibody is the primary determinant of protection. These candidates, including 1 of the 2 being licensed worldwide (RotaTeq), are composed of multiple rotavirus strains representative of the major human rotavirus serotypes. The other group of candidates has been developed based on the theory that protection is not solely dependent on neutralizing antibody. These candidates are composed of single rotavirus strains and include the other vaccine being licensed worldwide (Rotarix). Studies that provide the basis for each approach will be presented and discussed.

  18. Rift Valley fever vaccines: an overview of the safety and efficacy of the live-attenuated MP-12 vaccine candidate.

    Science.gov (United States)

    Ikegami, Tetsuro

    2017-06-01

    Rift Valley fever (RVF) is a mosquito-borne zoonotic viral disease endemic to Africa and the Arabian Peninsula. High rates of abortion among infected ruminants and hemorrhagic fever in infected humans are major public health concerns. Commercially available veterinary RVF vaccines are important for preventing the spread of the Rift Valley fever virus (RVFV) in endemic countries; however, RVFV outbreaks continue to occur frequently in endemic countries in the 21st century. In the U.S., the live-attenuated MP-12 vaccine has been developed for both animal and human vaccination. This vaccine strain is well attenuated, and a single dose induces neutralizing antibodies in both ruminants and humans. Areas covered: This review describes scientific evidences of MP-12 vaccine efficacy and safety, as well as MP-12 variants recently developed by reverse genetics, in comparison with other RVF vaccines. Expert commentary: The containment of active RVF outbreaks and long-term protection from RVF exposure to infected mosquitoes are important goals for RVF vaccination. MP-12 vaccine will allow immediate vaccination of susceptible animals in case of an unexpected RVF outbreak in the U.S., whereas MP-12 vaccine may be also useful for the RVF control in endemic regions.

  19. Ensuring good governance to address emerging and re-emerging animal disease threats: supporting the veterinary services of developing countries to meet OIE international standards on quality.

    Science.gov (United States)

    Vallat, B; Mallet, E

    2006-04-01

    As an effect of increased globalisation, animal diseases, in particular those transmissible to man, have an immediate global economic and social impact. This fact, dramatically illustrated by the current avian influenza epizootic in South-East Asia and Eastern Europe, clearly demonstrates the crucial importance of the national Veterinary Services (VS) for the prevention, early detection and response for the efficient control of animal diseases. Complying with this mission for the VS presupposes the existence of appropriate governance and legislation and of an official system to control their quality and reliability- an obvious weakness in many developing and in transition countries. The World Organisation for Animal Health (OIE) has therefore developed a project aiming at strengthening the VS in those countries facing the greatest animal health threats and to bring them into line with OIE international standards already adopted by the same countries. Based on the evaluation of the VS and subsequent actions at the global, regional and national levels, the project will have a significant beneficial impact on the targeted countries as well as the international community as a whole, not only in the fields of agriculture, food security and production, and food safety, but also for the local and global prevention of emerging and re-emerging diseases of veterinary and public health importance. The project will be implemented in strong collaboration with the Food and Agriculture Organization. The actions proposed must be considered eligible for the concept of International Public Good.

  20. Development of a new tuberculosis vaccine: is there value in the mucosal approach?

    Science.gov (United States)

    Diogo, Gil Reynolds; Reljic, Rajko

    2014-01-01

    TB is a global health problem, killing 1.5 million people every year. The only currently available vaccine, Mycobacterium bovis BCG, is effective against severe childhood forms, but it demonstrates a variable efficacy against the pulmonary form of TB in adults. Many of these adult TB cases result from the reactivation of an initially controlled, latent Mycobacterium tuberculosis infection. Effective prophylactic vaccination remains the key long-term strategy for combating TB. Continued belief in reaching this goal requires unrelenting innovation in the formulation and delivery of candidate vaccines. It is also based on the assumption, that the failure of recent human vaccine trials could have been due to a suboptimal vaccine design and delivery, and therefore should not erode the key principle that a TB vaccine is an attainable target. This report gives a brief overview of the mucosal immune system in the context of M. tuberculosis infection, and focuses on the most recent advances in the field of mucosal TB vaccine development, with a specific emphasis on subunit TB vaccines.